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Abstract. The prognosis for patients with ovarian cancer
is still poor and more effective therapeutic modalities are
needed. (Radio)immunotherapy using monoclonal antibodies
(Mabs) could be one of these approaches. Here, we review
the status of (radio)immunotherapy using Mabs for the treat-
ment of ovarian cancer. The Pubmed database was searched
for clinical trials investigating the effect of (radio)immuno-
therapy in ovarian cancer published until October 1, 2007.
Keywords for the search were: ovarian cancer, monoclonal
antibodies, CA 125, gp38, HER2, HMFG, MUC1, TAG 72
and VEGF. A total of 44 trials on immunotherapy with
unconjugated Mabs, Mab vaccination and (radio)immuno-
therapy directed towards the antigens CA 125, gp38, HER2,
MUC1, TAG 72 or VEGF in patients with ovarian cancer
were found, reviewed and discussed. Out of these trials,
23 studied immunotherapy with unconjugated Mabs, 5
vaccination with Mabs and 16 trials studied (radio)immuno-
therapy. The lack of large randomized prospective trials with
Mabs directed to tumor-associated antigens expressed on
ovarian cancer cells preclude any firm conclusion on the
potential of Mabs use in the treatment of ovarian cancer.
Oregovomab, directed against CA 125, and bevacizumab,
targeting VEGF, are two unconjugated Mabs closest to

clinical introduction for the treatment of ovarian cancer.
Vaccination with Mab ACA 125 seems promising but these
findings need to be confirmed in controlled randomized
trials. Sole RIT should be investigated with the appropriate
radionuclide and a Mab with high affinity for the specific
tumor-associated antigen in the appropriate patient group
to determine whether it may have a therapeutic effect.
Additionally, appending (radio)immunotherapy with anti-
TAG 72 or anti-MUC1 to other treatment strategies such
as chemotherapy could also be a strategy worthwhile
investigating. The potential of Mabs to complement current
treatment paradigms, is encouraging and may bring a
significant improvement to the overall therapeutic outcomes
currently being achieved in ovarian cancer.
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1. Introduction

Ovarian cancer is the fourth leading cause of cancer-related
death in women, and accounts for the highest mortality rate
of all gynecological malignancies (1). Its poor prognosis is
mainly the result of the clinically occult nature of this disease.
The peritoneal cavity in which the ovaries are localized
provides a perfect environment for undisturbed subclinical
growth. Furthermore, early detection is difficult because
of the general asymptomatic presentation of the disease
(2). In the majority (68%) of the patients, ovarian cancer
is diagnosed with at least extensive abdominal spread
(3). Standard treatment for advanced stage ovarian cancer
is tumor debulking surgery and adjuvant chemotherapy.
Although most ovarian cancers are sensitive to platinum-
based chemotherapy, the prognosis remains poor. The 5-year
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survival of patients with advanced disease, FIGO stage IIIc
and IV is respectively 29 and 13% (2,4).

There is a need for new treatment modalities. Antibody-
based therapy such as immunotherapy with unconjugated
antibodies, vaccination and (radio)immunotherapy (RIT)
could be treatment modalities useful for this disease. In most
patients ovarian cancer growth is confined to the peritoneal
cavity. One of the advantages of (radio)immunotherapy is
the possibility of regional administration, thereby limiting
systemic side-effects. Besides this, a series of ovarian cancer-
associated antigens have been identified during the past few
decades which may serve as potential targets for antibody-
based (radio)immunotherapy. These developments, which
use monoclonal antibodies (Mabs) as ‘magic bullets’ are
attractive alternative options for the treatment of ovarian
cancer.

In recent clinical studies in non-Hodgkin lymphoma
patients, antibody-based therapy has shown remarkable
response rates and, for this reason became a standard element
in the treatment of these malignancies (5,6). Similar results
were obtained with antibody-based therapies in several solid
malignancies (7-9). The aim of the present review is to
provide background information on Mab-based therapy in
general and to give an overview of published clinical trials
with unconjugated Mabs, vaccination and/or RIT with Mabs
for the treatment of ovarian cancer.

2. Background

The therapeutic appeal of antibodies can be traced back more
than a century ago, when mice were first investigated as a
possible source of antibodies. Scientists injected mice with
infectious agents in order to stimulate the production of
antibodies against the micro-organisms. It was hypothesized
that patients suffering from the same type of infection could
be treated with an injection of infected rodents' serum.
However, these crude preparations were ineffective, and the
sera sparked adverse immune reactions in some patients
(10).

The idea to use antibodies as ‘magic bullet’ was first
postulated by Paul Ehrlich at the end of the 19th century
(11). Ehrlich proposed the concept that immune cells secrete
‘Seitenketten’, which we now know as antibodies, in response
to foreign antigens. He postulated that these antibodies could
be used to specifically attack a wide variety of pathogens,
using them as ‘magic bullets’ to target the site of disease. In
1975 Köhler and Milstein discovered a method for producing
monoclonal antibodies by in vitro fusion of immune spleen
cells and immortal murine myeloma cells (12). This discovery
has allowed for the production of large amounts of identical
and specific antibodies for the diagnosis and treatment of
cancer, as well as several other diseases. More recently,
genetic engineering has enabled the development of chimeric
and humanized antibodies, in order to reduce the immuno-
genicity of the antibodies. Antibodies and IgG fragments
were further linked with toxins, radionuclides, enzymes,
chemotherapeutic agents and cytokines for diagnostic and
therapeutic purposes (13). Subsequently, various Mabs
against ovarian cancer-associated antigens have been
developed to try to improve diagnosis and therapy.

3. Antibody features

Antibodies or immunoglobulins are a group of glycoproteins
present in serum and tissue of all mammals. They are
produced by B-lymphocytes in response to a pathogenic
challenge and trigger the immune system to react against this
pathogen. The immunoglobulin is composed of two identical
light chains and two identical heavy chains linked together
by disulphide bonds. An immunoglobulin G (IgG) molecule
consists of two Fab domains, containing antigen-binding
site, and one Fc domain, which is responsible for activation
of the immune system (Fig. 1).

There are five distinct classes of immunoglobulins, IgG,
IgA, IgM, IgD, IgE, of which IgG is most commonly used in
diagnostic and therapeutic applications. IgG antibodies have
a molecular weight of 150 kDa and are characterized by a
slow clearance from the blood resulting in long circulatory
half-life (>3 days). When targeting a tumor these antibodies
show a heterogeneous intra-tumoral distribution (14).

Smaller antibody fragments have been produced in order
to achieve more rapid blood clearance. Proteolytic degradation
of IgG with pepsin results in antibody fragments; F(ab')2

(MW 100 kDa) and Fab' (MW 50 kDa), respectively (Fig. 1).
Tumor uptake of these fragments is faster and more homo-
geneous than whole IgG molecules, but the absolute tumor
uptake is lower and retention time is shorter as compared to
that of intact Mab (15). Furthermore, an important difference
between intact Mabs and Mab fragments is their route of
clearance from the body. Intact Mabs are catabolized in the
liver and spleen, whereas Mab fragments are mainly excreted
via the kidneys (16). Consequently, the application of radio-
labeled Mab fragments for therapy will result in an increased
renal radiation dose.

4. Antibody-based therapy

The anti-tumor effects induced by injecting Mabs are
generated by different mechanisms. Upon binding of the
Fc receptor of the injected Mabs to the effector cells, the Fc
region triggers an antibody-dependent cell-mediated cyto-
toxicity (ADCC) response resulting in lysis of the target cells
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Figure 1. Monoclonal antibody structures mainly used in (radio)immuno-
therapy. (A) Whole (murine) IgG. V variable regions, C constant regions.
(B) F(ab')2 fragment. (C) F(ab') fragment. (D) Chimeric IgG, the constant
regions of the murine Mab have been replaced by their human analogues
(black). (E) Humanized IgG (90-95% human).

1145-1157  7/5/08  18:15  Page 1146



(17). Furthermore, activation of the complement system
could thus, induce complement dependent cytotoxicity
(CDC) of tumor cells. Some Mabs induce apoptosis while
other Mabs may block growth factor receptors on cancer cells
and/or may sensitize cancer cells for example for chemo-
therapy and radiotherapy (17). Moreover, Mabs may act as
anti-angiogenic agents, such as bevacizumab that blocks
vascular endothelial growth factors (VEGF) and thus inhibits
angiogenesis (17). Furthermore, a humoral immune response
may be induced if the injected Mab is recognized as a foreign
protein. This humoral response can either be an anti-isotypic
and/or an anti-idiotypic response. Anti-isotypic antibodies
are directed towards antigenic determinants on the constant
regions of the murine immunoglobulin molecule. Anti-idio-
typic antibody response (Ab2) is directed against the hyper-
variable regions of the injected Mab. The presence of anti-
idiotypic antibodies theoretically can evoke a second immune
response by producing anti-anti-idiotypic antibodies (Ab3).
The antigen binding region of these Ab3 antibodies is directed
towards the antigen binding region of Ab2 and resembles
the antibody (Ab1) that elicited the original anti-idiotypic
antibody response (18). This cascade-like manner, in which
each antibody generation induces the production of another
set of antibodies was first described by Jerne and is called
‘The Jerne network theory’ (Fig. 2) (19).

Assuming that the idiotypic network of Jerne does exist,
vaccination with Ab1 or Ab2 may be an attractive treatment
strategy. Immunization with Ab1, specifically directed
towards the tumor-associated antigen, or Ab2, resembling
the antigen, may result in the production of Ab3, which
recognizes the corresponding original antigen. If so, complex
formation between the antigen present on the tumor cell
surface and the induced Ab3 may induce ADCC, CDC and/
or apoptosis of tumor cells.

The use of Mabs in RIT is based on the idea of
specifically targeting the tumor cells that express the tumor-
associated antigens. Hereby, the radiation dose is delivered
locally, optimizing the dose at the tumor site and minimizing
radiation damage to the healthy tissues.

The three Mab-based treatment strategies with Mab, i.e.
unconjugated Mabs therapy, vaccination with Mabs and RIT
will be discussed below.

5. Immunogenicity

The activation of the immune system by Mabs may be
beneficial for the recipient but also have negative effects.
Injected murine Mabs may evoke a humoral immune response
in which human anti-mouse antibodies (HAMA) are produced
(20). About 50-75% of patients with solid tumors develop
HAMA after exposure to mouse Mabs, depending on the
Mab and the antibody form (IgG or fragments) (21). Complex
formation between the injected antibody and HAMA may
result in a faster clearance of the antibody, increased hepatic
and splenic uptake and reduced tumor uptake when Mabs
are repeatedly administered (22). The magnitude and duration
of the HAMA response in serum shows great variability and
is more likely to occur after repeated injection of Mabs
(20,23). HAMA can persist in blood for several months after
exposure to mouse immunoglobulin. B-memory cells that
produce these specific antibodies presumably remain present
for years and will be re-activated upon re-exposure to the
antigenic stimulus (21,24).

Hence, the development of HAMA has been considered a
disadvantage in the treatment with Mabs (21). Interestingly,
HAMA development has also been associated with a positive
outcome on survival, by inducing the production of anti-
anti-idiotypic antibodies (Ab3) (25-28). Induction of Ab3
following injection of Mabs to tumor-associated antigens
(TAA), has been associated with cancer regression in animal
models and cancer patients (26,28). To avoid the negative
side-effects of HAMA development after treatment with Mabs,
chimeric and humanized antibodies have been developed.
Chimeric antibodies are Mabs in which the constant domains
of the human IgG molecule are combined with the murine
variable regions by transgenic fusion of the immunoglobulin
genes (Fig. 1) (29). The application of chimeric antibodies
indeed reduced HAMA responses substantially, but did not
eliminate them completely in most cases. Next, humanized
antibodies were developed in which the 6 complementarity
determining regions (CDRs) of the heavy and light chains
and a limited number of structural amino acids of the murine
Mab were grafted, by recombinant technology, to the CDR-
depleted human IgG scaffold (Fig. 1) (30,31).

6. Toxicity

Despite earlier concerns, adverse events as a result of the
development of HAMA during and after immunotherapy or
radioimmunotherapy have not proven to be significant (21).
Remarkably few anaphylactic reactions have been reported,
suggesting that they are quite uncommon (20,21). However,
adverse reactions after Mab therapy due to a developed
HAMA may occur, and the following reactions have been
reported: allergic reactions, anaphylactic shock, generalized
pain, hyponatremia, fever, rigors and chills, rash, paresthesias,
weakness, chronic refractory postural hypotension, serum
sickness, cytokine release syndrome and tumor lysis syndrome
(32-35). When adverse events do occur they generally occur
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Figure 2. The variable region of the murine monoclonal antibody binds with
the antigen. The variable region of the murine monoclonal antibody (Ab1)
contains unique structures, which stimulate the production of various anti-
antibodies (Ab2). Some Ab2 express the variable-region structures (internal
image) which mimic the antigen (MUC1) and therefore can stimulate the
production of antibodies similar to the monoclonal antibody (Ab3). Ab3
may be similar to Ab1 and thus may react with MUC1. Each antibody
generation induces the production of still another and larger set of anti-
antibodies in a similar cascade-like manner.
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after the first Mab administration (21,34). The studies reported
to date indicate that depending on the Mab, the majority of
the Mab-based therapies can be safely applied with minimal
adverse effects (21).

7. Clinical trials

A search for antibody-based trials for the treatment of ovarian
cancer was performed in the Pubmed and Medline databases
until October 1, 2007. The following keywords were used for
the search: monoclonal antibodies, ovarian cancer, CA 125,
HER2, gp38, HMFG, MUC1, TAG 72 and VEGF. The search
was limited by only including clinical trials in humans and
written in the English language.

A total of 44 Mab based trials in ovarian cancer patients
have been published, 42 of which are phase I/II and two phase
III trials dealing with patients receiving Mab. Mabs were
administered using the intravenous (iv), intramuscular (im),

intradermal, intraperitoneal (ip) and subcutaneous (sc)
route. To date, 15 different antibodies have been used
directed against 5 different tumor-associated antigens and
one antiangiogenesis antigen (VEGF). Of the 44 clinical
trials, 23 trials studied immunotherapy with unconjugated
Mab (27,36-57), five trials studied vaccination with Mabs
(58-62), while 16 trials studied RIT (63-78). Two of the RIT
trials used a combination of cytotoxic chemotherapy and RIT
(64,71). A combination of unconjugated Mabs combined
with cytotoxic chemotherapy administration was assessed
in four trials (43,47,53,57). Because of the high propensity to
stay confined to the peritoneal cavity until very late in the
course of the disease, many trials on radiolabeled Mab in
ovarian cancer patients used the ip route for administration
(19/44) (38,41,44,50,51,63,64,66-71,73-78). In 20 studies the
Mab was administered iv (36,37,39,40,42,43,45-49,52-
55,57,60,65,72,79), two studies injected im (59,61), while 2
other studies used both iv and ip routes of administration

OEI et al:  ANTIBODY-BASED THERAPY IN OVARIAN CANCER1148

Table I. Clinical trials in ovarian cancer with Mab directed towards antigen CA 125.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Authors (Refs.) MAb No. of patients Dosage Response Special features
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Method et al (52) B43.13 102 consolidation 2 mg, repeated, iv - Immune response correlated with

improved clinical outcomes

Ehlen et al (46) B43.13 13 recurrent 2 mg, repeated, iv 3 SD, 10 PD SD in patients with robust
immune response

Berek et al (37) B43.13 145 CCR 2 mg, repeated, iv - No difference in time to relapse

Gordon et al (48) B43.13 20 recurrent 2 mg, repeated, iv 2 CR, 1 PR, Improved survival in patients
3 SD, 9 PD with T-cell response to CA 125

Ehlen et al (45) B43.13 345 consolidation 2 mg, repeated, iv - Specific immune response longer
median time to progression

Pfisterer et al (62) ACA 125 36 recurrent 2 mg, repeated, sc 11 PD Premature termination

Schultes et al (54) B43.13 75 2 mg, repeated, iv - Ab2 responders longer survival

Reinartz et al (59) ACA 125 119 2 mg, repeated, im - Specific immune response
resulted in longer survival

Wagner et al (61) ACA 125 42 reccurent 2 mg, repeated, im - Specific immune response
resulted in longer survival

Wagner et al (60) ACA 125 16 advanced 2 mg, repeated, iv - CA 125-specific immune
and recurrent responders showed longer PFS

Mobus et al (72) 99Tc-B43.13 44 recurrent 2 mg, repeated, iv 6 CR HAMA responders longer
survival

Mahe et al (69) 131I-OC125 6 residual 60 mg, ip 2 SD, 4 PD -

Baum et al (65) 111In-OC125, 32 Repeated, iv 7 CCR, Anti-idiotypic HAMA
99Tc-B43.13 or SD responders longer survival

Muto et al (73) 131I-OC125 29 refractory 10-65 mg, ip 1 CR, 28 PD -
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
CR, complete remission; HAMA, human anti-mouse antibodies; Hu, human; IFB, interferon; iv, intravenous; ip, intraperitoneal; im,
intramuscular; PD, progressive disease; PFS, progression-free survival; PR, partial response; sc, subcutaneous; SD, stable disease.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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(27,58), one study administered through ip, iv and intra-
dermal routes (58) and one study only used sc route of Mabs
administration (62). The median number of patients included
was 29 (range 3-447). Fourteen trials included patients with
ovarian cancer stages Ic through IV. The majority of trials
(22/44) included patients with residual, refractory or recurrent
ovarian cancer. Five trials included patients in complete
clinical remission and three trials included patients after
debulking and/or chemotherapy. Mab therapy targeting the
CA 125 antigen was used in 14 trials of which four RIT trials
and three vaccination trials (Table I). Anti-folate receptor
Mabs (gp38) were used in seven trials of which one evaluated
RIT (Table II). Anti-HER2 Mabs were used in five trials
(Table III). Seven trials evaluated anti-MUC1 Mabs of which
6 were RIT trials, and one a vaccination trial (Table IV). Anti-
TAG 72 Mabs were used in 6 RIT trials (Table V). Anti-
VEGF Mabs were used in 5 immunotherapy trials (Table VI).
The following sections discuss these trials according to the
antigen that was targeted.

Cancer antigen (CA) 125. The tumor associated-cancer
antigen CA 125 is detectable on tumor cells in over 90% of
the patients with advanced epithelial ovarian cancer (80).
An overview of Mab trials directed towards CA 125 is shown
in Table I. OC125 was the first antibody directed to CA 125
and was used in radioimmuno-scintigraphy (RIS) trials
administering OC125 labeled with a diagnostic dose of 131-
Iodium in ovarian cancer patients (73). A RIS study by Muto
et al (73) also used 131I-labeled OC125 for RIS in patients
with recurrent ovarian cancer. Interestingly, it was found that
patients who developed HAMA and/or Ab2 had a prolonged

median survival. Another phase II study in ovarian cancer
patients treated with ip 131I-OC125-F(ab')2, (120 mCi) for
consolidation did not show a beneficial therapeutic effect (69).

MAb-B43.13 also known as oregovomab and OvaRex®

is a more recently develop murine Mab also directed to
CA 125. One of the first RIS studies with 99mTc-B43.13
showed an unexpected prolonged survival in 26 ovarian
cancer patients receiving RIS compared to a control group
(69,80). The improved clinical outcome was suggested to be
due to the induction of the idiotypic cascade by this Mab
(Ab1) (65). Further investigation of the immune response
showed activation of both a humoral and a cellular CA 125
specific responses. A double-blind, placebo-controlled trial
in which 145 epithelial ovarian cancer patients were treated
with repeated iv B43.13 injections as consolidation therapy
confirmed the induction of HAMA and Ab2 (37). However,
the study did not demonstrate a prolonged time to relapse
(TTR). Comparing the group of patients who developed
human anti-B43.13 antibodies (Ab2 responder group) to the
Ab2 non-responder group, there was a difference in TTR
of respectively, 18.8 months and 6.1 months (cut-off Ab2
response at 100 ng/ml). The induction of an immunological
response monitored as HAMA and Ab2 response was also
associated with a significant advantage in disease-free survival
in other studies using B43.13. (45,46,52,54,72). Gordon et al
(48) studied the combination of chemotherapy and immuno-
therapy with oregovomab in patients with recurrent epithelial
ovarian cancer. They found that oregovomab in combination
with standard chemotherapy was well-tolerated and induced
multiple antigen-specific immune responses, which had a
significant survival benefit in immune responders of the 20
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Table II. Clinical trials in ovarian cancer with Mab directed towards antigen Folate receptor (gp38).
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Authors (Refs.) MAb No. of patients Dosage Response Special features
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Zanten-Przybysz cMOv18 5 50 mg repeated, iv 2 SD, 3 PD Patients with recurrent or
et al (56) residual disease

Crippa et al 131I-Mov18 16 14 mg, ip 5 CR, 6 SD, Third-look laparoscopy for 
(66) 5 PD tumor response

Miotti et al OC/TR 35 Different schedules, - High HAMA levels associated
(27) ip and  iv with improved clinical response

Lamers et al OC/TR 13 residual Different schedules, 4 PR, 1 SD, OC/TR re-targeted with
(51) ip 1 CR T-lymphocytes and IL-2

Lamers et al OC/TR 8 Different schedules, - OC/TR re-targeted with
(50) ip T-lymphocytes and IL-2

Canevari et al OC/TR 28 Repeated, ip 3 CR, 3 PR, OC/TR re-targeted with
(41) 7 SD T-lymphocytes

Bolhuis et al OC/TR 13 Repeated, ip 5 CR, 3 PR, OC/TR re-targeted with
(38) 2 SD, 3 PD T-lymphocytes
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
See also legend of Fig. 1.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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patients participating in the trial. The administration of murine
B43.13 to patients led to the induction of HAMA, CA 125
specific antibodies, T helper cells, and cytotoxic T cells,
generating both a cellular and humoral response to the tumor
antigen (54,81).

ACA 125 is a murine anti-idiotypic antibody (Ab2) that
mimics the epitope of the CA 125 antigen. Theoretically

vaccination of patients with this Mab could induce the
generation of Ab3. ACA 125 has shown to induce a humoral
as well as a cellular anti-CA 125-specific immune response in
animals and humans (60,61,82). In a phase I/II trial conducted
by Wagner et al (61) 42 patients with recurrent ovarian cancer
received 4 im immunizations with anti-idiotypic Mab ACA
125. In this trial Ab3 was detected in 67% of the patients.

OEI et al:  ANTIBODY-BASED THERAPY IN OVARIAN CANCER1150

Table III. Clinical trials in ovarian cancer with Mab directed towards antigen HER2.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Authors (Refs.) MAb No. of patients Dosage Response Special features
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Seiden et al EMD7200 37 recurrent 800 mg, - Well tolerated, no clinical effect
(55) weekly, iv of matuzumab

Gordon et al Hu 2C4 123 recurrent Two schedules, iv 5 PR, 8 SD, Response rate of 4.3%
(49) 10 CA 125,

reduction

Agus et al Hu 2C4 3 5 mg/kg, iv 1 SD, 1 PR, 1 PD -
(36)

Bookman et al Hu 4D5 41 4 mg/kg, iv 1 CR, 1 PR Start with 4 mg followed with
(39) 2 mg/kg weekly

De Gramont et al MDX-H210 14 Repeated, iv 6 CR, 5 PD, 3SD Combined monocyte-derived
(44) activated killer (MAK) cells with

the bispecific Mab MDX-210
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
See also legend of Fig. 1.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Table IV. Clinical trials in ovarian cancer with Mab directed towards antigen MUC1.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Authors (Refs.) MAb No. of patients Dosage Response Special features
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Nicholson et al HMFG1 6 residual or Different schedules 3 PD iv. or ip. priming followed by 6
(58) relapse or CCR Ip. and iv intradermal vaccination

Verheijen et al 90Y-HMFG1 447 CCR 25 mg, ip 202 PD No survival benefit
(78)

Nicholson et al 90Y-HMFG1 107 CCR 25 mg, ip - No survival benefit
(75)

Epenetos et al 90Y-HMFG1 21 CCR, 25 mg, ip - Survival: 78% at 10-year follow-up
(67) 31 residual

disease

Nicholson et al 90Y-HMFG1 25 after 25 mg, ip - 10-year survival patients 70%, control
(74) debulking 32%

Hird et al 90Y-HMFG1 52 25 mg, ip - Patients have longer survival compared
(68) to historical controls

Stewart et al 90Y-HMFG1, 25 18 mg, ip 1 PD, 1 SD AUA1 to 35 kd cell surface antigen
(77) +AUA1 expressed in 75% ovca
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
See also legend of Fig. 1.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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The mean survival of patients with an Ab3 response was
19.9±13.3 months, compared to only 5.3±4.3 months for
those without an immune response. These results suggest
that vaccination with the ACA 125 antibody could have a
significant impact on clinical outcome. A continuation of this
research by Reinartz et al (59) included 119 advanced ovarian
cancer patients who received an average of 9.7 ACA 125 im
injections. In 68% of the patients an Ab3 reaction occurred,
which was associated with a significantly longer survival
(23.4 months) as compared to patients who were Ab3
negative (4.9 months). CA 125 specific antibodies (Ab3) and
ADCC of CA 125 positive tumor cells in vitro was observed
in 50.4 and 26.9% of the patients, respectively. Although
this study had an uncontrolled set-up, the data strongly

support a relationship between the development of Ab3 and
overall survival time of ovarian cancer patients with disease
recurrence. A causal relation between Ab3 and disease
outcome has not yet been confirmed. Recently, Pfisterer et al
(62) performed a phase I trial in 36 recurrent ovarian cancer
patients on the effect of subcutaneous administration of ACA
125 which was prematurely terminated due to patient with-
drawal or disease progression. However, sc administration of
ACA 125 did seem safe and was well-tolerated also in highly
frequent dosage schedules (62).

The results of the studies cited above indicate the need
for further investigation on the efficacy of antibody-based
therapy directed against the CA 125 antigen in randomized
clinical trials. Immunotherapy with oregovomab seems to be
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Table V. Clinical trials in ovarian cancer with Mab directed towards antigen TAG 72.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Authors (Refs.) MAb No. of patients Dosage Response Special features
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Alvarez et al 90Y-CC49 20 recurrent 5 mg, ip 5 SD, 2 PR, Combination with subcutanous IFN and IP
(64) or persistent 4 ND paclitaxel

Meredith et al 177Lu-CC49 44 recurrent Repeated, ip 4 SD, 4 PR, Combination with IFN subcutaneous and
(71) or persistent IP Taxol

Alvarez et al 177Lu-CC49 27 refractory 20 mg, ip 7 SD, 2 PR -
(63)

Meredith et al 177Lu-CC49 12 refractory 20 mg, ip 1 PR, 3 CR, -
(70) 5 PD, 1 SD

Rosenblum et al 90Y-B72.3 58 recurrent 2-10 mg, ip 2 CR, 2 PR, -
(76) or refractory 30 SD
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
See also legend of Fig. 1.
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Table VI. Clinical trials in ovarian cancer with Mab directed towards antigen VEGF.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Reference MAb No. of patients Dosage Response Special features
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Wright et al bevacuzimab 23 recurrent 5 mg/kg,  iv 8 PR, 10 SD, In combination with cytotoxic chemo-
(57) 5 PD therapy

Cohn et al bevacuzimab 10 refractory 10 mg/kg, iv 5 PD, 4 PR In combination with cytotoxic chemo-
(43) therapy

Monk et al bevacuzimab 32 refractory 15 mg/kg, iv 8 PR, 5 PD, Partial in combination with cytotoxic 
(53) chemotherapy

Cannistra et al bevacuzimab 44 refractory 15 mg/kg, iv 10 PFS, 7 PR, 27.4% PFS of 6 months
(42) 20 SD

Garcia et al bevacuzimab 29 recurrent 10 mg/kg, iv 6 PR, 17 SD, In combination with cytotoxic 
(47) 6 PD chemotherapy 47% PFS of 6 months

Burger et al bevacuzimab 62 recurrent 15 mg/kg, iv 3 CR, 8 PR, 38.7% had stable disease for > 6 months
(40) 34 SD, 17 PD
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
See also legend of Fig. 1.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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an attractive alternative as consolidation therapy in ovarian
cancer patients.

Folate receptor. The Mab MOv18 binds to the membrane
folate receptor (gp38) which is overexpressed in ~90% of
epithelial ovarian cancers (83). MOv18 is directed to the α
isoform of the folate receptor. Van Zanten-Przybysz et al
(56) treated 5 patients with recurrent or residual disease with
four iv injections of 50 mg chimeric MOv18 (cMOv18). This
strategy had minor side-effects but showed little if any effect
on survival (56). In several phase I/II studies the administration
of radiolabeled cMOv18 by iv and ip routes proved to be able
to deliver therapeutic radiation doses to the tumor with
minor side-effects (56,84-86). Crippa et al (66) administered
a single-dose of ip 131I-MOv18 (3700 MBq) to 16 ovarian
cancer patients with minimal disease several weeks after
second-look evaluation. Tumor response assessed at third-
look laparotomy indicated a complete response in 5 patients,
stable disease in 6 patients and 5 patients with tumor pro-
gression. However, this was not a controlled, randomized
trial and results should be interpreted with caution.

OC/TR is a bispecific Mab that reacts with the folate
binding protein on ovarian cancer cells on the one hand
and with the CD3 antigen on T-lymphocytes on the other
(Table II) (87). The bispecific Mab thus combines the cyto-
lytic potential of in vitro expanded T-lymphocytes and the
tumor selectivity of the Mab OC/TR targeting the folate
binding protein on ovarian cancer cells (88). The bispecific
OC/TR Mab was used to coat the T-lymphocytes in vitro
before administration to patients. Bolhuis et al (38) treated
13 ovarian cancer patients with T-lymphocytes retargeted
with chimeric OC/TR and administered the Mab-coated
T-lymphocytes directly into the peritoneal cavity. Five
patients were in complete clinical remission (CCR), 3 had
partial regression, 2 had stable disease and 3 patients had
progressive disease. Two phase II studies in patients with
advanced stage ovarian cancer using retargeted T-lympho-
cytes with chimeric OC/TR showed antitumor activity in
50% of the patients (41,51). Further research with OC/TR in
combination with retargeted T-lymphocytes showed similar
results with local immunomodulation after ip administration
in ovarian cancer patients, but without systemic effects (51).
In contrast to earlier findings, the development of HAMA
was even suggested to be beneficial for survival in patients
after ip therapy with OC/TR (27). In 35 patients treated with
ip or iv OC/TR, those with progressive disease and HAMA
levels of ≥150 ng/ml had a significant higher median survival
as compared to patients with progressive disease with HAMA
<150 ng/ml (27). The effect of HAMA development on
survival after therapy with OC/TR treated with T-lympho-
cytes thus remains controversial.

An overview of trials using Mab directed towards gp38
is shown in Table II. In conclusion, the trials with chimeric
OC/TR showed that locoregional immunotherapy with OC/
TR in ovarian cancer may result in tumor regression. However,
larger randomized controlled trials should be conducted to
confirm these findings.

HER2. HER2, a member of the epidermal growth factor
receptor family plays an important role in the deregulation

of proliferation of breast and ovarian cancer cells (89). Ovarian
tumors that overexpress the proto-oncogene HER2 have a
particularly poor survival (90,91). Table III contains an over-
view of trials using Mab directed towards HER2 in ovarian
cancer patients. Trastuzumab also known as Herceptin®, is a
humanized antibody derived from 4D5, a murine Mab, that
recognizes an epitope on the extracellular domain of HER2.
This Mab has been approved by the U.S. Food and Drugs
Administration (FDA) for the treatment of women with
metastatic breast cancer with HER2 overexpression, given
either alone or in combination with paclitaxel (92). Only 10%
of the ovarian cancer patients overexpress HER2 on their
tumor. Thus, treatment with HER2 antibodies would potentially
benefit only a small proportion of patients with epithelial
ovarian cancer. The Gynecologic Oncology Group evaluated
trastuzumab in a phase I/II trial in patients with recurrent or
refractory ovarian cancer overexpressing HER2 (39). A total
of 41 patients received iv trastuzumab (4 mg/kg) with a
median treatment of 8 weeks resulting in an overall response
rate of <10% and a median progression-free interval of 2
months (39). Based on clinical data in breast cancer, the
combination of trastuzumab with cytotoxic agents may have
a higher impact on survival of patients with minimal residual
ovarian cancer (93). Future strategies should focus on the use
of the drug in combination with cytotoxic agents.

Pertuzumab is another new antibody directed to the HER2
antigen (Table III) (94). This recombinant humanized mono-
clonal antibody 2C4 (IgG) binds to HER2 and is directed
against a different epitope than trastuzumab. Pertuzumab
inhibits tumor growth after binding by inhibiting ligand-
activated HER2 dimerization with HER2 (36). Agus et al
(36) performed a phase I study in which patients with solid
tumors received iv pertuzumab (5 mg/kg) every 3 weeks.
Three ovarian cancer patients participated in this pilot study
of which one had a partial response (36). A phase II open-
label, multicenter study using pertuzumab has been executed
in advanced or refractory ovarian cancer patients by Gordon
et al (49). They explored two different dosages of iv
pertuzumab in 123 patients with recurrent ovarian cancer,
resulting in a disappointing low response rate of 4.3% defined
on RECIST criteria (95) and CT scans. The majority of
patients had diarrhea as side-effects and 4% of the patients
experienced cardiotoxicity. The results of these two studies
did not show any effectiveness of pertuzumab. Recently, a
phase II trial in 37 platinum-resistant ovarian cancer patients
with repeated administration of the Mab Matuzumab, that
binds the ligand-binding portion of the EGFR receptor, did
not show any effectiveness as a single agent therapy (55).

MDX-H210 is a bispecific antibody that cross-links the
Fc γ receptor I on macrophages to the HER2 antigen on
tumor cells (Table III) (96). MDX-H210 effectively redirects
Fc γ receptor I positive effector cells such as monocytes and
macrophages to tumor cells that overexpress HER2. Several
trials demonstrated that MDX-H210 is well-tolerated and
also immunologically active (96,97). De Gramont et al (44)
combined monocyte-derived activated killer (MAK) cells
with the bispecific Mab MDX-H210 in an attempt to direct
the MAK killer effect in patients towards HER2 antigen
expressing tumor cells. Patients with HER2 overexpression
were treated with MAK cells and Mab MDX-H210 while
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HER2 negative patients only received MAK cells. A total of
8 ovarian cancer patients in CCR with microscopic or macro-
scopic residual disease after debulking and chemotherapy
received MAK cells combined with MDX-H210 (44). Of
these 8 patients only 3 remained in CCR, while 4 patients
had progressive disease and one patient had stable disease
as diagnosed at third-look laparotomy. The full therapeutic
potential of MAK cells as consolidation therapy in ovarian
cancer is currently being evaluated in a large randomized,
comparative trial (44).

In summary, various anti-HER2 antibodies have been
used in trials with ovarian cancer patients, however, one
should keep in mind that only a minority of ovarian cancers
express HER2 and thus anti-HER2 therapies will only be
useful in a small portion of the patients.

MUC1 antigen. In 90% of the epithelial ovarian tumors the
MUC1 antigen is overexpressed on the cell-surface (98).
For an overview of anti-MUC1 Mab trials see Table IV. The
murine IgG1 monoclonal human milk fat globule 1 (HMFG1)
antibody, with specificity to an epitope on the protein back-
bone of MUC1, was developed by the Imperial Cancer
Research Fund. Vaccination with the Mab HMFG1 in ovarian
cancer patients was reported by Nicholson et al (58). A phase
I trial of 26 ovarian cancer patients receiving a priming dose
of 25 mg HMFG1 administered either ip or iv followed by up
to 6 intradermal doses of HMFG1 showed that the treatment
was safe and well tolerated by patients with induction of
an immune response resulting in production of Ab2 and Ab3
in some patients (58).

Immunoscintigraphy with radiolabeled HMFG1 and
HMFG2, an antibody similar to HMFG1 directed to MUC1,
successfully detected MUC1 positive tumors in patients with
primary and metastatic lesions of ovarian, breast and gastro-
intestinal cancer with minor adverse events (99-104). The
therapeutic application of radiolabeled HMFG1 in ovarian
cancer has been mainly studied following ip administration.
In phase I/II trials conducted in the 1990s with 90Yttrium-
labeled HMFG1 (up to 25 mCi per patient) showed that
the agent is generally well-tolerated when injected ip
(68,77,105). Furthermore, radiolabeled ip HMFG1 induced
an immune response resulting in proliferation of T-cells and
the production of Ab2 and Ab3 (106-109). Nicholson et al
(74) reported that the survival of 25 ovarian cancer patients
in CCR who received 90Y-HMFG1 (18 mCi) was prolonged
compared to matched historical controls with a 5-year survival
of respectively 70 vs. 32%. The same conclusions were
drawn by Epenetos et al (67) who found a survival rate of
78% after >10 years of follow-up in 21 ovarian cancer patients
in CCR who had received a single injection of 25 mg ip
90Y-HMFG1 (12-32 mCi) (67). Based on these promising
results two phase III trials haven been undertaken. The first
one by Nicholson et al (75) included 107 ovarian cancer
patients in CCR who were randomized between a single ip
administration of 25 mg 90Y-HMFG1 (30 mCi) and standard
treatment. With a median follow-up of 40 months, this study
was not able to detect any survival advantage in patients
treated with 90Y-HMFG1. The second phase III study, the
Study of MAb RadioimmunoTherapy (SMART) was a
multicenter, randomized prospective trial of ip 90Y-HMFG1

(18-30 mCi, 224 patients) vs. standard treatment (223 control
patients) in ovarian cancer patients in CCR (78). Patients
were followed for a median time of 3.5 years. This study did
not show an improvement in time to relapse or overall
survival (78). Reported side-effects of ip HMFG1 were
nausea, fatigue, arthralgia, myalgia, thrombocytopenia and
neutropenia (78). Although there was no significant difference
in time to relapse and overall survival in the SMART study,
interestingly, there was a significant difference in pattern of
disease recurrence (110). Time to ip relapse was significantly
longer in patients that were treated with ip 90Y-HMFG1,
whereas significantly more extraperitoneal relapses were
seen in the treatment arm compared to the standard arm (49
vs. 14%). Most of the extraperitoneal relapses were seen in
the lymph nodes (78%), the majority of which was situated
in the para-aortic region. This observation suggests that ip
90Y-HMFG1 leads to ip disease control in ovarian cancer
patients in CCR (110). Further analysis of the data gathered
in the SMART study considering the immune response of
participating patients is still ongoing. In the SMART study
the HMFG1 dose was relatively high and the radionuclide
90Y may not be the most appropriate for therapy in patients
with minimal residual disease. An overview of all discussed
trials using Mabs directed towards MUC1 antigen is given in
Table IV.

A humanized variant of the murine HMFG1 has been
developed and is currently under investigation for breast
cancer (www.antisoma.com). This humanized antibody may
also be a potential drug for immunotherapy or RIT in ovarian
cancer.

Tumor-associated glycoprotein (TAG) 72. The Mab B72.3
targets the tumor-associated glycoprotein, TAG 72 which
is expressed on most adenocarcinomas including gastro-
intestinal and ovarian cancers (111). Research on RIT with
ip. B72.3 was done in a phase I trial in which 58 refractory
ovarian cancer patients received repeated ip 2-10 mg 90Y-
B72.3 (5-40 mCi) in combination with calcium disodium
versenate (EDTA) (112). In this study the 90Y label was bound
in an instable chelate resulting in higher bone uptake of the
radionuclide, the rationale of adding EDTA was to investigate
the ability of EDTA to suppress the bone uptake of 90Y label
and, thus reduce the radiation dose to the bone marrow,
preventing myelosuppression. Results of this trial demon-
strated the myeloprotective ability of EDTA and clinical
responses in four patients.

Further research on the development of new antibodies
directed against TAG 72 resulted in a series of second-
generation antibodies of which CC-49 was selected (Table V).
Mab CC49 and Mab B72.3 recognize different epitopes on
TAG 72 and CC49 has a 10-fold higher affinity for TAG 72
(113). A phase I trial of 20 mg ip 177Lu-CC49 (10-30 mCi/m2)
in 12 refractory ovarian cancer patients demonstrated good
tolerability and even antitumor activity (70). Tumor response
as assessed during third-look laparotomy or laparoscopy
resulted in one partial response in a patient with gross disease,
6 patients had progressive disease, 4 stable disease and 1
delayed recurrence of disease in patients with microscopic
disease (70). Subsequently, Alvarez et al (63) performed a
phase I/II trial of 20 mg ip 177Lu-CC49 (25-45 mCi/m2) in 27
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patients with recurrent ovarian cancer. Follow-up with
physical examination and CT scan showed that most patients
with gross disease experienced disease progression while
prolonged disease-free survival was again seen in patients
with microscopic disease. Bone marrow toxicity was noted
as the dose-limiting effect of 177Lu-CC49 (63). Meredith et al
(71) administered ip 177Lu-CC49 (40-45 mCi/m2) in
combination with interferon α (IFNα) and paclitaxel in
patients with recurrent or persistent ovarian cancer. This
combined strategy was based on the findings that IFNα
enhanced the expression of TAG 72 tumor antigen and
improves localization of radiolabeled antibody in the
tumor (114). The study of Meredith et al (71) led to partial
responses in 4 of the 17 treated patients and stable disease in
4 out of 27 patients without measurable disease, assessed
during third-look laparotomy or laparoscopy. A combination
of ip. 20 mg 90Y-CC49 (14-24.2 mCi/m2), subcutaneous
IFNα2b and ip paclitaxel in 20 persistent or recurrent ovarian
cancer patients showed good feasibility and was well-
tolerated (64). Tumor response as assessed with CT scan
during follow-up revealed a partial response in 2 patients with
measurable disease. Out of the patients with non-measurable
disease, 4 patients remained disease-free of which 3 longer
than 18 months (64). The combination of ip. 90Y-CC49 with
chemotherapy seems to be well-tolerated, but larger
prospective and randomized trials are needed to demonstrate
whether this therapy is effective.

VEGF. Vascular endothelial growth factor (VEGF) is a
mediator of angiogenesis and is expressed in most ovarian
cancers (115). Bevacizumab is a humanized antibody directed
against VEGF (overview of trials in Table VI) (116,117). A
well characterized activity of VEGF is to promote the
growth of vascular endothelial cells. Bevacizumab binds all
5 isoforms of VEGF, which prevent interaction with the
VEGF receptors. Binding of bevacizumab inhibits formation
of new blood vessels and a decrease in vessel diameter,
density and permeability. This results in normalization of
tumor vasculature (116,117). Through this mechanism,
bevacizumab might increase the delivery of drugs (116,117).
Trials investigating bevacizumab as monotherapy failed to
prove effectiveness. However, randomized trials in breast,
colon and lung cancers have shown that the addition of
bevacizumab to standard chemotherapeutic regimens results
in statistically significant improvements in both progression-
free and overall survival (7). In 2004 the FDA approved the
use of bevacizumab as adjuvant therapy with 5-fluorouracil-
based chemotherapy in advanced stage colorectal cancer. In
October 2006, bevacizumab was also approved by the FDA
for the treatment of advanced lung cancer in conjunction
with paclitaxel and carboplatin-based chemotherapy. These
approvals established the therapeutic potential of anti-angio-
genesis treatments. The pathobiology of ovarian cancer and
its ip metastatic spread is similar to metastatic colorectal
cancer and suggests that ovarian cancer may also be amenable
to anti-angiogenic intervention. Cannistra et al (42) inves-
tigated the single-agent activity of bevacizumab (15 mg/kg)
in 44 platinum-resistant heavily pre-treated ovarian cancer
patients. Seven of the 44 patients had a partial response, as
defined on RECIST guidelines (95), with a progression-free

survival (PFS) at 4.3 months for all patients. The Gynecologic
Oncology Group (GOG 170-D trial) assessed the response
rates and 6-month progression-free survival (PFS) of iv
bevacizumab (15mg/kg) three-weekly in a cohort of 62
refractory or recurrent ovarian cancer patients (40). Three
patients were in complete clinical remission, 8 patients
had partial remission, 34 patients had stable disease and 17
patients had progressive disease. In 38.7% of the patients
there was stable disease for >6 months. Cohn et al (43)
treated 10 ovarian cancer patients with a combination of
weekly taxane and biweekly bevacizumab (10 mg/kg) therapy,
which led to temporarily improvement on cancer-related
symptoms (e.g. diminishing ascites, lowering CA 125 levels)
without toxicity. Monk et al (53) found similar results in 32
refractory ovarian cancer patients treated with the same
combination therapy (bevacizumab 15 mg/kg) resulting in
one complete remission, 4 partial responses and in 62% of
the patients stable disease (disease progression was defined
on RECIST guidelines) (95).

A combination of oral cyclophosphamide and bevacizumab
(10 mg/kg) in 29 recurrent ovarian cancer patients resulted
in 6 partial responses, 17 patients with stable disease and 6
with disease progression. About 47% of the patients had
stable disease at 6 months (47). A retrospective analysis with
different bevacizumab doses in combination with cytotoxic
chemotherapeutic agents in 23 recurrent or refractory ovarian
cancer patients showed similar results, with partial remissions
in 35%, stable disease in 44% and a PFS of 6 months in 13%
of the patients (57). These results with bevacizumab in
combination with cytotoxic therapy are promising as additional
therapy to standard treatment for ovarian cancer and warrant
further investigation. Two phase III trials in front-line ovarian
cancer therapy are currently in progress (118).

8. Conclusion

In contrast to hematological malignancies and certain solid
malignancies (breast, colorectal and lung), Mab-based therapy
modalities have not yet convincingly proven to be efficacious
in the treatment of ovarian cancer. Antibodies are multi-
functional molecules that can target tumor cells, stimulate the
immune system to attack tumor cells and engage receptor
pathways effective in tumor cell destruction.

Of the discussed Mabs, oregovomab directed to the CA
125 antigen and bevacizumab targeting VEGF are two un-
conjugated Mabs closest to potential clinical introduction for
the treatment of ovarian cancer. Oregovomab has proven to
be effective in large trials with patients with recurrent disease
or as consolidation strategy. Anti-VEGF Mabs in combination
with chemotherapy has proven to be effective in other malig-
nancies and the initial trials of this combination in ovarian
cancer patients show similar results.

Considering the reviewed vaccination regimens,
vaccination with the Mab ACA 125 inducing the production
of anti-tumor antibodies seems promising, but further research
in controlled randomized trials should be performed to affirm
these findings.

Sole RIT should be investigated with the appropriate
radionuclide in combination with Mabs with high affinity
for the tumor-associated antigen in the appropriate group
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of patients to see whether it may have effect. Additionally,
appending RIT with CC49 or HMFG1 to other treatment
strategies such as chemotherapy or lymphadenectomy could
also be a strategy worthwhile investigating. Ip RIT seems
to be effective for local disease control and this should be the
administration route of preference. However controlled ran-
domized trials still need to affirm these treatment modalities.

The lack of large randomized prospective trials with the
specific Mabs preclude any firm conclusion on the potential
of Mabs use in the treatment of ovarian cancer although
several antibodies have shown to induce significant humoral
and cellular immune responses with anti-tumor activity. The
potential of Mabs to complement current treatment in
ovarian cancer is encouraging and may bring a significant
improvement to the overall therapeutic outcomes currently
being achieved in this disease.
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