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A B S T R A C T

Hypoxia is an important feature of the microenvironment of a wide range of solid tumours.

Its critical role in radio- and chemoresistance and its significance as an adverse prognostic

factor have been well established over the last decades. On a cellular level, hypoxia evokes

a complex molecular response with a central role for the HIF-1 pathway. The cellular

processes under control of HIF-1 contain important prognostic information and comprise

potential candidates for directing hypoxia-modifying therapies. This review will provide

an overview of the current knowledge on the molecular aspects of tumour hypoxia and

the link to clinical practice.

ª 2008 Federation of European Biochemical Societies.

Published by Elsevier B.V. All rights reserved.

1. Introduction

The tumour microenvironment is of great importance, influ-

encing malignant cells in various ways (Hu and Polyak,

2008). Within this microenvironment, hypoxia is an exten-

sively studied parameter, with relevance in almost all types

of solid tumours. As early as 1936 Mottram mentions the

relative insensitivity of tumours under anaerobic conditions

(Mottram, 1936). Gray described in 1953 the presence of hyp-

oxia in murine tumour cells and the associated reduced sensi-

tivity to radiotherapy (Gray et al., 1953). Hypoxia has negative

implications for clinical outcome. This is probably based on

two distinct principles: hypoxic cells are more resistant to

radiotherapy and chemotherapy, and they give rise to genetic

instability and more aggressive phenotypes.

Especially the increased resistance to radiotherapy is a well-

known phenomenon associated with tumour hypoxia, most

studied in head and neck cancer and cervical carcinoma

(Hockel et al., 1996; Nordsmark et al., 2005). Besides this

increased resistance to radiotherapy, there is evidence that

hypoxic cells are responsible for decreased sensitivity to

certain chemotherapeutic agents as well, such as doxorubicin,

5-fluorouracil and methotrexate. These data are mainly derived

from animal and in vitro studies (Grau and Overgaard, 1992;
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Matthews et al., 2001; Wilson et al., 1989). There is scarce recent

literature available on this subject.

Besides this resistance to chemo- and radiotherapy, surgi-

cally treated soft-tissue sarcomas and cervical carcinomas

also exhibit hypoxia as a prognostic factor for poor survival

(Hockel et al., 1996; Nordsmark et al., 2001). A correlation

was found between the rate of distant metastases and tumour

oxygenation in soft-tissue sarcoma (Brizel et al., 1996).

Furthermore, in cervical cancer it has been proven that

hypoxic tumours exhibit more frequent parametrial spread

and lymph-vascular space involvement (Hockel et al., 1996).

A subgroup of hypoxic tumours with diminished apoptotic

potential showed increased lymphatic spread and higher

probability of recurrence as well (Hockel et al., 1999). These

findings indicate that hypoxia stimulates tumour cells to

develop towards a more invasive phenotype.

The measurement of hypoxia has been the subject of

investigation for years, and oxygen electrode measurement

has been considered the gold standard for sometime. 2-

Nitroimidazoles, such as pimonidazole and EF5, are exoge-

nous hypoxic cell markers, which bind to viable hypoxic cells

in vivo. Analysis of these exogenous hypoxic cell markers has

largely replaced the oxygen electrode as standard assay for

quantifying hypoxia. They have gained interest as a prognostic

factor, although with varying results (Evans et al., 2007;

Kaanders et al., 2002c; Nordsmark et al., 2006). Now the

main research focus is on exploring the potential of endoge-

nous hypoxia-related markers, like hypoxia-inducible factor-

1 (HIF-1), carbonic anhydrase IX (CAIX), glucose transporters

(GLUT-1 and GLUT-3), plasminogen activator inhibitor-1

(PAI-1), vascular endothelial growth factor (VEGF) and osteo-

pontin (OPN). Most of these proteins are under control of the

HIF-1 pathway, which plays a central role in the cellular adap-

tation to hypoxic conditions. Another important adaptive

mechanism is the unfolded protein response (UPR). Impair-

ment of the tumour oxygenation status can lead to the accu-

mulation of misfolded proteins in the endoplasmatic

reticulum (ER). The accumulation of unfolded proteins acti-

vates the UPR, which may inhibit apoptosis. These cellular

responses to hypoxia are complex, with many different genes

and proteins involved. In this review the background and

prognostic and predictive value of the potential markers will

be discussed. Elucidating more about the response to hypoxia

and establishing the value of the different markers may lead

to the development of a predictive profile that enables the

selection of patients for hypoxia-modifying treatments.

2. Pathophysiology

In most malignant tumours there is an imbalance between the

supply and consumption of oxygen, leading to hypoxic and

even anoxic regions. During the rapid growth of a tumour an

aberrant, chaotic microvasculature develops. Tumours

exhibit a vascular network with a wide range of vessel diam-

eters, intervascular distances and interbranching distances

unlike those seen in normal tissue (Konerding et al., 1995).

The morphological and functional deformed blood vessels di-

minish the oxygen delivery to the tumour cells, resulting in

a low oxygen microenvironment. Another factor contributing

to a decrease in oxygen supply is tumour-associated and ther-

apy-induced anaemia, leading to a diminished oxygen trans-

port capacity of the blood (anaemic hypoxia) (Vaupel et al.,

2001).

From a pathophysiological point of view hypoxia can be

divided into acute, or perfusion-limited hypoxia and chronic,

or diffusion-limited hypoxia, although this division is some-

what arbitrary (Dewhirst, 1998). Acute hypoxia is often tran-

sient and is caused by a temporary disruption in blood flow

as a result of an occlusion or rise in interstitial fluid pressure.

In xenografts only a small part of the tumour hypoxia is of the

intermittent type (Bennewith and Durand, 2004).

Chronic hypoxia arises with an increased diffusion dis-

tance of tumour cells from the microvessels (>70 mm) in the

distorted architecture of the vascular network. Acute and

chronic hypoxia combine in a heterogeneous pattern

throughout the tumour so that severe, intermediate and low

levels of hypoxia can be identified. From a clinical standpoint

it has been proposed that the intermediate hypoxic cells are

the most important for prognosis (Wouters and Brown,

1997). These cells are resistant to therapy and still have the

ability to proliferate (Hoogsteen et al., 2005).

Because the degree of hypoxia is extremely variable on a con-

tinuous scale, a strict cut-off value to discriminate normoxic

from hypoxic cells does not exist. Critical metabolic processes

fail at different pO2-levels (Figure 1). A median O2 partial pres-

sure of less than 10 mm Hg already results in ATP depletion.

The oxidative phosphorylation gradually declines below this

value till it ceases at O2 partial pressures of less than

0.5 mm Hg. Radioresistance may already occur below 25–

30 mm Hg (Hockel and Vaupel, 2001). In most experiments,

values from 0.5 mm Hg to 10 mm Hg have been used as a cut-

off value to discriminate normoxic from hypoxic tumour cells.

3. Measuring hypoxia

Over the years different methods have been developed for

assessing the level of hypoxia in tumours in vivo, with the

polarographic oxygen electrode mostly used as the gold stan-

dard. However, the disadvantage of this method led to the

development of less invasive techniques. Nowadays, the focus

has shifted to exogenous markers, like EF5 and pimonidazole

and a wide range of hypoxia-related endogenous markers

(Figure 2). Measuring hypoxia with imaging modalities such

as magnetic resonance imaging (MRI) and positron emission

tomography (PET) is another promising field of research.

3.1. Imaging hypoxia

The non-invasive assessment of tumour hypoxia is an active

area of research, with an emphasis on PET and blood oxygen-

ation level dependent magnetic resonance imaging (BOLD-

MRI) as promising modalities (review by Padhani et al., 2007).

With PET it is possible to quantify hypoxia in a well-

tolerated non-invasive procedure with the use of short-lived

positron emitting radionuclides. Several 18F- or 64Cu-

containing compounds have been developed to estimate the

hypoxic fraction, like 18F-EF1, 18F-MISO and 60/64Cu-ATSM,

with 18F-MISO being the most widely used and investigated.
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These tracers have been tested in several clinical studies for

their prognostic and predictive value, showing encouraging

results (Dehdashti et al., 2003; Rajendran et al., 2006). Eventu-

ally, hypoxia guided radiotherapy with radiation dose distri-

butions shaped to the hypoxic image, in such a way that the

most hypoxic regions of a tumour receive the highest radia-

tion dose, could be a strategy to obtain better tumour control.

BOLD-MRI is an experimental technique for detecting hyp-

oxia with good spatial and temporal resolution (Rijpkema

et al., 2002). It is based on the paramagnetic properties of

deoxyhaemoglobin, offering a way to indirectly visualise the

pO2 in blood vessels and surrounding tissue. An added advan-

tage is that the administration of contrast material can be

omitted. Unfortunately, it does not provide quantitative infor-

mation about the oxygen concentration, a major drawback of

all these techniques. Further investigation is necessary to val-

idate this method and establish its clinical importance.

3.2. Polarographic needle electrode

Being regarded as the gold standard for a long time, the polar-

ographic oxygen electrode has been extensively used for quan-

tifying hypoxia in both animal studies and human tumours

(Brizel et al., 1997; Gatenby et al., 1988). With this invasive tech-

nique oxygen concentrations can be measured directly at

many different positions in the tumour and within a short

time frame. Although the Eppendorf electrode, introduced in

the late 1980s, is a vast improvement compared to the older

systems, the method still has some major drawbacks. It is lim-

ited to accessible tumour sites like head and neck and cervical

cancer, disrupts the tissue and it has a large inter-observer

variability (Nozue et al., 1997). Another restriction of this tech-

nique is the failure to distinguish necrotic areas from viable

tumour tissue and to discern the patterns of hypoxia.

3.3. Exogenous markers

The limitations of the needle electrode led to the development

of exogenous markers, the 2-nitroimidazoles, to measure

hypoxia. Two markers are approved for clinical use: pimoni-

dazole, (1-[(2-hydroxy-3-piperidinyl)propyl]-2-nitroimidazole

hydrochloride, and EF5, [2-(2-nitro-1H-imidazole-1-yl)-N-

(2,2,3,3,3-pentafluoropropyl)acetamide]. These markers can

be administered intravenously and are reduced and bound

to thiol-containing proteins in viable hypoxic cells. Pimonida-

zole and EF5 have been proven to be reliable hypoxic markers,

with a good correlation with the radiobiologically hypoxic

fraction (Lee et al., 1996; Raleigh et al., 1999) and pO2 (Raleigh

et al., 1999).

Several studies have shown the prognostic value of the

2-nitroimidazoles in a clinical setting. In head and neck

cancer a correlation was found between the degree of

hypoxia estimated by 2-nitroimidazole binding and the

locoregional control and event-free-survival (Evans et al.,

2007; Kaanders et al., 2002c). One study performed in

patients with cervical carcinoma did not show this associa-

tion (Nordsmark et al., 2006) In patients with head and neck

cancer treated with ARCON (accelerated radiotherapy with

carbogen and nicotinamide), a hypoxia-modifying therapy,

pimonidazole demonstrated a predictive value as well

(Kaanders et al., 2002c).

An oral prescription of pimonidazole has become available,

which remains to be validated (Bennewith et al., 2002).

Recently, it has been FDA approved. For clinical use it would

be a progress, making the administration of pimonidazole

even more convenient.

3.4. Endogenous hypoxia-related markers

An alternative method not relying on injected markers to

quantify hypoxia is the use of endogenous markers, an

extensive range of potential markers having been studied

over the last years (Bussink et al., 2003). We prefer the term

hypoxia-related marker to hypoxic marker, as the associa-

tion between these markers and the oxygen status of the

tissue is weak and has only been reported in a few cases.

Endogenous markers are proteins upregulated in association

with hypoxia and can be measured in blood plasma or

Figure 1 – Cellular adaptation to hypoxia. The bars show the approximate hypoxic values below which cellular responses gradually change.

Figure adapted from Koumenis and Wouters (2006) and Hockel and Vaupel (2001).
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immunohistochemically on tumour biopsies. No single

marker has consistently demonstrated strong prognostic

power in clinical practice as of yet, although a correlation

with patient outcome has been found with CAIX, osteopontin

and PAI-1. Attempts have been made to combine various

markers to create a hypoxia-prognostic profile, with moder-

ate success (Koukourakis et al., 2006; Le et al., 2007). The

most important markers will be highlighted, with emphasis

on their role in the hypoxic molecular response and their

clinical significance.

Figure 2 – Photomicrographs of two human squamous-cell carcinoma xenograft cell lines (SCCNij51 and SCCNij58) after immunofluorescent

staining. The images show the differences in colocalisation of the exogenous marker pimonidazole (A and B) and three endogenous

hypoxia-related markers: CAIX (C and D), GLUT-1 (E and F) and GLUT-3 (G and H) (all in green), relative to the vasculature (in red).
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3.4.1. HIF-1
Hypoxia initiates a complicated response involving a plethora

of different molecular pathways. These pathways modulate

several cellular functions, like proliferation, apoptosis, angio-

genesis, pH balance and anaerobic glycolysis. The HIF-1 path-

way with its numerous downstream targets is the key

controller in this reaction (Figure 3). The transcription factor

HIF-1 is a heterodimer consisting of two subunits: HIF-1a

and HIF-1b. HIF-1b is constitutively active, while HIF-1a is

rapidly degraded under normoxic conditions and stabilised

by hypoxia (Wang et al., 1995). Upon activation HIF-1 binds

to the hypoxia responsive element (HRE), thereby promoting

the transcription of numerous genes including VEGF and the

genes encoding for the glucose transporters. Several cofactors

are involved in the transcriptional regulation of the various

target genes.

Under normoxic conditions two inhibitory pathways of

HIF-1a are essential. Prolyl hydroxylases (PHDs) hydroxylate

proline sites in the oxygen-dependent degradation domain

(ODD) of the HIF-1a protein. This enables binding of the von

Hippel Lindau protein (VHL), which leads to the proteasomal

degradation of HIF-1a. Under hypoxic conditions hydroxyl-

ation does not occur, leading to accumulation of HIF-1. The

second main inhibitory pathway of HIF-1a is factor inhibiting

HIF-1 (FIH-1). FIH-1 hydroxylates the C-terminal transactiva-

tion domain (CAD) of HIF-1a, which inhibits binding of p300/

CBP to the HIF-1 complex, which is a cofactor necessary for

transcription. Besides the oxygen-dependent activation of

HIF-1a, certain receptors of the tyrosine kinase family, like

insulin-like growth factor receptor (IGFR), epidermal growth

factor receptor (EGFR) and HER2/neu, can activate HIF-1a in

an oxygen-independent way. They regulate the transcrip-

tional activity through the P13 K/Akt/mTOR pathway

(Semenza, 2000).

HIF-1a has gained interest as an endogenous hypoxia-

related marker, after the discovery of its overexpression in

a wide variety of malignant tumours (Zhong et al., 1999). Its

significance as a prognostic factor for aggressive tumour

behaviour has been proven in various types of cancer; clear

cell carcinoma, ovarian carcinoma, gastric carcinoma, breast

cancer, soft-tissue sarcoma, bladder cancer, head and neck

cancer, rectal, lung cancer and cervical carcinoma (Moon

et al., 2007), although some studies show an opposite effect

(Beasley et al., 2002; Fillies et al., 2005). Moreover, the correla-

tion between HIF-1a expression and oxygen electrode or

pimonidazole measurements is weak (Mayer et al., 2004).

Therefore, the value of HIF-1a quantification as a hypoxia-

related assay remains questionable.

Given the widespread overexpression of HIF-1 and its influ-

ence on multiple cellular functions, it is a promising therapeu-

tic target, although the heterogeneity of the gene response

also makes it a complex target. Drugs aimed at the HIF-1

Figure 3 – Schematic representation of the HIF-1 pathway. Under normoxic conditions HIF-1a is hydroxylated and rapidly degraded

(A). Under hypoxic conditions the HIF-1 complex is stabilised and initiates the transcription of its target genes. EGFR can activate HIF-1a in

an oxygen-independent way (B).
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pathway can intervene in multiple ways; decreasing HIF-1a

mRNA or protein levels, inhibiting DNA binding of HIF-1 or de-

creasing HIF-1-mediated transactivation (Semenza, 2007). So

far, clinical studies show limited success of these approaches.

3.4.2. Carbonic anhydrase IX
One of the downstream targets of HIF-1 is carbonic anhydrase

9 (CA9). The upregulation of CA9 under hypoxic conditions is

controlled by the HIF-1 binding at the hypoxia responsive ele-

ment (HRE) in its promoter region (Figure 3). This is supported

by the fact that in VHL-defective renal cell carcinoma, in

which the inhibition of HIF-1 is lost, extensive overexpression

of CAIX can be found (Grabmaier et al., 2004). CAIX is one of

the 14 members of the CA-family, existing of cytosolic, mem-

brane-associated, mitochondrial and secreted carbonic anhy-

drases (Potter and Harris, 2003). CAIX (or MN, or G250) is

a membrane-associated enzyme with a zinc-containing extra-

cellular catalytic domain. This highly active domain catalyses

the reversible hydration of carbon dioxide to carbonic acid:

H2OþCO2 4 HþþHCO3
�. It is involved in the respiratory gas

exchange and acid–base balance, maintaining the intracellu-

lar and lowering the extracellular pH. CAIX can form a close

interaction with certain ion-transport systems, the so-called

metabolons. The association with the bicarbonate transporter

is recently established, affirming the role of CAIX in ion-

transport and electrolyte-secretion (Morgan et al., 2007).

CAIX is only limitedly present in normal tissue; it is found

in gastric mucosa, small intestine and muscle. The overex-

pression of CAIX is demonstrated in different types of cancer

(Ivanov et al., 2001). The CAIX-positive cells are mainly pres-

ent in the perinecrotic areas of a tumour, in contrast with

tumours with inactivated VHL, where a more general staining

pattern is observed (Wykoff et al., 2000). The expression shows

overlap with the staining pattern of pimonidazole, but a strong

correlation is not present (Kaanders et al., 2002c; Troost et al.,

2005). There is no correlation between the amount of CAIX and

direct oxygen measurement with the needle electrode in cer-

vical carcinoma (Mayer et al., 2005a). Notwithstanding, CAIX

has proven to be a prognostic marker in various tumours, as

high CAIX expression is associated with worse locoregional

control and overall survival (Potter and Harris, 2003). Espe-

cially, the combination of CAIX and a proliferation marker

such as IdUrd or Ki67, showed encouraging results. These

markers identify cells that are proliferating under hypoxic

conditions, perhaps the most crucial subpopulation of tumour

cells (Hoogsteen et al., 2005; Kim et al., 2007). In breast cancer,

a quantifying assay of CAIX could identify patients who would

respond least to adjuvant treatment, demonstrating its

predictive value as well (Span et al., 2003).

Blocking the function of CAIX, resulting in an extracellular

rise in pH, can be an interesting approach in cancer treatment.

An acid tumour microenvironment can add to increased che-

moresistance, decreasing the uptake and consequently the

cytotoxicity of chemotherapeutic agents and enhances meta-

static potential (Tredan et al., 2007). Specific inhibitors of CAIX

have been developed, of which the sulphonamides are most

promising. Indisulam, a potent inhibitor of CAIX is under cur-

rent clinical investigation (Talbot et al., 2007). Furthermore,

a few monoclonal antibodies to block CAIX are under investi-

gation in renal cell carcinoma (Davis et al., 2007; Stillebroer

et al., 2007), a perfect candidate for these studies, considering

the high CAIX-overexpression found in this tumour type.

3.4.3. Glucose transporters
Another group of genes that is upregulated in hypoxic condi-

tions is that of genes encoding for the glucose transporters

(GLUTs). These transmembrane glycoproteins are omnipres-

ent in normal tissue, facilitating glucose transport across the

cell membrane. Malignant tumours generally have a higher

rate of metabolism, are more dependent on glycolysis as an

energy source (Warburg effect) and therefore have a higher

glucose need. Under hypoxic conditions the cell’s demand

for glucose increases as the anaerobic glycolysis becomes

even more important. This also involves recruitment and

overexpression of the glucose transporters in many malignant

(hypoxic) tumours. The two glucose transporters most associ-

ated with invasive cancer are GLUT-1 and GLUT-3, being over-

expressed in cervical carcinoma, head and neck cancer,

colorectal and bladder cancer (Macheda et al., 2005). A third

participant has been discovered more recently in breast and

prostate cancer: GLUT-12 (Rogers et al., 2002).

The comparison of immunohistochemical staining on

biopsies of cervical carcinoma of GLUT-1 and pimonidazole

showed similar staining patterns (Airley et al., 2003), but

a strong correlation with pO2 measurements by Eppendorf

histography has never been found. Several studies have

assessed the applicability of the glucose transporters as prog-

nostic markers. In cervical carcinoma high GLUT-1 expression

has been associated with lower metastasis-free-survival (Air-

ley et al., 2001), although in another study this correlation was

not overtly present (Mayer et al., 2005b). Additionally, in inva-

sive bladder cancer, high GLUT-1 expression has been shown

to be associated with poor survival (Palit et al., 2005). GLUT-1

and GLUT-3 have been proposed as prognostic factors in

head and neck cancer, but with equivocal conclusions (Baer

et al., 2002; Jonathan et al., 2006; Oliver et al., 2004). Summariz-

ing, GLUT expression has some prognostic potential in solid

tumours, but it is not a very robust hypoxia-related marker.

3.4.4. VEGF
VEGF is one of the genes upregulated by HIF-1 in a hypoxic

microenvironment. It can also be activated in an oxygen-

independent way through the PI3K-AKT pathway, for example

by EGFR or loss of PTEN (Bussink et al., 2008; Mizukami et al.,

2007; Pore et al., 2004). VEGF plays a crucial role in angiogene-

sis, physiologically and also pathologically in malignant

tumour growth (review by Ferrara et al., 2003). VEGF activates

signalling pathways like the Ras-Raf-MAPK and the PI3K-AKT

pathway and increases urokinase-type plasminogen activator

(uPA), tissue-type plasminogen activator (tPA) and plasmino-

gen activator inhibitor-1 (PAI-1) expression (see Section

3.4.5), thereby influencing tumour progression and metastatic

spread in multiple ways. Of the two tyrosine kinase receptors

for VEGF, VEGFR-1 (Flt-1) and VEGFR-2 (Flk-1), the latter seems

the most important in enhancing mitosis of endothelial cells

and angiogenesis (Ferrara et al., 2003).

The expression of VEGF in different tumour types and its

significance for prognosis has been investigated in numerous

studies (as reviewed by Moon et al., 2007). Almost all of them

showed a correlation of VEGF with poor prognosis. Several

M O L E C U L A R O N C O L O G Y 2 ( 2 0 0 8 ) 4 1 – 5 346



VEGF- and VEGFR-inhibiting drugs have been developed and

tested in vitro and in vivo (Petersen, 2007). For instance

SU5416, a selective Flk-1 inhibitor (Fong et al., 1999) exhibited

a substantial anti-tumour activity when combined with irradi-

ation (Schuuring et al., 2005). Bevacizumab is a monoclonal

antibody against VEGF, approved for use in stage IIIB/IV non-

small cell lung cancer, which in a phase III ECOG trial showed

improved progression-free survival when combined with

chemotherapy (Sandler et al., 2006). As the absolute benefit

of these monoclonal antibodies is small, the main focus is

now on developing multitargeted receptor tyrosine kinase

inhibitors (RTKI), like vandetanib, which inhibits EGFR and

RET besides VEGFR (Hanrahan and Heymach, 2007). These

compounds are currently under investigation in clinical phase

III trials.

3.4.5. uPA/uPAR system
Another important signal route that can add to the aggressive-

ness of the tumour is the urokinase plasminogen activator

(uPA) system (Dass et al., 2007). It includes uPA with its mem-

brane-bound receptor (uPAR), tPA and the inhibitors (PAIs).

UPA and tPA are serine proteases that catalyse the activation

of plasminogen in plasmin. Plasmin in turn can activate many

other enzymes, among which the matrix metalloproteases.

Eventually, this leads to the degradation of the basement

membrane and extracellular matrix, enhancing invasion and

metastatic spread. Even though uPA can exhibit some func-

tions without binding to uPAR, it is most active when associ-

ated with its receptor.

PAI-1 and PAI-2 are two inhibitors of uPA and tPA. PAI-I

binds to the uPA/uPAR complex, leading to internalization of

the whole complex and degradation of uPA and PAI-1 in the

lysosomes, while uPAR is transported back to the cell mem-

brane (Figure 4).

uPA, uPAR and PAI-1 are all reported to be overexpressed in

malignant tumours (Dass et al., 2007). In addition to the inhib-

iting effect on uPA, PAI-1 manifests biological functions with

an inverse effect, like inhibiting apoptosis and stimulating

angiogenesis (Bajou et al., 2001; Kwaan et al., 2000). Another

interesting fact is the presence of a hypoxia responsive

element in the promoter region of the PAI-1 gene, suggesting

the possibility of upregulation of PAI-1 under hypoxic condi-

tions. This has been confirmed to occur in hepatoma and

head and neck cell lines (Fink et al., 2002; Schilling et al.,

2007). Both uPA and PAI-1 are associated with a higher relapse

rate and a poor survival in various types of cancer. In breast

cancer, a large meta-analysis showed a poor prognosis for

uPA and PAI-1 positive tumours (Look et al., 2002). The prog-

nostic value of uPA and PAI-1 in breast cancer is now being

assessed in a multicentre prospective trial, the node-negative

breast cancer (NNBC)-3 Europe trial, where participating cen-

tres can perform risk estimation for breast cancer patients

by the uPA and PAI-1 concentration in tumour tissue biopsies.

uPA/PAI-1 is the first novel protein biomarker combination

recommended for clinical routine use in breast cancer by the

current 2007 ASCO guidelines (Harris et al., 2007).

3.4.6. Osteopontin
OPN is an integrin-binding protein first identified in non-

collagenous bone matrix and is involved in several

physiological processes, such as cytokine production, cell

adhesion and cell migration. In cancer, OPN seems to add to

the aggressiveness and metastatic potential of tumour cells

(Rittling and Chambers, 2004). An important factor in this ma-

lignant progression is the activation of uPA and matrix metal-

loproteases by OPN through the PI3K/Akt, the IKKa/b and the

MAPK pathways. Two domains of OPN, the integrin- and

CD44-binding domain, are involved in this process. In the

OPN glycoprotein these two domains are separated by a prote-

ase-sensitive site and become functionally active upon cleav-

age of this site by thrombin as two distinct proteins. Another

effect of the binding of OPN to the integrin receptor is the c-Src

kinase mediated activation of the EGFR, a tyrosine kinase

receptor belonging to the erbB growth factor receptor family,

that plays a crucial role in oncogenesis as well (Rangaswami

et al., 2006).

OPN gene expression is inversely correlated with that of

VHL, indicating the role of OPN as a hypoxia-related protein.

Figure 4 – The uPA/uPAR system; its activation, the effects and

the inhibitory action of PAI-1.
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This was confirmed by the correlation between high plasma

OPN levels and low tumour pO2 in patients with head and

neck cancer (Le et al., 2003).

Overexpression of OPN is present in many different types

of tumours (Brown et al., 1994; Coppola et al., 2004). Several

studies have been performed to evaluate the prognostic signif-

icance of OPN applying different methods: measuring the

plasma concentration, the mRNA level or using immunohisto-

chemistry on tissue sections. In lung and breast cancer immu-

nohistochemically quantified OPN has been correlated with

poor prognosis (Chambers et al., 1996; Rudland et al., 2002).

Plasma osteopontin has been associated with poor outcome

in head and neck cancer, hepatocellular carcinoma and

recently renal cell carcinoma (Overgaard et al., 2005; Raman-

kulov et al., 2007; Zhang et al., 2006). In the DAHANCA 5 trial,

a randomised trial comparing radiotherapy alone with

radiotherapy combined with the hypoxia sensitiser nimora-

zole, it showed predictive value as well. Only patients with

a high plasma concentration of OPN had advantage of the

hypoxia-modifying therapy (Overgaard et al., 2005). As OPN

is not only involved in malignant disease, but also in

vascular and inflammatory disorders, its use as a hypoxia-

related marker and potential target for treatment remains

questionable.

3.5. Unfolded protein response

Cellular adaptation to hypoxic stress involves upregulation of

hypoxia responsive genes, along with a down regulation of

oxygen- and energy-consuming processes, such as cell prolif-

eration and protein synthesis. The unfolding protein response

plays an important role in converting the cell into a low energy

state (recent review by Koumenis and Wouters, 2006).

In the cell mRNA translation, post-translational modifica-

tion and protein folding takes place in the endoplasmatic

reticulum (ER). In times of ER stress, like hypoxia, accumula-

tion of incorrectly folded proteins occurs. This initiates the

unfolded protein response, which leads to down regulation

of protein synthesis, increased degradation of unfolded

proteins and, during prolonged ER stress, activation of proa-

poptotic genes. The reduction in protein synthesis can be

attributed predominantly to a decrease in mRNA translation.

The main mediator in this response is protein kinase activated

by dsRNA (PKR)-like endoplasmatic reticulum kinase (PERK),

which phosphorylates and thereby inactivates eukaryotic

initiating factor 2a (eIF2a), an important translation-initiating

factor (Figure 5). PERK is an ER-resident kinase that is normally

inactivated by glucose-regulated protein 78 (GRP78), a chaper-

one protein that dissociates from PERK under ER stress.

The ER transmembrane proteins IRE1 and activating tran-

scription factor-6 (ATF6) regulate the expression of the UPR

and ER stress genes, also the second function of PERK. IRE1

activates the transcription factor XBP-1, which is transported

subsequently to the nucleus to upregulate the UPR and ER

stress genes. ATF6 exhibits the same function as a transcrip-

tion factor upon activation by proteolysis in the Golgi. GRP78

is associated with IRE1 and ATF6 as well, inactivating them

in the absence of ER stress.

In xenografts with reduced GRP78, an suppression of tu-

mour growth, an increase of apoptosis and an inhibition of in-

vasion is observed (Lee, 2007). Furthermore, knockdown of

GRP78enhancessensitivityof tumour cells tochemotherapeutic

Figure 5 – The three main mediators in the unfolded protein response (UPR). PERK, IRE1 and ATF6 effectuate a decrease in protein synthesis

and an upregulation of UPR and ER stress genes.
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drugs by increasing apoptosis. In many different types of can-

cer GRP78 is a negative prognostic factor, with the exception of

neuroblastoma and lung cancer, in which it is associated with

a favourable outcome (Lee, 2007). GRP78 might be used in the

future as a predictive marker in breast cancer to select patients

for adjuvant chemotherapy.

Inactivation of PERK or eIF2a in vitro and in xenografts also

results in an increased susceptibility to hypoxia and low cell

survival (Blais and Bell, 2006). PERK or IRE1 inhibitors could

be combined with other cytotoxic therapies as a novel

approach in anti-cancer treatment.

4. Targeting hypoxia

Given the complexity of the hypoxic response, various strate-

gies have been devised to target hypoxic cells. The most

straightforward strategy is increasing the oxygen availability.

Furthermore, some therapies have been developed using hyp-

oxic cell specific toxins, others are aimed at decreasing their

resistance to radiotherapy. A new field of research involves

the development of drugs that target proteins involved in

the hypoxic response or angiogenesis.

4.1. Increasing oxygen availability

One of the first attempts to overcome hypoxia involved deliv-

ery of radiotherapy in hyperbaric oxygen chambers. In head

and neck and cervical cancer patients treated with hyperbaric

oxygen showed improved local tumour control and survival

(Dische, 1978). This treatment was eventually abandoned as

hypoxia-modifying therapy due to the complex technique

and poor patient compliance.

The next step was to combine anti-cancer treatment such

as radiotherapy with normobaric oxygen or carbogen (95%

oxygenþ 5% carbon dioxide) breathing. ARCON (accelerated

radiotherapy with carbogen and nicotinamide) combines

radiotherapy with carbogen breathing and nicotinamide, a

vasoactive agent, counteracting both diffusion-limited and perfu-

sion-limited hypoxia (Kaanders et al., 2002a). In a phase II trial

of head and neck cancer it demonstrated a substantial thera-

peutic effect in laryngeal carcinoma, notably in the more

advanced tumour stages. The 3-year local control rate was

84% for T4 tumours, compared to around 50% with radiother-

apy alone (Kaanders et al., 2002b). Recently, two large phase III

trials on laryngeal cancer and bladder cancer were completed.

These trials will elucidate the potential benefit of ARCON as

hypoxia-modifying regimen.

4.2. Hypoxic cytotoxins

Bioreductive drugs, like tirapazamine (TPZ), exhibit a direct

cytotoxic effect on hypoxic cells. In the absence of oxygen,

reduction of TPZ takes place, forming a highly reactive radical,

which induces DNA damage. TPZ has proven its therapeutic

value in combination with cisplatin in a phase III randomised

trial in stages IIIB and IV non-small-cell lung cancer, increas-

ing the 1-year survival from 23% to 34% (von Pawel et al., 2000).

Conversely, the combination of TPZ with paclitaxel and carbo-

platin showed an increase in toxicity without any survival

advantage in advanced stage lung cancer (Williamson et al.,

2005). In advanced head and neck cancer, a phase II trial com-

paring TPZ, cisplatin and radiotherapy with 5-fluorouracil, cis-

platin and radiotherapy showed increased failure-free

survival rates with acceptable toxicity (Rischin et al., 2005).

The results from phase III trials are forthcoming; hopefully

these will clarify the clinical benefits of tirapazamine.

4.3. Radiosensitisers

Nitroimidazoles are chemical compounds that mimic the

radiosensitising effect of oxygen by inducing free-radical

mediated double strand DNA breaks. The use of the first gen-

eration drug misonidazole, the most thoroughly documented

of the nitroimidazoles, is obsolete in clinical practice as

a radiosensitiser, due to its severe side effects. However, it still

has the attention of some researchers as a PET-imaging com-

pound at substantially lower doses. Of the other nitroimida-

zoles, nimorazole has proven its value as a hypoxic cell

sensitising agent. In the Danish Head and Neck Cancer 5

study, in which 422 patients with head and neck cancer

were randomised, the locoregional control rate was signifi-

cantly higher (49% versus 33%) when radiotherapy was com-

bined with nimorazole compared to radiotherapy alone

(Overgaard et al., 1998). Nimorazole has not been adopted

widespread as a standard treatment despite these promising

results. The many negative studies with the older nitroimida-

zoles have contributed to this circumstance and a second

randomised trial has never been performed.

4.4. Vascular targeting

The vascular network of a tumour, providing oxygen and

nutrients, for long time has been an intriguing target in cancer

treatment. Two main ways of vascular targeting can be distin-

guished: interfering in the angiogenesis, thereby preventing

the formation of new blood vessels, and destroying the exis-

tent vasculature. The angiogenesis-inhibitors have already

been discussed in the paragraph above on VEGF. For the sec-

ond approach, a broad range of vascular drugs is under devel-

opment, the so-called vascular disrupting agents (VDAs).

These compounds are aimed at the endothelium, causing

blood vessel occlusion resulting in extensive tumour necrosis.

The two main groups of VDAs are the ligand-based agents and

the small molecules. The ligand-based agents are toxins or

pro-coagulants coupled to endothelium-directed antibodies,

peptides or growth factors. Most commonly used are the small

molecules, including the microtubulin destabilising drugs,

disrupting the cytoskeleton of the endothelial cells, and the

flavonoids, which cause massive cytokine production. Several

phase I studies have proven their applicability in clinical prac-

tice (Patterson and Rustin, 2007). These VDAs are not suffi-

ciently potent as a single agent therapy and therefore need

to be combined with chemo- or radiotherapy. An important

issue is the effect of the anti-vascular agents on tumour oxy-

genation, if it is combined with chemo- and radiotherapy. On

one side an increase in hypoxia is expected as the vasculariza-

tion is diminished. On the other side VDAs typically target the

tumour region with the most abnormal vasculature, usually

comprising the most hypoxic and hence radioresistant cells.
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Furthermore, there is evidence that VDAs can cause G2/M cell

cycle arrest with associated enhanced radiosensitivity. In clin-

ical practice the VDAs have a small additive effect in combina-

tion with radiotherapy. CA4P (combretastatin-A4-phoshate)

and DMXAA (5,6-dimethylxanthenone-4-acetic acid) are two

small molecules that are currently under investigation in

phase II trials, combined with cytotoxic therapy. Several other

compounds are tested in phase I studies (review by Horsman

and Siemann, 2006).

5. Conclusion

With the abundant research performed on the molecular as-

pects of tumour hypoxia, several important pathways have

been elucidated over the last years. The hypoxic response is

complex with many genes and proteins involved that can be

important prognostic factors and interesting therapeutic tar-

gets. As of yet, no single marker has shown strong predictive

value to allow the selection of patients for hypoxia-modifying

treatment. Potential candidates, like pimonidazole and osteo-

pontin, could be the subjects of further research. Furthermore,

no single hypoxia-targeted drug has exhibited substantial

clinical effect as a single agent. Merging the different

approaches seems to be of pivotal importance, both in creat-

ing a predictive profile and developing a combined treatment.
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