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Abstract 

We have investigated synchronization and propagation of calcium oscillations, mediated 

by gap junctional excitation transmission. For that purpose we used an experimentally 

based model of normal rat kidney (NRK) cells, electrically coupled in a 1-dimensional 

configuration (linear strand). Fibroblasts such as NRK cells, can form an excitable syncytium 

and generate spontaneous inositol 1,4,5-triphosphate (IP3) mediated intracellular calcium 

waves, which may spread over a monolayer culture in a coordinated fashion. 

An intracellular calcium oscillation in a pacemaker cell causes a membrane depolarization 

from within that cell via Cl(Ca)-channels leading to a L-type Ca-channel based action 

potential in that cell. This action potential is then transmitted to the electrically connected 

neighbor cell and the calcium inflow during that transmitted action potential triggers a 

calcium wave in that neighbor cell by opening of IP3-receptor channels, causing calcium 

induced calcium release (CICR). In this way the calcium wave of the pacemaker cell is 

rapidly propagated by the electrically transmitted action potential. Propagation of action 

potentials in a strand of cells depends on the number of terminal pacemaker cells, on the GCaL 

conductance of the cells, and on the electric coupling between the cells. Our results show that 

the coupling between IP3-mediated calcium oscillations and action potential firing provides a 

robust mechanism for fast propagation of activity across a network of cells, which is 

representative for many other cell types such as gastrointestinal cells, urethral cells and 

pacemaker cells in  the heart. 

 

Key words: gap junctions; calcium waves; pacemaking; electrical coupling; action 

potential propagation; IP3-receptor; NRK cell
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Introduction 
 
Intracellular calcium oscillations are very common and have been reported in a large variety 

of cell types, such as smooth muscle cells (39), hepatocytes (47), oocytes (5), normal rat 

kidney fibroblast cells (16) and pancreatic acinar cells (11,33). In these cell types the 

cytosolic calcium transients are evoked by inositol 1,4,5-triphosphate (IP3)-linked agonist 

stimulation: after interacting with cell-surface receptors, agonists activate phospholipase C 

(PLC) and induce the release of IP3. IP3 then triggers calcium release from intracellular stores 

through IP3- sensitive calcium release channels in the ER membrane (32). Calcium liberation 

from the endoplasmic reticulum (ER) can also be activated by cytosolic calcium in the 

presence of IP3. In our model, the main mechanism of calcium-induced calcium-release 

(CICR) is the opening of the IP3-receptor (but other release mechanisms of intracellular 

calcium may do as well). 

In the cell types mentioned above, the cells are connected by gap junctions, allowing 

diffusion of IP3 and calcium. Since both IP3 and calcium facilitate intracellular calcium 

oscillations, diffusion of calcium and IP3 through the gap junctions could provide an effective 

way for synchronization of intracellular calcium oscillations in neighboring cells and for 

propagation of waves of intracellular calcium oscillations through the network (see e.g. 10, 

19, 20, 40). The propagation of calcium waves through the network has been the topic of 

many studies, but the cellular mechanisms involved in the propagation of calcium oscillations 

can be very different. Most studies refer to the propagation of calcium waves in non-excitable 

cells with intracellular IP3-mediated calcium oscillations, where oscillations in cells are 

coupled by diffusion of IP3 and calcium through gap junctions (see e.g. 12, 19, 20, 43). In our 

study we will ignore coupling of oscillations by calcium and IP3 diffusion for good reasons 

which will be explained in the Discussion section.  
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At the other hand, there is propagation of electrical activity in networks of cells 

electrically coupled by gap junctions, such as in the ventricular myocardium (17, 18, 23 - 26). 

In such types of cell networks, propagation of electrical activity is the result of depolarization 

of a cell by action potential firing of its neighbor. For adequate gap-junctional coupling, an 

action potential causes a depolarization in neighboring cells, which opens their membrane 

channels and so triggers an action potential. 

Some recent studies have focused on cell types which have both IP3-mediated calcium 

oscillations and action potentials, such as in interstitial cells of Cajal (4), sinoatrial nodal cells 

in the heart (31), lymphatic smooth muscle cells (22) and in NRK fibroblasts (27). These cell 

types have the interesting property that the mechanisms of IP3-mediated calcium oscillation 

and action potential generation are coupled, and interact with each other (28). An action 

potential can trigger a calcium transient since inflow of calcium during an action potential 

causes CICR. In the other direction, the increase of cytosolic calcium due to release of 

calcium through the IP3-receptor opens calcium-dependent channels in the membrane causing 

a depolarization. In NRK-cells the major calcium-dependent membrane channel type is the 

calcium-dependent chloride channel with a Nernst potential near -20 mV. This depolarization 

may then trigger an action potential (6, 27). Since electrical coupling through gap junctions is 

faster than chemical coupling by diffusion of calcium and IP3 through gap junctions (6, 36), 

the intracellular calcium oscillations between cells are also (indirectly) coupled by the 

electrical coupling by gap junctions.  

Because of the positive interaction between the IP3-mediated calcium oscillator and 

membrane depolarization, excitable cells with IP3-mediated calcium oscillations may be very 

robust pacemakers for propagating activity in the network (45). Recently, Imtiaz et al. (22) 

have investigated the various coupling modes of two cells with different amounts of IP3 and, 

therefore, different intrinsic oscillation frequencies. These authors showed that the chemical 
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and electrical coupling by gap junctions can cause anti-phase or in-phase oscillations of the 

cell pair, depending on the amount of IP3. Moreover, these authors showed that weak 

coupling (small conductance of the gap junction) is sufficient to synchronize heterogeneous 

cell pairs. 

Following up on the study by Imtiaz et al. (22) on a pair of cells, we have investigated 

the initiation and propagation of activity in a network with excitable cells with IP3-mediated 

calcium oscillators by gap junctional coupling. Imtiaz et al. (22) have shown that a pacemaker 

cell can drive the calcium oscillations in a neighboring cell with a lower IP3 concentration and 

a correspondingly lower intrinsic oscillation frequency. The question that we will address is: 

“What happens when more cells with a low IP3 concentration are coupled to this single 

pacemaker.?” And what happens if a pacemaker is coupled to cells which do not have an 

intrinsic oscillation frequency, because the IP3-concentration is too small? If that number of 

coupled follower cells increases, the current from the pacemaker cell to the follower cells will 

spread through the whole network. When the gap-junctional conductance is very small, the 

current might be too small to depolarize the neighboring cells. However, when the gap-

junctional conductance is very large, current will spread throughout the network and, if the 

network is large, the net current into a neighboring cell may also be too small to depolarize 

the cell. Therefore, in agreement with previous studies on excitable cells without intracellular 

calcium oscillations (36), we expect an optimal range of gap-junctional conductances for 

initiation and propagation of activity in the network. Because of the positive, reinforcing 

coupling between the intracellular calcium oscillator and the membrane depolarization, we 

hypothesize that propagation is more robust in excitable cells with both mechanisms 

compared to cells that lack one of the two.  

We addressed these problems using an experimentally verified model for NRK 

fibroblast cells (27). Contrary to Imtiaz et al. (22) we did not include voltage-dependent IP3 
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synthesis. The coupling between cells in our study is by electrical current through the gap 

junctions. In each individual cell, the electrical phenomena are coupled to the intracellular 

calcium oscillators by the calcium inflow through the L-type Ca-channels and by calcium 

inflow through the IP3-receptor. In the discussion we will evaluate the consequences of this 

simplification on the propagation of activity. 

 

 66



Model description 
 
In previous studies we have reported a mathematical model of normal rat kidney (NRK) 

fibroblasts capturing the basic characteristics (27, 28) based on single-cell data (14). This 

model was obtained by implementation of the dynamics of the membrane ion channels and 

that of the intracellular calcium oscillator. As an emergent property, the model correctly 

reproduced the properties of calcium transients, calcium action potentials and the coupling 

between calcium transients and calcium action potentials.   

The model contains two compartments for each cell: the cytosol and the ER. The 

plasma membrane contains a PMCA, L-type Ca channels, Calcium dependent chloride 

channels, a nonspecific leak and inward rectifying K channels (Harks et al 2003). The ER 

membrane contains a SERCA pump, a Calcium leak and an IP3 receptor channel. Cells are 

electrically coupled by gap junctions. 

The key idea of the model (27) is that  auto- and paracrine production of hormones 

such as PGF2α leads to the production of IP3, which gives rise to IP3-mediated intracellular 

Ca2+-oscillations. These IP3-mediated calcium oscillations cause periodic calcium transients, 

which open the Ca2+-dependent Cl-channels (Cl-(Ca2+)-channels). These Cl-(Ca2+)-channels 

depolarize the membrane towards the chloride Nernst potential near -20 mV thereby causing 

activation of the L-type Ca-channels. Opening of calcium channels generates an influx of 

calcium in the cells with a concomitant further depolarization towards the equilibrium 

potential for Ca2+ -ions. The Cl-(Ca2+)-channels remain activated as long as the intracellular 

Ca2+-level is elevated, resulting in a plateau phase at the chloride Nernst potential at -20 mV. 

Upon extrusion of Ca2+ from the cytoplasm, the Cl-(Ca2+)-channels become deactivated, and 

the cells subsequently repolarize to –70 mV as a result of the activity of inward rectifier K+-

channels (14). Just the other way around, calcium action potentials induce Ca2+-induced Ca2+ 

release (CICR) through the IP3-receptors.  
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The autonomous cell oscillator 
 
The NRK cell model by Kusters et al. (27) to describe the dynamics of the cell has two major 

components: an IP3-mediated intracellular calcium oscillator and an electrically excitable 

membrane. Here we describe the main properties of the NRK cell. For more details, we refer 

to (27).  

Calcium in the cytosol plays a key role in coupling the dynamics of the IP3-mediated 

calcium oscillator and the cell membrane (28). The rate of change in the membrane potential 

due to the currents through inward rectifier potassium channels (IKir), L-type Ca-channels 

(ICaL), Ca-dependent Cl-channels (ICl(Ca)), leak channels (Ilk), and store dependent 

calcium (SDC)-channels (ISDC) is given by 

( )SDCCaClCaLlkKir
m

m IIIII
dt

dV
C ++++−= )(   (A.1) 

IKir and Ilk determine the membrane potential of the cell at rest near -70 mV and are 

specified by Equations A.2-A.6 in the Appendix. 

In NRK cells, the crucial coupling between electrical events at the excitable membrane 

and the internal calcium oscillations is controlled by the L-type Ca-channel and the calcium-

dependent chloride channel. The current through the L-type Ca-channels is given by 

)( CaLmCaLCaL EVmhGI −=      (A.7) 

where Vm refers to the membrane potential and ECaL refers to the Nernst potential of Ca2+ near 

50 mV. The L-type Ca-channel has an activation (m), and inactivation (h) variable. The 

dynamics of m and h obey a first order differential equation with steady-state values m∞ and 

h∞ given by Eqs. A.8 and A.10, respectively, and with time constants given by Eqs. A.9 and 

A.11. 

The current through the Ca-dependent Cl-channel (Cl(Ca)) is given by 
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In addition, the cell membrane has a store-dependent calcium channel (SDC). The 

conductance of the SDC is inversely related to the calcium concentration in the ER. 
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One of the mechanisms for calcium extrusion from the cytosol is the plasma 

membrane calcium ATPase (PMCA) pump. The flux of Ca2+-ions through the PMCA pump 

is described by 
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2

2
max

    (A.16) 

Any changes in the cytosolic calcium concentration [Ca2+] are due to buffering of 

calcium (Eq. A.14), to a net flux of calcium through the plasma membrane (JPM, Eq. A.15), 

and net fluxes through the ER membrane (Eq. A.18). The latter has a constant leak of calcium 

JlkER (Eq. A.19), a flux through the IP3-receptor (JIP3R, Eq. A.20) and active transport of 

calcium into the ER by the sarcoplasmic/endoplasmic reticulum Ca-ATPase (SERCA) pump 

(JSERCA, Eq. A.24). 

The intracellular calcium oscillator is controlled by the intracellular IP3-concentration 

which activates the IP3-receptor. The flux of Ca2+-ions through the IP3-channel is described 

by a Hodgkin-Huxley type formalism 

[ ] [ ]( )++
∞ −= 2233

33 cytERRIPRIP CaCaKwfJ     (A.20) 

with activation variable f and inactivation variable w with the steady state values f∞ and w∞ 

given by Eqs. A.21 and A.22. The time constant for the activation parameter f is considered to 

be small relative to that of the other processes in the cell. Therefore, we use f∞ instead of f. 

The time constant τw for the inactivation gate is described by Eq. A.23. This results into 
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periodic oscillations of calcium flow out of the endoplasmic reticulum (ER) into the cytosol 

and calcium re-uptake in the ER by activity of the SERCA pump. As suggested by Dupont 

and Goldbeter (28), the flux of Ca2+-ions through the SERCA pump is described by 

[ ]
[ ] SERCAcyt

cyt
SERCASERCAA KCa

Ca
JJ

+
= +

+

2

2
max

   (A.24) 

The elevated calcium concentration in the cytosol by opening of the IP3-receptor 

activates the Ca-dependent Cl-channels (see Eq. A.12), which depolarize the cell membrane 

to the Cl− Nernst potential near -20 mV. As explained by Kusters et al. (27), this 

depolarization can open the L-type Ca-channels. Opening of the L-type Ca-channels gives rise 

to a further increase in [ ]+2
cytCa . As a result an action potential (AP) with a plateau phase near -

20 mV occurs. Calcium in the cytosol is reduced by re-uptake of calcium in the ER by the 

SERCA and PMCA pump. When the calcium concentration in the cytosol has been restored 

to its basal level, the Ca-dependent Cl-channels close and the membrane potential repolarizes 

to the rest potential near -70 mV. 

 

Parameter modification 

The full set of equations describing the dynamics and the parameter values of this NRK-

model can be found in Kusters et al. (27). In the present model study we had to adjust some 

parameter values. When calcium in the external medium of NRK cells is replaced by 

strontium, AP propagation in experiments is more robust (6). The reason is that strontium 

does not inactivate the L-type Ca-channels as calcium does (14). Since many experimental 

data were obtained using strontium instead of calcium (6, 7, 14), we omitted the calcium-

dependent inactivation factor vCa in the model equation for the L-type Ca-channel. Another 

effect is that the current through the L-type Ca-channel is much larger for strontium than for 

calcium, which is why we have used a larger value for the L-type Ca-channel conductance 
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GCaL (1.6 nS instead of 0.7 nS). Since the L-type Ca-channel, Ca-dependent Cl-channel and 

IP3-receptor are important channels for AP propagation and since activation of these channels 

was rather small in our old model (27), we changed the following parameters: τh (time 

constant for inactivation of the L-type Ca-channel) a factor 2 longer, τm (time constant for 

activation of the L-type Ca-channel) a factor 2 smaller, the membrane potential for half-

maximal activation of m∞ is set to −10 mV, KCl(Ca) set to 18 µM, JPMCA set to 3×10−5 

µmol/(s×dm2) and Glk set to 0.058 nS. These changes lie within the range of values from 

experimental observations. The kon and koff parameters of the buffer are set to 1. Table 1 

shows the modified parameter values. 

 
Electrical coupling through gap junctions 
 
Many fibroblastic cell types in culture, including NRK cells, are electrically coupled by gap-

junctional channels, e.g. composed of connexin43 (Cx43) subunits with a typical conductance 

between the cell and its surrounding network near 20 nS (13). The monolayer of NRK cells 

can be approximated by a hexagonal grid (42). Therefore, the total gap-junctional 

conductance of 20 nS for a cell corresponds to a gap-junctional conductance Gg between two 

neighboring cells of 20/6 ~ 3 nS, which is in agreement with other experimental data for gap 

junction coupling between cells where Cx43 subunits are involved (3, 41). 

The electrical current flowing through the gap junctions between cell i and other cells 

in the network was incorporated by an extra term at the right-hand side of Eq. A.1, which 

resulted in 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++++−= ∑

∈ ineighborj

ij
gapSDCCaClCaLlkKir

m
m IIIIII

dt
dV

C )(   (1) 

( )j
m

i
mg

ij
gap VVGI −=        (2) 

where Gg is the conductance of the gap-junction coupling between neighboring cells i and j. 

We modeled the AP propagation by electrical coupling of a single pacemaker cell to 
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surrounding follower cells in a one-dimensional strand (cable). Our aim is to understand the 

electrical load upon the single pacemaker cell due to coupling to surrounding cells. Fig. 1A 

shows the equivalent electrical circuit for the passive electrical properties of a one-

dimensional strand of follower cells driven by a pacemaker cell (”P”). Each follower cell is 

represented by a capacitance C and resistance Rf and cells are coupled by the gap-junctional 

resistance Rg. This passive model is a good approximation as long as the membrane potential 

does not reach the threshold for action potential firing. 

Expanding a network of n follower cells with an additional follower cell (Fig. 1B) 

gives a relation between Zn and Zn+1, where Zn and Zn+1 represent the equivalent impedance 

for an array with n and n+1 follower cells, respectively. This relation is given by 

( )
)()(

)()(
)(1 ωω

ωω
ω

cellng

ngcell
n ZZR

ZRZ
Z

++

+
=+     (3) 

where )(ωcellZ is the impedance of a follower cell in the frequency domain, given by 

2222 11
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f

ff

f

f
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ω

+
−

+
=     (4) 

with capacitance (C), resistance (Rf ) and the characteristic time constant τf = RfC. The 

equivalent resistance of an infinitely long one-dimensional strand can be calculated by setting 

Zn+1(ω) = Zn(ω), which gives 

( )
2

)(42
gcellgg RZRR

Z
ω++−

=∞     (5) 

For an infinitely large strand of cells the net current to the first follower cell (see Fig. 

1C) is given by 

( )( ) =+++
=

∞∞

∞

pgcellcell
pcell ZRZZZZ

ZVI    (6) 
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From Eqs. 5-6 it is easy to see that Icell becomes zero for infinitely small values of Rg. If Rg  

becomes infinitely small,  Z∞ becomes zero and therefore Icell becomes zero. Eq. 6 shows that 

Icell is also zero for large values of Rg (Rg ↑ ∞, Icell = 0). The optimal value of Rg is found by 

solving 0=
∂
∂

g

cell

R
I

. For the parameter values in our study the optimal value for Rg is about 2.0 

109 Ohm (Gg = 0.5 nS).
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Results 

Phase response curves for current pulse and calcium pulse 

Understanding the response of a single cell to a current pulse or injection of calcium ions is 

helpful to understand the interaction between two cells (49). Current and calcium 

perturbations allow us to determine the Phase Response Curve (PRC), which gives the phase 

shift (∆φ) of the action potential or calcium oscillator of a NRK pacemaker cell with intrinsic 

cycle length (T) as a function of the phase (φ) at which the external input is given. When a 

current pulse of sufficient amplitude is injected into a cell, the elevated membrane potential 

results in opening of the L-type Ca-channels and, possibly, into action potential firing. 

The inflow of calcium causes calcium-induced calcium release through the IP3-receptor 

channel and gives rise to a phase advance of the IP3-mediated calcium oscillator. At the other 

hand, a calcium injection gives rise to a phase advance of the IP3-mediated calcium oscillator 

and corresponding Ca2+ transient. The resulting depolarization by the Ca-dependent Cl−-

channels then leads to advanced appearance of the next action potential (AP).  

The phase response curve (PRC) is measured by delivering a precisely timed 

perturbation and measuring the change in the running cycle duration. The upstroke of the 

preceding pacemaker action potential is chosen as the reference point (phase zero), since it is 

very sharp compared to the onset of calcium oscillations (CaOs). Moreover, CaOs change in 

shape and size. Phase φ is defined by φ = tp/T, where tp is the time when the stimulus is 

applied, relative to the reference point, and ∆φ is defined as (T − Tnew)/T where Tnew is 

the time of occurrence of the following action potential or calcium transient relative to the 

reference point, i.e. the new cycle length. The PRC quantifies the effect of an input pulse at a 

given phase on the occurrence of the following action potential or calcium transient. If an 

input pulse does not affect the next AP or calcium transient, T is unchanged and the phase 

change ∆φ at that point of the curve is zero. If the input pulse delays the next AP or calcium 
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transient, Tnew > T and the phase change ∆φ has a negative value (not observed in our 

simulations). If the pulse advances the next AP, Tnew < T and ∆φ is positive. Fig. 2 shows 

PRCs (lower panels) generated by injecting a depolarizing current pulse with a 50 ms duration 

of 10, 15 and 20 pA (A) and a calcium pulse associated with a calcium current injection of 1, 

2 and 5 pA for 50 ms (B). The top three subpanels in Fig. 2 show an example of the effect of 

current (15 pA in panels A) and calcium pulses (1 pA in panels B) on the phase advance of 

the AP and CaO, respectively, (dashed lines) and the unperturbed response (solid lines). The 

lower panels of A and B show the phase change of the IP3- mediated calcium oscillator as a 

function of the timing of the current pulse in the cycle of the calcium oscillator. The lower-left 

panel shows that a current pulse of 10 pA has no effect on the IP3-mediated calcium oscillator 

irrespective of the phase in the action potential cycle (thick solid line). Depolarizing current 

pulses of 15 pA (dashed-dotted line) and 20 pA (thin solid line) injected at phase φ > 0.2 

trigger the next calcium transient almost immediately via an evoked action potential. Injection 

at phase φ < 0.1 has no effect on the next calcium transient, because this period includes the 

action potential and its refractory period (see Fig. 2A). Note, that these current injections are 

smaller than the current inflow in the cell by the membrane during an action potential, which 

is about 25 pA. Fig. 2B shows the phase change of the AP as a function of the phase of the 

calcium pulse. The figure shows that the phase of the AP does not change for calcium pulses 

of 1 (thick solid line), 2 (dashed-dotted line) and 5 (thin solid line) pA at phases φ < 0.6, φ < 

0.4 and φ < 0.3, respectively. The phase is maximally advanced for φ > 0.7, φ > 0.5 and φ > 

0.4, respectively, when triggered by calcium pulses of 5, 2 and 1 pA, respectively. These 

calcium injections are small relative to the total inflow of calcium from the ER during 

a calcium transient (approximately 35 ×10−6 µmol) and through the membrane during an 

action potential (approximately 100 ×10−6 µmol). 

The dashed lines plotted in the lower panels in Fig. 2 do not exactly represent the 

 151



transitions of the phase changes, but represent interpolations between subsequent points of 

the PRC curves for steps of 0.1. The PRC’s in Fig. 2 show that an intracellular calcium 

oscillation and an action potential are both capable of triggering an action potential or calcium 

transient, respectively, except when they occur shortly after a preceding action potential. 

 

Entrainment of Ca-oscillations of two cells by electrical coupling 

Since IP3-mediated calcium oscillations and action potential generation within a cell are 

tightly coupled processes (Fig 2), electrical coupling between cells by gap junctions provides 

an indirect (electrical) coupling mechanism between IP3-mediated calcium oscillations in two 

neighboring cells. In order to investigate the role of gap junctions in the coupling of IP3- 

mediated calcium oscillations of two neighboring cells, we have investigated the entrainment 

of two pacemaker cells with different intrinsic frequencies (due to different IP3  

concentrations) as a function of gap-junctional conductance. 

Fig. 3 shows the major family of entrainment regions, commonly called Arnold 

tongues (36) (solid lines), as a function of the electrical coupling Gg. Notice that the vertical 

scale is in pS. The entrainment regions are labeled by the ratio of the frequencies of the CaOs 

of both cells (f2([IP3(cell2)]) / f1([IP3(cell1)])). The IP3 concentration of cell 1 is set to a value of 

1.0 µM (this value causes CaOs at intermediate frequencies (f1 = 1/100 Hz)), while the IP3 

concentration of cell 2 is varied in steps of 0.005 µM at a rate of one step per 9000 seconds 

from 0.0 µM to 8.0 µM. 

When two pacemaker cells are uncoupled (Gg = 0), the cells can only have 

(subharmonic) m/n frequency entrainment when the frequencies f1 of cell 1 and f2 of cell 2 are 

related by m f1 = n f2 (n and m integers). When the gap-junctional conductance Gg increases in 

small steps, various modes of entrainment develop before complete synchrony (1:1 

entrainment) is established. The value of Gg, where 1:1 entrainment develops, depends on the 
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difference of the oscillation frequencies of the two cells in the uncoupled mode. The regions, 

where entrainment takes place, are related by the relation 0 ≤ | m f1 - n f2 | < ε(Gg,m, n), where 

ε increases for larger values of Gg. Figure 3 shows only the regions for the major entrainment 

ratio’s for f2:f1 (1:2, 2:3, 1:1, 4:3 and 3:2), but in between there are many, much smaller, 

regions with other ratios of m:n entrainment. The regions for various modes of entrainment 

grow with Gg and merge until a value of Gg is reached which gives 1:1 entrainment for all 

frequencies. For example, when we start at Gg = 35 pS and [IP3] = 0.4 µM for cell 2 

(corresponding to an intrinsic oscillation frequency f2 = 1/190 Hz for the cell in isolation), 

simulations reveal that this cell exhibits calcium transients at half the frequency of the CaOs 

in cell 1. For increasing values of [IP3] in cell 2 at Gg = 35 pS (horizontal dashed line), the 

following major entrainment regions are observed, 1:2, 2:3, 1:1, 4:3 and 3:2, respectively. In 

between there are many, much smaller regions with other ratios of m:n entrainment. Fig. 3 

predicts that electrical coupling near 60 pS or higher between two cells with one cell having 

an IP3 concentration of 1.0 µM is sufficient to completely synchronize two heterogeneous 

NRK cells, irrespective of the IP3 concentration in the second cell. In this range (for gap-

junctional conductance values above approximately 60 pS) the cell with the lowest oscillation 

frequency locks to the cell with the highest oscillation frequency. Therefore, in the 1:1 

entrainment region left from the ratio f2/f1 = 1.0, the frequency of the CaOs is determined by 

the reference frequency f1 and on the right side by the variable frequency f2. 

From the results shown in Fig. 3 we infer that under conditions of a physiological gap-

junctional coupling strength of 3 nS between NRK cells (13), the intracellular CaOs and APs 

of two oscillating NRK cells are fully synchronized. The fact that the fastest frequency always 

determines the synchronized frequency indicates that both calcium oscillators synchronize by 

phase resetting AP effects and not by continuous interaction (46, 49) 
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Synchronization of cells in a strand by electrical coupling 

To explore the excitation of follower cells by pacemaker cells, we have studied entrainment of 

a strand of follower cells by a terminal pacemaker cell. Since gap junctions allow diffusion of 

IP3, and because follower cells may be subject to stimulation of subthreshold IP3 production, 

we assumed nonzero concentrations of IP3 in the follower cells. For most simulations in this 

study, the follower cells have an IP3 concentration of 0.1 µM, which does not give rise to 

spontaneous Ca-oscillations. For the pacemaker cell we chose an IP3 concentration of 1.0 µM, 

which causes spontaneous calcium transients and APs (27). 

Fig. 4 shows the results of such an entrainment simulation. The solid and dashed lines 

demarcate different entrainment regions for a one-dimensional strand of follower cells with 

[IP3] = 0.1 and 0.0 µM, respectively, by a single terminal pacemaker cell ([IP3] = 1.0 µM) as a 

function of the number of cells and gap-junctional conductance (Gg). Fig. 4 shows that the 

mode of entrainment depends both on the number of follower cells in the strand as well as on 

gap-junctional conductance. For a single pacemaker cell and one follower cell ([IP3] = 0.1 

µM), the minimal gap-junctional conductance for full 1:1 entrainment is approximately 0.06 

nS. Increasing the number of cells for a fixed value for Gg at 0.1 nS, changes the 1:1 

18 entrainment to 1:2 entrainment for 3 cells, to 1:4 entrainment for 4 cells. For 5 or more 

cells no synchronization takes place anymore when Gg = 0.1 nS. Coupling in the range 

between 0.25 nS and 0.45 nS is sufficient for complete 1:1 synchronization of CaOs and APs 

in a one-dimensional network of NRK cells with this IP3 level, independent of the network 

size. If the IP3 concentration in the follower cells is set to 0.0 µM, the same results are 

obtained for these small values of Gg (dashed lines, super imposed on solid lines). Notice that 

experimental observations (13) report a gap-junctional conductance for NRK cells of 3 nS, 

which is much larger than the optimal coupling range in our simulations (0.25-0.45 nS). We 

will come back to this in the Discussion section. 
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The entrainment regions are different for a strand of follower cells with IP3 

concentration of 0.1 µM (solid lines) and for a strand with cells set to 0 µM (dashed lines) for 

Gg values above 0.4 nS. For [IP3] = 0.1 µM in the follower cells the entrainment changes from 

1:2 to 1:3 and 1:4 for increasing values of Gg when the number of follower cells is larger than 

approximately 20 (solid line). For [IP3] = 0 the IP3-receptor in the follower cell is closed and 

AP transmission fails for Gg above 0.8 nS when the number of cells exceeds 30 cells (grey 

area). Simulations reveal that the area marked with diagonal lines is where the entrainment is 

1:3. The range of Gg values which allows 1:1 synchronization for a large number of cells is 

from about 0.25 to 0.4 nS. 

These results demonstrate that small concentrations of IP3, which do not elicit 

spontaneous calcium oscillations, support synchronization of activity in networks of cells. For 

this reason we used in this study an IP3 concentration of 0.1 µM for the follower cells to 

further investigate the interaction between IP3-mediated Ca-oscillations and action potentials.  

Summarizing, to completely synchronize a pacemaker and a single follower cell, a gap-

junctional conductance near 0.06 nS is sufficient (Fig. 4), whereas for an infinitely long strand 

of cells the conductance must be in the range between 0.25 and 0.45 nS (Fig. 4). An 

explanation will be given below. 

The current from the pacemaker cell through the gap junctions to the follower cells is 

given by )( j
m

i
mg

ij
gap VVGI −=  (Eq. 2). Increasing the electrical coupling (Gg) increases the 

leak of current from the pacemaker cell to its neighbor cells. If the net current to a follower 

cell is large enough and fast enough, the membrane potential might approach the threshold 

value near −40 mV for L-type Ca-channels. If that happens, the L-type Ca-channels open, 

causing an action potential and an inward current of Ca-ions. The increase of calcium in the 

cytosol activates the IP3 receptor, leading to a calcium transient.  
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An opposite effect of increasing the electrical coupling is that it decreases the 

equivalent impedance of the network. Since the equivalent impedance ∞Z  for an infinitely 

large strand of follower cells decreases for increasing values of Gg ( 0>
∂
∂ ∞

gR
Z

 for all Rg; see 

Eq. 5), decreasing Rg (increasing Gg) implies a smaller value for ∞Z . If the equivalent 

impedance of the network decreases, the available current from the pacemaker cell spreads to 

a larger number of follower cells in the network, which makes it harder for the pacemaker cell 

to depolarise its neighboring follower cell to the threshold of the L-type Ca-channels for 

generation of an AP. In other words, a larger gap-junction conductance leads to a decrease in 

the effective impedance and to a smaller net current from the pacemaker cell to its 

neighboring follower cell, which explains the shift from 1:1 to 1:2 entrainment for strong 

coupling (Gg > 0.45 nS) in Fig. 4 and to 1:4 entrainment for Gg > 1.0 nS for network sizes in 

the range of 20 cells and more. 

In conclusion, small coupling conductances prohibit a sufficiently large current from 

the pacemaker to the follower cell to reach the membrane threshold for excitation. For a large 

conductance the threshold for action potential generation cannot be reached since a large part 

of the current from the pacemaker to its neighboring follower cell flows to other follower 

cells, limiting the net current from pacemaker to its neighbor follower cell. 

 
Entrainment of and propagation in a strand of electrically well coupled 
NRK cells 
 
Failing AP transmission during strand entrainment 
 
Fig. 5 shows the results of a simulation of the membrane potential behavior of a pacemaker 

cell in isolation (panel A, thick solid line) and that of a pacemaker cell (panel B, thick solid 

line) coupled to 100 follower cells (thin solid lines) in a strand with a gap-junctional 

conductance (Gg) of 3 nS. Note that this value for Gg is much larger than the values of Gg in 
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Figure 4. For Gg = 3 ns, the entrainment for a network of 20 cells or less is 1:1 and is 1:4 

when the number of cells exceeds 30. 

IP3 concentrations are set to 1.0 µM and 0.1 µM for the pacemaker and follower cells, 

respectively. As shown in Fig. 4 this situation corresponds to 1:1 for a small number of 

follower cells (n < 17) and corresponds to 1:4 entrainment for n>20. This means that one out 

of every four calcium transients and APs generated by the pacemaker cell results into AP and 

calcium transients in the strand of follower cells. Fig. 5B shows an example where 

propagation does not take place. Fig. 6 shows a case where propagation does occur. 

In Fig. 5A the uncoupled pacemaker cell (thick solid line) has an AP with a peak 

voltage near +10 mV, followed by a plateau phase near -20 mV. The AP is triggered by Ca2+ 

release from the ER store through the IP3-receptor (E). The increased cytoplasmic Ca-

concentration (C) causes depolarization of the cell by activation of the Ca-dependent Cl-

channels. This depolarization to the Nernst potential of the Ca-dependent Cl-channels near -

20 mV activates the L-type Ca-channel (G, I), which leads to a further increase in [ ]+2
cytCa  (C). 

The panels in the right hand column of Fig. 5 show the results when the pacemaker is 

coupled to 100 follower cells. Comparing the panels in the left and right column reveals some 

important differences between the results for an uncoupled pacemaker cell and for a 

pacemaker cell coupled to a strand of follower cells. The main difference relates to the slow 

and small increase of cytosolic calcium concentration in the pacemaker cell (panels C versus 

D, thick solid line) and the corresponding slow and small depolarization of the membrane 

potential (compare panels A and B) in the coupled situation for the pacemaker cell. Coupling 

the pacemaker cell to its neighboring follower cells by gap junctions causes the current from 

the pacemaker cell to leak away to the follower cells. As a result, depolarisation of the 

membrane potential of the pacemaker cell by the Ca-dependent Cl-channels reaches a lower 

peak value (panel B) and the level of activation of the L-type Ca-channels of the pacemaker 
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cell is not as high as in the case of the isolated pacemaker cell. This becomes clear by 

comparing the data in panels I and J, which show the activation gate (m, thick dashed-dotted 

line) and inactivation gate (h, thick solid line) for the uncoupled and coupled situation, 

respectively. For the uncoupled pacemaker cell the m gates open (panel I), which does not 

happen for the coupled pacemaker cell (panel J) leading to AP failure in the strand. As a 

consequence of the small activation of the L-type Ca-channels in the coupled pacemaker cell 

there is hardly any calcium inflow through the L-type Ca-channels into the cytosol (compare 

panel G with panel H and notice the different scales of the vertical axes). This also affects the 

boosting CICR by activation of the IP3-receptor, because the smaller inflow of calcium 

through the L-type Ca-channel weakens CICR and results into a slower and smaller calcium 

flow through the IP3-receptor (compare panels E and F) for the coupled pacemaker.  

For the isolated pacemaker cell the fraction of open activation gates (f, thick dashed 

dotted line) increases rapidly followed by a slow closure of the inactivation gates (w, thick 

solid line in panel K). When the pacemaker is coupled to a strand of 100 follower cells the 

fraction of open activation gates does not reach as high values as for the isolated pacemaker 

(compare thick dashed -dotted lines in panels K and L). Notice that the fraction of open 

inactivation gates (w) is near 0.4 for the follower cells (thin solid lines in panel L, which all 

superimpose). The gate is not yet completely de-inactivated after the previous action 

potential, which has implications for the propagation of the AP as we will show when we 

compare Figs. 5 and 6. 

In summary, when the pacemaker cell is coupled to a linear strand of follower cells, 

the membrane potential of the pacemaker cell increases much more slowly than in the 

uncoupled case, and does not reach as high values during the plateau phase due to the 

decreased flux of Ca-ions through the L-type Ca-channels and IP3-receptor of the pacemaker 

cell. The depolarisation of the follower cells due to electrical coupling activates the L-type 
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Ca-channels in the follower cells only to a very small extent (panel J) and causes only a very 

small inflow of Ca-ions (panel H). This inflow is too small to induce a significant Ca2+-

induced Ca2+ release through the IP3-receptor in the follower cells (thin solid line in panel F), 

because w is not yet sufficiently de-inactivated. As a consequence, a single pacemaker cell is 

not powerful enough to supply 1:1 entrainment between AP propagation and CaOs in a strand 

of NRK cells with [IP3] = 0.1 µM. 

 

Entrained AP transmission 

Fig. 6 shows the propagation of activity for a pacemaker cell coupled to 100 follower cells 

with a gap-junctional conductance (Gg) of 3 nS when the pacemaker cell succeeds in 

triggering AP propagation in the follower cells. In Fig. 6A the coupled pacemaker cell (thick 

solid line) depolarizes to -20 mV. This depolarization is triggered by Ca2+ release from the 

store through the IP3-receptor (C). The increased cytoplasmic Ca-concentration causes 

depolarization of the cell by activation of the Ca-dependent Cl-channels. Note that the rise of 

the membrane potential for the pacemaker cell and its neighboring follower cells is much 

slower than that for distant follower cells. This causes a gradual start of the inactivation of the 

L-type Ca channel (decreasing h , solid lines in Fig. 6E) before activation m increases 

(dashed-dotted lines in 6E). Since the activation m in the pacemaker cell hardly increases 

above the value zero (thick dashed-dotted line in 6E), the L-type Ca-channels in the 

pacemaker cell hardly open (6D). For more distant follower cells, the rise of the membrane 

potential is much faster and activation m of the L-type Ca-channel increases rapidly, resulting 

in an action potential. 

The depolarization of the pacemaker cell to the Nernst potential of the Ca-dependent 

Cl-channels near -20 mV activates the L-type Ca-channels in the neighboring follower cell 

slightly (hardly visible in D, see arrow), causing a small inflow of Ca-ions. Although the 
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inflow of calcium in the follower cells is small and hardly visible in Fig. 6D, the fraction of 

open inactivation gates (w) of the IP3-receptor (solid lines panel F) is large enough to allow a 

significant Ca2+-induced Ca2+ release (CICR) through the IP3-receptor (see arrow, Fig. 6C). 

Moreover, the cytosolic Ca-concentration (B) due to small influx through the L-type Ca-

channel (D) and through the IP3-receptor (C) is large enough to cause full depolarisation to 

the Nernst potential of the Ca-dependent Cl-channels (A). The CICR through the IP3-receptor 

in each follower cell reinforces the speed of their depolarization and, therefore, contributes to 

a better and stronger AP propagation in the one-dimensional array of cells.  

The fraction of open activation (f, thick dashed-dotted lines) and inactivation (w) gates 

of the IP3-receptor for a pacemaker cell (w, thick solid line) coupled to 100 follower cells (w, 

thin solid lines) are shown in panel F. Notice that the fraction of open w gates for the 

neighboring follower cells is a little higher than in Fig. 5K (thin solid lines). This is due to the 

small IP3 concentration of 0.1 µM (see Eq. A.23), which gives a long time constant τw for de-

inactivation. It takes about 300 seconds to re-open the inactivation gate w of the follower cells 

completely. Since the pacemaker cell generates an AP every 90 seconds, the inactivation gate 

(w) of the follower cells after a calcium transient has not recovered sufficiently at the next 

action potential of the pacemaker cell. This is clear in Fig. 5F, where the inactivation gates of 

the neighboring follower cell was 0.4, whereas it reaches values near 0.5 and 0.6 (thin 

solid lines) in Fig. 6F. 

The main difference between Fig. 5 and Fig. 6 is that the inactivation gate w (thin 

solid lines) of the IP3-receptor in the follower cells has recovered to higher values in Fig. 6F 

than in Fig. 5K. Therefore, the relatively small inflow of Ca-ions through the L-type Ca-

channels is large enough to activate the IP3-receptor by CICR in the first follower cell (see 

arrow, Fig. 6 panel C). The same occurs in the other follower cells. The membrane potential 

exerts a positive feedback on the Ca2+-oscillator through Ca2+ influx through L-type Ca-
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channels. On the other hand, the release of calcium through the IP3-receptor exerts a positive 

feedback on the depolarization of the membrane. As a result, AP propagation with underlying 

CaOs is generated in the follower cells. This positive interaction between membrane 

excitability and IP3 receptor explains why a small amount of IP3 in the cell supports 

synchronization and propagation of activity in a network of cells. 

We can understand the 1:4 entrainment of AP propagation (Figs. 5 and 6) by having a 

closer look at the de-inactivation time constant τw for the w gate. The time constant τw (Eq. 

A.23) determines the time for de-inactivation (w) of the IP3-receptor, which depends among 

other things on [IP3]. For low [IP3] values (near 0.1 µM) in the follower cells, the time 

constant τw of the inactivation gate w of the IP3-receptor is long (in the order of 300 seconds). 

For high [IP3] near 1.0 µM in the pacemaker cell, τw is shorter and about 90 seconds. Since the 

time constant τw in the follower cells is long (about 300 s) relative to the time interval between 

APs generated by the pacemaker cell (about 90 s), the de-inactivation of the IP3-receptor in 

the follower cells has not yet recovered after an action potential and IP3-mediated calcium 

oscillation when the pacemaker cell generates the next action potential. This explains why 1:1 

synchronization between pacemakers and followers is not possible in this case and why 

synchronization becomes harder for smaller amounts of IP3 in the cell. 

 

Propagation in a strand of cells 

We will now address the experimental observation that action potentials and CaOs are 

propagated with a gap-junctional conductance Gg which is much larger (3 nS) than the 

predicted optimal gap-junctional coupling range for synchronization of a pacemaker to 

followers (range 0.25-0.4 nS in Fig. 4). We have to keep the following in mind: if the gap 

junction conductance is very small, the current from the pacemaker to the follower cell is too 

small to depolarize its neighbor cell rapidly and to sufficiently high membrane potential. If the 
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gap junction conductance is very large, the pacemaker cell is not able to provide enough 

current for depolarization of its neighboring cell, since most of the current flows through the 

network to other cells. As we will show, robust AP propagation and excitation of follower 

cells in the latter case can be achieved in the model in two ways: by increasing the 

conductance of the L-type Ca-channels and by increasing the number of pacemaker cells. 

The first solution is to increase the conductance GCaL of the L-type Ca-channel, which 

is helpful for both the pacemaker and the follower cells. With increased values of GCaL, 

depolarization of the membrane potential of the pacemaker cell leads to a larger current 

through the L-type Ca-channels and to more current through the gap junctions. This generates 

a larger current from pacemaker to follower cells and makes it easier to reach the threshold 

level for opening of L-type Ca-channels in the follower cells. For follower cells a larger 

opening of their L-type Ca-channels leads to better facilitation of CICR through the IP3-

receptor. However, since it is known that the maximal value for GCaL is close 1.6 nS (15), it 

would not be realistic to set GCaL to higher values than the value of 1.6 nS, used in this study. 

The second solution is to increase the number of terminal pacemaker cells in the one-

dimensional network, which contributes to a larger current to the follower cells. When enough 

pacemakers are placed in the network, 1:1 AP propagation is observed. This is illustrated in 

Fig. 7, which shows the result of a simulation of a coupled strand with three terminal 

pacemakers (IP3 = 1.0 µM) and 100 follower cells (IP3 = 0.1 µM). The release of calcium 

from the ER to cytosol by the IP3-receptor in the pacemaker cells (Fig. 7C) activates the Ca-

dependent Cl-channels causing a depolarization to -20 mV (Fig. 7A). This depolarisation 

activates the L-type Ca-channels (Fig. 7D). Note the delay of the fluxes through the Ltype Ca-

channels (panel D) relative to the fluxes through the IP3-receptor (panel C). The 

depolarization of the three pacemaker cells causes a depolarization of the follower cells (panel 
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A) and action potentials by activation of their L-type Ca-channels of the followers (panel D). 

The three pacemakers cause 1:1 entrainment for the full network with 100 followers. 

 

Differences in pacemaker and follower cells 

Comparison of the behavior of the pacemaker cells and the follower cells in Fig. 7 shows 

some important differences. The first difference to be mentioned is the smaller peak of the AP 

in the pacemaker cells than in the follower cells (see Fig. 7A, compare thick solid lines with 

thin solid lines). In a pacemaker cell APs are triggered by IP3-mediated intracellular CaOs. 

Each calcium transient leads to opening of the Ca-dependent Cl-channels causing a 

depolarisation of the pacemaker cell to the Cl-Nernst potential near -20 mV. This 

depolarisation opens the L-type calcium channels, which have a reversal potential near 50 

mV. Since the calcium filling of the cytosol by release of calcium from the stores (see Fig. 

7C) and the corresponding depolarisation to –20 mV due to activation of the chloride 

channels is slow (see Fig. 7A) relative to the activation and inactivation time constants of the 

L-type calcium channel, inactivation of the calcium L-type channels starts during the 

depolarisation to –20 mV. This explains why the inflow of calcium through the L-type 

calcium channel (Fig. 7D) and the initial peak of the action potential are smaller in pacemaker 

cells than in follower cells. The inward calcium flow through the L-type Ca-channels (Fig. 

7D) is approximately twice as small for pacemaker cells than for follower cells. 

Fig. 7 illustrates that three pacemaker cells are able to initiate propagating activity in a 

linear strand of follower cells, in which each has a small concentration of IP3 ([IP3] = 0.1 µM) 

that assists in AP propagation through the network. 

In Fig. 4 we showed that a single pacemaker could not induce propagating activity in a 

linear strand with a large number of follower cells for large gap-junctional conductance. With 
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three pacemakers 1:1 entrainment is obtained for gap-junctional conductances Gg above 0.25 

nS. 

 

Minimal value for GCaL 

As explained above, L-type Ca-channels are necessary for propagation of activity in a 

network of NRK fibroblasts (7). Fig. 8 shows the simulation results where we tried to find the 

minimum number of pacemaker cells as a function of GCaL at a constant gap junction 

conductance of 3 nS. The minimal number of pacemaker cells required for stable 1:1 

propagation of APs in a linear array of follower cells decreases for increasing GCaL. The data 

points of the simulations in Fig. 8 reveal that no AP propagation is possible for GCaL below 

1.45 nS. Therefore in our model a critical minimal value for GCaL is necessary for AP 

propagation in a network. 
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Discussion 

The aim of this model study was to investigate how electrical coupling of excitable cells with 

IP3-mediated calcium oscillations affects the initiation and propagation of Ca-waves in a 

strand of cells. IP3-mediated calcium oscillations in two neighboring cells were coupled to the 

excitable membrane by cytosolic calcium as in Imtiaz et al. (22). Our general conclusion is 

that the interaction between IP3-mediated calcium oscillations and action potentials in 

electrical coupled NRK cells provides a mechanism for fast calcium wave propagation and 

synchronization, in which the CICR component plays a significant supportive role. 

 

The role of electrical coupling strength 

The main result of this study is that it emphasizes the important functional role of the 

coupling between the excitable membrane and CICR from intracellular stores for calcium 

action potentials and the important role of electrical coupling between cells for the initiation 

and propagation of calcium action potentials. These results provide a better understanding of 

empirical results by Yao and Parker (48), who concluded that “electrical transmission may 

provide a means to ‘leapfrog’ slow chemical wave transmission and rapidly synchronize Ca2+ 

release within large individual cells and across  populations of electrically coupled cells.” A 

similar idea was reached by Sanders et al. (37), who based on a large set of empirical data 

concluded that “voltage-dependent Ca2+ entry that increases Ca2+ activity in pacemaker units 

near IP3 receptors may be responsible for coordination of Ca2+ release events and entrainment 

of unitary currents within a network of ICC”. 

Fig. 3 shows entrainment for two heterogeneous pacemaker cells, which display full 

synchronization of intracellular CaOs for a coupling conductance (Gg) above 60 pS which is 

well in agreement with Imtiaz et al. (22) who found that weak electrical coupling is sufficient 

to synchronize heterogeneous cells of cell pairs. This result explains that at the physiological 
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gap-junctional coupling strength (3 nS) of NRK cells (Harks et al. (14)), the intracellular 

CaOs and APs of two oscillating cells are completely synchronized in phase. In the modelling 

study by Imtiaz et al. (22) it was reported that anti-phase behavior could occur for two weakly 

coupled cells for high oscillation frequencies, which is a well known result for interacting 

oscillators (9). This anti-phase coupling in their study is the result of the time constants 

involved in voltage-dependent IP3 synthesis. Since it takes some time before changes in the 

membrane potential affect the production of IP3, the effective coupling between cells by 

voltage-dependent IP3-production has a frequency-dependent delay. Therefore, we conclude 

that voltage-dependent IP3 synthesis cannot play an important role as it would disable 

synchronisation between cells to form a pacemaker cluster. 

For low-frequency intracellular calcium oscillations, (typically one cycle per minute or 

lower) this delay is small relative to the period of the calcium oscillations, which results in in-

phase behavior. For high-frequency intracellular calcium oscillations (2 cycles per minute or 

higher) the period of calcium oscillations is small relative to the time constant for production 

of IP3, resulting in out-of-phase oscillations. In NRK cells, the highest oscillation frequencies 

are near one cycle per minute, but in general the oscillation frequency is much lower. 

Therefore, out-of-phase synchronization due to voltage-dependent IP3 production does not 

happen in NRK cells and therefore, we did not include voltage-dependent IP3-production. 

Fig. 4 shows that synchronization of follower cells by a pacemaker cell is easier if the 

follower cells have a non-zero concentration of IP3, allowing calcium transients by CICR. The 

CICR through the IP3-receptor in each follower cell reinforces the speed of their 

depolarisation and, therefore, contributes to a better and stronger AP propagation in the one-

dimensional array of cells. Moreover, Fig. 4 shows that entrainment and synchronization is 

optimal for a coupling between 0.25 and 0.45 nS, whereby 1:1 propagation of APs in the 

network is facilitated. However, the actual conductance of gap junctions between NRK cells 
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is approximately 3 nS, which is much larger than the optimal coupling range that follows 

from Fig. 4. In our view the relatively high conductance of 3 nS has at least two 

consequences. 

The first one is that it prevents initiation of activity by a single pacemaker, but allows 

synchronized activity of a small cluster of pacemaker cells. It prevents spontaneous random 

activity by a single pacemaker cell and ensures robust initiation by a small cluster. For a linear 

strand at least three pacemakers are sufficient for propagation. Pilot studies for a two-

dimensional network show that roughly 300 pacemaker cells are necessary to initiate 

propagating activity. 

The second aspect related to the gap-junctional conductance relates to the velocity of 

propagation. A larger gap-junctional conductance gives a larger propagation velocity (36). 

Previous studies on propagation of activity in a network of non-excitable cells with IP3-

mediated calcium oscillations (10, 19, 20, 40) have shown that propagation may occur via 

diffusion of calcium and/or IP3 through the gap junctions. Since diffusion is relatively slow 

relative to electrical coupling, the propagation velocity in such a network is typically in the 

range from 5-50 µm/s (19, 35, 38), which is much slower than propagation in excitable cells 

(typically 0.5 - 100 cm/s) and in our NRK cells (6, 16) where the propagation velocity is 

approximately a few mm/s. 

 

The required number of pacemaker cells for exciting the strand 

The analysis of the one-dimensional network in Figs. 5 and 6 with physiological electrical 

coupling (Gg = 3 nS), reveals that one terminal pacemaker cell cannot deliver sufficient 

current to the follower cells to obtain 1:1 synchronization and AP propagation in the cell 

strand. Increasing the value of the L-type calcium conductance alone would not help (see Fig. 

8). The minimal number of pacemaker cells required to initiate AP propagation depends on 
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the [IP3] of the follower cells (compare results for [IP3] = 0 and [IP3] = 0.1 in follower cells in 

Fig. 4), and critically depends on the conductance of the L-type Ca-channels (GCaL), which 

needs to be larger than 1.45 nS to facilitate propagation of APs at all (Fig. 8). In this study we 

have fixed GCaL at 1.6 nS, which results into a requirement of 3 pacemaker cells for 1:1 

propagation of APs in the one-dimensional network. 

 

Chemical coupling versus electrical coupling 

We have shown that calcium waves and propagation of action potentials can be achieved by a 

mechanism where depolarization by action potential firing and calcium triggered opening of 

chloride channels causes an action potential and intracellular calcium transient in its neighbor 

cell. Such a coupling mechanism is significantly more effective than that of the chemical 

coupling based class of models, as a membrane potential change has a quick coupling effect 

over distances several orders of magnitude greater than either diffusion of Ca2+ or IP3 through 

gap junctions (40). 

Both Ca2+ and IP3 have been shown to permeate through gap junctions by diffusion. 

This mechanism plays a crucial role in the propagation of Ca-waves in networks with 

nonexcitable cells (10, 19, 20, 40). In our study with excitable cells, the electrical coupling 

and the relatively fast dynamics of the L-type Ca-channel provide a much faster propagation 

than in non-excitable cells. Since diffusion of Ca2+ and IP3 takes place on a time scale, much 

longer than the time scale of propagation by electrical coupling and activation of the L-type 

Ca-channels, we have not incorporated diffusion of Ca2+ and IP3 in our study. 

In a recent study Tsaneva-Atanasova et al. (43) have suggested that intercellular 

calcium diffusion is necessary and sufficient to synchronize the oscillations in neighboring 

cells with different intrinsic oscillation frequencies. The results of our study indicate that 

intercellular calcium diffusion may be sufficient but is not necessary, since coupling of 
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intracellular CaOs by the excitable membrane and electrical intercellular coupling also 

achieves synchronization of pacemaker cells with different intrinsic oscillation frequencies. 

Several studies (see e.g. Höfer et al. (19)) calculated the minimal gap-junctional 

permeability for calcium, which is required for calcium wave propagation, as a function of the 

diffusion coefficient for calcium. The minimal value is found to be about 0.05 µm sec−1, 

which gives an inflow of about 0.25 ×10−6 µmol in our cell. The result of our model study 

show that the total change of calcium concentration in the cytosol due to inflow through the 

L-type Ca-channels is about 100 ×10−6 µmol per action potential this is much larger than the 

change due to diffusion of calcium, which explain why the propagation of Ca-waves mediated 

by the L-type Ca-channels is faster and more robust. 

In the present model study agonist or IP3 diffusion may improve local synchronization 

of the surrounding follower cells by smoothing the sensitivities of the CICR mechanism. 

 

Voltage-dependent gap-junctional conductance 

In our study the gap-junctional conductance is assumed to be independent on the voltage of 

the membrane. However, it is well known that the gap-junctional conductance is not constant 

but voltage dependent. The gap-junctional conductance between two cells may decrease up to 

20 % during an action potential compared to the steady-state conductance without any voltage 

difference across the gap junction. In a recent study using transfected neuroblastoma cells, 

inactivation kinetics of connexin43 were studied by imposing an AP clamp instead of a 

rectangular voltage pulse on one of the cells (30). These experiments showed that, following 

the peak of the AP, the junctional conductance decreased within 25 ms to 58 % of control. 

These relatively slow time constants are in agreement with experimental observations 

(2),which indicate that the transition rates for the gap junction channels are significantly 

longer than the time constant of the cell membrane, which is about 1 ms. Comparison of these 
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inactivation times to transjunctional conduction times observed during steady state 

propagation under conditions of severe uncoupling suggests that gap junctional gating has 

only a minor effect on overall conduction velocities (36). 

 

Functional implications 

The results of this study show that the coupling of intracellular calcium oscillations and action 

potential firing causes propagation of activity through a network of cells, which is robust and 

much faster than propagation of calcium waves in a network of non-excitable cells (12, 19, 

20, 43). 

Calcium-induced calcium release through the IP3-receptor, triggered by calcium 

inflow through L-type Ca-channels during an action potential supports cell depolarization by 

activation of Ca-dependent Cl-channels. This boosting of propagation of activity by CICR 

provides a robust mechanism, which is also found in gastrointestinal cells (44), urethral cells 

(4, 22) and in heart pacemaker cells (31). In all these cell types robust pacemaking and 

propagation of activity is crucially important for the function of the cell network in the 

organism. 

In smooth muscle cells oscillatory release of Ca2+ through IP3 receptors and voltage-

dependent Ca2+ influx through L-type Ca-channels underlie rhythmic vasomotion (1, 50). 

Spontaneous calcium waves occurring after a long action potential plateau may also modulate 

the removal of voltage dependent inactivation of L-type Ca2+ channels, and affect the 

likelihood of the occurrence of early afterdepolarizations (48). Spontaneous CaOs may be 

implicated in diverse manifestations of heart failure–impaired systolic performance, increased 

diastolic tonus, and an increased probability for the occurrence of arrhythmias (48). 

Therefore, the outcomes of this model study are also of interest for understanding 

mechanisms of pacemaker synchronization and AP propagation in many other systems. 
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Conclusion 

Consistent with experimental observations for NRK cells (30), we showed that electrical 

intercellular coupling is sufficient for synchronizing CaOs of pacemaker cells and for 

propagation of AP coupled calcium waves over a linear network of cells. For NRK cells it has 

become clear that membrane excitation can evoke and enhance release of Ca2+ from the ER 

store via voltage-dependent Ca2+ inflow through L-type Ca-channels. Our general message is 

that some form of CICR interaction with or caused by Ca inflow through voltage dependent 

Ca-channels can boost propagation of electrical excitation and its continuous calcium 

oscillations. Any form of CICR, ryanodine-mediated receptors are another example, would 

engage a similar interaction. 
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Appendix: Equations 

This appendix gives an overview of the equations that are relevant for the dynamics of the 

membrane potential and intracellular calcium oscillation. For further details, see Kusters et al. 

(2005). 
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The equations defining the properties of the IP3-mediated intracellular calcium dynamics are 
the following 
 

[ ] ( ) [ ]
PMPMcytSERCARIPlkERER

cyt
cyt JAVol

dt
BCadJJJA

dt
Cad

Vol +−−+=
+

3

2

  (A17) 

[ ] ( SERCARIPlkERER
ER

ERt JJJA
dt

CadVol +−−=
+

3

2

)     (A18) 

 [ ] [ ]( )++ −= 22
cytERlkERlkER CaCaKJ        (A19) 

 
[ ] [ ]( )++

∞ −= 2233
33 cytERRIPRIP CaCaKwfJ       (A20) 

 
[ ]

[ ]+
+

∞ +
= 2

2

3 cytfIP

cyt

CaK
Ca

f         (A21) 

 
[ ]

[ ]
[ ]

[ ] [ ]+
∞

+
+

+
=

2
)(

3

3

3

3

3

3

cytcaw
wIP

wIP

CaK
IPK

IP
IPK

IP

w       (A22) 

 

 [ ]
[ ] [ ]+

∞

+
+

=
2

)(
3

3

3

cytcaw
wIP

CaK
IPK

IP
aτ

      (A23) 

[ ]
[ ] 222

22
max

SERCAcyt

cyt
SERCASERCAA

KCa

Ca
JJ

+
=

+

+

       (A24)

 373



References 

[1] Aalkjaer, C., and H. Nilsson. 2005. Vasomotion: cellular background for the oscillator and 

for the synchronization of smooth muscle cells. Br. J. Pharmacol. 144:605–616. 

[2] Baigent, S. 2003. Cells coupled by voltage-dependent gap junctions: the asymptotic 

dynamical limit. Biosystems 68(2-3):213–22. 

[3] Bukauskas, F. F., A. Bukauskiene, and V. K. Verselis. 2002. Conductance and 

permeability of the residual state of connexin43 gap junction channels. J. Gen. Physiol. 

119:171–185. 

[4] Cousins, H. M., F. R. Edwards, H. Hickey, C. E. Hill, and G. D. Hirst. 2003. Electrical 

coupling between the myenteric interstitial cells of Cajal and adjacent muscle layers in 

the guinea-pig gastric antrum. J. Physiol. 550:829–44. 

[5] Cuthbertson, K. S., and P. H. Cobbold. 1985. Phorbol ester and sperm activate mouse 

oocytes by inducing sustained oscillations in cell Ca2+. Nature 316:541–542. 

[6] de Roos, A. D., P. H. Willems, P. H. Peters, E. J. van Zoelen, and A. P. Theuvenet. 1997. 

Synchronized calcium spiking resulting from spontaneous calcium action potentials in 

monolayers of NRK fibroblasts. Cell Calcium 22:195–207. 

[7] de Roos, A. D., P. H. Willems, E. J. van Zoelen, and A. P. Theuvenet. 1997.  

Synchronized Ca2+ signaling mediated by intercellular propagation of Ca2+ action 

potentials in monolayers of NRK fibroblasts. Am. J. Physiol. 273:C1900–1907. 

[8] Dupont, G., and A. Goldbeter. 1993. One-pool model for Ca2+ oscillations involving Ca2+ 

and inositol 1,4,5-trisphosphate as co-agonists for Ca2+ release. Cell Calcium 14:311–

322. 

[9] Ernst U., K. Pawelzik, and T. Geisel. 1998. Delay-induced multistable synchronization of 

biological oscillators. Phys Rev E 57 (2): 2150-2162. 

 383



[10] Falcke, M. 2004. Reading the patterns in living cells - the physics of Ca2+ signaling. Adv. 

Phys. 53:255–440. 

[11] Fogarty, K., J. Kidd, D. Tuft, and P. Thorn. 2000. Mechanisms underlying insp3-evoked 

global Ca2+ signals in mouse Pancreatic Acinar cells. J. Physiol 526:515–526. 

[12] Freiesleben de Blasio, B., J. Iversen, and J. A. Rottingen. 2004. Intercellular calcium 

signalling in cultured renal epithelia: a theoretical study of synchronization mode and 

pacemaker activity. Eur. Biophys J 33:657–670. 

[13] Harks, E. G., A. D. De Roos, P. H. Peters, L. H. de Haan, A. Brouwer, D. L. Ypey, E. J. 

van Zoelen, and A. Theuvenet. 2001. Fenamates: a novel class of reversible gap 

junction blockers. J. Pharmacol. Exp. Ther. 298:1033–1041. 

[14] Harks, E. G., J. J. Torres, L. N. Cornelisse, D. L. Ypey, and A. P. Theuvenet. 2003. Ionic 

basis for excitability in normal rat kidney (NRK) fibroblasts. Am. J. Physiol. Cell 

Physiol. 196:493–503. 

[15] Harks, E. G., W. J. Scheenen, P. H. Peters, E. J. V. Zoelen, and A. P. Theuvenet. 2003. 

ProstaglandinF2-alpha induces unsynchronized intracellular calcium oscillations in 

monolayers of gap junctionally coupled NRK fibroblasts. Pflügers Arch. 447:78–86. 

[16] Harks, E. G. 2003c. Excitable Fibroblast! Ion channels, gap junctions, action potentials 

and calcium oscillations in Normal Rat Kidney Fibroblasts. PhD-thesis, Radboud 

University Nijmegen. 

[17] Henriquez, C. S., and R. Plonsey. 1987. Effect of resistive discontinuities on waveshape 

and velocity in a single cardiac fibre. Med. Biol. Eng. Comput. 25(4):428–38. 

[18] Henriquez, A. P., R. Vogel, B. J. Muller-Borer, C. S. Henriquez, R. Weingart, and W. E. 

Cascio. 2001. Influence of dynamic gap junction resistance on impulse propagation in 

ventricular myocardium: A computer simulation study. Biophys. J. 81:2112–2121. 

 393



[19] Höfer, T., A. Politi, and R. Heinrich. 2001. Intercellular Ca2+ wave propagation through 

gap-junctional Ca2+ diffusion: A theoretical study. Biophys. J 80:75–87. 

[20] Höfer, T., L. Venance, and C. Giaume. 2002. Control and plasticity of intercellular 

calcium waves in astrocytes: A modeling approach. J. Neurosci 22:4850–4859. 

[21] Imtiaz, M. S., D. W. Smith, and D. F. van Helden. 2002. A theoretical model of slow 

wave regulation using voltage-dependent synthesis of inositol 1,4,5-trisphosphate. 

Biophys. J. 83:1877–1890. 

[22] Imtiaz, M. S., C. P. Katniky, D. W. Smith, and D. F. van Helden. 2006. Role of Voltage-

dependent modulation of store Ca2+ release in synchronization of Ca2+ oscillations. 

Biophys. J. 90:123. 

[23] Joyner, R. W., J. Picone, R. Veenstra, and D. Rawling. 1983. Propagation through 

electrically coupled cells. Effects of regional changes in membrane properties. Circ. Res 

53:526–534. 

[24] Joyner, R. W., R. Veenstra, D. Rawling, and A. Chorro. 1984. Propagation through 

electrically coupled ells. Effects of a resistive barrier. Biophys J. 45:1017–1025. 

[25] Joyner, R. W., and F. J. L. van Capelle. 1986. Propagation through electrically coupled 

cells. Biophys J. 50:1157–1164. 

[26] Keener, J. P. 1991. The effects of discrete gap junction coupling on propagation in 

myocardium. J. Theor. Biol. 148:49–82. 

[27] Kusters, J. M. A. M., M. M. Dernison, W. P. M. van Meerwijk, D. L. Ypey, A. P. R. 

Theuvenet, and C. C. A. M. Gielen. 2005. Stabilizing role of calcium store-dependent 

plasma membrane calcium channels in action-potential firing and intracellular calcium 

oscillations. Biophys. J. 89:3741–3756. 

 404



[28] Kusters, J. M. A. M., J. M. Cortes, W. P. M. van Meerwijk, D. L. Ypey, A. P. R. 

Theuvenet, and C. C. A. M. Gielen. 2007. Hysteresis and bi-stability in a realistic cell-

model for calcium oscillations and action potential firing. Phys. Rev. Lett. 234:24. 

[29] Lakatta, E., A. Talo, M. C. Capogrossi, H. Spurgeon, and M. D. Stern. 1992. 

Spontaneous sarcoplasmic reticulum Ca2+ release leads to heterogeneity of contractile 

and electrical properties of the heart. Basic Res. Cardiol. 87:93–104. 

[30] Lin, L., M. Crye, and R. D. Veenstra. 2003. Regulation of connexin43 gap junctional 

conductance by ventricular action potentials. Circ. Res. 93:63–73. 

[31] Maltsev, V., T. Vinogradova, and E. Lakatta. 2006. The emergence of a general theory of 

the initiation and strength of the heartbeat. J. Pharmacol. Sci. 100:338. 

[32] Minneman, K. P. 1988. Alpha 1-adrenergic receptor subtypes, inositol phosphates, and 

sources of cell Ca2+. Pharmacol. Rev. 40:87–119. 

[33] Nathanson, M., P. P. A. O’Sullivan, A. Burgstahler, and J. Jamieson. 1992. Mechanism 

of Ca2+ wave propagation in pancreatic acinar cells. J. Biol. Chem. 267:18118–18121. 

[34] Pikovsky, A., M. Rosenblum, and J. Kurths. 2003. Synchronization: A universal concept 

in nonlinear sciences. Cambridge University Press. 

[35] Politi, A., L. D. Gaspers, A. P. Thomas, and T. Hofer. 2006. Models of IP3 and Ca2+ 

oscillations: frequency encoding and identification of underlying feedbacks. Biophys. J. 

90(9):3120–33. 

[36] Rohr, S. 2004. Role of gap junctions in the propagation of the cardiac action potential. 

Cardiovasc. Res. 62:309–322. 

[37]Sanders, K.M., S.D. Koh, and S.M. Ward. 2006 Interstitial cells of Cajal as pacemakers in 

the gastrointestinal tract. Ann. Rev. Physiol. 68: 307-343. 

[38] Sanderson, M. J., A. C. Charles, S. Boitano, and E. R. Dirksen. 1994. Mechanisms and 

function of intercellular calcium signaling. Mol. Cell. Endocrinol. 98:173–187. 

 414



[39] Savineau, J. P., and R. Marthan. 2000. Cytosolic calcium oscillations in smooth muscle 

cells. News Physiol. Sci. 15:50–55. 

[40] Sneyd, J., B. T. R. Wetton, A. C. Charles, and M. Sanderson. 1995. Intercellular calcium 

waves mediated by diffusion of inositol triphosphate: a 2-dimensional model. Am. J. 

Physiol. Cell Physiol. 37:C1537–C1545. 

[41] Tong, D., J. E. I. Gittens, G. M. Kidder, and D. Bai. 2006. Patch-clamp study reveals that 

the importance of connexin43-mediated gap junctional communication for ovarian 

folliculogenesis is strain specific in the mouse. Am. J. Physiol. Cell Physiol. 290:C290– 

C297. 

[42] Torres, J. J., L. N. Cornelisse, E. G. A. Harks, W. P. M. van Meerwijk, A. P. R. 

Theuvenet, and D. L. Ypey. 2004. Modeling action potential generation and 

propagation in NRK fibroblasts. Am. J. Physiol. Cell Physiol. 287:C851–C865. 

[43] Tsaneva-Atanasova, K. T., D. Yule, and J. Sneyd. 2004. Calcium oscillations in a triplet 

of Pancreatic Acinar cells. Biophys. J. 88:1535–1551. 

 [44] Torihashi, S., T. Fujimoto, C. Trost, and S. Nakayama. 2002. Calcium oscillation linked 

to pacemaking of interstitial cells of cajal. J. Biol. Chem. 277(21):19191. 

[45] Van Helden, D. F., and M. S. Imtiaz. 2003. Ca2+ phase waves: a basis for cellular 

pacemaking and long-range synchronicity in the guinea pig gastric pyloris. J. Physiol. 

548:271–296. 

[46] Verheijck, E. E., R. Wilders, R. W. Joyner, D. A. Golod, R. Kumar, H. J. Jongsma, L. N. 

Bouman, and A. C. van Ginneken. 1998. Pacemaker synchronization of electrically 

coupled rabbit sinoatrial node cells. J. Gen. Physiol. 111(1):95–112. 

[47] Woods, N. M., K. S. Cuthbertson, and P. H. Cobbold. 1986. Repetitive transient rises in 

cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature 319:600–602. 

 424



[48] Yao Y., and I. Parker. 1994. Ca2+ influx modulation of temporal and spatial patterns of 

inositol triphosphaste-mediated  Ca2+ liberations in Xenopus-oocytes. J. Physiol. 

(London) 476 (1): 17-28. 

[49] Ypey, D. L., W. P. M. VanMeerwijk, and R. L. DeHaan. 1982. Synchronization of 

cardiac pacemaker cells by electrical coupling. Nijhoff, The Hague. 

[50] Zhao, J., M. Imtiaz, and D. van Helden. 2002. Ca2+ oscillations and pacemaker  potentials 

underlying vasomotion in guinea-pig lymphatic smooth muscle. Proc. Aust. Health 

Med. Res. Cong. Abstr. 1148. 

 

 434



Figure Legends 

Fig. 1. 

A. The electrical circuit for a one-dimensional network, where a pacemaker cell (”P”) is 

coupled by a resistance Rg to n follower cells. Each follower cell is represented by a 

capacitance C and resistance Rf and is coupled to its neighbors by gap junctions with a 

resistance Rg. B. The expansion of a network with n follower cells with an extra follower cell. 

C. Schematic circuit of a pacemaker cell coupled to an infinitely large strand of cells with a 

total impedance ∞Z . 

Fig. 2. 

Phase response curves of a single cell to depolarizing current pulses of 10, 15 and 20 pA of 

50 ms duration (A) and to calcium pulses associated with a calcium current injection of 1, 

2 and 5 pA of 50 ms duration (B). The top three subpanels show an example of the effect 

of current (15 pA in panels A) and calcium pulses (1 pA in panels B) on the phase advance 

of the AP and CaO (dashed lines). Solid lines show the AP and CaO without perturbation. 

The lower panels of A and B show the phase change of the IP3-mediated calcium oscillator as 

a function of the timing of the current pulse and calcium pulse, respectively. The lower left 

panel show the phase change as a function of phase to a current pulse of 10 pA (thick solid 

line), 15 pA (dashed-dotted line) and 20 pA (thin solid line). The lower right panel shows 

the phase change as a function of phase to a calcium pulse of 1 pA (thick solid line), 2 pA 

(dashed-dotted line) and 5 pA (thin solid line). The dashed lines are linear interpolations 

between PRC-values calculated at steps of 0.1. 

Fig. 3. 

The Arnold tongues for two heterogeneous coupled cells as a function of the gap junction 

coupling conductance Gg. The IP3 concentration of one cell is set to a value of 1.0 µM, while 

the IP3 concentration of the second cell is varied in steps of 0.005 µM at a rate of one step 
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per 9000 seconds from 0.0 µM to 8.0 µM. It shows only the regions for the major entrainment 

ratio’s (1:2 (dotted pattern), 2:3 (oblique lines), 1:1 (white), 4:3 (squared pattern) and 3:2 

(grey)). 

Fig. 4. 

The entrainment areas for a one-dimensional network with one terminal pacemaker cell (IP3 

concentration 1.0 µM) and follower cells (solid lines for IP3 concentration 0.1 and dashed 

lines for 0.0 µM, respectively) as a function of number of cells (#) and gap junction coupling 

(Gg). 

Fig. 5. 

The membrane potential (panels A and B), cytosolic calcium concentration [Ca2+ 

cyt] (panels C and D), the calcium flow through the IP3-receptor (panels E and F), the calcium 

flow through the L-type Ca-channels (panels G and H) and its fraction of open activation (m, 

thick dashed-dotted line) and inactivation (h, thick solid line) gates (panels I and J) for an 

isolated pacemaker cell (thick solid lines, left panels) and for a pacemaker cell (thick solid 

lines, right panels) coupled to 100 follower cells (thin solid lines). The fraction of open 

activation (f) and inactivation (w) gates of the IP3-receptor for a pacemaker cell (f, thick 

dashed-dotted line and w, thick solid line in panels K and L) coupled to 100 follower cells 

(f, thin dashed-dotted line and w, thin solid line, with Gg = 3 nS) are shown in panel L. 

[ ]
3

2
IP

Ca
dt
d + and [ ]

CaL
Ca

dt
d +2  represent the change in calcium concentration due to calcium 

inflow through the IP3-receptor and L-type Ca-channel, respectively. 

Fig. 6. 

The membrane potential (A), cytosolic calcium concentration [ ]+2
cytCa   (B), the calcium flow 

through the IP3-receptor (C), the calcium flow through the L-type Ca-channel (D) and the 

fraction of open activation (m, dashed lines) and inactivation (h, solid lines) gates (E) for 

a pacemaker cell (thick lines) coupled to (Gg = 3 nS) 100 follower cells (thin lines). The 
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fraction of open activation (f) and inactivation (w) gates of the IP3-receptor for a pacemaker 

cell (f, thick dashed-dotted line and w, thick solid line) coupled to 100 follower cells (f, thin 

dashed-dotted lines and w, thin solid lines) are shown in F. Arrows indicate where a small 

inflow of calcium by the L-type calcium channel (Fig. D) causes a small CICR through the 

IP3 receptor (C). Note the different scales for calcium flow for C and D. 

Fig. 7. 

The membrane potential (A), cytosolic calcium concentration [ ]+2
cytCa   (B), the calcium flow 

through the IP3-receptor channel (C) and the calcium flow through the L-type Ca-channel 

(D) for a one-dimensional network with three pacemaker cells (thick solid lines) coupled to 

100 follower cells (thin solid lines). IP3 concentrations are set to 1.0 µM and 0.1 µM for the 

pacemaker and follower cells, respectively. 

Fig. 8. 

The simulation results (open dots) for 1:1 synchronization and propagation of APs as a 

function of the conductance of the L-type Ca-channel (GCaL) and number of pacemaker cells 

(#) for a constant gap junctional conductance of 3 nS. No propagation takes place for GCaL 

< 1.4 nS whatever the number of pacemaker cells. 
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