
1

Prefixless q-ary Balanced Codes with Fast
Syndrome-based Error Correction

Theo G. Swart, Senior Member, IEEE, Jos H. Weber, Senior Member, IEEE, and
Kees A. Schouhamer Immink, Fellow, IEEE

Abstract—We investigate a Knuth-like scheme for balancing
q-ary codewords, which has the virtue that look-up tables for
coding and decoding the prefix are avoided by using precoding
and error correction techniques. We show how the scheme can
be extended to allow for error correction of single channel errors
using a fast decoding algorithm that depends on syndromes
only, making it considerably faster compared to the prior art
exhaustive decoding strategy. A comparison between the new
and prior art schemes, both in terms of redundancy and error
performance, completes the study.

Index Terms—Balanced code, constrained code, error correc-
tion, Knuth code, running digital sum.

I. INTRODUCTION

BALANCED, sometimes called dc-free, q-ary sequences
have found widespread application in popular optical

recording devices such as CD, DVD, and Blu-Ray [1], ca-
ble communication [2], and recently in non-volatile (flash)
memories [3]. A sequence of symbols is said to be balanced
if the sum of the symbols equals the prescribed balancing
value. The study of simple and efficient methods for translating
arbitrary source sequences into balanced q-ary sequences has
been an active field of research. If the sequences are not too
long, look-up translation tables can be used. For handling
extremely long binary (q = 2) blocks, where look-up tables
are impractically large, Knuth [4] has devised two simple
algorithms for generating binary balanced codewords, namely
a parallel algorithm and a serial algorithm.

In the parallel algorithm, the encoder splits the user word
into two segments: the first consisting of the first v bits of
the user word, and the second consisting of the remaining
m − v bits. The encoder inverts the first segment by adding
(modulo 2) a ‘1’ to the v symbols in the first segment. The
index v is chosen in such a way that the modified word is
balanced. Knuth showed that such an index v can always
be found. In the simplest embodiment of Knuth’s algorithm,
the index v is represented by a p-bit balanced word, called

This paper was presented in part at the IEEE Information Theory Workshop,
Seville, Spain, September 2013.

T. G. Swart is with the Department of Electrical and Electronic Engineering
Science, University of Johannesburg, Auckland Park, 2006, South Africa. (e-
mail: tgswart@uj.ac.za). J. H. Weber is with the Faculty of Electrical Engi-
neering, Mathematics and Computer Science, Delft University of Technology,
2628 Delft, The Netherlands and a visiting professor with the Department of
Electrical and Electronic Engineering Science, University of Johannesburg,
Auckland Park, 2006, South Africa (e-mail: j.h.weber@tudelft.nl). K. A.
Schouhamer Immink is with Turing Machines Inc, 3016 DK Rotterdam, The
Netherlands (e-mail: immink@turing-machines.com).

This work is based on research supported in part by the National Research
Foundation of South Africa (UID 77596).

a prefix. The p-bit prefix is appended to the m-bit modified
user word, and the sequence of p+m bits is transmitted. The
rate of the code is m/(m + p). The receiver, after observing
the prefix, decodes the index v, and subsequently it undoes
the modifications made to the user word. Note that both the
encoder and decoder do not require large, m-bit wide, look-up
tables, making Knuth’s algorithm very attractive for balancing
long user words. The serial algorithm adds a p-bit prefix
(not necessarily balanced) that describes the weight of the
original m-bit user word. In this case, the encoder splits the
sequence, consisting of the prefix and user word together, into
two segments and finds an index v that balances the overall
sequence. The receiver undoes the modification by inverting
the bits until the original weight, captured by the prefix, is
attained. Modifications and embellishments of Knuth’s binary
schemes have been presented by Al-Bassam and Bose [5],
Tallini et al. [6], and Weber and Immink [7].

Binary balancing schemes that enable correction of errors
have been presented by van Tilborg and Blaum [8], Al-Bassam
and Bose [9] and Weber et al. [10], among others. In [8], the
idea is to consider short balanced sequences as symbols of
a non-binary alphabet and to construct error-correcting codes
over that alphabet. In [9], balanced codes that correct a single
error are constructed. These codes can be extended using
concatenation techniques to correct up to four errors. In [10],
a combination of conventional error correction techniques and
Knuth’s balancing method is used.

Methods for balancing q-ary, q > 2, codewords can be
found, for example, in Capocelli et al. [11], Tallini and Vacaro
[12], Al-Bassam [13], Swart and Weber [14], and Pelusi et
al. [15]. Balancing is achieved in [14], as in Knuth’s parallel
scheme, by splitting the user word into a first and second
segment of v and m − v symbols, respectively. The encoder
adds (modulo q) an integer s + 1 to the symbols in the
first segment, and an integer s to the symbols in the second
segment. A further improvement of [14] was presented by
Pelusi et al. [15]. More details regarding Swart and Weber’s
q-ary scheme are provided in the next section.

Other work closely related to q-ary balancing, but with
different alphabets or constraints, include balancing codes over
the q-th roots of unity [16], [17] and balancing codes that are
invariant under symbol permutation [18]. For the former, the
non-binary, complex alphabet is chosen as the q-th roots of
unity, e.g. when q = 4, the alphabet is {+1,+j,−1,−j}, and
the complex sum of the symbols in a codeword must be zero.
For the latter, each alphabet symbol occurs as many times as
any other symbol in the codeword, and can thus be seen as a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Johannesburg Institutional Repository

https://core.ac.uk/display/161544189?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

special case of q-ary balancing.
In most Knuth-like balancing schemes, both binary and non-

binary, the encoder appends a prefix, which is required by
the decoder for restoring the original user word. However,
for some of these schemes look-up tables are required for
encoding and decoding the prefix, which is undesirable for
certain high-speed applications. Schemes like [12] require
either a very small look-up table or the check word (i.e. prefix)
can be obtained by direct computation of the user word’s
weight. In this paper, we present a simple prefixless scheme,
which extends the work by Swart and Immink [19], see also
Section III. As in [19], we add error correction capabilities to
the balancing scheme, which can correct single channel errors,
and in this paper we show that fast decoding can be done based
on syndromes only.

In Sections II and III, we present relevant results from the
literature. We also detail Swart and Immink’s [19] method for
constructing prefixless q-ary balanced codes in Section III.
In Section IV, we show how error correction capabilities can
be efficiently added to the balancing act. In Section V, we
investigate the redundancy, complexity, and performance of the
new scheme. In Section VI we discuss and highlight certain
aspects of the work along with directions for future research,
and finally in Section VII we present our conclusions.

II. BALANCING OF q-ARY SEQUENCES

The following definitions will be used in this paper. Let
x = (x1, . . . , xm) be a sequence of m symbols taken from
the q-ary alphabetQ = {0, 1, . . . , q−1}, with q and m positive
integers and q ≥ 2. The weight of x, denoted by weight(x),
is defined as the real sum of the m q-ary symbols, i.e.

weight(x) =

m∑
i=1

xi.

We further define the balancing value by

Ωq,m =
m(q − 1)

2
, (1)

where q and m are chosen such that Ωq,m is an integer. A
codeword x of length m is said to be balanced if

weight(x) = Ωq,m. (2)

Alternatively, an alphabet with polar symbols can be con-
sidered, where

Qodd = {− q−12 , . . . ,−2,−1, 0,+1,+2, . . . ,+ q−1
2 },

if q is odd, and

Qeven = {−(q − 1), . . . ,−3,−1,+1,+3, . . . ,+(q − 1)},
if q is even. In this case, balancing is achieved when the sym-
bol sum equals zero, i.e. when weight(x) = 0. The conversion
between the two representations is straightforward, thus for
clerical convenience we only use the former representation.

To keep this paper as self-contained as possible, we sum-
marize the most important results from [14] without proofs.

A q-ary sequence can be balanced by adding (modulo q)
an appropriate q-ary balancing sequence, as defined in the
following.

Definition 1: A q-ary balancing sequence of length m is
denoted by bs,v = (b1, . . . , bm), s ∈ Q, v ∈ {1, . . . ,m}, with

bi =

{
s+ 1 (mod q), i ≤ v,
s, otherwise.

The balancing sequence can be seen as two sequences,
consisting of a q-ary sequence (the all-s sequence) and a
“binary” sequence (indicating the position). Then,

bs,v = (s, s, s, . . . , s)⊕q (

v︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0),

where ⊕q represents modulo q summation.
Example 1: Consider a 4-ary sequence x =

(0, 2, 3, 3, 3, 1, 3, 2), of weight 17. By adding the
sequence (2, 2, 2, 2, 2, 2, 2, 1), we can obtain a balanced
sequence (2, 0, 1, 1, 1, 3, 1, 3) with the weight equal to
Ω4,8 = 12. The balancing sequence is not unique, and
in this case three more balancing sequences can be
found, namely (3, 3, 3, 2, 2, 2, 2, 2), (3, 3, 3, 3, 3, 3, 3, 2) and
(0, 0, 0, 3, 3, 3, 3, 3).

To see how the balancing sequences affect the weight, let
bz denote the z-th balancing sequence, with

z = sm+ v, 1 ≤ z ≤ qm,
and let ω(z) = weight(x⊕q bz). Note there are qm possible
balancing sequences.

For the binary case, we know from [4] that the minimum
and maximum values of ω(z) will always be such that
min{ω(z)} ≤ Ω2,m ≤ max{ω(z)}. The increase and decrease
in ω(z) plotted against z will always be one, and therefore
it must pass through Ω2,m at some stage. A progression of
this nature, that consists of a succession of random steps, is
called a random walk, which is the basis of Knuth’s proof. For
q-ary balancing in [12], Tallini and Vaccaro construct single
or double maps in such a way that random walks are also
achieved, with ω(z) changing by −1, 0 or +1 for each step,
thereby ensuring that it will pass through Ωq,m. The approach
from [14] also results in random walks, but the value of ω(z)
does not change by −1, 0 or +1, as described in the following
lemma.

Lemma 1: When adding bz to x, ω(z) forms a random walk
with increases of 1 and decreases of q − 1.

An exact minimum and maximum value for ω(z) is hard to
find since it is sequence dependent, but it can be shown that
a bound exists on these values for all sequences.

Lemma 2: The ω(z)-random walk has min{ω(z)} ≤
Ωq,m ≤ max{ω(z)}.

Using Lemmas 1 and 2 we can state the main result from
[14]:

Theorem 1: There is at least one pair of integers, s and v,
s ∈ Q, v ∈ {1, . . . ,m}, such that x⊕q bs,v is balanced.

This result is used in the next section to construct the
prefixless balanced codes from [19].

III. PREFIXLESS BALANCED CODES

As before, let x = (x1, . . . , xm) be a q-ary word of m
symbols, xi ∈ Q. The word d = (d1, . . . , dm) is obtained by

3

modulo q integration1 of x

di = di+1 ⊕q xi, 1 ≤ i ≤ m,

where dm+1 = 0. The above integration operation will be
denoted by d = I(x). Note that the original word x can be
uniquely restored by modulo q differentiation:

xi = di 	q di+1, 1 ≤ i ≤ m, (3)

where 	q indicates modulo q subtraction. The above differ-
entiation operation will be denoted by x = I−1(d). Clearly,
I−1(I(x)) = x.

Define the binary m-bit word uv = (

v−1︷ ︸︸ ︷
0 . . . 0 1

m−v︷ ︸︸ ︷
0 . . . 0). We

are now in a position to formulate Theorem 2.
Theorem 2: There is at least one pair of integers, s and v,

s ∈ Q, v ∈ {1, . . . ,m}, such that w = I(x ⊕q uv ⊕q sum)
is balanced, that is weight(w) = Ωq,m.

Since uv and sum under modulo q integration are equiv-
alent to bs,v , according to Theorem 1 balancing of x will
always be possible. Note that in the binary case, q = 2, the
search simplifies to finding the balancing index v only, since
such an index will always be found for s = 0. The following
example illustrates the method.

Example 2: Let q = 5 and m = 7, and let the input be
x = (3, 2, 0, 1, 1, 4, 0). After a search we find that the choice
of s = 3 and v = 3 balances the integrated sequence I(x) =
(1, 3, 1, 1, 0, 4, 0). Adding u3 ⊕5 3u7 = (0, 0, 1, 0, 0, 0, 3) to
the input yields (3, 2, 1, 1, 1, 4, 3), and after integration we
obtain w = I((3, 2, 1, 1, 1, 4, 3)) = (0, 2, 0, 4, 3, 2, 3). Note
that w is balanced since the sum of its components equals
Ω5,7 = 14.

It is worth noting that determining s and v can be simplified
by first finding an s such that weight(x ⊕q bs,0) ≤ Ωq,m
and weight(x ⊕q bs+1,0) ≥ Ωq,m and then finding the v that
balances the sequence. We will elaborate on the complexity
for this in Section V-B.

From the receiver’s point of view, uv introduced an error
of magnitude one in x in an unknown position. In the rest
of the paper we will refer to this as the magnitude-one error.
The next encoding and decoding algorithms exploit Theorem 2
and we will show that in conjunction with error correcting
techniques to correct the magnitude-one error, it will be
possible to efficiently balance q-ary words, and circumvent
the encoding and decoding of the prefix in the prior art
constructions.

A. Encoding

We will make use of a q-ary (m− 1, k) linear block code,
denoted as C, of dimension k and length m− 1 to encode the
user word, a = (a1, . . . , ak), of length k. Let r′ = m−1−k be
the redundancy of the block code, and define the r′× (m−1)
matrix Hq,r′ whose i-th column hi is the q-ary representation

1Note that for convenience we perform the integration from right to left.
Similar results will be obtained if it was performed from left to right, i.e.
di+1 = di ⊕q xi with d0 = 0.

of the integer i, 1 ≤ i ≤ m − 1, m ≤ qr
′
. For example, for

q = 3, r′ = 2, and m = 9 we obtain

H3,2 =

[
1 2 0 1 2 0 1 2
0 0 1 1 1 2 2 2

]
. (4)

We call Hq,r′ a check matrix, for which we have an
easy syndrome decoding available similar to that of binary
Hamming codes [20]. The code C is a single, magnitude-
one error correction code, or a single error detection code, as
described in [21], [22], [23]. The maximum row length of the
check matrix Hq,r′ is qr

′ − 1, r′ > 1. The encoding function
is denoted by x = φq(a), and is defined in such a way that
x satisfies Hq,r′x

T = 0T .
The encoding procedure consists of the following three

steps:
Step 1: The k-symbol user word, a, is encoded into the

codeword x = (x1, . . . , xm−1) using the q-ary (m − 1, k)
linear block code, i.e. x = φq(a).

Step 2: The m-symbol word x′ is obtained by appending a
redundant ‘0’ to x, that is, x′ = (x1, . . . , xm−1, 0).

Step 3: Find a pair of integers, s ∈ Q and v ∈ {1, . . . ,m},
such that w = I(x′⊕q uv⊕q sum), with weight(w) = Ωq,m.
(According to Theorem 1, such a pair of integers s and v can
always be found.)

Example 3: Let q = 5 and k = 2, and let the user word
be a = (3, 2). Using the shortened linear code with generator
matrix

G5,2 =

[
1 0 1 1 3 2
0 1 1 4 1 4

]
,

and check matrix

H5,2 =

[
1 2 3 4 0 1
0 0 0 0 1 1

]
,

the user word is encoded as x = (3, 2, 0, 1, 1, 4) and after
appending a redundant ‘0’ we have x′ = (3, 2, 0, 1, 1, 4, 0).
This is the same sequence used in Example 2 and will thus
be balanced as w = (0, 2, 0, 4, 3, 2, 3).

B. Decoding

At the receiver side, the m-symbol word y′ is retrieved from
the received w by modulo q differentiation, i.e.

y′ = I−1(w) = x′ ⊕q uv ⊕q sum.
We drop the last symbol, ‘s’ (or ‘s + 1’ if v = m), of

y′ and thereby obtain y of length m − 1. Then either the
words y and x differ only at an unknown index position v
if v 6= m, because of the magnitude-one “error” introduced
during encoding, or y = x if v = m.

As x satisfies Hq,r′x
T = 0T , we have

Hq,r′y
T = Hq,r′(x⊕q uv)T =

{
hv, if 1 ≤ v ≤ m− 1,

0T , if v = m,

where hi is the i-th column of Hq,r′ . Thus, we can uniquely
retrieve the index v, and restore the original word by subtract-
ing ‘1’ from yv , i.e. x = y 	q uv .

By removing the redundant symbols, we obtain the original
user word a.

4

Example 4: Using the balanced codeword obtained in
Example 3 as our received word w = (0, 2, 0, 4, 3, 2, 3),
we apply modulo q differentiation to obtain y′ =
I−1(0, 2, 0, 4, 3, 2, 3) = (3, 2, 1, 1, 1, 4, 3). We then drop the
last symbol to get y = (3, 2, 1, 1, 1, 4). By multiplying y with
the shortened check matrix[

1 2 3 4 0 1
0 0 0 0 1 1

]
×
[
3 2 1 1 1 4

]T
=

[
3
0

]
,

the third column is identified representing v = 3, thus x =
(3, 2, 0, 1, 1, 4) and the original information is retrieved as a =
(3, 2).

IV. ADDING ERROR CORRECTION

So far the error correction techniques employed were used
to identify the index v that was used during the encoding
process. We will now extend the error correction code that
was used in such a way that we will be able to correct single
channel errors.

From (3), any single channel error in, say wj , will be
transformed into a double adjacent error, in xj−1 and xj .
This, together with the single “error” we introduced during
balancing, means that we must be able to correct three
errors. However, this would come at a price of much more
redundancy. We can avoid this by extending our code used in
the previous section and by introducing interleaving.

A. Encoding

We start with a code similar to that used in Section III-
A, but extend it by adding a check symbol that checks all
the previous symbols and denote this extended code by C∗.
If q is odd2 we then choose an odd value for m as well and
set n = m−1

2 . The code C∗ then forms an (n, k) linear block
code, with redundancy of r∗ = n−k and check matrix H∗q,r∗ .
In general, the check matrix will be of size r∗ × n, with the
i-th column h∗i being the q-ary representation of the integer
(qr
∗−1 + i), 1 ≤ i ≤ n. As an example, the check matrix in

(4) becomes

H∗3,3 =

1 2 0 1 2 0 1 2
0 0 1 1 1 2 2 2
1 1 1 1 1 1 1 1

 .
We now formally define the syndrome, s = (s1, s2, . . . , sr∗)

T ,
as it is generally used for Hamming codes, by

s = H∗q,r∗ŵ
T ,

where ŵ is the (possibly corrupted) received codeword. The
syndrome is then equal to the summation (modulo q) of those
columns, multiplied by the error magnitudes, where the errors
occurred. For clerical convenience in the rest of the paper,
we neglect indicating that modular arithmetic is used when
calculating the syndromes.

Note that this code is a special case of the class of t sym-
metric error correction and all unidirectional error detection

2If q is even, then instead of using n = m−1
2

and x′ =

(x′1, . . . , x
′
m−1, 0), use n = m−2

2
and x′ = (x′1, . . . , x

′
m−2, 0, 0) with

m even, so that the overall length is even and balancing can be achieved.

(tEC-AUED) codes with t = 1. The reader can refer to [21],
[22], [23], [24] and references therein for more details. We
will further elaborate on the use of these codes in Section VI.
To make this paper self-contained, we include the following
lemma.

Lemma 3: The code C∗ with check matrix H∗q,r∗ can:
(i) detect a single magnitude-one error and a single random

error, for any value of q, or
(ii) correct a single magnitude-one error, for any value of q,

or
(iii) correct a single random error, for q any integer power

of a prime value.
Proof: Let the magnitude-one error be in position i and

the random error, with error magnitude e, e ∈ Q, be in position
j. The resulting syndrome is s = h∗i + eh∗j . We prove each
case individually:

(i) sr∗ 6= 0 for all e except when e = q − 1 (since sr∗ =
1⊕q(q−1) = 0). If e = q−1, then s = 0T only if i = j, which
would mean that the magnitude-one error and the random error
“cancel” each other out. Therefore, a single magnitude-one
error and a single random error can always be detected based
on s 6= 0T .

(ii) If e = 0 (there is no random error), then with s = h∗i
a magnitude-one error can always be corrected.

(iii) If there is no magnitude-one error, then s = eh∗j . Since
we can find e from sr∗ , we can retrieve j from h∗j = e−1s. As
the modular multiplicative inverse, e−1, is needed, this case is
limited to q being integer powers of a prime value. Therefore,
a single random error can always be corrected.

We have two user words a and a′, each of length k, that
are encoded into codewords of length n, c = (c1, c2, . . . , cn)
and c′ = (c′1, c

′
2, . . . , c

′
n) respectively, using the code C∗. The

encoding function for this code is defined as c = φ∗q(a).
Interleave these two codewords to a depth of two, to form

x = (x1, x2, . . . , xm−1) = (c1, c
′
1, c2, c

′
2, . . . , cn, c

′
n).

The encoding now follows the same steps as in Section III-A
to add a redundant ‘0’, to find the values s and v to balance
the sequence and to encode it into w. The final encoding step
is to append symbols α and β to w, where

α = w1 ⊕q w3 ⊕q · · · ⊕q wm ⊕q δq,m, and
β = w2 ⊕q w4 ⊕q · · · ⊕q wm−1,

with δq,m ≡ (q − 1)− Ωq,m (mod q).
Lemma 4: The sequence (α, β) is balanced.

Proof: Adding the two check symbols together:

α+ β ≡ w1 + w3 + · · ·+ wm + δq,m + w2

+ w4 + · · ·+ wm−1 (mod q)

≡ w1 + w2 + w3 + w4 + · · ·+ wm−1
+ wm + (q − 1)− Ωq,m (mod q)

≡ Ωq,m + (q − 1)− Ωq,m (mod q)

≡ q − 1 (mod q).

Since 0 ≤ α, β ≤ q− 1, it must hold that α+ β = q− 1, and
thus (α, β) is balanced.

5

In essence, α and β are check symbols over the odd and
even symbols respectively, and δq,m is added to ensure that
α and β together are balanced. The sender then sends the
balanced sequence (w1, w2, . . . , wm, α, β) to the receiver. The
encoding process is summarized in Fig. 1.

The following example illustrates the encoding process.
Example 5: We consider a q = 5, (4, 2) linear block code

with a generator matrix

G∗5,2 =

[
1 0 2 2
0 1 3 1

]
,

and check matrix

H∗5,2 =

[
1 2 3 4
1 1 1 1

]
.

Let the user words be a = (4, 0) and a′ = (2, 1).
Using G∗5,2, these are encoded as c = (4, 0, 3, 3) and
c′ = (2, 1, 2, 0). After interleaving and adding the redun-
dant zero, we have x′ = (4, 2, 0, 1, 3, 2, 3, 0, 0). According
to Theorem 2, we can find s = 1 and v = 4, then
w = I((4, 2, 0, 1, 3, 2, 3, 0, 0) ⊕5 (0, 0, 0, 0, 0, 0, 0, 0, 1) ⊕5

(0, 0, 0, 1, 0, 0, 0, 0, 0)) = I((4, 2, 0, 2, 3, 2, 3, 0, 1)) =
(2, 3, 1, 1, 4, 1, 4, 1, 1). The check symbols are calculated as
α = 3 and β = 1, with δ5,9 = 1. The transmitted sequence
(2, 3, 1, 1, 4, 1, 4, 1, 1, 3, 1) is balanced with Ω5,11 = 22.

B. Decoding

Previously in [19], decoding was done exhaustively by
trying to correct the error in every even (or odd) position,
until the syndromes were found to be zero. For each attempt
at correcting the error, modulo q differentiation, deinterleaving
and syndrome calculation had to be performed. However,
this can negatively affect the decoding time if the length of
the sequence becomes very long. Instead of this exhaustive
decoding, we will show that we can decode once and correct
the error by making use of the syndromes directly.

(a1, a2, . . . , ak)a a′

c′(c1, c2, . . . , cn) (c′1, c
′
2, . . . , c

′
n)

φ∗q

x

x′

(x1, . . . , xm−1) = (c1, c
′
1, c2, c

′
2, . . . , cn, c

′
n)

c

(a′1, a
′
2, . . . , a

′
k)

Interleave depth 2

Add redundant 0

I(x′ ⊕q uv ⊕q sum)

(x1, x2, . . . , xm−1, 0)

(w1, w2, . . . , wm)

Add check symbols

(w1, w2, . . . , wm, α, β)

w

φ∗q

Fig. 1. Summary of encoding algorithm for q odd

Now we will define notations to be used in the following
description of the decoding process. Let ŵ be the (possibly
corrupted) received codeword and α̂ and β̂ the (possibly
corrupted) received check symbols. Let x̂ be the sequence
after applying modulo q differentiation and dropping the last
redundant symbol, with ĉ and ĉ′ the codewords recovered
after deinterleaving. Let s = (s1, s2, . . . , sr∗)

T and s′ =
(s′1, s

′
2, . . . , s

′
r∗)

T be the syndromes calculated by multiplying
ĉ and ĉ′ with the check matrix H∗q,r∗ , respectively. Finally,
let c̄ and c̄′ be the codewords after correction is applied, with
â and â′ the recovered user words. The decoding process is
summarized in Fig. 2, where (φ∗q)

−1 is used to denote the
inverse operation of φ∗q . If the error correction was successful,
then we will have a = â and a′ = â′.

We define the imbalance as the difference between the
weight of the received sequence and the known weight of the
balanced sequence, i.e.

∑m
i=1 ŵi−Ωq,m. From this imbalance

the error magnitude can be determined, provided a single
channel error occurred. By using check symbols α and β we
can also determine whether the channel error occurred in an
even or odd position.

As was seen in the proof of Lemma 3, the modular
multiplicative inverse will be needed during decoding, which
means that the algorithm as described here is limited to prime
values of alphabet size q, or integer powers of a prime value
if it is adapted to work in an extension field.

We assume that the random channel error occurred in posi-
tion t when considering ŵ, and that the intentional magnitude-
one error occurred in position v when considering x̂.

(â1, â2, . . . , âk)â â′

ĉ′(ĉ1, ĉ2, . . . , ĉn) (ĉ′1, ĉ
′
2, . . . , ĉ

′
n)

(φ∗q)
−1

x̂

x̂′

(x̂1, . . . , x̂m−1) = (ĉ1, ĉ
′
1, ĉ2, ĉ

′
2, . . . , ĉn, ĉ

′
n)

ĉ

(â′1, â
′
2, . . . , â

′
k)

Deinterleave

Drop redundant s

I−1(ŵ)

(x̂1, x̂2, . . . , x̂m−1, s)

(ŵ1, ŵ2, . . . , ŵm)

(ŵ1, ŵ2, . . . , ŵm, α̂, β̂)

ŵ

Determine parity of error po-
sition and drop check symbols

(φ∗q)
−1

s′s (s1, s2, . . . , sr∗)T

Correction

(c̄1, c̄2, . . . , c̄n) (c̄′1, c̄
′
2, . . . , c̄

′
n)

Correction

c̄′c̄

(s′1, s
′
2, . . . , s

′
r∗)T

Fig. 2. Summary of decoding algorithm for q odd.

6

s

ŵ1 ŵm -1ŵ2 ŵ3 ŵ4

x̂1 x̂m -2x̂2 x̂3 x̂4

ĉ1 ĉnĉ′1 ĉ2 ĉ′2 ĉ′n

· · ·

· · ·

· · ·

s

Random channel error in position t.· · ·

· · ·

· · ·

ŵt

or or

x̂v
Random channel error affects positions t− 1 and t.
Intentional error from encoding, in position v.

Random channel error affects positions τ and τ ′.
Intentional error from encoding, in position ν.

· · ·

· · ·ĉν
or

x̂t -1 x̂t

ĉ′
τ′ĉτ

ŵm

τ = τ ′ = t
2

if t is even

ν = d v
2
e

τ − 1 = τ ′ = t−1
2

if t is odd

x̂m -1

s′

ĉ′ν

Fig. 3. Effect of errors on symbols from one decoding stage to the next

TABLE I
CLASSIFICATION OF ERROR LOCATIONS FOR THE MAGNITUDE-ONE ERROR

AND THE CHANNEL ERROR

Magnitude-one error in position v Channel error in position t

State Error Locations State Error Locations

A v odd, 1 ≤ v ≤ m− 2 0 No channel error
B v even, 2 ≤ v ≤ m− 1 1 t = 1

C v = m 2 t even, 2 ≤ t ≤ m− 1

3 t odd, 3 ≤ t ≤ m− 2

4 t = m

The following observations are crucial to note, using Fig. 3
as a guide:
• a random channel error in ŵ1 will only affect x̂1 and thus

only ĉ1, and similarly an error in ŵm will only affect
x̂m−1 and thus only ĉ′n,

• a random channel error of magnitude e in ŵt, 2 ≤ t ≤
m− 1, will affect x̂t by e and x̂t−1 by −e after modulo
q differentiation,

• similarly, a random channel error in ŵt, 2 ≤ t ≤ m− 1,
will affect ĉτ and ĉ′τ ′ after modulo q differentiation and
deinterleaving, where τ = τ ′ = t

2 if t is even, or τ −1 =
τ ′ = t−1

2 if t is odd, with 1 ≤ τ, τ ′ ≤ n,
• an intentional magnitude-one error in position v in x̂, will

be in position ν =
⌈
v
2

⌉
, 1 ≤ ν ≤ n, in ĉ if v is even or

ĉ′ if v is odd, after deinterleaving,
• x̂m does not affect any syndromes, x̂1, x̂3, x̂5, . . . , x̂m−2

affect s, and x̂2, x̂4, x̂6, . . . , x̂m−1 affect s′,
• a random channel error of magnitude e in position τ will

result in a syndrome s = eh∗τ , and consequently we have
to multiply by e−1 before we can determine the τ -th
column of H∗q,r∗ , i.e. h∗τ = e−1s with

τ =

r∗−1∑
i=1

qi−1[e−1si (mod q)]. (5)

The same applies to τ ′ and s′.
• a random channel error’s effect on ĉ and ĉ′ are deter-

mined from sr∗ and s′r∗ respectively, since all columns
of H∗q,r∗ have ones in the r∗-th position.

Table I now lists the possible error locations that will be
affected by both types of errors and classifies them into states,

TABLE II
SYNDROME VALUES BASED ON THE POSSIBLE ERROR STATES (ALL

OPERATIONS PERFORMED MODULO q)

Error
State

s s′ sr∗ s′r∗ Note

A0 h∗ν 0 1 0
A1 h∗ν + eh∗τ 0 1 + e 0 τ = 1

A2 h∗ν − eh∗τ eh∗τ ′ 1− e e τ = τ ′

A3 h∗ν + eh∗τ −eh∗τ ′ 1 + e −e τ − 1 = τ ′

A4 h∗ν −eh∗τ ′ 1 −e τ ′ = n

B0 0 h∗ν 0 1
B1 eh∗τ h∗ν e 1 τ = 1

B2 −eh∗τ h∗ν + eh∗τ ′ −e 1 + e τ = τ ′

B3 eh∗τ h∗ν − eh∗τ ′ e 1− e τ − 1 = τ ′

B4 0 h∗ν − eh∗τ ′ 0 1− e τ ′ = n

C0 0 0 0 0
C1 eh∗τ 0 e 0 τ = 1

C2 −eh∗τ eh∗τ ′ −e e τ = τ ′

C3 eh∗τ −eh∗τ ′ e −e τ − 1 = τ ′

C4 0 −eh∗τ ′ 0 −e τ ′ = n

ν = d v
2
e, τ = τ ′ = t

2
if t is even, τ − 1 = τ ′ = t−1

2
if t is odd

to be used in the decoding process. By pairing the states
together, we obtain all the possible error scenarios as listed
in Table II, along with the complete syndromes. The values of
sr∗ and s′r∗ are used to determine the error state. It is now also
evident why it is necessary to determine the position parity of
the channel error, e.g. for q = 7 and e = 3 one is unable to
distinguish between states B2 and A3 as both are valid with
sr∗ = 4 and s′r∗ = 4.

The flow diagram, see Fig. 4, and the values of the param-
eters e, sr∗ and s′r∗ determine the error state. Once the error
state is determined, then s and s′ in Table II can be used to
determine the error positions using (5). Depending on whether
e = 1 or e = q − 1, certain states may appear equivalent, and
during decoding we need to be able to differentiate between
these. Here we consider two states to be equivalent if their sr∗
and s′r∗ values are the same. In that case, we need to determine
the error positions to distinguish between the two states.

If only a single error occurred, then decoding will be
straightforward as no ambiguity exists. However, since we are
working with a constrained code, we can use the constraints
to check at different stages in the decoding whether multiple

7

t C2

A2

even

odd

−e+1

e+1

e

START

C1

A1

B1

B3

B4

1

−e

−e+1

C3

C4

A3

A4

e

e+1

e

0
e+1

1

e

0

B2
−e

−e

e

equiv.
if e=1

equiv.
if e=q−1

0

e

> 0

= 0

A0

B0sr∗

1

0

1

0

equiv.
if e=1

equiv.
if e=q−1

C0

0

sr∗

sr∗

sr∗

sr∗

sr∗

sr∗

sr∗

s′r∗

s′r∗

s′r∗

Fig. 4. Flow diagram to determine error states based on syndrome values.

errors possibly occurred and declare a decoding failure if this
is detected. Decoding is done according to the following steps.

Step 1: Let ∆ be the imbalance of the received sequence,
with:

∆ =

m∑
i=1

ŵi − Ωq,m.

If |∆| > q−1, conclude that multiple errors occurred, declare
a decoding failure and STOP. Otherwise, proceed to calculate
all the necessary values by determining the error magnitude3

as e ≡ ∆ (mod q) and the check symbols as

γ = ŵ1 ⊕q ŵ3 ⊕q · · · ⊕q ŵm ⊕q δq,m 	q α̂,
γ′ = ŵ2 ⊕q ŵ4 ⊕q · · · ⊕q ŵm−1 	q β̂.

Perform modulo q differentiation with x̂′ = I−1(ŵ), drop the
redundant last symbol to obtain x̂, deinterleave the codewords
to ĉ and ĉ′, and determine s and s′.

Step 2: If s = s′ = 0T and ∆ = γ = γ′ = 0, then proceed
to Step 8, otherwise proceed to the next step.

3The imbalance, ∆, indicates the error magnitude, but its sign also indicates
if we are above or below Ωq,m. This information can be used to check if the
error correction was performed successfully. The error magnitude, e, used in
the decoding algorithm, however, does not make use of the sign information,
as −e ≡ q − e (mod q) in all the calculations.

TABLE III
ERROR STATES AND CORRESPONDING CORRECTIVE ACTION

Error State Corrective action (all operations done modulo q)

A0 Subtract 1 from ĉν

A1 Subtract 1 from ĉν , subtract e from ĉ1

A2 Subtract 1 from ĉν , add e to ĉτ , subtract e from ĉ′τ
A3 Subtract 1 from ĉν , subtract e from ĉτ , add e to ĉ′

τ ′

A4 Subtract 1 from ĉν , add e to ĉ′n
B0 Subtract 1 from ĉ′ν
B1 Subtract 1 from ĉ′ν , subtract e from ĉ1

B2 Subtract 1 from ĉ′ν , add e to ĉτ , subtract e from ĉ′τ
B3 Subtract 1 from ĉ′ν , subtract e from ĉτ , add e to ĉ′

τ ′

B4 Subtract 1 from ĉ′ν , add e to ĉ′n
C0 No correction necessary
C1 Subtract e from ĉ1

C2 Add e to ĉτ , subtract e from ĉ′τ
C3 Subtract e from ĉτ , add e to ĉ′

τ ′

C4 Add e to ĉ′n

Step 3: If γ 6= 0 and γ′ = 0, then t is odd, or if γ = 0 and
γ′ 6= 0, then t is even, and proceed to the next step. Otherwise,
if ∆ 6= 0 (and since either γ 6= 0, γ′ 6= 0 or γ = γ′ = 0,
and the parity of t cannot be determined), then multiple errors
occurred. In that case, declare a decoding failure and STOP.
Otherwise, proceed.

Step 4: Use e, sr∗ and s′r∗ together with Table I and Fig. 4
to determine the error state(s). If equivalent error states are
obtained, for e = 1 (C3≡A4 and C1≡B3) or for e = q − 1
(C3≡B1 and C4≡A3), then use the next step to determine
whether τ = 1 or τ ′ = n.

Step 5: For the determined error state, use Table II together
with the syndromes to solve for τ , τ ′ and ν, making use of (5).
If τ 6= τ ′ for t even, or τ+1 6= τ ′ for t odd4, or 0 ≮ τ, τ ′ � n,
then declare a decoding failure and STOP. If ŵ2τ − ∆ 6∈ Q
for t even, or if ŵ2τ−1 − ∆ 6∈ Q for t odd, then declare
a decoding failure and STOP. (Note that in this case we are
not doing modulo q subtraction, as we are testing whether
correcting the original imbalance, ∆, in position t would have
resulted in an invalid channel symbol.)

Step 6: Correct the errors by applying the corrective action
as described in Table III, using e, τ , τ ′ and ν.

Step 7: Recalculate the syndromes for the corrected code-
words. If s = s′ = 0T , then proceed to the next step,
otherwise declare a decoding failure and STOP.

Step 8: Finish decoding by recovering the user words from
the codewords.

Theorem 3: Using the fast syndrome-based algorithm de-
scribed, a single channel error can be corrected, provided that
q is an integer power of a prime number.

Proof: Using γ and γ′ we can determine the parity of t.
Using the imbalance we can determine e, and from s and s′ we
can obtain sr∗ and s′r∗ . All these parameters can then be used
to determine the error state from those listed in Table II, as

4These conditions are checked in the case where τ and τ ′ can be determined
independently, to test whether the expected result is obtained, e.g. for state
C2 or C3 in Table II.

8

well as to distinguish between equivalent states for instances
where e = 1 or e = q − 1, as described in the decoding
algorithm.

By using e, e−1, s and s′, and according to Lemma 3,
we can solve for ν, τ and τ ′, since we have two syndromes
and two unknowns, recalling that τ and τ ′ are related. Then
correction follows from Table III.

We conclude this section with the following example of
decoding.

Example 6: We use the q = 5 balanced sequence,
(2, 3, 1, 1, 4, 1, 4, 1, 1, 3, 1), obtained in Example 5, and con-
sider three received sequences, where the bold symbol(s)
indicate the channel error(s).
• Case 1: The received sequence is

(2, 3, 1, 1, 4,3, 4, 1, 1, 3, 1). We proceed through the
decoding steps:

1) ∆ = 2, e = 2, γ = 0 and γ′ = 2. After performing
modulo 5 differentiation and dropping the redundant
last symbol, we obtain x̂ = (4, 2, 0, 2, 1, 4, 3, 0).
Deinterleaving produces ĉ = (4, 0, 1, 3) and ĉ′ =
(2, 2, 4, 0), and multiplying these with H∗5,2 results
in the syndromes s = (4, 3)T and s′ = (3, 3)T .

2) None of the conditions are met, and we proceed to
the next step.

3) According to γ and γ′, t is even.
4) From the syndromes we extract s2 = 3 and s′2 = 3,

together with e = 2, using Fig. 4 to determine the
error state to be B2.

5) Using Table II, we find −eh∗τ = (4, 3)T and h∗ν +
eh∗τ ′ = (3, 3)T . Keeping in mind that τ = τ ′ and
e−1 = 3, we solve the column positions as τ = τ ′ =
3 and ν = 2. Testing ŵ2τ − ∆ = 3 − 2 = 1 ∈ Q
shows that a valid channel symbol is obtained.

6) Apply the correction from Table III, then c̄ =
(4, 0, 3, 3) and c̄′ = (2, 1, 2, 0).

7) Recalculating the syndromes results in s = 0T and
s′ = 0T . Proceed to the next step.

8) According to G∗5,2, the information symbols are in
positions 1 and 2. Thus â = (4, 0) and â′ = (2, 1),
which agrees with the original a and a′ from
Example 3.

• Case 2: The received sequence is
(1, 3, 1, 1, 4, 1, 4, 1, 1, 3, 1). We proceed through the
decoding steps:

1) ∆ = −1, e = 4, γ = −1 and γ′ = 0. We obtain
x̂ = (3, 2, 0, 2, 3, 2, 3, 0), deinterleaving produces
ĉ = (3, 0, 3, 3) and ĉ′ = (2, 2, 2, 0), and the syn-
dromes s = (4, 4)T and s′ = (2, 1)T are obtained.

2) None of the conditions are met, and we proceed to
the next step.

3) t is odd.
4) s2 = 4 and s′2 = 1, together with e = 4. Use Fig. 4

to determine the error state to be B1 or C3.
5) From Table II, since s = eh∗τ for both possible

error states, solving τ will enable us to distinguish
between the two states. Multiplying s by e−1 = 4,
determines that τ = 1, and thus the error state is B1.

With τ solved, it can straightforwardly be found that
ν = 2. Testing ŵ2τ−1 − ∆ = 1 − (−1) = 2 ∈ Q
shows that a valid channel symbol is obtained.

6) Apply the correction from Table III, making ĉ =
(4, 0, 3, 3) and ĉ′ = (2, 1, 2, 0).

7) Recalculating the syndromes gives s = 0T and s′ =
0T . Proceed to the next step.

8) â = (4, 0) and â′ = (2, 1), which agrees with the
original a and a′ from Example 3.

• Case 3: The received sequence is
(2, 3, 1,3, 4,2, 4, 1, 1, 3, 1). We proceed through the
decoding steps:

1) ∆ = 3, e = 3, γ = 0 and γ′ = 3. We obtain
x̂ = (4, 2, 3, 4, 2, 3, 3, 0), deinterleaving produces
ĉ = (4, 3, 2, 3) and ĉ′ = (2, 4, 3, 0), and the syn-
dromes s = (3, 2)T and s′ = (4, 4)T are obtained.

2) None of the conditions are met, therefore we pro-
ceed to the next step.

3) t is even.
4) s2 = 2 and s′2 = 4, together with e = 3. Use Fig. 4

to determine the error state to be B2.
5) Using Table II, we find −eh∗τ = (3, 2)T and h∗ν +

eh∗τ ′ = (4, 4)T . Using τ = τ ′ and e−1 = 2, we
solve the column positions as ν = 2 and τ = τ ′ = 4.
Testing ŵ2τ−∆ = 1−3 = −2 6∈ Q indicates that an
invalid channel symbol has been obtained, therefore
we declare a decoding failure and stop.

V. ANALYSIS

A. Redundancy

We first look at the redundancy of the balancing scheme in
Section III and compare it with those discussed in Sections I
and II. Let r denote the total number of redundant symbols of
the balanced code, r = r′ + 1. Since the maximum length of
the check matrix Hq,r′ equals qr

′ − 1, we conclude that the
maximum length, Lq(r), of the user word for q > 2 is

Lq(r) = (qr
′ − 1) + 1− r

= qr−1 − r.
For the binary case q = 2, since only the index v needs to

be encoded and not the integer s, we find

L2(r) = 2r − r − 1,

which is the same value as presented by Knuth [4] using a
construction with a prefix. Note that for q = 2 the check
matrix C2,r defines a regular (binary) Hamming code with
redundancy r′ = r.

Swart and Weber’s construction [14] has a balanced prefix
of length r, where each prefix uniquely represents the pair
of integers s and v. Let Nq(r) denote the number of distinct
q-ary balanced prefixes of length r. For this construction the
maximum length of the user word, denoted by LSw

q (r), is

LSw
q (r) =

⌊
Nq(r)

q

⌋
.

Using generating functions, we can straightforwardly compute
Nq(r) as the largest coefficient of the expansion of (1 + x+

9

TABLE IV
MAXIMUM USER WORD LENGHTS AS A FUNCTION OF r

q r LSw
q (r) L

Cap1
q (r) L

Cap2
q (r) LPel1

q (r) Lq(r) LECC
q (r) RECC

3 4 6 40 76 9 23 — —
3 5 17 121 237 25 76 — —
3 6 47 364 722 70 237 — —
3 7 131 1093 2179 196 722 — —
3 8 369 3280 6552 553 2179 — —
3 9 1046 9841 19673 1569 6552 10 0.526
3 10 2984 29524 59038 4476 19673 9 0.474
3 11 8551 88573 177135 12826 59038 44 0.800
3 12 24596 265720 531428 36894 177135 43 0.782
3 13 70980 797161 1594309 106470 531428 150 0.920
3 14 205409 2391484 4782954 308113 1594309 149 0.914
5 4 17 156 308 21 121 — —
5 5 76 781 1557 95 620 — —
5 6 350 3906 7806 437 3119 — —
5 7 1627 19531 39055 2033 15618 4 0.364
5 8 7633 97656 195304 9541 78117 3 0.273
5 9 36065 488281 976553 45081 390616 42 0.824
5 10 171389 2441406 4882802 214236 1953115 41 0.804
5 11 818299 12207031 24414051 1022873 9765614 240 0.956
5 12 3922235 61035156 122070300 4902793 48828113 239 0.952
5 13 18861819 305175781 610351549 23577274 244140612 1238 0.990
5 14 90961151 1525878906 3051757798 113701438 1220703111 1237 0.989

101

103

105

107

109

1011

1013

1015

1017

M
a
x
im

u
m

u
se

r
w
o
rd

le
n
g
th

3 4 5 6 7 8 9 10 11 12 13 14 15
Redundancy, r

LSw
16 (r)

L
Cap1
16 (r)

L
Cap2
16 (r)

LPel1
16 (r)

L16(r)

LSw
3 (r)

L
Cap1
3 (r)

L
Cap2
3 (r)

LPel1
3 (r)

L3(r)

Fig. 5. Maximum user word lengths as a function of r

x2 + · · ·+xq−1)r. Then these values correspond to the central
binomial coefficients (A001405), central trinomial coefficients
(A002426), central quadrinomial coefficients (A005190) and
central pentanomial coefficients (A005191) for sequences with
q = 2, 3, 4 and 5 respectively, where the bracketed numbers
indicate the sequences from [25].

Capocelli et al. [11] presented two code constructions where
the maximum length of the user word for the first construction,
LCap1
q (r), is

LCap1
q (r) =

qr − 1

q − 1
,

and the maximum length of the user word for the second,
slightly more complex, construction, LCap2

q (r), is

LCap2
q (r) = 2

qr − 1

q − 1
− r.

In Tallini and Vaccaro [12], a generalization of Knuth’s
complementation method is used to balance sequences that are
close to being balanced, while other sequences are compressed
with uniquely decodable variable length code and balanced
using the saved space. The maximum length of the user word
for this construction, LTal

q (r), is

LTal
q (r) =

1

1− 2α

qr − 1

q − 1
− c1(q, α)r − c2(q, α),

where c1 and c2 are dependent on q and α, with α ∈ [0, 12).
If only the balancing aspect is taken into account and not the
compression aspect, then LTal

q (r) is equal to LCap2
q (r).

Pelusi et al. [15] have two constructions with parallel
decoding. The first construction has balanced prefixes, similar
to [14], and the maximum length of the user word for this
construction, LPel1

q (r), is

LPel1
q (r) =

Nq(r)− {q mod 2 + [(q − 1)LPel1
q (r)] mod 2}

q − 1
.

The second construction is a refinement of the first with
prefixes that need not be balanced, and has a maximum user
word length that is the same as LCap1

q (r).
Table IV shows, for q = 3 and q = 5, the maximum length

of the user words as a function of r for the schemes discussed
thus far. Fig. 5 graphically shows the maximum length of
the user words as a function of r for q = 3 and q = 16.
Table V compares the schemes’ redundancies for practical user
word lengths. From this we can see that the new scheme has
maximum user lengths that are considerably longer than the
scheme from [14] and Scheme 1 from [15], comparable to that
of Scheme 1 from [11] and Scheme 2 from [15], but roughly
half that of Scheme 2 from [11].

This can further be illuminated by looking at the redundan-
cies when the alphabet size becomes large. To proceed, we

10

TABLE V
REDUNDANCY COMPARISON FOR SPECIFIC INFORMATION LENGTHS

Redundancy, r
User word Scheme 1 Scheme 2 Scheme 1 Our scheme

q length [14] [11] [11] [15] Our scheme with ECC

3 64 7 5 4 6 5 12
3 128 7 6 5 7 6 13
3 256 8 6 6 8 7 14
3 512 9 7 6 8 7 16
3 1024 9 7 7 9 8 17
3 2048 10 8 7 10 8 18
3 4096 11 9 8 10 9 19
5 64 5 4 4 5 4 10
5 128 6 4 4 6 5 11
5 256 6 5 4 6 5 12
5 512 7 5 5 7 5 12
5 1024 7 6 5 7 6 13
5 2048 8 6 6 8 6 14
5 4096 8 7 6 8 7 15

make use of Star’s approximation [26] for Nq(r), given by

Nq(r) = qr

√
6

πr(q2 − 1)

(
1 +O

(
1

r

))

≈ qr
√

6

πr(q2 − 1)
,

as r →∞.
Now, letting q →∞ for the previous redundancies, we find

Lq(r) ≈ qr−1,
LSw
q (r) ≈ 1.38qr−2/

√
r,

LCap1
q (r) = LPel2

q (r) ≈ qr−1,
LCap2
q (r) ≈ 2qr−1,

and
LPel1
q (r) ≈ 1.38qr−2/

√
r,

confirming our earlier observation.
For the redundancy of the balancing scheme with error

correction in Section IV, the total redundancy is r = 2r∗+ 3,
taking into account that we use the C∗ code twice with
redundancy of r∗ for each, and add one redundant symbol
for balancing and two more redundant check symbols. Fur-
thermore, the maximum length of the check matrix for one C∗
code is n = qr

∗−1 − 1, since the one row is an all-ones row.
The total length of the encoded word is 2(qr

∗−1− 1) + 3. Let
LECC
q (r) denote the maximum length of the user word, then it

can be shown that for q odd

LECC
q (r) = 2(qr

∗−1 − 1) + 3− r
= 2qb

r−3
2 c−1 − r + 3− 2

= 2qb
r−5
2 c − r + 1.

For q even, one more redundant symbol is added. The values
for LECC

q (r) are also shown in Table IV, along with the error
correction code rate based on these values, where

RECC =
LECC
q (r)

LECC
q (r) + r

.

Again, for the binary case q = 2, since only the index v
needs to be encoded and not the integer s, we find

LECC
2 (r) = 2b

r−2
2 c − r − 1.

B. Complexity

The main contributor to the time and space complexity in
our balancing scheme is the ECC component: vector-matrix
multiplication affecting the time complexity and the size of the
generator/parity check matrices affecting the space complexity.
For the complexity analyses we use r′ ≈ logq k which holds
as k →∞, leading to m ≈ k + logq k + 1.

The time complexity for encoding consists of the error
correction and balancing aspects. For the error correction,
vector-matrix multiplication is needed with the number of
operations being k(m − 1) = km − k = k2 + k logq k,
resulting in O(k2). Note that we have not considered a parallel
vector-matrix multiplication implementation here. Using the
method briefly described after Example 2 to find s and v
results in complexity O((m + q) logqm). This is obtained
by first computing weight(x⊕q b0,0), requiring O(m logqm)
digit operations5. Next, the number of appearances of all q-
ary symbols in x are computed and stored in a table, also
requiring O(m logqm) digit operations. If mi denotes the
number of appearances of symbol i in x, i ∈ Q, then for each
0 ≤ s ≤ q − 2, the weight of x ⊕q bs+1,0 can be computed
based on the weight of x⊕q bs,0 using

weight(x⊕q bs+1,0) = weight(x⊕q bs,0) +m− qmq−1−s,

which requires only O(logqm) digit operations. Once an s is
found such that weight(x ⊕q bs,0) ≤ Ωq,m ≤ weight(x ⊕q
bs+1,0), a v has to be found that balances the sequence.
The final step of modulo q integration has complexity O(m).
Taking all of these into account results in a time complexity
for encoding of O(k2 + q).

5Here we make use of the fact that arithmetic operations with numbers up
to m(q− 1) requires O(m logqm) q-ary digit operations, assuming that m
is larger than q.

11

TABLE VI
TIME/SPACE COMPLEXITY COMPARISON

[14] Scheme 1 and 2
[11]

Scheme 1
[15]

Scheme 2
[15]

Our scheme

Time complexity (encoding) O(k logq k) O(qk logq k) O(qk logq k) O(k
√

logq k) O(k2 + q)

Time complexity (decoding) O(1) O(qk logq k) O(1) O(1) O(k logq k)

Space complexity (encoding) O(qk logq k) O(k + q) O(qk logq k) O(qk logq k) O(k2)

Space complexity (decoding) O(qk logq k) O(k + q) O(qk logq k) O(qk logq k) O(k logq k)

The time complexity for decoding depends on modulo q
differentiation with complexity O(m) and vector-matrix mul-
tiplication to find the syndrome, with the number of operations
r′(m − 1) = r′m − r′ = k logq k + 2 logq k, finally resulting
in O(k logq k).

The space complexity for encoding mainly depends on the
generator matrix of size (m− 1)×k. After substitution for m
we have O(k2). Similarly, the space complexity for decoding
mainly depends on the parity check matrix of size (m−1)×r′,
resulting in O(k logq k).

In Table VI we compare the time and space complexity
of our balancing scheme, as shown above, with those of
previous schemes. In terms of encoding time complexity, the
new scheme generally takes longer than the previous ones,
except in the special case of large q and short k. Scheme 2
[15] is the most efficient, regardless of q and k. Note that
we listed a reduced encoding time complexity for [14], since
the same fast encoding method for balancing as described
earlier can be used. Our decoding time complexity is a factor
of q less than the previous schemes, with time complexity
O(qk logq k). However, it cannot compete with the schemes
that have parallel decoding with O(1). Again, it should be
pointed out that one could improve the time complexity for our
new scheme if a parallel implementation for the vector-matrix
multiplication is considered, although this could potentially
increase the space complexity.

C. Performance

We look at the performance of four codes:
• R = 10/19 code with q = 3: an (8, 5) linear block code

is used, giving a (16, 10) code after interleaving, and after
balancing and adding the extra two check symbols this
becomes (19, 10).

• R = 44/55 code with q = 3: a (26, 22) linear block code
is used.

• R = 4/11 code with q = 5: a (4, 2) linear block code is
used. (This is the code used in Example 3.)

• R = 12/21 code with q = 5: a (9, 6) linear block code
is used.6

In general, if we start with an (n, k) code C∗, then the overall
rate of the scheme will be R = 2k

2n+3 .
In the figures we also compare the results of the previ-

ous exhaustive decoding algorithm (from [19]) with the fast
syndrome-based decoding presented here.

6This is an example of a code with a shorter user word length than the
maximum attainable, which according to Table IV is 42.

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

P
ro
b
.
d
ec
o
d
in
g
fa
il
u
re

100 10−1 10−2 10−3 10−4

Symbol error rate, ps

R = 10
19

, q = 3 (Exh.)

R = 10
19

, q = 3 (Synd.)

R = 44
55

, q = 3 (Synd.)

R = 4
11

, q = 5 (Exh.)

R = 4
11

, q = 5 (Synd.)

R = 12
21

, q = 5 (Synd.)

Fig. 6. Probability of decoding failure

Fig. 6 shows the probability that a decoding failure occurred.
This can occur when:

• the imbalance indicates that possible multiple errors
occurred, i.e. the imbalance size is greater than the
maximum symbol size or an imbalance occurred in both
the codeword and the check symbols, or

• checks during the decoding indicated that decoding was
unsuccessful, i.e. if the syndrome indicated invalid posi-
tions, correction would have resulted in an invalid channel
symbol or correction proceeded, but the syndromes are
still non-zero.

Fig. 7 shows the symbol error rate after decoding for these
four codes. If a decoding failure occurred, the information
was discarded, and was not taken into account in the symbol
error rate calculations. Typically this would be applicable in
an ARQ system where the information would be requested
again.

These figures show that the same performance is attained
by the fast syndrome-based decoding method compared to
the previous exhaustive decoding method presented in [19].
However, it should be noted that the small difference in
performance between the two decoders is because in the
exhaustive method, decoding was performed even though the
check symbols could not determine the even or odd position
of the channel error, by iterating through all positions. In some
instances this resulted in two possible positions where the
error could be corrected, one correct and one incorrect. In
these cases the first possible position was used for correction.
However, this situation only occurs when more than one

12

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
D
ec
o
d
in
g
sy
m
b
o
l
er
ro
r
ra
te
,
p
e

100 10−1 10−2 10−3 10−4

Symbol error rate, ps

R = 10
19

, q = 3 (Exh.)

R = 10
19

, q = 3 (Synd.)

R = 44
55

, q = 3 (Synd.)

R = 4
11

, q = 5 (Exh.)

R = 4
11

, q = 5 (Synd.)

R = 12
21

, q = 5 (Synd.)

Fig. 7. Decoding symbol error rate

0

100

200

300

A
v
g
.
d
ec
o
d
in
g
ti
m
e
[µ
s]

100 10−1 10−2 10−3 10−4

Symbol error rate, ps

R = 10
19

, q = 3 (Exh.)

R = 10
19

, q = 3 (Synd.)

R = 44
55

, q = 3 (Exh.)

R = 44
55

, q = 3 (Synd.)

R = 4
11

, q = 5 (Exh.)

R = 4
11

, q = 5 (Synd.)

R = 12
21

, q = 5 (Exh.)

R = 12
21

, q = 5 (Synd.)

Fig. 8. Average time to perform one decoding operation.

channel error occurred, and is regarded as a decoding failure
in the fast syndrome-based decoder. If the exhaustive decoder
is changed to do the same, the exact same performance is
attained by both decoders.

Finally, we look at the time it takes for the algorithms
to decode. These results should be seen as comparative, as
different times would be obtained when the same simulations
are run on different computer hardware or using a different
programming language. Fig. 8 shows the average time that
the algorithms spend on a decoding operation (specifically
Steps 4 to 8 in the syndrome decoding algorithm above, and
the corresponding steps in the exhaustive algorithm). It is
clear that for the fast syndrome-based algorithm the average
decoding time is approximately the same, regardless of the
symbol error rate and the length of the code. As one would
expect, longer lengths cause the exhaustive algorithm to spend
considerable more time on decoding.

VI. DISCUSSIONS

Although our new balancing scheme does not improve
in terms of redundancy or complexity compared to other
balancing schemes that do not need lookup tables (such as the
two schemes in [11]), it provides us with an error correcting

framework than can be extended to include error correction of
channel errors, as was done in Section IV for single errors.

Further improvements are possible if some of the known
tEC-AUED codes are employed, provided that one can adhere
to the parameter constraints (e.g. length of code, alphabet size
of code, etc.) of the chosen code. An immediate extension
would be to employ some of the known tEC-AUED codes
with t > 1, to be able to correct more than one channel error.
Alternatively, a tEC-AUED code with t = 2 could be used to
avoid the use of interleaving.

The most promising and flexible option appears to be [24],
where the proposed codes can correct t1 asymmetric errors of
maximum magnitude l1 and t2 asymmetric errors of maximum
magnitude l2 with l1 < l2. The authors state that the “model
can be naturally generalized to a wider range of magnitudes
as well as for errors in both directions”. Provided that the
code is generalized for errors in both directions for the larger
magnitude errors, our code in Section IV can be replaced by
such a code with t1 = t2 = 1, l1 = 1 and l2 = q − 1. Again,
to avoid interleaving we can use a similar code with t1 = 1,
t2 = 2, l1 = 1 and l2 = q − 1. Either of these options can be
extended to correct multiple channel errors by increasing the
value of t2.

An easy method to obtain lower redundancies for the error-
correcting balancing scheme described can be attained by
adding more columns to the check matrix, where the first non-
zero element from the bottom is one, e.g.

H∗3,3 =

1 2 0 1 2 0 1 2 0 1 2 1
0 0 1 1 1 2 2 2 1 1 1 0
1 1 1 1 1 1 1 1 0 0 0 0

 ,
where the last four columns were added. However, this will
increase the complexity of the decoding algorithm slightly, as
the error states cannot be determined simply by looking at sr∗
and s′r∗ .

VII. CONCLUSIONS

We have presented a simple method for balancing q-ary
codewords, where look-up tables for coding and decoding the
prefix can be avoided by making use of an error correction
technique. The redundancy of the new construction is compa-
rable to other constructions for certain parameters, but a factor
away in other cases.

The method was expanded to include error correction ca-
pabilities to correct single channel errors by simply extending
the already used error correction code, introducing interleav-
ing and adding a further three redundant symbols. A fast
syndrome-based decoding algorithm was presented that can
correct single channel errors more quickly than the prior art
exhaustive decoding algorithm.

Although simultaneous balancing and error correction have
been investigated before, this is the first attempt to closely tie
the two operations together. By doing this we have established
a balancing scheme within an error correction framework
that can easily be extended in future to account for multiple
channel errors.

13

ACKNOWLEDGMENTS

The authors would like to extend their gratitude towards
the anonymous reviewers for their insightful comments and
critiques that improved this paper.

REFERENCES

[1] K. A. S. Immink, “Coding methods for high-density optical recording,”
Philips J. Res., vol. 41, pp. 410–430, 1986.

[2] K. W. Cattermole, “Principles of digital line coding,” Int. J. Electron.,
vol. 55, pp. 3–33, July 1983.

[3] H. Zhou, A. Jiang, and J. Bruck, “Balanced modulation for nonvolatile
memories,” IEEE Trans. Inform. Theory, submitted for publication.
Available: http://arxiv.org/abs/1209.0744

[4] D. E. Knuth, “Efficient balanced codes,” IEEE Trans. Inform. Theory,
vol. 32, no. 1, pp. 51–53, Jan. 1986.

[5] S. Al-Bassam and B. Bose, “On balanced codes,” IEEE Trans. Inform.
Theory, vol. 36, no. 2, pp. 406–408, Mar. 1990.

[6] L. G. Tallini, R. M. Capocelli, and B. Bose, “Design of some new
efficient balanced codes,” IEEE Trans. Inform. Theory, vol. 42, no. 3,
pp. 790–802, May 1996.

[7] J. H. Weber and K. A. S. Immink, “Knuth’s balanced codes revisited,”
IEEE Trans. Inform. Theory, vol. 56, no. 4, pp. 1673–1679, Apr. 2010.

[8] H. van Tilborg and M. Blaum, “On error-correcting balanced codes,”
IEEE Trans. Inf. Theory, vol. 35, no. 5, pp. 1091–1095, Sep. 1989.

[9] S. Al-Bassam and B. Bose, “Design of efficient error-correcting balanced
codes,” IEEE Trans. Comput., vol. 42, no. 10, pp. 1261–1266, Oct. 1993.

[10] J. H. Weber, K. A. S. Immink, and H. C. Ferreira, “Error-correcting
balanced Knuth codes,” IEEE Trans. Inform. Theory, vol. 58, no. 1, pp.
82–89, Jan. 2012.

[11] R. M. Capocelli. L. Gargano, and U. Vaccaro, “Efficient q-ary immutable
codes,” Discrete Appl. Math., vol. 33, pp. 25–41, 1991.

[12] L. G. Tallini and U. Vaccaro, “Efficient m-ary balanced codes,” Discrete
Appl. Math., vol. 92, pp. 17–56, 1999.

[13] S. Al-Bassam, “Balanced codes,” Ph.D. dissertation, Oregan State Uni-
versity, USA, 1990.

[14] T. G. Swart and J. H. Weber, “Efficient balancing of q-ary sequences
with parallel decoding,” in Proc. IEEE Intl. Symp. Inform. Theory, Seoul,
South Korea, Jun. 29–Jul. 3, 2009, pp. 1564–1568.

[15] D. Pelusi, S. Elmougy, L. G. Tallini and B. Bose, “m-ary balanced codes
with parallel decoding,” IEEE Trans. Inform. Theory, vol. 61, no. 6, pp.
3251–3264, May 2015.

[16] A. Baliga and S. Boztaş, “Balancing sets of non-binary vectors,” in Proc.
IEEE Intl. Symp. Inform. Theory, Lausanna, Switzerland, Jun. 30–Jul.
5, 2002, p. 300.

[17] R. Mascella, L. G. Tallini, S. Al-Bassam and B. Bose, “On efficient
balanced codes over the mth roots of unity,” IEEE Trans. Inform.
Theory, vol. 52, no. 5, pp. 2214–2217, May 2006.

[18] R. Mascella and L. G. Tallini, “Efficient m-ary balanced codes which
are invariant under symbol permutation,” IEEE Trans. Comput., vol. 55,
no. 8, pp. 929–946, Aug. 2006.

[19] T. G. Swart and K. A. S. Immink, “Prefixless q-ary balanced codes with
ECC,” in Proc. IEEE Inform. Theory Workshop, Seville, Spain, Sep. 9–
13, pp. 1–5.

[20] R. W. Hamming, Coding and Information Theory, Prentice-Hall, Engle-
wood Cliffs, 1986.

[21] F.-W. Fu, S. Ling and C. Xing, “Constructions for nonbinary codes
correcting t symmetric errors and detecting all unidirectional errors:
Magnitude error criterion,” Progress in Comput. Sci. and Applied Logic,
vol. 23, pp. 139–152, 2004.

[22] I. Naydenova and T. Kløve, “Some optimal binary and ternary t-EC-
AUED codes,” IEEE Trans. Inform. Theory, vol. 55, no. 11, pp. 4898–
4904, Nov. 2009.

[23] T. Kløve, B. Bose and N. Elarief, “Systematic, single limited magnitude
error correcting codes for flash memories,” IEEE Trans. Inform. Theory,
vol. 57, no. 7, pp. 4477–4487, Jun. 2011.

[24] E. Yaakobi, P. H. Siegel, A. Vardy and J. K. Wolf, “On codes that correct
asymmetric errors with graded magnitude distribution,” in Proc. IEEE
Intl. Symp. Inform. Theory, Saint-Petersburg, Russia, Jul. 31–Aug. 5,
2011, pp. 1056–1060.

[25] N. J. A. Sloane, ed., “The on-line encyclopedia of integer sequences,”
2005. [Online]. Available: https://oeis.org

[26] Z. Star, “An asymptotic formula in the theory of compositions,” Aequa-
tiones Mathematicae, vol. 13, pp. 279–284, 1975.

Theo G. Swart (M’05-SM’14) received the B.Eng. and M.Eng. degrees in
electrical and electronic engineering from the Rand Afrikaans University,
South Africa, in 1999 and 2001, respectively, and the D.Eng. degree from
the University of Johannesburg, South Africa, in 2006.

He is an associate professor in the Department of Electrical and Electronic
Engineering Science and a member of the UJ Center for Telecommunications.
He is the chair of the IEEE South Africa Chapter on Information Theory.
His research interests include digital communications, error-correction coding,
constrained coding and power-line communications.

Jos H. Weber (S’87-M’90-SM’00) was born in Schiedam, The Netherlands,
in 1961. He received the M.Sc. (in mathematics, with honors), Ph.D., and
MBT (Master of Business Telecommunications) degrees from Delft University
of Technology, Delft, The Netherlands, in 1985, 1989, and 1996, respectively.

Since 1985 he has been with the Faculty of Electrical Engineering, Math-
ematics, and Computer Science of Delft University of Technology. Currently,
he is an associate professor in the Department of Applied Mathematics.
He is the chairman of the WIC (Werkgemeenschap voor Informatie- en
Communicatietheorie in the Benelux) and the secretary of the IEEE Benelux
Chapter on Information Theory. He was a Visiting Researcher at the University
of California at Davis, USA, the University of Johannesburg, South Africa,
the Tokyo Institute of Technology, Japan, and EPFL, Switzerland. His main
research interests are in the area of channel coding.

Kees A. Schouhamer Immink (M’81-SM’86-F’90) received his Ph.D. degree
from the Eindhoven University of Technology. He was from 1994 till 2014
an adjunct professor at the Institute for Experimental Mathematics, Essen,
Germany. In 1998, he founded Turing Machines Inc., an innovative start-up
focused on novel signal processing for hard disk drives and solid-state (Flash)
memories.

He received the Golden Jubilee Award for Technological Innovation by the
IEEE Information Theory Society in 1998. He received the 2017 IEEE Medal
of Honor, a knighthood in 2000, a personal Emmy award in 2004, and the
2015 IET Faraday Medal. He was elected into the (US) National Academy
of Engineering, and he received an honorary doctorate from the University of
Johannesburg in 2014.

