
1

A Construction for Balancing Non-Binary
Sequences Based on Gray Code Prefixes

Elie N. Mambou and Theo G. Swart, Senior Member, IEEE

Abstract—We introduce a new construction for the balancing
of non-binary sequences that make use of Gray codes for prefix
coding. Our construction provides full encoding and decoding
of sequences, including the prefix. This construction is based on
a generalization of Knuth’s parallel balancing approach, which
can handle very long information sequences. However, the overall
sequence—composed of the information sequence, together with
the prefix—must be balanced. This is reminiscent of Knuth’s
serial algorithm. The encoding of our construction does not make
use of lookup tables, while the decoding process is simple and
can be done in parallel.

Index Terms—Balanced sequence, DC-free codes, Gray code
prefix.

I. INTRODUCTION

THE use of balanced codes is crucial for some information
transmission systems. Errors can occur in the process of

storing data onto optical devices due to the low frequency
of operation between structures of the servo and the data
written on the disc. This can be avoided by using encoded
balanced codes, as no low frequencies are observed. In such
systems, balanced codes are also useful for tracking the data on
the disc. Balanced codes are also used for countering cut-off
at low frequencies in digital transmission through capacitive
coupling or transformers. This cut-off is caused by multiple
same-charge bits, and results in a DC level that charges the
capacitor in the AC coupler [1]. In general, the suppression of
low-frequency spectrum can be done with balanced codes.

A large body of work on balanced codes is derived from
the simple algorithm for balancing sequences proposed by
Knuth [2]. According to Knuth’s parallel algorithm, a binary
sequence, x, of even length k, can always be balanced by
complementing its first or last i bits, where 0 ≤ i ≤ k. The
index i is then encoded as a balanced prefix that is appended
to the data. The decoder can easily recover i from the prefix,
and then again complementing the first or last i bits to obtain
the original information. For Knuth’s serial (or sequential)
algorithm, the prefix is used to provide information regarding
the information sequence’s initial weight. Bits are sequentially
complemented from one side of the overall sequence, until the
information sequence and prefix together are balanced. Since
the original weight is indicated by the prefix, the decoder
simply has to sequentially complement the bits until this
weight is attained.

This paper was presented in part at the IEEE International Symposium on
Information Theory, Barcelona, Spain, July, 2016.

The authors are with the Department of Electrical and Electronic Engi-
neering Science, University of Johannesburg, P. O. Box 524, Auckland Park,
2006, South Africa (e-mails: {emambou, tgswart}@uj.ac.za).

This work is based on research supported in part by the National Research
Foundation of South Africa (Grant Numbers 109543).

Al-Bassam [3] presented a generalization of Knuth’s algo-
rithm for binary codes, non-binary codes and semi-balanced
codes (the latter occur where the number of 0’s and 1’s differs
by at most a certain value in each sequence of the code). The
balancing of binary codes with low DC level is based on DC-
free coset codes. For the design of non-binary balanced codes,
symbols in the information sequence are q-ary complemented
from one side, but because this process does not guarantee
balancing, an extra redundant symbol is added to enforce
the balancing (similar to our approach later on). Information
regarding how many symbols to complement is sent by using
a balanced prefix.

Capocelli et al. [4] proposed using two functions that must
satisfy certain properties to encode any q-ary sequence into
balanced sequences. The first function is similar to Knuth’s
serial scheme: it outputs a prefix sequence depending on
the original sequence’s weight. Additionally, all the q-ary
sequences are partitioned into disjointed chains, where each
chain’s sequences have unique weights. The second function
is then used to select an alternate sequence in the chain
containing the original information sequence, such that the
chosen prefix and the alternate sequence together are balanced.

Tallini and Vaccaro [5] presented another construction for
balanced q-ary sequences that makes use of balancing and
compression. Sequences that are close to being balanced are
encoded with a generalization of Knuth’s serial scheme. Based
on the weight of the information sequence, a prefix is chosen.
Symbols are then “complemented in stages”, one at a time,
until the weight that balances the sequence and prefix together
is attained. Other sequences are compressed with a uniquely
decodable variable length code and balanced using the saved
space.

Swart and Weber [6] extended Knuth’s parallel balancing
scheme to q-ary sequences with parallel decoding. However,
this technique does not provide a prefix code implementation,
with the assumption that small lookup tables can be used
for this. Our approach aims to implement these prefixes via
Gray codes. Swart and Weber’s scheme will be expanded on
in Section II-A, as it also forms the basis of our proposed
algorithm.

Swart and Immink [7] described a prefixless algorithm for
balancing of q-ary sequences. By using the scheme from [6]
and applying precoding to a very specific error correction code,
it was shown that balancing can be achieved without the need
for a prefix.

Pelusi et al. [8] presented a refined implementation of
Knuth’s algorithm for parallel decoding of q-ary balanced
codes, similar to [6].

The rest of this paper is structured as follows. In Section II,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Johannesburg Institutional Repository

https://core.ac.uk/display/161544188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

we present the background for our work, which includes Swart
and Weber’s balancing scheme for q-ary sequences [6] and
non-binary Gray code theory. In Section III, a construction is
presented for sequences where k = qt. Section IV extends
on our proposed construction to sequences with k 6= qt.
Finally, Section V deals with the redundancy and complexity
of our construction compared to prior art constructions, our
conclusions are presented in Section VI.

II. PRELIMINARIES

Let x = (x1x2 . . . xk) be a q-ary information sequence of
length k, where xi ∈ {0, 1, . . . q − 1} is from a non-binary
alphabet. A prefix of length r is appended to x. The prefix
and information together are denoted by c = (c1c2 . . . cn) of
length n = k+ r, where ci ∈ {0, 1, . . . q− 1}. Let w(c) refer
to the weight of c, that is the algebraic sum of symbols in c.
The sequence c is said to be balanced if

w(c) =

n∑
i=1

ci =
n(q − 1)

2
.

Let βn,q represent this value obtained at the balancing state.
For the rest of the paper, the parameters k, n, q and r are
chosen in such a way that the balancing value, βn,q = n(q −
1)/2, will be an integer value.

A. Balancing of q-ary Sequences

Any information sequence, x of length k and alphabet
size q, can always be balanced by adding (modulo q) to that
sequence one sequence from a set of balancing sequences [6].
The balancing sequence, bs,p = (b1b2 . . . bk) is derived as

bi =

{
s, i > p,

s+ 1 (mod q), i ≤ p,

where s and p are positive integers with 0 ≤ s ≤ q − 1
and 0 ≤ p ≤ k − 1. Let z be the iterator through all possible
balancing sequences, such that z = sn+p and 0 ≤ z ≤ kq−1.
Let y refer to the resulting sequence when adding (modulo
q) the balancing sequence to the information sequence, y =
x⊕qbs,p, where⊕q denotes modulo q addition. The cardinality
of balancing sequences equals kq and amongst them, at least
one leads to a balanced output y.

Since s and p can easily be determined for the z-th balanc-
ing sequence using z = sn + p, we will use the simplified
notation bz to denote bs,p.

Example 1: Let us consider the balancing of the 3-ary
sequence 2101, of length 4. The encoding process is illustrated

below, with weights in bold indicating that the sequences are
balanced.

z x ⊕q bz = y w(y)
0 (2101) ⊕3 (0000) = (2101) 4
1 (2101) ⊕3 (1000) = (0101) 2
2 (2101) ⊕3 (1100) = (0201) 3
3 (2101) ⊕3 (1110) = (0211) 4
4 (2101) ⊕3 (1111) = (0212) 5
5 (2101) ⊕3 (2111) = (1212) 6
6 (2101) ⊕3 (2211) = (1012) 4
7 (2101) ⊕3 (2221) = (1022) 5
8 (2101) ⊕3 (2222) = (1020) 3
9 (2101) ⊕3 (0222) = (2020) 4
10 (2101) ⊕3 (0022) = (2120) 5
11 (2101) ⊕3 (0002) = (2100) 3

For this example, there are four occurrences of balanced
sequences.

A (γ, τ)-random walk refers to a path with random increases
of γ and decreases of τ at each step. In our case, a random
walk graph is the plot of the function of w(y) versus z. In
general, the random walk graph of w(y) always forms a (1, q−
1)-random walk [6]. Fig. 1 presents the (1, 2)-random walk
for Example 1. The dashed line indicates the balancing value
β4,3 = 4.

This method, as presented in [6], assumed that the z indices
can be sent using balanced prefixes, but the actual encoding of
these was not taken into account. For instance, in Example 1
indices z = 0, 3, 6 and 9 must be encoded into balanced
prefixes, in order to send overall balanced sequences.

B. Non-binary Gray Codes

Binary Gray codes were first proposed by Gray [9] for
solving problems in pulse code communication, and have
been extended to various other applications. The assumption
throughout this paper is that a Gray code is mapped from a set
of possible sequences appearing in the normal lexicographical
order. This ordering results in the main property of binary
Gray codes: two adjacent codewords differ in only one bit.

The (r′, q)-Gray code is a set of q-ary sequences of length
r′ such that any two adjacent codewords differ in only one
symbol position. This set is not unique, as any permutation
of a symbol column within the code could also generate a
new (r′, q)-Gray code. In this work, a unique set of (r′, q)-
Gray codes is considered, as presented by Guan [10]. This set

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11

6

z

w
(y

)

β4,3

Fig. 1. Random walk graph of w(y) for Example 1

3

TABLE I
EXAMPLE OF (3, 3)-GRAY CODE

z d g z d g z d g

0 (000) (000) 9 (100) (122) 18 (200) (200)
1 (001) (001) 10 (101) (121) 19 (201) (201)
2 (002) (002) 11 (102) (120) 20 (202) (202)
3 (010) (012) 12 (110) (110) 21 (210) (212)
4 (011) (011) 13 (111) (111) 22 (211) (211)
5 (012) (010) 14 (112) (112) 23 (212) (210)
6 (020) (020) 15 (120) (102) 24 (220) (220)
7 (021) (021) 16 (121) (101) 25 (221) (221)
8 (022) (022) 17 (122) (100) 26 (222) (222)

possesses some additional properties: the difference between
any two consecutive sequences’ weights is ±1 and the set is
cyclic for q even. Our prefix encoding only relies on the weight
property. This same set of Gray codes was already determined
in [11] through a recursive method.

This class of Gray codes is also known as Lee distance
Gray codes, since the Lee distance between any two adjacent
codewords is one. Constructions for Lee distance Gray codes
that are cyclic for all q can be found in [12] and [13].

Let d = (d1d2 . . . dr′) be any sequence within the set of all
q-ary sequences of length r′, listed in the normal lexicographic
order. These sequences are mapped to (r′, q)-Gray code se-
quences, g = (g1g2 . . . gr′), such that any two consecutive
sequences are different in only one symbol position.

Table I shows a (3, 3)-Gray code, where d is the 3-ary
representation of the index z ∈ {0, 1, . . . , 26} and g is the
corresponding Gray code sequence. We see that for g, the
adjacent sequences’ weights differ by +1 or −1.

We will make use of the following encoding and decoding
algorithms from [10].

1) Encoding algorithm for (r′, q)-Gray code: Let d =
(d1d2 . . . dr′) and g = (g1g2 . . . gr′) denote respectively a q-
ary sequence of length r′ and its corresponding Gray code
sequence.

Let Si be the sum of the first i − 1 symbols of g, with
2 ≤ i ≤ r′ and g1 = d1. Then

Si =

i−1∑
j=1

gj , and gi =

{
di, if Si is even,
q − 1− di, if Si is odd.

The parity of Si determines g’s symbols from d. If Si is
even then the symbol stays the same, otherwise the q-ary
complement of the symbol is taken.

2) Decoding algorithm for (r′, q)-Gray code: Let g, d and
Si be defined as before, with 2 ≤ i ≤ r′ and d1 = g1. Then

Si =

i−1∑
j=1

gj , and di =

{
gi, if Si is even,
q − 1− gi, if Si is odd.

III. CONSTRUCTION FOR k = qt

For the sake of simplicity, we will briefly explain the
construction for information lengths limited to k = qt, with
t being a positive integer. More details can be found in our
conference paper [14]. In the next section we will show how
this restriction can be avoided.

The main component of this technique is to encode the
balancing indices, z, into Gray code prefixes that can easily be
encoded and decoded. The prefix together with the information
sequence must be balanced.

The condition, k = qt, is enforced so that the cardinality
of the (r′, q)-Gray code is equal to that of the balancing
sequences, making r′ = logq(kq) = logq(q

t+1) = t+ 1.
1) Encoding: Let c′ = (g|y) = (g1g2 . . . gr′y1y2 . . . yk)

be the concatenation of the Gray code prefix with y, with
| representing the concatenation. As stated earlier, for the
sequences y we obtain a (1, q − 1)-random walk, and for
the Gray codes g we have a (1, 1)-random walk. Therefore,
when we concatenate the two sequences together, the random
walk graph of c′ forms a ({0; 2}, {q−2; q})-random walk, i.e.
increases of 0 or 2 and decreases of q − 2 or q.

This concatenation of a Gray code prefix, g, with an output
sequence, y, does not guarantee the balancing of the overall
sequence, since the increases of 2 in the random walk graph
do not guarantee that it will pass through a specific point.
An extra symbol u is added to ensure overall balancing,
with u = βn,q − w(c′) if 0 ≤ u ≤ q − 1, otherwise
u = 0, thus forcing the random graph to a specific point.
The overall sequence is the concatenation of u, g and y, i.e.
c = (u|g|y) = (ug1g2 . . . gr′y1y2 . . . yk). The length of c is
n = k + r′ + 1.

In summary, the balancing of any q-ary sequence of length
k, where k = qt, can be achieved by adding (modulo q) an
appropriate balancing sequence, bz , and prefixing a redundant
symbol u with a Gray code sequence, g. The construction
relies on finding a Gray code prefix to describe z, and at the
same time be balanced together with y.

Example 2: Let us consider the encoding of the ternary
sequence, 201 of length 3. Since t = 1, the length of Gray
code prefixes will be r′ = 2. The overall length is n = 6 and
the balancing value is β6,3 = 6. The encoding process below
is followed.

z x ⊕q bz = y c w(c)
0 (201) ⊕3 (000) = (201) (000201) 3
1 (201) ⊕3 (100) = (001) (001001) 2
2 (201) ⊕3 (110) = (011) (202011) 6
3 (201) ⊕3 (111) = (012) (012012) 6
4 (201) ⊕3 (211) = (112) (011112) 6
5 (201) ⊕3 (221) = (122) (010122) 6
6 (201) ⊕3 (222) = (120) (120120) 6
7 (201) ⊕3 (022) = (220) (021220) 7
8 (201) ⊕3 (002) = (200) (022200) 6

The underlined symbols represent the appended prefix, the
bold underlined symbol is u, which is chosen such that β6,3 is
obtained whenever possible, and the bold weights indicate that
balancing was achieved. Fig. 2 presents the random walk graph
for the weight of the overall sequence, c, with the shaded area
indicating the possible weights as a result of the flexibility in
choosing u.

2) Decoding: The decoding consists of recovering the
index z from the Gray code prefix, g, and finding s and p
to reconstruct bz . The original sequence is then obtained as
x = y 	q bz , where 	q represents modulo q subtraction.

4

1

2

3

4

5

0 1 2 3 4 5 6 7 8

6

z

w
(c
)

β6,3

7

8

9

Fig. 2. Random walk graph of w(c) for Example 2

TABLE II
DECODING OF (2, 3)-GRAY CODES FOR 3-ARY SEQUENCES OF LENGTH 2

Gray code (g) Sequence (d) z s, p bz
(00) (00) 0 0, 0 (000)
(01) (01) 1 0, 1 (100)
(02) (02) 2 0, 2 (110)
(12) (10) 3 1, 0 (111)
(11) (11) 4 1, 1 (211)
(10) (12) 5 1, 2 (221)
(20) (20) 6 2, 0 (222)
(21) (21) 7 2, 1 (022)
(22) (22) 8 2, 2 (002)

As an example, Table II shows the decoding of every Gray
code sequence into balancing sequences using the (2, 3)-Gray
code set.

Example 3: Consider the received ternary sequence c =
(012012) of length n = 6 (one of the balanced sequences
from Example 2). The (2, 3)-Gray code prefixes were used in
encoding the original sequence.

The first symbol in c, u = 0 is dropped, then the Gray code
prefix is g = (12). This Gray code corresponds to d = (10)
as presented in Table II. This implies that z = 3, leading to
s = 1, p = 0 and therefore b3 = (111). The original sequence
is recovered as

x = y 	q bz = (012)	3 (111) = (201).

Thus, the information sequence from Example 2 is recovered.

IV. CONSTRUCTION FOR k 6= qt

We will now generalize the technique described in the
previous section to sequences of any length, i.e. k 6= qt.

The idea is to use a subset of the (r′, q)-Gray code with an
appropriate length to encode the z indices that represent the
kq balancing sequences. Therefore, the cardinality of (r′, q)-
Gray code prefixes must be greater than that of the balancing
sequences, i.e. qr

′
> kq or r′ > logq k + 1.

However, the challenge is to find the appropriate subset
of (r′, q)-Gray code prefixes that can uniquely match the
kq balancing sequences, and still guarantee balancing when
combined with u and y.

A. (r′, q)-Gray code prefixes for q odd

When examining the random walk graph for Gray codes
with q odd, one notices that the random walk forms an odd
function around a specific point. Fig. 3 presents the (4, 3)-
Gray code random walk graph, with G being the intersection
point between the horizontal line, w(g) = 4, and the vertical
line, z = 40. The graph forms an odd function around this
point G. In general, for (r′, q)-Gray codes where q is odd, the
random walk of the Gray codes gives an odd function centered
around w(g) = βr′,q and z = b qr

′

2 c, where b·c represents the
floor function.

Lemma 1: The random walk graph of (r′, q)-Gray codes
where q is odd forms an odd function around the point G.

It was proved in [11] that any (r′, q)-Gray code, where q
is odd, is reflected. That is, the random walk graph of the
(r′, q)-Gray code forms an odd function centered around the
point G.

This implies that any subset of an (r′, q)-Gray code around
the center of its random walk graph, where the information
sequence is such that kq is odd (i.e. k is odd), always has an
average weight equal to βr′,q . As we need a unique subset
of Gray code sequences for any case, we choose kq elements
from the “middle” values of z ∈ [0, qr

′ − 1] and call it the
z-centered subset. The index for this subset is denoted by z′,
with z′ ∈ [z1, z2]. When kq is even (i.e. k is even), it is
not guaranteed that the subset of (r′, q)-Gray codes’ average
weight around the center equals exactly βr′,q . However, it will
be very close to it, with a rounded value that is equal to βr′,q .
We formalize these observations in the subsequent lemma.

Let G denote the subset of kq Gray code sequences that
are used to encode the index z′, let w(·) denote the average
weight of a set of sequences and let ‖·‖ denote rounding to
the nearest integer.

Lemma 2: For an (r′, q)-Gray code subset, G, where q is
odd and the z′-th codewords are chosen with z′ ∈ [z1, z2], the
following holds:

• if k is odd with z1 = b qr
′

2 c−b
kq
2 c and z2 = b qr

′

2 c+b
kq
2 c,

then w(G) = βr′,q ,

• if k is even with z1 = b qr
′

2 c−
kq
2 and z2 = b qr

′

2 c+
kq
2 −1,

then ‖w(G)‖ = βr′,q .

Proof: To simplify notation in this proof, we simply use
β to represent βr′,q throughout.

4

5

6

0 8 16 24 32 40 48 56

7

3

2

1

64 72 80

8

β4,3

z

w
(g
)

z = b qr
′

2
c

G

Fig. 3. (4, 3)-Gray code random walk graph

5

If k is odd, it follows directly from Lemma 1 that choosing
kq sequences (where kq is odd) from z = b qr

′

2 c − b
kq
2 c to

z = b qr
′

2 c + b
kq
2 c, centered around z = b qr

′

2 c, will result
in w(G) = β, since the random walk forms an odd function
around this point.

In cases where k is even, if z2 was chosen as b qr
′

2 c +
kq
2 ,

we would have exactly w(G) = β (using the same reasoning
as for the case where k is odd), as we use kq

2 elements to

the left of b qr
′

2 c and kq
2 elements to the right of it. However,

this would mean that kq + 1 elements are being used. Thus,
z2 = b qr

′

2 c+
kq
2 − 1 must be used. Let α be the weight of the

(z2 + 1)-th Gray code, then

w(G) = (kq + 1)β − α
kq

= β +
β − α
kq

.

The lowest possible value of α is αmin = 0, and its highest
possible value is αmax = k(q − 1). Thus,

β +
β − αmax

kq
≤ w(G) ≤ β +

β − αmin

kq

and with some manipulations it can be shown that

β

(
1−

2k
r′ − 1

kq

)
≤ w(G) ≤ β

(
1 +

1

kq

)
.

Finally, where q is odd, we have q ≥ 3, and rounding to the
nearest integer results in ‖w(G)‖ = β.

B. (r′, q)-Gray code prefixes for q even
For the encoding of sequences that make use of (r′, q)-Gray

code prefixes where q is even, a different approach is followed.
The subset of Gray code prefixes is obtained by placing a
sliding window of length kq over the random walk graph of
the (r′, q)-Gray code sequences, and shifting it until we obtain
a subset with an average weight value of βr′,q . Fig. 4 shows
the (6, 2)-Gray code random walk graph.

However, this process does not always guarantee a subset
of Gray code prefixes with an average weight value of exactly
βr′,q . Since we have flexibility in choosing u, we can choose
the average weight for the subset to be close to βr′,q , and
adjust u as necessary to obtain exact balancing.

Lemma 3: An (r′, q)-Gray code subset, G, where q is even,
can be chosen such that ‖w(G)‖ = βr′,q .

Proof: A similar reasoning as in the proof of Lemma 2,
where a symbol with weight α is repeatedly removed from the
set, can be used to find ‖w(G)‖.

1

2

3

4

5

6

0 8 16 24 32 40 48 56
z

w
(g
)

β6,2

z = qr
′

2

G

Fig. 4. (6, 2)-Gray code random walk graph

C. Encoding

Having presented all the required components, we now
propose our encoding algorithm. The length of the required
Gray code prefix is

r′ = dlogq ke+ 1, (1)

where d·e represents the ceiling function.
The cardinality of (r′, q)-Gray codes equals qr

′
. This im-

plies that qr
′−1 < kq < qr

′
. The encoding will make use of a

subset of kq Gray code sequences from the qr
′

available ones.
Theorem 1: Any q-ary sequence can be balanced by adding

(modulo q) an appropriate balancing sequence, bz , and pre-
fixing a redundant symbol, u, with a Gray code sequence, g,
taken from the subset of (r′, q)-Gray code prefixes.

Proof: Let U denote the set of possible symbols for u, i.e.
U = {0, 1, . . . , q − 1}, let G denote the subset of Gray code
sequences, and let Y denote the set of kq output sequences
after the kq balancing sequences are added to the information
sequence.

It is easy to see that

w(U) = (q − 1)

2
.

From Lemmas 2 and 3, the subset of (r′, q)-Gray code prefixes
that corresponds to the kq balancing sequences is chosen such
that

‖w(G)‖ = r′(q − 1)

2
= βr′,q.

It was proved in [6] that the average weight of the kq
sequences, y = x⊕q bz , is such that

w(Y) = k(q − 1)

2
= βk,q.

By considering c = (u|g|y), with length n = k+ r′+1, as
the overall sequence to be transmitted, it follows that:

w(U) + ‖w(G)‖+ w(Y) = (q − 1)

2
+
r′(q − 1)

2
+
k(q − 1)

2

=
(k + r′ + 1)(q − 1)

2
= βn,q.

This implies that there is at least one c for which w(c) ≤
βn,q and at least one other c for which w(c) ≥ βn,q . Taking
the random walk’s increases into account, as well as the
flexibility in choosing u, we can conclude that there is at least
one c such that w(c) = βn,q .

The encoding algorithm consists of the following steps:
1) Obtain the correct Gray code length r′ by using (1).

Then find the corresponding subset of (r′, q)-Gray code
prefixes, z′ ∈ [z1, z2], using the methods discussed in
Section IV-A where q is odd and in Section IV-B where
q is even.

2) Incrementing through z, determine the balancing se-
quences, bz , and add them to the information sequence
x to obtain outputs y.

3) For each increment of z, append every y with the corre-
sponding Gray code prefix g following the lexicographic

6

order, with g obtained from the q-ary representations of
the z′ indices.

4) Finally, set u = βn,q−w(y)−w(g) if u ∈ {0, 1, . . . , q−
1}, otherwise set u = 0.

We illustrate the encoding algorithm with the following two
examples, one for an odd value of q and the other for an even
value of q.

Example 4: Consider encoding the ternary sequence,
(21120), of length 5. Since r′ = dlog3 5e+1 = 3, we require
(3, 3)-Gray code prefixes to encode the z′ indices. The overall
sequence length is n = k+r′+1 = 9, and the balancing value
is β9,3 = 9. The cardinality of the (3, 3)-Gray code is 27 and
the required z-centered subset of prefixes containing kq = 15
elements is such that z′ ∈ [5, 19].

The following process shows the possible sequences ob-
tained. Again the underlined symbols represent the appended
prefix, the bold underlined symbol is u, and the bold weights
indicate balancing.

z z′ x ⊕q bz = y c w(c)
0 5 (21120) ⊕3 (00000) = (21120) (201021120) 9
1 6 (21120) ⊕3 (10000) = (01120) (002001120) 6
2 7 (21120) ⊕3 (11000) = (02120) (102102120) 9
3 8 (21120) ⊕3 (11100) = (02220) (002202220) 10
4 9 (21120) ⊕3 (11110) = (02200) (012202200) 9
5 10 (21120) ⊕3 (11111) = (02201) (012102201) 9
6 11 (21120) ⊕3 (21111) = (12201) (012012201) 9
7 12 (21120) ⊕3 (22111) = (10201) (011010201) 6
8 13 (21120) ⊕3 (22211) = (10001) (011110001) 5
9 14 (21120) ⊕3 (22221) = (10011) (211210011) 9
10 15 (21120) ⊕3 (22222) = (10012) (210210012) 9
11 16 (21120) ⊕3 (02222) = (20012) (210120012) 9
12 17 (21120) ⊕3 (00222) = (21012) (210021012) 9
13 18 (21120) ⊕3 (00022) = (21112) (020021112) 9
14 19 (21120) ⊕3 (00002) = (21122) (020121122) 11

Example 5: Consider encoding the 4-ary sequence, (312),
of length 3. As before, r′ = dlog4 3e + 1 = 2, requiring
(2, 4)-Gray code prefixes to be used. The overall sequence
length is n = 6, and the balancing value is β6,4 = 9. The
cardinality of the (2, 4)-Gray code equals 16. The z′-subset
is found by employing a sliding window of length kq = 12
over the random walk graph of the (2, 4)-Gray code prefixes,
shown in Fig. 5. A suitable subset is found where z1 = 1 and
z2 = 12, with an average weight value of 3, which equals
β2,4 = 3.

1

2

3

4

5

6

0
z

w
(g
)

β2,4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

z1 = 1 z2 = 12

Fig. 5. (2, 4)-Gray code random walk graph with chosen subset

The encoding process for the 4-ary sequence is shown next.

z z′ x ⊕q bz = y c w(c)
0 1 (312) ⊕4 (000) = (312) (201312) 9
1 2 (312) ⊕4 (100) = (012) (002012) 5
2 3 (312) ⊕4 (110) = (022) (203022) 9
3 4 (312) ⊕4 (111) = (023) (013023) 9
4 5 (312) ⊕4 (211) = (123) (012123) 9
5 6 (312) ⊕4 (221) = (133) (011133) 9
6 7 (312) ⊕4 (222) = (130) (010130) 5
7 8 (312) ⊕4 (322) = (230) (220230) 9
8 9 (312) ⊕4 (332) = (200) (021200) 5
9 10 (312) ⊕4 (333) = (201) (222201) 9
10 11 (312) ⊕4 (033) = (301) (023301) 9
11 12 (312) ⊕4 (003) = (311) (033311) 11

D. Decoding
Fig. 6 presents the decoding process of our proposed

scheme, for any q-ary information sequence. The decoding
algorithm consists of the following steps:

1) The redundant symbol u is dropped, then the following
r′ symbols are extracted as the Gray code prefix, g,
converted to d and used to find z′.

2) From z′, the corresponding z index is computed as z =
z′ − z1.

3) z is used to find the parameters s and p, then bz is
derived.

4) Finally, the original sequence is recovered through x =
y 	q bz .

Example 6: Consider the decoding of the sequence,
(2100121200) (the underlined symbols are the prefix and the
bold underlined symbol is u), where n = 10 and q = 3, that
was encoded using (3, 3)-Gray code prefixes.

The first symbol u = 2 is dropped, then the Gray code
prefix is extracted as (100), which corresponds to z′ = 17,
and the z′-subset of (3, 3)-Gray code prefixes is z′ ∈ [4, 21],
thus z = 13. This can be seen from Table III, where the
decoding of all (3, 3)-Gray codes is shown.

This implies that s = 2 and p = 1, resulting in b13 =
(022222). Finally, the original information sequence is ex-
tracted as x = y	q bz = (121200)	3 (022222) = (102011).

V. REDUNDANCY AND COMPLEXITY

In this section we compare the redundancy and complexity
of our proposed scheme with some existing ones.

u g bz
length r′

length n = k + r′ + 1

x

y

length k

length 1 length klength k

Received sequence

Information sequence
⇓

Get z′

Get d

Get z

Get s, p

q

Fig. 6. Decoding process for any q-ary information sequence

7

TABLE III
DECODING OF (3, 3)-GRAY CODES FOR TERNARY SEQUENCES WITH

k = 6 AND z′ ∈ [4, 21]

Gray code (g) Sequence (d) z′ z s, p bz
(000) (000) 0 — — —
(001) (001) 1 — — —
(002) (002) 2 — — —
(012) (010) 3 — — —
(011) (011) 4 0 0, 0 (000000)
(010) (012) 5 1 0, 1 (100000)
(020) (020) 6 2 0, 2 (110000)
(021) (021) 7 3 0, 3 (111000)
(022) (022) 8 4 0, 4 (111100)
(122) (100) 9 5 0, 5 (111110)
(121) (101) 10 6 1, 0 (111111)
(120) (102) 11 7 1, 1 (211111)
(110) (110) 12 8 1, 2 (221111)
(111) (111) 13 9 1, 3 (222111)
(112) (112) 14 10 1, 4 (222211)
(102) (120) 15 11 1, 5 (222221)
(101) (121) 16 12 2, 0 (222222)
(100) (122) 17 13 2, 1 (022222)
(200) (200) 18 14 2, 2 (002222)
(201) (201) 19 15 2, 3 (000222)
(202) (202) 20 16 2, 4 (000022)
(212) (210) 21 17 2, 5 (000002)
(211) (211) 22 — — —
(210) (212) 23 — — —
(220) (220) 24 — — —
(221) (221) 25 — — —
(222) (222) 26 — — —

A. Redundancy

Let Fk
q denote the cardinality of the full set of balanced

q-ary sequences of length k. According to [15],

Fk
q = qk

√
6

πr(q2 − 1)

(
1 +O

(
1

k

))
.

The information sequence length, k, in terms of the redun-
dancy, r, for the construction in [6] is

k ≤ F
r
q

q
≈ qr−1

√
6

πr(q2 − 1)
. (2)

In [4], two schemes are presented for k information sym-
bols, where one satisfies the bound

k ≤ qr − 1

q − 1
, (3)

and the other one satisfies

k ≤ 2
qr − 1

q − 1
− r. (4)

The construction in [5] presents the information sequence
length in terms of the redundancy as

k ≤ 1

1− 2γ

qr − 1

q − 1
− a1(q, γ)r − a2(q, γ),

with γ ∈ [0, 12), where a1 and a2 are scalars depending on q
and γ. If the compression aspect is ignored, the information
sequence length is the same as in (4).

The prefixless scheme presented in [7] has information
sequence length that satisfies

k ≤ qr−1 − r. (5)

101

106

1011

1016

1021

In
fo
rm

a
ti
o
n
le
n
g
th
,
k

3 4 5 6 7 8 9 10 11 12
Redundancy, r

q = 128

q = 16

q = 3

Swart and Weber (2)

Capocelli et al. 1 (3)

Capocelli et al. 2 (4)

Swart and Immink (5)

Pelusi et al. 1 (6)

New construction (7)

Fig. 7. Comparison of information sequence length vs. redundancy for various
schemes

Two constructions with parallel decoding are presented in
[8]. The first construction, where the prefixes are also balanced
as in [6], has its information length as a function of r as

k ≤ F
r
q − {q mod 2 + [(q − 1)k] mod 2}

q − 1
. (6)

The second construction, where the prefixes need not be
balanced, is a refinement of the first and has an information
length the same as (3).

As presented in Section IV, the redundancy of our new
construction is given by r = dlogq ke + 2. Therefore, the
information sequence length in terms of redundancy is

k = qr−2. (7)

Fig. 7 presents a comparison of the information length,
k, versus the redundancy, r, for various constructions as
discussed above. For all q, our construction is only comparable
to the information lengths from (2) and (6), although it does
slightly improve on both.

However, the trade-off is that as the redundancy becomes
greater, the complexity of our scheme tends to remain constant,
as we see in the next section.

B. Complexity

We estimate the complexity of our proposed scheme and
compare it to that of existing algorithms.

The techniques in [4] and [5] both require O(qk logq k)
digit operations for the encoding and decoding. The method
from [6] takes O(qk logq k) digit operations for the encoding
and O(1) digit operations for the decoding. A refined design
of the parallel decoding method is presented in [8], where
the complexity equals O(k√logq k) in the encoding case and
O(1) digit operations in the decoding process.

The following pseudo code presents the steps of our encod-
ing method:

Input: Information sequence, x of length k.
Output: Encoded sequence, y of length n=k+r.

8

for i=0:kq;
for j=z1:z2;

y(i) = [u | g(j) | x + b(s,p)(i)];
If (w(y(i))==beta)

// Testing for balanced sequence.
exit();
//Terminate the program.

end;
end;

In the above code, i is the iterator through the kq output
sequences and also through the balancing sequences, while
j is the iterator through the subset of Gray code sequences,
ranging from z1 = b qr

′

2 c − b
kq
2 c to z2 = z1 + kq − 1. The

symbol ‘|’ denotes the concatenation.
Our encoding scheme is based on the construction in [6]

that has an encoding complexity of O(qk logq k), and it takes
O(logq k) to encode Gray code prefixes as presented in [10].
Therefore the encoding of our algorithm requires O(qk logq k)
digit operations.

The decoding process consists of very simple steps: the
recovery of the index z′ from the Gray code requiresO(logq k)
digit operations [10]. After obtaining the index z′ from the
Gray code prefix, the balancing sequence bz is found and
then the original information sequence is recovered through
the operation, y = x	qbz , which can be performed in parallel,
resulting in a complexity of O(1). Therefore the overall
complexity for the decoding is O(logq k) digit operations.

Table IV summarizes the complexities for various construc-
tions, where the orders of digit operations it takes to complete
the encoding/decoding are compared.

VI. CONCLUSION

An efficient construction has been proposed for balancing
non-binary information sequences. By making use of Gray
codes for the prefix, no lookup tables are used, only linear
operations are needed for the balancing and the Gray code
implementation. The encoding scheme has a complexity of
O(qk logq k) digit operations. For the decoding process, once
the Gray code prefix is decoded using O(logq k) digit oper-
ations, the balancing sequence is determined and the rest of
the decoding process is performed in parallel. This makes the
decoding fast and efficient.

Possible future research directions include finding a math-
ematical procedure to determine the subset of Gray code
sequences for q even, given that it was found manually,

TABLE IV
COMPLEXITIES OF VARIOUS SCHEMES (ORDERS ARE IN DIGIT

OPERATIONS)

Algorithm Encoding order Decoding order

[5] O(qk logq k) O(qk logq k)

[4] O(qk logq k) O(qk logq k)

[6] O(qk logq k) O(1)

[8] O(k
√

logq k) O(1)

Our scheme O(qk logq k) O(logq k)

by using a sliding window over the random walk graph.
Practically, the redundant symbol u only needs to take on
values of zero (when the random walk falls on the balancing
value) or one (when the random walk falls just below the
balancing value). Thus, unnecessary redundancy is contained
in u, especially for large values of q. However, the flexibility
over u increases the occurrences of balanced sequences. These
additional balanced outputs could potentially be used to send
auxiliary data that could reduce the redundancy. This property
was proved for the binary case [16]. Additionally, given that
the random walk graph passes through other weights in the
region of the balancing value, the scheme can be extended to
the construction of constant weight sequences with arbitrary
weights.

REFERENCES

[1] K. A. S. Immink, Codes for Mass Data Storage Systems, 2nd ed.,
Shannon Foundation Publishers, Eindhoven, The Netherlands, 2004.

[2] D. E. Knuth, “Efficient balanced codes,” IEEE Trans. Inform. Theory,
vol. 32, no. 1, pp. 51–53, Jan. 1986.

[3] S. Al-Bassam, “Balanced codes,” Ph.D. dissertation, Oregon State Uni-
versity, USA, Jan. 1990.

[4] R. M. Capocelli, L. Gargano and U. Vaccaro, “Efficient q-ary immutable
codes,” Discrete Appl. Math., vol. 33, no. 1–3, pp. 25–41, Nov. 1991.

[5] L. G. Tallini and U. Vaccaro, “Efficient m-ary immutable codes,”
Discrete Appl. Math., vol. 92, no. 1, pp. 17–56, Mar. 1999.

[6] T. G. Swart and J. H. Weber, “Efficient balancing of q-ary sequences
with parallel decoding,” in Proc. IEEE Int. Symp. Inform. Theory, Seoul,
Korea, 28 Jun.–3 Jul. 2009, pp. 1564–1568.

[7] T. G. Swart and K. A. S. Immink, “Prefixless q-ary balanced codes with
ECC,” in Proc. IEEE Inform. Theory Workshop, Seville, Spain, Sep. 9–
13, 2013.

[8] D. Pelusi, S. Elmougy, L. G. Tallini and B. Bose, “m-ary balanced codes
with parallel decoding,” IEEE Trans. Inform. Theory, vol. 61, no. 6, pp.
3251–3264, Jun. 2015.

[9] F. Gray, “Pulse code communication,” U. S. Patent 2632058, Mar. 1953.
[10] D.-J. Guan, “Generalized Gray codes with applications,” in Proc. Nat.

Sci. Council, Republic of China, Part A, vol. 22, no. 6, Apr. 1998, pp.
841–848.

[11] M. C. Er, “On generating the N-ary reflected Gray codes,” IEEE Trans.
Comput., vol. 33, no. 8, pp. 739–741, Aug. 1984.

[12] M. M. Bae and B. Bose, “On independent set of Lee distance Gray
codes,” Proc. IEEE Int. Symp. Inform. Theory, Ulm, Germany, Jun. 29–
Jul. 4, 1997, p. 503.

[13] M. M. Bae and B. Bose, “Edge disjoint Hamiltonian cycles in k-ary
n-cubes and hypercubes,” IEEE Trans. Comput., vol. 52, no. 10, pp.
1272–1284, Oct. 2003.

[14] E. N. Mambou, and T. G. Swart, “Encoding and decoding of balanced
q-ary sequences using a Gray code prefix,” in Proc. IEEE Int. Symp.
Inform. Theory, Barcelona, Spain, Jul. 10–15, 2016, pp. 380–384.

[15] Z. Star, “An asymptotic formula in the theory of compositions,” Aequa-
tiones Mathematicae, vol. 13, no. 1, pp. 279–284, Feb. 1975.

[16] J. H. Weber and K. A. S. Immink, “Knuth’s balancing of codewords
revisited,” IEEE Trans. Inform. Theory, vol. 56, no. 4, pp. 1673–1679,
Apr. 2010.

Elie N. Mambou received the B.Eng. electrical and electronic engineering
and B.Sc. information technology degrees in 2014 and the M.Eng. electrical
and electronic engineering (cum laude) in 2016 from the University of
Johannesburg, South Africa.

He is currently a member of the UJ Center for Telecommunications while
studying towards his Ph.D. degree. In 2017, he was awarded the chancellor’s
medal award for most outstanding masters degree graduate and the University
of Johannesburg Golden Key International Society chapter award. His research
interests include encoding/decoding, optimization, error correction and error
detection algorithms for constant weight codes, LDPC codes, turbo codes and
polar codes.

9

Theo G. Swart (M’05-SM’14) received the B.Eng. and M.Eng. degrees (both
cum laude) in electrical and electronic engineering from the Rand Afrikaans
University, South Africa, in 1999 and 2001, respectively, and the D.Eng.
degree from the University of Johannesburg, South Africa, in 2006.

He is an associate professor in the Department of Electrical and Electronic
Engineering Science and a member of the UJ Center for Telecommunications.
He is the chair of the IEEE South Africa Chapter on Information Theory.
His research interests include digital communications, error-correction coding,
constrained coding and power-line communications.

