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Abstract

Variational Bayesian inference and (collapsed)
Gibbs sampling are the two important classes
of inference algorithms for Bayesian networks.
Both have their advantages and disadvantages:
collapsed Gibbs sampling is unbiased but is also
inefficient for large count values and requires av-
eraging over many samples to reduce variance.
On the other hand, variational Bayesian inference
is efficient and accurate for large count values
but suffers from bias for small counts. We pro-
pose a hybrid algorithm that combines the best of
both worlds: it samples very small counts and ap-
plies variational updates to large counts. This hy-
bridization is shown to significantly improve test-
set perplexity relative to variational inference at
no computational cost.

1 Introduction

Bayesian networks (BNs) represent an important modeling
tool in the field of artificial intelligence and machine learn-
ing (Heckerman, 1999). In particular the subclass of BNs
known as “topic models” is receiving increasing attention
due to its success in modeling text as a bag-of-words and
images as a bag-of-features (Blei et al., 2003). Unlike most
applications of Bayesian networks, we will be interested
in “Bayesian Bayesian networks” where we also treat the
conditional probability tables (CPTs) as random variables
(RVs). The key computational challenge for these mod-
els is inference, namely estimating the posterior distribu-
tion over both parameters and hidden variables, and ulti-
mately estimating predictive probabilities and the marginal
log-likelihood (or evidence).

It has been argued theoretically (Castella & Robert, 1996)
and observed empirically in topic models (Griffiths &
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Steyvers, 2002; Buntine, 2002) that Gibbs sampling in a
collapsed state space where the CPTs have been marginal-
ized out leads to efficient inference. It is expected that
this also holds more generally true for discrete Bayesian
networks. Variational Bayesian (VB) approximations have
also been applied to topic models (Blei et al., 2003) but pre-
dictive probability results have consistently been inferior
to collapsed Gibbs sampling (CGS). More recently, varia-
tional approximations have been extended to operate in the
same collapsed state space of CGS (Teh et al., 2006; Teh
et al., 2008). These collapsed variational Bayesian (CVB)
inference algorithms improve upon VB but still lag behind
CGS.

In this paper we will propose a hybrid inference scheme
that combines CGS with VB approximations. The idea
is to split all data-cases into two sets, the ones that will
be treated variationally and the ones that will be treated
through sampling. The two approximations interact in a
consistent manner in the sense that both VB and CGS up-
dates are derived from a single objective function. The ad-
vantage of the VB updates is that they scale better com-
putationally. We show empirically that hybrid algorithms
achieve almost the same accuracy as CGS because they are
only applied where they are expected to work well. The
algorithm can be seen to trade off bias with variance in a
flexible and tunable manner.

2 Topic Models as Bayesian Networks

We will assume that all visible and hidden variables are dis-
crete. However, we expect the results to hold more gener-
ally for models in the exponentially family. We will first de-
velop the theory for latent Dirichlet allocation (LDA) (Blei
et al., 2003) and later generalize the results to Bayesian
networks. To facilitate the transition from LDA to BNs we
will treat LDA in a slightly unconventional way by using a
single index i that runs over all words in all documents (in
contrast to the index ij which is conventional for LDA),
see Fig.1. LDA is equivalent to the Bayesian network
di → zi → xi, where nodes xi =w (word-type) and di =j



(document label) have been observed. The topic variable is
indicated by zi = k. In the following we will also use the
indicator variables Xiw = I[xi = w], Dij = I[di = j] and
Zik = I[zi =k].
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Figure 1: LDA depicted as a standard Bayesian network. N runs
over all word-tokens and for each token, both the word-type x and
the document label j are observed. The topic variable z is hidden.

The joint distribution is given as the product of the prob-
ability of each variable given its parents, p(xi = w|zi =
k) = φwk, p(zi = k|di = j) = θkj and p(di = j) = πj .
The last term decouples from the rest of the model because
di is always observed. For each of these CPTs we place a
Dirichlet prior, φ:,k∼D(β) and θ:,j∼D(α:). Note that we
have chosen a scalar strength parameter β (i.e. a symmetric
Dirichlet prior) for φ but vector valued strength parameters
α: = {αk} for θ.

Next we integrate out the CPTs. Since the Dirichlet priors
are conjugate to the discrete conditional probabilities of the
Bayesian network, this is possible analytically, resulting in
the following expression,

p({zi, xi}|{di}) ∝
∏

wk Γ(Nwk+β)∏
k Γ(Nk+Wβ)

∏

jk

Γ(Nkj +αk) (1)

where W is the total number of different word types (the
vocabulary size), and the counts are defined as follows:

Nwkj =
∑

i

XiwZikDij , (2)

Nwk =
∑

j Nwkj , Nkj =
∑

w Nwkj and Nk =
∑

wj Nwkj .
Note that Nwkj are subject to the observational constraints∑

k Nwkj =N̂wj given by the training corpus.

3 Standard Variational Bayes

In the variational Bayesian framework we approximate the
posterior distribution with a factorized one:

p({zi, φ, θ}|{xi, di}) ≈ (3)
∏

k

Q(φ:,k|ξ:,k)
∏

j

Q(θ:,j |ζ:,j)
∏

i

Q(zi)

Solving for Q(φ:,k) and Q(θ:,j), we find that they are
Dirichlet as well, with parameters,

ξwk = β + N̄wk, ζkj = αk + N̄kj (4)

where N̄wk =
∑

i QikXiw, N̄kj =
∑

i QikDij and Qik =
Q(zi = k). After plugging these updates back into the up-
date for Q(zi) we find,

Qik ∝ exp(ψ(N̄xik + β))
exp(ψ(N̄k + Wβ))

exp(ψ(N̄kdi
+ αk)) (5)

where ψ(·) = ∂
∂x log Γ(x) is the derivative of the log-

gamma function.

For future reference we shall now derive the same result in
a different manner to which we shall refer as ”standard vari-
ational Bayes” (SVB) in the following. We first marginal-
ize out the CPTs and consider a variational lower bound
on the evidence with a variational distribution Q({zi})
(without assuming factorization). Lemma 1 in the ap-
pendix shows that the expression for the log-probability
log p({zi, xi}|{di}) is a convex function of {Nwjk}. This
allows us to move the average over Q({zi}) inside the ex-
pression for the log-probability, at the cost of introducing
a further lower bound on the evidence. The resulting ex-
pression is now precisely the logarithm of Eqn.1 with the
counts Nwkj replaced by average counts N̄wkj ,

N̄wkj = E[Nwkj ]Q = N̂wjQk|wj (6)

in terms of which we define

N̄wk = E[Nwk]Q =
∑

j

N̂wjQk|wj (7)

N̄kj = E[Nkj ]Q =
∑
w

N̂wjQk|wj (8)

N̄k = E[Nk]Q =
∑

wj

N̂wjQk|wj (9)

where N̂wj are the observed word-document counts. To
understand the definition of Qk|wj we note that Q(zi) for
all i’s with the same values of xi = w, di = j are equal, so
without loss of generality we can use a single set of param-
eters Qk|wj = Q(zi = k) for all data-cases i which share
the same observed labels w, j.



The final step is to variationally bound this expression once
more, using again the fact that the sum of log-gamma fac-
tors is a convex function,

F (N̄∗
wkj) ≥ F (N̄wjk)+

∑

wkj

∇wkjF (N̄wkj)(N̄∗
wjk−N̄wkj)

(10)
where N̄wkj is held fixed. Recalling definition 6 and taking
derivatives w.r.t Qk|wj gives the following update,

Qk|wj ∝
exp(ψ(N̄wk + β))
exp(ψ(N̄k + Wβ))

exp(ψ(N̄jk + αk)) (11)

The factorization follows directly from the update and is a
result of Jensen’s inequality. We can alternatively arrive at
Eqn.11 without assuming the second bound of Eqn.10 by
assuming that Q({zi}) factorizes and equating its deriva-
tives to 0. However, this does not guarantee convergence
as Qk|wj now also appears on the RHS of Eqn.11. Note
that Eqn.11 is equivalent but looks subtly different from
Eqn.5 in that it avoids updating variational distributions for
data-cases i with the same labels w, j. As a result it scales
more favorably as the number of unique word-document
pairs in the training corpus rather than the total number of
word tokens.

4 Collapsed Gibbs Sampling

An alternative to variational inference is collapsed Gibbs
sampling where one samples each zi in turn, given the val-
ues of the remaining z¬i. The conditional probabilities are
easily calculated from Eqn.1,

p(zi =k|z¬i,x,d) ∝ (N¬i
wk+β)

(N¬i
k +Wβ)

(N¬i
jk +αk) (12)

where the superscript ¬i denotes that data-case i has been
removed from the count and we have assumed that xi = w
and di = j.

Given samples at equilibrium one can obtain unbiased es-
timates of quantities of interest. The trade-off is that one
needs to average over many samples to reduce the effects of
sampling noise. Computationally, CGS scales as O(NK)
in time andO(N) in space, where N is the total number of
words in the corpus and K is the number of topics. This
in contrast to the SVB updates in the previous section for
which both time and space scale as O(MK) with M the
number of unique word-document pairs.

In the following section we will derive a principled hy-
bridization of SVB and CGS that can be viewed as a tun-
able trade-off between bias, variance and computational ef-
ficiency.

5 The Hybrid SVB/CGS Algorithm

The high level justification for a hybrid algorithm is the
intuition that the evidence only depends on count arrays,

Nwk, Nkj and Nk, which are sums of assignment variables
Nwkj =

∑
i XiwZikDij where only Z is random. Also the

Rao-Blackwellised estimate of the predictive distribution is
a function of these counts,

p(x∗ = w|{xi, zi, di}, d∗ = j) =
∑

k

Nwk + β

Nk + Wβ

Nkj + αk

Nj +
∑

k αk
(13)

The central limit theorem tells us that sums of random vari-
ables tend to concentrate and behave like a normal distri-
bution under certain conditions. Moreover, the variance/co-
variance of the predictive distribution is expected to scale
with 1/n, where n is the number of data-cases that con-
tribute to the sum. We expect that variational approxima-
tions work well for large counts.

These insights make it natural to split the dataset into two
subsets, one subset SVB to which we will apply the VB ap-
proximation and the complement SCG to which we shall ap-
ply collapsed Gibbs sampling. In practice we have chosen
these sets to be:

SVB = {i|N̂xi,di > r}, SCG = {i|N̂xi,di ≤ r} (14)

In the experiments below we have chosen r = 1. Al-
though we do not expect that central limit tendencies ap-
ply to counts smaller than about 10, we have chosen this
extreme setting to convey an important conclusion, namely
that the counts with value N̂wj = 1 already explain much
of the difference between VB and CGS algorithms.

We will assume the following factorization for the varia-
tional posterior, Q = QVBQCG. Moreover, in the derivation
below it will follow that QVB becomes factorized as well,
i.e. QVB =

∏
i QVB

i .

The evidence of the collapsed distribution under these as-
sumptions reads,

E = H(QVB) +H(QCG)+ (15)
∑

zVB,zCG

Q(zVB)Q(zCG) log P (zVB, zCG,x|d)

Analogous to section 3 we apply Jensen’s inequality in
order to bring the average over QVB inside the con-
vex function log P (zVB, zCG,x), resulting in an expres-
sion which we shall denote as log P (QVB, zCG,x|d) for
obvious reasons. The log-probability only depends on
counts, so by bringing the average inside we find that
log P (QVB, zCG,x,d) depends on the quantities,

E[Nwkj ]QVB = N̂VB
wjQ

VB
k|wj +

∑

i∈SCG

zikxiwdij (16)

where N̂VB
wj are the observed counts for word-type w and

document j which are in the set SVB. In terms of this we



further need,

E[Nwk]QVB =
∑

j

N̂VB
wjQ

VB
k|wj +

∑

i∈SCG

zikxiw (17)

E[Njk]QVB =
∑
w

N̂VB
wjQ

VB
k|wj +

∑

i∈SCG

zikdij (18)

E[Nk]QVB =
∑

wj

N̂VB
wjQ

VB
k|wj +

∑

i∈SCG

zik (19)

These expressions elegantly split the counts into a part de-
scribed through a non-random mean field plus a sum over
the remaining random variables that represent the fluctua-
tions.

Thus, after applying Jensen’s inequality we end up with the
following lower bound on the evidence,

B = H(QVB) +H(QCG)+ (20)
∑

zCG

Q(zCG) log P (QVB, zCG,x|d) ≤ E

Now let’s assume we have drawn a sample from QCG,
which we will denote with zCG

s . Furthermore, denote
with N̄s

wjk the value of E[Nwjk]QVB evaluated at zCG
s (see

Eqn.16). Given this sample we bound again through lin-
earization (see Eqn.10) which results in the following up-
date for QVB,

QVB
k|wj ∝

exp(ψ(N̄s
wk + β))

exp(ψ(N̄s
k + Wβ))

exp(ψ(N̄s
jk + αk)) (21)

In case we decide to use more than 1 sample we replace the
expressions ψ(·) → 〈ψ(·)〉, where the brackets 〈·〉 denote
taking the sample average.

The update for QCG will be sample-based. We first compute
the variational update for QCG,

QCG ∝ P (QVB, zCG,x|d) (22)

and subsequently draw samples from it. On closer inspec-
tion we see that this distribution is identical to the col-
lapsed distribution p(x, z|d), but over fewer data-cases,
namely those in the set SCG, and with new effective hyper-
parameters given by,

α′jk = αk +
∑
w

N̂VB
wjQ

VB
k|wj (23)

β′wk = β +
∑

j

N̂VB
wjQ

VB
k|wj (24)

Hence, we can apply standard collapsed Gibbs sampling to
draw from QCG,

p(zCG
i = k|zCG

¬i,x,d) ∝ (N̄¬i,s
wk + β)

(N̄¬i,s
k + Wβ)

(N̄¬i,s
jk + αk)

(25)

These updates converge in expectation and stochastically
maximize the expression for the bound on the evidence. In
theory one should draw infinitely many samples from QCG

to guarantee convergence. In practice however we have ob-
tained very good results with drawing only a single sample
before proceeding to the VB update.

It is also possible to infer the hyper-parameters {αk, β} by
either using sampling (Teh et al., 2004) or maximization
(Minka, 2000). We refer to those papers for further details.

5.1 Extension To Collapsed Variational LDA

In (Teh et al., 2006) an improved variational approxima-
tion was proposed that operates in the same collapsed space
as collapsed Gibbs sampling. This algorithm uses a fac-
torized distribution QCVB =

∏
i Q(zi) but does not move

this inside the log-probability as we did for SVB. Instead,
it evaluates the necessary averages in the updates by as-
suming that the counts behave approximately normal and
using a second order Taylor expansion around the mean.
It was shown that including this second order information
improves the standard VB approximation considerably.

This algorithm is also straightforwardly hybridized with
collapsed Gibbs sampling by simply replacing the SVB up-
dates with CVB updates in the hybrid SVB/CGS algorithm
and using the same definitions for the counts as in Eqn.16.
We call this algorithm CVB/CGS.

6 Extension to Bayesian Networks

The extension to collapsed Bayesian networks is relatively
straightforward. First let’s generalize SVB to Bayes nets.
The derivation which includes variational distributions for
the CPTs can be found in (Beal, 2003). We follow an alter-
native derivation that facilitates the transition to the hybrid
SVB/CGS algorithm. We first collapse the state space by
marginalizing out the CPTs. This results in an expression
for the evidence that consists of products of factors, where
each factor is a ratio of gamma-functions and the factors
follow the structure of the original Bayes net. For instance,
consider a hidden variable z which can assume state values
k with two parents u, v which take values l, m respectively,
see Fig.2. The factor associated with this family that will
appear in the joint collapsed probability distribution of the
BN is given by

F ({zi, ui, vi}) = (26)

∏

lm

[
Γ(

∑
k αk)

Γ(Nlm +
∑

k αk)

∏

k

[
Γ(Nklm + αk)

Γ(αk)

]]

The complete joint (collapsed) probability distribution is
given by a product of such factors, one for each family in
the BN. This implies that the collapsed distribution inherits
the graphical structure of the original BN, in particular its



),|( vuz

�� ���� �
Figure 2: Family inside a BN consisting of two parents and one
child.

treewidth, implying that collapsed inference using SVB is
equally expensive as ordinary inference (for given CPTs)
in the original BN.

Next, we move the average over the variational distribution
Q({zi}) inside the gamma-factors. This again produces a
bound on the evidence. We then linearize the log-gamma
factors around the current value of Q. Ignoring constant
factors this results in the following terms for the family
above,

G(Q,Q∗) = terms for other families+ (27)

∑

klm

(
ψ(N̄klm + αk)− ψ(N̄lm +

∑

k

αk)

)
N̄∗

klm

We recall again that N̄klm =
∑

w.. N̂w..Qklm|w.. where
w.. represents all observed labels and Qklm|w.. is the pos-
terior marginal distribution over the variables z, u, v given
observations.

All of these factors are local in the cliques of the original
Bayes net. Hence, the update for Q becomes proportional
to the product of local factors of the form,

Fklm =
exp(ψ(N̄klm + αk))

exp(ψ(N̄lm +
∑

k αk))
(28)

As a result we can recompute new values for the local
posterior marginals by running belief propagation over
the junction tree associated with the original BN. Since
Qklm|w.. depends on w.., this has to be done for every com-
bination of observed labels that has been observed at least
once in the data (i.e. N̂w.. > 0). It’s interesting that the al-
gorithm can thus be interpreted as an iterative belief prop-
agation algorithm on a temporary graphical model where
the potentials change from one iteration to the next. It
bears a strong resemblance with iterative proportional fit-
ting in which scaling updates enforce the constraints and

alternate with message passing. In this interpretation, one
could view the relations

∑
klm Nklm|w.. = N̂w.. (which

are equivalent to normalization of the Qklm|w..) to be the
constraints.

An alternative to VB is collapsed Gibbs sampling. Here
one updates all hidden variables for a single data-item. One
first removes the data-case from the pool and computes the
expression for p(zi|z¬i,x,d) over all hidden variables z in
the Bayes net. This expression also factorizes according to
the structure of the BN but the factors are now given by,

F ′klm =
N¬i

klm + αk

N¬i
lm +

∑
k αk

(29)

One can draw samples by starting out at the leafs of the
junction tree and computing distributions for the current
node conditioned on upstream variables but marginaliz-
ing over all downstream variables. Given these variables
we can then run an ancestral sampling pass outwards,
back to the leaf nodes. This algorithm is an extension
of the forward-filtering-backwards-sampling (FFBS) algo-
rithm proposed in (Scott, 2002) for HMMs.

The derivation for the hybrid algorithm goes along similar
lines as for LDA. We split all data-cases into two subsets,
SVB and SCG. We use Jensen’s inequality to move the varia-
tional distribution QVB inside the log-gamma functions. Fi-
nally, we derive updates for QVB through the linearization
trick. The final algorithm thus rotates over all data-cases,
running either BP on the associated junction tree if the data-
case is in SVB (updating the QVB for all families of the BNs)
or the FFBS algorithm if the data-case is in SCG. The ex-
pressions for the counts are always the analogs of those in
Eqn.16.

7 Experiments

We report results on two datasets: 1) “KOS”, which is har-
vested from a lefty blog site “www.dailykos.com”1 and 2)
“NIPS” which is a corpus of 2,484 scientific papers from
the proceedings of NIPS2. KOS has J = 3430 documents,
a vocabulary size of W = 6909, a total of N = 467714
words, and M = 360664 unique word-document pairs.
NIPS has J = 1740, W = 12419, N = 2166029 and
M = 836644. We used K = 10 for KOS and K = 40 for
NIPS and set αk = β = .1 for both datasets.

In all sets of experiments, we withheld a random 10% of
the words in the corpus for testing, while training on the
remaining 90%. We compared a variety of algorithms: col-
lapsed Gibbs sampling (CGS), standard VB (SVB), col-
lapsed VB (CVB), as well as two hybrid algorithms: a hy-
brid of standard VB and CGS (SVB/CGS) as described in

1Downloadable from http://yarra.ics.uci.edu/kos/. Thanks to
Dave Newman for pointing us to this site.

2Originally from http://books.nips.cc and preprocessed by
Sam Roweis and Dave Newman.



Section 5, and a hybrid of collapsed VB (CVB/CGS) as de-
scribed in Section 5.1. For both hybrid algorithms we only
sampled data-cases for which N̂wj = 1. For all algorithms
we trained for 300 iterations, testing after every iteration.
In the figure captions we report the number of runs over
which we averaged the results.

The algorithms were tested using the standard measure of
individual word perplexity on the withheld test set. For the
pure variational algorithms this is:

p({xtest
i }|{dtest

i }) =
∏

i

∑

k

αk+N̄kdtest
i∑

kαk+N̄dtest
i

β+N̄xtest
i k

Wβ+N̄k
(30)

For CGS and the hybrid algorithms, we perform an online
average over the samples after every iteration of sampling,
discarding an initial burn in phase of 10 iterations,

p({xtest
i }|{dtest

i }) =
∏

i

∑

k

1
S

S∑
s=1

αk+N̄s
kdtest

i∑
kαk+N̄s

dtest
i

β+N̄s
xtest

i k

Wβ+N̄s
k

(31)

The results for KOS and NIPS are shown in Figures 3,
4, 5 and 6. The variational algorithms converged faster
than CGS or the hybrid algorithms, but converged to sub-
optimal points. Collapsed algorithms performed better than
the standard counterparts. The hybrid algorithms signifi-
cantly improved upon the corresponding pure variational
algorithms, with the performance of CVB/CGS being ba-
sically on par with CGS. To study how these results de-
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Figure 3: Perplexities of algorithms as function of number of
iterations for KOS. Results averaged over 20 runs. The lines for
CVB/CGS and CGS are on top of each other.

pend on the vocabulary size, we first ordered all the word-
types according to their total number of occurrences and
then only retained the top 3000 most frequent words for
KOS and the top 6000 most frequent words for NIPS. The
results are shown in Figures 7 and 8. Similar results were
obtained with reduced vocabulary sizes of 4000 for KOS
and 4000 and 8000 for NIPS. We conclude that for both
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Figure 4: Final perplexities of algorithms at iteration 300 for
KOS. Results averaged over 20 runs.
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Figure 5: Perplexities of algorithms as function of number of
iterations for NIPS. Results averaged over 17 runs.
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Figure 6: Final perplexities of algorithms at iteration 300 for
NIPS. Results averaged over 17 runs.

datasets the perplexities have dropped significantly imply-
ing that prediction has become easier. However, the relative
performance of the hybrid algorithms has not significantly
changed.

To understand how much the algorithms learned from the
singleton counts, N̂wj = 1, we first removed them from
the training set but not from test set and subsequently re-
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Figure 7: Final perplexities of algorithms at iteration 300 for
KOS with a reduced vocabulary size of 3000 word types. Results
averaged over 14 runs.
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Figure 8: Final perplexities of algorithms at iteration 300 for
NIPS with a reduced vocabulary size of 6000. Results averaged
over 4 runs.

moved them from both training and test sets. The results
for KOS are shown in Figures 9 and 10 (for a full vocab-
ulary). In this case the difference between hybrid and VB
algorithms is only due to the fact that we are still perform-
ing an online average for hybrid algorithms, even though
we are not sampling any data-cases. We observe that the
impact on the absolute values of the perplexities is very
large indeed. The results for NIPS were qualitatively simi-
lar, but were much more moderate due to the fact that KOS
contains many more very small counts than NIPS. We thus
conclude that singleton counts play a very important, and
sometimes even dominant role for text data in terms of per-
plexity. Whether this conclusion holds true for actual ap-
plications of LDA, such as indexing a corpus or retrieving
similar documents to a test document remains to be seen.

For text data, where small counts are so dominant VB
algorithms are not significantly faster than CGS. This is
mainly due to the fact that the VB algorithms must com-
pute3 exp(ψ(·)) which is more expensive than the simple

3In fact, one could probably speedup the computation by
noticing that exp(ψ(·)) is almost linear for arguments larger than
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Figure 9: Final perplexities of algorithms at iteration 300 for
KOS with all singleton counts removed from only training set.
Results averaged over 20 runs.
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Figure 10: Final perplexities of algorithms at iteration 300 for
KOS with all singleton counts removed from both training and
test sets. Results averaged over 12 runs.

count ratios necessary for CGS. For datasets which have
relatively more large counts we expect the VB and hybrid
algorithms to be significantly faster than CGS because they
require only a single update per nonzero word-document
entry rather then N̂wj CGS updates for that entry.

8 Discussion and Related Work

In the context of topic models and Bayesian networks, we
present a novel hybrid inference algorithm that combines
variational inference with Gibbs sampling in a collapsed
state space where the parameters have been marginalized
out. We split the data-cases into two sets, SCG,SVB, where
data-cases in the set SCG are handled with Gibbs sampling
while data-cases in the set SVB are handled with variational
updates. These updates interact in a consistent manner in
that they stochastically optimize a bound on the evidence.
In this paper we have restricted attention to discrete models,
but extensions to the exponential family seem feasible.

5, but we haven’t pursued this further.



The algorithm has the same flavor as stochastic EM algo-
rithms where the E-step is replaced with a sample from
the posterior distribution. Similarly to SEM (Celeux &
Diebolt, 1985), the sequence of updates for QVB

t and zt

for the proposed algorithm forms a Markov chain with a
unique equilibrium distribution, so convergence is guaran-
teed. How different this approximate equilibrium distribu-
tion is from the true equilibrium distribution remains to be
studied.

The algorithm is also reminiscent of cutset sampling
(Bidyuk & Dechter, 2007) where a subset of the nodes
of a Bayesian network are sampled while the remainder is
handled using belief propagation. It suggest an interest-
ing extension of the proposed algorithm where one spec-
ifies a division of both data-cases and nodes into subsets
SCG and SVB. The nodes in SVB should form a forest of
low-treewidth junction trees for the algorithm to remain
tractable. Alternatively, if the treewidth is too large, one
can use loopy belief propagation on the set SVB. Our cur-
rent choice for SCG and SVB was quite naive and motivated
by our interest to understand why variational algorithm per-
form poorly for LDA. However, it seems preferable to de-
velop more principled and perhaps adaptive (online) meth-
ods to make this division.

Still other hybridizations between variational and MCMC
inference exist (de Freitas et al., 2001; Carbonetto &
de Freitas, 2006) where variational distributions are used
to guide and improve sampling. However, these algorithms
solve a different problem and do not operate in collapsed
state spaces.

To conclude, we believe that hybrid algorithms between the
two major classes of inference schemes, namely variational
and sampling, are a fruitful road to trade off bias, variance,
computational efficiency and statistical accuracy.
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A Lemma-1

Lemma-1: The following function is convex as a func-
tion of x,

z(x) =
∑

k

log Γ(xk)− log Γ(
∑

k

xk) (32)

Proof Lemma-1: We can write z(x) as a log-partition
function as follows,

Z(x) = exp(z(x)) =
∫

dp1p2..pK

∏

k

pxk−1
k =

∏
k Γ(xk)

Γ(
∑

k xk)
(33)

It follows that the Hessian is equal to the covariance of
{log pk} and hence positive definite.
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