
Learning Programming by applied activities: an
example with topics of Operating Systems

Eva Gibaja1[0000−0002−0184−8789], Maŕıa Luque1[0000−0001−7735−8340], and
Amelia Zafra1[0000−0003−3868−6143]

University of Córdoba, Department of Computing and Numerical Analysis
{egibaja, mluque, azafra}@uco.es

Resumen When a teacher is preparing a collection of exercises, a con-
nection between the subject and the context of the degree would be
desirable. Nevertheless, finding practical examples of the topics of the
subject with application to other subjects is occasionally difficult. This
work presents a practical proposal for simultaneously practicing con-
cepts of computer programming and operating systems which faces the
students to a real problem. In this way the students are more motiva-
ted increasing their success probabilities. Among the topics of operating
systems, process scheduling has been chosen for practice is computer
programming. In general terms, a scheduler manages which process will
be executed in a certain moment. Some of the strategies used to per-
form this management employ FIFO or LIFO structures, which are ty-
pical contents of computer programming. Thereby, the development and
implementation of a scheduler would allow students applying and rein-
forcing these concepts. The proposal may be interesting for teachers of
Programming, Data Structures and Operating Systems in a Computer
Science degree.

Keywords: educational resource · operating systems · programming ·
scheduler · files · stack · queue.

1. Introduction

When a student has to solve a problem or exercise, it is more engaging if it
is related with the scope of the study program as the student sees a practical
application of what it is being studied. Nevertheless, frequently occurs that fin-
ding practical and simple applied examples is not easy, even more if the subject
is part of the block of foundations which are taught in the first course.

This is common in programming subjects in the degree in Computer Enginee-
ring, in which finding enough simple examples to practice the contents in a real
problem is hard. Applying the tools and knowledge provided in programming
subjects to implement concepts related to computing could be a solution. In our
case, we have focused in the field of operating systems. This way, our objective
is two-fold. On the one side, we intend to motivate students while on the other
hand we intend to increase coordination among different subjects and courses.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Granada

https://core.ac.uk/display/161543106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tables 1 and 2 show, respectively, a summary of the competences and topics
of the subjects Programming Methodology (PM) and Operating Systems (OS) in
the degree in Computer Engineering of the University of Córdoba. Particularly,
in PM the C language is introduced. This language has a broad historical deve-
lopment with application in operating systems, compilers, software development
and it is specifically oriented to the implementation of operating systems (e.g.
UNIX, Windows or GPU/Linux). Besides, according to the CEB4 competence,
PM should provide students with basic knowledges in operating systems.

The relationship between these two subjects is clear, and due to this reason
we consider that a practical programming project in the context of operating
systems is a good proposal. not only to practice programming applied to a real
problem [1] [2] [3], but also to introduce some concepts related to OS [5], [6], [7],
[8], [9], [10], [11], [12].

Table 1. Course Programming Methodology.

Competences

CB4: Being able to communicate information, ideas, problems
and solutions to both specialized and not specialized public
CU2: Knowing and improving the user level in the context of
ICTs
CEB4: Basic knowledge about programming and using compu-
ters, operating systems, databases and software related with en-
gineering
CEB5: Knowledge about the structure, organization, operation
and interconnection of computing systems. Foundations of pro-
gramming and its application to solve engineering problems

Topics

Pointers
Text and binary files
Structure of a executing program
Dynamic memory
Recursivity
Dynamic linear data structures: lists, stacks and queues
Basic sorting and searching algorithms and their complexity
Methodological issues of programming: documentation and tests
Programming tools: automatic generation of projects, documen-
tation, libraries, debuggers

2. Proposal: Programming a mini-scheduler

The subject OS covers topics such as threads, processes, scheduling or dis-
tributed systems (Table 2) which offer the opportunity to be used as object
of a programming project. In this case, the processes scheduling has been used
as conducting thread as it is an easy to understand concept without needing

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

18

Table 2. Course Operating Systems.

Competences

CEC10: Knowledge about features, functionalities and structure
of operating systems and how to design and implement applica-
tions based on their services
CEC11: Knowledge and application of features, functionalities,
structure and how to design and implement application based
on distributed systems, networks and Internet
CEC14: Knowledge and application of foundations and basic
techniques of parallel computing, concurrent, distributed and
real time programming

Topics

Introduction to operating systems, organization, structure and
operation
Processes and threads, representation, states and life cycle
Communication among processes and threads, mutual exclusion,
application of synchronization to classic problems
Scheduling algorithms and their influence on the performance of
the system, advantages and disadvantages
Introduction to distributed systems, common problems and ba-
sic communication paradigms
Basic concepts of input/output, memory, storing
Introduction to types of free software licenses and their rela-
tionship with GNU/Linux

a previous or deep knowledge about OS. Besides, it allows us to cover a great
portion of topics in PM (Table 3).

Table 3. Topics covered by the project.

Dynamic
memory

Files Queues Stacks Reference
parameters

Makefiles Arguments
to main

Libraries

Processes
√ √ √ √ √

Scheduling
√ √ √ √ √ √ √

2.1. The scheduler

The scheduler is one of the main components of any modern multi-task ope-
rating system. Its main aim is assigning the CPU time to the different executing
processes according to any scheduling strategy, for example (Figure 1):

First Come First Served (FCFS). If a job has arrived first it is first served.
Shortest Job First (SJF). The shortest job is attended first.
Priority-based Scheduling. Each process is assigned a priority and the process
with highest priority is executed first.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

19

Round Robin (RR). Each process is provided a fix time to execute (i.e.
quantum). Once a job is executed for the given period, it is preempted and
other process executes for a given time period.

Multi-task operating systems are characterized by being capable of developing
many tasks at the same time. This feature, which is essential for users, is actually
a kind of illusion produced by the scheduler as microprocessor is able to run just
one single process simultaneously. Therefore, in machines with a single processor,
when several processes need to be run, the scheduler distributes the CPU time
assigning to processes very small-time intervals in which the process is run. As
these intervals are very small (at the order of milliseconds), the user has the
feeling that processes are running at the same time.

The scheduler has also another essential task for operating systems: optimi-
zing the use of available resources (i.e. memory, hard drives, keyboard, printer
and other devices). When a process requires using a certain resource, it is tem-
porarily blocked until the resource is assigned to the process. For example, when
a program is requiring the user input data, several seconds, even minutes, may
pass until the user reads the requirement, thinks and types the answer and the
keyboard transmits it to the program. As in all this elapsed time the program
does not really need the computation time assigned, the scheduler will remove
it from CPU until the execution can continue.

2.2. How the mini-scheduler works

Let’s suppose a set of processes to be scheduled whose description (name,
CPU cycles needed to finish, priority1) is stored into a text file. The scheduler,
in each cycle, performs the following steps (Figure 2):

1. If the end of the processes file has not been reached, read the following
process, Pi.

2. If CPU is busy, check priority of the process in CPU, Pcpu.
If Pcpu has more priority than Pi, then put Pi into the queue of processes,
Q, according to its priority.
If Pi has more priority than Pcpu, then remove Pcpu from CPU and assign
computing time to the new process Pi. When the scheduler removes a
process from CPU, it does not return back to the queue of processes,
but it is put into another data structure with all processes removed from
CPU which has a special priority. Particularly, all these processes are
introduced into a stack, S.

3. If CPU is empty, put Pi into the queue of processes Q. Then remove the first
element in the stack S, or of the queue just in case S is empty and put the
process in CPU.

4. When this point is reached, a CPU cycle has finished. In order to repre-
sent this fact, the number of cycles needed to finish the process at CPU is
decreased 1 cycle.

1 This priority could be established according to different criteria: the priority of the
process or the number of CPU cycles remaining to end the execution.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

20

Figure 1. Scheduling examples.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

21

5. If the number of CPU cycles needed to finish the process reaches zero, the
process has finished and CPU is empty again.

The steps defined above are repeated until Q and P are empty and all the
lines in the file of processes have been read.

Figure 2. Scheme of the mini-scheduler.

2.3. Description of the project

In this project, the mini-scheduler described in the previous section must be
programmed by using the functions the student considers appropriate2.

The processes to be scheduled will be read from a text file. This file will have
one line per process. Each of these lines will consist of three integers separated

2 It is obvious that a real scheduler is an extremely complex element with high influence
in the efficiency of the operating system. In this project, a very schematic version
will be developed that will be a vehicle to practice programming skills.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

22

by a blank. The first one represents the identifier of the process, the second one
the number of CPU cycles need by the process to finish, and the last one is the
priority of the process. An example is available in Table 4. For instance, if the
line 3 1 0 is read, the identifier of the process is 3, it needs 1 CPU cycle to finish
and has priority 0.

Table 4. Example of an input file.

1 2 2
2 2 3
3 1 0

The output of the program will be written in a text file summarizing the
processes using CPU each cycle (Table 5). In each line will be printed:

CPU cycle. An integer beginning in 1.
Identifier of the process beginning with a P character.
If the process is assigned to the CPU for the first time, this fact will be repre-
sented by >> and if the process finishes its execution it will be represented
by <<.
The number of cycles to finish.
Finally, the priority.

Table 5. Example of an output file.

1 P1 >> 2 2
2 P2 >> 2 3
3 P2 << 1 3
4 P1 << 1 2
5 P3 >><< 1 0

The program will be executed by typing:
 schedule <processesFile><outputFile><p|c>

where:

processesFile is the name of the file with processes.
outputFile is the name of the file with the output of the scheduler.
p|c determines the order in the queue: priority (p) or number of cycles to
finish (c).

Arguments to main will be used and the number and type of the arguments
will be checked. In case of any error, the program will finish showing the user
an error message with the right call.

To develop the mini-scheduler, a struct process with the following fields will
be used (Figure 3):

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

23

pid, an integer representing the identifier of the process. Each process will
have an unique pid.
cic, an integer representing the number of CPU cycles remaining to finish
the process.
pri, an integer representing the priority of the running process.

Figure 3. struct process.

By using this struct process the following data structure will be build (Figures
4 and 5):

A structure to emulate the CPU that will contain an element of type struct
process.
A stack, S, with processes removed from CPU. The stack will implement, at
least, the functions push, pop and isEmpty.
A queue, Q, of processes. This queue works as a queue in which elements are
sorted according to one of the following criteria:

Figure 4. Emulated CPU

• Number of CPU cycles remaining to finish. Those processes with less
cycles remaining to be completed will be selected first.
• Priority of the process. Processes with the highest priority will be selected

first. For instance, a process with priority 10 will be served before a
process with priority 3.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

24

Figure 5. Emulated stack and queue

The queue will implement, at least, the functions isEmpty, delete and in-
sert according to one of the criteria described above for which pointer to
functions will be used. The insert function will have the following header:
void insert(struct cola ** head, int (* sort)(struct process a, struct process
b), struct process p).

The project will be organized into the following files: queue.c, queue.h (fun-
ctions and struct needed to implement the queue), stack.c y stack.h (functions
and struct needed to implement the stack), files.c, files.h y main.c. Preprocessor
directives will be used to avoid including duplicated header files.

A makefile will be used to build the executable file. This file must have, at
leas:

Independent rules for each .o

A rule to generate a library linkedStructs.a with the functions for the stack
and the queue.

A rule to generate the executable from linkedStructs.a and main.o.

A rule to clean the intermediate files.

A target to generate the executable and clean targets.

A phony target.

Conclusions

This work has described an educational resource to practice topics of a pro-
gramming course contextualized in the field of operating systems in a degree in
Computer Sciences at the University of Córdoba. Due to the foundational cha-
racter of both subjects in the study program, this proposal can also be useful as
a resource for other teachers in similar subjects in other degrees and universities.
The main contributions of the proposal are highlighted below:

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

25

The fact that the student has to design and implement the mini-scheduler
lead to learning by means of the development of projects. This will lead
to a better comprehension of the concepts being applied and to establish
relationships among them.
The implementation of the mini-scheduler allows practicing topics of the
subject PM in a real problem in the field of computing. This is motivating
and engaging for all the related subjects.
With this proposal that develops a mini-scheduler, the competence CEB4
of PM, whose aim is providing the student with foundational knowledge in
operating systems, is covered.

Referencias

1. L. Joyanes, I. Zahonero. Programación en C. Metodoloǵıa, algoritmos y estructuras
de datos. McGraw-Hill, 2005.

2. L. Joyanes, A. Castillo, L. Sánchez, I. Zahonero. Programación en C: libro de pro-
blemas. McGraw-Hill, 2003.

3. Kernigham, N. B., Ritchie, M. D. El lenguaje de programación C. Prentice-Hall.
1989

4. W. Stallings. Sistemas operativos, 5 edición. Prentice Hall, Madrid, 2005.
5. A. S. Tanenbaum. Sistemas operativos modernos. 3 edición, Prentice Hall, Madrid,

2009.
6. A. Silberschatz, P. B. Galvin, G. Gagne. Fundamentos de Sistemas Operativos,

Séptima edición. Mc Graw Hill,2005.
7. S. Candela, C. Rubén, A. Quesada, F. J. Santana, J. M. Santos. Fundamentos de

Sistemas Operativos, teoŕıa y ejercicios resueltos. Paraninfo, 2005.
8. A. Mclver, I. M. Flynn. Sistemas Operativos, Sexta edición. Cengage Learning, 2011.
9. J. Aranda, M. A. Canto, J. M. de la Cruz, S. Dormido, C. Mañoso. Sistemas Ope-

rativos: Teoŕıa y problemas. Sanz y Torres S.L, 2002.
10. J. Carretero, F. Garćıa, P. de Miguel, F. Pérez, Sistemas Operativos: Una visión

aplicada. Mc Graw Hill, 2001.
11. K. A. Robbins, S. Robbins. UNIX Programación práctica. Prentice Hall, 1997
12. K. A. Robbins, S. Robbins. Unix Systems Programming. Prentice Hall, 2003.

Enseñanza y Aprendizaje de Ingeniería de Computadores. Número 8, 2018

26

