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We discuss the production of a class of heavy sterile neutrinos νh in proto-neutron stars. The neutrinos, 
of mass around 50 MeV, have a negligible mixing with the active species but relatively large dimension-5 
electromagnetic couplings. In particular, a magnetic dipole moment μ ≈ 10−6 GeV−1 implies that they 
are thermally produced through e+e− → ν̄hνh in the early phase of the core collapse, whereas a heavy–
light transition moment μtr ≈ 10−8 GeV−1 allows their decay νh → νiγ with a lifetime around 10−3 s. 
This type of electromagnetic couplings has been recently proposed to explain the excess of electron-like 
events in baseline experiments. We show that the production and decay of these heavy neutrinos would 
transport energy from the central regions of the star to distances d ≈ 400 km, providing a very efficient 
mechanism to enhance the supernova shock front and heat the material behind it.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Neutrinos define a sector of the Standard Model that still 
presents some important unknowns. The current scheme of mass 
differences and mixings seems able to explain most of the exist-
ing data [1], but the absolute value of their masses, their Dirac or 
Majorana nature [2] or the presence of additional sterile modes 
[3,4] are yet to be determined. In particular, the production of 
sterile neutrinos νs , through collisions with standard matter or 
through flavor oscillations has important implications both in par-
ticle physics and astrophysics [5–8]. The mixing with an active 
neutrino ν may provide sterile modes with small couplings to the 
W and Z gauge bosons that translate into dimension-6 operators 
of type

−Leff = G F sin θ√
2

f̄ γμ(C V − C Aγ5) f ν̄sγ
μ(1 − γ5)ν + h.c. (1)

In addition, the low-energy effective Lagrangian may also include 
dimension-5 operators from loops involving heavy particles. Al-
though these operators are usually overlooked, they could mediate 
the dominant reactions of sterile neutrinos in a star under favor-
able thermodynamical conditions. Here we will study this possibil-
ity in the context of supernova explosions.
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When a supernova goes off a proto-neutron star can be formed 
having a typical initial radius of (20–60) km and a mass of (1–1.5) 
M� . It is believed that most of the gravitational binding energy 
(Egrav ≈ 3 × 1053 erg) is released in a ∼20 second neutrino burst 
[9]. The neutrino spectrum from supernova SN1987A detected at 
SuperK and IMB indicated a weak decoupling from baryonic mat-
ter, confirming that neutrino transparency sets in as their tempera-
ture falls below a few MeV [10] in the dense core. At earlier phases 
of the collapse, however, computational simulations [11,12] reveal 
internal peak temperatures exceeding 20 MeV in the central high 
density regions of the star. At such temperatures and densities the 
evolution of these astrophysical objects becomes sensitive to the 
fundamental properties of neutrinos and to the presence of hypo-
thetical weakly-coupled particles. In this context, a lot of effort has 
been devoted to the cooling through neutrino emission in the nu-
clear medium [13], to the matter opacity [14] and revival of the 
stalled shock that arises in the standard paradigm of supernova 
core collapse [15], or to the synthesis of heavy nuclei taking place 
in the hot bubble behind the shock [16,17].

In this work we will focus on the astrophysical consequences 
of the production of a heavy sterile neutrino νh whose dominant 
interactions are not the weak ones in Eq. (1) but of electromag-
netic kind. This type of particles have been proposed as a possible 
explanation [18] for the excess of electron-like events in base-
line experiments [19]. Let us briefly show how the required cou-
plings could be generated. Consider an SU(2)L -singlet Dirac neu-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Diagram contributing to the magnetic dipole moment μ of νh .

trino, νh , of mass mh = 50 MeV. We will denote by N and Nc the 
(2-component) neutrino and antineutrino spinors defining νh ,

νh =
(

N
N̄c

)
. (2)

Let us also suppose that at TeV energies the gauge symmetry is 
SU(2)L × SU(2)R × U (1)B−L and that νh is accommodated within 
two SU(2)R doublets together with a charged lepton,

L =
(

N
E

)
Lc =

(
Ec

Nc

)
. (3)

In order to avoid collider bounds [20], the breaking of the left–
right symmetry must be such that the charged lepton (E, Ec) gets 
a mass mE ≥ 300 GeV while νh remains light. Loop diagrams of 
heavy gauge bosons and fermions (see Fig. 1) will then generate 
the operator

−Leff = μν̄hσμννh ∂μ Aν , (4)

where Aν is the electromagnetic field and μ is a magnetic dipole 
moment of order [21]

μ ≈ e
g2

R

16π2

mE

M2
R

≈ 10−6 GeV−1 . (5)

In addition, the possible mixing of the sterile and the active neu-
trinos will be parametrized by an angle θ , so that the mass eigen-
states read N ′ = cos θ N + sin θ ν and ν ′ = − sin θ N + cos θ ν . This 
mixing will generate electromagnetic transitions through the same 
type of diagrams (we drop the prime to indicate mass eigenstates):

Leff = 1

2
μtr νh σμν (1 − γ5) ν ∂μ Aν + h.c. , (6)

with μtr ≈ sin θμ being the transition dipole moment. This op-
erator may imply that the dominant decay mode of the heavy 
neutrino is νh → ν γ . Notice also that the presence of additional 
heavy singlets (νh′ with mh′ ≈ mE ) mixed both with ν and νh will 
give additional contributions to μtr. Therefore, at this point we will 
treat μ and μtr as independent parameters.

This type of sterile neutrinos could change substantially the 
evolution of a proto-neutron star. We will show that sterile pairs 
can be produced abundantly during the ∼20 second neutrino 
burst, escape the star core more easily than standard neutrinos, 
and finally decay within a few hundred km from the core. The very 
energetic photons from the decay could deposit energy, helping re-
vive the stalled accretion shock formed during the collapse and 
change the thermal environment in the vicinity of the star. Our 
scenario could be considered a different realization of the eospho-
ric neutrino hypothesis proposed in [22].
2. Decay rate, production and scattering cross sections

Let us first describe the dominant decay and production chan-
nels for the heavy neutrino νh in vacuum. Later we will discuss 
how the hot and dense medium in a proto-neutron star (includ-
ing populations of neutrons, protons, electrons and muons) affects 
these processes.

To be definite in our calculation we will take as reference val-
ues mh = 50 MeV, μ = 10−6 GeV−1 = 3.3 × 10−9μB , and μtr ≈
10−8 GeV−1. We use h̄ = c = 1. For these values of the mass and 
the transition moment, the heavy neutrino will decay into νγ with 
a lifetime

τh = 16π

μ2
tr m3

h

= (50 MeV)3

m3
h

× (10−8 GeV−1)2

μ2
tr

× 0.0026 s . (7)

We will also assume that the mass mixing, i.e., the active compo-
nent in νh , is smaller than sin2 θ < 10−3 and only along the muon 
and/or the tau flavors. In that case, the radiative decay will dom-
inate over the weak processes νh → νe+e− , ννi ν̄i , which appear 
with a branching ratio

BR(νh → νe+e−)

≈ sin2 θ

10−3
× (10−8 GeV−1)2

μ2
tr

× m2
h

(50 MeV)2
× 0.05% . (8)

This type of sterile neutrino avoids cosmological bounds since it 
decays before primordial nucleosynthesis. At colliders it is hardly 
detectable: even if it were produced in 1% of kaon or muon decays, 
νh is too long lived to decay inside the detectors and too light 
to change significantly the kinematics of the decay [23]. Actually, 
more elaborate setups with two sterile modes have been proposed 
to explain the excess of electron-like events at MiniBooNE in terms 
of the photon that results from its decay [18].

The dominant production channels of νh will also be elec-
tromagnetic. In particular, electron–positron annihilation into νh
pairs, e+e− → ν̄hνh , will be mediated by a photon through the 
magnetic dipole moment coupling in Eq. (4). The differential cross 
section is given by

dσ

dt
= αμ2

s2 − 4sm2
e

×
(

−t + 2m2
h + m2

e − t2 − 2(m2
h + m2

e )t + (m2
h − m2

e )
2

s

)
,

(9)

where α is the fine structure constant, me is the electron mass, and 
s and t are the usual Mandelstam variables (

√
s is the center-of-

mass energy). In Fig. 2 (left panel) we plot the total cross section 
for this process. Muon pair annihilation will give an analogous but 
subleading contribution, since muons are less abundant than elec-
trons in the star core.

The active to sterile transition mediated by a photon can be cat-
alyzed by the presence of charged particles X = p, e: ν X → νh X
(see right panel in Fig. 2). This contribution, however, can be ne-
glected here due to the smaller value of the transition coupling 
that we have assumed, μtr ≈ 10−2μ. The weak channels which 
dominate the production of active neutrinos [24] give also a sub-
leading contribution due to the small mixing sin2 θ < 10−3 of our 
sterile, whereas other processes like plasmon decay [25] are irrel-
evant for heavy neutrino masses around 50 MeV (i.e., much larger 
than the electron mass).

In addition to its production and decay, the collisions of νh with 
charged matter will be essential in order to understand its prop-
agation in the dense medium and estimate how efficiently these 
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Fig. 2. Left: Total cross section σ(e+e− → ν̄hνh) for mh = 50 MeV and μ = 10−6 GeV−1. Right: σ(ν X → νh X) for μtr = 10−8 GeV−1 (solid: X = p, dashes: X = e).

Fig. 3. Left: σ(νh X → νh X) for mh = 50 MeV, μ = 10−6 GeV−1 and a scattering angle θ > 30◦ in the center-of-mass frame. Right: σ(νh X → ν X) for μtr = 10−8 GeV−1 (solid: 
X = p, dashes: X = e).
neutrinos escape the proto-neutron star. We need to distinguish 
between elastic scatterings

νh X → νh X (10)

and absorption reactions of type

νh X → ν X . (11)

The differential cross section for the first process reads

dσ

dt
= αμ2

s2 − 2s
(
m2

X + m2
h

) + (
m2

h − m2
X

)2

×
(

−s + 2m2
h + m2

X − s2 − 2(m2
h + m2

X )s + (m2
h − m2

X )2

t

)
.

(12)

This is a long distance (photon-mediated) process with a divergent 
total cross section; if we restrict to collisions substantially chang-
ing the direction of the incident νh (e.g., a scattering angle θ > 30◦
in the center-of-mass frame) we obtain the cross section depicted 
in Fig. 3 (left panel). For the inelastic process that transforms the 
heavy neutrino into an active one we obtain

dσ

dt
= αμ2

tr

2
(

s2 − 2s
(
m2

X + m2
h

) + (
m2

h − m2
X

)2
)

×
(

−s + 1
(m2

h + 2m2
X )
2

− s2 − (m2
h + 2m2

X )s + 1
2 m4

h + m4
X

t
− m2

Xm4
h

t2

)
, (13)

and its total cross section is also depicted in Fig. 3 (right panel). 
These cross sections are, in both cases, much smaller than the 
ones for active neutrinos off nucleons mediated by weak bosons. 
For example, a neutrino in a gas at T 
 20 MeV has an average 
energy 〈Eν〉 
 π T ≈ 60 MeV, and its lowest order elastic cross 
section with a neutron is σ(νin → νin) ≈ G2

F E2
ν(3C2

A + C2
V )/π 


3 × 10−40 cm2, with i = e, μ, τ (the cross section with a proton is 
approximately hundred times smaller). As for the absorption of a 
νe through a charged current interaction, we have σ(νen → ep) ≈
2 × 10−39 cm2.

3. Production in a proto-neutron star

Let us now calculate the production rate of heavy neutrinos at 
the astrophysical site. Nucleon and lepton densities in the medium 
are constrained by electric charge neutrality and baryon and lepton 
number conservation. Typical baryonic densities in the core of a 
proto-neutron star are well above nuclear saturation density nB 

(2–3)n0 with n0 = 0.17 fm−3 [9], whereas the lepton and electron 
fraction evolve dynamically from Y L ≈ 0.31, Ye ≈ 0.27 at t = 0.1 s
to Y L ∼ 0.18, Ye ∼ 0.17 at t = 10 s [26]. The extreme conditions 
in the core are such that quantum effects will be important. The 
population of baryons and leptons is described by the Fermi–Dirac 
distribution

f i(E) = 1
(E−μ )/T

, (14)

e i + 1
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Fig. 4. Kinematical variables in the reaction 12 → 34 used in this work.

where μi (i = n, p, e±) denotes the chemical potential of the con-
sidered species. Both T and μi evolve within the star, in particular, 
the chemical potentials take care of the conservation of charges 
and quantum numbers in a self consistent way [27].

For a given value of the temperature and the electron chemical 
potential (μe+ = −μe− ), the total energy emissivity (energy pro-
duced per unit volume and unit time) of heavy neutrino pairs 
through the dominant process e+e− → ν̄hνh , Q E(e+e− → ν̄hνh) =

dE
dtdV is given by [28,29]

Q E = 4

(2π)8

∫
d3 p1

2E1

d3 p2

2E2

d3 p3

2E3

d3 p4

2E4
δ4(p1 + p2 − p3 − p4)

× (E1 + E2) |M̄|2 f ( f1, f2, f3, f4) (15)

where the factor f ( f1, f2, f3, f4) = f1 f2(1 − f3)(1 − f4) includes 
the Pauli blocking factor in the generic reaction 12 → 34 and 
pi = (Ei, 
pi) are the 4-momenta. We will consider that the reac-
tion is not affected by the quenching of outgoing sterile states, i.e., 
(1 − f3) 
 1 
 (1 − f4), since heavy neutrinos do not achieve chem-
ical equilibrium and their number density inside the star is always 
small. The squared matrix element for the interaction defined in 
Eq. (4) is given by

|M̄(e+e− → ν̄hν)|2

= 4e2μ2
h

(
−t + 2m2

h + m2
e − t2 − 2(m2

h + m2
e )t + (m2

h − m2
e )

2

s

)

(16)

with e the electron charge, s = (p1 + p2)
2 and t = (p1 − p3)

2, see 
Fig. 4.

To perform the phase space integral in Eq. (15) we note that 
there are only four non-trivial independent variables: the initial 
energies E1 and E2, the angle θ2, as defined in Fig. 4, and E3. 
Any other kinematical variables can be derived from these four or 
can be trivially integrated. It is convenient to define the 4-vector 
k = p1 + p2 (notice that k2 = s and |
k|2 = (E1 + E2)

2 − s) and the 
angle θ3 of 
k with 
p3:

cos θ3 = 2 (E1 + E2) E3 − s

2 |
k|
√

E2
3 − m2

h

. (17)

After integrating the 4-dimensional Dirac delta that enforces en-
ergy and momentum conservation, we obtain

Q E = 1

64π5

∞∫
me

dE1

∞∫
Emin

2

dE2

1∫
cmin

2

d cos θ2

E+∫
E−

dE3

× p1 p2


 (E1 + E2) |M̄|2 fe+(E1) fe−(E2) , (18)
|k|
where the minimum values of E2 and cos θ2, Emin
2 and cmin

2 respec-
tively, result from the kinematical restriction s > 4m2

h

Emin
2 (E1) ≈

√
m4

h + m2
e E2

1

E2
1 − m2

e
,

cmin
2 (E1, E2) = Max

[
−1,

2m2
h − m2

e − E1 E2

p1 p2

]
. (19)

We also define

E±(E1, E2, cos θ2) = E1 + E2

2
± |
k|

2

√
1 − 4m2

h

s
. (20)

The Mandelstam variables in terms of these four quantities read

s = 2
(

m2
e + E1 E2 + p1 p2 cos θ2

)
(21)

t = −2E1 E3 + 2p1 p3 cos(θ3 − α) + m2
e + m2

h (22)

where α (0 ≤ α ≤ π ) is the angle between 
k and 
p1,

α = arctan

(
p2 sin θ2

p1 − p2 cos θ2

)
. (23)

4. Transport of energy out of the star core

The possible impact of the heavy neutrino νh on the evolution 
of the proto-neutron star will depend on its ability to take a sig-
nificant amount of energy out of the core. If the sterile neutrinos 
are abundant inside the star core but unable to reach the surface 
before decaying into a photon plus an active neutrino, then they 
become just a state mediating interactions of electrons with neu-
trinos and photons. We will show that this is not the case and that 
they could play an interesting role in supernova explosions.

Let us take a temperature T0 = 25 MeV and an electron chemi-
cal potential μe0 = 100 MeV, which are typical values at the inner 
central region of a proto-neutron star (see [11,12]). Although these 
quantities are time and density dependent, the chosen values can 
be used to estimate the possibilities of our scenario.

Varying the mass mh , the magnetic dipole moment μ, the elec-
tron chemical potential μe and the temperature T and performing 
a fit of Q E in Eq. (18) we obtain

Q E ≈ 1.5 × 1036
(

μ

10−6 GeV−1

)2 (
T

25 MeV

)7.4

e− mh+μe
3T

erg

s cm3
.

(24)

For the reference values of all the parameters, the expression above 
yields Q E ≈ 2 × 1035 erg/s cm3, with an average νh energy of 
〈Eh〉 ≈ 103 MeV. This is a very large production rate, ∼102–103

times larger than the one obtained in [22] using heavier sterile 
neutrinos mixed with the active ones. Our neutrinos, however, will 
not leave the star core unscattered.

We can also compare this production rate with the one of 
standard neutrinos in early cooling of proto-neutron stars. For 
example, in the central core the direct URCA process n → peν̄e

provides Q DURCA
E ≈ 2.4 × 1041 R erg/s cm3 at T = 25 MeV [28,31], 

being R a factor of order unity [30]. This is five decades over 
the νh production rate that we have found. The direct URCA pro-
cess requires a high proton fraction, Y p � 11%, only accessible to 
large mass objects, however the less demanding modified URCA 
cooling also gives a much faster rate than for steriles, Q MURCA

E ≈
1.5 × 1040 R erg/s cm3. These active neutrinos will be, to a large 
extent, trapped (before transparency sets in) inside the star core, 
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whereas ours have weaker interactions with the protons and elec-
trons in the medium.

It is then apparent that we need to consider propagation effects 
of νh . Although a precise calculation would require a complete 
multidimensional simulation that is beyond the scope of this work, 
we will discuss the qualitative picture and show that the model 
has enough parameter space to realize it.

The first important effect is the diffusion from the center to 
the surface of the star core, with a radius r ≈ 20 km. Active muon 
and tau neutrinos scatter there mainly off neutrons with a mean 
free path λS

ν ∼ 1 m [11,32]. Analogously, νh will scatter elasti-
cally with protons with a cross section ∼40 times smaller, which 
suggests an interaction length λS

h inside the star longer by the 
same factor. This implies a larger diffusion coefficient D ≈ λS

h c/3
and a more efficient transport from the core to the outer parts 
of the star. The typical diffusion time for that process will be 
τD ≈ r2/(2D) ≈ 5 × 10−2 s. The second crucial effect in the prop-
agation of the heavy neutrinos is their absorption: the star will 
capture a fraction of them through the inelastic collisions νh p →
νp. For μtr = 10−8 GeV−1 the absorption length is approximately 
σ(νh X → νh X)/σ (νh X → ν X) ≈ 3000 times larger than λS

h , i.e., 
λA

h ≈ 120 km. A final effect, analogous to absorptions, is their de-
cay. Since the values of μtr and mh that we have assumed imply a 
sterile neutrino lifetime τh ≈ 0.003 s, 16 times smaller than their 
diffusion time, a large fraction of the heavy neutrinos produced in 
the core will decay into γ ν before they have diffused to the outer 
layers. For a time window of ∼ 20 s energy can be transported to 
distances d 
 √

2DτD 
 400 km.
We estimate that, even if absorptions and decays reduced the 

number of neutrinos leaving the star from our estimate to 1% of 
the ones produced (some of them closer to the surface), νh may 
still carry a total of 1051–1052 erg and deposit this energy outside 
the star during the 20 second neutrino burst. Notice that a reduc-
tion in the magnetic moment μ would also reduce the production 
rate of heavy neutrinos, but it would increase the mean free path 
between elastic scatterings and then the fraction of neutrinos that 
reach the surface. In addition to the transition moment μtr, the 
mass mh is another parameter that could impact the production 
rate or the decay length of the heavy neutrino.

An interesting variation of the model that depends only on two 
parameters (mh and μtr) would be obtained by suppressing the 
magnetic moment μ and slightly increasing the transition one, e.g. 
μtr ≈ 5 × 10−8 GeV−1. In that case the dominant production chan-
nel would be

ν X → νh X ; ν̄ X → ν̄h X , (25)

where X is any charged particle and the active ν may be any lin-
ear combination of νμ and ντ . In the star core the heavy neutrinos 
would be partially absorbed through the inverse reaction (we es-
timate an absorption length λA

h ≈ 4 km), and the ones reaching 
the surface would decay with cτh ≈ 30 km. Since the production 
would not be so abundant as in the case discussed in the previ-
ous section, this possibility provides a safer scenario still able to 
transport energy to the region near the star surface.

Although the optimal value of these parameters would require 
a full Monte Carlo simulation, the scenario seems flexible enough 
to introduce acceptable changes in the dynamics of supernova ex-
plosions, with the decay into photon plus active neutrino playing 
an important role in the enhancement of the supernova shock.

5. Conclusions

The collapse of a very massive star defines an astrophysical 
object with extreme conditions where neutrinos determine the 
thermodynamics. These proto-neutron stars are suitable laborato-
ries to probe the properties of any weakly coupled particles of 
mass � 100 MeV. Here we have proposed a sterile neutrino νh
much heavier than the standard ones (mh ≈ 50 MeV) and with 
sizable electromagnetic couplings: a magnetic dipole moment μ
and dipole sterile–active transition μtr that mediates its decay 
νh → νγ with a lifetime τh ≈ 10−3 s. This simple 3-parameter 
model seems to have interesting implications in supernova explo-
sions. The heavy neutrino is produced in the core at a high rate 
through e+e− → ν̄hνh , it may escape the star more efficiently than 
active neutrinos and decays depositing a large amount of energy 
in the outer layers of the star.

We believe that the type of heavy sterile neutrino proposed 
here could be an essential ingredient to help the progression of 
the internal shock, which is responsible for the observed super-
nova events. Full computational simulations could shed more light 
into the complex energy transport that results from competing 
processes of scattering, interaction and decay.
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