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Abstract. 
 
We present results of theoretical and experimental study of effect of dense drop-like aggregates 
on the magnetoviscous effects in suspensions of non-Brownian magnetizable particles. Unlike 
the previous works on this subject, we do not restrict ourselves by the limiting case of highly 
elongated drops. This allows us to reproduce the experimental rheological curve in wide region 
of the shear rate of the suspension flow.  
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Introduction. 
 
Suspensions of magnetizable particles in carrier liquids, so-called magnetorheological 
suspensions (MRS), attract considerable interest of investigators and engineers due to rich set of 
physical properties which find active applications in many modern and perspective high 
technologies. One of the most interesting and valuable, from the practical point of view, features 
of MRS is possibility to change, in a very broad range, their rheological properties and behavior 
under the action of quite moderate magnetic fields. The physical cause of the strong rheological 
effects is formation of heterogeneous structures (aggregates) composed of magnetic particles and 
aligned along with the applied field. Helpful reviews of the works on physics and practical 
applications of the magnetic suspensions can be found in [1-5].  
    In the quiescent suspensions, subjected to an external magnetic field, the aggregates can span 
the gap between the opposite walls of the flowing channel. In this state, MRS demonstrates 
elastic behavior with respect to the shear deformations. When the applied shear stress exceeds 
some threshold value (so-called static yield stress), the bonds between the aggregates and the 
walls are broken and the elastic regime changes to the viscous flow regime. In this regime, the 
measured macroscopical shear stress σ can be presented as 
 

aσγησ += 0                                                                                                                                (1) 
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Here η0 is the viscosity of the carrier liquid, γ  is the macroscopic shear rate, σa is the stress 
produced by the aggregates. This stress is determined by the concentration, shape, length and 
orientation distribution of the aggregates.  
         Two kinds of the aggregates are usually considered. The first one is linear chains; the 
second kind of the aggregates is the dense bulk drops [1]. Theoretically, the effect of the chains 
on the stationary viscous properties of MRS with magnetizable particles has been studied in refs. 
[6,7].  
     The effect of the bulk “drops”, consisting of great number of particles, has been studied in 
refs. [8, 9]. The model [8] is based on minimization of the magnetic (electrical) free energy of a 
magnetizable (polarizable) ellipsoidal drop tilted with respect to the applied field. Analysis [8] 
has been done for highly elongated drops and leads to the following scaling relation: 

3/4
0

3/1 Ha γσ ∝ , where H0 is the magnetic field inside the suspension. It should be noted that the 
approach of the ref. [8] does not take into account any mechanisms of the drop destruction by the 
hydrodynamic viscous forces. Analysis shows that consideration of these mechanisms is 
principally important for development of a physically correct theory of rheological properties of 
suspensions with the heterogeneous aggregates. 
     The rupture of particles from the aggregated surface  by the viscous forces has been 
considered in [9]. This model leads to the relation, 2

0Ha ∝σ ; like in the chain model [6], the 
stress, σa, does not depend on the shear rate γ . The model [9] is often used for the interpretation 
of rheological effects in the magnetic suspensions (see overview in ref.[1]). However, this model 
contains a parameter (the thickness of a gap between the particles in the aggregates) which is not 
determined theoretically and is considered as a fit parameter of the model. Strictly speaking, the 
interparticle gap thickness must depend both on the field H0 and the shear rate γ , however in [9] 
this thickness  is considered as a constant. Analysis shows that dependence of the gap thickness 
on the shear rate leads to qualitative change of the dependence of aσ  on γ . Therefore, the results 
of [9] require very cautious attitude.  
     Like in ref.[8], the model [9] deals with the limiting approximation of the highly elongated 
aggregates. However this approximation is not valid when the shear rate γ  is large enough and 
too long aggregates are destroyed by the viscous forces.  
   We present here results of theoretical study of effect of the bulk drops on the magnetoviscous 
effects in MRS with the linearly magnetizable particles. The model is based on the analysis of 
hydrodynamic destruction forces acting on the aggregate surface and does not contain any 
adjustable parameters. It should be noted that appearance of the bulk drops has been observed in 
many experiments and computer simulations of magnetic suspensions (see, for example, 
overview in [1]). 
    In the framework of this model we suppose that the drop size is significantly less than the 
width of the flow channel (the case of the developed flow) and effect of the channel walls on the 
drop behavior is negligible. The validity of this assumption will be proved at the end of the 
paper. Unlike refs [8,9] we do not restrict ourselves by the asymptote of the highly elongated 
drops. It allows us to reproduce the suspension rheograms in the wide range of the shear rates, γ .  
  
Main approximations.  
    Let us consider a dense aggregate consisting of the large number of magnetizable particles. 
We will model the aggregate by an ellipsoid of revolution with the major and minor axes a and 
b, respectively. These magnitudes will be estimated below. We suppose that the suspension is 
subjected to a macroscopic shear flow with the rate γ . When 0=γ , the aggregate major axis is 
aligned along the magnetic field H0. Under the shear hydrodynamic forces, the ellipsoid axis 
deviates from the field by the angle θ. We will suppose that the field H0 is applied in the 
direction of gradient of the flow velocity. Next, we suppose that concentration of the drops in the 
suspension is small enough and any interactions between them can be ignored. The validity of 
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this assumption will be reconsidered at the end of the paper. The problem geometry is illustrated 
in Fig.1.   
 

 
 
Fig.1. Sketch of the model of the drop-like aggregates. The horizontal arrows illustrate the 
suspension macroscopic flow.  
 
     Macroscopic stress σa is determined by the shape of the drops and the angle θ of the drop 
inclination with respect to the field direction. On the other hand, the angle θ  is determined by 
the hydrodynamic and magnetic torques acting on the aggregate; while the size and shape of the 
drop is defined by the combination of the hydrodynamic and magnetic forces acting on the drop 
surface. The magnetic force consists of the elongating force of the demagnetizing field along 
with the force of the surface tension. Obviously, the surface tension force tends to contract the 
drop. Our aim is to estimate the angle θ as well as the hydrodynamic and magnetic forces, and 
then – the size and the shape of the steady stable drop in the suspension under applied shear 
flow. For the maximal simplification of calculations we will consider this aggregate as a rigid 
ellipsoid, impenetrable for the carrier liquid, and restrict our analysis to a linear law of the 
particles magnetization.  
 
The orientation angle θ .  
The magnetic torque mΓ , acting on the ellipsoidal drop, can be found, for example, in the book 
[10] (see, also,  [8,9]) as: 
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Here 2

3
4 abV π=  is the aggregate volume, µ0 is the magnetic permeability of vacuum, χ  is the 

aggregate magnetic susceptibility, N is the aggregate demagnetizing factor in the direction of the 
main axis a. The explicit form of this factor can be found, in [10].  
The hydrodynamic torque hΓ  has been calculated in ref. [11] (see, also, [8]) as:  
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Here r=a/b is the drop aspect ratio, which will be determined below. 

Equating the torques hΓ  and mΓ , we get: 
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Hydrodynamic destructing forces 
We will estimate now a hydrodynamic force, which tends to elongate and, finally, to break the 
drop in the direction of the main axis a.  
    Let us introduce the Cartesian coordinate systems with the axes Oz’ and Ox’, aligned along the 
gradient of the suspension velocity (i.e. along the field H0) and along the velocity respectively; 
we also introduce another reference frame with the axes Oz along the major axis of the drop and 
the axis Ox  situated in the plane Ox’z’. Both these coordinate systems are shown in Fig.1.  
   In the laboratory (Ox’z’) frame the components of the flow velocity read: 

,'v ' zx γ=   0vv z'' ==y                                                                                                        (5) 
By using the standard formulas for transformations of vector components from one coordinate 
system to another, one can easily find the velocity components in the reference frame Oxz. After 
that we can determine the components of the rate-of-strain tensor in this frame: 
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All remaining components of this tensor are zero.  
     The viscous force, acting on the unit area of the drop surface, has been estimated in ref. [12]. 
The component of this force, acting in z direction (i.e. along the major axis a of the drop), can be 
presented in the form: 
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Here x,y,z are coordinates of a point on the drop surface. The following obvious relation 
describing the aggregate surface holds: 
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    Parameters '','',, 0000 βαβα  depend on the aggregate aspect-ratio r; their explicit forms are 
given in the Appendix I.   
    Integral of Pz  over the whole surface of  the drop means the total force acting on the drop in 
the shear flow. One can easily see that this integral is equal to zero, as it should be for force-free 
aggregates. The hydrodynamic force fh , stretching the drop in z direction, equals to the integral 
from Pz  over a half of the surface, say, corresponding to z>0. 
     After calculations (see Appendix II) we get: 
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Magnetic forces. 
The magnetic force, which determines the shape of the aggregate, can be determined as: 

a
F

f m
m ∂

∂
−=                                                                                                                             (10)                       

where Fm  is the magnetic free energy of the drop. This energy can be written in the following 
form: 
 
m b sF F F= +                                                                                                                          (11) 

 
Here Fb is the bulk free energy of the drop, determined by the effects of the drop demagnetizing 
field, Fs  is the surface tension free energy.  
     The bulk free energy can be presented as (see, for example [13]):  
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      The surface free energy is: 
 

dsF ss ∫= σ     
 
     Here σs  is the coefficient of the surface tension, ds is an infinitesimal element of the drop 
surface.  Strictly speaking, σs depends on the position of a point on this surface. This fact makes 
all calculations very complicated and cumbersome. For maximal simplification of the 
calculations, we will estimate Fs as: 
 

Σ= ξsF                                                                                                                                (12) 
 
Here ξ is the surface tension coefficient, averaged over the drop surface, Σ is the surface area. 
For the prolate ellipsoid of revolution the area can be calculated as: 
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The stretching force fb , corresponding to the free energy Fb, is: 
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The average coefficient of the surface tension can be estimated as (see, Appendix III): 
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Here δ is the thickness of the interface zone between the dense drop and the dilute environment. 
In the order of magnitude, this thickness equals to the particle diameter (see, for example, [8]).  
The force of the surface tension is: 
 

3/1
3/1

, 3
4

2
3| r

Vr
F

a
F

f s
V

s
s ⎟

⎠
⎞⎜

⎝
⎛

∂
∂

−=
∂
∂

−= π
θ                                                                                          (16)   

 
The explicit form of fs is cumbersome and we omit it here for brevity. 
The shape of the steady stable drop is determined from the condition that the total deforming 
force f, acting on the drop surface, is zero. Substituting  θ from (4) into eqs. (9,14,16), we get:  
 
( , ) ( , ) ( , ) ( , ) 0h b sf V r f V r f V r f V r= + + =                                                                              (17)      

 
    The second equation, necessary for calculation of two variations V and r, can be found from 
the following considerations. The plots of the force f, as a function of the aspect ratio r, for three 
magnitude of the volume V are shown in Fig.2. 

 
 
 
    Fig.2. Illustration of dependence of the deformation force f vs. the drop aspect ratio r.  
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    The positive magnitudes of  f  correspond to the drop elongation along the major axis a; the 
negative ones – to the drop contraction. If V>Vc, the force stretches the drop until it breaks; this 
happens at all magnitudes of the aspect ratio r. Therefore, the aspect ratio rc and the volume Vc 
of the stable drop are determined as solutions of the systems of equation (17) and the equation  

0),( =
∂

∂
r
rVf                                                                                                                              (18) 

 
The system (17),(18) can be easily solved numerically. 
 
Magnetoviscous stress σa.  
   In the first approximation the stress σa, produced by the magnetizable aggregates, can be 
estimated as (see, for example, [8,9] and references there): 

maa n Γ=
2
1σ                                 

where na is the number of the aggregates in a unit volume of the system.  
By using here the relation (2), one can get 
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Here Vna=Φ  is the volume concentration of the aggregates. Estimates show that for a magnetic 
field strength H0 as low as 1 kA/m, the energy of the magnetic interaction between the particles 
is much higher than the thermal energy kT. In this case, all the particles must be condensed into 
the domains (drops) of dense phase and we get: 

aϕ
ϕ0=Φ  

 
where ϕ0 is the total volume concentration of the particles in the suspension, ϕa is  the particle 
volume concentration in the drop.   
    In the dense aggregate this concentration can be estimated as ϕa≈0.6 – 0.7. We find the stress 
σa by substitution of Eq. (4) for θ and the solution of Eqs. (17), (18) into the expression (19).  
Predictions of the theoretical model for the total stress σ are compared with experimental results 
in Fig. 3. Details of experimental methods are given in Appendix IV. Note that the stress σ does 
not depend on the parameter δ of the drop surface tension. This follows both from the general 
dimensional analysis, as well as from the solution of the system (17,18).  
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Fig.3 Total stress σ vs. the shear rate γ . Lines represent theoretical predictions and dots the experimental data. 
Solid lines  - calculations with (17-19), the dashed ones – by using the asymptotic estimate (20).  Line 1 and open 
squares correspond to H0 =8.6 kA/m; line 2 and black squares - to H0=5.7 kA/m. Parameters of the systems: ϕ0=0.1; 
ϕa=0.65; χ=85; 0 5η =  mPa·s. 
 
As observed in Figure 3 there is a quite good correspondence between theory and experiments. 
This agreement shows that the observed magnetorheological effects can be explained by 
appearance of the drop-like aggregates and that the suggested model is adequate, at least, in its 
main points.  
    Estimates show that, for small Mason numbers Ma<<1, the aspect ratio r>>1 and the general 
solution (19) shows the following asymptotic behavior:  
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It should be noted that the same scaling relation 3/13/4 γσ Ha ∝  has been obtained in [8] from the 
energetic considerations, discussed in Introduction of the present paper. However the relation 
(20) corresponds to experimental situation only when the shear rateγ  are small enough. For 
large magnitudes ofγ , the asymptotic relation (20) overestimates the experimental results and 
the disagreement between theory and experiments increases with γ . The relation (19) can be 
applied in much more wide region of γ  than (20).  

Let us now analyze briefly the range of validity of our model. Firstly, our model is valid 
for the shear rates higher than some critical value corresponding to the maximum length of the 
aggregates when they become gap-spanning. This length is easily calculated under the asymptote 
of low shear rates, or equivalently, low Mason numbers giving the flowing expression for the 
critical Mason number: 3/ 2 1/ 2 1/ 2ln /(3 )cMa κ ϑ ϑ= , where 272 /(11 )gϑ χ πδ=  and g is the flow 
channel thickness corresponding to the rheometer gap in our experiments. For the typical set of 
the parameters appropriate to our experiments (gap thickness, g=0.35 mm, transition layer δ=0.5 
µm between the bulk aggregates and the surrounding medium, aggregate magnetic susceptibility, 
χ≈85, and magnetic field intensity H0=5.7-8.6 kA/m), we obtain the following estimate for the 
critical Mason number and the critical shear rate above which our model is considered to be 
valid:  Mac~10-4   and  𝛾~1𝑠!!    . Thus, in our experiments, focused on the developed flow 
regime at relatively high shear rates (1 500γ< <&  s-1), the aggregates are not expected to span the 
gap, and the present model could be applied safely. 
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Secondly, it should be noted that we ignored hydrodynamic interactions between the 
drop-like aggregates.. Obviously, in suspensions with high enough concentrations of the particles 
𝜑! and, therefore, high concentration of drop-like aggregates, Φ , both hydrodynamic and 
magnetic interactions between the drops can, in principle, be significant. However analysis 
shows that in suspensions of elongated particles (drop-like aggregates in our case), the effect of 
the hydrodynamic interaction is weak as compared to the effect of the interaction between the 
flow and individual particles [20, 21]. It is commonly recognized that the stress in the semi-
diluted fiber suspensions differs only modestly from that in the diluted ones [22]. Furthermore, 
in concentrated suspensions of rod-like particles the short-range hydrodynamic interactions 
between particles become significant only at concentrations respecting the condition 

1sin 10−Φ Θ≥  [23], with Θ being the average angle between axes of neighboring particles. In the 
case of strongly oriented drop-like aggregates, the angle Θ appears to be much smaller than unity 
(Θ<<1), and the short-range hydrodynamics should not play any significant role on the stress 
level.  

Thirdly, magnetic interaction between the drops can also affect the magnetic force and 
torque acting on each drop, as well as the macroscopic suspension stress. A simple estimate of 
the effect of the neighboring aggregates on the magnetic torque acting on a given aggregate can 
be obtained using the Maxwell-Garnett mean field theory [24] applied to the limit of low Mason 
numbers, thus high aggregate aspect ratios r>>1. At this condition, the aggregate 
demagnetization factor vanishes, N≈0, and the fraction in Eq. 2 for the magnetic torque reduces 
to 2 (1 ) /(2 (1 ) )χ χ−Φ + −Φ  if the magnetic interactions between aggregates are taken into 
account, instead of 2 /(2 )χ χ+  if the interactions are ignored. For the aggregates of high 
magnetic permeability, χ≈85 (as the ones composed of iron particles - our experimental case), 
the difference between both estimates is only a few percent. Thus, inter-aggregate magnetic 
interactions are not expected to enhance considerably the magnetic torque and the suspension 
stress, and the relationships (2) and (19) ignoring these interactions may still be applied.  

In summary, we believe that the assumption of negligible inter-aggregate interactions is 
justified for the MR suspensions used in our experiments having a particle volume fraction up to 
10%. The quantitative agreement between the theoretical and experimental results supports this 
assumption. Extension of the present theory to a broader concentration range, where interactions 
between the drops cannot be more ignored, could be a natural generalization of  the present 
model.  
 
Conclusion 
Results of theoretical study of magnetoviscous effects in magnetorheological suspensions with 
the drop-like aggregates are presented. The analysis is done beyond the standard asymptotic 
simplification of extremely elongated drops. We suppose that in the shear flowing suspension the 
volume and shape of the stable drop is determined by the balance between the hydrodynamic and 
magnetic forces which tend, respectively, to elongate and contract the drop in the direction of its 
main axis.  The theoretical results are in agreement with the experiments in a wide region of 
shear rate of the suspension flow, whereas the standard asymptotic estimates correspond to the 
experiments only when the shear rate is small enough.  
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Appendix I. 
 
 

The kinetic coefficients ″
00 ,...βα  , determined in [12] (see, also, [14]), read:   
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Appendix II.  Calculation of the hydrodynamic deformation force fh. 
 
     For calculation of the force fh  we will introduce the cylindrical coordinate systems (z,ρ,ψ) 
according to the rule: ψρψρ sin,cos, === yxzz . The following relation applies for the 
ellipsoid surface: 
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The last integral can be presented as: 
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Substituting (A.1) into (A.2) we come to the relation (9).  
 
Appendix III. Estimate of the mean surface tension ξ . 
 
By using the definition of the surface tension [15], we can estimate the coefficient of the surface 
tension as 
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δσ ms Ψ−∝
2
1                                                                                                                   (A.3)                                                           

Here δ  is thickness of the transition zone between the phase of the dense droplet and the dilute 
environment, mΨ  is the density of the free energy of magnetic interaction between particles in 
the dense drop.  The last magnitude is: 

20

2
Hm χµ

−=Ψ                                                                                                                (A.4) 

where H is magnetic field inside the drop. The Cartesian components of this field in the 
coordinate system Oxz, shown in Fig.1, can be written down as (see, for example, [10]): 
 

,
1
1

0HN
Hz χ+

=    0)1(2
2 H
N

Hx −+
=

χ
                                                                      (A.5) 

Obviously   222
zx HHH +=  .                                                                                  

The thickness δ of the transition layer between the droplet and surrounding medium depends on 
the position of a point on the droplet surface. Its calculation presents very sophisticated problem 
of statistical physics of the interface zone. For dense drops with the concentration of particles 
near the concentration of the dense packing, the thickness δ  is of the order of magnitude of the 
particle diameter d. In the approximation that δ is constant and does not depend on the position 
on the droplet surface, we replace in (A.3)  σs  to ξ. Combining (A.3)-(A.5), we come to the 
estimate (12,15).  
 
Appendix IV. Experimental methods. 
Iron powder (HQ quality; density 7.5 g·cm-3) supplied by BASF (Germany) was used as 
magnetic phase for the preparation of the MRS. SEM pictures revealed that this powder 
consisted of spherical particles with 930 nm of average diameter and 330 nm of standard 
deviation [16]. Kerosene (viscosity 2.1 mPa·s; density 0.79 g/cm3) supplied by Sigma-Aldrich 
(Germany) was used as carrier liquid. Clay particles (Claytone HY), supplied by Southern Clay 
Products, Inc. (Texas, USA) were used as stabilizing (thickening) agent in order to hinder the 
settling of the iron particles. In the developed shear flow regime, the viscosity of the clay-
kerosene mixture was 5 mPa·s. Iron suspensions were prepared as described in Ref. [17] and had 
a final iron particle volume concentration of 10 %.  Previous experiments showed that at low 
field, the relative magnetic susceptibility χp  of the iron powder is approximately independent of 
the field and takes an approximate value χp=130 [18]. Thus, the susceptibility of the drop with 
the densely packed particles can be roughly estimated as χ~χpϕp [19]. By using ϕp~0.65, we have 
the estimate χ~85.  
Rheological measurements were performed in a controlled rate mode using a MCR 300 Physica-
Anton Paar magnetorheometer at 25 °C. The measuring system geometry was a 20 mm diameter 
parallel-plate set for a gap width of 0.35 mm.  
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Figure capture. 
 
Fig.1. Sketch of the model under consideration. Horizontal arrows illustrate the macroscopic 
velocity of suspension. 
 
Fig.2. Illustration of the force f   of the drop deformation vs. the drop aspect ratio r.  

Fig.3. Total stress σ vs. the shear rate γ . Lines represent theoretical predictions and dots the 
experimental data. Solid lines  - calculations with (17-19), the dashed ones – by using the 
asymptotic estimate (20).  Line 1 and open squares correspond to H0 =8.6 kA/m; line 2 and black 
squares - to H0=5.7 kA/m. Parameters of the systems: ϕ0=0.1; ϕa=0.65; χ=70;  0 5η =  mPa·s. 
 

 


