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We characterize numerical semigroups of embedding dimension three having the
same catenary and tame degrees.

1. Introduction

Let S be a numerical semigroup minimally generated by {n1, . . . ,n p}. A factoriza-
tion of s ∈ S is an element x = (x1, . . . , x p) ∈Np such that x1n1+· · ·+ x pn p = s
(N denotes the set of nonnegative integers). The length of x is given by |x | =
x1+ · · ·+ x p. Given another factorization y = (y1, . . . , yp), the distance between
x and y is d(x, y) = max{|x − gcd(x, y)|, |y − gcd(x, y)|}, where gcd(x, y) =
(min{x1, y1}, . . . ,min{x p, yp}).

The catenary degree of S is the minimum nonnegative integer N such that for
every s ∈ S and any two factorizations x and y of s, there exists a sequence of
factorizations x1, . . . , xt of s such that

(1) x1 = x , xt = y,

(2) for all i ∈ {1, . . . , t − 1}, d(xi , xi+1)≤ N .

The tame degree of S is defined also in terms of distances, and it is the minimum N
such that for any s ∈ S and any factorization x of s, if n − ni ∈ S for some
i ∈ {1, . . . , p}, then there exists another factorization x ′ of s such that d(x, x ′)≤ N
and the i-th coordinate of x ′ is nonzero (ni “occurs” in this factorization).

It is well known that the catenary degree of S is less than or equal to the tame
degree of S (in greater generality; see [Geroldinger and Halter-Koch 2006]). It
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is also known that in some cases both coincide (for instance for monoids with a
generic presentation [Blanco et al. 2011]). In this paper, we want to characterize
when this is the case if p (the embedding dimension of S) is three. This description
is given in terms of the connectedness of some graphs associated to the elements
of S.

Given s ∈ S, we define the graph ∇s as the graph with vertices given by the
factorizations of s, and edges given by the pairs of factorizations x and y with
x · y 6= 0 (here · is the dot product; that is, x and y have common support). We
say that s is a Betti element of S if ∇s is not connected. It is well known (see for
instance [Rosales and García-Sánchez 2009], where the connected components of
∇s are called R-classes of s) that the number of Betti elements of S = 〈n1, n2, n3〉

is at most three. We characterize when t(S)= c(S) in terms of the Betti elements
of S; this is done in Theorem 25.

2. Preliminaries

A numerical semigroup is a submonoid of (N,+)with finite complement in N. Every
submonoid M of (N,+) is isomorphic to the numerical semigroup M/gcd(M). The
least positive integer in a numerical semigroup S is known as its multiplicity, m(S).
Every numerical semigroup S is minimally generated by S∗\(S∗+S∗), and as every
two minimal generators are incongruent modulo the multiplicity, this set has finitely
many elements. Its cardinality is known as the embedding dimension of S, denoted
by e(S). Thus, every numerical semigroup admits a unique (and finite) minimal
generating system. Its elements are known as minimal generators of the semigroup.
The largest integer not belonging to S is the Frobenius number of S, F(S).

For a given nonempty subset A of N, set

〈A〉 = {λ1a1+ · · ·+ λnan | n ∈ N, a1, . . . , an ∈ A},

which is the submonoid of (N,+) generated by A.

2.1. Catenary and tame degrees. Let S be minimally generated by {n1, . . . , n p}.
We recall some key notions from the theory of nonunique factorizations. Consider
the monoid epimorphism

ϕ : Np
→ S, ϕ(a1, . . . , ap)= a1n1+ · · ·+ apn p,

known as the factorization morphism of S. The monoid S is isomorphic to Np/σ ,
where σ = {(a, b) ∈Np

| ϕ(a)= ϕ(b)} is the kernel congruence of ϕ. As usual, we
write aσb if (a, b) ∈ σ . The set of factorizations of an element n ∈ S is

Z(n)= ϕ−1(n)= {(a1, . . . , ap) ∈ Np
| a1n1+ · · ·+ apn p = n}.

Let a= (a1, . . . , ap)∈ Z(n). The length of the factorization a is |a| = a1+· · ·+ap.
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For z = (z1, . . . , z p), z′ = (z′1, . . . , z′p) ∈ Np, write

gcd(z, z′)= (min{z1, z′1}, . . . ,min{z p, z′p}).

Set d(z, z′) = max{|z − gcd(z, z′)|, |z′ − gcd(z, z′)|} to be the distance between
z and z′. Given x ∈ Np and Y ⊂ Np, we define d(x, Y ) = min{d(x, y) | y ∈ Y }
(which exists by Dickson’s lemma). The support of z ∈ Np is defined, as usual, by
Supp(z) = {i ∈ {1, . . . , p} | zi 6= 0}. Let n ∈ S be such that n− ni ∈ S. Then the
set Zi (n)= {z ∈ Z(n) | i ∈ Supp(z)} is not empty.

Given n ∈ S and z, z′ ∈ Z(n), an N-chain of factorizations from z to z′ is a
sequence z0, . . . , zk ∈ Z(n) such that z0 = z, zk = z′ and d(zi , zi+1) ≤ N for all i .
The catenary degree of n, c(n), is the minimal N ∈ N∪ {∞} such that for any two
factorizations z, z′ ∈ Z(n), there is an N -chain from z to z′. The catenary degree
of S, c(S), is defined by

c(S)= sup{c(n) | n ∈ S}.

The tame degree tS(S′, X) of S′ ⊆ S and X ⊂ Np is the minimum of all N ∈
N ∪ {∞} such that for all s ∈ S′, z ∈ Z(s) and x ∈ X with s − ϕ(x) ∈ S, there
exists z′ ∈ Z(s) satisfying x ≤ z′ and d(z, z′) ≤ N . We simply write t(S′, X)
when S is understood. We also simply write t(s) for t({s}, {n1, . . . , n p}), and
t(S)= t(S, {n1, . . . , n p}), which equals max{t(s) | s ∈ S}.

A presentation for S is a subset τ of σ such that σ is the least congruence (with
respect to set inclusion) containing τ , or in other words, a system of generators
of σ . A minimal presentation is a presentation that is minimal with respect to set
inclusion (and it can be shown that in this setting it is also minimal with respect to
cardinality, see [Rosales and García-Sánchez 2009, Chapter 7]; in monoids these
two concepts do not have to be equivalent). We say that S is uniquely presented
if for every two minimal presentations τ and τ ′ of S and every (a, b) ∈ τ , either
(a, b) ∈ τ ′ or (b, a) ∈ τ ′ (see [García-Sánchez and Ojeda 2010]).

Two elements z and z′ of Np are R-related if there exists a chain z = z1, z2,
. . . , zk = z′ such that Supp(zi )∩Supp(zi+1) is not empty for all i ∈ {1, . . . , k− 1}.
The number of factorizations of an element in a numerical semigroup is finite, and
so is the number of R-classes in this set. These classes are crucial, since from
them a minimal presentation of S can be constructed. Moreover, let n ∈ S and
let Rn

1, . . . ,R
n
kn

be the different R-classes of Z(n). Set µ(n)=max{rn
1 , . . . , r

n
kn
},

where rn
i =min{|x | | x ∈Rn

i }. Define

µ(S)=max{µ(n) | n ∈ S, kn ≥ 2}.

Theorem 1 [Chapman et al. 2009, Theorem 1]. Let S be numerical semigroup.
Then c(S)= µ(S).
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Let S be a numerical semigroup. An element s ∈ S is said to be a Betti element if
Z(S) has more than one R-class. Observe that there are finitely many Betti elements
in S if it is finitely presented. The set of Betti elements of S is denoted by Betti(S).
As a consequence of the above theorem, we deduce that

c(S)=max{c(b) | b ∈ Betti(S)}.

For the computation of the tame degree of the numerical semigroup S, a minimal
presentation is not, in general, enough as shown in [Chapman et al. 2006]. Let I(S)
be the set of minimal nonnegative nonzero solutions of the equation

n1x1+ · · · n px p − n1 y1− · · ·− n p yp = 0.

Let (x, y)= (x1, . . . , x p, y1, . . . , yp) ∈N2p. Then (x, y) is a nonzero solution of
the above equation if and only if (x1, . . . , x p) and (y1, . . . , yp) are elements in
Z(π(x1, . . . , x p)). For n ∈ S, we write

In(S)= {(x1, . . . , x p, y1, . . . , yp) ∈ I(S) | π(x1, . . . , x p)= n}.

We have the following.

Theorem 2 [Chapman et al. 2009, Theorem 2]. Let S be a numerical semigroup
minimally generated by {n1, . . . , n p}. Then

t(S, {ni })=max{d(a,Zi (π(a))) | a ∈ Np, π(a)− ni ∈ S, Iπ(a)(S) 6=∅}.

And clearly, t(S)=max{t(S, {ni }) | i ∈ {1, . . . , p}}.
Let S be a numerical semigroup minimally generated by {n1, . . . , n p}, with

p > 1. Let n ∈ S. Assume that n − ni ∈ S for some i ∈ {1, . . . , p}. We define
ti (n)=max{d(z,Zi (n))|z ∈Z(n)}. Hence t(n)=max{ti (n) | n−ni ∈ S, 1≤ i ≤ p},
and we have that t(S)=max{t(n) | n ∈ S}.

Define

Prim(S)= {n ∈ S | there are a, b ∈ Z(n) with (a, b) ∈ I(S) and a 6= b},

which we call the set of primitive elements of S (note that the condition a 6= b
means (a, b) 6= (ei , ei ) for all i). As we observed above, the catenary degree of S is
attained in one of its Betti elements. The tame degree, in light of the above theorem,
is reached in a primitive element.

Given n ∈ S, define Gn as the graph with vertices given by the minimal gen-
erators ni such that n− ni ∈ S, and edges given by ni n j if n− (ni + n j ) ∈ S. It
can be shown that the number of R-classes (connected components of ∇n) equals
the number of connected components of Gn (see for instance [Rosales and García-
Sánchez 2009, Chapter 7]). From [Blanco et al. 2011, Lemma 5.4], it can be deduced
that if n is minimal in S with t(S) = t(n), then the graph Gn is not complete, as
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proved by Alfredo Sánchez-R. Navarro in a forthcoming Ph.D. dissertation. Denote
by NC(S) the set

NC(S)= {n ∈ S | Gn is not complete}.
Then

t(S)=max{t(s) | s ∈ Prim(S)∩NC(S)}.

2.2. Symmetric numerical semigroups. In this subsection we follow the notation
used in [Rosales and García-Sánchez 2009, Chapter 3].

A numerical semigroup is irreducible if it cannot be expressed as the intersection
of two numerical semigroups properly containing it.

A numerical semigroup S is symmetric if it is irreducible and F(S) is odd.
The following characterization is sometimes used as the definition of a symmetric

numerical semigroup.

Proposition 3. Let S be a numerical semigroup. Then, S is symmetric if and only if
for all x ∈ Z, x /∈ S implies F(S)− x ∈ S.

2.3. Gluing of numerical semigroups. There is an easy way to obtain symmetric
numerical semigroups from other symmetric numerical semigroups (this also applies
to complete intersections, but for complete intersections this construction fully
characterizes them). The proofs of the results in this paragraph can be found in
[Rosales and García-Sánchez 2009, Chapters 7 and 8].

Theorem 4. Let S be a numerical semigroup. Then the cardinality of a minimal
presentation for S is greater than or equal to e(S)− 1.

A numerical semigroup is a complete intersection if the cardinality of any of its
minimal presentations equals its embedding dimension minus one.

Let S1 and S2 be two numerical semigroups minimally generated by {n1, . . . , nr }

and {nr+1, . . . , ne}, respectively. Let λ∈ S1\{n1, . . . , nr } andµ∈ S2\{nr+1, . . . , ne}

be such that gcd(λ, µ)= 1. We say that

S = 〈µn1, . . . , µnr , λnr+1, . . . , λne〉

is a gluing of S1 and S2.
The following characterization of complete intersections was first given by

Delorme [1976] (though with different notation).

Theorem 5. A numerical semigroup other than N is a complete intersection if and
only if it is a gluing of two complete intersection numerical semigroups.

Also the symmetric property is preserved under gluings. As a consequence of
this, every complete intersection numerical semigroup is symmetric.

Proposition 6. A gluing of symmetric numerical semigroups is symmetric.
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Corollary 7. Every complete intersection numerical semigroup is symmetric.

Corollary 8. Every numerical semigroup of embedding dimension two is symmetric.

If in the process of gluing S1 and S2 we always take S2 to be a copy of N, we
obtain a special class of complete intersections. A numerical semigroup S is free if
it is either N or the gluing of a free numerical semigroup with N.

2.4. Numerical semigroups of embedding dimension three.

Theorem 9 [Herzog 1970]. Let S be a numerical semigroup with embedding di-
mension three. Then, S is a complete intersection if and only if it is symmetric.

Symmetric numerical semigroups with embedding dimension three are free since
they are a gluing of a numerical semigroup of embedding dimension two and N.
This can be used to give an explicit description of the minimal generators of a
semigroup of this kind.

Theorem 10 [Rosales and García-Sánchez 2009, Theorem 10.6]. Let m1 and m2

be two relatively prime integers greater than one. Let a, b and c be nonnegative
integers with a ≥ 2, b+ c ≥ 2 and gcd(a, bm1+ cm2)= 1.

Then S = 〈am1, am2, bm1 + cm2〉 is a symmetric numerical semigroup with
embedding dimension three. Moreover, every symmetric numerical semigroup of
embedding dimension three is of this form.

Let S= 〈n1 < n2 < n3〉 be a numerical semigroup of embedding dimension three.
Define

ci =min
{
k ∈ N \ {0} | kni ∈ 〈n j , nk〉, {i, j, k} = {1, 2, 3}

}
.

Then, for all {i, j, k} = {1, 2, 3}, there exists some ri j , rik ∈ N such that

ci ni = ri j n j + riknk .

From Example 8.23 and Theorem 8.17 in [loc. cit.], we know that

Betti(S)= {c1n1, c2n2, c3n3}.

Hence 1≤ # Betti(S)≤ 3. Herzog [1970] proved that S is symmetric if and only if
ri j = 0 for some i, j ∈ {1, 2, 3}, or equivalently, # Betti(S) ∈ {1, 2}. Therefore, S is
nonsymmetric if and only if # Betti(S)= 3.

3. Catenary and tame degrees in embedding dimension three

Let S be a numerical semigroup of embedding dimension three minimally gen-
erated by {n1, n2, n3} with n1 < n2 < n3. Corollary 5.8 in [Blanco et al. 2011]
states that c(S)= t(S) for S a nonsymmetric numerical semigroup of embedding
dimension three. It also gives an explicit formula for c(S) (and consequently t(S)).
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For this reason, we focus henceforth on the case when S is symmetric, and thus
# Betti(S) ∈ {1, 2}.

Notice that if n ∈Betti(S), then Gn is not connected, and so it cannot be complete.
Hence Betti(S)⊆ NC(S). Also the minimality of ci forces ci ni ∈ Prim(S). Thus,

Betti(S)⊆ Prim(S)∩NC(S).

(This is true not only for embedding dimension three, but in this case the inclusion
is straightforward.)

Numerical experiments were performed using the GAP package numericalsgps
[GAP; Delgado et al. 2013].

3.1. When S has two Betti elements. We first give several technical lemmas that
will be used in the following subcases.

Let ci be as above. Denote by ei the i-th row of the 3× 3 identity matrix.

Lemma 11. Assume that ci ni = c j n j 6= cknk for some {i, j, k} = {1, 2, 3}. Then

(1) Z(ci ni )= {ci ei , c j e j },

(2) the set Z(cknk) has two R-classes: {ckek} and Z(cknk) \ {ckek},

(3) S is uniquely presented if and only if Z(cknk)\{ckek}= {rki ei+rk j e j } for some
rki , rk j ∈ N \ {0}, with 0< rki < ci and 0< rk j < c j .

Proof. (1) Assume that there exists ai ei + a j e j + akek ∈ Z(ci ni ) \ {ci ei , c j e j }.
Then ai < ci since otherwise (ai − ci )ni + a j n j + aknk = 0, which leads to
ai = ci , a j = 0 and ak = 0, contradicting that ai ei + a j e j + akek 6= ci ei . Hence
a j n j + aknk = (ci − ai )ni . The minimality of ci forces ai = 0. Arguing analo-
gously, we obtain that a j < c j . But then (c j − a j )n j = aknk , and the minimality
of c j yields a j = 0. Thus ci ni = c j n j = aknk . This implies that ak > ck (the
equality cannot hold since we are assuming that ci ni = c j n j 6= cknk). Thus,
ci ni = c j n j = (ak − ck)nk + rk j n j + rki ni for some rk j , rki ∈ N with rk j + rki 6= 0.
Assume without loss of generality that rk j 6= 0. Then the minimality of c j forces
c j ≤ rk j , and consequently (ak−ck)nk+(rk j−c j )n j+rki ni =0, which is impossible
since ak − ck 6= 0.

(2) We already know that cknk ∈ Betti(S), and so Z(cknk) contains at least two R-
classes. Denote by R1 the one containing ckek . If there exists another element in R1,
then there are some ai , a j , ak ∈N, ak 6=0, such that cknk=ai ni+a j n j+aknk . From
the minimality of ck we deduce that ck ≤ ak , whence ai ni + a j n j + (ak − ck)nk = 0.
But this implies that ai = a j = 0 and ak = ck , contradicting that ai ei + a j e j + akek

was a factorization of cknk different from ckek .
Now take any other element in Z(cknk) \ {ckek}, say ai ei + a j e j + akek . By the

same argument used in the preceding paragraph, we deduce that ak = 0. Assume
that ai = 0. Then a j n j = cknk , and the minimality of c j implies that a j > c j
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(the equality cannot hold since c j n j 6= cknk). Hence (a j − c j )n j + ci ni = cknk ,
and a j e j R (a j − c j )e j + ci ei . The same holds if a j = 0, and we deduce that all
factorizations different from ckek are R-related.

(3) If S is uniquely presented, then Z(cknk) has exactly two elements, say ckek

and rki ei + rk j e j , each in a different R-class [García-Sánchez and Ojeda 2010].
Observe that if either rki = 0 or rk j = 0, arguing as above, we deduce that cknk has
at least three factorizations, which is impossible. Also rki ≥ ci or rk j ≥ ck yields a
new factorization.

For the converse, assume that cknk = rki ni + rk j n j with 0 < rki < ci and
0< rk j < c j . If (akek+ai ei+a j e j )∈Z(c3n3)\{ckek, rki ei+rk j e j }, as Z(cknk) has
two R-classes and one of them is {ckek}, we have that ak = 0. Hence ai ni+a j n j =

rki ni+rk j n j . If (ai , a j )≥ (rki , rk j ), we obtain (ai−rki )ni+(a j−rk j )n j = 0, which
yields ai = rki and a j = rk j , which is impossible (here≤ denotes the usual partial or-
der on N2; that is, (a, b)≤ (c, d) if (c−a, d−b)∈N2, and analogously for≥). Also
(ai , a j )≤ (rki , rk j ) leads to the same contradiction. So, either ai ≥ rki and ak ≤ rk j

(and not equality in both), or ai ≤ rki and ak ≥ rk j . By symmetry, and without loss
of generality, assume that the first possibility holds. Then (ai−rki )ni = (rk j−a j )n j .
But this implies that rk j−a j ≥ c j , whence rk j ≥ c j , contradicting the hypothesis. �

Since we are assuming n1<n2<n3, the following two lemmas are easy to prove.

Lemma 12. The inequality c3<r31+r32 holds for any r31e1+r32e2∈Z(c3n3)\{c3e3}.

Proof. Since n1 < n2 < n3, we have c3n3 = r31n1 + r32n2 < r31n3 + r32n3, and
hence c3 < r31+ r32. �

Lemma 13. For all r12e2+ r13e3 ∈ Z(c1n1) \ {c1e1}, we have r12+ r13 < c1.

Proof. We have c1n1 = r12n2 + r13n3 > r12n1 + r13n1 = (r12 + r13)n1, and thus
r12+ r13 < c1. �

The case c1n1 = c2n2 6= c3n3. Recall that we want to compute µ(b) for b a Betti
element (Theorem 1). So we must see what factorizations in every R-class have
minimum length.

In our setting c1n1 = c2n2 implies c2 < c1 because n1 < n2.

Proposition 14. Let S = 〈n1, n2, n3〉 with n1 < n2 < n3 and c1n1 = c2n2 6= c3n3.
Then c(S) < t(S).

Proof. By Lemma 11, Z(c3n3) has two R-classes: {c3e3} and Z(c3n3) \ {(c3e3}.
Denote {c3e3} by R1 and its complement in Z(c3e3) by R2. Lemma 12 implies that
c(c3n3)=min{r + s | (r, s, 0) ∈ R2}, and as c(c1n1)= c(c2n2)= c1 (c1 > c2), from
Theorem 1, we deduce that

c(S)=max
{
c1,min{r + s | (r, s, 0) ∈ R2}

}
.
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We distinguish two cases, depending on whether or not S is uniquely presented.
Assume first that S is not uniquely presented. Let (u, v, 0) ∈ Z(c3n3) be such that
u+ v =max{r + s | (r, s, 0) ∈ R2}. As S is not uniquely presented, either u ≥ c1

or v ≥ c2. If v ≥ c2, then (u + c1, v − c2, 0) ∈ Z(c3n3), and u + c1 + v − c2 =

u+ v+ (c1− c2) > u+ v, in contradiction with the maximality of u+ v. Hence
v < c2 and u ≥ c1. If u = c1, then v 6= 0 since c1n1 6= c3n3. So u+ v > c1. Then
t(S) ≥ d((u, v, 0), (0, 0, c3)), which by Lemma 12 equals u + v. Observe that
u+ v >min{r + s | (r, s, 0) ∈ R2}. Therefore

t(S) >max
{
min{r + s | (r, s, 0) ∈ R2}, c1

}
= c(S).

Now assume that S is uniquely presented. By Lemma 11, there exists one and
only one (r31, r32) ∈ N2 such that c3n3 = r31n1 + r32n2 with 0 < r31 < c1 and
0< r32 < c2, and consequently r32 < c1.

Take
n = (c2− r32)n2+ c3n3 = r31n1+ c2n2 = (c1+ r31)n1.

Observe that n has just the three factorizations (0, c2 − r32, c3), (r31, c2, 0) and
(c1+ r31, 0, 0). To see this, assume to the contrary that there exists a1, a2, a3 ∈ N

such that n = a1n1+ a2n2+ a3n3 and

(a1, a2, a3) 6∈ {(0, c2− r32, c3), (r31, c2, 0), (r31+ c1, 0, 0)}.

Since a1n1+a2n2+a3n3 = (c1+r31)n1, we easily deduce that a1 < c1+r31. Thus
a2n2+ a3n3 = (r31+ c1− a1)n1, so c1+ r31− a1 > c1, and hence a1 < r31 < c1.

• If c2 − r32 ≤ a2, from a1n1 + a2n2 + a3n3 = (c2 − r32)n2 + c3n3, we obtain
(c3−a3)n3= a1n1+(a2−c2+r32)n2> 0. Hence c3−a3≥ c3, or equivalently,
a3 ≤ 0, which forces a3 = 0. This implies c3n3 = a1n1+ (a2−c2+r32)n2. As
Z(c3n3)= {c3e3, r31e1+ r32e2}, we get a2 = c2, which is impossible.

• If, instead, a2 < c2 − r32, from a1n1 + a2n2 + a3n3 = r31n1 + c2n2, we
obtain a3n3 = (r31 − a1)n1 + (c2 − a2)n2 and then a3 ≥ c3. Then, from
a1n1+ a2n2+ a3n3 =(c2− r32)n2+ c3n3, it follows that (c2− r32− a2)n2 =

a1n1+(a3−c3)n3, whence c2−r32−a2≥c2; that is, r32+a2≤0, a contradiction.

Hence we have Z(n)= {(0, c2− r32, c3), (r31, c2, 0), (c1+ r31, 0, 0)}. Observe
that

t(n)≥ d
(
(c1+r31, 0, 0), (0, c2−r32, c3)

)
=max{c2−r32+c3, r31+c1} = r31+c1

(because (r31+c1)n1= (c2−r32)n2+c3n3>(c2−r32)n1+c3n1= (c2−r32+c3)n1,
which yields r31+ c1 > c2− r32+ c3). Then t(n) >max{c1, r31+ r32}, and hence
t(S)≥ t(n) > c(S). �
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Example 15. As an illustration, we offer a numerical semigroup of embedding
dimension three 〈n1, n2, n3〉 that is a gluing of 〈n1, n2〉/gcd(n1, n2) and N.

We make use of the GAP package numericalsgps to perform the calculations.
We try it with S = 〈4, 6, 7〉. Actually, we first started with S1 = 〈2, 3〉 and S2 = N,
and glued them together as S = 〈2× 2, 2× 3, 7× 1〉; that is, λ= 2 and µ= 7 with
the notations of Section 2.3. The choices of λ= 2 and µ= 7 are restricted by the
following facts: they must belong to S2 and S1, respectively, and cannot be minimal
generators; we also need n1 < n2 < n3.

gap> s:=NumericalSemigroup(4,6,7);
<Numerical semigroup with 3 generators>
gap> AsGluingOfNumericalSemigroups(s);
[ [ [ 4, 6 ], [ 7 ] ] ]

Now we compute a minimal presentation of S and the Betti elements of S.

gap> MinimalPresentationOfNumericalSemigroup(s);
[ [ [ 2, 1, 0 ], [ 0, 0, 2 ] ], [ [ 3, 0, 0 ], [ 0, 2, 0 ] ] ]
gap> BettiElementsOfNumericalSemigroup(s);
[ 12, 14 ]

Finally, we see that c(S) < t(S).

gap> CatenaryDegreeOfNumericalSemigroup(s);
3
gap> TameDegreeOfNumericalSemigroup(s);
5

The case c1n1 6= c2n2 = c3n3. Observe that c2n2 = c3n3 forces c3 < c2.

Lemma 16. If c1n1 6= c2n2 = c3n3, then c(S)=max{c1, c2}.

Proof. By Theorem 1, the catenary degree is reached in one of the two Betti
elements: Betti(S) = {c1n1, c2n2 = c3n3}. From Lemma 11, we have c(c2n2) =

max{c2, c3} = c2, and from Lemma 13, c(c1)= c1. So c(S)=max{c1, c2}. �

Proposition 17. Let S = 〈n1, n2, n3〉 with n1 < n2 < n3 and c1n1 6= c2n2 = c3n3.
If c2n2 - c1n1, then t(S) > c(S).

Proof. From Lemma 16, we know that c(S)=max{c1, c2}. As before, we distinguish
two cases, depending on whether or not S is uniquely presented.

Assume first that S is uniquely presented. In light of Lemma 11, there exists
r12, r13 ∈ N \ {0} such that Z(c1n1) = {c1e1, r12e2+ r13e3}, r12 < c2 and r13 < c3

(thus r13 < c2). Set

n = c1n1+ (c2− r12)n2 = c2n2+ r13n3 = (c3+ r13)n3.
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As in the proof of Proposition 14, we can see that

Z(n)= {(c1, c2− r12, 0), (0, c2, r13), (0, 0, c3+ r13)}.

Then t(n)≥ d
(
(c1, c2−r12, 0), (0, 0, c3+r13)

)
= c1+c2−r12 (since c1 > r12+r13

and c2 > c3 imply c1 + c2 − r12 > c3 + r13). By observing that c1 > r12, we get
c1−r12> 0, and then c1+c2−r12> c2. Also r12< c2 implies c1+c2−r12> c1. So
t(n)≥ c1+c2−r12 >max{c1, c2} = c(S), and we conclude that t(S)≥ t(n) > c(S).

Now suppose S is not uniquely presented. From Lemma 11, we deduce that
there exists an expression c1n1 = r12n2 + r13n3, and we have either r12 ≥ c2 or
r13 ≥ c3. Without loss of generality suppose that r13 ≥ c3. If r12 ≥ c2, we derive
c1n1 = (r12− c2)n2+ (r13+ c3)n3. So we can assume, in addition, that r12 < c2.

Case 1: If r12 6= 0, take n = (c3+ r13)n3. We prove that the only factorization with
nonzero first coordinate of n is (c1, c2− r12, 0). Assume to the contrary that

(c3+ r13)n3 = c1a1+ (c2− r12)n2 = a1n1+ a2n2+ a3n3,

with a1, a2, a3 ∈ N, a1 6= 0 and (a1, a2, a3) 6= (c1, c2− r12, 0). Then a3 < c3+ r13

since otherwise a1n1 + a2n2 + (a3 − c3 − r13)n3 = 0, and this forces a1 = 0, a
contradiction. Hence (c3+ r13− a3)n3 = a1n1+ a2n2, and thus c3+ r13− a3 ≥ c3,
or equivalently, r13 ≥ a3. Thus c3n3 + (r13 − a3)n3 = a1n1 + a2n2, which leads
to c2n2 + (r13 − a3)n3 = a1n1 + a2n2. Since r12 6= 0, we derive a1 < c1 because
otherwise (c2−r12)n2= (a1− c1)n1+ a2n2+ a3n3, and this either leads to a1= c1,
a2 = c2− r12 and a3 = 0, which is impossible, or contradicts the minimality of c2.
As c2n2 + (r13 − a3)n3 = a1n1 + a2n2 and a1 < c1, we have a2 ≥ c2. Hence
(r13−a3)n3 = a1n1+ (a2−c2)n2. This again leads to r12−a3 ≥ c3. We can repeat
the process and obtain (r13−a3−kc3)n3 = a1n1+ (a2− (k+1)c2)n2 for all k ∈N,
which leads also to a contradiction.

Now, we have that

t(n)≥d
(
(0, 0, c3+r13), (c1, c2−r12, 0)

)
=max{c3+r13, c1+c2−r12}=c1+c2−r12

because (c3+r13)n3= c1n1+(c2−r12)n2< c1n3+(c2−r12)n3= (c1+c2−r12)n3.
Thus this distance is greater than both c1 and c2. In fact, c1+ c2− r12 > c1 follows
easily from c2 > r12, and c1+c2−r12 > c2 follows from c1 > r12+r13 (Lemma 16).

Case 2: If r12 = 0, then c1n1 = r13n3, so we get the inequalities c3 < r13 < c1.
Take h =min{m ∈ N | mc3 > r13} (h ≥ 2) and let us consider n = hc3n3. Clearly,
{(0, 0, hc3), (c1, 0, hc3− r13), (0, hc2, 0)} ⊆ Z(n). We prove that the only factor-
ization of n with nonzero first coordinate is (c1, 0, hc3− r13).

To see this, notice that the minimality of h forces hc3− r13 ≤ c3 since otherwise
(h−1)c3 > r13. Also hc3−r13 = c3 implies that (h−1)c3 = r13, and consequently
c1n1=r13n3= (h−1)c3n3= (h−1)c2n2, which means that c2n2 |c1n1, contradicting
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the hypothesis. Hence hc2 − r13 < c3. Assume that there is another expression
of the form n = hc3n3 = a1n1 + a2n2 + a3n3 with a1 6= 0. We can assume that
a2 < c2 because otherwise (a1, a2− c2, a3+ c3) is another factorization of n, and
we can repeat this procedure until the second coordinate is less than c2. Thus
(hc3− r13)n3+ c1n1 = a1n1+ a2n2+ a3n3.

• If a3≥ hc3−r13, then c1n1= a1n1+a2n2+(a3+r13−hc3)n3. The minimality
of c1 forces a1≥c1, and consequently (a1−c1)n1+a2n2+(a3+r13−hc3)n3=0.
This can only happen if (a1, a2, a3)= (c1, 0, hc3− r13), a contradiction.

• If a3<hc3−r13, then (hc3−r13−a3)n3+c1n1=a1n1+a2n2. As hc3−r13<c3,
it follows that c1 > a1, and thus (hc3− r13− a3)n3+ (c1− a1)n1 = a2n2. But
this forces a2 = 0 since otherwise a2 ≥ c2, contradicting the choice of a2.
Again we obtain (a1, a2, a3)= (c1, 0, hc3− r13).

Since hc3 > r13 and hc2 > c2, we have

t(S)≥ d((c1, 0, hc3− r13), (0, hc2, 0))

=max{c1+ hc3− r13, hc2}>max{c1, c2} = c(S). �

Example 18. We use the same idea of Example 15. Here we need a gluing of N and
〈n2, n3〉/gcd(n2, n3). We start again with N and 〈2, 3〉. As we need n1 < n2 < n3,
we choose, for example, λ= 5 and µ= 4, obtaining S = 〈5, 8, 12〉.

gap> s:=NumericalSemigroup(5,8,12);;
gap> AsGluingOfNumericalSemigroups(s);
[ [ [ 5 ], [ 8, 12 ] ] ]

The minimal presentation and Betti elements of S are

gap> MinimalPresentationOfNumericalSemigroup(s);
[ [ [ 0, 3, 0 ], [ 0, 0, 2 ] ], [ [ 4, 0, 0 ], [ 0, 1, 1 ] ] ]
gap> BettiElementsOfNumericalSemigroup(s);
[ 20, 24 ]

Finally, we check that indeed c(S) < t(S).

gap> CatenaryDegreeOfNumericalSemigroup(s);
4
gap> TameDegreeOfNumericalSemigroup(s);
6

Proposition 19. Let S = 〈n1, n2, n3〉 with n1 < n2 < n3 and c1n1 6= c2n2 = c3n3.
If c2n2 | c1n1, then t(S)= c(S).

Proof. Since c2n2 | c1n1 and c2n2 6= c1n1, we deduce that c1n1 = kc2n2 for some
integer k ≥ 1.
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We start by proving that Betti(S)= Prim(S)∩NC(S). Assume that there exists
n ∈ (Prim(S)∩NC(S)) \Betti(S). Then, for some permutation (i, j, k) of (1, 2, 3)
and some ai , a j , ak ∈N with ai > 0 and a j+ak ≥ 2, we have n=ai ni =a j n j+aknk

and ai ei + a j e j+3+ akek+3 ∈ In(S). We distinguish three cases depending on i .

Case 1: If i = 1, then n=a1n1=a2n2+a3n3. Hence a1≥ c1, and since n 6∈Betti(S),
a1 > c1. This implies that

n = a1n1 = (a1− c1)n1+ c1n1 = (a1− c1)n1+ (k− 1)c2n2+ c3n2,

and consequently the graph associated to n is complete, a contradiction.

Case 2: If i = 2, then n = a2n2 = a1n1+ a3n3. As above, we deduce that a2 > c2.
Hence n = a2n2 = (a2 − c2)n2 + c3n3 = a1n1 + a3n3, and in particular the edge
n2n3 is in the graph associated to n.

Assume that a3≥ c3. Then (a2−c2)n2= a1n1+(a3−c3)n3. But this implies that
(a1, 0, a3− c3, 0, a2− c2, 0) < (a1, 0, a3, 0, a2, 0), contradicting that n ∈ Prim(S).
Thus, a3 < c3, and then (a2 − c2)n2 + (c3 − a3)n3 = a1n1. The minimality of c1

leads to a1 ≥ c1. If a1 = c1, then a2n2 = kc2n2 + a3n3. The fact that a3 < c3

forces kc2 ≥ a2. But then, 0= (kc2− a2)n2+ a3n3 which implies that a3 = 0, and
consequently n = c1n1 ∈ Betti(S), a contradiction. It follows that a1 > c1. We
conclude that

n = a2n2 = a1n1+ a3n3 = (a1− c1)n1+ kc2n2+ a3n3

= (a1− c1)n1+ (kc3+ a3)n3,

and thus the graph associated to n is complete.

Case 3: The case i = 3 is analogous to the previous one.

Hence t(S)=max{t(c1n1), t(c2n2)}. We already know that Z(c2n2)={c2e2,c3e3},
and then t(c2n2) = c2. Also every factorization of c1n1 is either c1e1 or some
xe2+ ye3 with x + y < c1. It follows that t(c1n1)= c1. We conclude the proof by
using Lemma 16. �

Example 20. We use once more S1 =N and S2 = 〈2, 3〉. We need c2n2 | c1n1. We
choose λ= 12 and µ= 7, obtaining S = 〈12, 14, 21〉.

gap> s:=NumericalSemigroup(12,14,21);;
gap> AsGluingOfNumericalSemigroups(s);
[ [ [ 12 ], [ 14, 21 ] ], [ [ 12, 14 ], [ 21 ] ],

[ [ 12, 21 ], [ 14 ] ] ]
gap> MinimalPresentationOfNumericalSemigroup(s);
[ [ [ 0, 3, 0 ], [ 0, 0, 2 ] ], [ [ 7, 0, 0 ], [ 0, 0, 4 ] ] ]
gap> BettiElementsOfNumericalSemigroup(s);
[ 42, 84 ]
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Thus c1n1 = 7× 12= 22
× 3× 7, which is a multiple of c2n2 = 3× 14= 2× 3× 7.

We check that the tame and catenary degrees agree in this case.

gap> CatenaryDegreeOfNumericalSemigroup(s);
7
gap> TameDegreeOfNumericalSemigroup(s);
7

The case c1n1 = c3n3 6= c2n2.

Proposition 21. Let S = 〈n1, n2, n3〉 with n1 < n2 < n3 and c1n1 = c3n3 6= c2n2.
Then c(S) < t(S).

Proof. The catenary degree is reached in one of the two Betti elements, Betti(S)=
{c1n1, c2n2}.

We know that c(c1n1)= c1 and that Z(c2n2) has just two R-classes, say R1 =

{(0, c2, 0)} and R2 = Z(c2n2) \ R1 (Lemma 11). Take (r21, 0, r23) ∈ R2 such that
r21+ r23 =min{r + s | (r, 0, s) ∈ R2}. Hence, c(c2n2)=max{c2, r21+ r23}. So we
can conclude that c(S)=max{c1, c2, r21+ r23} (Theorem 1).

Since c2n2 = r21n1+ r23n3 > r23n2, we have r23 < c2. Moreover, c1 > c3, and
so if r21 ≥ c1, we have r21n1+r23n3 = (r21−c1)n1+ (r23+c3)n3, with r21+r23 >

r21+ r23+ c3− c1, contradicting the minimality of r21+ r23. Therefore, r21 < c1.
We distinguish two cases.

Case 1: If r21 6=0, then take n = (c1− r21)n1+ c2n2 = c1n1+ r23n3 = (c3+ r23)n3.
We prove that the only factorization of n with nonzero second coordinate is
(c1− r21, c2, 0). Assume that there exists (a1, a2, a3) ∈ Z(n) \ {(c1 − r21, c2, 0)}
with a2 6= 0. Since a1n1+ a2n2+ a3n3 = (c3+ r23)n3, we can easily deduce that
a3 < c3+ r23. Thus a1n1 + a2n2 = (c3 + r23 − a3)n3, so c3 + r23 − a3 > c3, and
hence a3 < r23.

If c1 − r21 ≤ a1, from a1n1 + a2n2 + a3n3 = (c1 − r21)n1 + c2n2, we obtain
(c2− a2)n2 = (a1− c1+ r21)n1+ a3n3 > 0. Hence c2− a2 ≥ c2, or equivalently
a2 ≤ 0, which forces a2 = 0.

If, instead, a1 < c1− r21, from a1n1+ a2n2+ a3n3 = c1n1+ r23n3, we obtain
a2n2 = (r23− a3)n3+ (c1− a1)n1, and then a2 ≥ c2. From a1n1+ a2n2+ a3n3 =

(c1− r21)n1+ c2n2, it follows that (c1− r21− a1)n1 = (a2− c2)n2+ a3n3. Thus,
c1− r21− a1 ≥ c1, that is, r21+ a1 ≤ 0, and then a1 = r21 = 0, a contradiction.

Hence, t(n)≥ d
(
(c1−r21, c2, 0), (0, 0, c3+r23)

)
=max{c1−r21+c2, c3+r23}=

c1− r21+ c2, since (c3+ r23)n3 = (c1− r21)n1+ c2n2 < (c1− r21+ c2)n3.
Now we have

• c1 − r21 + c2 > c1 since (c2 − r21)n2 > c2n2 − r21n1 = r23n3 > 0 implies
c2− r21 > 0;

• c1− r21+ c2 > c2 since r21 > c1;
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• c1 − r21 + c2 > r21 + r23 since c1 > r21 and (c2 − r21)n2 > c2n2 − r21n1 =

r23n3 > r23n2 implies c2− r21 > r23.

So we finally have that

t(S)≥ d
(
(c1− r21, c2, 0), (0, 0, c3+ r23)

)
>max{c1, c2, r21+ r23} = c(S).

Case 2: If r21 = 0, then c2n2 = r23n3, so we deduce the inequalities c3 < r23 < c2.
Take h =min{m |mc3 > r23} (h ≥ 2) and let us consider n = hc3n3. It follows that

{(0, 0, hc3), (0, c2, hc3− r23), (hc1, 0, 0)} ⊂ Z(n).

Arguing as in Proposition 17, we can prove that the only possible factorizations
with nonzero second coordinate are (0, c2, hc3−r23) and (c1, c2, 0) (this one occurs
only if hc3− r23 = c3).

So we have

• d((0, c2, hc3−r23), (hc1, 0, 0))=max{c2+hc3−r23, hc1}>max{c1, c2, r23}=

max{c1, c2} = c(S) since hc3 > r23 and hc1 > c1;

• if hc3− r23 = c3, then c2n2 = (h− 1)c1n1, and consequently (h− 1)c1 > c2

and h− 1> 1 (recall that c2n2 6= c1n1), whence

d((c1, c2, 0), (hc1, 0, 0))=max{(h− 1)c1, c2}> c(S).

We conclude that t(S) > c(S). �

Example 22. As in the preceding example we start with S1 = N and S2 = 〈2, 3〉.
We need n1 < n2 < n3, that is 2µ < λ < 3µ. For the first case of the proof of
Proposition 21 (r21 6= 0), we choose λ= 5 and µ= 2.

gap> s:=NumericalSemigroup(4,5,6);;
gap> AsGluingOfNumericalSemigroups(s);
[ [ [ 4, 6 ], [ 5 ] ] ]
gap> MinimalPresentationOfNumericalSemigroup(s);
[ [ [ 0, 2, 0 ], [ 1, 0, 1 ] ], [ [ 3, 0, 0 ], [ 0, 0, 2 ] ] ]
gap> BettiElementsOfNumericalSemigroup(s);
[ 10, 12 ]
gap> CatenaryDegreeOfNumericalSemigroup(s);
3
gap> TameDegreeOfNumericalSemigroup(s);
4

For the second case, r21 = 0, we choose λ= 18 and µ= 7.

gap> s:=NumericalSemigroup(14,18,21);;
gap> AsGluingOfNumericalSemigroups(s);
[ [ [ 14 ], [ 18, 21 ] ], [ [ 14, 18 ], [ 21 ] ],
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[ [ 14, 21 ], [ 18 ] ] ]
gap> MinimalPresentationOfNumericalSemigroup(s);
[ [ [ 0, 0, 6 ], [ 0, 7, 0 ] ], [ [ 3, 0, 0 ], [ 0, 0, 2 ] ] ]
gap> BettiElementsOfNumericalSemigroup(s);
[ 42, 126 ]
gap> CatenaryDegreeOfNumericalSemigroup(s);
7
gap> TameDegreeOfNumericalSemigroup(s);
9

3.2. When S has a single Betti element. Numerical semigroups having a single
Betti element are fully characterized in [García Sánchez et al. 2013, Theorem 12].
The following proposition is a particular instance of [loc. cit., Theorem 19]; we
include it here for sake of completeness.

Proposition 23. Let S = 〈n1, n2, n3〉 with n1 < n2 < n3 and c1n1 = c2n2 = c3n3.
Then c(S)= t(S).

Proof. Take h = c1n1 = c2n2 = c3n3. The catenary degree of S is reached in one of
the Betti elements; since in our case Betti(S)= {c1n1 = c2n2 = c3n3 = h}, we get
c(S)= c(h)=max{c1, c2, c3} = c1.

We know that the tame degree is reached in some n ∈ Prim(S)∩NC(S). Since
we have that Betti(S)⊆ Prim(S)∩NC(S) and t(h)=max{c1, c2, c3} = c1, in order
to prove that c(S) = t(S), we show that Betti(S) = Prim(S) ∩ NC(S). To this
end, take n ∈ (Prim(S)∩NC(S)) \Betti(S). So n = ai ni = a j n j + aknk for some
{i, j, k} = {1, 2, 3}. It follows that ai ≥ ci and, since n /∈ Betti(S), we have ai 6= ci .
So ai > ci . Then we have two cases:

• If a j ak 6= 0, then n /∈NC(S) because n= (ai−ci )ni+c j n j = (ai−ci )ni+cknk ,
and consequently Gn is a triangle.

• If a j = 0, then ak > ck , so we get (ak−ck)nk+c j n j = ai ni = (ai−ci )ni+cknk ,
and then Gn is a triangle.

In any case we get a contradiction. �

Example 24. If we want c1n1 = c2n2 = c3n3, according to [García Sánchez et al.
2013, Theorem 12], we need three pairwise coprime integers greater than one, and
then we need to take all of the products of any two of them. The easiest example is
2, 3, 5, and thus n1 = 2× 3, n2 = 2× 5 and n3 = 3× 5.

gap> s:=NumericalSemigroup(6,10,15);
<Numerical semigroup with 3 generators>
gap> AsGluingOfNumericalSemigroups(s);
[ [ [ 6 ], [ 10, 15 ] ], [ [ 6, 10 ], [ 15 ] ],
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[ [ 6, 15 ], [ 10 ] ] ]
gap> BettiElementsOfNumericalSemigroup(s);
[ 30 ]
gap> MinimalPresentationOfNumericalSemigroup(s);
[ [ [ 5, 0, 0 ], [ 0, 0, 2 ] ], [ [ 5, 0, 0 ], [ 0, 3, 0 ] ] ]
gap> CatenaryDegreeOfNumericalSemigroup(s);
5
gap> TameDegreeOfNumericalSemigroup(s);
5

4. Main result

Gathering the results from the previous section, we obtain the following theorem.

Theorem 25. Let S be a numerical semigroup of embedding dimension three mini-
mally generated by {n1, n2, n3}. For every {i, j, k} = {1, 2, 3}, define

ci =min{k ∈ N \ {0} | kni ∈ 〈n j , nk〉}.

Then c(S)= t(S) if and only if

• either # Betti(S) 6= 2,

• or c1n1 6= c2n2 = c3n3 and c2n2 divides c1n1.
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