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Abstract

Brain or blood plasma melatonin was analysed as a measure for pineal melatonin production in sea bream. Access to calcium was 
limited by diluting the seawater to 2.5& and removing calcium from the diet or by prolonged feeding of vitamin D-deficient diet. Inter­
actions/relations between melatonin and calcium balance and the hypercalcemic endocrines PTHrP and calcitriol were assessed. Restrict­
ing calcium availability in both water and diet had no effect on plasma melatonin, but when calcium was low in the water or absent from 
food, increased and decreased plasma melatonin was observed, respectively. Fish on a vitamin D-deficient diet (D— fish) showed 
decreased plasma calcitriol levels and remained normocalcemic. Decreased brain melatonin was found at all sampling times (10-22 
weeks) in the D — fish compared to the controls. A positive correlation between plasma Ca2+ and plasma melatonin was found 
(R2 =  0.19; N  =  41; P < 0.01) and brain melatonin was negatively correlated with plasma PTHrP (R2 =  0.78; N  =  4; P < 0.05). The posi­
tive correlation between plasma levels of melatonin and Ca2+ provides evidence that melatonin synthesis is influenced by plasma Ca2+. 
The decreased melatonin production in the D — fish points to direct or indirect involvement of calcitriol in melatonin synthesis by the 
pineal organ in teleosts. The hypercalcemic factors PTHrP and calcitriol appeared to be negatively correlated with melatonin and this 
substantiates an involvement of melatonin in modulating the endocrine response to cope with hypocalcemia. It further points to the 
importance of Ca2+ in melatonin physiology.
© 2007 Published by Elsevier Inc.
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1. Introduction

Melatonin (N-acetyl-5methoxytryptamine) is a product 
of tryptophan metabolism in the pineal gland and retina 
in all classes of vertebrates. Melatonin synthesis shows a 
circadian rhythm in vertebrates, including fishes, with syn­
thesis increased during darkness and decreased during the 
light period (Ekstrom and Meissl, 1997). The rythm of mel­
atonin biosynthesis results from variations in activity of 
arylalkylamine N-acetyltransferase, the light-sensitive, key 
enzyme in melatonin production (Liu and Borjigin, 2005).

* Corresponding author. Fax: +31 24 3653229.
E-mail address: G.Flik@science.ru.nl (G. Flik).

0016-6480/$ - see front matter © 2007 Published by Elsevier Inc. 
doi:10.1016/j.ygcen.2007.03.002

The pineal gland does not store melatonin and therefore, 
levels of melatonin assayed in plasma or brain extracts 
directly reflect synthetic activity of the pineal gland (Kulc­
zykowska, 2002).

The past decades have provided a plethora of data on 
physiological parameters that are linked to melatonin 
activity (Davis, 1997; Dubocovich and Markowska, 
2005). Melatonin activity is pivotal in circadian as well as 
circannual biorhythms (Meissl and Brandstatter, 1992; 
Reiter, 1993; Vera et al., 2006). In Atlantic salmon, Salmo 
salar, melatonin was shown to be involved in early develop­
ment and control of the timing of parr-smolt transforma­
tion (Porter et al., 1998). Melatonin per se decreases 
tartrate-resistant acid phosphatase and alkaline phospha-

Please cite this article in press as: Abbink, W. et al., Melatonin synthesis under calcium constraint in gilthead sea ..., Gen. Comp.
Endocrinol. (2007), doi:10.1016/j.ygcen.2007.03.002

http://www.sciencedirect.com
http://www.elsevier.com/locate/ygcen
mailto:G.Flik@science.ru.nl


51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107

08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

YGCEN 9869

27 March 2007 Disk Used
ARTICLE IN PRESS No. of Pages 7, Model 5+

Jayalakshmi (CE) /  Karthikeyan (TE)

2 W. Abbink et al. / General and Comparative Endocrinology xxx  (2007) xxx-xxx

tase activities in cultured goldfish (Carassius auratus) scales 
and counteracts stimulatory effects of estradiol on these 
enzymes (Suzuki and Hattori, 2002). These phosphatases 
are the markers of choice for osteoclastic and osteoblastic 
activity and it thus follows that melatonin influences cal­
cium physiology of scales (and bone) in fish (Fjelldal 
et al., 2004).

Many aspects of pinealocyte activity are under some 
control of (plasma) calcium activity and therefore, pineal 
function often relates directly or indirectly to calcium 
metabolism (Morton and Reiter, 1991). Indeed, in two 
fishes, viz. rainbow trout (Oncorhynchus mykiss) and sum­
mer flounder (Paralichthys dentatus), melatonin synthesis 
capacity appears to be positively correlated to plasma free 
calcium levels (Kroeber et al., 2000; Gozdowska et al., 
2003). This relation between plasma calcium and melatonin 
activity warranted the research presented here. We rea­
soned that an analysis of plasma calcium levels and of cal- 
ciotropic hormone activities would shed better light on the 
relation between calcemic conditions and melatonin activ­
ity, considering the strict calcemic control in fish (as in 
all vertebrates).

Fish have essentially unlimited access to calcium in their 
environment (water and diet; external calcium sources); in 
addition, their skeleton and dermal scales represent inter­
nal calcium sources (Flik et al., 1986). Physiological pro­
cesses, such as vitellogenesis, that demand sumptuous 
amounts of calcium or variations in environmental calcium 
availability (e.g., migration into soft water), require a swift 
calcemic endocrine system to keep plasma calcium bal­
anced. Plasma Ca2+ is the physiologically important frac­
tion in (fish) blood (Hanssen et al., 1991) and this 
fraction in particular is regulated within narrow limits, as 
even minor deviation of set point may evoke (severe) stress 
(Flik et al., 1995).

Calcium regulation in fishes involves the antihyper- 
calcemic stanniocalcin (the hormone inhibits calcium 
influx from the water via the gills and by doing so exerts 
hypocalcemic effects; Verbost et al., 1993). It has long 
been thought that fish lack typical hypercalcemic endo­
crine factors, as antihypercalcemic control by stanniocal- 
cin seemed to suffice in explaining calcemic control 
(Wagner et al., 1998). Indeed, only very recently the 
genes for parathyroid hormone (PTH), which is the dom­
inant hypercalcemic factor for terrestrial vertebrates, 
were found in fish (Danks et al., 1993). However, earlier, 
fish were shown to express genes for parathyroid hor­
mone related protein (PTHrP; Power et al., 2000; Flana­
gan et al., 2000; Canario et al., 2006). PTHrP behaves in 
fish as a hypercalcemic hormone and appears key in fish 
calcium physiology (Ingleton et al., 2002; Trivett et al., 
2001). Recently, we established a strict relationship 
between PTHrP levels in plasma and plasma Ca2+ in 
juvenile sea bream (Abbink et al., 2006). PTHrP is 
involved in both the regulation of calcium uptake from 
the environment (Guerreiro et al., 2001) and regulates 
calcium resorption from scales (Rotllant et al., 2005).

In addition to PTHrP, calcitriol (1.25[OH]2D 3) exerts 
hypercalcemic effects in fish; it is the active metabolite 
of vitamin D that plays an important role in bone for­
mation (Haga et al., 2004) and it stimulates intestinal 
calcium absorption (Swarup et al., 1991). Sundell et al. 
(1993) demonstrated calcitriol receptors in several cal­
cium regulating tissues (gill, intestine, kidney) in Atlantic 
cod (Gadus morhua) and demonstrated increased calcium 
absorption after calcitriol administration, in line with 
hypercalcemic function. We reasoned that feeding our 
fish a vitamin D-deficient diet for prolonged times should 
compromise their calcium physiology and thus we ana­
lysed such fish in this study.

Juvenile sea bream were limited for at least 3 weeks in 
their calcium access by feeding a calcium deficient diet, 
decreasing water calcium content, or both. The water cal­
cium content was decreased by dilution of the seawater 
(34-2.5& salinity) and by doing so, the water calcium con­
centration decreased from 10 to 0.7 mmoll—1 (Abbink 
et al., 2004).

Indeed, compared to untreated control fish in seawater, 
all experimental groups in these experiments show slightly 
elevated cortisol levels, although we discussed that these 
rises were very mild and considered still within the limits 
of values for non-stress situations (Abbink et al., 2004). 
We realise ourselves that even mild elevations of cortisol 
may affect neuroendocrine regulatory systems including 
the melatonin system (Larson et al., 2004). However, as 
will be shown in this paper the melatonin response to the 
treatments given does not parallel the earlier published cor­
tisol responses.

In a second series of experiments, fish were fed a vita­
min D-deficient diet for up to 22 weeks (Abbink et al., in 
press) and compared to controls that were fed a vitamin 
D-sufficient diet. The rationale behind these two experi­
ments was to limit calcium availability, either directly 
(via water and diet) or indirectly (via vitamin D defi­
ciency) to impose an imminent hypocalcemia and activate 
hypercalcemic endocrines (PTHrP). The fish limited in 
their access to calcium in water and diet became hypocal- 
cemic (for the Ca2+ fraction). The fish kept on the vitamin 
D-deficient diet remained normocalcemic, but calcium 
turnover decreased, indicated by decreased branchial in- 
and efflux of calcium and a lower calcium accumulation 
rate. Unexpectedly, in both experiments, plasma PTHrP 
levels remained constant or even decreased, while pthrp 
and p th lr  (the main PTHrP receptor; Rubin and Jiippner 
1999) mRNA levels were down-regulated in the pituitary 
gland, results interpreted to indicate lower turnover of 
PTHrP.

Thus we followed these studies by further exploring the 
relationship between melatonin production and calcium 
regulation. In the present study, we analysed the brain or 
blood plasma melatonin concentration of these fish and 
their controls to assess interactions/relations between mel­
atonin and calcium balance and the hypercalcemic endoc­
rines PTHrP and calcitriol.

Please cite this article in press as: Abbink, W. et al., Melatonin synthesis under calcium constraint in gilthead sea ..., Gen. Comp.
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2. Materials and methods

2.1. Fish

Juvenile gilthead sea bream (Sparus auratus) were obtained from a 
commercial fish farm (Viveiro Vilanova, Lda., V.N. Milfontes, Portugal) 
and kept in a round 1500-L tank with an aerated flow-through system 
and full strength sea water (34& salinity; 10.5mmoll—1 calcium) at 
23 °C and a photoperiod of 12 h light/12 h dark. The fish were fed a ration 
of 2% of the total body mass daily of commercial fish pellets (Trouvit, 
Trouw, Putten, The Netherlands). At the time of the experiments 
(spring-summer), the fish weighed between 10 and 40 g body mass. The 
experimental setup and sampling procedures were described recently 
(Abbink et al., 2004; in press). In short, for the first series of experiments, 
four groups of fish were used. The control group A, exposed to full 
strength seawater (SW) and fed a control diet (Ca+ diet). Three experi­
mental groups: group B; exposed to dilute sea water of 2.5& salinity 
(DSW), group C: fed a calcium deficient diet (Ca— diet), and group D: 
exposed to DSW and fed a Ca— diet). This experiment lasted for up to
3 weeks.

In the second series of experiments, fish kept in full strength seawater 
were fed a vitamin D-deficient (D— diet) or control diet (D+ diet) for up 
to 22 weeks and sampled every 4 weeks (N =  7-8). Upon completion of the 
experiments, the fish were quickly and deeply anaesthetised in 0.1% v/v 2- 
phenoxyethanol (Sigma-Aldrich, St. Louis, MO, USA) and after blood 
had been taken from the caudal vessels by puncture with a 24-G needle fit­
ted to a tuberculin syringe, the fish were killed by spinal transection and 
the brain was promptly dissected. Animal handling followed the approved 
universitary guidelines. Plasma PTHrP level (nmoll—') was measured with 
a homologous radioimmunoassay according to Rotllant et al. (2003) and 
plasma calcitriol (pmoll—') was measured according to Hoof van et al. 
(1993).

2.2. Melatonin

The brains of the fish from the vitamin D experiment were snap-frozen 
in liquid nitrogen and stored at —70 °C. Sonification of the brains was per­
formed in 0.05moll—1 phosphate buffer containing 0.01% thimerosal 
(Sigma-Aldrich). After centrifugation of the brain homogenate at 
15,000g for 20 min, supernatant was collected and assayed for melatonin 
and total protein as reference. Protein was determined by the Lowry 
method with Peterson’s modification (Peterson, 1977), using a total pro­
tein kit (Sigma-Aldrich); bovine serum albumin (BSA) was used as a 
reference.

Melatonin concentration in plasma and brain samples was quantified 
by radioimmunoassay (RIA), using a total melatonin kit (IBL, Hamburg, 
Germany) with a certified extraction procedure. Solid phase extraction of 
melatonin from all samples (100 il) was carried out on an Octadecyl C18 
Speedisk Column, 10 im  (J.T. Baker, Phillipsburg, NJ, USA). Samples 
were eluted with methanol according to a procedure previously described 
for melatonin extraction from fish plasma (Kulczykowska and Iuvone, 
1998). After extraction, samples were dried and then resuspended in Dul- 
becco’s phosphate-buffered saline containing 0.01% thimerosal and

assayed by RIA. Samples were counted in a Wallac Wizard y-counter 
(Wallac, Turku, Finland). The detection limit was 3.0 pgml-1 in plasma 
and 3 .5pgm P1 in brain extract. The intra- and inter-assay coefficients 
of variation for plasma melatonin were 8.0% and 15.0%, respectively. 
The intra- and inter-assay coefficients of variation for brain melatonin 
were 8.4% and 14.7%, respectively. Two different serum or brain samples 
and controls (available from IBL-Hamburg kit) were measured in 10 rep­
licates to determine intra-assay precision in the same assay. The inter­
assay precision was determined by analysis of two different serum or brain 
samples and controls (available from IBL-Hamburg kit), in triplicate in 
three independent assays. The RIA data were validated by HPLC assay 
(Kulczykowska and Iuvone, 1998): randomly selected samples of brain 
and plasma were assayed for melatonin by both HPLC and RIA. The 
results obtained by either method were identical.

2.3. Statistics

Data are presented as means ±  standard deviation (s.d.). For statistical 
analysis of the data, analysis of variance (ANOVA and two-way ANOVA) 
was used to assess differences among groups and Tukey’s test was applied 
as post-hoc test, where appropriate. To determine relationships, regression 
and weighted non-linear regression analyses were performed; Pearson’s 
correlation coefficient and y-intercept were determined where appropriate. 
Significance of differences was accepted when P < 0.05.

3. Results

In fish that were restricted in their calcium access 
(Table 1), the total calcium level was reduced when calcium 
was limited in the diet (group C), whereas exposure to 
DSW (group D) resulted in decreased Na+, K+, total cal­
cium and osmolality. Hypocalcemia (defined as decreased 
plasma Ca2+) was only seen when calcium was restricted 
in both water and diet (group B).

Fig. 1 shows plasma melatonin after 3 weeks calcium 
restriction. Exposure to both DSW and a Ca— diet had 
no effect on plasma melatonin (P  > 0.05). Feeding the fish 
(held in normal sea water) a Ca— diet decreased plasma 
melatonin (F =  12.223; P  <0.0001; post hoc: P  <0.05), 
whereas exposure to DSW (and fed a normal diet) resulted 
in an increase of plasma melatonin compared to the con­
trols (F =  12.223; P  < 0.001; post hoc: P  < 0.001).

In the D — fish, a strongly decreased brain melatonin 
was found at all sampling times compared to the controls 
(Fig. 2; F  =97.3; P  <0.001). The lower brain melatonin 
in the D — fish was established at the first sampling point, 
viz. after 10 weeks on the diet and was consistent through­
out the subsequent experimental period. In addition, a

Table 1
Mineral analysis of plasma of sea bream fed a calcium deficient diet (Ca—) while kept in dilute seawater (DSW), fed the Ca— diet in normal seawater or 
kept in DSW fed a normal diet

Condition Na+ K+ Ca total

+
Ca Osmolality

Control 175 ±  12 5.4 ±0.9 3.7 ±  0.3 1.30 ±0.17 381 ±  17
Ca— diet and DSW 161 ±  8* 5.5 ±  1.4 3.3 ±  0.4* 1.15 ±0.14* 358 ±  23*
Ca— diet 172 ± 7 5.2 ±0.6 3.3 ±  0.5* 1.35 ±0.09 373 ±  24
DSW 161 ±  10* 5.1 ±  1.1 3.3 ±  0.4* 1.32 ±0.24 360 ±  28*

Values are in mmoll— 
group.

osmolarity is expressed in mOsmol kg '. Asterisks (*) represent significant difference from the control group (P < 0.05), N  = 8  per

Please cite this article in press as: Abbink, W. et al., Melatonin synthesis under calcium constraint in gilthead sea ..., Gen. Comp.
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Fig. 1. Plasma melatonin levels after 3 weeks under conditions of limited 
calcium access. Plasma melatonin was not affected in fish kept on a Ca- 
deficient diet and in diluted seawater (DSW). Fish exposed to the Ca- 
deficient diet showed a decrease in plasma melatonin, whereas plasma 
melatonin was increased in fish kept in DSW. Asterisks (*) represent 
statistical different from the control group (*P < 0.05 and **P < 0.01).

I D+ fish 
] D- fish

I

10 14 18 22
weeks of feeding the diet

Fig. 2. In fish fed a vitamin D-deficient diet, melatonin synthesis in the 
brain is significantly lower than in controls at all four time points. The 
reduction in melatonin was consistent and had already been established at 
the first sampling point. Asterisks (*) represent significant difference from 
accompanying control group (P < 0.001). The decrease in melatonin 
synthesis over time for the two groups is indicated by a,b for the D + fish 
and c,d for the test fish (P < 0.05).

decrease in brain melatonin was observed in time 
(F =9.54; P  <0.01).

A positive correlation between plasma Ca2+ and plasma 
melatonin was found (Fig. 3; R 2 =  0.19; N  =41; P  < 0.01).

Brain melatonin is negatively correlated with plasma 
PTHrP (Fig. 4; R2 =  0.78; N  = 4 ; P  < 0.05) and this rela­
tionship was not affected by feeding the fish a vitamin D- 
deficient diet (R2 =  0.90; N  = 4 ; P  < 0.05), although plasma 
melatonin and PTHrP levels were lower in the latter group 
(D+ fish: y  =  —6171 ±  1503 x +  1363 ±  196; D — fish: 
y  =  —5663 ±  1717 x +  1992 ±  309. P  =  0.96 for the slopes 
of the regression lines and P  < 0.05 for the y -intercept).

Fig. 3. Plasma melatonin correlates positively to plasma Ca2+ (pooled 
data from all fish analysed for melatonin); R2 =  0.19; N  =  41; P < 0.01. 
Confidence intervals (95%) are included in thinner lines.

0.00 0.08 0.12 0.16 

plasma PTHrP {nmol I'1)

Fig. 4. Brain melatonin (production) correlates negatively to plasma 
PTHrP. Feeding fish a vitamin D-deficient diet does not affect this 
correlation, but levels of PTHrP and melatonin are decreased in concert; 
R2 =  0.78; N  = 4 ; P < 0.05 for the controls and R2 =  0.90; N  = 4 ; P < 0.05 
for the test fish. N  values represent group averages for each sampling 
point.

4. Discussion

In the evaluation of changes in melatonin activity in vivo 
a plethora of considerations comes to mind. Melatonin 
controls the rhythmic adaptations to daily and seasonal 
cycles in fish (Bolliet et al., 1997). A variety of physiological 
and environmental conditions interferes with melatonin 
synthesis: reproduction (Mayer et al., 1997), osmoregula­
tory demands (Kulczykowska 2002), photoperiod and 
water temperature (Garcia-Allegue et al., 2001) all affect 
melatonin production.

Sea bream is a protandrous fish and, being juvenile, the 
fish used in the present study were all sexual immature; the 
water temperature (23 °C) and the photoperiod (12 h light/ 
12 h dark) were kept constant and the experiments were 
completed in the same season. We are therefore convinced 
that such factors were not confounders in our experiments

Please cite this article in press as: Abbink, W. et al., Melatonin synthesis under calcium constraint in gilthead sea ..., Gen. Comp.
Endocrinol. (2007), doi:10.1016/j.ygcen.2007.03.002
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and that the results obtained relate mainly to calcium han­
dling and physiology. One could argue that the effects seen 
in fish exposed to diluted seawater relate to altered osmo­
regulation or a variety of metabolic alterations which cause 
alterations in downstream endocrine events as a result of 
calcium depletion. Indeed, these faculties cannot be 
excluded as indicated by significant, albeit mild changes 
in plasma cortisol (Abbink et al., 2004) and osmolarity 
(this paper); yet, it should be kept in mind that diluted sea­
water also means a dilution of external calcium (from 10 to
0.7 mmoll—1), from hypercalcic to hypocalcic conditions.

The positive relation between plasma levels of melatonin 
and Ca2+ provides further evidence that melatonin synthe­
sis is influenced by plasma Ca2+ (plasma melatonin and 
brain melatonin reflect the synthesis capacity of the pineal 
gland; Kulczykowska 2002). Earlier studies (Kroeber et al., 
2000; Gozdowska et al., 2003) indeed confirm the relation 
between plasma Ca2+ and the capacity of (night) melatonin 
production; Begay et al. (1994) observed increased melato­
nin synthesis in response to an increased plasma Ca2+ level 
in rainbow trout and Meissl et al. (1996) found inhibited 
melatonin production in a hypocalcic/low calcium medium 
in cultured trout pinealocytes.

Fish on a vitamin D-deficient diet (D— fish) showed 
decreased plasma calcitriol levels and remained normo- 
calcemic. Growth rate was reduced, which translated in 
lower net calcium accumulation rate, that was confirmed 
by decreased branchial calcium in- and efflux (Abbink 
et al., in press). Feeding the fish a D — diet and the subse­
quent decreased calcitriol level had no visible effect on 
plasma Ca2+, although a decreased calcium turnover was 
observed (Abbink et al., in press). The decrease in melato­
nin over time that was observed relates to the time of the 
year at which the experiments were conducted (spring­
summer). Sokolowska et al. (2004) showed that melatonin 
levels are high in early spring (March) and decrease 
towards the summer (July-August).

The strongly decreased melatonin production in the D — 
fish points to direct or indirect involvement of calcitriol in 
melatonin synthesis by the pineal organ in teleosts. To the 
best of our knowledge, there are no reports of interactions 
between melatonin and calcitriol in fish and reports in 
mammals are scarce. An interplay between melatonin and 
calcitriol was shown by Bizzarri et al. (2003): vitamin D 
(calcitriol?) enhances the synthesis of the transforming 
growth factor TGF-p1, which is the most relevant negative 
growth regulator in breast cancer cells. Melatonin was 
found to increase the sensitivity of the tumor cells to vita­
min D (calcitriol), thereby increasing the release of TGF-p1 
and inhibiting tumor cell growth.

The decreased melatonin synthesis in the fish fed a D — 
diet is in accordance with the reduced melatonin produc­
tion observed in the fish fed a Ca— diet, and this suggests 
diet-specific effects on melatonin synthesis under calcium 
constraint. Melatonin produced in the intestine is the most 
important source of extra-pineal gland melatonin. The mel­
atonin level in the intestinal tract is not subject to any

(daily) rhytmhic changes in fish (Bubenik and Pang, 
1997), which indicates that the influence of plasma melato­
nin on intestinal melatonin physiology increases in dark­
ness, when pineal melatonin production is up-regulated.

Rubio et al. (2004) showed that increased plasma mela­
tonin in European sea bass (Dicentrarchus labrax L.), rea­
lised through orally administration in gelatin capsules, 
significantly reduced food intake, suggesting melatonin 
involvement in the process of feeding and digestion. In 
the present study, the indirectly (D— diet) or directly 
(Ca— diet) and dietary-induced calcium restraint and the 
subsequent calcemic endocrine action to maintain calcium 
balance could well have interfered with (intestinal) melato­
nin physiology, limiting the production of the hormone. 
This conclusion needs further experimentation for 
confirmation.

The increased melatonin production in the fish exposed 
to DSW is in accordance with previous studies. Kles- 
zczymka et al. (2006) measured plasma melatonin in sea 
bream adapted to different salinities and found the highest 
plasma melatonin in fish that were exposed to the lowest 
salinity. An important factor in adaptation to hypo-osmo­
tic and hypocalcic conditions in euryhaline fishes is prolac­
tin (PRL; Flik et al., 1994), a hypercalcemic hormone in 
fish that is well-known for its key role in the control of 
low salinity adaptation. Falcon et al. (2003) showed that 
melatonin reduced PRL secretion in cultured rainbow trout 
pituitary gland cells and provided the first evidence that 
melatonin modulates the secretion of PRL in teleosts. 
Clearly, our results indicate a positive correlation between 
a (presumedly) enhanced PRL activity in DSW and 
observed enhanced melatonin production. This in vivo 
result does not corroborate the observation by Falcon 
et al. (2003) and suggests multivariable control; the 
increase in PRL in response to DSW exposure might over­
rule the inhibition of a PRL cell response to melatonin as 
observed in vitro.

We here argue that PTHrP is involved in the regulation 
of melatonin synthesis. The negative correlation between 
melatonin production and plasma PTHrP presented in this 
study is indicative of a relationship between the two fac­
tors. In accordance, the reduction of melatonin production 
in response to a decrease in vitamin D (calcitriol) availabil­
ity (this study) points to a relationship between melatonin 
synthesis and hypercalcemic endocrines (PTHrP and calci­
triol). Whatever the effect, this highlights the importance of 
calcium in melatonin physiology, although further research 
is needed to investigate the role of melatonin in modulating 
hypercalcemic factors under calcium constraint.

This study provides new observations on the relation 
between melatonin production and calcium metabolism 
in sea bream exposed to indirect or direct calcium con­
straint. Limited calcium availability in the water increased 
melatonin production, whereas indirectly (D— diet) or 
directly (Ca— diet) and dietary-induced calcium restraint 
decreased melatonin production. These opposite effects 
were abolished under calcium constraint in both diet and
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water. The hypercalcemic factors PTHrP and calcitriol 
appear to be correlated with melatonin, which we take as 
a clear indication of involvement of melatonin in modulat­
ing the endocrine response to cope with hypocalcemia and 
further points to the importance of Ca2+ in melatonin 
physiology.

5. Uncited references
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