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Abstract

Introduction

Molecular xenomonitoring (MX)—pathogen detection in the mosquito rather than human—

is a promising tool for lymphatic filariasis (LF) surveillance. In the Recife Metropolitan

Region (RMR), the last LF focus in Brazil, Culex quinquefasciatus mosquitoes have been

implicated in transmitting Wuchereria bancrofti parasites. This paper presents findings on

the ideal mosquito collection method, mosquito dispersion, W. bancrofti infection in mosqui-

toes and W. bancrofti antigen in humans to aid MX development.

Methods

Experiments occurred within two densely populated urban areas of Olinda, RMR, in July

and August 2015. U.S. Centers for Disease Control and Prevention (CDC) light traps were

compared to battery-powered aspirators as collection methods, and mosquito dispersion

was measured by mosquito mark release recapture (MMRR). Female Cx. quinquefasciatus

were tested by PCR for W. bancrofti infection, and study area residents were screened by

rapid tests for W. bancrofti antigen.

Results

Aspirators caught 2.6 times more total Cx. quinquefasciatus, including 38 times more blood-

fed and 5 times more gravid stages, than CDC light traps. They also collected 123 times

more Aedes aegypti. Of the 9,644 marked mosquitoes released, only ten (0.01%) were

recaptured, nine of which were < 50m (34.8m median, 85.4m maximum) from the release
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point. Of 9,169 unmarked mosquitoes captured in the MMR, 38.3% were unfed, 48.8%

blood-fed, 5.5% semi-gravid, and 7.3% gravid. PCR on 182 pools (1,556 mosquitoes) found

no evidence of W. bancrofti infection in Cx. quinquefasciatus. Rapid tests on 110 of 111 eli-

gible residents were all negative for W. bancrofti antigen.

Conclusions

Aspirators were more effective than CDC light traps at capturing Ae. aegypti and all but

unfed stages of Cx. quinquefasciatus. Female Cx. quinquefasciatus traveled short (< 86m)

distances in this urban area. Lack of evidence for W. bancrofti infection in mosquitoes and

antigen in humans in these fine-scale studies does not indicate that LF transmission has

ceased in the RMR. A MX surveillance system should consider vector-specific collection

methods, mosquito dispersion, and spatial scale but also local context, environmental fac-

tors such as sanitation, and host factors such as infection prevalence and treatment history.

Author summary

Lymphatic filariasis (LF) is a parasitic disease transmitted by mosquitoes, and can cause

elephantiasis. It is the world’s leading cause of disability due to infectious diseases, affects

over 120 million people globally, and is scheduled for global elimination via mass drug

administration (MDA) and mosquito control. Molecular xenomonitoring (MX) is a pro-

cess of screening mosquitoes—not humans—for parasites to estimate whether they are

circulating in human populations. MX is especially useful during and following MDA,

when new case detection becomes difficult, but is challenging to design and conduct in

cities. Using two study sites in the Recife Metropolitan Region, Brazil, we investigated two

crucial questions for urban MX development—“What is the best operationally feasible

tool to catch adult mosquitoes?” and “How far do mosquitoes disperse in cities?”—in

order to determine placement of future surveillance sites. We also screened a proportion

of mosquitoes and all eligible residents from the study sites for LF infection. We deter-

mined that handheld battery powered aspirators were the best mosquito collection tool;

that mosquitoes flew no more than about 85m; and—in this small sample of mosquitoes

and very small sample of humans—there was no evidence of LF infection in mosquitoes

or study area residents.

Introduction

Lymphatic filariasis (LF) is a neglected tropical disease and ranked by the World Health Orga-

nization (WHO) as the world’s leading cause of physical disability, the second leading cause of

long-term disability overall, and the leading cause of disability due to infectious disease [1, 2].

In 2000, an estimated 120 million people were infected with LF parasites and 1.3 billion were

considered at risk [3, 4].

The nematode Wuchereria bancrofti is responsible for nearly 90% of global LF infections

[5]. The mosquito Culex quinquefasciatus is the most common vector of urban, nocturnally

periodic W. bancrofti and is thought to be the sole vector of LF in Brazil [6]. In 2000, the Global

Program to Eliminate Lymphatic Filariasis (GPELF) aimed to eliminate LF by the year 2020 by

interrupting transmission via mass drug administration (MDA) and integrated vector
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management (IVM) [7]. Since then, 10 GPELF member countries have eliminated LF; of the

73 remaining, 25% are in the ‘surveillance’ phase and 60% have commenced MDA and IVM

[8].

LF was introduced to Brazil in the 19th century, and in 1952 the first national LF survey

found transmission in 11 states [9, 10]. By the 1990s, after sustained control efforts throughout

Brazil, LF remained in three cities in three states: Belém (Pará), Maceió (Alagoas) and Recife

(Pernambuco) [9]. In 2018, only Recife and its surroundings remain a focus [9].

The Recife Metropolitan Region (RMR) has a population of over 3.7 million people in 15

municipalities, including Recife proper and the neighboring city of Olinda [11]. In the RMR,

nearly 25% of residents live in favelas (slums) and areas of suboptimal municipal infrastruc-

ture, including proximate to many polluted water bodies (e.g., canals with open sewage) that

can serve as Cx. quinquefasciatus breeding sites [12].

In 2000, overall LF prevalence by thick blood smear (TBS) was 1.34% in Recife and Olinda

[13–15]. Recife began MDA in 2005 and Olinda in 2006, with the highest priority areas receiv-

ing 5–6 rounds of MDA through 2012. Both cities have assessed transmission by surveying

children aged 6–7 years with immunochromatographic card tests (ICTs) to detect circulating

filarial antigen (CFA) [16].

Molecular xenomonitoring (MX) is the use of molecular methods, such as polymerase

chain reaction (PCR), to detect pathogen DNA or RNA in the vector as a proxy for infection

in the human population. MX is a promising method for monitoring LF transmission, MDA

and IVM success, and LF elimination [17–21]. Over nearly twenty years, MX has been tested

in a variety of LF-endemic settings with different vector-parasite dynamics, with evidence of

its utility from five out of six WHO Regions: Africa/AMRO (Ghana, Sierra Leone, Tanzania),

Americas/AMRO/PAHO (Trinidad and Tobago), Eastern Mediterranean/EMRO (Egypt),

Southeast Asia/SEARO (India, Sri Lanka), and Western Pacific/WPRO (American Samoa,

French Polynesia, Samoa) [21–30].

MX could prove more appropriate and useful as control activities reduce LF transmission,

because after MDA parasitological detection tools such as TBS become less sensitive while

immunological detection tools such as ICTs become less specific [31]. Moreover, it would be

necessary to screen large population samples to detect low and clustered transmission areas.

For MX, it is crucial to capture adult female mosquitoes so that they can be screened for

infection (any parasitic stage) as well as infectivity (the L3 larval stage), the latter being the

most precise determinant of transmission potential. Several MX protocols have been devel-

oped for Cx. quinquefasciatus [21, 32–35].

Currently, there is no universally recommended strategy for MX sampling or tool for MX

collection and MX programs differ by site-specific vector and parasite dynamics. In Tanzania,

for example, U.S. Centers for Disease Control and Prevention (CDC) gravid traps collected the

greatest number of Cx. quinquefasciatus of all stages as well as gravid stages in relation to four

methods. However, a subsequent comparison of CDC light vs. CDC gravid traps demonstrated

that both caught similar numbers of mosquitoes, although of different gonotrophic status, and

that CDC light traps collected more infected mosquitoes [24]. In the RMR, the preferred

method for adult mosquito collection is aspiration, which also has the benefit of preferentially

collecting post-blood meal, resting mosquitoes. This is advantageous for LF elimination and

pathogen surveillance because blood-fed, gravid, and semi-gravid mosquitoes are more likely

to have ingested mf-infected blood.

To date, a collection method comparison (CMC) for Cx. quinquefasciatus including aspira-

tion has not been published from any urban setting. Therefore, there is a dearth of evidence on

collection tools, such as aspirators, and program-oriented techniques for Cx. quinquefasciatus
mosquitoes, which dominate in urban areas [19]. For instance, in the RMR, fixed battery-
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operated or energy-source requiring traps (e.g., BG sentinel, CDC light) are discouraged due

to battery theft and power cuts, whereas trapping methods that rely on attractants (e.g., gravid,

sticky ovitraps) cannot be placed inside domestic spaces due to residents’ distaste for the

strong odors emitted. A CMC including aspiration in this setting would aid LF elimination

and MX system development planning.

Ideally, MX methodology should take into account the geographical scale and directionality

of mosquito dispersion as the former is related to the spatial scale of disease transmission [36,

37]. Understanding mosquito dispersion in a given setting allows public health officials to

more accurately plan the limits of where related vector borne disease may occur, and thus

where control efforts should concentrate. Although some studies have included evaluations of

different mosquito collection methods, none have formally assessed mosquito flight distance

and patterns within the context of MX and none has occurred in a densely populated, urban

area [21, 24, 28, 30, 38–40].

One of the most straightforward methods for measuring mosquito dispersion is mosquito

mark-release-recapture (MMRR), but most MMRR studies of Cx. quinquefasciatus have been

conducted in high-income countries (e.g., United States) and among rural settings (e.g., dairy

farms) [36, 41–44]. While rural MMRR studies indicate that Cx. quinquefasciatus can travel up

to 2 km for host blood seeking and oviposition, the only published ‘urban’ Cx. quinquefasciatus
MMRR study occurred in a central Texas university town of approximately one eighth the

population density of RMR favelas [45]. For comparison, studies on Ae. aegypti dispersal,

including in urban areas of Brazil (often set within less population dense / forested areas of cit-

ies), indicate that Ae. aegypti tend to fly 100m or less [46, 47].

Despite the promise of MX for LF and other vector-borne pathogens, there are no pub-

lished reports of its use to detect W. bancrofti infection in Cx. quinquefasciatus in urban set-

tings. CMC studies could provide information on effective, practical, and acceptable collection

tools for MX programs. MMRR studies could provide crucial insights on LF risk and transmis-

sion, especially if mosquito parameters (e.g., mean distance travelled, MDT) are combined

with those on human infection over the same space and, ideally, time. As LF elimination

efforts continue, and eventually are localized to difficult-to-treat urban areas, information on

mosquito dispersion in such settings is of increasing importance.

The following strategies were employed to develop a MX system in the RMR: (i) CMC to

determine whether battery-powered aspirators or CDC light traps more efficiently collect Cx.

quinquefasciatus females; (ii) MMRR to estimate mosquito dispersion to determine grid size

for use in subsequent surveillance; (iii) molecular screening via PCR in a sample of female Cx.

quinquefasciatus to determine W. bancrofti infection in mosquitoes; and (iv) immunological

screening via ICT to detect W. bancrofti antigen in study area residents.

Methods

Study site characteristics

The CMC, MMRR, molecular screening of mosquitoes, and immunological screening of study

residents were conducted in two selected areas within the neighborhood of Sı́tio Novo in the

city of Olinda, RMR. Olinda is the second most populous and population-dense city of the

RMR, with 377,779 residents in its area of 41.68 km2 (Fig 1) [11]. It has a tropical monsoon cli-

mate (Köppen climate classification = As), and temperatures range from 30 ˚C (86 ˚F) in Janu-

ary and February to 21 ˚C (70 ˚F) in July [48]. Peak dry season is in November (average 36mm

rainfall) while the rainy season, extending June—August, peaks in July (average 388 mm rain-

fall) [49, 50]. Data collection occurred between July 22 and August 21, 2015, coinciding with

the end of rainy season and associated peak in mosquito abundance.
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Fig 1. Map of city of Olinda, Recife Metropolitan Region (RMR), Pernambuco State, Northeastern Brazil, and planned

study sites within Sı́tio Novo: Collection method comparison (CMC); mosquito mark release recapture (MMRR); 100m

buffer zone.

https://doi.org/10.1371/journal.pntd.0006816.g001
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House selection

Houses were selected using satellite images and geographic information systems (GIS) soft-

ware of ArcGIS 10.2 (ESRI 2014. ArcGIS Desktop: Release 10. Redlands, CA: Environmental

Systems Research Institute) and QGIS 2.10.1(QGIS Development Team (2015). QGIS Geo-

graphic Information System. Open Source Geospatial Foundation Project. http://qgis.org).

House selection accounted for geographic (aligning along transport arteries in CMC) and

environmental (e.g., avoiding mangrove in MMRR) barriers, as well as local health authority

advice on the most secure areas to work. In the field, study teams used a combination of global

positioning system (GPS) devices (Garmin GPSmap 76cs, 3m precision) and GIS / satellite

image maps to locate selected houses. If residents were not willing or able to participate,

including providing regular access over four weeks, then alternative houses were enrolled by

selecting houses to the right, then left, then opposite the initial house until an appropriate alter-

native could be found. To avoid contamination, the CMC and MMRR study areas were sepa-

rated by a buffer zone of 100m based on the estimated average mosquito flight distance from

urban Ae. aegypti dispersion studies (Fig 1).

The CMC occurred in a commercial and residential zone with some paved streets, munici-

pal sanitation, and drainage systems. Houses were of higher quality construction, with brick

walls, solid/permanent roof, some partially screened windows, and fewer wall openings, than

those in the MMRR area. Still, much of this area was considered to be of suboptimal housing,

including favelas. As much as possible, houses were selected along main streets in order to pro-

vide better access for equipment transfer (Fig 2).

The MMRR occurred in an infrastructure-lacking residential area with poorly paved streets,

sanitation, and drainage. During the study period, houses were often flooded from an adjacent

area of riverine mangrove (Fig 3).

Molecular screening of Cx. quinquefasciatus and immunological screening of study partici-

pants occurred in CMC and MMRR study areas, from where the samples for each were

obtained.

Study designs

Collection method comparison (CMC). The CMC study employed a crossover design to

compare the ability of battery-powered handheld aspirators and CDC light traps to capture

adult female mosquitoes in terms of (a) total numbers of female Cx. quinquefasciatus, (b) Cx.

quinquefasciatus by physiological status (unfed, blood-fed, semi-gravid, gravid), and (c) total

numbers of female Ae. aegypti.
The sample size calculation was based on a mean and standard deviation of 10.12 ± 5.37

egg rafts, a proxy for gravid female mosquitoes collected per trapping night in a single ovitrap

(BR-OVT) in the RMR [51]. This indicated that five houses per method (aspiration or CDC

light trap) over four nights in each of four weeks (i.e., a total of 80 trapping nights per method)

could detect a difference as low as 25% between the means of each collection method with 80%

power, or a 30% difference at 90% power, in a 2-tailed test. A total of 10 houses within an area

of 300m x 400m were selected (Fig 2).

Each week, the CMC houses were sampled as follows: a) five houses received CDC light

traps Monday—Thursday night with nets collected the following morning; and b) five received

aspirators over the same four days when CDC nets were collected (Tuesday—Friday morn-

ings). These four collection days per week, over four weeks, provided 16 trapping days per

treatment arm and, since there were 5 houses receiving treatment each day, resulted in the cal-

culated sample size of 80 trapping nights per collection method. Due to logistical constraints,

traps could not be hung on Sunday nights, nor could batteries be changed on Monday
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Fig 2. Collection method comparison (CMC) mosquito collection points via handheld aspirators and CDC light traps,

Sı́tio Novo, Olinda, RMR, Brazil, July 22–August 21, 2015.

https://doi.org/10.1371/journal.pntd.0006816.g002
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mornings. The CMC was designed to maintain a study buffer of 50m between each of the 10

participating houses, but geographical constraints such as major roads, and instruction from

the local health authorities, prevented this from being uniformly implemented. Ultimately,

two houses were located more than 100m from adjacent houses and another two houses were

located within 50m of each other (Fig 2).

Mosquito mark release recapture (MMRR). The MMRR study involved the following

stages: 1) rearing larvae to adults, 2) mating sterile males with females, 3) fluorescent dust

marking of adults, predominantly females, 4) releasing marked adults from a central release

point (CRP), and 5) recapturing. Stages 1–3 occurred in the laboratory; stages 4–5 in the field.

Rearing. Cx. quinquefasciatus (CqsLab colony, 45th generation, IAM/FIOCRUZ insec-

tary, Recife, Brazil) larvae were reared in plastic containers and fed with Friskies fish flavored

cat food; temperatures of 24.4˚C—27.6˚C and humidity of 63%–80% were maintained. Upon

emergence, adult mosquitoes were held in wire mesh cages and fed on a 10% glucose solution;

temperatures of 24.9–26.9˚C and humidity of 66%–81% humidity were maintained.

Mosquito sterilization and mating. Pre-field pilot testing indicated deviances from

expected survival and flight patterns of marked female Cx. quinquefasciatus. Thus, in order to

avoid any resultant changes in flight behavior while still reducing the potential of disease

Fig 3. Mosquito mark release recapture (MMRR) collection points via handheld aspirators, Sı́tio Novo, Olinda, RMR, Brazil, July 22–August 21, 2015.

https://doi.org/10.1371/journal.pntd.0006816.g003
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transmission from liberating female mosquitoes, female Cx. quinquefasciatus were mated with

irradiated males, so that their spermathecae would contain sterile sperm. Within 24–48 hours

after passing through the larval stage, male pupae were irradiated with 40 Gy; adult males

emerged approximately one day after radiation. Mating of irradiated males with untreated

females occurred one day before the marking procedure. Mating effectiveness, measured by

the number of female mosquitoes that oviposited after mating, was determined to be 50–60%.

Mosquito marking in the laboratory and field. The following fluorescent powders (Ster-

ling Colour, 850 Series, http://www.sterling-colour.co.uk) were used: Red3 for the test release

(R1), and Yellow, Magenta, and Red3 for the three experimental releases (R2, R3, R4, respec-

tively). For marking, small batches of adult female Cx. quinquefasciatus were mouth aspirated

into individual, gauze-covered 140ml paper cups (batches of 30 for R1—R3, but batches of 40

for R4) until the required number to be released per round was reached. Cups were placed

inside a -20˚C freezer for up to 15 minutes to ensure mosquitoes lacked mobility. After

removal, a 5ml syringe was filled to 0.5 ml with fluorescent powder, using a 0.7mm x 25mm

needle, and the needle was inserted at a 90˚ angle through the gauze. A dust cloud was created

inside the cup by pushing down the syringe. After marking, adult female mosquitoes were fed

on a 10% glucose solution and held overnight in wire mesh cages, with gauze netting, at the

IAM/FIOCRUZ insectary before release the following day.

Release. A satellite image and a pre-programmed GPS device was used to select a central

release point (CRP), which was set in the center of a 5m x 5m courtyard that was surrounded

by a combined, large family dwelling of four houses. Sentinel houses were selected for aspira-

tion based on their location on radii of approximately 25m, 50m and 100m from the CRP

(Fig 3).

During each release, marked mosquitoes (approximately 1000 mosquitoes/cage) were

placed on the ground in three fixed positions within the CRP; cages were opened, and gently

tapped over a period of 30 minutes to encourage dispersal (Fig 4). Mosquitoes that did not fly

away after 30 minutes (including those that died) were counted in order to quantify how many

marked mosquitoes were actually liberated.

Recapture. Based on available literature indicating significantly diminishing returns

beyond a recapture of two weeks from release, a maximum recapture period of 10 working

days (five days per week over two weeks) was planned per round [36, 52, 53]. During the

experimental period (R2 –R4), three different cohorts of marked mosquitoes were released

over three consecutive weeks; with each cohort followed for two weeks (10 working days),

this provided an experimental period of four weeks for three rounds of release and recapture

(Fig 5).

For recapture, 24 houses were included with distances of radii from the CRP as follows:

seven houses within 50m (minimum 24m), nine houses within 50-75m, six houses within 75-

100m, and three beyond 100m (maximum 119m). Field teams used battery-powered aspira-

tors, following the same protocol as the CMC study, for two weeks after each release. Aspira-

tors were the method of choice of IVM staff, due to their ease of use and deployment, and

acceptability and familiarity among residents. Houses were aspirated daily Monday—Friday

over a period of four weeks, for a total of 20 collection days. Field teams were appointed to

each of four quadrants per week; teams were rotated clockwise each week to minimize data

collection bias.

Entomological tools and protocols

Handheld aspirator. Large, handheld, battery-operated aspirators were used for both the

CMC and MMRR studies (Appendix I; http://www.horstarmadilhas.com.br). A collection net
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was attached at the bottom end of the aspirator and the battery pack was holstered in a belt

that secured the wires leading to the fan. Each week, houses were aspirated daily from 9 am—

11:30am, considering security, logistics, and that Cx. quinquefasciatus are more likely to be

caught resting post-blood meal on walls in the morning. Each house was aspirated for 15 min-

utes as standard, but timing allocation depended on type of house: e.g. five minutes in each in

the following areas: (i) living room, (ii) bedroom(s) and (iii) internal toilet or external toilet/

septic tank/ water storage tank/water distribution box.

CDC light trap. The CDC light traps used in the CMC (Appendix I; http://www.

horstarmadilhas.com.br) consisted of a trap with a light source, and battery-powered fan, and

a collection net to retain mosquitoes. Study teams hung traps at heights between 1.5–2m from

the floor in bedrooms of participating houses; traps were hung via hooks and nails that were

already affixed to the walls. Study teams demonstrated how to turn on the CDC light traps to

Fig 4. Magenta-marked adult female Culex quinquefasciatus in field conditions Sı́tio Novo, Olinda, RMR, Brazil,

July 22–August 21, 2015. [Photo: Anita Ramesh, LSHTM/IAM/FIOCRUZ].

https://doi.org/10.1371/journal.pntd.0006816.g004

Fig 5. Release and recapture schedule of marked mosquitoes per day of release (R1–4) and recapture, Sı́tio Novo,

Olinda, RMR, Brazil, July 22–August 21, 2015.

https://doi.org/10.1371/journal.pntd.0006816.g005
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the head of household (HoH), and requested they do so each night at 6pm (sunset). Study

teams returned the following morning (Tuesday—Friday) between 9:30–11:30am to collect the

nets of trapped mosquitoes as well as replace collection nets and batteries for use that evening.

Post-collection mosquito storage, transport, and processing

Mosquito collection nets were placed in an open-top storage box and transported back to

the IAM/FIOCRUZ Insectary within two hours of field collection. Upon arrival, nets were

immediately placed in a -20˚C freezer for at least 20 minutes to immobilize the mosquitoes.

Mosquitoes were then removed from the freezer and placed on ice for identification, sex deter-

mination, and assessment of female physiological status. The numbers and status of female Cx.

quinquefasciatus mosquitoes were recorded per house, per day. Female Cx. quinquefasciatus
and Ae. aegypti mosquitoes were placed in Eppendorf tubes (maximum of 50 per tube, sepa-

rated by species) labeled per house per day and stored in a -80˚C freezer for future analysis.

Contextual data

Meteorological data (temperature, humidity, wind) that could influence mosquito flight range,

survival and dispersal were obtained from the Brazilian National Meteorological Institute

(INMET: www.inmet.gov.br) and the Pernambuco State Agency for Water and Climate

(APAC: www.apac.pe.gov.br) [49, 50].

Molecular screening of Cx. quinquefasciatus for W. bancrofti infection

Female Cx. quinquefasciatus mosquitoes were pooled into groups of up to 10 per pool depend-

ing on study area. Pooling was done by house per day (MMRR) or by house per week (CMC).

RNA was extracted using a Ambion Trizol-based protocol (see appendix III) and RNA was re-

suspended in 30 μl of Invitrogen Ultrapure water and stored at -80˚C to preserve RNA prior to

reverse transcription. RNA samples were reverse transcribed using a QIAGEN QuantiTect

reverse transcription kit according to manufacturer’s instructions. Successful generation of

cDNA was confirmed by real time PCR assays targeting the Cx. quinquefasciatus S7 mRNA
gene using QIAGEN QuantiTect Sybr Green Master Mix. W. bancrofti detection was under-

taken using a Taqman real time PCR assay targeting the constitutively expressed tph-1 gene

using Promega GoTaq Probe qPCR Master Mix [54]. See Appendix III for more details.

Immunological screening of study areas residents for W. bancrofti antigen

Concurrent to CMC and MMRR activities, immunochromatographic card tests (AD12-ICT

card test, NOW Filariasis) were requested from all eligible (age 2–65 years) and consenting res-

idents of the 35 houses in this study. This test detects CFA using the monoclonal antibody

AD12, which recognizes a 200-kDa filarial antigen from either adult worms or microfilariae.

[55] Study teams approached each HoH and any available household members, presented an

information sheet and an invitation to receive ICT screening at the local community center.

Any resident who did not attend the community center was visited at least three times to

attempt to administer the ICT in their residence. The test was performed according to the

manufacturer’s instructions and read by trained technicians in the field after 10 minutes. Visu-

alization of two lines (test and control) was interpreted as a positive result.

Data analysis

Data were double entered by two independent data entry staff, cleaned, and analyzed with Stata

14 (StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP).
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CMC study. The mean numbers of adult female mosquitoes by species and physiological

status were compared between the two capture methods. As data were overdispersed, a nega-

tive binomial regression was used to detect differences between treatments. For Culex, house

and night were included in the model, as additional independent variables, as random and

fixed effects, respectively, the former with a beta distribution. This was not possible for Aedes
because of small numbers in the CDC traps. Data were excluded from analysis in instances of

battery failure, premature disengagement of the CDC light traps (e.g., participants turning

them off), and inability to enter participants’ houses on any given day for mosquito collection.

MMRR study. Results from pilot Test Release 1 (R1) were excluded from analysis. Statisti-

cal analysis was performed using Stata 14, with straight line distances calculated from the CRP

using ArcGIS 10.2 in order to establish MDT and maximum distance travelled, as well as

mean wind direction using circular statistics [56].

Informed consent, confidentiality, and ethical approval

Study aims and methods were presented to HoHs and verbal and written informed consent

was sought; households were enrolled upon receipt of written informed consent. All names,

addresses, and GPS coordinates of participating HoHs and residents were concealed from

study staff apart from the principal investigator and study coordinator, both of whom held the

linking keys. Field teams worked during the mornings of weekdays due to security concerns as

well as to increase acceptability of daily aspiration or CDC light trap placement/net collection.

Ethical approval was obtained from the Research Ethics Committees of the Instituto Aggeu

Magalhães (IAM/FIOCRUZ) and the London School of Hygiene & Tropical Medicine

(LSHTM) prior to the commencement of fieldwork. [CAAE: 44535515.0.0000.5190; LSHTM:

10276; 10185].

Results

CMC study

Of a total of 80 trapping nights planned, 78 were obtained for battery-powered aspiration, and

68 for CDC light traps. The primary reasons for losses in trapping night measurements were

battery failure (especially for CDC light traps left overnight) and inability to enter participants’

houses.

Table 1 presents the number of mosquitoes collected by collection method, species and

physiological status. A total of 970 adult females of Cx. quinquefasciatus (unfed = 393, blood-

fed = 403, semi-gravid = 165, gravid = 9) were captured, of which 684 were by aspiration and

286 by CDC light traps. A total of 188 Ae. aegypti were captured, all but one by aspiration.

Adjusting for the house and night factors, aspirators caught 2.6 times more total females,

and 38 times more blood-fed mosquitoes than CDC light traps (all p<0.0001). Aspirators

caught 5.8 times more gravid and semi-gravid mosquitoes than CDC light traps; these abdomi-

nal conditions were pooled due to the small number (nine) of semi-gravid mosquitoes col-

lected. Aspirators collected almost 25% fewer unfed (p<0.0001) Cx. quinquefasciatus than

CDC light traps. Aspirators collected 123 times more (p< 0.0001) total females of Ae. aegypti.

MMRR study

Data from the experimental period (R2 –R4) were collected over a period of 19 days in 25

households, for a total number of 475 observations. The study recruited 24 houses as planned,

but one house refused access to the field team after the first week, so another was recruited in

its place to preserve measurements across a theoretical grid (the size of which would be
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measured along radii emanating from the CRP). This newly recruited 25th house then partici-

pated for 3 weeks, yielding four weeks of collections from each of 23 houses, one week from

the first house that dropped out, and the remaining three weeks from the 25th house.

Release, recapture, and MDT of marked mosquitoes. Table 2 illustrates the recapture

rate and mean distance travelled (MDT). A total of 10,163 marked adult mosquitoes (7,614

female, 2,549 male) were released from R1-R4. During the experimental period, a total of ten

(0.01%) live, marked mosquitoes were recaptured, with five mosquitoes recaptured from each

of two rounds (R2 and R4). Four out of five mosquitoes from R2 were recaptured in the quad-

rant south-east of the CRP. Three days after the second release two mosquitoes were recap-

tured at similar angles from the CRP. All five mosquitoes from the last release (R4) were

recaptured within the same house, located south-west of the CRP. The MDT was 34.8m, and

the furthest recapture point from the CRP was 85.4m; nine out of ten mosquitoes (90%) were

found within 50m of the CRP.

Table 1. CMC study: Number of female Cx. quinquefasciatus and Ae. aegypti mosquitoes collected, with physiological status (Cx. quinquefasciatus), incidence rate

ratio (IRR), and models for Cx. quinquefasciatus including collection method and adjusted by house, day, and week, Sı́tio Novo, Olinda, RMR, Brazil, July 22–

August 21, 2015. Each pair of rows is a separate analysis.

Mosquitoes by Collection Method and Physiological Status N IRR (95% CI) Z P value

Cx. quinquefasciatus
Total Females CDC light trap 286 1.00 - -

Aspirator 684 2.64 (1.99, 3.51) 6.73 <0.001

Unfed CDC light trap 251 1.00 - -

Aspirator 142 0.74 (0.53, 1.04) -1.76 0.079

Blood-fed CDC light trap 9 1.00 -

Aspirator 394 38.4 (18.6, 79.1) 9.89 <0.001

Semi-gravida & gravid CDC light trap 26 1.00 - -

Aspirator 148 5.79 (3.59, 9.34) 7.21 <0.001

Ae. aegypti
Total Females CDC light trap 1 1.0 - -

Aspirator 187 122.6 (25.1, 903) 4.72 <0.001

aOnly 9 semi-gravid mosquitoes were caught, all by aspiration.

https://doi.org/10.1371/journal.pntd.0006816.t001

Table 2. MMRR study: Number of Cx. quinquefasciatus mosquitoes released, number and proportion recaptured, and mean distance travelled (MDT), Sı́tio Novo,

Olinda, RMR, Brazil, July 22–August 21, 2015.

Release color and

number (R1-4)

Number females (F)

and males (M) released

Number recap-tured Proportion recap-tured Mean distance (meters) travelled by day (D) after

release

D1 D2 D3 D4

- R1 F 379 0 0.0000 - - - -

M 140 0 0.0000 - - - -

- - - -

- R2 F 3388 3 0.0009 - - 61.6 37.1

M 770 2 0.0026 - - 23.7 37.8

- -

- R3 F 2041 0 0.0000 - - - -

M 1010 0 0.0000 - - - -

- - - -

- R4 F 1806 5 0.0028 25.2 25.2 25.2 -

M 629 0 0.0000 - - - -

https://doi.org/10.1371/journal.pntd.0006816.t002
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Unmarked mosquito capture. In addition to the marked mosquitoes collected as the

main mosquitoes of interest to determine dispersion, the majority of mosquitoes collected via

aspirators were unmarked. A total of 18,286 unmarked Cx. quinquefasciatus mosquitoes were

captured over 18 collection days; of these, 9,169 (50.1%) were female. Among females, 3,512

(38.3%) were unfed, 4,478 (48.8%) blood-fed, 507 (5.5%) semi-gravid and 672 (7.3%) gravid. A

total number of 1,444 Ae. aegypti mosquitoes were captured, of which 722 (50%) were female.

Climate. The mean wind direction over all collection days (R1-4) was 161.0˚ (95% CI:

157.3–164.6), coming from a South-South-Eastern direction. The average wind speed was

1.65m/s (95% CI: 1.57–1.72), with reported wind gusts between 0.7 and 11.9m/s. Temperature

was relatively stable over the study period, with an overall mean of 24˚C (95% CI: 23.80–

24.16). Rainfall varied considerably over the study period, especially during the first week of

the experimental period (R2). It did not rain on 73.19% of the total 25-day period, but, on

those days it rained, the median rainfall was 6.9mm (IQR: 0.4–12.8). Humidity was relatively

stable, with a median of 0.79 (IQR 0.66–0.86).

Combined results from CMC and MMRR collections

In total, the CMC and MMRR experiments collected 10,139 (970 CMC, 9169 MMRR) Cx.

quinquefasciatus and 910 (188 CMC, 722 MMRR) Ae. aegypti female mosquitoes (Table 3). All

Ae. aegypti and Cx. quinquefasciatus mosquitoes were stored at -80C to preserve RNA (filarial,

arboviral) for future analysis; a subset (15% of the total yield) of Cx. quinquefasciatus was then

subjected to molecular analysis.

Molecular screening of Cx. quinquefasciatus for W. bancrofti infection

Of the 10,139 Cx. quinquefasciatus collected (Table 3), 182 pools (112 CMC, 70 MMRR) repre-

senting 1,556 (856 CMC, 700 MMRR) female mosquitoes of all abdominal conditions were

screened for W. bancrofti infection. PCR analysis confirmed successful generation of Cx.

quinquefasciatus cDNA from each mosquito pool but revealed no evidence of W. bancrofti
infection.

Immunological screening of study areas residents for W. bancrofti antigen

A total of 110 (99.1%) out of a reported 111 full and part-time residents of the 35 houses

included in the CMC and MMRR studies underwent immunological analysis via ICT. The

majority were female (63%), and the gender disparity was more evident in older age groups.

Nearly 25% of the population undergoing ICT was 61 years of age or older. None tested posi-

tive for W. bancrofti CFA.

Discussion

MX is a promising method to monitor LF transmission, especially during the ‘endgame’ of LF

elimination. The two experiments presented in this paper inform the development of a gridded

Table 3. Total numbers of female Cx. quinquefasciatus and Ae. aegypti mosquitoes captured in CMC and MMRR experiments, Sı́tio Novo, Olinda, RMR, Brazil,

July 22–August 21, 2015.

Study Area Cx. quinquefasciatus Ae. aegypti
Unfed Blood-fed Semi-gravid Gravid Total Total

CMC 393 403 9 165 970 188

MMRR 3512 4478 507 672 9169 722

Total 3905 4881 516 837 10139 910

https://doi.org/10.1371/journal.pntd.0006816.t003
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MX system in a densely populated urban area where a single parasite (W. bancrofti) is likely

transmitted by a single vector (Cx. quinquefasciatus). This contrasts with the majority of MX-

related studies to date, which have been conducted in rural areas where more than one vector

and / or parasite may be implicated in LF transmission.

CMC study

This study compared battery-powered handheld aspirators with CDC light traps, although sev-

eral other methods had been considered. Gravid traps were rejected due to acceptability con-

cerns related to the smell of attractants (e.g., grass infusion) if used indoors, logistical issues

related to transporting large volumes of infusions, and trap placement in relation to security

(e.g. theft) given extremely limited secure outdoor space for each house in the study. A paper

by Irish et. al. found that the gravid traps caught less infected Cx. quinquefasciatus mosquitoes

than CDC light traps [24]. BG sentinel traps were rejected due to their large size, unwieldiness

and fan noise. Sticky ovitraps were rejected based on local expert advice and experience that

they are vastly inferior to battery-powered aspiration, and genetic material (RNA) in collected

mosquitoes would likely be degraded due to desiccation.

The nearly three-fold superiority of aspiration in collecting female Cx. quinquefasciatus
may be surprising, given that many other sites preferentially use CDC light or gravid traps for

this species [24, 26, 27, 38, 40, 57, 58]. However, much of the existing literature is based upon

studies conducted in rural settings with different residential and sanitation infrastructure and

low population density. One previous study in the metropolitan area of Recife found that CDC

light traps collected an average of 55 Cx. quinquefasciatus females per trap in 1991–2 [59].

While this quantity is much greater than that found in the current study, one possible explana-

tion of this result is an improvement of infrastructure and sanitation within Olinda over the

past two decades.

Aspirators collected 25% fewer unfed Cx. quinquefasciatus than CDC light traps, consistent

with CDC light traps preferentially attracting pre-blood meal and aspirators collecting post-

blood meal mosquitoes [24]. Furthermore, aspirators collect mosquitoes resting indoors,

which are less likely to be unfed females [60]. As female Cx. quinquefasciatus mosquitoes are

endophagic and endophilic, battery-powered aspiration inside houses should be more likely to

collect resting blood-fed females. This was the case in the Sı́tio Novo, where aspirators col-

lected 47 times more blood-fed Cx. quinquefasciatus than CDC light traps. CDC light traps col-

lected less than 2% of the blood-fed females, which is much lower than most previous studies

[30, 40, 60], although in line with one recent study in Tanzania [24].

Several other limitations should be noted. First, there were more operational issues sur-

rounding the use of CDC light traps than aspirators. Light and noise emitted from the traps

were aggravating to several residents; three participating households requested the CDC light

traps be removed from their bedrooms at night. Of trapping nights lost, nine were due to bat-

tery failure, two were lost due to traps being prematurely switched off, and one was due to par-

ticipants not being at home. By contrast, only two data points were lost during aspiration, both

due to participants not being home during morning visits. This also raised another important

issue. As CDC light traps require a freshly charged battery each night, if a house cannot be

accessed each morning, then the previous night’s collection net cannot be retrieved and a new

battery cannot be swapped. This effectively means that not being able to access a house during

CDC light trap testing results in losing two nights’ of trapping data, whereas not being able to

access a house for aspiration results in only one data point being lost.

Of the 188 Ae. aegypti captured, 99% were collected by aspirators; so, unlike CDC light

traps, they may also offer an alternative tool to sticky ovitraps for collecting adult female Ae.
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aegypti [30, 40, 61–67]. The finding that aspirators collect adult Ae. aegypti extremely well, and

the possible co-circulation of arboviruses with LF, indicate that a combined MX and surveil-

lance program for several vector-borne diseases could be both time- and cost-effective [68].

Aspiration of resting mosquitoes is not a new collection method for vectors of LF, and has

already been successfully adopted for xenomonitoring surveillance during and after MDA pro-

grams in Egypt and India [69, 70]. However, normally these studies involved other collection

methods (e.g., CDC light traps), and not the large, battery-powered aspirators used in the cur-

rent study. The type of aspirator used here provides a promising tool for a xenomonitoring

program for the RMR. While aspiration has for some time been the locally preferred method

of collecting adult resting mosquitoes by Secretary of Health officials, no standard operating

procedures have previously been in place. The present study produced an easy to use written

protocol that local researchers (including those in other research groups) are currently using

in order to standardize adult vector collection.

Since aspiration tends to collect a significantly higher proportion of blood-fed mosquitoes

than some other methods, any PCR-positive samples could, in principle, be attributed to the

mosquito having recently ingested an infected blood meal, as opposed to carrying an estab-

lished infection. In an MX program, this could potentially inflate the infection rate beyond the

true transmission potential [71]. It has likewise been argued that other collection methods that

preferentially capture older and previously blood-fed mosquitoes, such as gravid traps, would

have a higher likelihood of detecting infective L3 larvae [38]. The introduction of a reverse tran-

scriptase based PCR assay however, would negate the need to exclude blood-fed mosquitoes, as

its mRNA based primers are designed to detect L3 specific larvae, so could therefore give an

estimation on vector infectivity rates and a direct measure of transmission potential [54].

MMRR study

This study was conducted to determine the flight range, survival and dispersal of adult Cx.

quinquefasciatus and hence set spatial resolution in a gridded MX system. In this densely pop-

ulated urban area, the median flight range was 35m, the majority (90%) dispersed within 50m,

and the maximum flight range was 85m from the CRP. Of 9644 (7235 female) marked mosqui-

toes, a total of 10 (8 female, 2 male), or 0.103%, were recaptured. Although this is shorter than

other distances reported in the scant literature available on the flight range of Cx. quinquefas-
ciatus, the most likely explanation is that the richness in host/breeding site availability pro-

vided in the urban environment means that a female mosquito does not need to fly far to find

blood for egg development or water for oviposition.

Although results from experiments with low or zero recapture rates may be less likely to be

published, a recent review of published studies indicates variation in recapture rates between

zero and 14% [72]. The recapture rates found in the current study are low but are within the

range of MMRR studies for Cx. quinquefasciatus, which tends to have lower recapture rates

compared with other mosquito species [36]. While other methods such as sticky ovitraps

could have been used, the requirement of preserving filarial RNA meant that field teams

would have had to collect sticky tapes daily or more frequently due to the intense heat and

potential predators in the field site; these issues rendered such tools impossible for use.

Aspiration took place within houses and in the peri-domestic area, so it is possible that

study teams may have missed marked mosquitoes that did not travel indoors but remained in

the narrow pathways of the study site. The low recapture rate may also relate to the marking

procedure and its effects. First, marked mosquitoes may have had a lower survival rate com-

pared to wild mosquitoes. Although the effect of the marking was found to be small in the

pilot experiment, mosquitoes may still have been harmed during the procedure or transport
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towards the field site. Second, the color of the mosquitoes removes advantages of their natural

camouflage and is likely to make them more vulnerable to predation. Additionally, it is possi-

ble that recapture rates may have been higher if collection methods not utilized in the present

study, e.g., BG Sentinel traps, were used.

In this study, all mosquitoes were recaptured within a period of four days. This is in concor-

dance with the literature, where recapture success decreases after approximately four to six

days [42, 52, 73]. Anecdotally, members of the community reported seeing or killing colored

mosquitoes. In particular, the owner of the house on whose property the CRP was located

repeatedly reported seeing colored mosquitoes inside the house up to five days after release but

these mosquitoes were not recaptured by study teams. One household member of a participat-

ing house accidentally killed a magenta-colored mosquito, saved it, and presented it to study

teams as evidence (and with an apology): it was a blood fed female mosquito from R3 that had

travelled 23.7m before it was killed, reportedly 10–12 hours after its release.

Fewer Ae. aegypti were collected than Cx. quinquefasciatus, which is unsurprising given the

collection method and deployment schedule. As this study was conducted to design a MX sys-

tem for LF, the MMRR was primarily interested in Cx. quinquefasciatus flight distance and

survival. Battery-powered aspirators were chosen because they preferentially collect post-

blood meal resting females and aspiration occurred from 9am– 11:30am each day in order to

coincide with resting Cx. quinquefasciatus. Adjusting the aspiration schedule towards later in

the day would have likely resulted in collecting more Ae. aegypti mosquitoes.

The furthest recorded distance travelled was 85.4m from the CRP, on day three and at the

outer limit of the study area. Hence mosquitoes may have also dispersed beyond the study

area. This is difficult to confirm, although Cx. quinquefasciatus has been reported to travel

over 15km (810–1680m) from a release site in other studies [36, 41, 43, 53, 74, 75]. However,

the need to migrate long distances seems relatively low in this study area, given the availability

of human blood meals in the densely populated urban setting. On the other hand, the relatively

small size of the study area may have biased the observed MDT downwards [36].

Although the sample size of recaptured marked mosquitoes was insufficient to perform sta-

tistical analysis, most mosquitoes appeared to travel upwind, despite the relatively high wind

speeds recorded over the study period. Reisen et al. suggested that Cx. quinquefasciatus may

travel towards areas with vegetation to seek protection against the wind, although Schreiber

et al. found they dispersed mainly downwind regardless of land cover [41, 73].

This study required high participation rates from the community, requesting access to

every room in participants’ house on a daily basis over four weeks. One house refused access

to the field team after the first week and access to other houses was denied on an incidental

basis. Reported reasons for refusal were inconvenience caused by the procedure, having visi-

tors and the conception that mosquitoes would return the next day.

Molecular screening of mosquitoes and immunological screening of study

area residents

This study aimed to develop a MX system for the RMR, with the primary interest being in

ideal collection method and ascertaining the limits of mosquito dispersion. Unfortunately, the

expense of field collection resulted in a limited ability to conduct molecular screening of mos-

quito samples for W. bancrofti infection in this current study. Thus, researchers decided to

screen a proportion of mosquitoes from each area, and biobank the rest with the hopes of

securing future funding for further analysis.

The absence of W. bancrofti infection in Cx. quinquefasciatus mosquitoes and the absence

of antigen against W. bancrofti in humans in this small study area does not prove the absence
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of LF transmission in the RMR. As current infection rates in the active foci are estimated to

range between 0.6 and 2%, due to repeated rounds of MDA, much larger sample sizes

(>20,000 mosquitoes) would be required to detect W. bancrofti [9, 28]. Mosquitoes collected

for MX of LF are potentially useful for monitoring of other infections, in particular arboviruses

such as dengue and Zika, although only if the necessary storage and processing protocols are

followed to prevent RNA degradation. Even ignoring the likely clustering of infection, the

upper 95% confidence limit for the zero positive tests out of 110 is a prevalence of 3.4% [76].

Comparison with other MX programs

Among over 10 studies reporting MX program results, the majority have originated from the

African (AMRO), Southeast Asian (SEARO), and Eastern Mediterranean (EMRO) Regions of

the WHO. This is only the second study to report MX results, however preliminary, from the

Pan American (PAHO) region. Moreover, only one MX program has evaluated aspirators in

collecting Cx. quinquefasciatus for W. bancrofti detection. In contrast to several other studies,

this study found overwhelming evidence that large, handheld battery-powered aspirators are

extremely effective tools for collection of adult Ae. aegypti as well as Cx. quinquefasciatus irre-

spective of physiological status with the exception of unfed females [60, 77–80]. It should be

emphasized that the handheld aspirators used in this study are significantly larger than the

handheld, backpack, or mouth aspirators that have been used in other sites (Appendix II).

Recommendations

This research identifies a role for battery-powered aspiration for MX, having demonstrated

that they are extremely effective for collecting not only Cx. quinquefasciatus but also Ae.
aegypti adult females in this densely populated urban setting. This demonstrates that MX may

be promising and feasible where there is the possibility of an integrated LF and arbovirus sur-

veillance program. Although few in number, the recaptured mosquitoes suggest a suitable grid

size for MX sampling may be 75 x 75m or slightly larger, based on 90% of mosquitoes dispers-

ing at least 50m and at least one up to 85m. It is possible that in less densely populated or built

up urban areas a slightly larger grid (e.g., 100m x 100m) may suffice.

This research team recommends prioritizing considerations of spatial scale and transmis-

sion dynamics, including underlying human infection prevalence, when designing grid-based

MX systems. MX may seem to require substantial up-front investment in monitoring mos-

quito populations, especially when human health data (e.g., physician confirmed disease or lab

confirmed infection) may already be available. However, with correct design and sufficient

time for deployment, mosquito-based MX has the potential to enhance current LF surveillance

systems (as well as potentially aid in the early warning of new and cyclical infections such as

arboviruses). In settings like the RMR—where, in addition to LF, microcephaly, Zika virus,

dengue virus, and chikungunya virus have caused enormous strain on public health resources

in recent years—such enhanced disease surveillance systems could be very helpful for planning

the allocation of public health resources.

Supporting information

S1 Appendix. Handheld aspirator, CDC light trap, and field deployment. Figure S1. [A]

Handheld Aspirator Used in CMC and MMRR; [B] CDC Light Trap Used in CMC; [C] Field
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