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Abstract

Nano-scale pattern templates have been manufactured in order to study the differences in cell behaviour between fibroblasts cultured
on smooth and on grooved substrata. The pattern templates were made on silicon wafers using electron beam lithography in hydrogen
silsesquioxane (HSQ) and subsequent reactive ion etching (RIE). These masters were replicated in polystyrene cell culture material using
solvent casting. The replicas were assessed with atomic force microscopy (AFM). After seeding with fibroblasts, morphological charac-
teristics were investigated using scanning electron microscopy (SEM) and light microscopy, in order to obtain qualitative and quantita-
tive information on cell alignment. It appears that both groove depth and width determine the cellular alignment on patterns with a
ridge/groove ratio of 1:1. On smooth substrata, cells always spread out in a random fashion. There appears to be a threshold groove
barrier size of around 70–80 nm, above which random cell spreading is not possible anymore and contact guidance occurs. It is specu-
lated that this threshold size may be associated with the size of contact molecules at the cell extensions, which grow and find anchoring
spots preceding cell spread out and cell alignment.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Biomaterials for tissue- and cell-engineering are suc-
cessfully incorporated into neighbouring tissue when they
not only match the tissue’s mechanical properties, but also
bring forth specific cell responses (altered morphology,
orientation, adhesion, or gene regulation). The cellular
response to a biomaterial may be enhanced by mimicking
the nano-scale surface topography formed by the extra
cellular matrix (ECM) components of natural tissue [1].
Previous studies have already addressed micrometer scale
topography, and Teixeira et al. have investigated cell
behaviour on ridges 70 nm wide, with a pitch of 400 nm

and a depth of 600 nm and found cellular alignment along
these grooves [2]. Previous in vitro research has shown
that nano-columns, produced by colloidal lithography or
polymer de-mixing, caused changes in cell morphology, fil-
opodia production, migration, and cytokine release [3].
From the latter studies, it has become clear that topogra-
phy in the nano-meter scale may be of importance in cell
guiding. Despite the amount of control over the dimen-
sions created by colloidal lithography and polymer de-
mixing, however, these techniques remain largely random
with respect to the placement and orientation of features.
Nano-groove patterns with pitches less than 100 nm thus
far have not yet been studied and it is unknown to what
extent cells will sense and adapt their morphology to an
ordered topography if the dimensions become exceedingly
small.
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In this study, cellular behaviour on nano-groove topog-
raphy with a 1:1 pitch ratio has been investigated in order
not to deviate too far from previously used patterns [4–7].
It was our hypothesis that, if the topography is small
enough, a cellular ‘‘point break” is reached, where cells
no longer display contact guidance along nano-groove pat-
terns. In order to verify this hypothesis, cell responses to
such nano-topography fields have been investigated from
a morphology point of view, using light microscopy and
scanning electron microscopy, and subsequent image
analysis.

2. Experimental

Silicon wafers (6 in.) were spin coated with hydrogen sils-
esquioxane (HSQ) solutions in methyl isobutyl ketone
(MIBK) (FOx-12, Dow Corning Corp., Midland, MI,
USA) on a Karl Suss spinner at 1000 rpm during 10 s with
closed lid, resulting in 100 nm thick HSQ layers. The wafers
were exposed in a JEOL Electron Beam Pattern Generator
(JBX-9300FS) to a 100 kV beam with a 500 pA beam cur-
rent (4 nm spot size) using a 4 nm beam step size. The field
patterns consisted of squares of 500 � 500 lm2 containing
a.o. 1:1 lines and spaces at various pitches. The wafers were
developed by manual immersion at 20 �C in a 0.26 M tetra
methyl ammonium hydroxide developer (TMA238WA)
during 2 min, rinsed in 1:9 v:v TMA238WA:H2O (for 5 s),
rinsed in demineralised water (5 s) and blown dry with N2

[8,9]. For obtaining higher master structures, the e-beam
patterned HSQ was used as a mask in a standard reactive
ion etching (RIE) process for silicon in a Surface Technol-
ogy Systems (STS) multiplex RIE cluster tool. SEM graphs
of the HSQ master structures were made using a Philips
XL40 FEG-SEM. Wafers with a smooth surface were used
as controls.

In all instances, the silicon wafers were used as template
for the production of polystyrene (PS) substrata for cell
culturing. Polystyrene was solvent cast in a manner
described by Chesmel and Black [10]. Surface topography
was quantitatively evaluated using a Dimension atomic
force microscope (AFM; Dimension 3100, Veeco, Santa
Barbara, CA) [11]. Tapping in ambient air was performed
with 118 lm long silicon cantilevers (NW-AR5T-NCHR,
NanoWorld AG, Wetzlar, Germany) with average nominal
resonant frequencies of 317 kHz and average nominal
spring constants of 30 N/m. This type of AFM probe has
a high aspect ratio (7:1) portion of the tip with a nominal
length of >2 lm and a half cone angle of <5�. The nominal
radius of curvature of the tip was less than 10 nm. Height
images of each field/sample were captured in ambient air
at 50% humidity at a tapping frequency of 266.4 kHz.
The analysed field was scanned at a scan rate of 0.5 Hz
and using 512 scanning lines. Nanoscope imaging software
(version 6.13r1, Veeco) was used to analyze the resulting
images. Surface roughness (root mean squared (RMS),
nm) and the depth (nm) were obtained and averaged of
three random fields per substrate.

The polystyrene replicas were attached to 20 mm diam-
eter cylinders with polystyrene–chloroform adhesive to cre-
ate a cell culture dish. Shortly before use, a radio frequency
glow-discharge (RFGD) treatment using Argon was
applied for 3 min at a pressure of 2.0 � 10�2 mbar (Harrick
Scientific Corp., Ossining, NY, USA) in order to promote
cell attachment by improving the wettability of the
substrata.

Rat dermal fibroblasts (RDF) were obtained from the
ventral skin of male Wistar rats as described by Freshney
[12]. Cells were cultured on the replicas in an incubator
set at 37 �C with a humidified atmosphere, as described
in detail by Loesberg et al. [11]. To asses overall morphol-
ogy of the fibroblasts, also SEM was performed in a JEOL
6310 (Tokyo, Japan) [11].

For quantitative image analysis, samples were fixed in
paraformaldehyde and stained with Methylene Blue fol-
lowed by examination with a Leica/Leitz DM RBE Micro-
scope (Wetzlar, Germany) at a magnification of 20�. The
orientation of fibroblasts on the different fields and pat-
terns was examined and photographed. The criteria for cell
selection were (1) the cell is not in contact with other cells
and (2) the cell is not in contact with the image perimeter.
The maximum cell diameter was measured as the longest
distance between two edges within the cell borders. The
angle between this axis and the grooves (or an arbitrarily
selected line for smooth surfaces) was termed the orienta-
tion angle. If the average angle was 45�, cells were sup-
posed to lie in a random orientation. Cell extensions like
filopodia, which could confound the alignment measure-
ment, were not included when assessing the cell orientation.

Detailed information on the statistical analysis of the
cell alignment can be found in Ref. [11,13,14].

3. Results and discussion

Fig. 1a shows a representative SEM graph of the HSQ
on silicon template structures as made by means of electron
beam lithography. Fig. 1b shows a template obtained after
subsequent RIE of silicon. Fig. 1c and d show an example
of an AFM measurement of a replicated polystyrene sub-
strate, featuring non-rectangular profiles. As is generally
known, diffusion limitation in the smallest grooves during
RIE can result in shallower depths or grooves becoming
more concave. The characteristics of the actual wafers have
not been investigated thoroughly, as our main interest is in
the substrata the cells are cultured on. In addition, polysty-
rene casting could be influenced by capillary forces elicited
by the nano-grooves which may affect the reproduction
accuracy, although literature data concerning imprint
lithography techniques suggest that 20 nm details can easily
be accomplished when pressing a mould into polymers
[15,16]. Another possible explanation for the concave
appearance of the grooves is the intrinsic limitation of
AFM measurements related to tip convolution. Also, this
phenomenon can have an effect on the reliability of the
depth measurement. In order to minimize these effects
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during our AFM measurements, however, AFM cantile-
vers with the smallest possible scanning tip radius in com-
bination with a high aspect ratio have been employed.
Grooves with aspect ratios of up to 3 should be measurable
for >50 nm width, and up to 1.5 for widths >30 nm. Over
the whole range measured here, the aspect ratio never sur-
passed 1, suggesting that the AFM measurements were not
significantly influenced by convolution phenomena. In our
AFM measurements the smooth reference substrata
showed no distinguishable features other than 1 nm rough-
ness amplitudes.

After seeding the replicas with fibroblasts, morphologi-
cal characteristics were investigated using scanning electron
microscopy (SEM) and light microscopy, in order to obtain
qualitative and quantitative information on cell alignment.
Microscopy and image analysis showed that fibroblasts
after 4 h had adjusted their shape according to nano-topo-
graphical features down to cut-off values of 100 nm width
and 70 nm depth.

In Fig. 2, SEM graphs are shown of fibroblasts after
24 h culturing time; in this case, fibroblasts would even
align themselves on grooves of 35 nm depth and 200 nm
width. It appears that both depth (d) and width (w) deter-
mine the cellular alignment on groove patterns with a
ridge/groove ratio of 1:1, as shown in Fig. 3a. On the
smooth substrata, cells always spread out in a random
fashion, resulting in a mean orientation angle h = 45�.

Note that full alignment alongside the grooves would result
in h = 0�, and an orientation perpendicular to the grooves
would result in h = 90�. In Fig. 3b, the orientation param-
eter cos (2h) (giving 0 for random orientation, 1 for full
alignment, and �1 for perpendicular alignment) is shown
as a function of the groove barrier size (d � w)0.5; the groove
barrier size can be used as a sort of molecular yard-stick.
There appears to be a threshold groove barrier size of
around 70–80 nm, above which random cell spreading is
not possible anymore and contact guidance occurs. It is
speculated (in Fig. 3c) that this threshold size may be asso-
ciated with the size of contact molecules (like vitronectin
and fibronectin) at the cell extensions, which grow and find
anchoring spots preceding cell spread out and cell align-
ment. In case the grooves are too deep and too wide, it is
energetically unfavourable for the contact molecules to
descend to the bottom of the groove or to cross the groove;
as a consequence, the cell extensions will predominantly
grow in the ridge direction and, hence, eventually the cell
is also aligned in the ridge direction.

Current e-beam lithography permits the reproducible
fabrication of areas of features comparable in size to those
found in fibrillar ECM. Individual collagen fibrils have
diameters that are commonly in the range 20–100 nm
although they often form larger aggregates [17,18]. This
study shows that fibroblast cells display meagre alignment
on fields with ridge/groove widths much less than 100 nm.

Fig. 1. (a) SEM graph of 40 nm 1:1 lines and spaces in HSQ on Si, (b) SEM graph of 80 nm 1:1 lines and spaces after RIE in Si, (c) AFM graph of 80 nm
1:1 lines and spaces in polystyrene replica, and (d) its matching height measurement cross section.
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Fig. 2. SEM graphs of Fibroblast cell orientation after 24 h: (a) smooth surface, (b) grooves w = 40 nm, d = 16 nm, (c) grooves w = 150 nm, d = 119 nm,
and (d) grooves w = 1000 nm, d = 350 nm (made by photolithography and etching in a silicon wafer [4]).

Fig. 3. (a) Fibroblast 24 h mean orientation angle h as a function of groove width (w) and depth (d); (b) Orientation (cos2h) as a function of groove
barrier size (d � w)0.5 for d/w 6 1; estimated error bars for the orientation- and groove barrier size-parameters are indicated; (c) Cross section of
grooves and contact molecules; for narrow grooves: no barrier ) no contact guidance (a, b), for wider/deeper grooves: barrier sensed ) contact
guidance (c, d).
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4. Conclusions

It is concluded that fibroblast cells, cultured upon
increasingly smaller nanoscale topography, experience, in
accordance with our hypothesis, a decisive point where
they no longer demonstrate contact guidance. This point
seems to be around a 70–80 nm threshold.
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