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INTRODUCTION

The study of global homological dimension has a major tool in the study
of filtered rings and associated graded rings. In fact, [11, 7.6.18 Corollary]
states that the global homological dimension of a filtered ring is bounded by
the global homological dimension of its associated graded ring (this result
firstly appears in [14]). Most of the classical cases work nice because the
associated graded ring is commutative (polynomial commutative ring), so
its global homological dimension is known. There is a lot of interesting
examples in which such nice filtration does not exist (at least in a natural
way), but they have what we call a multifiltration. The main idea is to
replace the set of natural numbers � with its order by any power �p with
a total order compatible with the semigroup structure. So, the amount of
examples covered by this new technique increases considerably: quantum
matrices (uniparametric and multiparametric), classical and quantized Weyl
algebras, classical enveloping algebras of finite-dimensional Lie algebras
and, as the most interesting one, quantized enveloping algebras Uq�C� in
the sense of Drinfeld and Jimbo (see Example 4.3 for definitions). This
idea has been recently exploited in [6] in the study of the Gelfand–Kirillov
dimension.

Our development parallels the exposition given in [11, Chap. 7, Sect. 6].
To do this we have solved some technical difficulties stemming from the
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fact that an arbitrary admissible ordering on �p is not determined by the
additive semigroup structure for p > 1 (see, e.g., the notion of multifiltered-
free module in Sect. 2).

Sect. 1 is devoted to set the notions of multifiltered ring, associated
graded ring and the first properties of the functorial transfer from one
to the other.

In Sect. 2 this connection between multifiltered and graded modules is
specialized to free and projective modules. In particular we develop the
notion of freeness in the multifiltered setting. The main theorem of this
paper appears in this section (Theorem 2.7), which gives as a consequence
that the projective dimension of a multifiltered module is bounded by that
projective dimension of the associated �p-graded module (Corollary 2.8).
There are similar bounds for Krull and flat dimensions in Sect. 3.

In Sect. 4, we apply our results to some examples as H�λ;p� (see [1])
and Uq�C� (see [10, 4])

1. MULTIFILTRATIONS AND ASSOCIATED GRADATIONS

We consider an admissible order on the free abelian semigroup �p

with the additive structure, i.e. a total order ≤ on �p such that for every
α;β; γ ∈ �p, 0 ≤ α and α < β implies α + γ < β + γ. As any admissible
order extend the natural product order on �p, Dickson’s lemma (see, e.g.,
[2, Corollary 4.48]) applies here, so an admissible order is a well order and
we can use noetherian induction. Let 0 = ��p;≤� where ≤ is an admissi-
ble order. Let R be an associative ring with unit. A (0–)multifiltration on
R is a family �Fγ�R� � γ ∈ �p� of additive subgroups of R satisfying the
following axioms:

1. If γ ≤ δ then Fγ�R� ⊆ Fδ�R�.
2. For all γ; δ ∈ �p, Fγ�R�Fδ�R� ⊆ Fγ+δ�R�.
3. R = ⋃γ∈�p Fγ�R�.
4. 1 ∈ F0R.

From now on fix a 0–multifiltration on R. A (0–)multifiltration on a left
R–module M is a family �Fγ�M� � γ ∈ �p� of additive subgroups of M
satisfying the following axioms

1. If γ ≤ δ then Fγ�M� ⊆ Fδ�M�.
2. For all γ; δ ∈ �p, Fγ�R�Fδ�M� ⊆ Fγ+δ�M�.
3. M = ⋃γ∈�p Fγ�M�.

A multifiltration on M is called standard if Fγ�M� = Fγ�R�M0.
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Given a multifiltered module M over a multifiltered ring R and γ ∈ �p

we define

Vγ�M� =
⋃
γ′<γ

Fγ′ �M�; V0�M� = �0�

and

Gγ�M� =
Fγ�M�
Vγ�M�

:

We also put

G�M� = ⊕
γ∈�p

Gγ�M�:

Proposition 1.1. Let R be a multifiltered ring and M a multifiltered left
R-module.

1. G�R� is a �p-graded ring.

2. G�M� is a graded left G�R�-module.

Let M be a multifiltered left R-module. For every m ∈ M there exists a
unique α ∈ �p such that m ∈ Fα�M� \ Vα�M�; this is denoted α = exp�m�
and called exponent. For any m ∈ M, with exp�m� = α, we denote m =
m+ Vα�M� ∈ Gα�M�. It is clear that exp�m� = deg�m�.

Lemma 1.2. Let R be a multifiltered ring and M a left R–module.

1. If M is multifiltered and G�M� is a finitely generated G�R�-module,
then RM is finitely generated

2. If RM is finitely generated then M has a standard multifiltration such
that G�R�G�M� is finitely generated.

Proof. Essentially the same proof that [11, 7.6.11 Lemma]. See also [12,
D.IV.3 Proposition].

Now we extend the usual class of filtered morphisms (see, for example
[11, Chap. 7, Sect. 6]) to the multifiltered setting.

Definition 1.3. Let ϕ:M → N be a morphism of left R-modules with
M and N multifiltered, ϕ is called filtered if for all γ ∈ �p, ϕ�Fγ�M�� ⊆
Fγ�N�. If in addition ϕ�Fγ�M�� = ϕ�M� ∩ Fγ�N� for all γ ∈ �p then ϕ
is called strict. As in the usual filtered case, there is a functor from the
category R-multifilt of multifiltered left R-modules with filtered morphism
to the category G�R�-gr of left graded G�R�-modules, defined by M 7→
G�M� and ϕ 7→ G�ϕ� in the usual way.
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Proposition 1.4. Let R be a multifiltered ring and K θ−→ M ϕ−→ N an
exact sequence of filtered morphism. Then G�K� G�θ�−→ G�M� G�ϕ�−→ G�N� is
exact if and only if θ and ϕ are strict.

Proof. It is a mere exercise to extend the �-filtered case as appeared in
[11, 7.6.13 Proposition] or [12, D.III.3 Theorem] to the �p-filtered case.

Corollary 1.5. Let ϕ:M → N be a filtered morphism of left R-modules.
Then

1. ϕ is injective and strict if and only if G�ϕ� is injective.
2. ϕ is surjective and strict if and only if G�ϕ� is surjective.

2. MULTIFILTERED-FREE MODULES AND THE MAIN
THEOREM

In order to extend the notion of free filtered module we need some
notion of shifting. Let M be a multifiltered left R-module and let γ; γ0 ∈
�p. We denote

Fγ; γ0
�M� = ⋃

γ′+γ0≤γ
Fγ′ �M�; Vγ; γ0

�M� = ⋃
γ′+γ0<γ

Fγ′ �M�:

Lemma 2.1. The family �Fγ;γ0
�M� � γ ∈ �p� is a multifiltration on M.

Proof. Let γ ≤ δ and let m ∈ Fγ; γ0
�M�. Then there is γ′ ∈ �p such that

γ′ + γ0 ≤ γ and m ∈ Fγ′ �M�. As γ ≤ δ, γ′ + γ0 ≤ δ and m ∈ Fδ; γ0
�M�.

Let γ; δ ∈ �p and assume r ∈ Fγ�R�, m ∈ Fδ; γ0
�M�. So there exists γ′

such that γ′ + γ0 ≤ δ and m ∈ Fγ′ �M�. Then rm ∈ Fγ+γ′ �M�. As γ + γ′ +
γ0 ≤ γ + δ, we have rm ∈ Fγ+δ;γ0

�M�.
Let m ∈ M. As there exists δ such that m ∈ Fδ�M� ⊆ Fδ+γ0; γ0

�M�, we
have M = ⋃γ∈�p Fγ;γ0

�M�.
The R-module M with this new multifiltration is denoted M�−γ0�, that

is Fγ�M�−γ0�� = Fγ;γ0
�M�.

Lemma 2.2. Let M be a multifiltered left R-module. Then

1. If γ ∈ γ0 + �p then Fγ;γ0
�M� = Fγ−γ0

�M� and Vγ; γ0
�M� =

Vγ−γ0
�M�.

2. If γ /∈ γ0 +�p then Fγ; γ0
�M� = Vγ;γ0

�M�.
Proof. Assume there is γ′ such that γ = γ0 + γ′, then γ0 + γ′′ ≤ γ if and

only if γ′′ ≤ γ′, so Fγ;γ0
�M� = Fγ′ �M� = Fγ−γ0

�M�. Analogously γ0 + γ′′ <
γ if and only if γ′′ < γ′ and we have Vγ; γ0

�M� = Vγ′ �M� = Vγ−γ0
�M�.

Assume now that for every γ′ ∈ �p, γ′ + γ0 6= γ. Then Fγ; γ0
�M� =⋃

γ′+γ0≤γ Fγ′ �M� =
⋃
γ′+γ0<γ

Fγ′ �M� = Vγ; γ0
�M�. This equality proves the

lemma.
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Proposition 2.3. Let M be a multifiltered left R-module. Then

Gγ�M�−γ0�� =
{
Fγ−γ0

�M�/Vγ−γ0
�M� if γ ∈ γ0 +�p

0 if γ /∈ γ0 +�p :

Proof. By definition Fγ�M�−γ0�� = Fγ;γ0
�M�. Moreover

Vγ�M�−γ0�� =
⋃
δ<γ

Fδ; γ0
�M�:

As γ′ + γ0 ≤ δ and δ < γ implies γ′ + γ0 < γ, we have Fδ; γ0
�M� ⊆

Vγ; γ0
�M�. Moreover, if γ′ + γ0 < γ then Fγ′ �M� = Fγ′+γ0; γ0

�M� ⊆
Vγ�M�−γ0�� (previous equality by Lemma 2.2). We have proved that
Vγ�M�−γ0�� = Vγ; γ0

�M�, so the proposition follows directly from
Lemma 2.2.

Given a �p-graded ring A =⊕γ∈�p Aγ, we can view this ring as a �p-
graded ring putting Aδ = 0 if δ ∈ �p \�p. Of course this construction can
be extended to graded A-modules. Therefore, we can use the shifting in
G�M� as defined in [12, I.1.4].

Corollary 2.4. Let M be a multifiltered left R-module. Then

G�M�−γ0�� = G�M��−γ0�:
as �p-graded G�R�-modules.

A multifiltered left R-module is called multifiltered-free (mf-free for short)
with basis �ej � j ∈ J� and exponents exp�ej� = γ�j� ∈ �p if M is free with
basis �ej � j ∈ J� and for every γ ∈ �p

Fγ�M� =
⊕
j∈J
Fγ; γ�j��R�ej:

We use the notion of graded-free as appears in [12, I.1.4]

Proposition 2.5. Let M be a multifiltered left R-module.

1. If M is mf-free then G�M� is �p-graded-free over G�R�.
2. If M ′ is �p-graded-free over G�R� then M ′ ∼= G�M� for some left

mf-free R-module M.
3. If M is mf-free, N is multifiltered and ϕ:G�M� → G�N� is a graded

surjective morphism then ϕ = G�θ� for some strict multifiltered surjective mor-
phism θ:M → N.

Proof. 1. If �ej � j ∈ J� is a basis as mf-free with exponents exp�ej� =
γ�j� for M, then is easy to prove that �ej � j ∈ J� is a basis as graded-free
for G�M�.
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2. If M ′γ =
⊕

j∈J Gγ�R��−γ�j��fj with deg�fj� = γ�j�, then the de-
sired module is M =⊕j∈J R�−γ�j��.

3. Let �ej � j ∈ J� be a graded basis for G�M� with deg�ej� = γ�j�.
Then there are �nj � j ∈ J� with nj ∈ Fγ�j��N� \ Vγ�j��N� such that α�ej� =
nj for all j ∈ J. We define β�ej� = nj ∈ N. By Corollary 1.5 β is surjective
filtered and strict. Moreover, α = G�β� because they take the same value
on the basis.

Proposition 2.6. Assume P is a multifiltered left R-module such that
G�P� is a left projective graded G�R�-module. Then P is projective.

Proof. As G�P� is graded-projective (see [12, I.2.2 Corollary]), there is
a mf-free R-module F and a graded epimorphism α:G�F� → G�P�. By
Proposition 2.5 there is a strict filtered epimorphism β:F → P such that
G�β� = α. If we call K = ker�β� with the induced filtration, we have an
exact strict multifiltered sequence

0 −→ K i−→ F β−→ P → 0: (1)

So, by Proposition 1.4, the sequence

0 −→ G�K� G�i�−→ G�F� G�β�−→ G�P� → 0 (2)

is exact. Projectivity of G�P� makes (2) split. There is δ:G�F� → G�K�
such that G�i� ◦ δ = 1G�K�. By Proposition 2.5 δ = G�ρ� and G�i ◦ ρ� =
1G�K�. Hence i ◦ ρ:K→ K is strict, multifiltered and G�i ◦ ρ� is an isomor-
phism. Using Corollary 1.5 i ◦ ρ is an isomorphism. The sequence (1) also
splits and P is projective.

Theorem 2.7. Let R be a multifiltered ring and M a left multifiltered R-
module. Let

P: 0→ K′ → F ′n→ · · · → F ′0 → G�M� → 0 (3)

be an exact sequence of graded left G�R�-modules with F ′i graded-free for all
i = 0; : : : ; n.

1. There exists an exact sequence of multifiltered left R-modules

Q: 0→ K→ Fn→ · · · → F0 →M → 0 (4)

such that Fi is mf-free for all i = 0; : : : ; n, the morphisms are strict and
P = G�Q�.

2. If K′ is graded-projective over G�R� then K is projective over R.
3. If the G�R�-modules in (3) are finitely generated then the R-modules

in (4) are finitely generated.
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Proof. By Proposition 2.5, the epimorphism F ′0 → G�M� is G�β� for
some β:F0 →M strict, being F0 mf-free and G�F0� = F ′0. Let K0 = ker�β�
with the induced multifiltration. Then

0 −→ G�K0� −→ F ′0 −→ G�M� −→ 0

is exact (see Corollary 1.5). So the graded homomorphism F ′1 → F ′0 fac-
torizes through G�K0� and we can repeat the process starting with G�K0�.
This proves 1.

2 is consequence of Proposition 2.6, and 3 follows from Lemma 1.2.

We denote pd�M� the (left) projective dimension of the left R-module
M, and gl-pd(R) is the (left) global homological dimension of R.

Corollary 2.8. Let R be a multifiltered ring. Then

1. If M is a multifiltered left R-module then pd�M� ≤ pd�G�M��.
2. gl-pd�R� ≤ gl-pd�G�R��.

Proof. Assume pd�G�M�� = n. Then there is a resolution

0→ P ′n→ F ′n−1 → · · · → F ′0 → G�M� → 0

with F ′i graded free and P ′n graded-projective. By Theorem 2.7 there is a
resolution

0→ Pn→ Fn−1 → · · · → F0 →M → 0

with Fi free and Pn projective, whence pd�M� ≤ n.
Statement 2 is a direct consequence of 1.

3. FLAT AND KRULL DIMENSIONS

Some results similar to Corollary 2.8 can be surely expected for other
relevant notions of dimension for a module, namely, Krull, flat or Gelfand–
Kirillov dimensions. The latter has been considered in the multifiltered set-
ting in [6], where the relation between the Gelfand–Kirillov dimension of
multifiltered modules and their associated multigraded modules are exten-
sively studied (see [6, Theorems 2.8, 2.10]). In this section, we shall obtain
the corresponding versions of Corollary 2.8 for the Krull and flat dimen-
sions.

In this section R is a multifiltered ring with filtration �FγR � γ ∈ �p�.
Lemma 3.1. Let M be a multifiltered left R-module and let N ⊆ L be R-

submodules of M equipped with the induced multifiltration. If G�N� = G�L�
then N = L.
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Proof. Compare with the proof of [6, Theorem 1.5]. Notice that for ev-
ery γ ∈ �p and every R-submodule K ⊆M with the induced multifiltration
(FαK = K ∩ FαM),

Gγ�K� =
FγK

VγK
∼= FγK + VγM

VγM
⊆ Gγ�M�:

Assume for a contradiction N(L. Pick m ∈ L \ N such that m ∈ FγM \
VγM with γ minimal. Then m+ VγM ∈ Gγ�L� = Gγ�N�. There exists n ∈
FγN such that m+ VγM = n+ VγM. So m− n ∈ L \N and m− n ∈ VγM,
i.e., m− n ∈ FδM \ VδM for some δ < γ, which is impossible by minimality
of γ.

The Krull dimension of a left R-module M is defined to be the deviation
of L�M�, the lattice of submodules of M (see [11, Chap. 6]). We denote
kd�M� the (left) Krull dimension of the left R-module M.

Proposition 3.2. Let M be a multifiltered left R-module. Then kd�M� ≤
kd�G�M��.

Proof. This follows from [11, 6.1.17 Proposition] since, by Lemma 3.1,
the map M 7→ G�M� from L�M� to L�G�M�� is injective on chains.

Let M be a right multifiltered R-module and N a left multifiltered R-
module with filtrations �FγM � γ ∈ �p� and �FγN � γ ∈ �p�. We consider
� with the trivial multifiltration, i.e., Fγ� = � for all γ ∈ �p. For all α ∈ �p

let us define

Fα�M ⊗R N� = �m⊗ n � m ∈ FβM;n ∈ FγN;β+ γ ≤ α�

Lemma 3.3. The family �Fα�M ⊗R N� � α ∈ �p� is a multifiltration on
the �–module M ⊗R N.

Proof. Straightforward.

Define a graded morphism

ϕ=ϕ�M;N�:G�M� ⊗G�R� G�N� −→ G�M ⊗N�
�m+ Vα�M�� ⊗ �n+ Vβ�N�� 7−→ m⊗ n+ Vα+β�M ⊗N�:

It is easy to see that ϕ�M;N� is well defined and surjective.

Lemma 3.4. Let M be a right multifiltered R-module and N a left multi-
filtered R-module. Then ϕ�R;N� and ϕ�M;R� are isomorphisms.
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Proof. We have the following commutative diagram of graded mor-
phisms:

G�N� G�N�

G�R� ⊗G�R� G�N� G�R⊗N�

id

ϕ�R;N�

where vertical arrows represent canonical isomorphisms. So ϕ�R;N� is also
an isomorphism.

Proposition 3.5. Let R be a multifiltered ring and let M be a multifiltered
left R-module. If G�M� is a flat G�R�-graded module then M is a flat R-
module.

Proof. If I ≤ R is a right ideal, equip it with the induced multifiltration,
i.e., FαI = I ∩ FαR. Then, the canonical inclusion i: I → R is an injective
strict morphism, and so G�i� is injective by Corollary 1.5. We obtain the
following commutative diagram:

G�I� ⊗G�R� G�M� G�R� ⊗G�R� G�M�

G�I ⊗M� G�R⊗M�

G�i�⊗id

ϕ�I;M� ϕ�R;M�

G�i⊗id� :

The fact that ϕ�R;M� is an isomorphism (by Lemma 3.4), whereas
G�i� ⊗ id is a monomorphism, entails that ϕ�I;M� is a monomorphism,
hence an isomorphism. Then G�i⊗ id� has to be injective. By Corollary 1.5
again i⊗ id is a strict monomorphism, and it follows that M is flat.

We denote fd�M� the (left) flat (or weak) dimension of the left R-module
M, and gl-fd�R� is the (left) global flat (or weak) dimension of R.

Proposition 3.6. Let R be a multifiltered ring, Then

1. If M is a multifiltered left R-module then fd�M� ≤ fd�G�M��.
2. gl-fd�R� ≤ gl-fd�G�R��.

Proof. The proof is analogous to Corollary 2.8, using Theorem 2.7 and
Proposition 3.5.
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4. EXAMPLES WITH BOUNDED (SO FINITE) DIMENSIONS

Let us finish with some nice examples. We begin with PBW algebras.
Let k be a (commutative) field and let R be a k algebra with elements
x1; : : : ; xp ∈ R such that the set �Xα � α ∈ �p�, where Xα = xα1

1 · · ·x
αp
p ,

is a k-basis for R. If ≤ is an admissible order on �p, every nonzero f =∑
α∈�p cαX

α has an exponent defined by

exp�f � = max�α ∈ �p � cα 6= 0�:
R is called a PBW algebra if one of the following equivalent conditions is
satisfied (see [3, Sect. 1]):

1. For every f; g ∈ R \ �0�, exp�fg� = exp�f � + exp�g�.
2. For every j > i there exists qji ∈ k \ �0� such that xjxi = qjixixj +∑

γ<εi+εj cγX
γ, where cγ ∈ k and εi = �δ1i; : : : ; δni�.

It is known (see [3, Corollary 2.9]) that every PBW algebra is left and
right noetherian.

Proposition 4.1. If R is a PBW algebra with basis �Xα � α ∈ �p� then
gl-pd�R� ≤ p and kd�R� ≤ p.

Proof. Let us define a multifiltration on R: Calling

Fα�R� = �f ∈ R � exp�f � ≤ α� ∪ �0�;
as exp�fg� = exp�f � + exp�g� it is easy to see that the family �Fα�R� � α ∈
�p� is a multifiltration on R. Moreover, G�R� is isomorphic to a quantum
space Oq�kp�, the k-algebra generated by x1; : : : ; xp with relations xjxi =
qjixixj . By [11, Theorem 7.5.3] gl-pd�G�R�� = p, and by [11, Proposition
6.5.4] kd�G�R�� = p, so the proposition follows from Corollary 2.8 and
Proposition 3.2.

Example 4.2. PBW algebras include a lot of classical algebras and
quantum groups. In fact, the commutative polynomial ring over a field, the
universal enveloping algebra of a finite dimensional Lie algebra U�Á� and
any iterated Ore extension of a polynomial ring with homotetic automor-
phisms (see [6, Example 3.3]) are PBW algebras. Special examples of this
kind are the algebras H�p;λ� defined in [1], which include the quantum
coordinate algebras of Mn�k�; and the multiparameter quantized Weyl al-
gebra R = AQ;0

n �k� from [8]. The iterated differential operator algebras
of [15] are also covered (including classical Weyl algebras), as well as the
positive part of the quantized enveloping algebra of a finite-dimensional
Lie algebra as defined by Drinfeld [5] and Jimbo [7] (see also [13]).
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Example 4.3. In the previous example 4.2 we have include some quan-
tum groups. Now we are going to include the quantum enveloping ��v�-
algebra of a semisimple finite-dimensional Lie algebra Uq�C� given by a
Cartan matrix C as defined by Drinfeld [5] and Jimbo [7]. The generators
and relations of this algebra can be seen in [10, 1.1] and [4, 9.1].

A result by Lusztig (see [10, Proposition 4.2] and [4, Theorem 9.3]) states
that there in a ��v�-basis whose elements are the monomials

E
k1
β1
· · ·EkNβNKλF

rN
βN
· · ·Fr1β ;

where the elements Eβi; Fβi are obtained from the generators of Uq�C�
modulo a braid action, λ belongs to the root lattice associated to C, and
the exponent �k1; : : : ; kN; rN; : : : ; r1� ∈ �2N (see [4] for notation). The
defining relations on U0

q�C� allows to see that Kλ = Kλ1
1 · · ·Kλn

n for some
integers λi ∈ �.

Let w = �ht�β1�; : : : ; ht�βN�; ht�βN�; : : : ; ht�β1�� ∈ �2N . We define ≤w
as the weighted lexicographical order on �2N (see, e.g., [6, Sect. 3] or [9,
Ejemplo 1.19]). Then, the family

�Fγ�Uq�C�� � γ ∈ �2N�;
where Fγ�Uq�C�� is the span of the monomials with

�k1; : : : ; kN; rN; : : : ; r1� ≤w γ;
is a multifiltration on Uq�C� (see [4, 10.1]) such that G�Uq�C�� is certain
localization of a quantum space (see [4, Proposition 10.1]). So the global
homological dimension of Uq�C� is finite and bounded by 2N + n.
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