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Abstract

Applying differentially expressed genes (DEGs) to identify feasible biomarkers in diseases

can be a hard task when working with heterogeneous datasets. Expression data are

strongly influenced by technology, sample preparation processes, and/or labeling methods.

The proliferation of different microarray platforms for measuring gene expression increases

the need to develop models able to compare their results, especially when different technol-

ogies can lead to signal values that vary greatly. Integrative meta-analysis can significantly

improve the reliability and robustness of DEG detection. The objective of this work was to

develop an integrative approach for identifying potential cancer biomarkers by integrating

gene expression data from two different platforms. Pancreatic ductal adenocarcinoma

(PDAC), where there is an urgent need to find new biomarkers due its late diagnosis, is an

ideal candidate for testing this technology. Expression data from two different datasets,

namely Affymetrix and Illumina (18 and 36 PDAC patients, respectively), as well as from 18

healthy controls, was used for this study. A meta-analysis based on an empirical Bayesian

methodology (ComBat) was then proposed to integrate these datasets. DEGs were finally

identified from the integrated data by using the statistical programming language R. After

our integrative meta-analysis, 5 genes were commonly identified within the individual analy-

ses of the independent datasets. Also, 28 novel genes that were not reported by the individ-

ual analyses (‘gained’ genes) were also discovered. Several of these gained genes have

been already related to other gastroenterological tumors. The proposed integrative meta-
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analysis has revealed novel DEGs that may play an important role in PDAC and could be

potential biomarkers for diagnosing the disease.

Introduction

Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer (PC),

is the fourth leading cause of cancer death in Western countries, with a 5-year survival rate of

about 4% and a median survival rate of less than 6 months [1]. At the time of diagnosis, 80% of

patients with PDAC are found to have unresectable locally advanced or metastatic disease [2].

The absence of reliable biomarkers for population screening is one of the most important limi-

tations in the management of this malignancy [3].

Currently, the only biomarker in routine clinical use for PDAC is the carbohydrate antigen

19–9 (CA19-9) [4]. However, recent studies found this biomarker to be an unreliable diagnos-

tic tool due to its limited sensitivity (~80%) and specificity (80–90%) [5]. Furthermore, ele-

vated levels of CA19–9 may also appear in pancreatitis [6], benign diseases of the hepatobiliary

system [7] and other malignancies of the gastrointestinal tract [8].

Microarray techniques have become a useful tool for determining gene expression profiles

in cancer, allowing the discovery of possible tumor biomarkers [9]. However, sometimes

biopsy from tumoral tissues can be complex and present complications. In this context,

peripheral blood mononuclear cells (PBMCs) constitute an alternative, non-invasive source

for finding tumor biomarkers [10,11]. These cells suffer modifications in their gene expression

profile when in contact with the tumor microenvironment [12], and may therefore be used as

an accessible source of cancer biomarkers.

Additionally, the so-called meta-analysis techniques have been increasingly employed to

integrate data from different microarray platforms, making this technology more consistent

and powerful. These meta-analyses are especially useful for combining several datasets related

to the same disease when they are limited in size, therefore improving their statistical power

[13]. Meta-analyses have recently been applied to identify DEGs in several tumor studies,

including in breast [14,15], ovarian [16], prostate [17] and pancreatic cancers [18]. One of the

main challenges in a meta-analysis is to adequately integrate datasets obtained using different

platforms in order to make them comparable. Various methods have been developed to nor-

malize datasets and provide reliable integration, removing batch effects and making cross-plat-

form corrections, such as Distance Weighted Discrimination (DWD) [19], empirical Bayes

methods (ComBat) [20], and cross-platform normalization (XPN) [21]. In this sense, ComBat

and XPN have been proven to outperform DWD in term of minimizing inter-platform vari-

ance [13].

In this study, an integrated meta-analysis of two gene expression datasets from PDAC data

was proposed for identifying DEGs in patients. The datasets were collected from two different

microarray platforms, namely Affymetrix and Illumina. The expression data was integrated

using an empirical Bayes method (ComBat) to avoid bias between the platforms.

Materials and methods

Study population

All clinical investigations were conducted according to the principles expressed in the Declara-

tion of Helsinki. All participants gave written informed consent to participate before their

enrolment in the study. The study was approved by the respective Ethics Committee at the
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Hospital Universitario Puerta del Mar, Hospital Germans Trias i Pujol, Complejo Hospitalario

de Navarra, Hospital Reina Sofia, Hospital General de Valencia, Hospital Sant Pau, Hospital

Virgen de la Salud, Hospital Parc Taulı́, Hospital Universitario Ramón y Cajal, Hospital Carlos

Haya, Hospital Universitario Marques de Valdecilla, Hospital General de Elche, Hospital Son

Llatzer, Hospital Universitario de Donostia, and Hospital Virgen de las Nieves.

The 54 patients with unresectable PDAC recruited in this study were divided into two inde-

pendent cohorts. Samples from cohort 1, selected from our previous study [22], include 18

patients with PDAC recruited from January 2009 to July 2012 at the Virgen de las Nieves Uni-

versity Hospital in Granada. Cohort 2 was also independent and included 36 new patients with

PDAC, from a phase 2 randomized trial, recruited from March 2012 to February 2013 from 15

different hospitals mediated by the Spanish cooperative group for gastrointestinal tumor ther-

apy (TTD). The diagnosis of PDAC was based on clinical evaluation and imaging studies,

which were histologically confirmed by surgery or imaging-guided biopsy. The same enrol-

ment criteria were applied to both cohorts. Finally, 18 gender-, age-, and habit- matched

healthy controls were included. The study was approved by the Ethics Committee of the differ-

ent hospitals, and all clinical investigations were conducted according to the principles

expressed in the Declaration of Helsinki. Written informed consent was obtained from all

patients and controls before their enrolment in the study.

Blood collection and isolation of total RNA from PBMCs

Prior to any chemotherapy regimen, peripheral blood samples (12 ml) from all patients and

healthy controls were collected in PAXgene Blood RNA Tubes (PreAnalytix) and stored at

room temperature for 24 hours, to achieve complete lysis of the blood cells and immediate and

persistent RNA stabilization. The RNA from PBMCs was isolated using the PAXgene Blood

RNA Kit (PreAnalytix) according to the manufacturer’s instructions. The final concentration

of purified RNA was quantified by absorbance at 260 nm in a NanoDrop 2000c spectropho-

tometer (Thermo Scientific). The quality was determined using the 2100 Bioanalyzer (Agilent

Technologies). All samples presented an RNA integrity number (RIN) >7.0 and a 28S:18S

rRNA ratio >1.0.

cDNA microarray analysis

Whole genome cDNA microarray hybridization of samples was performed using two different

platforms to identify potential PDAC markers. Affymetrix microarray-based gene expression

profiling was carried out on the samples from the patients included in Cohort 1 and 18 healthy

controls, using GeneChip1 Human Gene ST 1.0 Arrays (Affymetrix Inc.) according to the

recommended protocol. Briefly, l μg of high-quality total RNA was used to synthesize double-

stranded cDNA, and biotin-tagged cRNA was produced. This cRNA was recovered, purified

and then hybridized to the chips overnight at 45˚C. After being washed and stained, the arrays

were scanned with a GeneChip Scanner 3000 7G (Affymetrix Inc.) following the manufactur-

er’s protocol.

The gene expression levels of multi-plat were measured using the HumanHT-12 v4 Expres-

sion BeadChip (Illumina Inc.). In addition, the expression data for the same 18 healthy con-

trols were recalculated using Illumina technology. Both Affymetrix and Illumina expression

values from healthy controls were considered for the integrative meta-analysis. Briefly, 1 μg

of high-quality total RNA isolated using the Illumina TotalPrep RNA Amplification Kit

(Ambion) was amplified. Then, it was reverse transcripted into first and second strand cDNA,

and biotin labeled cRNA were generated following the manufacturer’s instructions. This

labeled cRNA was hybridized overnight to the arrays. The beadchips were washed, stained
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with dye-labeled streptavidin, and scanned with an Illumina IScan to measure the intensity.

The raw data images were analyzed with Illumina Genome Studio software, which generated

an average probe intensity for each sample.

Data deposition: the data from both microarrays reported in this paper were deposited in

the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo) with acces-

sion numbers GSE49641 and GSE74629 for the Affymetrix and Illumina platforms,

respectively.

Microarray data processing and integrative meta-analysis

All data processing and integration procedures were performed using the R statistical pro-

gramming language. The data were integrated by adapting the scheme from Turbull et al. [13]

with particular stages for the analysis of PDAC data in Affymetrix and Illumina. The workflow

of the proposed meta-analysis is shown in Fig 1. More specifically, hybridization data from

Affymetrix (Cohort 1) were first normalized using Robust Multi-array Average (RMA) analy-

sis from the Bio-conductor R package oligo [23]. In the same way, Illumina expression data

(Cohort 2) was pre-processed by applying Quantile Normalization (QN) from the R package

lumi [24]. In both cases, genes with low variability expression values were discarded to reduce

false-positive rates.

Data from both platforms were integrated with the virtualArray software R package [25].

This software allows data from different microarray platforms to be merged by considering

several batch effect removal and cross-platform correction methods. Specifically, the data were

integrated using the empirical Bayes method (ComBat) [19]. The ComBat method merges the

information from several genes with similar expression distributions in each dataset to esti-

mate the average and variance in each of those genes [26]. From the integrated data, those

genes most likely to be differentially expressed in PDAC patients versus controls were selected

by analyzing the gene expression microarray data with the linear models for microarray data

(limma) software package [27]. The R script for the integrative meta-analysis is included as S1

File.

To validate the selected genes as PDAC biomarkers, a leave-one-out cross-validation

(LOOCV) was performed with them. In this validation, one sample is consecutively discarded

from the initial dataset, leaving a temporary training set and one left-out sample (test sample).

This validation procedure is extensively used to assess a prediction model when no validation

dataset is available.

Finally, we performed a GO enrichment analysis over the set of newly discovered genes

after meta-analysis. For this purpose, an enrichment test using the Kolmogorov-Smirnov (KS)

statistical test was carried out from topGO Bioconductor-R package. This analysis identified

those biological functions and process that are shared by the differentially expressed genes.

Results

Patient characteristics

Our study included two independent cohorts of patients. The first group (1) included 18

PDAC patients and the independent cohort (2) comprised 36 PDAC patients. Table 1 shows

the most relevant clinical characteristics of the patients from each cohort.

Cohort 1, selected from our previous study [22], consisted of 9 men (50%) and 9 women

(50%) with a mean age of 61.4 (range 37–76). None of the patients had a history of chronic

pancreatitis, but 7 (38.9%) had a history of type II diabetes mellitus prior to being diagnosed

with PDAC. At the time of diagnosis, 12 patients (66.6%) had stage IV tumors and 6 (33.4%)

presented stage III tumors.
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The PDAC patients from Cohort 2 comprised 24 men (67%) and 12 women (33%) with a

mean age of 60.0 (range 42–73). Only 2 patients (5.6%) had a history of chronic pancreatitis,

however, 14 patients (38.9%) had a history of type II diabetes mellitus. At the time of diagnosis,

all patients had stage IV tumors.

Also, 18 healthy subjects were also included in the study. The control group consisted of 10

men (55.6%) and 8 women (44.4%) with a mean age of 60.4 (age range 35–74 years); none of

these subjects had a history of either chronic pancreatitis or type II diabetes mellitus.

Differential gene expression profiling of PBMCs from PDAC patients

After normalization and integration using virtual Array, the statistical differences in gene

expression between the PDAC patients and healthy controls were analyzed with limma soft-

ware. The data were integrated following the ComBat approach in order to reduce the batch

effect produced amongst arrays. The effectiveness of the ComBat method in our integration

for batch removal can be confirmed according to the comparative boxplots and density plot at

S1 Fig. From this meta-analysis, 72 genes were consistently identified as being differentially

expressed (p<0.01) with at least a 1.5-fold differential expression between the groups. Of these

72 genes, 39 were overexpressed and 33 repressed (Table 2 and S1–S3 Tables).

Fig 1. Workflow of the whole integrated meta-analysis for integration of Affymetrix/Illumina expression data

from PDAC datasets.

https://doi.org/10.1371/journal.pone.0194844.g001
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The meta-analysis findings were also compared with those obtained by individual analyses

in both datasets to evaluate bias and reproducibility across the microarray studies. As a result,

14 genes already identified in the Affymetrix study were also highlighted by our meta-analysis,

whereas 35 genes were shared with the Illumina study (Fig 2). Five of these genes were consis-

tently identified by the three studies (Affymetrix, Illumina and integrated meta-analysis)

(Table 2). Also ROC curves and areas under the curve (AUC) metrics were calculated for those

5 genes (Fig 3). Finally, a leave-one-out cross-validation was performed over these genes to

demonstrate their predictive power. The accuracy values (sensitivity/specificity) obtained from

this cross-validation is shown in Table 3.

Additionally, 28 gained genes were found. Gained genes are those identified as differentially

expressed in the meta-analysis but not in the individual studies. These genes may be only

weakly relevant individually but provide more consistent expression patterns when several

datasets are integrated [28]. In order to determine the predictive power of these gained genes,

their individual ROC curves were also studied (S3 Fig). Therefore, each individual gene was

able to discriminate between PDAC patients and healthy controls with an average sensitivity

and specificity of 74.8% and 73.3%, respectively. The same prediction analysis was performed

combining the 5 commonly expressed genes as well as the 28 gained genes (S4 Fig). In this

case, the sensitivity and specificity results reached the 100% and 94% for the 5 commons genes

and 91% and 87% for the 28 gained genes.

Finally, we applied a GO enrichment analysis for the 28 gained genes. A total of 12 biologi-

cal processes were found to be significant across these genes (Table 4).

Discussion

Affymetrix GeneChips and Illumina BeadChips are the main platforms used for gene expres-

sion microarrays. However, non-trivial systematic bias (batch effects) can occur in both mak-

ing it necessary to use appropriate correction methods when integrating the datasets from the

two technologies [13]. Also, differences in sequences and the number of probes make it even

Table 1. Characteristics of both Cohort 1 and Cohort 2 groups of PDAC patients.

Cohort 1 (n = 18) Cohort 2 (n = 36)

Characteristic N˚. case (%) N˚. case (%)

Sex
Male 9 (50%) 24 (67%)

Female 9 (50%) 12 (33%)

Age Mean±SD 61.4±10.7 60.0±7.7

Maximum 76 73

Minimum 37 42

Pancreatitis
Yes 0 (0%) 2 (5.6%)

No 18 (100%) 34 (94.4%)

Diabetes
Yes 7 (38.9%) 14 (38.9%)

No 11 (61.1%) 22 (61.1%)

Stage
I 0 (0%) 0 (0%)

II 0 (0%) 0 (0%)

III 6 (33.3%) 0 (0%)

IV 12 (66.7%) 36 (100%)

https://doi.org/10.1371/journal.pone.0194844.t001
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more difficult to integrate their datasets. Consequently, a complex integration method is man-

datory in order to successfully perform consistent meta-analyses.

Several batch correction and cross-platform normalization approaches have been proposed

for this purpose, including mean-centering (MC), DWD, and empirical Bayesian (ComBat)

method. Even though the three proposals were compared for this integrated meta-analysis, the

ComBat approach was finally selected. ComBat has been highly recommended in the literature

due to its reduced computational cost and the fact it is independent of sample size [26]. It has

also proven to be useful in reducing inter-platform variance, outperforming other similar

approaches such as DWD or MC (see S2 Fig) [13]. Nevertheless, it is important to highlight

Table 2. Coincident genes in the three analyzes: Affymetrix, Illumina and integrated meta-analysis.

Gene Gene description ENTREZa FCb adj.P.Val

FAIM3 Fas apoptotic inhibitory molecule 3 9214 - 2.17 4.59E-11

IRAK3 interleukin-1 receptor-associated kinase 3 11213 1.84 4.59E-11

DENND2D DENN/MADD domain containing 2D 79961 - 1.67 1.08E-09

PLBD1 phospholipase B domain containing 1 79887 1.67 1.50E-09

AGPAT9 1-acylglycerol-3-phosphate O-acyltransferase 9 84803 1.58 1.47E-08

aEntrez Gene Name.
bFold change.

https://doi.org/10.1371/journal.pone.0194844.t002

Fig 2. Comparison of individual analysis by technology with integrated analysis. a Coincident genes in the three analyzes:

Affymetrix, Illumina and integrated meta-analysis (Table 2). b Remaining differentially expressed genes in individual

Illumina and the integrative meta-analysis (S1 Table). c Remaining differentially expressed genes in individual Affymetrix and

the integrative meta-analysis (S2 Table). d Differentially expressed genes in the integrative meta-analysis but not in individual

analysis (gained genes) (S3 Table).

https://doi.org/10.1371/journal.pone.0194844.g002
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that this methodology is still being carefully revised. Thus, novel alternatives are continually

being proposed in the literature trying to correct bias more efficiently among disease samples,

for instance, using co-normalization of control samples [29] or combining with other normali-

zation approach like LOESS, SVN or QN [30,31].

Also, given that the multi-platform integration with virtualArray is based on ExpressionSet

format, the proposed meta-analysis could be easily extended to integratditionale other data

sources like RNA-Seq from next-generation sequencing technologies [25]. In fact, the widely

used RNA-Seq expression analysis with the R package DESeq [32] already applies variance-sta-

bilizing transformation to convert and normalize raw count values to ExpressionSet format.

Other similar meta-analyses have already been carried out to identify biomarkers in pancre-

atic cancers from several microarray datasets [18]. Nevertheless, these solutions provide DEGs

merely by statistically determining the intersection between datasets. In contrast, a more thor-

ough integrative approach including batch correction and cross-platform normalization is

proposed in this work.

After this integration, 5 genes, namely Fas apoptotic inhibitory molecule 3 (FAIM3 or

TOSO), IL-1 Receptor-Associated Kinase 3 (IRAK3), DENN/MADD Domain Containing 2D

gene (DENND2D), Phospholipase B Domain Containing 1 (PLBD1) and 1-Acylglycerol-

3-Phosphate O-Acyltransferase 9 (AGPAT9 or MAG-1), were identified as being commonly

differentially expressed by the individual analyses in Affymetrix and Illumina as well as by the

integrated meta-analysis. These genes were shown to be potential predictors for PDAC diagno-

sis given they showed areas under the curve (AUC) metrics higher than 0.9 for their corre-

sponding ROC curves (Fig 3). Therefore, these genes were considered reliable targets since

they showed consistent differential expression in the integrated analysis and higher predictive

metrics. In fact, IRAK-3 has already been studied and validated by RT-qPCR in our previous

study using Affymetrix [22]. Also, the other three genes validated in Affymetrix, namely

ANKRD22,CLEC4D and VNN1were similarly identified in the proposed meta-analysis.

More specifically, our results showed downregulation of the gene FAIM3, which plays an

important role in the immune system as it encodes an Fc receptor for immunoglobulins (Ig),

M. Fc receptors specifically bind to the Fc region of Igs to mediate the unique functions of

each class [33,34]. The expression of FAIM3 is reported in peripheral blood leukocytes and

detected in high levels in chronic lymphocytic leukemia cells [35]. It has been demonstrated

that a decrease in FAIM3 expression results in increased apoptosis, however, increased FAIM3
expression resulting from CD25 antibody treatment protects T cells from IL-2-mediated acti-

vation-induced cell death (AICD) [36] underlining an involvement in the immune process.

Fig 3. ROC Curves for the 5 genes commonly expressed: FAMI3, IRAK3, DENND2D, PLBD1 and AGPAT9. Curves are provided

for both Illumina and Affymetrix individual analyses as well as our integrative meta-analysis. The Area Under the Curve (AUC)

metrics are also provided for each curve.

https://doi.org/10.1371/journal.pone.0194844.g003

Table 3. Sensitivity and specificity values for the selected genes after a leave-one-out cross-validation (LOOCV)

process.

Gene Sensitivity Specificity

FAIM3 0.889 0.75

IRAK3 0.87 0.969

DENND2D 0.944 0.75

PLBD1 0.852 0.813

AGPAT9 0.889 0.813

https://doi.org/10.1371/journal.pone.0194844.t003
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The upregulation of the gene IRAK3may provide a clue about the mechanisms leading to

immune evasion by tumor cells. This gene is expressed in monocytes and macrophages [37]

and can be triggered by Toll-like receptors (TLRs) [38,39], which are expressed in various

types of cancer [40]. Overall, IRAK3 activation leads to immunosuppression [41] and allows

the communication between tumor cells and macrophages facilitating cancer progression and

a favorable microenvironment for the tumor [42,43]. In fact, monocytes from chronic myeloid

leukemia and metastatic cancer patients present IRAK3 upregulation, leading to tumor forma-

tion and growth [44]. In this sense, a study with mouse models carried out by Rothschild et al.

[45] demonstrated the connection between IRAK3 expression and both inflammation and

colorectal cancer.

The DENND2D gene, another modified gene related to the immune system, has been sug-

gested as a tumor suppressor gene [46]. DENN-domain proteins are differentially expressed in

normal and neoplastic cells and regulate Rab GTPases, which play important roles in differen-

tiation, proliferation processes, and regulation of cancer cells, among other things [47,48].

DENND2D has been proposed to suppress the tumorigenicity and proliferation of lung cancer

cells [49,50]. In addition, the DENND2D mRNA expression level has been found to be signifi-

cantly lower in esophageal squamous cell carcinoma tissues, hepatocellular carcinoma [51],

lung cancers, immortalized bronchial epithelial cell lines and other precancerous lesions

[46,50].

In our study, the PLBD1 gene expression level coding was shown to be elevated in PDAC

patients. This gene is highly expressed in neutrophils and monocytes [52] and members of this

family have been related to antibacterial defense [53].

Metastatic ability is one of the major problems associated with pancreatic cancer. In this

regard, our study reveals the overexpression of the AGPAT9 gene, which has been associated

Table 4. Shared Gene Ontology (GO) terms after the gene enrichment analysis applied over the 28 gained genes. The Kolmogorov-Smirnov statistical test was per-

formed to determine their significance (p-value< 0.05).

GO ID GO Term Ontology #

Genes

p-

value

Genes

GO:0044237 cellular metabolic process BP 12 0.011 ANXA3;HP; ITGB3;NLRC4; PLSCR1;RASGRP1; RPS28; S100A12; SH2D1B; ST6GAL1;
TXK; VAMP2

GO:0044763 single-organism cellular process BP 23 0.015 ANXA3; BPI; CD177; CLEC2D; CLEC4E; DYSF; GPR141; HP; ITGB3; LCN2; MS4A1;
MYL9; NLRC4; PLSCR1; RASGRP1; RPS28; S100A12; SH2D1B; SLC38A1; SORT1;

ST6GAL1; TXK; VAMP2
GO:0050776 regulation of immune response BP 5 0.023 NLRC4; PLSCR1; RASGRP1; SH2D1B; TXK
GO:0044710 single-organism metabolic

process

BP 6 0.037 HP; PLSCR1; RASGRP1; S100A12; ST6GAL1; VAMP2

GO:0006139 nucleobase-containing

compound metabolic process

BP 7 0.043 ANXA3; NLRC4; PLSCR1; RASGRP1; RPS28; S100A12; TXK

GO:0006725 cellular aromatic compound

metabolic process

BP 7 0.043 ANXA3; NLRC4; PLSCR1; RASGRP1; RPS28; S100A12; TXK

GO:0006807 nitrogen compound metabolic

process

BP 7 0.043 ANXA3; NLRC4; PLSCR1; RASGRP1; RPS28; S100A12; TXK

GO:0034641 cellular nitrogen compound

metabolic process

BP 7 0.043 ANXA3; NLRC4; PLSCR1; RASGRP1; RPS28; S100A12; TXK

GO:0034645 cellular macromolecule

biosynthetic process

BP 7 0.043 ANXA3; NLRC4; PLSCR1; RPS28; S100A12; ST6GAL1; TXK

GO:0044249 cellular biosynthetic process BP 7 0.043 ANXA3; NLRC4; PLSCR1; RPS28; S100A12; ST6GAL1; TXK
GO:0046483 heterocycle metabolic process BP 7 0.043 ANXA3; NLRC4; PLSCR1; RASGRP1; RPS28; S100A12; TXK
GO:1901360 organic cyclic compound

metabolic process

BP 7 0.043 ANXA3; NLRC4; PLSCR1; RASGRP1; RPS28; S100A12; TXK

https://doi.org/10.1371/journal.pone.0194844.t004
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with the metastatic process in lung cancer [54,55]. Various important functions of AGPAT9
have been described in this metastatic process. First, AGPAT9 is involved in the adaptation to

the microenvironment, regulating the metabolism and hypoxia, and contributing to vascular

development increasing the expression of VEGF. Furthermore, AGPAT9 is involved in mTOR

pathway activation which is key in the metastatic process [56].

Additionally, 28 novel gained genes were found to have more robust patterns in the meta-

analysis than in individual studies, making them statistically more significant as possible bio-

markers (S3 Table).

Upregulated Annexin A3 (ANXA3) and downregulated Membrane-Spanning 4-Domains

Subfamily A Member 1 (MS4A1) were novel gained genes discovered using this technique.

These results are supported by Baine et al., who also included both genes as part of a predictor

set of biomarkers in the PBMC of PC patients [57]. Also, Haptoglobin (HP) and Lipocalin 2

(LCN2) appeared upregulated in this new set of genes. The presence of fucosylated HP in

serum has been associated to many cancers including hepatocellular, gastric and colon cancers,

but the highest incidence has been observed in PC, mainly at an advanced stage [58]. Increased

LCN2 levels have been related to the epithelial to mesenchymal transition [59] and proposed as

a serum marker for familial PC [60]. Moreover, we observed the upregulation of other genes

like CD177 Molecule (CD177), Phospholipid Scramblase 1 (PLSCR1), Secretory Leukocyte

Peptidase Inhibitor (SLPI), S100 Calcium Binding Protein A12 (S100A12) and Integrin Beta 3

(ITGB3), all of them related to the development of different gastrointestinal tumors [61–66].

It is also noteworthy that all the novel genes that appeared downregulated are associated

with the immune response: Granulysin (GNLY) functions as a chemotactic for T-lymphocytes,

monocytes and other inflammatory cells [67]; Natural Killer Cell Granule Protein 7 (NKG7) is

expressed in several cell types, including NK and T-cells [68]; C-type Lectin Domain Family 2,

Member D (CLEC2D) is a receptor present in NK cells [69]; TXK Tyrosine Kinase (TKX) takes

part in the Th1 cytokine production and is implicated in the adaptive immune response [70];

and RAS Guanyl Releasing Protein 1 (RASGRP1) has been found to play an important role in

T-cell development [71].

Conclusions

An innovative meta-analysis has been performed to combine two gene expression datasets

containing PDAC data and identify robust DEGs in these patients. Integrative meta-anal-

yses have been shown to be powerful tools for identifying more robust DEGs when work-

ing with different data sources. Thus, an empirical Bayes approach (ComBat) has been

employed in this study to integrate data from two different microarray technologies,

namely Affymetrix GeneChip1 Human Gene ST 1.0 Arrays and Illumina HumanHT-12

v4 Expression BeadChip, removing the batch effect between technologies and increasing

the statistical significance of the subsequent analysis. The integrative analysis has con-

firmed the DEGs previously published for the Affymetrix data but has also located a set of

gained genes that were not robust enough to be identified in the individual analyses. Thus,

most of the genes identified have already been annotated as biomarkers in PDAC whereas

other gained genes observed in this meta-analysis have also been related to several gastro-

enterological cancers. The proposed method has therefore been proven useful for more

in-depth analysis of heterogeneous expression datasets, improving the identification of

DEGs and discovering novel potential biomarkers for diagnosing PDAC. Future RT-

qPCR studies will be performed to validate the gained genes that are considered interest-

ing for this purpose. The proposed meta-analysis is also planned to be extended using

RNA-Seq data from additional PDAC samples.
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Supporting information

S1 File. R Script including code used to obtain results showed in this paper for the integra-

tive meta-analysis.

(ZIP)

S1 Fig. Graphical analysis of the batch analysis removal. (A) Boxplots for the gene expres-

sion distributions in Cohort 1 (Affymetrix), Cohort 2 (Illumina) and healthy controls before

applying ComBat batch removal. (B) Same boxplots after ComBat batch removal. The distribu-

tions show the normalization and reduction of technical differences between cohorts. (C) Den-

sity plot and standard deviation of expression across arrays after integration. The red dotted

line indicates the median of the standard deviation. An approximately horizontal red line indi-

cates an effective removal of bias and batch effects among arrays.

(PNG)

S2 Fig. Comparison of batch removal method. (A) Boxplots and standard deviation of

expression after applying the mean-centering (MC) method. (B) Boxplots and standard devia-

tion after applying the distance discretization method. Although differences cannot be appreci-

ated in boxplots, the median of the standard deviation (red dotted line) indicated a slightly

better linearity in ComBat method (see S1 Fig). Additionally, the median standard deviation is

also clearly lower for ComBat batch removal.

(PNG)

S3 Fig. Individual ROC curve for the 28 gained genes. ROC curves for the gained genes. The

area under the curve (AUC) is performed to estimate the predictive power of each gene. A cut-

off is determined to optimize the discrimination between PDAC patients and healthy controls.

The corresponding specificity and sensitivity values are calculated accordingly.

(PDF)

S4 Fig. ROC curves for combined genes. (A) The ROC curve and its corresponding AUC,

sensitivity and specificity are obtained for the combination of the 5 genes shared by the three

studies (Illumina, Affymetrix and meta-analysis). (B) The ROC curve as well as AUC, sensitiv-

ity and specificity values is also obtained for the combination of the 28 gained genes.

(PNG)

S1 Table. Remaining differentially expressed genes in individual Illumina and the integra-

tive meta-analysis.

(PDF)

S2 Table. Remaining differentially expressed genes in individual Affymetrix and the inte-

grative meta-analysis.

(PDF)

S3 Table. Differentially expressed genes in the integrative meta-analysis but not in individ-

ual analysis (gained genes).

(PDF)
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