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Abstract: Globally, infectious diseases are responsible for 
a significant burden on human health. Drivers of disease 
transmission depend on interactions between humans, 
the environment, vectors, carriers, and pathogens; trans-
mission dynamics are therefore potentially highly com-
plex. Research in infectious disease eco-epidemiology 
has been rapidly gaining momentum because of the rising 
global importance of disease emergence and outbreaks, 
and growing understanding of the intimate links between 
human health and the environment. The scientific com-
munity is increasingly recognising the need for multidisci-
plinary translational research, integrated approaches, and 
innovative methods and tools to optimise risk prediction 
and control measures. Environmental health experts have 
also identified the need for more advanced analytical and 
biostatistical approaches to better determine causality, and 
deal with unknowns and uncertainties inherent in com-
plex systems. In this paper, we discuss the use of Bayesian 
networks in infectious disease eco-epidemiology, and the 
potential for developing dynamic tools for public health 
decision-making and improving intervention strategies.

Keywords: Bayesian networks; eco-epidemiology; infec-
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Eco-epidemiology of infectious 
diseases – global significance
Globally, infectious diseases are responsible for a signifi-
cant burden on human health. Drivers of disease transmis-
sion depend on interactions between humans, the natural 

environment (e.g. climate, flooding, natural disasters), 
the anthropogenic environment (e.g. sanitation, hygiene, 
urbanisation, agriculture, resource development), vectors 
(e.g. animals, insects), carriers (e.g. water, soil, air), and 
pathogens. An estimated 60% of emerging pathogens are 
of zoonotic origin (1), highlighting the importance of inter-
actions between humans, animals, and the environment 
in driving disease emergence (2). Zoonotic disease trans-
mission is highly complex, and could vary significantly 
between environmental settings. For example, leptospi-
rosis is the most common bacterial zoonosis worldwide, 
with  > 500,000 severe infections annually, and up to 30% 
case-fatality (3). Leptospirosis is an emerging infectious 
disease in many contexts, with increasing frequency and 
severity of outbreaks; changing geographic distribution and 
serovar patterns; and evolving climatic, socio-demographic, 
and environmental drivers of transmission (4–6). Infection 
is acquired through contact with animals, or contaminated 
soil and water. Risk factors for transmission are highly 
complex, and vary between countries (4, 7, 8). In Australia, 
cases are mostly related to occupational exposure in farmers 
and recreational exposure to freshwater (7, 9). In India, large 
outbreaks occur each year in rodent-infested urban slums 
during monsoonal flooding that spreads bacteria and simul-
taneously displaces humans and rodents (4). In American 
Samoa, leptospirosis infections have been linked to human 
behavioural factors, backyard piggeries, urbanisation, land 
use, population density, and flooding risk (10–12). The 
World Health Organisation has identified leptospirosis as 
a neglected tropical disease of zoonotic origin, with large 
knowledge gaps in epidemiology, disease burden, trans-
mission dynamics, and evidence-based interventions. The 
ability to plan, implement and sustain effective control 
measures and mitigation strategies have been restricted by a 
lack of epidemiological data and effective tools to accurately 
identify, predict, and forecast outbreaks (3).

Eco-epidemiology research: need 
for innovative approaches
Research in infectious disease eco-epidemiology has 
been rapidly gaining momentum because of the rising 
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global importance of disease emergence and outbreaks, 
and growing understanding of the intimate links between 
human health and the environment. The scientific com-
munity is increasingly recognising the need for multidisci-
plinary translational research and integrated approaches 
required to understand risk factors and exposure path-
ways, inform public health mitigation and interventions, 
and develop innovative methods and tools to optimise 
predictions and control (13, 14). Environmental health 
experts have also identified the need for more advanced 
analytical and biostatistical approaches to better deter-
mine causality, and deal with unknowns and uncertain-
ties inherent in complex systems (15, 16).

Limitations of regression models
Regression analysis is the most common approach used 
to assess risk factors in epidemiology. However, statisti-
cal associations between risk factors and outcomes do not 
provide any insights into cause and effect, or explain expo-
sure pathways. Regression models also usually assume 
that risk factors are independent of each other, and could 
result in oversimplified models of complex systems. 
Unless care and rigour are applied to assess interactions 
between variables and interpret these effects, important 
risk factors might be ‘dropped out’ of models because of 
confounding correlations, and result in lost opportunities 
for mitigation and control. Regression models are limited 
in their ability to incorporate unknowns or uncertain-
ties, and have poor capacity to disentangle the intricate 
associations between risk factors, drivers, triggers, and 
outcomes (15, 17, 18). Also, regression models have limited 
ability to predict events for which there are no histori-
cal data, or catastrophic events such as unprecedented 
outbreaks which are ‘off the scale’ of models (19). Fur-
thermore, regression models cannot be rapidly updated 
without high levels of technical expertise – a significant 
disadvantage if they are to be used as tools for risk factor 
analysis and decision-making during an outbreak or 
disaster.

Bayesian networks
Bayesian networks (also called Bayesian belief networks) 
provide a much more powerful platform to understand 
interrelations between components of complex systems, 
determine cause and effect, assess risks and opportuni-
ties, and assist with decision-making (17–19). BNs have 

therefore been widely used in many disciplines includ-
ing medicine, ecology, agriculture, environmental 
science, engineering, economics, chess, and artificial 
intelligence (20–22). In medicine, BNs and conditional 
probabilities are used for diagnosis, treatment, and 
prognosis of conditions including cancers and cardio-
vascular disease, decision support systems for patient 
care, and understanding cellular-level molecular mech-
anisms (23–26). Application of BNs in infectious disease 
eco-epidemiology and public health has so far been 
extremely limited.

BNs are composed of two main components:  
i) directed acyclic graphs (DAGs) which consist of nodes 
that represent variables and outcomes, and arrows that 
define the causal links between nodes, and ii) conditional 
probability tables for each node that define quantitative 
relationships between nodes (17). DAGs provide a visual, 
explicit, and easily interpreted representation of causal 
pathways, hypotheses, and assumptions in complex 
systems. Variables (nodes) are categorised into states (e.g. 
yes/no), and relationships between nodes are based on 
the Bayes theorem of conditional probability. The proba-
bility of states in a node depends on the conditional prob-
abilities of all nodes that feed into it. When a scenario is 
inserted into a BN, they are able to update probabilities 
from cause to effect, and also from effect to cause, using 
both forward and backward propagation. BNs are there-
fore able to characterise both magnitude and direction of 
associations between variables (19).

A very simple example of a network for a leptospirosis 
study might include three nodes: node1 = sex, states = male 
or female; node2 = ethnic group, states = indigenous or 
other; node3 = leptospirosis infection, states = not infected 
or infected (Figure 1A–C). If we believe that sex and eth-
nicity are risk factors for leptospirosis, direct links can be 
created from node1 to node3, and from node2 to node3. 
Figure 1A shows the network containing probabilities 
learnt from a theoretical database of study participants, 
with probabilities for states in each node reflecting obser-
vations in the data. By selecting the states of male in 
node1 and indigenous in node2, the BN updates to show 
the probability of leptospirosis infection in indigenous 
males (Figure 1B). Similarly, different probabilities can 
be determined for each combination of sex and ethnic 
group. Alternatively, if infected is selected in node3 the BN 
updates the probabilities for node1 and node2 to show the 
distribution of probabilities across sex and ethnic group 
for infected people (Figure 1C).

In complex models (e.g. Figure 2), BNs are able to cal-
culate probabilities associated with any event or scenario, 
provide a visual portal for testing subjective probabilities 
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Not infected
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0
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1

Sex
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100
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1

Figure 1: Simple example of a Bayesian network for a leptospiro-
sis study with three nodes: node1 = sex, states = male or female; 
node2 = ethnic group, states = indigenous or other; node3 = leptospi-
rosis infection, states = not infected or infected (Figure 1A–C).

(or expert opinion) when there are no data, and for defin-
ing the range of outcomes with best/worst case scenarios. 
Risk measures are more meaningful and more easily put 
into context when visualised as causal pathways that 
explain potential sources of pathogens, routes of expo-
sure, and drivers of transmission. When triggers and 
control measures are built into the network as nodes, BNs 
can also be used to quantify the impact of actions or inac-
tions. The user-friendly and visually interactive interface 
provided by BN software such as Netica (Norsys Software 
Corp, Vancouver, Canada) allows scenarios to be entered 
into the network with the click of a mouse and effective 
demonstration of results to stakeholders even if they have 
little understanding of BNs or biostatistics.

Types of BNs include naïve networks (in which an 
outcome is the direct parent of several predictor variables 
and there or no causal links between the predictor varia-
bles), expert-structured networks such as Figure 2 (causal 
links between variables and outcomes are determined 
by knowledge and beliefs), and machine-structured net-
works (only variables are defined and links variables are 
automatically generated based on maximum likelihood). 
Performance and predictive accuracy of models can be 
compared using robust statistical measures including 
sensitivity, specificity, true skills statistic (for Boolean 
outcomes), KAPPA statistic (for outcomes with more than 
two states), classification error rates, and ROC curves (for 
Boolean outcomes).

Causal models such as BNs allow us to dig deeper 
into data to explore exposure pathways, gain insights 
into how best to control risk, and determine scenarios 
that will maximise the probability of desired outcomes 
(17, 19). Complex models could incorporate interrela-
tionships between multiple causes, consequences, and 
exposure pathways, and therefore more closely reflect 
infectious disease transmission in the real world. BNs 
calculate the probability of events based on current 
knowledge, are easily updated as more information 
becomes available, and outputs are computed quickly 
and efficiently even for large models. Expert opinion can 
be used to set prior and condition probabilities for vari-
ables for which we have no data, and updated as beliefs 
or hypotheses evolve. BNs can incorporate not only risk 
events and consequences, but also trigger factors and 
control measures that might include primary, secondary, 
and tertiary interventions. Hypotheses regarding risk 
factors and causal pathways can be tested by building 
alternative model structures, e.g. reversing the direc-
tion of causal links between variables, removing/adding 
links, and comparing quantitative measures of model 
performance (19).

Incorporating geospatial 
 components into Bayesian  
networks
Spatial epidemiology is increasingly being used in infec-
tious disease research to define disease distribution, 
elucidate drivers of transmission, and produce maps to 
inform decisions (27, 28). Predictive risk maps have been 
produced for a wide range of infectious diseases including 
dengue, malaria, helminths, and leptospirosis (11, 28–30). 
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A recent development in Bayesian network modelling 
is software such as GeoNetica (Norsys Software Corp, 
 Vancouver, Canada) that seamlessly integrates geographic 
information systems (GIS) and BNs, and provides power-
ful platforms for incorporating geospatial inputs and 
producing geospatial outputs. Geospatial inputs could 
include any variables that affect disease transmission, e.g. 
climate, topography, land use, population density, socio-
economic and census data, and access to health services. 
Geospatial outputs such as dynamic disease risk maps 
can be generated very quickly, and changes in disease 
risk distribution and hotspots demonstrated for different 
scenarios (e.g. flooding). Simultaneous outputs of BNs 
and maps provide a more comprehensive picture of risk 
factors, causal pathways, triggers, drivers, hotspots, and 
control measures. This capability has important benefits 
for real-world public health intelligence, such as ‘on-the-
fly’ hotspot mapping of disease emergence and outbreaks. 
If scenarios are changed, maps will be updated rapidly to 
produce visually powerfully outputs. As new geospatial 
data become available (e.g. new census, higher resolution 
land use data), they can also be easily incorporated into 
existing BNs.

Conclusion
Bayesian networks could improve our understanding of the 
eco-epidemiology of infectious diseases, especially those 
with strong environmental drivers of transmission. The inter-
active nature of BNs and the ability to incorporate spatial 
components and rapidly update predictions also provides 
potential for developing dynamic tools for public health 
decision-making and improving intervention strategies.
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Figure 2: Example of a more complex Bayesian network for assessing the risk of leptospirosis using a theoretical database.
The BN includes multiple risk factors for leptospirosis infection, interrelationships between risk factors, and potential causal pathways. 
The probability distributions shown were learnt from a theoretical database.
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