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Designing efficient and incentive compatible mechanisms is almost impossible in quasi-linear 

environments 

 

1. Introduction 

In quasi-linear environments without external funding, Vickrey (1961), Clarke (1971) and 

Groves (1973) provided mechanisms, known as Groves or VCG mechanisms that induce truthful 

revelation of preferences and lead to efficient decisions.  Green and Laffont (1977) show that the 

converse of the proposition above is also true in the following sense: if the domain is rich enough, 

then a mechanism that induces truthful revelation of preferences leading to efficient decisions 

must be a VCG mechanism. However, another important result of Green and Laffont (1977) is 

that if the set of agents' types is sufficiently rich (so that agents may hold any payoff function), 

then no VCG mechanism is budget balanced. In other words, any VCG mechanism is not budget 

balanced, namely, the agents’ payments will sum to less than 0. This means the agents must accept 

some waste of the transferable commodity or loss of efficiency. Cavallo (2006), Guo and Conitzer 

(2009); Mehta et al., (2009); Moulin (2010) make attempts to estimate and minimize the budget 

imbalance. Yi and Li (2016) conclude that there is no VCG mechanism whose worst absolute loss 

of efficiency is finite over unrestricted domains. In addition, Moulin (2009) studies the relative 

boundedness of budget.  

In this paper, we consider a class of general financial constraints of budget in which each 

constraint is given by a function that assigns a bound on the loss of efficiency to any profile of 

individuals’ utilities. It is easy to check that our new budget constraints are weaker than the 

following requirements: budget balance (Green and Laffont, 1979; Walker, 1980), absolute budget 

boundedness (Yi and Li, 2016), individuals’ budget constraint (Che and Gale, 1998, Laffont and 

Robert, 1996, Maskin, 2000; Andersson and Svensson, 2014, 2016), individual rationality 

requirement, and relative boundedness of budget (Moulin, 2009). 

Our main result is also an impossibility: in classic quasi-linear environments, there is no 

incentive-compatible and efficient mechanism that satisfies budget feasiblility with respect to 

some constraint function over both unrestricted domains and some specific restricted domains. 

Our impossibility theorem reveals that it is impossible to design incentive-compatible and efficient 

mechanisms in quasi-linear environments because budget constraints always exist in practical 

*Manuscript
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application. Furthermore, we prove that there is no efficient and incentive compatible mechanism 

satisfying (absolutely) budget boundedness over positive domains, which extends the results of Yi 

and Li (2016) to a class of restricted domains. Note that, our impossibility theorems imply: there 

does not exist an efficient and incentive compatible mechanism that satisfies absolutely or relative 

budget boundedness over both unrestricted and some restricted domains. 

This paper is organized as follows: Section 2 presents the social choice model. Section 3 

proves our impossible theorems. 

 

2. The model 

Consider a society with  𝑛  agents, denoted by 𝐼 = {1,2, … , 𝑛} . The set of potential 

outcomes is denoted by 𝐴 which can be a finite or infinite set. Each 𝑥 ∈ 𝐴 can be viewed as a 

public project. For our purposes, we assume that 𝑛 ≥ 2 and #(𝐴) ≥ 2.1 For every agent 𝑖, he 

has a set of valuation functions denoted by 𝑉𝑖 ⊂ 𝒰(𝐴, 𝑅), where 𝒰(𝐴, 𝑅) is the set of all 

functions from 𝐴 to R = (−∞, +∞). For each agent 𝑖, 𝑖’s valuation function is his private 

information. We denote a profile of valuation functions as 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛) and the product of 

valuation function spaces of all agents as 𝑉 = 𝑉1 × 𝑉2 × … × 𝑉𝑛. For convenience, given 𝑣, 𝑣′ ∈

𝑉 and 𝑆 ⊂ 𝐼, (𝑣𝑆, 𝑣−𝑆
′ ) denotes a profile in which an agent 𝑖 has valuation function 𝑣𝑖 if 𝑖 ∈ 𝑆 

and 𝑣𝑖
′ if 𝑖 ∉ 𝑆. Particularly, when 𝑆 = {𝑖}, we shall write (𝑣𝑖, 𝑣−𝑖

′ ) rather than (𝑣{𝑖}, 𝑣𝐼/{𝑖}
′ ).  

When transfers are allowed, an alternative is then a vector (𝑥, 𝑦1, 𝑦2, … , 𝑦𝑛), where 𝑥 is an 

element of 𝐴 and 𝑦𝑖 ∈ (−∞, +∞) is a transfer of a numeraire to agent 𝑖. We assume that agent 

i's utility depend on an outcome 𝑥 ∈ 𝐴, and a transfer payment 𝑦𝑖 in a quasilinear manner: 

𝑣𝑖(𝑥) + 𝑦𝑖. 

A decision rule is a function 𝑓 from 𝑉 to 𝐴 that assigns a unique collective choice 𝑓(𝑣) 

to each possible profile 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑛). A transfer is vector function 𝑡 = (𝑡1, 𝑡2, … , 𝑡𝑛): 𝑉 →

R𝑛. The function 𝑡𝑖(𝑣) represents the payment that agent 𝑖 receives (or loses if it is negative) 

based on the announcement of types 𝑣. A social choice function or mechanism in this quasilinear 

environment takes the form (𝑓, 𝑡) where 𝑓 is a decision rule and 𝑡 a transfer function. 

We consider a closed system in which there is no source of outside funding for the agents. In 

this case, 𝑡 satisfies ∑ 𝑡𝑖(𝑣)𝑛
𝑖=1 ≤ 0. A transfer 𝑡 is budget balanced if ∑ 𝑡𝑖(𝑣) = 0𝑛

𝑖=1  for all 

                                                        
1 #(𝐴) denotes the number of elements in 𝐴. 
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𝑣 ∈ 𝑉. If ∑ 𝑡𝑖(𝑣)𝑛
𝑖=1  is less than zero, then it generates a surplus that would have to be wasted. 

A social choice function (𝑓, 𝑡) is decisively efficient or 𝑓 is efficient if ∑ 𝑣𝑖(𝑓(𝑣)
𝑛

𝑖=1
) ≥

∑ 𝑣𝑖(𝑥)
𝑛

𝑖=1
 for all 𝑣 ∈ 𝑉 and all 𝑥 ∈ 𝐴. 

A social choice function (𝑓, 𝑡) is incentive compatible if, for all 𝑖 ∈ 𝐼 and all 𝑣 ∈ 𝑉, 

𝑣𝑖(𝑓(𝑣)) + 𝑡𝑖(𝑣) ≥ 𝑣𝑖(𝑓(𝑣−𝑖, 𝑣𝑖
′)) + 𝑡𝑖(𝑣−𝑖, 𝑣𝑖

′) 

for all 𝑣𝑖
′. A decision rule 𝑓 is implementable if there exists a transfer function 𝑡 such that 

(𝑓, 𝑡) is incentive-compatible. 

 

3. Main results 

In quasi-linear environments, for any efficient decision rule, a transfer 𝑡 exists, 𝑡𝑖(𝑣) =

∑ 𝑣𝑗(𝑓(𝑣))𝑗≠𝑖 + ℎ𝑖(𝑣−𝑖), such that (𝑓, 𝑡) is incentive-compatible (Vickrey, 1961; Clarke, 1971; 

Groves, 1973). Under certain conditions, we can restrict ∑ 𝑡𝑖(𝑣)𝑖 ≤ 0, that is, there is no external 

fund inflow.2 This is the well-known VCG mechanism. Moreover, under certain mild assumptions 

on the richness of the domain (for example, the following Assumption A), the VCG mechanism is 

the only one that has these properties (see, Green and Laffont, 1979; Holmström, 1979). However, 

under unrestricted domains, Green and Laffont (1979) show that VCG mechanism does not satisfy 

budget-balance and hence there is waste or loss of efficiency. Yi and Li (2016) prove further that 

there is no decisively efficient and incentive compatible mechanism (𝑓, 𝑡)  that satisfies 

budget-boundedness. It means that VCG mechanism is infeasible in practice if the maximum loss 

that a society can afford is 𝑊0 ∈ (0, +∞). However, some may argue that the maximum loss that 

the society can afford could be 𝑊0 + 𝜑(∑ 𝑣𝑖(𝑓(𝑣))𝑖∈𝐼 ) rather than 𝑊0, where ∑ 𝑣𝑖(𝑥)𝑖∈𝐼  is the 

total net benefit from use of the project 𝑥 and 𝜑(∑ 𝑣𝑖(𝑓(𝑣))𝑖∈𝐼 ) represents the present value of 

∑ 𝑣𝑖(𝑓(𝑣))𝑖∈𝐼 . Thus, the budget constraint is 

−𝜑 (∑ 𝑣𝑖(𝑓(𝑣))

𝑖∈𝐼

) − Ω0 ≤ ∑ 𝑡𝑖(𝑣)

𝑖∈𝐼

. 

With this budget constraint, VCG mechanism might work.  

In this paper, we consider a general budget constraint: 

                                                        
2 For example, 𝐴 is finite. 
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Φ(𝑣1(𝑓(𝑣)), 𝑣2(𝑓(𝑣)), … , 𝑣𝑛(𝑓(𝑣))) ≤ ∑ 𝑡𝑖(𝑣)

𝑖∈𝐼

 

for all 𝑣 ∈ 𝑉 , where Φ: 𝑅𝑛 → (−∞, 0]. We say that (𝑓, 𝑡) satisfies budget feasibility with 

respect to Φ if the inequality of budget constraint is satisfied. Obviously, if one mechanism 

satisfies any of the following constraints: budget-balance, budget-boundedness, individual budget 

constraint, individual rationality or relative boundedness of budget, then it must satisfy budget 

feasibility with respect to some Φ. The question of interest here is that for what constraint 

function Φ: 𝑅𝑛 → (−∞, 0], is it possible to design efficient and incentive compatible mechanisms 

that satisfy financial feasibility with respect to Φ? Unfortunately, our conclusion is negative: for 

any constraint function Φ: 𝑅𝑛 → (−∞, 0], it is impossible to design decisively efficient and 

incentive compatible mechanisms that satisfy budget feasibility with respect to Φ. 

Before we prove our impossibility theorem, we first establish a lemma regarding revenue 

equivalence. 

Given 𝑖 and 𝑣𝑖, let 𝑣𝑖
𝑘 be defined by 𝑣𝑖

𝑘(𝑥) =
𝑘

𝑚
𝑣𝑖(𝑥) for 𝑘 = 1,2, … , 𝑚, and let  

𝑇𝑖(𝑣𝑖 , 𝑣−𝑖) = lim
𝑚→+∞

∑ [𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘+1, 𝑣−𝑖)) − 𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘, 𝑣−𝑖))]

𝑚−1

𝑘=0

. 

We see in the proof of Lemma 1 that the limit of the sequence ∑ [𝑣𝑖
𝑘+1 (𝑓𝑖(𝑣𝑖

𝑘+1, 𝑣−𝑖)) −𝑚−1
𝑘=0

𝑣𝑖
𝑘+1 (𝑓𝑖(𝑣𝑖

𝑘 , 𝑣−𝑖))] always exists whenever (𝑓, 𝑝) is incentive-compatible.  

We say that 𝑉𝑖 is a cone if 𝑟𝑣𝑖 ∈ 𝑉𝑖 when 𝑣𝑖 ∈ 𝑉𝑖 and 𝑟 ≥ 0, and 𝑉𝑖 is a double-cone if 

𝑣𝑖 ∈ 𝑉𝑖 implies 𝑟𝑣𝑖 ∈ 𝑉𝑖 for every 𝑟 ∈ (−∞, +∞). Obviously, a double-cone is a cone. 

Lemma 1. Suppose that, for every 𝑖 ∈ 𝐼, 𝑉𝑖 is a cone. If (𝑓, 𝑡) is incentive-compatible, then, for 

each 𝑖,  

𝑡𝑖(𝑣𝑖 , 𝑣−𝑖) = 𝑇𝑖(𝑣𝑖, 𝑣−𝑖) + 𝑡𝑖(0, 𝑣−𝑖) for any 𝑣, 

where 𝑇𝑖(𝑣𝑖 , 𝑣−𝑖) = lim
𝑚→+∞

∑ [𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘+1, 𝑣−𝑖)) − 𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘, 𝑣−𝑖))]𝑚−1
𝑘=0 . 

Proof. Let 𝑣𝑖
𝑘 =

𝑘

𝑚
𝑣𝑖(𝑘 = 0,1,2, … , 𝑚). Then 𝑣𝑖

0 = 0 and 𝑣𝑖
𝑚 = 𝑣𝑖. By incentive compatibility, 

𝑣𝑖
𝑘 (𝑓(𝑣𝑖

𝑘, 𝑣−𝑖)) + 𝑡𝑖(𝑣𝑖
𝑘, 𝑣−𝑖) ≥ 𝑣𝑖

𝑘 (𝑓(𝑣𝑖
𝑘+1, 𝑣−𝑖)) + 𝑡𝑖(𝑣𝑖

𝑘+1, 𝑣−𝑖) 

𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘+1, 𝑣−𝑖)) + 𝑡𝑖(𝑣𝑖
𝑘+1, 𝑣−𝑖) ≥ 𝑣𝑖

𝑘+1 (𝑓(𝑣𝑖
𝑘, 𝑣−𝑖)) + 𝑡𝑖(𝑣𝑖

𝑘, 𝑣−𝑖) 

Thus  
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𝑣𝑖
𝑘 (𝑓(𝑣𝑖

𝑘, 𝑣−𝑖)) − 𝑣𝑖
𝑘 (𝑓(𝑣𝑖

𝑘+1, 𝑣−𝑖)) 

≥ 𝑡𝑖(𝑣𝑖
𝑘+1, 𝑣−𝑖) − 𝑡𝑖(𝑣𝑖

𝑘 , 𝑣−𝑖) 

≥ 𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘, 𝑣−𝑖)) − 𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘+1, 𝑣−𝑖)). 

Hence, we have 

𝑣𝑖
𝑘 (𝑓(𝑣𝑖

𝑘, 𝑣−𝑖)) − 𝑣𝑖
𝑘 (𝑓(𝑣𝑖

𝑘+1, 𝑣−𝑖)) − 𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘, 𝑣−𝑖)) + 𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘+1, 𝑣−𝑖)) 

≥ 𝑡𝑖(𝑣𝑖
𝑘+1, 𝑣−𝑖) − 𝑡𝑖(𝑣𝑖

𝑘, 𝑣−𝑖) − 𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘 , 𝑣−𝑖)) + 𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘+1, 𝑣−𝑖)) ≥ 0. 

By the definition of 𝑣𝑖
𝑘, we have 

𝑘

𝑚
𝑣𝑖 (𝑓(𝑣𝑖

𝑘, 𝑣−𝑖)) −
𝑘

𝑚
𝑣𝑖 (𝑓(𝑣𝑖

𝑘+1, 𝑣−𝑖)) −
𝑘 + 1

𝑚
𝑣𝑖 (𝑓(𝑣𝑖

𝑘, 𝑣−𝑖)) +
𝑘 + 1

𝑚
𝑣𝑖 (𝑓(𝑣𝑖

𝑘+1, 𝑣−𝑖)) 

≥ 𝑡𝑖(𝑣𝑖
𝑘+1, 𝑣−𝑖) − 𝑡𝑖(𝑣𝑖

𝑘, 𝑣−𝑖) − 𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘 , 𝑣−𝑖)) + 𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘+1, 𝑣−𝑖)) ≥ 0. 

We simplify this further to  

1

𝑚
𝑣𝑖 (𝑓(𝑣𝑖

𝑘+1, 𝑣−𝑖)) −
1

𝑚
𝑣𝑖 (𝑓(𝑣𝑖

𝑘 , 𝑣−𝑖)) 

≥ 𝑡𝑖(𝑣𝑖
𝑘+1, 𝑣−𝑖) − 𝑡𝑖(𝑣𝑖

𝑘, 𝑣−𝑖) − 𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘, 𝑣−𝑖)) + 𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘+1, 𝑣−𝑖)) ≥ 0 

Aggregating it from 𝑘 = 0 to 𝑚 − 1, we obtain that 

1

𝑚
𝑣𝑖(𝑓(𝑣𝑖 , 𝑣−𝑖)) 

≥ 𝑡𝑖(𝑣𝑖 , 𝑣−𝑖) − 𝑡𝑖(0, 𝑣−𝑖) − ∑ [𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘 , 𝑣−𝑖)) − 𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘+1, 𝑣−𝑖))]

𝑚−1

𝑘=0

≥ 0 

Thus, the sequence  

𝑡𝑖(𝑣𝑖 , 𝑣−𝑖) − 𝑡𝑖(0, 𝑣−𝑖) − ∑ [𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘, 𝑣−𝑖)) − 𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘+1, 𝑣−𝑖))]

𝑚−1

𝑘=0

 

converges to zero when 𝑚 → +∞. This implies 

𝑡𝑖(𝑣𝑖 , 𝑣−𝑖) = lim
𝑚→+∞

∑ [𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘+1, 𝑣−𝑖)) − 𝑣𝑖
𝑘+1 (𝑓(𝑣𝑖

𝑘 , 𝑣−𝑖))]

𝑚−1

𝑘=0

+ 𝑡𝑖(0, 𝑣−𝑖).  □ 

Remark 1. When 𝑉𝑖  is a cone for every 𝑖 ∈ 𝐼 , by Lemma 1, if (𝑓, 𝑡)  and (𝑓, 𝑡′)  are 

incentive-compatible, then, for each 𝑖, one has 

𝑡𝑖(𝑣𝑖 , 𝑣−𝑖) − 𝑡𝑖
′(𝑣𝑖 , 𝑣−𝑖) = ℎ𝑖(𝑣−𝑖) for any 𝑣, 

where ℎ𝑖(𝑣−𝑖) is a function of 𝑣−𝑖. 

Next, we introduce the following assumption. 

Assumption A. For every 𝑖 ∈ 𝐼, 𝑉𝑖 satisfies (1) 𝑉𝑖 is a double-cone; (2) there exists an 𝑎0 ∈ 𝐴 

such that for each 𝑖 ∈ 𝐼, we have 𝑣𝑖 ∈ 𝑉𝑖 satisfing 𝑣𝑖(𝑎0) > 0 and 𝑣𝑖(𝑥) = 0 for all 𝑥 ≠ 𝑎0.  
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Remark 2. For example, an unrestricted domain 𝑉𝑖 = 𝒰(𝐴, 𝑅) satisfies Assumption A. Given 

𝑎0 ∈ 𝐴, 𝑉𝑖 = {𝑣𝑖 ∈ 𝒰(𝐴, 𝑅)| 𝑣𝑖(𝑥) = 0 for all 𝑥 ≠ 𝑎0} satisfies Assumption A.  

Theorem 1. Under Assumption A, for any Φ: 𝑅𝑛 → (−∞, 0], there is no (𝑓, 𝑡) that satisfies 

decisive efficiency, incentive compatibility and budget feasibility with respect to Φ.3 

Proof. Suppose a decisively efficient and incentive compatible (𝑓, 𝑡) satisfies budget feasibility 

with respect to some Φ, that is, for any 𝑣, 

Φ (𝑣1(𝑓(𝑣)), 𝑣2(𝑓(𝑣)), … , 𝑣𝑛(𝑓(𝑣))) ≤ ∑ 𝑡𝑖(𝑣)

𝑖∈𝐼

. 

For any positive number 𝑟 > 0, we can show that  

 𝑛(𝑛 − 1)𝑟 ≤ 2𝑛−1|Φ(0,0, … ,0)| 

leads to a contradiction. 

Step 1. For every 𝑖 ∈ 𝐼 , by Assumption A, there exists 𝑢𝑖 ∈ 𝑉𝑖  such that 𝑢𝑖(𝑎0) > 0, 

𝑢𝑖(𝑥) = 0 for all 𝑥 ≠ 𝑎0. Without loss of generality, we assume that 𝑢𝑖(𝑎0) = 1 for all 𝑖 ∈ 𝐼. 

Let 𝑣𝑖 = (−𝑛𝑟)𝑢𝑖 and 𝑣𝑖
′ = 𝑟𝑢𝑖. 

If 𝑆 ≠ ∅, by (1), we have 

∑ 𝑣𝑖(𝑎0)

𝑖∈𝑆

+ ∑ 𝑣𝑖
′(𝑎0)

𝑖∉𝑆

= ∑(−𝑛𝑟)𝑢𝑖(𝑎0)

𝑖∈𝑆

+ ∑ 𝑟𝑢𝑖(𝑎0)

𝑖∉𝑆

≤ −𝑛𝑟 + (𝑛 − 1)𝑟 = −𝑟 

and 

∑ 𝑣𝑖(𝑥)

𝑖∈𝑆

+ ∑ 𝑣𝑖
′(𝑥)

𝑖∉𝑆

= 0  for any 𝑥 ≠ 𝑎0. 

Since 𝑟 > 0, it follows from efficiency that 𝑓(𝑣𝑆, 𝑣−𝑆
′ ) ≠ 𝑎0. Hence, 𝑣𝑖(𝑓(𝑣𝑆, 𝑣−𝑆

′ )) = 0 

for all 𝑖 ∈ 𝑆 and 𝑣𝑖
′(𝑓(𝑣𝑆, 𝑣−𝑆

′ )) = 0 for all 𝑖 ∈ 𝐼/𝑆. 

For 𝑆 = ∅, similarly, we have 

∑ 𝑣𝑖
′(𝑎0)𝑖∈𝐼 = 𝑛𝑟 and ∑ 𝑣𝑖

′(𝑥)𝑖∈𝐼 = 0  for all 𝑥 ≠ 𝑎0. 

It follows from efficiency that 𝑓(𝑣′) = 𝑎0. Hence, 𝑣𝑖
′(𝑓(𝑣′)) = 𝑟. 

Step 2. 𝑛(𝑛 − 1)𝑟 ≤ 2𝑛−1|Φ(0,0, … ,0)|. 

By Lemma 1, we know that (𝑓, 𝑡) must be a VCG mechanism, that is, for each 𝑖 ∈ 𝐼, there 

exists a function ℎ𝑖: 𝑉−𝑖 → 𝑅, such that 

                                                        
3 In fact, even if there are external fund inflows, the following impossibility theorem can also be proved. 

Theorem 1’. Let 0 ≤ 𝛼 < 𝑛 − 1,  𝛽 ≥ 0 and Φ: 𝑅𝑛 → (−∞, 0]. Then there is no efficient and incentive 

compatible (𝑓, 𝑡): Θ → 𝐴 × 𝑅𝑛 that satisfies  

Φ(𝑣1(𝑓(𝑣)), … , 𝑣𝑛(𝑓(𝑣))) ≤ ∑ 𝑡𝑖(𝑣)𝑖∈𝐼 ≤ 𝛼|∑ 𝑘𝑖𝑣𝑖(𝑓(𝑣)𝑖∈𝐼 )| + 𝛽. 
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𝑡𝑖(𝑣) = ∑ 𝑣𝑖(𝑓(𝑣))𝑗≠𝑖 + ℎ𝑖(𝑣−𝑖) for all 𝑣 ∈ 𝑉. 

Letting 𝐻(𝑣) = ∑ ℎ𝑖(𝑣−𝑖)𝑖∈𝐼  and 𝑊(𝑣) = (𝑛 − 1) ∑ 𝑣𝑖(𝑓(𝑣))𝑖∈𝐼 , we obtain 

𝐻(𝑣) = ∑ ℎ𝑖(𝑣−𝑖)

𝑖∈𝐼

= ∑ 𝑡𝑖(𝑣)

𝑖∈𝐼

− 𝑊(𝑣) 

Replacing 𝑣 with (𝑣𝑆, 𝑣−𝑆
′ ), we get 

(−1)#(𝑆)𝐻(𝑣𝑆, 𝑣−𝑆
′ ) = (−1)#(𝑆) ∑ 𝑡𝑖(𝑣𝑆, 𝑣−𝑆

′ )

𝑖∈𝐼

− (−1)#(𝑆)𝑊(𝑣𝑆, 𝑣−𝑆
′ ) 

Note that ∑ (−1)#(𝑆)𝐻(𝑣𝑆, 𝑣−𝑆
′ )𝑆⊆𝐼 = 0 (Walker, 1980; Danilov and Sotskov, 2002). Hence, 

taking the sum on both sides for 𝑆, we get 

∑(−1)#(𝑆)𝑊(𝑣𝑆, 𝑣−𝑆
′ )

𝑆⊆𝐼

= ∑(−1)#(𝑆) ∑ 𝑡𝑖(𝑣𝑆, 𝑣−𝑆
′ )

𝑖∈𝐼𝑆⊆𝐼

. 

Since ∑ 𝑡𝑖(𝑣′)𝑖∈𝐼 ≤ 0, we have following inequality 

𝑊(𝑣′) + ∑(−1)#(𝑆)𝑊(𝑣𝑆, 𝑣−𝑆
′ )

𝑆≠∅

≤ ∑ |∑ 𝑡𝑖(𝑣𝑆, 𝑣−𝑆
′ )

𝑖∈𝐼

|

𝑆≠∅

 

Consider the left side of the inequality. It follows from step 1 that  

𝑊(𝑣′) = (𝑛 − 1) ∑ 𝑣𝑖
′(𝑓(𝑣′))

𝑖∈𝐼

= 𝑛(𝑛 − 1)𝑟. 

and for all 𝑆 ≠ ∅, 

𝑊(𝑣𝑆, 𝑣−𝑆
′ ) = (𝑛 − 1)[∑ 𝑣𝑖(𝑓(𝑣𝑆, 𝑣−𝑆

′ ))

𝑖∈𝑆

+ ∑ 𝑣𝑖
′(𝑓(𝑣𝑆, 𝑣−𝑆

′ ))

𝑖∈𝐼/𝑆

= 0. 

Thus, the left side of the inequality is 𝑛(𝑛 − 1)𝑟. Since  

|∑ 𝑡𝑖(𝑣𝑆, 𝑣−𝑆
′ )

𝑖∈𝐼

|  ≤ |Φ(𝑣𝑆(𝑓(𝑣𝑆, 𝑣−𝑆
′ )), 𝑣−𝑆

′ (𝑓(𝑣𝑆, 𝑣−𝑆
′ )))| ≤ |Φ(0,0, … ,0)| 

for all 𝑆 ≠ ∅. We get ∑ |∑ 𝑡𝑖(𝑣𝑆, 𝑣−𝑆
′ )𝑖∈𝐼 |𝑆≠∅ ≤ 2𝑛−1|Φ(0,0, … ,0)|. Hence, we get 𝑛(𝑛 − 1)𝑟 ≤

2𝑛−1|Φ(0,0, … ,0)|, as required.  □ 

When agents have individual budget constraints, we have following corollary that follows 

immediately from Theorem 1. 

Corollary 1. Given any 𝜑𝑖: 𝑅 → (−∞, 0], there is no efficient and incentive compatible (𝑓, 𝑡) 

that satisfies 𝜑𝑖(𝑣𝑖(𝑓(𝑣))) ≤ 𝑡𝑖(𝑣) for all 𝑣 ∈ 𝑉.4 

Proof. Suppose such an (𝑓, 𝑡) exists. Let Φ: 𝑅𝑛 → (−∞, 0] be defined by 

Φ(𝑦1, 𝑦2, … , 𝑦𝑛) = ∑ 𝜑𝑖(𝑦𝑖)

𝑖∈𝐼

. 

                                                        
4 Similar impossibility theorems are proved by Dobzinski, et al. (2012) and Lavi and May (2012) for multi-unit 

auctions. 
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then  

Φ (𝑣1(𝑓(𝑣)), 𝑣2(𝑓(𝑣)), … , 𝑣𝑛(𝑓(𝑣))) = ∑ 𝜑𝑖(𝑣𝑖(𝑓(𝑣)))

𝑖∈𝐼

≤ ∑ 𝑡𝑖(𝑣)

𝑖∈𝐼

, 

contradicting Theorem 1. □ 

Remark 3. Applying Theorem 1 to a special function Φ: 𝑅𝑛 → (−∞, 0]: 

Φ(𝑦1, 𝑦2, … , 𝑦𝑛) = −𝛽 (𝛽 ≥ 0), 

we can obtain the impossibility theorem immediately that is proven by Yi and Li (2016). Hence, 

there is no decisively efficient and incentive compatible VCG mechanism whose maximum loss of 

efficiency, inf
𝑣

∑ 𝑡𝑖(𝑣)𝑖∈𝐼 , is finite. However, Theorem 1 tells us that even if Φ: 𝑅𝑛 → (−∞, 0] is 

unbounded, for example, Φ(𝑦1, 𝑦2, … , 𝑦𝑛) = −𝛼𝑒|𝑦1+𝑦2+⋯+𝑦𝑛| − 𝛽(𝛼, 𝛽 > 0),  which implies 

that inf
𝑣

∑ 𝑡𝑖(𝑣)𝑖∈𝐼  could be −∞, the impossibility also holds true. 

Theorem 1 shows that budget constraint turns possibility into impossibility on unrestricted 

domains. However, it does not exclude the possibility in some restricted domains. For example, if 

every agent 𝑖’s utility function 𝑣𝑖 assigns a nonnegative valuation to each project 𝑥 ∈ 𝐴, there 

are  (𝑓, 𝑡) that satisfies efficiency, incentive compatibility and budget feasibility with respect to 

some Φ. 

Example 1. Suppose every agent 𝑖  has nonnegative valuation for project, then the Clarke 

mechanism (𝑓, 𝑡):  

𝑓(𝑣) ∈ argmax
𝑥

∑ 𝑣𝑖(𝑥)

𝑖

 

𝑡𝑖(𝑣) = ∑ 𝑣𝑗(𝑓(𝑣))

𝑗≠𝑖

− max
𝑥

∑ 𝑣𝑗(𝑥)

𝑗≠𝑖

 

satisfies budget feasibility: − ∑ 𝑣𝑖(𝑓(𝑣))𝑖∈𝐼 ≤ ∑ 𝑡𝑖(𝑣)𝑖∈𝐼 .  

Example 2. Furthermore, suppose 𝐴 = {𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)|𝑥𝑖 ∈ {0,1}, ∑ 𝑥𝑖𝑖∈𝐼 = 𝑝 < 𝑛}  and 

𝑉𝑖 = {𝑣𝑖|𝑣𝑖(𝑥) = 𝑥𝑖𝜃𝑖(𝜃𝑖 ≥ 0)} for each 𝑖. Then VCG mechanism (𝑓, 𝑡) satisfying 

∑ 𝑡𝑖(𝑣)

𝑖∈𝐼

≥ −L(𝑛, 𝑝) ∑ 𝑣𝑖(𝑓(𝑣))

𝑖∈𝐼

 

Where 0 < L(𝑛, 𝑝) ≤ 1 (Moulin, 2009). 

However, when the general budget feasibility is replaced by absolute budget-boundedness, we 

have following impossibility Theorem 2, which is a generalization of Yi and Li (2016) to restricted 

domain. 

Theorem 2. Suppose 𝐴 = {𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)|𝑥𝑖 ∈ {0,1}, ∑ 𝑥𝑖𝑖∈𝐼 = 𝑝}  and 𝑉𝑖 = {𝑣𝑖|𝑣𝑖(𝑥) =
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𝑥𝑖𝜃𝑖(𝜃𝑖 ≥ 0)} for each 𝑖. There is no (𝑓, 𝑡) that satisfies efficiency, incentive compatibility and 

bounded budget. 

Proof. Suppose there is an (𝑓, 𝑡) that satisfies efficiency, incentive compatibility and bounded 

budget. By Lemma 1, we know that (𝑓, 𝑡) must be a VCG mechanism, that is, for each 𝑖 ∈ 𝐼, 

there exists a function ℎ𝑖: 𝑉−𝑖 → 𝑅, such that 

𝑡𝑖(𝑣) = ∑ 𝑣𝑖(𝑓𝑖(𝑣))𝑗≠𝑖 + ℎ𝑖(𝑣−𝑖) for all 𝑣 ∈ 𝑉. 

Let 𝐻(𝑣) = ∑ ℎ𝑖(𝑣−𝑖)𝑖∈𝐼  and 𝑊(𝑣) = ∑ 𝑣𝑖(𝑓𝑖(𝑣))𝑖∈𝐼 . Then we obtain 

𝐻(𝑣) = ∑ 𝑡𝑖(𝑣)

𝑖∈𝐼

− 𝑊(𝑣). 

We first show that ∑ (−1)#(𝑆)
𝑆⊆𝐼 𝑊(𝑣𝑆, 𝑣−𝑆

′ ) is bounded over 𝑉 × 𝑉. 

Given (𝑣, 𝑣′) ∈ 𝑉 × 𝑉, replacing 𝑣 with (𝑣𝑆, 𝑣−𝑆
′ ), we get 

(−1)#(𝑆)𝐻(𝑣𝑆, 𝑣−𝑆
′ ) = (−1)#(𝑆) ∑ 𝑡𝑖(𝑣𝑆, 𝑣−𝑆

′ )

𝑖∈𝐼

− (−1)#(𝑆)𝑊(𝑣𝑆, 𝑣−𝑆
′ ) 

Note that ∑ (−1)#(𝑆)𝐻(𝑣𝑆, 𝑣−𝑆
′ )𝑆⊆𝐼 = 0 (Walker, 1980; Danilov and Sotskov, 2002). Hence, 

taking the sum on both sides for 𝑆, we get 

∑(−1)#(𝑆) ∑ 𝑡𝑖(𝑣𝑆, 𝑣−𝑆
′ )

𝑖∈𝐼𝑆⊆𝐼

= ∑(−1)#(𝑆)

𝑆⊆𝐼

𝑊(𝑣𝑆, 𝑣−𝑆
′ ) 

Since ∑ 𝑡𝑖(𝑣𝑆, 𝑣−𝑆
′ )𝑖∈𝐼  is bounded for each 𝑆, ∑ (−1)#(𝑆)

𝑆⊆𝐼 𝑊(𝑣𝑆, 𝑣−𝑆
′ ) is bounded. 

On the other hand, we can show that ∑ (−1)#(𝑆)
𝑆⊆𝐼 𝑊(𝑣𝑆, 𝑣−𝑆

′ ) is not bounded. 

For simplicity, we consider 𝑛 = 3 and 𝑞 = 2. Given an arbitrary number 𝜃 > 0, for every 

𝑖 = 1,2,3, there exists 𝑣𝑖 ∈ 𝑉𝑖 such that 𝑣𝑖(𝑥𝑖) = 𝑖𝜃𝑥𝑖, 𝑣𝑖
′(𝑥𝑖) = 0 for all 𝑥𝑖. It is easy to check 

that 𝑓(𝑣1, 𝑣2, 𝑣3) = 𝑓(𝑣1
′ , 𝑣2, 𝑣3) = (0,1,1) , 𝑓(𝑣1, 𝑣2

′ , 𝑣2) = (1,0,1) , 𝑓3(𝑣1
′ , 𝑣2

′ , 𝑣3) = 1 , 

𝑓(𝑣1, 𝑣2, 𝑣3
′ ) = (1,1,0), 𝑓2(𝑣1

′ , 𝑣2, 𝑣3
′ ) = 1, 𝑓1(𝑣1, 𝑣2

′ , 𝑣3
′ ) = 1. Thus  

∑(−1)#(𝑆)

𝑆⊆𝐼

𝑊(𝑣𝑆, 𝑣−𝑆
′ ) 

= −𝑊(𝑣1, 𝑣2, 𝑣3) + 𝑊(𝑣1, 𝑣2, 𝑣3
′ ) − 𝑊(𝑣1

′ , 𝑣2
′ , 𝑣3) + 𝑊(𝑣1

′ , 𝑣2
′ , 𝑣3

′ ) 

+𝑊(𝑣1, 𝑣2
′ , 𝑣3) − 𝑊(𝑣1, 𝑣2

′ , 𝑣3
′ ) + 𝑊(𝑣1

′ , 𝑣2, 𝑣3) − 𝑊(𝑣1
′ , 𝑣2, 𝑣3

′ ) 

= −2(2𝜃 + 3𝜃) + 2(𝜃 + 2𝜃) − 2 × 3𝜃 + 0 + 2(𝜃 + 3𝜃) − 2𝜃 + 2(2𝜃 + 3𝜃) − 2 × 2𝜃 

    = 2𝜃. 

Since 𝜃 is an arbitrary number, ∑ (−1)#(𝑆)
𝑆⊆𝐼 𝑊(𝑣𝑆, 𝑣−𝑆

′ ) is not bounded.  □ 
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