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Highlights 

 A dynamic homogenization model is developed for corrugated sandwich plates. 

 Analytical solutions are derived for low-frequency dispersion relations. 

 The spectral element method is used to validate the homogenization model. 
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Abstract 

In the present work, a new dynamic homogenization model is developed to 

investigate the long-wavelength wave propagation in a corrugated sandwich plate. 

With the harmonic motion assumption and using a shifting operator, the governing 

equations of the plate are firstly represented in a state-space form. Then, a dynamic 

homogenization model is developed via the two-scale homogenization method. Based 

on this model and considering the propagation of sinusoidal waves, the dispersion 

relations and corresponding wave modes can be easily obtained. In order to validate 

the developed homogenization model, the obtained dispersion relations are compared 

with those predicted by the spectral element method. It is found that the present 

method gives accurate results in low frequency range. Furthermore, the effects of 

some geometric and material parameters on the dispersion relations for the corrugated 

sandwich plate are also discussed. The developed homogenization model is expected 

to be helpful in the prediction and control of dynamic responses of corrugated or even 

lattice sandwich structures. 
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1. Introduction 

Sandwich structures, which consist of top and bottom face sheets and a relatively 

soft core sandwiched between them, have excellent mechanical properties in 

comparison with traditional solid structures, such as high specific stiffness and high 

specific strength [1, 2]. Therefore, sandwich structures have wide applications in 

various fields including aeronautics, astronautics, shipping, and railway [3-5]. The 

cores of sandwich structures are conventionally made of foams or honeycombs [6]. 

Comparing with foams and honeycombs, corrugated structures have voids arranged in 

a specified direction, which enables fluid to flow through the structures, and thus 

exhibit excellent heat transfer performance [7-9]. Moreover, due to relatively simple 

manufacturing process, it is a good choice to employ corrugated structures as the 

cores of lightweight sandwich structures [10]. Recently, some novel corrugated 

sandwich structures were designed and investigated, such as sandwich structures with 

multi-layer corrugated cores [11], hierarchical corrugated cores [12], and hybrid 

honeycomb-corrugated cores [13]. 

The static and dynamic behaviors of corrugated sandwich structures have been 

extensively studied. For example, Rubino et al. [14] investigated the quasi-static 

three-point bending response of corrugated sandwich beams. Cheon and Kim [15] 

analyzed the mechanical behaviors of corrugated sandwich plates under tensile and 

bending loads. The energy absorption property and the modal response of corrugated 

sandwich structures were studied by Zhang et al. [16] and Yang et al. [17], 

respectively. It is also noted that Wu et al. [18] adopted the spectral element method to 

analyze the frequency response of corrugated sandwich plates and found that there 

exists some frequency bands within which the vibration amplitudes are much smaller 

than those outside these bands. 

Wave propagation in plate structures is closely involved with the prediction and 

control of practical dynamic responses, as well as structural health monitoring (SHM) 

and non-destructive evaluation/testing (NDE/NDT) [19, 20]. Ultrasonic methods and 

NDE/NDT techniques are often employed at relatively low frequency, dealing with 

the onset of the fundamental dispersion branches. In these applications, especially for 

efficient handling of inverse problems, it is of great importance to know explicit 

analytical approximations of the long-wavelength dispersion relations. Such 

estimations are usually tied in with the homogenization concept [21, 22]. It is known 

that the static and low-frequency vibration behaviors of corrugated sandwich 
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structures may be predicted by a simple equivalent model [23], which considers the 

sandwich structure as an equivalent structure with a homogenous core. However, due 

to the discreteness and periodicity of the corrugated core, the wave propagation 

characteristics of corrugated sandwich structures cannot be accurately described by 

such a simple equivalent method. Although the above mentioned spectral element 

method [18] or the finite element method [24, 25] can be used to obtain the whole 

dispersion relations for corrugated sandwich structures, they could not help to develop 

a dynamic homogenization model to accurately predict the low-frequency 

long-wavelength wave propagation behavior. Moreover, in comparison with 

numerical methods, dynamic homogenization method can provide some physical 

insights into the long-wavelength wave propagation behavior. 

Dynamic homogenization model can be developed based on virtual power 

principle. For example, Wang and Sun [26] developed a homogenization model 

including micro-inertia for heterogeneous materials under dynamic loading by using 

Hamilton’s principle. Bathelemy et al. [27] proposed a continuum model via the 

virtual work principle to described micro-inertia effects in closed-cell foams. 

Asymptotic expansion provides an alternative approach for developing of dynamic 

homogenization model. In this respect, Airoldi and Ruzzene [28] considered a 

one-dimensional metamaterial consisting of a beam and a periodic array of 

piezoelectric patches, and conducted a homogenization study to illustrate the internal 

resonant characteristics of the system within an analytical framework. Hui and Oskay 

[29] developed a nonlocal homogenization model and analyzed the wave dispersion 

and energy dissipation in biomaterial viscoelastic composites subjected to dynamic 

loading conditions. Parnell and Abrahams [30] studied the effective response of a 

periodic fiber reinforced material to SH wave propagation. Chen and Fish [31] 

developed a dispersive model for wave propagation in periodic heterogeneous media 

based on higher order homogenization method with multiple spatial and temporal 

scales. Andrianov et al. [32, 33] studied the wave propagation in linear and nonlinear 

composite materials by using the higher-order asymptotic homogenization method. 

Previous studies have shown that asymptotic homogenization method has been 

widely employed in the analyses of inhomogeneous elastic materials, including 

phononic crystals and mechanical metamaterials. Actually, asymptotic 

homogenization method [34, 35] is a type of multi-scale method, the solution is 
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searched as series expansions in powers of the small parameter l L   (where l  is 

the typical size of the microstructure, L  is the wavelength, and l L ). In the 

present work, a dynamic homogenization model is developed by analytically treating 

the motion equations of the face sheets and the core sheets of a corrugated sandwich 

plate and employing a two-scale homogenization procedure, and then applied to 

analyze the long-wavelength wave propagation behavior of the corrugated sandwich 

plate. It is known that asymptotic homogenization method could provide a 

long-wavelength approximation in the low frequency range. While our results show 

that via taking the microstructural characteristics of the corrugated sandwich structure 

into consideration and introducing a shifting operator to capture the structural 

periodicity, the present homogenization yields low-frequency dispersion relations 

with good accuracy for almost the whole wavenumber range. 

The rest of the present paper is structured as follows. In Section 2, a two-scale 

homogenization model is developed to analyze the long-wavelength wave 

propagation in a corrugated sandwich plate, and the dispersion relations and 

corresponding wave modes are calculated. For a comparison study, the dispersion 

relations based on the spectral element method are also derived. The results predicted 

by the above two methods are compared in Section 3. Moreover, the effects of some 

geometric and material parameters on the dispersion relations are also discussed in 

this section. Finally, some conclusions are drawn in Section 4. 

2. Formulation 

As shown in Fig.1, an infinite long corrugated sandwich plate with unit width is 

considered in the present work. The thicknesses of the face sheets and the core sheets 

are denoted by 
ft  and ct , respectively. The length of the core sheets is 0l , and the 

inclination angle is  . 

In Subsection 2.1, a dynamic homogenization model is developed to predict the 

dispersion relations for the corrugated sandwich plate. In order to validate the present 

homogenization method, the spectral element method is also presented in Subsection 

2.2 to provide the benchmark solutions for the dispersion relations. The results based 

on these two methods will be compared in Section 3. 

2.1 Homogenization method 

Fig.1(b) shows a unit cell of the corrugated sandwich plate used for 

homogenization analysis. The origin of the coordinates is located at the midpoint of 
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the bottom face sheet. The unit cell consists of four parts, i.e., the top and bottom face 

sheets, and the left and right core sheets. It is noted that only the motions in the x  

and y  directions are considered in the present work. Since the core of the corrugated 

sandwich plate is stretching-dominated, it is assumed that the core sheets carry only 

the axial force, while the face sheets carry both the axial force and the bending 

moment. Moreover, the mass of each core sheet is taken as two equal concentrated 

masses respectively located at both ends, which is very similar to the lumped mass 

method in finite element analyses and expected to be a reasonable approximation in 

the low-frequency range. 

The length of the left core sheet after deformation is denoted by ll , which can be 

expressed as: 

         
2 2

0 0 0 0cos 0 cos sin 0 cos ,t b t b

ll l u u l l w w l                  (1) 

where the subscript l  represents the left core sheet, the superscripts t  and b  

represent the top and bottom face sheets, and u  and w  are the displacements in the 

x  and y  directions, respectively. 

In the case of small deformation, by Eq. (1), the elongation of the left core sheet 

can be approximately written as: 

        0 0cos 0 cos sin 0 cos .t b t b

ll u u l w w l                 (2) 

Therefore, the magnitude of the axial force in the core sheet is: 

         0 0

0

cos 0 cos sin 0 cos ,t b t bc
l

A
F u u l w w l

l
                (3) 

where  21c c c cA E t    is the stretching stiffness of the core sheet, in which cE  

and c  are the Young’s modulus and Poisson’s ratio of the corrugated core, 

respectively. The forces applied on the top and bottom face sheets by the left core 

sheet are denoted by 
t

lF  and 
b

lF , respectively, whose components can be easily 

obtained as: 

        

        

2

0 0

0

2

0 0

0

cos 0 cos sin cos 0 cos ,

sin cos 0 cos sin 0 cos ,

,     .

t t b t bc
lx

t t b t bc
ly

b t b t

lx lx ly ly

A
F u u l w w l

l

A
F u u l w w l

l

F F F F

    

    

            

            

   

 (4) 
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Similarly, the components of the forces applied on the top and bottom face sheets 

by the right core sheet can also be obtained: 

 

        

        

2

0 0

0

2

0 0

0

cos cos 0 sin cos cos 0 ,

sin cos cos 0 sin cos 0 ,

,     .

t b t b tc
rx

t b t b tc
ry

b t b t

rx rx ry ry

A
F u l u w l w

l

A
F u l u w l w

l

F F F F

    

    

         

          

   

 (5) 

It is known that corrugated sandwich plate is discrete and periodic in the 

corrugation direction, while continuous and translational invariant in the orthogonal 

direction. The wave propagation in the corrugation direction is more interesting in 

comparison with the trivial behavior in the orthogonal direction. Thus, only the wave 

propagation in the corrugation direction is considered in the present work. 

Consequently, a special plate theory, in which derivatives in the orthogonal direction 

are neglected, is adopted here. Moreover, it is assumed that each core sheet carries 

only axial force and its mass is taken as two equal concentrated masses respectively 

located at both ends. Therefore, the governing equations for the top and bottom face 

sheets in the unit cell, respectively, can be expressed as [36]: 

 

     

     

2 2

0 2 2

2 4

0 2 4

,

,

t t
t t

f f c c f lx rx

t t
t t

f f c c f ly ry

u u
t t l x A F x F x

t x

w w
t t l x D F x F x

t x

    

    

 
       

 
       

 (6) 

 

   

   

   

   

2

0 0 0 0 2

2

0 02

2

0 0 0 0 2

4

0 04

1 1
cos cos

2 2

    cos cos ,

1 1
cos cos

2 2

    cos cos .

b

f f c c c c

b
b b

f lx rx

b

f f c c c c

b
b b

f ly ry

u
t t l x l t l x l

t

u
A F x l F x l

x

w
t t l x l t l x l

t

w
D F x l F x l

x

      

   

      

   

 
      


    



 
      


    



 (7) 

where   denotes the Dirac delta function, t  is the time, c  and f  are the mass 

density of the corrugated core and the face sheets,  21f f f fA E t    and 

 3 212 1f f f fD E t   
 

 are the stretching stiffness and bending stiffness of the face 

sheets, in which fE  and 
f  are the Young’s modulus and Poisson’s ratio of the 

face sheets, respectively. 
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A shifting operator   is defined as follows: 

    .u x u x      (8) 

By substituting Eqs. (4) and (5) into the governing equations (6) and (7), and using 

the shifting operator  , the governing equations for the top and bottom face sheets in 

the whole corrugated sandwich plate are obtained as follows: 

 

 

   

     

 

0 0

0 0

2 2

0 0 2 2
1

2

0

10

2

0 cos cos

10

0 cos cos

0

2 1 cos

2
    cos 2 1 cos

    cos 2 1 cos

    sin cos 2 1 cos

t t

f f c c f

n

tc

n

bc
l l

n

c
l l

u u
t t l x n l A

t x

A
x n l u x

l

A
x n l u x

l

A
x n l

l

 



   

  

  

   

















  
         

    

       

      







   
1

,b

n

w x







 (9) 

 

 

     

   

 

0 0

0 0

2 4

0 0 2 4
1

0 cos cos

10

2

0

10

2

0 cos cos

0

2 1 cos

    sin cos 2 1 cos

2
    sin 2 1 cos

    + sin 2 1 cos

t t

f f c c f

n

bc
l l

n

tc

n

c
l l

w w
t t l x n l D

t x

A
x n l u x

l

A
x n l w x

l

A
x n l

l

 



   

   

  

  

















  
         

      

    

      







   
1

,b

n

w x







 (10) 

   

      

   
0

2

0 0 0 0 2
1 1

2
2

0 02
10

2

0 cos 0

0

1 1
2 3 cos 2 1 cos

2 2

    cos 2 3 cos 2 1 cos

    cos 2 3 cos 2 1 cos

b

f f c c c c

n n

b
bc

f

n

c
l

u
t t l x n l t l x n l

t

Au
A x n l x n l u x

x l

A
x n l x n l

l


      

    

    

 

 







 
              


            

         

 



   

      

      

0

0 0

cos

1

0 0

10

0 cos 0 cos

10

    sin cos 2 3 cos 2 1 cos

      sin cos 2 3 cos 2 1 cos ,

t

l

n

bc

n

tc
l l

n

u x

A
x n l x n l w x

l

A
x n l x n l w x

l



 

     

     















 

           

             







  (11) 
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   

      

   
0

2

0 0 0 0 2
1 1

4

0 04
10

0 cos

0

1 1
2 3 cos 2 1 cos

2 2

    sin cos 2 3 cos 2 1 cos

    sin cos 2 3 cos 2 1

b

f f c c c c

n n

b
bc

f

n

c
l

w
t t l x n l t l x n l

t

Aw
D x n l x n l u x

x l

A
x n l x n

l


      

     

    

 

 







 
              


             

        

 



   

      

      

0

0 0

0 cos

1

2

0 0

10

2

0 cos 0 cos

10

cos

    sin 2 3 cos 2 1 cos

    sin 2 3 cos 2 1 cos ,

t

l

n

bc

n

tc
l l

n

l u x

A
x n l x n l w x

l

A
x n l x n l w x

l



 



    

    















  

           

             







  (12) 

in which n  represents the n-th unit cell in the longitudinal direction. A state vector is 

defined as follows: 

    
T

, ,,            ,t t t t t t b b b b b b

x xx t u P w w M Q u P w w M Q z  (13) 

where P , M  and Q  are respectively the axial force, bending moment and shear 

force carried by face sheets, the subscript , x  denotes the partial derivative with 

respect to x , and   represents the dependency of response fields on the 

microstructure, i.e., the structure within each unit cell. For harmonic motion with 

frequency  ,  ,x t
z  can be expressed as: 

    , .i tx t x e  z Z  (14) 

By using Eqs. (9)-(12) and (14), the governing equations can be transformed into the 

following state-space form: 

        
d

,
d

x x x x
x

  A Z B Z  (15) 

where diag 1 1 1 1 1 1 1 1f f f fA D A D   A , and the elements of 

Matrix B  are presented in the Appendix. 

Eq. (15) can also be rewritten as: 

      
d

,
d

x x x
x

  Z C Z  (16) 

where      1x x x C A B . 

For long-wavelength wave propagation, we develop a two-scale model to 

describe the problem. Such a method has been widely used in the homogenization of 

systems with periodically varying properties [28, 37-39]. Introduce a micro-scale 
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variable s x   (  is the scaling factor defined as the ratio between the size of the 

unit cell and the shortest wavelength describing the homogenized response such that 

0 1  ) to describe the periodicity of the domain, in addition to the macro-scale 

coordinate x  which reflects the long-wavelength behavior. Then, an arbitrary 

response function, f 
, is expressed using the micro- and macro- scales as 

    ,f x f x s x  . All response fields  ,f x s  are assumed to be locally periodic 

throughout the deformation process: 

    ˆ, , ,f x s f x s ns   (17) 

where ŝ  denotes the period of the microstructure, and n  is an arbitrary integer. 

The state vector is approximated using an asymptotic expansion with respect to 

the scaling factor,  : 

                0 1 22, , , , ,x x s x s x s x s      Z Z Z Z Z  (18) 

where 
 0

Z  is the leading order state vector, which will be proven to be independent 

of micro-scale coordinate s  in the following analyses, while the high order state 

vectors    1,2,


  Z  are functions of both the macro- and micro-scale 

coordinates. 

Since the considered plate is periodic, the properties depend only on s , 

therefore, 

      , .C x C x s C s    (19) 

Accordingly, Eq. (16) can be rewritten as: 

      
d

, , ,
d

x s s x s
x

Z C Z  (20) 

in which the derivative can be expressed as: 

 
d 1

.
dx x s

 
 
 

 (21) 

Substituting Eqs. (19) into Eq. (20) yields: 

 

           

      

0 0 1 1 2 22

0 1

1

        ,

x s x s x s

s

  




     
      

     

   

Z Z Z Z Z Z

C Z Z

 (22) 

Since   is arbitrary, the coefficients of each order of   at both sides of Eq. (22) 

must be equal. By collecting the coefficients of 1   and 0  in Eq. (22), we have the 
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following equations: 

  01 :   0,
s

  



Z  (23) 

        0 1 00 :   .s
x s


 

 
 

Z Z C Z  (24) 

Eq. (23) implies that 

 
       0 0

, .x s xZ Z  (25) 

Integrating both sides of Eq. (24) with respect to s  over one period (from

0 coss l     to 
0 coss l   ) yields: 

    0 0

hom ,
x





Z C Z  (26) 

where 

  
0

0

cos

hom
cos

0

d .
2 cos

l

l
s s

l

 

 



 
 C C  (27) 

It is noted that delta functions (  x ) do not arise in 
homC  after the integration. 

For plane wave propagation, it can be assumed that: 

 
   0 0

m ,i xe Z Z  (28) 

where   is the wavenumber. Substituting Eq. (28) into Eq. (26) yields: 

    0

hom m ,i C I Z 0  (29) 

with the elements of Matrix homC  being presented in the Appendix. It should be 

noted that by adopting the assumption expressed by Eq. (28), the shifting operator   

no longer appears in homC , so that its elements take much simpler forms. The 

dispersion relations in the corrugation direction for the corrugated sandwich plate can 

be obtained by solving the following equation: 

  eqdet 0,i C I  (30) 

which can be also written as: 

 8 6 4 2

1 2 3 4 5 0.c c c c c          (31) 

By the above equation, four branches of low-frequency dispersion relations can be 

predicted, which are expressed as: 

 2 2
1 2 3,4

1 1

1 1 1 1
= ,   = ,

4 2 2 4 2 2

c c
p q p r

c c
      ，  (32) 
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where 
2

32

2

1 1

2
,

4 3

cc
p

c c
    

 
3 22

2 1 2 3 1 4 132

2

1 1

4 84
,

2 3 4

c c c c c c ccc
q

c c p

 
    and 

 
3 22

2 1 2 3 1 4 132

2

1 1

4 84
.

2 3 4

c c c c c c ccc
r

c c p

 
    The expressions for 

 1,2, ,5ic i    and   are given in the Appendix. 

2.2 Spectral element method 

In this section, the dispersion relations for the corrugated sandwich plate based 

on the spectral element method are derived. Fig.1(c) shows a unit cell of the 

corrugated sandwich plate used for spectral element analysis. The origin of the global 

coordinate system is located at the midpoint of the bottom face sheet, and the origins 

of two local coordinate systems as depicted in Fig.1(c) are both located at the junction 

of the core sheets and the top face sheet. 

Both the longitudinal and transverse motions of the face sheets are considered. 

The governing equation for the longitudinal motion reads: 

  , ,   1,2,3,4 ,f j xx f f j ttA u t u j   (33) 

where the subscript j  represents Part j  in Fig.1(c). For harmonic motion with 

frequency  , the longitudinal displacement  ,ju x t  can expressed as: 

      ,   1,2,3,4 .i t

j ju x t U x e j   (34) 

Substituting Eq. (34) into Eq. (33) yields: 

  sin cos   1,2,3,4 ,j j f j fU A k x B k x j    (35) 

where .f f f fk t A   

The equation governing the transverse motion of the face sheets reads: 

  , ,   1,2,3,4 ,f j xxxx f f j ttD w t w j   (36) 

Similarly, the transverse displacement  ,jw x t  can be written as: 

      ,   1,2,3,4 .i t

j jw x t W x e j   (37) 

Substituting Eq. (37) into Eq. (36) yields: 

  sinh cosh sin cos   1,2,3,4 ,j j j j jW C x D x E x F x j         (38) 

where  
1/4

2 .f f ft D    
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Only the longitudinal motion of the core sheets is considered. The corresponding 

governing equation reads: 

  , ,    5,6 ,c j xx c c j ttA u t u j   (39) 

For harmonic motion with frequency  , the longitudinal displacement  ,ju x t  can 

also be expressed as: 

      ,    5,6 ,i t

j ju x t U x e j   (40) 

Substituting Eq. (40) into Eq. (39) yields: 

  sin cos   5,6 ,j j c j cU A k x B k x j    (41) 

where .c c c ck t A   

The displacements, rotations, axial forces, shear forces and bending moments at 

the junctions should satisfy the following continuity conditions: 

 

               

       

       

           

           

           

   

1 2 1 2 1 2 1 2

1 5 2 6

1 5 2 6

3 4 3 4 3 4

3 4 3 4 3 4

5 1 1 6 1 1

5 0 3 0

0 0 ,  0 0 ,  0 0 ,  0 0 ,

0 cos 0 0 cos 0 ,

0 sin 0 0 sin 0 ,

0 0 ,  0 0 ,  0 0 ,

0 0 ,  0 0 ,  0 0

0 cos 0 sin 0 ,  0 cos 0 sin 0 ,

cos cos

U U W W W W M M

N N N N

Q N Q N

U U W W W W

N N Q Q M M

U U W U U W

U l U l

 

 

   

 

    

  

  

   

  

   

   

，

 

     

3 0

6 0 4 0 4 0

sin cos ,

cos cos sin cos .

W l

U l U l W l

 

   



 

 (42) 

in which N , Q  and M  are respectively the axial force, shear force and bending 

moment, which can be expressed as: 

       =1,2,3,4 ,j f jN x A U x j         =5,6 ,j c jN x AU x j  

      =1,2,3,4 ,j f jQ x D W x j  and       =1,2,3,4 .j f jM x D W x j  

Moreover, the displacements, rotations, axial forces, shear forces and bending 

moments at the ends of the unit cell should satisfy the Bloch theorem, i.e.: 
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       

       

       

 

0 0

0 0

0 0

0

2 cos 2 cos

2 0 1 0 2 0 1 0

2 cos 2 cos

2 0 1 0 2 0 1 0

2 cos 2 cos

2 0 1 0 2 0 1 0

2 cos

4 0 3

cos cos ,  cos cos ,

cos cos ,  cos cos ,

cos cos ,  cos cos ,

cos

i l i l

i l i l

i l i l

i l

U l e U l W l e W l

W l e W l N l e N l

Q l e Q l M l e M l

U l e U

   

   

   

 

   

   

   



   

    

   

      

       

       

       

0

0 0

0

0

2 cos

0 4 0 3 0

2 cos 2 cos

4 0 3 0 4 0 3 0

2 cos

4 0 6 0 3 0 5 0

2 cos

4 0 6 0 3 0 5 0

cos ,  cos cos ,

cos cos ,  cos cos ,

cos cos cos cos ,

cos sin cos sin

i l

i l i l

i l

i l

l W l e W l

W l e W l M l e M l

N l N l e N l N l

Q l N l e Q l N l

 

   

 

 

  

   

   

   

  

    

      

     .

 (43) 

Eqs. (42) and (43) give a group of algebraic equations, which can be expressed 

as: 

 0,TX  (44) 

in which X  is a column vector expressed as: 





1 1 2 2 1 1 1 1 2 2 2 2 3 3 4 4

T

3 3 3 3 4 4 4 4 5 5 6 6       ,

A B A B C D E F C D E F A B A B

C D E F C D E F A B A B

X
 

and the elements of Matrix T  are presented in the Appendix. 

The dispersion relations for the corrugated sandwich plate can be obtained by 

solving the following equation: 

  det 0.T  (45) 

3. Results and discussions 

In order to validate the developed dynamic homogenization model, the 

dispersion relations obtained from the homogenization method are compared with 

those obtained from the spectral element method. For the special case that the 

thickness of the core sheets approaches to zero, the sandwich plate degenerates to two 

independent homogeneous face sheets. Such a simple case is firstly considered. For a 

homogeneous plate, both the dispersion relations of bending wave and longitudinal 

wave have exact solutions [40]: 

    2 ,  b b l lD t A t        (46) 

where the subscripts b  and l  represent the bending wave and longitudinal wave, 

  is the mass density of the homogeneous material, t  is the thickness, 

 3 212 1D Et   
 

 and  21A Et    are respectively the bending stiffness and 

stretching stiffness of the plate, in which E  and   are the Young’s modulus and 

Poisson’s ratio. The dispersion curves predicted by the developed dynamic 
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homogenization model, the spectral element method, and Eq. (46) are compared in 

Fig.2. The dimensionless frequency and dimensionless wavenumber are respectively 

defined as a c   and a  , where  c A t  is the velocity of in-plane 

longitudinal wave in homogeneous isotropic thin plates. Fig.2 shows that both the 

dynamic homogenization method and the spectral element method give the same 

results with the exact solutions. 

Then, a corrugated sandwich plate with the following material and geometric 

parameters is considered: 

70 GPa,fE   
32700 kg m ,f   0.3,f   0.002 m,ft   2.4 GPa,cE   

31040kg m ,c   0.38,c   0.001 m,ct   0 0.015 m.l   

The dispersion curves obtained by the homogenization method and the spectral 

element method are compared in Fig.3, in which the dimensionless frequency is 

defined as fa c   with  f f f fc A t  and 02 cosa l  . Fig.3 shows that 

for waves with relatively low frequencies, the dispersion curves obtained by the 

homogenization method agree well with those obtained by the spectral element 

method. For the two branches with lowest frequencies, the developed homogenization 

model gives almost the same results with the spectral element method even in the full 

wavenumber range. 

The dispersion curves for corrugated sandwich plates based on the developed 

homogenization model can be seen more clearly in Fig.4. It displays that the present 

dynamic homogenization method can predict four branches of dispersion curves, as 

well as the corresponding wave modes. ‘BE’, ‘L’, ‘BR’ and ‘S’ labeled in Fig.4(a) 

denote the bending wave mode, longitudinal wave mode, breathing mode, and shear 

wave mode, respectively. These wave modes are depicted in Fig.5. The corrugated 

sandwich plate can also be treated as an equivalent homogeneous Mindlin plate by 

calculating the effective shear modulus of the corrugated core with a simple method 

adopted in Refs. [41, 42]. The dispersion curves predicted by this simple equivalent 

model are also displayed in Fig.4. It shows that the simple equivalent model gives 

only two branches of the dispersion curves (respectively corresponding to the bending 

and shear wave modes). Moreover, via comparing with the numerical solutions 

obtained by finite element software COMSOL, it is evident that for both the cases of 

the inclination angle 4   and 6  , the simple equivalent model provides 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

16 

 

acceptable dispersion curve of the bending wave only when the wavenumber is 

comparatively small, and with the increase of the wavenumber, the relative error of 

the results predicted by the simple equivalent model increases significantly. In 

contrast, the dispersion relations for both the bending wave mode and breathing mode 

predicted by the present homogenization model show good accuracy in almost the 

whole wavenumber range. This is mainly because the microstructural periodicity, 

which is neglected in the simple equivalent method, is accurately captured in the 

present homogenization model via introducing the shifting operator. 

The effects of some geometric and material parameters on the dispersion 

relations for the corrugated sandwich plate are also discussed. We focus only on the 

lowest two branches of the dispersion curves. The following parameters are kept 

constant in the analyses: 

70 GPa,fE   
32700 kg m ,f   0.3,f c    and 0.01 m,ch   

where ch  denotes the height of the core layer, and 0 sinch l  . 

Firstly, the effect of the thickness ct  of the core sheets on the dispersion 

relations is investigated. As shown in Fig.6, with the increase of ct , the group 

velocity (corresponding to a specified wavenumber) of the longitudinal wave 

decreases slightly, while that of the bending wave increases. Moreover, the dispersion 

curve corresponding to the breathing mode moves upwards. These phenomena can be 

explained as follows. The dispersion relation of the longitudinal wave can be 

approximately expressed as: 

   22 1 2 cos ,l l f f f f f c cE t t t        
   (47) 

which shows that the tangent slope of the corresponding dispersion curve decreases 

slightly with the increase of ct . Moreover, the shear stiffness and the out-of-plane 

compressive (or tensile) stiffness of the sandwich plate are mainly contributed by the 

core, and they are both enhanced as the thickness of the core sheets increases. With 

the increase of the shear stiffness, the group velocity of the bending wave increases; 

and with the increase of the out-of-plane compressive stiffness, the dispersion curve 

corresponding to the breathing mode moves upwards. 

Then, the effect of the inclination angle of the core sheets on the dispersion 

relations is displayed in Fig.7. It should be noted that the frequency and wavenumber 
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in this figure are nondimensionalized by using ch  instead of a , which is different 

from those in other figures, since under the condition that ch  is kept constant, the 

length of each unit cell a  varies with the inclination angle  . Fig.7 shows that with 

the increase of the inclination angle, the dispersion curves of the longitudinal and 

bending waves vary slightly, while that corresponding to the breathing mode moves 

upwards evidently. This is mainly attributed to the increase of the out-of-plane 

compressive stiffness of the sandwich plate caused by the increase of the inclination 

angle. 

Fig.8 shows the effect of the thickness ft  of the face sheets on the dispersion 

relations. It displays that the group velocity of the longitudinal wave increases slightly 

with ft . This result can also be predicted by Eq. (47). Fig.8 also shows that with the 

increase of ft , the group velocity of the bending wave decreases. Actually, both the 

bending stiffness and the mass density of the sandwich plate increase with the 

increase of the thickness of the face sheets. The group velocity of the bending wave 

increases as the bending stiffness increases, but decreases as the mass density 

increases. Since the mass density plays a relatively more important role, the group 

velocity of the bending wave decreases. Moreover, the dispersion curve 

corresponding to the breathing mode moves downwards with the increase of ft . 

The effect of the Young’s modulus cE  of the corrugated core on the dispersion 

relations is displayed in Fig.9, which shows that with the increase of cE , the group 

velocity of the longitudinal wave nearly keeps constant, while the group velocity of 

the bending wave increases. The former phenomenon can be predicted by Eq. (47), 

which demonstrates that the group velocity of the longitudinal wave is independent of 

cE , and the latter one is due to the fact that the shear stiffness of the sandwich plate 

increases with the increase of cE , so does the group velocity of the bending wave. 

Moreover, owing to the increase of the out-of-plane compressive stiffness of the 

sandwich plate caused by the increase of cE , the dispersion curve corresponding to 

the breathing mode moves upwards. 

Furthermore, the effect of the density c  of the corrugated core on the 

dispersion relations for the sandwich plate is studied and shown in Fig.10. It displays 

that the dispersion curves corresponding to all the three considered wave modes move 
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downwards, This is due to the fact that the mass density increases with c . 

4. Conclusions 

A dynamic homogenization model is developed in the present work to 

investigate the long-wavelength wave propagation in corrugated sandwich plates. Via 

defining a shifting operator and adopting the harmonic motion assumption, the 

equations of motion are firstly represented in a state-space form. Then by employing a 

two-scale homogenization method to derive a homogenization model and considering 

sinusoidal wave propagation, an eigenvalue problem is obtained, from which the 

dispersion relations and corresponding wave modes can be determined. Benchmark 

solutions for the dispersion relations are also provided by using the spectral element 

method. Numerical results demonstrate that the developed dynamic homogenization 

model gives good results for four branches of dispersion curves (corresponding to 

bending wave mode, longitudinal wave mode, breathing mode, and shear wave mode, 

respectively) in the low-frequency range. Parameter studies are also carried out to 

investigate the effects of geometric and material parameters on the dispersion 

relations of the sandwich plate. It should be pointed out that the developed 

homogenization model can be further used to analyze other mechanical properties of 

corrugated sandwich plates, and the present homogenization method is also applicable 

to three-dimensional sandwich structures with various lattice truss cores, such as 

pyramidal and tetrahedral lattices. 
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Appendix 

Elements of Matrix 
B  

1,2 1,B   

     2 2

2,1 0 0 0 0

1 1

2 1 cos 2 cos 2 1 cos ,f f c c c

n n

B t t l x n l A l x n l        
 

 

 
              

 
   

     
0 0

2

2,7 0 0 cos cos

1

cos 2 1 cos ,c l l

n

B A l x n l

   






         

     
0 02,9 0 0 cos cos

1

sin cos 2 1 cos ,c l l

n

B A l x n l

    






         

3,4 1,B   4,5 1,B   5,6 1,B   

     2 2

6,3 0 0 0 0

1 1

2 1 cos 2 sin 2 1 cos  ,f f c c c

n n

B t t l x n l A l x n l        
 

 

 
             

 
   

     
0 06,7 0 0 cos cos

1

sin cos 2 1 cos ,c l l

n

B A l x n l

    






        

     
0 0

2

6,9 0 0 cos cos

1

sin 2 1 cos ,c l l

n

B A l x n l

   






        7,8 1,B   

      
0 0

2

8,1 0 0 cos 0 cos

1

cos 2 3 cos 2 1 cos ,c l l

n

B A l x n l x n l

     






                

      
0 08,3 0 0 cos 0 cos

1

sin cos 2 3 cos 2 1 cos ,c l l

n

B A l x n l x n l

      






                

       

      

2

8,7 0 0 0 0

1 1

2

0 0 0

1

2 2 3 cos 2 2 1 cos

          cos 2 3 cos 2 1 cos ,

f f c c c c

n n

c

n

B t t l x n l t l x n l

A l x n l x n l

        

    

 

 





 
              

 

           

 



      8,9 0 0 0

1

sin cos 2 3 cos 2 1 cos ,c

n

B A l x n l x n l      




             9,10 1,B   

10,11 1,B   11,12 1,B   

      
0 012,1 0 0 cos 0 cos

1

sin cos 2 3 cos 2 1 cos ,c l l

n

B A l x n l x n l

      






               

      
0 0

2

12,3 0 0 cos 0 cos

1

sin 2 3 cos 2 1 cos ,c l l

n

B A l x n l x n l

     






               

      12,7 0 0 0

1

sin cos 2 3 cos 2 1 cos ,c

n

B A l x n l x n l      




              
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       

      

2

12,9 0 0 0 0

1 1

2

0 0 0

1

2 2 3 cos 2 2 1 cos

          sin 2 3 cos 2 1 cos ,

f f c c c c

n n

c

n

B t t l x n l t l x n l

A l x n l x n l

        

    

 

 





 
             

 

           

 


 

all the other elements of Matrix 
B  are equal to zero. 

Elements of Matrix homC  

hom1,2 1 ,fC A   2 2

hom2,1 02cos cos ,f f c c cC t t A l           

   2

hom2,7 0 0cos cos cos ,cC A l l        2

hom2,9 0 0sin sin cos ,cC iA l l    hom3,4 1,C   

hom4,5 1 ,fC D  hom5,6 1,C      2 2 2

hom6,3 02cos sin cos ,f f c c cC t t A l           

   2

hom6,7 0 0sin sin cos ,cC iA l l        2 2

hom6,9 0 0sin cos cos cos ,cC A l l    
   

hom7,8 1 ,fC A     2

hom8,1 0 0cos cos cos ,cC A l l     

   2

hom8,3 0 0sin sin cos ,cC iA l l      2 2

hom8,7 02cos cos ,f f c c cC t t A l           

hom9,10 1,C   hom10,11 1 ,fC D  hom11,12 1,C      2

hom12,1 0 0sin sin cos ,cC iA l l    

   2 2

hom12,3 0 0sin cos cos cos ,cC A l l    
   

   2 2 2

hom12,9 02cos sin cos ,f f c c cC t t A l           

all the other elements of Matrix homC  are equal to zero. 

Expressions for  1,2, ,5ic i    and   

4

1 ,c m   2 2 2 3 2

2 0 02 sec ,c f fc A l A D m l      
 

 

     
    

     

2 2 2 2

3 c 0 0

2 2 2 2 2 2

0 0

2 4 4 2 2 4 2 2 4

0 0

tan 1 3cos 2 cos 2 cos 2 tan cos cos

        4cos sin cos 10sin 8 2 cos

        2 sin tan 4 4 4 ,

c f f

f f f f f f

c A l l

l A l A D

A D l A A D D m l

      

      

     

    

   


    


 

   

     

   

       

2 2 2 6 4 2 2

4 0

2 2 2 2 4 2 2 4 2

0

2 2

2 2 2 2 2 4

0 0

3 cos 4 8 cos

        2 8 3 cos cos 3

        2 cos 2

        4 sin cos cos 2 cos 2 cos sec 4 ,

c c f f f f

c f f f f f f

c f f

c f f

c A A l A D A D

A l A A D D A D

A A D

A A D l m l

    

     

 

      

      

     
 

 

 
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     
   

    

   

4 2 2 2 4 2 2 4 2

5

2 2 4 2 8 4 2 2 2

0

4 2 2

0

2
2 2 2

0

3 2 4 cos 2

        6 cos 4 16 cos

        8 cos cos 3 3cos cos 3

        2 cos 2 cos 2 co

c f f f f f f

f f f f f f

c f f f f

c f f f f

c A A A D D A D

A A D D l A D

l A A D A D

A A D A D l

    

    

     

   

    


   


         

    
     2 4

0s sec 16 ,l 

 

where  2cos .f f c cm t t     

Moreover, 

3 233
2 1 21

3
3 23 1

1 2 1 2

42
,

3 23 4 cc

    
  

    

 

where 2

1 3 2 4 1 5= 3 12 ,c c c c c    and 3 2 2

2 3 2 3 4 1 4 2 5 1 3 5=2 9 27 27 72 .c c c c c c c c c c c      

Specifically, for the case that the inclination angle of the core sheets 4  , the 

coefficients  1,2, ,5ic i    read: 

4

1 ,c m   2 2 2 3 2

2 0 02 2 ,c f fc A l A D m l     
 

 

   2 2 2 2 4 4 2 2 4 2 2 4

3 c 0 0 02 3 2 4 ,c f f f f f fc A A l A D l A A D D m l          
 

 

    2 2 6 4 2 2 2 2 2 4 2 4

4 0 0 02 2 4 ,c f f f f c f f f fc A l A D A D A l A A D D m l            
 

 

   

   

4 2 2 2 4 2 4 2 2 8 4 2 2

5 0 0

2
2 2 4

0 0

6 4 2 4

        cos 2 4 .

c f f f f c f f f f f f

c f f

c A A A D D l A A D A D l A D

A A D l l

     

 

     


 


 

Elements of Matrix T  

1,2 1,T   
1,4 1,T    

2,6 1,T   
2,8 1,T   

2,10 1,T    
2,12 1,T    

3,5 1,T   
3,7 1,T   

3,9 1,T    
3,11 1,T    

4,1 ,f fT A k  
4,3 ,f fT A k   4,25 cos ,c cT A k  

4,27 cos ,c cT A k   
3

5,5 ,fT D   
3

5,7 ,fT D    
3

5,9 ,fT D    
3

5,11 ,fT D   

5,25 sin ,c cT A k   5,27 sin ,c cT A k   
6,6 1,T   

6,8 1,T    
6,10 1,T    

6,12 1,T   

7,14 1,T   
7,16 1,T    

8,18 1,T   
8,20 1,T   

8,22 1,T    
8,24 1,T    

9,17 1,T   
9,19 1,T   

9,21 1,T    
9,23 1,T    

10,13 1T  , 
10,15 1,T    

11,17 1,T   
11,19 1,T    

11,21 1,T    

11,23 1,T   
12,18 1,T   

12,20 1,T    
12,22 1,T    

12,24 1,T   13,2 cos ,T   13,6 sin ,T   

13,8 sin ,T   
13,26 1,T    14,2 cos ,T   14,6 sin ,T    14,8 sin ,T    

14,28 1,T    
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 15,13 0cos sin cos ,fT k l     15,14 0cos cos cos ,fT k l   

 15,17 0sin sinh cos ,T l      15,18 0sin cosh cos ,T l    

 15,19 0sin sin cos ,T l      15,20 0sin cos cos ,T l     15,25 0sin ,cT k l  

 15,26 0cos ,cT k l    16,15 0cos sin cos ,fT k l    16,16 0cos cos cos ,fT k l   

 16,21 0sin sinh cos ,T l      16,22 0sin cosh cos ,T l     

 16,23 0sin sin cos ,T l      16,24 0sin cos cos ,T l      16,27 0sin ,cT k l   

 16,28 0cos ,cT k l    02 cos

17,1 0sin cos ,
i l

fT e k l
      02 cos

17,2 0cos cos ,
i l

fT e k l
    

 17,3 0sin cos ,fT k l     17,4 0cos cos ,fT k l     02 cos

18,5 0sinh cos ,
i l

T e l
      

 02 cos

18,6 0cosh cos ,
i l

T e l
      02 cos

18,7 0sin cos ,
i l

T e l
       02 cos

18,8 0cos cos ,
i l

T e l
     

 18,9 0sinh cos ,T l     18,10 0cosh cos ,T l     18,11 0sin cos ,T l    

 18,12 0cos cos ,T l     02 cos

19,5 0cosh cos ,
i l

T e l
      02 cos

19,6 0sinh cos ,
i l

T e l
      

 02 cos

19,7 0cos cos ,
i l

T e l
      02 cos

19,8 0sin cos ,
i l

T e l
      19,9 0cosh cos ,T l    

 19,10 0sinh cos ,T l     19,11 0cos cos ,T l     19,12 0sin cos ,T l   

 02 cos

20,1 0cos cos ,
i l

fT e k l
     02 cos

20,2 0sin cos ,
i l

fT e k l
     20,3 0cos cos ,fT k l    

 20,4 0sin cos ,fT k l    02 cos

21,5 0cosh cos ,
i l

T e l
      02 cos

21,6 0sinh cos ,
i l

T e l
      

 02 cos

21,7 0cos cos ,
i l

T e l
       02 cos

21,8 0sin cos ,
i l

T e l
       21,9 0cosh cos ,T l    

 21,10 0sinh cos ,T l     21,11 0cos cos ,T l    21,12 0sin cos ,T l    

 02 cos

22,5 0sinh cos ,
i l

T e l
       02 cos

22,6 0cosh cos ,
i l

T e l
     

 02 cos

22,7 0sin cos ,
i l

T e l
      02 cos

22,8 0cos cos ,
i l

T e l
       22,9 0sinh cos ,T l    

 22,10 0cosh cos ,T l     22,11 0sin cos ,T l    22,12 0cos cos ,T l   

 02 cos

23,13 0sin cos ,
i l

fT e k l
      02 cos

23,14 0cos cos ,
i l

fT e k l
     23,15 0sin cos ,fT k l    

 23,16 0cos cos ,fT k l     02 cos

24,17 0sinh cos ,
i l

T e l
       02 cos

24,18 0cosh cos ,
i l

T e l
     
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 02 cos

24,19 0sin cos ,
i l

T e l
       02 cos

24,20 0cos cos ,
i l

T e l
      24,21 0sinh cos ,T l    

 24,22 0cosh cos ,T l     24,23 0sin cos ,T l     24,24 0cos cos ,T l    

 02 cos

25,17 0cosh cos ,
i l

T e l
      02 cos

25,18 0sinh cos ,
i l

T e l
      

 02 cos

25,19 0cos cos ,
i l

T e l
      02 cos

25,20 0sin cos ,
i l

T e l
      25,21 0cosh cos ,T l    

 25,22 0sinh cos ,T l     25,23 0cos cos ,T l     25,24 0sin cos ,T l   

 02 cos

26,13 0cos cos ,
i l

f f fT e A k k l
     02 cos

26,14 0sin cos ,
i l

f f fT e A k k l
    

 26,15 0cos cos ,f f fT A k k l     26,16 0sin cos ,f f fT A k k l   

 02 cos

26,25 0cos cos ,
i l

c c cT e A k k l
     02 cos

26,26 0cos sin ,
i l

c c cT e A k k l
    

 26,27 0cos cos ,c c cT A k k l    26,28 0cos sin ,c c cT A k k l  

 02 cos 3

27,17 0cosh cos ,
i l

fT e D l
       02 cos 3

27,18 0sinh cos ,
i l

fT e D l
       

 02 cos 3

27,19 0cos cos ,
i l

fT e D l
        02 cos 3

27,20 0sin cos ,
i l

fT e D l
       

 3

27,21 0cosh cos ,fT D l      3

27,22 0sinh cos ,fT D l     

 3

27,23 0cos cos ,fT D l     3

27,24 0sin cos ,fT D l     

 02 cos

27,25 0sin cos ,
i l

c c cT e A k k l
      02 cos

27,26 0sin sin ,
i l

c c cT e A k k l
     

 27,27 0sin cos ,c c cT A k k l    27,28 0sin sin ,c c cT A k k l  

 02 cos

28,17 0sinh cos ,
i l

T e l
       02 cos

28,18 0cosh cos ,
i l

T e l
     

 02 cos

28,19 0sin cos ,
i l

T e l
      02 cos

28,20 0cos cos ,
i l

T e l
       28,21 0sinh cos ,T l    

 28,22 0cosh cos ,T l     28,23 0sin cos ,T l    28,24 0cos cos ,T l   

all the other elements of Matrix T  are equal to zero. 
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Fig.1 Sketch of an infinite long corrugated sandwich plate: (a) several unit cells; (b) 

a unit cell used for homogenization analysis; (c) a unit cell used for spectral 

element analysis 
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Fig.2 Dispersion curves for a homogeneous plate: (a) bending wave, (b) 

longitudinal wave 
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Fig.3 Dispersion curves for a corrugated sandwich plate ( 4  , dots denote the 

results obtained by the homogenization method, and solid lines represent 

those predicted by the spectral element method) 
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Fig.4 Dispersion curves for the corrugated sandwich plate: (a) 4  , (b) 

6   (‘BE’, ‘L’, ‘BR’ and ‘S’ denote corresponding wave modes, which 

are respectively the bending wave mode, longitudinal wave mode, breathing 

mode, and shear wave mode) 
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Fig.5 Wave modes of the corrugated sandwich plate ( 4  , the black dashed line 

depicts the reference configuration of a unit cell): (a) bending wave mode (BE 

mode); (b) longitudinal wave mode (L mode); (c) breathing mode (BR mode); 

(d) shear wave mode (S mode) 
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Fig.6 Effect of the thickness of the core sheets on the dispersion relations for the 

corrugated sandwich plate ( 1.0c fE E  , 1.0c f   , 0.10f ct h  , 

4  ) 
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Fig.7 Effect of the inclination angle of the core sheets on the dispersion relations for 

the corrugated sandwich plate ( 1.0c fE E  , 1.0c f   , 0.05c ct h  , 

0.10f ct h  ) 
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Fig.8 Effect of the thickness of the face sheets on the dispersion relations for the 

corrugated sandwich plate ( 1.0c fE E  , 1.0c f   , 0.05c ct h  , 

4  ) 
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Fig.9 Effect of the Young’s modulus of the corrugated core on the dispersion 

relations for the corrugated sandwich plate ( 1.0c f   , 0.05c ct h  , 

0.10f ct h  , 4  ) 
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Fig.10 Effect of the density of the corrugated core on the dispersion relations for the 

corrugated sandwich plate ( 1.0c fE E  , 0.05c ct h  , 0.10f ct h  , 4  ) 
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