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ABSTRACT

In recent years, heteroatom-doped biomass-derivaathon has attracted intensive
attention in vast fields due to their inexpensivecprsors and abundant resources, especially
in oxygen reduction reaction and supercapacitotss Tesearch demonstrates a simple
strategy to prepare mulberry leaves-derived nitmpgilfur dual-doped ladder-like porous

carbon material, which possesses high contenttodgen (8.17 at %), sulfur (1.97 at %),
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large surface area (1689°ng?) and porous structure with a mass of micropored an
mesopores. With respect to electrode material gfesiapacitor, the nitrogen, sulfur
dual-doped ladder-like carbon exhibits large speciépacitance of 243.4 F*qat 0.1 A @
and outstanding durability (94 % retention aftel0®Cycles at 3 A ¢ ). Moreover, in
comparison to Pt/C catalyst, nitrogen, sulfur digped ladder-like porous carbon presents
excellent electrochemical performances of long tstability (90.2% retention after 20000 s)
and resistance to methanol crossover for oxygeuctexh reaction. This work successfully
may provide a new case to take advantage of nataterials to fabricate heteroatom-doped
carbon for energy conversion and storage.
Keywords: N,S dual-doping; Bifunctional biomass-derived carpbSupercapacitor; Oxygen
reduction reaction
1. Introduction

With the development of economy, energy crisis amvironmental impact are
becoming increasingly severe, increasing a sudikinaeed to discover renewable energy
resources and develop energy devices [1], suchu@sckll and supercapacitor (SC) [2].
Catalysts are the key materials in fuel cell. Nbekdss, the high price and scarcity of typical
platinum catalyst for oxygen reduction reaction Ramper scale applications of fuel cells
[3]. So intensive efforts have been made to ingasti nonprecious metal and metal-free
catalysts [4]. SCs have excellent cycling abilitydahigh power/energy density, which are
mostly determined by active materials [5].

Carbon materials, such as graphene [6-8], CNTsL]9¢harbon aerogels [12] and active

carbon [13] have been extensively studied in enéeajgs as EDLCs electrode materials and
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ORR catalysts. To enhance the property of carbaennats, heteroatom (N,S,Pds;.) doping

is used as an effective and important method, wisdbienefitial to decrease charge transfer
resistance and improve wettability [14]. Recentigteroatom-doped carbon materials, for
example, N-doped porous carbon [15-20], S, N ccedoparbon nanosheets [21-23], N, S
co-doped 3D honeycomb-like carbon [24] and N amd-Soped biomass-derived carbon [14,
25], have been widely researched for ORR catabstselectrode materials of SCs. Among
them, due to the abundance, low expense, and tielability, biomass-derived carbon is an
attractive candidate, typically, rice straw-derivyearous carbon for SC [26], porous carbon
from banana fibers for SC [27], potato residue inabel N-doped porous carbon for SC [28],
N-doped mesoporous carbon from chin for ORR [29ddped nanoporous carbon from
typha orientalis for ORR [30], N-doped carbon fromcroorganism for ORR and SC [31].
Nonetheless, these investigations mostly focusesdimmgie energy application (ORR or SC).
Therefore, developing multifunctional biomass-dedv heteroatom-doped carbon s
desirable.

There is much effort focusing on utilizing biomdesfabricate energy storage devices,
but little attention has been paid on mulberry &wvhich will be investigated to use for
ORR and SCs for the first time. Herein, we dematsta straightforward, inexpensive and
readily scalable method to prepare nitrogen, sutfual-doped ladder-like porous carbon
(NSLPC) by pretreatment of activation with KOH grmktprocessing of doping with thiourea.
The method has three advantages as follow: (1)staisiable biomass, mulberry leaves, is
used as the carbon source; (2) facile preparatiethod with no templates are needed, and it

is worth noting that a unique ladder-like porougboa is obtained from the natural structure
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of the mulberry leaves; (3) the resultant NSLPC spsses numerous mesopores and
micropores, large specific surface area (SSA), egkl of N. Based on the aforementioned
features, the NSLPC sample presents high specifiacitance (243.4 F'gat 0.1 A ¢) and
excellent durability (94% retention after 5000 @sht 3 A §) for SCs in 6 M KOH solution.
Moreover, the NSLPC shows near four-electron payhwesistance to methanol poisoning
and high stability for ORR. This reproducible bissanaterial, simple synthetic method, and
outstanding property make NSLPC a potential candiflar ORR catalyst in fuel cells and
electrode material in SCs.
2. Experimental
2.1. Materials

Mulberry leaves (MLs) were collected in Sichuan,ir@h Ethanol absolute, thiourea,
urea, 37 wt % hydrochloric acid (HCIl) and 5 wt %fioa solution were bought from
Sinopharm Group. The commercial Pt/C catalysts \{@%) were provided by Johnson
Matthey Company.
2.2. Synthesis

Mulberry leaves, washed repeatedly by DI water,ewsaked overnight in drying oven
at 90 °C and ground into powder. Then the driedbeuy leaves powder mixed with KOH
(mass ratio of 1:4) were transferred into tube d&gm heated to 800 °C and pyrolyzed in Ar
flow for 2 h. After the temperature cooled downré@m temperature, the pyrolytic material
was immersed in 2 mol L HCI for 24 h, repeatedly washed by DI water arltaeol to
completely eliminate any residues of metal and tHiereze-dried to gain mulberry

leaves-derived ladder-like porous carbon (LPC). ffheurea and LPCs (mass ratio of 4:1)
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were mixed in a mortar with pestle for 0.5 h, ahd mixture was placed into the corundum
tube for pyrolyzation at 800 °C for 1 h with shielgl atmosphere of argon. The obtained
products were denoted as NSLPC.

At the same time, for comparison, nitrogen dopedbemy leaves-derived ladder-like
porous carbon (NLPC) was synthesized with urea depthg agent in the same way.
2.3. Characterization

The morphology of produced carbon materials werseplked by scanning electron
microscope (SEM, SU8010), transmission electronreswmopy (TEM, JEOL, JEM-2010).
Element mapping images were acquired by the SU8R1B energy-dispersive X-ray
spectrometry (EDS) system. The crystal structuralyasis was carried out on X-ray
diffraction (XRD, Cu ku radiation,A=1.5406 A), ® angle ranging from 10° to 90°.,N
adsorption-desorption isotherms were test at 7&KMicromeritics ASAP 2460 Surface Area
and Porosimetry analyzer analyzer after the pradwetre pretreated in a vacuum at 200 °C.
The SSA and pore size distributions (PSD) were gotatl through Brunauer-Emmett-Teller
(BET) method and a density functional theory (DFfgspectively. X-ray photoelectron
spectra (XPS) were recorded with a Kratos AXIS speaeter with a monochromic Al &K
(hv =1486.69 eV) radiation. Raman spectra of prepa@aples were recorded with a
LabRAM HR Evolution instrument.
2.4. Electrochemical measurement
2.4.1 Electrochemical characterizationsfor supercapacitors

The electrochemical performances of supercapaciteere measured by an

electrochemical workstation (Chenhua CHI760E). btam the working electrodes, typically,
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the mixture containing the acetylene black (10 w), %products (80 wt %) and
polytetrafluoroethylene (PTFE) binder (10 wt %) wamated onto a current collector of Ni
foam with 10 MPa, followed by drying overnight. Th&tinum foil and Hg/HgO electrode
acted as the counter electrode and reference atdegtrespectively. The electrolyte is 6.0 mol
L' KOH solution.

Cyclic voltammetry (CV), electrochemical impedanspectroscopy (EIS) and
galvanostatic charge/discharge (GCD) curves wererded with CHI760E electrochemistry
workstation. The stability experiment was performad3 A g' by Land cell tester. The

capacitance was determined by the follow equations:

I xAt
¢ mxAV

@

Where Cy (F gh, I (mA), At (s), m (mg) and V (V) denote the specific discharge
capacitance, working current, discharge time, nodstectrode active materials and potential,
respectively.

2.4.2 Electrochemical measurement for ORR

In addition, the electrochemical measurements f&®ROwere tested on CHI760E
workstation with a three-electrode cell. Saturatedomel electrode (SCE) with a salt
bridging and platinum foil (1 cfin were employed as the reference electrode andteoun
electrode, respectively. Rotation disk electroddKER diameter of 5 mm) modified by
catalysts acted as the working electrode. In oraerprepare working electrode, the
synthesized carbon (2 mg) was added into a mixatiethanol (80QuL), DI water (100uL)
and Nafion solution (10QuL), and the mixture was sonicated for about 0.5hgé&d a

homogeneous ink. 2QL catalyst ink was dropped to the surface of thesglcarbon disk,
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followed by drying to get a catalyst film, obtaigim mass loading of 0.204 mg émAs a
contrast, the Pt/C catalyst was coated on the glat®n disk surface with a similar method.
All the potential values mentioned for ORR are sed by reversible hydrogen electrode
(RHE).

Linear sweep voltammetry (LSV) and CV were perfodnire0.1 mol [* KOH saturated
with O, at 10 mV &. The electrochemical stability and crossover effsere tested by
current-time chronoamperometric response at 0.7 Nh wontinuous @ bubbling,

respectively. The electron number (n) was compbteloutecky-Levich (K-L) equations:

1.1, 1 (,
J J,  Bw?
B=0.2"FC D 7** 3

WherelJ, Jk ® andn stand the measured current density, kinetic-limgitturrent density,
the electrode rotation speed in rpm, the overalitebn transfer number, respectivéhyis the
Faradaic constant (96485C rhl C, is the Q saturation concentration in 0.1 M KOH
(1.2x10° mol cm®), v is the kinematic viscosity of the 0.1M KOH (1.1®%cn¥ s?), and
D, is the Q diffusion coefficient in 0.1 M KOH (1.9x10cnf s'). The 0.2 is a constant
when the rotation rate is denoted in rpm.

3. Resultsand discussions
3.1 Preparation

As exhibited in Scheme 1, the mulberry leaves-@eriWN, S dual-doped ladder-like
porous carbon materials were prepared by chemictidation method using KOH as a
activator and thiourea as a doping agent. Afterhwdsoy distilled water and dried, the taro

stems mixed with KOH were carbonized at 800 °C.eAthat the products of LPC were
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washed in 2 M HCI solution and freeze-dried. Furtiiee mixture of the LPC and thiourea
was pyrolyzed to prepare the N, S co-doped ladiergorous carbon at 800 °C for 1 h. The
N, S co-doped ladder-like porous carbon materiaeisoted as NSLPC. It is noted that this
synthesis method demonstrates a path to utilizendé$s to easily produce multifunctional
porous materials for electrochemical energy stosygéem.
3.2 Structural characterization

Fig.1 shows typical morphology of the NSLPC samplgse SEM images of NSLPC
samples at different magnifications present anumigdder-like and interconnected structure
with a little fragments (Fig. 1a and 1b), which rhaycomes from the inherent microstructure
of mulberry leaves. And this particular ladder-likerphology may be good for structural
stability. Similar structures can be observed f&®#@CLand NLPC shown in Fig. S1. EDS
element mapping images visually exhibit that thebora, nitrogen, sulfur and oxygen
heteroatoms are uniformly distributed throughowt MSLPC framework structures (Fig.1c
and 1d). Typical TEM images of the NSLPC materia displayed in Fig. le-1g. Fig. le
clearly shows the low-magnification TEM image, whiexhibits tiny porous structure
attributed to KOH activation and the emissions ddtev and carbon dioxide at high
temperature [32]. High-resolution TEM image (Fig.dbes not exhibit any crystalline lattice
fringes, which is in accordance with SAED resulig(FLg), demonstrating the nature of
amorphous carbon.

The crystalline phase of LPC, NLPC and NSLPC weaerdgomed by XRD. There are
two wide characteristic diffraction peaks at 238 &@4° from the XRD patterns of these three

samples (Fig.2a), in accordance with the (002) #&b00) lattice planes of graphite,
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respectively. Differently, the intensity of the fdifction peak in NLPC and NSLPC is higher
than these in LPC, indicating the better degreagraphitization for NLPC and NSLPC,
which is mainly contributed to the high temperatdoping at 8007. The structures of LPC,
NLPC and NSLPC were characterized by Raman spestris plotted in Fig. 2b, raman
spectrums of LPC, NLPC and NSLPC display two rembid peaks at 1346 and 1596 tm
which are assigned to graphitic§@ band) and disordered®sgarbon (D band), respectively.
As an indicator of the level of disordering and traphitic degree of the carbon materials,
the intensity ratio of the D and G band/[§) is adopt. d/ls intensity ratios calculated from
the spectra of LPC, NLPC and NSLPC are 1.07, 1r@b1a02, respectively. The relatively
lower Ip/lg intensity ratio of NSLPC sample confirms a deceeimsthe disordered structure
and the higher degree of graphitization. This tesath match with the XRD result.

N, adsorption-desorption isothermal curves were gExbito study the SSA and porosity
of the resultant LPC, NPLC and NSLPC samples. EigsBows the typical three ;N
adsorption-desorption isothermal curves, which gmés similar trend. From the adsorption
isotherm of LPC, NPLC and NSLPC samples, nitrogéggogption at a low pressure (R4
0.01) indicates the filling of luxuriant microporesBesides, these three 2N
adsorption-desorption isothermal curves could besified as a combined type | and IV with
a clear hysteresis loop of the type H4 on the bafsike IUPAC [33]. It is noted that the H4
hysteresis loop appears at a wide relative pregSu&~1.0 P/p), indicating the existence of
abundant mesopores. The pore size distribution BE,LNLPC and NSLPC are further
calculated by DFT method, as exhibited in Fig. Rdrticularly, distinct peaks are located at

about 0.5 nm, 0.8nm and 1.3nm in the PSD, indigatie existence of ultramicropores [34],
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micropores along with mesopores and macropores n(rf). It is reported that the
ultramicropore is helpful for the electrochemicalfjermances for SCs [35-38]. Moreover, a
wide pore distribution within 2.3~10 nm, mesoporoalso occurred. Particularly, the SSA,
total pore volumes, micropore and meso/macropotenves of these carbon materials are
listed in Table 1. Specifically, the SSAs of LPCI.®C and NSLPC calculated by BET
method are 568, 1207, 168% g, and the total pore volumes are 0.31, 0.72 antl dn g™,
respectively. It is found that themWso+macre0f NSLPC (0.655 crhg?) is larger than that of
LPC (0.106 criig™?) and NLPC (0.399 cfng). At the same time, the ¥so+macrddf NSLPC
(0.655 cm g*) is larger than the Mo (0.357 cmi g*), demonstrating that the NSLPC has
also abundant mesopores and macropores. And thnagavpore diameter of NSLPC is 2.39
nm. It is clearly observed that the SSA of NSLP@igch higher than that of LPC and NLPC,
which is ascribed to the addition of doping agdratt tplay a role as self-porogen with the
elimination of generated gas [39]. After all, th8INPC has high SSA and wide range of PSD
comprising of the micropores and mesopores, whsabf igreat benefit to catalysis and SCs.
The ladder-like porous structures not only boosttebchemical performance in where the
high mass transport rate of ion is achieved, bsb dlas great importance to the electric
double-layer capacity because of their high spedtirface area. Hence, porous carbon is
ideal for the production of double-layer supercatpa@and catalyst.

Surface chemical compositions of these samples$ustteer investigated by XPS. There
are four representative peaks of C 1s (284.7 eV)sKB98.6 eV), O 1s (532.9 eV) and S 2p
(164.1 eV) in the survey spectra of NSLPC sampteg. (3a), confirming that nitrogen and

sulfur species have been incorporated into theorafbamework of NSLPC. Besides, no
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other peaks are seen in the spectrum, demonstrdtengomplete removal of all the other
trace elements, in accordance with the results BDX Additionally, according to the
integrated peak areas of XPS data, the detailenhiatpercentages of LPC, NLPC and
NSLPC are calculated and summarized in Table 1ltida&arly, the atomic percentage
contents of carbon, nitrogen, sulfur and oxygenN&LPC sample is 82.53 at %, 8.17 at %,
1.97 at %, and 7.34 at %, respectively. However XRS spectra of LPC and NLPC have no
peaks of S 2p, and the N atomic percentage of NifP@ot much different from that of
NSLPC. As shown in Fig.3b, these three componeakgpef Cls for NSLPC locate at 284.7,
285.4 and 288.7 eV, which are ascribable to thedbonf s C=C, s C-C and
C=0/C=N/C=S bonds, respectively [40-42]. The fitthlds high resolution spectrum is
exhibited in Fig. 3c. It is clerly seen that thiedividual peaks appear at 398.5, 400.4 and
401.3 eV, representing pyridinic N, pyrrolic N agichphitic N [43], respectively. In addition,
as plotted in Fig. 3d, this fitted high resolutispectra of S 2p also presents three peaks,
which are located at 163.9, 165.15 and 167.3 e¥.dd¢ak at 167.3 eV may be corresponded
to -C-SOx-C- sulfone bridges (31%) that make néed#ince to ORR [44], as shown in Fig.3e.
The other two peaks at 163.9 and 165.15 eV argrassito the spin—orbit coupling of C-S-C
2p 3/2 and C-S-C 2p 1/2 bond , respectively [25hiclv are derived from thiophene-S
(68.8%). It is reported that thiophene-like S carhance conductivity [45]. The surface
contents of different element species for NSLPCarare shown in Fig. 3e. Combined with
the XPS spectra and the results from a previousrt¢f6], the possible schematic model for

the chemical structure of NSLPC doped with bothnd & is shown in Fig. 3f. Overall, the
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above results confirm that the N and S species baea successfully incorporated into the
carbon lattice of NSLPC.
3.3 Electrochemical performance of Supercapacitor

CV, GCD and EIS were test to study the electrochahperformance dfPC, NLPC and
NSLPC in a three-electrode cell with 6 mot KOH as the electrolyte. The typical CVs of
LPC (Fig. S2a), NLPC (Fig. S2b) amnNELPC (Fig. 4a) electrode were recorded with a scan
speed from 5 to 100 mV'sat potential range between -1 and 0 V. Distindthg, CV curves
of NSLPC exhibit regular rectangular shape at low scan &peedicating to be the
representative characteristic of electrical doubdser capacitor behavior (EDLC),
demonstrating quick ion transport in NSLPC eleatradaterials. However, the CV curves
show a near rectangular shape and a slight dewiatica relative high scan rate, which is
ascribable to some pseudocapacitive effects becafligbe nitrogen, sulfur and oxygen
functional groups [33, 47, 48]. The incorporatedfususpecies into the carbon framework
could influence the surface charge and offer upgseapacitive effect [49Meanwhile, he
doping of N into carbon framework can improve tlomductivity and wettability, and offer
up a pseudocapacitance [50]. Besides, the oxygetiegpdoped into carbon framework may
improve the wettability of electrode interface, ancontribute affluent faradic
pseudocapacitance in aqueous electrolytes [51]owang to the GCD profiles in Fig.4b,
NSLPC shows a capacitance of 214.5Fag 0.5 A @, which is much higher than that of
NLPC (185.5 F g at 0.5 A @) and LPC (165 F §at 0.5 A g). As shown in Fig. 4c, the
capacitive performance of NSLPC electrode was &irglerformed by galvanostatic experiments at

0.1to 20 A &. It is observed that the GCD curves of the NSLRAIlEt the symmetrical, linear and
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triangular characteristics with a little IR droperdonstrating good capacitive behaviors of EDLC.
Simultaneously, the GCD curves of LPC and NLPCtebgle are shown in Fig. S2c-d, which were
tested at 0.1 to 20 Ay Further, Fig.4d sums up the specific capacitasfcine LPC, NLPC and
NSLPC on the basis of the GCD measurements fronto02D A g. It is obvious that the NSLPC
possesses the highest capacitance in comparisihR&€ and LPC at the tested current densities.
Particularly, the detailed specific capacitanceBl8t.PC are 243.4, 223.4 and 206.8 Fag 0.1, 0.2
and 1 A ¢, respectively, which is superior to pine tree-dedi carbon [52]. Even at a current density
of 10 A g%, the specific capacitance reaches up to 168,Ruyich is higher than chitosan-derived
aerogels [53], and the detailed comparison is sumaedhin Table 2.

The outstanding capacitive performance of NSLPC im@yascribed to its high SSA, much
more porous structure and synergistic effect of Ngsdoping compared to NLPC and LPC.
Simultaneously, doping of N and S with the presewnit® efficiently augments the capacitance of
carbon material [47]. It is reported that the pynd N and pyrrolic N generally are good for the
pseudocapacitance, while graphitic N can enhaneednductivity of the carbon material [59, 60].
Likewise, doped S species could heighten surfagpepty of the carbon material, which is benificial
to pseudocapacitance [61]. Cycling durability is extremely crucial aspect to the practical
application of SC. Therefore, the cycling stabilifyNSLPC was tested by GCD at 3 A fpr 5000
cycles. As plotted in Fig. 4e, the GCD curves ofLRS show that the capacitance retention is still
beyond 94% after 5000 cycles, demonstrating itstanting long cycling stability. In general, good
stability is partially ascribed to double layer gexdischarge process in the electrode materias. A
shown in Fig. 4f, the EIS spectrum presents thatath-fabricated NSLPC electrode has an almost

vertical curve in the low frequency region, demoegisig a good capacitive behavior. The successful
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doping of N and S species enhance the surfaceityotard wettability with electrolyte, which is
good to decrease the charge-transfer resistancanwele, the semi-circle is very small in the high
frequency region, indicating a little internal i#aince.

3.4 Electrochemical performance of ORR

ORR catalytic activity of these samples was testedCV measurements in nitrogen-
and oxygen-saturated electrolyte solution. To eataluthe possibility of the practical
requirements for NSLPC, the commercial Pt/C catalas tested under the same condition
as a comparison. As exhibited in Fig. 5a (solide)jnquasi-rectangular double-layer
capacitive backgrounds in 0.1 M KOH solution satedawith nitrogen are clearly observed
without no redox peak. On the contrary, the NSLR@lyst displays a strong,®@eduction
peak at +0.86V in electrolyte solution saturatethv@,, which is more positive than that of
NLPC (+0.84V) and LPC (+0.71V), implying that,@ more easy to be reduced on the
NSLPC catalyst [62]. Consequently, the NSLPC sangjdenonstrates to be the optimal
catalytic performance among the three samples figagsd in terms of the peak potential,
surface area and active.?? Subsequently, the dsogh oxygen molecules on the adjacent
C atoms is enhanced and the O-O chemical bondsesakened [63].

LSV curves were used to further evaluate the dgtwi as-obtained materials and the
kinetics for ORR process. Fig. 5b presents a s&tSaf curves with different rotating speed
for NSLPC. It is observed that the ORR current d&ssincrease with the increase of
rotation rate due to the shortened diffusion distamnd the current density reaches diffusion
limiting current density at each rotation rate. gkown in Fig. S3, the onset potential of the

NSLPC is about 0.86 V, which is comparable to tifatommercial Pt/C (0.88). Though the
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limiting current density of the NSLPC is lower thidmat of the Pt/C catalyst. As plotted in Fig.
5c¢, the corresponding K-L curves show excellentadation betweem ®° and 3. Meanwhile,
the excellent linear relationship of K-L curves gagt that a similar electron transfer at
different potentials. Calculated from the slopeh# K-L curves, the electron transfer number
is about 3.7~3.9, demonstrating a near 4-electathway within the ORR process. This
result further confirms that NSLPC sample has adgmadalytic activity.

Methanol crossover is quite important for practiegdplication in fuel cells. The
chronoamperometric responses were tested for NSARLCPt/C catalyst with addition of
CH3OH, assessing the selectivity for catalyst at 99.rAs shown in Fig. 5d, the current
density of the NSLPC electrode displays negligieerease after the 3 M methanol is added
at 300 s, demonstrating an outstanding catalytecseity. By contrast, the current density of
Pt/C catalyst suffers a dramatic decrease alorig mvéthanol oxidation reaction (MOR) [64].
As a critical factor for ORR catalyst performanstability plays an important role in
long-term life for practical applications. As shown Fig. 5e, the stability performance of
NSLPC for ORR exhibits a high retention of 90.2%aP0000 s, distinguished from that 83%
for Pt/C under the same experimental condition. fdslt shows that the NSLPC catalyst
with good selectivity and excellent long-term sli#pihas potential as a electrocatalyst for
ORR.

The EIS measurements were adopted to study el@ctesistance and ion transport
behavior for ORR. The representative Nyquist cuafeNSLPC and Pt/C catalyst are shown
in Fig. 5f. The corresponding equivalent circuits@rt of Fig. 5f) consists of Rs, Rct, W and

Cdl, which represent the electrolyte resistanceyrgdh transfer resistance, electrolyte ions
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diffusion resistance, constant phase elementseofittuble layer, respectively [65]. Clearly,
the Rct value of NSLPC (39@) is smaller than that of Pt/C catalyst (4R2in the Nyquist
plot, demonstating a lower resistance at NSLPCuellte interface than that at
Pt/C-electrolyte interface.
4. Conclusions

In summary, the bifunctional NSLPC material is @negal by pyrolyzing the mixture of
mulberry leaves, KOH and thiourea in Ar atmosphest@ch possesses abundant micropores,
mesopores, proper content of doped N,S speciedighdsurface area. In terms of SC, the
NSLPC sample presents a specific capacitance a#g" at 0.1 A " and 214.5 F § at
0.5 A g* and excellent durability with 94 % retention a3 after 5000 cycles in SCs. On
the other hand, for ORR, the NSLPC sample exhibigstanding stability and also
overcomes the poor resistance to methanol crosseawvepared to commercial Pt/C catalyst.
In conclusion, the excellent SC and ORR performandieates that NSLPC is a prospective
candidate materials for electrochemical application
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Fig. 1. The morphology and microstructure of the NSLPC dama) low - and (b) high-magnification SEM
images; (c) selected-area image of elemental mgpin (d) the corresponding EDS elemental mappiages;

(e) TEM image, (f) HRTEM images and (g) the cormxjings selected-area electron diffraction (SAE&tjgrn.
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Table 1. Pore structure, BET and element contents of asapeejpsamples.

SBETa VTotalb VmicroC Vmeso+macrg Daveragg XPS analySiS (atom %)
Sample
(m“g") (em’g) (em’g)  (em’g) (m) C N O S
LPC 568 0.315 0.209 0.106 221 89.61 0.7 9.7 -
NLPC 1207 0.717 0.318 0.399 237 8495 811 6.94 -
NSLPC 1689 1.012 0.357 0.655 239 8253 8.17 7.34 1.97

Total pore volume.

Adsorption average pore diameter.
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Micropore volume (Micro) Was calculated from the V-t plot.

Specific surface area calculated to BET (Brundtramett-Teller) method.

Meso/macropore volume f¥so+mach) Was acquired by subtracting,¥o from Vrotal.



Table 2. Summary of electrochemical parameters of biomassédste-derived carbon as supercapacitor electrodes

compared with NSLPC

Carbon Precursor ~ SSAfg?!)  Electrolyte  Current density (A®y  Specific Capacitance (Fj Ref
0.1 243.4
Mulberry leaves 1689 6M KOH 0.2 223.4 this study
0.5 2145
broad beans shell 655.4 6M KOH 0.5 202 [25]
chitosan 2435 6M KOH 0.2 197 [53]
peanut shell 1552 6M KOH 0.05 245 [54]
cotton stalk 1481 ENBF, 0.5 114 [55]
Poplar wood 467 2M KOH 0.3 234 [56]
banana fiber 1097 1M NaOy 0.02 75 [57]
Cherry stones 1224 2 M,BO, 0.05 230 [58]
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Highlights

1. Mulberry leaves are used to prepare bifunctiona carbon materials.
2. A unique ladder-like porous carbon is obtained for the first time.
3. The N,S doped porous carbon exhibits outstanding durability for SC.

4. The N,S doped porous carbon presents excellent long stability for ORR.



