
Accepted Manuscript

Bifunctional biomass-derived N, S dual-doped ladder-like porous carbon for
supercapacitor and oxygen reduction reaction

Donglin He, Wang Zhao, Ping Li, Sen Sun, Qiwei Tan, Kun Han, Luan Liu, Lang Liu,
Xuanhui Qu

PII: S0925-8388(18)33381-4

DOI: 10.1016/j.jallcom.2018.09.141

Reference: JALCOM 47560

To appear in: Journal of Alloys and Compounds

Received Date: 17 June 2018

Revised Date: 11 September 2018

Accepted Date: 12 September 2018

Please cite this article as: D. He, W. Zhao, P. Li, S. Sun, Q. Tan, K. Han, L. Liu, L. Liu, X. Qu,
Bifunctional biomass-derived N, S dual-doped ladder-like porous carbon for supercapacitor and
oxygen reduction reaction, Journal of Alloys and Compounds (2018), doi: https://doi.org/10.1016/
j.jallcom.2018.09.141.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/161531152?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.jallcom.2018.09.141


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 1111 / 34343434 

Bifunctional biomass-derived N, S dual-doped ladder-like porous 

carbon for supercapacitor and oxygen reduction reaction  

Donglin He,a Wang Zhao,a Ping Li,*abc Sen Sun,a Qiwei Tan,a Kun Han,a Luan Liu,a Lang Liu,d and 

Xuanhui Qu*ace 

a Institute for Advanced Materials and Technology, University of Science and Technology Beijing, 

Beijing 100083, China 

b Beijing Key Laboratory for Advanced Powder Metallurgy and Particulate Materials, University of 

Science and Technology Beijing, Beijing 100083, China 

c Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of 

Science and Technology Beijing, Beijing 100083, China 

d School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia 

e The State Key Laboratory for Advanced Metals and Materials, University of Science and 

Technology Beijing, Beijing 100083, China 

* Corresponding author 

Email address: ustbliping@126.com (Prof. Ping Li); quxh@ustb.edu.cn (Prof. Xuanhui Qu) 

 

ABSTRACT 

In recent years, heteroatom-doped biomass-derived carbon has attracted intensive 

attention in vast fields due to their inexpensive precursors and abundant resources, especially 

in oxygen reduction reaction and supercapacitors. This research demonstrates a simple 

strategy to prepare mulberry leaves-derived nitrogen, sulfur dual-doped ladder-like porous 

carbon material, which possesses high content of nitrogen (8.17 at %), sulfur (1.97 at %), 
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large surface area (1689 m2 g-1) and porous structure with a mass of micropores and 

mesopores. With respect to electrode material of supercapacitor, the nitrogen, sulfur 

dual-doped ladder-like carbon exhibits large specific capacitance of 243.4 F g-1 at 0.1 A g-1 

and outstanding durability (94 % retention after 5000 cycles at 3 A g-1 ). Moreover, in 

comparison to Pt/C catalyst, nitrogen, sulfur dual-doped ladder-like porous carbon presents 

excellent electrochemical performances of long term stability (90.2% retention after 20000 s) 

and resistance to methanol crossover for oxygen reduction reaction. This work successfully 

may provide a new case to take advantage of nature materials to fabricate heteroatom-doped 

carbon for energy conversion and storage. 

Keywords: N,S dual-doping; Bifunctional biomass-derived carbon; Supercapacitor; Oxygen 

reduction reaction 

1. Introduction 

With the development of economy, energy crisis and environmental impact are 

becoming increasingly severe, increasing a sustainable need to discover renewable energy 

resources and develop energy devices [1], such as fuel cell and supercapacitor (SC) [2]. 

Catalysts are the key materials in fuel cell. Nonetheless, the high price and scarcity of typical 

platinum catalyst for oxygen reduction reaction (ORR) hamper scale applications of fuel cells 

[3]. So intensive efforts have been made to investigate nonprecious metal and metal-free 

catalysts [4]. SCs have excellent cycling ability and high power/energy density, which are 

mostly determined by active materials [5]. 

Carbon materials, such as graphene [6-8], CNTs [9-11], carbon aerogels [12] and active 

carbon [13] have been extensively studied in energy fields as EDLCs electrode materials and 
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ORR catalysts. To enhance the property of carbon materials, heteroatom (N,S,P,B,etc.) doping 

is used as an effective and important method, which is benefitial to decrease charge transfer 

resistance and improve wettability [14]. Recently, heteroatom-doped carbon materials, for 

example, N-doped porous carbon [15-20], S, N co-doped carbon nanosheets [21-23], N, S 

co-doped 3D honeycomb-like carbon [24] and N and S co-doped biomass-derived carbon [14, 

25], have been widely researched for ORR catalysts and electrode materials of SCs. Among 

them, due to the abundance, low expense, and the recyclability, biomass-derived carbon is an 

attractive candidate, typically, rice straw-derived porous carbon for SC [26], porous carbon 

from banana fibers for SC [27], potato residue -derived N-doped porous carbon for SC [28], 

N-doped mesoporous carbon from chin for ORR [29], N-doped nanoporous carbon from 

typha orientalis for ORR [30], N-doped carbon from microorganism for ORR and SC [31]. 

Nonetheless, these investigations mostly focused on single energy application (ORR or SC). 

Therefore, developing multifunctional biomass-derived heteroatom-doped carbon is 

desirable.  

There is much effort focusing on utilizing biomass to fabricate energy storage devices, 

but little attention has been paid on mulberry leaves, which will be investigated to use for 

ORR and SCs for the first time. Herein, we demonstrate a straightforward, inexpensive and 

readily scalable method to prepare nitrogen, sulfur dual-doped ladder-like porous carbon 

(NSLPC) by pretreatment of activation with KOH and postprocessing of doping with thiourea. 

The method has three advantages as follow: (1) a sustainable biomass, mulberry leaves, is 

used as the carbon source; (2) facile preparation method with no templates are needed, and it 

is worth noting that a unique ladder-like porous carbon is obtained from the natural structure 
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of the mulberry leaves; (3) the resultant NSLPC possesses numerous mesopores and 

micropores, large specific surface area (SSA), high level of N. Based on the aforementioned 

features, the NSLPC sample presents high specific capacitance (243.4 F g-1 at 0.1 A g-1) and 

excellent durability (94% retention after 5000 cycles at 3 A g-1) for SCs in 6 M KOH solution. 

Moreover, the NSLPC shows near four-electron pathway, resistance to methanol poisoning 

and high stability for ORR. This reproducible biomass material, simple synthetic method, and 

outstanding property make NSLPC a potential candidate for ORR catalyst in fuel cells and 

electrode material in SCs. 

2. Experimental  

2.1. Materials 

Mulberry leaves (MLs) were collected in Sichuan, China. Ethanol absolute, thiourea, 

urea, 37 wt % hydrochloric acid (HCl) and 5 wt % nafion solution were bought from 

Sinopharm Group. The commercial Pt/C catalysts (20 wt%) were provided by Johnson 

Matthey Company.  

2.2. Synthesis  

Mulberry leaves, washed repeatedly by DI water, were baked overnight in drying oven 

at 90 °C and ground into powder. Then the dried mulberry leaves powder mixed with KOH 

(mass ratio of 1:4) were transferred into tube furnace, heated to 800 °C and pyrolyzed in Ar 

flow for 2 h. After the temperature cooled down to room temperature, the pyrolytic material 

was immersed in 2 mol L-1 HCl for 24 h, repeatedly washed by DI water and ethanol to 

completely eliminate any residues of metal and then freeze-dried to gain mulberry 

leaves-derived ladder-like porous carbon (LPC). The thiourea and LPCs (mass ratio of 4:1) 
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were mixed in a mortar with pestle for 0.5 h, and the mixture was placed into the corundum 

tube for pyrolyzation at 800 °C for 1 h with shielding atmosphere of argon. The obtained 

products were denoted as NSLPC.  

At the same time, for comparison, nitrogen doped mulberry leaves-derived ladder-like 

porous carbon (NLPC) was synthesized with urea used doping agent in the same way. 

2.3. Characterization  

The morphology of produced carbon materials were observed by scanning electron 

microscope (SEM, SU8010), transmission electron microscopy (TEM, JEOL, JEM-2010). 

Element mapping images were acquired by the SU8010 with energy-dispersive X-ray 

spectrometry (EDS) system. The crystal structure analysis was carried out on X-ray 

diffraction (XRD, Cu Kα radiation, λ=1.5406 Å), 2θ angle ranging from 10º to 90º. N2 

adsorption-desorption isotherms were test at 77K via Micromeritics ASAP 2460 Surface Area 

and Porosimetry analyzer analyzer after the products were pretreated in a vacuum at 200 °C. 

The SSA and pore size distributions (PSD) were conducted through Brunauer-Emmett-Teller 

(BET) method and a density functional theory (DFT), respectively. X-ray photoelectron 

spectra (XPS) were recorded with a Kratos AXIS spectrometer with a monochromic Al Kα 

(hν =1486.69 eV) radiation. Raman spectra of prepared samples were recorded with a 

LabRAM HR Evolution instrument.  

2.4. Electrochemical measurement 

2.4.1 Electrochemical characterizations for supercapacitors 

The electrochemical performances of supercapacitors were measured by an 

electrochemical workstation (Chenhua CHI760E). To obtain the working electrodes, typically, 
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the mixture containing the acetylene black (10 wt %), products (80 wt %) and 

polytetrafluoroethylene (PTFE) binder (10 wt %) was coated onto a current collector of Ni 

foam with 10 MPa, followed by drying overnight. The platinum foil and Hg/HgO electrode 

acted as the counter electrode and reference electrode, respectively. The electrolyte is 6.0 mol 

L-1 KOH solution. 

Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and 

galvanostatic charge/discharge (GCD) curves were recorded with CHI760E electrochemistry 

workstation. The stability experiment was performed at 3 A g-1 by Land cell tester. The 

capacitance was determined by the follow equations: 

g

t
            (1)

m

I
C

V

×∆=
× ∆

 

Where Cg (F g-1), I (mA), ∆t (s), m (mg) and V (V) denote the specific discharge 

capacitance, working current, discharge time, mass of electrode active materials and potential, 

respectively. 

2.4.2 Electrochemical measurement for ORR 

In addition, the electrochemical measurements for ORR were tested on CHI760E 

workstation with a three-electrode cell. Saturated calomel electrode (SCE) with a salt 

bridging and platinum foil (1 cm2) were employed as the reference electrode and counter 

electrode, respectively. Rotation disk electrode (RDE, diameter of 5 mm) modified by 

catalysts acted as the working electrode. In order to prepare working electrode, the 

synthesized carbon (2 mg) was added into a mixture of ethanol (800 µL), DI water (100 µL) 

and Nafion solution (100 µL), and the mixture was sonicated for about 0.5h to get a 

homogeneous ink. 20 µL catalyst ink was dropped to the surface of the glass carbon disk, 
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followed by drying to get a catalyst film, obtaining a mass loading of 0.204 mg cm-2. As a 

contrast, the Pt/C catalyst was coated on the glass carbon disk surface with a similar method. 

All the potential values mentioned for ORR are revised by reversible hydrogen electrode 

(RHE).  

Linear sweep voltammetry (LSV) and CV were performed in 0.1 mol L-1 KOH saturated 

with O2 at 10 mV s-1. The electrochemical stability and crossover effect were tested by 

current-time chronoamperometric response at 0.7 V with continuous O2 bubbling, 

respectively. The electron number (n) was computed by Koutecky-Levich (K-L) equations: 

1 2
k

2 3 1 6

1 1 1
+                     (2)

0.2          (3)O O

J J B

B nFC D

ω
ν −

=

=
 

Where J, Jk ω and n stand the measured current density, kinetic-limiting current density, 

the electrode rotation speed in rpm, the overall electron transfer number, respectively, F is the 

Faradaic constant (96485C mol-1), �� is the O2 saturation concentration in 0.1 M KOH 

(1.2×10-6 mol cm-3), � is the kinematic viscosity of the 0.1M KOH (1.13×10-2 cm2 s-1), and 

�� is the O2 diffusion coefficient in 0.1 M KOH (1.9×10-5 cm2 s-1). The 0.2 is a constant 

when the rotation rate is denoted in rpm. 

3. Results and discussions 

3.1 Preparation 

As exhibited in Scheme 1, the mulberry leaves-derived N, S dual-doped ladder-like 

porous carbon materials were prepared by chemical activation method using KOH as a 

activator and thiourea as a doping agent. After washed by distilled water and dried, the taro 

stems mixed with KOH were carbonized at 800 °C. After that the products of LPC were 
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washed in 2 M HCl solution and freeze-dried. Further, the mixture of the LPC and thiourea 

was pyrolyzed to prepare the N, S co-doped ladder-like porous carbon at 800 °C for 1 h. The 

N, S co-doped ladder-like porous carbon material is denoted as NSLPC. It is noted that this 

synthesis method demonstrates a path to utilize biomass to easily produce multifunctional 

porous materials for electrochemical energy storage system. 

3.2 Structural characterization 

Fig.1 shows typical morphology of the NSLPC samples. The SEM images of NSLPC 

samples at different magnifications present an unique ladder-like and interconnected structure 

with a little fragments (Fig. 1a and 1b), which maybe comes from the inherent microstructure 

of mulberry leaves. And this particular ladder-like morphology may be good for structural 

stability. Similar structures can be observed for LPC and NLPC shown in Fig. S1. EDS 

element mapping images visually exhibit that the carbon, nitrogen, sulfur and oxygen 

heteroatoms are uniformly distributed throughout the NSLPC framework structures (Fig.1c 

and 1d). Typical TEM images of the NSLPC material are displayed in Fig. 1e-1g. Fig. 1e 

clearly shows the low-magnification TEM image, which exhibits tiny porous structure 

attributed to KOH activation and the emissions of water and carbon dioxide at high 

temperature [32]. High-resolution TEM image (Fig.1f) does not exhibit any crystalline lattice 

fringes, which is in accordance with SAED result (Fig. 1g), demonstrating the nature of 

amorphous carbon. 

The crystalline phase of LPC, NLPC and NSLPC were performed by XRD. There are 

two wide characteristic diffraction peaks at 23° and 44° from the XRD patterns of these three 

samples (Fig.2a), in accordance with the (002) and (100) lattice planes of graphite, 
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respectively. Differently, the intensity of the diffraction peak in NLPC and NSLPC is higher 

than these in LPC, indicating the better degree of graphitization for NLPC and NSLPC, 

which is mainly contributed to the high temperature doping at 800 �. The structures of LPC, 

NLPC and NSLPC were characterized by Raman spectrums. As plotted in Fig. 2b, raman 

spectrums of LPC, NLPC and NSLPC display two remarkable peaks at 1346 and 1596 cm-1, 

which are assigned to graphitic sp2 (G band) and disordered sp3 carbon (D band), respectively. 

As an indicator of the level of disordering and the graphitic degree of the carbon materials, 

the intensity ratio of the D and G band (ID/IG) is adopt. ID/IG intensity ratios calculated from 

the spectra of LPC, NLPC and NSLPC are 1.07, 1.05 and 1.02, respectively. The relatively 

lower ID/IG intensity ratio of NSLPC sample confirms a decrease in the disordered structure 

and the higher degree of graphitization. This result can match with the XRD result. 

N2 adsorption-desorption isothermal curves were recorded to study the SSA and porosity 

of the resultant LPC, NPLC and NSLPC samples. Fig.2c shows the typical three N2 

adsorption-desorption isothermal curves, which presents similar trend. From the adsorption 

isotherm of LPC, NPLC and NSLPC samples, nitrogen adsorption at a low pressure (P/P0

0.01) indicates the filling of luxuriant micropores. Besides, these three N2 

adsorption-desorption isothermal curves could be classified as a combined type I and IV with 

a clear hysteresis loop of the type H4 on the basis of the IUPAC [33]. It is noted that the H4 

hysteresis loop appears at a wide relative pressure (0.45~1.0 P/P0), indicating the existence of 

abundant mesopores. The pore size distribution of LPC, NLPC and NSLPC are further 

calculated by DFT method, as exhibited in Fig. 2d. Particularly, distinct peaks are located at 

about 0.5 nm, 0.8nm and 1.3nm in the PSD, indicating the existence of ultramicropores [34], 
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micropores along with mesopores and macropores (>2 nm). It is reported that the 

ultramicropore is helpful for the electrochemical performances for SCs [35-38]. Moreover, a 

wide pore distribution within 2.3~10 nm, mesoporous, also occurred. Particularly, the SSA, 

total pore volumes, micropore and meso/macropore volumes of these carbon materials are 

listed in Table 1. Specifically, the SSAs of LPC, NLPC and NSLPC calculated by BET 

method are 568, 1207, 1689 m2 g-1, and the total pore volumes are 0.31, 0.72 and 1.01 cm3 g-1, 

respectively. It is found that the Vmeso+macro of NSLPC (0.655 cm3 g-1) is larger than that of 

LPC (0.106 cm3 g-1) and NLPC (0.399 cm3 g-1). At the same time, the Vmeso+macro of NSLPC 

(0.655 cm3 g-1) is larger than the Vmicro (0.357 cm3 g-1), demonstrating that the NSLPC has 

also abundant mesopores and macropores. And the average pore diameter of NSLPC is 2.39 

nm. It is clearly observed that the SSA of NSLPC is much higher than that of LPC and NLPC, 

which is ascribed to the addition of doping agent that play a role as self-porogen with the 

elimination of generated gas [39]. After all, the NSLPC has high SSA and wide range of PSD 

comprising of the micropores and mesopores, which is of great benefit to catalysis and SCs. 

The ladder-like porous structures not only boost electrochemical performance in where the 

high mass transport rate of ion is achieved, but also has great importance to the electric 

double-layer capacity because of their high specific surface area. Hence, porous carbon is 

ideal for the production of double-layer supercapacitor and catalyst.  

Surface chemical compositions of these samples are further investigated by XPS. There 

are four representative peaks of C 1s (284.7 eV), N 1s (398.6 eV), O 1s (532.9 eV) and S 2p 

(164.1 eV) in the survey spectra of NSLPC samples (Fig. 3a), confirming that nitrogen and 

sulfur species have been incorporated into the carbon framework of NSLPC. Besides, no 
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other peaks are seen in the spectrum, demonstrating the complete removal of all the other 

trace elements, in accordance with the results of XRD. Additionally, according to the 

integrated peak areas of XPS data, the detailed atomic percentages of LPC, NLPC and 

NSLPC are calculated and summarized in Table 1. Particularly, the atomic percentage 

contents of carbon, nitrogen, sulfur and oxygen for NSLPC sample is 82.53 at %, 8.17 at %, 

1.97 at %, and 7.34 at %, respectively. However, the XPS spectra of LPC and NLPC have no 

peaks of S 2p, and the N atomic percentage of NLPC is not much different from that of 

NSLPC. As shown in Fig.3b, these three component peaks of C1s for NSLPC locate at 284.7, 

285.4 and 288.7 eV, which are ascribable to the bonds of sp2 C=C, sp3 C-C and 

C=O/C=N/C=S bonds, respectively [40-42]. The fitted N1s high resolution spectrum is 

exhibited in Fig. 3c. It is clerly seen that three individual peaks appear at 398.5, 400.4 and 

401.3 eV, representing pyridinic N, pyrrolic N and graphitic N [43], respectively. In addition, 

as plotted in Fig. 3d, this fitted high resolution spectra of S 2p also presents three peaks, 

which are located at 163.9, 165.15 and 167.3 eV. The peak at 167.3 eV may be corresponded 

to -C-SOx-C- sulfone bridges (31%) that make no difference to ORR [44], as shown in Fig.3e. 

The other two peaks at 163.9 and 165.15 eV are assigned to the spin–orbit coupling of C-S-C 

2p 3/2 and C-S-C 2p 1/2 bond , respectively [25], which are derived from thiophene-S 

(68.8%). It is reported that thiophene-like S can enhance conductivity [45]. The surface 

contents of different element species for NSLPC sample are shown in Fig. 3e. Combined with 

the XPS spectra and the results from a previous report [46], the possible schematic model for 

the chemical structure of NSLPC doped with both N and S is shown in Fig. 3f. Overall, the 
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above results confirm that the N and S species have been successfully incorporated into the 

carbon lattice of NSLPC.  

3.3 Electrochemical performance of Supercapacitor  

CV, GCD and EIS were test to study the electrochemical performance of LPC, NLPC and 

NSLPC in a three-electrode cell with 6 mol L-1 KOH as the electrolyte. The typical CVs of 

LPC (Fig. S2a), NLPC (Fig. S2b) and NSLPC (Fig. 4a) electrode were recorded with a scan 

speed from 5 to 100 mV s-1 at potential range between -1 and 0 V. Distinctly, the CV curves 

of NSLPC exhibit regular rectangular shape at low scan speed, indicating to be the 

representative characteristic of electrical double layer capacitor behavior (EDLC), 

demonstrating quick ion transport in NSLPC electrode materials. However, the CV curves 

show a near rectangular shape and a slight deviation at a relative high scan rate, which is 

ascribable to some pseudocapacitive effects because of the nitrogen, sulfur and oxygen 

functional groups [33, 47, 48]. The incorporated sulfur species into the carbon framework 

could influence the surface charge and offer up pseudocapacitive effect [49]. Meanwhile, the 

doping of N into carbon framework can improve the conductivity and wettability, and offer 

up a pseudocapacitance [50]. Besides, the oxygen species doped into carbon framework may 

improve the wettability of electrode interface, and contribute affluent faradic 

pseudocapacitance in aqueous electrolytes [51]. According to the GCD profiles in Fig.4b, 

NSLPC shows a capacitance of 214.5 F g-1 at 0.5 A g-1, which is much higher than that of 

NLPC (185.5 F g-1 at 0.5 A g-1) and LPC (165 F g-1 at 0.5 A g-1). As shown in Fig. 4c, the 

capacitive performance of NSLPC electrode was further performed by galvanostatic experiments at 

0.1 to 20 A g-1. It is observed that the GCD curves of the NSLPC exhibit the symmetrical, linear and 
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triangular characteristics with a little IR drop, demonstrating good capacitive behaviors of EDLC. 

Simultaneously, the GCD curves of LPC and NLPC electrode are shown in Fig. S2c-d, which were 

tested at 0.1 to 20 A g-1. Further, Fig.4d sums up the specific capacitance of the LPC, NLPC and 

NSLPC on the basis of the GCD measurements from 0.1 to 20 A g-1. It is obvious that the NSLPC 

possesses the highest capacitance in comparison to NLPC and LPC at the tested current densities. 

Particularly, the detailed specific capacitances of NSLPC are 243.4, 223.4 and 206.8 F g-1 at 0.1, 0.2 

and 1 A g-1, respectively, which is superior to pine tree-derived carbon [52]. Even at a current density 

of 10 A g-1, the specific capacitance reaches up to 168 F g-1, which is higher than chitosan-derived 

aerogels [53], and the detailed comparison is summarized in Table 2. 

The outstanding capacitive performance of NSLPC may be ascribed to its high SSA, much 

more porous structure and synergistic effect of N,S co-doping compared to NLPC and LPC. 

Simultaneously, doping of N and S with the presence of O efficiently augments the capacitance of 

carbon material [47]. It is reported that the pyridinic N and pyrrolic N generally are good for the 

pseudocapacitance, while graphitic N can enhance the conductivity of the carbon material [59, 60]. 

Likewise, doped S species could heighten surface property of the carbon material, which is benificial 

to pseudocapacitance [61]. Cycling durability is an extremely crucial aspect to the practical 

application of SC. Therefore, the cycling stability of NSLPC was tested by GCD at 3 A g-1 for 5000 

cycles. As plotted in Fig. 4e, the GCD curves of NSLPC show that the capacitance retention is still 

beyond 94% after 5000 cycles, demonstrating its outstanding long cycling stability. In general, good 

stability is partially ascribed to double layer charge-discharge process in the electrode materials. As 

shown in Fig. 4f, the EIS spectrum presents that the as-fabricated NSLPC electrode has an almost 

vertical curve in the low frequency region, demonstrating a good capacitive behavior. The successful 
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doping of N and S species enhance the surface polarity and wettability with electrolyte, which is 

good to decrease the charge-transfer resistance. Meanwhile, the semi-circle is very small in the high 

frequency region, indicating a little internal resistance.  

3.4 Electrochemical performance of ORR 

ORR catalytic activity of these samples was tested by CV measurements in nitrogen- 

and oxygen-saturated electrolyte solution. To evaluate the possibility of the practical 

requirements for NSLPC, the commercial Pt/C catalyst was tested under the same condition 

as a comparison. As exhibited in Fig. 5a (solid line), quasi-rectangular double-layer 

capacitive backgrounds in 0.1 M KOH solution saturated with nitrogen are clearly observed 

without no redox peak. On the contrary, the NSLPC catalyst displays a strong O2 reduction 

peak at +0.86V in electrolyte solution saturated with O2, which is more positive than that of 

NLPC (+0.84V) and LPC (+0.71V), implying that O2 is more easy to be reduced on the 

NSLPC catalyst [62]. Consequently, the NSLPC sample demonstrates to be the optimal 

catalytic performance among the three samples investigated in terms of the peak potential, 

surface area and active.?? Subsequently, the adsorption of oxygen molecules on the adjacent 

C atoms is enhanced and the O-O chemical bonds are weakened [63].  

LSV curves were used to further evaluate the activity of as-obtained materials and the 

kinetics for ORR process. Fig. 5b presents a set of LSV curves with different rotating speed 

for NSLPC. It is observed that the ORR current densities increase with the increase of 

rotation rate due to the shortened diffusion distance, and the current density reaches diffusion 

limiting current density at each rotation rate. As shown in Fig. S3, the onset potential of the 

NSLPC is about 0.86 V, which is comparable to that of commercial Pt/C (0.88). Though the 
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limiting current density of the NSLPC is lower than that of the Pt/C catalyst. As plotted in Fig. 

5c, the corresponding K-L curves show excellent correlation between ω-0.5 and J-1. Meanwhile, 

the excellent linear relationship of K-L curves suggest that a similar electron transfer at 

different potentials. Calculated from the slope of the K-L curves, the electron transfer number 

is about 3.7~3.9, demonstrating a near 4-electron pathway within the ORR process. This 

result further confirms that NSLPC sample has a good catalytic activity.  

Methanol crossover is quite important for practical application in fuel cells. The 

chronoamperometric responses were tested for NSLPC and Pt/C catalyst with addition of 

CH3OH, assessing the selectivity for catalyst at 900 rpm. As shown in Fig. 5d, the current 

density of the NSLPC electrode displays negligible decrease after the 3 M methanol is added 

at 300 s, demonstrating an outstanding catalytic selectivity. By contrast, the current density of 

Pt/C catalyst suffers a dramatic decrease along with methanol oxidation reaction (MOR) [64]. 

As a critical factor for ORR catalyst performance, stability plays an important role in 

long-term life for practical applications. As shown in Fig. 5e, the stability performance of 

NSLPC for ORR exhibits a high retention of 90.2% after 20000 s, distinguished from that 83% 

for Pt/C under the same experimental condition. The result shows that the NSLPC catalyst 

with good selectivity and excellent long-term stability has potential as a electrocatalyst for 

ORR.  

The EIS measurements were adopted to study electrical resistance and ion transport 

behavior for ORR. The representative Nyquist curves of NSLPC and Pt/C catalyst are shown 

in Fig. 5f. The corresponding equivalent circuit (insert of Fig. 5f) consists of Rs, Rct, W and 

Cdl, which represent the electrolyte resistance, charge transfer resistance, electrolyte ions 
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diffusion resistance, constant phase elements of the double layer, respectively [65]. Clearly, 

the Rct value of NSLPC (39.4 Ω) is smaller than that of Pt/C catalyst (47.6 Ω) in the Nyquist 

plot, demonstating a lower resistance at NSLPC-electrolyte interface than that at 

Pt/C-electrolyte interface. 

4. Conclusions 

In summary, the bifunctional NSLPC material is prepared by pyrolyzing the mixture of 

mulberry leaves, KOH and thiourea in Ar atmosphere, which possesses abundant micropores, 

mesopores, proper content of doped N,S species and high surface area. In terms of SC, the 

NSLPC sample presents a specific capacitance of 243.4 F g-1 at 0.1 A g-1 and 214.5 F g-1 at 

0.5 A g-1 and excellent durability with 94 % retention at 3 A g-1 after 5000 cycles in SCs. On 

the other hand, for ORR, the NSLPC sample exhibits outstanding stability and also 

overcomes the poor resistance to methanol cross-over compared to commercial Pt/C catalyst. 

In conclusion, the excellent SC and ORR performance indicates that NSLPC is a prospective 

candidate materials for electrochemical application. 
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Scheme. 1. Schematic illustration for the synthesis route of NSLPC. 
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Fig. 1. The morphology and microstructure of the NSLPC sample: (a) low - and (b) high-magnification SEM 

images; (c) selected-area image of elemental mapping and (d) the corresponding EDS elemental mapping images; 

(e) TEM image, (f) HRTEM images and (g) the correspondings selected-area electron diffraction (SAED) pattern. 
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Fig. 2. (a) XRD patterns, (b) Raman spectra, (c) N2 adsorption-desorption isotherms and (d) pore size distribution 

using density functional theory method of LPC, NLPC and NSLPC. 
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Fig. 3. XPS measurement on NSLPC: (a)XPS survey; high-resolution (b) C 1s, (c) N 1s and (d) S 2p; (e) the 

content of different atom species from the fitted data (C 1s, N 1s and S 2p); (f) schematic model for the chemical 

structure and possible distribution in carbon framework with nitrogen and sulfur dual-doping. 
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Fig. 4. (a) CV curves of NSLPC at various scan speed; (b) galvanostatic charge-discharge curves of LPC, NLPC 

and NSLPC at 0.5 A g-1; (c) galvanostatic charge-discharge curves of NSLPC at different current densities; (d) 

specific capacitaces calculated from the discharge curves of LPC, NLPC and NSLPC at different current densities; 

(e) capacity retention of NSLPC at 3 A g-1; (e) cycling stability a 20 A g-1; (f) Nyquist plots of NSLPC in the 

frequency range of 10 mHz to 100 kHz. 
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Fig. 5. (a) CV curves of LPC, NLPC and NSLPC in N2-saturated ( solid line ) and O2- saturated ( dash line ) 

0.1 M KOH at a scan rate of 10 mV s-1; (b) LSV curves of NSLPC with a sweep rate of 10 mV s-1 at different 

rotation speed; (c) corresponding K-L plots of NSLPC at different electrode potentials; (d) current-time (i-t) 

chronoamperometric responses at +0.7 V vs. RHE for NSLPC and Pt/C modified electrode with the addition 

of 3 M methanol in O2-saturated 0.1 M KOH solution at 200 s; (e) stability evaluation of NSLPC and Pt/C for 

20000 s at +0.7 V vs. RHE with a rotation speed of 900 rpm; (f) EIS of NSLPC and Pt/C at open potential 

(insert: equivalent circuit). 
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Table 1. Pore structure, BET and element contents of as-prepared samples. 

 

a  Specific surface area calculated to BET (Brunauer-Emmett-Teller) method. 

b  Total pore volume. 

c  Micropore volume (Vmicro) was calculated from the V-t plot. 

d  Meso/macropore volume (Vmeso+macro) was acquired by subtracting Vmicro from VTotal. 

e  Adsorption average pore diameter. 

 

 

 

 

 

 

 

 

 

 

 

Sample 
SBET

a
 

(m2 g-1) 

VTotal
b
 

(cm3 g-1) 

Vmicro
c
 

(cm3 g-1) 

Vmeso+macro
d Daverage

e
 

(nm) 

XPS analysis (atom %) 

(cm3 g-1) C N O S 

LPC 568 0.315 0.209 0.106 2.21 89.61 0.7 9.7 - 

NLPC 1207 0.717 0.318 0.399 2.37 84.95 8.11 6.94 - 

NSLPC 1689 1.012 0.357 0.655 2.39 82.53 8.17 7.34 1.97 
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Table 2. Summary of electrochemical parameters of biomass/biowaste-derived carbon as supercapacitor electrodes 

compared with NSLPC 

Carbon Precursor SSA (m2 g-1) Electrolyte Current density (A·g-1) Specific Capacitance (F g-1) Ref 

Mulberry leaves  1689 6M KOH 

0.1 243.4 

this study 0.2 223.4 

0.5 214.5 

broad beans shell 655.4 6M KOH 0.5 202 [25] 

chitosan 2435 6M KOH 0.2 197 [53] 

peanut shell 1552 6M KOH 0.05 245 [54] 

cotton stalk 1481 Et4NBF4 0.5 114 [55] 

Poplar wood 467 2M KOH 0.3 234 [56] 

banana fiber 1097 1 M Na2SO4 0.02 75 [57] 

Cherry stones 1224 2 M H2SO4 0.05 230 [58] 
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Highlights 

1. Mulberry leaves  are used to prepare bifunctional carbon materials. 

2. A unique ladder-like porous carbon is obtained for the first time. 

3. The N,S doped porous carbon exhibits outstanding durability for SC. 

4. The N,S doped porous carbon presents excellent long stability for ORR. 


