Accepted Manuscript

The 2-Allocation p-Hub Median Problem and a Modified Benders Decomposition Method for Solving Hub Location Problems

Hamid Mokhtar, Mohan Krishnamoorthy, Andreas T. Ernst

PII:	S0305-0548(18)30247-8
DOI:	https://doi.org/10.1016/j.cor.2018.09.006
Reference:	CAOR 4554

To appear in: Computers and Operations Research
Received date: 10 October 2017
Revised date: 29 August 2018
Accepted date: 16 September 2018

Please cite this article as: Hamid Mokhtar, Mohan Krishnamoorthy, Andreas T. Ernst, The 2-Allocation p-Hub Median Problem and a Modified Benders Decomposition Method for Solving Hub Location Problems, Computers and Operations Research (2018), doi: https://doi.org/10.1016/j.cor.2018.09.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

The 2-Allocation p-Hub Median Problem and a Modified Benders Decomposition Method for Solving Hub Location Problems

Hamid Mokhtar* ${ }^{* 1}$, Mohan Krishnamoorthy ${ }^{\dagger 1,2}$, and Andreas T. Ernst ${ }^{\ddagger} 3$
${ }^{1}$ School of IT \& Electrical Engineering, The University of Queensland QLD 4072, Australia
${ }^{2}$ Department of Mechanical \& Aerospace Engineering, Monash University, Clayton VIC 3800, Australia
${ }^{3}$ School of Mathematical Sciences, Monash University, Clayton VIC 3800, Australia

Abstract

We study the uncapacitated 2-allocation p-hub median problem (U2ApHMP), which is a special case of the well-studied hub median problem. The hub median problem designs a hub network in which the location of p hubs needs to be decided (the hubs are fully interconnected). The other nodes (known as access nodes) in the hub median problem are then allocated to one or many hubs. In the U2ApHMP, each access node is allocated to exactly two hubs. We discuss how this problem provides an alternative network design option for well-known p-hub median problems. We show its relevance and usefulness in the context of survivable network design and show that it addresses network survivability, a feature that has often been largely overlooked in hub network design research to date. We show that U2ApHMP is NP-hard even for a fixed/known set of hubs. We propose a mathematical formulation and develop a modified Benders decomposition method for this problem. In this, we convert the corresponding subproblems to minimum cost network flow problems. This allows us to solve large instances efficiently. We believe that, while our resulting method solves the U2ApHMP efficiently, it is also generalisable and can potentially be employed for solving other classes and types of hub location problems too.

keywords: Hub Location, p-Hub Median, Benders Decomposition, Location-Allocation, Survivability

1 Introduction

Hubs are employed in several network design contexts that involve flow interchange between nodes and are often used in the design of, for example, airline networks, parcel delivery networks, and telecommunication networks.) Flow between nodes (referred to as access nodes) is routed via hubs, each of which acts as a consolidator and forwarder. The (volume) flow between the hubs is discounted because of the large rolumes that are presumed to accrue from flow consolidation. Given a fixed/known positive integer p, we either get the uncapacitated single allocation p-hub median problem (USA p HMP), if each access-node is allocated to exactly one hub, or the uncapacitated multiple allocation p-hub median problem (UMA $p \mathrm{HMP}$), if access nodes may be allocated to multiple hubs.

The hub location problem (HLP) has been well-studied in the literature. Following seminal works of O'Kelly [33, 34], a few hub median problems were introduced and formulated by Campbell [6, 7].

[^0]The HLP has been studied in several contexts including telecommunications, parcel delivery systems, airline hub design and transportation networks (Çetiner et al. [10], Ernst and Krishnamoorthy [14, 15, 16], Jaillet et al. [20], Klincewicz [24], Powell and Sheffi [37], Sen et al. [39, 40]). There are a few surveys which review early and recent works on HLP classification, modelling, and solution methodologies (Alumur and Kara [3], Campbell et al. [8], Farahani et al. [17]). An alternative network design whose operational costs are between those of USA p HMP and UMA p HMP is studied by yam [1]. They studied a variation of the p-hub median problem in which any non-hub is allocated to at most r hubs. This problem was called UrApHMP. The problem we study in this paper is a special case of UrApHMP with further considerations. We discuss the differences and other considerations later on in this section.

Ernst and Krishnamoorthy [14] present a compact 3-index formulation for USApHMP and UMApHMP and provided exact solution approaches for these problems (Ernst and Krishnamoorthy [14, 15, 16]). Recently, modified Benders decomposition methods have been developed, with remarkable success, for solving some classes of HLPs (de Camargo et al. [12] and Contreras et al. [11]). Through these novel methods it is now possible to solve reasonably large instances of a certain class of HLPs to optimality. Besides exact methods, heuristic approaches have also been used for solving the HLP (see, for example, Çetiner et al. [10], Klincewicz [25], Skorin-Kapov and Skorin-Kapov [41], Smith et al. [42], Yaman [48]).

Despite all the attention in the literature on the study of HLPS, there has not been a significant amount of attention paid to hub network survivability. This requirement is particularly relevant in electrical and telecommunication networks that have a hub topology. While a hub topology achieves decreased costs through flow aggregation, we are not assured that there will always be a path in the network for flow between each origin-destination pair in the network. In particular, in data location problems, content delivery networks employ hub networks to utilise multiple servers for responding to customer demands (Sen and Krishnamoorthy [38], Sen et al. [40]). This context is especially important for Video-on-Demand systems, where content and videos are distributed among multiple servers and end-users are constantly connected to the server network (Sen et al. [39]). In such applications, it is necessary to have survivable networks in the case of component failures.

The design of survivable hub networks has, however, started to receive some attention in the literature ever since it was documented that hub networks are vulnerable and suffer from resilience drawbacks (O'Kelly [35]). In fact, there is a large body of research in the network design literature in which k-connectivity of networks for $k \geq 2$ is required to ensure survivability. In the design of telecommunications (hub) networks, the 2-connectivity, also called 'survivability constraint', is widely used to increase fault-tolerance of networks (Cardwell et al. [9], Grötschel et al. [19], Monma and Shallcross [32], Soni et al. [44], Xu [47]). Kim and O'Kelly [22] considered the p-hub median problem in which the expected network throughput is maximised when the probability of disruption for each origin-destination route is taken into the account. Kim [21] and An et al. [4] consider the design of secondary routes for origindestination pairs through a fixed number of back-up hubs which are different from the primary hubs that are chosen. As we can see, to date, the research thrust has been on the backbone (hub) network, and on the development of back-up hubs and routes through these. This approach, while expensive, may not be an option for many applications because it ignores the vulnerability of end-users that results from disruptions to (and failures of) access links.

In this paper, we examine a variation of a special case of $\mathrm{Ur} \mathrm{A} p \mathrm{HMP}$ problem (yam [1]). Our problem is, indeed $\mathrm{U} r \mathrm{~A} p \mathrm{HMP}$ with $r=2$ in which we require each non-hub node to be allocated to exactly 2 hubs and each allocation involves a fixed cost. This modification enables us to generate a hub network that
is able to survive access link failures. We assume, without loss of generality, that access link failures can only happen one at a time for a relatively short period of time and we further assume that the backbone hub network is robust and is free from failure. Given a graph, $G=(N, A)$, where N is the set of nodes and A is the set of arcs, flow demands between all pairs of nodes, and a fixed number p of hub nodes, our objective is to design a least-cost 2-connected network with minimum transfer and facility establishment costs in which every node is connected to exactly two hubs. The establishment cost is the total fixed cost for hubs and access links. The former is related to providing facilities for hub operations, and the latter is related to constructing or leasing links between end-users and hubs (especially in telecommunication applications). We call this variation of the hub median problems the uncapacitated 2-allocation p-hub median problem (U2ApHMP). Any solution of this problem is a 2 -connected network.

We could design a hub network with exactly r allocations of non-hubs to hubs, for $r=2,3, \ldots, p$. However, we are particularly interested in the 2-allocation problem to ensure 2-connectivity of the network with least establishment costs. Figure 1 illustrates optimal solutions of four variations of the hub median problem. Clearly in this instance, the only 2 -connected network is the one for U2ApHMP. In general, $\mathrm{U} 2 \mathrm{~A} p \mathrm{HMP}$ and $\mathrm{U} r \mathrm{~A} p \mathrm{HMP}$ with $r=2$ can have different solutions. Figure 2 illustrates an example where the fixed costs of access links are large enough, as compared to routing costs, so that the network designs by U2ApHMP and UrApHMP with $r=2$ are quite different. However, when access link fixed costs are sufficiently small, a solution by $\operatorname{Ur} \mathrm{A} p \mathrm{HMP}$ with $r=2$ can be used to get a solution for U2A p HMP. Defining and addressing the survivability of non-hub nodes is not unique. For instance, the flow for each request could be split into several paths to impose a minimum number of node-disjoint paths carry each flow request. Hence, our approach is a first step in this direction.

Figure 1: Solutions of different problems on CAB with $n=10, p=3$ and $\alpha=0.4$
An important motivating application of U2ApHMP is telecommunication networks where constant connectivity is vital. In this problem, we consider a fixed cost for each access link to reflect economic factors for construction or leasing costs. While both access links of each non-hub in optimal solutions of U2ApHMP carry flow in most cases, in some cases, an access link is only reserved for back-up paths without carrying (primary) flow. The choice of this (backup) access link is based on access link fixed

(a) U2ApHMP

(b) U $r \mathrm{~A} p \mathrm{HMP}$ with $r=2$

Figure 2: Solutions of U2ApHMP and UrApHMP for an instance. Every none-zero flow demand $[d, f]$ is shown hear its origin node, where d and f are respectively the destination node and the amount flow demand. For each link (w, c) shows its weight w and its fixed cost c.
costs. In such cases, since we assume that the duration of link disruptions is relatively small, a back-up path does not need to be optimal in the disrupted network. In fact, the fixed costs for chosen access links during normal situations plays a larger role than the operational cost of back-up routes when an access link is broken. We believe this addresses network survivability for hub median designs in the event of access link failures. It provides a network design for assuring survivability while minimising network operation and establishment costs. We propose a formulation, and show that this problem is NP-hard. We show that the problem remains NP-hard even if the set of hubs is fixed. We develop an acceleration of Benders decomposition for this problem to solve large instances efficiently.

Despite similarities between the 2 -allocation problem and the single- or multiple-allocation p-hub median problems, there are key differences between them which make the 2-allocation problem applicable for a survivable and economic network design. There is a trade-off between establishment cost and operating cost of a network (as indicated in yam [1]). Since any 2 -allocation optimal set of routings is also feasible for the multiple-allocation problem, and any single-allocation optimal set of routings is feasible for the 2 -allocation problem, we should expect the operational cost of $\mathrm{U} 2 \mathrm{~A} p \mathrm{HMP}$ to be somewhere between the single-allocation and the multiple-allocation cases for the same instance. As long as fixed costs are relatively small, the same relative order for optimal solutions of those three problems also holds. In an experiment, the total costs of network designs by U2ApHMP on the CAB data (see Table 7 in Section 4) is on average 4.7% cheaper when compared to USA p HMP, and 1% more expensive when compared with UMA p HMP. This is even though the number of access links in U2A p HMP is twice that required by USA p HMP and, on average, 96% of the number required by UMA p HMP. Therefore, the 2-allocation method provides an option for designing a network in which operational costs are between the costs of the tho well-known hub models, but with a greater survivability in case of an access link failure. Hence, U2A 2 HMP can be a cost-effective alternative for $\mathrm{USA} p \mathrm{HMP}$ and UMA $p \mathrm{HMP}$ with an added survivability feature.
Survivability is a feature of the U2A p HMP design and is an attempt to avoid severe costs of network disruptions (Stoer [45]). Our design provides at least two mutually node-disjoint paths for each flow demand; a need that is overlooked in USApHMP and UMA $p H M P$ network designs. In UMA $p H M P$, there is no guarantee that a non-hub node is allocated to more than one hub. Note that UrApHMP (yam [1]) solutions may have access nodes that are allocated to exactly one hub. In UrApHMP, the number of allocations is smaller in hub networks with a smaller transfer factor. Thus, a network design for $\mathrm{U} r \mathrm{~A} p \mathrm{HMP}$ might be the same network design for USA p HMP. In special cases, when the transfer
discount factor is very small, the solutions of USA $p H M P, ~ \mathrm{U} r \mathrm{~A} p \mathrm{HMP}$, and UMA p HMP may be the same and each non-hub may be singly-allocated. For cases where the access link fixed costs are relatively small, a solution for $\mathrm{U} 2 \mathrm{~A} p \mathrm{HMP}$ can be obtained from a solution of $\mathrm{U} r \mathrm{~A} p \mathrm{HMP}$ with $r=2$, by allocating the lowest cost unused access link as the second allocation for each singly-allocated non-hub.

In general, a 2-allocation hub network design may not necessarily be an optimally robust network design. This is because all flow on the disrupted link has to be (at least momentarily) routed through the second link, and this may not be the best choice for the flow that has been disrupted. However, this does provide an alternative to a much more difficult problem (see, for example, Kim and Ryerson [23], Matisziw et al. [28]) that could be posed which considers the determination of a network design in which all access nodes are connected via the globally best (least cost) second best option in which all flow is routed by the alternate link in the even that the primary link fails. That problem, we believe is a much harder problem than the U2ApHMP that we have posed for designing survivable hub networks. Our approach here is to provide the possibility for restoration of connections when there is a faulty link. The U2A $p \mathrm{HMP}$ is an alternative to the UMA $p \mathrm{HMP}$ and USApHMP network designs with the additional guarantee that the network can survive one access link failure at a time. The design of robust hub networks, as posed above, is a possible extension to the current study.

In this paper, we develop an improved Benders decomposition method for the U2ApHMP. Benders decomposition has been widely implemented on large mixed integer problems. In this method, cuts are added to a relaxation of the problem iteratively. In many cases the choice of these cuts could lead to slow convergence of the method. This issue was noticed and addressed by Magnanti and Wong [27] who introduced the generation of pareto optimal cuts using some 'core point'. This improvement is employed in many implementations of the Benders method, including the one by Contreras et al. [11] for the hub location problem with multiple allocations. In the current paper we take advantage of these pareto optimal cuts. We enhance this approach by choosing better core points and generating stronger cuts. We also come up with a more efficient approach for solving subproblems to generate cuts.

In Section 2, we provide a mathematical formulation of U2ApHMP. We show that U2ApHMP is NPhard even for a fixed set of hubs. We use a Benders decomposition approach, and then develop a modification of the Benders decomposition that enables us to efficiently solve large problem instances. This is described in Section 3. As we observe, an implementation of original Benders decomposition does not result in an effigient solution algorithm due to high degeneracy of the subproblems which then leads to a slow convergence to the optimal solution. We show that our modified Benders method is more efficient, and by converting the subproblems to minimum cost network flow problems and through the use of more effective Benders cuts, we improve its performance further. Our computational results, presented in Section 4, indicate that our method results in fewer iterations and faster running times. Also it is more efficient than the built-in Benders decomposition of CPLEX 12.7, which is the original Benders method implemented in CPLEX solver.

2 Problem Statement

We are given a positive integer p, a set of n nodes $N=\{1,2, \ldots, n\}$, and distances between each pair of nodes, where $d_{i j}$ denotes the distance between nodes i and j. A trivial assumption here is that $n \geq p$ and $p \geq 2$ as we require each node to be allocated to exactly 2 hubs. We assume that the triangle inequality for distances between nodes holds. We consider a complete digraph $G=(N, A)$, where A
is the set of $\operatorname{arcs}(i, j), i, j \in N$ and $i \neq j$, so that the weight of each link is the distance between its endpoints. We suppose that hubs are connected through a complete graph on the set of hubs, and non-hub nodes are only connected to hubs. For every pair of nodes $(i, j) \in N \times N$, let $W_{i j}$ denote the amount of flow demand from i to j. Assume that $d_{i j} \geq 0$ and $W_{i j} \geq 0$. The establishment of a node as a hub is associated with a fixed cost. Problems with fixed costs are more general since they can always be set to zero.

In practice, the actual cost of flow between different types of nodes is computed with different cost coefficients: the collection coefficient corresponds to flow from a non-hub to a hub, the distribution coefficient corresponds to flow from a hub to a non-hub, and the transfer coefficient corresponds to flow between hubs. These are denoted by χ, δ and α, respectively. Usually $\alpha \leq 1, \chi \geq \alpha$ and $\delta \geq \alpha$ in practical applications. The uncapacitated 2-allocation p-hub median problem (U2ApHMP) is the problem of locating p hubs among n nodes in N, and allocating each non-hub node to exactly 2 hubs with minimum total cost of fulfilling flow demands.

2.1 Mathematical Formulation

Without loss of generality, we assume that all flow must bedrouted through at most two hubs since using two hubs always reduces the cost when compared to routing flow through three or more hubs because of the triangular inequality assumption. Therefore, any path between i and j must contain three links, $(i, k),(k, l)$, and (l, j), where i and j are connected to hubs k and l respectively. We denote such path by $i-k-l-j$. Then the cost of using the $j-k \neq-j$ path, considering the cost coefficients of different link types, is

$$
C_{i j k l}=\chi d_{i k}+\alpha d_{k l}+\delta d_{l j} .
$$

Note that the costs and flow demands of (i, j) and (j, i) may not be equal, for any $i, j \in N$.
Let F_{k} be the cost of establishing node k as hub, and $G_{i k}$ be the establishment cost of access link (i, k).
Let binary decision variable $h_{k}=1$ if node k is chosen as hub, and $h_{k}=0$ otherwise, for all $k \in N$.
Let $z_{i k}=1$ if node i is connected to hub k, and $z_{i k}=0$ otherwise, for all $i, k \in N$.
Let $x_{i j k l}$ be the fraction of flow request $W_{i j}$ that is sent on the $i-k-l-j$ path, for all $i, j, k, l \in N$.
We present an integer linear programming formulation of U2A $p H M P$ below:

U2A p HMP: min $\sum_{k \in N} F_{k} h_{k}+\sum_{i \in N} \sum_{k \in N} G_{i k} z_{i k}+\sum_{i \in N} \sum_{j \in N} \sum_{k \in N} \sum_{l \in N} C_{i j k l} W_{i j} x_{i j k l}$
s.t. $\sum_{k \in N} h_{k}=p$,
$\sum_{k \in N} z_{i k}=2$,
$\forall i \in N$
$z_{i k} \leq h_{k}$,

$$
\begin{equation*}
\forall i, k \in N \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k \in N} \sum_{l \in N} x_{i j k l}=1, \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\forall i, j \in N \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{l \in N} x_{i j k l} \leq z_{i k} \tag{6}
\end{equation*}
$$

$$
\forall i, j, k \in N
$$

$$
\begin{align*}
& \sum_{k \in N} x_{i j k l} \leq z_{j l}, \tag{7}\\
& h_{k}, z_{i k} \in\{0,1\}, x_{i j k l} \geq 0 \tag{8}
\end{align*}
$$

$$
\forall i, j, l \in N
$$

$$
\forall i, j, k, l \in N .
$$

In the above formulation, equation (2) corresponds to locating p hubs. The set of equations (3) forces the allocation of each node to exactly 2 hubs, while equations (4) ensure that each node is allocated only to hubs. The set of constraints (5)-(7) fulfils commodity flow request from i to j through established links between nodes and hubs. The objective function (1) represents total cost of hub establishments and transfer costs. In this formulation we have $n^{4}+n^{2}+n$ variables ($n^{2}+n$ of these are binary) and $2 n^{3}+2 n^{2}+n+1$ constrains.

Note that in the above formulation, each hub will have two allocations in the optimal solution, typically to itself and to one other hub. Whether this type of 'backup' allocation makes sense for hubs depends on the details of the application, but makes no difference to the optimal cost as the second allocation will have zero flow. Hence we do not specifically prohibit the number of allocations for hubs.

2.2 Complexity of U2A p HMP

It is known that p-hub median problems are NP-hard in general (Love et al. [26]). While UMA p HMP with fixed location of hubs can be solved polynomially (Ernst and Krishnamoorthy [16]), it is known that USA p HMP for $p \geq 3$ is NP-hard even for the special case in which the location of hubs are fixed (Love et al. [26], Sohn and Park [43]). In the following we prove U2A p HMP is as hard as USA p HMP.

Theorem 2.1. U2ApHMP is NP-hard, even when the location of hubs are fixed.

Proof. Suppose we are given an instance of USA p HMP in which $\alpha=\delta=\chi=1, d_{i j}=d_{j i}$ for all $i, j \in N, G_{i k}=0$ for all $i, k \in N$, and suppose $H \subset N$ is a set of p fixed hubs for this instance. We show that USA p HMP with the set of hubs H is polynomially reducible to an instance of U2ApHMP with a fixed set of hubs. Choose a node v and construct an instance of the uncapacitated 2 -allocation problem on $n+1$ distinct nodes $N \cup\{v\}$, such that, for some $\epsilon>0$,

$$
\begin{equation*}
d_{i v}+\epsilon \leq d_{i h}+d_{h v}, \quad \forall h \in H, i \in N, \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{i v}+d_{j v}>\max _{h, l \in H}\left\{d_{i h}+d_{h l}+d_{l j}\right\}, \quad \forall i, j \in N . \tag{10}
\end{equation*}
$$

Such a node v exists, and can be obtained polynomially by choosing a point which does not lie on $(n-p) p$ lines, each of which pass through a hub and a non-hub. Now for $i \in N$, set $W_{v i}=0$, and set $W_{i v}$ to be large enough such that:

$$
\epsilon W_{i v}>\bar{d} \bar{W}_{i},
$$

where $\bar{d}=\max _{h, l \in H} d_{h l}+2 \max _{i \in N, h \in H} d_{i h}$, and $\bar{W}_{i}=\sum_{j=1}^{n} W_{i j}$. Denote this instance of U2ApHMP by P_{v} (see Figure 3 for a depiction). Furthermore, let $H \cup\{v\}$ be a set of $p+1$ fixed hubs for this instance.

Suppose in an optimal allocation for USApHMP with hubs in H, node i is allocated to $a(i) \in H$. We show that this optimal allocation gives rise to an optimal allocation of i to $\{a(i), v\}, 1 \leq i \leq n$, for P_{v}.

Every $i \in N$ must be allocated to v in any optimal allocation of P_{v}; otherwise, if some $i \in N$ is allocated to h and h^{\prime}, where $h \neq v, h^{\prime} \neq v$, then, without loss of generality, the total flow cost from i is at least

$$
\left(d_{i h}+d_{h v}\right) W_{i v}
$$

Figure 3: Construction of an instance of U2ApHMP from an instance of USApHMP

However, when node i is allocated to l and v, for some $l \in H$, and j allocated to some $q \in H$, then, by (9) and (10), the total cost of flows from i to all other nodes is

$$
\sum_{j=1}^{n}\left(d_{i l}+d_{l q}+d_{q j}\right) W_{i j}+d_{i v} W_{i v} \leq \bar{d} \bar{W}_{i}+d_{i v} W_{i v}<\epsilon W_{i v}+d_{i v} W_{i v} \leq\left(d_{i h}+d_{h v}\right) W_{i v}
$$

Hence, i must be allocated to v in any optimal allocation. On the other hand, by (10) and the optimality of allocation of i to $a(i)$ in the single allocation problem, for any $h, l \in H$,

$$
\sum_{j \in N}\left(d_{i a(i)}+d_{a(i) a(j)}+d_{a(j) j}\right) W_{i j} \leq \sum_{j \in N}\left(d_{i h}+d_{h l}+d_{l j}\right) W_{i j}<\sum_{j \in N}\left(d_{i v}+d_{v j}\right) W_{i j}
$$

which implies that i must be allocated to $a(i)$ in any optimal solution to P_{v}.
Similarly, any optimal solution of P_{v} gives rise to an optimal solution for the single allocation problem. Therefore, any USA p HMP with a fixed set of hubs can be reduced to a $\mathrm{U} 2 \mathrm{~A}(p+1)$ HMP with some fixed set of hubs. Hence, we have the result.

By generalising Theorem 2.1, we claim that for any fixed $r, 2 \leq r<p$, the uncapacitated r-allocation p-hub median problem $(\mathrm{Ur} \mathrm{A} p \mathrm{HMP})$, in which the number of allocations for each node is exactly r, is NP-hard, even for a fixed set of hubs. Assuming $\mathrm{U}(r-1) \mathrm{A} p \mathrm{HMP}$ is NP hard, by induction we can construct an instance of $\mathrm{U} r \mathrm{~A} p \mathrm{HMP}$ from $\mathrm{U}(r-1) \mathrm{A} p \mathrm{HMP}$ such that they are polynomially reducible to each other using a proof that is similar to that used in Theorem 2.1.

In our computational experiments, we were not able to solve large instances of U2ApHMP using commercial solvers like CPLEX. We struggled to find optimal solutions to U2ApHMP even for instances with only 60 nodes within a reasonable time limit (see Section 4 for more details).

The major difficulty in dealing with this problem is the large number of variables and constraints in its formulation (the flow variables $x_{i j k l}$ and constraints (5)-(7) comprise the majority of the variables and constraints). It is possible to employ more compact formulations, however they are weaker in general [14]. These observations lead us to the idea of solving this problem using Benders decomposition for (1)-(8).

3 Benders Decomposition

Benders decomposition method is a partitioning algorithm applied to mixed integer programming and nonlinear integer programming problems (Benders [5]). This method has been widely used for solving a wide range of difficult problems, including hub median problems. Specifically, Benders decomposition is shown to be effective for solving large instances of hub location problems (Contreras et al. [11], de Camargo et al. [12]).

In this method, the original problem is decomposed into a master problem MP, which may consist of integer variables and corresponding constraints, and a subproblem SP, which consists of the remaining variables and constraints. MP and SP are solved iteratively in a dependant manner. Hence, MP is a relaxation of the original problem, and SP is constructed via a feasible solution of MP at each iteration. If SP is not feasible, then the solution of MP is not feasible for the original problem, and it will be excluded from the MP feasible region by a feasibility Benders cut which is generated by the dual of SP. Otherwise, an optimality Benders cut will be added to MP to improve the current MP solution, until no further improvement is needed. An advantage of this method is that larger instances of problems can be solved, since MP and SP are often more tractable than the original problem. A solution may be obtained faster even though MP and SP may be solved a number of times. We first describe Benders method for U2ApHMP, and in Sections 3.2 and 3.4, we diseuss how we may generate stronger cuts.

In order to apply the Benders decomposition method to U2ApHMP, in each iteration, the location and allocation variables, h_{k} and $z_{i k}$ respectively, are fixed to some \hat{h}_{k} and $\hat{z}_{i k}$ respectively, $i, k \in N$. Therefore, we obtain a linear programming subproblem in the iteration corresponding to vectors $\hat{\boldsymbol{h}}=$ $\left(\hat{h}_{k}\right)$ and $\hat{\boldsymbol{z}}=\left(\hat{z}_{i k}\right)$. A formulation of the corresponding subproblem is given below.

$$
\begin{align*}
& \min \sum_{i \in N} \sum_{j \in N} \sum_{k \in N} \sum_{l \in N} C_{i j k l} W_{i j} x_{i j k l} \tag{11}\\
& \sum_{k \in N} \sum_{l \in N} x_{i j k l}=1 \tag{12}\\
& \sum_{l \in N} x_{i j k l} \leq \hat{z}_{i k}, \tag{13}\\
& \sum_{k \in N} x_{i j k l} \leq \hat{z}_{j l}, \tag{14}\\
& x_{i j k l} \geq 0 \tag{15}
\end{align*}
$$

The above problem is clearly a routing problem for n^{2} pairs of nodes, where the underlying network is defined by $\hat{\boldsymbol{h}}$ and $\hat{\boldsymbol{z}}$. By associating dual variables, $f_{i j}$ to the set of constraints (12), (uijk) to the set of constraints (13), and ($v_{i j l}$) to the set of constraints (14), the dual of subproblem (11)-(15) is as follows.

$$
\begin{array}{llr}
\max & \sum_{i \in N} \sum_{j \in N} f_{i j}-\sum_{i \in N} \sum_{j \in N} \sum_{k \in N} \hat{z}_{i k} u_{i j k}-\sum_{i \in N} \sum_{j \in N} \sum_{l \in N} \hat{z}_{j l} v_{i j l} & \\
\text { s.t. } & f_{i j}-u_{i j k}-v_{i j l} \leq C_{i j k l} W_{i j}, & \forall i, j, k, l \in N \\
& u_{i j k}, v_{i j l} \geq 0, f_{i j} \in \mathbb{R} & \forall i, j, k, l \in N .
\end{array}
$$

An optimal solution $(\hat{\boldsymbol{f}}, \hat{\boldsymbol{u}}, \hat{\boldsymbol{v}})$ of the above dual problem gives the following Benders cut:

$$
\begin{equation*}
\eta \geq \sum_{i \in N} \sum_{j \in N} \hat{f}_{i j}-\sum_{i \in N} \sum_{j \in N} \sum_{k \in N} z_{i k} \hat{u}_{i j k}-\sum_{i \in N} \sum_{j \in N} \sum_{l \in N} z_{j l} \hat{v}_{i j l}, \tag{16}
\end{equation*}
$$

where η is a real non-negative variable since the right side of (16) is equal to (11) which is always positive. Then this optimality cut is added to the master problem which is formulated below:

$$
\begin{array}{ll}
\min & \sum_{k \in N} F_{k} h_{k}+\sum_{i \in N} \sum_{k \in N} G_{i k} z_{i k}+\eta \\
\text { s.t. } & (2)-(4),(8) \\
& \eta+\sum_{i \in N} \sum_{j \in N} \sum_{k \in N} z_{i k} \hat{u}_{i j k}+\sum_{i \in N} \sum_{j \in N} \sum_{l \in N} z_{j l} \hat{v}_{i j l} \geq \sum_{i \in N} \sum_{j \in N} \hat{f}_{i j} \\
& \eta \geq 0
\end{array}
$$

Clearly, for any valid location of hubs $\hat{\boldsymbol{h}}$ and allocation of non-hubs $\hat{\boldsymbol{z}}$, the subproblem (11)-(15) is always feasible and bounded. In fact, every demand can be served by some path in the network constructed by $(\hat{\boldsymbol{h}}, \hat{\boldsymbol{z}})$. Thus, we have the following lemma.

Lemma 3.1. The dual of subproblem (11)-(15) is always feasible and bounded for any ($\hat{\boldsymbol{h}}, \hat{\boldsymbol{z}}$) satisfying (2)-(4) and (8).

As a corollary, in the Benders decomposition method for U2ApHMP, only optimality cuts are added to the master problem.

3.1 Generating Multicuts

Note that the subproblem (11)-(15) can be further decomposed into n^{2} subproblems. This is because we can find an optimal routing for each pair of nodes separately/independently. In return, the dual of the subproblems can be expressed for any pair of nodes. This decomposition results in n^{2} Benders cuts, which may provide tighter cuts for the master problem. Consequently, this could result in faster convergence.

De Camargo et al. [12] yeported that the generation of n^{2} cuts, and adding them to their MP was not efficient in comparison to having one cut. This was due to a huge increase in the size of the MP. However, another reason for this difficulty could be as a result of using inefficient methods for solving the n^{2} subproblems at each iteration. In fact, we observed that generating n^{2} cuts is much more effective than using the one cut obtained by (16). The number of iterations is often reduced due to a tightening of the MP formulation in general.

In Section 3.3 we discuss an efficient approach to solve subproblems. The dual problem for any pair of nodes $(i, j) \in N^{2}$ is as follows:

$$
\begin{array}{rll}
\mathrm{DS}_{i j}: & \max & f_{i j}-\sum_{k \in N} \hat{z}_{i k} u_{i j k}-\sum_{l \in N} \hat{z}_{j l} v_{i j l} \\
& \text { s.t. } & f_{i j}-u_{i j k}-v_{i j l} \leq C_{i j k l} W_{i j}, \tag{18}
\end{array} \quad \forall k, l \in N
$$

$$
\begin{equation*}
u_{i j k}, v_{i j l} \geq 0, f_{i j} \in \mathbb{R} \quad \forall k, l \in N \tag{19}
\end{equation*}
$$

By an optimal solution $\left(\hat{f}_{i j}, \hat{\boldsymbol{u}}_{i j}, \hat{\boldsymbol{v}}_{i j}\right)$ of $\mathrm{DS}_{i j}$ for each $(i, j) \in N^{2}$, a Benders cut is generated. Thus, in each iteration we obtain n^{2} Benders cuts:

$$
\begin{equation*}
\eta_{i j} \geq \hat{f}_{i j}-\sum_{k \in N} z_{i k} \hat{u}_{i j k}-\sum_{l \in N} z_{j l} \hat{v}_{i j l} \quad \forall i, j \in N \tag{20}
\end{equation*}
$$

where $\eta_{i j}$ is a real non-negative variable and $\eta=\sum_{i, j} \eta_{i j}$. By this decomposition, the master problem becomes:

$$
\begin{align*}
\mathrm{MP}: \quad \min & \sum_{k \in N} F_{k} h_{k}+\sum_{i \in N} \sum_{k \in N} G_{i k} z_{i k}+\sum_{i \in N} \sum_{j \in N} \eta_{i j} \\
\text { s.t. } & (2)-(4),(20) \\
& h_{k}, z_{i k}, \eta_{i j} \geq 0 \quad \forall i, k, j \in N . \tag{21}
\end{align*}
$$

Note that the objective in $\mathrm{DS}_{i j}$ is to maximise $f_{i j}-\sum_{k} u_{i j k}-\sum_{l} v_{i j l}$, where the first sum is taken over k for which $\hat{z}_{i k}=1$ and the second sum is over l for which $\hat{z}_{j l}=1$. So, an optimal solution for $\mathrm{DS}_{i j}$ is $\hat{u}_{i j k}=0$ when $\hat{z}_{i k}=1$, and $\hat{v}_{i j l}=0$ when $\hat{z}_{j l}=1$,

$$
\begin{equation*}
\hat{f}_{i j}=\hat{\delta}_{i j}:=\min _{\hat{z}_{i k}=\hat{z}_{j l}=1} C_{i j k l} W_{i y} \tag{22}
\end{equation*}
$$

and arbitrary non-negative values for the remaining variables.
There are two computational issues with the above decomposition. First, in many implementations of this method for $\mathrm{U} 2 \mathrm{~A} p \mathrm{HMP}$, its convergence is very slow and a large number of iterations is required to reach optimality. Second, the computational effort to solve n^{2} subproblems, each of which with n^{2} variables and n^{2} constraints in each iteration of Benders method is very expensive. To tackle these issues, we first develop a modification of Benders decomposition. For the second issue, we model subproblems as minimum cost network flow problems to solve them more efficiently.

3.2 Accelerating the Benders Decomposition Approach for Solving HLPs

The optimal solution of $\mathrm{DS}_{i j}$ is not unique since the subproblem is degenerate. As a result, Benders cuts exist for the MP, with different strengths. The strength of Benders cuts (20) is dependent on the choice of optimal solutions of $\mathrm{DS}_{i j}$. Magnanti and Wong [27] proposed an acceleration of the Benders method, in which a second LP is constructed from the dual of the subproblem to maximise a weighted summation of the dual variables among optimal solutions. For this purpose, they used a point in the relative interior of the convex hull of the master problem, called a core point, to define a weight for the dual variables. They showed that the optimal solution of that LP results in a 'pareto optimal cut' [27, Theorem 1]. A cut is pareto optimal if it is not dominated by any other cut and a cut obtained by $(\hat{f}, \hat{\boldsymbol{u}}, \hat{\boldsymbol{v}})$ is dominated by a cut obtained by $(\tilde{f}, \tilde{\boldsymbol{u}}, \tilde{\boldsymbol{v}})$ if for all feasible \boldsymbol{z} we have

$$
\tilde{f}-\sum_{k \in N} z_{i k} \tilde{u}_{k}-\sum_{l \in N} z_{j l} \tilde{v}_{l} \geq \hat{f}-\sum_{k \in N} z_{i k} \hat{u}_{k}-\sum_{l \in N} z_{j l} \hat{v}_{l}
$$

and at least for one feasible \boldsymbol{z} the above inequality holds strictly. Fischetti et al. [18] also judiciously chose the dual objective function of the SP and converted the SP to a 'minimal infeasible subsystem' which resulted in a more effective choice of Benders cuts.

Let $m_{i k}, m_{j l}$ for $k, l \in N$ be non-negative real parameters and m_{0} be a real parameter. For $\left(m_{0}, \boldsymbol{m}_{i j}\right)=$ ($m_{0}, m_{i 1}, \ldots, m_{i n}, m_{j 1}, \ldots, m_{j n}$), we consider the following problem to generate cuts:

$$
\begin{array}{ll}
\max & m_{0} f_{i j}-\sum_{k \in N} m_{i k} u_{i j k}-\sum_{l \in N} m_{j l} v_{i j l} \\
\text { s.t. } & f_{i j}-\sum_{k \in N} \hat{z}_{i k} u_{i j k}-\sum_{l \in N} \hat{z}_{j l} v_{i j l}=\hat{\delta}_{i j} \tag{24}\\
& (18)-(19)
\end{array}
$$

Any feasible point in the above problem is an optimal solution for (17)-(19). Furthermore, when $m_{0}=1$ and ($\boldsymbol{h}^{\prime}, \boldsymbol{m}$) are such that (2)-(4) are satisfied, $0<h_{k}<1$ for all $k \in N$, and $0<m_{i k}<1$ for every pair $(i, k) \in N^{2}$, then $\left(\boldsymbol{h}^{\prime}, \boldsymbol{m}\right)$ is a point in the relative interior of the convex hull of our master problem. For such a choice of ($m_{0}, \boldsymbol{m}_{i j}$), the Benders cuts generated by an optimal solution of the above problem is a pareto optimal cut (Magnanti and Wong [27]).

Note that for a fixed allocation by $\hat{\boldsymbol{z}}$, the shortest path from i to j is among the 4 paths through allocated hubs of i and j, namely $i-k_{1}-l_{1}-j, i-k_{1}-l_{2}-j, i-k_{2}-l_{1}-j$ and $i-k_{2}-l_{2}-j$, where $\hat{z}_{i k_{1}}=\hat{z}_{i k_{2}}=\hat{z}_{j l_{1}}=\hat{z}_{j l_{2}}=1$. Let \hat{k} and \hat{l} denote the allocated hubs of i and j respectively, such that the shortest path among these 4 paths for (i, j) is through those hubs. Det $K_{i j}^{1}=\left\{k \in N: \hat{z}_{i k}=1, k \neq \hat{k}\right\}$, $K_{i j}^{0}=\left\{k \in N: \hat{z}_{i k}=0\right\}, L_{i j}^{1}=\left\{l \in N: \hat{z}_{j l}=1, l \neq \hat{l}\right\}$, and $L_{i j}^{0}=\left\{l \in N: \hat{z}_{j l}=0\right\}$. So (24) is equivalent to

$$
f_{i j}-\sum_{k \in K_{i j}^{1} \cup\{\hat{k}\}} u_{i j k}-\sum_{l \in L_{i j}^{1} \cup\{\hat{\imath}\}} v_{i j l}=\hat{\delta}_{i j} .
$$

Note that by the above equation, we have

$$
\begin{array}{ll}
u_{i j k}=0, \\
v_{i j l}=0, & \forall k \in K_{i j}^{1} \\
\forall l \in L_{i j}^{1}, \tag{26}
\end{array}
$$

since $u_{i j k}, v_{i j l} \geq 0$ and $f_{i j}-u_{i \hat{j} \hat{k}}-v_{i j \hat{l}} \npreceq C_{i j \hat{k} \hat{l}} W_{i j}=\hat{\delta}_{i j}$ by (18). Hence, (24) becomes

$$
\begin{equation*}
f_{i j}-u_{i j \hat{k}}-v_{i j \hat{l}}=C_{i j \hat{k} \hat{l}} W_{i j} . \tag{27}
\end{equation*}
$$

Thus, by (25) and (27), the problem (23)-(24), (18)-(19) can be rewritten as follows.

$$
\begin{array}{ll}
\mathrm{BDS}_{i j}: & \max m_{0} f_{i j}-m_{i \hat{k}} u_{i j \hat{k}}-m_{j \hat{l}} v_{i j \hat{l}}-\sum_{k \in K_{i j}^{0}} m_{i k} u_{i j k}-\sum_{l \in L_{i j}^{0}} m_{j l} v_{i j l} \\
\text { s.t. } f_{i j}-u_{i j \hat{k}}-v_{i j \hat{l}} & =C_{i j \hat{k} \hat{l}} W_{i j} \\
f_{i j}-u_{i j k}-v_{i j l} & \leq C_{i j k l} W_{i j}, \quad k \in K_{i j}^{0} \cup\{\hat{k}\}, l \in L_{i j}^{0} \cup\{\hat{l}\},(k, l) \neq(\hat{k}, \hat{l}) \\
f_{i j}-u_{i j k} & \leq C_{i j k l} W_{i j}, \quad k \in K_{i j}^{0} \cup\{\hat{k}\}, l \in L_{i j}^{1} \\
f_{i j}-v_{i j l} & \leq C_{i j k l} W_{i j}, \quad k \in K_{i j}^{1}, l \in L_{i j}^{0} \cup\{\hat{l}\}, \\
& f_{i j} \\
u_{i j k}, v_{i j l} \geq 0, & \leq C_{i j k l} W_{i j}, \quad k \in K_{i j}^{1}, l \in L_{i j}^{1}, \\
& \\
f_{i j} \in \mathbb{R} k, l \in N .
\end{array}
$$

In Section 4 we show that for an appropriate choice of (m_{0}, \boldsymbol{m}), the generated cuts using optimal solutions of $\mathrm{BDS}_{i j}$ are stronger and result in fewer required iterations in the modified Benders decomposition method.

3.3 Solving Subproblems BDS $_{i j}$ Efficiently

The second issue we address in this section is the computationally expensive issues of the generation of Benders cuts. Using the simplex method to solve n^{2} linear programs in each Benders iteration can be very time consuming. As shown in Figure 6-(a), more than 90% of the average computational time (in a few implementations) is consumed for the generation of cuts by solving $\mathrm{BDS}_{i j}$ using the simplex method. In this part, we develop an algorithm to obtain Benders cuts more efficiently.
For a fixed pair (i, j), let $r_{k l}^{i j}$ be the dual variable of constraint with indices (k, l) in $\mathrm{BDS}_{i j}$. For simplicity we use $r_{k l}$ instead of $r_{k l}^{i j}$ when the context is clear. Then the dual of $\mathrm{BDS}_{i j}$ is:

$$
\begin{array}{ll}
\min & \sum_{k \in N} \sum_{l \in N} C_{i j k l} W_{i j} r_{k l} \\
\text { s.t. } & \sum_{k \in N} \sum_{l \in N} r_{k l}=m_{0}, \\
& \sum_{l \in N} r_{k l} \leq m_{i k}, \\
& \sum_{k \in N} r_{k l} \leq m_{j l}, \\
& r_{\hat{k} \hat{l}} \in \mathbb{R}, r_{k l} \geq 0 \quad k \in K_{i j}^{0} \cup\{\hat{k}\} \\
l \in L_{i j}^{0} \cup\{\hat{l}\} \\
(k, l) \in N^{2} \backslash\{(\hat{k}, \hat{l})\} .
\end{array}
$$

Note that, by the choice of $K_{i j}^{1}, L_{i j}^{1}, \hat{k}$ and \hat{l}, in any optimal solutions of the above problem we have $r_{k l}=0$ for $k \in K_{i j}^{1}, l \in L_{i j}^{1} \cup\{\hat{l}\}$. Thus, by constraints of the problem,

$$
\sum_{k \in K_{i j}^{0}} \sum_{l \in N} r_{k l} \leq \sum_{k \in K_{i j}^{0}} m_{i k} \text { and } \sum_{k \in K_{i j}^{1} \cup\{\hat{k}\}} \sum_{l \in L_{i j}^{0}} r_{k l} \leq \sum_{l \in L_{i j}^{0}} m_{j l} .
$$

Suppose $\sum_{k \in K_{i j}^{0}} m_{i k}=\Gamma_{1}$ and $\sum_{l \in L_{i j}^{\circ}} m_{j l}=\Gamma_{2}$, for some positive Γ_{1} and Γ_{2}. Then,

$$
\sum_{k \in N} \sum_{l \in N} r_{k l} \leq \sum_{k \in N} m_{i k}+\sum_{l \in N} m_{j l}+r_{\hat{k} \hat{l}} \leq \Gamma_{1}+\Gamma_{2}+\min \left\{m_{i \hat{k}}, m_{j \hat{l}\}}\right\}
$$

To eliminate the unsigned yariable $r_{\hat{k} \hat{l}}$, we rewrite $r_{\hat{k} \hat{l}}=r_{\hat{k} \hat{l}}^{+}-r_{\hat{k} \hat{l}}^{-}$. Therefore,

$$
r_{\hat{k} \hat{l}}^{-}=\sum_{k \in N} \sum_{l \in N,(k, l) \neq(\hat{k}, \hat{l})} r_{k l}+r_{\hat{k} \hat{l}}^{+}-m_{0} \leq S,
$$

where $S=\Gamma_{1}+\Gamma_{2}-m_{0}$. Obviously, $S \geq 0$ must hold. Now let $g=S-r_{\hat{k} \hat{l}}^{-}$. So $g \geq 0$ and $r_{\hat{k} \hat{l}}=r_{\hat{k} \hat{l}}^{+}+g-S$. In the following problem, $r_{\hat{k} \hat{l}}$ denotes $r_{\hat{k} \hat{l}}^{+}+g$ to make the presentation of the problem easier. This means that $r_{\hat{k} \hat{l}}$ has different meanings in the above problem and the (equivalent) following problem:

$$
\begin{array}{ll}
\min & -S C_{i j \hat{k} \hat{l}} W_{i j}+\sum_{k \in N} \sum_{l \in N} C_{i j k l} W_{i j} r_{k l} \\
\text { s.t. } & \sum_{k \in N} \sum_{l \in N} r_{k l}=\Gamma_{1}+\Gamma_{2} \tag{29}
\end{array}
$$

$$
\begin{array}{lr}
\sum_{l \in N} r_{k l} \leq m_{i k}, & k \in K_{i j}^{0} \\
\sum_{l \in N} r_{\hat{k} l} \leq m_{i \hat{k}}+S, & \\
\sum_{k \in N} r_{k l} \leq m_{j l}, & l \in L_{i j}^{0} \\
\sum_{k \in N} r_{k \hat{l}} \leq m_{j \hat{l}}+S, & \\
r_{k l} \geq 0 & k, l \in N . \tag{34}
\end{array}
$$

The above problem is a minimum cost network flow problem (MCNF) in an auxiliary network with $2 n+2$ nodes and $n^{2}+2 n$ arcs. Let s_{i} and t_{j} denote the corresponding source and sink nodes respectively, (which represent i and j respectively), and $1,2, \ldots, n, n+1, \ldots, 2 n$ denote two copies of all nodes of the original network. In the auxiliary network, links are $\left(s_{i}, k\right),(k, l)$, and $\left(l, t_{j}\right)$, for $k=1,2, \ldots, n$, and $l=n+1, n+2, \ldots, 2 n$. The supply and demand of all nodes are zero except for s_{i} and t_{j} with supplies $\Gamma_{1}+\Gamma_{2}$ and $-\Gamma_{1}-\Gamma_{2}$ respectively. The capacity of arcs is given by constraints (30)-(34) (see Figure 4). Obviously, the total flow must be at most the total capacity of links with an endpoint i, or the total capacity of those with an endpoint j; that is, $\Gamma_{1}+\Gamma_{2} \leq \min \left\{\sum_{k \in K_{i j}^{0}} m_{i k}+S+z_{i \hat{k}}, \sum_{l \in L_{i j}^{0}} m_{j l}+S+z_{j \hat{l}}\right\}$.

Figure 4: An equivalent minimum cost network flow problem to the dual of $\mathrm{BDS}_{i j}$
Intuitively, the residual network of the subproblem network (the dual of $\mathrm{BDS}_{i j}$) in which $r_{\hat{k} \hat{l}}$ is equal to its lower bound (that is, $-S$) is the above auxiliary network. A model of the minimum cost network flow is given below, where $r_{s_{i} k}$ is the flow variable from s_{i} to k and $r_{l t_{j}}$ is the flow variable from l to t_{j}.

$$
\begin{array}{rlr}
\mathrm{MCNF}: \min -S C_{i j k \hat{l}} W_{i j}+\sum_{k=1}^{n} \chi d_{i k} W_{i j} r_{s_{i} k}+\sum_{k=1}^{n} \sum_{l=n+1}^{2 n} \alpha d_{k l} W_{i j} r_{k l}+\sum_{l=n+1}^{2 n} \delta d_{(l-n) j} W_{i j} r_{l t_{j}} \\
\text { s.t. } \sum_{k \in N} r_{s_{i} k} & =\Gamma_{1}+\Gamma_{2} & \\
\sum_{l=n+1}^{2 n} r_{l k}-r_{s_{i} k} & =0, & k=1, \ldots, n \\
r_{l t_{j}}-\sum_{k \in N} r_{k l} & =0, & l=n+1, \ldots, 2 n \tag{38}
\end{array}
$$

$$
\begin{array}{lll}
\quad-\sum_{l=n+1}^{2 n} r_{l t_{j}} & =-\Gamma_{1}-\Gamma_{2} \\
r_{s_{i} k} & & \\
r_{s_{i} \hat{k}} & \leq m_{s_{i} k} & k \in K_{i j}^{0} \tag{41}\\
r_{(l+n) t_{j}} & \leq m_{s_{i} \hat{k}}+S & \\
r_{(\hat{l}+n) t_{j}} & \leq m_{t_{j} l} & l \in L_{i j}^{0} \\
& \leq m_{t_{j} \hat{l}}+S &
\end{array}
$$

We used the Floyd-Warshall algorithm to obtain \hat{k} and \hat{l} for each pair (i, j), and the successive shortest path algorithm to solve minimum cost network flow problems (Ahuja et al. [2]). Thus, the complexity of obtaining a solution for (28)-(34) is $O\left(n^{3}+n^{2} \log n\right)$ for each pair (i, j). Using the successive shortest path algorithm, the potentials of each node are also computed for any optimal solution. Thus, the optimal values of the dual variables can be obtained efficiently (Ahuja et al. [2]).
Let $\pi_{k}, k \in\left\{s_{i}, 1,2, \ldots, 2 n, t_{j}\right\}, \alpha_{i j k}$ for $k \in K_{i j}^{0} \cup\{\hat{k}\}$, and $\beta_{i j l}$ for $l \in L_{i j}^{0} \cup\{\hat{l}\}$ be the dual variables of the set of constraints (36)-(39), (40)-(41), and (42)-(43) respectively. Then the dual of the above problem is

$$
\begin{align*}
& \max -S C_{i j \hat{k} \hat{l}} W_{i j}+\left(\Gamma_{1}+\Gamma_{2}\right) \pi_{s_{i}}-\left(\Gamma_{1}+\Gamma_{2}\right) \pi_{t_{j}}-\left(m_{i \hat{k}}+S\right) \alpha_{i j \hat{k}}-\left(m_{j \hat{l}}+S\right) \beta_{i j \hat{l}}-\sum_{k \in K_{i j}^{0}} m_{i k} \alpha_{i j k}-\sum_{l \in L_{i j}^{0}} m_{j l} \beta_{i j l} \tag{45}\\
& \text { s.t. } \quad \pi_{s_{i}}-\pi_{k}-\alpha_{i j k} \leq \chi d_{i k} W_{i j}, \tag{46}\\
& k=1, \ldots, n \\
& \pi_{k}-\pi_{l} \\
& \leq \alpha d_{k(l-n)} W_{i j} \text {, } \tag{47}\\
& k=1, \ldots, n, l=n+1, \ldots, 2 n \\
& \pi_{l}-\pi_{t_{j}}-\beta_{i j l} \quad \delta d_{(l-n) j} W_{i j}, \tag{48}\\
& l=n+1, \ldots, 2 n \\
& k=1, \ldots, n, l=n+1, \ldots, 2 n \text {. } \tag{49}
\end{align*}
$$

Noting that π_{k} is the potential of node k in the corresponding network for the MCNF problem, we can immediately obtain $\alpha_{i j k}$ and $\beta_{i j k}$:

$$
\begin{array}{lr}
\alpha_{i j k}=\max \left\{0, \pi_{s_{i}}-\pi_{k}-\chi d_{i k} W_{i j}\right\}, & k=1, \ldots, n \\
\beta_{i j l}=\max \left\{0, \pi_{l}-\pi_{t_{j}}-\delta d_{(l-n) j} W_{i j}\right\}, & l=n+1, \ldots, 2 n
\end{array}
$$

Note that $\alpha_{i j k}$ and $\beta_{i j l}$ will be equal to zero if flows in their associated links in the auxiliary network are strictly less than their corresponding upper bounds. Therefore, for $k \in K_{i j}^{1}$ and $l \in L_{i j}^{1}$, we have $\alpha_{i j k}=0$ and $\beta_{i j(l+n)}=0$ since $i-\hat{k}-\hat{l}-j$ is shorter than $i-k-l-j$.

Theorem 3.2. Given an optimal solution $\left(\boldsymbol{\pi}, \boldsymbol{\alpha}_{i j}, \boldsymbol{\beta}_{i j}\right)$ of problem (45)-(49), ($\left.f_{i j}, \boldsymbol{u}_{\boldsymbol{i j}}, \boldsymbol{v}_{\boldsymbol{i j}}\right)$ is a feasible and optimal solution of $B D S_{i j}$, where $f_{i j}=\pi_{s_{i}}-\pi_{t_{j}}, u_{i j k}=\alpha_{i j k}$, and $v_{i j l}=\beta_{i j(l+n)}$ for $k, l \in N$.

Proof. First note that by feasibility of $\left(\boldsymbol{\pi}, \boldsymbol{\alpha}_{i j}, \boldsymbol{\beta}_{i j}\right)$, we have

$$
\begin{equation*}
\pi_{s_{i}}-\pi_{t_{j}}-\alpha_{i j k}-\beta_{i j(l+n)} \leq\left(\chi d_{i k}+\alpha d_{k l}+\delta d_{l j}\right) W_{i j}=C_{i j k l} W_{i j}, \quad \forall k, l \in N \tag{50}
\end{equation*}
$$

By optimality of $\left(\boldsymbol{\pi}, \boldsymbol{\alpha}_{i j}, \boldsymbol{\beta}_{i j}\right)$, we have $\pi_{s_{i}}-\pi_{\hat{k}}-\alpha_{i j \hat{k}}=\chi d_{i \hat{k}} W_{i j}, \pi_{\hat{k}}-\pi_{\hat{l}}=\alpha d_{\hat{k}(\hat{l}-n)} W_{i j}$, and $\pi_{\hat{l}}-\pi_{t_{j}}-$ $\beta_{i j \hat{l}}=\delta d_{(\hat{l}-n) j} W_{i j}$. For otherwise, if $\pi_{s_{i}}-\pi_{\hat{k}}-\alpha_{i j \hat{k}}<\chi d_{i \hat{k}} W_{i j}$, then $\left(\boldsymbol{\pi}, \boldsymbol{\alpha}_{i j}^{\prime}, \boldsymbol{\beta}_{i j}\right)$ with $\alpha_{i j \hat{k}}^{\prime}=\alpha_{i j \hat{k}}-\epsilon$
for some $\epsilon>0$, and $\alpha_{i j k}^{\prime}=\alpha_{i j k}$ for $k \neq \hat{k}$, is feasible and has strictly larger objective value, which is a contradiction with the optimality of $\left(\boldsymbol{\pi}, \boldsymbol{\alpha}_{i j}, \boldsymbol{\beta}_{i j}\right)$. Similarly if $\pi_{\hat{l}}-\pi_{t_{j}}-\beta_{i j \hat{l}}<\delta d_{(\hat{l}-n) j} W_{i j}$ then we get the same contradiction. If $\pi_{\hat{k}}-\pi_{\hat{l}}<\alpha d_{\hat{k}(\hat{l}-n)} W_{i j}$, then $\left(\boldsymbol{\pi}^{\prime}, \boldsymbol{\alpha}_{i j}, \boldsymbol{\beta}_{i j}^{\prime}\right)$ with $\pi_{\hat{l}}^{\prime}=\pi_{\hat{l}}-\epsilon$ and $\beta_{i j \hat{l}}^{\prime}=\beta_{i j \hat{l}}-\epsilon$ for some $\epsilon>0$, and $\pi_{l}^{\prime}=\pi_{l}$ and $\beta_{i j l}^{\prime}=\beta_{i j l}$ for $l \neq \hat{l}$ is feasible while it has a strictly larger objective value, which is the same contradiction. Therefore, we have

$$
\begin{equation*}
\pi_{s_{i}}-\pi_{t_{j}}-\alpha_{i j \hat{k}}-\beta_{i j(\hat{l}+n)}=C_{i j \hat{k} \hat{l}} W_{i j} \tag{51}
\end{equation*}
$$

Therefore, for $f_{i j}=\pi_{s_{i}}-\pi_{t_{j}}, u_{i j k}=\alpha_{i j k}$ for $k \in N$, and $v_{i j l}=\beta_{i j(l+n)}$ for $l \in N,\left(f_{i j}, \boldsymbol{u}_{\boldsymbol{i j}}, \boldsymbol{v}_{\boldsymbol{i j}}\right)$ is feasible for $\mathrm{BDS}_{i j}$ by (50)-(51), and the fact that $\alpha_{i j k}=0$ for $k \in K_{i j}^{1}$, and $\beta_{i j(l+n)}=0$ for $l \in L_{i j}^{1}$.

On the other hand, by (51) and since $S=\Gamma_{1}+\Gamma_{2}-m_{0}$, the objective value of $\left(\boldsymbol{\pi}, \boldsymbol{\alpha}_{i j}, \boldsymbol{\beta}_{i j}\right)$ for problem (45)-(49) is

$$
m_{0}\left(\pi_{s_{i}}-\pi_{t_{j}}\right)-m_{i \hat{k}} \alpha_{i j \hat{k}}-m_{j \hat{l}} \beta_{i j \hat{l}}-\sum_{k \in K_{i j}^{0}} m_{i k} \alpha_{i j k}-\sum_{l \in L_{i j}^{\theta}} m_{j l} \beta_{i j l}
$$

which is exactly the objective value of $\mathrm{BDS}_{i j}$ for $\left(f_{i j}, \boldsymbol{u}_{\boldsymbol{i j}}, \boldsymbol{v}_{\boldsymbol{i j}}\right)$. Since these two problems have the same optimal values by invoking the strong duality theorem, $\left(f_{i j}, \boldsymbol{u}_{\boldsymbol{i j}}, \boldsymbol{v}_{\boldsymbol{i j}}\right)$ is an optimal solution of $\mathrm{BDS}_{i j}$.

Note that by using MCNF for generating cuts, we (i) avoid numerical instability arising from constraint (24), and (ii) solve the subproblems much more efficiently, so that generating n^{2} cuts is not a hindrance to obtaining tight cuts for the MP formulation - an observation that was made previously for the HLP problem in de Camargo et al. [12]. Algorithm 1 summarises the steps we use to solve U2ApHMP with our accelerated Benders decomposition method.

```
Algorithm 1: Modified Benders decomposition algorithm for U2ApHMP
    Set \(U B=\infty\);
    Solve Master Problem MP for optimal solution \((\hat{\boldsymbol{h}}, \hat{\boldsymbol{z}})\) and optimal value \(\hat{Z}_{M P}\);
    if \(M P\) is infeasible then Stop U2ApHMP is infeasible;
    Choose \(\Gamma_{1}, \Gamma_{2}\) and \(m_{0}\) so that \(S \geq 0\);
    Using successive shortest path algørithm and \((\hat{\boldsymbol{h}}, \hat{\boldsymbol{z}})\), solve subproblem MCNF for optimal solution
        \((\hat{\boldsymbol{\pi}}, \hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{\beta}})\) and optimal value \(\hat{Z}_{S P}\);
    Let \(U B:=\min \left\{\sum_{k \in N} F_{k} \hat{h}_{k}+\sum_{i, k \in N} G_{i k} z_{i k}+\hat{Z}_{S P}, U B\right\}\);
    if \(U B-\hat{Z}_{M P}<\epsilon\) then Stop. Optimal solution for U2ApHMP is \((\hat{\boldsymbol{h}}, \hat{\boldsymbol{z}}, \hat{\boldsymbol{x}})\);
    Using Theorem 3.2, generate cuts (20) and add them to MP;
    Go to Line 2.
```


3.4 Choice of Core Points

The strength of the Benders cuts in similar acceleration techniques (as discussed in Section 3.2) is directly related to the slope of the dual objective function of SP. In the literature, this slope is defined by some core point. A better choice of the points results in stronger cuts by defining more effective facets for cuts, which in turn improves the convergence rate of branch and bound for MP. We now discuss two methods for choosing this slope.

Magnanti and Wong [27] showed that any core point can be used to generate pareto optimal cuts. For instance, Contreras et al. [11] set and fixed integer variables of MP to 0.1 in each iteration in their HLP
implementation. We equivalently set and fix $m_{0}=1$, and

$$
m_{i k}=2 / n \quad \forall i, k \in N,
$$

in each iteration as our core point. Generated cuts by \boldsymbol{m} are pareto optimal, however, they might not be the strongest cuts. We observed in most cases (across a few test implementations we ran) that a modification of $\mathrm{BDS}_{i j}$ - in which the objective function is minimised - results in stronger pareto optimal cuts, fewer branch and bound iterations, and faster convergence than those obtained by $\mathrm{BDS}_{i j}$ (see Figure 5). In fact, there might not be any method to realise a core point for the strongest cut as observed by Mercier et al. [29]. So pareto optimality is not sufficient to measure the strength of Benders cuts.

Our observation gave a motivation to choose more effective core points. Recently, Papadakos [36] showed that even if we drop (24) from the second LP, the generated cut is still pareto optimal. They defined a 'Magnanti-Wong point' to be any point for which the second LP gives a pareto optimal cut, and further showed that it is enough to use any convex combination of a Magnanti-Wong point and a feasible point of MP to generate a pareto optimal cut (Papadakos [36, Theorem 8]). In our approach, there is no need to drop (24) since it is included in MCNF without causing any instability in the solution. In MCNF we set $\Gamma_{1}=0.7, \Gamma_{2}=2.7, m_{0}=0, S=\Gamma_{1}+\Gamma_{2}-m_{0}$, and

$$
m_{i k}=\Gamma_{1} / n \quad \forall k \in K_{i j}^{0}, \quad m_{j l}=\Gamma_{2} / n \quad \forall l \in L_{i j}^{0},
$$

$m_{i \hat{k}}=m_{j \hat{l}}=1 / n$, and $m_{i k}=\Gamma_{2}$ for $k \in K_{i j}^{1}$, and $m_{j l}=\Gamma_{1}$ for $l \in L_{i j}^{1}$. This choice of parameters is an empirical conclusion. By this combination, we inerease the coefficient of $z_{i k}$ and $z_{j l}$ in Benders cuts when $\hat{z}_{i k}=0$ and $\hat{z}_{j l}=0$, respectively, (see the objective function of $\mathrm{BDS}_{i j}$) in order to generate cuts which remove more space which is not recognised as being close to optimal points by the optimal solution $(\hat{\boldsymbol{h}}, \hat{\boldsymbol{z}})$ of the MP. We show in Section 4 that, on average, this choice of core point substantially reduces the number of iterations and the computational time.

Since our approach is developed for a new hub location problem, we are not able to compare our results with previous Benders decomposition approaches for solving hub location problems. The closest related research to U2A $p \mathrm{HMP}$ in the HLP literature is that of Contreras et al. [11] who report state-of-theart results on a hub location problem with multiple allocations. Their results have been a marked improvement to various other results in the literature. They were able to solve large instances exactly using their method. There are key differences between our research assumptions: (i) for a fixed set of hubs, the hub location problem with multiple allocation is polynomially solvable, whereas U2ApHMP is NP-hard even for a fixed set of hubs, and (ii) they fixed $\chi=\delta=1$ in the calculation of costs, whereas we did not impose this restriction. Note that when $\chi=\delta$, the number of subproblems is halved since the optimal route for any pair (i, j) is the same as that of the pair (j, i) with opposite orientation. These differences makes our problem quite challenging. On the other hand, they set the coordinates of the core pøint to 0.1 in each iteration, and because they found it very expensive to optimally solve the second LP for generating Benders cuts, Contreras et al. [11] were satisfied with approximations to the optimal solutions of the subproblems. This might be troublesome since a suboptimal solution of the subproblem is prone to numerically unbounded Benders cuts as discussed in Papadakos [36, Example 5]. In contrast, we proposed a versatile choice of core points, and used MCNF to solve the dual of the subproblems for cut generations.

We believe that our method is more efficient than existing similar methods in the literature. This claim is supported by our tests on the uncapacitated hub location problem with single or multiple allocation.

This is achieved through a more careful and judicious choice of the core point. We presented the results of our approach on USA $p \mathrm{HMP}$ and UMA $p \mathrm{HMP}$ in [31]. Furthermore, we believe that our results can be extended to $\mathrm{U} r \mathrm{~A} p \mathrm{HMP}$ for any $3 \leq r \leq p-1$. However, the investigation of this claim is not in the scope of this paper. So we leave it as a subsequent exercise for other researchers. Nevertheless, in order to show the efficiency of our approach for other problems, we also briefly present the results of our examination of this method and a second method for choosing core points on USA p HMP.

By substituting (3) with the following, we obtain a formulation for USApHMP (Campbell [7]):

$$
\sum_{k \in N} z_{i k}=1, \quad \forall i \in N
$$

The MP in the modified Benders decomposition is different with the one in U2ApHMP, but their subproblems are similar. By this change, the corresponding $K_{i j}^{1}$ and $L_{i j}^{1}$ in Section 3.2 are empty sets. But, this has no effect on the SP, and the Benders cuts for USA $p H M P$ can be obtained by solving (28)-(34). Hence, all the previous discussions and methods for subproblems are valid for USApHMP. Recall that for a fixed set of hubs USA p HMP is NP-hard. The choices of parameters and $m_{i k}$ for this problem are the same as those for $\mathrm{U} 2 \mathrm{~A} p \mathrm{HMP}$.

4 Computational Results

In this section we present the computational results of our experiments on U2ApHMP using a branch and bound method, and discuss Benders decomposition methods that we developed in this paper. We first provide some notations that we will use in the succeeding discussions in Table 1.

notation	description
n	the number of nodes
p	the number of hubs
Bitr	the number of Benders iterations
Bcuts	the number generated Benders cuts
B\&B	branch and bound using CPLEX 12.7
BnsAuto	built-in Benders decomposition method in CPLEX 12.7
Bns-SPX	modified Benders decomposition, where n^{2} BDS $_{i j}$ are solved using
	the simplex method at each iteration
Bns-MCNF	modified Benders decomposition where MCNF is solved using
\boldsymbol{m}-Bns-MCNF	the successive shortest path algorithm Bns-MCNF with the second method of defining the dual objective function as in Section 3.4

Table 1: Notations used in computational results

We obserye that the modified Benders decomposition method is very efficient for solving U2ApHMP, and that our choice of core points significantly improves the convergence rate. Additionally, it also reduces the number of iterations required. The effectiveness of our modified Benders decomposition method for general HLPs is also demonstrated for solving the USApHMP, UMA $p H M P$, UMAHLP and USAHLP [30, 31].

In order to test the efficiency of our method for solving U2A $p \mathrm{HMP}$, our computational experiments were carried out on three well-known datasets in the HLP literature. We examined different discount factors, namely $\alpha \in\{0.2,0.4,0.6,0.8\}$ and experimented with the number of hubs $p=3,4,5,6$ and 7 . We used
a factor $\left(10^{-3}\right)$ of access link lengths to set fixed costs for corresponding experiments of Tables 3-6. We used 80 instances of the Civil Aeronautics Board (CAB) dataset (presented first in O'Kelly [34]) with $10,15,20$ and 25 nodes. For all instances of CAB , we set $\chi=\delta=1$. There is no fixed cost data for CAB dataset. We used the method of Ebery et al. [13] to generate fixed costs datasets for CAB.

The second dataset we used is the Australia Post dataset (AP) which contains a maximum of 200 nodes. This dataset was introduced by Ernst and Krishnamoorthy [14], who also made an application available online in order to generate smaller-sized datasets. This application consolidates subsets of ordered nodes to fewer nodes. We implemented algorithms on AP instances with $30,40,50$, $60,70,80,90,100,125,150,175$ and 200 nodes. The fixed cost datasets were available for instances of size $10,20,25,40,50,100$ and 200 . There are tight and loose variants of fixed cost data, where the tight one is known to result in harder problems in general. We used the tight fixed cost datasets, and generalised their method of generating smaller size instances to produce fixed cost datasets for instances of size $30,60,70,80,90,125,150$ and 175 too. For all AP instances, we set $\chi=3$ and $\delta=2$.

To test the efficacy of our methods even further, we also tested our methods using the Turkish Cargo Delivery dataset that was provided by Tan and Kara [46]. This dataset contains 81 nodes. Using the same method that we used for the AP dataset, we produced smaller instances of the Turkish data with $30,40,50,60,70$ nodes. For all these instances, we set $\chi=\delta=1$.

Thus, in total, we tested our methods on 340 instances. The results are presented in Tables 2-8. All computations were performed on a computer with Xeon(R) 2.30 GHz processors and 64 GiB memory, with 64 -bit Linux Red Hat 4.4 operating system. All methods were coded in $\mathrm{C}++$ using the Concert Technology CPLEX 12.7. The time limit for all computations was fixed to 3 hours (10800 seconds), and the number of computation threads for all the Benders decomposition methods was fixed to one. If within the specified time limit, a method is able to find the optimal solution, the corresponding CPU time is presented in seconds (sec). If the method only finds a feasible non-optimal solution, the gap between the best solution is presented. If, however, a method does not find any feasible solution, then ' m ' or ' t ' is displayed to (respectively) indicate that the method stopped because of insufficient memory or because it reached the time limit.

The computational results of U 2 ApHMP tests on the CAB dataset are presented in Table 2. All procedures were able to optimally solve all instances in a relatively short period of time. The results indicate that \boldsymbol{m}-Bns-MCNF is the fastest method with fewest Bitr and Bcuts on average. The two slowest methods are BnsAuto and Bns-SPX. This issue is because of their inefficient solutions of the SPs for a factor of Bitr or Bcuts many times. On average, Bns-SPX and Bns-MCNF produced a similar number of Bitr. This demonstrates that computational times for this problem are significantly impacted by efficiency of solution methods for SPs in Benders approaches. For all methods, the complexity and running time grow with the number of nodes n.

For a fixed n, the computational effort increases with α on average. A reason is that with lower transfer costs, non-hubs tend to be allocated to the closest hub, which makes the competition for allocations easier. For a given n, the computational effort by $\mathrm{B} \& \mathrm{~B}$ and BnsAuto decreases when p increases. Intuitively, the increased number of hubs results in less required cuts to resolve the competition of choosing hubs. However, this trend is not realised for Bns-SPX, Bns-MCNF, and \boldsymbol{m}-Bns-MCNF. For example, the instance with $n=25, p=4, \alpha=0.4$ (for brevity 25.4.(0.4)) is one of the most time consuming problems for Bns-SPX and \boldsymbol{m}-Bns-MCNF. A reason for this difference might be that the modified Benders methods are not restricted to the chosen hubs and allocations specified by MP for

Table 2: U2ApHMP on CAB dataset
generating cuts and take into account any shorter paths.
Table 3 presents the computational results of U2ApHMP tests on the problem instances in the AP dataset with n between 30 and 60 .

The B\&B, Bns-MCNF, and \boldsymbol{m}-Bns-MCNF methods were able to optimality solve all the instances within the time limit (except one instance by B\&B). However, BnsAuto was not able to load instances with $n=60$, and Bns-SPX was not able to optimally solve instances with $n=60$, for which the gap of the best solutions is presented in the 'time' column. \boldsymbol{m}-Bns-MCNF outperforms all other methods in terms of computational time, and also it requires fewer Bitr and Bcuts for almost all instances. In general, the computational times of the modified Benders approaches are dependant on Bitr and Bcuts, without being impacted by the value of p. The computational times of B\&B, BnsAuto and Bns-SPX grow exponentially with n, due to the growth of the size of instances and/or the increased number of required Bitr or Bcuts. B\&B outperforms BnsAuto for all instances. In contrast, the increase of computational times of Bns-MCNF and \boldsymbol{m}-Bns-MCNF with growth of n are not as fast, which is because of efficient solutions of SPs and fewer Bitr. m-Bns-MCNF outperforms Bns-MCNF by more than 55% in average computational times, and it outperforms other methods by more than almost 90%.

Tables 4-5 present the computational results of U2ApHMP tests on the instances in the AP dataset, where n is between 70 and 200. Since B\&B, BnsAuto, and Bns-SPX were unable to load instances due to shortage of memory, or unable to obtain optimal (or even feasible) solutions for these instances in our test conditions, we do not include details of computational tests for these methods in Table 4-5. When a method finds a feasible solution which is not optimal, the gap of its best solution and the best

Table 3: U2A $p \mathrm{HMP}$ on Australia Post dataset (part 1)
lower bound is presented in the 'time' column. Within the time limit, Bns-MCNF was able to solve 60% of these problems to optimality, and could not obtain any feasible solution for 3 instances (indicated by 't' in the 'time' column). m-Bns-MCNF performed better and was able to optimally solve 65% of instances. In general, the computational efforts of Bns-MCNF and \boldsymbol{m}-Bns-MCNF decrease as α grows for a fixed n. \boldsymbol{m}-Bns-MCNF was able to solve instances with $70 \leq n \leq 100$ faster than Bns-MCNF by 47%, with 20% fewer Benders iterations on average. This is rooted in the stress of our cut generation method with \boldsymbol{m}-slope of $\mathrm{DS}_{i j}$ on non-hubs and non-allocated links. The gap of the best solutions obtained by m-Bns-MCNF is 2.5% lower than those by Bns-MCNF for instances with $125 \leq n \leq 200$ on average.

Table 6 presents the computational results of all U2ApHMP tests on the Turkish dataset. B\&B was able to obtain optimal solutions for all instances with up to 40 nodes, and most of instances with $n=50$. This method was only able to optimally solve a fifth of the instances with $n \geq 60$, among which none of them has 81 nodes within the time limit. BnsAuto was able to give optimal solutions for instances only up to 40 nodes, and unable to solve most instances with $n=50$ especially for larger discount factors α. It encountered memory shortage for $n \geq 60$ in our test conditions. \boldsymbol{m}-Bns-MCNF was able to solve all problems to optimality, and outperform B\&B, BnsAuto, and Bns-SPX by more than 85%, and Bns-MCNF by 56% in the average computational times. Table 6 shows that its computational times are reduced by the efficient solution of SPs and through generating stronger cuts, which is evident from fewer Bcuts/Bitr. Bns-MCNF and \boldsymbol{m}-Bns-MCNF were able to solve (almost) all instances within the time limit in this experiment. However, \boldsymbol{m}-Bns-MCNF required around 25% fewer Benders iterations and Benders cuts than Bns-MCNF. The computational time of Bns-MCNF is at least twice that of \boldsymbol{m}-Bns-MCNF on average. As in the other tested datasets, the average of computational efforts grows with the number

		Bns-MCNF	\boldsymbol{m}-Bns-MCNF		Bns-MCNF	\boldsymbol{m}-Bns-MCNF	
n p	α	time Bcuts Bitr	time Bcuts Bitr	α	time Bcuts Bitr	time Bcuts B	Bitr
703	0.2	$\begin{array}{llll}272.44 & 43540 & 24\end{array}$	$\begin{array}{llll}224.96 & 36862\end{array}$	0.4	$420.47 \quad 42911 \quad 30$	266.8840004	21
4		$\begin{array}{llll}588.61 & 46419 & 24\end{array}$	$296.04 \quad 43321 \quad 26$		$467.52 \quad 3553712$	$\begin{array}{ll}282.75 & 37305\end{array}$	27
5		$\begin{array}{llll}366.36 & 47950 & 25\end{array}$	$\begin{array}{lll}269.42 & 39129 & 19\end{array}$		$\begin{array}{llll}530.69 & 48751 & 29\end{array}$	310.9132703	16
6		$\begin{array}{lll}332.41 & 37667 & 24\end{array}$	$\begin{array}{llll}205.20 & 34456 & 22\end{array}$		$\begin{array}{llll}226.07 & 29611 & 14\end{array}$	222.5432955	24
7		$\begin{array}{llll}616.97 & 52998 & 46\end{array}$	$130.91 \quad 25526 \quad 12$		$\begin{array}{lll}592.34 & 45574 & 33\end{array}$	198.4330154	22
803		$567.5055814 \quad 21$	$\begin{array}{llll}509.55 & 45554 & 13\end{array}$		$\begin{array}{llll}661.14 & 62778 & 34\end{array}$	332.4140559	16
4		$\begin{array}{llll}1009.00 & 80186 & 35\end{array}$	$321.34 \quad 46780 \quad 14$		$\begin{array}{llll}742.58 & 61094 & 30\end{array}$	$470.70 \quad 49310$	25
5		$\begin{array}{llll}492.50 & 48367 & 19\end{array}$	$\begin{array}{lll}233.99 & 30802 & 10\end{array}$		$\begin{array}{llll}661.38 & 48721 & 29\end{array}$	417.1344670	24
6		$\begin{array}{llll}533.30 & 49511 & 25\end{array}$	$\begin{array}{lll}686.70 & 55929 & 38\end{array}$		$\begin{array}{llll}664.84 & 53302 & 24\end{array}$	302.6535103	16
7		$868.92 \quad 50789 \quad 24$	$\begin{array}{llll}581.99 & 48244 & 24\end{array}$		$\begin{array}{llll}818.01 & 46291 & 24\end{array}$	735.9753632	43
903		$\begin{array}{lll}1254.12 & 76260 & 20\end{array}$	$659.62 \quad 54696 \quad 17$		$\begin{array}{llll}748.67 & 56556 & 13\end{array}$	1239.4786582	33
4		$\begin{array}{llll}984.92 & 74202 & 30\end{array}$	$\begin{array}{lll}734.54 & 65373 & 21\end{array}$		$\begin{array}{llll}1044.55 & 83412 & 29\end{array}$	751.8162709	24
5		1526.97707071	$\begin{array}{lll}957.49 & 63884 & 23\end{array}$		$\begin{array}{lll}2278.31 & 63814 & 29\end{array}$	791.6554623	27
6		1619.5070766	$\begin{array}{llll}574.77 & 43324 & 19\end{array}$		$\begin{array}{llll}2655.76 & 73494 & 31\end{array}$	697.3249481	22
7		$\begin{array}{llll}2262.46 & 73325 & 28\end{array}$	$\begin{array}{llll}1399.61 & 58979 & 29\end{array}$		$\begin{array}{llll}4385.24 & 91700 & 47\end{array}$	$898.63 \quad 53064$	24
1003		1323.48	$\begin{array}{lll}1226.75 & 60782 & 19\end{array}$		$1200.94 \begin{array}{lll}18013 & 19\end{array}$	1567.2480956	
4		$2059.02106704 \quad 27$	1742.6410608925		$1958.4278000 \quad 19$	1997.3780251	28
5		$\begin{array}{llll}1648.27 & 80657 & 25\end{array}$	$\begin{array}{llll}637.05 & 46626 & 13\end{array}$		2141.89100388 35	927.5249398	23
6		2692.408620935	$\begin{array}{llll}1236.50 & 71316 & 23\end{array}$		$2696.63104529 \quad 28$	1311.3167185	28
7		$5622.00115162 \quad 37$	$1429.6369383 \quad 21$		$4953.79119414 \quad 34$	2911.9891949	39
1253		$3487.45150235 \quad 22$	2038.979223811		$3696.5686909 \quad 15$	2494.8768878	14
4		$3962.02107383 \quad 20$	2215.898592915		$3415.98121096 \quad 17$	3548.82111807	24
5		$6337.98135589 \quad 33$	$6392.57124667 \quad 42$		$6302.00117829 \quad 27$	3752.1999035	26
6		10517.4115535636	$3325.59105500 \quad 26$		$6428.66130810 \quad 26$	7199.55132662	55
7		$2 \% 155404 \quad 27$	9633.3317620436		1\% 183790 42	0\% 172282	43
1503		$8 \% 190506 \quad 15$	$4775.98127094 \quad 9$		$9189.72153038 \quad 20$	0\% 152417	29
4		8641.7717756817	t		$2 \% 166665 \quad 30$	9246.01173529	27
5		$5 \% 157402 \quad 32$	$10352.82171124 \quad 28$		$13 \% 171708 \quad 22$	9048.46145009	24
6		$9 \% 147501 \quad 15$	0\% 159738 32		$2 \% 193872 \quad 28$	$12 \% 137835$	12
7		$2 \% 175550 \quad 20$	1\% 139186		$19 \% 158520 \quad 27$	1\% 190000	24
1753		$1 \% 181219 \quad 12$	$2 \% 150104 \quad 14$		$5 \% 158169 \quad 15$	$2 \% 135545$	10
4		12\% 12892610	$3 \% 162706 \quad 8$		1\% 14454314	12\% 119333	11
5		26\% 148861	$9 \% 129987$		29\% $129811 \quad 15$	17\% 120679	11
6		17\% $178584 \quad 13$	$2 \% 129470-12$		$16 \% 192971$	$2 \% 163189$	13
7		19\% $193690 \quad 15$	12\% $145753 \quad 14$		$16 \% 198397 \quad 12$	8\% 130961	15
2003		26\% $150025 \quad 7$	$23 \% 158030 \quad 5$		t	$32 \% 155890$	7
4		9\% 206931	$14 \% 155976 \quad 6$		$4 \% 164926 \quad 10$	$12 \% 171367$	9
5		$26 \% 20333410$	51\% $119542 \quad 4$		$48 \% 146521 \quad 5$	13\% 213862	7
6		t	$7 \% 118380 \quad 5$		15\% 119744 4	13\% 147743	9
7		17\% 184131	t		$16 \% 157563$ 5	23\% 119483	5

Table 4: U2ApHMP on Australia Post dataset (part 2)
of nodes or the transfer discount. In general for a given n, when p increases or when α decreases, the computational time of B\&B decreases, and those of Bns-SPX, Bns-MCNF, and \boldsymbol{m}-Bns-MCNF increase.

Tables 2-6 indicate that B\&B and BnsAuto as general purpose tools are not as efficient as the modified Benders methods for our hub location problem to solve large instances. B\&B is not very efficient since it is very dependant on the capability of computational environment. Its computational effort grows exponentially, so that it is unable to solve every instance with $n \geq 60$ in our experiments. In general, its performance is highly influenced by the size of the problem. According to our computational results, BnsAuto is not an efficient method in general since only one cut is added to the MP in each iteration. In addition, it requires large RAM memory for relatively medium instances. Note that the modified Benders methods are able to find optimal solutions (or feasible solutions in some cases), whereas BnsAuto cannot load the problem due to the shortage of memory. However, the computational times of Bns-SPX are larger than those of BnsAuto for most cases (see Figure 7).

Due to the degeneracy of the SPs, the generated cuts in each iteration are not unique. The convergence rate of the Benders approach is highly dependant on the choice of cuts. As shown in Figure 5 and

		Bns-MCNF			\boldsymbol{m}-Bns-MCNF				Bns-MCNF			\boldsymbol{m}-Bns-MCNF		
n p	α	time	Bcuts	Bitr	time	Bcuts	Bitr	α	time	Bcuts	Bitr	time	Bcuts	Bitr
703	0.6	252.31	35183	24	263.14	24573	18	0.8	337.60	38940	35	472.43	43573	38
4		441.62	39697	32	486.48	47158	35		461.18	47404	49	243.46	24881	24
5		757.08	44179	62	189.72	27664	14		612.01	50489	52	306.15	31548	20
6		281.95	34518	23	157.70	30936	14		482.43	37257	37	366.54	36032	42
7		846.52	48646	48	301.99	31383	26		1116.60	56216	38	445.36	36048	23
803		740.49	58430	37	458.44	50135	28		447.21	43061	26	430.03	40310	26
4		691.71	55457	30	423.81	48714	25		948.97	54971	34	367.83	41875	18
5		1347.31	63052	39	786.51	42747	31		871.12	61774	40	561.00	35163	19
6		893.77	55924	27	658.50	48990	37		1316.41	57982	46	718.46	44986	30
7		1211.16	53548	39	977.72	49484	47		1728.25	48971	21	1627.16	57376	35
903		686.46	56012	19	1285.79	70023	36		944.95	62426	26	1295.25	75091	29
4		583.84	57040	24	1003.31	49561	28		1100.42	63724	33	711.18	42654	21
5		1928.53	76749	35	1168.41	66848	33		1374.35	68986	32	1023.69	49214	31
6		3292.04	84316	66	707.66	53730	25		2589.41	70574	51	1223.22	50476	33
7		2120.44	73876	46	1697.27	76755	47		5226.40	89118	43	2147.01	78243	54
1003		1281.84	84046	18	869.15	69089	14		1391.49	76712	24	1581.76	91822	25
4		1910.48	80352	21	1667.03	57158	23		2596.91	88826	41	1838.74	64422	21
5		2775.97	98360	39	1077.40	53798	16		3006.49	97259	47	1520.71	56047	19
6		2867.54	91289	33	925.23	53999	20		4555.27	113668	43	2066.96	68737	33
7		6070.26	107040	49	3054.90	87928	38		t			3984.57	91899	35
1253		2476.75	94968	16	2975.88	64602	20		4451.72	135687	34	6046.55	134748	41
4		5078.91	138503	46	3044.06	85393	22		7034.84	149321	47	3768.46	115333	26
5		8537.01	135263	26	3110.27	91207	19		9566.48	144519	38	5187.52	127238	28
6		0\%	161253	39	3555.69	102055	23		0\%	172197	68	7322.35	121563	35
7		1\%	147254	33	1\%	139797	41		1\%	150121	28	1\%	126275	36
1503		6856.67	143136	15	9025.34	155853	25		0%	162363	31	0\%	111149	36
4		7\%	162270	25	1\%	165872	25		1\%	161600	26	10597.32	163260	35
5		1\%	164689	27	2\%	150927	20		4%	151280	25	2%	167066	25
6		3\%	162743	22	0\%	135489	22		5\%	158253	23	12\%	142334	30
7		17\%	157042	21	10\%	141563	25		17\%	176927	27	2%	156856	19
1753		6%	112188	12	0\%	173152	13		2\%	166523	11	2%	134015	10
4		8\%	146711	10	10\%	128322	12		9\%	123723	17	11\%	104565	14
5		17\%	117601	13	4%	155376	13		12%	158014	12	15\%	113645	17
6		15\%	159425	10	8\%	117879	15		14%	133947	22	14\%	100007	14
7		14\%	151862	9	13\%	107537	16		21\%	122024	6	3%	140908	13
2003		30\%	165247	8	5\%	154627	6		27%	158489	5	t		
4		8\%	157871	6	29\%	156756	5		5\%	208366	8	10\%	182023	7
5		14\%	203388	9	22%	117791	4		18\%	160111	6	8\%	148075	5
6		12\%	156055	5	10\%	157336	8		21\%	119998	4	t		
7		12\%	152070	6	15\%	118683	4		16%	178488	6	22\%	118929	4

Table 5: U2ApHMP on Australia Post dataset (part 3)
indicated earlier in Section 3.4, we observed in most cases (across a few test implementations we ran) that a modification of $\mathrm{BDS}_{i j}$ - in which the objective function is minimised - results in stronger pareto optimal cuts, fewer Bitr, and faster convergence than those obtained by $\mathrm{BDS}_{i j}$. As an instance, the computational time for $40.5(0.4)$ in the Turkish dataset in this experiment is decreased by 60%. However, in general, as we observed in Tables 3-6 for different procedures which use core points for acceleration of Benders decomposition (that is Bns-MCNF and \boldsymbol{m}-Bns-MCNF), we are not able to realise the best core point for the strongest cut for all cases. This is also observed by Mercier et al. [29].

It is clear from the tables that a judicious choice of parameters for generating Benders cuts improves the performance of the Benders method. While the modified Benders approaches strengthen the Benders cuts through choosing a different slope of objective functions for SPs, Bns-SPX and Bns-MCNF do not take into the account the information of shortest paths for each pair of nodes. In contrast, \boldsymbol{m}-Bns-MCNF used this information to determine the slope of the Benders cuts. This resulted in an almost monotonic and effective convergence, with less than half the Bcuts of that of the other methods on average.

Figure 6 shows that on average, 94% of total computational times in Bns-SPX is dedicated to solve subproblems using the simplex method. The large computational time for solving n^{2} subproblems

Table 6: U2ApHMP on Turkish Mail dataset

Figure 5: Computational efforts of Bns-SPX for $20 \leq n \leq 50$ when the objective function of $\mathrm{BDS}_{i j}$ is minimised/maximised.

Figure 6: The portion of computational efforts for solving SPs and MP for $20 \leq n \leq 50$ for Bns-SPX, Bns-MCNF and \boldsymbol{m}-Bns-MCNF. Average CPU time for each porfion is shown in the related bar.
$\mathrm{BDS}_{i j}$ is not surprising since the simplex method is not the most efficient way to solve them. As is clear from computational results for Bns-MCNF and \boldsymbol{m}-Bns-MCNF, using the successive shortest path algorithm, and Dijkstra algorithm (i) significantly reduces the computational times, and (ii) requires much less memory. The implementation of Bns-MCNF and \boldsymbol{m}-Bns-MCNF on all instances used at most 8 Gb memory. Thus, the modified Benders decomposition together with efficient method of solving subproblems significantly improves our ability to tackle large instances of U2ApHMP.

On the other hand, by comparison of computational results of Bns-MCNF and \boldsymbol{m}-Bns-MCNF in Tables 2-6, our choice of the objective function slope of $\mathrm{DS}_{i j}$ has a significant impact on the number of iterations and computational times. m-Bns-MCNF outperforms Bns-MCNF in computational times by 40%, and in Bitr by 22% on average. In general, \boldsymbol{m}-Bns-MCNF generates stronger Benders cuts which results in much shorter MP solution times as shown in Figure 6. Note that \boldsymbol{m}-Bns-MCNF outperforms Bns-MCNF in average computational effort or in the best solution gap for large instances.

Note that the hub location problems are mostly used for high-level strategic planning. Also real-world problems are large instances generally. Meta-heuristic methods may not guarantee the optimality of solutions which could result in a huge cost. Therefore, \boldsymbol{m}-Bns-MCNF is a much more efficient and reliable method than the other methods to tackle real-world problems.

Tables 7-8 present results for network designs of $\mathrm{U} 2 \mathrm{~A} p \mathrm{HMP}$ and $\mathrm{U} r \mathrm{~A} p \mathrm{HMP}$ for $1 \leq r \leq p$. We analyse implications of different values of r and α on the operational costs and the number of allocations. In these tables, '\#A' denotes the number of allocations, 'obj' denotes the optimal cost of U2ApHMP, and 'obj/ U 2 A ' denotes the proportion of the optimal value of $\mathrm{U} r \mathrm{~A} p \mathrm{HMP}$ to the optimal value of $\mathrm{U} 2 \mathrm{~A} p \mathrm{HMP}$. Note that $\mathrm{U} r \mathrm{~A} p \mathrm{HMP}$ with $r=1$ and $\mathrm{U} r \mathrm{~A} p \mathrm{HMP}$ with $r=p$ are respectively equivalent to USA p HMP and UMA p HMP. In this experiment we used small fixed costs for access links. Hence, in a few cases in Table 8, the total costs of network designs of USApHMP are lower than those of U2A p HMP because of twice allocations. For UrApHMP, the number of allocations grows with α when

Figure 7: Comparison of average solution times on U2ApHMP with respect to the number of nodes
n and p are fixed. Also, for smaller transfer cost α, the number of allocations for more non-hubs is one since the lowest cost solution is to allocate each non-hub to its nearest hub. Note that the operational costs and the number of allocations by U2ApHMP are upper bounds for those values by UrApHMP with $r=2$. However, for smaller values of α, $\mathrm{U} 2 \mathrm{~A} p \mathrm{HMP}$ and $\mathrm{U} r \mathrm{~A} p \mathrm{HMP}$ with $r=2$ have larger gaps in those values. The gap between the optimal values for the same instance is only for the access link fixed costs. In many cases, the number of allocations by $\mathrm{U} r \mathrm{~A} p \mathrm{HMP}$ with $r>2$ is smaller than that of U2ApHMP, while the operational costs are smaller. This indicates that some non-hubs in network designs by $\mathrm{Ur} \mathrm{A} p \mathrm{HMP}$ are singly allocated. Also, for larger values of r and especially for larger values of α, the number of allocations by UrApHMP increases in favour of reducing the operational costs as compared to U2A $p \mathrm{HMP}$.

For instance 20.5.(0.8) in the CAB dataset, as an example, U2ApHMP provides 0.1% higher optimal value than $\mathrm{U} r \mathrm{~A} p \mathrm{HMP}$ with $r=2$ for 2 additional access links which keeps the network survivable. In this example, UrApHMP with $r=3$ and $r=4$, respectively, have 10 and 14 more access links (without guaranteeing, the network is 2-connected) than $\mathrm{U} 2 \mathrm{~A} p \mathrm{HMP}$, which result in 2.1% and 2.8% lower costs, respectively. However, UrA $p \mathrm{HMP}$ network designs do not provide ultimate solutions when survivability is essential. In general, a solution by $\mathrm{U} 2 \mathrm{~A} p \mathrm{HMP}$ is similar to that of $\mathrm{U} r \mathrm{~A} p \mathrm{HMP}$ with $r=2$ with slightly larger total costs due to the fixed costs associated with, probably, a few more access links. In this experiment, since the fixed costs of access links are sufficiently small, a solution of U2ApHMP can be obtained from a solution of UrApHMP with $r=2$ by allocating singly allocated non-hubs to their nearest unused hubs.

5 Conclusions

In this paper, we have introduced the U2ApHMP. This is a variant of hub location problems that captures survivability of networks. Although the manner in which we model survivability is a proxy or

		U2ApHMP	UrApHMP							
				$r=1$	$r=2$	$r=3$	$r=4$	$r=5$	$r=6$	$r=7$
$n \quad p \quad \alpha$	\# A	A obj		A obj/U2A	\#A obj/U2A					
2030.2	34	4837871645	17	7 101.102\%	21 99.680\%	21 99.680\%				
0.4	34	5365681823	17	104.373\%	25 99.784\%	$25 \quad 99.784 \%$				
0.6	34	5835733939	17	7 108.118\%	28 99.850\%	29 99.799\%				
0.8	34	6236303446	17	112.544\%	32 99.924\%	36 99.571\%				
40.2	32	4275868363	16	16101.237%	$22 \quad 99.696 \%$	22 99.696\%	$22 \quad 99.696 \%$			
0.4	32	5002008793	16	103.777\%	24 99.785\%	$27 \quad 99.225 \%$	$27 \quad 99.225 \%$			
0.6	32	5665425831	16	16 106.395\%	27 99.843\%	31 98.027\%	31 98.027\%			
0.8	32	6184103897	16	110.690\%	29 99.904\%	$38 \quad 97.522 \%$	$38 \quad 97.522 \%$			
50.2	30	3886883844	15	15 100.995\%	21 99.713\%	$22 \quad 99.657 \%$	$22 \quad 99.657 \%$	$22 \quad 99.657 \%$		
0.4	30	4707486453	15	5 103.329\%	23 99.788\%	25 99.244\%	26 98.986\%	$26 \quad 98.986 \%$		
0.6	30	5475744684	15	105.909\%	25 99.845\%	29 98.492\%	31 98.066\%	$31 \quad 98.066 \%$		
0.8	30	6174332880	15	15 109.072\%	28 99.901\%	$40 \quad 97.873 \%$	44 97.207\%	$44 \quad 97.207 \%$		
60.2	28	3857574090	14	4100.541%	19 99.764\%	$20 \quad 99.692 \%$	21 99.653\%	$21 \quad 99.653 \%$	$21 \quad 99.653 \%$	
0.4	28	4723681189	14	101.874\%	21 99.829\%	23 99.322\%	24 99.219\%	24 99.219\%	$24 \quad 99.219 \%$	
0.6	28	5532563209	14	103.782\%	25 99.887\%	29 98.709\%	32 98.496\%	$32 \quad 98.496 \%$	$32 \quad 98.496 \%$	
0.8	28	6266827565	14	106.456\%	27 99.926\%	$36 \quad 98.284 \%$	$42 \quad 97.884 \%$	$42 \quad 97.884 \%$	42 97.884\%	
70.2	26	3890292159	13	100.255\%	17 99.771\%	18 99.662\%	19 99.615\%	19 99.615\%	19 99.615\%	19 99.615\%
0.4	26	4780444700	13	101.491\%	21 99.861\%	23 99.399\%	24 99.296\%	24 99.296\%	24 99.296\%	24 99.296\%
0.6	26	5599400794	13	103.387\%	24 99.900\%	29 99.065\%	32 98.854\%	32 98.854\%	32 98.854\%	32 98.854\%
0.8	26	6374043309	13	105.520\%	25 99.926\%	33 98.730\%	38 98.363\%	39 98.317\%	$39 \quad 98.317 \%$	39 98.317\%
2530.2	44	7326753535	22	101.301\%	27 99.720\%	$27 \quad 99.720 \%$				
0.4	44	8234566445	22	104.176\%	31 99.798\%	31 99.798\%				
0.6	44	9006625381	22	107.791\%	$36 \quad 99.872 \%$	37 99.817\%				
0.8	44	9648569755	22	111.793\%	41 99.932\%	46 99.606\%				
40.2	42	6465260232	21	101.123\%	28 99.723\%	$28 \quad 99.723 \%$	$28 \quad 99.723 \%$			
0.4	42	7658613368	21	103.426\%	$30 \quad 99.783 \%$	33 99.283\%	$33 \quad 99.283 \%$			
0.6	42	8699118340	21	106.189\%	34 99.855\%	$40 \quad 98.911 \%$	$39 \quad 98.900 \%$			
0.8	42	9545191372	21	110.156%	38 99.922\%	53 98.215\%	53 98.215\%			
50.2	40	6025840995	20	100.814\%	26 99.728\%	27 99.692\%	27 99.692\%	$27 \quad 99.692 \%$		
0.4	40	7319356917	20	102.754\%	29 99.800\%	31 99.382\%	32 99.194\%	$32 \quad 99.194 \%$		
0.6	40	8490224981	20	105.572\%	33 99.871\%	$37 \quad 98.831 \%$	$39 \quad 98.526 \%$	$39 \quad 98.526 \%$		
0.8	40	9518074631	20	109.246\%	37 99.950\%	53 98.126\%	59 97.608\%	59 97.608\%		
60.2	38	5826458485	19	100.862\%	$25 \quad 99.770 \%$	$26 \quad 99.732 \%$				
0.4	38	7164231902	19	102.799\%	28 99.836\%	$30 \quad 99.410 \%$	$32 \quad 99.224 \%$	32 99.224\%	32 99.224\%	
0.6	38	8410765446	19	105.216\%	32 99.894\%	$36 \quad 98.844 \%$	39 98.496\%	39 98.496\%	$39 \quad 98.496 \%$	
0.8	38	9493453537	19	108.802\%	36 99.941\%	$52 \quad 98.092 \%$	$61 \quad 97.473 \%$	$61 \quad 97.473 \%$	$61 \quad 97.473 \%$	
70.2	36	5784401827	18	100.548\%	24 99.780\%	$25 \quad 99.742 \%$				
0.4	36	7109892375	18	102.667\%	28 99.875\%	$30 \quad 99.504 \%$	32 99.409\%	32 99.409\%	32 99.409\%	$32 \quad 99.409 \%$
0.6	36	8392731734	18	104.601\%	$32 \quad 99.921 \%$	36 98.917\%	41 98.631\%	41 98.631\%	41 98.631\%	41 98.631\%
0.8	36	9527483370	18	107.669\%	35 99,957\%	$49 \quad 98.359 \%$	$58 \quad 97.780 \%$			

Table 7: A comparison of network designs by U2A $p H M P$ and $\mathrm{U} r \mathrm{~A} p \mathrm{HMP}$ with various values of r on the CAB dataset
a surrogate to true/robust survivable hub model development, we believe that our effort represents a first step towards more general hub network models that consider survivability. The new problem that we present here (that is, U2A $p H M P$) is shown to be NP-hard even when the hub locations are known a priori. Thus, our conjecture is that any new model that is developed for complete, exhaustive and robust survivable hub network designs is going to be significantly harder than the model that we have developed in this paper. Thus, in some sense, we believe that this contribution may open up a new thrust of research in hub location models and develop more insightful and deep contributions towards survivable hub network design.

It has been only recently shown that large instances of hub location problems can be solved using exact methods. With our (i) new approach for efficiently solving subproblems, and (ii) a more judicious and effective choice of core-points in the acceleration of Benders method, the boundary for solving large hub location instances using exact methods is likely to be pushed even further. Since the nature of other hub location problems (and the subproblems in their Benders decompositions) are similar to that of the U2ApHMP that we have considered in this paper, we expect our approach to be efficient for

Table 8: A comparison of network designs by $\mathrm{U} 2 \mathrm{~A} p \mathrm{HMP}$ and $\mathrm{U} r \mathrm{~A} p \mathrm{HMP}$ with various values of r on the AP and Turkish datasets
implementing on other hub location problems, including the multiple allocation p-hub median problems $[14,16]$, and also the multiple allocation hub location problems [6].

The computational results on other variations of HLPs [30, 31] also confirms that our approach can be implemented on other hub location problems with a view to (i) solving larger instances, and (ii) improving the state-of-the-art in terms of computational efficiency. Of course, further research is needed to document how efficient is our new Benders decomposition based approach for solving various hub location problems that have already been looked at in the literature. In addition to the above contribution, in this paper, we also introduced $\mathrm{U} 2 \mathrm{~A} p \mathrm{HMP}$, an important new problem to the literature.

Acknowledgement The authors are grateful for the many constructive comments from the anonymous referees and the guest editors of the special issue. Their comments improved the content and presentation of this paper significantly.

References

[1] Allocation strategies in hub networks. Eur J Oper Res, 211(3):442-451, 2011.
[2] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows: theory, algorithms, and applications. 1993.
[3] S. Alumur and B.Y. Kara. Network hub location problems: The state of the art. Eur J Oper Res, 190(1):1-21, 2008. doi: 10.1016/j.ejor.2007.06.008.
[4] Y. An, Y. Zhang, and B. Zeng. The reliable hub-and-spoke design problem: Models and algorithms. Transport Res B-Meth, 77:103-122, 2015.
[5] J.F. Benders. Partitioning procedures for solving mixed-variables programming problems. Numer. Math., 4(1): 238-252, 1962.
[6] J.F. Campbell. Integer programming formulations of discrete hub location problems. Eur J Oper Res, 72(2):387-405, 1994. doi: 10.1016/0377-2217(94)90318-2.
[7] J.F. Campbell. Hub location and the p-hub median problem. Oper. Res., 44(6):923-935, 1996.
[8] J.F. Campbell, A.T. Ernst, and M. Krishnamoorthy, Hub location problems. Facility location: applications and theory, 1:373-407, 2002.
[9] R.H. Cardwell, C.L. Monma, and T-H Wu. Computer-aided design procedures for survivable fiber optic networks. IEEE Journal on Selected Areas in Communications, 7(8):1188-1197, 1989.
[10] S. Çetiner, C. Sepil, and H. Süral.Hubbing and routing in postal delivery systems. Ann. Oper. Res., 181(1):109-124, 2010.
[11] I. Contreras, J.-F. Cordeau, and G. Laporte. Benders decomposition for large-scale uncapacitated hub location. Oper. Res., 59(6):1477-1490, 2011.
[12] R.S. de Camargo, G.D. Miranda, and H. Luna. Benders decomposition for the uncapacitated multiple allocation hub location problem. Comput. Oper. Res., 35(4):1047-1064, 2008.
[13] J. Ebery, M. Krishnamoorthy, A.T. Ernst, and N. Boland. The capacitated multiple allocation hub location problem: Formulations and algorithms. Eur J Oper Res, 120(3):614-631, 2000.
[14] A.T. Ernst and M. Krishnamoorthy. Efficient algorithms for the uncapacitated single allocation p-hub median problem. Loeation science, 4(3):139-154, 1996.
[15] A.T. Ernst and M. Krishnamoorthy. An exact solution approach based on shortest-paths for p-hub median problems. INFORMS J. Comput., 10(2):149-162, 1998.
[16] A.T. Ernst and M. Krishnamoorthy. Exact and heuristic algorithms for the uncapacitated multiple allocation p-hub median problem. Eur J Oper Res, 104(1):100-112, 1998.
[17] R.Z. Farahani, M. Hekmatfar, A.B. Arabani, and E. Nikbakhsh. Hub location problems: A review of models, classification, solution techniques, and applications. Comput. Ind. Eng., 64(4):1096-1109, 2013. doi: 10.1016/j.cie.2013.01.012.
[18] M. Fischetti, D. Salvagnin, and A. Zanette. A note on the selection of benders cuts. Math Prog, 124(1):175-182, 2010.
[19] M. Grötschel, C.L. Monma, and M. Stoer. Design of survivable networks. In M.O. Ball, editor, Handbooks in operations research and management science, volume 7, pages 617-672. Elsevier, 1995.
[20] P. Jaillet, G. Song, and G. Yu. Airline network design and hub location problems. Location science, 4(3):195-212, 1996.
[21] H. Kim. p-hub protection models for survivable hub network design. J Geogr Syst, 14(4):437-461, 2012.
[22] H. Kim and M.E. O'Kelly. Reliable p-hub location problems in telecommunication networks. Geogr Anal, 41(3): 283-306, 2009.
[23] H. Kim and M.S. Ryerson. The q-ad hoc hub location problem for multi-modal networks. Networks and Spatial Economics, 17(3):1015-1041, 2017. doi: 10.1007/s11067-017-9357-y.
[24] J.G. Klincewicz. Hub location in backbone/tributary network design: a review. Location Science, 6(1):307-335, 1998.
[25] J.G. Klincewicz. Enumeration and search procedures for a hub location problem with economies of scale. Ann. Oper. Res., 110(1):107-122, 2002.
[26] R.F. Love, J.G. Morris, and G.O. Wesolowsky. Facilities location. North-Holland, Amsterdam, 1988.
[27] T.L. Magnanti and R.T. Wong. Accelerating Benders decomposition: Algorithmic enhancement and model selection criteria. Oper. Res., 29(3):464-484, 1981.
[28] T.C. Matisziw, A.T. Murray, and T.H." Grubesic. Strategic network restoration. Networks and Spatial Economics, $10(3): 345-361,2010$. doi: $10.1007 /$ s11067-009-9123-x.
[29] A. Mercier, J.-F. Cordeau, and F. Soumis. A computational study of Benders decomposition for the integrated aircraft routing and crew scheduling problem. Comput. Oper. Res., 32(6):1451-1476, 2005.
[30] H. Mokhtar, M. Krishnamoorthy, and A.T. Ernst. A new benders decomposition acceleration procedure for large scale multiple allocation hub location problems. In 22nd International Congress on Modelling and Simulation, pages 340-346. The Modelling \& Simulation Society of Australia and New Zealand (MSSANZ), 2017
[31] H. Mokhtar, M. Krishnamoorthy, and A.T. Ernst. A modified Benders method for the single and multiple allocation p-hub median problem. In Operations Research Proceedings 2017. Springer, 2018.
[32] C.L. Monma and D.F. Shallcross. Methods for designing communications networks with certain two-connected survivability constraints. Operations Research, 37(4):531-541, 1989.
[33] M.E. O'Kelly. The location of interacting hub facilities. Transport Sci, 20(2):92-106, 1986.
[34] M.E. O'Kelly. A quadratic integer program for the location of interacting hub facilities. Eur J Oper Res, 32(3): 393-404, 1987. doi: 10.1016/S0377-2217(87)80007-3.
[35] M.E. O'Kelly. Network hub structure and resilience. Networks and Spatial Economics, 15(2):235-251, 2015.
[36] N. Papadakos. Practical enhancements to the Magnanti-Wong method. Oper. Res. Lett., 36(4):444-449, 2008.
[37] W.B. Powell and Y. Sheffi. The load planning problem of motor carriers. Problem description and a proposed solution approach. Transportation Research Part A: General, 17(6):471-480, 1983.
[38] G. Sen and M. Krishnamoorthy. Discrete particle swarm optimization algorithms for two variants of the static data segment location problem. Appl Intell (to appear), pages 1-20, 2017. doi: 10.1007/s10489-017-0995-z.
[39] G. Sen, M. Krishnamoorthy, N. Rangaraj, and V. Narayanan. Exact approaches for static data segment allocation problem in an information network. Comput. Oper. Res., 62:282-295, 2015.
[40] G. Sen, M. Krishnamoorthy, N. Rangaraj, and V. Narayanan. Mathematical models and empirical analysis of a simulated annealing approach for two variants of the static data segment allocation problem. Networks, 68(1):4-22, 2016. doi: 10.1002/net. 21675.
[41] D. Skorin-Kapov and J. Skorin-Kapov. On tabu search for the location of interacting hub facilities. Eur J Oper Res, 73(3):502-509, 1994.
[42] K. Smith, M. Krishnamoorthy, and M.Palaniswami. Neural versus traditional approaches to the location of interacting hub facilities. Location Science, 4(3):155-171, 1996.
[43] J. Sohn and S. Park. The single allocation problem in the interacting three-hub network. Networks, 35(1):17-25, 2000.
[44] S. Soni, R. Gupta, and H. Pirkul. Survivable network design: The state of the art. Information Systems Frontiers, 1(3):303-315, 1999.
[45] M. Stoer. Design of survivable networks. 2006.
[46] P.Z. Tan and B.Y. Kara. A hub covering model for cargo delivery systems. Networks, 49(1):28-39, 2007.
[47] J. Xu. Topological structure and analysis of interconnection networks, volume 7. Springer Science \& Business Media, 2013.
[48] H. Yaman. Star p-hub median problem with modular arc capacities. Comput. Oper. Res., 35(9):3009-3019, 2008.

[^0]: *Corresponding author. email: h.mokhtar@uq.edu.au
 ${ }^{\dagger}$ email: m.krishnamoorthy@uq.edu.au
 ${ }^{\ddagger}$ email: andreas.ernst@monash.edu

