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Abstract: 7	

In this study, a rotating gliding arc (RGA) warm plasma has been developed for the conversion of CO2 8	

into CO and O2. The effect of feed flow rate, applied voltage, arc current, and the addition of N2 or Ar 9	

on the reaction performance has been investigated. The results show two variation patterns of CO2 10	

conversion and energy efficiency, depending on the specific energy input (SEI): In Pattern A with SEI > 11	

3.5 kJ/L, the CO2 conversion and energy efficiency decrease simultaneously with increasing SEI, while 12	

in Pattern B with SEI ≤ 3.5 kJ/L, the energy efficiency and the CO2 conversion show an opposite trend. 13	

The recombination of CO and O at high temperatures could be responsible for the decrease of CO2 14	

conversion with rising SEI due to the increased retention time or gas temperature. A CO2 conversion 15	

of 4.0-4.4% and energy efficiency of 16-17% can be achieved. Compared to other non-thermal plasmas, 16	

the RGA plasma exhibits a lower CO2 conversion but higher energy efficiency, whilst maintaining a 17	

flow rate (e.g, 6-7 L/min) that is significantly higher than that of typical non-thermal plasmas (e.g., 20-18	

125 ml/min in dielectric barrier and corona discharges). Increasing the fraction of N2 or Ar promotes 19	

the conversion of CO2 but lowers the energy efficiency. N2 is clearly more beneficial for enhancing the 20	

CO2 conversion in comparison to Ar. Further enhancement of the reaction performance can be 21	

expected by cooling the plasma area to lower the gas temperature, to limit the recombination of CO 22	

and O. 23	

	24	
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1. Introduction 27	

In the Synthesis Report of Climate Change 2014, the Intergovernmental Panel on Climate Change 28	

(IPCC) confirmed that human influence on the climate change is clear, and recent anthropogenic 29	

emissions of greenhouse gases reach the highest on record [1]. The atmospheric concentration of the 30	
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major greenhouse gas CO2 has been increasing from a preindustrial level of 280 ppm to an 1	

unprecedented level of 400 ppm in 2014 [1]. Undoubtedly, the development of effective strategies for 2	

the mitigation and valorization of CO2 has been of unprecedented importance. Significant efforts have 3	

been devoted to these strategies, such as boosting the use of clean and renewable energy, improving 4	

energy utilization efficiency, carbon capture and storage (CCS), as well as carbon capture and 5	

utilization (CCU) [2]. Among these strategies, the conversion of CO2 into value-added chemicals or 6	

fuels has been considered as one of the attractive solutions for CO2 reduction, which not only complies 7	

with the framework of sustainable and green chemistry but also fits within the ‘cradle-to-cradle’ 8	

concept (an ecologically intelligent concept focusing on closed-loop cycles of production, recovery 9	

and remanufacture) [3]. Several chemical processes have been investigated in this regard, including 10	

CO2 reforming of CH4 and CO2 hydrogenation with H2, aiming for the production of syngas and value-11	

added oxygenates (e.g., methanol, formic acid, and formaldehyde) [3]. Direct dissociation of CO2 into 12	

CO (eq. (1)) is also of particular interest [3-6], because CO is an important chemical feedstock for the 13	

production of a range of platform chemicals (e.g., organic acid and	aldehyde etc. [7]) and synthetic 14	

fuels (e.g., via Fischer-Tropsch process [4]).  15	

CO2 → CO + 
1
2

O2							∆H = 280 kJ/mol																																																																																								 (1) 16	

However, CO2 is a highly stable molecule and its activation remains a challenge as a large amount 17	

of energy is required for CO2 conversion in a traditional thermal process. Thermodynamic equilibrium 18	

calculation of this reaction shows that CO2 begins to split at near 2000 K with a fairly low conversion 19	

of <1% [5]. In this regard, non-thermal plasma has emerged as an attractive alternative solution for the 20	

effective decomposition of CO2 as it enables this thermodynamically unfavourable reaction (i.e., CO2 21	

activation) to proceed with a reduced energy cost under mild conditions, i.e., lower temperature and 22	

atmospheric pressure [3, 8, 9]. In non-thermal plasmas, the electrical energy is selectively applied to 23	

producing highly energetic electrons with a typical average electron energy of 1-10 eV, which can 24	

directly activate inert gas molecules (e.g., CO2) to generate highly reactive species (e.g., excited 25	

species, radicals, ions, and photons) for the initiation and propagation of plasma chemical reactions 26	

[10, 11]. In the meantime, the gas kinetic temperature of non-thermal plasmas remains relatively low 27	

[12-14]. Furthermore, the compactness (high specific productivity) and flexibility (high reaction rate, 28	

instantaneous ‘on-and-off’) of non-thermal plasma systems offers a promising solution to the 29	
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imbalance between energy production and consumption by intermittent renewable sources, e.g., solar 1	

and wind, creating a carbon-neutral network [15-17]. 2	

Various non-thermal plasma systems have been reported in the literature for direct dissociation of 3	

CO2, among which dielectric barrier discharge (DBD) [5, 6, 8, 16, 18-23], microwave (MW) discharge 4	

[24-28] and gliding arc discharge [29-34] are the most commonly investigated types. It is known that 5	

the vibrational excitation of CO2 is the most efficient way for the dissociation of CO2 to CO [10]. In 6	

DBD plasmas, the conversion of CO2 has been demonstrated to be dominated by electron-impact 7	

excitation followed by dissociation and the vibrational excitation of CO2 is found to be of minor 8	

importance, thus typically showing a limited energy efficiency of <10% [3]. MW discharges can enable 9	

an efficient dissociation of CO2 via the vibrational excitation pathway (e.g., conversion of 30% and 10	

energy efficiency of 40% [24]), but was only achieved at a reduced pressure (50-200 torr), which is	11	

undoubtedly not desirable from an industrial application point of view. 12	

In this regard, gliding arc discharge is among the most promising plasmas because it offers the 13	

possibility to operate at atmospheric pressure and simultaneously reach a non-equilibrium state that is 14	

strong enough to stimulate the most efficient dissociation of CO2 through vibrational excitation [3]. In 15	

addition, gliding arc discharge can provide a significantly higher energy density and electron energy 16	

in comparison to other non-thermal plasmas (e.g., DBD), providing high flexibility to work in a wide 17	

range of reactant flow rates and plasma power levels (up to several kW) [10, 35]. However, in a 18	

traditional flat gliding arc reactor that consists of two divergent electrodes [36], the flow rates are 19	

normally limited to a high value (e.g., 10-20 L/min) for the formation and maintenance of gliding arc, 20	

which consequently results in a fairly short retention time of reactant [3, 37-40]. More importantly, 21	

although out-of-plane motion exists in the gliding arc [39, 41], the plasma reaction area that confined 22	

by the flat electrodes leads to a limited fraction of the gas flow that processed by the plasma (e.g., 23	

around 20% depending on the reactor geometry) [3, 42]. 24	

To overcome these problems, a direct current (DC) rotating gliding arc (RGA) co-driven by a 25	

magnetic field and tangential flow has been developed in our previous studies [43, 44]. The rotating 26	

of gliding arc can be driven by tangential flow, e.g., in the work by Lee et al. [45, 46], or by magnetic 27	

field, e.g., in the work by Fridman et al. [13, 47]. Whereas, the RGA plasma used in this work can 28	

provide a synergistic effect of the Lorentz force and swirling flow, ensuring the generation of a more 29	

stable plasma area with a higher rotation speed (up to 120 rotations per second) even at a very low gas 30	
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flow rate (e.g., 0.1 L/min). In addition, the RGA plasma has been evidenced to be a kind of warm 1	

plasma, which shows transitional properties between thermal and typical non-thermal plasmas, with 2	

an electron temperature of around 1 eV, a relatively high gas temperature of 1300-2000 K, a high 3	

discharge power of 200-400 W, as well as a high electron density of 1013-1015 cm-3 [37, 44, 48]. The 4	

RGA warm plasma is potentially promising for energy-efficient CO2 activation because the electron 5	

energy of around 1 eV is ideal for the vibrational excitation of CO2 molecules [10, 29, 31], which is 6	

the most energy efficient pathway for CO2 dissociation. The optical emission spectroscopy (OES) 7	

results showed that the RGA plasmas in CH3OH/N2 has a CN vibrational temperature of up to 9000 K 8	

[37], which is considerably higher than that of other typical non-thermal plasmas, e.g., DBD in N2 or 9	

Ar (2000-5000K) [49-52], indicating that the RGA plasma allows a high level of vibrational excitation. 10	

Moreover, the high electron density and discharge power of the RGA plasma enable an efficient reactor 11	

productivity, as demonstrated in our previous studies [42, 44]. In this study, we report the dissociation 12	

of CO2 using a DC RGA warm plasma co-driven by a magnetic field and tangential flow for the first 13	

time, with specific emphasis on the investigation of the effect of feed flow rate, applied voltage, and 14	

arc current on the reaction performance of the plasma process. Additionally, N2 or Ar is added into the 15	

RGA CO2 plasma to understand the effect of additive gases on the reaction performance. 16	

	17	

2. Experimental setup and methods 18	

	19	

Fig. 1 Schematic diagram of the experimental setup 20	

 21	

The schematic diagram of the experimental setup is shown in Fig. 1. The RGA reactor consists of 22	
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a cone-shaped inner anode that connected to a high-voltage source and a circular cathode that is 1	

grounded. The plasma was powered by a customized 10 kV DC power supply (TLP2040, Teslaman) 2	

which can serve as either a constant voltage source or constant current source. A 40 kΩ resistance was 3	

connected in series in the circuit to limit and stabilize the current. The reactant gas CO2 (and additive 4	

gases) was injected via three tangential inlets at the bottom of the reactor to form a swirling flow inside 5	

the reactor. An annular magnet is placed outside of the cathode, generating an upward magnetic field 6	

for the stabilization and acceleration of the arc. With the combined effect of swirling flow and Lorentz 7	

force, the arc moves upward and finally rotates rapidly around the inner anode, forming a stable plasma 8	

volume for chemical reactions (see Fig. 2 and Fig. 3). A more detailed description of the RGA reactor 9	

can be found in our previous work [44]. 10	

 11	

 
 

(1) (2) 
Fig. 2 (1) High-speed frames of the plasma arcs (1000 frames/s, exposure time = 500µs) and (2) the 12	

corresponding electrical signals (feed flow rate = 6 L/min) 13	

 14	

Fig. 2 presents the motion behavior and electrical characteristics of the RGA plasma. Clearly, the 15	

first arc initially forms at the shortest gap between the anode and cathode. Under the synergistic effect 16	

of swirling flow and Lorentz force, the formed arc is pushed up gradually to the tip of the inner anode, 17	

where it finally rotates rapidly and steadily, as shown in Fig. 2(1). A rotating cycle of the arc starts 18	

from frame (a), where a long arc is replaced by a shorter new arc between the electrodes. In the 19	

meantime, the discharge voltage drops suddenly to a minimum value (point a in Fig. 2(2)), with a rate 20	

of 11-13 kV/ms. Afterwards, the new arc rotates around the tip of the anode with a gradual increase in 21	
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the arc length, as clearly seen in frames (b)-(e). The arc length for frames (a)-(e) is calculated to be 1	

18.6, 22.6, 30.3, 39.7, and 50.5 mm, respectively. The discharge voltage is positively correlated with 2	

the arc length [53] and thus increases with the elongation of the arc (see points b-e in Fig. 2(2)). It is 3	

clear that a new rotating cycle repeats starting from frame (f) (point f in Fig. 2(2)), where the arc length 4	

and the associated discharge voltage reaches a peak value and is subsequently followed by the 5	

formation of a shorter discharge channel (a sudden drop). The rotating period (waveform period) is 6	

around 4-5 ms. 7	

A thermocouple was placed at 6 cm vertically above the plasma area to measure the outlet gas 8	

temperature. The CO2 concentration was detected online by a portable infrared CO2 gas analyzer 9	

(GXH-3010E1, Huayun Instrument). The gaseous products were measured by a gas chromatograph 10	

(GC) (GC9790A, Fuli Analytical Instrument) equipped with a thermal conductivity detector (TCD) 11	

for detecting O2 and a flame ionization detector (FID, with catalytic methanation) for detecting CO. 12	

Each experiment was repeated three times with similar results. Fig. 3 shows the time evolution of CO2 13	

concentration with and without plasma. 14	

 15	

Fig. 3 Time dependent variation of the CO2 concentration in the experiment (applied voltage = 10 kV; 16	

CO2 flow rate= 5.9 L/min) 17	

 18	

For the CO2 dissociation process, the CO2 conversion (X) and carbon balance (B) were defined 19	

as: 20	



7 

2
2

2

CO  converted (mol/min)(CO ) (%)= 100%
CO  introduced (mol/min)

X ´   (2) 1	

2

2

CO  output (mol/min) + CO produced (mol/min)(carbon) (%)= 100%
CO  introduced (mol/min)

B ´ 	 (3)	2	

The specific energy input (SEI) was defined to represent the energy density applied to the plasma 3	

reaction area. 4	

Dishcharge power (W) 60/1000(kJ/L)=
Feed flow rate (L/min)

SEI ´
	 (4)	5	

The discharge power was calculated as the product of discharge voltage and current.	6	

To indicate how efficiently the plasma process performs compared to the standard reaction 7	

enthalpy (ΔH), the energy efficiency (h) was calculated based on the following equation. 8	

2 2CO  feed flow rate (mol/min)  (CO ) (%)  (kJ/mol)(%)=
Discharge power (W)  60/1000

X Hh ´ ´ D
´

   (5) 9	

As shown in eq. (1), ΔH is 280 kJ/mol for pure CO2 splitting process. 10	

 11	

3. Results and Discussion 12	

3.1 Effect of feed flow rate 13	

	14	

Fig. 4 Carbon balance of the reaction as a function of CO2 feed flow rate (applied voltage = 10 kV) 15	

 16	
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As shown in Fig. 4, the carbon balance of the reaction remains at 98.9-99.8% under the studied 1	

conditions, indicating that CO was the primary C-containing product in CO2 dissociation. In addition, 2	

the nearly stoichiometric conversion of CO2 into CO (eq. (1)) was obtained in the plasma processing 3	

of CO2. The missing carbon is probably related to the uncertainty of the measurement. No carbon 4	

deposition was found in the experiment. Therefore, in the following sections, the CO2 conversion and 5	

energy efficiency of the plasma process will be considered as the primary indicators of the reaction 6	

performance, without focusing on the selectivity and yield of gas products. 7	

 8	

	9	

Fig. 5 CO2 conversion and energy efficiency as a function of feed flow rate and SEI (applied voltage 10	

= 10 kV) 11	

 12	

Fig. 5 shows that the effect of flow rate and SEI on CO2 conversion and energy efficiency exhibits 13	

two patterns, i.e., Pattern A with flow rates of < 6 L/min (SEI > 3.5 kJ/L) and Pattern B with flow rates 14	

of ≥ 6 L/min (SEI ≤ 3.5 kJ/L). The CO2 conversion initially increases with increasing CO2 flow rate 15	

or decreasing SEI in Pattern A, reaching a maximum of 4.4% at a flow rate of 6 L/min, but followed 16	

by a noticeable drop in Pattern B. The energy efficiency shows a continuously rising trend (from 2% 17	

to 17%) upon increasing flow rate in both Pattern A and Pattern B but exhibits a slowdown in the 18	

increase rate in Pattern B due to the decrease of CO2 conversion. 19	

It is interesting to note that increasing feed flow rate (and decreasing SEI) increases the conversion 20	

of CO2 in Pattern A. Most of previous studies (e.g., DBD [16, 19, 54], gliding arc plasmatron [31], flat 21	
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gliding arc discharge [33], and microhollow cathode discharge [55]) showed that increasing feed gas 1	

flow rate at a fixed input power had a negative effect on CO2 conversion due to the decreased retention 2	

time of CO2 in the plasma and the decreased SEI. In addition, a trade-off between the CO2 conversion 3	

and energy efficiency often exists in the plasma decomposition of CO2, i.e., the increase of CO2 4	

conversion is always accompanied by a decrease in the energy efficiency. In this study, this commonly 5	

reported phenomenon is only found in Pattern B (Fig. 5). 6	

The effect of flow rate on CO2 conversion shown in Pattern A could be attributed to the combined 7	

effect of several factors, i.e., SEI, retention time, gas temperature, and possibly vibrational excitation 8	

kinetics. Our previous studies have shown that the RGA plasmas exhibit gas temperatures of 1300-9	

2000 K, which are high enough to promote the recombination of CO and O (eq. (6) [56]), or reverse 10	

reaction of eq. (1), indicating that the high temperature of the RGA probably has a detrimental effect 11	

on the conversion CO2. Note that the auto-ignition temperature of CO is around only 878 K and eq. (6) 12	

shows that the recombination of CO and O is highly dependent on gas temperature. Sun et al. [29] 13	

showed that the conversion of CO2 and energy efficiency decreased significantly with increasing gas 14	

temperature in the range of 1000-1500 K in a gliding arc plasma with knife-shaped electrodes, wherein 15	

the recombination between CO and O is the main reaction to limit the conversion of CO2. 16	

[ ]-12.55 /R/6 2 T-33
2CO + O CO         (T) = 1.7 10 [ / ] e  (T = 300 - 25 0K 0 )kJ molecm molecuk le s® ´ ×  (6) 17	

Where, k(T) refers to the reaction rate constant, T is the gas temperature and R is the universal gas 18	

constant. 19	

The measured outlet gas temperature in the experiment is plotted in Fig. 6. A drop of temperature 20	

can be observed only in the range of 4 to 6 L/min, where coincidentally the CO2 conversion and energy 21	

efficiency show the highest increase rate (0.9% and 5.1% per L/min, respectively), as clearly shown 22	

in Fig. 5. This phenomenon partially manifests that the gas temperature plays a non-negligible opposite 23	

role in the conversion of CO2 due to the recombination of CO and O. In this regard, unlike that in DBD 24	

or other reported discharges that normally have lower gas temperature (e.g., <800K), the effect of 25	

residence time in the RGA on CO2 conversion should be negative. In the RGA plasma reactions, fast 26	

attainment of steady state ensures a nearly instantaneous dissociation of CO2 and a longer residence 27	

time could induce an opposite effect as the reverse reaction is promoted at such a high temperature. 28	

This should be one reason why increasing flow rate in Pattern A increases the CO2 conversion. The 29	
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residence time of CO2 in the plasma area (the ratio of plasma volume to flow rate), declines from 159.2 1	

to 53.1 ms when increasing flow rate from 2 to 6 L/min in Pattern A. 2	

	3	

	4	

Fig. 6 Effect of CO2 flow rate on the outlet gas temperature  5	

 6	

In addition, our previous study demonstrated that increasing flow rate could enhance the 7	

vibrational kinetics energy of the RGA plasma under the studied conditions [57], which probably steers 8	

the activation of CO2 into a more efficient pathway through vibrational excitation and thus improves 9	

the CO2 conversion. In Pattern B, the decrease of CO2 conversion could be associated with the decrease 10	

of SEI, as commonly reported in plasma chemical processes [3]. 	11	

Kim et al. reported that the flow rate exhibited a similar effect on CO2 conversion in a gliding arc 12	

plasma with knife-shaped electrodes, i.e., the conversion of CO2 reached a maximum value upon 13	

increasing flow rate from 6 L/min to 14 L/min, then decreased when further increasing the flow rate 14	

[58]. However, quite different from the reason in this study, this phenomenon was related to the 15	

intrinsic property of the flat gliding arc, in which a high flow rate is generally indispensable to push 16	

the arc moving along the electrodes and generate an effective plasma zone for chemical reactions. 17	

Increasing the gas flow rate from 6 L/min to 14 L/min enlarged the plasma discharge column between 18	

the electrodes and thus improved the CO2 conversion. After reaching a peak value, the CO2 conversion 19	

started to drop because of the decrease in retention time and SEI. Note that, in the RGA reactor, the 20	

plasma zone can remain almost the same under the studied feed flow rates. A relatively low flow rate 21	
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(e.g., 1-2 L/min) is sufficient to sustain a three-dimensional plasma zone and there is no specific 1	

requirement for the flow rate, providing the flexibility and adaptability of this process for its practical 2	

application. 3	

Based on the results, a CO2 flow rate of 6-7 L/min is recommended to simultaneously obtain a 4	

relatively high CO2 conversion (4.0-4.4%) and energy efficiency (16-17%) in the RGA system. 5	

Compared to other non-thermal plasmas used for CO2 decomposition, e.g., DBD plasma (CO2 6	

conversion of 3-33%, energy efficiency of 2-9%) [16, 18, 59, 60] and corona discharge (CO2 7	

conversion of 3-20%, energy efficiency of 1-10%) [61, 62] the RGA plasma exhibits a slightly lower 8	

CO2 conversion but higher energy efficiency. Importantly, it can allow a feed flow rate (6-7 L/min) of 9	

two orders of magnitude higher in comparison to typical DBD and corona discharges (20-125 ml/min), 10	

which is favorable for an industrial process. Further enhancement of the reaction performance can be 11	

expected by cooling the reactor to lower the gas temperature of the RGA plasma, in order to limit the 12	

recombination of CO and O. 13	

 14	

3.2 Effect of applied voltage and arc current 15	

The applied voltage and arc current are not only associated with the SEI but also affect the 16	

physical characteristics of plasma [53, 63]. Fig. 7 and Fig. 8 illustrate the variation of CO2 conversion 17	

and energy efficiency as a function of applied voltage and arc current, respectively. Increasing applied 18	

voltage or arc current decreases the energy efficiency of the plasma process. However, the change of 19	

applied voltage and arc current has different effects on the CO2 conversion. The conversion of CO2 20	

initially increases with the increase of applied voltage from 5 to 8 kV (SEI from 1.8 to 3.2 kJ/L) and 21	

reaches a peak of 4.6% at an applied voltage of 8 kV, followed by a drop to 3.9% when further 22	

increasing applied voltage to 10 kV. The decrease of CO2 conversion with the increase of applied 23	

voltage from 8 to 10 kV could be attributed to enhanced recombination of CO and O due to the 24	

increased gas temperature. By contrast, the CO2 conversion increase with increasing the arc current 25	

from 50 to 170 mA (SEI from 1.2 to 3.5 kJ/L). 26	

 27	
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	1	

Fig. 7 CO2 conversion and energy efficiency as a function of applied voltage and SEI 2	

	3	

	4	

Fig. 8 CO2 conversion and energy efficiency as a function of arc current (and SEI) 5	

 6	

The variation of applied voltage or arc current is related to the change of the SEI. Fig. 9 shows 7	

the effect of SEI on the CO2 conversion and energy efficiency. Again, two different patterns can be 8	

clearly observed, i.e., Pattern A with SEI > 3.5 kJ/L and Pattern B with SEI ≤ 3.5 kJ/L. In Pattern A, 9	

the CO2 conversion and energy efficiency increase simultaneously with the decrease of SEI, whereas 10	

in Pattern B, a trade-off exists between them, which is well consistent with the results shown in Fig. 5. 11	

The above phenomenon indicates that the SEI is a predominant factor in the RGA assisted CO2 12	
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decomposition process.  1	

It should be noted that, the outlet gas temperatures in Pattern A were higher than that in Pattern B 2	

except for flow rate of 2 L/min, suggesting that the high-temperature stimulated recombination of CO 3	

and O in Pattern A could partly contribute to the decreased CO2 conversion when increasing the SEI. 4	

	5	

	6	

Fig. 9 CO2 conversion and energy efficiency as a function of SEI 7	

	8	

3.3 Effect of additive gases	9	

The effect of additive gas (e.g., N2, Ar, and He) on the plasma conversion of CO2 has also been 10	

evaluated in previous works, for example, gliding arc discharge in N2 [33], DBD in N2, Ar, and He [8, 11	

60, 64-66], glow discharge in He [62, 67], microhollow cathode discharge in Ar [55], microwave 12	

discharge in N2 [68], and radio frequency discharge in Ar [69]. The presence of additive gas in the 13	

plasma CO2 conversion could affect the discharge characteristics, CO2 conversion, energy efficiency, 14	

and even by-product formation in the case of N2 [3]. In this work, a comparative study of CO2 15	

dissociation in the RGA plasma using N2 and Ar as an additive gas was performed (Fig. 10). 16	

Clearly, increasing N2 and Ar concentration from around 10% to 95% enhances the CO2 17	

conversion, i.e., from 2.8% to 12.7% and from 2.8% to 10.6%, respectively. Interestingly, a faster 18	

increase rate of CO2 conversion can be observed when the N2 or Ar concentration is higher than 70%. 19	

This positive effect of additive gas on CO2 dissociation can be attributed to the increased dissociation 20	

pathways of CO2 due to the formation of excited N2 or Ar species. Although Ar is easier to be ignited 21	
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in plasma, N2 is more beneficial for enhancing the CO2 conversion in comparison to Ar in this work. 1	

The CO2 conversion and the energy efficiency (and also the SEI) in N2 are both higher than those of 2	

Ar, particular at an additive gas concentration of 60-70% (107-119% and 82-93% higher, respectively). 3	

Similar results were also reported using a pulse DBD plasma [66]. 4	

 5	

	6	

Fig. 10 Effect of additive gases (N2 and Ar) on the CO2 conversion and energy efficiency (total flow 7	

rate = 5.9 L/min, applied voltage = 10 kV) 8	

 9	

This phenomenon can be resulted from the following two aspects. Firstly, upon adding N2, excited 10	

N2 metastable molecules, e.g., N2(A) and N2(a’), can be formed due to the electron-impact processes, 11	

which provides more reaction routes for CO2 conversion in comparison to Ar. For Ar, only limited 12	

excited species can be produced (e.g., Ar*) [8, 33, 68]. The metastable N2 stimulated CO2 dissociation 13	

is considered as significantly efficient. For example, a modeling study of a CO2/N2 DBD plasma 14	

revealed that, the reaction of metastable N2(A) molecule with CO2 gradually became a dominant 15	

pathway for CO2 dissociation (with contribution of over 45%) when the N2 concentration was higher 16	

than 70% [8]. Secondly, as a diatomic molecule, N2 has a larger collision cross section compared to 17	

Ar, a monoatomic species, thus has a higher probability to collide with CO2 molecules [66]. It is 18	

interesting to note that, in our previous study of RGA assisted methanol decomposition [37], the N2 19	

plasma also showed significantly better performance compared to Ar RGA in terms of reactant 20	
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conversion, product selectivity, and energy yield of H2.  1	

However, the addition of N2 can result in the formation of unwanted harmful compounds, i.e., 2	

N2O and NOx compounds (60-1200 ppm in total) [8]. In a detailed modeling work of Snoeckx et al. 3	

[8], potential solutions to limit the formation of these harmful compounds were proposed. 4	

To our knowledge, a weakly negative effect of N2 on CO2 conversion was reported only in a DBD 5	

plasma [65], where the addition of N2 into CO2 (CO2/N2 molar ratio = 1:1) slightly decreased the CO2 6	

conversion from 16.1% to 15.4% (total flow rate = 20 ml/min, input power = 15.0 W). The authors 7	

attributed this phenomenon to the dissipation of input power due to the N2 excitation processes when 8	

the N2 concentration and input power were relatively low.  9	

In contrast to the CO2 conversion, the energy efficiency of the plasma process drops with rising 10	

N2 or Ar fraction (Figure 10), which is in line with other reports [3, 8, 68]. An exception appears in 11	

Fig. 9 with an SEI of higher than 3.5 kJ/L (N2 concentration < 50%), where the energy efficiency 12	

slightly increases with increasing N2 concentration. Remarkably, the turning point of SEI in this case 13	

(3.5 kJ/L) is surprisingly the same with that for Pattern A and Pattern B as above discussed. 14	

It should be noted that the energy loss in the ballast resistance that used in the electric circuit was 15	

not considered in the calculation of the energy efficiency, which is commonly used in previous works 16	

[70, 71]. Ballast resistance is usually used in DC non-thermal arc discharge reactors to limit the 17	

discharge current [70, 72-74]. The circuit with a ballast resistance is not optimal from the point of 18	

technical application because a large fraction of supplied power could be consumed in the resistance. 19	

For instance, if the energy loss in the ballast resistance is taken into account, the energy efficiency for 20	

CO2 conversion in this work can be reduced by around 80%. However, the ballast resistance provides 21	

the possibility to operate at a prescribed current value, benefiting the physical investigation and 22	

analysis of the obtained data [73]. The elimination of the use of ballast resistance for the improvement 23	

of the energy efficiency can be expected by equipping a RGA reactor with two power sources, i.e., a 24	

high voltage generator (e.g., 10 kV) to ignite the discharge and a second low voltage power source 25	

(e.g., 1 kV) to maintain the discharge [35]. 26	

 27	

4. Conclusions 28	

In this work, the conversion of CO2 to CO has been carried out in a DC rotating gliding arc (RGA) 29	

warm plasma. The effect of CO2 flow rate, applied voltage, and arc current on the performance of this 30	



16 

process has been investigated, with specific emphasis on the understanding of the role of SEI in the 1	

plasma process. In addition, N2 and Ar are added into the RGA CO2 plasma to evaluate the effect of 2	

the additive gases on the reaction performance. 3	

The influence of flow rate and SEI on CO2 conversion and energy efficiency shows two different 4	

patterns: Pattern A with flow rates of < 6 L/min (SEI > 3.5 kJ/L) and Pattern B with flow rates of ≥ 6 5	

L/min (SEI ≤ 3.5 kJ/L). The CO2 conversion initially increases with the flow rate (Pattern A), reaching 6	

a peak at 6 L/min and then followed by a noticeable drop when further increasing the flow rate to 10 7	

L/min (Pattern B). SEI has been identified as a predominant factor in the RGA CO2 decomposition 8	

process. The presence of two patterns is related to the balance between the conversion of CO2 and the 9	

reverse reaction (recombination of CO and O), both affected by the SEI. 10	

A flow rate of 6-7 L/min is recommended to simultaneously obtain a relatively high CO2 11	

conversion (4.0-4.4%) and energy efficiency (16-17%) in the RGA system. Remarkably, compared to 12	

other commonly studied non-thermal plasmas, the RGA plasma shows significant advantages in 13	

processing capacity (feed flow rate). It is expected that, cooling the plasma area to lower the gas 14	

temperature could facilitate the CO2 activation in the RGA plasma, due to the limited recombination 15	

of CO and O. 16	

Increasing N2 and Ar concentration from around 10% to 95% enhances the CO2 conversion, i.e., 17	

from 2.8% to 12.7% and 2.8% to 10.6%, respectively. Compared to Ar, N2 is shown to be more 18	

favorable for CO2 activation in terms of both CO2 conversion and energy efficiency due to the 19	

formation of more reaction routes for CO2 conversion. 20	
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