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Abstract

Using two market-view variables, namely the regulatory forbearance fraction

imbedded in the bank capital and the market-valued of the bank equity-to-assets

ratio, derived from market equity and total liabilities from listed commercial banks

in the U.S. and three countries (Japan, China, India) and a region (Southeast Asia)

in Asia, we show compelling evidence that market views on banking industry

have significant predictive power on economic growth after controlling for stock,

bond, and inflation variables. The current paper further contributes to the litera-

ture on interaction between the financial intermediation and the economic growth

by showing evidence of market perceptions of the banking industry impacting the

real economic activities.

Keywords: Bank regulation, Regulatory forbearance, Forecasting, Economic growth

JEL classification: G17, G21, G28
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Are Market Views on Banking Industry Useful

for Forecasting Economic Growth?

1 Introduction

The financial intermediaries by their nature efficiently allocate resources between lenders

and borrowers. Firms in real sectors, especially those heavily relying on external fi-

nancing, benefit from financial intermediaries due to reduced financing costs, and

thus grow faster than those without accessing to the same resources. Many studies

demonstrate that the development and the structure of financial intermediaries, es-

pecially the banks, have impacts on economic activities with both single-country and

cross-country evidence (e.g. Chava et al., 2013; Fernandez de Guevara and Maudos,

2011; Mitchener and Wheelock, 2013 and etc.). According to the World Development

Indicators (WDI) published by the World Bank, credit provided by financial sector to

GDP increases from 140.6% (145.2%) in 1990 to 184.1% (241.9%) in 2016 world wide (in

the U.S.), which indicates the rising importance of the banking industry worldwide.

During the 2007-2009 financial crisis, the insolvency of U.S. banks not only caused the

deterioration of the global financial markets, but also spilled over to other industries.

Consequently, the economic output fluctuated in align with the changing health and

insolvency conditions of the banking industry.

Traditionally in the literature, the financial health and soundness of a bank is as-

sessed by accounting-based measures. Without market and regulatory intervention

and discipline, banks increase the leverage in case of risk reduction (Bushman and

Williams, 2012). Tabak et al. (2012) document positive impacts of capital ratio (equity

to asset ratio) on the stability of large banks in a competitive market. Adrian and Bo-

yarchenko (2015) and Geanakoplos (2010) develop theoretical frameworks advocating

the procyclical leverage of financial intermediaries. Adrian and Shin (2013) empiri-
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cally show that the financial intermediaries’ book leverage, measured by the ratio of

total assets to equity, is a procyclical variable that is high in boom times with low risk

premiums. However, the accounting-based measures possess static and backward-

looking nature. They provide no information on how the market expectation reacts to

the changing banking health and soundness conditions and regulatory policies.

Based on stock market information, the market perception of the bank regulatory

closure rules, represented by a regulatory policy parameter which is first introduced

by Ronn and Verma (1986), can be inferred. A parameter less than one implies the

existence of the regulatory capital forbearance with a value equal to that of the capital

assistance. Most existing literature adopts a fixed regulatory policy parameter to esti-

mate bank asset values and volatility (Flannery and Sorescu, 1996; Hassan et al., 1994).

However, the time-varying feature of the bank closure rules is not taken into consider-

ation by assuming a fixed policy parameter. To compensate the practical shortcoming,

Lai and Ye (2017) develop a more realistic framework to infer the time-varying pol-

icy parameter reflecting market views from more than 700 U.S. listed banks’ market

value of equity and estimate the capital forbearance value given bank-specific risk

and business cycle variables. They find a negative relation between forbearance frac-

tion in capital and the GDP growth, which indicates that the market expects banks to

obtain more (less) forbearance during recessions (expansions). Therefore, the forbear-

ance value, which reflects the market perception of banks’ equity value and risks, i.e.

banks’ financial health, is a countercyclical variable. In light of the banking industry’

prominent role on the U.S. economy, we expect that the gross domestic product (GDP)

growth rate can be predicted by the market-view of the banking industry health em-

bedded in the forbearance value. The Asian banking industry differs from that of the

U.S. in terms of developing level and economic stage, governance structure, and reg-

ulatory oversight among other factors such as law and culture. The role played by

the market view on the safety and soundness of the banking industry in the economic

growth in Asia is worth studying to test whether our framework also works outside
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of the U.S. Dictated by the availability of data, we retain three countries namely Japan,

China, India and a region, Southeast Asia (composed of Singapore, Malaysia, Philip-

pines, Indonesia, Thailand, and Vietnam), and their major public listed banks for esti-

mating the capital forbearance value and its capacity in predicting GDP growth rates.

Following Lai and Ye (2017), we derive two market-viewed factors from their bank

regulatory capital forbearance model. The Forbearance Fraction in Capital (FFC) mea-

sures the market evaluation of a bank’s health, and the “Market Cap / Implied Asset

Value” measures the market assessment on the capital adequacy of a bank. We ex-

pect the first moment, which is calculated as the cross-sectional median over time, of

the factors to be able to predict short-term GDP growth, as they measure the aggregate

status of the whole banking industry. In addition, we also select the second moment of

the cross-sectional distribution of the factors, which measures the cross-sectional dis-

persion of the market views, to forecast GDP growth rate, as they provide information

on imbalanced shocks in the market views of the banking industry. These variables

are particularly influential during the recessions. For instance, the bailout or failure

of large public banks could induce overall market panic and contagion, negatively

impact related industries, and consequently lower the market expectations of future

economic growth.

Among the macroeconomic factors that influence the economic growth, the infla-

tion is generally proved to have a negative impact on the medium to long-run eco-

nomic growth when it is above certain threshold which is determined by country

characteristics (Ashraf et al., 2013; Bruno and Easterly, 1998; Kremer et al., 2013; Vaona,

2012). In addition, the Chicago Fed National Activity Index (CFNAI) has been docu-

mented as an effective measure of U.S. real economic activity which can be used as

an early indicator of business cycle (Brave et al., 2009; Evans et al., 2002; Lang and

Lansing, 2010). In our models, we add the two variables and find that the CFNAI

performs much better than the lagged GDP in predicting the GDP growth while the

inflation does not contribute to the quarterly GDP growth forecasting within the in-

5



sample period. A similar business cycle forcasting measure Leading Economic Index

(LEI) published by the Conference board is used as our Asian counterpart of the CF-

NAI.

To test the robustness of our forecast models, we take into consideration the bond

and stock market factors which have been proved to significantly influence the real

economic activity. Harvey (1989) finds that over the period of 1953 to 1989 30% and

5% of the variation in economic growth can be explained by bond yield spreads (both

medium- and long-term bond yields) and stock market returns (both short-term and

long-term returns), respectively.1 The curvature utilizes more yield curve information

on short-, medium- and long-horizon bond yields. Therefore, it possesses much better

predictive power than the term spread in forecasting GDP growth (Møller, 2014).

In this article, we construct and compare three GDP forecast models: a simple re-

gression model using CFNAI/LEI as an explanatory variable without any banking

industry indicators, a model with accounting/market-based banking variables, and

a model with model-derived market-view banking variables. After controlling stock

and bond market factors, and inflation that potentially predict the GDP growth, we

find that the forecasting power of our model-derived market-viewed banking vari-

ables is obviously superior to that of the accounting/market-based banking variables.

The models are improved noticeably in terms of adjust R2s, Akaike information crite-

rion (AIC), and Bayesian information criterion (BIC) for the U.S., but only marginally

for Asia. The significant predictive variables including lagged CFNAI, inflation and

asset market factors in the first two models become insignificant in the third model,

which indicates that our market-view banking variables contain information on con-

temporaneous macro economy and financial asset markets. In general, the Asian

GDP growth cannot be well predicted by business cycle indicators, inflation and asset

market factors. However, the short-term GDP growth can be predicted by market-

1 Stock and Watson (1989) also add the term spread, the stock market return, and corporate credit
spread in the construction of their leading business cycle indictor index. Many other researchers explain
GDP growth with term spreads (e.g., Bernard and Gerlach, 1998; Estrella and Mishkin, 1998; Hamilton
and Kim, 2002, and etc.).
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evaluated bank’s health variables FFC. Overall, our model-derived variables reflect-

ing the market view of the banking industry health exhibit a strong predictive power

on the future GDP growth in the short run. In the U.S. case, a healthier banking sector,

indicated by lower aggregated FFC, higher aggregated “Market Cap / Implied Asset

Value”, more left-skewed FFC, and lower dispersion in “Market Cap / Implied Asset

Value”, tends to lead to subsequent higher GDP growth. Unlike the U.S., in many of

the Asian countries, the government often intervenes directly into the banking indus-

try by injecting more cash credit to stimulate real economic activities. Higher value

of capital forbearance entails more additional expected credit granted by the govern-

ment. Therefore, we expect the opposite results in the Asian case on realizing the

impact of regulatory forbearance into economic growth.

The remainder of the article is organized as follows. Section 2 derives the two

market-viewed banking factors from the regulatory capital forbearance model of Lai

and Ye (2017). Section 3 provides insights and mechanism of the relationship between

market-viewed banking factors and the GDP growth. Section 4 presents the forecast

models with the analysis of empirical results. Section 5 concludes.

2 Market view factors: Lai and Ye (2017) model

This section briefly reviews the equity pricing model with time-varying policy param-

eter developed by Lai and Ye (2017). This section keeps the derivations minimal and

limited to a conceptual understanding necessary for this article. Please see Lai and Ye

(2017) for more detailed derivations.
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2.1 The model

Let us define a 2× 1 column vector of state variables

Xt =

 x1 (t)

x2 (t)


which, under the risk-neutral measure Q, follows the stochastic differential equations

(SDE)

dXt = d

 x1 (t)

x2 (t)

 =

 κθ

µ

+

 −κ 0

0 0

 x1 (t)

x2 (t)

 dt +

 σ1
√

x1 (t) 0

0 σ2

 d

 w1 (t)

w2 (t)

 . (1)

where w1 (t) and w2 (t) are independent Wiener processes under the measure Q. Note

that we model exogenously the stochastic policy parameter as ρt = e−x1(t), so that ρt

lies between zero and one as x1 is non-negative, and ρt is mean reverting. Since we

model the value of a bank as Vt = ex2(t), the dynamic of Vt is given by,

dVt = dex2(t) = µVVtdt + σ2Vtdw2 (t)

where

µV = µ +
σ2

2
2

.

At time t, the equity value of a bank represented by the market cap, Et, which is a

call option on Vt with maturity T, has the following pay-offs at time T:

ET =


VT − D

VT − ρTD

0

if VT > D

if ρTD 6 VT 6 D

if VT < ρTD.

(2)

The stock market assessment of the supervisory forbearance is captured by this pay-

off function with a random strike price. Then, with E
Q
t [.] denoting the expectation,
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under the measure Q conditional on the information up to t, we have2

Et = Bt (T)E
Q
t (ET)

= Bt (T)E
Q
t

[
(VT − D) 1{VT>D} + (VT − ρTD) 1{ρT D≤VT≤D}

]
= Bt (T)

{
E

Q
t

[
(VT − ρTD) 1{VT>ρT D}

]
− DE

Q
t

[
(1− ρT) 1{VT>D}

]}
= Bt (T)

{
E

Q
t

[(
ex2(T) − e−x1(T)D

)+]
−DE

Q
t

[(
1− e−x1(T)

)
1{x2(T)>log D}

]}
, (3)

where Bt (T) = e−r(T−t) is the discount factor, r is the assumed-constant interest rate,

and 1{�} is an indicator function equal to one when {�} holds, and zero otherwise. In

the implementation, we set D = F/Bt (T) where F is the book value of the debt level at

time t. The model can be solved in closed-form using affine techniques developed in

Duffie et al. (2000) and calibrated to bank market equity data using Unscented Kalman

Filter (see Lai and Ye, 2017, for details).

2.2 The two market-view variables

Given the model described above, FFC is defined as

FFCt =
Et − Eρ=1

t
Et

,

where Eρ=1
t = Bt (T)E

Q
t

[
(VT − D)+

]
corresponding to the model value of the equity

when assuming ρt = 1, i.e., the intrinsic market cap that is devoid of the forbearance

subsidy. By construction, FFC measures the market value of forbearance in terms

of total equity. The lower FFC, the healthier is a bank. We call FFC a market-view

variable that reflects market view of forbearance given to a bank. The reason FFC can

2 The risk-free interest rate is assumed to be constant. As in Ronn and Verma (1986), it is also as-
sumed that the effects of interest rate changes are captured in the assets value and associated volatility,
i.e., the present value of assets are brought about by anticipated changes in both the investment oppor-
tunity set and the interest rate. Unanticipated changes in interest rates are accounted for in the asset
risk.
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somewhat represent the market view is due to our modeling approach: we explicitly

model the policy parameter as a stochastic process and embed market expectation of

this process in the bank’s equity pricing.

The other variable we consider is Market Cap to Implied asset value ratio, MC
IA ,

defined as Et
Vt

using the symbols in this section. This variable measures the market

equity capital ratio, i.e., the model counterpart of the book equity ratio defined as

Book Equity / Total Assets. The lower is this ratio, the lower is the owner-contributed

equity ratio, and the higher is the leverage level.

To estimate the regulatory forbearance parameter and implied asset values, one-

year risk free interest rates, banks’ total liabilities, and market caps are used to calibrate

the model. Please refer to Section 3.4 in Lai and Ye (2017) for more descriptions about

the market-view factors.

3 The economic growth and the market views of bank-

ing industry

Take FFC as an example, because the individual FFCs reveal how the market evalu-

ates the forbearance premium for individual banks, the aggregate FFC is a nice mea-

sure of the market assessment of the health of the whole banking sector. Similarly, the

aggregate equity ratio “Market Cap / Implied Asset Value” measures how the market

assesses the capital adequacy of the whole banking sector.

If we regard the aggregate factor as first moment information (cross-sectional dis-

tribution) from our model-derived panel data, we can also look at second moment

information, which measures the cross-sectional dispersion of the market views. This

second moment information would be very different from its first moment counter-

part: the aggregate factor. The first moment in general measures the macro economic

shocks that affect the whole sector relatively evenly, while the second moment is meant

to capture imbalanced shocks and/or shocks that have uneven or opposite impacts on
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the different segments of the whole sector. Therefore, the second moment informa-

tion provides new insights on how the market evaluates the banking sector. Calmès

and Théoret (2014) also find that the cross-sectional dispersion of certain variables,

such as loan to asset and non-interest income share, does co-move with business cycle,

although they do not explore the usefulness of the cross-sectional dispersion in pre-

dicting GDP growth. There is also a view that a greater ability to trade ownership of

an economy’s productive technologies facilitates efficient resource allocation, physical

capital formation, and faster economic growth (Levine and Zervos, 1998). Therefore,

the information from stock market and banking industry predicts economic growth.

Given this view, in our paper, we combine stock market information with banking

industry health measure into the market-view variables to which could potentially

provide combined predictive power on economic growth.

In view of the above intuition, we conjecture that our model-derived variables

are able to provide incremental information useful for predicting real economic ac-

tivities. To verify our conjecture, we construct four variables from our panel data:

a) the cross-sectional standard deviation of FFC over time denoted by FFC-stdt, b)

the cross-sectional standard deviation of “Market Cap / Implied Asset Value” over

time denoted by MC
IA -stdt,3 c) the cross-sectional median of FFC over time denoted

by FFC-mediant, and d) the cross-sectional median of “Market Cap / Implied As-

set Value” over time, being adjusted to be orthogonal to FFC-mediant, denoted by

MC
IA -median⊥t .4 Dynamics of these four variables are shown in the upper panels in

3 We use “Market Cap / Implied Asset Value” instead of “Intrinsic Market Cap / Implied Asset
Value” here to avoid potential multicollinearity caused by the highly negative correlation between “In-
trinsic Market Cap / Implied Asset Value” and FFC. Nevertheless, “Market Cap / Implied Asset
Value” together with FFC should provide same amount of information as “Intrinsic Market Cap /
Implied Asset Value” together with FFC by their definitions.

4The orthogonality here is to ensure, in addition to avoiding multicollinearity, that the coefficients
in subsequent regressions reflect clear measures of the impact of the RHS on the LHS. When only
the lagged FFC-median and FFC-std are included in the regression, the coefficient of FFC-median
is 0.0385* with standard error of 0.015. Similarly, when only the lagged MC

IA -median and MC
IA -std are

included, the coefficient of MC
IA -median is 0.0747* with standard error of 0.032. These indicate that

the results from using the orthogonal variable are consistent with the genuine relations between GDP
growth and FFC and MC

IA .
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Figure 1 and in all panels in Figure 3.

4 GDP growth prediction analysis

In this section, we first discuss our regression models and control variables that are

typically predictive about the GDP growth, then present the empirical results with

quarterly data and analyze the implications. Both the US and Asian countries results

are discussed.

4.1 U.S. case

4.1.1 Regression models

We now formally test whether our model-derived variables are able to improve the

GDP prediction. Specifically, we run the following time series regressions to test how

much improvement the four model-derived variable would offer on top of control

variables that are typically predictive about the GDP growth. We measure the incre-

mental predictive power by the adjusted R2s, AIC, and BIC.5

GDPGt = α0 + α1CFNAIt− 1
4
+ Control variables + εt (4)

GDPGt = α0 + α1CFNAIt− 1
4
+ α2

BE
TA

-stdt− 1
4
+ α3

MC
TA

-stdt− 1
4

α4
BE
TA

-mediant− 1
4
+ α5

MC
TA

-mediant− 1
4
+ Control variables + εt (5)

GDPGt = α0 + α1CFNAIt− 1
4
+ α2FFC-stdt− 1

4
+ α3

MC
IA

-stdt− 1
4

α4FFC-mediant− 1
4
+ α5

MC
IA

-median⊥t− 1
4
+ Control variables + εt (6)

where BE
TA and MC

TA denote “Book Equity / Total Assets” and “Market Cap / Total As-

sets”, respectively. “Book Equity / Total Assets” is the book-based equity ratio while

5 Regressions with more lag structures have also been tested in our unreported results. However,
none of the lags more than one have significant coefficients. These results are available from the authors
upon request.
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“Market Cap / Total Assets” is a “hybrid” equity ratio as “Market Cap” is market-

based but “Total Assets” is book-based. Both variables are common and model-free

measures of the capital ratio and leverage risk. It is worth noting that the construction

of the accounting/market-based variables follows standard format in the literature

and does not reflect (or is not intended to reflect) market-view. We use these two

variables as a benchmark to see how our model-derived market-view variables can

improve from this benchmark. Dynamics of the standard deviation and median of

the these variables are shown in the lower panel of Figure 1. We also try the models

with CFNAIt− 1
4

replaced by GDPGt− 1
4
. All empirical interpretations remain the same.

However, the coefficients of CFNAIt− 1
4

are highly significant while those of GDPGt− 1
4

are much less so, and also the models with GDPGt− 1
4

have lower adjusted R2’s. We

therefore present results with CFNAIt− 1
4
.

Since our model-derived variables are constructed based on the model parameters

calibrated using the full sample period, one might suspect that the incremental gain of

the R2, if any, would be due to the future information captured in the parameters. To

ease this concern, we conduct both in sample and out of sample regressions. Specif-

ically, in the out of sample regression, we calibrate all the parameters using partial

data, then part of model-derived variables are constructed based on the information

only available up to that point. In the out of sample regression, the full sample is up to

2017Q4 and the model-derived variables before 2012Q4 are estimated only using data

up to 2012Q4.

4.1.2 Data

CFNAI is constructed by the Federal Reserve Bank of Chicago. It employs economic

indicators that belong to the categories production and income (23 series), employ-

ment and hours (24 series), personal consumption and housing (15 series), and sales,

orders, and inventories (23 series). The data are inflation adjusted, and freely available

at the website of the Federal Reserve Bank of Chicago.
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For the control variables, we consider stock and bond market variables. Specif-

ically, for the stock market variable, we use quarterly S&P 500 stock index return,

SP500 Return, which is the most standard variable for controlling stock market in-

formation, the data is obtained from Bloomberg; for the bond market variable, we

follow Møller (2014) and consider the curvature of the treasury bond yield curve, Cur-

vature is defined as two times five-year yield minus the sum of 10-year and one-year

yields (2 ∗ 5yr− (10yr+ 1yr)); Curvature is calculated using the data downloaded from

Bloomberg. We also include the inflation rate, which is generally believed to have neg-

ative impact on the medium to long-run economic growth (see, e.g., Ashraf et al., 2013,

and others), downloaded from the website of Trading Economics. The sample period

covers 1990Q2 to 2017Q4, where the data after 2012Q4 is used for out-of-sample test.

4.1.3 Empirical results and analysis

We report in sample regression results in Table 1 and out of sample results in Table 2.

In the in sample regression, the full sample is up to 2012Q4 and the model derived

variables are estimated using the full sample. In the out of sample regression, the full

sample is up to 2017Q4 and the model-derived variables before 2012Q4 are estimated

only using data up to 2012Q4. Since the out of sample results are consistent with the

in sample results, we focus on the out of sample results only.

From Table 2 we can see with one quarter lagged CFNAI, Model (4) has an adjusted

R2 of 34%. By adding four more model-free variables: BE
TA -std, MC

TA -std, BE
TA -median,

and MC
TA -median to the RHS, the adjusted R2 increases by 3% and AIC only improves

marginally (BIC even becomes worse). We also notice that among the four variables

in Model (5), only MC
TA -std and MC

TA -median are significant. This means the book-based

variable BE
TA (both the first and second moments) and the second moment of MC

TA pro-

vide little power in predicting the GDP growth.

Let’s now look at the results of Model (6). When we add the four model-derived

variables: FFC-std, MC
IA -std, FFC-median, and MC

IA -median⊥ to the RHS in addition

14
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to the lagged CFNAI and the control variables, we find the adjusted R2 increases sig-

nificantly: from 34% to 42%. AIC also improves noticeably. BIC improves as well

although the improvement is less prominent. Therefore, we confirm that our model-

derived variables are able to provide a significant amount of incremental information

useful for predicting real economic activities. Since these are out of sample results,

this incremental gain is not due to the future information captured in the calibrated

parameters.

The significant coefficients of FFC-median and MC
IA -median⊥ well match our in-

tuition. As we mentioned previously, FFC-median measures the market view of the

health status of the whole banking sector. The significantly negative coefficient of

FFC-median indicates when the market thinks the sector is healthier, the subsequent

GDP growth tends to improve. The significantly positive coefficient of MC
IA -median⊥

indicates that higher aggregate capital adequacy ratio of the banking sector well ac-

commodates improvement in the GDP growth.

We also have significant coefficients of FFC-std and MC
IA -std. The significantly pos-

itive coefficient of FFC-std implies that the imbalanced shocks to FFC typically in-

duce a better GDP growth. To understand this observation, we refer to the histogram

of FFC plotted in the left panel of Figure 2. Since FFC’s distribution is highly skewed

to the left, when FFC-median keeps constant, a higher FFC-std means there are more

banks having lower FFCs. This is a sign of improved health of the banking sector.

Therefore, given the same level of FFC-median, a higher FFC-std generally improves

the GDP growth. A higher MC
IA -std typically indicates an higher capital concentration

cross-sectionally, as MC
IA has a relatively symmetric distribution, which is shown in the

right panel of Figure 2. The significantly negative coefficient of MC
IA -std might indi-

cate that this trend of capital shifting is not propitious for the GDP growth due to a

higher banking (capital) concentration, see, e.g., Bikker and Haaf (2002). In Table 3 we

also present results of a robustness test where we replace the lagged CFNAI with the

lagged GDP growth. Even though the R2s are lower in the robustness test, the signifi-
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cance and signs of the coefficients remain the same. In sum, our results are consistent

with Levine and Zervos (1998)’s view about the predictive power of information from

the stock market and banking industry on the economic growth.

4.2 Asian case

4.2.1 Data

To compare with the U.S. case, we use the Leading Economic Index (LEI) from the

Conference Board to replace the CFNAI in Model (4) to (6) as the CFNAI is not avail-

able for Asian countries. The index calculated from key economic indicators aims to

predict future economic activity of a country. All the control variables are collected

for each of the three Asian countries and a region including Japan, China, India, and

Southeast Asia. Each variable for the Southeast Asia region weights equally corre-

sponding variables of the six countries - Singapore, Malaysia, Philippines, Indonesia,

Thailand, and Vietnam.6 In total, Japan, China, India, and Southeast Asia data con-

sist of 69, 17, 13, and 18 banks, respectively. The overall stock market information is

captured by quarterly stock market index returns, including NIKKEI 225 for Japan,

CSI 300 for China, SENSEX for India, STI for Singapore, KLCI for Malaysia, SET index

for Thailand, PSEi for Philippines, VN index for Vietnam, and JCI for Indonesia. We

obtain LEI and inflation rates from the website of Trading Economics.7 Stock market

indices, as well as one-year, five-year, and ten-year bond yields of each country to

calculate curvature are downloaded from Bloomberg. Limited by the availability of

the data, the sample periods start in 2004Q3, 2010Q4, 2005Q2, and 2003Q1 for Japan,

China, India, and Southeast Asia, respectively, and all end in 2017Q4. Given the short

sample periods, we use all the data to calibrate our model-based variables. Therefore,

only in-sample analysis is conducted for Asian countries.

6We have tried other weighting schemes in our unreported tests, but the results here are robust to the
weighting schemes. However, we are aware of the other other factors, e.g., political structure, currency
policy, etc, entering the picture of economy growth prediction. We leave these for future studies.

7The LEI is not available for India on the website of Trading Economics.
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4.2.2 Empirical results and analysis

The model specifications remain the same as these of Model (4) to (6), where all vari-

ables are replaced by their Asian counterparts. The fixed effect panel data regressions

are applied to the panel data with four groups: Japan, China, India, and Southeast

Asia. The quarterly GDP of Asian countries is generally less predictable than that

of the U.S. in the three models. Table 4 shows the results of three panel regressions.

All independent variables in Model (4) with one quarter lagged LEI and control vari-

ables are insignificant with 10.16% adjusted R2. Adding model-free variables: BE
TA -std,

MC
TA -std, BE

TA -median, and MC
TA -median to the RHS does not improve Model (4). All the

four accounting/market-based variables are insignificant, indicating their lack of pre-

dictive power on GDP growth rates. The adjusted R2 of Model (5) declines by 1.4%

although AIC and BIC improve slightly. In Model (6), we replace the four model-

free variables in Model (5) by the four model-derived variables: FFC-std, MC
IA -std,

FFC-median, and MC
IA -median⊥ on the RHS. The adjusted R2 increases from 8.73% to

10.53%, and meanwhile both AIC and BIC improve. From the results we find that our

model-derived variables provide some incremental information useful for predicting

real economic activities in Asian markets. In Table 5 we present results of a robust-

ness test where we replace the lagged LEI with the lagged GDP growth. Even though

the R2s are lower in the robustness test, the significance and signs of the coefficients

remain the same.

To better understand the difference in results for the US and Asia, it is helpful to

look at some institutional differences in the US and Asia banking sectors. Allen et al.

(2004) document that banks in the US have much smaller loan to GDP ratio than in

Asian countries, while banks in the Asian countries have much higher deposit to GDP

ratio than in the US. Also, as mentioned by Walsh (2014), the relative size of the finan-

cial sectors to GDP in Asian countries tend to be larger than in the US. But they are

not yet as sophisticated as that in the US. The capital financing market is dominated

by banks in most Asian countries, but this is not the case in the US where equity and
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bond markets also have an equally important if not larger role. Very importantly, gov-

ernment plays a critical role in banking in many Asian countries, especially in China

and India, than in the US. In China, the five largest commercial banks are state-owned,

while in India, public banks account for about three-quarters of system assets.8 There-

fore, it is understandably normal to see obvious trace of government intervention in

the Asian banking sector. The amount of government granted credit can influence the

future economic growth. Under such circumstance, FFC-median measures the mar-

ket view of the extra credit which the government provides to the banking sector. The

significant positive coefficient of FFC-median suggests that the GDP growth tends to

be higher after the market expects more credit in the sector. Asian banks’ FFC is also

highly skewed to the left, which can be seen in the left panel of Figure 4. When FFC-

median keeps constant, a higher FFC-std means less credit by way of capital forbear-

ance in the banking sector, the subsequent GDP growth tends to decline. Therefore,

the significant coefficient of FFC-std is negative.

We can also see that the results of Asian countries suggest much less improvement

of Model (6) over Model (4) when compared to the results of the US. The difference

in the results lies in the fact that the banking sectors in Asia are dramatically different

from that in the US in various aspects, which we mention above. Specifically, in the US

market, the market view variables carry important information about the efficiency of

the banking sector. The banking sector in the US is also less dependent on govern-

ment than in the Asian countries. The fact that government plays a much bigger role

in banking in many Asian markets makes the efficiency of the banking sector less im-

portant for the economic growth. This somewhat explains the much less significant

results we see in the Asian countries.
8 See Sahay et al. (2015); Remolona and Shim (2015); Madhu Sudan et al. (2010) for more general

discussions on Asian banking/financial sector.
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5 Conclusion

Based on the time-varying policy parameter model developed by Lai and Ye (2017) and

market equity of more than 600 listed commercial banks in the U.S. and more than 100

banks in Asia, we derive market-view variables that reflect the market perceptions of

the banking industry. Our empirical results show that these variables have predictive

power on GDP growth after controlling asset market variables that are traditionally

believed to predict the economic growth.

In particular, on the aggregate level, we find in the U.S. that the median of the

fraction of forbearance in capital (FFC-median), which measures the market view of

the health status of the whole banking industry, is significantly and negatively related

to future economic growth, indicating when the market thinks the sector is healthier,

the subsequent GDP growth tends to improve. We also find that the market-valued

bank equity-to-asset ratio median (MC
IA -median⊥) is significantly and positively related

to future growth, meaning that higher aggregate capital adequacy ratio of the banking

sector helps improve the GDP growth.

With respect to cross-sectional dispersion level in the U.S., FFC-std being posi-

tively linked with future growth implies that the imbalanced shocks to FFC induce a

better GDP growth. Given the left-skewed distribution of FFC, a higher FFC-std de-

picts a signal of improved health of the banking sector, therefore, an improvement in

the GDP growth. Similarly, a higher MC
IA -std indicates an imbalanced shock that shifts

the capital away from low capital banks to high capital banks. The capital shifting

induces banking concentration, thereby hinders economic growth. This is consistent

with the negative relation between MC
IA -std and future growth shown in the results.

Given the different regulatory policy, economic development level and economic

and governance structure of the banking industry in Asia, the FFC-median instead

measures the market view of the extra credit injected to the banking sector by the

government. On aggregate level, more credit, or higher FFC-median, leads to higher
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subsequent GDP growth, buttressed by the significant positive coefficient. On the

cross-sectional dispersion level, the Asian FFC-std is significantly negatively related

to the future GDP growth in the short run, as less credit in the sector implied by a

higher FFC-std is not a good sign for the real economic activities.

These findings suggest that intelligently monitoring and analyzing the market in-

formation of the banking industry can be very useful not only for forecasting but also

for guiding and accommodating economic activities in an effective way.
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Figure 1: Model-derived and market/accounting-based variables v.s. GDP Growth: the US case

This figure plots the dynamics of the standard deviation and median values of the US FFC (upper left panel), MC
IA (upper right panel), BE

TA (lower left
panel), and MC

TA (lower right panel) against the GDP Growth from the beginning of 1990 to the end of 2017. Note that the median of MC
IA is adjusted to be

orthogonal to the median of FFC.
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Figure 2: Normalized histogram of the Forbearance Fraction in Capital (FFC) and MC
IA : the US case

This figure shows the normalized histograms of the Forbearance Fraction in Capital (FFC) in the left panel and MC
IA in the right panel (the bars). For the

sake of comparison, nonparametric density curves (the solid line marked with circles) are also plotted.
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Figure 3: Model-derived variables v.s. GDP Growth: the Asian countries case

This figure plots the dynamics of the standard deviation and median values of FFC and MC
IA against the

GDP Growth from various starting years (depending the data availability of each country) to the end
of 2017. Note that the median of MC

IA is adjusted to be orthogonal to the median of FFC. Four Asian
countries/regions are included here: Japan (panel a), China (panel b), India (panel c), and Southeast
Asia (panel d).
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Figure 4: Normalized histogram of the Forbearance Fraction in Capital (FFC) and MC
IA : the Asian countries case

This figure shows the normalized histograms of the Forbearance Fraction in Capital (FFC) in the left panel and MC
IA in the right panel (the bars). For the

sake of comparison, nonparametric density curves (the solid line marked with circles) are also plotted.
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Table 1: In sample results of the GDP growth prediction: the US case

This table reports the in sample results of regressions (4), (5), and (6). The results use data up to the end
of 2012. OLS coefficient estimates, significance, Newey-West standard errors (in parentheses), AIC, and
BIC are reported. *, **, *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Model (4) Model (5) Model (6)

Intercept 0.0069*** -0.0034 -0.0239***
(0.0009) (0.0095) (0.0084)

CFNAIt− 1
4

0.3944*** 0.3236*** 0.3230***

(0.0754) (0.0797) (0.0716)
BE
TA -stdt− 1

4
- 0.0974 -

- (0.2349) -
MC
TA -stdt− 1

4
- -0.0776 -

- (0.1000) -
BE
TA -mediant− 1

4
- 0.0677 -

- (0.1124) -
MC
TA -mediant− 1

4
- 0.0417** -

- (0.0189) -
FFC-stdt− 1

4
- - 0.0724***

- - (0.0193)
MC
IA -stdt− 1

4
- - -0.2491***

- - (0.0942)
FFC-mediant− 1

4
- - -0.0354***

- - (0.0132)
MC
IA -median⊥t− 1

4
- - 0.2071***

- - (0.0602)
SP500 Returnt− 1

4
0.0094 0.0090 -0.0021

(0.0064) (0.0066) (0.0075)
Curvaturet− 1

4
0.0759 0.1594* -0.0422

(0.0641) (0.0879) (0.0722)
Inflationt− 1

4
-0.1180 -0.1060 -0.0542

(0.0839) (0.0693) (0.0688)
AIC -683.64 -680.89 -705.73
BIC -668.65 -655.89 -680.74
Adj R squared 0.3528 0.3593 0.5138
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Table 2: Out of sample results of the GDP growth prediction: the US case

This table reports the out of sample results of regressions (4), (5), and (6). The results use data up to the
end of 2017. The data before the end of 2012 are the same as those in Table 1. OLS coefficient estimates,
significance, Newey-West standard errors (in parentheses), AIC, and BIC are reported. *, **, *** denote
statistical significance at the 10%, 5%, and 1% levels, respectively.

Model (4) Model (5) Model (6)

Intercept 0.0067*** -0.0063 -0.0153
(0.0008) (0.0061) (0.0121)

CFNAIt− 1
4

0.3927*** 0.3145*** 0.3369***

(0.0647) (0.0641) (0.0807)
BE
TA -stdt− 1

4
- 0.1585 -

- (0.1362) -
MC
TA -stdt− 1

4
- -0.1430** -

- (0.0568) -
BE
TA -mediant− 1

4
- 0.1038 -

- (0.0819) -
MC
TA -mediant− 1

4
- 0.0561*** -

- (0.0134) -
FFC-stdt− 1

4
- - 0.0447**

- - (0.0197)
MC
IA -stdt− 1

4
- - -0.1656***

- - (0.0617)
FFC-mediant− 1

4
- - -0.0244**

- - (0.0116)
MC
IA -median⊥t− 1

4
- - 0.1258**

- - (0.0616)
SP500 Returnt− 1

4
0.0075 0.0068 0.0014

(0.0066) (0.0068) (0.0069)
Curvaturet− 1

4
0.1151 0.3046*** 0.0224

(0.0697) (0.1140) (0.0897)
Inflationt− 1

4
-0.1095 -0.1188* -0.1033

(0.0765) (0.0697) 0.0706
AIC -850.19 -851.91 -861.22
BIC -833.99 -824.91 -834.21
Adj R squared 0.3414 0.3732 0.4240
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Table 3: Robustness results of the GDP growth prediction: the US case

This table reports the robustness results (out of sample) of regressions (4), (5), and (6). The lagged GDP
growth is used in replace of the lagged CFNAI in the models. The results use data up to the end of 2017.
OLS coefficient estimates, significance, Newey-West standard errors (in parentheses), AIC, and BIC are
reported. *, **, *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Model (4) Model (5) Model (6)

Intercept 0.0037*** -0.0150* -0.0171
(0.0012) (0.0076) (0.0111)

GDPGt− 1
4

0.3716*** 0.2019* 0.2360*

(0.1153) (0.1028) (0.1255)
BE
TA -stdt− 1

4
- 0.2651 -

- (0.1728) -
MC
TA -stdt− 1

4
- -0.1989*** -

- (0.0739) -
BE
TA -mediant− 1

4
- 0.1435 -

- (0.0880) -
MC
TA -mediant− 1

4
- 0.0797*** -

- (0.0204) -
FFC-stdt− 1

4
- - 0.0486**

- - (0.0189)
MC
IA -stdt− 1

4
- - -0.1952***

- - (0.0712)
FFC-mediant− 1

4
- - -0.0387***

- - (0.0127)
MC
IA -median⊥t− 1

4
- - 0.1320**

- - (0.0565)
SP500 Returnt− 1

4
0.0123 0.0115 0.0068

(0.0080) (0.0076) (0.0068)
Curvaturet− 1

4
0.1046 0.4006*** 0.0378

(0.0637) (0.1336) (0.0842)
Inflationt− 1

4
-0.0910 -0.0845 -0.0866

(0.1005) (0.0847) (0.0994)
AIC -825.97 -832.74 -838.85
BIC -809.77 -805.73 -811.84
Adj R squared 0.1792 0.2539 0.2942
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Table 4: Results of the GDP growth prediction: the Asian countries case

This table reports the results of regressions (4), (5), and (6). The fixed effect panel data regressions are
applied. The results use data up to the end of 2017. Panel data regression coefficient estimates, signif-
icance, robust standard errors (in parentheses), AIC, and BIC are reported. *, **, *** denote statistical
significance at the 10%, 5%, and 1% levels, respectively.

Model (4) Model (5) Model (6)

Intercept 0.0160*** 0.0196*** 0.0171***
(0.0006) (0.0028) (0.0027)

LEIt− 1
4

-0.0550 -0.0530 -0.0490

(0.0488) (0.0482) (0.0479)
BE
TA -stdt− 1

4
- 0.0135 -

- (0.0083) -
MC
TA -stdt− 1

4
- 0.0000 -

- (0.0014) -
BE
TA -mediant− 1

4
- -0.0166 -

- (0.0138) -
MC
TA -mediant− 1

4
- -0.0427 -

- (0.0305) -
FFC-stdt− 1

4
- - -0.0357**

- - (0.0089)
MC
IA -stdt− 1

4
- - 0.0028

- - (0.0187)
FFC-mediant− 1

4
- - 0.0102**

- - (0.0021)
MC
IA -median⊥t− 1

4
- - 0.0383

- - (0.0286)
SP500 Returnt− 1

4
0.0332 0.0359 0.0297

(0.0226) (0.0230) (0.0215)
Curvaturet− 1

4
0.0678 0.0638 0.0620

(0.2215) (0.2120) (0.2879)
Inflationt− 1

4
-0.0400 -0.0387 -0.0378

(0.0680) (0.0699) (0.0915)
AIC -1104.82 -1105.98 -1109.77
BIC -1095.08 -1096.23 -1100.02
Adj R squared 0.1016 0.0873 0.1053
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Table 5: Robustness results of the GDP growth prediction: the Asian countries case

This table reports the results of regressions (4), (5), and (6). The fixed effect panel data regressions are
applied. The lagged GDP growth is used in replace of the lagged LEI in the models. The results use
data up to the end of 2017. Panel data regression coefficient estimates, significance, robust standard
errors (in parentheses), AIC, and BIC are reported. *, **, *** denote statistical significance at the 10%,
5%, and 1% levels, respectively.

Model (4) Model (5) Model (6)

Intercept 0.0166*** 0.0218** 0.0206***
(0.0006) (0.0045) (0.0032)

GDPGt− 1
4

-0.0294 -0.0239 -0.0504

(0.0447) (0.0389) (0.0405)
BE
TA -stdt− 1

4
- 0.0139* -

- (0.0056) -
MC
TA -stdt− 1

4
- 0.0004 -

- (0.0022) -
BE
TA -mediant− 1

4
- -0.0217 -

- (0.0208) -
MC
TA -mediant− 1

4
- -0.0599 -

- (0.0411) -
FFC-stdt− 1

4
- - -0.0478**

- - (0.0126)
MC
IA -stdt− 1

4
- - 0.0088

- - (0.0268)
FFC-mediant− 1

4
- - 0.0112**

- - (0.0031)
MC
IA -median⊥t− 1

4
- - 0.0343

- - (0.0324)
Stock Market Returnt− 1

4
0.0350 0.0383 0.0312

(0.0275) (0.0285) (0.0255)
Curvaturet− 1

4
0.1749 0.1689* 0.1272

(0.1159) (0.0716) (0.1802)
Inflationt− 1

4
-0.0936 -0.0886* -0.0813

(0.0422) (0.0372) (0.0387)
AIC -1098.35 -1100.00 -1105.14
BIC -1088.61 -1090.26 -1095.40
Adj R squared 0.0705 0.0581 0.0833
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