
Artificial Intelligence and Law manuscript No.
(will be inserted by the editor)

A Methodology for Designing Systems to Reason with Legal
Cases Using Abstract Dialectical Frameworks

Suppressed for Blind Review

February 22, 2016

Abstract This paper presents a methodology to design and implement programs intended to
decide cases, described as sets of factors, according to a theory of a particular domain based
on a set of precedent cases relating to that domain. We use Abstract Dialectical Frameworks
(ADFs), a recent development in AI knowledge representation, as the central feature of our
design method. ADFs will play a role akin to that played by Entity-Relationship models in
the design of database systems. First, we explain how the factor hierarchy of the well-known
legal reasoning system CATO can be used to instantiate an ADF for the domain of US Trade
Secrets. This is intended to demonstrate the suitability of ADFs for expressing the design of
legal cased based systems. The method is then applied to two other legal domains often used
in the literature of AI and Law. In each domain, the design is provided by the domain analyst
expressing the cases in terms of factors organised into an ADF from which an executable
program can be implemented in a straightforward way by taking advantage of the closeness
of the acceptance conditions of the ADF to components of an executable program. We eval-
uate the ease of implementation, the performance and efficacy of the resulting program, ease
of refinement of the program and the transparency of the reasoning. This evaluation suggests
ways in which factor based systems, which are limited by taking as their starting point the
representation of cases as sets of factors and so abstracting away the particular facts, can be
extended to address open issues in AI and Law by incorporating the case facts to improve
the decision, and by considering justification and reasoning using portion of precedents.

Keywords Legal Reasoning, Factors, ADF, Knowledge Engineering, Argumentation

1 Introduction

Modelling reasoning with legal cases has been the central question for many researchers in
AI and Law. Early work such as [55] and [42] identified important research issues, and since
then several developments have established a good degree of consensus as to an effective
model of legal reasoning with cases. First, facts must be determined on the basis of evidence
(e.g. [25]). Next these facts must be used to ascribe legally significant predicates to the case.
These predicates, which serve as intermediaries between the world of fact and the world of

Address(es) of author(s) should be given

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/161529918?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Suppressed for Blind Review

law (e.g. [30]), have been termed intermediate concepts (e.g.[54], [10]), but are more often
called factors, following the highly influential systems HYPO [9] and CATO [5], which are
still foundational for discussion of reasoning with legal cases in AI and Law. These factors
are stereotypical patterns of fact, present or absent in a case, which favour one or other of
the parties to the case. In CATO these factors were formed into a hierarchy in which the
base-level factors were the children of abstract factors, the presence of a child serving as
a reason for or against the presence of the parent (depending on the party favoured by the
two factors). The factors are then used to establish the legal conclusions (see e.g. [34], [54],
[47]).

Further work has applied formal argumentation models to legal argumentation. For ex-
ample, the abstract argumentation framework of Dung [40] has been applied to law in [58]
and many subsequent papers, and an extension to accommodate values [12] was applied to
legal argument in [15] and elsewhere. The computational and theoretical strands of factor
based reasoning have, however, by no means remained separate, and there have been a num-
ber of attempts to express the factor based reasoning embodied in systems such as CATO in
a rule based format suitable for representation in a more formal framework (e.g. [60]), [48]).

In this paper, we propose a new approach to the design and implementation of systems
to reason with legal cases using a powerful generalisation of Dung’s abstract argumenta-
tion frameworks [40], Abstract Dialectical Frameworks (ADF) [33] [32]1. ADFs generalise
the abstract argumentation frameworks introduced by Dung by replacing Dung’s single ac-
ceptance condition (that all attackers be defeated) with acceptance conditions local to each
particular node. The nodes in an ADF are statements, not necessarily arguments, and can
be related by a variety of types of links, not just attackers. We use the ADFs as the central
design element of our systems, able to mediate between the case analysis and the executable
program, and to encompass both frame based and rule based styles of system.

From the ADF definition, we can see its similarity to the structure of the factor hierarchy
in CATO (as shown in figures 1 and 2). Moreover, the additional flexibility that ADFs give
over AFs, which were used to represent a body of precedent cases in, e.g. [16] and [17],
allows a more natural representation than has been possible in AFs, especially since we
have both pro and con reasons. Therefore, in this paper we will design our systems by
instantiating a factor hierarchy for the domain as an ADF in order to encapsulate the theory
of case law for the legal domain that we wish our program to apply to. Recognising that the
case law of a legal domain goes through a life cycle of three stages as stated by Levi [53], we
intend this approach to be applied to the second stage where there is a period of stability and
the theory is settled. As with legislation [29], it is only when the law is a settled state that
the investment in implementing a program becomes justifiable. The methodology described
in this paper goes through three iterated phases:

Domain analysis and representation: The approach is applied to three domains. The first
starts with the use of the existing knowledge of US Trade Secrets in CATO and IBP.
For a second domain, we construct ADFs in the domain of Wild Animal cases (Popov
v Hayashi and related cases as modelled in [18]). Finally, we use a set of cases from
the Automobile Exception to The Fourth Amendment which has been discussed in the
literature in [62], [43], [13] and [3]. The representation in those papers is, however,
mostly to illustrate particular points and hence is incomplete, and does not descend into
the fine details. We provide our own new, complete, fine grained, analysis, which we use
as the design for our implementation.

1 ADFs are formally defined in Definition 1, section 2.3.

Title Suppressed Due to Excessive Length 3

Implementation and Refinement: Next, we move from the analysis to an executable
program in a direct and immediate way using Prolog. We translate the ADF acceptance
conditions into Prolog procedures, by expressing the conditions in Prolog syntax and
adding some standard control and reporting information to each clause, and then execute
the resulting program. Comparison of the program results with the actual outcomes of
the cases allows the theory to be refined, by returning to the original decision texts and
reconsidering the analysis, exploiting the software engineering benefits afforded by the
ADF representation.

Evaluation: For each domain, we evaluate the ease of implementation, the performance
and efficacy of the resulting program, the ease of refinement of the program and the
transparency of the reasoning. The evaluation suggests ways in which better systems
could be developed by incorporating the case facts which justify the base-level factors
ascribed to the cases, and by justifying the reasoning using portions of precedents [27].

The outline for this paper is as follows. First we provide some background, comprising
a discussion of system design aspects of engineering AI and Law systems, recapitulation
of factor based systems for reasoning with legal cases, especially CATO and IBP and their
factor hierarchies, and an overview of ADFs. After that, we present an ADF encapsulating
the factor hierarchy of CATO showing the natural mapping of the statements and links from
the factor hierarchy to the ADF and explaining the approach we follow in defining the ac-
ceptance conditions. Next, we apply the approach to two more legal domains showing the
analysis and the representation of each domain, examples from the programs and their out-
put, and the results and the possible refinements required to improve the results. Finally we
evaluate the approach, discuss some further lessons learned from the exercise and conclude
with suggestions for future work.

2 Background

In this section we will discuss the design of AI and Law systems, recapitulate the factor
based hierarchies of CATO [5] and IBP [34] and provide the essentials of ADFs [32].

2.1 Design of AI and Law Systems

In the middle eighties, it was believed that the use of declarative representations would allow
a straightforward implementation of AI and Law programs. For example, [64] argued that
legislation could be directly implemented using Prolog, and then executed as an expert sys-
tem to support decision making under the Act so represented. While this approach seemed to
work for very small pieces of simply drafted legislation such as the British Nationality Act,
capable of being implemented by a single person in a relatively short time, the approach did
not scale to large, more complex, pieces of legislation, requiring a team of developers. For
example, an attempt to apply the direct encoding approach to the Supplementary Benefits
Act 1980 [22], which represented a much larger, much amended, more complex piece of
legislation, the modelling of which took a team of two people several months, showed that
without some design principles and the ability to communicate the work at a level above
code, allowing the work to be sensibly divided and co-ordinated, results were not satisfac-
tory. In response to this, principles such as hierarchical formaisation [63] and isomorphism
[19] were developed.

4 Suppressed for Blind Review

These guiding principles were still not really sufficient to provide adequate support for
the design of substantial systems, capable of being shared, verified and reused, and providing
a description of the program to serve as an entry point for those required to perform perfec-
tive and adaptive maintenance. As noted in [29], it is, given the liability of law to change
over time, foolhardy to build a knowledge based system in Law unless there is a clear main-
tenance strategy. To provide support the notion of ontology [44] was adopted from general
AI. Early examples were [67] and [52]. Ontologies were incorporated in AI and Law devel-
opment methodologies (e.g. [66]), and remain an essential tool for the development of AI
and Law systems today: workshops and tutorials on ontologies have been a regular feature
of ICAIL conferences since 1995. Building a substantial knowledge based system in AI and
Law without an ontology should now be seen as quite as misguided as trying to construct a
database system without a Data Dictionary. Another approach to using software design tools
to develop AI and Law systems was the Power project [65], which adapted UML (Universal
Modelling Language) tools to model Dutch tax law in the development of AI systems. With-
out a well defined methodology, such a system could not have been attempted (and would
not have been permitted) in the environment of a professional IT Department of a Govern-
ment organisation, and is unlikely to have been as successful as the Power project proved to
be. Another example of a well defined methodology is the approach used by Softlaw and its
successor companies [50], [51] based on the verbatim approach proposed in [49].

All of the above referred to rule based systems, based on formalisations of legislation
of some kind. The use of design tools to support reasoning with legal cases is much less
common. Although there are ontologies for case based reasoning, such as [68], these have
not been produced as part of the development of a substantial program development project.
Also while ontologies are a useful design tool, they are not suitable for the design of all
aspects of a system. Database design now uses several tools as standard (e.g. [39]), play-
ing distinct but complementary roles, including Data Dictionaries and Entity-Relationship
Models. As noted above, ontologies can be seen as playing a role similar of Data Dictionar-
ies: here we propose that ADFs can provide design functions for knowledge based systems
akin to those provided for database systems by Entity-Relationship Models.

Whereas ontologies capture the static relationships between objects in the domain through
the definition of class-subclass and is-a relationships, as will be seen in section 2.3, ADFs
can be used to capture the more dynamic aspects, including the inferential relationships. The
children of ADF nodes are not subclasses, but the elements needed to decide the acceptabil-
ity of the statement represented by the parent, and provide acceptability conditions for the
parent in terms of these children. Thus while ontologies provide the vocabulary from which
the rules can be constructed, ADFs determine the rules that will be required in the program
and their relationships.

As such ADFs can both drive and record the design of the knowledge base for a system
to apply a body a case law. In particular the otherwise monolithic rule base is modularised
by being distributed as the acceptance conditions of nodes. Good modularisation - tightly
coherent and loosely coupled - is an essential feature of good program design (see e.g.
[61]).The modularisation of the knowledge base achieved by using an ADF is indeed tightly
coherent since each set of rules is concerned only with the acceptance of a single statement,
and contains all the rules needed to decide the acceptance of that statement. Loose coupling
is achieved by limiting the components required to determine the acceptability of a node to
the children of that node.

Knowledge Engineering advantages of ADFs include, in addition to the effective mod-
ularisation of the system:

Title Suppressed Due to Excessive Length 5

– Effective partitioning of the problem space which limits the number of precedents re-
quired to determine the outcome of cases, as discussed in [2].

– Ready visualisation of the possible paths through a program: the connection between
sets of rules is readily visible from the structure, whereas tracing which rules are invoked
when a given rule is executed from a monolitic rule base of any reasonable size can often
be difficult and error prone.

– Assurance of completeness, since it can readily been seen that each non-leaf node has
its acceptance condition.

– Straightforward inclusion of additional nodes. Addition of nodes can be performed with-
out fear that there will be unanticipated ramifications in the knowledge base.

– Awareness of what nodes will be affected by the removal (or modification) of a node.
– Support for verification: each node can be considered, either by reference to precedents

or otherwise, in isolation, on its own merits.
– Neutrality and integration between frame based and rule representations. The node struc-

ture provides the former and the acceptance conditions the latter.
– Division of the labour across a team of implementors: realisation of the part of the pro-

gram which decides one node can be done independently of the realisation of other
nodes: how the fragments will link together is explicitly specified. The children deter-
mine the inputs required by each module (node): that is, how the modules interface with
each other.

All of these things are highly desirable when designing and developing a system of any
real size and substance to reason with legal cases. The lack of such support has been a sig-
nificant barrier to the take-up of such systems in practice (see, e.g., [26] for the difficulties
in developing a sizable knowledge base to represent case law without effective design sup-
port). In the detailed examples worked through in section 4, we believe that the efficacy of
ADF with respects to these various aspects will become plain.

2.2 Factor Based Hierarchy Systems

We now describe CATO [5] and IBP [34], two of the best known and most substantial imple-
mentations of reasoning with legal cases. The anlysis reported in these papers will provide
the basis for the design of our first system in section 4, and there is a thorough empirical
evaluation of both systems in [34], which provides a very useful basis for comparison of
system performance.

2.2.1 CATO

CATO [5], which was a development from Rissland and Ashley’s HYPO, most fully de-
scribed in [9], takes as its domain US Trade Secret Law. CATO was primarily directed at
law school students, and was intended to help them form better case-based arguments, in
particular to improve their skills in distinguishing cases, and emphasising and downplaying
distinctions. A core idea was to describe cases in terms of factors, legally significant ab-
stractions of patterns of facts found in the cases, and to build these base-level factors into
an hierarchy of increasing abstraction, moving upwards through intermediate concerns (ab-
stract factors) to issues. An extract from the factor hierarchy, showing details of the support
and attack relations between the factors, is shown in Figure 1 and the complete hierarchy is
shown in Figure 2. The Figures have been reproduced directly from [5]. Each factor favours

6 Suppressed for Blind Review

Fig. 1 CATO Abstract Factor Hierarchy from [5]

either the plaintiff or the defendant. Like HYPO, the CATO program matches precedent
cases with a current case to produce arguments in three plies: first a precedent with factors
in common with the case under consideration is cited, suggesting a finding for one side.
Then the other side cites precedents with factors in common with the current case but a
decision for the other side as counter examples, and distinguishes the cited precedent by
pointing to factors not shared by the precedent and current case. Finally the original side
rebuts by downplaying distinctions, citing cases to prove that weaknesses are not fatal and
distinguishing counter examples. CATO used twenty-six base level factors (there is no F9),
as shown in Table 1. There is, however, no single root for the factor hierarchy as presented in
[5]: rather we have a collection of hierarchies, each relating to a specific issue. To tie them
together we turn to the Issue Based Prediction (IBP) system of Bruninghaus and Ashley
[34], described in the next subsection.

2.2.2 Issue Based Prediction

In IBP, which is firmly based on CATO, the aim is not simply to discover and present argu-
ments, but to predict the outcomes of cases. To enable this, the issues of CATO’s hierarchy
are tied together using a logical model derived from the Uniform Trade Secret Act, which
has been adopted by the majority of States in the US, and the Restatement of Torts. The
model is shown in Figure 3. IBP used 186 cases in its very thorough empirical evaluation,
148 cases analysed for CATO and 38 analysed specifically for IBP. Unfortunately, the anal-
yses of these cases are not all publicly available and so we will use the 32 cases harvested
from a variety of public sources describing CATO and IBP by Alison Chorley and used to
evaluate her AGATHA system [37], [36]. As part of the evaluation in [34], nine other sys-
tems were also considered to provide a comparison. Most of these were different forms of
machine learning system, but programs representing CATO and HYPO were also included.

Title Suppressed Due to Excessive Length 7

Fig. 2 CATO Abstract Factor Hierarchy from [5]

8 Suppressed for Blind Review

ID Factor

F1 DisclosureInNegotiations (d)
F2 BribeEmployee (p)
F3 EmployeeSoleDeveloper (d)
F4 AgreedNotToDisclose (p)
F5 AgreementNotSpecific (d)
F6 SecurityMeasures (p)
F7 BroughtTools (p)
F8 CompetitiveAdvantage (p)
F10 SecretsDisclosedOutsiders (d)
F11 VerticalKnowledge (d)
F12 OutsiderDisclosuresRestricted (p)
F13 NoncompetitionAgreement (p)
F14 RestrictedMaterialsUsed (p)
F15 UniqueProduct (p)
F16 InfoReverseEngineerable (d)
F17 InfoIndependentlyGenerated (d)
F18 IdenticalProducts (p)
F19 NoSecurityMeasures (d)
F20 InfoKnownToCompetitors (d)
F21 KnewInfoConfidential (p)
F22 InvasiveTechniques (p)
F23 WaiverOfConfidentiality (d)
F24 InfoObtainableElsewhere (d)
F25 InfoReverseEngineered (d)
F26 Deception (p)
F27 DisclosureInPublicForum (d)

Table 1 Base Level Factors in CATO

Fig. 3 IBP Logical Model from [34]

IBP was the best performer: results reported in [34] for IBP, Naive Bayes (the best performer
of the ML systems), CATO, HYPO and a version of IBP which uses only the model, with no
CBR component, are shown in Table 22. Direct comparison with AGATHA is hampered by
the fact that evaluation in AGATHA was directed towards evaluating a variety of different
heuristics and search algorithms used in that system, and so no version can be considered
“definitive”, and, of course, many fewer cases were used in the experiments. However, typ-
ically 27-30 of the 32 (≈ 84−93%) cases were correctly decided by the theories produced
by AGATHA [36].

2 No explanation for using a different number of cases for CATO and IBP-model is given in [34].

Title Suppressed Due to Excessive Length 9

correct error abstain accuracy

IBP 170 15 1 91.4
Naive Bayes 161 25 0 86.5
CATO 152 19 22 77.8
HYPO 127 9 50 68.3
IBP-model 99 15 38 72.6

Table 2 Results from [34]

2.3 Abstract Dialectical Frameworks

Abstract Dialectical Frameworks (ADFs) were introduced in [33] and revisited in [32].
ADFs provide a generalisation of Dung’s abstract argumentation frameworks (AFs) [40].
ADFs, like AFs, consist of a set of nodes and directed links between them, but whereas the
links in an AF have a uniform interpretation, namely defeat, the links in an ADF can be given
a variety of interpretations. Moreover, in ADFs the nodes are statements in general, rather
than specifically abstract arguments. ADFs also generalise bipolar argumentation frame-
works [35] which introduce a second relation (support) in addition to the attack relation of
AFs. However, the ADF goes further and allows any type of link to be used. Although the
acceptance conditions are often expressed as propositional functions, this need not be the
case: all that is required is the specification of conditions for the acceptance or rejection of
a node in terms of the acceptance or rejection of its children. In principle a “black box”
program with the node as output and the children as inputs could be used, although this of
course would not be suitable when using ADFs as a design aid.

ADFs are defined in [32] as follows:

Definition 1: An ADF is a tuple ADF = < S,L,C > where
– S is the set of statements (positions, nodes).
– L is a subset of S×S, a set of links.
– C = {Cs∈S} is a set of total functions Cs : 2par(s)→ {t, f}, one for each statement s.

Cs is called the acceptance condition of s.

In a Prioritised ADF, L is partitioned into L+ and L−, supporting and attacking links,
respectively.

Definition 2: A prioritized ADF (PADF) is a tuple A = (S,L+,L−,>) where
– S is the set of statements (positions, nodes).
– L+ and L− are subsets of S×S the supporting and attacking links.
– > is a strict partial order (irreflexive, transitive, antisymmetric) on S representing

preferences among the nodes.

We will use the partitioning into supporting and attacking links, but continue to see
the acceptance conditions as specifying preferences locally rather than adopting a global
ordering on nodes3.

3 Whereas PADFs were designed specifically to reflect Preference-Based Frameworks [6], the approach
taken here reflects Value-Based Frameworks [12], which are more commonly used in AI and Law. The rela-
tionship between Preference- and Value-Based Frameworks is formally characterised in [56].

10 Suppressed for Blind Review

3 ADFs For Factor Hierarchy

These two ideas, the factor hierarchies of CATO and ADFs, can be brought together. Con-
sider the CATO and IBP factor hierarchies, as shown in Figures 1, 2 and 3. We can now
instantiate an ADF to encapsulate the legal domain knowledge as represented by these fac-
tor hierarchies as follows:

Statement The statements of the ADF form S, the set of all the issues, intermediate con-
cerns and base level factors in the factor hierarchy.

Links is a subset of S×S, a set of links where L+ are the supporting links labeled “+” and
L− are the attacking links labeled “−” in the figures.

Acceptance Conditions For each abstract factor (non-leaf node), we define acceptance
conditions in terms of their supporting and attacking children intended to reflect the
decisions in precedent cases. Often, however, the nature of the relationship is clear and
so recourse to particular precedents is unnecessary. That precedents would not always
be required to resolve the comparisons was recognised in [5]:

“for certain conflicts, it is self evident how they should be resolved. ... It is not
necessary to look to past cases to support that point.” (p47).

The acceptance conditions expressed in this way form a set of tests. The order of the
tests expresses preferences. If none are satisfied, the node (abstract factor) is assigned to a
default value.

Although [33], [31] and [32] have shown ADFs to be formally sound and their formal
properties have been investigated, we make little explicit use of these formal properties in
this paper. Our ADFs are rather simple, since for the domains we consider our designers
will produce cycle free ADFs. As such the grounded, preferred and stable semantics coin-
cide. Moreover since our input cases will determine the labelling of base level factors (the
leaf nodes), the nodes of our ADFs can be completely and unambiguously labelled using
an efficient algorithm to find the grounded extension. This is important since it means that
programs based on a design in the form of a cycle-free ADF are themselves tractably com-
putable. In future work we will be looking at using implemented tools for processing ADFs
to compare results under different semantics.

4 Applications

In this section we apply the approach to several different domains which have often been
used in AI and Law. First we consider US Trade Secrets, using the 32 cases from [37]. Next,
we extend the work to further domains: starting with a small scale domain concerning Wild
Animals (5 cases) before proceeding to the Automobile Exception to The Fourth Amend-
ment (10 cases). Note that our aim is only to encapsulate (rather than learn) a theory of the
applicable law. For this a limited number of cases will suffice (cf. HYPO, which used fewer
than 25 cases [9], and the discussion in [2] of how many precedents are needed).

The program is implemented using Prolog, taking advantage of its closeness to our ex-
pression of the acceptance conditions (effectively each test in an acceptance condition cor-
reesponds to a clause in the program), which made the implementation quick, easy, trans-
parent and readily validated with respect to the design. The Prolog program was formed
by ascending the ADF, rewriting the acceptance conditions as groups of Prolog clauses to
determine the acceptability of each node in terms of its children. This required restating the
tests using the appropriate syntax, adding some reporting to indicate whether the node is

Title Suppressed Due to Excessive Length 11

satisfied (defaults are indicated by the use of “accepted that”), and some control to call the
procedure to determine the next node, and to maintain a list of factors accepted so far. Some
examples of the resulting code are given in section 4.1.2.

4.1 US Trade Secrets Domain

Using the complete factor hierarchy of [5] given in Figure 2, we can produce an ADF which
has as its leaf nodes the base level factors of CATO. This is described in tabular form in Table
3. The roots of CATO’s hierarchies correspond to the leaves of the IBP logical model: we
can therefore combine them into a single ADF by using this structure. The relevant additions
to the ADF needed to integrate the IBP model are shown in Table 4 (note that F124 is not
discussed in [34]).

ID S L+ L−

F102 EffortstoMaintainSecrecy F6, F122, F123 F19,
F23, F27

F104 InfoValuable F8, F15 F105
F105 InfoKnownOrAvailable F106, F108
F106 InfoKnown F20, F27 F15, F123
F108 InfoAvailableElsewhere F16, F24
F110 ImproperMeans F111 F120
F111 QuestionableMeans F2, F14, F22, F26 F1, F17, F25
F112 InfoUsed F7, F8, F18 F17
F114 ConfidentialRelationship F115, F121
F115 NoticeOfConfidentiality F4, F13, F14, F21 F5, F23
F120 LegitimatelyObtainable F105 F111
F121 ConfidentialityAgreement F4 F23
F122 MaintainSecrecyDefendant F4 F1
F123 MaintainSecrecyOutsiders F12 F10
F124 DefendantOwnershipRights F3

Table 3 CATO as ADF

ID S L+ L−

F200 TradeSecretMisappropriation F201, F203 F124
F201 InfoMisappropriated F110, F112, F114
F203 InfoTradeSecret F102, F104

Table 4 IBP Logical Model as an ADF

In Tables 3 and 4 we can see that we have eighteen nodes to provide with acceptance
conditions. One (F124) has only a single supporting child: thus the acceptance condition
will be Parent ←→Child. We will write this (and the other acceptance conditions) as a set
of tests for acceptance and rejection, to be applied in the order given, which allows us to
express priority between them. We choose this form of expression because we find it easier
to read in many cases, because it corresponds directly to the defeasible rules with priorities
used in formalisms such as ASPIC+ [59], and because it directly corresponds as Prolog
code. The last test will always be a default. Thus we write Parent←→Child as

12 Suppressed for Blind Review

Accept Parent if Child.
Reject Parent.

Where NOT is required we use negation as failure. The tests are individually sufficient
and collectively necessary, ensuring equivalence with the logical expression (see [38]). Six
nodes (F201, F203, F105, F108, F114 and F124) have only supporting links: these can be
straightforwardly represented using AND and OR. We followed the IBP model for the two
nodes taken from that model (F201 and F203), and used OR for the other four. The most
complicated was InfoMisappropriated (F201):

Accept InfoMisappropriated if F114 AND F112.
Accept InfoMisappropriated if F110.
Reject InfoMisappropriated.

Five nodes have one supporting and one attacking link. These are best seen as forming an
exception structure: accept (reject) the parent if and only if supporting (attacking) child
unless attacking (supporting) child. Note that the exception may be the supporting or the
attacking child: in the former case the default will be reject, and in the latter the default will
be accept. Thus:

Accept Parent if Supporter AND (NOT Attacker).
Reject Parent.

or

Reject Parent if Attacker AND (NOT Supporter).
Accept Parent.

For F110, F120 and F121 the attacking child is the exception, while for F122 and F123
the supporting children are the exceptions. This leaves seven nodes. For F200 we regard
the attacking link as an exception to the case where the conjunction of the supporting links
holds:

Accept Trade Secret Misappropriation if
Info Trade Secret AND
Info Misappropriated AND
(NOT Defendant Ownership Rights).

Reject Trade Secret Misappropriation.

For F104 and F112 we see the supporting links as offering disjoint ways of accepting the
parent, and the attacking child as a way of establishing that the factor is not present. We
default to yes because in many of the cases there are no factors for either side present relating
to this point, and yet the abstract factor is required to be present. We take it that this factor
was often simply accepted on the facts and uncontested, and so there was no discussion on
the point, and so no factors were explicitly mentioned in the decision. Thus for F112:

Accept F112 if F18.
Accept F112 if F8.
Accept F112 if F7
Reject F112 if F17.
Accept F112.

The remaining four are more complicated because they involve more factors. This might be
where we should use some reasoning with precedents, but here (because we have only a very
limited number of precedents) our approach is to make an initial attempt to supply tests, and
remain prepared to adjust these in the light of particular precedents where necessary. For
F106 (InfoKnown) we use

Title Suppressed Due to Excessive Length 13

Accept F106 if F20.
Accept F106 if F27 AND (NOT F15).
Accept F106 if F27 AND (NOT F123).
Reject F106.

The rationale is that if the information is known to competitors, it is known, but even if it is
disclosed in a public forum, the uniqueness of the product can suggest that the disclosure had
no impact (i.e. it was not sufficiently widely known), and so the secret remained effectively
unknown (and so F24 (InformationObtainableElsewhere) is more appropriate). The third
clause suggests that the public disclosure might be restricted (e.g. if the secret was disclosed
in a court of law during a trade secrets hearing), so that the information may be known, but
embargoed.

For F115, we regard each of the four supporting links (F4, F13, F14 and F21) as distinct
ways of establishing notice of confidentiality. F23 (WaiverOfConfidentiality) is an exception
to all of them whereas F5 (AgreementNotSpecific) is an exception only to F4 and F13, since
the other two do not relate to agreements.

Reject F115 if F23.
Accept F115 if F21.
Accept F115 if F14.
Reject F115 if F5.
Accept F115 if F4.
Accept F115 if F13.
Reject F115.

Similarly for F111 (QuestionableMeans) we see the supporting links as four different ways
in which questionable means can be established. The attacking links here seem like counter
claims rather than exceptions, and suggest that for this node we may eventually need to
explore precedents to identify preferences. However, as a first attempt we will regard them
as three distinct ways of rejecting the claim. We thus have seven clauses, one for each factor,
which we initially order as F25, F17, F22, F26, F14, F2, F1, to reflect the strong and weak
links shown in CATO.

Reject F111 if F25.
Reject F111 if F17.
Accept F111 if F22.
Accept F111 if F26.
Accept F111 if F14.
Accept F111 if F2.
Reject F111 if F1.
Reject F111.

This leaves F102, EffortsToMaintainSecrecy, which has three supporting and three attacking
links. F19 is applicable only if no security measures at all are taken, which suggests that it
has priority. Similarly a waiver of confidentiality (F23) or disclosure in a public forum (F27)
could be seen as negating any efforts to maintain secrecy, although F123 provides a possible
exception to the latter. The remaining two supporting links we also regard as independent.
Thus here we have six clauses, offering reasons to reject or accept, ordered F19, F23 (F27
and NOT F123), F6, F122, F123 with reject as the default.

Reject F102 if F19.
Reject F102 if F23.

14 Suppressed for Blind Review

Reject F102 if F27 and NOT(F123).
Accept F102 if F6.
Accept F102 if F122.
Accept F102 if F123.
Reject F102.

4.1.1 Relation to Structured Argumentation

We have realised our tests in a Prolog program, to provide an executable, testable, instan-
tiation of the analysis. The overall output of our system bears a strong resemblance to the
kind of structured argumentation found in ASPIC+ [59]. The union of the acceptance condi-
tions can be seen as the knowledge base required by the ASPIC+ framework. Determining
the acceptance or rejection of the various nodes produces sub-arguments, and these can be
linked to produce the argument for finding for the plaintiff (or defendant) which follows the
argument-subargument structure of ASPIC+ arguments. There are also differences: because
the ordering of clauses expresses priority between arguments, only the winning arguments
are generated. Thus the output does not include all arguments, but only the winning line of
argument. Where, however, potential attackers are children rather than siblings, but are not
acceptable, this is reported. Thus although there are correspondences, especially through the
argument-subargument structure, the control regime employed by the program means that
there are also important differences. These relate mainly to conflicts: the output shows only
the winning side of the case, and does not provide a good record of the rejected arguments
available to the losing side. This is because our program is only intended to produce an out-
come for the case, (as with IBP) rather than a set of arguments (as with HYPO). None the
less, the correspondences are such that this is worth exploring further in future work, using
a different control regime in the implementation to force the generation of all arguments,
as a potentially fruitful way of formalising the entire reasoning. This, however, will be a
different program, one directed towards the HYPO task. Henceforth we will concentrate on
the actual realisation of the decision making program in Prolog.

4.1.2 Prolog Program

In this section we will give some examples of the code. The program is executed by posing
a query which gets the first factor to be decided with the case and its base-level factors as
arguments. Each factor is called in turn, with the factors present passed up as FactorsSoFar.
The Prolog for F112 (for which the acceptance conditions were given earlier, and which will
call the procedure to get F111) is:

% determine acceptability of
% F112, Information used
getf112(Case,FactorsSoFar):-
member(f18,FactorsSoFar),
write([the,information,was,used]),
nl, getf111(Case,[f112|FactorsSoFar]).

getf112(Case,FactorsSoFar):-
member(f8,FactorsSoFar),
write([the,information,was,used]),
nl, getf111(Case,[f112|FactorsSoFar]).

Title Suppressed Due to Excessive Length 15

getf112(Case,FactorsSoFar):-
member(f7,FactorsSoFar),
write([the,information,was,used]),
nl, getf111(Case,[f112|FactorsSoFar]).

getf112(Case,FactorsSoFar):-
member(f17,FactorsSoFar),
write([the,information,was,not,used]),
nl, getf111(Case,FactorsSoFar).

getf112(Case,FactorsSoFar):-
write([accepted,that,
the,information,was,used]),
nl, getf111(Case,[f112|FactorsSoFar]).

Each of the four tests in the acceptance condition is applied in a separate clause, using the
set of factors currently identified as present in the case, before proceeding to the next factor
(F111), with F112 added to the applicable factors if it is accepted. To allow completion
of the database [38], a final clause is added to catch any case not covered by any of the
preceding clauses. Although the default is normally reject, as discussed above, these defaults
may favour either side. In some cases, such as F112 and F104 we decided that the default
should be accept because in the great majority of the precedents there were no factors in
the case descriptions relating to these abstract factors, and yet they are a sine qua non for
any claim. Our belief is that these aspects were uncontested and so the factors were not
explicitly discussed in the trial, and so do not appear in the CATO analysis. Where we felt it
was clear that the factor needed to be explicitly established (e.g. F106 (InformationKnown)
and F111(QuestionableMeans)) the default was reject. The code for F111 is:

getf111(C,Factors):-
member(f25,Factors),
write([questionable,means,were,not,used]),
nl, getf123(C,Factors).

getf111(C,Factors):-
member(f17,Factors),
write([questionable,means,were,not,used]),
nl, getf123(C,Factors).

getf111(C,Factors):-
member(f22,Factors),
write([questionable,means,were,used]),
nl, getf123(C,[f111|Factors]).

getf111(C,Factors):-
member(f26,Factors),
write([questionable,means,were,used]),
nl, getf123(C,[f111|Factors]).

16 Suppressed for Blind Review

getf111(C,Factors):-
member(f14,Factors),
write([questionable,means,were,used]),
nl, getf123(C,[f111|Factors]).

getf111(C,Factors):-
member(f2,Factors),

write([questionable,means,were,used]),
nl, getf123(C,[f111|Factors]).

getf111(C,Factors):-
member(f1,Factors),
write([questionable,means,were,not,used]),
nl,getf123(C,Factors).

getf111(C,Factors):-
write([accepted,that,
questionable,means,were,not,used]),
nl, getf123(C,Factors).

Note that the use of a default is indicated in the report by the qualification “accepted
that”.

The above demonstrates that it is a straightforward and reasonably objective process to
transform a factor based analysis such as is found in [5] to an executable program via an
ADF. Although judgement was sometimes required to form the acceptance conditions, we
would suggest that such judgements were not difficult to make. Moreover if there are diffi-
cult choices, the effect of the alternatives can be compared on a set of test cases. Producing
such alternative versions is a task greatly simplified by the modularisation achieved by use
of the ADF. Moreover, the relatively small number of factors relevant to particular nodes
further simplifies the task.

4.1.3 Results

We can now run the program on the cases. We represent the cases as a list of base-level
factors. For example, the Boeing case4 is represented as

case(boeing,[f4,f6,f12,f14,f21,f1,f10]).

giving output:

1 ?- go(boeing).
accepted that defendant is not owner of secret
efforts made vis a vis outsiders
efforts made vis a vis defendant
there was a confidentiality agreement
defendant was on notice of confidentiality
there was a confidential relationship
accepted that the information was used
questionable means were used

4 The Boeing Company v. Sierracin Corporation, 108 Wash.2d 38, 738 P.2d 665 (1987).

Title Suppressed Due to Excessive Length 17

accepted that the information
was not available elsewhere

accepted that information is not known
accepted that the information

was neither known nor available
accepted that the information was valuable
not accepted that the information

was legitimately obtained
improper means were used
efforts were taken to maintain secrecy
information was a trade secret
a trade secret was misappropriated
find for plaintiff
boeing[f200, f201, f203, f102,f110,f104,f111,
f112,f114,f115,f121,f122,f123,
f4,f6,f12,f14,f21,f1,f10]
decision is correct in accordance with the actual decision

The initial program correctly classified 25 out of the 32 cases (78.1%) of the cases. While
all ten of the cases won by the defendant were correctly classified, seven of the 22 cases won
by the plaintiff were not. The figure for correct answers is remarkably close to the 77.8%
reported for the version of CATO used in [34], which, of course, uses exactly the same
analysis of the domain and cases that we have adopted here. Thus as a first conclusion we
can tentatively suggest that executing the analysis in [5] as an ADF produces very similar
results to those obtainable using the original CATO program (albeit we are testing on a
smaller set of cases). As Table 2 indicates, the performance of HYPO and CATO is lessened
because both make a large number of abstentions. These programs abstain because they lack
the precedents which would enable them to decide some novel combinations of factors. IBP
(and our program) make far fewer abstentions because the use of the logical model at the
top level means that these programs will find for the defendant if they do not find for the
plaintiff, forcing a decision. In HYPO and CATO, in contrast, the factors may remain in
balance, with arguments for both sides that cannot be conclusively compared.

We would, however, hope to be able to do better than 77.8%, and approach the per-
formance level of IBP. We now, therefore, investigate how the initial program might be
improved. The wrongly predicted cases were:

case(spaceAero,[f8,f15,f18,f1,f19]).
case(televation, [f6,f12,f15,f18,f21,f10,f16]).
case(goldberg,[f1,f10,f21, f27]).
case(kg,[f6,f14,f15,f18,f21,f16,f25]).
case(mason,[f6,f15,f21,f1,f16]).
case(mineralDeposits,[f18,f1,f16,f25]).
case(technicon,[f6,f12,f14,f21,f10,f16,f25]).

Examination of the cases showed that five of the seven had F16 (ReverseEngineerable)
present and that these cases were the only cases found for the plaintiff with F16 present.
The problem in these five cases is that the program finds for the defendant because the infor-
mation is available elsewhere (F105). This is established by the presence of ReverseEngi-
neerable and is unchallengeable. Examination of the ADF shows that F16 is immediately
decisive: if that factor is present, there is no way the plaintiff can demonstrate that the in-

18 Suppressed for Blind Review

formation is a trade secret. Goldberg5 also fails through F105 (InformationKnownOrAvail-
able), since disclosure in a public forum (F27) is also sufficient to deny the information trade
secret status. It would appear that we could significantly improve performance by refining
this branch to allow the plaintiff some way to defend against, in particular, F16.

4.1.4 Refinement

At this point we should observe that CATO is likely to be more robust in the face of imperfect
analysis than an approach based on a logical model. Because CATO generates arguments
based on considering all the available factors taken together, it is less likely to have the
outcome determined by a single factor than a logical model, for which, for example, the
presence of F16 or F27 can be seen to immediately determine a decision for the defendant,
whereas in CATO some combinations of other factors might outweigh them. Moreover,
CATO was designed to assist law students, not to predict outcomes. We should expect similar
problems to arise in IBP, which also uses a logical model, albeit one that is applied at a later
stage of the process. In [34] it is stated

We found that some Factors, called KO-Factors (or Knockout Factors), almost al-
ways dominate the outcome of a case. For instance, as an empirical matter, the plain-
tiff will not win a case with Factor F20, Info-Known.

Such factors are given special treatment in IBP, and so it does not seem unreasonable to use
the initial results to suggest possible refinements to our original analysis. First we consider
Goldberg v Medtronic. In that decision it is explicitly stated that

The district court found that Medtronic could not avoid its obligation of confidence
due to the availability of lawful means of obtaining the concept when those means
were not employed. We affirm.

Thus the factor which was decisive6 for our progam, F27, was in fact explicitly held to be
insufficient in the actual decision. Whether this decision was correct or not is not for us
to say, but it does explain why our program misclassifies the case. Assuming the decision
to be correct, we should either redefine F27 to include the defendant’s actual use of this
public domain knowledge, so that it is not present in Goldberg, or allow F21 (KnewInfor-
mationConfidential) as an exception to F27 in determining the acceptance of F106, on the
grounds that if the defendant believed the information to be confidential, he could not have
been aware that the information was publicly available. Since we have no other case with
F21 and F27 both present, we cannot choose between these two solutions on the precedents
available to us. We now turn to the problem created by F16, ReverseEngineerable. In [5] the
note on the applicability of this factor states:

The factor applies if: Plaintiff’s information could be ascertained by reverse engi-
neering, that is, by inspecting or analyzing plaintiff’s product (regardless of whether
defendant actually obtained the information in this way).

Thus it is clear that we cannot use a defence analogous to that used in Goldberg, that the
defendant did not in fact reverse engineer the information. None the less, the ease with which
the product could be reverse engineered does (amongst other things) need to be considered.
In Mason we read:

5 Goldberg v. Medtronic, 686 F.2d 1219 (7th Cir. 1982).
6 Running a version of Goldberg without F27 finds for the plaintiff.

Title Suppressed Due to Excessive Length 19

In this regard, we note that courts have protected information as a trade secret despite
evidence that such information could be easily duplicated by others competent in the
given field.

citing KFC v Marion Kay and Sperry Rand v Rothlein. The KFC decision cited in Mason
states

Marion-Kay maintains that the recipes and formulas for the making of KFC season-
ing are not unique and that Marion-Kay is capable, both financially and technically,
of producing KFC seasoning.

which suggests that the uniqueness of the product (F15) might be a factor capable of at-
tacking the acceptability of F108 as well as F106 (as identified in CATO). Adding F15 as an
exception to F16 would give the correct decision in Televation, KG and Mason. In Technicon
we find that the phrase “readily ascertainable” is used:

Curtis claimed that Technicon’s trade secrets were “readily ascertainable” and that
the company had not made reasonable attempts to ensure its trade secrets. The Court
reasoned that Bridgmon’s "wiretap" process had required over two-thousand hours,
and still had not yielded a fully functional product. The Court held that this amount
of time indicated that a trade secret was not readily ascertainable.

In fact in two of the cases (KG and Technicon) restricted material was used by the de-
fendants, strongly implying that the information was not, in fact, readily ascertainable. In
Mineral Deposits, we find that

After Zigan received the spiral, he removed the label which indicated that patent
applications were pending and gave the spiral to defendant Zbikowski. Zbikowski
then cut the spiral into pieces, made molds of the components, and proceeded to
manufacture copies of the spiral. If a trade secret is divulged under an express or
implied restriction of nondisclosure or nonuse, a party who engages in unauthorized
use of the information will be liable in damages to the owner of the trade secret.

which strongly suggests to us that F14 was also in fact present in this case. Moreover in
Televation, whether the secret counted as reverse engineerable was contested:

The mere fact, however, that a competitor could, through reverse engineering, du-
plicate plaintiff’s product does not preclude a finding that plaintiff’s techniques or
schematics were trade secrets, particularly where, as here, the evidence demon-
strated that the reverse engineering process would be time-consuming.

and there is a strong suggestion that the court in fact believed that copies of the plaintiff’s
drawings had, in fact been used by the defendant, which would mean that F14 would apply.
Finally Sperry Rand, another decision cited in Mason, states

The defendants claim that there is no trade secret if it is disclosed by prior art or if
it is readily discernible by others skilled in the field. It is no defense in an action
of this kind that the process in question could have been developed independently,
without resort to information gleaned from the confidential relationship. As stated
in the landmark case of Tabor v. Hoffman, 118 N.Y. 30, 35, 23 N.E. 12, 13 (1889):
"Even if resort to the patterns of the plaintiff was more of a convenience than a
necessity, still if there was a secret, it belonged to him, and the defendant had no
right to obtain it by unfair means, or to use it after it was thus obtained."

20 Suppressed for Blind Review

which suggests that the use of any kind of questionable means (rather than just F14) could be
used to block a defence relying on reverse engineerability. The decisions thus give a number
of suggestions for exceptions to F16 as a support for F108: especially uniqueness of the
product and use of restricted materials. Incorporating those exceptions would raise success
of our program to 29 out of 32 (90.6%), and removing F27 from Goldberg (or allowing
F21 as an exception) and adding F14 to Mineral Deposits, both of which seem eminently
justifiable on the facts of the cases concerned as stated in the decision texts, would give
correct decisions in these cases also (96.8%). This leaves only Space Aero as an unexplained
failure. The output for this case is:

1 ?- go(spaceAero).
accepted that defendant is not owner of secret
accepted that efforts made vis a vis outsiders
no efforts made vis a vis defendant
accepted that there

was no confidentiality agreement
accepted that defendant

was not on notice of confidentiality
accepted that there

was no confidential relationship
the information was used
questionable means were not used
accepted that the information

was not available elsewhere
accepted that information is not known
accepted that the information was

neither known nor available
the information was valuable
not accepted that the information

was legitimately obtained
accepted that improper means were not used
no efforts were taken to maintain secrecy
information was not accepted as a trade secret
no trade secret was misappropriated
find for defendant
spaceAero[f104,f112,f123,
f8,f15,f18,f1,f19]
decision is wrong

This case fails on two branches: the information is not a trade secret because no security
measures were taken, and because it appears that no confidential relationship existed. A key
feature of this case is that the defendants were former employees of the plaintiff, and had
been provided with the disputed information when employed by the plaintiff because they
needed it to carry out their duties. The decision itself states

The testimony, taken as a whole, convinces us that Darling took precautions to guard
the secrecy of its process which, under the circumstances, were reasonably suffi-
cient.

This suggests to us that F19 (NoSecurityMeasures) was not, in fact, accepted as present,
and removing this factor from the case is enough to establish that there was a trade secret.
Turning to the issue of confidentiality we read

Title Suppressed Due to Excessive Length 21

While none of the former employees had signed a contract with Darling in which
they formally agreed not to use the information acquired by them, and while they
were free to leave their employment at will, Judge Pugh found that they owed the
duty of fidelity to their employer while they were employed. We agree. ... The court
below found as a fact that some of the former employees had in their possession, af-
ter leaving Darling’s employment, certain sketches of oxygen breathing hoses which
they had taken while they were employed by Darling, without Darling’s knowledge.
... the former employees knew that they were acting wrongfully in violation of their
confidential relationship and their duty of loyalty. We agree with the court below
that the former employees violated the duty of fidelity and trust which they owed to
Darling in respect of the trade secret and that their conduct was such as to entitle
Darling to the protection of a court of equity.

Again we cannot comment on whether this decision was correctly made or not. However, it
does seem that at least F21 (KnewInfoConfidential) should be included. If this is added, we
can establish a confidential relationship and find for the plaintiff.

4.2 Wild Animals Domain

In the above we have considered the approach with respect to a single domain. If the ap-
proach is to be of general significance, however, it needs to be applicable to other domains.
In this subsection we will describe a second exercise designed to show that the approach
is more generally applicable. We will apply the method to a second domain, one which has
often been used as an illustration of factor based reasoning so that analyses are available: the
wild animals cases and Popov v Hayashi. The wild animals cases were introduced into AI
and Law in [23] and extended to the baseball case of Popov in [69]. We will use the factor
based analysis of [18] as our starting point. Briefly the wild animals cases concern plaintiffs
chasing wild animals when their pursuit was interrupted by the defendant. Post was chasing
a fox for sport. Keeble was hunting ducks, Young fish and Ghen a whale, all in pursuit of
their livelihoods. Popov v Hayashi concerned disputed ownership of a baseball (valuable
because it had been hit by Barry Bonds to break a home run record). Popov had almost com-
pleted his catch when he was assaulted by a mob of fellow spectators and Hayashi (who had
not taken part in the assault) ended up with the baseball when it came free. The wild animals
cases were cited when considering whether Popov’s efforts had given him possession of the
ball. Thirteen, base-level, factors are identified in [18]. The first task is to form them (to-
gether with appropriate abstract factors) into a factor hierarchy, and to use as the node and
link structure to form an ADF. This factor hierarchy is shown in Figure 4; some adaptations
to [18] have been made: for example we include a factor Res (Residence Status) to indicate
the attachment of the animals to the land, since it appears to make a difference (important
in some other related cases described in [14]) whether they are on that land permanently,
seasonally, habitually, occasionally, or whatever. The nodes and links are given in Table 5.
We now supply acceptance conditions for the nine non-leaf nodes.

Decide for Plaintiff if NOT (NoBlame)
AND ((Ownership

OR (RightToPursue AND IllegalAct))
Ownership if (OwnsLand AND Resident)

OR Convention OR Capture
Capture if NOT (NotCaught) OR (Vermin and HotPursuit)

22 Suppressed for Blind Review

Fig. 4 Factor Hierarchy/ADF for Wild Animals

RightToPursue if OwnsLand OR
((HotPursuit AND PMotive
AND (NOT (better) DMotive))

PMotive if PLiving OR
((PSport OR PGain)
AND (NOT DLiving))

DMotive if NOT Malice AND
(DLiving OR DSport OR DGain)

Title Suppressed Due to Excessive Length 23

S L+ L-

Decide for Plaintiff Ownership,RightToPursue,IllegalAct NoBlame
Capture HotPursuit, Vermin NotCaught
Ownership Convention, Capture, OwnsLand, Res
PMotive Pliving, PSport, PGain DLiving
DMotive DLiving, DSport, DGain Malice
OwnsLand LegalOwner
RightToPursue OwnsLand, Pmotive, HotPursuit DMotive
AntiSocial Nuisance, Impolite DMotive
Trespass LegalOwner, AntiSocial
IllegalAct Assault, Trespass

Table 5 Wild Animals as ADF

IllegalAct if Trespass OR Assault
Trespass if LegalOwner AND AntiSocial
AntiSocial if (Nuisance OR Impolite)

AND (NOT DLiving)

The only real controversy here is with the determination of RightToPursue when both
the plaintiff and the defendant have good motives. Essentially we want to say that if the land
is not owned by one of them, the right to pursue is given to the party with the better motive,
which will require the some additional code in the implementation to compare these two
factors. The remainder seem fairly uncontroversial.

4.2.1 Program

The acceptance conditions can easily be expressed as Prolog procedures and then embedded
in code as was done for the CATO program in 4.1.2. We can now execute the program. For
example, running the program for Young v Hitchens produces the following output (note that
the program abbreviates factor names):

1 ?- go(young).
the plaintiff had not captured the quarry
the plaintiff did not own the quarry
plaitiff has good motive
defendant has good motive
plainiff did not own the land
plainiff had a right to pursue the quarry
defendant committed no antisocial acts
defendant committed no trespass
no illegal act was committed
do not find for the plaintiff
find for the defendant
young[rtToPursue,dMotive,pMotive,
nc,hp,imp,pliv,dliv]

4.2.2 Results

We produce correct results from all five cases discussed in [18], and on this basis we believe
that the ADF representation can be used to encapsulate the knowledge of the domain as

24 Suppressed for Blind Review

represented in [18], suggesting that the method can be applied straightforwardly to a second
domain. In general we believe that the method can be applied to any domain for which factor
based reasoning in the CATO (or HYPO or IBP) style is appropriate. This has encouraged us
sufficiently to apply the method to a larger scale problem in the domain of the US automobile
exception to the Fourth Amendment rule for which there is no accepted analysis into factors
available, so that we need to start from the case decision texts, as shown in the next section.
By starting from the primary texts rather than an analysis, we can also explore the role of
the ADF in driving the analysis.

4.3 US Automobile Exception To The Fourth Amendment Domain

In this section we apply the approach to ten cases in the domain of the Fourth Amendment,
specifically concerning the automobile exception. Although these cases have been discussed
in the AI and Law literature (e.g. [62], [43], [21] and [13]), representation of the domain
has not been the main focus of these papers and so the analysis performed there has been
illustrative rather than complete. In this paper we provide a very detailed analysis, intended
to support a complete implementation, and so this represents a substantial test of the use
of our methodology on an effectively fresh domain. This example therefore represents an
attempt to apply our method starting from scratch, rather than re-using previous analyses.

The Fourth Amendment protects the “right of the people to be secure in their persons,
houses, papers, and effects, against unreasonable searches and seizures.” A search is consid-
ered reasonable if a warrant has been obtained. However, when there is a high probability
of losing the evidence so that there is an urgent reason to search, obtaining a warrant may
become impossible. One such situation is a moving automobile. This domain thus considers
the interaction of two competing considerations: the enforceability of the law, which makes
the exigency issue important, and citizens’ rights, which include the right to privacy [13].

This exception was first established by the United States Supreme Court in 1925, in the
Carroll v. US. 7 decision which states:

Various acts of Congress are cited to show that, practically since the beginning of
the Government, the Fourth Amendment has been construed as recognizing a neces-
sary difference between a search for contraband in a store, dwelling-house, or other
structure for the search of which a warrant may readily be obtained, and a search of
a ship, wagon, automobile, or other vehicle which may be quickly moved out of the
locality or jurisdiction in which the warrant must be sought.

The automobile exception is developed further as more cases are decided (Table 8 shows
the representation of ten landmark cases in the domain) with further conditions needing to
be taken into consideration. For example, the type of the vehicle or movable container, the
status of the vehicle which influences whether there was an urgent need to search it (e.g.
was the vehicle traveling on the highway (as in Carroll) or was it parked in a parking lot but
capable of moving (as in California v. Carney 8)? Was it parked in a private place that is used
for accommodation (Coolidge v. New Hampshire 9) and so not subject to inspection without
warrant, or was it in a public location? Whatever the situation, there must be a probable
cause to search, but is it legal to search the whole vehicle if the probable cause applies only

7 Carroll v United States, 267 U.S. 132 (1925)
8 California v. Carney, 471 US 386 (1985).
9 Coolidge v. New Hampshire, 403 U.S. 443 (1971).

Title Suppressed Due to Excessive Length 25

to a container inside the vehicle? What if an authorized warrant was easy to obtain? Such
considerations and more are stated in the ADF table shown below. The role of the justices
in this domain is to determine whether there is enough exigency with respect to a possibly
lowered expectation of privacy given the particular case facts. This is illustrated by the ADF
factor hierarchy depicted in Figures 5 and 6 based on the base-level factors given in Table 6.

ID Base Factor

bf011 Automobile
bf012 Vessel
bf013 Towable
bf014 LargeContainer
bf015 MovableContainer
bf021 AuthorityOfAvailableMagistrate
bf022 RiskofLosingEvidence
bf023 AvailabilityofMagistrate
bf031 Licence
bf032 RestrictedArea
bf041 OnPublicView
bf042 CanBeSeen
bf043 CanotBeSeen
bf051 UrgentStatus
bf052 CapableToMove
bf053 Public Parking
bf054 PublicLocation
bf055 PermittedDuration
bf211 Information
bf212 Observation
bf213 Procedure
bf221 PublicSafety
bf222 Crime
bf231 WholeVehcile
bf232 OnlyVehicleContainer
bf233 SearchPlace
bf311 GoodsCarried
bf312 ProtectionType
bf321 ConnectedServices
bf331 AccomodationSpaces
bf332 RoomsFunction

Table 6 Base-Level Factors in The Automobile Exception as an ADF

From the case decisions and representations shown in Table 8, we can now generate
acceptance conditions for the sixteen non-leaf nodes, using the base-level factors in Table 6.
The ADF is given in table form in Table 7.

AutomobileException IF Exigency
AND EnoughExpectationOfPrivacyInUse.

Privacy IF [EnoughExpectationOfPrivacyInUse
AND [NOT InspectionRegulation)

OR (NOT VisibilityofItem)]]
OR [PrivateLocation AND (NOT AuthorizedWarrant)].

Exigency IF [(Mobile AND ExigencyWhenApproached

26 Suppressed for Blind Review

ID S L+ L-

I1 Exigency AF202,AF101,
AF103,AF104,
AF105 AF102

I2 Privacy AF203
AF202 ProbableCauseToSearchVehicle AF121

AF122
AF123

AF203 ExpectationOfPrivacyInUse AF131
AF132, AF133

AF101 Mobile bf011,bf012,bf013,bf014, bf015
AF102 EaseWarrant bf022 bf021,

bf023
AF103 SubjectToInspectionRegulation bf031 bf032
AF104 VisibilityOfItem bf041,bf042 bf043
AF105 ExigencyWhenApproached bf051,bf052,

bf053,bf054,bf055
AF121 AuthorizedOrigionOfProbableCause bf211,bf212,bf213
AF122 UrgentReasonToSearch bf221,bf222
AF123 LegalSearchScope bf231 bf232.bf233
AF131 PrivateContentsCarriage bf311,bf312
AF132 Residence bf321
AF133 Accomodation bf331,bf332

Table 7 Automobile Exception as an ADF

Case Base-Level Factors Favour

Carroll v. United States bf011,bf051,bf211,bf231,bf233 P
Chambers v. Maroneys bf011,bf015,bf051,bf054,bf213,bf222,bf231 P
Coolidge v. New Hampshire bf011,bf021,bf024,bf051 ,bf213,bf222,bf231 D
Cady v. Dombrowski bf011,bf042,bf043,bf051,bf053,bf053,bf213,bf222,bf231,bf233 P
South Dakota v. Opperman bf011,bf015,bf043,bf051,bf053,bf213,bf221,bf231,bf233 P
United States v. Chadwick bf011,bf014 ,bf043,bf051,bf053,bf211,bf221,bf232,bf233,bf312 D
Arkansas v. Sanders bf011,bf014,bf015,bf032,bf043,bf051,bf211,bf221,bf232 D
United States v. Ross bf011,bf015,bf032,bf051,bf053,bf211,bf221,bf231,bf232,bf233,

bf233,bf311 P
California v. Carney bf011,bf015,bf022,bf031,bf032,bf051,bf052,bf053,bf054,bf211,

bf212,bf221,bf231,bf233,bf233 ,bf331,bf332 P
California v. Acevedo bf011,bf015,bf032,bf043,bf051,bf054,bf211,bf221,

bf232,bf233 P

Table 8 Automobile Exception Cases

AND ProbableCauseToSearch)
OR (NOT EaseToGetWarrant)].

EnoughExpectationOfPrivacyInUse IF
(Residence AND Accommodation)
OR PrivateContentsCarriage.

Residence IF ConnectedMainLivingServices.

PrivateContentsCarriage IF GoodsCarried
AND ProtectionLevel AND ContainerType.

Title Suppressed Due to Excessive Length 27

Fig. 5 Factor Hierarchy/ADF for Automobile Exception, part 1

Accommodation IF AccommodationSpaces OR RoomsFunctions.

SubjectToInspectionRegulation IF License
AND (NOT RestrictedArea).

VisibilityofItem IF OnPublicView OR CanBeSeen
OR (NOT CannotBeSeen).

28 Suppressed for Blind Review

Fig. 6 Factor Hierarchy/ADF for Automobile Exception, part 2

Title Suppressed Due to Excessive Length 29

ExigencyWhenApproached IF (UrgentStatus AND PublicLocation)
OR (CapableToMove AND

(PublicLocation OR PublicParking
OR PermittedParkingTime)).

Mobile IF Automobile OR Vessel
OR TowableVehicle OR LargeContainer
OR MovableContainer.

EaseOfObtainingWarrant IF (NOT RiskofLosingEvidence)
OR (Magistrate availability

AND AuthorityOfMagistrate).

ProbableCausetoSearchVehicle IF OriginPurpose
AND LegalUrgentReasonToSearch
AND LegalSearchScope.

OriginPurpose:= Information OR Observation
OR Procedure.

UrgentReasonToSearch:= PublicSafety OR Crime.

LegalSearchScope:=(WholeVehicle OR VehicleContainer)
AND LegalSearchPlace.

For each of the acceptance conditions described above, we define a default value when
none of the tests apply. The default value is determined with respect to the nature of the
factor: for example, the content is not considered private if none of the acceptance conditions
for (AF131-PrivateContentsCarriage) are satisfied, and there are only two reasons which can
make a search urgent.

4.3.1 Program

The acceptance conditions are implemented using Prolog procedures as in our previous
domains, and ordered to ensure that we provide a report giving the status of every non-
leaf factor in the domain. The following procedure shows the code for the two acceptance
conditions and the default clause for AF202-ProbableCauseSearchVehicle.

getProbableCauseSearchVehicle(C,Factors):-
member(af123,Factors),
member(af122,Factors),
member(af121,Factors), !,
write([there, is, a ,probable, cause, to , search,
vehicle]),nl,getSubjectToInspection(C,[af202|Factors]).

getProbableCauseSearchVehicle(C,Factors):-
member(af122,Factors), member(af121,Factors), !,

30 Suppressed for Blind Review

write([there, is, a ,probable, cause, to , search,
vehicle , but, the , search, scope, was , illegal]),
nl,getSubjectToInspection(C,Factors).

getProbableCauseSearchVehicle(C,Factors):-
!,write([default,there, is, no, probable, cause, to ,
search, vehicle]),nl,getSubjectToInspection(C,Factors).

The output below is for California v Carney (abbreviated in the code to“cvc”). This case has
frequently been used in AI and Law to explore Supreme Court oral argument (e.g. [62], [3]).
Carney is concerned with whether the exception for automobiles to the protection against
unreasonable search provided by the Fourth Amendment applies to mobile homes, in partic-
ular motor homes in which the living area is an integral part of the vehicle (i.e what is often
called a “camper van” as a opposed to a “caravan”, in which the living accommodation is
separate from the towing vehicle). The decision held that the exception does apply:

When a vehicle is being used on the highways or is capable of such use and is found
stationary in a place not regularly used for residential purposes, the two justifica-
tions for the vehicle exception come into play. First, the vehicle is readily mobile,
and, second, there is a reduced expectation of privacy stemming from the pervasive
regulation of vehicles capable of traveling on highways. Here, while respondent’s
vehicle possessed some attributes of a home it clearly falls within the vehicle excep-
tion.

Thus the case decision indicates that although the mobile home is an automobile with an
accommodation space, it was not parked in a residential parking and not connected to any
services, and so was currently being used as a vehicle not a home. There was a probable
cause to search the mobile home to protect the public after police agents observed suspicious
activity, and it was not possible to obtain a warrant since the vehicle was able to move, and
the highway was readily accessible from the parking lot.

case(cvc,[bf011,bf015,bf022,bf031,bf032,bf051,
bf052,bf053,bf054,bf211,bf212,bf221,
bf231,bf233,bf233 ,bf331,bf332]).

?- go(cvc).
[it,is,mobile]
[there,was,exigency,when,approached]
[there,was,an,authorized,origin,of,probable,cause]
[the,main,reason,to,search,was,urgent]
[the,search,scope,is,legal]
[there,is,a,probable,cause,to,search,vehicle]
[subject,to,regular,inspection,but,

the,search,was,directed,at,restricted,area]
[accepted,that,it,is,not,visible,to,public]
[accepted,that,contents,are,not,considered,private]
[accepted,that,it,is,not,connected,to,one,

or,more,main,living,services]
[the,place,could,be,used,for,accommodation]
[accepted,that,low,expectation,of,privacy,in,use]

Title Suppressed Due to Excessive Length 31

[it,is,not,easy,to,obtain,warrant]
[justified,under,automobile,exception]
[reduced,expectation,of,privacy]
[warantless,search,did,not,violate,the,fourth,amendment]
found for the plaintiff

Another earlier case, US. v Chadwick10, provides further details for the automobile
exception in terms of the part of the vehicle that could be searched. Chadwick was found for
the defendant so that the exception did not apply. Here, the agents searched a double-locked
footlocker placed in the car trunk of a parked automobile without obtaining a warrant. The
decision states that even if there was an urgent situation since the vehicle could drive away,
the probable cause arises only from the footlocker which should have been seized (before
being placed in the vehicle, which was perfectly possible) but not searched until a warrant
had been obtained. The case output indicates that the warrantless search here violates the
Fourth Amendment rule.

case(usvc,[bf011,bf014 ,bf043,bf051,bf053,bf211,bf221,
bf232,bf233,bf312]).

| go(usvc).
[it,is,mobile]
[there,was,exigency,when,approached]
[there,was,an,authorized,origin,of,probable,cause]
[the,main,reason,to,search,was,urgent]
[the,search,scope,is,illegal]
[there,is,a,probable,cause,to,search,vehicle,

but,the,search,scope,was,illegal]
[subject,to,regular,inspection]
[accepted,that,it,is,not,visible,to,public]
[accepted,that,contents,are,not,considered,private]
[accepted,that,it,is,not,connected,to,

one,or,more,main,living,services]
[accepted,that,the,place,is,not,used,for,accommodation]
[accepted,that,low,expectation,of,privacy,in,use]
[it,is,not,easy,to,obtain,warrant]
[reduced,expectation,of,exigency]
[intrusion, on,privacy,is,not,justified,

under,automobile,exception]
[warantless,search,violates,the,fourth,amendment]
found for the defendant

4.3.2 Results and Refinements

The program output shows that 9 of the 10 cases in this domain are decided correctly by
our program. Only the most recent case in the set (California v Acevedo11) was decided
wrongly. The Justices saw Acevedo as clarifying some doubtful findings in earlier decisions

10 United States v Chadwick, 433 U. S. 1 (1977)
11 California v. Acevedo, 500 U.S. 565 (1991)

32 Suppressed for Blind Review

(in particular Chadwick and Sanders). In Acevedo, searching the vehicle at the police sta-
tion, when the probable cause arose only from a container in the trunk, without obtaining a
warrant was held to be legal under the automobile exception to the Fourth Amendment rule.
This is despite the apparent precedents of Chadwick and Sanders.

Separate doctrines have permitted the warrantless search of an automobile to include
a search of closed containers found inside the car when there is probable cause to
search the vehicle, United States v. Ross,456 U. S. 798, but prohibited the warrant-
less search of a closed container located in a moving vehicle when there is probable
cause to search only the container, Arkansas v. Sanders,442 U. S. 753. Pp. 500 U. S.
569-572.

This illustrates an example where citing over-ruled case decisions produces a wrong result
(the domain has entered the third stage of Levi’s life cycle). The previously accepted rule is
explicitly rejected by the court in the Acevedo decision:

The Chadwick-Sanders rule also is the antithesis of a clear and unequivocal guide-
line and, thus, has confused courts and police officers and impeded effective law
enforcement

The program cannot, of course, detect that an existing understanding of the precedents is
about to be changed, and so the output of Acevedo follows the Chadwick decision and indi-
cates, wrongly, that the search is not justified under the automobile exception.

case(cva,[bf011,bf015,bf032,bf043,bf051,bf054,bf211,
bf221,bf232,bf233]).

?- go(cva).
[it,is,mobile]
[there,was,exigency,when,approached]
[there,was,an,authorized,origin,of,probable,cause]
[the,main,reason,to,search,was,urgent]
[the,search,scope,is,illegal]
[there,is,a,probable,cause,to,search,vehicle,but,the,search,

scope,was,illegal]
[subject,to,regular,inspection,but,the,search,was,directed,

at,restricted,area]
[accepted,that,it,is,not,visible,to,public]
[accepted,that,contents,are,not,considered,private]
[accepted,that,it,is,not,connected,to,

one,or,more,main,living,services]
[accepted,that,the,place,is,not,used,for,accommodation]
[accepted,that,low,expectation,of,privacy,in,use]
[it,is,not,easy,to,obtain,warrant]
[reduced,expectation,of,exigency]
[intrusion, on,privacy,is,not,justified,

under,automobile,exception]
[warantless,search,violates,the,fourth,amendment]
found for the plaintiff

The program here produces a wrong decision giving the priority to the Chadwick-Sanders
rule, whereas the actual decision is that the case should fall under the automobile exception

Title Suppressed Due to Excessive Length 33

rule if there is a probable cause to search a container inside a vehicle and the circumstances
mean that no warrant is required.

Police, in a search extending only to a container within an automobile, may search
the container without a warrant where they have probable cause to believe that it
holds contraband or evidence. Carroll v. United States.

A number of possible refinements could be applied to resolve such a problem. The program
can be adjusted in terms of adding new facts to represent the degree of acceptance of the
base-level factor, or by using a portion of precedent cases as discussed in the next section.
Essentially this decision is intended to initiate a new period of settled laws, in which Chad-
wick and Sanders do not have force, whereas the program represents the pre-Avecedo situa-
tion. Of course a factor based program such as ours cannot get both Chadwick and Avecedo
correct, since they follow different understandings of the law. To decide both cases correctly
would require the inclusion of a temporal context. This has been quite widely discussed with
respect to statutes, e.g. [57], but there is very little discussion with respect to cases, although
the issue was raised in [24] and the effect of cases appearing in different sequences explored
in [46]. In consequence we do not feel that the temporal context is sufficiently well under-
stood to form part of a methodology, and so we leave temporal considerations to one side
for the present.

5 Discussion

This section evaluates the approach of using ADFs to design and implement a program to
decide legal cases based on knowledge derived from a number of precedents in a particular
case law domain. As shown by the examples in the previous section, we start by analysing
a number of decided cases. After that, we construct the ADF from the factors and issues,
showing the support and attack relations between parents and their children and having the
base-level factors as the leaves of the ADF. We define the acceptance conditions for each
node, translate them to Prolog procedures, run the program against a set of test cases and
compare the decisions from the program output to the actual outcomes. From the results
obtained above, we can state a number of findings, as given below:

5.1 Comparative Evaluation

– Applying the approach on three domains shows the effectiveness of the method for en-
capsulating the theory developed in the analysis.

– The previous section shows that by using the ADF we can readily explain the points at
which the acceptability conditions do not concur with the decisions taken in the actual
cases when using a set of factors identified for the case. We can then return to the original
decisions and use them to determine possible refinements to the representation of the
case, or the domain knowledge. In some cases, such as those we encountered in the
US Trade Secrets domain, the problem seems to lie with the attribution of the factors.
Should Goldberg really have F27? Should Mineral Deposits have F14? Should Space
Aero include F14 or F21 and exclude F19? Such matters were contested in the actual
case, and ascribing the presence or absence of particular factors requires interpretation
of the case by the analyst.

34 Suppressed for Blind Review

– As well as disputed factors, a decision like Goldberg suggests that we may wish to
modify the description of factors intended to guide the analyst. In that decision it was
suggested that to count for the defendant, the information not only had to be publicly
available but that the public source needed to be known and used by the defendant, which
would narrow the applicability of F27 as described in [5].

– Adding or removing a factor to or from a particular case provides a local solution which
will often solve a problem with a particular case. Our results, however, indicated a gen-
eral problem which was applicable to several cases: In the Trade Secrets domain F16,
reverse engineerable, had a dominant effect, which led to an incorrect decision in several
cases. It seemed clear to us that the presence of F16 should not by itself be sufficient
for a finding for the defendant. Again, the decisions themselves suggested several pos-
sible ways of arguing against F16: in particular the use of restricted materials and the
uniqueness of the product. Either or both of these exceptions could be incorporated into
the ADF without adversely affecting the other cases.

– Finally it should be conceded that the decisions themselves may be erroneous. Assuming
that there are least some poor decisions which we would not wish to serve as precedents,
we should be willing to tolerate a certain number of divergences from our results. More-
over, a landmark case like Avecedo may significantly change the interpretation of some
previous decisions, revising our understanding of the applicable case law and necessi-
tating revision of the program.

To summarise:

– Analysing a legal domain by simply translating the analysis of [5] into an ADF and
executing the resulting program gave results almost identical to those found for CATO
in the IBP experiments reported in [34]. Note that this is achieved without need for
balancing of pro and con factors central to existing case based reasoning systems.

– The reasons for the “incorrect” decisions can be readily identified from the output and
the ADF, as we saw from the discussion of the wrongly decided cases in US Trade
Secrets and Automobile Exception domains.

– Examination of the texts of the decisions readily explained why the results diverged,
and suggested ways in which the analysis could be improved, either at the case level by
changing the factors attributed, or at the domain level by including additional supporting
or attacking links.

From this we conclude that use of ADFs provides good performance, and has a number
of positive features from a software engineering (and domain analysis) standpoint, which
enable the ADF to be refined where needed and performance improved. For a practical
system there are often several ways to fix a problem, and we would need to have a reasonably
large set of test cases in order to choose between the different solutions and to guard against
over-fitting.

5.2 Values and Teleological Aspects

Note that the ADF structure, like CATO and IBP, does not include any reference to values.
Since [23] it has become usual to resolve conflicts not definitively decided in the precedent
base by appealing to the purposes of the law, commonly represented as values12, as in [15]

12 In the sense of [17].

Title Suppressed Due to Excessive Length 35

and other related work. The relation between ADFs and values was discussed in [2], but
merits discussion here also.

In [15] values appear at the top of the hierarchy, occupying the place taken up by issues
in the representation described above. The idea is that factors are associated with values, and
that the precedents, by showing preferences between sets of factors, will reveal preferences
over values. Since there are more factors than values, and several factors relate to the same
value, these value preferences can be used to determine preferences between sets of factors
which do not themselves appear in the precedents, allowing the system to draw conclusions
that go beyond a fortiori reasoning. The use of values has been criticised and does not appear
in any of HYPO, CATO or IBP. In AGATHA [37], which was intended as an empirical
evaluation of the approach of [15], the issues of IBP were used in the role of values. Our view
here is that values should not form part of the structure: their role is to justify components
of the structure and choices made. They thus should form part of the documentation of the
design rather than part of the design itself. Value might therefore, for example, appear as
comments on the acceptance conditions explaining why the tests are ordered as they are. As
observed in [70] values do not play a single role: they can, for example, justify either the
inclusion of a rule, or of an antecedent in the rule. In ADF terms, this means that they can
justify the inclusion of a test within an acceptance condition, or a node representing a factor
to be used in such tests. Moreover, playing the role assigned to them in [23] and [15] they
can explain why the various tests in acceptance conditions are ordered in a particular way.
Thus the knowledge engineer will need to identify a set of applicable values, and an ordering
on them, to guide the design choices, but they will not form an explicit part of the ADF, just
as their appearance in actual decision texts is very limited. Note too that since the value
preferences are now effectively local to particular nodes, it is possible to express different
preferences in different contexts, which may add a desirable flexibility. If it is considered
undesirable, the knowledge engineer must ensure, as part of the verification activity, that the
preferences are, in fact consistent.

A means of extracting values from an ADF, from associations between values and fac-
tors, was given in [2]. In our current methodology, however, values inform the design but do
not form part of it. As will be mentioned in our concluding section, it might in future prove
useful to provide links to values to improve explanations, but this will affect only presenta-
tion, not the decision making, since the effect of values and preferences to them is already
cashed out in the representation, in the form of the components included, the tests in the
acceptance conditions and the order of these tests.

5.3 Quality of Explanations

As the Prolog program proceeds it reports on the acceptability or otherwise of the various
abstract factors and the resolution of issues. As shown above, this provides an excellent
diagnostic for divergent decisions, but how does it measure up to the actual decisions found
in cases? Of course, without facts, we will not be able to follow the decision very closely.
But, consider a re-ordering of the elements of our decision for, say Boeing. We also omit
some elements, and add a little linking text. Recall too that we wrote the program used thus
far to “decide” the cases: in a version to supply explanations we would want to customise the
text reports to indicate the particular clause being used for a node by giving the base level
factors used. Below is what a decision might look like: we show the current program output
in boldface, possible clause-specific customisations in italics and linking text in ordinary
font.

36 Suppressed for Blind Review

We find for plaintiff. The information was a trade secret: efforts were taken to
maintain secrecy, since disclosures to outsiders were restricted and the defendant
entered into a non-disclosure agreement and other security measures were applied.
The information was unique. It is accepted that the information was valuable
and it is accepted that the information was neither known nor available. A trade
secret was misappropriated: there was a confidential relationship since the de-
fendant entered into a non-disclosure agreement and it is accepted that the infor-
mation was used. Moreover improper means were used since the defendant used
restricted materials.

This seems to have the makings of a reasonable summary of the decision. There are
two problems: it does not indicate what the defendant contended, since the clauses of the
program which were not reached do not feature in the report, and, of course, the facts on
which the finding are based are not present. None the less, we find the output a distinct
improvement on previous work such as [36]. We believe that the output from the current
program could be readily used to drive a program of the sort envisaged by Branting [28], and
that this will become even more so if a fact layer to allow the explanation of the attribution
of factors is added. Integration with facts is considered in section 5.3. What is also missing,
however, is the citation of precedents which are such an important feature of real decisions:
we will consider this aspect in section 5.4.

5.4 Facts Layer

We believe that we do need to include a fact layer to increase transparency in the ascription of
base factors to cases. The interpretation of the cases cannot be disputed without descending
to the level of facts as advocated by [11] and [1]. Each legal case should be represented
as a set of facts that determine the base factors applicable to the case and thus allow the
explanation of the attribution of factors, which in turn provides the basis for deciding the
case using a set of abstract factors to resolve the conflict in the issues.

For example, let us again consider here Carney, from the domain of Automobile Excep-
tion. We will redefine Carney using the facts mentioned in the decision of the case rather
than the base-level factors and extend the program to provide acceptance conditions for the
base factors using a number of possible facts. These facts are determined from the main
automobile exception rule, such as the type of vehicle (e.g. car, ship, wagon), personal ef-
fects (e.g. paper bag, suitcase), private place (e.g. store, dwelling-home). Additional facts
are added to provide similarity and/or differences from precedent cases, or to show the ef-
fect of inserting new facts, such as mobile home in Carney, on the decision of the case. The
output below reports the decision for Carney after incorporating the case facts:

case(cvc,[ft011mh,ft015pb,ft022nc,ft031mh,ft032ps,
ft051p,ft052dr,ft053pl,ft054d,ft211pi,
ft212po,ft221is,ft231all,ft233ps,ft233al,
ft311is,ft312c,ft331c,ft331as,ft332bd,ft332k]).

1 ?- go(cvc).
[it,is,a,mobileHome,vehicle]
[accepted,that,no,largeContainers]
[paper,bag,is,a,movableContainer]
[it,is,mobile]

Title Suppressed Due to Excessive Length 37

[there,was,no,urgent,status,automobile,was,parked]
[accepted,that,the,vehicle,is,capable,to,move]
[the,vehicle,was,in,public,location]
[the,vehicle,was,parked,in,public,parking]
[accepted, that,the,vehicle,was,parked,for,unknown,period]
[there,was,exigency,when,approached]
[received,information,from,public,informant]
[there,was,an,authorized,origin,of,probable,cause]
[main,reason,to,search,was,to,protect,the,public]
[the,main,reason,to,search,was,urgent]
[all,vehicle,parts,have,been,searched]
[the,vehicle,was,searched,twice,at,the,original,

automobile,location,
and,at,police,station]

[the,search,scope,is,legal]
[there,is,a,probable,cause,to,search,vehicle]
[has,a,special,motorhome,licence]
[police,station,is,a,restricted,area]
[subject,to,regular,inspection,but,the,search,was,directed,at,

restricted,area]
[accepted,that,item,is,not,on,public,view,or,details,are,not,provided]
[accepted,that,item,can,not,be,seen,by,public,

or,details,are,not,provided]
[accepted,that,it,is,not,clear,that,items,can,not,be,seen]
[accepted,that,it,is,not,visible,to,public]
[illegal,goods]
[just,closed,but,not,protected]
[accepted,that,contents,are,not,considered,private]
[accepted,that,none,of,living,main,services,are,

specified,or,connected]
[accepted,that,not,connected,to,

one,or,more,main,living,services]
[consists,of,a,cab,and,suitable,accommodation,space]
[the,place,could,be,used,for,accommodation]
[accepted,that,low,expectation,of,privacy,in,use]
[accepted,that,there,is,risk,to,lose,evidence]
[accepted,that,magistrate,is,not,available]
[accepted,that,authorized,magistrate,is,not,available]
[it,is,not,easy,to,obtain,warrant]
[justified,under,automobile,exception]
[reduced,expectation,of,privacy]
[warantless,search,did,not,violate,the,fourth,amendment]
found for the plaintiff

In comparison to the output of the same case presented in section 4.4.1, we can clearly
observe the improvement in the quality of the explanation that provides the justification
for the acceptance of the base-level factors. The order of the output states the status of the
base-level factors first (children) and then indicates whether the abstract factor (Parent of

38 Suppressed for Blind Review

base-level factors) is satisfied or not. Now following the approach discussed in the previous
section, we can produce Carney′s decision from the program report:

The warantless search did not violate the Fourth Amendment rule. The respon-
dent’s mobile home was capable to move but found parked in a public loca-
tion.The two justifications for the vehicle exception come into play. First, the ve-
hicle is readily mobile and there is a reduced expectation of privacy.
While the mobile home here consists of cab and accommodation space, it is sub-
ject to inspection under vehicle regulation. Also, there was a probable cause to
search the vehicle based on the fact that the respondent was using the mobile home
to sell illegal contraband

This decision now is very close to the actual decision. It clearly justifies what base-level
factors have been accepted (or rejected). Moreover, considering the case facts can provide
further advantage in specifying a degree to what level the base factor is satisfied.

Further discussion of the inclusion of a facts layer can be found in [4]. There the or-
ganisation of facts using HYPO-like dimensions is advocated. Dimensions are also used as
a way of moving from facts and factors in [11], [7] and [8]. The use of dimensions does
indeed seems a promising way forward, but we feel that the use of dimensions is not yet
as well understood as the use of factors, and so more investigation will be needed before
it can form part of a generally applicable methodology for the design and development of
substantial systems. For this reason we have represented cases as bundles of factors in the
manner of [5], [60], [15] and [47], leaving the extension to facts, perhaps using dimensions,
for future work.

5.5 Portions of Precedents

Using the ADF approach, we do not see confrontations between large sets of pro and con
factors covering the whole case. Instead factors are opposed to one another in the context of
accepting or rejecting particular nodes, and so will represent a specific point in the argument.
Thus two cases may be identical with respect to a subset of factors, which may be used to
establish a particular abstract factor, even though the eventual outcome may differ.

Two points are significant here: first that some apparent distinctions are not significant,
since they relate to different issues; this was partly what the factor hierarchy was introduced
in CATO to address. Here the requirement for significance is even more fine grained, being
applicable at the abstract factor level. More importantly, however, a precedent might be
citable to establish the existence of a certain plaintiff factor, even though the case as a whole
was found for the defendant, because of some other issue. For this reason it is sometimes
desirable to be able to reason with portions of precedent, as urged by Branting in [27]:

This paper argues that the task of matching in case-based reasoning can often be im-
proved by comparing new cases to portions of precedents. An example is presented
that illustrates how combining portions of multiple precedents can permit new cases
to be resolved that would be indeterminate if new cases could only be compared to
entire precedents.

This is borne out by a reading of the decisions in the various cases: rarely do they begin
with a precedent and then discuss similarities and differences, but rather they use precedents
at particular points of the decisions to identify questions and issues to be addressed, and to
justify answers and consequences. This is effectively what is done in the ADF approach:

Title Suppressed Due to Excessive Length 39

competing factors are considered in the context of accepting or rejecting a particular node.
Part of the output of the program is, for each case, the set of nodes satisfied. This information
could be used to find the precedents needed to make particular points.

For example, in US Trade Secrets, we could retrieve all cases where the defendant had
agreed not to disclose (F4) and yet efforts to maintain secrecy (F102) were not established.
This query would return CMI where the information was known to competitor (F20), and
so we can cite CMI as a precedent when arguing (in the context of a case containing F4 and
F20) that the efforts taken to maintain secrecy were insufficient to establish the information
as a trade secret. In addition, the decision in California v. Acevedo, from the Automobile
Exception domain, cites some precedents that support the defendant, but, does not follow
these citations due to the perceived lack of clarity of the decision in the precedents. Thus, it
is important to clarify these citations in the output of the program in order to provide more
transparency and closeness to the actual decision.

Matching at this level of granularity will direct us to the precedents most relevant to
the specific point we need to argue. Moreover, such precedents can then be incorporated in
our explanations to justify the acceptance or rejection of particular nodes, which is close to
the way they are used in practice, and which moreover corresponds to the downplaying and
emphasis of distinctions which are such an important feature of CATO. To do this it would
be helpful to be able to argue about preferences (perhaps using some form of meta-level
argumentation as in [20]).

Another reason to consider portions of precedents is provided by [47]. In that paper a
fortiori reasoning was explained in terms of identifying a rule using only a subset of factors
available for the winning side preferable to the rule using all the factors available to the
losing side. That paper gave, however, no indication of how this subset should be chosen.
The output from the ADF in contrast, does show which factors were instrumental and active
in winning the case.

6 Conclusion and Future Work

In this paper we have described a new and promising approach to the design and imple-
mentation of systems to suggest precedent based decisions to legal cases using Abstract
Dialectical Frameworks, a recent development in computational argumentation. We have
shown for several legal domains how ADFs can be used to encapsulate a theory of knowl-
edge of their case law, in order to form the basis of a design of a program to decide cases
in those domains. The theories are constructed by the domain analyst through expressing
the cases in terms of factors and implemented taking advantage of the closeness of the rep-
resentation to an executable form by translating the acceptance conditions of the ADF into
Prolog procedures. By evaluating the approach on these three domains, we conclude that:

– The success of the approach depends to a large extent on the quality of the analysis. It is
important that the domain modelled be in a stable state (the second stage of Levi’s life
cycle explained in [53]). However, the ADF design facilitates refinement of the program
in the light of its performance on test cases, to remedy defects in the initial analysis.

– The method can be applied to different domains where factor based representation is
considered an appropriate approach to capture the knowledge of the domain. Normally,
the results are affected by the purpose of the analysis and the size of the knowledge. US
Trade Secrets required more refinements as that has been translated from the analysis
of CATO which was designed to perform a different task, namely to identify arguments
rather than to predict outcomes.

40 Suppressed for Blind Review

– The modularisation achieved by using the ADF approach for design can not only help
drive the analysis, but also provides a number of software engineering benefits, such
as ease of following the flow of control through the knowledge bases, limitation of the
effects of modifications, and assisting the quality assurance, verification and validation
of the program built upon the design.

– The ADF provides a way of mediating between frame and rule based representations of
the domain knowledge.

– Programs based on the ADF design provide very transparent output that identifies pre-
cisely where the outcomes suggested by the implementation diverge from the actual
outcomes. After running the program, and noting any divergences from the actual out-
comes, reading the original decision texts can suggest one of four solutions to refine the
behaviour of the program. These are, in ascending order of divergence from the original
analysis:

– Removing a factor wrongly attributed to the case
– Adding a factor wrongly omitted from the case
– Modifying an acceptance condition: e.g. changing the priorities
– Modifying the ADF: e.g. adding a supporting or attacking node for the problem

node.
Often several of these modifications can potentially solve the problem, and the choice
is made according to the context provided by the other divergent cases we are trying to
accommodate.

We find all of this encouraging and offering further pointers as to how to address impor-
tant issues in future work. Thus, the next technical step will be to supply the fact layer in a
more complete way than was sketched in section 5.3. This will require further analysis of
the original decisions and oral transcripts to extract facts, so as to permit argument about the
ascription of factors, and to enable grounding of our explanations in the particular facts of a
case. Our current thinking, expressed in [4], is that reviving the idea of dimensions will pro-
vide a good way of tackling this issue, as indicated by [11] and [8]. Descent to the fact layer
will result in a considerable improvement in the transparency of the output by enabling con-
sideration of important features from the actual case decisions. Once the method has been
extended to include the facts of particular cases at the lowest level of the ADF, a program to
present the output in a form resembling the texts of actual decisions can be considered. This
will need some post-processing such as that found in [28].

Much of the existing work depends critically on the ascription of factors to cases in a
Boolean manner, while in practice there are compelling reasons to see the presence of factors
as a matter of degree. On the basis of our observations we believe that considering the fact
layer in the ADF will help in providing answers to determine the values of these degrees
taking advantage of the weighted links supported by ADFs [33]. We will start from the
approach suggested in [2]. Assigning degrees to justify the presence of the base factors will
affect all the parents in the ADF and thus provide more flexible justification of the resolution
of the conflicting issues. Preliminary efforts in this direction, exploiting dimensions, are
reported in [4].

In addition to the facts determining degrees of presence for factors, we also need to
improve the transparency of the reasoning by justifying the preferences between portions of
precedents, which better corresponds to legal practice as manifest in real decisions and may
express social values and judicial preferences. Ideally each test in the acceptance condition
should be related to a precedent case; this will require annotating the acceptance conditions
with citations to precedent cases, which will in turn improve the program output. This could

Title Suppressed Due to Excessive Length 41

also provide a potential database to support conceptual retrieval of cases, which has been an
important issue in AI and Law since its very beginnings (see, e.g. [45]).

Also worthy of exploration is producing a variant program to generate all the possible
arguments for the majority, minority or concurring arguments required to resolve conflicts
explicitly, so as to facilitate comparison with ASPIC+. Our Prolog program directly imple-
ments the acceptance conditions for each node in the ADF, and, for a given set of facts, the
program always produces a single outcome. This is to be expected given the absence of cy-
cles in our ADF, which capture the tree-based structure of CATO’s factor hierarchy. In future
work, we intend to take advantage of the Diamond system [41] which directly implements
ADFs and can produce extensions corresponding to a variety of semantics. For example,
preferred semantics may be helpful for capturing variant opinions in a case.

Aside from these technical aspects, we recognise that our examples have all been taken
from the AI and Law literature, and even though we have included what is probably the most
substantial analysis to date (CATO/IBP), the examples are still relatively small. The true test
of a methodology and its supporting tools comes from its use in practice, and so we would
hope that our proposal would be adopted by people wishing to build a substantial system
to perform factor based reasoning in a legal domain. Such a tool cannot be the subject of a
research project carried out by academic computer scientists: it requires the motivation and
personnel that only a practical project can provide. As practical applications appear to be
moving closer13, we hope and expect the methodology will be used and proven in practice.

Acknowledgements

Would like to thank the anonymous reviewers of the first version of this paper, whose com-
ments have helped us to clarify our ideas and significantly improve the paper.

References

1. L. Al-Abdulkarim, K. Atkinson, and T. Bench-Capon. Abstract dialectical frameworks
for legal reasoning. In Proceedings of Jurix 2014, pages 61–70, 2014.

2. L. Al-Abdulkarim, K. Atkinson, and T. Bench-Capon. Factors, issues and values: Re-
visiting reasoning with cases. In Proceedings of the 15th ICAIL. ACM, 2015.

3. L. Al-Abdulkarim, K. Atkinson, and T. J. M. Bench-Capon. From oral hearing to opin-
ion in the us supreme court. In Proceedings of JURIX 2013, pages 1–10, 2013.

4. L. Al-Abdulkarim, K. Atkinson, and T. J. M. Bench-Capon. Adding Dimensions and
Facts to ADF Representation of Legal Cases. University of Liverpool Department of
Computer Science Technical Report ULCS-15-004, 2015.

5. V. Aleven. Teaching case-based argumentation through a model and examples. PhD
thesis, University of Pittsburgh, 1997.

6. L. Amgoud and C. Cayrol. On the acceptability of arguments in preference-based ar-
gumentation. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence, pages 1–7, 1998.

13 As evidenced by a spate of articles such as the Role of AI in Law, published in The Times newspaper and
available at http://raconteur.net/business/time-for-technology-to-take-over, and the many discussion threads
on LinkedIn group for the International Association for AI and Law.

42 Suppressed for Blind Review

7. M. Araszkiewicz, A. Łopatkiewicz, and A. Zienkiewicz. Parent plan support system–
context, functions and knowledge base. In Business Information Systems Workshops,
pages 160–171. Springer, 2013.

8. M. Araszkiewicz, A. Lopatkiewicz, A. Zienkiewicz, and T. Zurek. Representation of an
actual divorce dispute in the parenting plan support system. In Proceedings of the 15th
International Conference on Artificial Intelligence and Law, ICAIL 2015, San Diego,
CA, USA, June 8-12, 2015, pages 166–170.

9. K. Ashley. Modelling Legal Argument: Reasoning with Cases and Hypotheticals. Brad-
ford Books/MIT Press, Cambridge, MA, 1990.

10. K. Ashley and S. Brüninghaus. A predictive role for intermediate legal concepts. In
Proceedings of JURIX 2003, pages 1–10, 2003.

11. K. Atkinson, T. Bench-Capon, H. Prakken, and A. Wyner. Argumentation schemes for
reasoning about factors with dimensions. In Proceedings of JURIX 2013, pages 39–48,
2013.

12. T. Bench-Capon. Persuasion in practical argument using value-based argumentation
frameworks. Journal of Logic and Computation, 13(3):429–448, 2003.

13. T. Bench-Capon. Relating values in a series of supreme court decisions. In Proceedings
of JURIX 2011, pages 13–22. IOS Press, 2011.

14. T. Bench-Capon and E. Rissland. Back to the future: dimensions revisited. In Proceed-
ings of JURIX 2001, pages 41–52. IOS Press, 2001.

15. T. Bench-Capon and G. Sartor. A model of legal reasoning with cases incorporating
theories and values. Artificial Intelligence, 150(1-2):97–143, 2003.

16. T. J. M. Bench-Capon. Representation of case law as an argumentation framework.
Legal Knowledge and Information Systems, Proceedings of Jurix 2002, pages 103–112,
2002.

17. T. J. M. Bench-Capon. Try to see it my way: Modelling persuasion in legal discourse.
Artif. Intell. Law, 11(4):271–287, 2003.

18. T. J. M. Bench-Capon. Representing popov v hayashi with dimensions and factors.
Artif. Intell. Law, 20(1):15–35, 2012.

19. T. J. M. Bench-Capon and F. Coenen. Isomorphism and legal knowledge based systems.
Artif. Intell. Law, 1(1):65–86.

20. T. J. M. Bench-Capon and S. Modgil. Case law in extended argumentation frameworks.
In The 12th International Conference on Artificial Intelligence and Law, Proceedings of
the Conference, June 8-12, 2009, Barcelona, Spain, pages 118–127. ACM Press, 2009.

21. T. J. M. Bench-Capon and H. Prakken. Using argument schemes for hypothetical rea-
soning in law. Artif. Intell. Law, 18(2):153–174, 2010.

22. T. J. M. Bench-Capon, G. O. Robinson, T. Routen, and M. J. Sergot. Logic program-
ming for large scale applications in law: A formalisation of supplementary benefit leg-
islation. In Proceedings of the First International Conference on Artificial Intelligence
and Law, pages 190–198, 1987.

23. D. Berman and C. Hafner. Representing teleological structure in case-based legal rea-
soning: The missing link. In Proceedings of the Fourth International Conference on
Artificial intelligence and Law, pages 50–59, 1993.

24. D. H. Berman and C. D. Hafner. Understanding precedents in a temporal context of
evolving legal doctrine. In Proceedings of the Fifth International Conference on Artifi-
cial Intelligence and Law, pages 42–51, 1995.

25. F. J. Bex. Arguments, stories and criminal evidence: A formal hybrid theory, volume 92.
Springer, 2011.

Title Suppressed Due to Excessive Length 43

26. K. Branting. Building explanations from rules and structured cases. International Jour-
nal of Man-Machine Studies, 34(6):797–837, 1991.

27. L. K. Branting. Reasoning with portions of precedents. In Proceedings of the 3rd
international conference on Artificial intelligence and law, pages 145–154. ACM, 1991.

28. L. K. Branting. An issue-oriented approach to judicial document assembly. In Pro-
ceedings of the 4th international conference on Artificial intelligence and law, pages
228–235. ACM, 1993.

29. P. Bratley, J. Frémont, E. Mackaay, and D. Poulin. Coping with change. In Proceedings
of the Third International Conference on Artificial Intelligence and Law, pages 69–76,
1991.

30. J. Breuker and N. den Haan. Separating world and regulation knowledge: Where is the
logic. In Proceedings of the Third International Conference on Artificial Intelligence
and Law, pages 92–97. ACM Press, 1991.

31. G. Brewka, P. Dunne, and S. Woltran. Relating the semantics of abstract dialectical
frameworks and standard afs. In Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, pages 780–785, 2011.

32. G. Brewka, H. Strass, S. Ellmauthaler, J. Wallner, and S. Woltran. Abstract dialectical
frameworks revisited. In 23rd International Joint Conference on Artificial Intelligence,
2013.

33. G. Brewka and S. Woltran. Abstract dialectical frameworks. In Principles of Knowledge
Representation and Reasoning: Proceedings of the Twelfth International Conference,
2010.

34. S. Brüninghaus and K. Ashley. Predicting outcomes of case-based legal arguments. In
9th International Conference on Artificial Intelligence and Law, pages 233–242, 2003.

35. C. Cayrol and M.-C. Lagasquie-Schiex. Bipolar abstract argumentation systems. In
Argumentation in Artificial Intelligence, pages pp 65–84. Springer US, 2009.

36. A. Chorley and T. Bench-Capon. Agatha: Using heuristic search to automate the con-
struction of case law theories. Artificial Intelligence and Law, 13(1):9–51, 2005.

37. A. Chorley and T. Bench-Capon. An empirical investigation of reasoning with legal
cases through theory construction and application. Artif. Intell. Law, 13(3-4):323–371,
2005.

38. K. L. Clark. Negation as failure. In Logic and data bases, pages 293–322. Springer,
1978.

39. T. M. Connolly and C. E. Begg. Database systems: a practical approach to design,
implementation, and management. Pearson Education, 2005.

40. P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming, and n-person games. Artificial Intelligence,
77:321–357, 1995.

41. S. Ellmauthaler and H. Strass. The DIAMOND system for computing with abstract di-
alectical frameworks. In Computational Models of Argument - Proceedings of COMMA
2014, Atholl Palace Hotel, Scottish Highlands, UK, September 9-12, 2014, pages 233–
240, 2014.

42. A. v. d. L. Gardner. Artificial intelligence approach to legal reasoning. MIT Press,
Cambridge, MA, 1984.

43. M. Grabmair and K. D. Ashley. Argumentation with value judgments - an example of
hypothetical reasoning. In Legal Knowledge and Information Systems - JURIX 2010:
The Twenty-Third Annual Conference on Legal Knowledge and Information Systems,
Liverpool, UK, 16-17 December 2010, pages 67–76, 2010.

44 Suppressed for Blind Review

44. T. R. Gruber. The role of common ontology in achieving sharable, reusable knowledge
bases. In Proceedings of the 2nd International Conference on Principles of Knowledge
Representation and Reasoning, pages 601–602, 1991.

45. C. D. Hafner. Conceptual organization of case law knowledge bases. In Proceedings of
the First International Conference on AI and Law, pages 35–42, 1987.

46. J. Henderson and T. J. M. Bench-Capon. Dynamic arguments in a case law domain. In
Proceedings of the Eigths International Conference on Artificial Intelligence and Law,
pages 60–69, 2001.

47. J. Horty and T. Bench-Capon. A factor-based definition of precedential constraint. Artif.
Intell. Law, 20(2):181–214, 2012.

48. J. F. Horty. Reasons and precedent. In The 13th International Conference on Artificial
Intelligence and Law, pages 41–50, 2011.

49. P. Johnson and D. Mead. Legislative knowledge base systems for public administra-
tion: Some practical issues. In Proceedings of the Third International Conference on
Artificial Intelligence and Law, pages 108–117, 1991.

50. P. Johnson and D. Mead. Rule based system and method for writing, developing, im-
plementing and administering legislation, Oct. 23 2007. US Patent 7,287,016.

51. P. R. Johnson, T. J. Reid, and A. Barry. Rule based system and method, Apr. 26 2011.
US Patent 7,933,854.

52. R. W. V. Kralingen. Frame-based conceptual models of statute law. Kluwer Law Intl,
1995.

53. E. H. Levi. An introduction to legal reasoning. University of Chicago Press, 1949.
54. L. Lindahl and J. Odelstad. Intermediaries and intervenients in normative systems. J.

Applied Logic, 6(2):229–250, 2008.
55. L. T. McCarty. Reflections on taxman: An experiment in artificial intelligence and legal

reasoning. Harvard Law Review, pages 837–893, 1977.
56. S. Modgil and T. J. M. Bench-Capon. Metalevel argumentation. J. Log. Comput.,

21(6):959–1003, 2011.
57. M. Palmirani, G. Governatori, and G. Contissa. Modelling temporal legal rules. In The

13th International Conference on Artificial Intelligence and Law, pages 131–135, 2011.
58. H. Prakken. From logic to dialectics in legal argument. In Proceedings of the 5th

International Conference on Artificial Intelligence and Law, pages 165–174, New York,
NY, USA, 1995. ACM.

59. H. Prakken. An abstract framework for argumentation with structured arguments. Ar-
gument & Computation, 1(2):93–124, 2010.

60. H. Prakken and G. Sartor. Modelling reasoning with precedents in a formal dialogue
game. Artif. Intell. Law, 6(2-4):231–287, 1998.

61. R. S. Pressman. Software engineering: a practitioner’s approach. Palgrave Macmillan,
2005.

62. E. L. Rissland. Dimension-based analysis of hypotheticals from supreme court oral
argument. In Second International Conference on Artificial Intelligence and Law, pages
111–120, 1989.

63. T. Routen and T. J. M. Bench-Capon. Hierarchical formalizations. International Journal
of Man-Machine Studies, 35(1):69–93, 1991.

64. M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond, and H. T. Cory. The
british nationality act as a logic program. Communications of the ACM, 29(5):370–386,
1986.

65. T. M. van Engers. Power: Using UML/OCL for modelling legislation - an application
report. In Proceedings of the Eighth International Conference on Artificial Intelligence

Title Suppressed Due to Excessive Length 45

and Law, pages 157–167, 2001.
66. R. W. Van Kralingen, P. R. Visser, T. J. Bench-Capon, and H. J. Van Den Herik. A

principled approach to developing legal knowledge systems. International Journal of
Human-Computer Studies, 51(6):1127–1154, 1999.

67. P. R. Visser. Knowledge specification for multiple legal tasks: A case study of the inter-
action problem in the legal domain, volume 17. Kluwer Law Intl, 1995.

68. A. Wyner and R. Hoekstra. A legal case OWL ontology with an instantiation of popov
v. hayashi. Artif. Intell. Law, 20(1):83–107, 2012.

69. A. Z. Wyner, T. J. M. Bench-Capon, and K. Atkinson. Arguments, values and baseballs:
Representation of popov v. hayashi. In Legal Knowledge and Information Systems -
JURIX 2007: The Twentieth Annual Conference on Legal Knowledge and Information
Systems, pages 151–160, 2007.

70. T. Zurek and M. Araszkiewicz. Modeling teleological interpretation. In Proceedings of
the 14th International Conference on Artificial Intelligence and Law, pages 160–168,
2013.

