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Abstract

We develop a dynamic panel threshold model of capital structure to test the
dynamic trade-off theory, allowing for asymmetries in firms’ adjustments toward
target leverage. Our novel estimation approach is able to consistently estimate
heterogeneous speeds of adjustment in different regimes as well as to properly test
for the threshold effect. We consider several proxies for adjustment costs that
affect the asymmetries in capital structure adjustments and find evidence that
firms with large financing imbalance (or a deficit), large investment or low earnings
volatility adjust faster than those with the opposite characteristics. Firms not only
adjust at different rates but also seem to adjust toward heterogeneous leverage
targets. Moreover, we document a consistent pattern that firms undertaking quick
adjustment are over-levered with a financing deficit and rely heavily on equity issues
to make such adjustment.
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1 Introduction

Since Modigliani and Miller’s (1958) irrelevance propositions, a number of theories have
been developed to show that corporate capital structure does matter in the presence
of capital market frictions and imperfections (e.g., corporate and personal taxes, costly
financial distress/bankruptcy, agency problems and information asymmetries). As one of
the most dominant views of capital structure, the trade-off theory focuses on two such
frictions, namely taxes and financial distress costs, and argues that firms have optimal
capital structure that balances the tax benefits of debt (i.e., debt interest tax shields)
against the costs of financial distress/bankruptcy.1 The empirical implication follows
that in a dynamic framework, corporate leverage should exhibit mean reversion as firms
seek to undertake adjustment toward their target leverage.2 Hence, a large number of
empirical studies have attempted to examine the validity of the trade-off theory by testing
whether and how fast firms move toward target leverage.

Recent empirical research generally documents evidence in favor of firms’ (mean-
reverting) adjustment toward target leverage, which is consistent with the trade-off the-
ory. Estimating a linear partial adjustment model of leverage, Ozkan (2001) and Flannery
and Rangan (2006) find that UK and US firms move toward their target leverage reason-
ably quickly; their adjustment speeds are estimated at above 50% and 30%, respectively.
Antoniou et al. (2008) estimate a similar dynamic model and provide cross-country evi-
dence of capital structure adjustment for both market-based economies (the UK and the
US) and bank-oriented economies (France, Germany and Japan).3 However, an important
limitation of these studies is that they (implicitly) assume symmetry in the mechanism of
adjustment such that firms adjust at the same rate toward homogeneous target leverage.
Consequently, they do not allow for a possibility that firms facing differential adjustment
costs may take different paths toward their optimal capital structures (e.g., Fischer et
al., 1989; Leland, 1994).

Our paper aims to fill this gap in the literature by developing a novel empirical
approach to testing the dynamic trade-off theory, allowing for asymmetric and costly
adjustment toward leverage targets. In particular, we propose a dynamic panel threshold
model of leverage, allowing for asymmetries in the mechanism of adjustment for firms in
different ‘refinancing regimes’ associated with differential adjustment costs. To illustrate

1See Kraus and Litzenberger (1973), Brennan and Schwartz (1978) and Bradley et al. (1984) for early
static trade-off models; Hennessy and Whited (2006), Strebulaev (2007) and Titman and Tsyplakov
(2007) for recent dynamic trade-off models.

2There are alternative views of capital structure, such as the pecking order theory (Myers and Majluf,
1984; Myers, 1984), the market timing hypothesis (Baker and Wurgler, 2002) and the inertia hypothesis
(Welch, 2004), which do not predict target leverage and adjustment toward such target. See Harris and
Raviv (1991) and Frank and Goyal (2007) for comprehensive reviews of the capital structure literature.

3Most recent research disagrees about the magnitude of the estimated speed of adjustment, which is
sensitive to the econometric procedures employed, especially in the presence of unobserved firm fixed-
effects in short dynamic panels (e.g., Huang and Ritter, 2009).
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the advantage of our approach, consider a dynamic setting in which a firm faces different
costs of leverage adjustment according to its characteristics and/or its position relative to
target leverage. Rather than having a unique leverage target, the firm may have a target
range within which it allows its leverage to vary. Capital structure adjustment is under-
taken only when the costs of such adjustment are outweighed by the benefits of being
close to target leverage (Fischer et al., 1989; Leary and Roberts, 2005). Importantly, the
size and speed of the adjustment are dependent on the deviation of the actual leverage
from the target (e.g., Byoun, 2008) and the costs of such adjustment, which in turn are
affected by the degree of financial constraints and flexibility facing the firm (e.g., Flan-
nery and Hankins, 2007; Faulkender et al., 2011). For example, firms with low earnings
volatility enjoy a lower cost of capital than those with high volatility, thus suggesting
they should undertake faster adjustment. In this dynamic framework, the conventional
linear partial adjustment model adopted in the literature becomes misspecified while our
proposed regime-switching dynamic panel model emerges as a more appropriate testing
approach.

Our paper makes two major contributions to the literature. First, the dynamic panel
threshold model of leverage developed in our paper is capable of directly testing the
validity of the dynamic trade-off theory. A few recent empirical studies have examined
the relations between the speed of capital structure adjustment and firm-specific and
macroeconomic variables (e.g., Drobetz and Wanzenried, 2006; Drobetz et al., 2006) and
the impact of financial constraints and/or financing gaps on the asymmetry in such
adjustment (e.g., Flannery and Hankins, 2007; Byoun, 2008; Faulkender et al., 2011).
This strand of research, however, does not focus on consistently estimating heterogeneous
speeds of adjustment for firms facing differential adjustment costs. Our approach can
consistently estimate heterogeneous adjustment speeds and provide important insights
into the characteristics of firms that follow asymmetric adjustment paths. In addition,
our model entertains a possibility that firms not only adjust at heterogeneous rates (i.e.,
short-run asymmetry) but also adjust toward heterogeneous leverage targets (i.e., long-
run asymmetries). This is an important innovation over recent research that allows for the
asymmetry in the adjustment speed but not in target leverage such that firms may only
undertake asymmetric adjustment toward homogeneous target leverage (Byoun, 2008;
Faulkender et al., 2011; Dang et al., 2011). Dynamic trade-off models generally imply
the existence of target leverage ranges (Fischer et al., 1989; Leary and Roberts, 2005)
so there is no clear justification as to why firms in different refinancing regimes should
consider a homogeneous target.

Second, we develop econometric techniques that provide both consistent and efficient
estimates of heterogeneous speeds of adjustment as well as a valid testing procedure for
threshold effects in short dynamic panels with unobserved individual firm fixed-effects.
Most recent studies adopt the sample-splitting or dummy variable approach to investigate
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the (asymmetric) dynamic trade-off behavior of firms with different characteristics (e.g.,
Flannery and Hankins, 2007; Byoun, 2008; Faulkender et al., 2011; Dang et al., 2011).
However, this methodology is, at most, arbitrary and is likely to suffer from a sample
selection bias problem (Hansen, 2000). Our proposed dynamic panel threshold model
overcomes this limitation because in our framework, the threshold parameter is consis-
tently estimated within the model rather than being imposed. Our estimation approach
extends static panel threshold modeling (Hansen, 1999) by combining the existing time-
series techniques on threshold models (Chan, 1993; Hansen, 2000) and advanced methods
for dynamic panels (Alvarez and Arellano, 2003). Specifically, it involves generalizing the
Anderson and Hsiao (1982) instrumental-variable estimator (hereafter AH-IV) and, most
importantly, the Arellano and Bond (1991) generalized methods of moments estimator
(hereafter GMM) to a new estimation approach applicable for dynamic panel threshold
models. To test for the threshold effect, we follow Andrews and Ploberger (1994) and
Hansen (1996, 1999, 2000) and develop a bootstrap-based testing procedure, the validity
of which is then supported by Monte Carlo simulation studies. Further, our approach,
based on one-stage estimation is free of generated regressors problems inherent in the
two-stage procedure in which target leverage is estimated in the first stage before the
speed of adjustment is estimated in the second, an approach commonly used in recent
studies (Byoun, 2008; Faulkender et al., 2011; Dang et al., 2011).

We consider several firm-specific variables that potentially affect the costs of capi-
tal structure adjustment, namely financing (cash flow) imbalance, growth opportunities,
investment (capital expenditures), profitability, firm size and earnings volatility. Using
an unbalanced panel of UK firms over the period 1996-2003, we first document that UK
firms adjust relatively fast toward target leverage. Importantly, we find some evidence of
short-run and long-run asymmetries in firms’ adjustment mechanisms. The speed of ad-
justment is statistically different conditional on financing imbalance, firm investment or
earnings volatility (i.e., short-run asymmetry) but not on the remaining regime-switching
variables such as profitability and firm size. Specifically, firms with large financing imbal-
ance (or a deficit), large investment or low earnings volatility have a significantly faster
adjustment speed than those with the opposite characteristics. Further, we provide new
evidence that not only do these firms adjust at different rates but they also seem to
adjust toward heterogeneous leverage targets (i.e., long-run asymmetries). We observe
several important characteristics of firms that have a faster speed of adjustment: they
are significantly over-levered with a considerably large deviation from target leverage,
toward which they revert mainly through equity issues, rather than debt retirements.
This finding suggests that firms tend to make quicker adjustment to avoid the potentially
large financial distress costs caused by having above-target leverage. Taken together, our
results are generally consistent with dynamic trade-off models of capital structure.

The remainder of the paper is organized as follows. Section 2 provides a review
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of the (linear) partial adjustment model of leverage widely used in the literature and
then develops a threshold (non-linear) partial adjustment model specification. Section
3 discusses the potential determinants of the speed of adjustment to be employed as
transition variables under the proposed regime-switching framework. Section 4 describes
the estimation and testing procedures. Section 5 summarizes the data and sample, and
discusses the empirical results. Section 6 concludes.

2 Dynamic Capital Structure Adjustment Models

The conventional econometric specification to model firms’ adjustment toward target
leverage takes the form of a partial adjustment process (e.g., Flannery and Rangan,
2006):

∆`it = δ (`∗it − `i,t−1) + vit, (1)

where `it and `∗it denote the actual (observed) and target leverage ratios for firm i at
time t, respectively and vit is the error component, the details of which will be specified
later. δ is the speed of adjustment that measures how fast firms move toward their target
leverage. This coefficient is expected to lie between 0 and 1, with a higher value indicating
a faster speed of adjustment.4

There are two approaches to dealing with the unobserved target leverage in (1). First,
target leverage can be proxied by the mean or the moving average of the actual (observed)
leverage. The drawback of this approach lies in the difficulty to justify why target leverage
should remain constant over time or only depend on past leverage decisions (Shyam-
Sunder and Myers, 1999).

Second, target leverage can be considered as a unique ratio determined by firms’
characteristics as follows:

`∗it = β′xit, (2)

where xit denotes the k × 1 vector of exogenous factors determining target leverage
with β being the structural parameters. Here, we follow the literature and consider the
five most commonly-used determinants of leverage, namely (asset) tangibility, growth
opportunities, non-debt tax shields, profitability and firm size (e.g., Rajan and Zingales,
1995; Ozkan, 2001; Lemmon et al., 2008).

4Recent research considers alternative specifications. For example, Lemmon et al. (2008) employ the
initial leverage, `i,0 instead of `i,t−1. Alternatively, Huang and Ritter (2009) use the long-differencing
estimator based on the following equation:

`it − `i,t−k = δ (`∗it − `i,t−k) + vit, k > 1,

which alleviates the problem of weak instruments and relies on a smaller set of moment conditions, so
that its small-sample performance is arguably more reliable than the standard GMM estimators (Hahn
et al., 2007).
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In estimating (1) together with (2), there are two approaches available. The first is
a two-stage procedure (Shyam-Sunder and Myers, 1999; Fama and French, 2002; Byoun,
2008), in which one regresses actual leverage on the firm-specific characteristics in (2),
obtains the fitted values ˆ̀∗

it = β̂
′
xit (with β̂ being the consistent estimate of β) and then

uses this proxy for target leverage, `∗it, in (1). The most important limitation of this
estimation approach is that it suffers from a generated regressors problem (Pagan, 1984),
in which inference in the second-stage regression is likely to be invalid.5 This becomes
potentially more problematic in dynamic threshold models where it can affect both es-
timation and testing of threshold effects and the speeds of adjustment. For this reason,
the two-stage procedure is not employed in this paper and we now turn to an alternative
approach, namely, the one-stage procedure (Ozkan, 2001; Flannery and Rangan, 2006),
in which (2) is substituted into (1) to yield:6

`it = φ`i,t−1 + π′xit + vit, (3)

where φ = 1 − δ and π = δβ. Here, we follow the literature (e.g., Ozkan, 2001) and
model vit as an one-way error component that includes the individual firm fixed effects,
as follows:

vit = αi + eit.

The firm fixed effects, αi, may capture (unobserved) firm-specific characteristics such as
managerial ability and skills, the level of competition in the industry and the life cycle
of products. eit is the well-behaved error term with a zero mean and constant variance.
Note that by using (3), both the short-run dynamics, φ̂, and the long-run coefficients,
β̂ = π̂

1−φ̂ , can be jointly estimated in one stage. Hence, this approach does not suffer
from the generated regressors problem that affects estimation precision and inference of
the aforementioned two-stage approach.

Testing trade-off models using (3) assumes that firms undertake capital structure
adjustments in a symmetric fashion. In the presence of costly adjustment, however,
this assumption is no longer valid because leverage changes are infrequent and tend to
occur at ‘restructuring points’ (Fischer et al., 1989; Leary and Roberts, 2005; Titman
and Tsyplakov, 2007). Firms adjust at different rates according to the position of their
actual leverage relative to targets as well as the costs of their adjustment (e.g., Byoun,
2008; Faulkender et al., 2011). To capture this dynamic trade-off behavior, we develop
the regime-switching, dynamic threshold model:7

5Previous research estimating the partial adjustment model in two stages has largely ignored this
issue (e.g., Fama and French, 2002; Byoun, 2008).

6We would like to thank an anonymous reviewer for this important suggestion.
7Alternatively, one can adopt the two-stage estimation procedure outlined above and estimates the
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`it = (φ1`i,t−1 + π′1xit) 1{qit≤c} + (φ2`i,t−1 + π′2xit) 1{qit≤c} + vit, (4)

where 1{·} is an indicator function taking the value 1 if the event is true and 0 otherwise.
Model (4) represents an important extension of the (linear) partial adjustment model,
(3) in that it allows for short-run asymmetries in two AR(1) parameters (φ1 and φ2), the
implied speeds of adjustment (δ1 = 1−φ1 and δ2 = 1−φ2), and the short run coefficients
(π1 and π2) as well as long-run asymmetries in the target leverage relationships (β1

and β2), conditional on the (regime-switching) transition variable, qit, and the threshold
parameter, c. For simplicity, the transition variable, qit, is assumed to be stationary and
exogenous.

The threshold partial adjustment model given by (4) has at least four advantages
over the simple sample-splitting or dummy variable (two-stage) approaches to examin-
ing asymmetries in dynamic capital structure adjustments (Byoun, 2008; Faulkender et
al., 2011; Dang et al., 2011). First, the exogenous sample-splitting method requires an
arbitrary choice of known threshold a priori, such as the median, quartiles or quintiles.8

Our proposed approach overcomes this limitation because it allows the threshold param-
eter to be estimated within the model. Second, unlike the approach using dummies or
sub-samples where firms are typically classified into a regime over the entire sample pe-
riod, our model allows firms to switch regime over-time conditional on the proxies for
adjustment costs. Finally, unlike the two-stage approach commonly used in recent re-
search (Byoun, 2008; Faulkender et al., 2011; Dang et al., 2011), our one-stage estimation
approach based on (4) does not suffer from the generated regressors problem and the re-
sulting estimation and inference complexities, especially in dynamic panels. Finally, our
one-stage approach allows for complex adjustment mechanisms whereby firms may not
only adjust at heterogeneous rates (short-run asymmetry) but also adjust toward hetero-
geneous leverage targets (long-run asymmetries). This is an important innovation over
the two-stage procedure that implicitly imposes homogeneous target leverage relations
(long-run symmetries). Thus, our approach can entertain several intermediate scenarios

following dynamic threshold model in the second stage:

∆`it = δ1

(
ˆ̀∗
it − `it−1

)
1{qit≤c} + δ2

(
ˆ̀∗
it − `it−1

)
1{qit>c} + wit, i = 1, . . . , N ; t = 2, . . . , T.

where ˆ̀∗
it is estimated from:

`it = `∗it + uit = β′xit + uit.

However, as in the linear model, this approach suffers from the generated regressors problem in a complex
manner, unless the strong assumption of independence between the errors, wit and uit is maintained.
Further, this approach also imposes the restriction of long-run symmetries such that the long-run relations
between target leverage and its determinants remain the same even when firms are in different regimes.

8For example, Byoun (2008) uses dummy variables to distinguish between firms having a financing
surplus or a deficit and/or above- or below- target leverage. This clearly involves a certain degree of
arbitrariness since the threshold parameters are imposed instead of being consistently estimated within
the model.
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from symmetries in target leverage relations and the speed of adjustment to asymmetries
in both in a flexible manner.

3 Determinants of the Speed of Capital Structure
Adjustment

In this section, we examine a number of candidates for the transition variable, q, in
our regime-switching framework, (4). While a large body of capital structure research
investigates the explanatory power of firm-specific or macro-economic factors determining
target leverage (see Frank and Goyal (2007) for a review), the literature is relatively
silent on the potential determinants of the speed of leverage adjustment. Our discussion
is motivated by a few of recent empirical studies on costly adjustment (e.g., Leary and
Roberts, 2005; Drobetz et al., 2006; Flannery and Hankins, 2007; Byoun, 2008; Faulkender
et al., 2011; Dang et al., 2011).

In adjusting leverage toward the target, firms have the following options. They can
issue new debt and/or repurchase existing shares when they have above-target leverage;
they can issue new equity and/or retire debt when they have below-target leverage (e.g.,
Flannery and Hankins, 2007). In addition, firms can make leverage adjustment internally
by keeping profits as retained earnings or pay out as dividends. Overall, the speed with
which firms adjust leverage is determined by the adjustment costs, financial flexibility
and constraints that they face. In what follows, we turn to discuss the (asymmetric)
mechanisms in which these factors affect the speed of leverage adjustment.

Financing imbalance (deficit/surplus)

Firms that have to cover substantial cash flow deficits or surpluses by changing their
debt and equity mix may face potentially lower costs of leverage adjustment because a
proportion of the adjustment costs is ‘shared’ with transaction costs (Faulkender et al.,
2011).9 These firms are thus expected to have a quick speed of adjustment. The sign of the
financing imbalance also has important implications for firms’ adjustment speeds (Dang
et al., 2011). Specifically, when firms have a financing deficit, they are under considerable
pressure to offset this deficit by issuing debt, equity or both securities. Yet, such external
financing activities may provide an opportunity for these firms to choose an appropriate
debt-equity mix to move toward their target leverage. On the other hand, when firms
have a cash flow surplus, they are under relatively less pressure to address this imbalance,
implying less incentive for them to undertake leverage adjustment. However, these firms

9A firm’s financing (cash flow) deficit or surplus can be calculated as dividend payments plus net
investment and changes in working capital less operating cash flows after interest and taxes (Shyam-
Sunder and Myers, 1999). See also Table 2.
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may find it easier to adjust toward target leverage because the costs of retiring debt
and/or repurchasing equity (in the presence of a deficit) may be lower than the costs of
issuing those securities (in the presence of a surplus). Since the above two predictions are
conflicting, the relation between firms’ financing imbalance and the speed of adjustment
will be resolved empirically.

Growth opportunities

The impact of growth opportunities on firms’ adjustment speeds is theoretically ambigu-
ous. First, high-growth firms are likely to be young and adopt a low-leverage policy to
control the under-investment problem (Myers, 1977). They may also have low profitabil-
ity and limited internal funds, and rely heavily on external (equity) financing to fund
growth opportunities. Through frequent visits to the external capital markets, these
firms can adjust leverage more easily by appropriately altering the mix of debt and eq-
uity (Drobetz et al., 2006). Low-growth firms, on the other hand, tend to rely more on
internal finance, so any capital structure changes are likely to take the form of internal
adjustment, the scope and magnitude of which is limited by the size of internal funds.
Hence, the speed of adjustment is expected to be relatively faster for high-growth firms
than for their low-growth counterparts. However, an opposite prediction can be made.
Many low-growth firms are mature, cash-rich and highly profitable so that they may
maintain a high-leverage policy to mitigate the free cash flow problem (Jensen, 1986).
While low-growth firms do not rely on external (equity) financing as much as high-growth
firms, they face less severe asymmetric information and agency problems, making it less
costly to adjust toward target leverage. Further, low-growth firms with typically high
leverage may find it more beneficial to quickly revert to target leverage in order to avoid
potentially high financial distress and bankruptcy costs.

Investment

Corporate investments have important effects on both financing decisions (Lang et al.,
1996) and adjustment toward optimal capital structure (Flannery and Hankins, 2007)
because capital expenditures tend to be mainly funded by internally generated cash flow
(Myers, 1984). As a result, high-growth firms with new investments financed with in-
ternal funds may have less scope left for (internal) capital structure adjustments (e.g.,
dividend payments, debt retirements or equity repurchases), implying a slower speed of
adjustment for these firms. However, it can be also argued that firms facing large in-
vestment opportunities may resort to external finance, which may present them with an
opportunity to change their capital structure mix appropriately given that the cost of
adjustment can be ‘shared’ with the cost of raising external funds (Faulkender et al.,
2011).
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Profitability

Profitable firms are likely to have available retained earnings so they may not suffer from
severe (internal) financial constraints and be able to issue securities at a low cost. In
addition, these firms have incentive to take advantage of debt interest tax shields and
minimize the asset substitution effect, especially when they are under-levered.10 Taken
together, firms with high profitability are likely to enjoy financial flexibility and adjust-
ment benefits, and, thus, are able to make quicker adjustment toward target leverage. On
the other hand, firms with low profitability tend to have limited internal funds and con-
sequently face financial instability and (internal) constraints, which prevent them from
making rapid leverage adjustment. This suggests that profitability has a positive effect on
the speed of adjustment. However, an opposite prediction can be made. Less profitable
firms are typically highly levered, as predicted by the pecking order theory (Myers and
Majluf, 1984) or dynamic trade-off models (e.g., Strebulaev, 2007), as well as suggested
by previous empirical results in the literature (e.g., Titman and Wessels, 1988; Rajan
and Zingales, 1995). Since high leverage may result in potentially large financial distress
costs, firms with low profitability should have more incentive to revert to their target
leverage quickly, implying a negative impact of profitability on the speed of adjustment.

Size

Capital structure adjustments generally involve substantial transaction costs (e.g., bro-
kerage fees for new issues), of which the fixed component is relatively smaller for large
firms. Further, large firms are typically mature with high tangibility, profitability and
financial flexibility, implying less severe asymmetric information, adverse selection and
moral hazard problems, as well as better access to capital markets. Hence, the cost of
external financing is smaller for large firms, suggesting a quicker speed of adjustment
for them (Drobetz and Wanzenried, 2006). On the other hand, large firms tend to use
public debt that is more expensive to adjust, while they have less cash flow volatility,
lower financial distress costs and fewer debt covenants. Thus, they have less incentive
and external pressure to adjust capital structure, implying a slower adjustment speed for
large firms (Flannery and Rangan, 2006).

Volatility

Under the trade-off framework, firms with volatile earnings have difficulty borrowing
because in bad states of the world, they may generate low earnings that are insufficient
for them to meet debt obligations (Antoniou et al., 2008). Put it differently, firms with

10For under-levered firms, retained profits increase the value of equity, resulting in a lower leverage
ratio and further deviation from target leverage, implying greater incentive for these firms to revert
toward the target.
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high earnings volatility may have limited access to the capital markets to make capital
structure adjustments. The implication follows that earnings volatility and the speed of
adjustment are inversely related.

4 Econometric Methodology

4.1 Threshold Partial Adjustment Models

In this subsection, we derive the GMM estimators and describe how the threshold param-
eter is estimated and its confidence intervals are constructed. The fixed-effects (hereafter
FE) estimates of φ1 and φ2 in (4) are biased downward because the regressors are corre-
lated with the (unobserved) firm fixed effects, αi, via the correlation between `i,t−1 and
vit, i.e., E [`i,t−1vit] 6= 0 (Nickell, 1981). This suggests that the FE estimator of the speeds
of adjustment, δ1 = 1−φ1 and δ2 = 1−φ2, is biased upward. Note that the FE estimator
of π1 and π2 are also biased.

To address this issue, we follow the literature and consider using instrumental variable
estimators and, more importantly, GMM. Despite a large literature on GMM in linear
dynamic panels (e.g., Arellano and Bond, 1991; Arellano and Bover, 1995; Blundell and
Bond, 1998), there has been no rigorous research investigating threshold mechanisms in
dynamic panel models. Here, we extend Hansen’s (1999) estimation and inference theory
for static panel threshold models and propose a new estimation and testing procedure for
the dynamic case. Specifically, we combine time series techniques on threshold modeling
(Chan, 1993; Hansen, 2000; Caner and Hansen, 2004) with the existing GMM literature
(Alvarez and Arellano, 2003).

We first rewrite (4) as:

`it = {φ1`1i,t−1(c) + π′1x1it(c)}+ {φ2`2i,t−1(c) + π′2x2it(c)}+ vit, vit = αi + eit, (5)

where `1i,t−1 (c) = `i,t−11{qit≤c}, `2i,t−1 (c) = `i,t−11{qit>c}, x1it(c) = xit1{qit≤c} and x2it(c) =
xit1{qit>c}. Next, to deal with the correlation between the regressors and the firm fixed
effects in (4), we use the first-difference transformation of (5):

∆`it = {φ1∆`1i,t−1(c) + π′1∆x1it(c)}+{φ2∆`2i,t−1(c) + π′2∆x2it(c)}+∆eit, i = 1, ..., N ; t = 2, ..., T,
(6)

which is free of the fixed effects αi. However, applying the pooled OLS estimator to
(6) still produces biased estimates since ∆`1i,t−1 (c) and ∆`2i,t−1 (c) are correlated with
∆eit. Hence, we need to find instruments for ∆`1i,t−1 (c) and ∆`2i,t−1 (c) that satisfy
the orthogonal condition with ∆eit. Two obvious candidates for these instruments are
`1i,t−2 (c) and `2i,t−2 (c), as commonly used in the (just-identified) instrumental variable
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estimation approach (hereafter AH-IV) (Anderson and Hsiao, 1982).11

To improve the efficiency of the AH-IV estimator, we follow Arellano and Bond
(1991) and consider lagged values of `1i,t−2 (c) and `2i,t−2 (c) as additional instruments for
∆`1i,t−1 (c) and ∆`2i,t−1 (c) in (6). We next construct the full GMM instrument matrices
for ∆`1i,t−1 (c) and ∆`2i,t−1 (c), denoted W1i (c) and W2i (c), respectively for i = 1, ..., N
and j = 1, 2:

Wji (c) =


`ji1 (c) 0 · · · 0

0 `ji1 (c) , `ji2 (c) · · · 0
... ... . . . ...
0 0 · · · `ji1 (c) , `ji2 (c) , · · · , `ji,T−2 (c)

 . (7)

We express (6) in the matrix form as follows:

∆` = Z1(c) θ1 + Z2 (c)θ2 + ∆e = Z(c) θ + ∆e, (8)

where Z1 (c) = (∆`1,−1 (c) ,∆X1 (c)), Z2 (c) = (∆`2,−1 (c) ,∆X2 (c)), Z (c) = (Z1 (c) ,Z2 (c)),
θ1 = (φ1,π

′
1)′, θ2 = (φ2,π

′
2)′, θ = (θ′1,θ′2)′, ∆` = (∆`′1, . . . ,∆`′N)′, ∆`i = (∆`i2, . . . ,∆`iT )′,

∆`j,−1 (c) =
(
∆`′j1,−1 (c) , . . . ,∆`′jN,−1 (c)

)′
, ∆`ji,−1 (c) = (∆`ji1 (c) , ...,∆`ji,T−1 (c))′, ∆Xj (c) =(

∆X′j1 (c) , ...,∆X′jN (c)
)′
, and ∆Xji (c) = (∆xji2 (c) , ...,∆xjiT (c))′ for j = 1, 2.

Under the maintained assumption that theK×1 vector of covariates, xit, is exogenous
with respect to eit, we can construct the associated instrument matrix for Z (c) in (8) as
the following N (T − 2)× {(T − 2) (T − 1) + 2K} matrix:12

W (c) =


W1 (c)

...
WN (c)

 , Wi (c) = (W1i (c) ,∆X1i (c) ,W2i (c) ,∆X2i (c)) , i = 1, ..., N.

(9)
By employing the moment conditions, E [W(c)′∆e] = 0 with ∆e = (∆e′1, ...,∆e′N)′ and
∆ei = (∆ei3, ...,∆eiT )′, we obtain a GMM estimator of θ (given a threshold parameter
value, c) as:

θ̂ (c) =
[
Z (c)′W (c) V (c)−1 W (c)′ Z (c)

]−1 [
Z (c)′W (c) V (c)−1 W (c)′∆`

]
(10)

The standard GMM theory suggests that an optimal (inverted) weighting matrix, denoted
11Note that the correlation between ∆`1i,t−1 (c) and ∆`2i,t−1 (c) is most likely to be negligible as the

transition probability from one regime to the other can be relatively small. More importantly, the level
instruments, `1i,t−1 (c) and `2i,t−1 (c), are orthogonal. Hence, there are no restrictions imposed on the
correlation structure within the instruments.

12In the case where xit’s are weakly or strictly exogenous, one can in theory use (xi1, ...,xiT) or
(xi1, ...,xit−1 ) as additional instruments. In our empirical analysis, we do not consider these instruments
to avoid the over-fitting bias problem.
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V (c), be given by the covariance matrix of the orthogonality conditions, E [W(c)′∆e] =
0.

Next, we derive the GMM estimator in two cases, with homoscedasticity or het-
eroscedasticity, respectively. First, if eit is independent and has homoscedastic variance,
σ2, across firms and over time, the GMM estimator can be simply computed in one step
(Arellano and Bond, 1991). The covariance matrix of E [W(c)′∆e] = 0 is given by:

E
[
Wi (c)′∆ei∆e′iWi (c)

]
= σ2Wi (c)′GWi (c) , (11)

where G is a (T − 2) × (T − 2) fixed matrix with 2’s on the main diagonal, -1’s on the
next sub-diagonals, and zeros otherwise. Thus, we obtain the one-step GMM estimator
by:

θ̂GMM1 (c) =
[
Z (c)′W (c) V̂GMM1 (c)−1 W (c)′ Z (c)

]−1 [
Z (c)′W (c) V̂GMM1 (c)−1 W (c)′∆`

]
.

(12)
where V̂GMM1 (c) = ∑N

i=1 Wi (c)′GWi (c).
If eit is heteroscedastic, however, the one-step GMM estimator outlined above is in-

efficient (Arellano and Bond, 1991). In this more general case, we consider the following
robust estimator of the covariance matrix (Arellano, 2003, p.89):

V̂GMM2 (c) =
N∑
i=1

Wi (c)′∆êi (c) ∆êi (c)′Wi (c) , (13)

where ∆êi (c) = ∆`i-Zi (c) θ̂GMM1 (c) is the (T − 2)× 1 vector of residuals obtained from
the one-step GMM estimation. We then obtain an efficient two-step GMM estimator
by:13

θ̂GMM2 (c) =
[
Z (c)′W (c) V̂GMM2 (c)−1 W (c)′ Z (c)

]−1 [
Z (c)′W (c) V̂GMM2 (c)−1 W (c)′∆`

]
.

(14)
Next, the threshold parameter, c, can be consistently estimated as follows:

ĉ = argmin
c∈C

Q (c) , (15)

13In principle, we may consider iterated or continuously updated GMM estimators as follows. First,
we obtain the updated weighting matrix, V̂u

GMM (c), in (13) by using the updated residuals, ∆êu
i (c) =

∆`i-Zi (c) θ̂GMM2 (c). Then, we obtain θ̂
u

GMM (c) by substituting V̂u
GMM (c) into (14). This iterative

procedure will continue until convergence, and in theory should be more efficient. In our empirical
analysis, we find that the difference between θ̂GMM2 and the iterative estimator is mostly negligible,
mainly because we only employ linear moment conditions. Hence, to save computation time, we focus
on reporting the results based on θ̂GMM2 . Of course, when employing additional (nonlinear) moment
conditions as suggested by Ahn and Schmidt (1995, 1997), the iterative estimator will be likely to produce
more efficient results, though such extensions are beyond the scope of the paper both theoretically and
computationally. We thank a reviewer for this helpful suggestion.
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where C is the grid set and Q (c) is the generalized distance measure, given by:

Q (c) =
{ 1
N

W (c)′∆ê (c)
}′ { 1

N
V̂GMM2 (c)

}−1 { 1
N

W (c)′∆ê (c)
}
, (16)

where ∆ê (c) = ∆`− Z (c) θ̂GMM2 (c). Since the model is linear in θ for each c, we use a
practical grid search algorithm to find a consistent threshold estimate, ĉ, over a grid set
that consists of the support of the transition variable, q. Following the literature, we use
two cut-off points at the 15th and 85th percentiles to avoid potential extreme values of
the transition variable while ensuring there is a sufficient number of observations in each
regime.

Chan (1993) theoretically shows that under the assumption of exogenous transition
variables, the threshold estimate, ĉ, is super-consistent, though its asymptotic distribu-
tion is complex and depends on nuisance parameters, which is not useful for inference in
practice. Hansen (2000) suggests to construct a confidence interval for c by forming a non-
rejection region using the LR statistic. Under the assumption that λn = θ2 − θ1 = bN−η

with b 6= 0 and 0 < η < 1
2 , it is shown that N1−2η (ĉ− c) →d wΥ, where w is a scaling

factor and the distribution function for Υ is known. As λn tends to zero, the rate of
convergence is reduced but a simpler asymptotic distribution for ĉ can be derived, see
also Caner and Hansen (2004).

In particular, Hansen (1999) shows that an analytic inverse form of the asymptotic
distribution of the LR statistic can be given by −2 log

(
1−
√

1− α
)
. In this case, the

critical values are 6.53, 7.35 and 10.5 for α = 10%, 5% and 1%, respectively. However,
Seo and Linton (2007) note that in finite samples, the confidence interval for ĉ, denoted
Cα, is not necessarily a true interval. They subsequently suggest to use the interval,
Cint
α = [cmin, cmax], where cmin = infc∈Cα c and cmax = supc∈Cα c such that Cint

α ⊇ Cα. In
our empirical work, we also find that Cα sometimes tends to be so narrow that only a
small number of grids are selected. In a few extreme cases, the LR statistic produces a
value of zero such that the threshold estimate, ĉ, is the only point selected from the grid
set, given the critical value (crit). To overcome this issue, we construct the confidence
interval by the following linear interpolation:

[ĉinf , ĉsup] =
[
ĉ−

(
ĉ− c
LR

)
× crit, ĉ+

(
c̄− ĉ
LR

)
× crit

]

where c and c̄ (c < ĉ < c̄) are the two nearest neighborhoods, and LR and LR are the
corresponding LR statistics, both of which are greater than crit.

Under the maintained assumption that the transition variable, qit, is stationary and
exogenous, the GMM estimators of θ(c) are asymptotically independent of the threshold
estimate such that inference on θ can proceed as if ĉ were the true value, e.g., Hansen
(1999, 200) and Caner and Hansen (2004). Hence, it is easily seen that the asymptotic
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distribution of θ̂GMM2 (ĉ) is normal with the covariance matrix estimated by

V̂ ar
(
θ̂GMM2 (ĉ)

)
=
[
Z (ĉ)′W (ĉ) V̂GMM2 (ĉ)−1 W (ĉ)′ Z (ĉ)

]−1
. (17)

4.2 Testing for Threshold Effects

4.2.1 Bootstrap-based Testing Procedure

In this subsection, we propose a bootstrap-based procedure to test the null hypothesis of
no threshold effect (one regime) in (4) against the alternative hypothesis of a threshold
effect (two regimes) by extending the Hansen (1999) procedure. The null hypothesis of
no threshold effect (θ1 = θ2) is given by:

H0 : Rθ = 0, (18)

where R = [IK+1,−IK+1]. We then construct the Wald statistic by:

W (ĉ) =
{
Rθ̂ (ĉ)

}′ {
RV̂ ar

(
θ̂ (ĉ)

)
R′
}−1 {

Rθ̂ (ĉ)
}
, (19)

where θ̂ is the GMM estimator. Since the threshold parameter is not identified under
the null of no threshold effect, (18), the testing procedure is nonstandard (e.g., Davies,
1987; Andrews and Ploberger, 1994, 1996; Hansen, 1996). Thus, a natural test statistic
for H0 is given by:

supW = sup
c∈C
W (c) .

Given that the model is linear in θ for each c, the Wald statistic is computed in a
straightforward manner using the asymptotic variance estimate formula (17). However,
the limiting distribution of supW is not asymptotically pivotal and its critical values
cannot be tabulated.

Hansen (1996, 1999) suggests to use bootstrap techniques to obtain a valid asymptotic
p-value of the Wald statistic. Following this approach, we first estimate (6) under the
alternative hypothesis, and save the residuals, ∆êit (ĉ), and the Wald statistic,W (ĉ). We
collect the residuals in ∆êi = (∆êi3 (ĉ) , . . . ,∆êiT (ĉ))′, and ∆ê = (∆ê1, . . . ,∆êN). We
next consider the DGP under the null, estimate the null model, (3) by the two-step GMM
and save the parameter estimates by

(
φ̃, π̃

)
. Assuming that the initial values, `i1 and

`i2, and xit are given, we generate the bth bootstrap samples of `it under H0 as follows:

`
(b)
it =

`it t = 1, 2

`
(b)
i,t−1 + ∆`(b)

it t ≥ 3
, b = 1, . . . , B, (20)
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where
∆`(b)

it = φ̃∆`(b)
i,t−1 + π̃′∆xit + ∆e(b)

it ,

and ∆e(b)
it are the bth bootstrap samples of ∆eit obtained by re-sampling from ∆ê with

replacement. Next, using the bootstrap samples, `(b)
it , we re-estimate the model under the

alternative hypothesis, (6), and evaluate the Wald statistic by:

W (ĉ)(b) =
{
Rθ̂

(b) (ĉ)
}′ {

RV̂ ar
(
θ̂

(b) (ĉ)
)

R′
}{

Rθ̂
(b) (ĉ)

}
, b = 1, . . . , B. (21)

Repeating this procedure B times, the bootstrap-based p-value of the statistic is evaluated
by:14

p-value = 1
B

B∑
b=1

1
{
W (ĉ)(b) >W (ĉ)

}
. (22)

The null hypothesis in (18) is rejected if this p-value is smaller than the significance level.
Finally, under the assumption that qit is exogenous such that the GMM estimators

of θ(c) are asymptotically independent of ĉ, we note that the bootstrap-based inference
for the threshold effect described above should attain the first-order asymptotic distribu-
tion, and thus the p-values are asymptotically valid (e.g., Andrews and Ploberger, 1994;
Hansen, 1996, 1999).

4.2.2 Monte Carlo Simulation Studies

Here, we conduct Monte Carlo simulation studies in order to investigate the finite-sample
performance of the bootstrap-based inference as described above. The data generating
process for leverage, `it , is based on the threshold partial adjustment model:

∆`it = δ1 (`∗it − `i,t−1) 1{qit≤c} + δ2 (`∗it − `i,t−1) 1{qit>c} + αi + eit, (23)

where target leverage is constructed as a non-linear function of a scalar covariate, xit:

`∗it = β1xit1{qit≤c} + β2xit1{qit>c}, i = 1, . . . , N ; t = 1, . . . , T, (24)

Combining (23) and (24), we obtain:

`it = (φ1`i,t−1 + π1xit) 1{qit≤c} + (φ2`i,t−1 + π2xit) 1{qit>c} + αi + eit, (25)

where φj = 1 − δj and πj = δjβj for j = 1, 2. Next, we construct the covariate, xit as a
stationary AR(1) process:

xit = ρxi,t−1 + uit, (26)
14An alternative approach is to construct the supW statistic, say supW (b), from the bootstrapped

sample and evaluate the bootstrap p-value by the frequencies of supW (b) that exceed the sample statistic,
supW .
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where |ρ| < 1 and a transition variable by:

qit = µq + vit. (27)

We further impose the following restrictions. xit and qit are exogenously generated such
that E [uiteit] = 0, E [uitvit] = 0 and E [viteit] = 0. uit and vit follow i.i.d. normal distribu-
tions, such that uit ∼ iidN (0, σ2

u) and vit ∼ iidN (0, σ2
v) . To allow for heteroscedasticity

over time and across cross-section, we assume that eit follows an ARCH(1) process (Ev-
eraert and Pozzi, 2007):

eit = h
1/2
it ξit, hit = ω + ae2

i,t−1, ξit ∼ iidN (0, 1) , (28)

The initial value of eit can be obtained from the stationary distribution of eit such that
ei1 =

(
ω

1−a

)1/2
ξi1 and ξi1 ∼ iidN (0, 1). A special case of homoscedastic errors is obtained

by imposing a = 0 such that eit = ω1/2ξit. Unobserved individual effects, αi are assumed
to be uniformly distributed, i.e., αi ∼ U (−α, α). Assume that V ar (αi) is proportional
to σ2

e such that V ar (αi) = α2/3 = κσ2
e , and so α =

√
3κσe > 0.15

Throughout the simulations, we fix `i0 = 0 and generate T + 10 time period observa-
tions and then discard the first 10 observations to reduce the potential effects of starting
values. We consider N = {100, 200} and set the parameters (δ1, β1, ρ, µp, σu, σv, κ) =
(0.5, 1, 0.5, 0, 1, 1, 3). We set the number of replications at 1,000, and the number of
bootstrap iterations at 100 per each estimation of (25). We estimate the threshold model
(25) by the two-step GMM estimator described in Section 4.1.

[Insert Table 1 about here]

Table 1 reports the simulation results for the empirical frequencies of the bootstrap-
based Wald statistic rejecting the null hypothesis of no threshold effect at the 1% and
the 5% significance levels. The empirical sizes of the tests, reported in the row with
(δ2, β2) = (0.5, 1.0), are reasonably close to the nominal levels for all cases considered,
irrespective of the presence of heteroscedasticity. Importantly, we find that the power
of the tests increases monotonically with the absolute difference between the parameter
values. For example, when |δ1 − δ2| ≥ 0.2 and |β1 − β2| ≥ 0.2, the power reaches unity as
N = 200. Interestingly, we find that the power of the tests becomes slightly asymmetric
near the null hypothesis, showing that the test becomes slightly more powerful when
δ2 < 0.5 (relatively slow adjustment) than when δ2 > 0.5 (relatively fast adjustment)
though such difference will become negligible when |δ1 − δ2| > 0.1.16 In sum, the above

15κ = 1 implies that the individual effects are uniformly distributed over
(
−
√

3,
√

3
)
. We have also

considered cases with larger or smaller ranges and obtained qualitatively similar simulation results.
16In the empirical section below, we find that the asymmetric speeds of adjustment range between 0.5

and 0.8, and that the difference between them is mostly greater than 0.1, e.g., ranging between 0.113
and 0.325.
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Monte Carlo simulation results clearly demonstrate that the empirical size and power
performance of the bootstrap-based inference is highly reliable in finite samples, the size
of which is typically encountered in empirical capital structure studies.

5 Data and Empirical Results

5.1 Data and Sample Selection

We investigate a panel of UK firms collected from the Datastream database. Using
Datastream’s research sample (comprising 1,683 firms), we collected company accounting
data from the earliest possible year to January 2004 and constructed an unbalanced panel
of nearly 20,000 firm-year observations. Following previous studies (e.g., Ozkan, 2001;
Antoniou et al., 2008; Dang, 2011), we applied a number of standard data restrictions.
First, firms operating in financial sectors (banks, insurance and life assurance companies
and investment trusts) and in utility sectors (electricity, water and gas) were excluded
since they are subject to different accounting considerations. Second, in order to use the
GMM estimators that require lagged instruments, only firms with at least five years of
observations were retained (Arellano and Bond, 1991). Finally, observations that have
missing data were removed.17 Our final sample consists of 859 companies and 5,393 firm-
year observations, with the longest time series of 8 years over the period 1996-2003. The
definitions and summary statistics for the variables under consideration are provided in
Tables 2 and 3, respectively.

[Insert Tables 2 and 3 about here]

5.2 Regression Results for the Partial Adjustment Model

Table 4 reports the regression results for the symmetric, non-threshold partial adjust-
ment model of leverage given by (3). Panel A reports the short-run dynamics, including
the short-run coefficients, the speed of adjustment, and standard diagnostic tests (i.e.,
the AR(2) and Sargan tests) while Panel B contains the long-run coefficients on the
determinants of target leverage.18

We employ two consistent estimators, AH-IV and GMM and report their regression
results in the respective columns in the table.19 Overall, the AH-IV and GMM regression

17As in previous UK studies (e.g., Dang, 2011), a large number of observations were dropped due to
the unavailability of data in firms’ cash flow statements.

18Throughout the empirical analysis, we follow the literature (e.g., Ozkan, 2001) and include (strictly
exogenous) time effects to control for macroeconomic and global effects, e.g., changes in the state of the
economy, interest rates and prices, accounting standards and other regulations.

19We have also experimented with the (least-squares) POLS and FE estimators, which in theory
provide biased estimates of the speed of adjustment and consequently the long-run coefficients. Indeed,
(unreported) results show that the POLS estimate of the speed of adjustment seems to be downward
biased while the FE estimate appears to contain an upward bias.

18



results are reasonable as the AR(2) and Sargan tests of no second-order serial correlation
and valid instruments cannot be rejected at conventional significance levels, and the
estimated (long-run) coefficients are statistically significant with the expected signs.20

The speed of adjustment is estimated at 53% and 59%, respectively by AH-IV and GMM.
These results suggest that UK firms can close more than a half of their deviation from
target leverage within a year. Using the concept of half-life, this suggests that UK firms
only need between 0.91 and 0.76 years to halve their deviation from target leverage. These
speeds are consistent with the previously reported UK results (Ozkan, 2001; Dang, 2011)
but faster than the speeds estimated for US firms (Flannery and Rangan, 2006; Lemmon
et al., 2008; Huang and Ritter, 2009).

[Insert Table 4 about here]

Next, we turn to the AH-IV and GMM results regarding the long-run coefficients
reported in Panel B. Growth opportunities have a significantly negative effect on leverage,
which is consistent with the prediction that high-growth firms lower leverage in order
to mitigate the under-investment problem (Myers, 1977). The impact of profitability
on target leverage is significantly negative, which is consistent with the prior empirical
evidence (Titman and Wessels, 1988; Rajan and Zingales, 1995), and supportive of both
the pecking order theory (Myers and Majluf, 1984; Myers, 1984) and the dynamic trade-
off theory (e.g., Strebulaev, 2007). The coefficient on tangibility is significantly positive,
which is in line with the trade-off view that tangibility can be used as a security to avoid
the asset substitution problem and reduce the agency costs of debt (e.g., Frank and Goyal,
2007). The coefficient on non-debt tax shields is significantly negative, supporting the
hypothesis that non-debt tax shields are a substitute for the tax benefits of debt so firms
with high non-debt tax shields should have less debt (DeAngelo and Masulis, 1980). Firm
size has a significantly positive coefficient, which is in line with the prediction that large
firms face low bankruptcy, agency and transaction costs and thus have easier access to
debt financing (Frank and Goyal, 2007). In sum, the results for the long-run coefficients
are empirically plausible and consistent with the trade-off framework.

The results discussed so far assume that firms undertake capital structure adjustments
at the same rate toward a homogeneous target leverage ratio. We now turn to discuss

20Recently, Antoniou et al. (2008) and Lemmon et al. (2008) have suggested employing the Blundell
and Bond (1998) SYSGMM to address the weak instruments problem of the GMM estimator. This
method is mostly useful when the dependent variable, leverage in this context, is close to a random
walk process (Blundell and Bond, 1998). As documented by Frank and Goyal (2007), however, corporate
capital structure in the US has been remarkably stable over the last half century. Our unreported analysis
shows that the aggregate UK leverage ratio has also been stable over our sample period. Unless there
is a way of choosing an optimal set of instruments for alternative GMM estimators, the SYSGMM that
employs more instruments than the GMM is likely to suffer from more severe over-fitting bias problems,
especially in small samples (Zilak, 1997). We have adopted SYSGMM in empirical analysis but found
that the Sargan test strongly rejects the validity of the instruments used. For all these reasons, we do
not consider the SYSGMM estimator in the paper.
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the main empirical results obtained from the proposed dynamic panel threshold model
of leverage, (4).

5.3 Regression Results for the Threshold Partial Adjustment
Model

Table 5 presents the results from the two-step GMM estimation of the threshold partial
adjustment model, (4), for three transition variables financing imbalance, growth opportu-
nities and firm investment. Firms are classified into the low (high) regime when the value
of the transition variable is less than or equal to (greater than) the estimated threshold
value. Panel A reports the short-run dynamics, namely the coefficients on lagged leverage
and the determinants of leverage, as well as the Wald test statistics for the null hypothesis
of the individual short-run symmetry.21 It also reports the implied speeds of adjustment,
the threshold value and its confidence interval, as well as the (bootstrap-based) Wald
test for the threshold effect (one versus two regimes). Further, this panel contains the
conventional AR(2) and Sargan test statistics, which allow us to check the validity of
the instruments used in the GMM regressions. It is worth noting that throughout the
empirical analysis below, both tests are not rejected at the 5% significance level, suggest-
ing that all GMM regressions use valid instruments.22 Panel B of the table reports the
long-run coefficients and the Wald test statistics under the null of long-run symmetries.
Note that these tests enable us to shed light on the interesting question of whether firms
in different regimes adjust toward heterogeneous target leverage. Finally, in Panel C, we
report several important characteristics of firms being classified into the low and high
regimes. In particular, we examine the mechanisms (i.e., equity versus debt financing) in
which firms adjust their capital structure toward target leverage.

[Insert Table 5 about here]

Financing imbalance

The bootstrap-based regime test statistic in Panel A, column (1) first indicates that the
null of one regime can be convincingly rejected such that there exists a threshold effect
conditional on firms’ financing imbalance. This finding is consistent with the evidence
of short-run asymmetries in several coefficients (i.e., tangibility, non-debt tax shields,
growth and firm size) and more importantly, in the speed of adjustment. Indeed, firms
with higher financing imbalance have a faster speed of adjustment than those with lower

21Under two regimes, this Wald statistic follows the asymptotic χ2
1 distribution.

22As in a previous footnote, although our econometric framework allows for a straightforward exten-
sion using the Blundell and Bond (1998) SYSGMM, we do not consider this estimator here because
in unreported tests, the validity of the SYSGMM instruments is always rejected at the 1% level. The
over-fitting bias problem appears to be even more serious in dynamic panel threshold models.
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imbalance: the former firms adjust at a rate of 75%, compared to the rate of 50% for
the latter firms. The difference in the two adjustment speeds of nearly 25% is both
statistically and economically significant. Moreover, the threshold value is estimated at
0.07, at the 78th percentile of the distribution of the (regime-switching) variable financing
imbalance. This finding suggests that consistent with our prediction, the sign of the
imbalance does matter. Specifically, firms with a large financing deficit have a quicker
speed of adjustment than those with a small deficit or a financing surplus. It is consistent
with the argument that firms having more pressure and/or more incentive to cover their
financing deficit undertake quicker adjustment, and is in line with recent international
evidence on the asymmetric impact of firms’ financing deficit and surplus on their speed
of capital structure adjustment (Dang et al., 2011).

The results in Panel B show that the long-run coefficients are generally significant
with the expected signs (except for non-debt tax shields and profitability in the high
regime). Further, these coefficients appear to differ in magnitude between the two groups
of firms. Specifically, the effects of asset tangibility and non-debt tax shields are signifi-
cantly stronger for firms with low financing imbalance than for those with high imbalance.
The effects of profitability and growth opportunities are also different, albeit only at 10%.
Taken together with the results in Panel A, these findings suggest that not only firms with
different levels of financing imbalance adjust their capital structure at different rates but
they also adjust toward different long-run target leverage ratios. In short, conditional on
firms’ financing imbalance, there is evidence of both short-run and long-run asymmetries
in capital structure adjustment.

The results in Panel C confirm that firms adjusting relatively quickly have a large and
positive financing deficit (0.21) while those adjusting relatively slowly have a surplus (-
0.03), which is consistent with the results regarding the threshold value reported in Panel
A. Further, the former firms have a positive deviation from target leverage, indicating
they are on average over-levered.23 This observation is consistent with the recent US
evidence that over-levered firms tend to make fast adjustment to avoid the large financial
distress/bankruptcy costs associated with having above-target leverage (Byoun, 2008).
The statistics on firms’ external financing decisions show that these firms issue both debt
and equity to cover their financing deficit, although they rely considerably more on net
equity issues than net debt issues (0.20 versus 0.07). Note that this financing pattern is
consistent with target adjustment behavior because through equity issues, over-levered
firms can reduce their leverage from the above-target level.

23The variable deviation is equal to the actual leverage ratio (`it) less the estimated target leverage
ratio (ˆ̀∗it = β̂

′
xit with β̂ being the long-run coefficients estimated from (4)).
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Growth opportunities

In column (2), the joint (regime) test of homogeneous short-run coefficients is rejected
at 1%, thus strongly suggesting the presence of a threshold effect conditional on firms’
growth opportunities. Further, the results show that low-growth and high-growth firms
adjust toward their target leverage at the rates of 54% and 70%, respectively. This finding
appears to support our earlier prediction that high-growth firms undertake faster leverage
adjustment thanks to their frequent visits to the capital markets, which in turn provide
them with more opportunities to find an appropriate mix of debt and equity. Surprisingly,
however, these two speeds of adjustment are not statistically different from each other
according to the test statistic. This mixed finding may reflect the theoretically ambiguous
relation between growth opportunities and capital structure adjustments discussed earlier.

In Panel B, there is some evidence that low-growth and high-growth firms have het-
erogeneous target leverage as the long-run coefficients seem to be relatively larger in
magnitude for the former firms. In particular, the effects of growth opportunities and
firm size are both economically and statistically stronger for low-growth firms than for
their high-growth counterparts. The results regarding the differential effects of growth
opportunities indicate that firms are more concerned about free cash flow problems, which
are most relevant for low-growth, cash rich firms (Jensen, 1986), than about underinvest-
ment incentives, which are likely to arise in the presence of high growth opportunities
(Myers, 1977). On the other hand, the weaker impact of firm size on target leverage for
high-growth firms may be explained by the tendency of these firms to eschew debt in
order to avoid the debt overhang problem. Overall, we find some statistical evidence for
long-run asymmetries and heterogeneity in target leverage but not for short-run asym-
metry in the speed of adjustment. Put it differently, firms with low- and high-growth
opportunities may adjust toward heterogeneous leverage targets, albeit at homogeneous
rates.

The results in Panel C reveal that low-growth and high-growth firms have different
characteristics. Most notably, high-growth firms are over-levered with a financing deficit,
which they offset by making relatively large (net) equity issues. These characteristics are
similar to those of firms with high financing imbalance, i.e. those that have a fast speed
of adjustment in column (1).

Firm investment

It can be seen from Panel A, column (3) that the bootstrap-based regime test cannot
be rejected, suggesting that there is no threshold effect conditional on firm investment.
This finding is possibly driven by the lack of short-run asymmetries in the coefficients on
the determinants of leverage. Indeed, individual test results confirm that all coefficients
are not statistically different between the two groups of firms, at the 5% level. However,
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the speed of adjustment seems to be faster for firms with large investment (77%) than
for those with small investment (59%). Importantly, the difference in the speeds (18%)
is not only economically significant but also statistically significant. This finding is thus
inconsistent with the prediction that firms facing potential financial constraints due to
large spending on investment projects should have a slow speed of adjustment. On the
other hand, it seems to support the argument that large capital expenditures that require
external funds may provide firms with opportunities to choose an appropriate mix of new
debt and equity in order to quickly move toward their optimal capital structure.

The results in Panel B suggest that firms with small and large investment may con-
sider heterogeneous leverage targets. The long-run coefficients are generally larger in
magnitude for firms in the low regime than for those in the high regime. In particular,
the effects of profitability and firm size on target leverage are statistically different for
these two groups of firms. The stronger inverse relation between profitability and target
leverage for firms in the low regime can be explained by the fact that firms with lim-
ited capital expenditures may not need to use (external) debt, especially when they are
profitable and have retained earnings.

Our further analysis of the firm-specific characteristics in Panel C suggests that firms
classified as having more investment, i.e., those belonging to the high regime and have
a faster speed of adjustment, tend to have a significantly higher financing deficit, which
they then offset by issuing both debt and equity. This pattern is clearly consistent with
the argument above that firms with large capital expenditures have more opportunities
to adjust leverage thanks to their visits to the capital markets. Moreover, the results also
show that these firms’ leverage adjustment is mainly driven by (net) equity issues, rather
than by debt issues, which is in line with target adjustment behavior given that they
have above-target leverage (as indicated by a positive deviation) and so little incentive
to issue additional debt.

[Insert Table 6 about here]

We next turn to Table 6, which reports the regression and test results for the threshold
partial adjustment model (4) using the remaining transition variables, namely profitabil-
ity, firm size and volatility. The format of this table is similar to that of Table 5 described
above.

Profitability

In Panel A, column (1), the bootstrap-based regime test suggests a threshold effect as
the null of one regime is rejected at 5%. On closer inspection, however, we find almost
no evidence of short-run asymmetries as the individual (short-run) coefficients are not
statistically different between firms in the two regimes (except for growth opportunities).
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Next, the implied speeds of adjustment for firms with low and high profitability are
64% and 74%, respectively, which appears to support the argument that firms with low
profitability are highly levered and so have more incentive to revert to target leverage in
order to avoid financial distress. Nevertheless, these speeds are faster than the estimated
speed in the linear model reported in Table 4 while the difference in these speeds (of 10%)
is not statistically significant.

In Panel B, there is evidence of long-run asymmetries in the impact of tangibility and
growth opportunities on target leverage, although surprisingly there is no such evidence
for profitability. Overall, firms with low and high profitability may adjust toward het-
erogeneous target leverage (i.e., long-run asymmetries), although there is no statistical
evidence in favor of short-run symmetries. Finally, in Panel C, the characteristics of the
two groups of firms with different levels of profitability are significantly different (except
for net debt issued). Compared to the results from Table 5, firms that appear to adjust
at a quick rater, i.e., highly profitable firms, are over-levered but have a surplus and rely
on both debt and equity financing activities to cover their imbalance.

Firm size

The results in column (2) show that the speeds of adjustment for small and large firms
are respectively 77% and 62%, which are faster than the speed estimated for the sym-
metric model discussed in Subsection 5.2. The magnitude of these speeds appears to be
consistent with the argument that due to facing lower cash flow volatility and financial
distress costs as well as fewer debt covenants, large firms have less incentive and external
pressure to adjust capital structures, implying a slower speed of adjustment. However,
the test statistic shows that the difference in the two speeds of adjustment (of 15%) is
not statistically significant. Moreover, according to the regime test, there is no evidence
of a threshold effect conditional on firm size, which is further corroborated by the lack of
asymmetries in the short-run coefficients on the determinants of leverage. This finding
is inconsistent with recent evidence on the relation between firm size and the speed of
adjustment (Dang et al., 2011; Faulkender et al., 2011). Note however that in Panel B,
there is almost no evidence of long-run asymmetries, except for tangibility, which has a
statistically different impact on target leverage for small and large firms. The effects of
profitability and growth are only marginally different at 10%. Taken together, the results
regarding firm size do not provide evidence for short-run and long-run asymmetries in
any meaningful sense.

Volatility

The results in column (3) provide strong evidence of joint short-run asymmetries, as the
bootstrap-based regime test is rejected at 5%. More importantly, this finding is driven
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by the heterogeneity in the speed of adjustment alone because there is no evidence of
significant asymmetries in the remaining short-run coefficients. Indeed, firms with low
and high earnings volatility adjust at different rates (67% versus 56%) and although the
difference in these speeds is only 11%, it is statistically significant at 1%. This finding is
consistent with the prediction that firms with low earnings volatility face a lower cost of
capital and so have more scope to undertake capital structure adjustment.

In Panel B, there is some weak evidence of long-run asymmetries as only firm size
has a differential impact on target leverage for the two groups of firms. Firm size may
matter more for firms with volatile earnings possibly because these firms may face high
(fixed) costs of capital and have limited access to debt financing. Finally, in Panel C,
the results show that firms that adjust more quickly (i.e., those with low volatility) are
over-levered and have a financing deficit. Although these firms retire debt, they mainly
rely on (net) equity issues to reduce their above-target leverage, consistent with target
adjustment behavior. These characteristics are generally similar to those documented for
firms that adjust with a quick speed in Table 5.

Discussion and Summary of Results

The results above combine to provide a complex, yet interesting picture of firms’ asym-
metric capital structure adjustments in both the short and long run. Overall, we are
able to identify two distinct sets of results. The first set consists of cases where the
transition variable used is either financing imbalance, investment or volatility. The com-
mon finding in these cases is that there are significant asymmetries in both the speed of
adjustment and the long-run target leverage relationships.24 Indeed, firms having large
financing imbalance (or a deficit), large investment or low earnings volatility adjust at
statistically quicker rates than those with the opposite characteristics. In terms of the
long-run coefficients, their signs are empirically plausible, the same as in the symmetric
partial adjustment model discussed in Subsection 5.2. More importantly, the effects of
tangibility, profitability and firm size on target leverage tend to be relatively stronger for
firms that adjust with a relatively slower speed. This finding may shed light on a possible
relation between the short-run and long-run adjustment mechanisms, i.e., the speed of
adjustment seems to be inversely proportional to the size of the adjustment in (long-
run) target leverage as proxied by the effects of the determinants of such target. Next,
we also document a consistent pattern about firms having faster speeds of adjustment:
these firms are significantly over-levered with a financing deficit and a considerably large

24Growth opportunities may also be added to this group, though there is no statistical evidence of
heterogeneity in the speed of adjustment for this case. Also recall that for firm investment, the regime
test does not suggest a threshold effect, possibly due to a lack of short-run asymmetries in the coefficients
on the determinants of leverage. Hence, the results for this transition variable should also be treated
with care.
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(positive) deviation from their target leverage.25 Moreover, these firms revert to target
leverage mainly via equity issues, which is consistent with target adjustment behavior.

The second set of results consists of two cases with the transition variable being either
profitability or firm size. In both cases, we find no statistical evidence of asymmetry in
the speed of adjustment. Moreover, compared to the regression results for the linear
model in Subsection 5.2, the estimated speeds of adjustment are both faster than the
(symmetric) speed of adjustment in the linear model. Empirically, one should expect the
parameters in the symmetric model to be close to the weighted means of those in the
low and high regimes; yet we find contrasting evidence here. Hence, the results regarding
the estimated adjustment speeds should be treated with great caution. Note that finding
is inconsistent with recent research (Dang et al., 2011; Faulkender et al., 2011) that
documents significant asymmetry in the speed of adjustment conditional on profitability
and firm size. One possible explanation for our different finding is that unlike previous
studies, we adopt the one-stage estimation procedure allowing for asymmetries in long-run
target leverage relationships. For example, we document some evidence of heterogeneity
in target leverage in that there are significantly different effects of tangibility and size on
long-run target leverage for firms with relatively slow speeds of adjustment (at least in
terms of magnitude).

To sum up, the above discussions indicate that using the first group of variables,
namely financing imbalance, investment and volatility, as the regime-switching variable
provides reasonable empirical evidence of (short-run and long-run) asymmetries in capital
structure adjustments. In contrast, profitability and firm size do not seem to be good
candidates for the regime-switching transition variable.

6 Conclusions

The (dynamic) trade-off theory of capital structure implies that firms facing differential
adjustment costs may follow different paths toward their target leverage. This paper
proposes a new empirical approach to test this prediction by modeling short-run and long-
run asymmetries in capital structure adjustments. Specifically, our testing framework
entertains a possibility that firms may adjust at different rates toward heterogeneous
leverage targets. In terms of methods, we have advanced a dynamic panel threshold model
of leverage and developed appropriate econometric techniques to consistently estimate the
speeds of adjustment in different regimes associated with differential adjustment costs.
We have also provided a valid bootstrap-based procedure to test for the threshold effect.

We have documented some evidence of asymmetries in firms’ adjustment toward target
25Using the (absolute) deviation from target leverage as a transition variable could be useful for

verifying this finding, although such an approach is not permitted in our current modeling that assumes
exogenous transition variables. We leave this issue for future research.
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leverage. Firms with large financing imbalance (or a deficit), large capital expenditures
or low earnings volatility have a significantly faster speed of adjustment than those with
the opposite characteristics. Further, we provide some evidence of long-run asymmetries
that not only do firms with such characteristics adjust at different rates, but they also
seem to adjust toward heterogeneous leverage targets. Firms that have a significantly
faster speed of adjustment possess important characteristics: they are significantly over-
levered with a financing deficit. These firms then revert to their target leverage and
offset their deficit mainly via equity issues rather than by debt issues/retirements. This
finding suggests that firms tend to make quicker adjustment to avoid the potentially large
financial distress costs caused by having above-target leverage, which is consistent with
the dynamic trade-off theory.

On the other hand, conditional on profitability and firm size, two commonly used
proxies for adjustment costs, we find no evidence of short-run asymmetry in the speed of
adjustment and only limited evidence in favor of long-run asymmetries. Noticeably, in
both cases, the estimated speeds of adjustment in the low and high regimes are always
faster than the speed of adjustment estimated for the linear model. This, therefore,
suggests that using profitability and firm size as the transition variable in our regime-
switching framework may not produce plausible empirical results.

A few words of caution are in order. While the empirical framework developed in our
paper is capable of examining the validity of the dynamic trade-off theory, it does not
directly test the predictions of alternative views of capital structure such as the pecking
order theory, the market timing and inertia hypotheses. Our approach to estimating
target leverage follows the convention in the capital structure literature so it may be
subject to potential empirical problems, such as the presence of a mass point at zero-
leverage, non-linearity of leverage ratios and survivorship biases in firm-level panel data
(e.g., Welch, 2007; Cook et al., 2008). Further, the empirical evidence in favor of target
behavior and dynamic rebalancing of leverage may be affected by mechanical mean rever-
sion (Shyam-Sunder and Myers, 1999; Chen and Zhao, 2007; Chang and Dasgupta, 2009),
and be consistent with both the trade-off and modified pecking order theories (Leary and
Roberts, 2005). In terms of methods, our modeling approach only allows for exogenous
regime-switching in dynamic panel threshold models so it would be desirable for future
research to consider endogenous regime-switching mechanisms (Kourtellos et al., 2009).
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Table 1: Rejection Probability of the Bootstrap-based Wald Test in Dynamic Panel
Threshold Models
This table reports the probability of rejecting the null of no threshold effects (one regime) in dynamic
panel threshold models by using the bootstrap-based Wald test statistic as described in Section 4.1. The
probability is evaluated based on 1,000 replications of regression, (25) (the threshold partial adjustment
model) at the 5% and 1% significance levels. The coefficients are estimated by the two-step first-difference
GMM estimator and the threshold value is estimated through a grid search over the range between the
15th and 85th percentiles of the transition variable. Simulated data are generated by (25) with the
parameters set as follows: (δ1, β1, ρ, µq, σu, σv, κ) = (0.5, 1, 0.5, 0, 1, 1, 3) with T = 10 and N = (100, 200).
Two forms of variance are considered in (28), namely homoscedasticity (a = 0) and heteroscedasticity
(a = 0.3). The unit long-run variance is set such that w = 1− a. For each realization of the sample size
(N,T ), T + 10 time period observations are generated and then the first 10 observations are discarded.
Experimented parameter values are specified in the first column.

Error variance Homoscedasticity Heteroscedasticity
Significance level 5% 1% 5% 1%

Number of observations 100 200 100 200 100 200 100 200
(δ2, β2) H0 : φ1 = φ2, π1 = π2
(0.2,0.7) 0.991 1.000 0.971 1.000 0.987 1.000 0.963 1.000
(0.3,0.8) 0.885 0.995 0.773 0.973 0.901 0.988 0.809 0.969
(0.4,0.9) 0.422 0.678 0.261 0.514 0.449 0.708 0.265 0.547
(0.5,1.0) 0.043 0.053 0.016 0.019 0.055 0.058 0.019 0.020
(0.6,1.1) 0.356 0.633 0.194 0.469 0.325 0.627 0.166 0.474
(0.7,1.2) 0.792 0.965 0.650 0.907 0.801 0.956 0.648 0.926
(0.8,1.3) 0.960 0.998 0.890 0.993 0.938 1.000 0.869 0.996
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Table 2: Variable Definitions
This table describes the proxies for the variables considered in the paper. The data set is a panel of UK
firms collected from Datastream and consists of 859 companies and 5,393 firm-year observations over the
period 1996-2003.
Variables Definitions
Leverage Total debt to the market value of equity plus the book value of debt
(Asset) Tangibility Fixed assets to total assets
Growth opportunities The market value of equity plus the book value of debt to total assets
Profitability Earnings Before Interest and Depreciation (EBITD) to total assets
Non-debt tax shields Depreciation to total assets
Size Log of total assets in 1995 prices
Investment Capital expenditures less depreciation divided by fixed assets
Deviation Actual leverage less (estimated) target leverage
Net debt issued Net debt issued to the firm’s market value
Net equity issued Net equity issued to the firm’s market value
Financing imbalance Minus Cash flow after tax plus Net investment (incl. Capital Expenditures,

Acquisitions and Disposals) plus Dividends plus Net change in cash including
changes in working capital, all divided by the firm’s market value

Table 3: Descriptive Statistics
The data set consists of a panel of 859 UK firms with 5,393 firm-year observations over the period 1996-
2003. To minimize the effects of extreme outliers, we follow the literature and winsorize each variable at
the 1st and 99th percentiles. See Table 2 for variable definitions.
Variables Mean Stdev. Min Med. Max Skew. Kurt.
Leverage 0.200 0.199 0.000 0.146 0.990 1.104 3.750
Asset tangibility 0.310 0.243 0.000 0.256 0.997 0.846 2.903
Non-debt tax shields 0.039 0.031 0.000 0.033 0.204 1.947 8.816
Profitability 0.014 0.266 -1.495 0.079 0.446 -3.213 16.255
Growth 2.043 2.216 0.188 1.363 20.000 4.556 30.326
Size 11.189 2.105 1.609 11.012 18.961 0.343 3.167
Investment 0.043 0.665 -3.710 0.022 3.840 0.125 23.768
Financing imbalance 0.024 0.143 -0.690 0.001 0.645 0.296 10.049
Net debt issued -0.005 0.097 -0.540 -0.001 0.358 -1.167 11.891
Net equity issued 0.054 0.169 -0.175 0.001 1.133 3.926 20.030
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Table 4: Regression Results for the Partial Adjustment Model of Leverage
This table presents the regression and test results for the one-stage partial adjustment models of leverage
given by Equation (3). AH-IV stands for the Anderson-Hsiao just-identified instrumental variable esti-
mator, where leverage lagged by two periods is used as an instrument for the first-difference of leverage
lagged by one period. GMM refers to the two-step GMM estimator with Windmeijer’s (2005) small-
sample correction being applied to the computation of the two-step GMM standard errors. AR(2) test is
a test for second-order serial correlation, and is asymptotically distributed as N (0, 1) under the null of no
serial correlation. Sargan test is a test for the validity of instruments and is asymptotically distributed as
χ2 under the null of valid instruments. Figures in () are the standard errors of the coefficients and those
in [] are the p-values of the test statistics. All coefficients are significant at the 1% level. See also Table
2 for variable definitions. All computations are carried out using Stata; the AH-IV and GMM estimates
are obtained using Stata module xtabond2 (Roodman, 2009), which is non-commercially downloadable
through Statistical Software Components (SSC). All program modules available upon request.
Independent Expected Partial Adjustment Model
variables Sign AH-IV GMM
Panel A. Short-run dynamics

Leverage (t-1) + 0.470 0.403
(0.068) (0.074)

Tangibility (t) 0.241 0.231
(0.049) (0.050)

Non-debt tax shields (t) -0.649 -0.549
(0.225) (0.225)

Profitability (t) -0.124 -0.115
(0.017) (0.017)

Growth opportunities (t) -0.009 -0.008
(0.002) (0.002)

Size (t) 0.050 0.051
(0.009) (0.009)

Speed of adjustment 0.530 0.597
Number of observations 3673 3673
Time dummies Yes Yes
AR(2) test -1.48[0.14] -1.51[0.13]
Sargan test 23.82[0.25]
Panel B. Long-run coefficients

Tangibility (t) + 0.455 0.387
(0.116) (0.099)

Non-debt tax shields (t) -/+ -1.224 -0.920
(0.506) (0.433)

Profitability (t) +/- -0.234 -0.193
(0.046) (0.038)

Growth opportunities (t) - -0.017 -0.014
(0.004) (0.004)

Size (t) + 0.095 0.086
(0.021) (0.018)
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