
Accepted Manuscript

Title: Pilot Investigation of Feedback Electronic Image
Generation in Electron Beam Melting and its Potential for
In-Process Monitoring

Authors: Hay Wong, Derek Neary, Sohail Shahzad, Eric
Jones, Peter Fox, Chris Sutcliffe

PII: S0924-0136(18)30452-7
DOI: https://doi.org/10.1016/j.jmatprotec.2018.10.016
Reference: PROTEC 15969

To appear in: Journal of Materials Processing Technology

Received date: 5-1-2018
Revised date: 9-9-2018
Accepted date: 14-10-2018

Please cite this article as: Wong H, Neary D, Shahzad S, Jones E, Fox P, Sutcliffe C, Pilot
Investigation of Feedback Electronic Image Generation in Electron Beam Melting and
its Potential for In-Process Monitoring, Journal of Materials Processing Tech. (2018),
https://doi.org/10.1016/j.jmatprotec.2018.10.016

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Liverpool Repository

https://core.ac.uk/display/161529836?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.jmatprotec.2018.10.016
https://doi.org/10.1016/j.jmatprotec.2018.10.016


1 
 

Pilot Investigation of Feedback Electronic Image Generation 

in Electron Beam Melting and its Potential for In-Process 

Monitoring  

   

Authors: Hay Wonga, Derek Nearya, Sohail Shahzada, Eric Jonesb, Peter Foxa, Chris 

Sutcliffea  

aSchool of Engineering, University of Liverpool, The Quadrangle, Brownlow Hill, 

United Kingdom L69 3GH 

bJones Consultancy, Ardlahan, Kildimo, Co. Limerick, Ireland 

Corresponding author’s email: Hay Wong – hay.wong@liv.ac.uk 

Keywords: Additive Manufacturing; Electron Beam Melting; Metallic Materials; In-

Process Monitoring; Quality Control; Electronic Imaging; Secondary Electrons; 

Backscattered Electrons 

##COLOR SHOULD BE USED FOR ALL FIGURES IN PRINT## 

Abstract 

Electron Beam Melting (EBM) is an additive manufacturing technique increasingly used by 

many industrial sectors, including the medical and aerospace industries. The application of 

this technology is, however, challenged by the lack of process monitoring and control 

systems to monitor process repeatability and component quality reproducibility. Various 

monitoring systems, mainly involving thermal and optical cameras, have been employed in 

previous attempts to study the quality of the EBM process. However, these systems have 
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limitations, which include: (1) images generated unavoidably include monitoring-irrelevant 

regions beyond the processing area and (2) images are subject to keystone distortion. In this 

paper, a digital electronic imaging system prototype is described for the Arcam A1 EBM 

machine. This paper aims to: (1) disseminate the prototype design, (2) demonstrate the 

prototype ability to overcome limitations of the existing thermal and optical imaging systems, 

(3) showcase the potential for the prototype to serve as an alternative EBM monitoring 

technique, and (4) serve as a pilot study for future in-process EBM monitoring research with 

electronic imaging. Digital electronic images were generated by detecting both secondary 

electrons and backscattered electrons originating from interactions between the machine 

electron beam and the processing area using specially designed hardware. Prototype 

capability experiments at room temperature and approximately 320°𝐶 were conducted with 

digital images being generated and analysed from a Ti-6-Al-4V (as demonstrator material) 

test build. Results suggest that this prototype has significant potential to be used for in-

process monitoring of EBM in many manufacturing sectors.   

Introduction 

Electron Beam Melting (EBM) is an Additive Manufacturing (AM) technique that 

makes use of an accelerated electron beam to melt metallic powder on a layer-by-layer basis, 

forming components based on the geometries of the imported three dimensional Computer 

Aided Design (CAD) models, as explained by Gibson et al. (2010). The ability of the EBM 

process to form components from metallic powder arises from electron interactions with 

metallic materials. When an electron beam is accelerated by an anode, focused onto a powder 

bed by an electromagnetic focusing coil and subsequently deflected to specific locations by 

an electromagnetic deflection coil, the electrons penetrate the powder grains, whereupon they 

slow down and convert their kinetic energy into thermal energy. If the energy input is 

sufficient, the temperature of the powder particles rises above their melting point and solid-
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to-liquid phase transformation is initiated i.e. the particle melts. When the beam is raster-

scanned across the preheated powder bed in a tightly controlled, predefined pattern, melt 

tracks are solidified to form fully dense cross sections of the desired components. This 

process is repeated with additional requirement that the underlying solid is also partially 

melting to ensure adequate bonding between the underlying and newly formed layers 

ensuring that full density achieved.  

It is believed that the technique has great potential in the manufacture of components 

with complex designs and structures.  In an evaluation study on powder based EBM 

technology, Gong et al. (2014) concluded that the EBM process would have the capability to 

enable the manufacture of a wide range of difficult to fabricate aerospace and biomedical 

components. Harrysson et al. (2007) and Baudana et al. (2016) investigated the mechanical 

properties of titanium implants and microstructures of test specimens built by the EBM 

process respectively.  Harrysson et al. (2007) indicated that the increased design freedom of 

the EBM process enables the economic manufacture of porous bone ingrowth surfaces for 

orthopedic implants while Baudana et al. (2016) demonstrated that the reduced thermal 

residual stress and the high vacuum process environment would be beneficial for the 

production of aircraft components. Nevertheless, both of these industrial sectors are highly 

regulated and their current standard manufacturing processes used in them are well 

established, as identified by Jarow et al. (2015) and Portolés et al. (2016). Their studies on 

regulations and qualification procedures used  concluded that despite the perceived benefits 

of the EBM process, transition from the current standard manufacturing techniques to a 

layered manufacturing approach would not be possible unless a rigorous EBM process 

monitoring and validation system is available. Mani et al. (2015) shared the same concern in 

their report on the needs for real time control of additive manufacturing powder bed fusion 

processes.  
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  Academic research groups have made efforts building different monitoring systems to 

assess the quality of the EBM process. For open-loop systems, a high speed optical camera 

was used by Scharowsky et al. (2012) to assess the melt pool size. There have been many 

attempts involving the use of Infrared (IR) thermal cameras. For example, Price et al. (2012) 

set up a near IR thermal camera to monitor preheating, contour melting and hatching events, 

while Dinwiddie et al. (2013) and Schwerdtfeger et al. (2012) employed IR cameras to 

detect porosity and flaws. Efforts have also been made to develop close loop feedback control 

systems. Rodriguez et al. (2012) demonstrated how to modify build settings by capturing 

and analyzing the surface temperature of the build chamber while Mireles et al. (2015) 

showed how to apply feedback to manipulate grain size in Ti-6Al-4V microstructures. Both 

Rodriguez et al. (2012) and Mireles et al. (2015) were using IR cameras.  

The monitoring systems referenced focused on the use of thermal and optical 

imaging. There are however, issues when carrying out monitoring with these systems. Firstly, 

the cameras are mounted on top of the machine chamber and monitoring of the processing 

area is carried out through a viewing window.  Field of View (FOV) of images captured by 

these systems may include monitoring-irrelevant regions beyond the processing area. 

Secondly, depending on the camera location, an orthogonal projection of the processing area 

cannot be guaranteed, and images with non-orthogonal projections would be distorted due to 

keystone effect. Fig. 1 (a) shows the location of the state-of-the-art near-IR camera which 

comes with the Arcam A1 EBM machine, hereafter referred to as the EBM machine, as a 

standard kit. The machine electron gun occupies the location directly above the processing 

area, thus the near-IR camera can only be mounted on an off-centred location, viewing the 

processing area at an angle. Fig. 1 (b) is a screenshot taken from the machine computer, 

showing an image captured by the near-IR camera. The figure demonstrates the described 
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imaging issues on FOV and keystone effect. It is thought that these two issues would hinder 

effective monitoring of the EBM process.  

 

 

(a) (b) 

Fig. 1. (a) The Arcam A1 EBM machine electron gun and its off-centred, state-of-the-art 

near-IR camera. (b) EBM machine computer screenshot of an image taken from the near-IR 

camera at room temperature, on a Ti-6Al-4V test build  

It is believed that electronic imaging, which employs similar principles to those used 

in a Scanning Electron Microscope (SEM), offers an alternative to the existing EBM process 

monitoring techniques. Due to its image generation mechanism, the electronic image is 

inherently immune to the above mentioned issues faced by thermal and optical cameras.  

Writing on the principles of electron microscopy, Watt (1997) noted that in a typical 

analogue SEM, when a focused, accelerated primary electron beam is raster-scanned across a 

conductive target surface with the use of electromagnetic lens, Secondary Electrons (SE) and 

Backscattered Electrons (BSE) are generated from interactions between the primary electron 

beam and the conductive target. Reimer (1998) pointed out that some of the primary 

electrons may undergo elastic scattering with the target atoms and scatter back as BSE. 
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During scattering, a portion of energy from either the primary electrons or the BSE may be 

transferred to the atomic electrons in the conduction band of the target atoms via inelastic 

scattering. With sufficient energy, such energized atomic electrons may escape from the 

atoms. If these electrons are close enough to the target surface, they may successfully avoid 

being re-absorbed and be emitted as SE. In an analogue SEM, the SE and BSE, hereafter 

collectively referred to as feedback electrons, are first captured by an electron sensor, turned 

into electrical signal, undergo amplification and subsequently used to generate an analogue 

fluorescent image on a cathode-ray tube. The generation of feedback electrons is sensitive to 

the topographical characteristics of the conductive target. In an early account on the SEM 

instrumentation, Oatley (1972) noted that the change in composition, texture or topography 

at the point where the primary electrons strike the target, would consequently cause variations 

in the feedback electron signal acquired and thus give rise to image contrast on the cathode-

ray tube. Upon reviewing the advantages presented by digital SEM, Postek et al. (1996) 

commented, in comparison to analogue SEM, that instead of projecting an image onto a 

phosphor screen in a cathode-ray tube, digital SEM stores and generates an image digitally 

with the use of electronics. In addition, variations in the feedback electron signal level 

manifest themselves as different grayscale pixel values in a digital image.  

Given the ability of electronic imaging to reveal the topography of a conductive area, 

it is believed that the incorporation of an electronic imaging system in the EBM process will 

offer an alternative to the existing camera based monitoring techniques. 

Materials and Methods 

Bespoke electron sensors, signal processing electronics and image generation 

software were developed to build a EBM process monitoring system prototype. Preliminary 

testing and image capabilty verficiation of the prototype were carried out. The prototype was 
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then interfaced with the EBM machine, for the generation of digital electronic images during 

single-layer monitoring scans at room and elevated temperature. The specification of these 

systems is described below. 

Electron Sensor Design 

The EBM machine makes use of a heat shield, which comprises a stainless steel frame 

and a set of stainless steel plates. The heat shield is an important part of the EBM process as 

it contains the heat and captures condensed material within the machine processing area. As 

feedback electrons bombard the heat-shield during the EBM process, it was postulated that 

the electronically conductive heat shield could be modified to serve as an electron sensor.  

 To enable the heatshield to be used as an electron sensor it first had to be 

electronically insulated from the rest of the machine. This was enabled by the introduction of 

ceramic spacing components to separate and thereby insulate the heat shield from the 

machine chamber.  Ceramics were selected because of their high melting temperature and 

low thermal and electrical conductivities. In addition, a set of stainless steel plates, which 

were used as noise capturing surfaces, were also electrically insulated from both the machine 

chamber and the heat shield by the use of ceramics. Fig. 2 (a) and (b) show the heat shield 

modifications. To sum up, the key design elements of the electron sensor are: (1) the sensor 

must contain electronically conductive surfaces to capture the feedback electrons, (2) the 

sensor must be electronically insulated from the rest of the machine, and (3) the sensor 

surfaces must surround the entire immediate vicinity of the processing area to guarantee good 

signal level. The geometry and/or design of the sensor presented in Fig. 2 (a) and (b) is 

merely one of many possible embodiments, thus its exact design details are of no critical 

importance to readers who would like to fabricate a similar electron sensor. 
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(a) (b) 

Fig. 2. (a) Design of the electron sensor and (b) the electron sensor prototype 

Signal Processing Electronics Design 

The signal processing electronics consisted of a differential signal amplifier and a data 

logger. As illustrated in Fig.3, output of the amplifier, which is the feedback signal with 

enhanced Signal-to-Noise Ratio (SNR), is fed to the data logger for further processing.  Data 

acquired by the data logger was temporarily stored in its built in memory and transmitted via 

Universal Serial Bus (USB) to a monitoring computer. Fig. 4 describes the data logger 

process flow. 

 

Fig.3. Block diagram of the differential signal amplifier 
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Fig. 4. Data logger process flow chart 

 

Fig. 4 shows that the data acquisition cycle was initiated by a synchronisation signal, 

the function of which was to pick up the start of every scan line when the primary electron 

beam was conducting a raster-scanning pattern. This signal was designed to ensure that data-

acquisition was synchronised with movement of the primary electron beam during melting. 

To activate the data acquisition function, the EBM machine beam X and Y scan signals, 
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which were used as location commands for the machine electromagnetic deflection coil, were 

fed into the data logger. Fig. 5 (a) gives an example of the typical machine X and Y scan 

signals during raster-scanning and 5 (b) shows the corresponding raster-scanning pattern. 

 

(a) 

 

(b) 

Fig.5. (a) Typical raster-scanning signals in a two dimension Cartesian plane, the X scan 

signal is a sawtooth waveform, directing the electron beam to move from left to right while 

the Y signal uses step increments to deflect the beam onto a new scan line. (b) The resultant 

raster-scanning pattern consists of multiple scan lines 
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Preliminary Feedback Electron Signal Detection Test 

A preliminary test was set up to explore if the electron sensor and the differential 

signal amplifier could detect and process any feedback electron signals from the EBM 

machine during a single-layer monitoring scan at room temperature. The monitoring area 

consisted of a 200𝑚𝑚 × 50𝑚𝑚 × 1𝑚𝑚 (𝑊 × 𝐷 × 𝐻)   aluminium plate resting on top of a 

200𝑚𝑚 × 200𝑚𝑚 × 1𝑚𝑚 (𝑊 × 𝐷 × 𝐻)  stainless steel plate. In the test, the primary 

electron beam raster-scanned an area of 200𝑚𝑚 × 200𝑚𝑚, from top left to bottom right 

covering both plates, while the sensor and electronics captured and processed the data. In 

SEM imaging, BSE signal shows material contrast due to differences in atomic number 

(Egerton, 2005). As the sensor was designed to capture both SE and BSE, it was expected 

that there would be a contrast in the feedback electron signal level between aluminium and 

stainless steel. Fig. 6 (a) and (b) show the preliminary test setup and results respectively. 

 

(a) 
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(b) 

Fig. 6. (a) Preliminary test setup with an aluminium plate resting on top of a stainless steel 

plate. (b) Test results from oscilloscope showing signal contrast between aluminium and 

stainless steel 

Both raw and amplified feedback electron signals in Fig. 6 (b) illustrate that signals 

are registered during the monitoring scan, between approximately 5𝑠  to 33𝑠 a. In addition, 

differences in signal level are observed between the signal originated from aluminium and 

that from stainless steel. The former gives rise to an amplified signal at approximately 1𝑉, 

sampled between about 5𝑠 to 10𝑠 whilst the latter at approximately 2𝑉, sampled between 

about 10𝑠 to 33𝑠. Qualitatively speaking, the amplified signal shows a greater SNR when 

compared with the raw signal. The results demonstrate that feedback electron signals 

generated from the EBM machine during monitoring scans at room temperature can be 

captured and processed by the electron senor and differential signal amplifier. The sensor and 

amplifier capabilities have been verified.  

Image Generation Software Design 

Following the acquisition of feedback electron signal by the electron sensor, data 

processed by the signal processing electronics (signal amplifier and data logger) was 
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designed to be transmitted to the monitoring computer for the generation of digital images. 

Fig. 7 describes the image generation software process flow. 

 

Fig. 7. Image generation software process flow chart 

The software was designed to allow various input parameters such as, image size in 

pixel, image bit depth, file name and image format to be user-defined.  Imported data from 

the data logger was sliced accordingly and converted to individual data point of integer 
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values. For the generation of a digital image, the individual data points were then allocated to 

their corresponding rows and columns to form a greyscale bitmap.  

Experimental Setup  

The electron sensor, signal processing electronics and the image generation software 

together formed an electronic imaging system prototype for the EBM process. Three sets of 

digital image generation experiments were conducted. The first set aimed to verify the 

prototype data acquisition and image generation ability while the second and third verified 

the prototype ability to generate electronic images when interfaced with the EBM machine. 

In the first set of experiment, a benchtop test was conducted at room temperature to 

verify the data acquisition and image generation abilities of the prototype. Unlike signal 

collection by the electron sensor inside the EBM machine, data acquisition and image 

generation are conducted outside the machine, at room temperature, under real-life condition. 

In the test, a virtual machine X scan signal and a virtual feedback electron signal in voltage 

were generated by a specially developed waveform generator which simulated the electronic 

imaging process. The virtual signals were fed into the prototype for the generation of digital 

images. Fig. 8 gives the block diagram of the waveform generator and Fig. 9 (a) and (b) give 

the waveform generation configuration for the test. 

 

Fig. 8.Block diagram of the waveform generator 
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(a) 

 

(b) 

Fig.9. (a) A fraction of the virtual machine X scan and virtual feedback electron signals 

simulated by the waveform generator, in order to simulate a  

(b)  800 𝑝𝑖𝑥𝑒𝑙 ×  2000 𝑝𝑖𝑥𝑒𝑙 (𝑟𝑜𝑤 × 𝑐𝑜𝑙𝑢𝑚𝑛) digital image with three equally-spaced 

stripes 

The two virtual signals shown in Fig. 9 (a), simulate an electronic imaging process 

with a raster-scanning pattern. The virtual X scan signal was in a sawtooth waveform to 

simulate the primary electron beam horizontal movement while the virtual feedback electron 

signal was assigned to have three voltage levels to represent an image with three equally 

spaced stripes with different pixel values in grayscale, as shown in Fig. 9 (b). Using this 

system prototype, capability could be verified by the successful waveform reconstruction of 

the three-stripe image prior to any active experimentation on the EBM machine. Table. 1 

gives the benchtop test settings in virtual signal simulations and waveform reconstruction. 
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Table. 1. Benchtop test settings 

Benchtop Test Parameter Value 

Virtual feedback electron signal levels  0.67𝑉, 1.33𝑉, 2.00𝑉 

Data logger sampling frequency 132𝑘𝐻𝑧 

Data logger input/output range 0 𝑡𝑜 + 3.3𝑉 

Image size (𝑟𝑜𝑤 × 𝑐𝑜𝑙𝑢𝑚𝑛) 800 𝑝𝑖𝑥𝑒𝑙 ×  2000 𝑝𝑖𝑥𝑒𝑙 

Image bit depth 8 − 𝑏𝑖𝑡, 256 

 

In the second set of experiment, the prototype was interfaced with the EBM machine 

to investigate into image generation from the machine chamber. Single-layer electronic 

imaging trials were carried out on a Ti-6Al-4V (as a demonstrator material due to its 

popularity in the field of additive manufacturing as pointed out by Dutta (2017)) test build at 

room temperature. The test build was manufactured by EBM, from Ti-6Al-4V powder of 

45𝜇𝑚 − 106𝜇𝑚 in size. Fig. 10 (a) and (b) depict the design of the test build and Fig.11 is 

the schematic of the experimental setup. 
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(a) (b) 

Fig. 10. (a) CAD design of the standard electronic imaging test build. The room 

between the nine frames was designed to hold sintered powder during an EBM build. (b) 

The completed test build manufactured by the EBM machine with Ti-6Al-4V powder  

 

 

Fig. 11. Schematic of the electronic imaging trials setup 
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The test build shown in Fig. 10 (a) was developed as a standard electronic imaging 

test build. It was designed for investigating the image contrast in pixel value between sintered 

powder and solidified surfaces.  

In the third set of experiment, the imaging trails carried out in the second set were 

repeated at elevated temperature. In a typical EBM build, the processing area is maintained at 

an elevated temperature by electron beam heating. For example, in any Ti-6Al-4V EBM 

builds, this preheating temperature is approximately at 700°𝐶 (Kirchner et al, 2014).  In the 

experiment, a type K thermocouple placed underneath the Ti-6Al-4V test build was used to 

measure temperature and the machine electron beam heated up the test build via an in-house 

developed heating raster-scanning strategy, in the same manner as in electronic imaging 

depicted by Fig. 5(b). The current experimental setup could only heat up the test build to 

approximately 320°𝐶 due to the rate of heat loss to the machine chamber. Table. 2 and 3 

outline the configurations of the prototype and EBM machine in the second and third set of 

experiments.  

Table. 2. Electronic imaging system prototype configuration 

Prototype Parameter Value 

Differential signal amplifier gain 10 

Data logger sampling frequency 118.8𝑘𝐻𝑧 

Data logger input/output range 0𝑉 −  +3.3𝑉 

Image size (𝑟𝑜𝑤 × 𝑐𝑜𝑙𝑢𝑚𝑛) 1800 𝑝𝑖𝑥𝑒𝑙 ×  1800 𝑝𝑖𝑥𝑒𝑙 

Image bit depth 8 − 𝑏𝑖𝑡, 256 
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Table. 3. EBM machine configuration 

Machine Parameter Value 

Imaging area (𝑊 × 𝐷) 180𝑚𝑚 × 180𝑚𝑚 

Imaging temperature 25°𝐶/ 320°𝐶  

Chamber vacuum level  10−3mbar 

Beam current 1𝑚𝐴 (𝑖𝑚𝑎𝑔𝑖𝑛𝑔)/ 48𝑚𝐴 (ℎ𝑒𝑎𝑡𝑖𝑛𝑔) 

Beam speed 11880 𝑚𝑚𝑠−1(𝑖𝑚𝑎𝑔𝑖𝑛𝑔)/ 35000𝑚𝑚𝑠−1(ℎ𝑒𝑎𝑡𝑖𝑛𝑔) 

Beam focus offset 0 𝑚𝐴 (𝑖𝑚𝑎𝑔𝑖𝑛𝑔)/ 80𝑚𝐴 (ℎ𝑒𝑎𝑡𝑖𝑛𝑔)  

 

Results 

This section presents the results on system prototype capability verification and digital 

electronic image generation at both room and elevated temperatures. 

System Capability Verification 

The benchtop test was conducted to verify the digital image generation capability of 

the prototype. The simulated three-stripe image was reconstructed. Fig. 12 (a) and (b) below 

present the typical reconstruction results.  

 

(a) 
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(b) 

Fig. 12. Waveform reconstruction results: (a) a typical reconstructed three-stripe image 

of 800 𝑝𝑖𝑥𝑒𝑙 × 2000 𝑝𝑖𝑥𝑒𝑙 (𝑟𝑜𝑤 × 𝑐𝑜𝑙𝑢𝑚𝑛) in size and the (b) pixel values (sampled 

virtual feedback electron signal) plot of a typical waveform from a data set of 30 

waveforms 

Images with three stripes of different pixel values were generated. The average pixel value of 

a stripe in the reconstructed grayscale image was defined by Eq. 1. 

 
𝐿𝑖 =

𝑉𝐷𝐿𝑖

𝑉𝐷𝐿𝑀𝐴𝑋

× 𝐴 
(1) 

Where: 

Li – average pixel value. 𝑖 = 1, 2, 3, representing the three stripes 

VDLi – average sampled pixel voltage (from feedback electron) received at the data logger. 

𝑖 = 1, 2, 3, representing the three voltages of the three-stripe region 

VDLMAX – maximum input voltage of the data logger, which is +3.3𝑉 for the test 

A – grayscale bit depth of an image, 𝐴 = 256, 8-bit, in the case of the benchtop test 

ACCEPTED M
ANUSCRIP

T



21 
 

A successful reconstructed image from the benchtop test consisted of 2000 pixels in a 

pixel row, i.e. one waveform. A total of 30 waveforms, 60,000 data points of the sampled 

virtual feedback electron signal data point were randomly chosen from the result data set to 

analyse the accuracy of the signal level and data acquisition cycle of the data logger. The 

mean (μ), standard deviation (σ) and coefficient of variation, (𝐶𝑉) of the pixel values and the 

number of pixel allocated for the representation of each of the three-stripe regions in the 

reconstructed image were calculated.  Table. 4 and 5 show the results of the analyses. 

Table. 4. Average pixel values of the three-stripe region. Data are rounded to 3.s.f. 

Parameter 

Theoretical  

Pixel Value 

μ σ 𝐶𝑉 (%) 

𝐿1 52.0 53.2 1.42 2.67 

𝐿2 103 105 1.10 1.04 

𝐿3 155 156 0.72 0.46 

 

Table. 5. Average number of pixels in each section of the three-stripe region. Data are 

rounded to 3.s.f. 

 Section in a 

Scan Line 

Theoretical 

Number of Pixel 

μ σ 𝐶𝑉 (%) 

Stripe 1 667 666 0.00 0.00 

Stripe 2 667 668 0.00 0.00 

Stripe 3 666 666 0.00 0.00 

Result from Table. 4 shows that the variations in pixel value within each of the three-stripe 

region give rise to a 𝐶𝑉 value of less than 3% and the μ of pixel values in the three-stripe 

region obtained are all less than 2% different from their theoretical values. Result from 
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Table. 5 shows that there are no variations in the number of pixels allocated in each of the 

three-stripe regions for the 30 waveforms analysed and the μ of number of pixels in each 

section of a scan line are less than 1% different from their theoretical vales.  

Digital Image Generation at Room Temperature 

The prototype was interfaced with the EBM machine and single-layer electronic 

imaging trials were carried out under room temperature. Various subsystem electrical signals 

were monitored and recorded during the imaging trials to aide trouble shooting. Fig. 13 (a) 

depicts the 180𝑚𝑚 × 180𝑚𝑚 (𝑊 × 𝐷) imaging area and Fig. 13 (b) – (c) give the typical 

subsystem signals. 

 

(a) 
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(b) 

 

(c) 

Fig. 13. (a) Imaging area of  180𝑚𝑚 × 180𝑚𝑚 (𝑊 × 𝐷)  and typical examples of the 

corresponding subsystem signals: (b) processed machine X scan signal plotted alongside 

the scan line synchronisation signal generated by the data logger and (c) amplified feedback 

electron signals  
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Fig. 13 (b) and (c) show the signals recorded when the primary electron beam was 

raster-scanning a  180𝑚𝑚 × 180𝑚𝑚 (𝑊 × 𝐷) area shown in Fig. 13 (a). Fig. 13 (b) 

demonstrates that the prototype picked up the start of each sawtooth waveform, which is the 

condition machine X scan signals, by switching the X scan line synchronisation signal from 

logic LOW to logic HIGH. Fig. 13(c) gives a set of amplified feedback electron signal from 

one image frame. The feedback electron signal was obtained from the interactions between 

the EBM machine primary electron beam and the surface of the standard electronic imaging 

test build. Digital images were generated from the image generation software by suitably 

collating the feedback electron signal with the processed EBM machine X scan signal.  

Image processing was carried out on the raw digital images generated from the 

electronic imaging trials. Image noise was removed by applying a median filter and image 

contrast was enhanced by carrying out histogram equalisation. Eq. 2 (Gonzalez et al, 2008) 

and Eq. 3 (Gonzalez et al., 2008) define the median filter and histogram equalisation 

functions used respectively. 

 𝑓(𝑥, 𝑦) =  {𝑔(𝑠, 𝑡)}(𝑠,𝑡)∈𝑆𝑥𝑦

𝑚𝑒𝑑𝑖𝑎𝑛  (2) 

Where 

𝑓 (x,y) is the pixel-value of the filtered image at (x,y) 

g(s,t) is the pixel-value of the raw image at (s,t) 

Sxy represents the set of coordinates within a user-defined area of the image 

 

𝑦𝑘 ≜ ⌊[(𝐿 − 1) ∑ ℎ(𝑖)

𝑘

𝑖=0

] + 0.5⌋                        𝑘 = 0, 1, 2, … . . , 𝐿 − 1 

(3) 

Where 

L is the bit depth of an image 
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k is the pixel value within the bit depth  

h(i) is the normalised histogram which gives the probability of occurrence of pixel value i 

∑ ℎ(𝑖)𝑘
𝑖=0   is the cumulative probability distribution of the normalised histogram  

yk is an integer, the equalised number of pixel at pixel value k 

  

Fig. 14 (a) shows a typical raw digital image generated from the electronic imaging 

system prototype during the imaging trials. Fig. 14 (c) and (e) are processed images with 

noise removed and image contrast enhanced.  Fig. 14 (b), (d) and (f) are the histograms of the 

above three images.  

 
 

(a) (b) 
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(c) (d) 

  

(e) (f) 

Fig. 14 (a).  An 8-bit, 1800 𝑝𝑖𝑥𝑒𝑙 × 1800 𝑝𝑖𝑥𝑒𝑙 (𝑟𝑜𝑤 × 𝑐𝑜𝑙𝑢𝑚𝑛) digital electronic image 

(raw) covering an imaging area of 180𝑚𝑚 × 180𝑚𝑚 (𝑊 × 𝐷) in the EBM machine 

processing area generated at room temperature and (b) its histogram. (c) The image with 

median filter applied for noise removal and (d) its histogram. (e) The further processed 

image with histogram equalisation applied for contrast enhancement and (f) its histogram. 
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Digital Image Generation at Elevated Temperatures 

In the third set of experiment, the Ti-6Al-4V test build was heated up by the machine electron 

beam and single-layer electronic imaging trials were carried out under elevated temperature. 

Fig. 15 shows the temperature profile during experiment. The temperature of the test build 

ramps up from room temperature, plateaus around 200°𝐶 for approximately 10 minutes, 

before rising again until around 320°𝐶. The stagnation around 200°𝐶 was due to multiple 

faults on the machine electron beam. When the electron beam raster-scanned the test build 

during heating, some positively charged metal vapour or loosely-bound particles from the test 

build surface accelerated towards the electron gun cathode and anode, which were held at 

negative electric potentials relative to the grounded test build, leading to high-voltage 

vacuum breakdown via arc-discharge between the cathode and the anode (Maiti et al, 2014). 

Multiple arcing warnings were flagged up by the EBM machine computer and the machine 

took around 10 minutes to stabilise. Electronic imaging experiment was eventually carried 

out after heating resumed and the test build temperature reaching approximately 320°𝐶. 

 

Fig. 15. Temperature profile of the Ti-6Al-4V test build during electronic imaging 

experiment at elevated temperature 

ACCEPTED M
ANUSCRIP

T



28 
 

Fig. 16 (a) is a screenshot taken from the EBM machine computer, showing an image 

captured by the machine near-IR camera when the test build temperature was at 

approximately 320°𝐶. The image was captured when the machine chamber light was turned 

off. A bright circular spot in the centre of the test build can be observed. Fig. 16 (b) is a 

screenshot which shows an imaged captured when the machine chamber light was turned on.  

  

(a) (b) 

Fig. 16. EBM machine computer screenshots of images taken from the machine near-IR 

camera at approximately 320°𝐶, on the Ti-6Al-4V test build (a) with machine chamber light 

turned off and (b) turned on.  

 

Fig. 17 (a)-(d) show typical raw and processed electronic images and their 

histograms. Fig. 17(a) is the raw image generated when the test build was at approximately 

320°𝐶. Fig. 17(c) is the processed image with noise filtered and contrast enhanced, in 

accordance with the methods described by Eq. 2 and 3. Fig. 17 (b) and (d) are the histograms 

of the described raw and processed images. 
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(a) (b) 

 
 

(c) (d) 

Fig. 17 (a).  An 8-bit, 1800 𝑝𝑖𝑥𝑒𝑙 × 1800 𝑝𝑖𝑥𝑒𝑙 (𝑟𝑜𝑤 × 𝑐𝑜𝑙𝑢𝑚𝑛) digital electronic image 

(raw) covering an imaging area of 180𝑚𝑚 × 180𝑚𝑚 (𝑊 × 𝐷) in the EBM machine 

processing area generated at approximately 320°𝐶 and (b) its histogram. (c) The processed 

image with median filter applied for noise removal and histogram equalised for contrast 

enhancement and (d) its histogram 

 

 

ACCEPTED M
ANUSCRIP

T



30 
 

Fig. 18 is an image taken after the experiment. It demonstrates the damage done to the test 

build surface during heating. The figure shows horizontal surface markings and delamination 

around the 60𝑚𝑚 × 60𝑚𝑚 imaging location 7.  

 

Fig. 18.  An optical image taken after experiment, showing delamination of the test build 

surface and horizontal markings around imaging location 7 

Histogram quality analyses were carried out on both the raw and processed digital 

electronic images generated at room temperature and approximately 320°𝐶. Reiter et al 

(2014) describe an image quality measure Q in their studies on histogram-based images. Eq. 

4 and Fig. 19 give the definition of the quality measure Q. 

 

 
𝑄 =  

|𝜇2 − 𝜇1|

√𝜎1
2 + 𝜎2

2
 

(4) 

Where 

Q is the image quality measure 

μi is the within-class mean,  𝑖 = 1, 2 , the pixel value class present  

σi is the within-class standard deviation, 𝑖 = 1, 2, the pixel value class present 
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Fig. 19.  A demonstration image and its bimodal histogram showing the definitions of 

threshold, within-class mean and within-class standard deviation (Reiter et al, 2014) 

This image quality measure Q represents the degree of separation between the two pixel 

value classes in the histogram of interest. An image of ideal quality is defined as to consist of 

minimum noise and blur. The separation of the classes in its histogram is maximised while 

the classes’ within-class standard deviations minimized. Thus the greater the Q value, the 

better the image quality. As this measure Q takes into account noise and blur, it gives a global 

impression on image quality. The four histograms obtained from experiments, as described in 

Table. 6, went through Otsu thresholding (Otsu, 1979) for the estimation of their pixel value 

classification thresholds. Thresholding was then followed by image quality measure Q 

analyses of the histograms. Results are summarised in Table. 7. Fig. 16 (a) and (b) are 

thermal images taken by the EBM machine near-IR camera at approximately 320°𝐶. They 

were excluded from the histogram quality analysis as they contained either an undesired 

bright spot or an ill-defined ROI when compared with their digital electronic image 

counterparts. These factors affect the analysis accuracy. 
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Table. 6. The four histograms involved in image quality measure Q analyses 

Histogram Name Temperature Image Condition Figure 

RT_Raw Room temperature Raw 14 (b) 

RT_Processed Room temperature Processed 14 (f) 

320_Raw 320°𝐶 Raw 17 (b) 

320_Processed 320°𝐶 Processed 17 (d) 

 

Table. 7. Histogram quality measure Q analyses. Data are rounded to 3.s.f. 

Histogram Threshold μ1 μ2 σ1 σ2 Q ∆Q ∆Q / Qmin 

RT_Raw 99.0 84.8 113 11.8 7.95 2.02 

0.05 2.48% 

320_Raw 107 92.8 121 11.8 7.18 2.07 

         

RT_Processed 147 90.9 203 32.2 27.5 2.65 

0.02 0.75% 

320_Processed 145 88.8 201 31.4 28.0 2.67 

 

Discussion 

Discussions on the results are presented in this section. Observations in system prototype 

capability verification and digital electronic image generation at both room and elevated 

temperatures are analysed and explained. 

System Capability Verifications 

 The benchtop test was conducted to verify the digital image generation capability of 

the prototype. 800 𝑝𝑖𝑥𝑒𝑙 × 2000 𝑝𝑖𝑥𝑒𝑙 (𝑟𝑜𝑤 × 𝑐𝑜𝑙𝑢𝑚𝑛) digital images (Fig. 12 (a)) were 

generated by the image generation software via waveform reconstruction from the two virtual 
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electrical signals. In addition, results from the analysis of 60,000 virtual feedback electron 

signal data points show that, both 𝐶𝑉 and μ of the pixel value data set for each of the three-

stripe regions are less than 3% different from their theoretical values (Table. 4). This 

indicates that the data logger can sample the virtual feedback electron signal and reproduces 

the three colours of the reconstructed image with the above mentioned accuracy. Moreover, 

Fig. 12(b) and Table. 5 show that no variations are found in the number of pixels in any of 

the three-stripe regions over 30 reconstructed waveforms, when compared with their 

theoretical values. These results suggest that the data acquisition of the virtual feedback 

electron signal is synchronised with the generation of the virtual machine X scan signal and 

thus, results in a reconstructed image with three equally spaced stripes.  

It is thought that the electronic imaging system prototype capability has been verified 

by the reconstruction of the three-stripe image with adequate sampling accuracies in both 

time and logged values. 

Digital Image Generation at Room Temperature 

The electronic imaging trails were conducted to explore the possibility of EBM in-

process monitoring via electronic imaging. Prototype subsystem electrical signals were 

monitored during the imaging trials for potential trouble shooting purposes. The system 

showed that it could generate scan line synchronisation signal and amplified feedback 

electronic signal for the generation of digital images. In Fig. 13 (b), the conditioned machine 

X scan signal is plotted alongside the scan line synchronisation signal. The rising edges of the 

synchronisation signal are aligned with the start of the X scan signal sawtooth waveforms. As 

the generation of a digital electronic image involved the allocation of individual pixel value, 

which is converted from the obtained feedback electron signal, synchronisation between data 

acquisition and the movement of the primary electron beam is critical. The generation of the 
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synchronisation signal confirmed that the prototype can conduct data acquisition according to 

the beam movement. Fig. 13 (c) shows the amplified feedback electron signal. Raw feedback 

electron signal was processed and configured to be within the prototype input range of 0𝑉 to 

+3.3𝑉.  

Digital electronic images were generated during imaging trials. The typical raw image 

generated (Fig. 14 (a)) achieves the correct user-defined size and bit depth. Image contrast is 

observed between regions of solidified Ti-6Al-4Vsurface and sintered Ti-6Al-4V powder.  

Fig. 14 (b) is the histogram of the raw image and it shows two pixel value peaks. The peaks 

correspond to the regions of solidified surface and sintered powder respectively. Reig et al. 

(2013) investigated the bulk porosity of sintered Ti-6Al-4V powder and reported that the 

porosity is approximately 32% for powder of 180𝜇𝑚 − 600𝜇𝑚 in size, after being sintered 

at 1300°𝐶  to 1400°𝐶 for up to eight hours. It is thought that the darker colour (lower in 

pixel value) regions in Fig. 14 (a) come from the bulk porosity of the sintered powder. From 

a qualitative perspective, it is believed that there is less material to interact with the primary 

electron beam for a given area in the sintered powder when compared with that of the 

solidified surface. This leads to a lower feedback electron signal level and thus a lower pixel 

value.  

 A median filter was applied to raw images in order to reduce noise. The typical 

noise-filtered image (Fig. 14 (c)) has a histogram (Fig. 14 (d)) with two peaks, in which the 

numbers of pixels are higher than those in the raw image histogram (Fig. 14 (b)), as expected 

after noise removal (approximately 140000 and 100000 pixels in Fig. 14 (d) against 

approximately 100000 and 80000 pixels in Fig. 14 (b)). The median filter functions by 

replacing the target pixel value with the median pixel values of a user-defined neighbourhood 

surrounding the target pixel. Consequently, pixels containing noise, i.e. pixels values with 

large differences when compared with that of the neighbourhood, are replaced by the median 

ACCEPTED M
ANUSCRIP

T



35 
 

pixel values of the neighbouring pixels. This leads to more pixels falling into the two main 

pixel value groups which manifest themselves as two higher peaks in Fig. 14 (d). 

 Noise removal was followed by histogram equalisation. The typical resultant image 

(Fig. 14 (e)) has a histogram (Fig. 14 (f)) in which the pixel values are more spread out and 

occupy the whole available bit depth, when compared with Fig. 14 (d). Consequently, Fig. 14 

(e) presents the test build features with greater contrast to the background when compared 

with Fig. 14 (a) and (c).   

The digital electronic images successfully show the nine imaging locations across the 

machine processing area, and demonstrate image contrast between solidified Ti-6Al-

4Vsurface and sintered Ti-6Al-4V powder. 

Digital Image Generation at Elevated Temperature 

Fig. 15 shows the test build temperature profile measured. Electronic imaging trials 

were carried out at approximately 320°𝐶. A negative heating rate is observed from Fig. 15 at 

1.2 hours into the experiment. This suggests that the test build struggled to maintain its 

temperature during the experiment. It is thought that the current in-house developed heating 

scan strategy failed to raise the test build temperature beyond 320°𝐶 via electron beam 

heating, due to heat loss to the machine chamber. Electron beam heating pattern and 

parameters different from those used in the experiment (Fig. 5(b) and Table. 3) will be 

explored in future studies to improve heating efficiency. 

Fig. 16 (a) and (b) are EBM machine computer screenshots of images taken by the 

machine near-IR camera at approximately 320°𝐶. The bright spot in Fig. 16 (a) is thought to 

be attributed to incandescence of the electron gun cathode. The EBM machine has a 

thermionic electron gun (Wysocki et al, 2017), when the tungsten cathode gets heated, it 

emits blackbody radiation according to Planck’s law (Jain et al, 1998). When the machine 
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chamber light was turned on during experiment, the image contrast due to incandescence was 

no longer observable, as demonstrated by Fig. 16(b). The effect of cathode incandescence is 

thought to be a potential issue with thermal / optical imaging systems. These systems rely on 

the correct operation of the machine chamber light. If the chamber light malfunctions, the 

quality of the images captured during in-process data collection would be compromised.  

Fig. 17 (a) shows a typical, raw digital electron image generated at approximately 

320°𝐶. In comparison to Fig. 16(a) and (b), the image FOV of Fig. 17(a) only consists of an 

user-defined 180 mm ×180 mm (W×D) Regions of Interest (ROI), without including any 

monitoring-irrelevant regions beyond the machine processing area. Thus, all image pixels are 

carrying useful information for monitoring. In addition, the electronic imaging mechanism 

guarantees the generation of an orthogonal projection of the ROI. Therefore, the digital 

electronic images do not suffer from the keystone distortion (distortion of geometry due to 

non-orthogonal projection) as observed in Fig. 1(b) and Fig. 16(b). In addition, Fig. 14(a) 

and Fig. 17(a) are raw electronic images generated when the chamber light was switched off. 

They show that cathode incandescence does not influence the electronic image quality. It is 

because whilst energy of the electron cathode blackbody radiation is carried by photons, the 

electron sensor in the prototype only registers electrons impinging onto its sensing surface. 

The blackbody radiation is invisible to the electronic imaging system. Moreover, when 

compared with the EBM machine near-IR image of Fig. 16(b), even the raw electronic image 

of Fig. 17(a) reveals more topographical details of the test build. Fig. 17(a) shows that all 

imaging location numbers are identifiable and damages on the test build due to heating can be 

observed.  The horizontal markings across the whole image, cracks in the sintered powder 

areas and delamination around imaging location 4 and 7 are thought to be damages due to 

heating of the test build. Fig. 18 is an optical image taken after the imaging experiment, 
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which gives a zoomed-in perspective onto imaging location 7. The figure confirms that there 

is delamination around imaging location 7.  

It is thought that the digital electronic image quality is temperature independent, 

between room temperature and approximately 320°𝐶. Histogram quality analyses were 

carried out on four electronic images and global image quality measure Q values were 

calculated. Table. 7 shows that the difference in Q values between raw electronic images 

taken at room temperature and at approximately 320°𝐶  is less than 3%. The difference in Q 

values drops to below 1% when the images are processed in accordance with Eq. 2 and 3 

(noise filtered and contrast enhanced). The temperature range will be extended in future 

studies to include the in-process monitoring temperature, i.e. approximately 700°𝐶 for Ti-

6Al-4V (demonstrator material), in order to give a bigger picture of the influence of 

temperature on image quality. 

 Conclusions 

 An electronic imaging system prototype has been presented in this paper. Although 

the prototype was designed only for the Arcam A1 EBM machine in this study, it is thought 

that the design process and technical details described can serve as references to readers who 

wish to carry out similar work on other EBM machines.  

Capability of the prototype was verified by both benchtop simulations and by 

interfacing with a commercial EBM machine. With the use of the prototype, single-layer 

electronic imaging trials were carried out on a standard electronic imaging test build in the 

EBM machine at both room temperature and approximately 320°𝐶, and digital electronic 

images were generated. Comparisons between near-IR and electronic images were made. It is 

observed that the electronic image FOV is confined to the user-defined ROI and the 

electronic images are not keystone distorted. Moreover, electronic images are not affected by 
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electron gun cathode incandescence. In addition, image contrast between sintered Ti-6Al-4V 

powder and its solidified surface is observed.  Comparisons between electronic images 

generated at room temperature and approximately 320°𝐶 were made. It is observed that the 

difference in histogram quality measure Q values is less than 3% for the comparison between 

raw electronic images and less than 1% for that between processed electronic images. 

Electronic image quality has been shown to be almost independent of temperature within the 

temperature range involved in this study. 

With regard to in-process EBM data collection, it is thought that the electronic 

imaging system prototype has the potential to be an alternative to systems which employ 

thermal or optical imaging. There will be challenges moving to in-process data collection in 

order to realise the potential. They are thought to include, carrying out imaging on multi-layer 

for the whole additive manufacturing process, working at in-process, elevated temperature as 

the EBM cycle includes preheating of the processing area and dealing with metallisation 

generated from vaporisation of metal powder during the EBM process. With realisation of the 

described development, it is envisaged that data analysis with machine learning techniques 

could be conducted on the collected data for defect detection purposes. The combination of 

data collection and data analysis will enable an in-process EBM monitoring system to be 

developed. An EBM monitoring system in turn is thought to be crucial for research on 

feedback defect-corrective actions. This chain of future development will eventually lead to a 

close-loop control EBM machine, enabling the effective manufacture of certified metal 

components for safety-critical industries, including medical device, aerospace, automotive, 

and nuclear industry.  
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