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We prove that a Fano complete intersection of codimension
k and index 1 in the complex projective space PM+k for
k > 20 and M > 8k log k with at most multi-quadratic
singularities is birationally superrigid. The codimension of
the complement to the set of birationally superrigid complete
intersections in the natural parameter space is shown to
be at least 1

2(M − 5k)(M − 6k). The proof is based on
the techniques of hypertangent divisors combined with the
recently discovered 4n2-inequality for complete intersection
singularities.
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Introduction

0.1. Complete intersections of index one. Let k > 20 be a fixed integer. For
any integral k-uple d = (d1, . . . , dk), such that 2 6 d1 6 · · · 6 dk set M = |d| − k,
where |d| = d1 + · · ·+ dk and let

P(d) =
k∏

i=1

Pdi,M+k+1

be the space of k-uples of homogeneous polynomials of degree d1, . . . , dk, respectively,
on the complex projective space P = PM+k. Here the symbol Pa,N stands for
the linear space of homogeneous polynomials of degree a in N variables which are
naturally interpreted as polynomials on PN−1. We write f = (f1, . . . , fk) ∈ P(d) for
an element of the space P(d). We set also

Pfact(d) ⊂ P(d)
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to be the set of k-uples f = (f1, . . . , fk) such that the zero set

V (f) = {f1 = · · · = fk = 0} ⊂ P

is an irreducible, reduced and factorial complete intersection of codimension k. Note
that for any f ∈ Pfact(d) the projective variety V (f) is a primitive Fano variety of
index 1, that is,

Cl V (f) = Pic V (f) = ZH,

where H is the class of a hyperplane section (this is by the Lefschetz theorem), and
KV (f) = −H. Therefore we may ask if V = V (f) is birationally rigid or superrigid
(see [1, Chapter 2] for the definitions).

Theorem 0.1. Assume that M > 8k log k. Then there exists a non-empty
Zariski open subset Preg(d) ⊂ Pfact(d), such that:

(i) for every f ∈ Preg(d) the variety V = V (f) is birationally superrigid,

(ii) the inequality

codim((P(d) \ Preg(d)) ⊂ P(d)) > (M − 5k)(M − 6k)

2
(1)

holds.

Birational superrigidity of generic complete intersections of index 1 (for M > k+
7) was shown in [2, 3], but only non-singular complete intersections were considered
there, so that the complement to the set of birationally superrigid varieties could
be a divisor. In this paper we include complete intersections with multi-quadratic
singularities into consideration. As a result, we get a much better estimate for the
codimension of the complement: when k is fixed and M is growing, the codimension
is of order 1

2
M2, which is quite high.

We now proceed to explicit definitions of Zariski open subsets in P(d).

0.2. Complete intersections with multi-quadratic singularities. Let us
describe the conditions for the singularities of a complete intersection that guarantee
its factoriality. Take an arbitrary k-uple f ∈ P(d), the zero set V = V (f) of which
is an irreducible reduced complete intersection of codimension k. Let o ∈ V be a
point. Fix a system of affine coordinates (z1, . . . , zM+k) on an affine chart CM+k ⊂ P
with the origin at the point o. Write the corresponding dehomogenized polynomials
(denoted by the same symbols) in the form

f1 = q1,1 + q1,2 + · · ·+ q1,d1 ,
. . .

fk = qk,1 + qk,2 + · · ·+ qk,dk
,

where qi,j is a homogeneous polynomial in z∗ of degree j. For a general point o ∈ V

dim〈q1,1, . . . , qk,1〉 = k,
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that is, o ∈ V is non-singular. Assume now that dim〈q1,1, . . . , qk,1〉 6 k − 1, that is
to say, o ∈ V is a singular point.

Definition 0.1. The singularity o ∈ V is a correct multi-quadratic singularity
of type 2l, where l ∈ {1, . . . , k}, if the following conditions are satisfied:

• dim〈q1,1, . . . , qk,1〉 = k − l,

• for a general linear subspace P ⊂ P of dimension max{2k + 2, k + 3l + 3},
containing the point o, the intersection VP = V ∩P has an isolated singularity
at the point o,

• for the blow up ϕP : V +
P → VP of the point o the exceptional divisor QP =

ϕ−1(o) is a non-singular complete intersection of type 2l in the max{k + l +
1, 4l + 2}-dimensional projective space.

Note that by Definition 0.1, the codimension of the singular locus of V near a
correct multi-quadratic singularity is at least 2k + 2.

Now let us discuss the conditions of Definition 0.1 in more detail. There is a
subset I ⊂ {1, . . . , k} such that |I| = k − l and the linear forms qi,1, i ∈ I, are
linearly independent:

〈q1,1, . . . , qk,1〉 = 〈qi,1 | i ∈ I〉.
By the genericity of P , the restrictions qi,1|P , i ∈ I, remain linearly independent, so
that the zero set

VP,I = {fi|P = 0 | i ∈ I}
near the point o is a non-singular complete intersection of codimension k − l. Let

ϕP,I : V +
P,I → VP,I

be the blow up of the point o ∈ VP,I with the exceptional divisor EP,I = ϕ−1
P,I(o)

being the max{k + l + 1, 4l + 2}-dimensional projective space. Now we can consider
the blow up ϕP as the restriction of the blow up ϕP,I onto VP , that is, V +

P is the
strict transform of VP on V +

P,I . In terms of this presentation, the exceptional divisor
QP ⊂ EP,I is given by the set of l equations

qi,2|EP,I
= 0, i ∈ {1, . . . , k} \ I.

Definition 0.1 requires QP to be a non-singular complete intersection of type 2l in
the projective space EP,I .

Definition 0.2. We say that an irreducible reduced complete intersection
V = V (f) has at most correct multi-quadratic singularities if every point o ∈ V

is either non-singular or a correct multi-quadratic singularity of type 2l for some
l ∈ {1, . . . , k}.
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The set of k-uples f ∈ P(d) such that V (f) satisfies Definition 0.2 is denoted
Pmq(d). The subset Pmq(d) ⊂ P(d) is obviously Zariski open. Since for f ∈ Pmq(d)
we have

codim (Sing V (f) ⊂ V (f)) > 2k + 2,

by Grothendieck’s theorem on parafactoriality of local rings (see [4]) the complete
intersection V (f) is a factorial variety. Therefore, Pmq(d) ⊂ Pfact(d).

Theorem 0.2. The following estimate holds:

codim((P(d) \ Pmq(d)) ⊂ P(d)) > (M − 4k + 1)(M − 4k + 2)

2
− (k − 1) (2)

Remark 0.1. We construct the subset Preg(d) ⊂ Pmq(d) below by removing
some additional closed subsets from Pmq(d).

0.3. Regular complete intersections. We keep the coordinate notations of
Subsection 0.2 at a point o ∈ V . For brevity and uniformity we treat the non-
singular case o 6∈ Sing V as a multi-quadratic case of type 2l for l = 0. Let us place
the homogeneous polynomials

qi,1, i ∈ I, qi,j, j > 2,

in the standard order, corresponding to the lexicographic order of pairs (i, j): (i1, j1)
precedes (i2, j2), if j1 < j2 or j1 = j2 but i1 < i2. Thus we obtain a sequence

h1, h2, . . . , hM+k−l (3)

of M + k − l homogeneous polynomials in z∗ of non-decreasing degrees: deg he+1 >
deg he.

Definition 0.3. The point o ∈ V is regular if the sequence of polynomials, which
is obtained from (3) by removing the last [2 log k] − l members, is regular in Oo,P.
(Here [·] means the integral part of a non-negative real number; if l > [2 log k], we
remove no members of the sequence (3).)

In plain words, Definition 0.3 requires that the set of common zeros of the
polynomials he(z) in the sequence, obtained from (3) by removing the last [2 log k]−l
members, is of the correct codimension. Since the polynomials h∗ are homogeneous,
we may consider them as polynomials on the projective space PM+k−1 in the homogeneous
coordinates (z1 : · · · : zM+k) and so understand the regularity in the projective
setting.

Definition 0.4. The complete intersection V = V (f), for f ∈ Pmq(d), is regular,
if it is regular at every point o ∈ V , singular or non-singular. If this is the case, we
write f ∈ Preg(d).

Theorem 0.3. Assume that f ∈ Preg(d). Then V = V (f) is birationally
superrigid.

Theorem 0.4. The following estimate holds:

codim((Pmq(d) \ Preg(d)) ⊂ P(d)) > (M − 5k)(M − 6k)

2
. (4)
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Proof of Theorem 0.1. Since the right hand side of (4) is obviously higher
than that of (2), Theorem 0.1 follows immediately from Theorems 0.2, 0.3 and 0.4.
Q.E.D.

0.4. The structure of the paper. Our paper is organized in the following way.
In Section 1 Theorem 0.3 is shown. This is done by the technique of hypertangent
divisors (the constructions can be found in [2] or [1, Chapter 3] or [5]), combined
with the recently discovered 4n2-inequality for complete intersection singularities
[6]. We need to take into consideration the fact that the regularity condition holds,
generally speaking, not for the whole sequence (3), but for a shorter one, so that
the resulting estimates are weaker than in [2]. However, we check that they are still
sufficient for birational superrigidity. By the way, the biggest deviation from the
computations in [2] is for non-singular points.

In Section 2 we show Theorem 0.2. This is rather straightforward and done by
induction on the codimension k of the complete intersection (here there is no need
to assume that k > 20; the case k = 2 was done in [7], k = 1 in [8]).

In Section 3 we show Theorem 0.4. The computations needed for the proof are
really hard; we did our best to make them as clear and compact as possible. The
estimates for the codimension are obtained by the “projection” technique introduced
in [9] and also used in [7].

0.5. Historical remarks. The first complete intersection of codimension at
least 2 that was shown to be birationally rigid was the complete intersection of a
quadric and a cubic V2·3 ⊂ P5, see [10]; for a modernized exposition, see [1, Chapter
2]. The variety V2·3 was assumed to be general in the sense that it does not contain
lines with “incorrect” normal sheaf. Singular complete intersections V2·3 ⊂ P5 were
later studied in [11].

Generic complete intersections V ⊂ PM+k of type d with |d| = M + k and
M > 2k + 1 were proved to be birationally superrigid in [2]. In [3] superrigidity
was extended to the families with M > k + 3, M > 7 and dk = max{di} > 4, and
in [12] to complete intersections of k2 quadrics and k3 cubics such that M > 12
and k3 > 2. Today birational superrigidity remains an open problem only for three
infinite series: complete intersections of type d, where d is

(2, . . . , 2) or (2, . . . , 2, 3) or (2, . . . , 2, 4)

and finitely many families with M 6 11.

In [8] a bound for the codimension of the locus of non-superrigid hypersurfaces
of index 1 was given. Such bounds are important for investigations of birational
geometry of Fano fibre spaces with a higher-dimensional base, see [13, 14]. Similar
bounds were obtained for complete intersections of codimension k = 2 in [7] and for
double quadrics and cubics (which could be understood as complete intersections of
codimension 2 in a weighted projective space) in [15].

For an alternative approach to proving birational superrigidity of Fano complete
intersections in the projective space, see [16]. Here are also some other papers on
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birational geometry of Fano complete intersections and their generalizations: [17-22].

1 Proof of birational rigidity

In this section we prove Theorem 0.3. First (Subsection 1.1) we remind the definition
of a maximal singularity and prove that the centre of a maximal singularity is of
codimension at least 3. After that, in Subsection 1.2 we construct hypertangent
divisors. The construction is standard but singular points need special attention. In
Subsection 1.3 we exclude the case when the centre of the maximal singularity is not
contained in the singular locus of V . In Subsection 1.4 we exclude the case when the
centre of the maximal singularity is contained in the locus of multi-quadratic points
of type 2l. Since it follows that a mobile linear system can not have a maximal
singularity, the variety V is shown to be birationally superrigid.

1.1. Maximal singularities. As usual, we prove that a variety V = V (f),
where f ∈ Preg(d), is birationally superrigid by assuming the converse and obtaining
a contradiction. So fix a tuple f ∈ Preg(d) and the corresponding complete intersection
V = V (f) and assume that V is not birationally superrigid. This implies immediately
that for some mobile linear system Σ ⊂ |nH| and some exceptional divisor E over
V the Noether-Fano inequality

ordE Σ > n · a(E)

is satisfied, where a(E) is the discrepancy of E with respect to V . In other words,
E is a maximal singularity of Σ (see, for instance [1, Chapter 2]). Let B ⊂ V be the
centre of E on V , an irreducible subvariety of codimension > 2.

Lemma 1.1. codim(B ⊂ V ) > 3.

Proof. Assume the converse: codim(B ⊂ V ) = 2. Then B 6⊂ Sing V , so that
the inequality

multB Σ > n

holds. Consider the self-intersection Z = (D1 ◦D2) of the system Σ, where D1, D2 ∈
Σ are general divisors. Obviously, Z = βB + Z1, where β > n2 and the effective
cycle Z1 of codimension 2 does not contain B as a component.

Let P ⊂ P be a general (2k+1)-subspace. Since codim(Sing V ⊂ V ) > 2k+2, the
intersection VP = V ∩ P is non-singular. By Lefschetz, the numerical Chow group
A2VP of codimension 2 cycles on VP is ZH2

P , where HP is the class of a hyperplane
section of VP . Setting ZP = Z|P and BP = B|P , we obtain the inequality

deg (ZP − βBP ) > 0.

As BP ∼ mH2
P for some m > 1, this inequality implies that

deg V · (n2 −mβ) > 0,

which is impossible. Q.E.D. for the lemma.
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Note that if codim(B ⊂ V ) 6 2k + 1, then B is not contained in the singular
locus Sing V of the complete intersection V .

1.2. Hypertangent divisors. In order to exclude the maximal singularity
E, we need the construction of hypertangent linear systems. It is well known and
published many times (see [2] or [1, Chapter 3] or the most recent application [5]),
but some minor modifications are needed to cover the multi-quadratic case, so we
sketch this construction here. We fix a point o and use the notations of Subsection 0.2
and work in the affine chart CM+k of the space P with the coordinates z1, . . . , zM+k;
the point o ∈ V is the origin. Let j > 2 be an integer. Recall that for some
l ∈ {0, 1, . . . , k} and a subset I ⊂ {1, . . . , k}, such that |I| = k − l, the linear forms
qi,1, i ∈ I, are linearly independent, whereas the other forms qi,1, i 6∈ I, are their
linear combinations. Denote by

fi,α = qi,1 + · · ·+ qi,α

the truncated i-th equation in the tuple f .

Definition 1.1. The linear system

Λ(j) =

{(∑
i∈I

qi,1si,j−1 +
k∑

i=1

di−1∑
α=2

fi,αsi,j−α

)∣∣∣∣∣
V

= 0

}
,

where si,j−α independently run through the set of homogeneous polynomials of
degree j − α in the variables z∗ (if j − α < 0, then sj−α = 0), is called the j-th
hypertangent system at the point o.

For uniformity of notations, we write Λ(1) for the tangent linear system:

Λ(1) =

{(∑
i∈I

qi,1si,0

)∣∣∣∣∣
V

= 0

}
.

The Zariski tangent space {qi,1 = 0 | i ∈ I} will be written as T . We set c(1) = k− l
and for j > 2

c(j) = k − l + ]{(i, α) | i = 1, . . . , k, 1 6 α 6 min{j, di − 1} }.
Further, set m(j) = c(j) − c(j − 1), where c(0) = 0, and for j = 1, . . . , dk − 1 take
m(j) general divisors

Dj,1, . . . , Dj,m(j)

in the linear system Λ(j). Putting them into the standard order, corresponding to
the lexicographic order of the pairs (j, α) (see Subsection 0.3 for a similar procedure),
we obtain a sequence

R1, . . . , RM−l

of effective divisors on V . Set Nl = M − l if l > [2 log k] and Nl = M − [2 log k],
otherwise. In what follows, we will really use only the divisors R1, . . . , RNl

, but it
is convenient to keep the entire sequence.
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Proposition 1.1. The equality

codimo

((
Nl⋂
j=1

|Rj|
)
⊂ V

)
= Nl

holds, where |Rj| stands for the support of Rj.

Proof. Since
fi,α|V = (−qi,α+1 + . . . )|V (5)

for 1 6 α 6 di−1, where the dots stand for higher order terms in z∗, the codimension
of the base locus of the tangent linear system Λ(1) near the point o is equal to (k− l)
and of the hypertangent linear system Λ(j), j > 2, is equal to

(k − l) + codim({qi,α|T = 0 | 1 6 i 6 k, 1 6 α 6 1 + min{j, di − 1} } ⊂ T ).

Therefore, for a general choice of hypertangent divisors R∗, the equality

codimo

((
i⋂

j=1

|Rj|
)
⊂ V

)
= i

follows from the regularity of the subsequence

h1, . . . , hi

of the sequence (3). Now our claim follows immediately from the regularity condition
(see Definition 0.3). Q.E.D.

For a hypertangent divisor Ri = Dj,α, where j ∈ {1, . . . , dk − 1} and α ∈
{1, . . . , m(j)}, the number

βl,i = β(Ri) =
j + 1

j

is its slope.

Set ϕ : V + → V to be the blow up of the point o with Q = ϕ−1(o) the exceptional
divisor. The symbol R+

i means the strict transform of Ri on V +.

Proposition 1.2. (i) R+
i ∼ jϕ∗H − γiQ, where γi > j + 1.

(ii) For any irreducible subvariety Y ⊂ V of codimension > 2 such that Y 6⊂ |Ri|
the algebraic cycle (Y ◦Ri) of the scheme-theoretic intersection satisfies the inequality

multo

deg
(Y ◦Ri) > βl,i

multo

deg
Y.

(Here the symbol multo / deg means, as usual, the ratio of the multiplicity at o to
the degree in P.)

Proof. (i) follows from (5), (ii) follows from (i). Q.E.D.
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1.3. The non-singular case. In the notations of Subsection 1.1, assume
that B 6⊂ Sing V . We want to show that this case is impossible by obtaining a
contradiction. We write N for N0 and βi for β0,i for simplicity of notations.

By [1, Chapter 2, Section 2] the 4n2-inequality is satisfied:

multB Z > 4n2,

where Z is the self-intersection of the mobile system Σ ⊂ |nH|. Take a point o ∈ B
of general position, o 6∈ Sing V , and let Y2 be an irreducible component of Z with
the maximal value of the ratio multo / deg. Then

multo

deg
Y2 >

4

d
.

Take general hypertangent divisors R1, . . . , RM as described in Subsection 1.2. The
first k of them, R1, . . . , Rk, are actually tangent divisors and we know that

codimo((|R1| ∩ · · · ∩ |Rk|) ⊂ V ) = k.

Proceeding as in Section 1 of [2], we construct a sequence of irreducible subvarieties

Y2, . . . , Yk,

such that codim(Yi ⊂ V ) = i, Y2 is an irreducible component of Z with the maximal
value of the ratio multo / deg, Yi+1 is an irreducible component of the scheme-
theoretic intersection (Yi ◦ Ri−1) with the maximal value of the ratio multo / deg
for i = 2, . . . , k − 1. Therefore, Yk ⊂ V is an irreducible subvariety of codimension
k, satisfying the inequality

multo

deg
Yk >

2k

d
,

where d = d1 · · · · · dk = deg V .

Lemma 1.2. Yk 6⊂ |Rk−1|.
Proof. Assume the converse: Yk ⊂ |Rk−1|. The hypertangent divisors being

general, this implies that

Yk ⊂ {q1,1|V = · · · = qk,1|V = 0}.
However, as codim(Sing V ⊂ V ) > 2k + 2, we can take the section VP of V by a
generic linear subspace P ⊂ P of dimension 3k + 1, which is a (2k + 1)-dimensional
non-singular complete intersection in P3k+1. By Lefschetz, the scheme-theoretic
intersection of codimension k on VP

({q1,1|VP
= 0} ◦ · · · ◦ {qk,1|VP

= 0})
must be irreducible and reduced. Therefore, the scheme-theoretic intersection of
codimension k on V

({q1,1|V = 0} ◦ · · · ◦ {qk,1|V = 0})
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is irreducible and reduced. By the regularity condition, this irreducible subvariety
has multiplicity precisely 2k at the point o and the degree d. Therefore, it cannot
be equal to Yk. We got a contradiction, proving the lemma. Q.E.D.

By the last lemma, we can proceed in exactly the same way as in [2, Section
2]: form the scheme-theoretic intersection (Yk ◦ Rk−1) and obtain an irreducible
subvariety Yk+1 ⊂ V of codimension k + 1, satisfying the inequality

multo

deg
Yk+1 >

2k+1

d
.

After that, still following the arguments of [2, Section 2], we use the hypertangent
divisors Rk+2, . . . , RN to obtain a sequence of irreducible subvarieties Yk+2, . . . , YN

of codimension codim(Yi ⊂ V ) = i, such that Yi is a component of the algebraic
cycle (Yi−1 ◦ Ri) of the scheme-theoretic intersection of Yi−1 and Ri (the regularity
condition and genericity of hypertangent divisors in their linear systems guarantee
that Yi−1 6⊂ |Ri|) with the maximal value of the ratio multo / deg. Therefore,

multo

deg
Yi > βi

multo

deg
Yi−1.

The last subvariety YN is positive-dimensional and satisfies the estimate

multo

deg
YN > γ =

2k+1

d
·

N∏

i=k+2

βi.

Proposition 1.3. The inequality γ > 1 holds.

Note that this claim provides the contradiction we need and excludes the non-
singular case.

Proof. Now it is convenient to use the whole set R1, . . . , RM of hypertangent
divisors, as we have the obvious identity

d = d1 · · · · · dk =
k∏

j=1

dj−1∏
α=1

α + 1

α
=

M∏
i=1

βi.

Recall that β1 = · · · = βk = 2 and βk+1 = 3
2
. Therefore, γ can be re-written as

γ =
4

3d

N∏
i=1

βi =
4

3
β−1,

where

β =
M∏

i=N+1

βi (6)

and our proposition follows from
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Lemma 1.3. The inequality β < 4
3

holds.

Proof of the lemma. Note first of all that for j > N + 1 we have βj 6 1 + 1
a
,

where a =
[

M
k

]
. Indeed, assume the converse: βN+1 > 1 + 1

a
. This means that

all homogeneous polynomials hk+1, . . . , hk+N in the sequence (3) are some qi,α with
α < a. Therefore,

N 6 ]{qi,α | 1 6 i 6 k, 2 6 α 6 a− 1}.
But the right-hand side of this inequality does not exceed k · (a − 2) < M − k. So
we get:

M − [2 log k] < M − k,

which is a contradiction.

We have shown that

β 6
(

1 +
1

a

)[2 log k]

6
(

1 +
1

a

)a/4

as M > 8k log k by assumption. Therefore, β < e1/4 < 4
3
, as required. Q.E.D. for

the lemma.

Proof of Proposition 1.3 is complete.

We have shown that the case B 6⊂ Sing V is impossible.

1.4. The multi-quadratic case. Assume now that B is contained in the
closure of the locus of multi-quadratic points of type 2l but not in the closure of the
locus of multi-quadratic points of type 2j for j > l + 1. In other words, a general
point o ∈ B is a singular multi-quadratic point of type 2l. Let us fix this point.

Proposition 1.4. The self-intersection Z satisfies the following inequality:
multo Z > 2l+2n2.

Proof. This is the 4n2-inequality for complete intersection singularities, see [6].
Q.E.D.

Remark 1.1. The condition for a point o ∈ V to be a correct multi-quadratic
singularity (see Definition 0.1) is in fact much stronger than what is required in [6].

Now let us exclude the multi-quadratic case and thus complete the proof of
Theorem 0.3.

Assume first that 1 6 l 6 k − 2. Let

R1, . . . , Rk−l

be general tangent divisors. Since by the regularity condition

codimo

((
k−l⋂
i=1

|Ri|
)
⊂ V

)
= k − l,

we may argue as in the non-singular case and construct a sequence of irreducible
subvarieties

Y2, . . . , Yk−l
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of codimension codim(Yi ⊂ V ) = i, where Y2 is an irreducible component of the
cycle Z with the maximal value of multo / deg and Yi+1 is an irreducible component
of (Yi ◦Ri−1) with the same property. Obviously,

multo

deg
Yk−l >

2k

d
.

By Lefschetz, the scheme-theoretic intersection

(R1 ◦R2 ◦ · · · ◦ Rk−l)

is irreducible and reduced: we make this conclusion, intersecting that cycle with the
section VP of V by a generic linear subspace P of dimension 3k + 1, exactly as in
the proof of Lemma 1.2 (in fact, in order to apply the Lefschetz theorem, we could
take a subspace P of a smaller dimension here), we conclude that Yk−l 6⊂ |Rk−l−1|
and construct an irreducible subvariety Yk−l+1, satisfying the inequality

multo

deg
Yk−l+1 >

2k+1

d
.

After that we argue exactly as in the non-singular case, producing a sequence of
irreducible subvarieties Yk−l+2, . . . , YN , the last one of which satisfies the estimate

multo

deg
YN > γl =

4

3
β(l)−1,

where

β(l) =
M−l∏

i=Nl+1

βl,i (7)

(recall that Nl = M − [2 log k] + l for l 6 [2 log k] and Nl = M − l, otherwise). The
product (7) contains fewer terms than (6) and it is easy to see that βl,M−l−j = βM−j

for j = 0, 1, . . . ,M − l − Nl − 1. Therefore, β(l) < β for l > 1 and so γl > γ > 1,
which gives us the desired contradiction. The multi-quadratic case for 1 6 l 6 k−2
is excluded.

Finally, assume that l ∈ {k−1, k}. In that case the subvariety Y2 (an irreducible
component of the self-intersection Z with the maximal value of multo / deg) satisfies
the inequality

multo

deg
Y2 >

2k+1

d

by Proposition 1.4. In this case we omit the part of our arguments which deals with
tangent divisors and proceed straight to the second part, repeating the arguments
for the case l 6 k − 2 word for word.

The multi-quadratic case is excluded.

Q.E.D. for Theorem 0.3.
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2 Irreducible factorial complete intersections

In this section we prove Theorem 0.2. In Section 2.1 we explain the strategy of the
proof and show the case of a hypersurface. After that in Section 2.2 we start the
inductive part of the proof, first looking at the easier issue of complete intersections
being irreducible and reduced. Finally, in Subsection 2.3 we complete the proof,
considering complete intersections with correct multi-quadratic singularities.

2.1. Complete intersections with correct multi-quadratic singularities.
Set

P>j =
k∏

i=j

Pdi,M+k+1

to be the space of truncated tuples (fj, . . . , fk) and let P>j
mq be the set of tuples such

that
V (fj, . . . , fk) = {fj = . . . = fk = 0} ⊂ P

is an irreducible reduced complete intersection of codimension k − j + 1 with at
most correct multi-quadratic singularities, in the sense of Definition 0.1 where k is
replaced by k − j + 1. Note that P>1 = P(d) and P>1

mq = Pmq(d). We will prove
Theorem 0.2 by decreasing induction on j = k, k − 1, . . . , 1 in the following form

codim((P>j \ P>j
mq) ⊂ P>j) > (M − 4k + 1)(M − 4k + 2)

2
− (k − 1). (8)

The basis of the induction is the case of a hypersurface V (fk) ⊂ P of degree dk. It
is easy to calculate that the closed subset of reducible or non-reduced polynomials
of degree dk has codimension

(
M + k + dk − 1

dk

)
− (M + k + 1)

in Pdk,M+k+1 (which corresponds to the case when fk has a linear factor), and the
closed subset of polynomials fk such that the hypersurface V (fk) has at least one
singular point, which is not a quadratic singularity of rank at least 7 has codimenison

(M + k − 6)(M + k − 5)

2
+ 1

in Pdk,M+k+1 (see a similar detailed calculation in [8] for the case of rank at least 5).
Therefore, the inequality (8) is true for k = 1.

Now let us proceed to the inductive argument.

2.2. The step of induction: irreducibility. We assume that (8) is shown
for j + 1. The task is, for a fixed tuple (fj+1, . . . , fk) ∈ P>j+1

mq , to estimate the
codimension of the set of polynomials fj ∈ Pdj ,M+k+1 such that V (fj, . . . , fk) does
not satisfy the required condition, that is, (fj, fj+1, . . . fk) /∈ P>j

mq.

13



Let us first consider the issue of irreducibility and reducedness. Since by the
inductive assumption and the Grothendieck theorem [4] V (fj+1, . . . , fk) is a factorial
complete intersection, we have the isomorphism

Cl V (fj+1, . . . , fk) ∼= Pic V (fj+1, . . . , fk) ∼= ZH,

where H is the class of a hyperplane section, and moreover, for every a ∈ Z+ the
restriction map

ra : H0(P,OP(a)) → H0(Vj+1,OVj+1
(a))

is surjective (where for simplicity of notation we write Vj+1 for V (fj+1, . . . , fk)). For
a < dj+1 it is also injective, and for a = dj+1 we have

dim Ker ra = #{i ∈ {j + 1, . . . , k} | di = dj+1}.

Now easy calculations show that the set of polynomials fj ∈ Pdj ,M+k+1 such that
V (fj, fj+1, . . . , fk) is either reducible or non-reduced, is of codimension at least

(
M + k + dj − 1

dj

)
− (M + k + 1)− (k − j)

(again, this corresponds to the case when the divisor {fj|Vj+1
= 0} has a hyperplane

section of Vj+1 as a component). This estimate is higher (and, in fact, much higher)
than what we need so we may assume that V (fj, fj+1, . . . , fk) is irreducible and
reduced.

Finally, we need to consider the condition for the singularities of the complete
intersection V (fj, fj+1, . . . , fk) to be multi-quadratic. In order to avoid cumbersome
formulae, we will consider the final case j = 1 only, when the estimate is the weakest.
For higher values of j the arguments are identically the same, just the indices and
dimensions need to be adjusted appropriately.

2.3. Multi-quadratic singularities. Fix a point o ∈ P and consider a tuple
(f1, . . . , fk) ∈ P>1 with o ∈ V = V (f1, . . . , fk). Fix a system of affine coordinates
(z1, . . . , zM+k) on an affine chart CM+k ⊂ P with the origin at the point o. Write
the corresponding dehomogenized polynomials (denoted by the same symbols) in
the form

f1 = q1,1 + q1,2 + · · ·+ q1,d1 ,
. . .

fk = qk,1 + qk,2 + · · ·+ qk,dk
,

where qi,j is a homogeneous polynomial in z∗ of degree j. Assume that

dim〈q1,1, . . . , qk,1〉 = k − l,

with l > 0. Let I ⊂ {1, . . . , k} be a subset with |I| = k − l such that the linear
forms {qi,1 | i ∈ I} are linearly independent. Set Π ⊂ CM+k to be the subspace

Π = {qi,1 = 0 | i ∈ I} ∼= CM+l.

14



By assumption, for every j ∈ J = {1, . . . , k} \ I there are (uniquely determined)
constants βj,i, i ∈ I, such that

qj,1 =
∑
i∈I

βj,iqi,1.

Set for every j ∈ J

q∗j,2 =

(
qj,2 −

∑
i∈I

βj,iqi,2

)∣∣∣∣∣
Π

.

The following statement translates the condition for the point o to be a correct
multi-quadratic singularity into the language of properties of the quadratic forms
q∗j,2 introduced above.

Proposition 2.1. Assume that for a general subspace Θ ⊂ P(Π) of dimension

b = max{k + l + 1, 4l + 2}
the set of quadratic equations

{
q∗j,2|Θ = 0 | j ∈ J

}

defines a non-singular complete intersection of type 2l. Then o ∈ V is a correct
multi-quadratic singularity of type 2l.

Proof. Indeed, it is easy to see that the germ o ∈ V is analytically equivalent
to the closed set in Π defined by l equations

0 = q∗j,2 + . . . , j ∈ J,

where the dots stand for higher order terms. The rest is obvious. Q.E.D.

Remark 2.1. In the notations of Definition 0.1, the exceptional divisor QP

is precisely the complete intersection of l quadrics {q∗j,2|Θ = 0}, j ∈ J , in the b-
dimensional space Θ. Proposition 2.1 gives a sufficient condition for the point o
to be a correct multi-quadratic singularity. Now we use this criterion to estimate
the codimension of the set of tuples violating the conditions of Definition 0.1 at the
given point o ∈ V .

Definition 2.1. We say that an l-uple (q∗j,2 | j ∈ J) is correct, if its zero set in
P(Π) is an irreducible reduced complete intersection QΠ satisfying the inequality

codim(Sing QΠ ⊂ QΠ) > b.

Corollary 2.1. Assume that the l-uple (q∗j,2 | j ∈ J) is correct. Then o ∈ V is
a correct multi-quadratic singularity of type 2l.

Since in the subsequent arguments (up to the end of this section) only the
quadratic forms qi,2 will be involved, we may assume without loss of generality
that

J = {1, . . . , l}
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and I = {l + 1, . . . , k}. Fixing the forms qi,2 for i ∈ I, we work with the l-uples

(q∗j,2 | j = 1, . . . , l) ∈ P×l
2,M+l.

Theorem 0.2 is obviously implied by the following proposition.

Proposition 2.2. The codimension of the closed set X ⊂ P×l
2,M+l of incorrect

l-uples is at least
(M + 3− b)(M + 4− b)

2
− (l − 1). (9)

(Recall that b = max{k + l + 1, 4l + 2}.)
Proof. Elementary computations show that the codimension of the closed subset

X∗ ⊂ P×l
2,M+l of linearly dependent l-uples is higher than (9), so we may assume the

forms q∗j,2, j = 1, . . . , l, to be linearly independent. The symbol QΠ stands for
their zero set. By the symbol Sing QΠ we denote the closed set of points p ∈ QΠ,
such that the linear terms of dehomogenised polynomials q∗j,2 with respect to any
system of affine coordinates with the origin at p are not linearly independent. (We
argue in this way in order to avoid a discussion of the zero scheme of the forms q∗j,2,
j = 1, . . . , l, being irreducible and reduced at this stage of the proof.) For

λ = (λ1 : · · · : λl) ∈ Pl−1

set
W (λ) = {λ1q

∗
1,2 + · · ·+ λlq

∗
l,2 = 0} ⊂ PM+l−1

to be the corresponding quadric hypersurface in the linear system generated by
(q∗j,2). We will use the following simple observation, which for k = 2 was used in [7].

Lemma 2.1. For any point p ∈ Sing QΠ there is λ ∈ Pl−1 such that p ∈
Sing W (λ).

Proof. Obvious computations. Q.E.D. for the lemma.

Corollary 2.2. The following inclusion holds:

Sing QΠ ⊂
⋃

λ∈Pl−1

Sing W (λ).

Set R6a ⊂ P2,M+l to be the closed subset of quadratic forms of rank 6 a. It is
well known that

codim(R6a ⊂ P2,M+l) =
(M + l + 1− a)(M + l + 2− a)

2
.

Now for every e = 1, . . . , l consider the closed subset Xe,a ⊂ P×e
2,M+l, consisting of

e-uples (g1, . . . , ge) such that the linear span 〈g1, . . . , ge〉 has a positive-dimensional
intersection with R6a.

Lemma 2.2. The following estimate holds:

codim(Xe,a ⊂ P×e
2,M+l) > codim(R6a ⊂ P2,M+l)− (e− 1).
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Proof. Consider the natural projections of P×e
2,M+l = P×(e−1)

2,M+l × P2,M+l onto the

last factor and the direct product P×(e−1)
2,M+l of the first e− 1 factors.

For any tuple
(g1, . . . , ge) ∈ P×e

2,M+l

such that
(g1, . . . , ge−1) 6∈ Xe−1,a

the condition (g1, . . . , ge) ∈ Xe,a implies that the quadratic form qe belongs to the
cone with the base R6a and the vertex space 〈g1, . . . , ge−1〉, which has dimension
at most dimR6a + (e − 1). Arguing by increasing induction on e = 1, . . . , l, we
complete the proof. Q.E.D. for the lemma.

Now we can complete the proof of Proposition 2.2. Let us consider an l-uple
(q∗j,2 | j = 1, . . . , l) such that

codim(Sing QΠ ⊂ QΠ) 6 b− 1

or, equivalently, that
dim(Sing QΠ) > M + l − b.

By Corollary 2.2 we conclude that the inequality

max
λ∈Pl−1

{dim Sing W (λ)} > M + 1− b

is satisfied, which, in its turn, implies that

(g1, . . . , ge) 6∈ Xl,a

for a = l + b− 2. Now by Lemma 2.2 we conclude that in the proof of Proposition
2.2 we can consider only l-uples satisfying the inequality

codim(Sing QΠ ⊂ QΠ) > b. (10)

The rest is very easy. If QΠ is an irreducible reduced complete intersection, then
(10) guarantees that the tuple of quadratic forms under consideration is correct.
Moreover, if for some e > 1 the system of quadratic equations

q∗1,2 = · · · = q∗e,2 = 0

defines an irreducible reduced complete intersection of e quadrics, then by (10) it
is factorial. Now arguing as in Subsection 2.2, we can estimate the codimension
of the set of tuples, the zero set of which is not an irreducible reduced complete
intersections. It is easy to check that the codimension is equal to

(M + l − 1)(M + l − 2)

2
− e.

This completes the proof of Proposition 2.2. Q.E.D.
This completes the proof of Theorem 0.2 as well, as the minimum of the estimate

obtained in Proposition 2.2 occurs for l = k.
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3 Regular complete intersections

In this section we prove Theorem 0.4. In Subsection 3.1 we produce the estimates
for the codimension of the set of non-regular tuples of polynomials, given by the
projection method. After that, the proof of Theorem 0.4 is reduced to showing a
purely analytical fact: estimating the minimum of an integral sequence, consisting of
certain binomial coefficients, depending on several integral parameters. The required
computations are quite non-trivial. We perform them in several steps. In Subsection
3.2 a number of reductions simplifies the task. In Subsection 3.3 we employ the
classical Stirling formula to approximate with good precision the expressions to be
minimized by a smooth function and study that function using the standard tools
of calculus. In Subsections 3.4 and 3.5 we complete the proof, showing the required
estimates.

3.1. The projection method. We use the notations of Subsection 0.3. Since
an elementary dimension count relates the codimension of the set of globally non-
regular tuples f (which is what Theorem 0.4 estimates) to the codimension of the set
of tuples f that are non-regular at a fixed point o ∈ V (f) (see Theorem 3.1 and the
comments below), we concentrate on the local problem: fix a point o ∈ P, a system of
affine coordinates z1, . . . , zM+k with the origin at o and consider (non-homogeneous)
tuples f such that o ∈ V (f).

Next, we fix l ∈ {0, 1, . . . , k} and assume that the rank of the set of linear forms
qi,1, i = 1, . . . , k, is equal to k − l, so that in the sequence (3) exactly the first k − l
polynomials are linear forms. We fix them, either, so that the linear subspace

Π = {h1 = . . . = hk−l = 0} ∼= CM+l

of the space CM+k
z∗ is also fixed. Recall the notation

Nl = M −max{[2 log k], l},

introduced in Subsection 1.2. Set

gi = hk−l+i|P(Π),

i = 1, . . . , Nl. This is a sequence of Nl homogeneous polynomials of non-decreasing
degrees mi = deg gi on the projective space P(Π) ∼= PM+l−1. Define the space of
such sequences:

G(d, l) =

Nl∏
i=1

Pmi,M+l.

It is obvious that the point o ∈ V is regular (as a multi-quadratic point of type 2l

in the sense of Definition 0.3) if and only if the sequence

g1, . . . , gNl
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is regular, that is to say, if the closed algebraic set

{g1 = · · · = gNl
= 0} ⊂ P(Π)

has codimension Nl. Set Y = Y(d, l) ⊂ G(d, l) to be the closed set of non-regular
tuples.

Theorem 3.1. Assume that M > 8k log k and k > 20. Then

codim(Y ⊂ G(d, l)) > (M − 5k)(M − 6k)

2
+ M + k.

Taking into account that the point o varies in the M + k-dimensional projective
space P and the original tuple f satisfies the conditions f1(o) = · · · = fk(o) = 0 and
dim〈qi,1 | 1 6 i 6 k〉 = k − l, an elementary dimension count gives Theorem 0.4 as
an immediate corollary of Theorem 3.1.

The rest of this section is the proof of Theorem 3.1. Our main tool is the
projection method, developed in [9] and explained and applied to solving similar
problems in [1, Chapter 3] and many papers, e.g. [7, 8]. The idea is to represent

Y =

Nl∐
e=1

Ye

as a disjoint union of constructive subsets Ye, consisting of tuples (g1, . . . , gNl
) such

that the closed set
{g1 = · · · = ge−1 = 0} ⊂ P(Π)

is of codimension e− 1, but ge vanishes on some irreducible component of that set
(if e = 1, this means simply that the quadratic form g1 is identically zero). The
projection method estimates the codimension of Ye in G(d, l) as follows:

codim(Ye ⊂ G(d, l) > γ(e, d, l) = h0(PM+l−e,OPM+l−e(me)) =

(
M + l − e + me

M + l − e

)
,

where me = deg ge, see, for instance, [1, Chapter 3]. Therefore, in order to prove
Theorem 3.1, we must show that the numbers γ(e, d, l) for e = 1, . . . , Nl are not
smaller than the right hand side of the inequality of Theorem 3.1. This is what we
are going to do. The task is quite non-trivial. First, we do some preparatory work
in order to simplify the inequalities to be shown and reduce the number of integral
parameters, on which the numbers γ(e, d, l) depend.

3.2. Reductions. If the original tuple f of defining polynomials consists of k2

quadrics, k3 cubics, . . ., km polynomials of degree m = dk > 8 log k, then

k2 + k3 + · · ·+ km = k

and
2k2 + 3k3 + · · ·+ mkm = |d| = d1 + · · ·+ dk.
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It is easy to see that

me = deg ge = min

{
j

∣∣∣∣∣
j∑

α=2

(
m∑

β=α

kβ

)
> e

}
.

This explicit presentation gives us the first reduction.

Proposition 3.1. The following estimate holds:

γ(e, d, l) > γ(e, d∗, l),

where the k-uple d∗ = (d∗1, . . . , d
∗
k) is defined by the equalities

d∗1 = . . . = d∗r = a + 1, d∗r+1 = . . . = d∗k = a + 2 (11)

and M = ka + (k − r), where 0 6 r 6 k − 1.

Proof. Explicitly, the proposition states that

(
M + l − e + me

M + l − e

)
>

(
M + l − e + m∗

e

M + l − e

)
,

where m∗
e is calculated for the tuple d∗. It is easy to see that me > m∗

e, which proves
the proposition. Q.E.D.

The second reduction simplifies the situation further, allowing us to consider
only the case when all degrees di are equal.

Proposition 3.2. For the tuple d+ = (d+
1 , . . . , d+

k ) such that d+
1 = · · · = d+

k ,
with M+ + k = |d+| and M+ > 8k log k − k the estimate

γ(e, d+, l) > (M+ − 4k)(M+ − 5k)

2
+ M+ + 2k

holds for all e = 1, . . . , N+
l = M+ −max{[2 log k], l}.

Let us show that Theorem 3.1 follows from Propositions 3.1 and 3.2.

Indeed, by Proposition 3.1 it is sufficient to prove the inequality

γ(e, d∗, l) > (M − 5k)(M − 6k)

2
+ M + k

for e = 1, . . . , Nl. Let us consider the tuple d+ with

d+
1 = · · · = d+

k = a + 1

for the constant a defined in Proposition 3.1. Set M+ = ka. Obviously, γ(e, d∗, l) >
γ(e, d+, l) for e = 1, . . . , N+

l as M > M+. If Nl > N+
l , then for i = 0, . . . , Nl−N+

l −1
we have a similar estimate “from the other end”:

γ(Nl − i, d∗, l) > γ(N+
l − i, d+, l)
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(note that Nl −N+
l = M −M+ 6 k). Therefore,

γ(d∗, l) = min
16e6Nl

{γ(e, d∗, l)} > γ(d+, l) = min
16e6N+

l

{γ(e, d+, l)},

and applying Proposition 3.2 and taking into account that M+ > M −k, we get the
claim of Theorem 3.1.

The third reduction allows us to remove the integral parameter l ∈ {0, 1, . . . , k}.
In order to simplify our notations, we write di for d+

i , thus assuming that d1 = · · · =
dk = a + 1, so that M = ka. We use the notation γ(d, l) for the minimum of the
numbers γ(e, d, l), e = 1, . . . , Nl, introduced above.

Proposition 3.3. The following inequality holds:

γ(d, l) > γ(d, 0)

for all l = 0, 1, . . . , k.

Proof. Since for l > 1 we have N0 > Nl, it is sufficient to compare the integers
γ(e, d, l) and γ(e, d, 0) for the same values of e = 1, . . . , Nl. They are

(
M + l − e + me

M + l − e

)
and

(
M − e + me

M − e

)
,

so the claim becomes obvious. Q.E.D.

Remark 3.1. We could as well do the third reduction as the first one: show
that the minimum of the integers γ(e, d, l) is attained for l = 0 (which corresponds
to regular non-singular points of V ), and after that prove that the worst estimates
correspond to the case (11).

The last (fourth) reduction makes the computations more compact. Recall
that now all degrees di are equal to a + 1. Introduce the integer-valued function
β : {2, . . . , a} → Z+ by the formula

β(t) =

(
k(a− t + 1) + t

t

)
=

(
kb(t) + t

t

)
,

where b(t) = a− t + 1. Set also

α = α(M, k) =

(
a + 1 + [2 log k]

a + 1

)
.

Proposition 3.4. The following estimate holds:

γ(d, 0) > min

{
min

t∈{2,...,a}
{β(t)}, α

}
.

Proof. This follows immediately from the fact that for the special tuple d of
equal degrees

mki+1 = mki+2 = · · · = mki+k = i + 2
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for i = 0, . . . , a− 1. Q.E.D.

Therefore, the statement of Theorem 3.1 is implied by the following facts. In the
both propositions below we assume that M > 8k log k − k and k > 20.

Proposition 3.5. The minimum of the function β(t) on the set {2, 3, . . . , a} is
attained at t = 2.

Proposition 3.6. The following inequality holds:

α(M,k) > A(M, k) =
(M − 4k)(M − 5k)

2
+ (M + 2k).

Remark 3.2. The proof of Proposition 3.5 only requires k > 10, it is Proposition
3.6 that requires k > 20, see a more detailed Remark 3.3.

The rest of this section is a proof of the last two propositions, which requires
some (quite non-trivial) analytic arguments.

3.3. The Stirling formula. The strategy of the proof of Proposition 3.5 is
as follows. Using the Stirling formula, we construct a smooth function ε : R+ → R
such that ε(t) 6 β(t) for t = 2, . . . , a and ε approximates β with a good precision.
Then we show that the minimum of the function ε(t) on the interval [2, a] occurs at
one of the end points, either for t = 2 or for t = a. From this we deduce the claim
of Proposition 3.5.

Recall that by the Stirling formula

n! =
√

2πnnn exp(−n) exp

(
θn

12n

)

for some θn between 0 and 1. The integral parameter e, enumerating the polynomials
ge, will never be used again in this paper, so we use the symbol e for the number
exp(1). Set

ε(t) =

√
2π

e2
(kb(t) + t)(kb(t)+t+ 1

2
)(kb(t))−(kb(t)+ 1

2
)t−(t+ 1

2
),

by the Stirling formula β(t) > ε(t).

Lemma 3.1. The smooth function ε(t) for k > 3 has only one critical point
on the interval [2, a], which is a maximum, so that the minimum of that function is
attained at one of the end points.

Proof. This is shown by demonstrating that

(1) for 2 6 t 6 M+k
2k

the function log ε(t) is strictly increasing,

(2) for M+1
k+1

6 t 6 a = M
k

it is strictly decreasing,

(3) for M+k
2k

6 t 6 M+1
k+1

the second derivative of log ε(t) is strictly negative (this
is where the maximum lies).

The first derivative d
dt

logε(t) is equal to

t2 − kb(t)2

2b(t)t(kb(t) + t)
− k log

(
1 +

t

kb(t)

)
+ log

(
1 +

kb(t)

t

)
, (12)
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the second derivative d2

dt2
logε(t) is given by the formula

1

b(t)t
+

(t2 − kb(t)2)2

2b(t)2t2(kb(t) + t)2
+

(k − 1)(t2 − kb(t)2)

b(t)t(kb(t) + t)2
− k(t + b(t))2

tb(t)(kb(t) + t)
. (13)

We present the derivatives in these forms in order to use the inequality
∣∣∣∣

t2 − kb(t)2

2b(t)t(kb(t) + t)

∣∣∣∣ 6 1

2b(t)
. (14)

Now let us consider the domains (1)-(3) separately.

(1) Assume that 2 6 t 6 M+k
2k

. Note that on this interval b(t) > 2 so that

∣∣∣∣
t2 − kb(t)2

2b(t)t(kb(t) + t)

∣∣∣∣ 6 1

4
.

The last term in the expression (12) can be estimated as

log

(
1 +

kb(t)

t

)
> log(1 + k) > log 21 > 3,

since on the interval [2, M+k
2k

] we have t 6 b(t). Finally, for the second term in (12)
we get

−k log

(
1 +

t

kb(t)

)
> − t

b(t)
> −1.

Combining these estimates, we obtain the inequality

d

dt
log ε(t)

∣∣∣∣
26t6M+k

2k

> −5

4
+ 3 > 0,

so that indeed ε(t) is increasing on the interval under consideration.

(2) Assume now that M+1
k+1

6 t 6 M
k

. Here t > kb(t) > k. First of all, we have
the inequality ∣∣∣∣

t2 − kb(t)2

2b(t)t(kb(t) + t)

∣∣∣∣ 6 1

2
.

For the other two terms in the expression (12) we get the estimates

−k log

(
1 +

t

kb(t)

)
6 −k log 2

and

log

(
1 +

kb(t)

t

)
6 log 2.

Combining these inequalities, we see that

d

dt
log ε(t) 6 1

2
− (k − 1) log 2 < 0
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for t ∈ [M+1
k+1

, M
k

] as we claimed above.

(3) Finally, assume that M+k
2k

6 t 6 M+1
k+1

. On this interval b(t) 6 t 6 kb(t). Let
us show that the second derivative (13) is negative. Using again the inequality (14),
we get that d2

dt2
log ε(t) on the interval under consideration is not higher than

1

b(t)t
+

1

2b(t)2
+

(k − 1)

b(t)(kb(t) + t)
− k(t + b(t))2

tb(t)(kb(t) + t)
=

=
t2 + kb(t)(−2t2 − 4b(t)t + 3t− 2b(t)2 + 2b(t))

2tb(t)2(kb(t) + t)
.

Elementary computations, together with the inequality t 6 a, show that the expression
in brackets in the numerator is not higher than −2a2 − a. Therefore, the whole
numerator is not higher than

t2 − kb(t)(2a2 + a) 6 kb(t)(t− 2a2 − a) < 0.

We have shown that d2

dt2
log ε(t) < 0 for t ∈ [M+k

2k
, M+1

k+1
]. This completes the proof of

Lemma 3.1. Q.E.D.

3.4. Proof of Proposition 3.5. In view of the inequality ε(t) 6 β(t) and
Lemma 3.1, Proposition 3.5 follows from the two lemmas stated below.

Lemma 3.2. The inequality β(2) 6 ε(3) holds.

Lemma 3.3. The inequality β(2) 6 ε(a) holds.

Proof of Lemma 3.2. We need to estimate the error in Stirling’s approximation,
in order to be able to use β(3) instead of ε(3). The number β(3) is a polynomial in
M,k, which makes the task easier. From the Stirling formula we get:

1.126 · ε(3) 6 β(3) 6 1.132 · ε(3).

The inequality of the lemma will follow if it is shown that 1.14 ·β(2) < β(3) and this
is equivalent to the inequality G1(M,k) = 6(β(3)− 1.14 · β(2)) > 0. Here G1(M, k)
is given explicitly by the expression

M3 + M2(2.58− 6k) + M(12k2 − 17.16k + 0.74)− 8k3 + 20.58k2 − 11.74k − 0.84.

It is easy to check that G1(8k log k, k) and the partial derivative ∂
∂M

G1(M, k) are
both positive for k > 20 and M > 8k log k. This completes the proof. Q.E.D.

Proof of Lemma 3.3. The claim of the lemma is equivalent to the inequality

G2(M,k) = log ε(a)− log β(2) > 0.

A direct calculation gives G2(160 log 20− 20, 20) > 0. Set

G3(t) =
d

dt
G2(8t log t− t, t).
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Lemma 3.4. G3(t) > 0 for t > 20.

Proof. Explicitly,

G3(t) = log

(
1 +

8 log t− 1

t

)
+

8

t
log

(
1 +

t

8 log t− 1

)
− 1

2t
+ H1(t) + H2(t),

where

H1(t) =

(
8

t
+ 1

)
8 log t + t− 0.5

8 log t + t− 1
−

(
8

t

)
8 log t− 0.5

8 log t− 1
− 1,

H2(t) = −(8 log t + 6)

(
1

8t log t− 2t + 2
+

1

8t log t− 2t + 1

)
.

Using the power series expansion of log(1 + x), we obtain the inequality

G3(t) > − 1

2t
+

8 log t− 1

t
− (8 log t− 1)2

2t2
+

8

t
log

(
1 +

t

8 log t− 1

)
+ H1(t) + H2(t).

For t > 20 then H1(t) > 0 and H2(t) > −4
t
, which can be checked directly. This

gives the inequality

G3(t) >
16 log t− 11

2t
− (8 log t− 1)2

2t2
+

8

t
log

(
1 +

t

8 log t− 1

)
.

The right hand side of the last inequality is higher than

1

2t2
(16t log t− 11t− 64 (log t)2 + log t− 1),

which is positive for t > 20. Q.E.D. for Lemma 3.4.

We conclude that G2(8t log t− t, t) > 0 for t > 20. The claim of Lemma 3.3 will
be proven if we show that for k > 20 and M > 8k log k − k the function G2(M, k)
is an increasing function of M . Set

G4(s, t) =
∂

∂s
G2(s, t).

Lemma 3.5. G4(s, t) > 0 for t > 20, s > 8t log t− t.

Proof. Explicitly,

G4(s, t) =
1

t
log

(
1 +

t2

s

)
− t2

2s(t2 + s)
− 2s + 3− 2t

s2 + (3− 2t)s + t2 − 3t + 2
.

First we consider the case when s 6 t2 and get

G4|s6t2 > 1

t
log 2− t2

2s(t2 + s)
− 2s + 3− 2t

s2 + (3− 2t)s + t2 − 3t + 2
.
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It is easy to see that the minimum of the right hand side occurs when s = 8t log t− t
is the smallest possible, so that for s 6 t2 the function G4(s, t) is bounded from
below by the expression

1

t
log 2− 1

(16 log t− 2)(t + 8 log t− 1)
−

− 16t log t + 3− 4t

t2(8 log t− 1)2 + (3− 2t)(8t log t− t) + t2 − 3t + 2
,

which is positive for t > 20.

Now let us consider the region s > t2. Here we get

G4(s, t) > t

s
− t3

2s2
− t2

2s(t2 + s)
− 2s + 3− 2t

s2 + (3− 2t)s + t2 − 3t + 2
.

A direct check shows that for t > 20 the expression in the right hand side is positive.
Q.E.D. for Lemmas 3.5, 3.3 and Proposition 3.5.

3.5. Proof of Proposition 3.6. This proof is obtained in the same way as that
of Proposition 3.5 and we only point out the main steps of the computations, leaving
the details to the reader. In order to prove the inequality α(M, k) > A(M, k), we use
the Stirling approximation of α(M, k). Namely, we introduce the function G5(s, t, r)
of three real variables by the formula

G5(s, t, r) =

(
s

t
+ r +

3

2

)
log

(s

t
+ r + 1

)
−

(
r +

1

2

)
log r−

−
(

s

t
+

3

2

)
log

(s

t
+ 1

)
+ log

(√
2π

e2

)
− log A(s, t).

By the Stirling approximation, Proposition 3.6 follows from the inequality

G5(M, k, [2 log k]) > 0.

It is easy to see that

G5(M,k, [2 log k]) > G5(M, k, 2 log k − 1),

so we set G6(s, t) = G5(s, t, 2 log t− 1) and prove the inequality

G6(s, t) > 0

for s > 8t log t− t, t > 20. First of all, explicit computations show that

G6(8t log t− t, t) > 0

for t > 20. Set

G7(s, t) =
∂

∂s
G6(s, t).
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It remains to show that for s > 8t log t − t and t > 20 the inequality G7(s, t) > 0
holds. Explicitly, G7(s, t) is given by the expression

1

t
log

(
1 +

2 log t− 1
s
t
+ 1

)
− 2 log t− 1

2t( s
t
+ 1)( s

t
+ 2 log t)

− 2s− 9t + 2

s2 − 9ts + 2s + 20t2 + 4t
.

Now the inequality G7(s, t) > 0 is obtained by tedious but straightforward computations,
using the estimate

1

t
log

(
1 +

2 log t− 1
s
t
+ 1

)
>

2 log t− 1

t( s
t
+ 1)

− (2 log t− 1)2

2t( s
t
+ 1)2

.

The details are left to the reader. Q.E.D. for Proposition 3.6 and Theorem 3.1.

Remark 3.3. (i) It is clear from the computations presented in this section and
in the proof of Lemma 1.3 that in certain parts of our arguments we need much
weaker lower bounds for k. For instance, Lemma 3.2 requires only that k > 5 and
Lemmas 3.3 and 3.4 require only that k > 10. In the last part of Subsection 3.5,
for the inequality G7(s, t) > 0 only the assumption t > 10 is needed. However, the
inequality

G6(8t log t− t, t) > 0

requires that t > 20. In order for the whole argument to work, we have to select the
strongest restriction.

(ii) One more paper [23] on birational superrigidity of non-singular Fano complete
intersections of index one was put on the archive when our paper was finalized. We
add it on the reference list.
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