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Abstract 

Purpose: To assess the effects of prostaglandin F2α analogues travoprost on the 

biomechanical behavior of ex-vivo rabbit cornea. 

Methods: 18 Japanese white rabbits were included in the study. The left eye (treated 

group, Tr) of each rabbit was preserved for 10 days in storage medium Eusol-C solution 

with 1:10 travoprost diluent, while the contralateral eye (control group, Co) was 

preserved in a similar but travoprost-free medium. Strips of corneal tissue were 

dissected and tested under cyclic load conditions with up to 0.1 N uniaxial tension force. 

The resulting load-elongation data were used to derive the stress-strain behavior and 

the tangent modulus (Et) of the tissue. Differences in Et between the treated (Et-Tr) and 

control group (Et-Co) were assessed statistically to determine the biomechanical effects 

of travoprost on the cornea. 

Results: Central corneal thickness remained similar in the two groups before (p= 0.073) 

and after storage (p= 0.303), although it became significantly thicker in both groups 

after storage (P< 0.01). Compared with the control group, the travoprost treated corneas 

exhibited lower Et values but the differences reduced and became insignificant with 

rises in stress to which the tissue was subjected (1 - Et-Tr/Et-Co = -11.7±41.8%, p< 0.05 

at 10 kPa stress, -9.2±36.1%, p> 0.05 at 20 kPa, -7.3±35.4%, p>0.05 at 30 kPa). 

Conclusions: Significant reductions in corneal stiffness, that are associated with the 

use of travoprost, were observed experimentally under low applied stresses. This 

stiffness-reduction effect should be considered in clinical management, especially in 

primary open angle glaucoma treatment. 
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Introduction 

Glaucoma, the second leading cause of blindness worldwide 1, is a form of optic 

neuropathy associated with progressive degeneration of retinal ganglion cells and 

irreversible vision loss 2. Raised intraocular pressure (IOP) remains the most important 

risk factor, and reduction of IOP can slow the progression of optic neuropathy 3 and is 

reportedly the most effective management method for glaucoma. Pharmacologic 

therapy is the initial treatment for glaucoma, and the most commonly prescribed classes 

of topical hypotensive agents are prostaglandin analogs (PGAs), especially for primary 

open angle glaucoma (POAG) 4. Prostaglandin F2α analogues (PGF 2α) upregulates 

the activity of matrix metalloproteinase (MMP) and downregulates the tissue inhibitor 

of metalloproteinase (TIMP) 5-7, which results in remodeling of the extracellular matrix, 

increasing the space between the bundles of smooth muscle cells, allowing better 

outflow and leading to lowering of IOP. 

 

However, in addition to the effect of PGAs-induced IOP reduction, PGF 2α has been 

shown to decrease the collagen fibril density and corneal thickness 8, 9. Fibroblasts and 

extracellular matrix are the main structural components of the cornea, responsible to a 

large extent for determining corneal biomechanical properties. Collagen degradation 

caused by long-term topical prostaglandin therapy could influence corneal 

biomechanical behavior and induce reductions in corneal hysteresis (CH), corneal 

resistance factor (CRF) – both measured by the Ocular Response Analyzer, ORA) 10 – 

and the deformation amplitude (DA) provided by the Corvis ST (CVS) 11. Changes in 

corneal biomechanical properties after long-term topical prostaglandin therapy possibly 

introduces inaccuracies in IOP measurement and in other applications that require 

knowledge of corneal biomechanics such as planning of surgical procedures, 

assessment of stiffness deterioration associated with keratoconus and optimization of 

corneal cross-linking treatment 12. 

 

Corneal biomechanical metrics provided by the ORA and CVS have been widely used 



to assess the general biomechanical response of the cornea. Nevertheless, these metrics 

may be influenced by corneal shape and the intraocular pressure (IOP), and their links 

to standard mechanical properties, such as the tangent modulus of tissue (Et), have not 

been established 12-14. This study aims to address this shortfall through an experimental 

investigation of whether the usage of PGF 2α (in particular travoprost) influences the 

biomechanics of corneal tissue. 

 

Materials and methods 

2.1. Experimental animals 

Eighteen Japanese white rabbits (2-3 kg) from the Animal Breeding Unit at Wenzhou 

Medical University were included in this study. All animals were treated in agreement 

with the ARVO Statement for Use of Animals in Ophthalmic and Vision Research, and 

every effort was made to minimize suffering. This study was approved by the Animal 

Care and Ethics Committee of the University’s Eye Hospital. 

 

2.2. Experimental design 

After being euthanized by intravenous injection of high concentrations of pentobarbital 

sodium (Merok, Germany), bilateral eyes of each rabbit were immediately enucleated. 

The entire cornea, with the adjacent 3 mm wide scleral strip, was extracted from each 

ocular globe while all other ocular components were removed. The left eyes of the 18 

rabbits, which form the treated group (Tr), were placed in storage medium of Eusol-C 

solution (Alchimia S.r.l, Ponte S. Nicolo`, Italy) with 0.0004% travoprost (Travatan; 

Alcon Laboratories, Inc., Fort Worth, TX) diluent (1:10 dilution of stock solution). The 

corresponding 18 right eyes constituted the control group (Co), and were placed in the 

same medium but without travoprost. Based on other studies 15, 16, the 1/10 dilution was 

selected to take into account the relatively short duration of storage adopted in the study 

compared to the long-term exposure in clinical usage. All corneas were incubated in 

standard incubator conditions (37°C, 5% CO2) for 10 days as described in a previous 

study 17. 

 



2.3. Biomechanical Tensile Testing 

A 2-mm-wide corneoscleral strip centered on the cornea was excised from each 

specimen using two parallel surgical blades along the inferior-superior direction. The 

strips were connected to a pair of mechanical clamps, leaving a distance of 10mm in 

between. An electronic caliper (Exploit 033004, Exploit Tools Group, Yiwu, China) 

was used to measure the thickness (t) and width (w) of the strip in 5 equally-spaced 

locations along this length. Mechanical tests were conducted using a material testing 

machine (EZ-Test, Shimadzu, Kyoto, Japan) equipped with a 50 N capacity load cell at 

a room temperature of 22°C, Figure 1. The initial distance between the clamps was 

measured by a vernier caliper and recorded as Lo. The specimens were conditioned by 

four cycles of loading and unloading with 1mm/min elongation rate and 0.10N max 

load, and the behavior recorded in the fourth cycle was considered representative of 

specimens’ stable behavior 18. The order of testing paired specimens, obtained from the 

same animal, was randomized and recorded. Strips were covered with gauze soaked 

with Phosphate buffered saline (PBS, Maixin, China) to keep them moist during the test 

procedure. 

 

The load–displacement (F–△L) data obtained from the fourth cycle were used to 

calculate the stress under each load, F, as σ = $
%∙'

, where t was the average corneal 

thickness and w the average specimen width. The related strain was obtained as ε = △L 

/ Lo. The stress-strain results were fitting to an exponential function σ = A ∙ (e+∙, −

1), where A and B were constants, and the tangent modulus (Et) was calculated as	𝐸' =

23
24
= A ∙ B ∙ e+∙, = 𝐵 ∙ (𝜎 + 𝐴). 

 

2.6 Statistical analysis 

All analyses were performed using the PASW Statistics 20.0 (SPSS Inc., Chicago, 

USA). Comparisons of biomechanical and geometrical parameters in the two specimen 

groups were performed using the paired T-test. P values less than 0.05 were considered 

indicative of statistical significance. 



 

Results 

3.1. Corneal thickness 

After 10 days of incubation in culture medium with 0.0004% travoprost diluent, the 

central corneal thickness (CCT) of the treated group increased from 369.4±22.5 µm to 

658.9±184.4 µm (p<0.01), and in control group from 363.8±19.3 µm to 602.4±208.1 

µm (p<0.01). There were no significant differences in corneal thickness between the 

two groups before storage (p= 0.073), and the difference in corneal thickness between 

the groups remained statistically non-significant (p= 0.303) after incubation. 

 

3.2 Biomechanical behavior 

There was a clear difference in the load-displacement behavior observed for the two 

specimen groups as shown in Figure 2. With material parameters A and B determined 

(Table 1), the stress-strain (σ-ε) relationships (Figure 3), and hence the tangent modulus 

(Et = dσ/dε) at any stress level can be obtained. For statistical evaluation purposes, the 

Et values were compared at 10, 20 and 30 kPa stresses, the first two of which were 

within the tissue’s nonlinear stage, while the third was within the later linear part. At 

10 kPa stress, Et was significantly lower in the treated group (Et-Tr), compared to the 

control groups (Et-Co), but this difference reduced in value and became insignificant 

under 20 and 30 kPa (Table 2). 

 

Discussion 

Topical medication is commonly used in the primary management of glaucoma. Among 

the several anti-glaucoma eye drops developed, PGF 2α are considered highly effective 

first-line agents because of their significant success in lowering IOP levels 19, that is in 

spite of reported side effects including eyelid skin darkening 20, iris pigmentation 21, 

conjunctival hyperemia 22 and ocular irritation 23. While these biological side effects 

have been considered previously 15, 24, little attention has been given to the effect of 

PGF 2α on corneal biomechanics. PGF 2α have previously been found to accelerate 



collagen degradation 25, decrease fibronectin protein content 26, stimulate collagen gel 

contraction 27 and change collagen distribution in corneal stroma 26. Since collagen 

fibrils are the main load carrying components of the cornea , these effects may lead to 

material stiffness reduction. This study, which attempted to address this point, showed 

that travoprost eye drops significantly reduced the mechanical stiffness (as measured 

by the tangent modulus, Et) of the ex-vivo rabbit cornea. 

 

Earlier studies that relied on the ORA and CVS to provide indications of the 

biomechanical effects of PGAs produced inconsistent results. While some studies 

reported increases in corneal hysteresis parameter (CH – a measure of corneal 

viscoelasticity) with PGA treatment 28-33, others reported decreases 10. Also, there was 

no agreement on the effect of PGAs on the corneal resistance factor (CRF – a measure 

of corneal stiffness) with reported increases 31, decreases 10, 33, and no significant change 
28,32. However, after adjusting for IOP, CCT and other factors, which may influence 

corneal behavior, a significant reduction in the CVS’s deformation amplitude (DA – a 

measure of corneal stiffness) was detected after PGA therapy 11. Nevertheless, since the 

biomechanical metrics provided by the ORA and CVS cannot be linked directly to the 

traditional measures of tissue stiffness (primarily Et), and could be influenced by factors 

such as IOP and CCT 12-14, the present study relied instead of the classic tensile test in 

quantifying the effect of PGAs on corneal biomechanics. 

 

The uniaxial tension test is a simple and well-accepted experimental technique for 

characterizing the mechanical behavior of tissue 34. In spite of the limitations caused by 

the initially curved form of specimens and the termination of fibrils along the specimen 

sides 35, the test method remains viable for comparative studies, such as the present 

research, where the focus is on the variation in tissue behavior due to different treatment 

regimes. All specimens exhibited clear nonlinear behavior, as indicated in a previous 

study 36, with an initial low stiffness increasing gradually until a stage of constant 

stiffness was reached at stresses slightly below 30 kPa. In order to ensure the test results 

were repeatable, three loading-unloading cycles were carried out before using the 



results of the forth cycle as representative of specimens’ stable behavior 18. The results 

showed significant decreases in Et in the treated group, by -11.7±41.8% (p< 0.05) at a 

stress of 10 kPa compared to the control group. However, these differences decreased 

and became insignificant with higher stress levels (-9.2±36.1%, p> 0.05 at 20kPa and -

7.3±35.4%, p> 0.05 at 30 kPa). 

 

The changes in tissue stiffness reported in this study may well influence the accuracy 

of IOP measurement – needed for glaucoma management 37. Most tonometry 

techniques, contact or non-contact, depend on applying a mechanical force and 

correlating corneal resistance to deformation under this force to the value of IOP. While 

simple and easy to implement, this measurement concept makes the estimation of IOP 

dependent on corneal biomechanical properties 38. With the application of PGAs 

leading to reductions in corneal stiffness, and hence underestimations of true IOP, the 

result may be an overestimation of the effect of PGAs in lowering IOP, which can have 

significant implications for glaucoma management. 

 

There was a significant thickness increase observed during the storage period – due to 

tissue swelling – which correlated with the anaerobic state and increased lacate 

concentration 39 caused by the storage medium. The increase in corneal thickness, 

which affected both treated and control groups, may have masked the thickness 

reduction effect caused by PGAs usage as reported in earlier studies 8, 9, possibly as 

PGF 2α can induce excessive production of MMPs and inhibit the production of TIMP, 

both of which lead to an accelerated matrix degradation and decrease in CCT. 

 

The present study relied on rabbit eyes due to their similarity to human eyes in 

biomechanical behavior 40, 41, and the difficulty in obtaining human donor eyes in 

sufficient numbers for research. The tests were also done ex vivo, and while concerted 

efforts were made to preserve the tissue and test it within 2 hours post-mortem, there 

may have some degradation, which can affect the results obtained. 

 



To the best of our knowledge, this is the first study to investigate the effect of PGAs 

hypotensive medications on corneal biomechanical property changes measured in 

standard biomechanical experiments. Corneal material stiffness reduced significantly 

with the use of PGF 2α (travoprost diluent, 0.0004%), causing concern over the 

accuracy of IOP measurement in patients undergoing chronic PGA therapy. This finding 

warrants caution when evaluating IOP measurements and the results of patient follow-

up. Further investigation is required to quantify the effect of the stiffness reduction 

reported herein on the IOP measurements with commonly used tonometers, and hence 

the management of glaucoma. 
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Figure Captions: 1 

Figure 1 Corneal specimen and experimental platform 2 

Figure 2 Mean load-displacement behavior in treated and control groups 3 

Figure 3 Mean stress-strain behavior of corneas in each specimen group – error bars 4 

represent standard deviation of strain values 5 

 6 



 7 

 8 
Figure1 Corneal specimen and experimental platform, A. front view of testing strip 9 

specimens after assembly, B. side view of testing strip specimens after assembly, C. 10 

material testing machine 11 



 12 

Figure 2 Mean load-displacement behavior in treated and control groups 13 



 14 

Figure 3 Mean stress-strain behavior of corneas in the treated and control groups – 15 

error bars represent the standard deviation of strain values 16 



Table Captions: 

Table 1 Mean and standard deviation of constitutive parameters A and B in two 

specimen groups 



Table 1 Mean and standard deviation of constitutive parameters A and B in the two specimen 

groups 

Group A B RMS, mm 

Treated group 0.002 ± 0.003 66.481 ± 23.706 0.0017 ± 0.0014 

Control group 0.004 ± 0.006 71.495 ± 26.946 0.0012 ± 0.0008 

 

  



Table 2 Average and standard deviation values of tangent modulus (MPa) in treated and 

control groups at three stress levels 

Stress (kPa) 
Tangent Modulus, Et (MPa) 

p Et-Tr/Et-Co, % 
Tr Co 

10 0.78 ± 0.27 1.00 ± 0.45 0.025 88.3 ± 41.8 

20 1.45 ± 0.49 1.71 ± 0.64 0.059 90.8 ± 36.1 

30 2.11 ± 0.72 2.43 ± 0.88 0.119 92.7 ± 35.4 

Tr = treated group, Co = control group; Et-Tr/Et-Co = ratio between tangent modulus in treated 

group (Et-Tr) and control group (Et-Co) 


