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Abstract

We consider Bayesian inference problems with computationally intensive likelihood
functions. We propose a Gaussian process (GP) based method to approximate the joint
distribution of the unknown parameters and the data, built upon a recent work [10].
In particular, we write the joint density approximately as a product of an approximate
posterior density and an exponentiated GP surrogate. We then provide an adaptive al-
gorithm to construct such an approximation, where an active learning method is used
to choose the design points. With numerical examples, we illustrate that the proposed
method has competitive performance against existing approaches for Bayesian compu-
tation.

1 Introduction
The Bayesian inference is a popular method to estimate unknown parameters from data,
and a major advantage of the method is its ability to quantify uncertainty in the inference
results [6]. In this work we consider Bayesian inference problems where the likelihood
functions are highly expensive to evaluate. A typical example of this type of prob-
lems is the Bayesian inverse problems [33], where the parameters of interest can not
be observed directly and need to be estimated from indirect data. Such problems arise
from many real-world applications, ranging from carbon capture [13] to chemical ki-
netics [7]. In Bayesian inverse problems, the mappings from the parameter of interest to
the observable quantities, often known as the forward models, are often computationally
intensive, e.g., involving simulating large scale computer models.
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Due to the high computational cost, common numerical implementations of Bayesian
inferences, such as the Markov chain Monte Carlo (MCMC) [1] methods can be pro-
hibitively expensive. A simple idea to accelerate the computation of the posterior is
to construct a computationally inexpensive surrogate or an approximation of the pos-
terior distribution with a limited number of likelihood function evaluations. To this
end, a particular convenient choice for surrogate function is the Gaussian Process (GP)
model [35]. The idea of using the GP model to approximate the posterior or the likeli-
hood function dates back to the the so-called Bayesian quadrature (or Bayesian Monte
Carlo) approaches [23, 28, 27, 11], which were designed to perform numerical integra-
tions in a Bayesian fashion (for example, to compute the evidence in Bayesian inference
problems [26]). Unlike the Bayesian quadrature methods, the goal of this work is to
construct an approximation of the posterior distribution. To this end, a recent work [10]
approximates the joint distribution of the unknown parameter and the data (which can
also be viewed as the un-normalized posterior distribution) with an exponentiated GP
model, where the design points, i.e., the points where the likelihood function is evalu-
ated, are chosen with an active learning strategy. In particular, they determine the the
design points by sequentially maximizing the variance in the posterior approximation.
Other ideas of using the GP approximation to accelerate the Bayesian computation can
be found in [4, 3], and so on. The method presented in this work also intends to ap-
proximate the un-normalized posterior distribution. The main contribution of the work
is the following. We write the unnormalized posterior distribution as a product of an
approximate posterior density and an exponentiated GP surrogate. The intuition behind
this formulation is that, the GP model can be more effectively constructed if we factor
out a good approximation of the posterior (see Section 2.3 for a detailed explanation).
As we may not know a good approximate posterior density in advance, we develop an
algorithm to adaptively construct the product-form approximation of the un-normalized
posterior distribution. Another difference between our method can that in [10] is the
learning strategy for selecting the design points. Namely, we use the entropy rather
than the variance as the selection criterion, which can better represent the uncertainty
in the approximation. Numerical examples illustrate that the proposed method can
substantially improve the performance of the GP approximation.

We note that, other surrogate models, notably the generalized polynomial chaos (gPC)
expansion [15, 17, 18, 19, 21], have also been used to accelerate the Bayesian compu-
tation. Detailed comparison of the two type of the surrogates is not discussed in this
work and those who are interested in this matter may consult [24].

The rest of the paper is organized as the following. In Section 2 we present the
adaptive GP algorithm to construct the posterior approximation and the active leaning
method to determine the design points. In section 3, we give two examples to illustrate
the performance of the proposed method. Finally section 4 provides some concluding
remarks.
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2 The adaptive GP method

2.1 Problem Setup
A Bayesian inference problem aims to estimate an unknown parameter x from data d,
and specifically it computes the posterior distribution of x using the Bayes’ formula:

π(x|d) ∝ π(x,d) = l(d|x)π(x), (1)

where l(d|x) is the likelihood function and π(x) is the prior distribution of x. When
the Bayesian method is applied to inverse problems, the data and the forward model
enter the formulation through the likelihood function. Namely, suppose that there is a
function (termed as the forward function or the forward model) that maps the parameter
of interest x to the observable quantity y:

y = G(x) + z,

where z is the observation error. Now we further assume that the distribution density
of the observation noise z, pz(z), is available, and it follows directly that the likelihood
function is given by

l(d|x) = pz(d−G(x)).

In what follows we shall omit the argument d in the likelihood function and denote it
as l(x) for simplicity. It is easy to see that each evaluation of the likelihood function
l(x) requires to evaluate the forward function G(x). In practice, the forward function
G(x) often represents a large-scale computer model, and thus the evaluation of l(x)
can be highly computational demanding. Due to the high computational cost, the brute-
force Monte Carlo simulation can not be used for such problems, and we resort to an
alternative method to compute the posterior distributions, using the GP surrogate model.
A brief description of the GP method is provided in next section.

2.2 The GP model
Given a real-valued function g(x), the GP or the Kriging method constructs a surrogate
model of g(x) in a nonparameteric Bayesian regression framework [35, 22, 25]. Specif-
ically the target function g(x) is cast as a Gaussian random process whose mean is µ(x)
and covariance is specified by a kernel function k(x,x′), namely,

COV[g(x), g(x′)] = k(x,x′).

The kernel k(x,x′) is positive semidefinite and bounded. Now let us assume that m
evaluations of the function g(x) are performed at parameter values X∗ := [x∗1, . . .x

∗
m],

yielding function evaluations y∗ := [y∗1, . . . y
∗
m], where

y∗i = g(x∗i ) for i = 1, . . . ,m.

Suppose that we want to predict the function values at points D := [x1, . . .xm′ ], i.e.,
y = [y1, . . . ym′ ] where yi = g(xi). The sets X∗ and D are often known as the training
and the test points respectively. The joint prior distribution of (y∗, y) is,[

y∗

y

]
∼ N

(
µ(X∗)
µ(D)

,

[
K(X∗,X∗) K(X∗,D)
K(D,X∗) K(D,D)

])
, (2)

3



where we use the notation K(A,B) to denote the matrix of the covariance evaluated at
all pairs of points in set A and in set B. The posterior distribution of y is also Gaussian:

y |D,X∗,y∗ ∼ N (u,Σ), (3a)

where the posterior mean is

u = µ(D) +K(D,X∗)K(X∗,X∗)−1(y − µ(D)), (3b)

and the posterior covariance matrix is

Σ = K(D,D)−K(D,X∗)K(X∗,X∗)−1K(X∗,D). (3c)

Here we only provide a brief introduction to the GP method tailored for our own pur-
poses, and readers who are interested in further details may consult the aforementioned
references.

2.3 The adaptive GP algorithm
Now we discuss how to use the GP method to compute the posterior distribution in our
problem. A straightforward idea is to construct the surrogate model directly for the log-
likelihood function log l(x), and such a method has been used in the aforementioned
works [26, 10]. A difficulty in this approach is that the target function log l(x) can be
highly nonlinear and fast varying, and thus are not well described by a GP model. We
here present an adaptive scheme to alleviate the difficulty.

We first write the unnormalized posterior, i.e., the joint distribution π(x,d), as

f(x) = l(x)π(x) = exp(g(x))p(x),

where p(x) is a probability distribution that we are free to choose and

g(x) = log(f(x)/p(x)). (4)

We work on the log posterior distribution since the log smoothes out a function and is
more conducive for the GP modeling. Also, by doing this we ensure the non-negativity
of the obtained approximate posterior. We then sample the function g(x) at certain
locations and construct the GP surrogate of g(x). It should be noted that, the distribution
p(x) plays an important role in the surrogate construction as a good choice of p(x) can
significantly improve the accuracy of the GP surrogate models. In particular, if we take
p(x) to be exactly the posterior π(x|d), it follows immediately that g(x) in Eq (4) is
a constant. This then gives us the intuition that, if p(x) is a good approximation to
the posterior distribution π(x|d), g(x) is a mildly varying function which is easy to
approximate. In other word, we can improve the performance of the GP surrogate by
factoring out a good approximation of the posterior. Certainly, this can not be done
in one step, as the posterior is not known in advance. We present here an adaptive
framework to construct a sequence of pairs {pi(x), exp(ĝi(x))}, the product of which
evolves to a good approximation of the unnormalized posterior f(x). Roughly speaking
the algorithm performs the following iterations: in the n-th cycle, given the current
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guess of the posterior distribution pn(x), we construct a GP surrogate ĝn(x) of gn(x)
which is given by

gn(x) = log(f(x)/pn(x)),

and we then compute a new (and possibly better) posterior approximation pn+1(x) using

pn+1(x) ∝ exp(ĝn(x))pn(x).

Finally we want to specify stopping criteria for the iteration, and the iteration termi-
nates if either of the following two conditions are satisfied. The first is that the max-
imum number of iterations is reached. Our second stopping condition is based on the
Kullback-Leiber (KL) divergence between pn−1 and pn, which reads,

DKL(pn−1, pn) =

∫
log

pn−1(x)

pn(x)
pn−1(x)dx. (5)

Specifically the second stoping condition is that DKL(pn−1, pn) is smaller than a pre-
scribed value Dmax in K consecutive iterations. That is, if the computed posterior
approximation does not change much in a certain number of consecutive iterations, the
algorithm terminates. The complete scheme is described in Algorithm 1.

Algorithm 1 The adaptive GP algorithm
Require: m0, nmax, M , Dmax, kmax

1: let p̂0(x) = π(x); let n = 0; let k = 0;
2: choose m0 initial design points: {x1, ..., xm0}, and compute yi = f(xi) for i =

1...m0;
3: let S0 = {(x1, y1), ..., (xm0 , ym0)};
4: for n=0 do nmax

5: let gn(x) = log(f(x)/p̂n(x));
6: construct a GP surrogate model ĝn(x) for the function gn(x) with data set Sn;
7: draw a set of M samples from the approximate posterior

pn+1(x) ∝ exp(ĝn(x))p̂n(x)

with MCMC, denoted as An;
8: obtain an estimated PDF from samples An, denoted as p̂n+1;
9: compute DKL(p̂n−1, p̂n);

10: if DKL(p̂n−1, p̂n) < Dmax then k = k + 1;
11: else k = 0;
12: end if
13: if k = K then break the FOR loop;
14: else
15: select m design points: {x1, ..., xm}, evaluate f(xi) for i = 1...m, and let

Sn+1 = Sn ∪ {(x1, y1), ..., (xm, ym)};
16: end if
17: end for

Some remarks on the implementation of Algorithm 1 are listed in order:
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• In Line 6, we construct the GP model for gn(x) using the procedure described in
Section 2.2. The hyperparameters of the GP model are determined by maximizing
the marginal likelihood function [35].

• In Line 7, we resort to the MCMC method to draw a rather large number of sam-
ples from the approximate posterior distribution; this procedure, however, does
not require to evaluate the true likelihood function and is not computationally
expensive.

• In Line 8, we need to compute the density function of a distribution pn+1 from
the samples Xn, and here we use the Gaussian mixture method [20] to estimate
the density. Certainly there will be estimation errors in this procedure and so we
denote the estimated density as p̂n+1 to distinguish it from the true density pn+1.

• In Line 9, we find that it is rather costly to compute the KLD between pn−1 and pn.
We instead use the KLD between p̂n−1 and p̂n, which is much easier to compute
as the distributions are available as Gaussian mixtures.

• In Line 15, we need to determine the design points, i.e., the locations where we
evaluate the true function. The choice of design points is critical to the perfor-
mance of the proposed adaptive GP algorithm, and we use an active learning
method to determine the points, which is presented in Section 2.4.

2.4 Active learning for the design points
In the GP literature, the determination of the design points is often cast as an experi-
mental design problem, i.e., to find the experimental parameters that can provide us the
most information. The problem has received considerable attention and a number of
methods and criteria have been proposed to select the points, such as, the Mutual In-
formation criterion [14], the Integrated Mean Square Error (IMSE) [30], the Integrated
Posterior Variance (IVAR) [8], and the active learning MacKay (ALM) criterion [16],
just to name a few. Here we choose to use an active learning strategy, that adds one
design point a time, primarily for that it is easy to implement.

A common active learning strategy is to choose the point that has the largest uncer-
tainty, and to this end we need a function that can measure or quantify the uncertainty
in the approximation reconstructed. In the usual GP problems, the variance of the GP
model ĝ(x) is a natural choice for such a measure of uncertainty (which yields the ALM
method), because the distribution of ĝ(x) is Gaussian. In our problems, however, the
function of interest is the posterior approximation f̂(x) = exp(ĝ(x))p(x) rather than
the GP model ĝ(x) itself, and thus we should measure the uncertainty in f̂(x). In [10],
the variance of the posterior approximation f̂ is used as the measure function. However,
since the distribution of f̂(x) is not Gaussian, the variance may not provide a good esti-
mate of the uncertainty. On the other hand, the entropy is a commonly used measure to
quantify the uncertainty in a random variable [29, 32], and here we use it as our design
criterion.
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Specifically, suppose that, at point x, the distribution of f̂(x) is πf (f̂), and the
entropy of f̂(x) is defined as

H(f̂(x)) = −
∫

log(πf (f̂))πf (f̂)df̂ . (6)

Thus we choose a new design point by

max
x∈Ω

H(f̂(x)),

where Ω is a bounded subspace of the state space of x. In the present problem, the
distribution of ĝ(x) is Gaussian and let us assume its mean and variance are µ and σ2

respectively. It follows that the distribution of f̂(x) is log-normal and the entropy of it
can be computed analytically:

H(f̂) = µ+
1

ln
(2πeσ2). (7)

We want to emphasize that the entropy based active learning method is different from
the usual maximum entropy method for experimental design, e.g., [31]. The purpose of
the maximum entropy method in [31], is the find the design points that maximize the
information gain of an inference problem, while in our problem, we use the entropy as
a measure of uncertainty.

Now suppose that we have a set of existing data points, and we want to choose m
new design points. We use the following scheme to sequentially choose the new points:

1. Construct a GP model ĝ(x) for g(x) using data set S;

2. Compute x∗ = arg maxx∈Ω H(f̂(x));

3. Evaluate y∗ = g(x∗) and let S = S ∪ {(x∗, y∗)};

Note that the key in the adaptive scheme is Step 2, where we seek the point x that
maximizes the entropy H(f̂(x)) in Ω. This is a quite challenging problem from an
optimization perspective, because the gradient of the objective function can not be easily
obtained and the problem may have multiple local maxima. However, in the numerical
tests, we have found that, our algorithm does not strictly require the optimality of the
solution and it performs well as long as a good design point can be found in each step.
Thus here we use a stochastic search method, the simulated annealing algorithm [12], to
find the design point. We have also tested other meta-heuristic optimization algorithms,
and the performances do not vary significantly.

3 Numerical examples

3.1 The Rosenbrock function
We first test our method on a two-dimensional mathematical example. The likelihood
function is

l(x) = exp

(
− 1

100
(x1 − 1)2 − (x2

1 − x2)2

)
, (8)
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which is the well-known Rosenbrock function, and the prior π(x) is a uniform distribu-
tion defined on [−5, 5] × [−5, 5]. The resulting unnormalized posterior is shown in in
Fig. 1 (left). The function has a “banana shape”, and is often used as a test problem for
Bayesian computation methods.

We now apply the proposed adaptive GP method to compute the posterior for this
problem. In this example, we let m0 = 20 and the samples in S0 were randomly drawn
according to the prior distribution. We also choose m = 10: namely, 10 new design
points are computed in each iteration. In the algorithm, we need to sample from the
approximate posterior distribution in each iteration, and here we draw M = 2 × 104

samples with the delayed rejection adaptive Metropolis algorithm (DRAM) [9]. We
reinstate that the 2× 104 MCMC samples are generated from the approximate posterior
distribution and thus it does not require to evaluate the true likelihood function. We also
set the parameters that specify the termination conditions to be nmax = 100, Dmax =
0.01 andK = 5. The algorithm terminates with 13 iterations and totally 140 evaluations
of the true likelihood function are used. In Figs. 1 (right), we plot the KL difference in
two consecutive iterations, which is used as one of our stoping criteria, against the
number of iterations. To illustrate the performance of our method, we use the KL
distance and the Hellinger distance which is defined as,

DH(p1, p2) =
1

2

∫
(
√
p1(x)−

√
p2(x))2dx,

to quantify the difference between the computed approximation and the true posterior.
We plot the KL (left) and the Hellinger (right) distances between the approximate pos-
terior and the true posterior distribution in Figs. 2. It can be seen from the figures that,
the computed approximation converges very well to the true posterior in terms of both
distance mesures, as the iteration proceeds. We then plot the approximate posterior
obtained in the 7th, 9th, 11th and 13th iterations in Figs. 3, in which we can visualize
how the quality of the approximation increases as the iterations proceed. In each of the
plots, we also show the design points (red dots) that have been used up to the given
iteration. As a comparison, we also compute the GP approximation of the posterior
with the aforementioned Bayesian active posterior estimation (BAPE) method devel-
oped in [10]. In particular, we implement the BAPE method using totally 140 design
points and this way it matches the number of design points of our method. The results
are shown in Figs 4. The figure on the left shows the posterior distribution computed
with all the140 design points (corresponding to the 13th iteration in our method), and
as one can see, the BAPE method can also obtain a good approximation of the pos-
terior distribution. To compare the performance of the two methods, we compute the
KL divergence between the true posterior and the approximation obtained with differ-
ent numbers of design points by the BAPE and our adaptive GP (AGP) methods. We
plot the KL distance against the number of design points in Fig. 4 (left). One can see
from the figure that, with the same number of design points, the approximate posterior
obtained by the proposed AGP method is significantly closer to the true posterior than
the results of the BAPE method.
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Figure 1: Left: the true posterior distribution. Right: the KL distance between pn−1 and
pn, plotted against the number of iterations.

Iterations (n)
2 4 6 8 10 12

K
L
 D

is
ta

n
c
e

0

10

20

30

40

50

60

70

80

Iterations (n)
2 4 6 8 10 12

H
e
lli

n
g
e
r 

D
is

ta
n
c
e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 2: The KL (left) and the Hellinger (right) distances between the obtained ap-
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Iteration 7
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Figure 3: The approximate posterior distribution obtained at the 7th, 9th, 11th and 13th
iterations respectively. The red dots are the design points that have been used.
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Figure 4: Left: the GP approximation of the posterior distribution obtained with the
BAPE method using 140 design points (red dots). Right: the KL distance between the
true posterior and the approximation computed with the AGP (solid line) and the BAPE
(dashed line) methods, plotted again the number of design points used; the inset is the
same plot on a logarithmic scale.
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3.2 Genetic toggle switch
We now apply the proposed method to a real-world inference problem. Namely, we
consider the kinetics of a genetic toggle switch, which was first studied in [5] and later
numerically investigated in [17]. The toggle switch consists of two repressible pro-
motors arranged in a mutually inhibitory network: promoter 1 an promoter 2. Either
promoter transcribes a repressor for the other one, and moreover, either repressor may
be induced by an external chemical or thermal signal. Genetic circuits of this form can
be modeled by the following differential-algebraic equation system [5]:

du

dt
=

α1

1 + vβ
− u, (9a)

dv

dt
=

α2

1 + wγ
− v, (9b)

w =
u

1 + ([IPTG]/K)η
. (9c)

In the equations above, u and v are respectively the concentration of repressors 1 and
2; α1 and α2 are the effective rates of synthesis of the repressors; γ and β represent
cooperativity of repression of the two promotors; and [IPTG] is the concentration of
IPTG, the chemical compound that induces the switch. Parameters K and η describe
binding of IPTG with the first repressor. For more details of the model, we refer to [5].

α1 α2 γ β η K
n [120, 200] [15.0, 16.0] [2.1, 2.9] [0.85, 1.15] [1.3, 2.7] [2.3, 3.7]× 10−5

Table 1: The prior domains of the parameters.

The experiments are performed with several selected values of [IPTG]: 1×10−6, 5×
10−4, 7× 10−4, 1× 10−3, 3× 10−3, 5× 10−3 respectively, and for each experiment, the
measurement of v is taken at t = 10. The goal is to infer the six parameters

x = [α1, α2, γ, β, η,K],

from the measurements of v. We use synthetic data in this problem, and specifically we
assume that the true values of the parameters are

xtrue = [143, 15.95, 2.70, 0.96, 2.34, 2.70× 10−5].

The data is simulated using the model described by Eqs. (9) with the true parameter
values and measurement noise is then added to the simulate data. The measurement
noise here is assumed Gaussian and zero-mean, with a variance σ2. In the numerical
experiments, we consider a large noise case where σ2 = 5 × 10−4 and a small noise
case where σ2 = 1.25 × 10−4. We assume that the priors of the six parameters are all
uniform and independent of each other, where the domains of the uniform priors are
given in Table 1.

We want to use this example to make a detailed comparison of the proposed AGP
algorithm with some other popular methods. Thus, we employ four different methods to
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compute the posterior distribution in this example: the direct MCMC algorithm with the
true likelihood function, the proposed AGP algorithm, the BAPE method [10], and the
spectral likelihood expansion (SLE) method [21] which constructs the gPC surrogate
for the likelihood function using non-intrusive approaches.

We first consider the large noise case. We draw 3× 105 samples from the true pos-
terior distribution with a DRAM algorithm and use the results as the reference posterior
distribution. We then apply the AGP method to approximate the posterior distribu-
tion, where we use m0 = 50 initial design points randomly drawn from the prior and
m = 50 design points in each iteration. We also choose the termination parameters to
be nmax = 100, Dmax = 0.05 and K = 5. The algorithm terminates in 18 iterations,
resulting in totally 950 evaluations of the true likelihood function. We note that each
evaluation of the likelihood function involves a full simulation of the underlying model
described by Eqs. (9). After obtaining the approximate posterior distribution, we draw
3 × 105 samples from it using a DRAM MCMC simulation. We then compute the ap-
proximate posterior with the BAPE method using also 950 likelihood evaluations, and
draw 3 × 105 samples from it using a DRAM MCMC simulation. Finally we approxi-
mate the posterior with the SLE-gPC method where the gPC expansion coefficients are
computed using the least square method with design points determined by the Sobol se-
quences based quasi Monte Carlo (QMC) method. The gPC degree is automatically by
the algorithm using the leave-one-out (LOO) cross validation, and in the QMC scheme,
we set the number of design points to be 950.

We now compare the results of these methods. First we estimate the posterior dis-
tributions of the six parameters by all the four methods and show the results in Fig. 5.
One can see from the figure that, the distributions computed by both the BAPE and the
AGP methods are rather close to those of direct MCMC (which are regarded as the true
posteriors), while the results of SLE-gPC deviate evidently from the MCMC results,
especially for the two parameters α2 and β. As for the comparison of BAPE and AGP,
the figures show that both methods can produce reasonably good approximations of the
posterior distributions in this case. So for a quantitive evaluation fo the performance of
the methods, we compute the KLD from the approximate posterior distributions to the
true posterior densities, and show the results in Table 2. We can see from the table that,
the posterior distributions computed by the AGP method are closer (in terms of KLD)
to the true posteriors than the other two methods for all the 6 parameters.

We then consider the small noise case where we use the same implementation con-
figurations as the large noise case. In this case, the AGP algorithm uses 1200 true
likelihood evaluations, and as before, we also compute the posterior using the SLE and
the BAPE methods with the same number of true likelihood evaluations. We then com-
pute the posterior directly with 3 × 105 MCMC samples and use the results as the true
posterior. In Figs. 6 we compare the marginal posterior distributions compared with the
four methods. Similar to the large noise case, the figures show that the results of the
SLE-gPC are of very low accuracy, while both the AGP and the BAPE methods yield
rather good results. Once again, we show in Table 2 the KLD from the marginal pos-
terior distributions computed with the three approximate methods to the true posterior
(those computed by the direct MCMC). These quantitive comparison results indicate
that, the AGP method yields better results than the other two methods in terms of the
KLD. Thus, we can conclude that our AGP method has the best performance in both
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Figure 5: The genetic toggle example: large noise case. The marginal distributions of
the six parameters, computed with the four different methods.

the large and the small noise cases.

method α1 α2 γ β η K
AGP 1.5× 10−4 0.0069 0.0020 0.014 0.0041 0.0075

KLD BAPE 4.5× 10−3 0.043 0.0022 0.039 0.0095 0.013
SLE 1.8× 10−3 0.44 0.0012 0.18 0.0078 0.0013

Table 2: The large noise case: the KLD between the marginal posterior distribu-
tions computed with the three approximate methods and those computed with standard
MCMC.

method α1 α2 γ β η K
AGP 0.0032 0.015 0.0039 0.012 0.0096 0.014

KLD BAPE 0.015 0.036 0.028 0.057 0.0075 0.074
SLE 0.0035 1.1 0.021 0.46 0.050 0.010

Table 3: The small noise case: the KLD between the marginal posterior distribu-
tions computed with the three approximate methods and those computed with standard
MCMC.

3.3 The human body sway problem
Finally, we apply the proposed method to a human body sway problem. This problem
has received considerable attention as the body sway may provide information about the
physiological status of a person [34]. Several mathematical models have been proposed

13



120 140 160 180 200
0.2

0.4

0.6

0.8

1

1.2

α
1

MCMC

AGP

BAPE

SLE

15.9 15.95 16 16.05
0

2

4

6

8

α
2

MCMC

AGP

BAPE

SLE

2 2.5 3
0.2

0.4

0.6

0.8

1

1.2

1.4
γ

MCMC

AGP

BAPE

SLE

0.8 0.9 1 1.1 1.2
0

1

2

3

4
β

MCMC

AGP

BAPE

SLE

1 1.5 2 2.5 3
0

0.5

1

1.5

2
η

MCMC

AGP

BAPE

SLE

×10
-5

2 2.5 3 3.5 4
0.2

0.4

0.6

0.8

1

1.2
K

MCMC

AGP

BAPE

SLE

Figure 6: The genetic toggle example: small noise case. The marginal distributions of
the six parameters, computed with the four different methods.

to describe the sway motion, and here we consider the single-link inverted pendulum
(SLIP) model proposed in [2], which assumes that the body is maintained in an upright
position by an active and a passive proportional-derivative controller.

Specifically, the SLIP model is given by the following stochastic delay differential
equation (SDDE) [2]:

Iθ̈(t) = mghθ(t)− [Kθ(t) +Bθ̇(t) + fP (θ(t−∆)) + fD(θ̇(t−∆))] + ξ(t). (10)

In this equation, I is the moment of inertia of the body, θ is the tilt angle (θ̇ and θ̈ are its
first and second derivatives respectively), m denotes the body mass, g is the gradational
acceleration, h is the distance between 3D center-of-mass (COM) and the ankle joint,
and ξ is a zero-mean Gaussian noise with variance σ2. K and P are the passive stiffness
and passive damping parameters, and fP (θ(t−∆)) and fD(θ̇(t−∆)) are active stiffness
and active damping terms where ∆ is the time delay. We now specify the active stiffness
fP (θ(t − ∆)) and the active damping fD(θ̇(t − ∆)). We first define two functions
c1(θ(t−∆)) = θ(θ̇(t−∆)−asθ(t−∆)) and c2(θ(t−∆)) = θ(t−∆)2 + (θ̇(t−∆))2.
We then have,

fP (θ(t−∆)) =

{
Pθ(t−∆), if c1(θ(t−∆)) > 0 and c2(θ(t−∆)) > r2;
0, otherwise; (11)

and

fD(θ̇(t−∆)) =

{
Dθ̇(t−∆) if c1(θ(t)) > 0 and c2(θ(t)) > r2;
0, otherwise;

(12)

where r is the radius of the “quiet zone” (active control is off). The slope as depends
on the level of control, CON , as as = − tan(π(CON − 0.5)). In this model, five key
parameters (P , D, ∆, σ, and CON ) can not be measured directly and need to be inferred
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from the body sway measurements, while the other parameters can either be measured
or specified in advance [34]. The COM signal,

COM(t) = h sin(θ(t)), (13)

is measured and used to infer the five unknown model parameters. The absolute value
of the COM amplitude, velocity, acceleration and the power spectral density (PSD) are
extracted from the signal. The mean, variance, skewness and kurtosis of each physical
quantity are calculated as the data y (a 16-dimensional vector) to infer the model pa-
rameters: x = (P, D, ∆, σ, CON). Computing the posterior in this problem is rather
challenging as the likelihood function p(y|x) is not available, which make the standard
Bayesian inference computation methods such as the MCMC algorithms infeasible. In
[34], the parameters were inferred with the approximate Bayesian computation (ABC)
method which does not use the likelihood function. Here we compute the posterior
with the proposed method. In particular, we compute the likelihood function using the
following procedure. For a given parameter value x, we perform a Monte Carlo sim-
ulation for the SDDE model (10) with a given number of samples. For each yi for
i = 1...16, we estimate resulting conditional density function pi(yi|x) with the kernel
density estimation method, and then we take the likelihood function to be

p(y|x) =
16∏
i=1

pi(yi|x).

We note that a single evaluation of the likelihood function requires to repeatedly simu-
late Eq. (10) a large number of times, which renders the evaluation highly intensive.

In the numerical experiments, we use simulated data, and in particular the true
parameters values are set to be P = 145Nm/rad, D = 10Nms/rad, ∆ = 0.2s,
σ = 0.45Nm and CON = 0.75, and the other parameter values are g = 9.81m/s2,
m = 68kg, h = 0.87m, I = mh2, K = mgh × 0.8Nm/rad, B = 4Nms/rad and
r = 0.004rad-rad/s. The COM signal generated from the model Eq. (10) with these
parameter values is shown in Fig. 7. In the inference, we impose a uniform distribution
on each of the five parameters on the following intervals: P ∈ [80, 160],D ∈ [0.05, 30],
∆ ∈ [0.05, 0.5], σ ∈ [0.05, 0.6], and CON ∈ [0.05, 0.85]. Moreover, for each evalu-
ation of the likelihood function π(y|x), we use 10,000 simulations of Eq. (10) , and
as a result a direct MCMC simulation of the posterior distribution is computationally
infeasible. We apply our AGP method to compute the posterior distribution, and the
algorithm parameters are the same as those in the second example. The algorithm ter-
minates in 14 iterations and so total number of true likelihood evaluations is 750. As
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a comparison, we also perform the BAPE method with the same number of true like-
lihood function evaluations. To compare the performance of the two methods, we plot
the posterior marginals of the model parameters computed by BAPE in Fig. 8, and those
computed by AGP in Fig. 9. We also show the true parameter values as well as the 60%
confidence interval in the figures. Here one can see that, for all the posteriors computed
with the AGP method, the true parameter values fall in the 60% confidence intervals,
while for the results of the BAPE method, the true values of D and ∆ fall outside of
the 60% confidence intervals, which suggest that the posteriors computed by the AGP
method may be more accurate and reliable that those by BAPE.

4 Conclusions
In summary, we have proposed an algorithm to construct GP based approximation for
the un-normalized posterior distribution. The method expresses the un-normalize pos-
terior as a product of an approximate posterior density and an exponentiated GP model,
and an adaptive scheme is presented to construct such an approximation. We also pro-
vide an active learning method that uses maximum entropy as the selection criterion to
determine the sampling points. With numerical examples, we show that the method can
obtain a rather good approximation of the posterior with a limited number of evalua-
tions of the likelihood functions. We believe the proposed method can be useful in a
wide range of practical Bayesian inference problems where the likelihood function are
difficult or expensive to evaluate.

Several issues of the proposed algorithm deserve further studies. First, while our
numerical experiments illustrate that the algorithm may converge in these examples,
a rigorous convergence analysis of the algorithm is still lacking. Secondly, for a pos-
terior distribution with unbounded domain, the resulting approximation may become
improper, and thus certain modifications of the algorithm may be needed to address the
issue. Finally we note that selecting a good Kernel function for the GP model is a very
important issue for GP-based methods, and to this end, a very interesting question is
how to choose kernel functions that are specifically suitable for the log-posteriors. We
plan to study these issues in future works.
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