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Abstract 8 

There is a growing interest in the relative benefits of the different social learning strategies used to 9 

transmit information between conspecifics, and in the extent to which they require input from 10 

asocial learning. Two strategies in particular, conformist and payoff-based social learning, have been 11 

subject to considerable theoretical analysis, yet previous models have tended to examine their 12 

efficacy in relation to specific parameters or circumstances. This study employs individual-based 13 

simulations to derive the optimal proportion of individual learning that co-exists with conformist and 14 

payoff-based strategies in populations experiencing wide-ranging variation in levels of 15 

environmental change, reproductive turnover, learning error, and individual learning costs. Results 16 

demonstrate that conformity co-exists with a greater proportion of asocial learning under all 17 

parameter combinations, and that payoff-based social learning is more adaptive in 97.43% of such 18 

combinations. These results are discussed in relation to the conjecture that the most successful 19 

social learning strategy will be the one that can persist with the lowest frequency of asocial learning, 20 

and the possibility that punishment of non-conformists may be required for conformity to confer 21 

adaptive benefits over payoff-based strategies in temporally heterogeneous environments. 22 
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Strong conformity requires a greater proportion of asocial learning and achieves lower fitness than 33 

a payoff-based equivalent 34 

 35 

1. Introduction 36 

There is currently considerable interest across a broad range of disciplines in the social learning 37 

strategies that facilitate the transmission of information between conspecifics (e.g. Nakahashi et al. 38 

2012; Aplin et al. 2015; Muthukrishna et al. 2016). Such research encompasses the development of 39 

theoretical models as well as experimental analyses on numerous species. Of primary current 40 

interest are two sets of learning strategies: ‘conformist’ strategies, which involve positive frequency-41 

dependent copying (e.g. Boyd and Richerson 1985; Muthukrishna et al. 2016), and ‘pay-off based’ 42 

strategies, which involve copying in proportion to some measure of success (e.g. Schlag 1998, 1999). 43 

On a theoretical basis it has been argued (Boyd and Richerson 1985; Henrich and Boyd 1998) that 44 

because those variants favoured by natural selection will often exist at the highest frequencies in a 45 

pool of potential targets for copying, conformity provides a simple, adaptive social learning rule 46 

under a very broad range of conditions. Conversely, conformity may prevent the spread of beneficial 47 

innovations (Eriksson et al. 2007; Kandler and Laland 2009), and may even lead to population 48 

collapse in fluctuating environments (Whitehead and Richerson 2009). Conformity becomes less 49 

adaptive as rates of environmental change increase (Kendal et al. 2009), and in such situations the 50 

conformist bias must either be weakened or coupled with higher rates of individual learning (Kandler 51 

and Laland 2013; see also Efferson et al. 2008). The empirical evidence for conformity is weak (e.g. 52 

Eriksson et al. 2007; Eriksson and Coultas 2009; Claidière et al. 2012), with studies hampered by the 53 

need to demonstrate positive frequency dependence; where evidence appears robust, a ‘copy the 54 

majority’ rule provides greatest explanatory power (e.g. Pike and Laland 2010; Morgan et al. 2012; 55 

Aplin et al. 2015). 56 

Empirical evidence for payoff-based strategies is far more prevalent, with numerous findings 57 

supporting a ‘copy the best’ rule (e.g. Mesoudi 2008; Mesoudi and O’Brien 2008; Henrich and 58 

Broesch 2011) as well as subsidiary rules employing relative payoffs (e.g. ‘copy if better’); the latter 59 

appear particularly adaptive when the likelihood of copying a given individual is proportional to how 60 

much better that individual is (Schlag 1998; Pike et al. 2010; Morgan et al. 2012). Payoff-based 61 

strategies would appear to have an intuitive benefit; they are the only family of social learning 62 

strategies that can be considered Darwinian (Godfrey-Smith 2009), and make an indirect reference 63 

to the environment by assessing the success of conspecifics. Unlike conformist strategies, they are 64 

likely to increase the frequency of rare, beneficial innovations, suggesting that even in rapidly 65 

changing environments payoff-based social learning coupled with very low levels of individual 66 

learning could form a highly adaptive mixed strategy. 67 

The theoretical models surveyed above are largely derived from the evolutionary biology literature, 68 

and share a number of common assumptions, often relying on incremental changes to pre-existing 69 

modelling frameworks. A parallel literature within the fields of evolutionary computation and 70 

artificial life has also arisen to interrogate the conditions under which various learning strategies are 71 

beneficial. Although the goals of this latter body of research sometimes differ from those of the 72 

evolutionary biology literature, artificial life models have contributed a number of innovative 73 
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conclusions that have direct bearing on the modelling reported below. Both Jones and Blackwell 74 

(2011) and Borg and Channon (2012) show that variable environments promote the evolution of 75 

learning capabilities more readily than do static environments. The former paper effectively 76 

replicates the initial result of Boyd and Richerson (1985) that static or slowly varying environments 77 

can be accommodated through genetic transmission alone, and that rapidly changing environments 78 

will promote individual learning; between these two regions exists a third region of moderate 79 

environmental change in which social learning is favoured. Jones and Blackwell (2011) also suggest 80 

that social learning may play a key role in the aftermath of major environmental changes, allowing 81 

solutions to novel adaptive challenges to percolate rapidly through populations. Borg and Channon 82 

(2012) also provide an intriguing result suggesting that, against a backdrop on increasingly variable 83 

environments, adoption of individual learning is a necessary precursor to the adoption of social 84 

learning. 85 

Gonzalez and colleagues (2017) look more broadly at conditions favouring the appearance of ‘non-86 

genetic evolutionary systems’ including learning and cultural transmission, and demonstrate that 87 

such systems do not require the prior existence of cognitive decision making abilities regarding who 88 

to copy. In their model, copying of random others can emerge when both the possible solution space 89 

is large and the selection pressure on survival is strong relative to that on reproduction. These 90 

authors also formalise the useful concept of ‘genotype-phenotype disengagement’, which provides a 91 

minimal definition of what would more broadly be termed plasticity in the evolutionary biology 92 

literature. Finally, Bullinaria (2017) has developed a promising series of simulations that examine 93 

learning strategies in relation to life-history parameters, in particular a ‘protected period’ during 94 

ontogeny that allows for the learning of skills necessary for independence. Importantly, Bullinaria 95 

(2017) also considers the interface between life-history, encephalisation and learning, a focus that is 96 

simultaneously emerging in evolutionary anthropology (Grove 2017). 97 

The model introduced below employs individual-based simulations to derive the optimal proportion 98 

of individual learning that co-exists with copy the best and copy the majority (henceforth CtB and 99 

CtM) strategies in populations experiencing differing levels of environmental change, reproductive 100 

turnover, learning error, and individual learning costs. Basic theoretical predictions, garnered from 101 

previous research, are that levels of individual learning will be higher for both strategies when the 102 

rate of environmental change is higher, and when reproductive turnover, learning error, and 103 

individual learning costs are lower (Boyd and Richerson 1985; Efferson et al. 2008; Lewis and Laland 104 

2012; Nakahashi et al. 2012). 105 

Individual learning directly references the environment in the current iteration. CtB references the 106 

fitness of individuals in the previous iteration, and leads to copying the fittest individual in that 107 

generation. CtM references the behaviour of individuals in the previous iteration, and leads to 108 

copying the most common behaviour in that iteration, regardless of the fitness associated with that 109 

behaviour. Thus the link between environment and behaviour is weakest in CtM, suggesting that it 110 

will be less able to track environmental change than CtB, and therefore that populations employing 111 

CtM will have to complement this social learning strategy with a greater proportion of individual 112 

learning than those employing CtB. This leads to the expectation that (1) CtM will evolve a greater 113 

proportion of individual learning than CtB under all parameter combinations in which environmental 114 

change occurs. As individual learning is widely and logically considered to engender higher costs 115 

than social learning, the fittest social learning strategy should be that which can persist with the 116 
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lowest frequency of asocial learning (Kendal et al. 2009). A second prediction, therefore, is that (2) 117 

because CtM is predicted to evolve a greater proportion of individual learning than CtB, CtB will 118 

achieve higher fitness under all parameter combinations in which environmental change occurs. 119 

2. Methods 120 

The above predictions were tested by developing an evolutionary individual-based model in which a 121 

population evolves the optimal proportion of individual learning under a comprehensive set of 122 

parameter combinations; the following model description follows the ODD protocol (Grimm et al. 123 

2010). 124 

 Purpose. The main purpose of the model is to examine differences in the proportions of 125 

individual learning that evolve in populations whose social learning strategy is either ‘copy 126 

the majority’ (CtM)  or ‘copy the best’ (CtB). Populations using these two social learning 127 

strategies are simulated separately. The rationale for simulating the two strategies 128 

separately (rather than allowing them to compete directly) is that it provides more accurate 129 

results regarding the proportions of individual learning required by each strategy in tracking 130 

a changing environment. The optimal proportions of individual learning and the associated 131 

fitnesses can then be examined using the model output. Furthermore, in competition 132 

scenarios, the fitter social learning strategy often completely displaced the other, and thus 133 

the results reverted to those obtained when using a single social learning strategy in each 134 

simulation. Simulating the two social learning strategies separately therefore produces a 135 

more comprehensive set of results in regard to the research questions outlined in the 136 

previous section. Rate of environmental change ( ), learning error ( ), reproductive rate ( ), 137 

and the cost of individual learning ( ) are varied systematically to examine their effects on 138 

the proportion of individual learning that evolves under the two social learning strategies. 139 

 Entities, state variables, and scales. The environment is simulated as a symmetrical sawtooth 140 

wave that varies in amplitude between simulations. The entities of the model are asexually 141 

reproducing individuals that socially learn via either CtM or CtB. Each individual is described 142 

by three variables: a behavioural phenotype, a proportion of individual learning, and a 143 

fitness score. The proportion of individual learning is the only inherited trait of an individual; 144 

the behavioural phenotype is learned anew each iteration and the fitness score is 145 

determined by how close the phenotype is to the environmental value in a given iteration. 146 

The behavioural phenotype and the environment are measured on the same continuous 147 

scale. The behavioural phenotype is updated at the start of each iteration through learning. 148 

The proportion of individual learning,  , determines the extent to which the individual 149 

depends on individual learning as opposed to social learning in conjunction with either CtM 150 

or CtB. 151 

The reproductive rate,                , determines what proportion of the population is 152 

replaced each iteration; generations are therefore overlapping in the simulations considered 153 

here, with the average lifetime of an individual being     iterations. The cost of individual 154 

learning,                , reflects the time taken to independently establish a behaviour 155 

and the risk of injury potentially associated with doing so, and is implemented during 156 

evaluation of the fitness function (see Reproduction, below). The rate of environmental 157 

change,             , reflects the wide range of environmental conditions encountered 158 
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by many animals on often relatively short timescales. Note that here         indicates the 159 

set of numbers from   to   inclusive, in increments of  . Finally, learning error,   160 

          , reflects the fact that learning targets, via either individual or social learning, are 161 

unlikely to be perfectly met. Simulations, each of 6,000 iterations, were run separately for 162 

the two social learning strategies (CtB and CtM), and for each combination of  ,  ,  , and  , 163 

yielding 7,938 simulated combinations. 164 

 Process overview and scheduling. At birth, individuals inherit from their parent a value that 165 

determines the proportion of individual learning they will engage in. This value is slightly 166 

mutated relative to that of the parent (see ‘Mutation’ below). A learning error ( ) applies to 167 

both individual and social learning (see ‘Learning’ below). After learning, the fitness of each 168 

individual,  , is evaluated according to a Gaussian function that takes into account the cost 169 

of individual learning. Reproduction then takes place via fitness-proportionate selection (see 170 

‘Reproduction’ below), with new individuals inheriting only the (mutated)   values of their 171 

parents. Prior to the start of the next iteration, the values of the best and most common 172 

phenotypes among the survivors are recorded so they can act as targets for social learning in 173 

the next iteration. Median values of   and   are recorded at the end of each iteration. The 174 

above schedule then begins again. 175 

 Design concepts. The outputs of the model are the difference in the proportion of individual 176 

learning,  , and the difference in fitness,  , between populations employing the two social 177 

learning strageies (CtB and CtM) under various combinations of values of the four input 178 

variables  ,  ,  , and  . Changes in   through time emerge from the combined effects of 179 

heredity, mutation, differential survival, and differential reproduction, given the values of 180 

the four input variables. Mutation, survival probability, probability of reproduction, and both 181 

individual and social learning are affected by stochastic variation. The environment has a 182 

constant absolute first derivative (i.e. it changes at a constant rate) during each of the 6,000 183 

iterations of any given simulation, thus the principal results are given as the median values 184 

of   and   in the population over the last 5,000 iterations of the simulation. The first 1,000 185 

iterations of each run were discarded as a burn-in period to ensure that results were not 186 

affected in any way by the initialization values; although runs with lower   values took 187 

longer to stabilize, runs for all combinations of parameter values had stabilized after 1,000 188 

iterations. The retained 5,000 iterations provided a suitably robust sample size over which to 189 

calculate medians of the outputs   and  . 190 

 Initialization. Simulations were initialized with an environmental value of zero. Initial 191 

phenotype values were drawn from a normal distribution with a mean of zero and a 192 

standard deviation of 0.05. Initial proportions of individual learning were drawn from a 193 

uniform distribution on the interval (0,0.1); differences in these starting values did not affect 194 

the outcomes of the simulations. All simulations ran with a fixed population size of       195 

individuals. 196 

 Input. The model does not have any external inputs. 197 

Submodels 198 
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 Environment. The environment is a symmetrical sawtooth wave. Although this waveform 199 

differs from what is traditionally used in the social learning literature, it was chosen because 200 

it has constant absolute first derivative (i.e. the rate of environmental change is a constant) 201 

and because, though simple, it captures the periodicities found in empirical (palaeo)climatic 202 

data. Such periodic signals are of various durations, ranging from sub-annual seasonal 203 

fluctuations, through short cycles such as the El Niño Southern Oscillation (2-7 years), to 204 

orbital insolation patterns lasting tens to hundreds of thousands of years (e.g. Grove 2012a, 205 

2012b; Markonis and Koutsoyiannis 2013; Yun and Timmermann 2018). Results are given in 206 

relation to the absolute rate of change, but it is important to note that other aspects of 207 

environmental variation may be of similar importance. In particular, since spectral analyses 208 

of climatic data often indicate ‘reddened’ signals (i.e. signals with a marked autocorrelation 209 

component) it would be profitable in future to study responses to different ‘colours’ of noise 210 

in the pink to red spectrum. The value of the current setup is that it provides a simple, easily 211 

understandable baseline against which to compare future studies of more complex and 212 

more realistic environments. The rate of environmental change per iteration ( ) is varied 213 

between simulations in increments of 0.05 from 0 to 1 by increasing the amplitude of the 214 

wave in increments of 2.5 from 0 to 25. The wave has a frequency of 1/200 iterations 215 

throughout. Experiments demonstrated that altering   via the frequency rather than the 216 

amplitude of the wave did not affect the results. 217 

 Learning. At the start of each iteration, all individuals update their behavioural phenotype 218 

via a combination of social and individual learning, as determined by their inherited value of 219 

 . Each individual   learns a behavioural phenotype,   , in iteration   as 220 

                                     [1] 221 

Where   is the proportion of individual learning,   is a value obtained via individual learning 222 

and   is a value obtained via social learning, with the subscript         indicating the 223 

social learning strategy followed (either CtB or CtM). An individual aiming for a given target, 224 

through either social or individual learning, will achieve a result drawn from a normal 225 

distribution with that target as its mean and its learning error value,  , as its standard 226 

deviation. The target for individual learning is the environment in the current iteration, 227 

    , whereas the target for social learning is the best or majority phenotypic value from 228 

the previous iteration. Equation [1] embodies a trade-off between individual and social 229 

learning, and it should be stressed that the model is therefore not intended to comment on 230 

the evolution of the underlying cognitive abilities that support these two forms of learning. 231 

Rather, the model assumes that individuals are capable of both, and the output indicates the 232 

optimal balance of individual and social learning that obtains under a given set of parameter 233 

values.  234 

 Reproduction. The fitness of each individual,   , is evaluated according to a Gaussian 235 

function with a mean equal to the current environmental value,     , and unit variance, 236 

                                       
       [2] 237 

where   is the cost of individual learning. Simulations are run with                . The 238 

least fit     individuals are then removed from the population and replaced by     new 239 
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offspring chosen by fitness-proportionate selection from among the       surviving 240 

parents, where       is population size and                 is the proportion of the 241 

population replaced each iteration. This reproduction scheme effectively couples both a 242 

truncation procedure and fitness-proportionate selection; the scheme is implemented in this 243 

way to accelerate the progress of the population towards asymptotic proportions of 244 

individual learning, which are the results of interest. Eliminating the truncation element of 245 

this scheme does not affect results, but does ensure that asymptotic proportions are 246 

achieved after fewer iterations, thus reducing the burn-in time in the simulations. New 247 

individuals inherit only the (mutated)   values of their parents. 248 

 Mutation. Offspring inherit a value determining the proportion of individual learning they 249 

engage in; however, this value undergoes mutation as it is transmitted from parent to 250 

offspring. Mutation is carried out via an additive Gaussian operator of the form       , 251 

where    is the value of   after mutation and   is a value called from a normal distribution 252 

with mean zero and a standard deviation of 0.05. As the proportion of individual learning 253 

can never be <0 or >1, mutated values that are <0 are reset to 0 and those that are >1 are 254 

reset to 1. 255 

 Targets for social learning. At the end of each iteration the values of the fittest and most 256 

common phenotypes from the parent population are recorded; these values are used as the 257 

targets of social learning in the next iteration. The best phenotype is simply that achieving 258 

the highest fitness, whilst the most common phenotype is calculated via a binning 259 

procedure. As phenotypic values are recorded at high precision a simple calculation of the 260 

modal value is insufficient, as it is unlikely (even in large populations) that any two 261 

individuals’ phenotypic values will be exactly the same. Surviving phenotypes are therefore 262 

assigned to              bins of equal width covering the range of values in a given 263 

iteration; the most common phenotypic value is considered to occur at the mid-point of the 264 

modal interval (i.e. the mid-point of the bin containing the greatest number of phenotypes). 265 

This technique for mode estimation was shown to have desirable properties such as 266 

insensitivity to outliers and to the shape of the distribution by Chernoff (1964); a proof of 267 

strong consistency was subsequently provided by Nadaraya (1965). 268 

3. Results 269 

Figures 1 and 2 show indicative single runs of the model in full, tracking changes in phenotype, 270 

proportion of individual learning, and fitness for both CtB and CtM. Figure 1 shows the case in which 271 

there is no environmental change (   ), with other parameters set to intermediate values 272 

(         ). Figure 2 shows the case in which environmental change, learning error, cost of 273 

individual learning, and reproductive rate are all set to intermediate values (           ). 274 

Subsequent figures present the medians from iterations 1001-6000 of each model run, across all 275 

parameter values simulated. 276 

The basic predictions garnered from previous research are supported, with the exception that high 277 

learning error does not always lead to low proportions of individual learning. At low reproductive 278 

rates, high learning error can lead to higher levels of individual learning than those recorded at 279 

intermediate levels of learning error for both strategies (see Figure 3A i, iv, vii, and viii and 3B i, iv, vii 280 
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and viii). Prediction (1), that CtM will evolve a greater proportion of individual learning than CtB 281 

under all parameter combinations in which environmental change occurs, is supported; Figure 4A 282 

demonstrates that the proportion of individual learning evolved under CtB minus the proportion 283 

evolved under CtM is always negative. There are, however, areas in which the difference in the 284 

evolved proportion of individual learning between the two strategies is negligible. In some cases this 285 

follows from more basic predictions, in that it occurs under low rates of environmental change or 286 

learning error, when both strategies evolve low or high proportions of individual learning, 287 

respectively. They also occur, however, at high reproductive rates when learning error is high 288 

relative to the rate of environmental change; this latter case is discussed below. 289 

Prediction (2) is supported in the vast majority of cases. Figure 4B demonstrates that the fitness of 290 

CtB minus the fitness of CtM is almost always positive, and therefore that the fitness of CtB is almost 291 

always higher. Of the 3,969 paired simulations represented in Figure 4B, CtM achieves higher fitness 292 

in only 102 of them (2.57%). These exceptions occur in a small region of Figure 4B ix in which       293 

and      , where a minimal amount of individual learning provides an advantage to CtM in a 294 

region in which CtB continues in the absence of individual learning. Although differences in fitness 295 

(Figure 4B) correspond well to differences in the proportion of social learning (Figure 4A), the 296 

greatest differences in fitness occur not when differences in the proportion of individual learning 297 

area greatest, but when both the proportion of individual learning under CtB is zero and the 298 

proportion under CtM is greater than zero. Thus the greatest relative losses in fitness under CtM 299 

occur when it begins to incorporate small amounts of individual learning under conditions in which 300 

CtB does not. 301 

4. Discussion 302 

Figure 3 (3A i, iv, vii, & viii, and 3B i, iv, vii, & viii) demonstrates that for both CtB and CtM at [  303 

   ,      ] and in all cases where      , higher learning errors can lead to increases in individual 304 

learning under low to moderate rates of environmental change ( ). This partially contradicts the 305 

basic expectation, outlined in the introduction, that higher proportions of individual learning will be 306 

more likely to evolve as learning error approaches zero. The reason for this pattern is as follows. The 307 

target for individual learning is the environment in the current iteration,     , which is also the 308 

optimal phenotypic value. As such, increasing learning error ( ) will always be detrimental to 309 

individual learning, because it will inevitably lead to phenotypes that are further from the optimum 310 

than they would have been had learning been error-free. However, increasing   can also be 311 

detrimental to social learning, where the target is the behaviour of a conspecific. Given a univariate 312 

environment and a Gaussian learning error distribution, and assuming that in the previous iteration 313 

social learning attained the optimal phenotype, at     on average half the copies produced by 314 

social learning in the current iteration will be worse than the target. This is because these copies will 315 

have moved in the ‘wrong’ direction along the environmental axis. At    , however, more than 316 

half of the copies produced by social learning in the current iteration will be worse than the target, 317 

because in addition some will have ventured too far in the ‘correct’ direction. Formally, the 318 

probability of a given individual attaining exactly the optimal phenotype in iteration   given that she 319 

is copying an individual who had done so in iteration     is 320 

  
 

     
 
 

  

              [3] 321 
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Note that the numerator of the exponentiated part of this equation is    because the environment 322 

has shifted exactly   since the previous iteration; the environment (and therefore the optimal 323 

phenotypic value) in the previous iteration is regarded as being located at zero. 324 

  thus declines with increasing   when     and declines rapidly to zero with decreasing   when 325 

   . Figure 5 provides a rendering of equation [3] over the range of   and   employed in the 326 

simulations. This graph demonstrates that the greatest advantage to social learning occurs towards 327 

the bottom left of the graph, at values of relatively low   and  . It is in this region that very high 328 

levels of social learning evolve under both CtM and CtB, even under low costs of individual learning 329 

and low reproductive rates (see Figure 3). Note that as learning error ( ) increases from this region, 330 

the advantage of social learning decreases. This demonstrates that at very low rates of 331 

environmental change, greater learning error can decrease the value of social learning and thus 332 

increase reliance on individual learning. The regions in which individual learning is advantageous in 333 

this way are of course decreased by higher costs of individual learning, and are also decreased by 334 

higher reproductive rates. The reason for this latter pattern is that as reproductive rate increases, it 335 

increases the strength of selection (because fewer members of each generation survive to 336 

reproduce); this increases the advantages of social learning, because the only the very fittest 337 

individuals survive long enough to be copied. 338 

For 97.43% of parameter combinations, the results reported above support the contention (Kendal 339 

et al. 2009) that the fittest social learning strategy will be the one that can persist with the lowest 340 

frequency of asocial learning; furthermore, they suggest that this strategy will not be CtM. Although 341 

the model employed here does not involve direct competition between the two strategies, it does 342 

raise the question of how conformity could possibly evolve in situations in which an alternative 343 

strategy is demonstrably more adaptive. One interpretation is simply that these results accord very 344 

well with the sparse empirical evidence for conformity (e.g. Eriksson et al. 2007; Eriksson and 345 

Coultas 2009; Claidière et al. 2012; van Leeuwen and Haun 2013, 2014; Acerbi et al. 2016). Although 346 

the empirical studies of, for example, van de Waal and colleagues (2013) and Aplin and colleagues 347 

(2015) appear robust, questions remain as to the validity of inferring individual-level processes from 348 

population-level analyses and the extent to which apparent signatures of conformist social learning 349 

could have been produced by alternative processes (Acerbi and van Leeuwen 2017; Barrett in press). 350 

The simulations of Acerbi and colleagues (Acerbi et al. 2016; Acerbi and van Leeuwen 2017) 351 

demonstrate that preference for one cultural trait over another or social learning from small subsets 352 

of the population can lead to results indistinguishable from those expected under conformist social 353 

learning. Although these alternative generating processes may be realistic only under a limited set of 354 

conditions (Smaldino et al. 2017), they raise a substantive equifinality problem that deserves greater 355 

attention (Barrett in press). 356 

A second interpretation relates to the form of the environment used as the basis for the current 357 

model. Although periodic oscillations of various frequencies dominate climatic signals, they are 358 

augmented by high-frequency variability which can reasonably be characterised as white (i.e. 359 

Gaussian) noise (e.g. DeLong et al. 2009; Trauth 2015). Adding such variability to the model 360 

environment employed in the current simulations would reduce the fitness advantage of CtB over 361 

CtM when the strength of the variability is low relative to the periodic component, and drive 362 

populations towards pure individual learning when the strength of the variability is high relative to 363 
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the periodic component. Further research is required to fully elucidate the differing effects of these 364 

two components, and to quantify their relative importance in empirical climatic signals. 365 

There are a number of additional interpretations that relate these results more closely to previous 366 

theoretical research. Firstly, a number of previous theoretical studies have drawn the conclusion 367 

that conformist social learning is more likely to evolve in a spatially variable environment than it is in 368 

a temporally variable environment (e.g. Boyd and Richerson 1985; Henrich and Boyd 1998; 369 

Nakahashi et al. 2012). Such results often rely on the evolution of what might be termed local 370 

conformity. Payoff-based social learning becomes maladaptive if the payoffs being monitored are 371 

achieved under environmental conditions that are different from those currently experienced by the 372 

social learner; in such cases, conformist copying of local individuals (those experiencing the same 373 

environmental conditions) can be more adaptive than payoff-based learning from the whole 374 

population. Efferson and colleagues (2016) generalise this result to the inevitable conclusion that 375 

conformist copying is beneficial when the same behaviour is optimal for both the copier and the 376 

copied. Unfortunately, such conclusions fail to compare like with like; local conformity may be 377 

preferable to global payoff-based copying, but it will only be preferable to local payoff-based 378 

copying when temporal environmental variability is negligible. It is hard to imagine an empirical 379 

scenario in which there is no temporal variability in environmental conditions, unless the study 380 

encompasses an exceptionally short temporal interval. Further to this, the evolution of conformity 381 

under such models is also sometimes reliant on the assumptions that payoff-based copying is more 382 

costly than conformist copying, or that payoffs are more difficult to discern than the behaviours that 383 

generated them (e.g. Nakahashi et al. 2012). While one or both of these assumptions may be 384 

justified under certain conditions, additional research is will be required to reveal exactly what those 385 

conditions are, and how widespread they may be. 386 

Secondly, the model outlined above employs the strongest possible form of conformity. A previous 387 

model (Kandler and Laland 2013) found a positive relationship between the strength of conformity 388 

and the degree of individual learning required. Individual learning serves essentially two purposes: 389 

(1) it enables individuals to sample and therefore to track a changing environment, and (2) in doing 390 

so it introduces variation in the form of ‘innovations’ into the population. However, variation can 391 

also be introduced by social learners with high rates of learning error, or maintained in proportion to 392 

the ‘weakness’ of the social learning strategy. When beneficial variation is introduced by individual 393 

learners or social learners with high learning error, it is likely to be eradicated by strong conformity 394 

but spread by payoff-based learning at a rate proportional to the payoff bias. The weaker the 395 

conformist bias, the more likely it is that (rare) beneficial variation will survive social learning and be 396 

spread by natural selection; conversely, the weaker the payoff bias, the less likely this is to occur. 397 

It is argued therefore that the result reported above, that at high   and high   the proportions of IL 398 

under CtB and CtM are very similar, is analogous to the result of Kandler and Laland (2013) that 399 

weak conformity requires a lower proportion of individual learning; the difference being that in the 400 

model above beneficial variation is introduced by high social learning error rather than being 401 

maintained by weak conformity. The high reproductive rates ensure that this variation is capitalised 402 

upon by natural selection. This line of reasoning suggests that conformity might co-exist with 403 

relatively low rates of individual learning when either conformity is weak (as per Kandler and Laland 404 

2013) or when learning error and reproductive rates are high. The latter scenario is effectively a 405 

cultural bet-hedging strategy, and may be optimal for species that produce multiple offspring 406 
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simultaneously (i.e. in litters) and whose generation times are short relative to the rate of 407 

environmental change. The former scenario is more likely to apply to long-lived / slowly reproducing 408 

species such as Homo sapiens, particularly given the emerging consensus that cumulative culture 409 

requires high fidelity transmission (i.e. low learning error: Tomasello 1999; Lewis and Laland 2012). 410 

A third argument relates to the potential social costs of non-conformity, an element rarely 411 

considered in models of social learning, presumably because empirical evidence for it comes almost 412 

exclusively from humans (e.g. Fehr and Fischbacher 2004). The normative nature of human social 413 

learning can lead to third-party punishment of non-conformists, a pattern not found in other 414 

primates (Fehr and Fischbacher 2004), and almost certainly linked to in-group / out-group 415 

distinctions in the context of cultural group selection (e.g. Tennie et al. 2009). If the costs of non-416 

conformity equate to actual declines in fitness via, for example, ostracism or reproductive 417 

suppression, this would imply an additional cost to both individual learning (innovation) and social 418 

learning strategies other than conformity. Whilst it is routine for theoretical models to assume a 419 

greater cost to individual than to social learning, there remains the additional possibility that social 420 

learning strategies themselves attract differing costs due simply to the ways in which their outcomes 421 

are viewed by other group members. Figure 4B demonstrates that there are regions, even at low 422 

reproductive rates, in which the fitness difference between CtM and CtB is low; in such regions, even 423 

minor social costs to non-conformity could promote CtM as the most adaptive strategy. 424 

In summary, the results detailed above demonstrate that the optimal proportion of individual 425 

learning co-existing with strong conformity is greater under all parameter combinations than for an 426 

equivalent payoff-based strategy. Populations practicing the optimal combination of individual and 427 

payoff-based social learning are fitter than their conformist counterparts in 97.43% of simulations, 428 

supporting the conjecture that the most adaptive social learning strategy will be that which co-exists 429 

with the lowest proportion of individual learning, and suggesting that conformity is unlikely to 430 

evolve under a temporally varying environment unless reinforced by the social punishment of non-431 

conformists. 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 



12 
 

Acknowledgements 443 

Elements of the research presented here were shaped by discussions with colleagues at the 444 

Interdisciplinary Workshop on Social Learning and Cultural Evolution, Keele University, 7th – 8th June 445 

2017. The comments of James Borg and Isa Romanowska were particularly insightful. The comments 446 

of three anonymous reviewers also considerably clarified aspects of the manuscript, and suggested 447 

productive avenues for future research. 448 

 449 

 450 

Note on Model Code 451 

The full code for the model is supplied as Grove_ESM2.txt, with the code for producing the figures 452 

supplied in Grove_ESM1.txt. All code is written in Matlab R2017a (The MathWorks Inc., Natick, MA, 453 

USA). 454 
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Figures 605 

Figure 1. Output of a single model run when the environmental does not change (   ), with other 606 

parameters set to intermediate values (         ). Translucent shaded regions show inter-607 

quartile ranges, with solid lines showing medians in each case. The environment is shown in green in 608 

the ‘Phenotype’ plot. The dashed line at 1,000 iterations shows the end of the burn-in period. IL = 609 

individual learning. 610 
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Figure 2. Output of a single model run with environmental change, learning error, cost of individual 625 

learning, and reproductive rate are all set to intermediate values (           ). Translucent 626 

shaded regions show inter-quartile ranges, with solid lines showing medians in each case. The 627 

dashed line at 1,000 iterations shows the end of the burn-in period. Note that the phenotypes of 628 

neither the ‘copy the best’ or the ‘copy the majority’ strategies are visible in the upper plot, as both 629 

perfectly follow the environment (shown in green). IL = individual learning. 630 
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Figure 3. Optimal proportions of individual learning when coexisting with (A) payoff-based and (B) 645 

conformist social learning. The indexes i – ix are used to identify specific combinations of 646 

reproductive rate and cost of individual learning in the text. IL = individual learning. 647 
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Figure 4. Differences between (A) the evolved proportion of individual learning and (B) fitness under 666 

CtM and CtB, measured as the result for CtB minus that for CtM in both cases. The indexes i – ix are 667 

used to identify specific combinations of reproductive rate and cost of individual learning in the text. 668 

The red contour line in B(ix) encloses the only area in which fitness is higher under conformist 669 

learning than it is under payoff-based learning.  IL = individual learning. 670 
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Figure 5. Rendering of equation [3] over the range of   and   employed in the simulations. 688 
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