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Abstract
There is now considerable evidence that fine-grained 
acoustic-phonetic detail in the speech signal helps listeners to 
segment a speech signal into syllables and words. In this 
paper, we compare two computational models of word 
recognition on their ability to capture and use this fine- 
phonetic detail during speech recognition. One model, SpeM, 
is phoneme-based, whereas the other, newly developed Fine- 
Tracker, is based on articulatory features. Simulations dealt 
with modelling the ability of listeners to distinguish short 
words (e.g., ‘ham’) from the longer words in which they are 
embedded (e.g., ‘hamster’). The simulations with Fine- 
Tracker showed that it was, like human listeners, able to 
distinguish between short words from the longer words in 
which they are embedded. This suggests that it is possible to 
extract this fine-phonetic detail from the speech signal and 
use it during word recognition.

Index Terms: fine-phonetic detail, word recognition, 
computational modelling

1. Introduction
In normal everyday communication, listeners appear to be 
able to recognise the intended word sequences almost 
effortlessly. Even in the case of fully embedded words such as 
‘ham’ in ‘hamster’, listeners can make the distinction between 
the two interpretations even before the end of the first syllable 
‘ham’. There is now considerable evidence from 
psycholinguistic and phonetic research that sub-segmental 
(i.e., subtle, fine-grained, acoustic-phonetic) and supra­
segmental (i.e. prosodic) detail in the speech signal modulates 
human speech recognition, and helps the listener segment a 
speech signal into syllables and words (e.g., [1],[2],[3]).

It is this kind of information that appears to help the 
human perceptual system distinguish short words from the 
longer words in which they are embedded. For instance, it is 
shown that the lexical interpretation of an embedded 
sequence is related to its duration [3]; a longer sequence tends 
to be interpreted as a monosyllabic word more often than a 
shorter one. These results seem to question the validity of the 
phoneme as the unit of recognition in human speech 
recognition.

In this paper, we investigate whether ‘fine-phonetic 
detail’ [4] or ‘non-segmental information’ in the speech 
signal can actually be extracted from the speech signal and 
used during word recognition. We do so by testing two 
computational models in modelling the human ability to 
detect and use these non-segmental cues during speech 
recognition. Both computational models of human word 
recognition are based on the theory underlying the Shortlist 
model [5] ; they however differ in the unit of recognition they 
use: phonemes for SpeM [6] and articulatory features (AFs) 
for the newly developed model Fine-Tracker [7]. Both 
computational models are built using techniques from the

field of automatic speech recognition (ASR), making them 
able to recognise actual speech signals. One clear advantage 
of this is that these models can be tested with precisely the 
same stimulus materials as used in the behavioural studies 
being simulated, instead of using some idealised form of 
input representation as is done by most other computational 
models of human word recognition.

If successful, these experiments will provide support for 
the theory that non-segmental cues in the speech signal 
modulate speech recognition. Additionally, it will provide 
evidence to help answer the question about the ideal unit of 
recognition in speech recognition.

2. The computational models
2.1. SpeM
SpeM (Speech-based Model of human word recognition, [6]) 
is an extended implementation of Shortlist, which has proven 
successful in simulating parts of the human word recognition 
process, while using real speech as input. The theory 
underlying SpeM and Shortlist claims that the speech 
recognition process consists of two levels: the prelexical 
level, at which the incoming acoustic signal is mapped onto 
prelexical representations, and the lexical level, at which 
these representations are mapped onto lexical representations. 
Following Shortlist, the prelexical representations in SpeM 
take the form of phones.

SpeM consists of two modules, one for each level. The 
first module is an automatic phone recogniser (APR), which 
creates probabilistic phone lattices. The APR is based on 
HTK [8]: it uses 37 monophone models, each consisting of 3 
emitting states, which were trained on the read speech part of 
the Spoken Dutch Corpus (SDC) [9].

The second module is a word search module, which 
parses the phone lattices in order to find the most likely 
(sequence of) words, and computes for each word its 
activation based on the accumulated acoustic evidence. The 
search module finds the sequence of words with the smallest 
distance between the sequence of phones on the path through 
the phone lattice and the phonemic representations of the 
words in the lexicon using a time-synchronous and breadth- 
first DP algorithm. Each phone insertion, deletion, and 
substitution is penalised according to parameter values which 
can be tuned separately. The output of SpeM consists of an 
N-best list of hypothesised parses. Each parse contains words, 
word-initial cohorts (words sharing phone prefixes), silence, 
and any combination of these, except that a word-initial 
cohort can only occur as the last element in the parse.

2.2. Fine-Tracker
Like SpeM and Shortlist, Fine-Tracker consists of two 
levels/modules: a module that creates a prelexical 
representation of the speech signal and a word search module.

mailto:O.Scharenborg@let.ru.nl


Table 1. Specification o f the AFs, their AF types, and the 
number o f hidden nodes in the MLPs.

AF AF type #hidden nodes
manner plosive, fricative, nasal, glide, 

liquid, vowel, sil
300

place bilabial, labiodental, alveolar, 
(pre)palatal, velar, glottal, nil, sil

200

voice +voice, -voice 100
fr-back front, central, back, nil 200
round +round, -round, nil 100
height high, mid, low, nil 200
dur-diph long, short, diphthong, nil 200

The biggest difference between SpeM and Fine-Tracker is 
the form of the prelexical representations. Fine-Tracker is 
specifically designed to ‘track’ fine-phonetic detail in the 
speech signal. It uses articulatory features, which are abstract 
classes characterising the articulatory properties of speech 
sounds in a quantised form [10]. Table 1 shows an overview 
of the AFs used by Fine-Tracker. Note that fr(ont)-back, 
round, height and dur(ation)-diph(thong) only apply to 
vowels.

The first module creates a multi-dimensional feature 
vector for every 10 ms of speech of the speech signal. Each 
feature vector has a continuous value between 0 and 1 for 
each of the AF types in Table 1, resulting in 32-dimensional 
feature vectors. The value of each AF type can be regarded as 
a measure of activation of this AF type, which can thus be 
traced over time.

In the current version of Fine-Tracker, the first module is 
implemented as multi-layer perceptrons (MLPs). For each of 
the AFs, one MLP was trained using the NICO Toolkit [11] 
on 4000 randomly selected utterances from the read speech 
part of the SDC [9]. Each MLP consisted of three layers. The 
input layers had 39 nodes. The hidden layers had hyperbolic 
tan transfer functions and a different number of nodes 
depending upon the AF. The optimal number of hidden units 
was determined through tuning experiments and is listed in 
the third column of Table 1. The output layer was configured 
to estimate the posterior probability of the AF value given the 
input. The number of output nodes is identical to the number 
of AF values (see Table 1). When training each MLP, the 
performance on a validation set (consisting of a similar set of 
utterances as used for the simulations described here (Exp 1B 
from [3])) was monitored and training was terminated when 
the validation set’s error rate began to increase.

In the Fine-Tracker lexicon, the words are also 
represented in terms of multi-dimensional feature vectors. 
Because the values of the AF types can take any value 
between 0 and 1, speech phenomena such as coarticulation, 
assimilation, and nasalisation of vowels can easily be encoded 
through feature spreading. Essential in Fine-Tracker is the 
fact that the number of feature vectors per phoneme can be set 
for each phoneme or word separately. The word search 
module of Fine-Tracker is able to deal with these subtle 
differences in lexical representations.

The word search module compares the multi-dimensional 
feature vectors with the candidate words in the lexicon in 
order to find the most likely (sequence of) words, and it 
computes the activation flows of these candidate words. It 
does so by determining the sequence of words with the 
smallest distance through the search space spanned by the 
multi-dimensional input feature vectors and the lexical feature 
representations of the words. The search algorithm is time- 
synchronous and breadth-first and uses a many-to-one

mapping, since multiple 10ms feature vectors need to be 
mapped onto a single lexical feature vector. For each path 
through the search space the total cost is calculated, which 
consists of the sum of the:
• Word entrance penalty: cost to start a new word.
• Step-in-lexicon: a penalty associated with making a 'step' in 

the lexicon, but not in the input. This results in a lexical 
feature vector being inserted (similar to a phone insertion).

• Step-in-input: a penalty associated with making a 'step' in 
the input but not in the lexicon.

• Word not finished penalty: at the end of the input, all 
cohorts that do not correspond to words get a penalty.

• History: this cost is inherited from the ‘mother’ node -  it is 
the cost of the cheapest path to the mother node.

• Distance measure: currently, the averaged squared distance. 
The relative weight of the distance measure and the 
penalties above is determined by a distance weight 
parameter. There is an option in Fine-Tracker to implement 
other distance calculation measures.

As in SpeM, only the most likely candidate words and 
paths are considered; therefore several pruning mechanisms 
(see [12], for an overview) have been implemented:
• Number of nodes: the maximum number of hypotheses 

kept in memory during the word search.
• Local score pruning: a new search-space node is only 

created if the total cost of the new path is less than the total 
cost of the best path up to that point plus the local score 
pruning value.

• No duplicate paths: of identical word sequences, only the 
cheapest path is kept.

All parameters can be tuned separately. The output of the 
search module consists of an N-best list of hypothesised 
parses containing words, word-initial cohorts, silence, and 
any combination of these, with the restriction that a word- 
initial cohort can only occur as the last element in the parse.

The Fine-Tracker software is implemented in JAVA and 
is distributed under the GNU General Public License (GPL) 
via [7]. It runs on any platform where Java Runtime 
Environment version 1.6 or newer is available.

3. Experimental set-up
3.1. Experiment by Salverda et al.
For the simulations, we use the same stimulus materials as in 
the eye-tracking studies reported in [3]. In those experiments, 
participants listened to sentences and were asked to click on 
the object (one out of four pictures, presented on a computer 
screen) mentioned in the sentence. This ‘target’ word is a 
multi-syllabic word of which the first syllable also constitutes 
a monosyllabic word (e.g. ‘hamster’ and the embedded 
monosyllabic word ‘ham’). In total, 28 Dutch target words in 
28 utterances were used.

The target words were created in two ways1: 1) the first 
syllable of the target word is replaced through cross-splicing 
by a different recording of the first syllable of the multi­
syllabic target word (referred to as MULTI); 2) the first 
syllable is replaced by a recording of the monosyllabic 
embedded word (referred to as MONO). An example:

1 Actually, three different forms of the target words were 
contrasted in [3], but in the simulations reported here we only 
use two, i.e. those used in Exp 1A in [3], therefore only these 
two sets of stimuli are described here.



Original Zij dacht dat die hamstera verdwenen was 
Zij dacht dat die hamsterb verdwenen was 
(She thought that that hamster had disappeared) 
Zij dacht dat die hamc stukgesneden was 
(She thought that that ham had been sliced) 

Cross-spliced 1. Zij dacht dat die hambstera verdwenen was 
2. Zij dacht dat die hamcstera verdwenen was

During the experiment, participants’ eye movements were 
monitored. Analysis of the eye movements showed that there 
were significantly more transitory fixations to pictures 
representing monosyllabic words (e.g., ‘ham’) if the first 
syllable of the target word (e.g., ‘hamster’) had been replaced 
by a recording of the monosyllabic word than when it came 
from a different recording of the first syllable of that target 
word.

3.2. Model testing and predictions
For the simulations, the speech files are parameterised with
12 MFCC coefficients and log energy and augmented with 
first and second temporal derivatives resulting in a 39­
dimensional feature vector. These feature vectors are used as 
input to the APR module used by SpeM and the MLP module 
(the number of input nodes of the MLP is equal to the 
dimensionality of the MFCCs) used by Fine-Tracker. The 
lexicon used by both models consisted of 28,402 entries.

The activations of both the target words (e.g. ‘hamster’) 
and the monosyllabic embedded words (‘ham’) are extracted 
from the N-best lists computed by the models, and plotted 
over time. In our comparison of the models’ word activation 
plots with the human results, we consider the amount of 
transitory fixations as a degree of the word activation during 
human word recognition. This means we can directly compare 
the output of the two models with the results of the listeners.

In the MONO condition, we expect the activation of the 
embedded word to be higher than the word activation of the 
target word, since the first syllable of the target word was 
taken from a recording of the monosyllabic word. Reversely, 
we expect the word activation of the target word to be higher 
than that of the embedded word in the MULTI condition, 
since here the first syllable of the target word came from a 
different recording of the target word.

SpeM first maps the acoustic signal onto phoneme-like 
prelexical representations, which are subsequently mapped 
onto lexical representations consisting of phoneme strings. 
Since words such as ‘ham’ and ‘hamster’ have the exact same 
first three phonemes, we expect no difference in the word 
activations of the target words and the embedded words in the 
fine-phonetic detail simulations. We therefore predict that 
SpeM will not be able to correctly simulate the human results. 
However, Fine-Tracker uses feature vectors of AF features 
and different lexical representations for the embedded and 
target words. It is thus in theory able to use duration and thus 
distinguish between ‘ham’ and ‘hamster’. We expect 
differences in word activation between the target words cross­
spliced with a recording of the monosyllabic embedded word 
and with a different recording of the same word.

4. Results and Discussion
4.1. SpeM
The lexicon used during the simulations consists of only one 
pronunciation variant per word, i.e. the canonical phoneme 
representation. Of the 28 target words, SpeM was able to 
correctly recognise 17 target words, of which 12 were 
recognised correctly for both sets of stimuli, using a 50-best 
list. Figure 1 shows the averaged word activations over time

of the target (‘o’) and the embedded words (‘V’) for the 
MONO (solid line) and MULTI (dashed line) conditions. The 
words are aligned such that the phoneme position indicated 
with ‘0’ is the start of the second syllable.

Comparing the MONO and the MULTI conditions shows 
that the word activations in the MONO conditions are higher 
than in the MULTI conditions. However, as predicted, there 
is no difference in word activations for the target and 
embedded words in either condition. This means that SpeM is 
indeed not able to correctly simulate the effects found in 
human speech recognition.
4.2. Fine-Tracker
For the current simulation, the lexical feature vectors were 
obtained by substituting all phonemes in the SpeM lexicon 
with their canonical AF values. The number of lexical feature 
vectors for each phoneme in a word was determined by hand, 
although ideally this should be determined automatically. 
Setting this number by hand, however, will give a good idea 
of what is maximally possible if the automatic method would 
do it correctly. Since phoneme duration decreases with 
increasing number of syllables (e.g., [13]; this was also found 
to be true for the acoustic data used in this study -  on average 
245 ms in the MULTI condition, and 265 ms in MONO 
condition, see [3]), the number of AF feature vectors per 
phoneme in monosyllabic words was one more than the 
number of AF feature vectors per phoneme for the first 
syllable of the target words.

Fine-Tracker was able to correctly recognise 14 target and
13 embedded words in the MONO condition, and eight target 
(of which seven were recognised in both conditions) words 
and nine embedded words in the MULTI condition, using a 
50-best list. Figure 2 shows the averaged word activations 
over time of the target (‘o’) and the embedded words (‘V’) 
for the MONO (solid line) and MULTI (dashed line) 
conditions. Again, the words are aligned such that the 
phoneme position indicated with ‘0’ is the start of the second 
syllable.

There is a clear difference in activations for the target and 
embedded words. Like for the human listeners, in the MONO 
condition, the embedded words clearly have a higher word 
activation than the target words. Although this result is not 
reversed in the MULTI condition, the difference in word 
activation between the embedded and target words is far 
smaller than in the MONO condition. These results show that 
Fine-Tracker is able to detect and use fine-phonetic detail 
during speech recognition.
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Figure 1. SpeM word activations over time for the target and 
embedded words in the MONO and MULTI conditions.
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Fine-Tracker: Word Activation over time for Target and Embedded Words

Figure 2. Fine-Tracker activations over time fo r  the target 
and embedded words in the MONO and MULTI conditions.

5. Concluding remarks
We compared two computational models of word recognition 
on their ability to capture and use fine-phonetic detail during 
speech recognition. Simulations dealt with modelling the 
ability of listeners to distinguish short words (e.g., ‘ham’) 
from the longer words in which they are embedded (e.g., 
‘hamster’) using the same acoustic material as was used for 
the behavioural study presented in [3].

The first modelling results obtained with Fine-Tracker are 
promising. Follow-up research will focus on improving its 
recognition and modelling performance by implementing new 
distance measures and improving the lexical representations.

As predicted, the phoneme-based model SpeM was not 
able to distinguish between two words with the same 
phoneme sequence. It, thus, did not correctly model the 
human results. One could try and build an APR which might 
be able to distinguish between longer and shorter versions of 
the phonemes, and distinguish syllables in monosyllabic and 
multi-syllabic words in the lexicon using these ‘new’ 
phonemes. However, the distributions of the length of 
phonemes in monosyllabic and multi-syllabic overlap 
considerably. It is, therefore doubtful whether this approach 
will work. The SpeM results challenge the validity of the 
phoneme as the unit of recognition in human listeners.

Fine-Tracker was able to track fine-phonetic detail in the 
speech signal. This is due to its unit of recognition in 
combination with its capability of dealing with subtle 
differences in lexical representations. Like human listeners, it 
showed a preference (i.e., a higher word activation) for the 
embedded mono-syllabic word when the first syllable of the 
target word came from a recording of the monosyllabic word. 
Although this result was not reversed when the target word 
was cross-spliced with the first syllable of another recording 
of the target word, the word activation difference of the 
embedded and the target words was smaller. These results 
show that Fine-Tracker is sensitive to fine-phonetic detail and 
that it can extract and use it during speech recognition. These 
results strengthen the theory that non-segmental cues in the 
speech signal modulate speech recognition.

The advance of articulatory feature approaches of speech 
recognition is the ability to model pronunciation variation 
through simple feature spreading. It thus provides a flexible 
alternative to the standard phoneme-based or ‘beads-on-a- 
string’ paradigm in ASR [14]. However, two questions 
remain to be answered through further research. First, how 
should the AF-based lexicons be trained to go beyond the

currently used canonical feature vectors? Second, how can the 
optimal number of feature vector per phoneme be determined 
automatically?
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