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Abstract 
 
The ability of phosphonium cations to act as intracellular transport vectors is well-

established.  Previous research has demonstrated that phosphonioalkylthiosulfate 

zwitterions, and -thioacetylalkylphosphonium salts are useful precursors for the 

formation of phosphonium-functionalised gold nanoparticles and enable the 

nanoparticles to be transported into cells for diagnostic and therapeutic purposes.  

In this report we describe the synthesis and characterisation of a series of 

phosphonioalkylthiosulfate zwitterions, and-thioacetylalkylphosphonium salts 

derived from the methoxy-phenylphosphines tris(2,4,6-trimethoxyphenyl)phosphine, 

tris(2,6-dimethoxyphenyl)phosphine and tri(4-methoxyphenyl)phosphine. The 

methoxyphenyl-substituted phosphonium compounds show greater solubility in 

aqueous systems than the corresponding phenyl derivatives and cytotoxicity studies 

reveal that the compounds are significantly less toxic than the related 

triphenylphosphonium derivatives. 

The solid-state structures of the tris(2,4,6-trimethoxyphenyl)- and tris(2,6-

dimethoxyphenyl)-phosphoniopropylthiosulfate zwitterions have been investigated by 

single crystal X-ray crystallography. The differences in the molecular packing of the 

compounds may account for greater solubility of these zwitterions in aqueous 

solutions. 
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1.0 Introduction 
 
The lipophilic characteristics of organophosphonium cations, and their ability to be 

transported across cell membranes and accumulate in mitochondria, have led to 

widespread interest in their use as medical probes and therapeutics [1,2].  

Consequently phosphonium moieties, especially triphenylphosphonium groups, have 

been conjugated to a wide range of molecules.  

Our own work has focused on the synthesis and biological properties of 

alkylthiosulfate zwitterions [3-6], and alkylthioacetate salts [3,7], conjugated with 

triphenylphosphine and other trialkyl- and triaryl-phosphines [3-7], and also arsines 

[8], which can be used as precursors for the formation of phosphonium- or arsonium-

functionalized gold nanoparticles [4,8], potentially useful species in mitochondria-

targeted pharmaceutical nanotechnology. Other groups have developed and applied 

our methodology [9,10]. Although triphenylphosphonium-functionalized nanoparticles 

are soluble in water and biological media [4,10] and are taken-up by cells [4,9]  the 

parent triphenylphosphonioalkylthiosulfate zwitterions are insoluble in aqueous 

media [3,10]. This observation has prompted us to investigate alternative 

triarylphosphonium groups in an attempt to improve the aqueous solubility of the 

zwitterions. Tris(2,4,6-trimethoxyphenyl)phosphine is a very unusual tertiary aryl 

phosphine [11]. The presence of the methoxy groups increases the basicity of the 

phosphine and also increases the steric bulk of the compound [12]. Tris(2,6-

dimethoxyphenyl)phosphine has a lower basicity, but similar steric properties to 

tris(2,4,6-trimethoxyphenyl)-phosphine, whereas tris(4-methoxyphenyl)phosphine 

has a lower basicity and lower steric bulk than tris(2,4,6-

trimethoxyphenyl)phosphine. Previous work by Liu and coworkers [13,14], showed 

that tri-(4-methoxyphenyl)- and tris(2,4,6-trimethoxyphenyl)phosphonium compounds 
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can be used to functionalize macrocyclic derivatives 1 and 2, that are soluble in 

biological media and which are readily taken up by cells. Their results showed that 

both the 4-methoxy- and the 2,4,6-trimethoxy- compounds are more effective at 

mitochondria-targeting than the analogous triphenylphosphonium derivatives. 

Furthermore, compound 1 is more effective at mitochondria-targeting than the 2,4,6-

trimethoxy species 2. Another important biological application of tris(2,4,6-

trimethoxyphenyl)phosphonium compounds is in the field of proteomics. Cations 

such as the S-pentafluorophenylacetate (3) [15-19], alkylcarboxylates (4) [20], and 

the N-succinimidyloxycarbonylmethyl-derivative (5) [21-23], are used to derivatise 

small molecules, including amines and carboxylic acids, alcohols, aldehydes and 

ketones, and large biomolecules such as proteins and peptides, to enhance their 

detection by mass spectrometry. 

We have exploited the unusual properties of tris(2,4,6-trimethoxyphenyl)phosphine 

and its analogues by incorporating them into phosphoniumalkylthiosulfate zwitterions 

and alkylthioacetate salts and report here our investigations into the chemistry and 

cytotoxicity of these compounds. 

 

 

 

 

 



5 
 

 

 

1 2 
 

 

 

3 4 

 

 

 

5  
 

Chart 1. The structures of compounds 1 - 5 

 

2.0 Results and Discussion 
 

The established method for preparing triarylphosphonioalkylthiosulfate zwitterions, 

and the associated phosphonioalkylthioacetate salts is to reflux the parent tertiary 

phosphine with a bromoalcohol, such as bromopropanol, as shown in Scheme 1. 

The resulting (3-hydroxypropyl)triarylphosphonium bromide salt is then refluxed with 

hydrobromic acid to generate a (3-bromopropyl)triarylphosphonium bromide that can 

be converted into the alkylthiosulfate zwitterion or the thioacetate salt. Unfortunately, 

this synthetic route is not possible for methoxyphenylphosphines because the 
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hydrobromic acid used in the second step preferentially attacks the ether 

substituents. Consequently, an alternative route has been developed, shown in 

scheme 1. This involves treating the methoxyphenylphosphine with an -

dibromoalkane, such as 1,3-dibromopropane, which leads to good yields of the -

bromoalkylphosphonium compounds although care has to be exercised in the initial 

step to avoid the methoxyphenyl phosphine reacting with both ends of the 

dibromoalkane. This is achieved by using a significant excess of the -

dibromoalkane and adding the methoxyphenylphosphine in small amounts over an 

extended period of time. This leads directly to the (3-bromopropyl)methoxyphenyl 

phosphonium bromide that can be converted into the alkylthiosulfate zwitterion or the 

thioacetate salt by refluxing with sodium thiosulfate or potassium thioacetate, 

respectively.  

 

The structures of the compounds prepared in this study and their numbering, are 

shown in scheme 1. Regarding the length of the alkyl chain in the 

phosphonioalkylthiosulfate zwitterions, and-thioacetylalkylphosphonium salts, 

previous studies have shown that a propyl chain is the ideal length. Longer alkyl 

chains tend to produce compounds that form as waxy solids or oils that are difficult 

to handle. Shorter alkyl chains would be less useful for forming functionalized 

nanoparticles. Therefore, in this study we have focused on the propyl derivatives.  
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Scheme 1. Synthetic procedures employed in this study together with a summary of 
the compounds prepared and their numbering. 

 

All compounds have been fully characterized by 31P and 1H NMR spectroscopy, ESI 

mass spectrometry and IR spectroscopy. The results correspond with the proposed 

structures of 6 - 11 and are consistent with published data. Compounds 6 - 11 

dissolve readily in a range of solvents including dichloromethane, water and aqueous 

media. This makes them suitable for cell biology studies. The solubility of zwitterions 

6, 8 and 10 in aqueous media is notable.  Previous research from our own group [3], 
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and others [10], has shown that triarylphosphoniopropylthiosulfate zwitterions 

prepared from triphenyl-, tri(4-fluorophenyl)- and tri(4-tolyl)-phosphine are not so 

soluble in aqueous media. In contrast, the corresponding 

-thioacetylpropyl(triaryl)phosphonium bromide salts are soluble in aqueous media. 

This difference in solubility between the phosphonium zwitterions and phosphonium 

salts was attributed to strong electrostatic interactions that exist between the 

zwitterions in the solid state. These interactions are not present in the corresponding 

-thioacetylpropyltri(aryl)phosphonium salts. The solubility of the phosphonium 

zwitterions reported here can be attributed to the electronic and steric effects of the 

methoxy-substituents.   

2.1 Single crystal X-ray analysis of tris(2,4,6-trimethoxyphenyl) 

phosphoniopropylthiosulfate and tris(2, 6-dimethoxyphenyl) 

phosphoniopropylthiosulfate 
 

Single crystals of 6 and 8 were grown by slow diffusion of diethyl ether into a 

dichloromethane solution of the compound, resulting in the formation of colorless 

crystals. The Bricklebank group has previously reported the structure of the 

triphenylphosphoniopropylthiosulfate zwitterion (12) [5], together with those of the 

tri(4-fluorophenyl)phosphoniopropylthiosulfate (13) [3], and tributylphosphonio-

thiosulfate (14) [3], zwitterions. The other crystallographically-characterized 

thiosulfate zwitterions are the ammonium derivative S-[4-(trimethylammonio)phenyl] 

thiosulfate (15) [24], and the triphenylarsoniopropylthiosulfate zwitterion (16) [8]. 
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Chart 2. The structures of compounds 12 - 16 

The molecular structure of 6 is shown in Figure 1 and selected bond lengths and 

angles in Table 1. The asymmetric unit of 6 contains two independent molecules 

along with a diethyl ether solvent molecule of crystallisation. The molecule containing 

atoms P1, S1 and S2 is referred to as 6A, and that containing atoms P41, S41 and 

S42 is 6B.  Both molecules of 6 are highly disordered which is not unusual for 

derivatives of tris(2,4,6-trimethoxyphenyl)phosphine (All quoted values are for the 

major component). The molecular structure of 8 is shown in Figure 2 and selected 

bond lengths and angles in Table 2. Unlike 6, the structure of 8 is not disordered. 

The asymmetric unit contains one independent molecule together with water of 

crystallisation. 

The bond lengths and angles in the aryl rings of 6 and 8 are unremarkable and are 

similar to those in the parent phosphines, [2,4,6-(MeO)3C6H2]3P [11], and 

[2,6-(MeO)3C6H3]3P [25].  The phosphorus atoms are tetrahedrally coordinated with 

mean C-P-C bond angles of 109.45o in 6A,109.48o in 6B and 109.51o in 8. The 

corresponding values for the triphenyl-, tri-4-fluorophenyl- and tributyl- analogues, 

12, 13 and 14 are 109.47o, 109.46o and 109.47o respectively. The mean C-P-C 
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angles in 6 and 8 are larger than those in the parent phosphines [11,25], but are 

identical to that  in the phosphonium salt methyltris(2,4,6-

trimethoxyphenyl)phosphonium iodide [26]. Other workers [26,27], have observed 

intramolecular P…O interactions between the oxygen of an ortho-methoxy group and 

the phosphorus atom in derivatives of both [2,4,6-(MeO)3C6H2]3P and 

[2,6-(MeO)3C6H3]3P. Both structures have similar intramolecular P…O distances with 

one oxygen generally much closer than its aryl ring equivalent (Table 3). 

The S-S bond length in 8 [2.1024(5)Å] is similar to the S-S bond length in 6A 

[2.080(3)Å] which is shorter than that in 6B [2.145(6)Å]. All of the S-S bonds in the 

phosphonium thiosulfate zwitterions are appreciably shorter than the S-S bond in the 

monoanion of thiosulfuric acid, HSSO3
- [2.155] [28]. The S-O bonds in 6A, which lie 

in the range 1.391(11)Å - 1.441(11)Å, are similar to those in 6B, which range from 

1.399(12)Å to 1.423(9)Å. However, the S-O bonds in 6A and 6B are shorter than 

those in 8 [1.4404(13)Å - 1.4493(12)Å] and 12 - 14. The reason for this difference is 

unclear.  

The packing of molecules of 6 (Figure 3) and 8 (Figure 4) show no significant 

intermolecular interactions between the cationic phosphonium centres and the 

thiosulfate anions. The structure of 6 shows that the zwitterions pack together in a  

loose head-to-tail manner with the thiosulfate anions surrounded by methoxy ligands, 

whereas for 8 the solvent water helps bridge thiosulfate anions together. As noted 

above, the favorable aqueous solubility of zwitterions 6 - 8 possibly results from 

weaker electrostatic interactions between molecules in the solid state. 
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Figure 1 Thermal ellipsoid representation of the structure of compound 6 
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Table 1 Selected bond lengths [Å] and angles [°] in compound 6. 

 
6A 

   

C1P1 1.835(6) O31S1 1.432(4) 

C11P1 1.801(4) O32S1 1.397(5) 

C21P1 1.798(4) O33S1 1.433(4) 

C31P1 1.815(5) S101S102 2.093(10) 

P1C131 1.801(16) O131S101 1.432(11) 

P1C101 1.804(5) O132S101 1.391(11) 

S1S2 2.080(3) O133S101 1.441(11) 
 

C11P1C21 110.6(2) O33S1O32 118.3(3) 

C11P1C131 99.4(10) O33S1O31 114.9(3) 

C21P1C131 104.8(11) O32S1O31 109.7(4) 

C11P1C31 110.7(2) O33S1S2 98.7(2) 

C11P1C101 106.2(2) O32S1S2 108.5(3) 

C21P1C31 103.9(3) O31S1S2 105.1(3) 

C21P1C101 111.4(5) O133S101O132 112(2) 

C131P1C101 123.5(15) O133S101O131 113.8(19) 

C11P1C1 109.3(3) O132S101O131 115.6(19) 

C21P1C1 115.2(5) O133S101S102 98.9(15) 

C31P1C1 107.0(4) O132S101S102 108.1(16) 

C33S2S1 100.27(19) O131S101S102 106.6(16) 

  C133S102S101 97.8(12) 

 
6B 

   

C41P41 1.798(4) O71S41 1.408(8) 

C51P41 1.790(4) O72S41 1.413(10) 

C61P41 1.798(4) O73S41 1.423(9) 

C71P41 1.827(10) S41S42 2.145(6) 

P41C171 1.813(11) O171S141 1.409(9) 

S141S142 2.105(7) O172S141 1.399(12) 

  O173S141 1.422(10) 

    

C51P41C61 107.3(2) O72S41S42 107.3(6) 

C51P41C41 113.2(2) O71S41S42 101.9(5) 

C61P41C41 112.36(19) O73S41S42 106.3(6) 

C51P41C171 113.7(10) C73S42S41 102.4(6) 

C61P41C171 109.0(8) O172S141O173 118.3(9) 

C41P41C171 101.4(10) O172S141O171 117.9(9) 

C51P41C71 110.5(10) O173S141O171 110.7(10) 

C61P41C71 107.4(9) O172S141S142 99.5(7) 

C41P41C71 106.1(9) O173S141S142 100.8(6) 

O72S41O71 114.6(8) O171S141S142 106.4(5) 

O72S41O73 110.7(8) C173S142S141 100.1(5) 

O71S41O73 114.9(8)   
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Figure 2 Thermal ellipsoid representation of the structure of compound 8 
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Table 2 Selected bond lengths [Å] and angles [°] in compound 8. 

 
C1-P1 

 
1.8152(15) 

 
S1-S2 

 
2.1024(5) 

C4-P1 1.8074(16) O1-S2 1.4469(12) 
C12-P1 1.8020(15) O2-S2 1.4493(12) 
C20-P1   1.8073(15) O3-S2 1.4404(13) 
C3-S1 1.8122(17)   
    
C12-P1-C20 104.60(7) O3-S2-O1 114.40(8) 
C12-P1-C4 112.06(7) O3-S2-O2 114.37(8) 
C20-P1-C4 114.60(7) O1-S2-O2 112.65(8) 
C12-P1-C1 113.25(7) O3-S2-S1 101.89(5) 
C20-P1-C1 108.84(7) O1-S2-S1 106.66(5) 
C4-P1-C1 103.66(7) O2-S2-S1 105.52(5) 
C3-S1-S2 100.79(6) 

 
  

 
 
 
 
 

Table 3 Selected intramolecular P…O contacts [Å] in compounds 6 and 8. 

    
6A 
P1…O1 

 
2.75(2) 

 
P1…O21 

 
3.071(42) 

P1…O3 3.13(2) P1…O23 2.828(4) 
P1…O11 3.099(3) P1…O101 2.768(18) 
P1…O13 2.801(3) P1…O103 3.130(15) 
    
6B 
P41…O41 

 
3.085(3) 

 
P1…O53 

 
2.736(3) 

P41…O43 2.816(4) P1…O61 3.103(3) 
P41…O51 3.115(4) P1…O63 2.790(4) 
    
8 
P1…O4 

 
2.7991(12) 

 
P1…O7 

 
3.0853(12) 

P1…O5 3.0746(12) P1…O8 2.8003(12) 
P1…O6 2.7572(12) P1…O9 3.0774(12) 
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Figure 3. Molecular packing in 6 

 

Figure 4. Molecular packing in 8 
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2.2 Cytotoxicity screening of 6 - 11. 

 

The use of phosphonium cations to transport a variety of species, including drugs, 

diagnostic probes, and nanomaterials, is well-established [1,2]. The advantages of 

phosphonium systems include their ease of synthesis but also, more importantly, 

their stability and lack of reactivity towards cellular components. For medical 

applications it is desirable that the transport vector, in this case the phosphonium 

group, is not reactive or toxic towards cells. Although the biological behaviour of 

phosphonium compounds has been widely investigated, especially their 

mitochondria-targeting properties and antiproliferative effects, perhaps surprisingly, 

few studies of the cytotoxicity of the compounds have been reported [1,2,29]. 

Previous research into triphenylphosphonium-conjugated compounds indicated that 

the toxicity was associated with the triphenylphosphonium moiety rather than the 

side chain [30]. To the best of our knowledge there are no reports of cytotoxicity 

studies into methoxyphenylphosphonium derivatives.  

 

Cell viability studies on compounds 6- 11 were performed against the PC3 prostate 

cancer cell line using MTT and CellTitre-Glo assays. MTT measures mitochondrial 

activity to determine the in vitro cytotoxic effects of chemical entities whereas 

CellTitre-Glo assay uses luminescence to determine the number of viable cells 

based on a quantification of adenosine triphosphate levels. The results are shown in 

Figure 5 and summarised in Table 4. The data from both assays show a similar trend 

with zwitterions 6, 8, 10 displaying greater toxicity to cells after 72 hours than the 

corresponding thioacetate salts 7, 9, 11. The IC50 values for 6 - 11 compare very 

favorably with those of the analogous -thioacetylpropyl(triphenyl)phosphonium salt 

17 and -thioacetylpropyl(4-fluorophenyl)phosphonium salt 18 reported previously 
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by us [3] and show much lower cytoxicity than the triphenylphosphonium derivative. 

This indicated that the methoxyphenylphosphonium compounds would be potentially 

useful species for transporting drug and diagnostic moieties into cells. 

 

A   

  
 

   
 
B 

  

   

   
 
 

Figure 5. PC3 cells treated with 6 - 11 for 24, 48, 72 hours. A Cell proliferation 

determined by the MTT assay. B Cell proliferation determined by the CellTiter-Glo 

luminescent cell viability assay kit. All data are expressed as a percentage of living 

cells normalized to control. 
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Table 4. IC50 data for 6 - 11 and related phosphonium compounds after 72 hours. All 
values are µM. 

 

Compound  CellTiter-Glo MTT 

6 218.3 45.65 

7 289.6 66.09 

8 198.1 47.80 

9 328.7 74.00 

10 249.9 58.70 

11 319.3 68.22 

17* 67.1  

18* 252.6  

NOTES 
*Data reported in reference 3 
 
 
 

 

 

17 18 

3. Conclusion 

 

The aim of the work reported in this paper was to synthesize 

methoxyphenylphosphoniopropylthiosulfate zwitterions and -thioacetylpropyl 

(methoxyphenyl)phosphonium bromide salts (6 - 11) and determine their cytotoxicity 

towards PC3 cells. All compounds are easily prepared and, unlike other 

triarylphosphoniopropylthiosulfate zwitterions, they are soluble in water and aqueous 

media.  Cell viability results show the IC50 values for the methoxy-

phenylphosphonium compounds to be much higher than the analogous 
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OBr

P S

F

F
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triphenylphosphonium species and compounds 6 - 11 are only cytotoxic towards 

cells at very high concentrations making them well-suited as transport vectors for 

biological applications. These results indicate that methoxy-phenylphosphonium 

compounds offer advantages compared to their phenyl congeners and could be ideal 

for the surface-functionalization of gold nanoparticles for applications in the area of 

mitochondria-targeted pharmaceutical nanotechnology. 

4. Materials and Methods 

 

Synthesis of 6 - 11. 

All chemicals and solvents were purchased from Sigma-Aldrich or Acros Organics 

and used as received. All 1H and 31P NMR spectra were recorded on a Brucker 

AVANCE III (400 MHz). IR spectra were recorded on a Brucker ALPHA platinum 

ATR spectrometer. Melting points were determined on a Stuart SMP3 melting point 

apparatus and are uncorrected. Electrospray Ionisation Mass spectrometry was 

performed on a Thermo Finnigan LCQ classic in positive ion mode. Samples were 

dissolved in a mixture of ethanol and deionised water (50:50) to a concentration of 

approximately 1 mg/mL for molecular ion determination.   Elemental analyses were 

performed by MEDAC Ltd, Chobham, Surrey, UK. 

 

All six compounds were prepared in a similar manner, as exemplified by the 

preparation of compounds 6 and 7. 

Tris(2,4,6-trimethoxyphenyl)phosphine (1.0g, 1.878 x 10-4 mol), dissolved in 

acetonitrile (20 mL), was added dropwise to a 1,3-dibromopropane (5 mL, 1.245 x 

10-2 mol) under a nitrogen atmosphere. The mixture was refluxed for 18 hours. The 

product, 3-bromopropyl[tris(2,4,6-trimethoxyphenyl)]phosphonium bromide was 
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isolated by diluting the reaction mixture with deionised water (20 mL) followed  by 

liquid-liquid extraction using dichloromethane (3 x 10 mL). The dichloromethane 

extracts were combined, dried over MgSO4, and the solvent removed by rotary 

evaporation yielding the product as a white solid. To produce zwitterion 6, 3-

bromopropyl tris(2,4,6-trimethoxyphenyl)phosphonium bromide (0.250 g, 3.82 x 10-4 

mol) and Na2S2O3 (0.212 g, 8.56 x 10-4 mol) were heated under reflux in aqueous 

ethanol under a nitrogen atmosphere for 18 hours. The thioacetate salt 7 was 

produced by refluxing 3-bromopropyl tris(2,4,6-trimethoxyphenyl)phosphonium 

bromide (0.250 g, 3.82  x 10-4 mol)  and KSC(O)CH3 (0.098 g, 8.56 x 10-4 mol) in 

aqueous ethanol overnight. Both compounds were isolated from the reaction 

mixtures by extraction with dichloromethane (3 x 20 mL). Purification of the products, 

which form as white microcrystalline powders, was achieved by triturating with 

diethyl ether and recrystallizing from dichloromethane/diethyl ether. The progress of 

all of the reactions was monitored by TLC using a mobile phase of 80% 

dichloromethane : 20% methanol.  

Tris(2,4,6-trimethoxyphenyl)phosphoniopropylthiosulfate (6) 

White solid, M.P.  218 °C. Elemental Analysis: found: C, 52.76%; H, 5.86%; S, 

9.29% requires: C, 52.47%; H, 5.67%; S 9.30%. 1H NMR: 1.23 (2H, m, P-CH2), 

1.89 (2H, m, S-CH2), 3.22 (2H, m, CH2-CH2-CH2), 3.91 (18H, s, o-OCH3), 3.65 (9H, 

s, p-OCH3), 6.09 (6H, d, C6H2) ppm. 31P NMR (CDCl3) = 5.24 ppm.  IR max/cm-1 

2912 (CH), 1483, 1438, 1209 (SO), 1082, 1010 (SO), 744, 688, 623, 523, 466. ESI-

MS (m/z): 686.4 [((2,4,6-MeO)3C6H2)3P(CH2)3S2O3], 708.86 [((2,4,6-MeO)3C6H2)3P-

(CH2)3S2O3+Na+]. 
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-thioacetylpropyltris(2,4,6-trimethoxyphenyl)phosphonium bromide (7) 

White solid, M.P. 243 °C. Elemental Analysis: found: C, 53.83%; H, 5.62%; S 5.03%, 

requires: C, 53.62%; H, 5.54%; S 5.03%. 1H NMR: 1.24 (2H, m, P-CH2), 1.61 (3H, 

s, C(O)CH3), 1.89 (2H, m, S-CH2), 3.57 (2H, m, CH2-CH2-CH2), 3.67 (18H, s, o-

OCH3), 3.03 (9H, s, p-OCH3), 6.16 (6H, d, C6H2) ppm.  31P NMR (CDCl3) = 5.27 

ppm. IR max/cm-1 2912 (CH), 1483, 1438, 1209 (SO), 1082, 1010 (SO), 744, 688, 

623, 523, 466. ESI-MS (m/z): 649.33 [((2,4,6-MeO)3C6H2)3P(CH2)3SC(O)CH3], 

650.38 [((2,4,6-MeO)3C6H2)3P(CH2)3SC(O)CH3+H+]. 

 

Tris(2,6-dimethoxyphenyl)phosphoniopropylthiosulfate (8) 

White solid, M.P. 237 °C. Elemental Analysis: found: C, 52.42%; H, 5.51%; S 

10.19%, requires: C, 52.34%; H, 5.53%; S 10.33%. 1H NMR: 1.25 (2H, m, P-CH2), 

1.84 (2H, m, S-CH2), 3.12 (2H, m, CH2-CH2-CH2), 3.66 (18H, s, o-OCH3), 6.61 - 7.61 

(9H, m, C6H3) ppm.  31P NMR (CDCl3) = 7.54 ppm. IR max/cm-1 2912 (CH), 1483, 

1438, 1209 (SO), 1082, 1010 (SO), 744, 688, 623, 523, 466. ESI-MS (m/z): 596.4 

[((2,6-MeO)2C6H3)3P(CH2)3S2O3], 619.33 [((2,6-MeO)2C6H3)3P(CH2)3S2O3+Na+]. 

 

-thioacetylpropyltri(2,6-dimethoxyphenyl)phosphonium bromide (9) 

White solid, M.P. 226 °C. Elemental Analysis: found: C, 54.31%; H, 5.90%; S 4.98%, 

requires: C, 54.46%; H, 5.63%; S 5.00%.1H NMR: 1.18 (2H, m, P-CH2), 1.72 (3H, 

s, C(O)CH3), 1.65 (2H, m, S-CH2), 3.22 (2H, m, CH2-CH2-CH2), 3.64 (18H, s, o-

OCH3), 6.61 - 7.61 (9H, m, C6H3) ppm. 31P NMR (CDCl3) = 7.31 ppm. IR max/cm-1 

2912 (CH), 1483, 1438, 1209 (SO), 1082, 1010 (SO), 744, 688, 623, 523, 466. ESI-

MS (m/z): 559.37 [((2,6-MeO)2C6H3)3P(CH2)3SC(O)CH3], 560.38 [((2,6-

MeO)2C6H3)3P(CH2)3 SC(O)CH3+H+]. 



22 
 

 

Tri(4-methoxyphenyl)phosphoniopropylthiosulfate (10) 

White solid, M.P. 195 °C. Elemental Analysis: found: C, 57.11%; H, 5.64%; S 10.2%, 

requires: C, 57.01%; H, 5.33%; S 10.62%. 1H NMR: 2.15 (2H, m, P-CH2), 3.25 (2H, 

m, S-CH2), 3.45 (2H, m, CH2-CH2-CH2), 3.9 (9H, s, OCH3), 7.1–7.6 (12H, m, C6H4) 

ppm. 31P NMR (CDCl3) = 21.28 ppm. IR max/cm-1 2912 (CH), 1483, 1438, 1209 

(SO), 1082, 1010 (SO), 744, 688, 623 (CS), 523, 466. ESI-MS (m/z): 507.2 [(4-

MeOC6H4)3P(CH2)3S2O3], 529.2 [(4-MeOC6H4)3P(CH2)3S2O3+Na+]. 

 

-thioacetylpropyltri(4-methoxyphenyl)phosphonium bromide (11) 

White solid, M.P. 207 °C. Elemental Analysis: found: C, 57.06%; H, 5.53%; S 5.88%, 

requires: C, 56.83%; H, 5.28%; S 5.82%. 1H NMR: 2.17 (2H, m, P-CH2), 2.3 (3H, s, 

C(O)CH3), 3.22 (2H, m, S-CH2), 3.37 (2H, m, CH2-CH2-CH2), 3.90 (9H, s, OCH3), 

7.1–7.6 (12H, m, C6H4) ppm 31P NMR (CDCl3) = 21.33 ppm. IR max/cm-1 2912 (CH), 

1483, 1438, 1209 (SO), 1082, 1010 (SO), 744, 688, 623, 523, 466. ESI-MS (m/z): 

469.34 [(4-MeOC6H4)3P(CH2)3SC(O)CH3], 471.35 [(4-MeOC6H4)3P(CH2)3SC(O)CH3 

+H+]. 

Cytotoxicity assay 

Cytotoxicity was assessed using a CellTiter-Glo luminescent cell viability assay kit 

(Promega Corporation, Southampton, Hampshire, UK). PC3 cells were grown in 

DMEM (Dulbecco's Modified Eagle's medium) supplemented with 10% Foetal calf 

serum (Invitrogen) at 37ºC in 5% C02. Cells were seeded in opaque-walled 96 well 

plates at a density of 10,000 cells/well and allowed to adhere overnight. Cells were 

subsequently treated with the corresponding phosphonium ligand (0-1000m) for 24, 

48, 72 hours. After each incubation period, cell viability was measured according to 
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the manufacturer’s instructions. In brief, plates were equilibrated at room 

temperature for 30 mins, 100l of assay reagent was added to each well, placed on 

an orbital shaker for 2mins, left to stand at room temperature for 10 minutes and 

read on a Wallac Victor2 1420 multilabel counter (PerkinElmer, Cambridge, 

Cambridgeshire, UK). 

 

Cytotoxicity studies were also done to assess IC50 using 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) assay as a measure of succinate 

dehydrogenase activity in live cells. Cells were seeded in a 96 well plate with the 

corresponding ligand (0-1000 m) for 24, 48, 72 hours. MTT was added to each well 

to give a final concentration of 0.3 mg/mL MTT and cells incubated with MTT for 3-4 

hours at 37oC. The growth medium was then removed and 100 L DMSO was 

added and incubated for 30 mins prior to reading the absorbance at 570 nm.  

 

All plates contained control wells and all measurements were performed in 

quadruplicates, and three independent experiments were conducted (n=12). Data 

are expressed as a percentage of live cell succinate dehydrogenase activity 

normalized to control. The average, standard deviation and IC50 values were plotted 

and calculated using GraphPad Prism (GraphPad software, La Jolla, California, 

USA). 
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X-ray crystallography 

Crystal Data for 6. C32H44O12.5PS2, Mr = 723.76, triclinic, P-1, a = 12.2703(4) Å, b = 

15.4855(4) Å, c = 19.4439(3) Å, α = 72.212(4)°, β = 85.475(5)°, γ = 84.543(5)°, V = 

3497.16(18) Å3, T = 120(2) K, Z = 4, Z' = 2, λ(Mo K) = 0.255, 53536 reflections 

measured, 15979 unique (Rint = 0.056) which were used in all calculations. The final 

wR2 was 0.2882 (all data) and R1 was 0.1086 (I > 2(I)). 

Crystal Data for 8. C27H35.33O10.17PS2, Mr = 617.65, monoclinic, P21/c, a = 

13.9991(2) Å, b = 18.4241(2) Å, c = 11.28730(10) Å, β = 99.1340(10)°, α = γ = 90°, 

V = 2874.31(6) Å3, T = 120(2) K, Z = 4, Z' = 1, λ(MoK) = 0.297, 58735 reflections 

measured, 6571 unique (Rint = 0.0540) which were used in all calculations. The final 

wR2 was 0.0917 (all data) and R1 was 0.0363 (I > 2(I)). 

Suitable crystals were selected and data collected following a standard method [32]. 

For compound 6 on a Rigaku SPIDER RAPID diffractomer at 120K with an image 

plate detector. Cell determination and data collection, data reduction, cell refinement 

and absorption correction were carried out using CrystalClear [33]. For compound 8 

on a Nonius Kappa CCD diffractometer at 120K controlled by the Collect [34] 

software package. The data were processed using Denzo [35] and semi-empirical 

absorption corrections were applied using SADABS [36]. Using Olex2 [37] both 

structures were solved using SHELXT [38] and models refined with SHELXL [39]. 

 All non-hydrogen atoms were refined anisotropically, with all hydrogen atoms placed 

geometrically using standard riding models 

CCDC1826927 and 1826926 contain the supplementary crystallographic data for 

compounds 6 and 8 respectively for this paper. These data can be obtained free of 
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charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 
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