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Abstract 

An assessment of stepped heating procedures for the extraction and isolation of carbonaceous 

species from fluid inclusions resulted in the development of low-blank procedures which 

permitted Sl3C characterisation of palreofluid CO2 (down to nanomole quantities) with an 

accuracy approaching that of the corresponding analytical precision. Similar procedures were 

successfully applied to the ol5N measurement of palreofluid nitrogen at the sub-nanomole 

level. 

An investigation into the origin of fluids which characterised the earliest episodes of palreo

hydrothermal activity associated with the granites of S W England indicates that the 

abundance of trace carbon species (C0
2

, CH4 ) and nitrogen in the fluids was correlated with 

the metasedimentary contribution to the respective granite source. Furthermore, SiSN and 

ol3C data (obtained on fluid components and local Palreozoic metasediments, in conjunction 

with published ol5N values of Cornubian granites), indicate that carbon and nitrogen in the 

hydrothermal systems were derived from the granite magmas. 

The chemical composition of the early hydrothermal fluids, together with geochemical and 

isotopic constraints from the characterisation of Palreozoic metasedimentary country rocks, 

support the view that the fluids were genetically associated with the granites. Fluid interaction 

with the local metasedimentary rocks at a high level crustal appears to have been very limited. 

The incorporation of sedimentary matter into granitic protoliths during anatexis, with 

subsequent transfer to an exsolved hydrous phase during pluton cooling, is the most 

probable route by which palreofluid solutes entered the early hydrothermal systems. 

Hydrogen stable isotope data, measured on the extracted palreowaters, indicate that meteoric 

water was not a significant component of early hydrothermal systems associated with either 

the Dartmoor granite or the nearby Hemerdon Ball intrusive, if sub-solidus isotopic 

exchange was significant. In contrast, comparable data from early fluids associated with 

other component intrusives of the batholith (as characterised by W ± Sn oxide paragenesis) are 

consistent with the progressive dilution of a magmatic-hydrothermal component by local 

groundwaters. 
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Chapter 1 

General Introduction 

1.1 The Comubian batholith,S W England 

1 . 1. 1 Geological setting 

The granites of S W England and their associated mineralisation are the subject of an 

extensive literature, as reviewed by Stone and Exley (1985) and summarised in the 

bibliography of Halls et ai. (1985). More recent studies of relevance to the present work 

include those of Darbyshire and Shepherd (1985, 1987, 1994), Leat etal. (1987), Hall 

(1988, 1990), Willis-Richards and Jackson (1989), Lin (1989), Jackson etal. (1989), Boyd 

etal. (1993), Chesley etal. (1993) and Chen etal. (1993). Five major granite masses outcrop 

in the province, together with several smaller intrusions, emplaced into upper Palreozoic 

metasedimentary and metavolcanic rocks. The sedimentary succession is of Devonian and 

Carboniferous age and was subjected to low-grade (generally sub-greenschist) regional 

metamorphism and folding prior to granite intrusion. The basement on which the sediments 

were deposited was inferred by Hampton and Taylor (1983) to be of late Proterozoic age 

(-8ooMa) with an upper limit of 12ooMa; recent work suggests that it may be considerably 

older (Darbyshire and Shepherd, 1994). 

Geophysical data (Bott et aZ., 1958) indicate that the granites are linked at depth, being the 

surface expression of a batholith which extends from the eastern contacts of the Dartmoor 

pluton to beyond the Isles of Scilly (Figure 1.1). On this basis, the batholith is some 250km 

in length and 4O-60km wide, with a thickness that reduces from -20km in the east to -lOkm 

beneath the Isles of Scilly (Brooks etaZ., 1984). Tectonically, the Cornubian province lies on 

the northern edge of the Hercynian (Variscan) orogenic belt; the batholith represents the most 

voluminous igneous manifestation of the Hercynian orogeny in the British Isles. 

The batholith hosts extensive hydrothermal mineralisation and, as such, has provided a 

stimulus for the development of theories of granite emplacement and of the relation between 

granites and associated hydrothermal fluids. Despite detailed isotopic investigations during 

recent years, however, the origin of the granites is still not well understood (Darbyshire and 

Shepherd, 1994), nor is there a general consensus on the source and timing of the major 

episodes ofhydrotherma1 activity in the region (Chesley etaZ., 1993; Chen etaZ., 1993). 

With the exception of certain lithium-rich varieties, notably associated with the St Austell 

pluton, the Cornubian granites at outcrop consist predominantly of K-feldspar, quartz and 
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Figure 1.1 

Simplified map of the geology of S W England, illustrating the setting of the Cornubian batholith. 

(Adapted from Hall, 1990, and Chesley et at., 1993) 
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biotite, together with variable but generally minor amounts of plagioclase and muscovite 

(e.g. Leat etat., 1987). Amongst the accessory minerals, tourmaline is locally abundant, 

being particularly associated with the Dartmoor pluton. Other accessory minerals include 

amphiboles, apatite, Fe-Ti oxides, garnet, topaz, monazite, xenotime, zircon and uraninite. 

Whereas major textural types differ according to grain size and the abundance of K-feldspar 

megacrysts, approximately 90% of the exposed rock, is medium- to coarse-grained biotite 

granite (adamellite or quartz monzonite), which is typically megacrystic. The granites are 

peraluminous, generally characterised by high initial 87Sr / 86Sr ratios (0.710-0.716; 

Darbyshire and Shepherd, 1985, 1987, 1994), high 0180 values (10.8-13.2; Sheppard, 

1977), and are broadly compatible with the'S' -type classification of Chappell and White 

(1974). 

Associated with the major granite plutons are series of cross-cutting rhyolitic porphyry 

dykes, known locally as 'elvans'. Although there is not universal consensus on their origin, 

minor and trace element compositional data indicate a link with the coarse-grained biotite 

granites (Darbyshire and Shepherd, 1985). Furthermore, the elvans utilise the same early 

fracture systems as the (high temperature) hydrothermal fluids responsible for early-stage 

mineralisation (Chesley et al., 1993). The granites and elvans were subject to widespread 

1ate- and post-magmatic hydrothermal alteration phenomena (metasomatism), as evidenced 

by the extensive but local formation of tourmaline, greisens and (subsequently) kaolin 

deposits in the province. 

With regard to the geochemical features of the region, Hall (1990) showed that the crustal 

rocks of the Comubian province are of highly anomalous geochemical composition, being 

particularly enriched in the trace elements B, Li and Sn with respect to 'average' 

compositions of the upper continental crustal as reported by Taylor and McLennan (1985). 

Furthermore, although the greatest enrichment is associated with the granites, it occurs also 

in the metasedimentary ('killas') and volcanic rocks that predate the batholith. The 

argillaceous rocks are relatively depleted in both Ca and Na, reflecting the low contents of 

carbonate minerals and detrital feldspars respectively. In composition, the volcanic rocks 

generally reflect spilitic alteration superimposed on the original igneous parentage, hence may 

be referred to collectively as greenstones (Hall, 1990). 

235U -207Pb geochronological measurements by Chesley et ai. (1993) and Clark and co

workers (Clark etal., 1993; Chen etal., 1993), supplementing earlier Rb-Sr studies by 

Darbyshire and Shepherd (1985, 1987), have demonstrated that the Comubian batholith was 

emplaced diachronously over an interval of some 20Ma, from ca. 293-275Ma before 

present, with no systematic trend in the age of pluton emplacement along the axis of the 

batholith. 4OAr_ 39Ar ages of muscovites hosted by the coarse-grained megacrystic granites 

were additionally determined by Chesley etal. (1993) and Clark etal. (1993); these data 
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represent the timing of closure to Ar loss (-325°C), thereby pennitting cooling rates to be 

established. Whereas there is some disagreement between Chesley et al. (1993) and Clark 

et al. (1993) regarding the early cooling history of the individual plutons and the timing of 

associated hydrothermal events, what is undisputed is that long-lived multiple intrusive 

episodes are implied, at least in the case of the Dartmoor and Land's End plutons, with 

emplacement having occurred over periods of ca. 3-5Ma (Chen etal., 1993). All the plutons 

are essentially of a composite nature (Chesley et al., 1993). 

With regard to the origin of the batholith, there has been disagreement about whether the 

granites are of purely crustal origin, or were derived from a mixed crustal-mantle source (see 

Stone and Exley, 1985; Leat etal., 1987; Willis-Richards and Jackson, 1989). Advocates of 

a crustal melting hypothesis have suggested that anatexis may have occurred in response to 

crustal thickening and radiogenic heating during the Hercynian orogeny (Shackleton et al., 

1982; Pearce etal., 1984; Willis-Richards and Jackson, 1989). Watson etal. (1984), on the 

other hand, suggested that the most probable source of the parent magmas was mantle 

material, previously enriched in volatile and incompatible elements. The idea that an injection 

of mantle-derived mafic melts into the lower and intermediate-level crust provided the 

thermal energy to initiate crustal melting was suggested by Leat et al. (1987) and has found 

favour in recent studies, e.g. Chesley etal. (1993); Chen etal. (1993). Leat etal. (1987) 

proposed that potassic magmas assimilated pelitic material during intrusion into the lower 

crust; fractionation of the resulting large magma body subsequently led to granite formation. 

Nd and Sr isotopic data presented by Darbyshire and Shepherd (1994) indicate that the 

granites were derived from a composite lower crustal source, of which only a relatively 

minor basaltic magma component was extracted from a (slightly enriched) mantle source. 

1.1.2 Stages of hydrothermal mineralisation 

The term 'transitional processes' was introduced by Burnham and Ohmoto (1980) in the 

context of late-stage processes associated with felsic magmatism. It can be equated broadly 

with the pegmatitic and pneumatolytic stages defined by Niggli (1929) and is adopted in later 

sections of the present work. Field observations by Lin (1989) relating to transitional 

processes associated with the St Austell and Land's End granites illustrate the continuum 

linking the pegmatitic and pneumatolytic stages of hydrothermal evolution. 

Mineralised pegmatites and greisen -bordered quartz vein swarms enriched in wolframite 

rather than tin or copper-bearing minerals generally constituted the earliest major stage of 

hydrothermal mineralisation associated with each pluton (Beer and Ball, 1987; Jackson etal., 

1989). Many such occurrences are located close to the periphery of the host granite, or 

indeed extend into the adjacent metasedimentary rocks. Associated fluid inclusion 

homogenisation temperatures generally range from 300-500oC (e.g. Chesley etal., 1993). 
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The Dartmoor granite is distinctive, however, in that wolframite is unknown; the initial stage 

of mineralisation is represented by tourmaline, followed by assemblages of quartz, 

tourmaline and cassiterite (Scrivener, 1982). In all cases, the early veins are considered to 

have been controlled by the development of fracture systems closely related to granite 

intrusion and initial cooling. According to Clark etal. (1993), the formation of these early 

hydrothermal vein systems was synchronous with cooling of the host intrusive rocks to ca. 

320°C, as indicated by the coincidence with muscovite cooling ages where comparative data 

were available. This is compatible with an origin based on retrograde boiling of magma in the 

upper regions of the associated intrusions, as proposed by Jackson et al. (1989). 

The major ('main-stage') episode of mineralisation in the Comubian region is represented by 

polymetallic (predominantly copper) sulphide-quartz fissure veins, with chlorite and minor 

tourmaline. Cassiterite may also be present. The veins trend predominantly east-west and are 

associated with fluid inclusion homogenisation temperatures generally ranging from 200-

480°C (Chesley et aI., 1993, and references therein). Rb -Sr radiometric dating by Darbyshire 

and Shepherd (1985) indicated that chalcophile-element mineralisation at South Crofty mine 

may have post -dated emplacement of the nearby Carnmenellis granite by 20 Ma, suggesting a 

significant hiatus between magmatism and main-stage hydrothermal activity. A consensus 

view subsequently developed (e.g. Jackson etal., 1989; Chesley etal., 1993) that the major 

Sn-Cu-bearing lodes in the province formed some 15-20Ma after granite emplacement and 

were essentially the result of geothermal processes (involving fluids of meteoric derivation) 

relating to the protracted cooling history inferred for the granites. Recent work has cast doubt 

on this interpretation, however. In particular, Clark etal. (1993)t concluded that, on the basis 

of 40 Ar_ 39 Ar incremental heating measurements on hydrothermal and primary muscovites, 

major Sn(±Cu) lode formation at South Crofty commenced within 1-3Ma of the immediate 

host rocks cooling to -320°C. This corresponds to 5-9Ma since initial emplacement of the 

granite, on the basis of cooling rates proposed by these authors, and coincides with the 

attainment of -320°C at (present) depths of 2-3km within the cooling granite. On this basis, 

the chalcophile mineralisation in the province is genetically related to the granites. 

If the scenario advocated by Clark etal. (1993) and Chen etal. (1993) is correct, then 

protracted hydrothermal activity in the region resulted from the disparate timing of individual 

pluton emplacement. A corollary of this is that all lithophile and chalcophile element 

mineralisation associated with the older plutons of the batholith (such as the Cammenellis 

granite) was completed before emplacement of the youngest (Land's End) pluton. This is in 

contrast to the view advocated by e.g. Jackson etal. (1989), whereby slow cooling on a 

batholith-wide scale (caused by high concentrations of uranium, thorium and potassium in 

the granitic rocks) was largely responsible for long -lived hydrothermal mineralisation. 

t 1be same results were subsequently reported by Chen et al. (1993) 
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A significantly later stage of mineralisation in the region is represented by 'cross-courses', 

which trend north-south, are generally located at some distance from the granitic outcrops, 

and consist of quartz-fluorite-barite veins hosting Pb, Zn and Ag sulphides, together with 

minor amounts of uraninite. Fluid inclusion homogenisation temperatures generally range 

from lOS-180°C (Shepherd and Scrivener, 1987). Rb-Sr radiometric dating of examples 

from the Tamar valley region (Darbyshire and Shepherd, 1990) indicates an early Triassic 

age (-23SMa). Such fluids are therefore not directly linked to the intrusion and cooling of the 

batholith. The compositional similarity of these fluids to deep sedimentary basin brines has 

led to the suggestion that the fluids were actually derived from Mesozoic sedimentary basins 

(Alderton, 1978; Shepherd and Scrivener, 1987; Alderton and Harmon, 1991). Alternatively, 

Durrance et al. (1982) considered that convective circulation of Mesozoic seawater, driven by 

the high heat production of the batholith, was a more likely scenario. In either case, tectonic 

reactivation of fracture systems may have aided an influx of external fluids. 

The alteration of feldspar to kaolinite in the Cornubian granites, although widespread, was 

particularly intensive in the lithionite granites of the St Austell pluton and also in southern 

parts of the Dartmoor granite. The source and age of the kaolinisation, however, is still 

subject to debate. Whereas the isotopic data of Sheppard (1977) are compatible with kaolinite 

formation through weathering action, the idea that convective, post-magmatic hydrothermal 

circulation was primarily responsible (Durrance et al., 1982) has probably gained more 

widespread acceptance. 

1.2 Fluid inclusions as tracers of palreo-hydrothermal processes 

1.2.1 Overview 

The recognition and understanding of geochemical processes involving crustal fluids requires 

detailed information about the nature and composition of the fluids. Except for present-day 

geothermal areas and submarine hydrothermal vents, however, the fluid phase cannot be 

sampled directly. In the case of ancient fluids, information may be inferred from 

thermodynamic analysis of the associated mineral assemblages (e.g. Eugster, 1981). 

Although progress in this area continues (Sverjensky and MoIling, 1992; Sverjensky, 1992), 

such an indirect approach is generally hampered by poorly-constrained variables and/or a 

lack of pertinent thermodynamic data (Dubessy etal., 1989). Furthermore, many 

hydrothermal fluids contain volatile constituents and dissolved electrolytes which may not be 

recorded in the precipitated minerals (except in the fluid inclusions thereof). Fluid inclusions 

provide a unique source of information about the composition, temperature and pressure of 

fluids that once formed or traversed the host rock. They also allow the only possibility of 

sampling, and analysing directly, ancient fluids from a wide range of crustal environments. 
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According to Roedder (1984), inclusions in the size range 1-1 0 ~m generally outnumber all 

inclusions >IO~m by a factor of 102 or 103 for most naturally-occurring samples; a size 

continuum presumably exists down to the scale of individual water molecules either trapped 

along grain boundaries or structurally bound in the host crystal lattice. The development of 

techniques for fluid inclusion analysis has been reviewed by Roedder (1990); more recent 

work of relevance to the present study is referred to in the appropriate sections. 

1.2.2 The chemical composition of fluid inclusions: representative of entrapment 
composition? 

The value of fluid inclusions as samples of ancient fluids rests on the assumptions that: (i) the 

inclusions have remained closed since the time of formation; (ii) post-entrapment chemical 

re-equilibration of fluid composition during the cooling history of geological samples has not 

significantly changed the composition of the original fluid. With the exception of some 

metamorphic terranes, evidence for bulk fluid leakage has not been detected in samples from 

many geological environments (Roedder, 1984, pp.75-77 and references therein). However, 

the diffusion of water (Heggie, 1992; Bakker and Jansen, 1990; Hollister, 1990) and 

hydrogen (Mavrogenes and Bodnar, 1994, and references therein) into or out of inclusions 

may also occur in high-grade metamorphic environments, in response to the respective 

partial pressure gradients. Calculations by Kreulen (1987) and Hall and Bodnar (1990) 

indicate that water-deficient fluid compositions of the C-O-H system are only stable at very 

high or very low CO/CH4 ratios, in contrast to many experimental findings on inclusions in 

medium - and high -grade metamorphic terranes. 

The question of whether post-entrapment chemical re-equilibration of fluid composition is of 

significance was addressed by Dubessy (1984) by equilibrium thermodynamic modelling of 

the C-O-H system; the results were subsequently extended to the C-O-H-N-S system by 

Dubessy et al. (1989). It was concluded from these studies that, over the temperature range 

900 to 3OO°C,t and in the absence of graphite, relative variations of the mole fractions of 

CO2, CH4 , H20, N2 and H2S are typically only around 10-2 (as an order of magnitude). This 

type of modelling necessarily neglects kinetic considerations (and thus metastable 

assemblages), however, and as such represents the maximum potential change in chemical 

composition since trapping. 

For fluids in the presence of graphite, a similar analysis by Dubessy (1984) indicated that the 

potential for chemical change is dependent on the initial composition: in hydrothermal 

systems containing CO2 and CH., mole fraction variations with respect to initial values were 

predicted to be potentially of the order of tens of percent, if equilibrium was maintained. 

t Kinetic considerations probably preclude attainment of equilibrium at lower temperatures (Sheppard. 1981). 

7 



~ 
.0 --

Figure 1.2 

Redox field (as 10g1O/0 versus temperature) characteristic of hydrothermal fluids 
2 

associated with Sn-W oxide mineralisation (after Dubessy et al., 1987), together with 

the graphite stability limit curve. (All curves refer to 1 kbar total pressure) 
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1. H-M, Ni-NO and Q-F-M refer to hlilmatite-magnetite, nickel-nickel oxide and 
quartz-fayalite-magnetite, respectively. Other commonly-quoted redox buffers, such as 
wiistite-magnetite, iron-quartz-fayalite, iron-magnetite and iron-wiistite, all correspond to 
more reducing conditions than the systems illustrated. 

2. Mineral buffer redox curves were generated from the data of Ohmoto and Kerrick (1977). 

3. The stability limit curve of graphite refers to the reaction: C + O2 <=> CO2 , assuming 

equilibrium in the C-H-O system and using the equation of state of Holloway (1981). The 

computational routine of Dubessy (1984) was used to perform the calculations. 

4. :m::t::t::::: indicates the redox field of pallilo-hydrothermal fluids associated with Sn-W oxides. 



1.2.3 Modelling of chemical equilibria and redox conditions 

The parameter most commonly used to define the redox state of a fluid in high temperature 

geochemical systems is the oxygen fugacity, 10 ' after Eugster (1957). The use of fluid 
2 

inclusion analysis in combination with thennodynamic modelling of chemical equilibria in the 

C-O system was shown by Bergman and Dubessy (1984) to pennit an estimate to be made of 

thelo of a primary basaltic system (C02-CO inclusions in a composite peridotite xenolith) at 
2 

1200°C. This technique was subsequently extended to the calculation of pallCofluid redox 

states of (lower temperature) hydrothermal systems (Ramboz etal., 1985; Dubessy etal., 

1987; Dubessy etal., 1989), on the basis that H20, CO2 and CH4 are close to chemical 

equilibrium under geothermal systems (Giggenbach, 1980) down to -320°C (Sheppard, 

1981). Figure 1.2 shows the resulting redox field attributed by Dubessy etal. (1987) to 

granite-associated pallCo-hydrothermal fluids associated with Sn-W oxide mineralisation; 

their study included samples from Cligga Head, Cornwall, as does the present work. From 

Figure 1.2, it is seen that coexistence between such fluids and graphite is thermodynamically 

feasible. 

Oxygen is a 'virtual' species in geochemically relevant systems below -600°C, hence the use 

of 10 to evaluate redox reactions in hydrothermal environments is questionable. For 
2 

example, Simple calculation shows that a fluid phase at 400°C, I kbar total pressure, with 

redox state defined by the Q-F-M buffer (fo value of 10-29•09 bar) theoretically contains one 
2 

molecule of 02 in a volume of -1.1 x 107 litres (assuming ideal gas behaviour). Giggenbach 

(1987) persuasively argued that it is preferable to assess geochemical systems on the basis of 

actual reaction participants, or at least directly measurable quantities, and hence that the use of 

'master variables' such aslo should be avoided when discussing hydrothennal systems. As 
2 

an endorsement of this viewpoint, thennodynamic modelling undertaken for the present work 

is confined to assessing the viability of potential reactions involving 'non -virtual' reactants. 

There are in principle two approaches to the calculation of chemical equilibrium (van 

Zeggeren and Storey, 1970; Holub and Vonka, 1976). The more widely-used method for a 

system defined by a relatively small number of chemical species is the so-called method of 

equilibrium constants - mass balance. This describes the system in terms of a set of linearly

independent chemical reactions and the corresponding equilibrium constants, together with 

the constraint that the mole fractions of the species considered must sum to unity. Details of 

this technique as applied to calculate the composition of C-H-O fluids at high temperatures 

and pressures are given by e.g. French (1966), Ohmoto and Kerrick (1977), Dubessy 

(1984), Holloway (1987), and Hall and Bodnar (1990). An advantage of this approach is 

that the equilibrium composition may be calculated relatively easily for a specified redox state 

(as/o) at fixed values of temperature and pressure (or density). 
2 
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The second approach to the computation of chemical equilibrium is to calculate the Gibbs 

free-energy of the system and thence determine the composition that minimises this function, 

subject to satisfying the mass balance requirement. Formally, this involves (van Zeggeren 

and Storey, 1970) finding the set of ni values which minimises 

subject to the conditions 

where Pi is the chemical potential of species i, nj is the number of moles of species i in the 

system, aie is the number of moles of element e in one mole of species i, and Be is the total 

number of moles of element e present. 

This method has much greater generality of application; a large number of species may be 

considered, providing that data are available on the respective standard free energies of 

formation at the temperature and pressure considered. Furthermore, condensed phases may 

be considered as an integral part of the calculation procedure. For the present study, the free

energy minimisation procedure developed by Gordon and McBride (1971) was used for the 

calculation of chemical equilibria.t Initial reactant composition and two thermodynamic state 

variables (generally temperature and pressure) specify the system under consideration. 

The main application of thermodynamic modelling in the present work was to a consideration 

of the origin of palreofluid nitrogen, present as a trace constituent of hydrothermal fluids 

associated with the earliest stage of mineralisation of the Comubian batholith (Chapter 4), 

together with the validation of related experimental procedures. For the sake of comparison 

with published work on the distribution of molecular species in fluids of the C-H-O system 

under (shallow) crustal conditions, however, the eqUilibrium compositions resulting from 

reaction between graphite and water at 1 kbar total pressure, 400-900°C, were calculated and 

are illustrated in Figure 1.3. As the Gordon and McBride (1971) computational routine uses 

the ideal gas equation of state, it was adapted by the present author to incorporate fugacity 

coefficients of all major species of the C-H-O system, as obtained from the modified 

Redlich-Kwong equation of state of Holloway (1981). Ideal mixing of fluid components 

was assumed. Figure 1.3 indicates that, in the absence of modification by wall-rock 

reactions, such fluids are predominantly aqueous with approximately equimolar quantities of 

methane and carbon dioxide as the minor constituents (assuming that eqUilibrium is 

maintained); this is largely in accord with the findings of Kreulen (1987).' 

t Adaptations of the Gordon and McBride (1971) routine, for application to the study of crustal fluids, have 
also been reported by Holloway and Reese (1974) and Mathez et al. (1989). 

§ A major difference is that Kreulen (1987) additionally constrained the redox state of the system by 
specifyingfoz values. 
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Figure 1.3 

Temperature variation (at constant pressure) of mole fractions Xi of the principal fluid components 
resulting from reaction between equimolar quantities of water and graphite at thermodynamic 
equilibrium. The computational method of Gordon and McBride (1971) was used to perform the 
calculations. (Graphite was present in the product mixture in all cases.) 
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The substantial solubility of carbon -bearing species in hydrothermal C-H-O( -Si) fluids and 

the possibility of graphite deposition from such fluids is well documented (e.g. Rumble 

et al., 1986; Rumble and Hoering, 1986). What is less clear is the extent to which 

thermodynamic models provide a reliable description of the evolution of 'real' systems. For 

example, kinetic inhibition of graphite precipitation, giving rise to metastable assemblages at 

up to 700°C (Ziegenbein and Johannes, 1980); evidence for disequilibrium at S4<XfC 

between graphite and coexisting hydrothermal fluids (Ramboz et al., 1985), together with the 

experimental findings of Morgan et al. (1992) provide a salutary reminder that the application 

of closed system, equilibrium modelling to hydrothermal fluids is not without limitation. 

1.3 Stable isotope fractionations: terminology 

As much of the present work is concerned with the measurement and interpretation of light

element stable isotope ratios in hydrothermal fluid constituents, a brief review of the relevant 

definitions and notation is presented here. Further details are to be found in many 'standard' 

works, such as Gonfiantini (1981), O'Neil (1986), Faure (1986) and Hoefs (1987). Most 

published work referring to stable isotope ratio analysis adopts the 5 notation (after Urey, 

1948), which reports the difference, in parts per thousand (per mil, %0), of the rare isotope 

with respect to its abundance in a reference material: 

5 = 103 ( Rsample - Rstandard) %0 
Ratandard 

This notation avoids calibration problems associated with absolute abundance ratio 

measurements and the instability of individual instruments over extended periods of time. For 

small enrichments of either isotope, the delta scale is effectively linear. It is of interest to 

note, however, that the limits of the delta scale are -1000%0 and +00. Although of little 

consequence in most terrestrial studies, this is a significant consideration with respect to the 

analysis of many extraterrestrial samples, where much wider ranges of stable isotopic ratios 

have been recorded. A useful property of the 5 notation is that, for two samples measured 

with respect to the same reference, the 5 value of the first sample with respect to the second is 

given by: 

Furthermore, for a mixture of n components, where Xi is the mole fraction characterised by 

isotopic composition 5i , the isotopic composition of the mixture is given by: 

n 

5 = Lx;5; 
;=1 

12 



To convert the 0 value of a sample (A) relative to a reference (B) into the corresponding value 

relative to another reference (C), use is made of the relationship: 

where OBoe is the value of reference B with respect to reference C. 

The isotopic fractionation factor between two substances A and B is defined as aA_B = ~ 
In terms of 0 values: 

a = [l+~]/[l+~] = l000+8A 
A-B 1000 1000 l000+8B 

Furthermore, as 10geaA_B = 10~[1+ l~] -IOge[l+ 1~]' and 10~(1 +e)'" e ife«I, 

This is a good approximation if ~I S 10 

a A -B is a function of the absolute temperature (T), but not generally a function of pressure. A 

detailed consideration of the temperature dependence of isotopic fractionation factors is given 

by Criss (1991). 

1.4 Thesis structure 

The present study is essentially concerned with the relation between ancient hydrothermal 

fluids (particularly those associated with early-stage lithophile mineralisation and pegmatite 

development) and granite magmatism, with reference to the Cornubian batholith, S W 

England. Of particular interest is the extent to which fluid constituents reflect high-level 

crustal processes involving regional metasedimentary and metavolcanic rocks, or whether 

they were essentially granite-derived. 

A comparison is made between hydrothermal fluids associated with early tourmaline

dominated and greisen mineralisation of the Dartmoor granite, on the one hand, and 

comparable (early-stage) processes hosted diachronously by other component intrusives of 

the batholith, where the earliest stage is characterised by association with W±Sn oxides. 

Chapters 2, 3 and 4 are primarily concerned with the measurement and interpretation of 

isotopic compositions of specific volatile constituents of the fluids. Fluids associated with the 

earliest stages of hydrothermal activity hosted diachronously by the batholith were at many 

localities characterised by the presence of carbon -bearing species and molecular nitrogen, 

albeit at trace levels. Because of their low absolute abundance in the fluids, it was necessary 

to develop appropriate low-blank experimental techniques to extract these components, 

ultimately down to sub-nanomole quantities, from fluid inclusions. The application of high

sensitivity, static vacuum mass spectrometry to these isotopic determinations is described. 
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Chapter 5 documents an investigation of the corresponding electrolyte compositions of the 

fluids, as determined using crush-leach analytical techniques. Chapter 6 considers 

geochemical and isotopic characteristics of Palreozoic metasedimentary rocks from the 

region, for comparison with the palreofluid data and hence to assess whether direct 

assimilation from the metasediments at a high crustal level was likely to have been a 

significant source of the fluid constituents. 

Principal findings of particular aspects of this study are summarised in individual Chapters, 

whereas Chapter 7 additionally attempts to integrate the various results into a consistent 

framework and assesses the overall implications for the origin of early hydrothermal 

mineralisation in the Comubian region. 
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Chapter 2 

Hydrogen and oxygen stable isotope constraints on the source of 
palreo-waters associated with protracted hydrothermal activity, 

S WEngland 

2.1 Synopsis 

The hydrogen stable isotopic composition of waters associated with various stages of 

hydrothermal alteration and mineralisation of the Cornubian batholith was determined by the 

direct analysis of water extracted from quartz-hosted fluid inclusions. Corresponding 

palreofluid 180/160 ratios were calculated from analyses of the respective quartz hosts, by 

application of appropriate fractionation factors in conjunction with estimated temperatures of 

fluid entrapment. 

The combined 00 and 0180 results were used to assess the relative contributions of various 

water sources associated with protracted hydrothermal activity in the region. Particular 

emphasis was given to the early-stage (high temperature) fluids associated with oxide 

mineralisation in the region, both with regard to a possible link with pegmatite-associated 

fluids and also to assess the factors responsible for any variation of the isotopic data with 

locality, in the case of fluids characterised by a similar paragenetic assemblage. 

A comparative assessment was undertaken of the 00 and 0180 characteristics of hydrothermal 

fluids associated with tourmaline-dominated and greisen mineralisation of the Dartmoor 

granite. The results were compared with those obtained for fluids associated with early 

W ± Sn oxide assemblages of the Hemerdon Ball granite, a minor pluton located to the south

west and within the metamorphic aureole of the Oartmoor intrusive. In view of the apparent 

'magmatic' character of early fluids at both localities (Shepherd et al., 1985), the isotopic data 

provide a reference point for the evaluation of waters from other comparable-stage fluids 

elsewhere in S W England. The investigation also includes a preliminary comparison with 

fluids characterised by association with sulphide assemblages in the region. 

2.2 Introduction 

2.2.1 Hydrogen and oxygen isotope natural abundances 

Hydrogen, the most abundant element in the solar system, has two stable isotopes: IH and 

2H (or deuterium, D). The latter was discovered by Urey etal. (1932) and has an abundance 

of 155.76±0.10ppm (Hagemann, 1970) in the SMOW international standard. A third 
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naturally-occurring isotope, 3H or tritium, is radioactive and is produced in the stratosphere 

by the interaction of 14N with cosmic ray neutrons. Tritium has a half-life of l2.43±0.05a 

(IAEA, 1983) and decays by W emission to 3He. 

Oxygen is the most abundant terrestrial element. There are three stable isotopes, with 

approximate atomic abundances, in percentage terms, of 160=99.763, 170=0.0375 and 
180=0.1995 (Garlick, 1969). Because of the greater difference in mass, coupled with the 

higher natural abundance, it is the 180/160 ratio that is usually determined in isotopic tracer 

studies. 

D /H and 180/160 ratios are generally reported using the conventional 0-notation (see Section 

1.3) as shifts, in parts per thousand (per mil, %0) from the SMOW ('Standard Mean Ocean 

Water') international standard, a hypothetical substance defined by Craig (1961 b) in terms of 

its relation to NBS-I, a distilled water standard. To improve inter-laboratory calibration of 
180 and deuterium measurements in natural waters, two water standards were introduced by 

the International Atomic Energy Agency in 1968 (Gonfiantini, 1978). These are V-SMOW 

(Vienna SMOW), obtained by mixing distilled ocean water with small amounts of other 

waters in order to obtain an isotopic composition as close as possible to SMOW, and SLAP 

(Standard Light Antarctic Precipitation). V -SMOW has the same 180 f160 ratio as SMOW 

(2005.20±0.45)ppm (Baertschi, 1976), but a D/H ratio that is 0.2%0 lower (Gonfiantini, 

1978); in reality this discrepancy is negligible for most applications and in many cases is less 

than the analytical precision of the measurements. 

The use of normalised O-scales for D/H and 180/160 measurements was recommended by 

Gonfiantini (1978) - see also Coplen (1988) and references therein - with V -SMOW adopted 

as the zero points, and O-values of SLAP relative to V-SMOW defined as: oD=-428%0, 

0180=-55.5%0, on the basis of inter-laboratory comparisons. Normalisation, i.e. the 

expansion or contraction of an isotope scale so that a second reference material is set to a 

defined o-value relative to the first reference material, improves data reproducibility by 

reducing errors such as those arising from instrumentation effects (e.g. H3+ corrections 

during D /H ratio measurement) and 'memory effects' during the preparation of hydrogen gas 

samples. Thus, for hydrogen: 

OD V-SMOW/SLAP = 103 x [[ (D/H) sample / (D/H) V-SMOW] - 1] x R (%0) 

where R is the ratio of the defined o-value for SLAP (-428%0) to the actual measured value. 

As the relative mass difference between the two stable isotopes of hydrogen is considerably 

greater than occurs in any other element, the range of D /H ratios encountered in naturally

occurring terrestrial samples is greater than that of any other isotopic system. Values range 

from about -500%0 to +300%0 (Magaritz and Gat, 1981), whereas the corresponding 
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variation of 5180 is approximately i50%0 about the value for SMOW (Magaritz and Gat, 

1981; Hoefs, 1987). 

Basaltic magmas throughout Earth's history back to the Archean appear to have had uniform 

5180 composition of about +6.0iO.5%0, which corresponds to the primordial isotope ratio 

according to Taylor and Sheppard (1986). These authors also suggested that the 00 of 

primordial water is likely to have been obscured or obliterated by subduction - related cycling 

processes, but may have been not far removed from the values (-80 to -85%0) obtained from 

basalts that contain high abundances of mantle-derived helium. In contrast, the present bulk 

Earth mean 00 value is probably in the region of -15 to -20%0 (Taylor and Sheppard, 1986), 

with the corresponding value for the hydrosphere being ca. -10%0. 

2.2.2 The combined OD and 0180 approach to the characterisation of natural waters: 

application to palreofluids 

As noted by Sheppard (1986), the chemical composition of a natural, subaerial water cannot 

in general be used to identify the Origin of the water, as this primarily records the nature and 

extent of water - rock reactions. In contrast, the combined use of hydrogen and oxygen stable 

isotopic compositions of the waters and coexisting minerals can potentially provide 

information about the source and history of the water, on the basis of comparisons with the 

prinCipal water types (particularly meteoric t water and seawater, which are relatively well 

characterised) and established isotopic fractionation processes. In contrast to oxygen, 

hydrogen is generally a trace constituent in most rock types, the predominant reservoir being 

hydroxyl groups in silicate minerals. Hence, although water-rock interaction may involve 

both hydrogen and oxygen isotope exchange, the D /H ratio of an external water source is 

generally retained, except under conditions of very low water-to-rock ratios. In contrast, the 
180 composition of the water may undergo substantial modification as a result of exchange 

with minerals. Under equilibrium conditions, the resulting fractionation is temperature 

controlled and may be determined by established fractionation factors. 

The 5D and 0180 values of present-day meteoric waters that have not undergone extensive 

evaporation are linearly related and generally plot very close to the so-called meteoric water 

line of Craig (l96la), which is represented by: OD= 80180 + 10, as shown in Figure 2.1. 

Minor deviations on a regional scale are principally the result of relative humidity effects. The 

extent of D and 180 depletion of meteoric waters, relative to ocean water, increases with 

latitude and altitude; this effect is accentuated in continental interiors (e.g. Oansgaard, 1964). 

t Meteoric waters are defined as those resulting from atmospheric precipitation, although ultimately derived 
from ocean water through atmospheric circulation. 
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Figure 2.1 

Plot of OD versus 0180 showing meteoric waters, the field for ocean waters, and generalised fields for magmatic and metamorphic waters 
(Adapted from Sheppard, 1986) 
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With reference to ancient systems involving aqueous fluids of seawater or meteoric origin, 

interpretation is limited by uncertainties of how the contemporaneous oceanic-meteoric water 

system differed, in terms of isotopic composition, from that of the present day. On the basis 

of studies of paireo-hydrothermal systems believed to be derived from seawater, 

Muehlenbachs and Clayton (1976) and Muehlenbachs (1986) suggested that the oxygen 

isotopic composition of seawater during the Phanerozoic was buffered at -0%0 by exchanges 

with oceanic crust. 

In the absence of compelling evidence to the contrary, the systematics of ancient meteoric 

waters are considered to have been similar to those of the present-day (Sheppard (1986), 

hence the meteoric water line is generally used as a reference when discussing palreo systems 

(see also Taylor and Sheppard, 1986). Application of the meteoric water line to ancient 

systems may be inappropriate, however, if factors such as the contemporaneous atmospheric 

circulation system, temperature distribution (both within the atmosphere and over the Earth's 

surface) and/ or humidity conditions, were radically different from present (Sheppard, 1986). 

Apart from seawater or meteoric waters, other principal sources of water that have potentially 

contributed to ancient hydrothermal fluid regimes are: 

(i) 'Magmatic' water 

This is defined as water that has equilibrated with magma, regardless of its ultimate 

origin. Possible sources of magmatic water are (after Thompson, 1992): shallow, 

'recycled' water from the hydrosphere; water assimilated from crustal rocks; stored 

primordial water, or water derived from hydrous minerals during the subduction of 

oceanic lithosphere into the mantle. The hydrogen and oxygen stable isotopic 

compositions of magmatic waters are generally calculated from those of the associated 

unaltered igneous whole-rocks or minerals, by application of appropriate fractionation 

factors at 700-1200°C. 'I' -type (Chappell and White, 1974) unaltered plutonic rocks 

have well-defined oD and OISO characteristics (Sheppard and Taylor, 1986); waters in 

isotopic eqUilibrium with the associated magmas are commonly used to define the 

primary magmatic water field (Taylor, 1974), as illustrated in Figure 2.1. Waters 

associated with many high - 0180 peraluminous granites, such as those of the Comubian 

batholith, do not plot within this field, however. A 'Comubian magmatic waters' field 

was defined by Sheppard (1977), with oD limits of -65 to -40%0 and a corresponding 

0180 range of +9.5 to +13.5%0. 

(ii) 'Metamorphic' water 

Water that was equilibrated with, or released from, metamorphic rocks undergoing 

dehydration is referred to as metamorphic water. A generalised metamorphic waters 

field was described by Taylor (1974), based on D /H values of metamorphic minerals 
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in conjunction with tentative water-mineral fractionation curves. Metamorphosed 

sedimentary rocks and constituent minerals have a wide range of 0180 values, as the 

original sedimentary 0180 values are largely retained during metamorphism. Shales, 

limestones and cherts tend to be relatively enriched in 180, with 0180 values generally 

ranging from + 15 to +35%0. In contrast, rocks such as sandstones, graywackes, 

arkoses and volcanogenic sediments tend to be relatively depleted in 180 (0180 -+8 to 

+ 13%0); consequently, the 0180 range in metamorphic waters is wide: +5 to +25%0 

(Taylor, 1974). The range shown in Figure 2.1 is a subsequent modification 

(Sheppard, 1986, and references therein). Clearly, the boundaries are not absolute. 

Primmer (1985) reported hydrogen and oxygen stable isotopic compositions of mineral 

separates (illites and chlorites) from regionally-metamorphosed (diagenetic to 

greenschist facies) slates and shales from localities in north Cornwall. The isotopic 

composition of the coexisting metamorphic water, at appropriately lower temperatures 

of crystallisation (150-450°C, compared to the 300-600°C range used by Taylor, 1974) 

was also given. The field defined by Primmer (1985) is particularly relevant to the 

present study. 

(iii) 'Formation' water 

This is water residing in the interstices or pores of sediments, but not necessarily 

trapped contemporaneously with sedimentation. If the water is ancient seawater, and 

was therefore trapped during sedimentation, the term 'connate water' is often used in 

the literature. Meteoric waters are generally major components of formation waters, 

with enrichment in 180 abundance relative to the meteoric water line caused by isotopic 

exchange with sedimentary minerals, particularly carbonates. Diagenetically -modified 

seawater may also be a component of formation waters, as may water of metamorphic 

origin. The hydrothermal phase of carbonate-hosted Mississippi Valley type Pb-Zn

(F -Ba) deposits have oD values and salinities virtually identical to nearby formation 

waters (Hall and Friedman, 1963) and is therefore believed to involve fluids of 

formation water origin. During magma emplacement in sedimentary sequences, 

formation waters may migrate and become a source of hydrothermal fluids (Sheppard, 

1986). 

(iv) 'Juvenile' water: 

This is pristine water derived from mantle degassing; it has consequently never been in 

contact with the hydrosphere. As the initial D /H ratio may have been modified by 

crustal contamination and subduction processes, or mixing with other water sources, 

juvenile water has never knowingly been recognised and its isotopic composition is 

speculative. A general range of -50 to -80%0 has been suggested by several authors 

(Hoefs, 1987, and references therein). 
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In most present-day hydrothermal systems, the waters are almost exclusively of meteoric 

origin (Sheppard, 1986), on the basis of the oD values being essentially identical to those of 

local meteoric waters, although water-rock reaction may have resulted in 180-enrichment 

with respect to the meteoric water line.t Interpretation of the results for palreo systems is 

often complicated, however, because of factors such as limited knowledge of local palreo

geographic conditions (latitude and altitude) which, in tum, controlled the oD value of the 

associated meteoric water. A further complication is that, whereas meteoric water and 

seawater have reasonably well-characterised isotopic compositions, waters from other 

sources are less easily distinguished, as the composition fields are less well defined and may 

partially overlap. Modification of isotopic composition by exchange and/ or mixing processes 

may serve to further obscure the origin of ancient fluids (see e.g. Welhan, 1987b; Taylor, 

1987; Hoefs, 1987; Sheppard, 1986). 

2.2.3 Modelling of water-rock interaction 

The use of oxygen isotopes in attempts to quantify water/rock ratios during geochemical 

interaction was initially proposed by Taylor and associates (Taylor, 1974, and references 

therein; Taylor, 1977, 1979). The ideas and methodology have subsequently been widely 

applied, with varying degrees of success.' Two 'end member' models may be considered: 

(i) In situations where the water reservoir is effectively infinite, such as submarine basalts 

altered by seawater interaction, the oxygen isotopic composition of the rock is modified 

whereas that of the water is buffered. 

(ii) In geothermal waters, by contrast, the opposite situation usually exists (180 reservoir of 

rock»that of the fluid), resulting in modification of the 0180 value of the water 

whereas that of the rock system remains effectively constant 

For cases where neither of the 180 reservoirs is sufficiently overwhelming in size to permit 

buffering of the corresponding 0180 value, simplified models based on either open or closed 

systems have been proposed, as summarised below, to estimate water-rock ratios in the case 

of meteoric-hydrothermal systems. However, a complication is that the oxygen isotope 

systematics are also (independently) a function of the temperature of alteration. 

t Waters that plot to the left of the meteoric water line, i. e. exhibiting relative uO-depletion, are unusual. 

Examples are known, such as Canadian shield brines; also pore waters in oceanic sediments at depths of 
-100m or more. Possible explanations for the 180 compositions are discussed by Sheppard ( 1986). 

§ According to N B W Harris (pers. comm.), the water/rock ratio is a meaningless parameter; the use of 
chemical shifts to trace fluid penetration into a rock is much more infonnative. 
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The usual closed system model, which assumes continuous circulation of fluid, is (after 

Taylor, 1977; Criss and Taylor, 1986): 

~f I (I J I - "roele - ~rock Crock 
{w r)Clo.ed - ~i _(~f _~) C 

waJer rock WaJer 

where wI r is the water: rock mass ratio; superscripts i and/refer to initial and final values; 

~ = S£ock - S'a1er ; C~OCk and C~a1er are the initial proportions (by mass) of the element 

oxygen in the rock and in water, respectively. Ohmoto (1986) argued that this model is a 

poor analogue to natural systems and that water/rock ratios calculated on this basis rarely 

reflect the true values. 

Taylor (1979) acknowledged that, in reality, some of the heated water would be lost from the 

system, such as by escape to the surface. In the extreme case in which there is no 

recirculation of the water, i. e. an open system, in which infinitesimal aliquots of water 

equilibrate with the rock and then move out of the system, the water: rock mass ratio is given 

by Taylor (1977) and Criss and Taylor (1986) as: 

(w I r)open = ( CfOCk JIOge{( C;a1er J (w I r)Clo.ed + I} 
CwaJer Croct 

The open system scenario is also an unrealistic representation of actual hydrothermal systems 

(Taylor, 1977) and in reality the behaviour is likely to be somewhere in between the limits 

represented by these two models (Hoefs, 1987). Further complications are that such models 

only relate to minimum (W I r) values, as appreciable quantities of water may move through 

fractures without oxygen isotope exchange occurring (Taylor, 1977). Also, the attainment of 

equilibrium conditions may be inhibited by kinetic considerations (Criss and Taylor, 1986). 

The principal value of such modelling as applied to meteoric -hydrothermal systems, as noted 

by Taylor (1979), is probably that a wide range of water: rock ratios is predicted, from -0 to 

>1 (in terms of atom % of oxygen). Values significantly in excess of unity, however, are 

generally incompatible with the energy available to drive the associated convection systems. 

2.2.4 Hydrothermal fluids associated with mineralisation in the Comubian province: 
previous investigations of the stable isotope hydrology 

From SD and S180 measurements on minerals and whole-rock samples of unaltered granites, 

associated greisenised granites and modem meteoric waters, Sheppard (1977) concluded that 

vein-controlled greisening of the Comubian batholith was primarily attributed to the action of 

meteoric-hydrothermal fluids. No fluid inclusion measurements were undertaken; the data 

for hydrothermal fluids were calculated from results obtained on minerals. 
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Jackson etal. (1982) concluded that the fluids responsible for main-stage hydrothermal 

activity associated with the Land's End granite were also overwhelmingly meteoric in origin 

and were of low to moderate salinity. Jackson etal. (1982) did, however, report isotopic 

evidence for a magmatic-hydrothermal fluid associated with the earliest stages of 

mineralisation. No isotopic measurements were made directly on fluid inclusions. 

Primmer (1985) reported that regional metamorphic water had similar isotopic composition to 

that proposed for hydrothermal fluids associated with main-stage mineralisation (Sn-Cu, 

sulphides) in the province. Although Jackson et al. (1982) had accepted that dehydration of 

low -grade country rocks might have been a source of water for the hydrothermal fluid 

systems, lack of data on the isotopic characteristics of metamorphic waters in the Cornubian 

province, together with the consistency of interpretation based on a meteoric water source, 

led Jackson et al. (1982) to favour a meteoric-hydrothermal model. Sheppard (1977), on the 

other hand, argued that if metamorphic waters were a significant component of the Cornubian 

hydrothermal fluids, the associated metamorphic dehydration reactions must have occurred at 

depths considerably below the present levels of exposure, because of the very low 

metamorphic grade of the country rocks. Sheppard (1977) also suggested that the major part 

of any connate or formation water originally present in the sediments was probably lost 

during regional metamorphism, i. e. prior to emplacement of the Comubian granites. 

On the basis of microthermometric studies, Shepherd et al. (1985) proposed that early -stage 

hydrothermal fluids associated with W±Sn oxide assemblages at Hemerdon and 

quartzitourmaline±cassiterite mineralisation of the Dartmoor granite at Birch Tor were 

essentially of magmatic origin.t Dilution and mixing with local groundwaters was proposed 

as the possible origin of fluids responsible for the subsequent extensive development of 

sulphide (main-stage) mineralisation in the region. 

Preceding pneumatolytic hydrothermal activity in the Cornubian region were higher 

temperature fluids associated with granitic pegmatite development. Both the pegmatitic and 

pneumatolytic stages were essentially transitional processes, linking the orthomagmatic 

evolution of silicate melts with the subsequent hydrothermal stage in which aqueous fluids 

and solid phases coexisted under supercritical conditions (Lin, 1989, and references therein). 

The pegmatitic fluids are more likely to be representative of a primary, exsolved 'magmatic' 

fluid (Burnham, 1979) than are later stage examples. In a study by Lin (1989) of peg mati tic 

and pneumatolytic evolution associated with the St Austell and Land's End granites, the 

present author collaborated by undertaking liD analyses of quartz-hosted fluid inclusion 

waters, for comparison with the fluids that are the focus of the present work. 

t Preliminary. direct measurement ofD/H ratios in the water component of quartz-hosted hydrothermal fluid 

inclusions from the Comubian region was undertaken by the present author during that investigation. 
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It was found that the pegmatitic fluids ranged from -25 to -41 %0, whereas those associated 

with quartz+tourmaline veins ranged from -21 to -32%0 (Lin, 1989). Only one of the seven 

samples plotted within Comubian magmatic waters field as defined by Sheppard (1977); all 

the others showed relative enrichment of deuterium. A discussion of these data, and 

comparisons with the results of the present study, is deferred to Section 2.6.2. 

Since completion of the experimental work for the present study, Alderton and Harmon 

(1991) published the results of their investigation of fluid inclusion and stable isotope 

characteristics of fluids associated with various stages of hydrothermal alteration and 

mineralisation in S W England. Although there is clearly a considerable degree of overlap 

with the investigation reported herein, there are significant differences in terms of both focus 

and interpretation, as discussed below. 

2.2.5 Palreogeographic considerations, S W England 

As the isotopic composition of local meteoric water is dependant on latitude and altitude, 

estimates of the isotopic composition of S W England meteoric water during early 

hydrothermal alteration and mineralisation of the Comubian batholith are dependant on 

palreogeographic reconstructions of the region during the Permian and Triassic periods. A 

discussion of the associated palreoclimate is given by Laming (1982), who suggested that the 

evidence is compatible with semi-arid conditions, comparable with present-day savannah 

zones (except for the absence of grasses, which evolved during the Cretaceous period). 

2.2.5.1 Palreolatitude 

Laming (1982) summarised evidence on the geographical position of Devon during the 

Permian and Triassic, primarily obtained from measurements of the remanent magnetism of 

igneous and sedimentary rocks. Cornwell (1967) reported that palreomagnetic measurements 

of Exeter volcanics (age 280Ma) placed the corresponding palreomagnetic pole at 46°N and 

l65°E, agreeing with the results of an earlier investigation of the lavas (see also Zijderveld, 

1967). Together with Phanerozoic world maps (Smith etal., 1973; Briden etal., 1974), the 

evidence indicates that S W England was within 10 degrees of the equator during the late 

Palreozoic and moving northwards to a position of 300N by the middle of the Mesozoic. As 

noted by Jackson etal. (1982), locations within about 30° of the equator and at low elevations 

experience little fluctuation of mean annual air temperature; consequently, the isotopic 

composition of associated meteoric waters is not very variable and not particularly sensitive 

to changes in latitude, as long as the altitude remains low. 



2.2.5.2 Palreoaltitude 

A comprehensive consideration of the altitude of the Dartmoor region during emplacement of 

the granite was given by Worth (1953, pp. 17-20), who reasoned that: 'at few points can the 

present surface be far below the original surface of the granite, when it cooled as a plutonic 

rock'. Dangerfield and Hawkes (1969) also concluded from detailed field observations that 

the Dartmoor granite was exposed, at least locally, before the end of the Permian. 

The finding of small outliers of acid volcanic rocks such as the Exeter volcanic series, and 

outcrops of rhyolite interbedded with basal New Red Sandstone sediments at Kingsand near 

Plymouth (R A Edwards, pers. comm.), may be interpreted as remnants of Permian 

volcanism. This supports the hypothesis that the current land surface is close to the Permo

Triassic land surface over much of the region. Extensive Permo-Triassic evaporites and red

beds throughout western Europe indicate that major areas of the region were at sea level 

during that time (Sheppard, 1986). With regard to S W England, only where basal New Red 

Sandstone sediments are actually preserved, or where there is extensive red staining of pre

Permian rocks (related to the former presence of New Red Sandstone cover), can it be 

confidently assumed that the present land surface is close to that of Permo-Triassic times.t 

The effects of post-Triassic faulting, tilting and erosion would have resulted in the basal 

New Red Sandstone land surface being preserved in relatively few places. Possible examples 

of the latter are to be found at Slapton, Kingsand and Thurlestone (BOS Salcombe and 

Kingsbridge memoir, pp.63-65). 

2.2.6 Experimental considerations 

2.2.6.1 D IH measurements on natural waters 

It is salutary to consider that Friedman (1953), in a pioneering study of the deuterium content 

of natural waters, measured the D IH ratio by mass spectrometry to a precision of ± 1%0; 

samples prepared from as little as IJ.LI of water could be analysed. The problems associated 

with the manipulation of water (primarily loss through adsorption) prior to its conversion to 

hydrogen for isotope ratio analysis, have seriously hampered attempts to significantly reduce 

the minimum size of water sample which can be considered for isotopic analysis with 

acceptable precision. Recent investigations into the problems of water adsorption (Morse 

et al., 1993), together with a radically different approach to D IH determinations, based on 

the analysis of methane by static vacuum mass spectrometry (Morse, 1991) are making 

progress in this direction. Unlike B13C and BlSN measurements (as discussed in Chapters 3 

t Local red-staining of sedimentary rocks of Carboniferous age (Culm) has been recorded in central Devon 
(BGS Okehampton memoir, pp.54-55 and 152-153). 
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and 4 of the present work), improvements in analytical sensitivity during the last forty years 

have not been spectacular. 

Hydrogen isotope ratio analysis of water samples is conventionally undertaken by first 

reducing the water to hydrogen and then measuring the HD+ IHz+ ratio by mass spectrometry. 

Alternative procedures have been reported, but these have not been widely used. Examples 

include the use of Fourier transform nuclear magnetic resonance (Ff -NMR) spectrometry to 

measure the deuterium abundance on 2ml of water directly (Tse et al., 1980). Methods based 

on the reduction of water to methane or ethane prior to isotope ratio analysis by mass 

spectrometry have also been proposed; a review is given by Morse (1991). A different 

approach is to equilibrate the water samples with hydrogen gas under temperature-controlled 

conditions in the presence of a Pt catalyst (Horita, 1988, and references therein; Coplen etal., 

1991). As noted by Horita (1988), the prime advantage of the Hz-water equilibration method 

is that isotope activity ratios are determined, whereas water reduction methods give the 

corresponding concentration ratios. 

With regard to D IH ratio measurements on water extracted from fluid inclusions, the 

published literature reporting such analyses is not very extensive, primarily because of the 

technical difficulties associated with obtaining one to several milligrams of water for each 

determination. Kokubu etal. (1961) were probably the first to report such data; subsequent 

investigations up to the early 1980s have been reviewed by Roedder (1984). 

2.2.6.1.1 Water reduction methods 

Although in theory the reduction of water to hydrogen can be achieved by any metal which is 

more electropositive than hydrogen in the electrochemical series, practical considerations 

(including the requirement for complete conversion, to prevent isotopic fractionation) have 

resulted in the use of uranium at 400-7000C (Bigeleisen et ai., 1952) or zinc at -4OO°C (Graff 

and Rittenberg, 1952) as the preferred reagents for this reaction. The original methods were 

designed for continuous flow conditions, whereby water vapour is passed over the heated 

metal, with recirculation (usually by Toepler pump). Subsequent variations have been 

reported; a comprehensive summary is given by Morse (1991). The principal difficulty with 

such techniques, however, is that water vapour strongly adsorbs to internal surfaces of 

vacuum lines during transfer to the reduction furnace, unless adequate precautions are taken. 

This results in a 'memory effect' whereby the measured D IH ratio is displaced from its true 

value, towards that of the previous sample in the case of consecutive analyses. 

The development of 'batch' methods during the 1980s, using zinc shot in sealed glass tubes, 

greatly facilitated sample preparation and throughput. Each water sample is reduced in a 

separate vessel with a quantity of fresh zinc. Sample preparation may be carried out on a 
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dedicated line separate from the mass spectrometer and many samples can be prepared 

simultaneously. Although such methods are suited to the preparation and reduction of small 

quantities of water, and were indeed originally developed to facilitate isotopic analysis of 

waters thermally extracted from fluid inclusions in natural and synthetic crystals t (Coleman 

etal., 1982), the principal advantage of batch methods is that memory effects are eliminated. 

In the case of fluid inclusion analysis, however, adsorption of water onto internal surfaces of 

the vacuum line used to perform the extraction is a major potential source of isotopic 

fractionation. As noted by Morse etal. (1993), appropriately-designed continuous flow 

methods actually permit smaller quantities of water to be analysed than do sealed-tube 

reduction techniques. For the present investigation, however, practical considerations 

dictated that the batch method be used. 

2.2.6.2 180/ 160 determinations of fluid inclusion water 

The direct analysis of oxygen stable isotope ratios in water extracted from fluid inclusions is 

technically possible, using direct reaction with BrFs (O'Neil and Epstein, 1966) followed by 

conversion of the liberated oxygen to CO
2 

for isotope ratio measurement. Direct reaction of 

natural water samples with guanidine hydrochloride to produce CO2 has also been reported 

(Dugan et al., 1985), although the method was optimised for a sample size of 10 J.11 samples 

and as such is inappropriate to fluid inclusion analysis. A micro CO2-water equilibration 

technique for application to 180/160 analysis of a few milligrams of water, with specific 

reference to fluid inclusions, was developed by Kishima and Sakai (1980); their procedure 

was subsequently modified by Ohba (1987), who reported achieving 5180 precision of 

±0.42%o (10) on -lOOJ.1g of water. 

Direct measurement of fluid inclusion water 180/160 ratios has been reported in relatively few 

studies (see Taylor, 1987, and references therein; also Vityk etal., 1993). For inclusions in 

quartz, Rye and O'Neil (1968) reported that post-entrapment 180 exchange between the fluid 

and the host occurs, rendering such measurements of limited value. Recent experimental 

work by Vityk etal. (1993) challenges this view, at least in the case of an epithermal 

environment. The usual procedure, however, is to analyse the 180/180 ratio of the quartz, 

then apply the appropriate equilibrium isotopic fractionation factor for the estimated 

temperature of entrapment, to calculate the corresponding 180/ 180 ratio of the original 

hydrothermal water. The conventional method (Clayton and Mayeda, 1963) for determining 

oxygen isotope abundances in quartz (and silicates in general) involves reaction with BrFs or 

elF) to liberate 02 for subsequent conversion to CO2, Recent techniques using laser-induced 

t As a guide, the quartz samples used for the present study generally yielded -500-2000ppm (by weight) of 

water during in vacuo thermal extraction. The minimum size requirement for subsequent reduction and O/H 

isotope ratio analysis at precision within ± 1%0 is -1J.11 water. 
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fluorination (Mattey and Macpherson, 1993, and references therein) have permitted a 

reduction in mineral sample size from - 5 mg to as little as 20l1g, for the determination of 0180 

values to better than ±0.2%o. 

2.2.6.3 The effect of dissolved electrolytes on the oxygen and hydrogen stable isotope 
activities of water 

The effect of dissolved electrolytes on the oxygen and hydrogen isotope activities of water 

(the so-called isotope salt effect) is not well understood (see Horita et al., 1993, and 

references therein) and is a matter of some controversy. Few studies have been undertaken 

on solutions at elevated temperatures (>250°C), however. Zhang etal. (1989) reported that 

the 180 eqUilibrium fractionation factor between water and quartz is independent of salinity 

(5-40 wt% investigated) and electrolyte composition (NaCI, KCI or Nap) over the 

temperature range 250-550°C and pressure 0.7-0.8kbar. On the basis of their experiments, 

the salt effect on oxygen isotopic composition may not be important in natural hydrothermal 

systems at temperatures higher than 250°C. Similarly, from the results of Graham and 

Sheppard (1980), it is concluded that the effect of solute-water interactions on hydrogen 

stable isotope activities is probably negligible at the temperature (600°C) used to extract fluid 

inclusions during the present work. 

2.2.7 Sampling localities 

The samples (all quartz) used in the present investigation were considered to be representative 

of the associated stage of hydrothermal alteration or mineralisation in the following regions. 

Further information, including sample locations and descriptions, is given in Appendix A. 

• 
(i) Dartmoor granite-hosted mineralisation, through early quartz+tourmaline± 

cassiterite±hrematite association (high-temperature oxide assemblages), to an example 

of late-stage, lower temperature mineralisation characterised by quartz+hrematite+ 

pyrite, located on the north -eastern contact of the granite with local metasediments and 

greenstones. 

(ii) Early - stage, high temperature mineralisation characterised by occurrences of quartz 

coexisting with W ± Sn oxides throughout the province. These were all associated with 

minor granite intrusives; some of the quartz veins were hosted by metasediments. 

(iii) Main-stage, sulphide-associated mineralisation, as characterised by E-W -trending 

veins from localities between the Dartmoor and Bodmin Moor granites, including 

examples from the eastern margin of the Bodmin Moor granite. 
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(iv) Lower temperature, later mineralising events characterised by N -S -trending 'cross 

course' veins of Pb and Zn sulphides in a fluorite/quartz gangue. Present examples 

were from locations in the Tamar Valley (Bull, 1982; Shepherd and Scrivener, 1987). 

2.3 Research objectives 

Whether hydrothermal fluids associated with mineralisation of the Cornubian batholith were 

exsolved during crystallisation of magma (Burnham, 1979), or were largely comprised of 

local meteoric waters circulating in convection systems driven by the granites (e. g. Jackson 

etal., 1982), is still largely unresolved. The controversy is compounded by Rb-Sr 

radiometric data indicating that main-stage hydrothermal activity at South Crofty mine post

dated emplacement of the adjacent Carnmenellis granite by -20Ma (Darbyshire and 

Shepherd, 1985). The earliest stage of hydrothermal mineralisation in the region is generally 

linked to the presence ofW±Sn oxide assemblages (Beer and Ball, 1987). A major objective 

of the present work was to characterise the isotopic composition of palreo -waters associated 

with such occurrences, thereby providing the basis for an assessment of the origin of these 

fluids. In conjunction with the associated fluid salinities and estimated trapping temperatures, 

derived from the literature, it was hoped that the relative roles of magmatically-derived and 

external fluids might be clarified. A complementary investigation of the chemical composition 

of the early-stage fluids is presented in Chapter 5. 

Whereas the presence of wolframite is usually characteristic of 'transitional' pegmatitic

pneumatolytic fluids in S W England, this is not associated with the Dartmoor granite. 

Instead, the abundance of early tourmaline+quartz veins in the marginal and roof zones of 

this pluton is recognised, together with cassiterite± hrematite (Scrivener, 1982). An objective 

of the present work was to determine whether the SD and SI80 values of fluids associated 

with recognised stages of early hydrothermal mineralisation of the Dartmoor granite support 

the idea of a progressive influx of external fluids into early fracture systems of the pluton. A 

related objective was to compare the isotopic characteristics of the Dartmoor hydrothermal 

system with those of the W±Sn oxide-associated fluids. 

The stable isotope hydrology of fluids associated with earliest stages of pegmatitic and 

pneumatolytic evolution of the St Austell and Land's end granites was jointly investigated by 

the present author and Lin (1989). These fluids represent high-temperature hydrothemlal 

phenomena that preceded the development of early oxide mineralisation in the region. As 

such, they provide a link with the processes that are the focus of the present work. An 

objective of this study was therefore to incorporate the data reported by Lin (1989) into the 

framework of a general interpretation for the origin of granite-related fluids in the region. 
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The major episodes of hydrothermal mineralisation in S W England are characterised by 

association with sulphide assemblages, which are generally of a complex nature. A 

continuum probably existed between these fluids and the earlier, oxide-associated regimes 

(Bull, 1982). For comparative purposes, an exploratory assessment was undertaken of 

sulphide-associated fluids, primarily from the Gunnislake- Kit Hill area. The final stage of 

hydrothermal activity in the region is characterised by low-temperature (-120-1700C) killas

hosted quartz-fluorite-sulphide veins, trending in a north-south direction and located at 

some distance from the granite cupolas. Potential sources of these fluids, which have hitherto 

been attributed to sedimentary brines (e.g. Shepherd and Scrivener, 1987) or Mesozoic 

seawater (Durrance et ai., 1982), are assessed on the basis of aD and also determinations. 

2.4 Experimental 

2.4.1 Sample preparation 

The quartz samples prepared for fluid inclusion D IH analysis were also required for other 

determinations of the fluid characteristics in most cases, such as carbon speciation and 

associated stable isotope ratio measurements; also, crush -leach analysis for the determination 

of electrolyte compositions. For this reason, it was ensured that no preparation procedure 

was adopted that was incompatible with the requirements of complementary analyses. Thus, 

the use of nitric acid to remove mineral impurities was avoided, as the nitrate ion adsorbs 

strongly to quartz and its thermal decomposition products subsequently give rise to isobaric 

interference effects during carbon stable isotope ratio analysis of extracted CO2, For similar 

reasons, the use of halogenated alkanes ('heavy liquids'), as commonly used to separate 

minerals of differing densities, was avoided. Quartz samples (hand specimens) were initially 

crushed and sieved to produce a grain size fraction of 0.5 -I. Omm. Further preparation was 

restricted to acid washing with hot, 6M HCI to remove any traces of carbonates, oxides or 

sulphides, followed by washing in doubly-distilled water. Samples were subsequently 

examined under a low-powered binocular microscope and individual grains visibly 

associated with mineral impurities were removed. 

2.4.2 DIH analysis of fluid inclusion waters 

All experimental work was undertaken solely by the author. During the course of the study, 

mass spectrometry facilities in three different laboratories were used, and minor 

modifications to analytical procedures adopted. Essentially, the batch method of Coleman 

etal. (1982) was used to reduce the water samples to hydrogen. Fluid inclusion water was 

extracted from quartz samples in a purpose-built glass line of low internal volume. One of 

the lines designed by the author and used during the present study is shown schematically in 

Figure 2.2; this was also used for the preparation of co-existing fluid inclusion carbon 
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dioxide and methane (Chapter 3) in the case of analyses performed at the NERC Isotope 

Geosciences Laboratory. Sections involved in the transfer of water from the extraction 

chamber through to the collection vessels were maintained at - 80°C by the use of insulated 

electrical heating tapes. 

Quartz grain samples (total mass -lg) were loaded into a silica tube (extraction vessel), 

which formed an integral component of the line, and evacuated to <5 x 1 0-6 mbar (generally 

overnight). During this period, the sample was heated to 100°C to aid the removal of any 

adsorbed water vapour. The extraction vessel was then isolated from the pumping system 

and heated to 600°C; this temperature was subsequently maintained for 30 minutes. At higher 

temperatures, there is the possibility of some water being reduced to hydrogen during the 

extraction process (with attendant isotopic fractionation). It is considered unlikely that 

hydrogen isotope fractionation from the hydrolysis of alkaline earth element chlorides (in the 

inclusion fluids) would have been of significance during extraction at 600°C, on the basis of 

data published by Horita (1989). 

During extraction into the closed vacuum line, a cold finger maintained at liquid nitrogen 

temperature (-196°C) was used to freeze down released fluid components such as water and 

CO2, At the end of the 30 minute extraction period, the extraction tube was isolated from the 

cold finger section of the line; any non-condensed gases (primarily nitrogen and methane) 

were pumped away. Exchanging the liquid nitrogen for a n -pentane /liquid nitrogen slush 

bath (-130°C) released any CO2 component, which was also subsequently removed. Transfer 

of the water component to an adjacent, evacuated stopcock vessel, the end of which was 

immersed in liquid nitrogen, was accomplished by aid of a hot air gun. Each stopcock vessel 

contained -250mg of Analar® zinc shot, as recommended by Coleman etal. (1982), or 

-80mg of specially-developed zinc laths supplied by the Biogeochemical Laboratory of the 

University of Indiana, USA. The latter reagent was used for analysis of all samples 

associated with early hydrothermal mineralisation of the Dartmoor granite, together with 

sample CD-88-1 (from Castle-an-Dinas mine); Analar® zinc shot was used in all other cases. 

Sealed stopcock vessels containing water samples and zinc were subsequently removed from 

the extraction line and the water converted to hydrogen by standing the vessels in a 

temperature-controlled heating block for 30 minutes. A temperature of either 450°C (for 

Analar® zinc shot) or 500°C (for 'Indiana zinc' laths) was used for the water reduction. 

During the course of reaction, a small amount of zinc volatilises to form a ring on the cooler 

part of the tube. After reaction, vessels were allowed to cool to ambient temperature before 

D /H analysis was undertaken, using either a VO® 602 or SIRA Series II mass spectrometer. 
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Figure 2.2 

Schematic diagram of the vacuum line used for extraction and isolation of fluid inclusion water (together with carbon dioxide and methane), for stable isotope ratio analysis 
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Vennemann and O'Neil (1993) reported that hydrogen isotope exchange with borosilicate 

glass reaction tubes during the water reduction procedure (as suggested by Kendall and 

Coplen, 1985; Sudzuki, 1987) was effectively eliminated when the water sample size was 

-1 mg or greater. The same authors also noted that no significant differences in results were 

observed when using either Analar® zinc shot (0.5-2mm grain size), or zinc laths from the 

Biogeochemical Laboratory of the University ofIndiana, as the water reduction reagent. 

2.4.3 Quartz 180/160 determinations 

Analytical work was largely undertaken by the author. using a purpose-built fluorination line 

at the (then) London-based NERC Isotope Geosciences Laboratory. The principal exception 

was the analysis of a batch of samples (10, all with SW-89 reference codes) collected from 

the Dartmoor granite, together with a sample from Cligga Head (CH-88-1); these were 

undertaken on the author's behalf by Dr A Boyce at the SURRC facility, East Kilbride, 

during a period when the NERC facility was temporarily unavailable. The following 

description refers to the procedure undertaken in the London laboratory. 

A small quantity of cleaned quartz grains (prepared as described in Section 2.4.1) was heated 

at 600°C in vacuo for 30 minutes, to expel fluid inclusion water. After cooling, the grains 

were ground to a fine powder, using an agate mortar and pestle, and 6-lOmg of weighed 

(±0.01 mg) sample transferred to a nickel tube reaction vessel. Twelve samples, including a 

reference material (generally NBS-28 quartz sand, or a laboratory standard periodically 

calibrated against NBS-28) were loaded into separate reaction tubes for analysis. Standard 

fluorination procedures, based on reaction with BrF s as described by Clayton and Mayeda 

(1963), were used to liberate oxygen from the quartz. The reaction conditions adopted, as 

recommended by P B Greenwood (pers. comm.) were as follows: 

Samples were outgassed at 250°C overnight (14 hours). After COOling to ambient 

temperature, a 'pre-fluorination' routine was undertaken, whereby samples were reacted 

with BrFs at ambient temperature for -2 hours, to remove any surficial contamination. 

fluorination was subsequently undertaken at 450°C overnight (14 hours) to release molecular 

oxygen. This was then 'cleaned' from reaction products such as Sif4 that may be removed 

cryogenically by a liquid nitrogen trap, before reaction with a platinised graphite rod, heated 

to -625°C. CO
2 

thus produced was isolated by a liquid nitrogen trap and remaining 'non

condensable' gases pumped out. The CO
2 

yield was measured by capacitance manometer, as 

a check of conversion efficiency, prior to isotopic analysis using a VG® SIRA Series IT mass 

spectrometer. 
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2.5 Results 

Fluid inclusion an values were generally reproducible to within ±2%0. The precision of the 

a l80 results, being related to the magnitude of the associated procedural 'blank' during 

fluorination, was largely dependant on the nature of samples reacted earlier and the overall 

'conditioning' of the line. Ultimately, variation of <0.1 %0 between replicates could be 

obtained; overall reproducibility, however, was generally to within ±0.2%o. 

Results of the BD and alSO analyses, characterising various stages of palreo-hydrothennal 

activity in the Cornubian region, are shown in Table 2.1. For conversion of the quartz alSO 

values to those of the coexisting water at the estimated temperature of fluid trapping, the 

equilibrium fractionation curve of Matsuhisa et al. (1979) was used. With the usual notation, 

where A=3.34, B=-3.31 

These coefficients are for the temperature range 250-500°C. It may be noted that the water 

alSO values obtained are consistently 0.5%0 enriched in 180 compared to the equivalent data 

determined using values of the A and B coefficients given by Friedman and O'Neil (1977) or 

by Zhang etaZ. (1989).t Furthennore, the accuracy of the water alSO values is necessarily 

dependant on the reliability of fluid trapping temperatures as estimated from 

microthennometric data. For an error of ±25°C at 300°C, the corresponding difference in 

a l80 of the water is ±0.9%0, using the data of Matsuhisa et aZ. (1979). 

For fluids associated with N-S-trending veins, the a l80 values given in Table 2.1 were 

determined by extrapolation of the fractionation data of Matsuhisa et al. (1979) beyond their 

range of validity, so appropriate caution needs to be exercised in the use of these data. 

Furthennore, the values were also consistently 180 -enriched compared to equivalent data 

determined by the extrapolation of alternative fractionation factors. At the lowest temperature 

(120°C), the 180 enrichment was 0.7%0 over that obtained from the data of Friedman and 

O'Neil, and 0.4%0 enriched with respect to values calculated from Zhang et al. (1989). 

t The exact coincidence between the water 8180 data calculated using the fractionation factors of either 

Friedman and O'Neil (1977) or Zhang etal. (1989) over the temperature range 250-500°C is surprising. 
given that the respective values of the A and B coefficients differ. The respective ranges of validity of the 

fractionation factors are 200-500°C for Friedman and O'Neil (1977); 180-550°C for Zhang et al. (1989). 
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Table 2.1 
Results of 50 and 51BO analyses, quartz-hosted palreo-hydrothermal fluids, S W England 

a) Quartz±tourmaline±alSSiterite±hematite assemblages hosted by the DartmOOl' granite 

Sample reference Paragenetic Stage t 81BO quartz Estimated T(°C) of 81SOwater 8D water 
(%0) fluid trapping (%0) (%0) 

Golden Dagger mine 
SW-89-159 I 13.9 325' 7.9 -26 

SW-89-160 I 13.1 7.1 -24 
SW-89-163 II (ill) 13.1 7.1 -31 
SW-S9-162 II (ill) 13.6 7.6 -24 
SW-S9-161 III (II) 10.6 4.6 -30 

East Vitifer mine 
SW-S9-156 II 14.1 325" 8.1 -27 
SW-89-155 n 13.6 7.6 -24 
SW-89-154 men) 14.1 S.1 -33 

Barracott mine 
SW-89-164 n 14.1 325' 8.1 -31 

Birch Tor & Vitifer mine 
SW-81-14 n 14.0 325" S.O 

Great Rock mine 
SW-S9-157 m 20.S 180b 7.8 -29 

b) Early-stage Ouids characterised by associated with W±Sn oxide occurrence 

Sample reference Locality 81BOquartz Estimated T(°C) of 81S0 water 8Dwater 
(%0) fluid trapping (%0) (%0) 

Hemerdon area 
HEM-SO-l Hemerdon mine 14.6 400" 10.5 -24 
HEM-S0-39 " 15.0 10.9 -25 

HEM-80-44 15.0 10.9 -30 

HEM-80-47 14.6 10.5 -24 

CliggaHead 
CH-88-1 Cligga Head cliffs 13.9 360c 8.9 -15 

Gunnislake - Kit Hill region (E-W-trending veins) 
SW-84-18 Old Gunnislake mine 10.0 380d 5.5 -17 
00-88-1 " 9.8 5.3 -18 
SW-84-15 Drakewalls mine 13.6 340d 8.0 -16 
SW-S4-16 11.9 6.3 -11 
SW-84-20 South Bedford mine 12.2 3SOd 6.9 -16 
SW-84-25 Prince of Wales mine 12.6 320d 6.4 

SW-84-27 12.9 6.7 -14 

Cammenellis granite vicinity (Cam Brea granite) 
SC-88-2 South Crofty mine 11.6 320c 5.4 
SC-88-3 14.6 8.4 -17 

St Austell region 
CD-88-1 Castle-an-Dinas mine 9.5 500 f 7.2 -10 

t See note (2) overleaf 



Table 2.1 (continued) 

c) Fluids characterised by association with sulphide-stage mineralisation 

Sample reference Locality 8180 quartz Estimated T(°C) of 8180 water 8D water 
(%0) fluid trapping (%0) (%0) 

Gunnislake - Kit Hill region (E-W-trending veins) 
SW-84-19 Wheal Arthur mine 12.9 310d 6.4 -14 
SW-84-23 Okeltor mine 13.0 310' 6.5 -21 
SW-84-22 Cotehele Consols 15.0 305 d 8.3 

SW-84-17 Wheal Emma mine 15.1 280d 7.5 -32 

Eastern margin o/the Bodmin Moor granite 
SW-84-1 South Caradon mine 13.5 310' 7.0 -22 
SW-84-2 West Caradon mine 15.1 300' 8.2 -28 

d) Late-stage Ooids associated with N-S -trending veins (Pb, Zn sulphides in quartz! fluorite gangue) 

Sample reference Locality 8180 quartz Estimated T(°C) of 8180 water 8Dwater 
(%0) fluid trapping (%0) (%0) 

Tamar valley region 
SW-88-4 Lockridge mine 17.9 170h 4.2 -44 

SW-88-5 North Hooe mine 23.0 120h 4.7 

SW-88-6 But/spill mine 16.0 160h 1.5 -40 

SW-88-8 South Tamar Consols 15.2 170h 1.5 -35 

SW-88-9 16.5 170h 2.8 -44 

SW-84-9 Wheal Wrey mine 20.8 1301 3.6 -51 

SW-84-1O 17.4 170 i 3.7 -55 

SW-84-12 Wheal Mary Ann mine 18.9 160 i 4.4 

Notes: 

1). All isotopic results are with respect to SMOW. Hydrogen isotope data were normalised to the SMOW

SLAP scale. 

2). The Dartmoor granite-hosted fluids are classified by paragenetic association, using the stages defined by 
Scrivener (1982). Stage I fluids were the earliest. Where a stage is shown in parentheses, this indicates 

minor veining (overprinting) by the associated fluid. 

3). l)1B O values of the pal;eo-waters were calculated from those of the coexisting quartz by use of the 

fractionation data of Matsuhisa et al. (1979) in conjunction with fluid trapping temperatures estimated 

from published fluid homogenisation temperatures, where available. In several cases, polished wafers of 
the samples used for the present study had previously been investigated microtherroometrically by other 

workers. Sources of reference for the estimated trapping temperatures were as follows: 

(a) Shepherd el al. (1985) 

(b) R C Scrivener, unpublished data 

(c) Jackson et al. (1982) 

(d) Bull (1982) 

(e) Scrivener et al. (1986) 

(f) See text, Section 2.6.4 

(g) Estimated from data (B uH, 1982) on comparable- stage fluids from the Gunnislake - Kit Hill region 

(h) T J Shepherd, pers. comm. (cf. data on coexisting fluorites: Shepherd and Scrivener, 1987) 

(i) Estimate based on the assumption of similarity to comparable-stage fluids from this region 



Figure 2.3 

oD versus 0180 characteristics of quartz-hosted pa\reo-hydrothermal fluids, SW England 
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2.6 Discussion 

2.6.1 Problems to be addressed 

The results given in Table 2.1 are presented in a conventional SO versus Sl80 diagram in 

Figure 2.3, which also shows the respective fields pertinent to a discussion of the source of 

these palreo -hydrothermal waters. Principal issues to be addressed include the following: 

(i) To what extent can contributions from magmatic and meteoric water sources be 

identified in the early-stage (high temperature) fluids? Is there any evidence for the 

involvement of waters derived from metamorphic dehydration reactions, or of isotopic 

equilibration with alteration minerals of the batholith? 

(ii) It has been suggested (Alderton and Harmon, 1991) that the So versus Sl80 field 

attributed by Sheppard (1977) to Comubian magmatic waters may need revision if the earliest 

hydrothermal fluids in the region were of magmatic derivation. Does the present work 

support this assertion? 

(iii) As indicated in Figure 2.3, the Hemerdon and Dartmoor granite-hosted fluids are 

indistinguishable in terms of SO composition of the palreowaters. The difference in 

corresponding S180 values is not purely attributable to the lower estimated trapping 

temperature of the Dartmoor fluids. 

(iv) The isotopic compositions of early-stage hydrothermal waters characterised by 

W±Sn oxide association at localities in S W England other than Hemerdon differ markedly 

from the corresponding stage fluids at Hemerdon. 

(v) How would the initial isotopic composition of the water component of the high 

temperature fluids have been affected by boiling (as suggested in some cases, on the basis of 

published microthermometric studies)? 

(vi) Only a small number of samples representative of hydrothermal fluids characterised 

by main-stage sulphide association were included. How do these compare with the data for 

oxide-stage fluids? 

(vii) Explanations proposed for the origin of fluids associated with later hydrothermal 

events in the region, as represented by cross-course quartz examples from the Tamar valley 

region, are considered in the light of the present stable isotope data. 
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2.6.2 The isotopic composition of magmatic water during batholith evolution: 
implications for the source of early-stage hydrothermal fluids, S W England 

The D /H isotopic composition of granite magma is generally determined by the nature of the 

associated protolith source, together with any crustal material assimilated during 

emplacement. For most felsic magmas, magmatic water represents 'recycled' water, derived 

primarily from the melting of hydrous crust (Taylor, 1987). In the case of the granite 

intrusives of the Cornubian batholith, a significant proportion may be derived from the 

melting of sedimentary rocks. 

Considering initially the early-stage (WiSn oxide-associated) hydrothermal fluids at 

Hemerdon, which on the basis of published microthermometric data (Shepherd et al., 1985) 

are believed to have been trapped at higher temperatures than other comparable-stage fluids 

included in the present investigation, it is apparent from Figure 2.3 that these fluids are 

significantly enriched in deuterium compared to Cornubian primary magmatic waters as 

defined by Sheppard (1977). However, the estimated trapping temperatures, high salinity 

(Shepherd etaZ., 1985; Kelley etal., 1986) and chemical composition (this work, Chapter 5) 

of these fluids are compatible with their derivation (at least in part) from an aqueous phase 

such as that which separates from crystallising magma (Burnham, 1979). 

Further support for a magmatic-hydrothermal component in the system at Hemerdon is 

provided by the observation that the D/H composition of waters from several early 

transitional (pegmatitic and pneumatolytic stage) fluids associated with the St Austell granite 

(Lin, 1989), as determined by the present author during the course of the work described 

herein, falls within the same range as that of the Hemerdon fluids.t The similarity, in tenns of 

hydrogen isotopic composition, with early-stage hydrothermal fluids (including those hosted 

by pegmatitic quartz) in the Dartmoor granite (Figure 2.3) is also notable. As shown on 

Figure 2.3, isotopic equilibration at S400°C of meteoric water with hydrogen-bearing 

minerals in the granites is not compatible with the palreowater D /H characteristics. An 

alternative explanation, invoking waters derived from metamorphic dehydration reactions at 

temperatures up to 450°C (Primmer, 1985) is considered separately (Section 2.6.4). 

The validity of the boundaries of the isotopic composition field for Cornubian primary 

magmatic water, as derived by Sheppard (1977), has been called into question during recent 

studies. In particular, it has been suggested that the SO range be extended to -30%0 (Lin, 

t The pegmatitic and pneumatolytic fluids from the St Austell region were of lower salinity (10-25 wt % 

NaCI equivalent) according to Lin (1989), who suggested that these hydrous fluids are representative of a 

phase which separated from the associated lithium mica granite during crystallisation of the latter. 
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1989) or even -15%0 (Alderton and Hannon, 1991). The suggestion offered here, however, 

is that such an appeal is unnecessary, on the basis of the following arguments: 

(i) The primary magmatic water field represents waters equilibrated with a granitic melt 

(i. e. at temperatures ~-700°C), whereas hydrothermal fluids associated with early 

mineralisation of the Comubian batholith were generally trapped at temperatures within the 

range 300-450°C. 

(ii) Recent measurements by Alderton and Harmon (1991) of fluid inclusion ~D in 

granitic quartz from the Dartmoor, Bodmin Moor and St Austell granites, plot within the 

primary magmatic waters field as defined by Sheppard (1977). 

(iii) As noted by Taylor (1987), the 8D value of magmatic water varies during magma 

degassing, resulting in a positive correlation between ~D and residual water content of 

igneous rocks. The ~D value of the initial exsolved aqueous phase will be enriched in 

deuterium by approximately 20-25%0, relative to the bulk magma. Consequently, the ~D 

value of water exsolved from many felsic melts is in the range -30 to -60%0, but the 

associated magmatic rocks may be significantly depleted in deuterium. The temperatures at 

which initial exsolvation occurred are considerably higher than the inferred trapping 

temperatures of the early-stage hydrothermal fluids presently considered. 

(iv) Late-stage magmatic water derived from a cooling cryptobatholith should be 

characterised by enrichment in deuterium, relative to the magmatic water exsolved during 

earlier stages, on the basis of isotopic equilibration with hydrous silicates formed during 

cooling. For example, assuming that the crystallisation temperature of biotite and hornblende 

in a granitic melt is -700°C, reference to the fractionation factors of Suzuoki and Epstein 

(1976) shows that the associated hydrous phase should be approximately 30-40%0 enriched 

in deuterium, depending on the FelMg ratio of the silicates. Hydrogen isotopic fractionation 

between magma and aqueous vapour in a crystallising pluton (open and closed systems) was 

modelling by Brigham and O'Neil (1985), who showed that primary hydrogen isotopic 

compositions were generally preserved in plutonic micas. 

For these reasons, it is argued that the D/H characteristics of early-stage hydrothermal 

waters associated with high temperature alteration and mineralisation of the Comubian 

batholith is not incompatible with a magmatic origin. 

2.6.2.1 The effect of fluid boiling on the isotopic characteristics of the waters 

The coexistence of liquid-rich and vapour-rich inclusions may be assumed to represent a 

boiling assemblage if there is additional evidence that the inclusions are contemporaneous, 
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are characterised by the same homogenisation temperatures (Roedder, 1984), and have 

compositions consistent with end-member phases. With regard to the S W England palreo

hydrothennal systems, Shepherd et al. (1985) suggested that such evidence for fluid boiling 

is present at Hemerdon. Boiling of early transitional fluids associated with the St Austell 

lithium mica granite magma was reported by Lin (1989), who also noted a correlation 

between the extent of boiling and deuterium enrichment. Bull (1982), in a comprehensive 

study of hydrothennal mineralisation in the Gunnislake-Kit Hill region, reported that no 

boiling assemblages were found in any E-W -trending sulphide-associated veins and that all 

inclusions homogenised into the liquid phase. For the earlier, quartz±cassiterite±wolframite 

veins in the region, boiling assemblages were evident in only a single specimen (from the 

Prince of Wales mine). 

For pure water at saturated vapour pressure, the compilation of Friedman and O'Neil (1977) 

documents D /H and 180/ 160 fractionations between liquid and vapour. For pure water, 

a.._v(D /H) is greater than unity at <-220°C and becomes less than unity above this 'cross

over' temperature.t The value of the cross-over temperature for NaCI solutions decreases 

with increasing salt concentration, being 205°C for 1 molal NaCI and 165°C for 4 molal 

solutions, under vapour-saturated conditions (Kazahaya, 1986). For the trapping 

temperature range of the early -stage hydrothennal fluids considered in the present work, i. e. 

well above the associated ~_v(D/H) cross-over temperatures, any isotopically-equilibrated 

separation of a vapour phase through boiling results in deuterium enrichment of the vapour 

and corresponding deuterium depletion of the residual liquid phase. Deuterium enrichment of 

the fluids by separation from a liquid phase during boiling (as favoured by Alderton and 

Harmon, 1991) would require that the high salinities of early hydrothennal fluids hosted by 

the Dartmoor and Hemerdon Ball granites were the result of interaction with wall-rocks, 

rather than the expression of a primary magmatic component. 

2.6.2.2 pH effects 

An aqueous fluid separating from crystallising magma is likely to be saline and relatively 

acidic (Burnham, 1979; Bottrell and Yardley, 1988). As the dissociation constant ofD
2
0 is 

significantly lower than that of H20 under the same conditions, a consequence is that OH

and Hp+ ions have very much lower deuterium concentrations (at isotopic equilibrium) than 

the water from which they were derived (Deines, 1979). Consequently, hydrogen isotope 

fractionation between hydrogen -bearing minerals and coexisting water may be significantly 

affected under strongly acidic (or alkaline) solutions. Appropriate fractionation data are 

t The vapour pressure ratio p(H20)/p(D20) exhibits a similar cross-over point near 220oC, as does the 
correspondingp(HrO)/p(HrO) ratio. 
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unknown to the present author, however, so the magnitude of any such effect under 

magmatic -hydrothermal conditions cannot be assessed. 

2.6.3 Pegmatitic and early mineralising fluids of the Dartmoor granite 

Figure 2.3 shows that the Dartmoor granite-hosed hydrothermal fluids plot in a distinctive 

field on the SD vs. S180 diagram, away from early-stage fluids characterised by W±Sn oxide 

association in the region. The SD values coincide with those of W±Sn oxide-associated 

fluids at Hemerdon, however. There is no apparent dependence of the isotopic characteristics 

on associated paragenetic stage at Dartmoor (see Table 2.1), at least for the examples 

investigated in the present study, indicating that the corresponding fluids were derived from a 

common source.t 

The difference in Sl80 characteristics between the Dartmoor-hosted fluids and those at 

Hemerdon is largely due to trapping temperature differences, estimated from the fluid 

inclusion microthermometric data of Shepherd etal. (1985) and Alderton and Harmon 

(1991). For example, if the Dartmoor Stage I and Stage II examples are recalculated to a 

quartz-water fractionation temperature of 400°C (as used for the Hemerdon fluids) rather 

than 325°C, the S180 values are increased by 1.9%0. There remains, however, a systematic 

discrepancy of < 1%0, which is possibly attributable to the notably lower ·s' -type character 

(Chappell and White, 1974) of the Dartmoor granite, as discussed elsewhere in the present 

work and as referred to by Darbyshire and Shepherd (1985, 1987). 

On the basis of the above discussion, and with reference to Table 2.1 and data reported in Lin 

(1989), it is suggested that the SD range of ancient magmatic-hydrothermal fluids in the 

Comubian province is from ca. -21 to -33%0. This refers to fluids exsolved during the late 

stages of crystallisation of granitic magma, and which probably continued to undergo 

equilibrated isotopic exchange with hydrogen-bearing minerals in the granite during 

subsequent cooling, possibly down to the temperature of fluid trapping (quartz 

crystallisation). A continuum is presumed to exist between the magmatic-hydrothermal fluids 

trapped at 300-400°C and those fluids related to the formation of higher temperature rocks 

such as are associated with granitic pegmatites in the region. 

t Table 2.1 shows that sample SW-89-161, from Golden Dagger mine, is anomalously depleted in 180 

compared to all other Dartmoor granite-hosted samples investigated. This sample was also characterised by 
a highly anomalous fluid electrolyte composition (Chapter 5). On these grounds, it is considered justified 

to exclude this sample from the complete data set illustrated in Figure 2.3. 
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2.6.4 Early-stage fluids characterised by W±Sn oxide association 

Figure 2.3 illustrates the distinctive nature of the Hemerdon fluids, in terms of isotopic 

composition of the waters, compared to fluids of the same parage netic association at other 

localities in S W England. As noted in Section 2.6.3, the relative enrichment in 180 at 

Hemerdon is largely a reflection of the higher trapping temperature assumed for these fluids, 

with a minor component possibly deriving from the high degree of sedimentary material 

incorporated in the parent magma.t At other localities in the province, however, the fluids are 

notably more enriched in deuterium and are unlikely to be exclusively of magmatic origin. 

Further evidence for the involvement of non-magmatic fluids at localities other than 

Hemerdon is provided by salinity estimates of the respective fluid inclusions, as determined 

by microthermometric analysis. Sources of the salinity data, together with the actual values, 

are discussed in detail in Section 5.5.2. A primary feature is that many of the fluids 

(excluding those at Hemerdon) were shown to be of relatively low salinity. An explanation 

for the observed OD versus 0180 characteristics of early-stage fluids at localities such as 

Cligga Head and the Gunnislake-Kit Hill area is therefore that an initial magmatic

hydrothermal component was diluted by mixing with low salinity groundwaters. Considering 

the hypothesis that meteoric (rather than 'metamorphic') water was the source of this second 

fluid, there are several issues to be addressed: 

(i) At what stage did meteoric water enter the system, i. e. during early fracturing of the 

host rock, or during subsequent hydrothermal circulation? 

(li) What were the respective temperatures immediately prior to fluid mixing? This has a 

direct bearing on the extent of water-rock interaction that the meteoric component 

would have experienced. 

(iii) Related to the above, it would seem unreasonable to postulate that a mixing line be 

drawn on Figure 2.3 between the presumed value of contemporaneous meteoric water 

and an 'end member' magmatic-hydrothermal component, the latter being represented 

by an area on Figure 2.3 that includes the Hemerdon and Dartmoor samples. Such a 

mixing line would only be valid if the isotopic composition of the original meteoric 

component was not modified by water-rock interaction. 

If isotopic exchange between meteoric water and the country rocks occurred, in the vicinity 

of the hydrothermal system, it is likely that the isotopic characteristics of the meteoric water 

t Darbyshire and Shepherd (1987) showed that the Hemerdon Ball granite has significantly greater 'S'-type 

character than the adjacent Dartmoor pluton, on the basis of Nd isotopic composition. 

43 



would have been modified by 180 enrichment, as shown in Figure 2.1. On this basis, the 

mixing line referred to above would connect the proposed magmatic-hydrothermal 'end 

member' with a modified meteoric water component, the latter being represented by a box 

shifted to the right (on Figure 2.3) from the position shown for Permian meteoric water. This 

indeed provides a plausible explanation for the experimental data. The degree of 51SO scatter 

for fluids associated with W ± Sn oxide assemblages other than at Hemerdon is then related to 

the variation in fluid trapping temperature, degree of sedimentary character of the associated 

parent granite, and the extent of prior interaction between the meteoric fluid component and 

the country rocks. 

As an alternative (or in addition) to dilution of the magmatic-hydrothermal fluid by meteoric 

water, the possibility of 'metamorphic' water involvement needs to be considered. On the 

basis of the data available, it is not possible to distinguish unambiguously between 

'metamorphic' water and that derived from a meteoric fluid which has subsequently become 

enriched in 180 through reaction with the local country rocks. As noted by Sheppard (1977), 

however, the sedimentary country rocks had been regionally metamorphosed (albeit at very 

low grade, at the present level of exposure) prior to the emplacement of the Cornubian 

granites; much of any formation water or connate water would probably have been removed 

during this period. A significant input of metamorphic water to the hydrothermal fluids 

would therefore have required that the associated dehydration reactions occurred at depths 

substantially below those of the current level of exposure. 

An important additional consideration is whether the early hydrothermal fluid systems were 

contemporaneous with granite emplacement, or whether the hydrothermal activity and related 

mineralisation is significantly younger. Each component intrusive of the batholith needs to be 

considered independently (Chesley etal., 1993). For example, the suggestion that main

stage mineralisation at South Crofty mine post-dates the host (Carn Brea) granite by -20Ma 

(Darbyshire and Shepherd, 1985) indicates that there may have been scope for an influx of 

local groundwaters into early fracture systems of the cooling pluton. Possibly, the extent of 

dilution of the initial magmatic-hydrothermal fluid is directly related to the magnitude of any 

hiatus between granite emplacement and the initial stages of associated hydrothermal activity. 

The unusual nature of the early hydrothermal system at Castle-an-Dinas (St Austell region) 

is discussed elsewhere in the present work (Sections 4.8.2 and 5.5.2). The hydrothermal 

system at this locality pre -dates the existing Castle -an -Dinas granite (Dines, 1956) and was 

therefore derived from an unidentified intrusive of unknown age (Beer and Ball, 1987). 

Subsequent intrusion of the Castle-an-Dinas granite may have resulted in heating of the early 

quartz veins to temperatures higher than those associated with initial vein formation. 
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2.6.5 'Main-stage' (sulphide-associated) hydrothennal fluids 

The limited data presented in Figure 2.3 and Table 2.1 for fluids associated with chalcophile

element assemblages generally refer to higher-temperature episodes from a relatively small 

area of the Cornubian region. As such, they must be regarded as somewhat cursory, 

pennitting only tentative conclusions to be drawn. Compared to the earliest oxide-associated 

episode ofhydrothennal activity in the Gunnislake-Kit Hill vicinity, the stage characterised 

by association with sulphide assemblages was of considerable complexity (Bull, 1982), as 

evident from the corresponding mineral paragenesis and wide range of fluid salinities and 

trapping temperatures. A hydrothennal continuum probably occurred, resulting in some 

overprinting of earlier fluids. The salient feature of the isotopic data is that the ~D range of 

these fluids appears to encompass the various fields presented for early-stage oxide

associated fluids throughout S W England. The results are therefore compatible with the idea 

of an initial magmatic-hydrothennal fluid component diluted to varying degree by mixing 

with local meteoric water, as suggested by Shepherd et al. (1985). 

2.6.6 Low temperature, 'cross-course' fluids 

The ~D and ~180 characteristics of the water component of these late-stage fluids (age 

-235Ma according to Darbyshire and Shepherd, 1990) are quite distinct from those of the 

higher temperature hydrothennal regimes, as shown in Figure 2.3. Emphasis has hitherto 

been placed on the possible involvement of formation waters derived from sedimentary 

basinal brines (Alderton and Harmon, 1991; Shepherd and Scrivener, 1987; Scrivener etal., 

1986; Shepherd et al., 1985; Bull, 1982), largely on the basis of microthennometric evidence 

that the low -temperature fluids are enriched in calcium. Such an origin for these waters is 

hard to reconcile with the present stable isotope data, however, as is the Mesozoic seawater 

explanation of Durrance et al. (1982). 

Fluid inclusion leachate analysis (Chapter 5, this work) has revealed that calcium enrichment 

is by no means confined to the cross -course fluids. Indeed, for early hydrothermal fluids 

hosted by the Dartmoor granite, all investigated samples contained higher molar abundances 

of calcium than potassium, even in the case of the earliest pegmatitic fluids. Clearly, 

geological considerations dictate that such fluids were not directly derived from sedimentary 

rocks. The relative abundance of calcium in the Comubian hydrothennal fluids is therefore 

not necessarily a reliable guide to whether the fluid composition was primarily derived in a 

high or low temperature regime. Furthennore, the range of bulk salinity values of cross

course fluids from the Tamar valley, at 19-27 weight % NaCl equivalent (Shepherd and 
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Scrivener, 1987)t, is comparable to that found in higher-temperature hydrothermal fluids 

associated with early pegmatite formation and oxide assemblages in S W England. 

The isotopic variations of formation waters in sedimentary basins have received much 

investigation, as reviewed by e.g. Longstaffe (1987). Formation waters from various basins 

follow a linear trend away from the meteoric water line, towards enrichment in D and 180. 

Furthermore, for a given basin, those waters trapped at higher temperatures (and with higher 

salinities) are generally the most enriched in D and 180. Formation waters from high latitudes 

tend to plot along trends that intersect the meteoric water line at lower SD and S180 values 

than do formation waters from basins located at lower latitudes. The implication is that 

meteoric water comprises a significant fraction of the formation waters in such basins. With 

regard to the present results, the isotopic data (in particular, the low SD values) are not 

consistent with either a metamorphic water or Permo-Triassic meteoric water source. The 

only mechanism known to the author whereby significant deuterium depletion may be 

achieved in a formation water is that proposed by Knauth and Beeunas (1986), which 

invokes conditions of extreme evaporation of seawater, such as associated with halite 

formation. In Devon during Permo-Triassic times, however, conditions were not appropriate 

to salt formation (unlike in adjacent Somerset), as salt deposits and halite are virtually 

unknown in the region (Laming, 1982). 

Towards an explanation of the present isotopic data, it is noted that the SD values lie within 

the field of the unaltered Comubian granites and earliest hydrothermal alteration. It is 

therefore tentatively proposed here that the late-stage fluids from the Tamar valley region 

may be derived from fluid inclusions in an unidentified granite (probably deeply-buried, 

rather than one of the outcrops of the Gunnislake- Kit Hill vicinity), released by a changing 

tectonic stress regime. Mobilisation of these fluids in a low-temperature hydrothermal 

system, together with extended low-temperature interaction with the country rocks (such as 

proposed elsewhere to explain the notable 180-depletion in Canadian Shield brines) could 

conceivably account for the present experimental findings. 

2.7 Summary and conclusions 

The isotopic evidence presented here is consistent with the view that hydrothermal fluids 

associated with tourmaline-dominated and greisen mineralisation of the Dartmoor granite 

were of magmatic derivation. This is also in accord with the relatively high salinities and 

t The fluid salinity measurements reported by Shepherd and Scrivener (1987) were actually made on fluorite, 
rather than coexisting quartz, as the quartz collected for that study was too fine- grained to support 
inclusions of size> 2 mm (Shepherd et al., 1985). 
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trapping temperatures (Shepherd etal., 1985). The relative enrichment in deuterium 

compared to Cornubian primary magmatic waters (Sheppard, 1977) may be explained on the 

basis that the primary magmatic waters field represents equilibration with a granitic melt (i. e. 

at temperatures ~-700°C), whereas the hydrothermal systems were generally trapped at 

temperatures within the range 300-450°C. Isotopic exchange between the fluids and hydrous 

silicates of the host granite at sub-solidus temperatures is the most probable explanation for 

the deuterium enrichment. 

The uniformity and values of 00 and 0180 characteristics of the palreowaters associated with 

early mineralisation of the Dartmoor granite, from quartz±tourmaline±cassiterite±luematite 

mineralisation, to later fluids as characterised by quartz+hrematite deposition, supports the 

idea of protracted magmatic -hydrothermal activity. Furthermore, the relative invariance of the 

isotopic data is in good agreement with the similarity of the solute electrolyte compositions 

associated with the different parageneses (this work, Chapter 5). 

A comparative assessment of hydrothermal fluids characterised by association with early

stage W±Sn oxide assemblages in S W England has shown that, whereas the total 00 range 

is ca. 20%0, a clear distinction may be made between the Hemerdon system and those 

elsewhere in the province. The similarity in 00 values between the Hemerdon fluids and 

those of the Dartmoor system, together with thermometric evidence (Shepherd et ai., 1985; 

Kelleyetal., 1986), supports the hypothesis that these fluids were derived from an aqueous 

phase that separated from granite magma and that meteoric waters were not of significance. 

For other localities in the region, the isotopic data (and generally lower salinities) are 

consistent with the dilution of a magmatic-hydrothermal phase by local meteoric water that 

had experienced 180 enrichment through water-rock interaction at elevated temperatures. It is 

tentatively proposed that there may be a correlation between the length of the hiatus by which 

the earliest hydrothermal activity post-dated granite emplacement, and the amount of meteoric 

water that entered the hydrothermal system. More data are needed, particularly with regard to 

the relative timing of hydrothermal events, to establish the viability of this proposal. Recent 

thermo-chronological studies by Chesley etal. (1993) and Chen etal. (1993) suggest that 

early -stage oxide mineralisation was contemporaneous with the time at which the respective 

host granite had cooled to 300-400°C, although the cooling rates of individual plutons are a 

matter of dispute. 

The limited isotopic data obtained for hydrothermal fluids characterised by association with 

(main-stage) sulphide assemblages shows a relatively wide range of 00 values that may also 

be interpreted as the result of dilution, to varying degree, of a magmatic -hydrothermal fluid. 

Such a scenario has been proposed elsewhere (e.g. Shepherd etal., 1985). A hydrothermal 

continuum probably exists, extending from the earliest pegmatitic fluids to those 
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characterised by sulphide assemblages.t Chen etal. (1993) support the view that some 

chalcophile element mineralisation was coeval with the lithophile stage. 

Waters derived from metamorphic dehydration reactions of e. g. chlorite or illite at high 

crusta11evels are not considered to have made a significant contribution to the hydrothermal 

system. Evidence for this is provided by the narrow range of 5D values at Hemerdon: the 

fluids are characterised by relatively high trapping temperatures (hence are the most likely to 

have incorporated metamorphic water) and yet fluids from killas-hosted quartz veins are 

indistinguishable from those hosted by the granite, in terms of 5D value of the pal~water. 

That the values are also indistinguishable from those of the early hydrothermal system of the 

central region of the Dartmoor granite, where little or no direct contact with sedimentary 

rocks can have occurred, further supports this case. 

The suggestion is offered that the 5D and 5180 characteristics of palreowaters associated with 

later N -S -trending structures in the Tamar valley region are compatible with a fluid origin 

based on the release of water from fluid inclusions in an unidentified (probably deeply 

buried) granite component of the underlying batholith. This may have occurred as a result of 

changes in the regional tectonic stress field. Subsequent oxygen isotopic exchange between 

the fluid and the country rocks, under low temperature conditions, could conceivably account 

for the relatively low 5180 values. 

t Arsenopyrite is actually one of the earliest minerals in the paragenetic sequence (Stone and Exley, 1985). 
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Chapter 3 

The occurrence and stable isotope characterisation of carbon in 
palreo- hydrothermal fluids, S W England. 

3.1 Synopsis 

Carbon occurs locally in both oxidised and (to a lesser extent) reduced form as a trace 

component of ancient fluids associated with the earliest stages of hydrothermal mineralisation 

of the Cornubian batholith, S W England, being particularly associated with the occurrence 

of W±Sn oxide assemblages. Reported here is an investigation of regional and local 

variations in the associated fluid inclusion carbon abundance, speciation and stable isotope 

characteristics. Such information may be used to constrain models relating to the source of 

this component in terms of crustal carbon reservoirs and ultimately to further understanding 

of the origin of fluids that contributed to the large-scale hydrothermal evolution of the 

batholith. 

A preliminary comparison with examples of 'transitional' pegmatitic and pneumatolytic fluids 

that preceded hydrothermal mineralisation in the region was undertaken. The purpose was to 

establish whether, on the basis of carbon abundance and l3C/ 12C isotopic characteristics, 

hydrothermal activity associated with the initial stages of oxide mineralisation could be linked 

to earlier processes characteristic of magmatic differentiation, in view of hypotheses 

advocating that a continuum relates pegmatitic and subsequent stages of (high temperature) 

hydrothermal evolution in the region. 

The speciation and stable isotope characteristics of carbon in pegmatitic and early 

hydrothermal oxide-associated fluids of the Cornubian batholith are summarily compared 

with corresponding data, obtained during the present investigation, from (i) fluids associated 

with quartz -wolframite mineralisation at Carrock Fell, N W England, where the presence of 

carbon -bearing fluid components is well established and where quartz -wolframite deposition 

similarly occurred predominantly in close proximity to the margin of the associated granite 

pluton; (ii) fluids associated with early hydrothermal mineralisation of the Yanshanian 

granites of southern China, where carbon dioxide has been shown to be a significant 

pal reo fluid component and where recent studies have highlighted similarities with early 

evolution of the Cornubian batholith. 

A critical assessment of experimental techniques used for the extraction of fluid inclusion 

carbonaceous volatiles for subsequent 13C/12C isotope ratio analysis at the sub-micromole 

level was of fundamental importance to the present investigation. In particular, the application 
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of stepped heating procedures to release carbon dioxide and coexisting methane from vesicles 

in quartz was investigated, with particular reference to the problems of associated 

adventitious contamination. An 'optimised' stepped heating procedure was devised, which 

was then also applied in conjunction with high-sensitivity, static vacuum mass spectrometry, 

to a preliminary investigation of fluid inclusion carbon stable isotope ratio analysis at the 

sub-nanomole leve1. 

An attempt was made to apply the advantages conferred by this high sensitivity approach to 

address the question of whether carbon present at very low abundances in early-stage 

hydrothermal fluids, as found on a regional scale associated with the earliest pegmatitic 

quartz and tourmaline + quartz ± cassiterite mineralisation of the Dartmoor granite, could be 

shown to be isotopically similar to (and therefore probably derived from a similar source as) 

the more abundant palreofluid carbon characterised by association with W±Sn oxide minerals 

elsewhere within the batholith. 

3.2 Introduction 

3.2.1 Carbon reselVoirs and geochemical cycles 

The terrestrial geochemistry of carbon has been inextricably linked with biological processes 

operating on a global scale throughout Earth's history. That life forms have been identified in 

Archean rocks of age 3.5 x 109 a (Schopf and Klein, 1992, and references therein) is 

testament to the existence and ubiquity of life almost as far back as the sUlViving rock record. 

Indeed, the sedimentary rocks that in general cover the continents of the present-day Earth 

contain a substantial amount of carbon-bearing compounds of biogenic origin. Estimates of 

the relative sizes of present-day major crustal reselVoirs of carbon indicate that sedimentary 

carbonate rocks constitute -73% of the total inventory, with most of the remainder being in 

the form of coal, petroleum and natural gas, oil shales and tar sands, together with 

disseminated amorphous carbon in sedimentary rocks (Faure, 1986). 

Despite the fundamental role of the atmosphere, hydrosphere and biosphere in the carbon 

geochemical cycle, the total amount of carbon contained by these reservoirs presently 

amounts to only 0.046% of that stored in the Earth's crust (Holland, 1984, Table 3.5). This 

indicates that, unlike Ne or Ar, nearly all of the carbon degassed (as CO2) from the Earth's 

interior over geological time has been transferred from the atmosphere to the crust (to reside 

primarily as a constituent of organic compounds, graphite, and carbonates of calcium and 

magnesium) and has been recycled by weathering and by CO2 release during the 

metamorphism of sedimentary rocks (Holland, 1984). An analysis of the carbon cycle by 

Holland (1978) suggested that present-day degassing of 'juvenile' CO
2 

accounts for 

probably no greater than a few percent of the rate at which carbon is being recycled by the 
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metamorphism of sedimentary rocks. Zhang and Zindler (1993) estimated that the CO
2 

content of present-day degassed mantle amounts to (72± to) % of the total 'degassable' CO
2 

reservoir, consistent with the idea that most CO2 has been recycled from the Earth's surface 

into the degassed mantle, by subduction. The same authors suggested that recycling of N2 

back into the mantle occurs on a much smaller scale. It has even been suggested (Wood, 

1993) that the Earth's core may contain approximately 2 -4 wt % carbon (as Fe
3 
C) ; 

substantially more than in iron meteorites. 

3.2.2 Stable isotopic characteristics of near-surface carbon reservoirs 

The pioneering work of Craig (1953) and later Wickman (1956) heralded the beginning of 

carbon stable isotope geochemistry. Subsequent extensive examination of the carbon isotopic 

composition of naturally -occurring terrestrial matter has served to extend the range of values 

reported, whilst establishing well-defined fields for specific carbon reservoirs.t Carbon 

stable isotope ratios are, by convention, usually presented in terms of a shift in parts per 

thousand (per mil) from an internationally-agreed standard; results are thus reported in the 

'delta' notation, where: 

The standard (international reference), as first used at the University of Chicago by Craig and 

co-workers in the 1950's, is CO
2 

prepared from a Cretaceous belemnite (Belemnitella 

Americana) sample from the Peedee Formation of South Carolina, USA. The supply of this 

belemnite, referred to as PDB, has been exhausted for many years, so working standards 

calibrated against PDB are used nowadays. The currently-accepted value for the absolute 

abundance (13C/ IZC) ratio in PDB is 0.0112372 (Craig, 1957). 

Estimates for the average 513e value of crustal caIbon are generally in the range -5 to -7%0 

(Fuex and Baker, 1973; Javoy etal., 1986; Hoiser etal., 1988), similar to the consensus 

value for the upper mantle. 

One of the primary processes giving rise to changes in the isotopic composition of carbon is 

its abstraction from the atmospheric e02 reservoir (B '3e = -7%0) and surface waters by 

photosynthetic fixation. The overall fractionation associated with this process produces 13C

depletion in the resulting metabolites. 

t Terrestrial l2C/13C values generally occur within the limits 89±4, similar to the range characterising bulk 

stony meteorites (Pillinger, 1984; Ash, 1990), in contrast to the large range discovered in extraterrestrial 

material (see e.g. Zinner and Epstein; 1987; Zinner et al., 1987; Stone etal., 1990; Amari etal., 1990). 
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Between the time of photosynthetic fixation and eventual incorporation into sediment, the 

organic carbon reservoir is exposed to many oxidative processes, with the result that only a 

very small fraction of the total inventory is retained in the sediments. The marine and 

continental environments reflect limiting ('end member') conditions under which organic 

matter may be incorporated into sediments. Under marine conditions, the primary source is 

autochthonous plankton; this consists largely of proteins, carbohydrates and lipids, 

characterised by relatively high HI C ratios and the predOminance of aliphatic structures. In 

contrast, organic matter in a continental environment is derived mainly from the detritus of 

higher plants and consists largely of lignin, cellulose and sclero-proteins, resulting in lower 

HIe ratios and a greater proportion of aromatic compounds. Diagenesis does not appear to 

drastically alter the isotopic composition of sedimentary organic carbon (see the 

comprehensive reviews by Deines, 1980, and Tissot and Welte, 1984). 

Analyses of carbon stable isotope ratios in Recent (age <104 a) sediments of marine origin 

indicate that more than 90% of the Sl3C values lie within the range -20 to -27%0 (Deines, 

1980), with a mean of -25%0 (Hoefs, 1987). The Bl3C range of older sediments and 

metasediments is comparable, although notably displaced towards l~ enrichment (Deines, 

1980; Arthur et al. 1986). With regard to the sl3e values of carbonate rocks, those of marine 

origin have values close to 0%0. Furthermore, it has been shown that, almost as far back as 

the geological record exists, marine carbonates (and organic matter) have carbon isotopic 

compositions not dissimilar to their present-day counterparts (Junge etal., 1975; 

Schidlowski etal., 1983). 

Freshwater carbonates are generally more depleted in 13C than those of marine origin and 

show greater variation in sl3e values (Hoefs, 1987, and references therein; Clark and 

Lauriol, 1992). Cryogenic calcites, formed by expUlsion during the freezing of bicarbonate

enriched groundwaters, may also have high Bl3e values (up to +17%0 reported by Clark and 

Lauriol, 1992). The widest range of Bl3e values in carbonate rocks, however, from -60 to 

+21%0, is found in diagenetic dolomitic limestones in the deep-sea environment (Deuser, 

1970; Murata et al., 1967). 

3.2.3 Carbon in the mantle: isotopic characterisation 

The majority of measurements of the carbon isotopic composition of the mantle have been 

obtained on oceanic basaltic glasses, carbonatites, kimberlites, diamonds and mantle 

diopsides. The earliest isotopic measurements were by Craig (1953) and Wickman (1956), 

who analysed carbon stable isotope ratios in diamonds and showed that the Bl3e values 

clustered around -5%0. Since then, a wealth of data has been produced, stimulating a degree 

of controversy regarding mantle carbon isotope systematics. The subject has been reviewed 

by Javoy etal. (1986), Mattey (1987) and Boyd (1988); a more recent discussion with 
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reference to diamond formation is to be found in Galimov (1991). Although ~13C values 

ranging from +2.8 to -34.5%0 have been recorded for diamonds globally, the majority range 

from -2 to -9%0, with a mode at -4.6%0 (Galimov, 1991). Vesicular CO
2 

from oceanic 

basaltic glasses has ~13C within the range -2 to -9%0, coinciding with the majority of 

measurements from carbonatites, kimberlitic carbonates and mantle diopsides. 

Whereas the dominant present-day flux of carbon from the Earth's mantle is probably that 

associated with the outgassing of CO2 at mid-ocean ridges (Maney, 1987), carbon may also 

be returned to the mantle via subduction of oceanic crust (Mattey et al .• 1984; Boyd. 1988); 

this has been suggested as a viable mechanism for generating carbon isotopiC heterogeneity in 

the mantle and hence explaining the origin of some 13C-depleted diamonds. However. as 

noted by J avoy et al. (1986) and Deines et al. (1987). what is not explained by this 

hypothesis is why the recycled component is derived predominantly from kerogen (as 

required to produce 13C-depletion), rather than marine carbonate (~13C=O%o). Indeed, the 

question of whether and how significant amounts of carbonate are returned into the mantle by 

subduction is still largely unresolved (Green et al., 1993). 

3.2.4 Carbon abundance and stable isotope ratio measurements: experimental problems 
highlighted by oceanic basalt analyses 

'One of the problems with carbon isotope measurements is that the number obtained is very strongly 

dependant on the technique which is applied to measure it.' ... D P Mattey, Third International Symposium of 

Experimental Mineralogy, Petrology and Geochemistry, Edinburgh UK. 1990. 

As noted by Des Marais (1986). large systematic discrepancies exist among carbon 

abundance and isotope data reported for aliquots of the same oceanic basalt samples by 

different laboratories. Stepped heating, entailing either combustion, pyrolysis, or a 

combination of the two, has been used in many investigations to release carbon from oceanic 

basalt glasses (Pineau and Javoy, 1983; DesMarais and Moore, 1984; Mattey et al .• 1984; 

Sakai et al., 1984; Exley et al .• 1986, 1987). As variations of these experimental procedures 

were also adopted in the present study. the problems highlighted by the work on oceanic 

basalts are of considerable significance here. 

A ubiquitous feature of the stepped heating analysis of basaltic glasses is the release by low 

temperature combustion «600°C) of carbon (as CO2) characterised by isotopic composition 

513C=-25 to -30%0. Although there is not universal agreement on the origin of this carbon 

component, DesMarais and Moore (1984), Mattey etal. (1984) and Exley etal. (1986, 

1987) suggested that surficial organic contamination, introduced in the marine environment 

and/ or during sample handling, is the most probable source. This interpretation is supported 

by several lines of evidence (as summarised by Des Marais, 1986): 
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0) During analyses of lunar basalts (Des Marais 1978, 1983), where little or no indigenous 

carbon was released upon melting, combustion at temperatures <600°C yielded carbon of 

similar isotopic characteristics (and sometimes in quantities as large) as reported for the low

temperature component obtained from oceanic basalts. (ii) The 'low-temperature' carbon 

component may be removed by combustion at 600°C, but will return if the glass is 

subsequently re-exposed to the atmosphere, thereby indicating the prevalence of airborne 

contaminants (dust and microbiological matter). (iii) Acid treatment of basaltic glasses, as 

often used in sample cleaning procedures, creates very active surfaces (Pineau and Javoy, 

1984). (iv) The 'low-temperature' carbon is evolved at temperatures where the glass interior 

still retains its volatiles. (v) Small samples (greater surface area to volume ratio) yield 

proportionately more of this low -temperature component, as do weathered glasses compared 

to freshly-exposed chips. (vi) The carbon released below 6O()OC is isotopically characteristic 

of organic matter and, furthermore, combusts in the same temperature range. 

Exley et al. (1986) and Mattey et al. (1989) showed that chemical pre-cleaning can be 

effective in minimising the carbon contribution from surficial organic contamination. In 

particular, Mattey et al. (1989) showed that up to 95% of the component derived from 

atmospheric exposure may be removed by a short period of ultrasonic cleaning in 

dichloromethane, followed by immediately loading the sample into a high -vacuum extraction 

line. 

With regard to the origin of l3C-depleted carbon (OI3C=::-27%o) released during stepped 

combustion below 600°C, Nadeau et al. (1990), in an investigation of carbon concentrations 

and isotopic ratios in fluid inclusion-bearing upper-mantle xenoliths along the north-western 

margin of North America, preferred the explanation that it is due to complex carbon 

compounds condensed on mineral surfaces and in cracks (based on the work of Mathez, 

1987), rather than arising through biological contamination (Mattey, 1987, and references 

therein). Nadeau et al. (1990) also noted that the l3C-depleted component persisted, at low 

levels, up to 1450°C (the maximum temperature of their experiments). A typical CO2 'blank' 

reported by these authors was equivalent to 0.96jJ.gC at 1200°C, with a reproducible 813C 

value of -27.6iO.2%o. Although Nadeau et al. (1990) reported cleaning their samples by 

ultrasonic agitation in a 50:50 mixture of high purity dichloromethane and methanol, the 

minimum exposure procedure recommended by Mattey et aL (1989) was not used; samples 

were instead dried overnight at 75°C in an oven and subsequently outgassed at 200°C in a 

high-vacuum system for several hours. Of particular relevance (as discussed below) is that 

the extraction section comprised a Pt-l0%Rb crucible in a silica tube; the precious metal 

crucible was presumably incorporated to catalyse the oxidation of low molecular weight 

alkanes. 
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3.2.5 Carbonaceous matter - an indigenous component of magmatic rocks? 

Until relatively recently, elemental carbon was regarded as an incompatible element in oxide 

and silicate lattices. In a series of papers, Freund and co-workers (Freund et ai., 1980; 

Oberhauser et al., 1983; Freund, 1986) reported that olivine, (Mg,Fe)2Si04' the most 

abundant mineral in the upper mantle, contains elemental carbon at concentrations of between 

100 and 10,000 ppm. These reports have not been substantiated by more recent studies, 

however (Tsong and Knipping, 1986; Mathez et al., 1987; Tingle et al., 1988), indicating 

that surficial contamination may have been responsible. Carbonaceous films have been 

observed in olivines (from mantle nodules), however, which are obviously not the result of 

biological contamination (Tingle et al., 1990). Mathez (1987) reported similar findings for 

peridotite xenoliths, and suggested that the carbonaceous films possibly derived from 

Fischer-Tropsch synthetic reactions of volcanic gases on chemically active (fractured) 

surfaces during cooling of the xenoliths.t 

Tingle et al. (1991) considered whether organic -bearing carbonaceous films are unique to 

olivine crystals or whether any silicate mineral or glass surface might be suitable for the 

formation of such films; also, whether they are exclusive to volcanic rocks or might 

additionally be formed in plutonic environments, where the cooling is on a longer timescale 

and the source of the carbon is a supercritical fluid rather than a volcanic gas. Samples of 

gabbro, the intrusive equivalent of basalt, from the Stillwater (Montana. USA) and Bushveld 

(South Africa) layered intrusions, were analysed for this purpose. The presence of graphite, 

and evidence for the presence of carbon-bearing fluids during crystallisation at these 

localities, is documented (e.g. Mathez et ai., 1989). However, none of the samples analysed 

by Tingle et al. (1991) yielded organic components in excess of the procedural blank levels, 

which was surprising. 

The question of the isotopic composition of carbon in films on crack surfaces of olivine, and 

whether it might be related to the 13C-depleted carbon released below 600°C as reported for 

stepped heating experiments of basalts and mantle xenoliths (e.g. Mattey etal., 1989; 

Mattey, 1990) was also addressed by Tingle et al. (1991). Preliminary stepped combustion 

analysis using the procedures of Mattey etal. (1989), but without sample pre-cleaning, and 

also incorporating corrections for the system blank and 'adventitious' carbon contamination, 

indicated that carbonaceous films in San Carlos olivine corresponded to -4ppmC, with an 

associated ~13C value of approximately -32%0. An abiogenic origin was suggested, as 

advocated by Mathez (1987), although as the carbon isotopic composition of hydrocarbons in 

t Mathez and Delaney (1981) had indicated that ill-defined C, or carbonaceous matter, was ubiquitous in 

submarine basalt glasses and mantle-derived peridotite nodules from alkali basalts. 
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volcanic gases and hydrothermal fluids approaches -30%0 (e. g. Des Marais, 1981), 

deposition directly from volcanic gas of organic compounds having a crustal biogenic origin 

could not be excluded. 

In summary, the work of Tingle etal. (1991) showed that some (but not all) erupted 

materials may contain amorphous carbonaceous films on microcrack surfaces, associated 

with Si, alkali metals, halogens, nitrogen and transition metals (as characteristic of magmatic 

vapours and in accord with a catalytic, abiogenic origin for the carbonaceous films). 

Furthermore, the films may in some instances be associated with organic matter. An 

important finding was that the association of organic matter with carbonaceous films on crack 

surfaces appeared to be restricted to extrusive rocks. 

3.2.6 Carbon solubility and speciation in silicate melts 

As noted by Taylor (1986), many magmas are emplaced in close proximity to the 

hydrosphere and biosphere, thereby enhancing the probability of contamination from these 

sources. For this reason, recent studies on the concentration and speciation of magmatic 

volatiles have largely focused on investigations of volcanic glasses. With regard to the 

speciation of carbon dissolved in basaltic melts, infra-red absorption analysis has confirmed 

the presence of carbonate complexes in natural basaltic glasses (Fine and Stolper, 1985; 

Stolper and Holloway, 1988). There are few experimental data on the behaviour of CO2 in 

igneous systems at kilobar and lower pressures. However, because of the low (but finite) 

solubility of CO2 in granitic melts (Eggler and Kadik, 1979), CO2 is usually a major 

component of gases exsolving from magmas during ascent through the crust (Stolper and 

Holloway, 1988); CO2-bearing magmas are also implicated in granulite formation (Farquhar 

and Chacko, 1991). Mattey et al. (1989) estimated the solubility of carbon in tholeiitic melts 

from the data of Stolper and Holloway (1988) as 0.05 to O.lOwt% carbon. Experiments by 

Blank etal. (1993) showed that the solubility of CO2 (and water) in rhyolitic melts at 850°C, 

750 bars (i. e. conditions appropriate to degassing of silicic magma near the Earth' s surface) 

follows Henry's law. 

Carbon in tholeiitic melts is present in oxidised form, on the basis of measurements of the 

carbon isotopic fractionation factor between coexisting CO2 and 'dissolved' carbon species in 

natural basalt melts (Mattey et al., 1989; Mattey et al., 1990). Mattey et al. (1990) reported 

aC0
2
-melt to be less than 2.4%0, significantly lower than value of 4.4%0 as determined 

experimentally by Javoy et a1. (1978). As noted by Mattey et al. (1989), a fractionation factor 

of 4.4%0 is consistent with dissolved carbon being in reduced form, whereas theoretical 

considerations suggest that, for carbon present as carbonate ionic complexes in natural 

silicate melts, isotopic fractionation between dissolved cot and exsolved CO
2 

should be 

nearer 2%0 at magmatic temperatures. 
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3.2.7 The speciation of oxidised carbon in hydrothermal fluids. 

Under hydrothermal conditions below -600°C, the principal oxidised carbon species consist 

of CO2 (aq)' H2C03, HC03- and cot, as is the case for surface waters at ambient 

temperature. As noted by Ohmoto (1986), for most geologic fluids at temperatures greater 

than -100°C (and pH < -6) the activity of bicarbonate is negligible compared to that of CO
2 

(aq) 

+ H2C03. Furthermore, at 1 kbar, the equilibrium constant for: H
2
0 + CO

2
(aq) ~ HC03- + H+ 

is 10-7
.
20 at 300°C, 10-10

.
43 at 550°C (Stein and Walther, 1987); the values increase with 

increasing pressure. With increasing pH, HC03- becomes dominant up to pH -1 0, beyond 

which cot is the major species (see Faure, 1986). The corresponding activity coefficients 

are regulated by ionic strength effects, whilst the temperature determines the magnitudes of 

the respective eqUilibrium constants. 

By way of comparison, in present-day seawater (pH=8.1) bicarbonate predominates: the 

respective global molar quantities (x 1(18) of oceanic carbon as CO2 (aq) + H2C03, HC03- and 

cot are 0.019, 2.9 and 0.36 (Stumm and Morgan, 1981). Low-salinity geothermal fluids 

are typically near-neutral, or slightly alkaline, under which circumstances the concentration 

of HC03- is again significant (Heinrich, 1990). In contrast, electrolyte analysis of a primary 

granite-derived palreo-hydrothermal fluid from the St Austell district, S W England, by 

Bottrell and Yardley (1988) has confirmed that such fluids were highly acidic chloride brines. 

If such a composition typified the pegmatitic -pneumatolytic transitional fluids and also those 

associated with early hydrothermal mineralisation in S W England, the levels of HCO)- and 

cot species in those fluids would have been negligible. 

3.2.8 The occurrence and sources of methane in crustal fluids: stable isotope 
considerations 

Methane is an important component of many geochemical processes in the Earth's crust. For 

example, early stages of the diagenesis of recent sediments are affected by bacterial processes 

which act as sources and sinks for methane fluxes. The pyrolysis of organic matter at 

elevated temperatures deeper in the crust leads to methane formation (Galimov, 1988); high 

grade metamorphic rocks may contain methane-rich fluid inclusions (Kreulen and Schuiling, 

1982). In present-day geothermal systems, methane is a notable component in both 

continental (Lyon and Hulston, 1984; Des Marais et al., 1988) and oceanic environments 

(Welhan, 1988). Methane from other sources in the marine environment has al3c values 

ranging from -35 to -90%0 (Fisher et aL, 1990, and references therein). The characterisation 

of methanes by the combined use of al3c and aD isotope parameters was shown by Schoell 

(1980, 1983) to be of diagnostic value in identifying their origin. Figure 3.1 (after Schoell, 

1988) indicates the range of 13C and deuterium abundances in naturally-occurring methanes 

from a variety of environments. 
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313C and 3D characteristics of some naturally-occurring methanes, 

(Adapted from Schoell, 1988) 
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Fields BR and Bp represent the isotopic characteristics of bacterial methanes, formed by COl 
reduction and fermentation respectively, Methane of theCloogenic origin is denoted by the area 
bounded by bold outline; the shaded part therein depicts methane associated with oils. Other fields 
are as follows: 

1 Atmospheric methane (present day). Data from Wablen el aL (1987); 
2 East Pacific Rise methane (Welhan, 1981); 
3 Methane associated with Zambales ophiolite, Philippines (Abrajano el al., 1988); 
4 Geothermal methane (Wei han, 1988; Lyon and Hulston, 1984; Des Marais el al., 1981); 
5 Canadian Shield methane (Sherwood et al., 1988). 



In hydrothennal fluids, there are two principal alternative sources of methane: 

(i) Thennal breakdown (at temperatures >100°C) of complex hydrocarbons of presumed 

biogenic origin.t The associated BI3C ranges from about -60 to -20%0 (Schoell, 1988). 

(ii) Inorganic (abiogenic) synthesis at relatively high temperature (>300-400°C) through 

e. g. Fischer-Tropsch type mechanisms (Hulston and McCabe, 1962; Giggenbach, 1980): 

The discovery of methane in mid-ocean ridge hydrothennal systems, involving only basaltic 

rock and seawater, is undoubtedly abiogenic and is characterised by Bl3C values in the range 

-18 to -15%0 (Welhan, 1987a; 1988). Welhan (1987) suggested that the Bl3C data represent 

isotopic equilibration with mantle-derived CO
2 

(Bl3C -5 to -7%0) at 500-800°C within the 

basalt, with effectively no carbon isotope exchange occurring during cooling to <500°C. 

Methane of Bl3C -7.0±0.4%o has been recorded in serpentinised ultramafic rock of the 

Zambales ophiolite, Philippines (Abrajano et al., 1988; Abrajano et al., 1990); hydrolysis of 

the ultramafic rocks, with concomitant reduction of deep-seated CO2 , has been postulated to 

explain these results. 

Metcalfe et al. (1992) reported evidence for the presence of abiogenic methane in an ancient 

(Ordovician age) hydrothennal system in the British Isles, at Builth Wells, Wales. These 

authors argued that the methane, characterised by a B13C value of =-13%0, was possibly 

mantle-derived (consistent with the location of the fossil hydrothennal system on the 

Pontesford Lineament, a long-lived zone of crustal weakness which was a locus of strike

slip movement in Ordovician times). As fluid inclusion evidence suggests that the 

temperature of the hydrothennal vein system did not exceed 450°C, alternative explanations 

invoking inorganic synthesis through a Fischer-Tropsch type mechanism necessarily require 

that methane production occurred at some greater crustal depth than the host Builth Volcanic 

Group. 

Outgassing of primordial methane from the Earth's mantle has been suggested by Gold 

(1979) and Gold and Soter (1982). Although there is at present no unambiguous evidence for 

this, it has been suggested on the basis of theoretical models that methane is probably stable 

under primitive mantle conditions (Saxena, 1989). 

t Recent work (Mango et al., 1994) has indicated that catalysis by transition metals of reaction at -200°C 
between hydrogen and n-alkenes (formed during thermal decomposition of kerogen) is a more probable 
source of methane than is direct thennal decomposition of sedimentary organic matter. 
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There is little evidence to suggest that bacterially-produced methane (involving CO2 reduction 

or fennentation - see Schoell, 1988) is a significant component in hydrothennal systems. 

Methane derived from bacterially-mediated CO2 reduction is most common in older 

sediments and is characterised by o13C<-6O%o (Schoell, 1980; 1988). 

3.2.9 CO2-CH4 carbon isotope exchange equilibria in hydrothennal systems: an 

unresolved problem 

Craig (1953) first advanced the possibility that equilibrium isotopic exchange of carbon 

between coexisting CO2 and CH4 molecules in geothennal fluids might fonn the basis of a 

geothennometer: 

lZCO + 13CH <=> l3CO + lZCH 
2 4 2 4 

where the eqUilibrium constant K(T) = a(T)co -CH = [(13C/ 12C)CO ]/[(llC/1ZC)CH] 
2 4 2 4 

a is the equilibrium fractionation factor, and is related to the respective delta values through: 

(see Section 1.3) 

Nearly four decades later, and with refinement of the equilibrium fractionation factors 

(Bottinga, 1969; Richet etal., 1977), the issue is still a matter of some controversy. Carbon 

isotope exchange between CO2 and CH
4 

at high temperatures was investigated experimentally 

by Sackett and Chung (1979), who found no evidence for this exchange under any of the 

following conditions: (i) dry gases at 500°C for up to 136 hours; (ii) in the presence of 

water-bearing montmorillonite at 200°C for up to 32 days and also at 500°C over an 

equilibration period of up to 10.5 days; (iii) the pyrolysis of natural lignite at 500°C for up to 

180 hours. Harting and Maass (1980) provided the first reported experimental evidence for 

carbon exchange between CO2 and CH., using equilibration temperatures from 500 to 680°C 

over a period of 16 hours: rates of exchange were found to be very slow, corresponding to a 

reaction half-time of 2.86 years at 610°C (Giggenbach, 1982). As noted by Hu1ston (1986), 

extrapolation of these data indicates that at 400°C tens of thousands of years would be 

required for isotopic equilibrium to be attained, although such conditions may be satisfied in 

the case of a cooling magma body beneath a geothennal system. For lower temperature 

geothennal fluids «300°C), Giggenbach (1982) suggested that carbon isotope exchange 

between CO2 and CH. was unlikely to ever reach equilibrium. 

Lyon and Hu1ston (1984), in an attempt to measure the rate of carbon isotope exchange 

between CO2 and CH., reported that no change in the isotopic composition of either 

component was detectable after a period of210 days at temperatures up to 350°C, when both 

components were contained in the presence of H2 and liquid water in a stainless steel vessel. 

The same authors also found that Fischer-Tropsch synthesis of methane from CO
2 

and Hz at 
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400°C (in the presence of a platinised asbestos catalyst) gave a ~ 13(:C0
2
_CH" value of -35.9%0 

in 40 days, equivalent to an equilibrium temperature of only 180°C on the basis of 

fractionation factors calculated from the data of Riehet e tal. (1977). Furthermore, no 

significant change was detected during a further 150 days. 

Sheppard (1981) compiled carbon isotope data from several published studies of geothermal 

systems and showed that in all cases, the temperature derived on the basis of carbon isotopic 

equilibration between CO2 and CH4 was higher (by between -40 and 350°C) than the actual 

value measured in the well or at the surface of the spring or fumarole. These differences had 

in earlier studies been interpreted either as (i) equilibrium isotopic exchange, but with the 

isotope geothermometer recording a temperature appropriate to a deeper part of the system 

than where the measurements were taken; alternatively (ii) isotopic disequilibrium conditions. 

Sheppard (1981) noticed, however, that about two thirds of the compiled data points 

recorded an apparent isotopic exchange temperature of 320±20°C and on this basis proposed 

that isotopic exchange below about 320°C was inhibited ('blocked') by kinetic 

considerations. As acknowledged by Sheppard (1981), this hypothesis is not supported by 

the experimental fmdings of Sackett and Chung (1979), although such experiments may well 

be inappropriate to the modelling of geothermal conditions on a geological timescale. 

With regard to chemical equilibration between CO
2 

and CH4, which has been reported as 

proceeding some two orders of magnitude faster than isotopic equilibration (Giggenbach, 

1982), it has been suggested (Giggenbach, 1980; Arnorsson and Gunnlaugsson, 1985) that 

in continental hydrothermal systems, CO
2 

abundance is controlled (buffered) primarily by 

mineIal-fluid reactions, of the type: 

Ca -AI-silicate [0] + AI-silicate + 

As noted by Hulston (1986), loss of CO
2 

from the system through calcite deposition should 

not significantly affect calculated CO2-CH4 isotopic equilibration temperatures, as carbon 

isotopic fractionation between CO
2 

and calcite is small (2-3%0) for temperatures in the range 

300-700°C. The same author suggested that isotopic exchange with CO2 at depth over a 

timescale of> 1Q3a satisfactorily explained the presence of l3C -enriched methane in the 

Mokai geothermal area of New Zealand (313C -13.9%0), without the need to invoke an 

abiogenic origin for the methane. 

In contrast, Marty et al. (1991) found during their investigation of a geothermal reservoir in 

the south-west rift zone of Iceland that CO2 partial pressures were not controlled by fluid

mineral eqUilibria. The CO2 in this example appeared to derive from mixing between a mantle 

source and atmosphere; it was suggested that the flux of mantle-derived CO
2 

was too large to 

be controlled by mineral phases. 
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3.2.10 Carbonaceous volatiles in palreo-hydrothermal fluids associated with the 
Cornubian batholith, S W England 

The presence of CO
2 

in the Cornubian palreo-hydrothennal system has only been reported at 

a limited number of localities, all of which are associated with the transitional stage from 

metasomatism to vein hydrothermalism, characterised by association with wolframite (Beer 

and Ball, 1987). With a single exception, involving a sample from Old Gunnislake mine 

included in the present study (Bannon, 1989; also reported in Turner and Bannon, 1992), no 

evidence for a discrete (liquid) CO2 phase at ambient temperature was found during any 

published optical microthermometric studies (see Chapter 4) undertaken of quartz associated 

with hydrothermal mineralisation in the regiont. The presence of CO2 in the aqueous phase 

was detected, however, through CO2-hydrate (clathrate) formation at sub-ambient 

temperatures by Bull (1982), Shepherd et al. (1985), Scrivener et al. (1986) and Bannon 

(1989) in a limited number of cases. The presence of methane as a trace constituent of the 

hydrothermal fluids, associated with enhanced CO
2 

levels, was indicated by preliminary 

mass spectrometric analyses of extracted fluids by the present author (Shepherd et al., 1985). 

3.3 Research objectives 

The primary objective of the present work was to examine the occurrence, speciation and 

stable isotopic characteristics of carbon in ancient (late Palreozoic) hydrothermal fluids 

associated with syn/post-magmatic events in S W England. Such information may be 

applied to constrain models relating to the origin of these components in terms of crustal 

carbon reservoirs and in assessing the source of fluids which contributed to the evolution of 

the Cornubian batholith, from the initial pegmatitic and pneumatolytic stages through to the 

early hydrothermal mineralisation characterised by WiSn oxide assemblages. 

For comparative purposes, a small number of selected samples from the Yanshanian granites 

of southern China (age 185-67Ma) were also included, as transitional phenomena in the 

evolution of the granites of S China and S W England are similar in many aspects (Lin, 

1989). Also for comparison were included examples of vein quartz associated with 

wolframite from the Carrock Fell deposit (age -395Ma), located on the boundary of the 

Skiddaw granite in the northern region of the English Lake District. The Can-ock Fell veins 

occur, as do many examples of wolframite mineralisation in S W England, across the 

granite-country rock contact. The country rock comprises shales and volcanics of Ordovician 

t It should be noted that a significant amount of CO2 can be present without the appearance of a separate 
liquid phase. For such a phase to form in an aqueous inclusion at room temperature, the associated vapour 
bubble must contain CO2 at a pressure in excess of the critical pressure, i.e. -70 atm. (Roedder, 1984, 
p.356). The aqueous phase will also be CO2-saturated. 
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(500-435 Ma) age. Levels of carbon dioxide, nitrogen and methane in the aqueous 

palreofluids at Carrock Fell are comparable to those associated with W±Sn oxide 

mineralisation in S W England (Shepherd and Miller, 1988). 

The critical re -appraisal of experimental procedures used for the extraction and detennination 

of carbon stable isotope ratios in both carbon dioxide and (coexisting) methane from fluid 

inclusions, where one or both of these components is present at trace levels, was an essential 

preliminary requirement, in the light of controversies regarding the extent of contamination 

by 'adventitious' carbon during the stepped heating release of carbon for stable isotope ratio 

measurement. 

In view of the low absolute abundance of carbon species in even the relatively CO
2
-enriched 

(wolframite-associated) early-stage mineralising fluids of the ancient Cornubian 

hydrothennal system, a further objective was to investigate the application to fluid inclusion 

13C/llC analysis of high-sensitivity, static vacuum mass spectrometry, developed for the 

measurement of carbon stable isotope ratios at the nanomole level (Carr etal., 1986). The 

aims of this aspect of the work were twofold: firstly, a reduction in sample size conferred the 

advantages of reduced sample preparation time whilst allowing better lithological control of 

sample purity. Secondly, the high sensitivity permitted the investigation to be extended to 

determinations of the isotopic composition of carbon species present at very low levels in 

palreofluids, thereby obtaining infonnation inaccessible by other means. Thus, the question 

could be addressed as to whether carbon (in whatever form) is a ubiquitous primary 

constituent of the initial magmatic-hydrothennal fluids, with local abundance possibly 

reflecting the degree of'S' -type character of the associated granite pluton. 

3.4 Experimental 

3.4.1 The extraction of palreofluid inclusions for carbon stable isotope ratio analysis 

The literature referring to the direct analysis of fluid inclusion components for carbon isotopic 

composition is not extensive, largely because of the analytical problems associated with the 

extraction and measurement of the small volumes of fluid involved. In recent years, progress 

has been made with the application of Raman spectroscopy, using a laser radiation source, to 

in situ non-destructive analysis of individual inclusions for carbon stable isotopic 

composition: Rosasco and Roedder (1979) reported measurements on CO
2 

to a precision of 

±20%o, whereas more recent investigations have improved this figure to =±7%o (J Dubessy, 

unpublished data) using optimum examples. Such measurements are far from being 

commonplace, however, besides being of insufficient preciSion for most investigations, and 

require the presence of a discrete non -aqueous gas phase in the inclusion. 
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More conventionally, the direct measurement of carbon stable isotope ratios of fluid inclusion 

components is performed by gas-source mass spectrometry on CO2 (and/ or CH
4

, oxidised 

to CO2) extracted from the host mineral by the mass opening of individual inclusions in 

vacuo. The type of bulk extraction techniques currently employed preclude, to a large degree, 

any discrimination between different inclusion types and/or generations. Furthermore, 

limitations imposed by the instrumentation sensitivity during isotope ratio analysis ultimately 

dictate the minimum quantity of gas required, which may critically influence the degree of 

lithological control of sample material in some applications. Procedures for releasing the fluid 

trapped in inclusions for stable isotope analysis are essentially based either on crushing or 

thermal decrepitation techniques. 

3.4.1.1 Fluid extraction by crushing in vacuo 

Mechanical crushing of the host mineral grains offers the advantage that gas release from 

sources other than the fluid inclusions will be minimised, at the expense of a low yield. 

Methods that have been reported include mechanical crushing of a stainless steel pipe attached 

to the vacuum line (Kreulen, 1980); ball milling, using an alumina ball (Kazahaya and 

Matsuo, 1985), and a low-volume stainless steel screw press (Mattey et at., 1989). The 

relatively low yield obtained, together with the requirement to prepare sufficient gas for 

isotope ratio analysis by conventional mass spectrometry, necessitates the use of greater 

quantities of mineral or whole-rock sample than does thermal extraction. Also, extended 

crushing/ grinding creates a large increase in surface area, which may cause significant gas 

adsorption (Wahler, 1956; Piperov and Penchev, 1973). Barker and Torkelson (1975) 

reported that CO2 is particularly prone to adsorption onto powdered quartz produced during 

this process. Kazahaya and Matsuo (1985), however, found that CO2 was readily desorbed 

from fine-grained quartz at 200-280°C and, furthermore, detected no carbon isotopic 

fractionation for the overall extraction process. 

3.4.1.2. Fluid extraction by thermal decrepitation in vacuo 

The principle of the method is to increase the internal pressure of the trapped fluid by heating 

of the sample. If the difference between the internal and external pressures exceeds the 

mechanical strength of the mineral, deformation or fracture propagation will ensue, to allow 

fluid expansion and consequently relieve the pressure difference. If fracturing occurs, the 

process is referred to as decrepitation. 

The internal pressure required to cause decrepitation is strongly dependent on inclusion 

volume (Leroy, 1979; Bodnar et a/., 1989); larger inclusions decrepitate at lower internal 

pressures than smaller inclusions. Experiments by Bodnar et al. (1989), using synthetic 
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inclusions of pure water in quartz, established the following empirical relation between the 

inclusion volume and the internal pressure required to cause decrepitation: 

internal pressure (kbar) = 3.89y-O.14I 

where Y is the inclusion volume in ~m3. As well as inclusion size, the density and chemical 

composition of the inclusion fluids critically influence the temperature at which decrepitation 

occurs, as the internal pressure generated is a function of these (see e. g. Roedder, 1984). 

The phase transition of quartz from a. to Ii polymorph occurs at 573°C (1 atm.) and is 

pressure dependent, increasing by -25°C/kbar (Koster van Groos and Ter Heege, 1973); 

this transition is often accompanied by fluid release (see Bodnar et al., 1989). 

Reported disadvantages of the thennal decrepitation method of fluid inclusion release are 

related to the potential occurrence of chemical reactions at the elevated temperatures required. 

For example, it has been postulated that reactions between the released gas phase components 

at high temperature may alter the composition from that occurring in situ. The complementary 

problem of post-entrapment chemical re-equilibration of fluid composition during the long 

cooling history of geological samples is considered in Chapter 1. On the basis of empirical 

studies by Sackett and Chung (1979) and Harting and Maass (1980), as discussed above, 

carbon isotope exchange between CO
2 

and CH4 should not be detectable up to at least 680°C 

(and probably not detectable at much higher temperatures also) during thennal extraction of 

fluid inclusion components on the timescale of a typical stepped heating experiment. 

Gas release from sources other than the fluid inclusions is probably the major potential 

problem with the thennal decrepitation method. Examples include the thennal breakdown of 

carbonates, pyrolysis/combustion of organic contamination and oxidation of graphite. Quartz 

was used almost exclusively throughout this study, after careful preparation to minimise 

attendant contamination. 

3.4.2 Palreofluid BI3C measurements: previous studies 

Previous studies involving the extraction, for stable isotope analysis, of fluid inclusion 

carbon components from hydrothermal vein quartz associated with W±Sn oxide 

mineralisation include: Landis and Rye (1974), Kelly and Rye (1979), Bussink et aL (1984) 

and Kazahaya and Matsuo (1985). Few details of the respective experimental procedures 

were published. Only Kazahaya and Matsuo (1985), who extracted the fluid volatiles by ball 

milling, reported carbon stable isotope analyses of coexisting CH4 and CO
2

; further details 

are given by Kazahaya (1986). Kazahaya and Matsuo (1985), using vein quartz from the 

Takatori wolframite deposit, Japan, obtained identical Bl3C results (-7.7%0) for fluid 

inclusion CO
2 

extracted from quartz either by thennal decrepitation (-300-600°C) or by 

alumina ball-milling, if the sample was pre-heated in the ball mill to 280°C. 
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Table 3.1 

Preliminary results obtained for carbon stable isotope ratio analysis of CO2 extracted from fluid 

inclusions in vein quartz, Carrock Fell and Hemerdon, by single -step thermal decrepitation in vacuo 
after initial outgassing at 100°C. 2 g of sample (grain size 0.5 -1 mm) used in every case. 

Sample S13CpDB%o 

CF-76-25 -13.2* 

CF-76-7 -11.1 

CF-77-39B -11.5 

CF-77-77A -12.0 

CF-77-79B -12.0 

CF-77-98 -11.4 

HEM-80-1 -9.8 

HEM-80-39 -9.0 

Note: • mean of four replicate analyses; 1<1= 0.22%0 



3.4.3 Preliminary ~)13Cco results from fluid inclusions (this study) 
2 

Initial experiments were conducted by the present author using wolframite-associated vein 

quartz samples from Carrock Fell, N W England. Mineralogically, the veins are similar to 

those at Panasqueira, Portugal, for which fluid inclusion carbon isotope data have been 

reported by Kelly and Rye (1979) and Bussink et al. (1984). Sample preparation was 

minimal and is described in Section 2.4.1. Thermal decrepitation in vacuo was used to 

release the inclusion fluids from 2g of quartz grains, after outgassing at 100°C. The CO
2 

fraction was isolated by cryogenic separation (after Sakai et al., 1976). Isotopic 

measurements were performed using a VG®903 mass spectrometer. For comparison, two 

samples from Hemerdon, S W England, were analysed. The results are given in Table 3.1. 

3.4.4 Carbon stable isotope ratio analysis of small samples 

3.4.4.1 Contamination removal: the application of stepped heating 

The principle of stepped combustion for resolving indigenous carbon from contamination, 

either • organic' or weathering products, was proposed by Swart et al. (1983) for carbon 

isotopic analysis of extraterrestrial samples. Similar experimental procedures had been used 

earlier by DesMarais (1978), Frick and Pepin (198la,b) and Becker and Epstein (1981), 

although the applications differ in detail. Essentially, the method of Swart et al. (1983) 

involved multi-step combustion, with heating increments generally of 100°C and for 30 

minutes duration, in an attempt to distinguish between airborne and surficial organic 

contaminants, on the one hand, and indigenous carbon on the other hand; also to resolve 

different carbon -bearing phases present in the sample, on the basis of their respective 

combustion temperatures. 

For the most part, organic contamination bums at relatively low temperature «42S ± 25°C; 

Swart eta!., 1983). Studies on oil shale and kerogen by Gilmour and Pillinger (1985) 

indicated that organic carbon generally bums at 200-400°C in these components, the 

combustion temperature being a function of the H/C ratio (Gilmour, 1986) as illustrated in 

Figure 3.2. Biological contaminants, such as spores, dust and fibres, combust over the 

temperature range similar to that of kerogen (Des Marais, 1983). At higher temperatures 

(400-700°C), combustion of amorphous carbon occurs (Grady, 1982), as does the thermal 

decomposition of carbonates. Milodowski and Morgan (1980) investigated the latter and 

found a temperature range from 300 to > 800°C, depending on chemical composition. Figure 

3.3 illustrates the characteristics during stepped combustion of various carbon -containing 

species pertinent to the present investigation. 
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Figure 3.2 

The variation of combustion temperature (defined as that at which maximum CO
2 

release is 
obtained during stepped heating in excess of pure oxygen. using increments of typically 25-35°C) 

as a function of atomic HIC ratio of the indigenous kerogen component. for a variety of 
sedimentary rocks. 

(Mter Gilmour, 1986; Wright and Pillinger, 1989) 

2.0 

1.8 

1.6 

~ 
~ 
~ 

1.4 

5 ° bI) 1.2 °0 e 
~ 
'0 1.0 0 
.~ ... 
Co) 

'13 
~ 

0.8 

U - 0.6 ::z:: 

0.4 

0.2 

200 300 400 500 600 700 600 

Temperature (0C) of maximum combustion yield 

Key 

• Green River shale o Bakken shale 

o Deep-sea sediments • Archean sediments 

Notes: Green River shale is referred to in the text 
Bakken shale is an organic-rich component of the Bakken Formation 
(Mississippian-Devonian age), found in the Williston Basin of North 
Dakota and Montana, USA. 
See e.g. Tissot and Welte (1984) and references therein. 



Figure 3.3 

Typical yield prOfiles of CO2 obtaining by stepped heating (lOOoC 
increments) of kerogen, amorphous carbon, calcite and graphite in 
excess of pure oxygen. 

(After Wright and Pillinger, 1989) 
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The issue of whether progressive combustion of an isotopically homogeneous sample is 

accompanied by isotopic fractionation of the carbon was addressed by Swart et al. (1982) in 

the case of graphite and carbonate samples; no evidence for such fractionation was found. 

Terrestrial kerogen, however, does show a reproducible shift in 5 13C value; this is not 

attributed to kinetic isotope effects during combustion, but is either the result of lZC_ 

enrichment of side-chain components and aliphatic entities, which combust at lower 

temperature or, alternatively, the resolution of marine and non-marine components of 

differing carbon isotopic composition (Wright and Pillinger, 1989). 

In the case of incremental heating in the absence of oxygen (referred to as 'pyrolysis' in 

much of the literature) to release fluid inclusion components, it might be anticipated that 

diffusion effects would be problematic, giving rise to attendant isotopic fractionation. Mattey 

et al. (1984) and Exley et al. (1986) used this technique to release gas trapped in vesicles 

during investigations of MORB glasses; no such ~ffect was observed. 

3.4.4.2 Static vacuum mass spectrometry: application to carbon stable isotope ratio 
analysis 

Comprehensive reviews of developments to improve the sensitivity of stable isotope ratio 

measurements since the late 1940s have been published by Pillinger (1984, 1992), with 

particular reference to the analysis of extraterrestrial samples. Until relatively recently, 

virtually all measurements of light element stable isotope ratios were undertaken using gas 

source mass spectrometers that were essentially based on the dynamic (continuously 

pumped) instrument originally described by Nier (1940, 1947), as improved by Murphey 

(1947) and McKinney et al. (1950). In these systems, the sample and reference gases, 

admitted via their respective capillaries to maintain viscous flow and hence minimise 

fractionation effects, are continuously pumped through the mass spectrometer. A changeover 

valve (Murphey, 1947) is used to switch either sample or reference gas to the ion source 

whilst the other gas is pumped to waste. The inherent inefficiency of this process results in 

only a very small proportion of the sample gas being ionised for subsequent isotopic 

analysis. In investigations where sample availability is not a major limitation, high precision 

isotopic analysis is possible with this arrangement (1a error typically ±0.005%o for 

>-ll1mOI COz). Methods have been devised to improve the sensitivity of this arrangement 

(as reviewed by Wright and Pillinger, 1989), but these have not been widely used and are not 

considered further here. A significant recent advance, however, is the development of 

continuous-flow isotope-ratio monitoring mass spectrometry, as first proposed by Matthews 

and Hayes (1978). In this system, optimised for compatibility with gas chromatographic 

separation and on-line combustion of organic compounds, COz entrained in a helium carrier 

gas stream is introduced directly into the mass spectrometer. Nanomole samples of CO
2 

may 

be analysed rapidly, to a precision of±O.I%o according to Douthitt (1990). 
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Figure 3.4 

Schematic diagram illustrating the difference in principle between static vacuum and 
dynamically pumped mass spectrometer configurations, as used for carbon stable isotope 

ratio analysis. 
(Adapted from Wright and Pillingl2'. 1989) 
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A radically different approach to stable isotope analysis was investigated in the 1970s, 

whereby the capillary inlet is dispensed with and the sample gas of interest admitted to the 

mass spectrometer after isolation of the latter from its associated pumping system, in the 

manner of noble gas isotopic analysis (Aldrich and Nier, 1948; Reynolds, 1956). Figure 3.4 

illustrates the difference in operating principle between dynamic and 'static vacuum' mass 

spectrometers. The first successful application of static vacuum mass spectrometry to 'active' 

gases (which undergo thermal degradation and dissociation induced by electron impact) was 

for carbon, using methane and its fully-deuterated analogue, CD
4 

(Gardiner etal., 1978; 

Gardiner and Pillinger, 1979; Wright etal., 1983). These species were found to be very 

stable, the half-life of CD4 being -10.5 hours in the mass spectrometer of Gardiner et al. 

(1978). Difficulties associated with converting sample carbon to CD4, however, together 

with control of blank contributions and memory effects (McNaughton et al., 1983; Carr, 

1985) limited the usefulness of this approach. 

In contrast to CD 4' carbon dioxide degrades rapidly in the ion source of a static vacuum mass 

spectrometer (Irako et al., 1975; Gardiner and Pillinger, 1979), through dissociation on the 

hot ionising filament. Fallick et al. (1980), however, showed that there is no appreciable 

isotope fractionation effect associated with the degradation (similarly for methane and carbon 

monoxide). In view of the well-established and relatively uncomplicated procedures for 

preparing CO2 from carbon sources (e.g. Sakai etal., 1976; Swart etal., 1983), a static 

vacuum mass spectrometer for the isotopic analysis of CO2 was developed by Carr (1985); 

experimental details are also given by Carr et al. (1986). The resulting instrument ultimately 

attained a precision (1a) of about ±1 %0 on 1 x 10-9 moles of CO2, Under normal operation, 

the half-life of CO2 in this instrument was approximately 28s (Ash, 1990), necessitating 

rapid data acquisition. 

For carbon stable isotope ratio measurements, the sensitivity gain obtained by the instrument 

of Carr et al. (1986) over conventional systems was a factor of about xl 000, for an attendant 

loss of precision of about x 100. As dynamic vacuum mass spectrometers for stable isotope 

analysis generally operate to levels of analytical precision that greatly exceed the 

reproducibility of the extraction and purification methods used to prepare the sample gas, 

however, the sacrifice of this degree of analytical precision is not particularly critical for 

many applications in the geosciences. 

The mass spectrometer described by Carr et al. (1986) was used, essentially unchanged, 

during the present investigation. Associated sample extraction and preparation methods, 

however, were substantially revised during the period of the present study, both as 

documented by Ash et al. (1990), and also by the present author with specific application to 

the analysis of traces of CO2 and CH4 trapped in quartz-hosted fluid inclusions. Details are 

given below. 
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Although originally conceived for the analysis of carbon stable isotopes in extraterrestrial 

samples, including meteorites (Carr et al., 1983; Carr et al., 1985; Grady et al., 1985; Lewis 

et al., 1983 a,b), and interplanetary dust particles (Wright et al., 1988), a small number of 

terrestrial applications had also been investigated by the static vacuum mass spectrometer 

described by Carr et al. (1986) prior to the present work. These focused mainly on carbon 

sources in basaltic glasses and mantle xenoliths (Mattey et al., 1984; Exley et al., 1986). 

3.4.4.3 Sample preparation for the measurement of carbon stable isotope ratios at the 
nanomole level by static vacuum mass spectrometry 

3.4.4.3.1 The protocol of Carr et al. (1986) 

Based on the stepped combustion technique of Swart et al. (1983), the extraction system 

developed by Carr et al. (1986) for the combustion/pyrolysis of the carbon -bearing sample, 

with subsequent purification, yield measurement, and transfer to the mass spectrometer of the 

resulting carbon dioxide, is illustrated schematically in Figures 3.5 and 3.6. Full details of 

the construction and operating protocol are described by Carr et al. (1986). 

For stepped combustion, the oxygen supply was derived from heating CuO to 850°C. An 

important feature of the protocol was that the oxygen was then adsorbed onto a sA molecular 

sieve (M) at -196°C, after which the CuO was isolated (valved om from the rest of the 

system. This served two purposes: firstly, the reduction of carbon blank levels, as any 

carbon dioxide present would be retained by the molecular sieve during the subsequent 

desOlption of oxygen, at temperatures from about -SO°C (Carr et al., 1986) to OOC (Ash et al., 

1990). Secondly, a large reservoir of oxygen could be generated by adsorbing gas onto the 

molecular sieve over a period of IS-20 minutes, with the CuO maintained at 8S0°C. An 

aliquot of oxygen for the combustion step was then obtained by warming the molecular sieve 

sufficiently to produce a pressure of - 500mbar of gas, as estimated by Pirani gauge (Pi). 

A coil of platinum wire, maintained at 1050°C, formed an integral part (PF) of the 

combustion section. This was incorporated as a catalyst to promote the oxidation of low 

molecular weight hydrocarbons (particularly methane). The decomposition of nitrogen 

oxides, should these species be formed during the combustion process, is not effected by 

platinum at temperatures below -1150°C (I P Wright, pers. comm.). 

After a 30 minute combustion or pyrolysis step, gases in the extraction chamber were 

admitted to the purification section of the line, where CO2 and various other components 

were condensed on the cold finger (CF#I) at liquid nitrogen temperature. In the case of a 

combustion step, excess oxygen was then re-adsorbed onto the molecular sieve at -196°C, 

for use in subsequent combustion steps. The extraction section was then isolated and any 

pon-condensed gases present in the purification section pumped out. 
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Figure 3.5 

Schematic diagram of the extraction line used for stepped combustion/pyrolysis in conjunction with carbon stable isotope ratio analysis by 

static vacuum mass spectrometry, as described by Carr et aL, 1986. 
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Figure 3.6 

The variable volume aliquotter as described by Carr et al. (1986). illustrating also 
the construction of J Young® type 'PSU' valves (McNaughton et al .• 1983). 

(After Carr et al .• 1986) 
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Figure 3.7 

Typical yield and isotopic composition of carbon blank released during a stepped 
combustion (lOO°C increments) using the gas preparation protocol of Carr et al., 1986. 

(Adapted from Carr et 01., 1986; Yates et al., 1992) 
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Cryogenic separation (fractional distillation) was used to isolate the CO
2 

sample gas from 

contaminants such as water and S02' This was achieved by transferring all the condensed 

gases from CF#1 into the variable temperature cryogenic trap VTC at -196°C, then raising the 

temperature of VTC to between -145 and -140°C. 

The released CO2 was then condensed in cold finger CF#2 at liquid nitrogen temperature, for 

subsequent yield measurement by calibrated capacitance manometer (CM). Isotopic analysis 

was then undertaken by admitting the gas directly into the mass spectrometer, via the inlet 

valve (I), after reducing the pressure where necessary by expanding the gas into an 

appropriate volume (El, E
2
). 

The yield and isotopic composition of the carbon blank released during a procedural stepped 

combustion using this system is shown in Figure 3.7. In this figure, the format of which is 

used extensively throughout the present Chapter, the yield of carbon obtained for each 

temperature step, normalised as a percentage of the total per °C, is indicated by the histogram, 

the scale of which is given in the left-hand ordinate axis. The isotopic value of the carbon 

released at each step is shown by the accompanying data points, complete with error bars 

(±1<J), which refer to the right-hand ordinate axis (ol3C value, per mil with respect to PDB). 

In Figure 3.7, the ol3C values are typical of terrestrial organic matter. 

3.4.4.3.2 The protocol of Ash et al. (1990) 

The eventual discovery that the extraction and preparation system of Swart et al. (1983) as 

modified by Carr et al. (1986) did not give quantitative carbon yields was suggested by the 

findings of Tang, Lewis et al. (1988) and subsequently confirmed by experiments involving 

the combustion of diamonds (Ash, 1990), where a mean CO2 yield of only 51.3% occurred. 

No isotopic fractionation was apparent, however, despite the low yields (Ash, 1990; Wright 

and Pillinger, 1989). Potential contributory causes of the low yield problem were identified 

by Ash (1990) as: (i) Loss of sample during initial evacuation from atmospheric pressure, 

particularly in the case of fine- grained samples; (ii) Oxygen deficiency during the combustion 

of large, carbon -rich samples; (iii) Trapping of CO2 by the molecular sieve, at the beginning 

or end of the combustion step. 

To overcome the shortcomings of the combustion procedure of Carr et al. (1986), 

modifications to the design and operating protocol were implemented by Ash (1990), as also 

detailed by Ash et al. (1990). The combustion section of the extraction line was modified to 

the configuration as shown in Figure 3.8, which is similar to that described by Boyd et al. 

(1988) for the preparation of nitrogen at the nanomole level. Oxygen for combustion steps 

was now supplied directly by a CuD furnace located within the volume of the combustion 

vessel. 
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Figure 3.8 

The sample extraction and combustion section described by Ash et al. (1990), 
substituting for that of Carr et al. (1986) in the gas preparation system used in 
conjunction with carbon stable isotope mtio analysis at the nanomole level. 
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Stability fields of copper and copper oxides as a function of temperature and 
oxygen partial pressure. 
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Deficiency of oxygen should not occur, as the partial pressure of this gas is maintained 

constant throughout the combustion process (if the CuO is maintained at constant 

temperature) , via the equilibria: 

2CuO <=> Cup + 0.502 <=> 

For coexisting CuO and Cup at 850°C, the corresponding equilibrium partial pressure of 

oxygen is -tOmbar, as shown in Figure 3.9. The CuO was sheathed in Pt foil to permit the 

furnace temperature to be raised to -950°C without reaction occurring between CuO and the 

surrounding silica glass tubing. The molecular sieve was thus dispensed with, as was the 

requirement for a separate Pt finger maintained at 1050°C. The initially high carbon blank 

(-20ng per 30 minute combustion step) associated with the use of an on-line CuO furnace 

was overcome by successive recycling of the CuO through the temperature programme 

950- 600-450°C, with the removal of CO
2 

at the end of each cycle by pumping. 

A seldom -discussed advantage of using CuO as an oxygen source within the volume of the 

combustion vessel is that the total pressure during the post-combustion cryogenic separation 

stage is substantially reduced compared to the procedure advocated by Carr et al. (1986). In 

tum, this promotes the efficiency of cryogenic separation of carbon dioxide from the excess 

oxygen component. Using the protocol of Carr et al. (1986), any carbon dioxide not 

condensed during this process would be subsequently trapped by the molecular sieve during 

the oxygen re-adsorption stage and thus be excluded from the total CO2 yield measurement. 

Samples were introduced into an air-lock, which was subsequently evacuated to a pressure 

of <5 x I 0-6mbar before transferring the sample, by aid of a magnetic slug, into the 

combustion vessel. This avoided exposing both the combustion vessel and CuO to 

atmosphere during sample loading, with consequent advantages for minimising carbon blank 

levels. Samples were contained in a closed, pre-combusted Pt foil envelope (251J.m 

thickness), to minimise the risk of loss during initial evacuation. Carbon blanks associated 

with this technique were only 10-20ng for a complete sample analysis; these could be 

reduced even further by using Pt foil of only -51J.m thickness and by treatment with 

dichloromethane (Yates et al., 1989). 

Using the revised sample combustion procedures, a mean yield value slightly in excess of 

100% was obtained for the combustion of diamond powders (Ash, 1990), although the gas 

purification procedures remained unchanged. Sample run numbers T428 onwards refer to the 

use of the modified sample extraction protocol. 
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3.4.5 Dynamic vacuum mass spectrometry and associated sample preparation lines 
used in the present study 

Two parallel investigations were initiated at the beginning of the present work. One involved 

the use of high sensitivity static vacuum mass spectrometry, to assess the application of this 

technique to the carbon stable isotope analysis of hydrothennal fluid inclusion components, 

where carbon may be present as coexisting CO2 and CH4 and at abundances of only a few 

ppm with respect to the host mineral. The second line of study was concerned with 

optimising the experimental protocol for fluid inclusion carbon stable isotope analysis by 

conventional mass spectrometry, including provision for the analysis of carbon dioxide and 

methane from the same sample. 

During the course of this second line of investigation, a parallel study by Jackson (Jackson 

etal. 1988a,b; Jackson, 1990) was in progress to optimise the stepped heating method for 

releasing carbon dioxide from fluid inclusions, for subsequent isotopic analysis by 

conventional mass spectrometry. The rock types used in that study, devised to address 

questions associated with charnockite fonnation in southern India, were of amphibolite and 

granulite facies. Although the same extraction line and coupled mass spectrometer (a 

VO®SIRA24) were used as in the present author's work, the experimental procedures 

differed in detail, as discussed below. 

The VO®SIRA24 used in the protocol development work, and for many of the subsequent 

analytical measurements, is designed to give high precision measurements (ultimately to 

±0.OO5%0, at the 10' error level) for a major beam current of 5 x 10-9 A. As with all mass 

spectrometers, analytical precision (and accuracy) deteriorates as the amount of gas available 

for measurement decreases below the optimum value. For samples >-3~gC equivalent, the 

10' precision is better than ±O.O! %0; the accuracy, however, deteriorates to about ±0.5%0 for 

a realistic minimum sample size of 0.5 f,1gC. Jackson (1990) found that samples as small as 

0.2~gC could be analysed to an accuracy within ± 1 %0, although at these low operating 

pressures the measured 013C values were invariably less than the true values. 

The gas extraction line used in conjunction with the SIRA 24 was based in principle on the 

system described by Swart et al. (1983), although different in detail; a schematic 

representation is shown in Figure 3.10. In a small number of cases, crushing was used to 

release the trapped inclusion volatiles, using a modified Nupro®SS6 stainless steel bellows 

valve (as described by Mattey et al., 1989) sealed with a Cu gasket. Otherwise, sample 

loading was achieved after the removal of valve VI stem; quartz grains were then admitted 

directly through a cleaned silica glass guide tube. No sample bucket was used (cf. Carr et ai., 

1986). As with the extraction system of Carr et aL (1986), the reaction vessel (silica tube) 

was exposed to atmosphere each time a sample was loaded. 
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Figure 3.10 

Schematic diagram of the extraction line used for stepped combustion/pyrolysis in conjunction with carbon stable isotope ratio analysis by VG®SIRA 24 mass spectrometer 
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The relatively low concentrations of CO2 in the quartz samples used in the present study, 

together with the requirement to obtain stable carbon isotope ratios on the (generally much 

less abundant) coexisting CH4, required that a quantity of sample grains totalling 500 to 

1200mg was used per analysis. 

After sample loading, the extraction vessel was evacuated to a pressure of <lO-smbar, a 

procedure which could generally be achieved in about I hour, although pumping overnight to 

achieve <1O- 6 mbar was undertaken in most cases. Stepped heating, either in the presence or 

absence of pure oxygen (depending on the adopted protocol) was then used to release the 

fluid inclusion volatiles. In the case of a 'combustion' step, oxygen was concentrated and 

purified by the use of a 5A molecular sieve, as discussed in Section 3.4.4.3.1 above. All 

heating steps were of 30 minutes duration. 

Towards the end of the present study, the sample pyrolysis/combustion section of the 

extraction line was modified, for the requirements of other users, to that described by Ash 

et al. (1990). As this design is unsuitable for the admittance of relatively large quantities of 

mineral sample, the project work was completed at the NERC Isotope Geosciences 

Laboratory, using a new extraction line system designed by the present author (Figure 2.2), 

essentially based on the earlier (Figure 3.10) configuration. In this case, samples were 

collected in stopcock vessels (based on the same J Y oung@ type POR valve as used in all of 

the extraction lines discussed in this chapter) fitted with greased BI0 ground-glass sockets, 

for transfer to the inlet of a VG@SIRA Series II mass spectrometer in that laboratory. 

3.4.6 

3.4.6.1 

The development of an experimental protocol appropriate to fluid inclusion 
extraction for small sample BI3e analysis 

Initially -adopted procedures for the removal of • contaminant' carbon 

The starting point for the current investigation, irrespective of whether isotopic analyses were 

undertaken by static vacuum or conventional mass spectrometry, was to assume that the 

stepped combustion technique developed by Swart et al. (1983) for the removal of 

contaminant carbon from extraterrestrial samples was similarly applicable to the isolation of 

carbonaceous components in quartz-hosted terrestrial fluid inclusions. Two major 

differences, however, distinguish the nature of the sample material of the present study from 

that used in the work of Swart et al. (1983). Firstly, the carbon species of interest in the 

present investigation occur as components of an aqueous fluid phase, trapped in a chemically 

inert matrix, rather than as mineral or organic constituents of a solid matrix that requires 

chemical alteration (oxidation) to release the carbon. Secondly, major release of fluid from 

quartz samples used in the present study occured below the combustion temperature 

(425 ± 25°C) advocated by Swart et al. (1983) for the removal of organic contamination. 
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3.4.6.2 Preliminary Bi3C results using static vacuum mass spectrometry 

During the development of the static vacuum mass spectrometer and associated sample 

preparation methods described by Carr et al. (1986) an initial 'feasibility study' was 

undertaken, at the present author's instigation, by Carr (1984, unpublished data), to assess 

the use of the instrument in analysing stable isotope ratios of fluid inclusion carbon 

compounds at the nanomole level. Results from this preliminary investigation are illustrated 

in Figure 3.11 (a - e). All heating steps were of 30 minutes duration. 

Note that in Figure 3.11 (a) and (b), the samples were 'combusted' (heated in an atmosphere 

of -500mbar of pure oxygen) to 425°C, before incremental heating in vacuo. 'Splits' of the 

same quartz sample were used to generate the data shown in Figure 3.11 (c),(d) and (e). 

Figure 3.11 (c) and (d) illustrates the effects of variation of 'combustion' temperature (450 

and 425°C respectively), whereas Figure 3.11 (e) shows the results of stepped 'pyrolysis' 

without any pre-combustion stage. 

The regime of 'combustion' at 425°C followed by 'pyrolysis' at higher temperatures was 

suggested by Carr (pers. comm.) as probably giving the best resolution between any organic 

contamination and the indigenous, trapped gas. Note that at this stage of development, the 

analytical precision of BI3C measurement was about ±5%0 (10' error). A further point of note 

(discussed below) is that the Pt finger, maintained at 1050°C throughout the stepped heating 

(see Section 3.4.4.3.1), was later found to retain significant quantities of adsorbed oxygen 

(Boyd, 1988; Boyd et al., 1988) hence, in reality, traces of methane released during the 

'pyrolysis' steps may have been oxidised to CO
2 

on the surface of the platinum. 

The carbon release profiles shown in Figure 3.11 are probably best interpreted as the result 

of mixing between different relative proportions of a carbon blank of BI3C value ca. -25%0, 

and indigenous (fluid inclusion) carbon sources having a combined Bl3C value of ca. -10%0. 

The yield and isotopic composition of carbon released during a typical procedural 

(combustion) blank at this stage of development of the system was as shown in Figure 3.7. 

With reference to Figure 3.11, if the heating step at ~550°C is taken as the optimum 

discriminant between the carbon blank yield and carbon release from fluid inclusions, then 

the three BI3C analyses of sample HEM-80-47 all lie within the range from -8 to -12%0. 

Furthermore, BI3C results for the other two Hemerdon samples also fall in this range, within 

the limits of analytical precision. Wright and Pillinger (1989), referring to this preliminary 

investigation, concluded that the ratio of sample-to-blank carbon yield would have to be 

significantly improved for progress to be achieved. 
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Figure 3.11 

Preliminary results obtained for stepped heating release and isolation of pallCofluid carbon 
l:(C0

2
, CH

4
) from hydrothermal fluid inclusions in quartz, with 13C/ 12C ratio determination at the 

nanomole level by static vacuum mass spectrometry. (R H Carr, 1984, unpublished data.) 

Stepped heating up to 425°C in the presence of supplied oxygen; stepped heating in vacuo for all 
steps at higher temperature. 30 minutes per step. Pt foil at -1050°C in contact with released gases 
during the extraction procedure. 
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Figure 3.11 (continued) 

Stepped heating up to 425/ 450°C in the presence of supplied oxygen; stepped beating in vacuo 
thereafter. 30 minutes per step. Pt foil at -1050°C in contact with released gases during the 
extraction procedure. 
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Figure 3.11 (continued) 

Sample: HEM-80-47 (T068) 

Stepped beating in the absence of supplied oxygen. 
Released gases exposed to Pt foil at -1050°C. 
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Figure 3.12 

Stepped heating release of palzofluid carbon r. (C0
2

, CH,J from hydrothermal fluid inclusions in quartz 

single grain (-20mg) replicates (sample HEM-80-1), with 13C/12C ratio determination by static vacuum 

mass spectrometry using the protocol of Carr et al. (1986). Pt catalyst at -1050·C throughout. 

(a) Run: T326 No supplied oxygen 

1: C (-20 to 300°C) = 25.8 ng (1.21 ppm); 

1: C (300 to 600°C) = 223.0 ng (10.50 ppm); 

Sample weight: 21.287 mg 

1: ol3C = -27.8%0 

1: Ol3C = -14.7%0 
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Figure 3.12 (continued) 

Stepped heating release of palreofluid carbon l:(C0
2

, CH~ from hydrothermal fluid inclusions in quartz 

single grain (-20mg) replicates (sample HEM-80-l), with t3Ct1le ratio determination by static vacuum 

mass spectrometry using the protocol of Carr et al. (1986). Pt catalyst at -I 050°C throughout. 

(b) Run: T360 No supplied oxygen Sample weight: 24.122 mg 

1: C (-20 to 300°C) = 8.4ng (0.35 ppm); 1: 613C = -330/00 

1: C (300 to 610°C) = 353.9 ng (14.67 ppm); 1: 613C = -11.0%0 
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Figure 3.12 (continued) 

Stepped heating release of palreofluid carbon l:(COz, CH,J from hydrothermal fluid inclusions in quartz 

single grain (-20mg) replicates (sample HEM-80-1), with \3c/12c ratio determination by static vacuum 

mass spectrometry using the protocol of Carr et aI. (1986). Pt catalyst at -1050°C throughout. 

(c) Run: T370 No supplied oxygen 

1: C (-20 to 302°C) = 66.8 ng (2.82 ppm); 

1: C (302 to 600°C) = 548.0 ng (23.09 ppm); 

Sample weight: 23.734 mg 

1: 013C = -25%0 

1: o13e = -18.4%0 
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Figure 3.12 (continued) 

Stepped heating release of pala:ofluid carbon 1: (C0
2

, CH.J from hydrothermal fluid inclusions in quartz 

single grain (-2Omg) replicates (sample HEM-80-1), with \3C/12C ratio determination by static vacuum 

mass spectrometry using the protocol of Carr et aI. (1986). Pt catalyst at -1050·C throughout. 

(d) Run: T372 Oxygen supplied 

L C (-20 to 303°C) = 58.8 ng (3.53 ppm); 

L C (303 to 605°C) = 377.7 ng (22.67 ppm); 

Sample weight: 16.665 mg 

L S13C = -28%0 

L SI3C = -17.9%0 
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452 89.8 5.39 -14.5 1.29 
505 80.2 4.81 -14.8 1.27 
553 61.9 3.71 -20.8 1.28 
605 52.5 3.15 -17.6 1.56 
650 11.8 0.71 -22.8 1.18 
704 9.0 0.54 -25.7 1.65 
955 18.1 1.09 -21.1 1.24 

1201 46.2 2.77 -15.7 1.39 



Further evidence for the critical influence of blank levels on the carbon isotopic analysis of 

fluid inclusion components is shown in Figure 3.12, which illustrates replicate stepped 

heating analyses, using the system of Carr et al. (1986), of sample HEM-80-1 (single grains 

of quartz). Results (a) and (b) were obtained by the present author, using incremental heating 

in the absence of supplied oxygen; (c) and (d) show the results of analyses undertaken on 

behalf of the author by Dr M M Grady. Note that the Pt catalyst adjacent to the sample 

extraction tube was maintained at 1050°C throughout, which possibly negated any distinction 

between 'combustion' and 'pyrolysis'. Note also the improved analytical precision associated 

with isotopic measurements. Salient features of these release profiles are as follows: 

(i) In Figure 3.12(b), the carbon yield between ambient temperature and 300°C is 

comparable to the system blank recorded by Ash (1990) for the same line. Thus, the isotope 

values recorded for the 560 and 425°C steps (-8.6 and -9.1%0 respectively), where the 

sample-to-blank ratio is at a maximum (and probably in excess of 25:1), are likely to 

represent the closest approach to the true sample value. Note that the 'dip' at 450°C in the 

carbon yield profile is accompanied by a corresponding decrease in the associated 513C value, 

in accord with this explanation. 

(ii) In Figure 3.12 (a), 513C values obtained during the five heating increments from 

350°C to 550°C, corresponding to the major fluid release, are relatively unifonn at -12.9 to 

-16.1%0. However, the associated CO2 yields ranged from 17.8 to 61.9ngC, which is 

substantially lower than the yields (108.5, 114.6ng) used to obtain the 'best estimate' of fluid 

inclusion 513C in example (b). Coupled with the higher blank value at low temperature 

«300°C) in this instance, it is evident that the sample-to-blank ratio will be significantly 

worse than in case (b), thereby accounting for the 'lighter' 513C values. For fluid released 

between 400 and 550°C (three increments), the mean weighted 513C value is -14.9%0. 

(iii) The effect of carbon blank masking the isotopic composition of the fluid inclusion 

release is further illustrated in examples (c) and (d), where the carbon yield values up to 

300°C (prior to the onset of significant decrepitation of the quartz) are substantially higher 

than those recorded for examples (a) or (b). The mean weighted 513C values for gas released 

between -350 and -600°C (five steps) in the case of examples (c) and (d) are -17.9 and 

-16.8%0 respectively. 

3.4.6.3 Investigation strategy: towards an 'optimised' stepped heating procedure 

The experimental objectives at this stage of the study were twofold. Firstly, it was necessary 

to establish a methodology, with analysis by conventional mass spectrometry, whereby fluid 

inclusion stable carbon isotopic data obtained on small samples (-I~gC equivalent), gave 

good agreement with results obtained using relatively large quantities of the same samples. 
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This, in tum, required a re-assessment of the suitability of the procedures of Swart et al. 

(1983), as adapted by Carr (1984, unpublished data) for minimising contamination in the 

case of fluid inclusion extraction from grains of quartz. 

Secondly, after an appropriate (minimal blank) gas extraction procedure had been 

demonstrated, it was then possible to re-investigate the isotopic analysis of fluid inclusion 

carbon at the nanomole level, using static vacuum mass spectrometry, with the specific aims 

of: (i) achieving agreement between BI3C analyses at the micromole and nanomole level, for 

the same sample, then (ii) using the high sensitivity of static vacuum mass spectrometry to 

investigate fluid inclusion carbon stable isotope ratios in quartz samples associated with high 

temperature hydrothermal mineralisation of the Dartmoor granite. In this latter case, although 

the abundance of carbon species was found to be at very low levels, other lines of evidence 

developed during the course of the present study suggested a common link with CO2
-

enriched fluids associated with other component plutons of the batholith. 

A further experimental objective was to investigate procedures for obtaining BI3C 

measurements of both fluid inclusion CO
2 

and any coexisting CH4 , where the latter may be 

present at sub-ppm levels with respect to the quartz host. 

3.4.6.4 An assessment of procedures based on Swart et al. (1983) as applied to quartz 
grains used for fluid inclusion B13C analysis 

A series of experiments was conducted, using a variety of quartz samples, to investigate in 

detail the effects of 'pre-combustion' followed by 'pyrolysis', as the optimum procedure for 

releasing fluid inclusion carbon components for subsequent analysis by conventional isotope 

ratio mass spectrometry. The analytical results are tabulated in full in Appendix B; only a 

summary of the findings, together with the respective conclusions, is presented here. The 

initial procedure was to adopt two 'combustion' steps up to 350°C, with a subsequent heating 

step in the absence of supplied oxygen, from 350 to 600°C (corresponding to the major fluid 

release), using an experimental protocol based on that of Carr et al. (1986). The procedural 

blank (empty vessel) for the extraction line system (Figure 3.10) was typically -50ngC for 

the high temperature step. Quartz samples (0.5-1mm grain size) were admitted into the 

extraction line directly, rather than being contained by silica buckets. The Pt catalyst was 

originally maintained at -1050°C throughout both 'combustion' and 'pyrolysis' stages. 

Figure 3.13 (a - d) illustrates the progressive 13C depletion of the major fluid inclusion release 

(350 to 6OQ°C) that occurred as the quartz sample size was reduced, in the case of sample 

HEM-80-I. If the carbon blank contribution (of BI3C value in the range -25 to -30%0) was 

comprised essentially of two components, one resulting from airborne particulate 

contaminants (microbiological matter, dust, etc.) and the other from surficial organic material 
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Figure 3.13 

Variation in measured yield and S13C of released carbon-bearing volatiles as a function of quartz 

sample size, using stepped heating in excess of pure oxygen ('combustion') to 350°C followed by 

stepped heating in vacuo ('pyrolysis') to 600°C. Released gases exposed to Pt foil catalyst at 

-1050°C during extraction procedure. Sample: HEM-SO-I. 
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Carbon stable isotope ratio analyses were undertaken using a dynamically-pumped instrument (VO®SIRA 24) 
except in case (d), where the static vacuum mass spectrometer described by Carr et aL (1986) was used. 



adsorbed onto the sample grains, it might be expected that the magnitude of the airborne

derived contribution would be essentially independent of sample size, whereas that of the 

sample-derived contaminant would be linearly dependent on the number of quartz grains 

heated (assuming that all the grains were of identical surface area). The ratio of fluid 

inclusion carbon (present as CO2 and CH.) to that contained in contaminants adsorbed onto 

the quartz grains should, however, be independent of the number of grains (i. e. independent 

of the sample mass). The airborne-derived component probably comprised the majority of 

the system blank (-50ng for the 350-6oo°C 'pyrolysis' step). These postulates, however, 

are not in accord the experimental findings indicated in Figure 3.13. 

With the Pt catalyst at room temperature, 'high resolution' stepped heating of a large quantity 

(1 1 12.8mg) of sample HEM-80-l in the absence of supplied oxygen (CuO furnace valved 

off throughout) produced the results shown in Figure 3.14. Because of the quantity of 

sample used, in an extraction tube of only 5mm internal diameter, temperature uniformity 

throughout the sample during stepped heating was unlikely to be maintained to great accuracy 

(as also for the case shown in Figure 3.13 a). The five heating increments representative of 

fluid inclusion release (300-600°C), however, exhibited a notably narrow li l3C range 

(1.5%0), with the observed profile being fully in accord with mixing between 'indigenous' 

CO2 of homogeneous isotopic composition -9.5%0 and a relatively minor amount of a 

'system blank' component characterised by liI3C=-25%0. On the basis of these assumptions, 

the carbon blank during the analysis of this sample was at a minimum of -23ngC during the 

4OO-4S0°C step and increased steadily thereafter to - 200 ng for the 650 -700°C step. 

When this extraction protocol (no supplied oxygen, Pt catalyst at room temperature) was 

applied to smaller quantities of the same quartz sample, necessarily using single-step heating 

(as the CO2 yield was insufficient for multi-step isotopiC analysis by conventional mass 

spectrometry), it was found that the li l3C value of the released CO2 remained virtually 

unchanged as the quartz mass was reduced by a factor of -6 from a starting point of 261mg; 

the corresponding CO
2 

yield decreased from 4.8 to IJ.LgC equivalent (Appendix B, Table 

B2.1 (b». These results are evidently in marked contrast to the findings observed when using 

the 'pre-combustion' extraction technique. The relatively small differences between these 

data and the 'optimum' (indigenous) value of -9.5%0 was probably due to not isolating and 

discarding any CO2 released below 300°C, prior to collecting the fluid inclusion release. 

Crushing 3 chips (total mass 282.76mg) of sample HEM-80-1 in a bakeable, stainless steel 

crusher, sealed with a Cu gasket and subsequently wanned to -100°C, released CO
2 

equivalent to 0.69J.LgC. The released gas was not exposed to the Pt catalyst during the 

extraction procedure. The measured li13C value was -9.6%0, in good agreement with the 

result obtained by stepped heating in vacuo. 
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Figure 3.14 

Carbon yield and ~13C results of 'high resolution' stepped heating of quartz sample HEM-SO-I, 

in the absence of supplied oxygen and with the on-line Pt foil catalyst at room temperature. 

Sample weight: 1112.75 mg 

1: C (-100 to 700°C) = 16.891lg (15.18 ppm) 1: Sl3c = -1O.2%C 

1: C (300 to 600°C) = 14.89 Ilg (13.38 ppm) 813C max = -9.5%0 
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Figure 3.1S 

Carbonaceous volatiles released from fluid inclusion-bearing quartz: further examples of the S13C 
discrepancy between measurements using combined stepped 'combustion' and 'pyrolysis' in the 
presence of a Pt catalyst at -1050°C, versus data obtained by stepped heating in vacuo and with the 
Pt catalyst at room temperature. 
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Figure 3.1S (continued) 

(b) Sample HEM-80-44 

Stepped heating in the presence of oxygen at low tempemture (up to 352 and 364°C respectively); stepped 

heating in vacuo thereafter. Released gases exposed to Pt foil catalyst at -1 050°C during all extmction steps. 

Quartz mass: 1005.2 mg Quartz mass: 91.2 mg 
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Using other quartz samples that contained significant levels of palreofluid CO
2

, similar 

findings were obtained regarding the dependence of the measured oi3C value on the 

extraction protocol adopted; the experimental data are reported in full in Appendix B. 

Examples are shown in Figure 3.15, for comparison with Figures 3.13 and 3.14.t 

Further points ariSing from a consideration of the data presented in Appendix B are as 

follows: 

(i) With the Pt catalyst at room temperature throughout, stepped heating in the presence 

of supplied oxygen, followed by stepped heating in vacuo, produced similar oi3C results as 

stepped heating in vacuo over the same temperature range (Table B2.2(b». 

(ii) Heating (single or multi-step) in vacuo from ambient temperature to -600°C produced 

lower oi3C values and increased CO
2 

yields when the Pt catalyst was at 1050°C than when 

the catalyst was at room temperature (Tables B2.2(c), B2.5(b), B2.7(b) and B2.7(c». 

Evidently, procedures based on the protocol of Swart et ai. (1983) for the removal of organic 

contamination are not ideally applicable to the stepped heating of quartz grains for fluid 

inclusion 013C analysis. The data reported in Appendix B, and as illustrated in Figures 3.13 

to 3.15, may, however, be explained on the basis of: 

(i) The 'oxygen storage' characteristics of Pt at high temperature 

Boyd et ai. (1988) suggested on the basis of empirical evidence that a layer of oxygen, 

adsorbed onto the surface of Pt foil (at 1 150°C), causes methane oxidation (initially to carbon 

monoxide). Boyd (1988) showed that CuO at 300-500°C does not give rise to methane 

oxidation; this latter finding is in accord with experimental procedures used by Sakai et ai. 

(1976), who used CuO at 450°C to separate methane (stable under such conditions) from 

carbon monoxide (oxidised to CO
2
), As the platinum catalyst in the gas preparation line 

under consideration here is regularly exposed to oxygen, there is minimal possibility that the 

metal surface ever becomes depleted in this gas. 

(ii) A consideration of the gaseous pyrolysis products of organiC matter 

Evans and Felbeck (1983a, 1983b) carried out a series of experimental studies of closed

system pyrolysis of organic matter from various sources. These authors showed that the 

gaseous pyrolysis products generated over the temperature range 300-500°C by Green River 

t An additional, potential complication is that the palmofluid CO/CH4 ratio varied significantly between 
the samples investigated, although methane was very much the minor carbon-bearing component. The 
relevant data are compiled in Table 3.4. 
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Table 3.2 

The distribution of carbon in gaseous pyrolysis products resulting from in vacuo heating to 440°C 

of various biological materials. (Adapted from Evans and Felbeck, 1983b) 

Cellulose Lignin Poplar Sawdust Fucus 

CO, % Yield 0.27 0.02 0.30 0.15 
CO

2
, % Yield 17.69 3.96 13.78 12.59 

CH
4

, % Yield 2.68 3.50 3.34 2.16 

C
2
H

6
, % Yield 1.58 0.49 1.28 2.37 

C3Hs' % Yield 0.90 0.19 0.81 1.86 

% Hydrocarbon Yield 5.70 4.25 5.96 8.70 

C/(C2+C3+C4) 2.27 10.84 3.34 1.05 

Alkanes/ Alkenes 90.61 100.00 107.57 10.00 



shalet were dominated by methane, which showed a steady increase in yield over the 

temperature range studied. Using biological materials as the source of carbon, and with a 

440°C pyrolysis, the same authors compared the thermal degradation products obtained from 

a variety of samples including cellulose, lignin, sawdust of Poplar, and Fucus species 

(marine alga). The distribution of carbon in the resulting gaseous fractions is summarised in 

Table 3.2. A significant hydrocarbon component, with alkanes predominating, was found in 

the pyrolysis reaction mixture at 440°C; using lignin as the starting material, it is evident that 

the alkane yield exceeded that of carbon dioxide. 

During in vacuo stepped heating of natural quartz samples up to 600°C, the release of low 

molecular weight alkanes (primarily methane), originating directly from fluid inclusions and 

also from the pyrolysis of airborne and surface-adsorbed organic matter, will only be 

problematic with regard to fluid inclusion O'3CC02 analysis if the total oxidation of these 

components occurs in the reaction vessel chamber, prior to cryogenic separation and isolation 

of the CO2 fraction. 

Oxidation of CH4 to CO by contact with platinum at 1150°C occurs rapidly (Boyd, 1988); 

whether significant oxidation to CO2 takes place subsequently, during the 30 minute period 

of a standard heating increment, depends on the initial partial pressure of methane in the 

reaction vessel and also on the respective rate constants for the two consecutive first-order 

oxidation reactions: 

[C] 'organic' 
pyrolysis 

If k, and ~ are the respective rate constants for the oxidations of CH4 and CO then the 

concentration of each component at time t is obtained as (see, e.g. Frost and Pearson, 1961): 

[CO], 

where [CH4]o refers to the initial concentration of methane. The concentration of three 

components A, B, C as a function of time in series first-order reactions is illustrated in 

Figure 3.16, for an example where k, =0.25 sec-' and ~= 0.025 sec-I. 

t The Green River formation of Colorado, Wyoming and Utah. USA, is an organiC-rich shale that contains a 

high abundance of both 'extractable' and 'insoluble' organic material. 
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Figure 3.16 

The concentration of components A, B and C as a function of time in series fIrst-order 

reactions, for a typical case where k, = 0.25 sec-I and k2 = 0.025 sec:' 
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The values chosen for the rate constants k j approximate to those determined 

experimentally by Boyd (1988) for the sequential oxidation, in a reaction volume of 

90 em 3 , of methane to carbon monoxide and carbon dioxide in the presence of CuO 

at 440°C and Pt foil at 1150°C. 



In the presence of both Pt at 1150°C and CuO at 440°C, Boyd (1988) showed that the ratio 

k/Is is -9, but the CO oxidation step was probably effected primarily by the CuO under 

those circumstances; the same author did not investigate the oxidation rate of CO by the hot 

platinum alone. Jackson (1988), using the same extraction line as the present author, found 

that no detectable CO
2 

formation occurred when a relatively large quantity (equivalent to 

>0.6torr pressure) ofCH4 was exposed to Pt at I 100°C for 30 minutes. However, the rapid 

subsequent formation of CO
2 

on admitting the gas to CuO at 450°C was interpreted by 

Jackson (1988) as direct oxidation of CH
4 

by the CuO. In the light of the work by Boyd 

(1988), an alternative explanation preferred by the present author is that, during the first stage 

of the experiment, Pt at ll00°C effected oxidation of CH4 to CO; the latter was subsequently 

oxidised to CO2 on exposure to CuO at 450°C. 

The explanation offered for the experimental findings recorded in Appendix B and as 

illustrated in Figures 3.13 and 3.15 is therefore based on the premise that, for methane 

(derived from both indigenous, i. e. fluid inclusion, sources and from the pyrolysis of 

organic contaminant matter) at very low partial pressure in the extraction chamber, and in the 

absence of supplied oxygen, complete oxidation of this component to carbon dioxide will be 

effected by a chemisorbed oxygen layer on the Pt catalyst at -1050°C, resulting in a shift of 

013CC02 to lower values than would be otherwise observed. For relatively high partial 

pressures of methane in the system, carbon monoxide is the predominant oxidation product; 

this reservoir of 13C-depleted carbon does not then contribute to the measured 013C
C02 

result. 

For determination of the isotopic composition of fluid inclusion CO2, the optimised 

procedure was therefore to perform stepwise heating in vacuo, without any pre-combustion 

step, and with the Pt foil catalyst at room temperature throughout the experiment. 

Only in one instance during the present investigation did this stepped heating procedure give 

rise to anomalous results: Figure 3.17 shows the CO2 yield and corresponding 013C data 

obtained in this case. A notably consistent isotopic profile for CO2 extracted in the 

temperature range 400-600°C was recorded. However, the 013C value was 1.0%0 lower than 

that indicated for the fluid inclusion CO
2 
by pyrolysis after pre-combustion and by single

step pyrolysis experiments (see Appendix B, Table B2.6). An anomalously high carbon 

blank level during the multi-step pyrolysis experiment is suggested as being the most 

probable explanation for these findings. 

Because of the generally low absolute concentrations of carbon-bearing species in the 

samples used in the present study, 'high resolution' multi-step extraction was considered 

impractical in many instances. However, a two-step extraction, whereby gas released up to 

300°C was discarded (because of a significant surficial/ airborne contaminant component), 

whereas the 300-600°C yield was collected for analysis, was found to be generally 

satisfactory . 
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Figure 3.17 

Carbon yield and 613C results of stepped heating of quartz sample SW-84-27 (Prince of Wales mine). 

in the absence of supplied oxygen and with the on-line Pt foil catalyst at room temperature. 

Sample weight: 1096.80 mg 

1: C (-100 to 700°C) = 6.02 J.1g (5.49 ppm) 

For temperature range corresponding to the major release of fluid inclusions. 

1: C (300 to 600°C) = 5.11 J.1g (4.66 ppm) 1: 613C (300 to 600°C) == -7.3%0 
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Occasional difficulties experienced with the revised stepped heating procedure were, firstly, 

evidence suggesting that the decomposition of carbonate grains was contributing to the peak 

CO2 release, despite acid pre-treatment of the quartz sample grains. This was noted in the 

case of a small number of samples from Carrock Fell and could only be prevented by the use 

of crushing rather than heating as the fluid release procedure, if significant decarbonation 

occurred below 600°C. If the carbonates were derived from solid phases in the fluid 

inclusions, possibly nucleated since fluid entrapment, they should in any case be included in 

consideration of the total carbon reservoir of the fluid. The second problem was that 

hydrogen sulphide was occasionally found to be a contaminant species during stepped 

thermal extraction, identified by ion beam currents corresponding to m/ z 32, 33 and 34 

during mass spectrometric analysis. The presence of hydrogen sulphide was also manifest by 

unstable 45/44 and 46/44 ion beam ratios, together with measured B13C values indicating 

anomalous enrichment in 13C.t 

The persistence of H2S in the extraction line derived from the elimination of any oxidation 

stage during stepped heating: CuO at 450°C converts H2S to S02 (Mattey et al., 1989), which 

may be subsequently removed by cryogenic isolation (using a slush bath of n -pentane/liquid 

nitrogen at -130°C). Any traces of CO would also be oxidised by CuO at 450°C, however, 

thereby contributing to the CO
2 

blank value and consequently to the carbon isotope ratio 

measurements. In the case of stepped heating experiments where H2S was detected as a trace 

contaminant (probably deriving primarily via the decomposition of finely-disseminated 

sulphide mineral phases, rather than as a significant component of the palreofluid), it was 

noted that the partial pressure of this species decreased markedly during carbon stable isotope 

ratio analysis by the VG®SIRA 24 instrument. The corresponding BI3C value simultaneously 

decreased, eventually stabilising as the H2S concentration decreased to below the detection 

limit. It is suggested that this effect, an example of which is shown in Figure 3.18, may be 

attributed to reaction between the H
2
S and metal components of the mass spectrometer inlet. 

For samples analysed at the NERC Isotope Geosciences Laboratory, where no facility for 

direct coupling of the extraction line system to the mass spectrometer was available, the 

300-600°C release was collected for isotope ratio analysis off-line. The relatively large 

amounts of CO2 in such cases were cleaned of any H2S contamination by reaction with lead 

fonnate, followed by further cryogenic (-130°C) purification. 

t Wright and Pillinger (1989) noted that the formation of 12e32s+ (m/z 44), 13e32s+, 12e33s+ (m/z 45) and 

13e33s+, 12e34s+ (m/z 46) in the ion source would cause direct interference with the respective eo
2
+ species 

having the same m/z values. However, in view of the natural abundances of 33S and 34S relative to 32S 

~S/34S=22.23 in the eDT international standard, as measured by Thode etal., 1961; 32Sj33S_123.46 in 

eDT according to Nielsen, 1978), it is suggested that the observed enhancement of a'" may possibly be due 

to a Significant contribution from 1~32S I H+. 
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Figure 3.18 

The effect of hydrogen sulphide as a contaminant species during stable isotope ratio analysis 
of carbon dioxide by VG "'SIRA 24 mass spectrometer. (Sample: HEM-80-39) 

Time (min.) ~4S (10) ~46 (10) 13 
~ CpDB(%O) 

0 19.926 (0.114) -16.127 (0.123) -2.951 

10 17.436 (0.107) -17.664 (0.049) -5.492 

26 15.988 (0.033) -18.837 (0.014) -6.691 

39 15.994 (0.034) -18.508 (0.031) -6.966 

Sample size equivalent to 12 mgC. Major beam current (m/z 44) decreased from 
1.07 to 0.88 nA during the experiment. 
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Figure 3.18 (continued) 

(b) Measurement 26 minutes after initial admittance: 
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3.4.6.5 An assessment of the experimental protocol of Jackson et al. (1988 b) 

Jackson et al. (1988 b) devised a stepped heating procedure whereby pre -combustion at 

400°C in about 5()() torr of pure oxygen was used in an attempt to remove surficial organic 

contamination, as recommended by Des Marais (1986) and Mattey et al. (1989). Stepped 

heating under pressures <10- 5 torr was then perfonned, as used by the present author. As 

recorded by Jackson (1990), however, all heating steps were perfonned with the released gas 

exposed to the on -line Pt catalyst at -11 ()()OC. 

In view of the findings reported in Section 3.4.6.4, it seems probable that some CO2 

contribution from alkane oxidation would have occurred during the stepped heating of 

samples containing relatively low concentrations of carbon-bearing components, methane 

being derived from the pyrolysis «600°C) of organic 'contaminants' and also being an 

acknowledged fluid inclusion constituent in several of the samples investigated (Jackson, 

1990). 

Figure 3.19 shows the carbon yield and ~13C profile of a stepped heating experiment reported 

by Jackson etat. (1988a,b) and Jackson (1990), using quartz associated with an incipient 

chamockite from Kalanjur, southern India. In this experiment, oxygen was only supplied for 

the heating step up to 4OQ°C, but the on -line Pt foil catalyst was at -11 ()()OC throughout Also 

shown in Figure 3.19 is the corresponding carbon blank yield calculated by the present 

author from these results, assuming a simple two-component mixing between indigenous 

(fluid inclusion) carbon dioxide of isotopically homogeneous composition (~13C value 

-6.2%0) and a carbon blank of ~13C = -25%0. Note that the 'blank' in this case might include a 

contribution from the oxidation of traces of fluid inclusion methane, besides an 'adventitious' 

component. From these data it is apparent that, to explain the observed isotopic profile on the 

basis of this model, the total carbon blank per 100°C step never reduced below 119ngC 

equivalent (in contrast to the system blank quoted by Jackson et al., 1988 b, of typically 

<20ngC per step for temperatures up to 1200°C). Furthennore, the corresponding sample

to-blank ratio for the maximum fluid release step is 30.3 (cj Figure 3.14, where the 

corresponding value is an order of magnitude greater). 

In a follow-up study, using the same stepped heating procedure (Harris etal., 1993), it was 

reported that the background blanks were typically 75-l80ngC02 (i. e. 20-49ngC), with 

813C == -25%0, and that errors introduced by not background-correcting sample ~13C results 

may be as high as ±2%0 for samples containing <30ppmC02 • 
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Figure 3.19 

Carbon yield and /)13C results of stepped heating of quartz sample TR 100 associated with incipient charnockite 

formation, southern India, as reported by Jackson et al. (1988 a) and Jackson (1990). 

Note that no oxygen was supplied during the extraction stage (for steps> 400°C), but that the released gases were 

exposed to Ptfoil at -l100°C. 

Sample: TRI00 (131.60 mg) 

1: C (400 to 1200°C) = 12.41 ~g (94.30 ppm) 

S13 Cmax = -6.1%c. 
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One of the difficulties inherent in the stepwise heating approach for the isotopic analysis of 

fluid inclusions is to establish whether the sample-to-blank carbon yield ratio corresponding 

to the maximum in the isotopic profIle is large enough to ensure that any blank contribution is 

less than the analytical precision of the isotopic measurement. In a single experiment using 

quartz from a massive charnockite from Kottararn, southern India, Jackson (1990) compared 

fluid inclusion Bl3C as determined by stepped heating with that obtained by crushing; the 

latter method yielded a value 2%0 greater, indicating that, in some instances at least, the 

influence of carbon blank yield during stepped heating above 400°C was not negligible. 

3.4.7 Application of the optimised stepped heating procedure to B13C analysis of 
inclusion CO

2 
by static vacuum mass spectrometry 

3.4.7.1 Experimental details 

The extraction line system described by Ash (1990) was used, with all heating steps 

performed in the absence of supplied oxygen. A single grain of quartz, weighing in the range 

12-25mg, was used for each analysis. The silica tube extraction vessel was maintained at 

-1200°C and pumped continuously under high vacuum «10-7 mbar) overnight, prior to 

transferring the loaded sample grain from the air-lock inlet (evacuated overnight to <4 x 

1O-6 mbar) at ambient temperature. Changes to the protocol of Ash (1990) were as follows: 

(i) Quartz sample grains were not contained in a Pt foil envelope (as devised primarily to 

minimise loss of fine particulate matter during initial evacuation), but admitted directly into 

the air-lock. Samples were acid cleaned (6M HCI), then agitated ultrasonically with 

dichloromethane immediately prior to loading into the extraction line. The minimum exposure 

method of Mattey et al. (1989) was adopted; samples were transferred to the extraction line 

air-lock in a covered Petri dish containing dichloromethane. 

(li) The on-line CuO, used for stepped combustion experiments, was maintained at 

-80°C throughout, to minimise condensation of extracted fluid inclusion water without 

catalytic oxidation of any CO (if present) occurring. 

(iii) A slush bath of n-pentane/liquid nitrogen (-130°C) was used to trap water in the 

extraction chamber during stepped heating, to prevent the subsequent transfer of water (the 

predominant component of the fluid inclusions) into the purification section of the line. 

This experimental procedure, devised to minimise carbon blank yields, necessarily restricted 

analysis to the indigenous CO2 component (i. e. excluded fluid inclusion methane). As CO
2 

was by far the dominant carbon species in nearly all the samples investigated in the present 

study, consideration of how the procedures may be further modified to permit analysis of any 

coexisting methane component (at the sub-nanomole level) is deferred to the final section of 

this chapter. 
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Table 3.3 

Comparison of carbon procedural blank yields (±0.2 ngC) resulting from stepped heating in 

the presence/ absence of supplied oxygen, using the extraction system described by Ash et al. 
(1990). The extraction (sample) tube was maintained at 12OO°C overnight, with evacuation to 

<1O.7mbar (and with the CuO furnace at 600°C) in all cases, prior to undertaking the reported 

measurements. 

Notes: 

T(°C) 'Combustion' blank * 'Pyrolysis' blank * § 'Inclusion-free' quartzt 
(f716) (f715) 'pyrolysis' (T727) 

200 7.6 0.8 <0.2 
250 4.0 1.0 J. 
300 5.9 0.6 <0.2 
350 8.0 0.2 J. 
400 8.8 0.8 J. 
450 6.7 0.8 J. 
500 3.8 1.0 J. 
550 8.0 J. 
600 5.2 3.3 
800 3.3 3.6 

1000 2.9 
1200 4.2 

* . Empty extraction tube. 

§ Air conditioning failure resulted in the laboratory temperature reaching 27°C during the course 
of this experiment. causing instability of the capacitance manometer used for the CO2 yield 
measurements. Consequently. the experiment had to be abandoned after the 500°C step. 

t Single grain of gem-quality quartz. mass 24.7305mg. System blank (30 minute step) with the 
empty extraction tube at 12OO°C, measured immediately prior to transferring the sample from 
the air lock (see Figure 3.9) was below the detection limit (0.2ngC). 

The CuD furnace was maintained at SO°C during incremental heating in the absence of supplied 
oxygen ('pyrolysis' runs 1'715 and 1'727). 

'Combustion' blank (T716): l:C (-20 to goo°C) = 61.3 ng. 



The procedural carbon blank yield during stepped extraction, 50°C increments, in the absence 

of oxygen was generally <lng per step. Table 3.3 gives the blanks obtained during stepped 

'pyrolysis' (with/without an inclusion-free natural quartz sample); for comparison, the 

carbon yield resulting from stepped 'combustion' of the empty extraction tube is also shown. 

3.4.7.2 Results: comparison with data obtained by 'conventional' mass spectrometry 

Figure 3.20(a) shows the analytical results obtained for sample HEM-80-l using the 

optimised stepped extraction procedure in conjunction with static vacuum mass spectrometry. 

For comparison with earlier results, refer to Figure 3.l2(a-d). In the current example, it is 

seen that the temperature step (470-500°C) associated with the maximum (normalised) CO
2 

yield also corresponds to the maximum value of the Bl3C profile. Furthermore, this isotopic 

datum point corresponds, within the limits imposed by analytical precision, to the 'optimum' 

B13C value of -9.5%0, as determined by both (i) 'high resolution' stepped heating in 

conjunction with dynamic vacuum mass spectrometry (Figure 3.14), using a sample of mass 

>50x larger than that adopted here, and (ii) 'conventional' analysis of the CO2 released by 

crushing coarse grains of the quartz sample (Appendix B, Table B2.1 (d) ). Also noteworthy 

is that at no step where sufficient CO
2 

was released to permit isotopic measurement with 

acceptable precision did the B13C value decrease to below 4%0 of the 'optimum' result, 

thereby demonstrating improved sample-to-blank ratios compared to earlier extraction 

methods. 

Similarly, the results obtained for sample CF-77-98 (from Carrock Fell) are illustrated in 

Figure 3.20(b). In this case, however, the peak release of fluid occurs at lower temperature, 

where mixing with any residual blank component would be expected to be more evident than 

for the previous example. The weighted mean B13C value of CO2 collected in the temperature 

range 200-575°C (corresponding to fluid inclusion release), however, was found to be 

-12.5%0; within the limits of analytical precision, this is indistinguishable from the value 

(-11.4%0) obtained by 'conventional' analysis of the CO2 released by crushing coarse grains 

of the quartz sample (see Appendix B, Table B2.7). 

Despite the adoption of procedures to minimise the carbon blank, the unpredictable nature of 

this component, with attendant consequences for the accuracy of measured isotope ratios, 

still occasionally gave rise to spurious results. This is illustrated in Figure 3.21, which 

shows duplicate analyses of sample CD-88-1 (Castle-an-Dinas mine, St Austell area). In 

both instances, the 1200°C 'pyrolysis' carbon blank (30 minute step), measured immediately 

prior to transferring the outgassed sample from the air -lock to the extraction tube, was below 

detection level (0.2ngC). 
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Figure 3.20 
Yield proflles, together with S\3C as measured by static vacuum mass spectrometry, of CO2 released by stepped 

beating of quartz samples using the optimised extraction procedure: (a) HEM-80-l (Hemerdon, S W England); 

(b) CF-77-98 (Carrock Fell, N W England). 

(a) Sample: HEM·80·t Run: T709 

Sample weight: 20.3262 mg (single grain of quartz) 

1: C (-20 to 605°C) = 245.6 ng (12.08 ppm) 

For the temperature range 3OO-575°C, corresponding to the major release of inclusion fluid, 

1: C (300 to 575°C) = 232.3 ng (11.43 ppm) 1: SJ3C (300 to 575°C) = -11.8%0 

S13Cmax = -9.1 ± 1.0%0 (10 error) 
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Figure 3.20 (continued) 

(b) Sample: CF-77-98 Run: T706 

Sample weight: 18.7200 mg (single grain of quartz) 

1: C (-20 to 645°C) = 432.7 ng (23.11 ppm) 

For the temperature range 200-575°C, corresponding to the major release of inclusion fluid, 

1: C (200 to 575°C) = 423.7 ng (22.63 ppm) 1: 5\3C (200 to 575°C) = -12.5%0 

513Cmax = -10.4± 1.17%'> (10' error) 
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330 74.1 3.96 -14.8 1.06 
360 56.5 3.02 -10.4 1.17 
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520 24.8 1.32 -12.9 1.17 
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Figure 3.21 
Yield profile, together with l)\3C as measured by static vacuum mass spectrometry, of CO2 released by optimised 

stepped heating of quartz sample CD-88-1 (from Castle-an -Dinas mine, St Austell region, S W England). 

(8) Run: T72S 

Sample weight: 12.6249 mg (single grain of quartz) 

1: C (-20 to 600°C) = 106.1 ng (8.40 ppm) 

For the temperature range 300 -600°C, corresponding to the major release of inclusion fluid, 

1: C (300 to 600°C) = 101.5 ng (8.04 ppm) 1: l)nC (300 to 600°C) = -10.0%0 

l)13C max = -8.3t l.IS%.> (10 error) 
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Figure 3.21 (continued) 

(b) Run: T717 

Sample weight: 18.5918 mg (single grain of quartz) 

1: C (-20 to 630°C) = 178.8 ng (9.62 ppm) 

For the temperature range 300 - 630°C, corresponding to the major release of inclusion fluid, 

1: C (300 to 630°C) = 170.9 ng (9.19 ppm) 1: oJ3C (300 to 630°C) = -16.5%0 

5 13C max = -12.6± 1.37%0 (10 error) 
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500 13.8 0.74 -27.7 1.83 
550 11.8 0.64 -17.6 2.09 
630 18.5 1.00 -14.6 1.71 
800 9.6 0.51 -27.3 2.24 



In Figure 3.21 (a), the maximum value in the isotopic profIle corresponds to the step (350-

400°C) during which maximum yield of CO
2 

was evolved. Furthermore, the associated 513C 

value is the same, within analytical precision, as that determined by 'conventional' means 

(Table 3.4). Also, with the exception of one datum point corresponding to a well-defmed 

minimum in the CO2 yield profile (where the sample-to-blank ratio would be less 

favourable), the range of isotopic data is constrained to 2.S%0. 

In contrast, although Figure 3.21 (b) shows a broadly similar isotopic profile (including the 

pronounced 'dip' corresponding to the 4S0-5()(}OC temperature step), the 513C results are 

shifted to more negative values. The explanation offered for this difference is that the 

contribution from carbon blank is notably greater in the case of Figure 3.21 (b). Evidence for 

this assertion is provided by comparison of the respective carbon yield data, notably in the 

temperature ranges 4S0-S00°C and 600-8()(}OC, where the contribution of palreofluid carbon 

is very low (Figure 3.21 (a». The correspondingly higher yields of carbon in Figure 3.21 (b) 

at these temperatures, together with an associated 513C value of approximately -25%0, 

suggests that this carbon release is primarily of extraneous origin. 

3.4.8 Carbon stable isotope analysis of fluid inclusion methane 

3.4.8.1 Methane oxidation catalyst 

Conventional procedures for the preparation of methane for carbon stable isotope ratio 

analysis generally involve quantitative oxidation of the methane to carbon dioxide, which 

may then be analysed directly by mass spectrometry. The catalytic combustion of methane 

was first observed by Davy (1817) over hot palladium and platinum wires; for total oxidation 

of methane, these two elements have been shown to be the most active catalysts (Anderson 

et al., 1961). Carr et at. (1986) used a coil of Pt wire (> Scm) at -1050°C to oxidise carbon

containing gases to carbon dioxide. Similarly, Schoell (1980) used a red-hot platinum wire 

to effect complete catalytic oxidation of standard methane in a closed reaction vessel. For the 

present work, platinum foil at -10S0°C was the catalyst used. 

3.4.8.2 Experimental protocol adopted for BI3C analysis of fluid inclusion methane 

An analytical protocol was devised to permit the 513C analysis of fluid inclusion methane, 

generally present at considerably lower abundance levels than coexisting carbon dioxide in 

the palreofluids. Methane was collected on a 5A molecular sieve (at -196°C) during stepped 

heating of the quartz sample over the temperature range 300-6()(}OC, either during a single 

step or the aggregate of several consecutive steps. The experimental procedure was as 

follows, with reference to Figure 3.10: 
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(i) At the end of a heating step (with platinum foil PF#1 at ambient temperature 

throughout; trap CF#l at liquid nitrogen temperature), residual gases (primarily methane and 

nitrogen) were transferred from the extraction section of the line to the sA molecular sieve 

(MS) at liquid nitrogen temperature, and subsequently isolated by valve VS. 

(ii) After measuring the yield and isotopic composition of the associated CO2 component, 

the oxygen generation section of the line (evacuated to a pressure <10- 5 torr) was isolated by 

closing valves V3 and V8. The CuD temperature was then raised to 8S0°C and valve V4 

opened. After an equilibration period, valve V4 was closed again to isolate the CuO, the 

temperature of which was then reduced to 600°C, and the aliquot of oxygen contained 

between valves V3 and V8 adsorbed onto the molecular sieve (maintained at -196°C) by 

opening valve VS. 

(iii) The molecular sieve was then isolated again (valve VS closed) and allowed to warm 

to room temperature. With all other valves closed in the oxygen generating section of the line, 

VS was opened to allow expansion of the methane/ oxygen mixture (together with nitrogen, 

etc.) into the section of the line bounded by valves V3 and V8. After an equilibration period, 

the molecular sieve was again isolated (valve VS closed) and valve V6 opened to expand the 

'chopped' reactant gas mixture into the silica finger PF#2 containing platinum foil at 1050oC. 

(iv) After allowing a twenty minute period for the methane oxidation to be effected by the 

hot Pt catalyst, the purification section of the line (maintained under high vacuum) was 

isolated from the pumping system (valve VlO closed) and trap CF#2 cooled to liquid nitrogen 

temperature. Valves V8 and V 4 were then opened, to admit the reacted gases to CF#2 and to 

allow excess oxygen to be re-adsorbed by the CuO at 600°C. 

(v) After seven minutes, the CuO temperature was reduced to 450°C and a further ten 

minutes allowed for the re-adsorption of any remaining traces of oxygen. Any methane 

converted to CO rather than CO
2 

by the Pt catalyst would be rapidly oxidised by the CuD, 

under these conditions. t 

(vi) Any residual gas (primarily nitrogen) was then pumped out, before transferring the 

oxidation product CO2 to the variable-temperature cryotrap (VTC) for subsequent separation 

from the associated water component. The purified CO2 was then transferred to the 

capacitance manometer finger (CF#3) for yield determination. Isotopic analysis was 

undertaken if the yield exceeded 400ngC equivalent. 

t SUbsequent to undertaking the methane a13c analyses reported herein, a modified experimental procedure 

was adopted, whereby use of the molecular sieve as a storage reservoir for oxygen was avoided. The 
'chopped' methane sample, not initially mixed with oxygen, was instead exposed to CuO at 850°C as well 
as PF#2 throughout the oxidation step. Excess oxygen was then re-adsorbed onto the CuD, initially at 

6OO°C, then at 450°C, as before. 
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(vii) Yield values were corrected for the un reacted methane retained in the MS finger (step 

iii) immediately prior to the oxidation stage; the correction factor was determined as 1.30 for 

the relative volumes involved. 

IAEA natural gas standard NGS-l (81.4% methane) was used for testing the methane 

oxidation procedure. The results of replicate BI3C analyses are given in Appendix B. 

3.5 Results of the palreofluid Bl3(: analyses 

3.5.1 Hydrothermal fluids characterised by W±Sn oxide association 

Quartz vein samples representative of four of the principal wolframite occurrences (Beer and 

Ball, 1987) within the Comubian batholith, namely Hemerdon mine, South Crofty mine, 

Cligga Head and Castle-an-Dinas mine, were used in the investigation, together with 

examples of lesser significance clustered around the minor granite intrusives between the 

Dartmoor and Bodmin Moor plutons. Sample locations are shown in Figure 3.22 (localities 1 

to 8); further details and sample descriptions are recorded in Appendix A. 

Table 3.4 gives the results of carbon yield and isotopic analysis of the total oxidised carbon 

component, :Eeo , determined as CO2.t Also recorded are the measured :Eeo -to-methane 
2 2 

ratios. In a limited number of instances, carbon stable isotope ratio measurements were made 

on the coexisting methane. Figure 3.23 illustrates some of the salient features. Also shown 

on this figure are first-order estimates of the respective :Eeo concentrations in the 
2 

hydrothermal fluids, calculated on the basis of carbon dioxide and water yields as measured 

on different 'splits' of the same quartz samples. 

Anomalously 13C-enriched CO
2 

(BI3C>+4%o) was discovered in an example from South 

Crofty mine; the corresponding stepped heating profile is shown in Figure 3.24. The BI3C 

value of the coexisting methane was also notably more 13C-enriched than methane measured 

elsewhere throughout the Comubian region, suggesting a coupling of the isotope 

systematics. Furthermore, methane abundance in the palreofluid exceeded that of CO2 in this 

particular case (the only such example encountered during the study). 

3.5.2 'Transitional' (pegmatitic-pneumatolytic) fluids 

A small number of examples of quartz typifying granite-associated transitional rock types 

(preceding the earliest stages of hydrothermal mineralisation) were included for comparison. 

t te0
2 

includes carbon dioxide derived from thermal decomposition of any bicarbonate or carbonate salts 

present, besides palreofluid CO2, 

119 



N 

Figure 3.22 

Simplified map of S W England, indicating the location of samples included in the investigation of palleofluid carbon species 
associated with early-stage granite-related hydrothermal processes 
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Table3A 

The yield and 613(: values of fluid inclusion carbon -bearing species extracted from quartz associated with early hydrothermal mineralisation and 'transitional' processes, S W England 

Locality Sampe Mass (mg) [C] I:oo (ppm) ol3C I:CO (%0) [C] CH
4 

(ppm) ol3C CH (%0) l:CO /CH4 ol3C I:C 
2 2 4 2 

Hemerdoo mine HEM-79-2 § 897.0 11.94 -9.0 0.79 15.1 

HEM-80-1 t 
1112.75 13.37 -9.5 0.46 -36.7 29.1 -10.4 
(282.76) (2.44) (-9.6) 

HEM-80-35 § 1035 4.77 -8.4 0.29 16.5 

HEM-80-39 t 978.37 10.81 -6.7 1.34 -31.9 8.1 -9.5 

HEM-80-44 t 894.36 7.60 -8.3 0.31 24.5 

HEM-80-47 t 862.52 11.75 -8.3 0.32 35.4 
(444.22) (1.78) (-8.3) 

Old Gunnialake mine SW-84-18 1016.14 6.17 -7.5 0.57 -30.8 10.6 -9.5 

00-88-1 § 1001 4.83 -9.3 0.72 6.7 

SW-89-150 § 1226 3.54 -10.0 0.29 12.4 

Drakewalls mine SW-84-15 § 1200.0 3.65 -8.5 0.17 21.5 

South Bedford mine SW-84-20§ 1150 15.96 -9.6 0.91 -38.4 17.5 -11.2 
1159 15.17 -9.8 0.93 -37.9 16.3 -11.4 

Prince of Wales mine SW-84-27 t 1096.80 5.10 -7.0 1.30 -35.5 3.9 -12.8 

Noles: Gases for yield and C8Ibon stable isotope analysis were collected during a single heating step, 300-600°C, except where indicated. Values in parentheses refer to gas release by crushing. 

§ Analyses undertakc:D at the NERC Isotope Geosciences Labomtory. 

t Multi-step relmse. Yield values refer to aggregate of300-600°C data. Carbon dioxide o13C values are maxima (refer to Appendix B), whereas the corresponding methane data refer to 

measumnents made on the aggregate release over the range 300-6OO"C. 



Table 3.4 (continued) 

Locality Sample Mass(mg) [C] l:CO (ppm) al3c l:CO (%0) [C] CH
4 

(ppm) al3C CH (%0) 1:co /CH4 aUc l:C 
2 2 4 2 

QiggaHead CH-88-1 863.8 5.22 -5.4 1.81 -33.6 2.9 -12.7 

South Crofty mine SC-88-2 • 996.8 -2.0 -6.3 

SC-88-3 t 1045.5 3.89 +4.2 6.53 -27.4 0.6 -15.6 

SC-88-N1L a 1196.5 6.99 -9.1 0.32 22.0 

SC-88-3ABC a 
748.3 6.06 -7.3 •• 3.09 -34.1 2.0 -16.4 
701.0 6.23 -7.0 3.14 -35.2 2.0 -16.5 

Castle-an-Dinas mine CD-88-1 a 8927 3.70 -7.4 0.36 10.3 

Gunheath LYGUN-15 764.9 5.54 -8.8 

LYGUN-l 1289.2 3.38 -9.4 

Prieat's Cove LYPC-88 1011.2 3.66 -9.0 

Tre1avour Downs LYTD-88 824.6 2.93 -10.2 

N(ies: Gases for yield and caJbon stable isotope analysis collected during a single heating step, 300-600cC, except where indicated. Values in parentheses refer to gas release by crushing. 

a Analyses undertaken at the NERC Isaope Geosciences Laboratory. 

t Mulli -step rdease. Yield values refer to aggregate of 300-600cC data. Carbon dioxide al3c value is the maximum (with reference to Figure 3.24), whereas the corresponding methane 

result refers to measurements made on the aggregate release over the range 300-600cC. 

• Multi-step release. Severe contamination of the caJbon dioxide fraction by hydrocalbons was nded for gas released above 480cC, despite cryogenic purification at -13OCC. The isotopic 

datum point refers to the 300-48O"C heating step. 

•• Hydrogen sulphide present as a trace contaminant. 



Figure 3.23 

The yield and ~13C of carbon dioxide extracted from quartz associated with early stage hydrothermal activity, S W England. Refer to Figure 3.22 for key to sampling localities 
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Figure 3.24 

Carbon yield and S13C values of CO
2 

released by stepped heating of quartz sample SW -88-3 (South Crofty mine). 

in the absence of supplied oxygen and with the on -line Pt foil catalyst at room temperature. 

Sample weight: 1045.48 mg 
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These were associated with the St Austell and Land's End granite outcrops and were supplied 

for paheofluid carbon stable isotope analysis as part of a comprehensive study by Lin (1989) 

of pegmatitic and pneumatolytic evolution of Cornish granites. Preliminary analyses by the 

present author of the fluid inclusion volatile phase released by decrepitation of the quartz 

samples to 6()()OC indicated that CO2 is the principal non-aqueous component; CO2 yields 

were comparable to those reported here for fluids associated with the earliest oxide 

mineralisation. 

Nitrogen and methane were also detected, but were present at much lower levels than the 

coexisting CO2; the data were reported by Lin (1989). C0zlCH .. mole ratios ranged from 

-10 for sample L YPC-88 (Priest's Cove, Land's End granite) to >20 for the other samples, 

all associated with the St Austell granite. The low absolute abundance of methane in these 

fluids precluded carbon stable isotope ratio determination of this component during the 

present investigation. 

The palreofluid carbon dioxide yield and associated 813C results of these pegmatitic quartz 

and sheeted quartz-tourmaline veins are given in Table 3.4 and Figure 3.23, from which it is 

apparent that the values (-8.8 to -10.2%0) are similar to those characteristic of the fluids 

associated with W±Sn oxide mineralisation (-7.4 to -10.0%0). This provides a common link 

between the early pegmatitic fluids and subsequent hydrothermal stages; it also supports field 

observations (Lin, 1989) which illustrate the continuum of transitional processes relating the 

pegmatitic and pneumatolytic (including tourmalinisation and greisenisation, through to early 

oxide mineralisation) stages of hydrothermal evolution throughout the Cornubian batholith. 

On this basis, the CO
2 

would seem to be a primary component of the magmatic-hydrothennal 

system, with local abundance possibly being related throughout the region to the degree of 

assimilation of predominantly pelitic, metasedimentary material into the granite protolith 

during anatexis and/or subsequent crustal contamination of magma during its ascent and 

emplacement. 

3.5.3 The Dartmoor hydrothermal system 

An attempt was made to address the question of whether CO2 , present at very low 

abundances in hydrothermal fluids associated with the earliest quartz±tourmaline±cassiterite 

mineralisation of the Dartmoor granite, could be shown to be isotopically similar to (and 

therefore probably of similar origin as) that in CO2-enriched early-stage fluids found 

associated with other plutons of the Comubian batholith. The location and paragenesiS of 

samples used are as reported in Appendix A. Stepped heating, using the 'optimised' 

extraction procedure in conjunction with static vacuum mass spectrometry, as described in 

Section 3.4.7, was applied to determine the carbon release profiles and associated B13C 

isotopic composition. The results of the analyses are summarised in Figure 3.25. 
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Figure 3.25 

Yield profiles, together with 013C as measured by static vacuum mass spectrometry, of CO2 released 
during stepped heating of quartz associated with hydrothermal mineralisation of the Dartmoor granite. 
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Sample: SW -89-156 (T7Z1) 

Sample weight: 16.7245 mg (single grain of quartz) 

Total CO2 yield in temperature range 300 to 600°C 

(corresponding to major release of fluid inclusions) 
• 18.4 ngC (1.10 ppmC) 

TeC) Yield Concentration ~\3C (J 

(ngC) (ppm C) (%0) (%0) 

200 <0.2 <0.01 nm 
250 1.0 0.06 om 
300 1.9 0.11 nm 
350 2.5 O.IS om 
600 15.9 0.95 -28.2 2.68 
800 29.4 1.76 -21.1 1.36 

Sample: SW-89-159 (T712) 

Sample weight: 13.6566 mg (single grain of quartz) 

Total CO2 yield in temperature range 300 to 600°C 

(corresponding to major release of fluid inclusions) 
.8.6 ngC (0.63 ppmC) 

T("C) Yield Concentration al3c (J 

(ngC) (ppm C) (%0) (%0) 

200 <0.2 <0.01 om 
300 1.3 0.10 om 
600 8.6 0.63 -6.0 4.13 
800 8.6 0.63 -12.4 3.96 

1000 3.1 0.22 nm 

Sample: SW-89-163 (T713) 

Sample weight: 16.9207 mg (single grain of quartz) 

Total CO2 yield in temperature range 300 to 600°C 

(corresponding to major release of fluid inclusions) 
.13.4 ngC (0.79 ppmC) 
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Figure 3.25 (continued) 

(d) Barracott mine, tourmaline-cassiterite stage 

O.SO 0 

0.45 ·s 
..-. 
~ 

0.40 ·10 

~ ,,\ u 
0.3S ·IS ~ 

l-l 0 

/ ;a 0.30 ·20 ..,. 
~ ~ 

I ....... 
'" 0.2S 

I 
.2S Ie u 

~ fl "'u 
0.20 ·30 -co 

'a 
tji! O.IS 

I 
·3S 

'-' 

:!3 
0.10 -40 .2 

>< 
O.OS ·45 

r--
200 400 600 800 1000 1200 

Temperature (DC) 

O.SO 0 

0.45 ·S 
..-. 
~ 

0.40 ·10 

~ 
:! 0.3S ·IS 

~ 0.30 ·20 t i 0.2S .2S f 
~ 

",U 
0.20 ·30 -co 

.... 
0 

~ 
O.IS ·3S 

:!3 
.2 0.10 .40 

>< 
O.OS ·45 

200 400 600 800 1000 1200 

Temperature (OC) 

Sample: SW·89·164 (T724) 

Sample weight: 18.6880 mg (single grain of quartz) 

Total CO2 yield in temperature range 300 to 600°C 

(corresponding to major release of fluid inclusions) 
• 22.9 ngC (1.23 ppmC) 

TeC) Yield Concentration li\3C (J 

(ng C) (ppm C) (%0) (%0) 

200 1.9 0.10 nm 
300 5.7 0.31 -31.7 4.46 
600 22.9 1.23 -12.5 1.03 
800 9.6 0.51 -21.3 4.30 

1000 9.9 0.53 -19.8 3.41 

Sample: SW·89·164 (T716) 

Sample weight: 21.9134 mg (single grain of quartz) 

Total CO2 yield in temperature range 300 to 600DC 

(corresponding to major release of fluid inclusions) 

• 12.4 ngC (0.57 ppmC) 

TeC) Yield Concentration lil3C (J 

(ng C) (ppm C) (%0) (%0) 

200 0.8 0.03 nm 
300 1.5 0.07 nm 
600 12.4 0.57 ·19.6 1.38 
800 15.3 0.70 nm 

1000 13.4 0.61 nm 
1200 8.4 0.38 nm 

Note: Instability problems of the instrumentation 
prevented isotope ratio measurement of the 
COl released above 6OQ°C. 



Interpretation of the salient features of Figure 3.25 is problematic, for several reasons: 

(i) It is apparent that only in two out of the five experiments did the 300-600°C CO
2 

yield (expected to contain virtually all of any fluid inclusion component) exceed that recorded 

for the subsequent (600- 800°C) step. 

(ii) Sample inhomogeneity is evident from the data presented in Figure 3.25 (d), where 

duplicate analyses produced a significantly different CO2 release profile. 

(iii) Despite precautions taken to minimise the system blank, the carbon blank yield 

associated with the quartz sample grains may be as high as 3-4ng for both the 300-6OO"C 

and 600-800°C heating steps (cf Table 3.3). The source of the significant release of carbon 

at high temperature (>600°C) from the Dartmoor samples remains unknown, as does the 

extent to which this component contributes to the total carbon released at lower temperatures. 

The stepped heating data produced during run T724 are perhaps the most instructive, as: (i) 

four isotopic measurements were recorded, whereas only two or even a single measurement 

was possible for the other samples; (ii) the CO2 yield during the 300-600°C step 

significantly exceeded that for any other step during this run and, furthermore, was 

characterised by the most precise isotopic measurement (10' error 1.03%0) of the series of 

experiments; (iii) the 300-600°C CO2 yield also exceeded the values recorded over the same 

temperature interval for all of the other samples analysed and is therefore most likely to 

represent the closest approach to any fluid inclusion component. On this basis, it would 

appear that a lower Bl3C limit of -12.5 ± 1 %0 may be tentatively attributed to the fluid inclusion 

CO2 component; this value probably includes a minor 'adventitious' component characterised 

by BI3C=-27%0, as indicated by the result for the 200-300°C step. The carbon component 

released at higher temperatures appears to be characterised by a B13C value of ca. -20%0; this 

is in close agreement with the result of the 600-800°C step during run T723, where the 

largest CO2 yield for any individual step throughout the series of experiments was recorded. 

The same isotopic value was measured, however, for the 300-600°C CO2 release in two 

instances (T723 and T726), which is perhaps best accounted for in terms of the mixing of a 

fluid inclusion component of B13C value in the range -6 to -12%0 and an 'adventitious' carbon 

source characterised by BI3C=-27%0. 

It is noteworthy that the BI3C isotopic result (-6.0±4.1 %0) for the 300-600°C step of run 

T722 supports the case for a relatively 13C-enriched component associated with the fluid 

inclusion release. The sample used in this case is representative of the earliest stage of 

hydrothermal alteration of the Dartmoor granite; it is evident that the Bl3C value of any 

associated palreofluid component is comparable to those measured by conventional mass 

spectrometry for CO2-enriched 'transitional' fluids associated with the St Austell and Land's 

End granites (Section 3.5.2). 
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In summary, the stepped heating carbon yield profiles and associated isotopic data obtained 

during this study of the earliest hydrothermal alteration of the Dartmoor granite are 

inconclusive, although tentative evidence for a palreofluid CO2 component of similar isotopic 

characteristics to the more abundant carbon found in transitional fluids elsewhere within the 

batholith was provided by isotopic data from two of the five samples analysed. 

The substantial release at temperatures >6()()OC of carbon characterised by a 013C value of ca. 

-20%0 is unlikely to include a significant fluid inclusion component; the isotopic data are, 

furthermore, not in accord with carbonate decomposition as the principal source. The origin 

of this carbon therefore remains enigmatic, although it would appear to be sample-derived 

rather than the manifestation of an enhanced procedural blank. Comparison with results 

obtained by identical procedures for samples where the pal!eofluid CO2 yield was relatively 

substantial indicates that the CO2 yield for the heating step subsequent to that during which 

the a-J3 transition of the quartz host occurred was typically in the range 3-6ngC (runs T706, 

T709 and T725; Figures 3.20 and 3.21 respectively), although a value of 9.6ngC was 

recorded during one experiment (run TI17, Figure 3.21), with a corresponding ol3C value of 

-27.3±2.2%0 (10 error). 

3.5.4 Comparative data: examples from N W England and S China 

3.5.4.1 Carrock Fell (N W England): wolframite-associated quartz veins 

Compared to the examples of hydrothermal processes typified by association with W±Sn 

oxide assemblages in the Comubian batholith region, the comparable system at Carrock Fell 

(associated with the Skiddaw granite) is distinguished by fluid inclusion evidence for a lesser 

degree of complexity, characterised by the predominance of simple, two-phase (liquid

vapour) inclusions, no post-entrapment nucleation of solid phases (daughter minerals)t and a 

salinity range restricted to between 6.8 and 9.6 equivalent wt% NaCI (Shepherd et al., 

1976). Fluid homogenisation temperatures recorded by these authors were also significantly 

lower (-235°C) than those reported elsewhere for the equivalent stage in S W England. 

The present results, given in Table 3.5, indicate a significant abundance of pal!eofluid 

carbon, predominantly as CO
2 

but also as coexisting CH4 • associated with the quartz. A 

notable feature of these data is that the methane is significantly depleted in 13C compared to 

the same component in the S W England fluids. The Ol3CIC values, however, occur within 

the range defined by the Comubian data (Table 3.4). 

t The absence of solid phases was reported by Shepherd et aL (1976), on the basis of an optical study of fluid 

inclusions in Carrock FeU vein quartz. During the present study, however, evidence for the presence of a 

carbonate phase was found in some examples; whether the carbonate was a component of the palllXlfluid, or 

derived from a microcrystalline phase intergrown with the quartz, could not be identified. 
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Table 3.5 

Carbon yield and s13e isotopic composition of fluid inclusion components, Carrock FeU vein quartz 

Sample Mass (mg) [C] l:co (ppm) s13e l:CO (%0) [C]CH (ppm) S!3CCH (%0) l:co /CH4 
2 2 4 4 2 

CF-77-98 § 985.0 18.55 -10.89** 0.92 -49.2 20.1 
1254.7 18.61 -10.93** 1.03 -47.7 18.1 

CF-77-79B § 1207.3 25.25 -11.35 0.58 -47.5 43.5 
1238.9 25.57 -11.36 0.58 -47.0 44.0 

CF-77-39A t 989.81 14.43 -7.27 2.52 -54.5 5.8 

CF-76-25 1024.73 13.98 -11.84 0.66 -39.9 21.1 
1139.79 13.58 -11.69 0.57 -42.0 23.7 

Notes: Gases for yield and carbon stable isotope analysis collected during a single heating step, 300 - 600°C, except where indicated. 

§ Analyses undertaken at the NERC Isotope Geosciences Laboratory. 

S13C l:C 

-12.7 
-12.9 

-12.2 
-12.2 

-14.3 

-13.1 
-13.2 

t Multi-step release. Yield values refer to aggregate of 300-600°C data. Carbon dioxide ~13C value refers to 400-500°C step 

(minor contribution from carbonate decomposition noted in 500 _600°C step - see Figure 26), whereas methane value is for total release in 

the temperature range 300 -600"C . 

•• Possibly includes a minor contribution from carbonate decomposition (cf Figure 3.26 and Appendix B: Table B2.7). 



Figure 3.26 

Yield profiles and corresponding 0 \3 C values of CO2 released during stepped heating of hydrothermal 
vein quartz, Carrock Fell: evidence for the presence of an associated carbonate phase. 
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The temperature at which maximum release of fluid occurred during stepped heating was 

significantly lower t than recorded for the S W England samples. Evidence for the 

decomposition of a carbonate component at temperatures >500°C was obtained in two 

examples (Figure 3.26). 

3.5.4.2 S China: Transitional stages of hydrothermal evolution of the Yanshanian 
granites. 

The transitional stages of hydrothermal evolution of granites of the Yanshanian cycle of south 

China are similar in many respect to those of S W England (Lin, 1989, and references 

therein). In particular, the Yanshanian granites are peraluminous'S' -type biotite granites, 

which evolve to biotite-muscovite granites (and locally to muscovite and Li-mica granites); 

they are composite bodies, and are characterised by a chronology of intrusive and related 

hydrothermal activity spanning 10-25Ma. 

Preliminary analyses by the present author of a small number of examples of sheeted vein 

quartz associated with quartz + wolframite± molybdenite (± beryl) assemblages from Jiangxi 

and Hunan provinces of south China showed that CO2 was the only significant non-aqueous 

volatile component in the palreofluids, with estimated Leo molalities ranging from 0.39 to 
2 

1.84. Nitrogen and methane were also detected, but were present at trace levels; the analytical 

data were reported by Lin (1989), together with relevant geological details. 

Only in two examples (XHS-02 and YOX-05, from Xihuashan and Yaoguangxian 

respectively) was methane a significant component, with CO/CH4 mole ratios of ca. 16 and 

45 respectively. It is notable that, in these cases, the Bl3C values of the coexisting CO2 were 

the most 13C -enriched of the group, indicating that the corresponding Bl3C ~ values were 

probably similar to those of the examples in which CO2 represented the only significant 

carbon-bearing component. The results of carbon stable isotope ratio analysis of the 

palreofluid CO2 are reported in Table 3.6 and Figure 3.27. 

The stepped heating release profile shown in Figure 3.27 (a) is notable in several respects: 

(i) The three isotopic data points corresponding to measurements of the fluid inclusion 

CO 2 are very consistent, with a range ofless than 0.1 %0. This is a testament to the potential 

effectiveness of the experimental procedure, under optimum conditions. 

t An abundance of relatively large inclusions (consequently requiring lower internal pressures to fracture the 

bost quartz), together with the observation tbat a discrete (liquid) CO2 pbase is not uncommon in the 

Carrock Fell quartz (T J Sbepherd, pers. comm.), is in accord with lower decrepitation temperatures. 
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Table 3.6 

Carbon yield and S13C values of fluid inclusion CO2 extracted from quartz samples associated with 
wolframite-molybdenite vein mineralisation hosted by the Yanshanian granites of southern China. 

Locality Sample reference Mass Temperature Yield Concentration 613CPDB (%0) 
(mg) eC) ijlgC) (ppm C) 

Yaoguangxian YGX-05 1105.24 -20-615 24.92 22.55 -4.12 

Xihuashan XHS-Ol 1093.29 -20-600 43.85 40.11 -5.39 

Piaotang PT-496t 889.7 -20-308 2.77 3.11 -6.6 

300-408 6.00 6.74 -5.58 

Note: t CO2 released during temperature steps beyond 408°C was contaminated by S02 despite cryogenic 

purification at -130°C, thus precluding isotopic analysis. 



Figure 3.27 

Yield profiles and Sl3C of CO2 released by stepped heating of quartz associated with 

W±Mo-bearing transitional vein systems in the Yanshanian granites of S China. 

(Extractions undertaken in the absence of oxygen and with the on-line Pt catalyst at room temperature) 
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Figure 3.27 (continued) 
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(ii) On the basis of a simple model assuming mixing of a homogeneous fluid inclusion 

component (ol3C value of -3.0%0) with an isotopically homogeneous CO
2 

blank characterised 

by a Ol3C value of -25%0, the experimental blank yield required to produce a shift of 0.1 %0 

(negative) in the fluid inclusion ODC measurement is -35ngC (corresponding to a sample

to-blank ratio of -220), for the 300-400°C step. For the two subsequent heating increments, 

the corresponding blank yield values are approximately 16ngC and 14ngC respectively, with 

the sample-to-blank ratio remaining virtually unchanged. With regard to the lowest 

temperature step (ambient to 300°C) in Figure 3.27(a), the same model indicates that the 

blank contribution to the total CO2 released during this step was ca. 143ngC, with an 

equivalent sample-to-blank ratio of -2.3. 

(iii) Incorporation of the data for the lowest temperature release (up to 300°C) results in a 

shift of 0.25%0 (negative) in the weighted mean ODC value. This indicates, for the present 

example, the magnitude of error in the fluid inclusion Ol3C measurement that would be 

incurred by the use of single-step heating (ambient to 600°C) to effect the release of CO2 for 

isotope ratio analysis. 

Table 3.6 includes the results of two single-step extractions (from ambient temperature), 

undertaken before the experimental procedure was optimised. In these cases, however, the 

substantial CO2 yields indicate that any blank correction to the fluid inclusion isotopic data 

would have been very small. 

On the basis of carbon isotope measurements of carbonate minerals, and application of the 

appropriate equilibrium fractionation factors, Zhang et al. (1984) estimated that the average 

o13C of the associated palreofluid carbon from Xihuashan and Piaotang (Jiangxi province) 

was -6.1%0 (11 samples). The associated ol3C range, however, was not given. For examples 

from the same localities, and where the palreofluid carbon component consists essentially of 

CO2 only, direct measurement of fluid inclusion CO
2 

during the present work gave ol3e 

values of -5.4%0 (sample XHS-Ol) and -5.6%0 (sample PT-496) respectively, as indicated in 

Table 3.6. 

Zhang et al. (1984) suggested that the source of the palreofluid carbon was the granite 

magma; this was also in accord with the predominantly magmatic nature of the associated 

aqueous component, as shown on the basis of hydrogen and oxygen stable isotope data by 

the same authors. 
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3.6 Discussion 

3.6.1 Salient features of the Cornubian palreofluid carbon data 

Examination of the yield and S13C data (Table 3.4) relating to quartz-hosted palreofluid CO
2 

and CH. associated with early hydrothermal mineralisation of the Cornubian batholith, 

together with information concerning the associated wall-rock lithology (Appendix A), 

reveals no discernible relationship between either the carbon speciation or 13C distribution, on 

the one hand, and whether the quartz veins are granite-hosted or emplaced within 

metasedimentary rock, on the other. In the case of granite-hosted veins, no systematic 

variation was apparent between the carbon isotope data and extent of hydrothermal alteration 

(greisenisation) of the granite, either locally or on a regional basis. 

A notable feature of the data set, on both a local and regional scale, is the large range of 

CO/CH. ratios (0.6 to >35 for the batholith as a whole), coupled with relatively small 

variation of the corresponding S13CIC values (-9.5 to -16.5%0). Whereas CO2 was the 

predominant carbon-bearing palreofluid component in almost all cases investigated, relative 

13C-enrichment of this component, characterised by S13C values up to -5.4%0 (as at Cligga 

Head) was found to be associated, in general, with enhanced concentrations of coexisting 

CH. (relatively depleted in 13C), which effectively 'buffered' variations in S13CIC. The most 

striking example relates to two samples (SW -88-3 and SW -88-3ABC, respectively) of 

methane-enriched palreofluid from South Crofty mine, where the associated CO2 

components differed in isotopic composition by > 11 %0, yet the corresponding S13CIC 

variation was < 1 %0. 

Although the SllC values of the methane component are compatible with data from subaerial 

hydrothermal systems for which pyrolysis of organic matter (thermogenesis) has been 

proposed (Welhan, 1988), arguments advanced below suggest that this was probably not the 

primary mechanism in the case of the Cornubian system. 

3.6.2 CO2 in the Comubian hydrothermal system: a primary magmatic component? 

For magmas formed primarily by the partial melting of crustal rocks (rather than a mantle 

source), as is believed to be the case for the Comubian batholith (see Chapter 1, Section 

1.1.1), the Sl3C value of carbon in the magma might be expected to correspond to the 

average S13C value of crustal rocks assimilated in the melt. Calculations by Ohmoto and Rye 

(1979) suggest that, on a global scale, the crustal carbon reservoir in sedimentary and 

metasedimentary rocks should be predominantly derived from oxidised carbon (carbonates), 

with only -22% from reduced (organic and graphitic) carbon sources, giving a mean S13C 

value of approximately -5.5%0, similar to that of the mantle. However, it seems reasonable to 
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infer that variations in crustal lithology will give rise to a wide range of B13C values in 

magmas derived from the anatexis of crustal rocks, depending on the local relative abundance 

of carbonate and organic carbon in the source rocks and, indeed, the isotopic compositions of 

these components. 

In S W England, granite magmatism was protracted from about 293 to 275Ma before present 

(Chesley et al., 1993, and references therein), resulting in the emplacement of plutons 

(generally of a composite nature) into Palreozoic metasediments and metavolcanic rocks. 

Furthermore, hydrothermal fluids responsible for the early, high temperature W±Sn oxide

bearing sheeted greisen bordered veins (and the cassiterite-bearing tourmaline veins and 

breccias) were broadly synchronous with the cooling of the individual granite magmas to 

-320°C (Chapter 1, Section 1.1.2). Evidence presented in the present work (Chapters 2 and 

5, respectively) supports suggestions that they are primarily fluids exsolved (at 700-8000C?) 

during crystallisation of the magmas at depth, and may be episodic due to the emplacement of 

younger magma within the same pluton (Chesley et al., 1993). Carbon dissolved in the 

granitic melt (in oxidised form) is likely to be partitioned as CO
2 

into the expelled, Cl-rich 

(Burnham, 1979) aqueous phase during cooling of the magma. 

It is suggested, therefore, that CO2 in the Cornubian palreofluids is a primary, magmatic

hydrothermal component, derived directly from carbon assimilated in the granitic protoliths. 

On this basis, a correlation should obtain between the degree of'S' -type character (as 

identified by e.g. 87Sr /86Sr initial ratios, initial ENd values, B180 values and peraluminosity) 

of the component intrusives of the batholith, and carbon abundance in the associated early 

post-emplacement hydrothermal fluids. The Dartmoor granite intrusive, besides being the 

largest pluton of the batholith, was derived from a protolith of notably lower sedimentary 

content, on the basis of the indices referred to above; this is in agreement with the empirical 

finding of very low CO2 abundance in the associated magmatic-hydrothermal fluids. 

3.6.3 Controls on carbon speciation and l3C distribution in the Cornubian palreofluids 

3.6.3.1 Carbon sources, fluxes and redox reactions 

Any proposed hypothesis of the geochemical behaviour of palreofluid carbon associated with 

the earliest stages of hydrothermal mineralisation of the Cornubian batholith requires an 

evaluation of the possible contributory carbon sources and also a consideration of potential 

redox mechanisms for controlling the carbon speciation. It has been postulated in Section 

3.6.2 that the primary carbon-bearing component of the hydrothermal fluids was CO
2

, 

derived from the granite magma. The presence of coexisting CH4 in the fluid inclusions 

suggests (i) partial reduction of the CO2 , prior to fluid entrapment; alternatively, or 

additionally, (ii) an external carbon source, such as via the pyrolysis of metasedimentary 

rocks within the local metamorphic aureole. 
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The model of Giggenbach (1987) for redox processes governing the chemistry of fumarolic 

gas discharges from White Island, New Zealand, provides a useful analogy in many 

respects. For example, the outlet temperature of the fumaroles, over an area of only -1 km2, 

ranges from -100°C to in excess of 700°C, thereby bridging the gap between 'geothermal' 

and 'magmatic' gases. The processes accompanying the rise of these high temperature fluids 

through the crust are therefore likely to be appropriate to a model of the magmatic

hydrothermal transition zone. Giggenbach (1987), in a detailed thermodynamic analysis, 

concluded that the overall redox process at White Island corresponds to the more or less 

successful conversion of initially oxidised, high-temperature magmatic gases (S02' CO2) to 

their reduced counterparts (H2S and CH
4

) which are stable in the presence of lower 

temperature rock. According to Giggenbach (1987), CH4 and NH3 are formed at depth 

within the hydrothermal zones, where redox conditions are governed by the Fe(ll) -Fe(lll) 

buffert of the rock system. 

Giggenbach (1987) suggested that, under such conditions, prolonged interaction of a 

cooling, CO2-rich gas with the rock matrix will cause gradual oxidation of the latter, with 

concomitant generation of methane: 

In the Cornubian palreofluids, the wide range of CO/CH4 ratios on a local scale, as seen 

from the Hemerdon and South Crofty data respectively (Table 3.4), together with the 

associated narrow range of 013Cl:C values, suggests that the fluid chemistry was primarily 

controlled by localised redox reactions, rather than through the operation of large scale 

buffering processes. As discussed in Chapter 5 of the present work, these fluids were 

generally high salinity brines and hence, at magmatic-hydrothermal temperatures, acidic. As 

noted by Giggenbach (1987), such fluids would be expected to promote wall-rock alteration 

through reactions such as: 

1be neutralisation of granite-derived, high-temperature acidic fluid by wall-rock interaction 

has been proposed by Bottrell and Yardley (1988) as the mechanism of oxide mineral 

formation and precipitation (e.g. cassiterite and specular hrematite) in the St Austell district of 

t It has been suggested that, for basaltic and andesitic magmas, a non-specific buffer simply involving 

Fe(ll)-Fe(lll) is possibly a more realistic approach, in the absence of detailed mineralogical information, 

than the commonly adopted magnetite-h;ematite system for evaluating redox buffering by the rock matrix; 

this issue is discussed in detail by Giggenbach (1987). (FeO) and (Fe0l.5) are used to represent, 

respectively, Fe2+ and Fe3+ incorporated into an unspecified oxide or aluminosilicate mineral. 
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S W England. Whether hydrogen generated under these conditions might react with CO
2 

in 

the magmatic-hydrothermal fluid to give Fischer-Tropsch type synthesis of methane 

(catalysed by wall-rock constituents) is a matter for speculation, although equilibrium 

modelling suggests that the process is thermodynamically favourable (Ellis, 1957). 

Hrematite is commonly associated with W±Sn oxide mineralisation in S W England, 

particularly in the case of sheeted quartz greisen vein systems. In the absence of redox 

buffering, hrematite will oxidise methane; the kinetics of this process have been investigated 

by Kiyosu and Krouse (1989), who also examined the associated carbon isotope 

fractionation (under flow conditions, to eliminate the possibility of carbon isotope exchange 

between the product CO2 and reactant CH4). Abiogenic oxidation of methane is possibly a 

significant mechanism for fractionating carbon isotopes in natural systems and has been 

postulated to explain the coexistence of light hydrocarbon gases enriched in l3C and CO
2 

depleted in i3C (see Kiyosu and Krouse, 1989, and references therein). The temperature 

dependence of the oxidation rate of methane by hrematite in the temperature range 450 to 

650°C was given by Kiyosu and Krouse (1989) as: 

10gIOk = (-1.75 x 103 IT) - 0.69 (min-I) 

The temperature dependence of the corresponding kinetic isotope fractionation, a, (= kl / k
13

) 

of the stable carbon isotopes was given by the same authors as: 

The oxidation of methane by hrematite at lower temperatures, and the associated kinetic 

isotope effect, can thus be estimated by extrapolation from these empirical equations. For 

example, as noted by Kiyosu and Krouse (1989), the time required for 10% of a methane 

reservoir at 200°C to be oxidised by FeZ0 3 is _10-2 years. Under such conditions (below 

-320°C), carbon isotopic equilibration between COz and CH4 would be most unlikely (as 

discussed in Section 3.2.9), hence the kinetic model is appropriate. In view of geological 

models invoking successive pulses of magmatism and associated magmatic-hydrothermal 

mineralisation within individual plutons of the Comubian batholith (Chesley etal., 1993), 

oxidation of methane in high temperature hydrothermal fluids by reaction with earlier- formed 

hrematite may be of some significance in the S W England system. 

In contrast, a contributory mechanism to methane/ormation in the hydrothermal fluids is the 

oxidation by CO2 of ammonia (or ammonium, in NH4+ -substituted micas). This reaction is a 

potential source of nitrogen in the palreofluids; a more detailed discussion is therefore 

deferred to Chapter 4 of the present work. Equilibrium thermodynamic modelling indicates 

that such a process is feasible under the temperature and pressure conditions appropriate to 

Comubian magmatic-hydrothermal fluid evolution (Section 4.8.5). 
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3.6.3.2 Carbon stable isotope systematics 

In Figure 3.28, the oi3C data of methane from the Cornubian palreofluids are plotted against 

the 013C values of the coexisting CO
2 

component, together with isotherm contours 

corresponding to isotopic equilibrium at the stated temperatures. Also included, for 

comparative purposes, are the Carrock Fell data. It is apparent from these results that the COz 

and CH
4 

components are unlikely to be in isotopic equilibrium, as nearly all of the data points 

indicate temperatures significantly below the kinetic 'blocking' temperature of -320°C 

proposed by Sheppard (1981). 

The anomalous 813CC02 value of +4.2%0 recorded for sample SW-88-3 from South Crofty, 

together with the unusual predominance of methane as the major carbon-bearing species in 

the fluid, would be difficult to explain except on the basis of the postulate that the coexisting 

methane is derived from closed system reduction of a primary magmatic-hydrothermal CO2 

component. Furthermore, the concentration of coexisting N2 is significantly higher (in terms 

of both absolute yield and estimated Nz (aq.) molality) than recorded for any other sample in 

this study (see Figure 4.9), which is in accord with a common source for both the methane 

and nitrogen palreofluid components. If it is assumed, for modelling purposes, that no 

secondary carbon source contributed to the fluid, the magmatic-hydrothermal CO2 

component would have been characterised initially by a 013C value equal to the weighted 

mean of the present-day 8l3Cco and 8 l3CCH values, i. e. -15.6%0 (see Table 3.4). If the 
2 • 

postulated CO
2 

reduction is considered irreversiblet , and the reaction occurred at a 

temperature >320°C (i. e. above the suggested kinetic 'blocking' temperature for carbon 

isotope exchange and also prior to fluid entrapment by crystallisation of the host quartz), then 

the process may be approximated to that of fractional (Rayleigh) distillation. This is the 

situation whereby infinitesimal aliquots of isotopically-equilibrated product are successively 

removed from the reactant mixture, with no subsequent back reaction or isotopic exchange. 

The form of this well-established model (Rayleigh, 1896; see also Broucker and Oversby, 

1971, and Hoefs, 1987) appropriate to the present case is: 

R/Ro = F(lIa)-1 

where Ro is the initial i3C/12C ratio, R is the corresponding i3C/IZC ratio in the residuum, F 

is the fraction of the initial component remaining and a is the eqUilibrium fractionation factor 

for carbon stable isotope exchange between COz and CH4• 

t Dubessy et al. (1989) reported values of _1027 to 1020 for the equilibrium constant for ammonia oxidation 
by carbon dioxide over the temperature range 300-900DC (although their estimates appeared to be assume 

ideal gas behaviour and a total pressure of 1 atm.). If this mechanism was primarily responsible for CO
2 

reduction in the present case, the assumption of irreversibility would seem to be reasonable. 
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Figure 3.28 

Carbon stable isotope ratios in hydrothermal palleofluid methane 
versus carbon dioxide, S W England (.) and Carrock Fell (0). 
Isotherms (0C) corresponding to isotopic equilibrium are calculated 
from the data of Riebet et al. (1977). 
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Table 3.7 

Comparison of carbon isotope equilibrium fractionation factors aCO _ CH compatible with Rayleigh distillation versus batch equilibration models for closed - system CO2 reduction 
2 4 

as the origin of fluid inclusion methane, measured CO/CH, ratios and associated 13C distributions. 

Rayleigh fractionation model 'Batch' equilibration 

Locality (mine) Sample 013C u: 013C 
CO2 

F I~ l000lo&a T(°C) I 1000 loge a T(°C) 

S W England 

HemeJdon HEM-80-1 -10.4 -9.5 0.97 1.0276 27.2 270 27.1 271 

HEM-80-39 -9.5 -6.7 0.89 1.0248 24.5 304 25.4 291 

CliggaHead CH-88-1 -12.7 -5.4 0.74 1.0254 25.1 295 28.4 256 

South Crofty SC-88-3 -15.6 +4.2 0.37 1.0206 20.4 370 31.6 221 

SC-88-3ABC -16.5 -7.0 0.66 1.0241 23.8 313 28.3 257 

-16.4 -7.3 0.66 1.0229 22.6 333 26.9 275 

Old Gunnislake SW-84-18 -9.5 -7.5 0.92 1.0234 23.1 325 23.6 317 

South Bedford SW-84-20 -11.4 -9.8 0.94 1.0279 27.6 265 27.7 265 

-11.2 -9.6 0.95 1.0300 29.6 243 29.7 241 

Prince of Wales SW-84-27 -12.8 -7.0 0.80 1.0265 26.1 282 28.6 254 

NW England 

Carrock Fell CF-77-98 -13.2 -11.4 0.95 1.0391 38.4 162 38.1 162 

CF-77-79B -12.2 -11.35 0.98 1.0394 38.6 160 37.9 166 

CF-77-39A -14.3 -7.27 0.85 1.0462 45.2 120 47.3 109 

CF-76-25 -13.1 -11.84 0.95 1.0284 28.0 260 27.9 261 

Notes: See text (Section 3.6.4.2) for an explanation of terms used 

F values were estimated from the measured CH. and CO
2 

yields (Table 3.4) 

Temperatures were obtained from the CO
2 

- CH. fractionation curve of Friedman and O'Neil (1977) 



From the definition of the 0 value, it follows that: 

R/Ro = (1 + ~J ~(1 +~) = 1000 + 8t = F (1/a) - 1 
1000 / I 1000 1000 + 8 j 

where OJ and Of are the respective initial and final 013C values of the palreofluid CO2• 

Taking logarithms of both sides, with subsequent rearrangement, gives: 

~ = HIOg,,(~::~: )fog"p}f 
from which the fractionation factor appropriate to this model may be detennined. Substitution 

of the experimentally-determined values of OJ, Of and F (Table 3.4) shows that the 

corresponding (leo
2 
_~ = 1.0206, equivalent to a 20.6%0 difference between the ol3C 

values of the product CH
4 

(
13C-depleted) and reactant CO2• In tum, this corresponds to a 

temperature of -370°C, on the basis of the data compilation of Friedman and O'Neil (1977). 

Such a temperature value is realistic in the present example, indicating that this simple model 

is consistent with the experimental findings. An alternative model, in which equilibrium 

fractionation is maintained throughout ('batch' equilibration), may be represented (e.g. 

Mattey et al., 1989) by: 

In this case, the corresponding value of 10310~(l is 31.6, equivalent to an equilibration 

temperature of only -220°C, which is unrealistically low from an energetics viewpoint and 

also significantly less than the probable entrapment temperature of the fluid. This model 

corresponds to the situation depicted in Figure 3.28. 

The Rayleigh fractionation model, however, is not generally compatible with the carbon 

speciation and isotopic data presented in this work. In Table 3.7, (l values determined on the 

basis this model are listed, together with the corresponding equilibration temperatures, for all 

samples where yield and ol3C data of coexisting CH4 and CO2 components are available. It is 

apparent that only for samples SC-88-3ABC and SW-84-18 is a realistic temperature 

predicted by the model; furthermore, in the latter example, the batch equilibration model 

predicts a broadly similar result. A surprising feature of Table 3.7 is that, for many 

examples, isotopic equilibration temperatures predicted on the basis of the two different 

models are in close agreement, although the actual values are outside the region where 

equilibrium effects are likely to control the 13C distribution. 

A further alternative for consideration is the hypothesis that only kinetic isotope effects are 

responsible for carbon isotope fractionation during the postulated CO2 reduction. Certainly, 

this would be expected to give rise to 13C enrichment of the residual CO2 component but, in 

the absence of experimental data, a quantitative assessment is not possible. 
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Tentative support for the hypothesis of kinetic control of 13C distribution in the pallOOfluids is 

provided by a comparison of the Cornubian and Carrock Fell methane 013C results with data 

reported for low-temperature bacterial processes involving CO
2 

reduction (as prevalent in 

older sediments), where isotopic fractionation is clearly mediated by kinetic effects and 

013C<-60%o (Schoell, 1980, 1988). A progressive temperature reduction, from -350-4SOOC 

for the Cornubian hydrothermal system, -250°C for Carrock Fell, and <100°C(?) for 

bacterially -produced methane, appears to be correlated with a systematic 13C depletion. 

Whilst the possibility of a palreofluid methane component derived from a separate carbon 

reservoir (metasediment pyrolysis?) rather than reduction of primary, magmatic

hydrothermal CO2 cannot be entirely excluded, the relative insensitivity of o13CIc values to 

local palreofluid CO/CH4 ratios, coupled with the evidence for isotopic diseqUilibrium, 

renders this improbable as the major source. 

Occurrences of bituminous hydrocarbons at or near granite margins in S W England, 

particularly the northern margin of the Cammenellis granite (i.e. in the vicinity of South 

Crofty mine) have been reported over many years (see Bath et al., 1986; Parnell, 1988). At 

South Crofty mine, viscous hydrocarbon seeps from fracture zones in the granite are still 

periodically discovered; these occur within tens of metres of the contact with the local 

Devonian slates, at sites where mining activity has dilated the fractures. The source of these 

hydrocarbons is probably the Devonian slates (killas), which are particularly enriched in 

organic carbon at this locality (Parnell, 1988) despite episodes of regional and contact 

metamorphism. 

It is reasonable to infer that any methane component resulting from the thermal degradation of 

local sediments or metasediments would be associated with water derived from metamorphic 

dehydration reactions. However, hydrothermal quartz veins hosted by the Dartmoor granite 

and located well away from the contact with regional metasedimentary rocks, are 

characterised by palreofluid water oD values indistinguishable from those recorded for the 

nearby Hemerdon system, where hosting of some veins by the metasediments occurs. On 

this basis, therefore, there is little evidence to support the case for a significant pyrolytic 

methane component in the Hemerdon fluids. Early-stage palreo-hydrothermal waters 

elsewhere in the Cornubian region, however, are distinguished by a relative enrichment in 

deuterium; this might be indicative of a local 'metamorphic water' component (Primmer, 

1985), or may alternatively be attributed to other causes as discussed in Chapter 2 of the 

present work. 

3.7 Summary and conclusions 

The speciation and stable isotope characteristics of carbon in ancient hydrothermal fluids 

associated with the Cornubian batholith indicate that CO2 was a primary component of 
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exsolved magmatic-hydrothennal fluids associated with pegmatites and the earliest stages of 

oxide minemlisation in the region. Palreofluid carbon abundance was thus controlled by (and 

is correlated with) the degree of incorporation of sedimentary material into the component 

granitic melts during anatexis, as measured by well-established indices of the 'S'-type 

character of the respective individual plutons. In accordance with this view, fluids associated 

with high - temperature hydrothermal alteration of the Dartmoor granite were found to contain 

very low abundances of carbon; the associated isotopic data tentatively suggest a common 

link with CO2 -enriched fluids associated with other component intrusives of the batholith. 

The range of Comubian palreofluid 013C~ values is relatively narrow, despite significant 

variations in the associated C021 CH4 ratios. Together with evidence for isotopic 

disequilibrium between the oxidised and reduced carbon species, this suggests that the 

primary CO2 component was characterised by a ol3C value closely approximating to the 

weighted mean of the measured fluid inclusion 013Ccoz and 013CCH4 data, and that any 

secondary sources of carbon, such as the pyrolysis of local low -grade metasediments at high 

crustal levels, were either absent or only of minor significance. 

The present distribution of CO2 and CH4, as determined from fluid inclusion analysis by 

stepped heating methods, is probably the result of partial conversion of the initial, oxidised 

carbon component to methane, through fluid/wall-rock interaction. It is suggested that 

localised redox reactions involving Fe(II) ~ Fe (III) and NH.+ --+ N2 probably controlled the 

carbon speciation. The associated 13C distribution in the fluids would seem to be best 

explained by kinetic fractionation of the carbon stable isotopes during such processes. 

An investigation of stepped heating procedures for the extraction and isotopic characterisation 

of quartz-hosted fluid inclusion CO2 at the micromole to nanomole level has shown that the 

associated procedural carbon blank yield may be reduced to the lowest levels by: (i) rigorous 

sample preparation procedures, including minimal exposure to atmosphere following 

ultrasonic agitation in dichloromethane immediately prior to loading into the extraction line 

(as recommended by Mattey etal., 1989); (ii) in vacuo stepped heating, with carbonaceous 

release below 300°C being discarded. 

Procedures involving the application of stepped combustion prior to incremental heating in 

vacuo and, in particular, the exposure of extracted sample gases to platinum at high 

temperature, were found to have a deleterious effect. Excellent agreement was generally 

obtained between ol3CC02 values obtained by 'optimised' stepped heating, on the one hand, 

and direct analysis of CO2 released by crushing of the host quartz, on the other. 

Application of the stepped heating procedure to the extraction of fluid inclusion CO
2 

from 

sing1e quartz grains (-12-20mg), for carbon stable isotope analysis by high sensitivity. static 

vacuum mass spectrometry, using the instrument described by Carr et al. (1986), has shown 
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that under optimum conditions, and where the isotopic composition of the sample gas is 

enriched in 13C by up to -20%0 relative to the associated procedural blank component, 2-3 

nanomoles of sample gas may be analysed with an attendant total extraneous contribution to 

the 813C value that is less than the analytical precision of the measurement (i. e. <± 1 %0, at the 

10' level). 

A procedure was devised to determine the al3c values of both fluid inclusion methane and 

coexisting carbon dioxide, in examples where the former may be present at sub-ppmC levels 

with respect to the quartz host. Using low blank, stepped heating (in vacuo) to extract the 

fluid components, optimum allC reproducibility of ±0.5%0 was obtained on samples as small 

as 60 nanomoles of methane, with excellent replication of yield values. Isotopic analyses 

were undertaken USing 'conventional' mass spectrometry in all cases. 

3.8 Suggestions for further research 

An ultra-high sensitivity carbon stable isotope ratio mass spectrometer to replace the 

instrument described by Carr et al. (1986) was under development during the period in which 

the experimental work for the present dissertation was undertaken. Referred to as 'MS86' 

and described by Prosser et al. (1990), thermal degradation effects have been reduced by the 

use of a closed ion source; incorporation of this type of source design was made feasible by 

the lower operating pressure associated with the reduction in sample gas aliquot size. The 

advantages conferred by the arrangement are that, firstly, the half-life of CO2 in the ion 

source is extended to 450 seconds; secondly, increased ionisation efficiency. The resulting 

sensitivity enhancement minimises the attendant loss of precision associated with the analysis 

of smaller samples. Recent refinements to this instrument and the associated gas preparation 

and handling system have resulted in a level of performance whereby 10pmol to 1 nmol CO
2 

may be analysed to an accuracy within ±0.5%0, with attendant precision only becoming 

worse than -± 1 %0 for < 80pmol of gas (Yates et al., 1992). 

These developments, including the significant reduction of procedural carbon blanks during 

stepped combustion (Yates et al., 1992) offer significant potential benefits to further research 

based on the present study. In particular, the isotopic characterisation of coexisting reduced 

and oxidised carbon in fluid inclusions may now be feasible for Significantly lower 

abundances of these components than has hitherto been possible, subject to minor 

modifications to the gas handling system so as to permit the separation and isolation of 

extracted CO2 and CH4• 

From data given in Yates etal. (1992), a typical carbon procedural (combustion) blank yield 

over the temperature range 300-600°C (as used for palreofluid release) is -3ngC. A 

Significant proportion of this, however, presumably derives from the use of a Pt 'packet' for 
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containing the loaded sample; this would not be required in the case of quartz grain samples 

for fluid inclusion analysis. On this basis, it would appear that a lower limit of -5 nmol of 

CH4 is required to produce an acceptable minimum sample : blank ratio of -20. However, this 

assessment neglects any contribution of extraneous, surficial carbon associated with the use 

of stepped heating. Vesicle opening by crushing would be the only way to virtually eliminate 

this adventitious component, with precautions taken to minimise metal- to -metal contact, 

which in itself may give rise to methane formation (Andrawes and Gibson, 1979). Further 

development work on sample extraction and preparation protocols therefore remains to be 

done to fully benefit from the enhanced mass spectrometer sensitivity. 

In this context, it is noteworthy that a comprehensive investigation by Yates (1992) of carbon 

blanks associated with stepped combustion, using the ultra-high sensitivity MS86 mass 

spectrometer and associated sample preparation facility, showed that carbon contamination in 

any single experiment was highly variable in both 513C and absolute yield. Furthermore, the 

blank was not totally controlled by the sample preparation protocol utilised, but also by 

'random' contamination events. 

Improvements in the direct measurement of D /H ratios in methane by static vacuum mass 

spectrometry in recent years has resulted in the possibility of determining 5D values to within 

±20%o on nanomole quantities of gas, provided that the associated 13C / IlC ratio is known 

(Morse, 1991). With further refinements to improve the attendant precision, the possibility of 

hydrogen stable isotope analysis of fluid inclusion methane at the nanomole level may be 

realised, thereby providing an additional potential discriminant for elucidation of the source 

of reduced carbon in palreo-hydrothermal systems. 

Further analyses of the Dartmoor quartz samples, using larger quantities of material (multiple 

grains), are needed to confirm or refute the tentative data which suggest the presence of a 

Dartmoor palreofluid carbon component of similar isotopic characteristics to that present, in 

greater abundance, in fluids associated with pegmatitic and early hydrothermal alteration of 

other granite intrusives in the Comubian region. 

Experimental data are needed on reaction rates and carbon isotope fractionation during CO
2 

reduction by Fe (III) and NH/-bearing wall-rock components under hydrothermal 

conditions, to explore further the viability of such reactions as the primary source of methane 

in the ancient Comubian fluids. 

148 



Chapter 4 

Nitrogen stable isotope characterisation of palreo-hydrothermal 
fluids, S W England 

4.1 Synopsis 

The isotopic characterisation of traces of nitrogen species in ancient hydrothennal fluids 

provides a constraint on models relating to the source of the fluid. Reported here is the 

development and application of techniques, devised for the preparation and determination of 

nitrogen stable isotope ratios at the sub-nanomole level, to investigate the isotopic 

composition of trace levels of nitrogen in early mineralising fluids associated with granite 

cupolas of the Comubian batholith, S W England. 

Regional variations in the fluid inclusion nitrogen yield are compared with published values 

for the ammonium contents of the associated granite, pegmatites and hydrothennally -altered 

rocks. Comparisons are also made with ammonium abundances and nitrogen stable isotope 

distributions in Palreozoic metasediments from the thermal aureole of the Dartmoor granite. 

Potential sources of the fluid phase nitrogen are assessed, with reference to the isotopic 

composition of nitrogen reservoirs in both the batholith and in the metasedimentary rocks. 

The speciation of nitrogen under hydrothermal conditions is discussed and equilibrium 

thermodynamic modelling used to investigate the reaction of reduced nitrogen with carbon 

dioxide, which is also present in the palreofluids, under a variety of conditions corresponding 

to crustal environments. 

4.2 Introduction 

4.2.1 Nitrogen stable isotope abundances in the terrestrial environment 

The average natural abundance of 15N in present-day atmosphere is 0.3663% (Junk and 

Svec, 1958). As this value is constant within analytical precision, atmospheric nitrogen is a 

reliable standard for natural lsN abundance measurements (Mariotti, 1983). Results are 

usually presented in the delta notation, where: 

= 103 
x [ asample-AIR - 1] %0 

Fractionation factors (a) for equilibria involving nitrogen exchange are summarised in Figure 

4.1. 
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Figure 4.1 

Temperature dependence of a-values for equilibria involving nitrogen exchange 
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Figure 4.1 (continued) 

Temperature dependence of a-values for equilibria involving nitrogen exchange 
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In contrast to the wide range of olsN values encountered in extraterrestrial samplest , olsN 

values of terrestrial nitrogen and nitrogen compounds generally occur in the range from -20 

to +20%0 relative to atmospheric nitrogen, with the notable exception of natural gas deposits, 

for which values from -20 to +45%0 have been recorded. 

Compared to other light elements that occur as more than one stable isotope and are 

widespread in nature, relatively little has been published in the field of nitrogen isotope 

geochemistry. Part of the explanation for this may be that nitrogen abundance and isotopic 

composition in the upper lithosphere are essentially controlled by biological rather than 

inorganic processes (Utolle, 1980). Kinetic, rather than equilibrium, fractionation of 

nitrogen isotope distributions occurs under these circumstances. 

The present investigation is concerned with the origin of molecular nitrogen that occurs as a 

trace component in early hydrothermal palreofluids associated with the granite cupolas that 

collectively form the Cornubian batholith, S W England. A potential source of the nitrogen is 

the oxidation of NH
4
+, which is an abundant species in both the regional low-grade 

Palreozoic metasediments and locally within the batholith. Also to be considered is the 

evidence reported by Kelley etal. (1986) and Turner and Bannon (1992) for a palreo

atmospheric component in these fluids, as suggested by noble gas isotopic studies. 

The stratigraphic ages of the major Devonian and Carboniferous metasedimentary rock 

formations of the region are considered elsewhere in the present work (Section 6.3). From 

the Phanerozoic world maps of Smith et al. (1973), it is evident that the latitude of 

S W England during the deposition of the original pelagic sediments was -1OoS. 

Sedimentation in the region during these periods is believed to have taken place in marine 

basins, some of which were deep (Selwood and Durrance, 1982; Thomas, 1982). 

4.2.2 Biological processes affecting the distribution of nitrogen isotopes 

The three primary processes involved in biological utilisation of nitrogen are: (i) fixation, 

whereby molecular nitrogen is reduced to ammonia; (ii) oxidation of ammonia to nitrite 

(nitrification) and subsequently to nitrate; (iii) denitrification i. e. the reduction of the nitrate 

ion to nitrogen gas. This latter process, involving bacterial degradation of organic matter in 

anoxic environments, is probably the only significant mechanism for generating molecular 

nitrogen from nitrogen compounds (Hutchinson, 1944; Hoefs, 1987). Vaccaro (1965) 

estimated that, without denitrification, the present rate of burial of organic nitrogen in marine 

sediments would deplete the atmospheric reservoir of nitrogen in about lOOMa. Indeed, it 

has been suggested (Lovelock, 1972) that if all biological activity were to cease, the 

t IOD microprobe measurements have shown that, for nitrogen associated with SiC grains in carbonaceous 

meteorites, al~ values range from -850 to +4300'1'00 (Zinner eraL, 1987; Tang, Anders el aZ., 1988). 
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concentration of atmospheric nitrogen would decrease over geological time from the present 

value of 78.084% (Pollack and Yung, 1980) to trace levels, as the most thennodynamically 

stable form of nitrogen is as nitrate ion (in solution in the oceans). 

4.2.3 Kinetic isotope effects 

Investigations of nitrogen kinetic isotope effects for the major biological processes occurring 

in nature have been reviewed by Utolle (1980) and Hoefs (1987). Essentially, isotope 

fractionations during the fixation of molecular nitrogen by autotrophic and heterotrophic 

bacteria are small. Hoering and Ford (1960) were unable to detect any fractionation between 

atmospheric nitrogen and biologically-synthesised matter; Delwiche and Steyn (1970) 

recorded UN depletion by about 5%0 in the organic material. As a result of the isotope 

fractionation effect associated with denitrification, the avemge BISN value of dissolved nitrate 

in the marine environment is about +6%0 (Cline and Kaplan, 1975; Sweeney et al., 1978). 

4.2.4 The oceanic environment 

The contribution of the various sources and removal mechanisms of nitrogen compounds 

to/from the oceanic reservoir have been estimated by Holland (1973), Emery et al., (1955) 

and Delwiche (1970). Most of the nitrogen in the oceans is present as N2 (aq)' in secular 

equilibrium with atmospheric molecular nitrogen. NH4+, N03- and N02- are also present; the 

concentrations being intimately linked to biological activity which in tum is dependant on 

locality, season and depth. Nitrogen input is primarily via atmospheric precipitation, river 

water (with organically-bound nitrogen present in detrital matter, besides ammonium and 

nitrate ions in solution), and also the biological fixation of molecular nitrogen by blue -green 

algre (Cyanophycere) or bacteria (Cyanobacteria). Losses of nitrogen from the oceans occur 

through the processes of denitrification, as discussed above, and sediment burial (Cline and 

Kaplan, 1975; Sweeney etal., 1978). Nitrogen isotopic compositions of some common 

components of the oceanic reservoir are summarised in Table 4.1. 

4.2.5 Diagenesis of nitrogen in sediments 

The fate of organic nitrogen, from early diagenesis to amphibolite facies, has been 

summarised by Dubessy and Ramboz (1986). A two-stage release of nitrogen was 

described, after Tissot and Welte (1984). During early diagenesis, NH4+ is released through 

microbial processes at near surface temperatures, via the degradation of proteins (mainly 

from algre, bacteria and plankton). Humins and ultimately kerogen are also formed during 

this stage. At higher temperatures (l50-250°C), however, thermal maturation of kerogen 

(metagenesis) releases N2, by the breakdown of heterocyclic structures containing C=N-C 

bonds. During diagenesis, the mobilised ammonium may be incorporated into clay minerals 

(Mortland,1958). 
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Table 4.1 

Nitrogen stable isotope ratios in some common components of the oceanic reservoir 
(after aine and Kaplan, 1975). 

Range in Ol~ (%o~ Mean Ol~ (%o~ 

Organisms: 

Phytoplankton +5.2 to +9.7 +7.5 

Zooplankton +12.8 +12.8 

Fish +9.9 to +20.5 +15.9 

Dissolved inorganic nitrogen: 

Nz - 0.2 to +0.7 +0.4 

N0
3
- +4.8 to +7.5 +6.2 

Ammonia +6.5 to +7.5 +7.0 

Sediments: 

Ammonia +2.9 to +5.3 +4.1 

Organic nitrogen +4.7 to +6.0 +5.4 

Total nitrogen +5.3 to +13.4 +5.7 

Precipitation (rain): 

N0
3
- -7.2 to +3.4 - 1.7 

Ammonia -0.1 to +9.0 +4.6 

Notes: 1. The precipitation data were recorded at a continental station and therefore may not be applicable to 
oceanic input. 

2. Rau et aI. (1987) give a more recent, though not as comprehensive, compilation of ~uN ranges for 
selected oceanic nitrogen reservoirs. 



4.2.6 Nitrogen stable isotope distributions in igneous rocks 

In general, more attention has been focused on natural variations in the nitrogen isotope 

abundance ratio in meteorites, lunar rocks and planetary atmospheres than on terrestrial 

samples. Geiss and Bochsler (1982) summarised the data available at the time. With regard to 

terrestrial igneous rocks, Wlotska (1972) and Sakai et al. (1984) reviewed the distribution of 

nitrogen isotopes in igneous systems, as indicated by data available at the respective times. A 

more recent study was undertaken by Zhang (1988). 

Mayne (1957), in a study of thirteen samples of various rock types, ranging from Pre

Cambrian dunite to a 1942 -erupted olivine basalt, found a substantial variation (by a factor of 

about 25) in the yield of nitrogen extracted and also reported an inverse correlation between 

815N value and nitrogen concentration. Negative 81SN values were reported for five of the 

thirteen samples. Apart from one sample of obsidian of recent age, which gave 8lSN of 

+30.9%0, nitrogen isotope data ranged from -15.6 to +9.9%0. 

Scalan (1958), in a much more comprehensive survey (134 analyses), measured 815N values 

of -4 to +16%0, with +2 to +4%0 as the most common range and an average value for all 

determinations of +4.9%0. Only five samples exhibited negative 81SN values; it was 

suggested that, in these cases, the preparation or handling was probably responsible for 

fractionation of the sample. Thus, the finding by Mayne (1957) that isotopic variation varied 

from 815N <0 in rocks with high nitrogen concentrations to 81SN>0 in rocks with little 

nitrogen was not supported. Scalan (1958) also reported that most of the nitrogen contained 

in the igneous samples investigated was in the form of the ammonium ion. The same author 

also noted that if the molecular nitrogen of the Earth's atmosphere was derived from this 

source, only equilibria involving the ammonium ion would give rise to significant 

fractionation of nitrogen isotopes, at temperatures in excess of 8ooK. 

Becker and Clayton (1977) reported that 81SN values of ocean island basalts (OIB) and 

ultramafic rocks were close to + 17%0. Since then, several investigations of the nitrogen 

isotope geochemistry of oceanic basalts have been reported, generally focusing on the 

implications for the concentration and isotopic composition of nitrogen in the Earth's mantle 

(Sakai etaZ., 1984; Exley etal., 1986/87; Javoy etaZ., 1986; Javoy and Pineau, 1986; 

Zhang, 1988). Considerable variation exists between the oceanic basalt data sets, both in 

terms of nitrogen concentration and 81SN values. A wide range of nitrogen concentrations 

and 815N values has similarly been reported for nitrogen within natural diamondst (Hirsch 

elal., 1986; Wand, 1980; Becker, 1982; Javoy etal., 1984). 

t About 98% of natural diamonds (type I) contain between 0.003 and 0.3 wt% of nitrogen as impurity. 
largely as 'voidites'. 
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Boyd et al. (1987) and Boyd (1988), reported isotopic unifonnity of diamond phenocryst 

coats on a regional scale, suggesting a unifonn nitrogen reservoir underlying the continental 

lithosphere, and having a S15N value close to -5%0 (and similar to the results presented by 

Javoy et al., 1986, for volcanic gases). Furthennore, the isotopic unifonnity of this mantle 

reservoir appeared unchanged since at least the mid-Archean, on the basis of the age of 

samples included in that study. If this postulate is correct, degassing of magma during ascent 

may explain why the nitrogen isotope distribution in both MORB and OIB glasses does not 

reflect the value of a unifonn nitrogen reservoir at depth. 

4.2.7 Atmospheric nitrogen 

As noted by Pollack and Yung (1980) and Holland (1984), the relationship between 

atmospheric nitrogen and that stored in the crust and mantle, both as molecular and in 

combined fonn, is complex. It relates to factors such as the relative importance of early 

catastrophic degassing (Fanale, 1971; Sarda, 1985) compared to continuous degassing of the 

Earth, the mechanism of planetary accretion and core fonnation, and the potential transfer of 

nitrogen to the mantle via subduction. Eugster and Munoz (1966) suggested that 

decomposition of ammonium -bearing silicates is a possible source of atmospheric nitrogen. 

Little is known about the isotopic composition of nitrogen in the Earth's early atmosphere. 

For the purpose of the present investigation, the report by Gibson et al. (1985) that cherts of 

age 3.5Ga from Baberton (South Africa), that have remained closed to argon loss and not 

been subjected to thennal metamorphism (De Wit et al., 1982), contained nitrogen of similar 

isotopic composition to present-day atmosphere (within experimental error), suggests the 

possibility that the distribution of nitrogen isotopes in the atmosphere has remained constant 

since at least Archean times. 

4.2.8 Nitrogen stable isotope distributions in metamorphic rocks 

It appears that little has been published in this field. Papers by Haendel et al. (1986) and 

Junge et al. (1990), together with references contained therein, are the only reports known to 

the present authort. The most comprehensive investigation is by Haendel et al. (1986), who 

t Since this chapter was prepared, Bebout and Fogel (1992) have published a comprehensive study of 

nitrogen isotope variations in progressively metamorphosed sedimentary rocks of the Catalina Schist. a 
subduction-related metamorphic terrane in southern California. These authors discussed the nitrogen data in 

the context of progressive devolatilisation, together with mechanisms of nitrogen release into the fluid 

phase during metamorphism. The nitrogen systematics appeared to be in accord with N
2
-NH

4
+ exchange 

(using the nitrogen isotope fractionation factors of Hanschmann, 1981) and a devolatilisation process 

intennediate between batch volatilisation (non -incremental release, with all of the released fluid equilibrated 

with the rock) and Rayleigh distillation (sequential removal of infinitesimal aliquots of fluid, each 

equilibrated with the rock system). It was noted that the measured depletion in nitrogen concentration, and 

associated &15N shifts, were incompatible with NH3-NH4+ equilibrium exchange at 350-6000C, the 

temperature range over which most of the devolatilisation occurred. 
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investigated the content and isotopic composition of 'fixed' nitrogen (ammonium) in 

metasedimentary rocks from prograde metamorphic zones in the Erzgebirge, eastern 

Germany. It was found that the nitrogen content decreased and SlsN correspondingly 

increased with increasing metamorphic grade. In all samples (43), regardless of rock type, 

the 'fixed' nitrogen was enriched in lSN with respect to atmosphere. Furthermore, it was 

found that the geochemical and isotopic effects of regional and contact metamorphism are 

very similar, with changes being mainly controlled by temperature. Various model 

experiments were reported, including the effect on nitrogen content and SlsN of heating and 

leaching of metasedimentary rocks, together with an investigation of the relevant isotopic 

fractionation factors and equilibration times. Haendel et al. (1986) concluded that, during 

contact metamorphism, nitrogen isotope exchange between NH4+ and N2 was the dominant 

mechanism, assuming equilibrium conditions. This is in contrast to Hoefs (1987), who 

postulated that, as the main source of nitrogen in igneous (and metamorphic) rocks is present 

as ammonium, the NH4+ - NH3 isotope exchange reaction should be of great importance. 

Junge etal .. (1990) reported nitrogen isotope data for 40 whole-rock samples from the 

eastern Erzgebirge. Their study encompassed the various granite types and country rocks, 

together with metasomatically altered rocks and also breccias. A wide range of SUN values 

was reported, including -4.1 to + 12.3 %0 for the granites. The corresponding nitrogen 

contents for the granites varied from 8 to 50ppm. 

4.2.9 Ammonium in igneous and sedimentary rocks 

Investigations by Stevenson (1959, 1962), Wlotzka (1961) and Vinogradov (1963) 

established that a significant part of the nitrogen stored in both igneous and sedimentary 

rocks is in the form of ammonium ions contained within the lattice structures of silicates. In 

igneous rocks, this ammonium is associated mainly with the K-bearing primary minerals, 

whereas phyllosilicates host the major reservoir of NH4+ in the case of sedimentary rocks. 

Vedder (1965), in a study of the infra-red absorption spectra of muscovites, concluded that 

NH4+ substitutes for K+ in the interlayer sites of these micas. This rmding was subsequently 

confirmed by other investigators (Karyakin et al., 1973, and Higashi, 1978, in the case of 

micas; Yamamoto and Nakahira, 1966, for sericites). Karyakin etal. (1973) also noted that 

ammonium in micas is more thermally stable than the water, with maximum liberation of 

nitrogen occurring in the range 800-900°C; in muscovite, nitrogen release was incomplete 

even at the melting point of the mineral. Erd et al. (1964) showed that the ammonium 

analogue of monoclinic potassium feldspar (buddingtonite) occurred in rocks that had 

undergone hydrothermal alteration by ammonia-bearing groundwaters. Urano (1971) 

reported that metasediments derived from a pelitic source often contained several hundred 

ppm of ammonium and, furthermore, inferred that the melting of such metasediments was the 

source of ammonium in granitic magmas. 
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ltihara and Honma (1979), in an investigation of the ammonium content of biotites from 

metamorphic and granitic rocks of Japan, noted a positive correlation with the biotite 180/60 

ratios in the case of granitic rocks, as well as a marked difference in the average ammonium 

content between granitic rocks from non -metamorphic terranes (22 ppm), metamorphosed 

granitic rocks (67ppm) and metasediments (279ppm). These authors concluded that, in the 

case of granitic rocks, enrichment of ammonium in biotite resulted from interaction between 

the granite magma and the surrounding sedimentary rocks. The relatively high levels of NH4+ 

in biotites in metasedimentary rocks, on the other hand, were diagnosed as being due to the 

direct inheritance of organiC nitrogen from the sediments. In support of this assertion, the 

authors noted that the total nitrogen content of Recent and Pal~ozoic sediments is similar; 

only the ratio of NH4+ to total nitrogen varies. Itihara and Honma (1979) also found that 

biotites in migmatites contained an even higher ammonium concentration than those from the 

local metasedimentary rocks, thus indicating the involvement of a metamorphic fluid or 

anatectic magma enriched in NH4+. 

The same authors, in a sequel paper, (Honma and Itihara, 1981) extended their investigations 

by determining the partition coefficients of ammonium between the various component 

minerals of metamorphic and granitic rocks. It was found that the ammonium distribution is 

quite systematic, indicating that NH4+ is a stable geochemical component, partiCipating in 

high temperature geological processes. It was suggested that the ammonium distribution (as 

well as those of Rb and Cs) could be explained on the basis of its ionic radius and the 

shortest cation -0 distances in the crystal lattice. Respective ionic radii of six co-ordinate K+, 

Rb+ and NH4+ are given by Shannon (1976) as 1.52, 1.66 and 1.61A; these values are more 

recent than the data used by Honma and Itihara (1981), but the conclusions remain 

unchanged. 

Ammonium concentrations were found by Honma and Itihara (1981) to be in the order: 

biotite > muscovite > K-fe1dspar> plagioclase. This sequence differs from that reported by 

Hall (1988) for both unaltered and greisenised granite from Cligga Head, S W England, 

which is of particular relevance to the present investigation. In this latter case, the sequence 

of decreasing NH4+ content was found to be: biotite> orthoclase (K-feldspar) > muscovite. 

Hall's results were, however, in accord with findings reported by Wlotzka (1972) for a 

pegmatite from western Germany. 

In general, ammonium present in rocks may be classified (see e.g. Hall, 1989) as either 

'fIXed' or 'exchangeable', according to whether the ion is an integral component of the 

mineral lattice structure, substituting isomorphously for potassium (as in the case of 

K-feldspars and micas) or, alternatively, is able to undergo cationic exchange (as in the case 

of zeolites and montmorillonite). For unaltered granites, and other potasSium-rich igneous 

rocks, most if not all of the ammonium is 'fixed', whereas a substantial proportion of the 
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ammonium present in hydrothennally~altered rocks, or those lacking potassium-bearing 

minerals in which ammonium may substitute isomorphously, is 'exchangeable'. 

In a study of the ammonium content of spilitised volcanic rocks (greenstones) from 

S W England, Hall (1989) showed that spilitic alteration caused a major enrichment in 

ammonium of these igneous rocks; furthennore, most of the ammonium was 'fixed' and 

correlated approximately with the ~o content of the rock. Although it cannot be ascertained 

at what stage the spilitic alteration occurred, i. e. whether it was contemporaneous with 

volcanic eruption on the sea floor, or resulted from subsequent interaction with marine 

sediments, it is most probable that the source of the ammonium was the sedimentary 

succession into which the volcanics were erupted. This is in accord with the findings of 

Von Damm et al. (1985), who reported that enhanced levels of ammonium were present in 

submarine hydrothermal solutions of Holocene « 1 04 a) age in the Gulf of California; the 

enrichment in ammonium was attributed to the presence of organic-rich sediments overlying 

the local oceanic crust. 

An alternative source of ammonium, however, might be via reaction between seawater and 

volcanic rocks equilibrated with metallic iron and magnetite at temperatures of l00~200°C. as 

suggested by Holland (1984) as a mechanism for generating NH4+ in the Earth's earliest 

oceans: 

As noted by Hall (1989) and references therein, hydrothermal alteration of ocean floor 

basaltic rocks is very common and often produces spilitic mineral assemblages. The same 

author also suggested that subduction of these ammonium-enriched basic igneous rocks may 

provide a mechanism by which atmospheric nitrogen is returned to the mantle, possibly to 

re-appear eventually at the surface as a result of subduction-related magmatism. 

4.2.10 Nitrogen in crustal fluids - the fluid inclusion evidence 

The occurrence of nitrogen in fluid inclusions has been documented in the case of evaporites 

(e.g. Roedder, 1972; Guilhaumou etal., 1981) and in metamorphic and palreo-geothermal 

environments (e.g. Swanenberg, 1980; Kreulen and Schuiling, 1982; Bussink, 1984; 

Bottrell, 1988; Darimont et al., 1988). Surprisingly, perhaps, the geochemistry of nitrogen in 

piWeofluids has received relatively little attention and reports of nitrogen in fluid inclusions 

are still comparatively scarce in the scientific literature. In a study of the phase behaviour of 

the system COz-CH4-Nz in fluid inclusions, vanden Kerkhof (1988) concluded that non

aqueous fluids in metamorphic and magmatic rocks are mainly restricted to binary mixtures 

between two end-members of this system. 
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Investigations documenting the presence of nitrogen in fluid inclusions generally rely on a 

combination of microthermometric observations of the phase behaviour of individual 

inclusions as a function of temperature, in conjunction with either micro-Raman 

spectrometric analysis of the non-aqueous phase of individual inclusions (for a review, see 

Dubessyetal., 1989) or, alternatively, bulk crushing of the sample under vacuum and 

subsequent analysis of the released gases by chromatography (e. g. Kreulen and Schuiling, 

1982). Microthermometric examination of the phase behaviour of fluid inclusions is generally 

regarded as the starting point for any subsequent investigation. However, unambiguous 

detection of nitrogen in fluid inclusions is not possible from microthermometric analysis 

alone, even in the case ofN2-rich inclusions (e.g. Swanenberg, 1980). Identification of the 

presence of nitrogen in individual inclusions is possible by micro-Raman spectrometric 

analysis, but the technique is restricted to the non -aqueous fluid phase. Molecular nitrogen, 

like CO2, has a low relative Raman scattering cross-section compared to methane, for which 

the detection limit is almost an order of magnitude lower. The absolute detection limit in 

terms of molecules of nitrogen per unit volume of fluid cannot be quantified, as it depends on 

instrumental factors, inclusion geometry and on the other components present in the inclusion 

(Burke and Lustenhouwer, 1987). However, estimates by these authors give detection limits 

of -0.1 to 0.2 mole % for molecular nitrogen in a CO2 vapour bubble of -30j.l.m diameter at 

200C. Wopenka and Pasteris (1986) have considered in detail the precision and accuracy of 

this type of analysis. 

For the present investigation of nitrogen in palreofluids from S W England, 

microthermometric studies of most of the relevant hydrothermal systems have been 

documented: Jackson et al. (1977), Charoy (1979 and 1981), Bull (1982), Scrivener (1982), 

Shepherd et al. (1985), Scrivener et al. (1986), Bannon (1989). With one single exception 

(Bannon, 1989), also reported in Turner and Bannon (1992), no evidence for a liquid CO
2 

(and thus non-aqueous) phase at ambient temperature was found during any of these studies. 

The presence of CO2 in the aqueous phase was detected, however, through CO
2
-hydrate 

(clathrate) formation at sub-ambient temperatures by Bull (1982), Shepherd et al. (1985), 

Scrivener et al. (1986) and Bannon (1989) in a limited number of cases. It is therefore 

evident that Raman spectral analysis is inapplicable to the detection of a trace nitrogen 

component in the palreofluids investigated in the present study. 

1be presence of nitrogen as a minor component in fluids associated with specific episodes of 

hydrothermal activity after batholith emplacement in S W England was first identified during 

studies involving the present author (Shepherd et al., 1985; Shepherd and Miller, 1988); the 

investigations focused on fluids associated with early W ± Sn oxide mineralisation. The 

experimental procedure involved thermal extraction of inclusion fluid from quartz under high 

vacuum, with a combination of cryogenic separation (fractional distillation), manometry and 

quadrupole mass spectrometry to estimate the chemical composition of the fluid volatiles. 
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Details are given in Shepherd and Miller (1988). It was found that nitrogen was generally the 

second most abundant non-aqueous volatile component in the pabeofluids, after carbon 

dioxide. Distinct regional variation of nitrogen abundance was noted. For example, this 

component was found to be virtually absent in hydrothermal fluids associated with early 

mineralisation (quartz + tourmaline± cassiterite) of the Dartrnoor granite, but was a significant 

feature of localities characterised by the occurrence of W ± Sn oxides. 

It is quite probable that the presence of nitrogen at low levels in aqueous crustal fluids is 

much more common than the paucity of the current literature would suggest. The practical 

difficulties associated with the reliable detection and quantification of this component in such 

a system, together with limited understanding of the sources and significance of nitrogen in 

crustal fluids, have probably precluded its wider investigation. 

4.2.11 Nitrogen stable isotope ratio analysis of crustal fluids 

The few reported fluid inclusion B1SN analyses known to the present author have almost all 

originated from the University of Utrecht, Holland, and appear to be confined to an 

investigation of the Dome de l' Agout, in the southern part of the Massif Central, France 

(Kreulen, 1981 and 1983; Kreulen et aI., 1982) and of Panasqueira, Portugal (Bussink, 

1981, 1984; Bussink et al. 1984). Apart from the last two references, these are conference 

abstracts. The only details concerning experimental procedures are given by Bussink (1984) 

and Bussink e t al. (1984), who referred to releasing N 2 from the fluid inclusions by 

decrepitation at about 900°C in the presence of CuD to oxidise any coexisting methane. 

Excess oxygen was then removed by slowly cooling to about 700°C; nitrogen was 

subsequently collected by freezing onto an adsorbent at liquid nitrogen temperature. The B1SN 

results for sixteen samples, including early-stage quartz and wolframite, were generally 

between +3 and +5%0. 

For fluid inclusions in syn-metamorphic quartz segregations from the Dome de l' Agout, 

61'N values ranged from -3 to +5%0; negative values typically occurred in the chlorite-sericite 

schists, whereas positive values were found for inclusion nitrogen in the higher grade rocks. 

Isotopic analyses of fluid inclusion nitrogen from low grade metamorphic quartz veins from 

the Llanbedr formation, north Wales, have been reported by Bottrell et al. (1988); the data 

were obtained using a static vacuum mass spectrometry system similar to that described in the 

present work, albeit at an earlier stage of development. 
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4.2.12 The speciation of nitrogen in hydrothennal fluids 

It is pertinent to enquire whether molecular nitrogen is likely to be the only nitrogen species 

in the fluid inclusions, as this will have important consequences for the design of a suitable 

experimental protocol and for the interpretation of lSN /14N ratios. 

Consideration of nitrogen speciation in natural waters at 25°C indicates that N2 (aq) is stable 

relative to all other aqueous species over a wide range of pH and redox conditions. For 

kinetic reasons, however, molecular nitrogen is probably a redox inert component under 

these conditions; if the other species under consideration are regarded as metastable with 

regard to Nz (aq)' then NH4+ becomes the dominant component. This is illustrated in Figure 

4.2, from which it is seen that NH3 (aq) is dominant over NH4+ only under conditions of 

pH~9. Bottrell (Bottrell and Miller, 1990) produced similar calculations for the various 

stability fields at 325°C, which is more appropriate to metamorphic and hydrothermal 

environments (except that the data again relate to 1 atm. pressure); the conclusions are largely 

unchanged. Although at 25°C, NH3 (aq) is dominant over NH/ only under conditions of 

pH~ 9, Duit e tal. (1986) and Bos et al. (1988) noted that the situation changes under 

hydrothennal conditions (data are available only up to 300°C): above -220°C and in the 

presence of chloride, NH3 (aq) becomes dominant even in acidic solutions; there is little 

tendency to fonn NH4Cl. 

Experimental evidence for NH4+ in hydrothermal fluids is scant. Klyakhin and Levitskiy 

(1968) reported the presence of ammonium in gas-liquid inclusions in fluorites from the 

USSR. More recently, Dubessy et al. (1989) reported that ammonia or ammonium ions have 

never been detected in natural fluid inclusions by Raman analysis. In this latter paper, as well 

as in earlier works (Dubessy, 1985; Dubessy and Ramboz, 1986), it was stated that Nz is 

predominant over NH3 in a fluid if: 

1: (N2 + NH3) mole fractions ~ 10-4 , and/ or 10 > Q-F-M 
2 

Holland (1984) had previously derived a similar result when considering the oxidation state 

of nitrogen dissolved in basaltic melts. These equilibrium calculations are based on the 

control of the respective nitrogen and ammonia mole fractions by the reaction 

for which 10glOK values vary from -57.22 at 25°C to -18.33 at 777°C, 1 atm. (Holland, 

1984). Bos et al. (1988) also usedjjo to fix the (fNH )2/IN ratio; their calculations, which 
2 3 2 

assumed non-ideal gas behaviour but ideal mixing, indicated that, at 550°C and 2kbar, and 

with/o fixed by the Ni-NiO buffer, a partial (N2 + NH3) pressure greater than 10-3 bar 
2 
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Figure 4.2 

Aqueous redox equilibria involving stable nitrogen species at 25°C, latm. (after Stumm and Morgan, 1981). 

(a). N2considered chemically reactive; 

(b). N2 considered redox inert, i.e. the other species shown are regarded as metastable with respect to N2 • 
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Figure 4.3 

The predicted equilibrium speciation of nitrogen in hydrothermal fluids. 
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fixes nitrogen as the dominant species. Furthermore, it was shown that, under these 

conditions and for a given value of P(N + NH ), the IN /INH ratio appeared to be relatively 
2 3 2 3 

unchanged over a large range of temperatures. These results are summarised in Figure 4.3, 

together with comparable data generated by the present author using the equilibrium 

thermodynamic modelling procedure of Gordon and McBride (1971). 

From the well-established observation that nitrogen in the form of NH.+ commonly 

substitutes for K+ in natural potassium silicates, it is evident that some transport of NH.+ 

must occur in hydrothermal systems. The above arguments suggest that if equilibrium 

thermodynamic control is maintained, such transport is limited to ammonium concentrations 

corresponding to mole fractions of less than ca. 0.5 x 10-5 for a fluid of redox state defined 

by the Q-F-M oxygen buffer. Dubessy et al. (1987) showed that theoretical fa values 
2 

defining the redox state of early post-emplacement palreofluids at Cligga Head, Comwall-

typical of samples included in the present investigation - lie within the limits defined by the 

Q-F-M (lower limit) and Ni-NiO oxygen buffers. 

Until techniques such the modified crush -leach procedures of Bottrell et al. (1988), in 

conjunction with e.g. ion exchange chromatography, are applied to investigate NH.+ 

concentrations in fluid inclusions, the levels of any such component must remain a subject 

for speculation. 

4.3 Objectives of the research 

The principle objective was to investigate the concentration and isotopic composition of 

nitrogen in fluids associated with early mineralisation of the granites of the Comubian 

batholith, S W England, in localities where previous investigations had indicated that 

nitrogen was a significant ( although trace) component of the fluid. The findings could then be 

related to local nitrogen reservoirs and thus potential sources of the hydrothermal fluid 

nitrogen assessed. For comparison, it was also necessary to determine the nitrogen content 

and ~lsN isotopic composition of local metasedimentary rocks: two transects across the 

thermal aureole of the Dartmoor granite were sampled for this purpose (Chapter 6). Specific 

questions that could then be addressed were: 

1. What is the source of the molecular nitrogen in the fluids? The ammonium ion is an 

abundant species in both the metasedimentary envelope and locally within the batholith, 

where it substitutes isomorphously for potassium in micas and feldspars (Honma and ltihara, 

1981). In the metasedimentary rocks, nitrogen may additionally be present in 'organic' form. 

Is oxidation of ammonium from one or more of these reservoirs the primary process? Release 

of NH/ from ammonium-bearing micas to a fluid phase may occur via metasomatism 

involving H+ or K+; also by the breakdown of micas during metamorphism. Degassing of 
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deep-seated nitrogen has been suggested as a possible nitrogen source in the case of N2-rich 

metamorphic palreofluids elsewhere (Kreulen and Schuiling, 1982); local tectonic conditions 

render this an unlikely source in the present study. (Note: Duit et aI., 1986, argued that the 

palreofluid nitrogen investigated by Kreulen and Schuiling, 1982, was probably of 

sedimentary rather than deep-seated origin.) 

2. Is there any relationship between the nitrogen content of the fluid inclusions and NH.+ 

concentrations in the associated granite pluton, pegmatites and hydrothermally altered rocks? 

The distribution of ammonium within the granites of S W England has been investigated by 

Hall (1988), who also established that a good correlation exists between NH.+ content of the 

intrusions and initiallflSr/IflSr ratios and peraluminosity. 

3. Can a palreo-atmospheric nitrogen component be identified? 4OAr- 39Ar investigations 

(Kelley et al., 1986; Bannon, 1989; Turner and Bannon, 1992) of fluid inclusions from 

some of the localities used in the present investigation have indicated that argon of 

atmospheric derivation may be present in the fluids. 

4. Does significant variation exist between the isotopic composition of fluid inclusion 

nitrogen associated with the different granite plutons of the Comubian batholith, indicative of 

isotopic heterogeneity in the source and/or localised fractionation effects? 

S. If evidence suggests that the palreofluid nitrogen may be derived from the granites, as a 

primary component of an evolving, exsolved magmatic fluid phase, can the nitrogen be used 

as a conservative tracer of magmatically-derived fluids, from early pegmatitic to later 

hydrothermal stages? 

6. Is there any systematic relationship between the concentration and isotopic composition 

of nitrogen and other components of the palreofluids; in particular, carbon species? 

To address these questions, it was necessary to investigate the application of experimental 

techniques devised for the preparation and determination of nitrogen quantities and isotope 

ratios at the sub-nanomole level, to the measurement of traces of nitrogen in hydrothermal 

fluid inclusions. 

4.4 Location of samples 

The empirically -established local enrichment of CO2 and N2 in quartz-hosted fluid inclusions 

associated with the occurrence of wolframite in S W England (Shepherd et al., 1985; 

Shepherd and Miller, 1988), was taken as a starting point for the present investigation. 
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Figure 4.4 

Simplified map of S W England, indicating the location of samples included in the investigation of palreofluid nitrogen 
associated with early-stage bydrothermal mineralisation in the region 
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Quartz samples representative of major occurrences (Beer and Ball, 1987) of W ± Sn oxide 

mineralisation in S W England were obtained, characteristic of the earliest major stage of 

hydrothermal mineralisation (see Section 1.1.2). Examples from the vicinity of minor granite 

intrusives located between the Bodmin Moor and Dartmoor plutons were also included in the 

study. In total, fourteen samples, representing eight different localities and both granite and 

metasedimentary host rock lithologies, were investigated. Sample locations are indicated in 

Figure 4.4; details of individual specimens are given in Appendix A. 

A recurring feature of the present work is a comparison between hydrothermal fluids 

associated with early tourmaline-dominated and greisen mineralisation of the Dartmoor 

granite, on the one hand, and comparable-stage processes characterised by association with 

W±Sn oxides, as hosted diachronously by other component intrusives of the batholith. The 

notable presence of CO2, together with (generally, though not exclusively) lesser amounts of 

nitrogen and methane, distinguishes the early-stage W±Sn oxide-associated fluids. It was 

therefore considered appropriate to use the high sensitivity, low blank facility described 

below to investigate whether any traces of nitrogen may be detected, and thence isotopically 

characterised, from the earliest stages of hydrothermal alteration and mineralisation hosted by 

the Dartmoor granite. 

In addition to the samples from S W England, a small number of vein quartz samples from 

the Carrock Fell wolframite deposit, associated with the Skiddaw granite (of Caledonian age) 

in the northern Lake District of England, were included for comparison purposes (cj. Section 

3.3). An interesting feature of the Carrock Fell veins is their similarity, both in terms of 

mineralogy and paragenesis, to those at Panasqueira, Portugal, the fluid inclusion SlsN of 

which was investigated by Bussink(1984). 

4.5 Experimental 

4.5.1 Nitrogen stable isotope ratio analysis - from micrograms to nanograms 

The experimental difficulties associated with the isotope ratio analysis of traces of an element 

that constitutes the major component of the atmosphere is probably one of the reasons why 

there are relatively few published data concerning the distribution of nitrogen stable isotopes 

in natural systems. Established analytical procedures for the conversion of organically-bound 

and inorganic nitrogen to pure nitrogen gas for isotope ratio analysis are generally based on 

one of two methodologies: either sealed tube combustion techniques, first proposed by 

Stump and Frazer (1973); alternatively, preparation of ammonium sulphate by variations of 

the Kjeldahl method, for subsequent oxidation to pure N2 (Bremner, 1965). The latter step is 

achieved either by the use of freshly - prepared lithium hypobromide, or by direct combustion 

(e.g. Boyd and Pillinger, 1990) or pyrolysis (Boyd and Pillinger, 1991). 
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Interest in developing appropriate analytical procedures for the investigation of nitrogen 

isotope distributions in ex.tra -terrestrial material, with the availability of lunar samples in the 

early 19708, resulted in a procedure involving the release of nitrogen via incremental 

('stepped') heating (e.g. Chang et aI., 1974; Becker and Clayton, 1975), which presented a 

means of discriminating between indigenous nitrogen -bearing phases and terrestrially

derived contamination, of both atmospheric and • organic' derivation. The principle of 

stepped heating was also used by Becker and Clayton (1975) to resolve different indigenous 

nitrogen components within the same sample. 

A major practical limitation associated with measuring the stable isotope ratio of nitrogen gas 

is that this component is not readily concentrated, by virtue of its low boiling point (-196°C at 

1 atm. external pressure), into a small volume reservoir near the inlet of a conventional gas

source mass spectrometer. This necessarily imposes constraints on the minimum quantity of 

nitrogen required, a problem not encountered in the case of carbon dioxide as used in carbon 

and oxygen isotopic studies. Transfer of nitrogen to a low-volume inlet system may be 

achieved through Toepler pumping, freezing at liquid helium temperature, or trapping on an 

appropriate adsorbent at low temperature. Nevins et al. (1985), and references therein, 

reviewed some of these issues. Generally, to meet the inlet pressure requirements of a typical 

mass spectrometric analyser, a minimum of -1 Jimol of N2 is required to produce an isotopic 

analysis of acceptable precision. 

As a radical alternative to the conventional McKinney et al. (1950) type of analyser 

arrangement, whereby reference and sample gas, admitted via their respective capillaries to 

maintain viscous flow, are continually pumped to waste during the measurement procedure, 

thereby resulting in very low efficiency (but high precision), the feasibility of using a noble 

gas type of arrangement (after Reynolds, 1956) for the isotopic measurement of active gases 

was investigated in the 1970s (Irako etal., 1975; Gardiner and Pillinger, 1979). The first 

practical applications of this method, as applied to nitrogen, were published by Brown and 

Pillinger (1981) and by Frick and Pepin (1981). As the gas of interest is introduced into the 

mass spectrometer after the isolation of the latter from the pumping system (hence the tenn 

'static vacuum' mass spectrometry), the efficiency is greatly enhanced, resulting in an 

increase in sensitivity of some three orders of magnitude compared to a conventional, 

dynamic instrument. There is an attendant loss of precision, but this is only by one order of 

magnitude. This increased analytical uncertainty, however, is still generally smaller than 

errors introduced during sample preparation and purification procedures. 

Developments in the application of static vacuum mass spectrometry and associated sample 

preparation techniques during the past decade have resulted in the capability of routine, high 

precision determinations of nitrogen stable isotope ratios at the sub-nanomole level (Wright 

et al., 1988; Boyd, 1988; Pillinger, 1992; also Hashizume and Sugiura 1990), which has 
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been applied to investigations of both extra-terrestrial and terrestrial samples. A development 

of the mass spectrometer system described by Wright et al. (1988) was used in the present 

investigation. This instrument was capable of obtaining comparative nitrogen isotopic 

compositions (olSN values) to a precision of ±0.24%o from samples of O.4nmol (Wright 

etal., 1988). The absolute accuracy, as obtained by the analysis of samples of known 

isotopic compositions, is quoted by the same authors as being about ±0.5%o. 

To utilise the advantages inherent in the high sensitivity offered by static vacuum mass 

spectrometry, it is essential that the levels of blank associated with sample preparation 

techniques be minimised accordingly. A detailed description and evaluation of the sample 

preparation and purification techniques, devised for use with the above-mentioned mass 

spectrometer, have been given by Boyd (1988) and Boyd et al. (1988). These procedures 

formed the basis for the present investigation, although with appropriate modification of 

details. 

Preliminary measurements by the present author (Shepherd and Miller, 1988) indicated that 

the maximum levels of nitrogen in quartz-hosted fluid inclusions associated with W±Sn 

oxide mineralisation in S W England corresponded to only about 0.1 to 03 mole % of the 

hydrothermal fluid, the water component of which generally comprised less than 1500 ppm 

of the quartz host mass. Nitrogen concentrations of -5ppm or less, with respect to the 

quartz, were therefore anticipated in the present investigation. Isotopic analysis of this 

component would not be feasible without the high sensitivity available through the use of 

static vacuum mass spectrometry. Furthermore, the high sensitivity permitted incremental 

thenna! extraction experiments, with isotopic analysis of released nitrogen at each step, to be 

performed on samples consisting of only two or three individual quartz grains weighing -12 

to 20mg each. This has obvious advantages for sample selection and preparation procedures. 

4.5.2 The development of an appropriate experimental protocol 

The sample preparation procedures described by Boyd (1988) were primarily devised for the 

isotopic analysis of nitrogen extracted from inclusions in diamonds. As the nitrogen in these 

samples was already present as the diatomic, molecular species, combustion of the host 

matrix was appropriate to release the nitrogen, whilst at the same time enabling information to 

be obtained on the carbon isotopic composition of the diamond. In a similar fashion, stepped 

pyrolysis or combustion experiments on extraterrestrial materials are performed to obtain 

information about the nature of the indigenous nitrogen carrier phases, through 

melting/thermal decomposition/oxidation of the latter. 

For the present investigation, however, the situation is quite different The nitrogen is already 

in molecular form, dissolved in a saline, aqueous phase which is, in tum, trapped as fluid 
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inclusions within a refractory, crystalline matrix. Quartz samples were used exclusively 

throughout this investigation, on account of the thennal stability and degree of purity of this 

mineral. Thennal extraction in the absence of oxygen (no combustion) was the procedure 

used to release the fluid from the quartz, followed by isolation and purification of the 

nitrogen component. 

Individual quartz grains were selected using a binocular optical microscope, then cleaned in 

boiling 6M HCl and doubly-distilled water, dried in air at -100°C and weighed. Just prior to 

loading into the extraction line for stepped heating, the quartz grains were treated with 

CH2~ in an ultrasonic bath for 10 minutes. After ultrasonic agitation, the grains were stored 

under clean CH2C~, taken to the stepped heating extraction line and loaded directly from the 

CH2CI2• This procedure is based on that advocated by Mattey et al. (1989) for minimising 

surficial organic contamination. Reagents used were of Analar® grade. Tweezers used for 

sample handling were pre-cleaned by ultrasonic agitation with CH2CI2• 

The extraction line is shown schematically in Figure 4.5. Samples (up to four at a time) were 

loaded directly into an air-lock section, which was isolated from the rest of the vacuum 

system. Samples were admitted by removing the modified Cajon® 'Ultratorr' unions (U) 

which served as blanking caps. Magnetic manipulation of glass-encased iron slugs (M) 

allowed each sample to be pOSitioned under one of the four heating coils (H), which were 

subsequently maintained at -250°C to aid desorption of atmospheric nitrogen and volatile 

organic matter. The air-lock was then sealed and evacuated to a base pressure of -10- 3 torr; 

evacuation to higher vacuum was undertaken using an oil vapour diffusion pump which was 

dedicated to pumping this section of the line only. 

Samples were loaded the night before they were analysed, and pumped under high vacuum 

(to reach <lO-s torr) for at least twelve hours, with the heating coils in use. Meanwhile, the 

silica tube (reaction vessel) used for thermally extracting nitrogen from the samples was 

maintained under high vacuum «10-6 torr) and at a temperature of 1200°C, to desorb any 

annospheric nitrogen and to minimise contamination by organic material or pump oil. 

Before analysis of a sample commenced, the reaction vessel, still at 1200°C, was isolated 

from the associated high vacuum pumping system and the nitrogen background yield 

accumulated during 39 minutes 'pyrolysis' was determined from the value of the m/z 28 ion 

beam current, after the gas had been subjected to the full purification procedures as described 

by Boyd et al. (1988) and admitted to the mass spectrometer. During stepwise pyrolysis, 

with full purification of the released nitrogen, the duration of each heating increment was 39 

minutes, using a protocol devised by Boyd (pers. comm.) and detailed in Appendix C. This 

included the time taken to heat the sample to the target temperature and to subsequently 

transfer the nitrogen to a molecular sieve at -196°C. 
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Figure 4.5 
Schematic ciagram of the vacuum line uaed for thermal extraction Qncramental heating) and subsequent purification of fluid inclusion nitrogen for stable isotope ratio analysis 

by static vacuum mass spectrometry 
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Figure 4.6 

Procedural nitrogen blank during stepped thermal extraction for nitrogen 
stable isotope ratio analysis by static vacuum mass spectrometry 
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Ahhough a pre-extraction nitrogen blank yield of <lng was usual, with the reaction tube at 

1200oC, values up to -2ng could be tolerated if the nitrogen yield from the sample was 

substantial. If the nitrogen blank was significantly higher than 2 ng, it was usually attributable 

to contamination in the reaction vessel and found to be best cured by replacing the reaction 

tube with a new, pre-combusted (1200°C) section of silica. This necessarily entailed a 

subsequent 'down' time of several days, whilst the glassware outgassed to give an 

acceptably low background pressure. High nitrogen blanks were generally found to cause 

sample data to be strongly biased towards enrichment in "N with respect to AIR (thus 

indicating that atmospheric nitrogen was not the contaminant, as all samples investigated 

were characterised by oiSN>O). Prior to transferring the quartz sample grains to the reaction 

vessel from the evacuated air-lock, the reaction vessel was allowed to cool to -250°C, 

corresponding to the temperature of the heating coils used for the initial outgassing. 

An on-line (i. e. adjacent to the silica tube reaction vessel, with no intervening valve) copper 

oxide furnace, consisting of a silica tube containing oxygen -depleted CuD in wirewound 

form, and used as an oxygen supply in the case of stepped combustion experiments (see 

Figure 4.5), was maintained at a temperature of about 80°C throughout the extraction 

procedure, to minimise condensation of extracted fluid inclusion water. 

A stepwise extraction profile for the measurement of total system nitrogen blank yield is 

shown in Figure 4.6. For this experiment, the loading air-lock was momentarily opened to 

atmosphere and the above-described sequence of procedures followed, to simulate the 

loading of a sample into the reaction vessel on the following day. 

Initial experiments to establish an appropriate extraction procedure for the analysis of fluid 

inclusion nitrogen were concerned with addressing the following: 

(i) Is an adsorbed atmospheric nitrogen component detectable at low extraction 

temperature? If so, what is the minimum temperature at which this may be reduced to 

inconsequential levels and hence above which any nitrogen component may be 

considered indigenous to the sample? 

(ii) Is there any evidence of 'organic' contamination in the low temperature releases? 

(iii) Although theory suggests that no significant contribution to the total fluid phase 

nitrogen will be derived from species other than N2, the possible effects of an 

ammonium component in the fluid should be considered. 

(iv) In the case of 'high resolution' incremental release of fluid inclusion nitrogen over the 

temperature range shown to correspond to the release of fluid inclusion water, it might 

be expected that there should be no Significant variation of nitrogen isotopic 

composition, within the limits of experimental error, if it is assumed that: 
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(a) N.l is the only nitrogen component of significance in the fluid; (b) the fluid was 

homogeneous at the time of entrapment; ( c) any nitrogen contribution from 

overprinting by later hydrothermal events is insignificant. 

(v) Any ammonium-bearing authigenic micas within the sample would be expected to 

contribute to the total nitrogen. but would probably not break. down below 600°C. A 

significant contribution of nitrogen derived from this source would represent something 

of a paradox, in view of the very low levels of ammonium predicted for the parent 

fluid. Kelley et al. (1986) postulated that radiogenic argon released from samples 

included in the present investigation might be located in small authigenic micas trapped 

in the fluid inclusions; this argon was not released in significant quantities below 

800°C, however. 

Procedures adopted for purification of the released nitrogen were as reported in detail by 

Boyd et al. (1988) for stepped pyrolysis. A principal feature involves exposure of the 

released gases to Pt foil at 1 150°C, in the presence of CuO maintained at 850°C to provide an 

oxygen source. Under these conditions, any carbon monoxide, methane or higher 

hydrocarbons present would be quantitatively converted to COz' Similarly, hydrogen would 

be oxidised to water, whilst sulphur species converted to SOz' In the present investigation, 

by far the most abundant component released during thermal extraction of fluid inclusion 

volatiles was water, the mass yield of which was generally some two to three orders of 

magnitude greater than that of the coexisting nitrogen. 

To avoid transferring relatively large amounts of water to the purification section of the line, 

it was decided to incorporate additional cryogenic trapping during the sample extraction 

stage. Experiments were therefore conducted to assess the effects of maintaining variable 

temperature cryogenic trap VTC#1 at (nominally) -170°C throughout the duration of a 

stepwise heating run, thereby minimising the amount of water (and CO2) transferred to the 

nitrogen purification section. This modification would only be problematic if not all the 

nitrogen in the sample extraction section of the line was in the form of molecular Nz' or 

alternatively if any Nz became trapped in ice formed in VTC#l. Any NzO or NOz present 

would also be condensed, whilst the vapour pressure of NO (melting point -163.6°C at 

1 atm. external pressure) would be low. However, as the thermal extraction was conducted in 

the absence of oxygen, the formation of nitrogen oxides at this stage was regarded as being 

extremely unlikely and not considered further.t Of greater concern was the possibility of 

ammonia being released with the nitrogen gas, as a primary component of the hydrothermal 

fluid (existing as NH4+ at room temperature or NH3 (aq) at temperatures greater than -220°C). 

t Boyd et al. (1988) did not detect nitrogen oxide fonnation in this system during incremental combustion. 
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Figure 4.7 

Equilibrium compositions, as a function of reactant stoichiometry, predicted by 

thermodynamic modelling using the computational procedures of Gordon and McBride 

(1971), for initial reactants NZ and 0z under isothermal, isobaric conditions. 
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H no cryogenic trapping at -170°C is employed during thennal extraction, any ammonia 

present should in any case be completely converted to molecular nitrogen by CuO at 850°C in 

the purification section of the line. There is, however, the complication that platinum 

catalyses the oxidation of ammonia directly to nitric oxide at 700-900oC at relatively low 

pressures (see e.g. Cotton and Wilkinson, 1988). Further oxidation to NOz would also occur 

to some extent, although this species would subsequently be removed during cryogenic 

trapping of any oxidation products during the purification routine. 

Even if detectable quantities of ammonia had been produced in the first place during stepped 

heating experiments. it is difficult to assess whether its oxidation to NO /N02 rather than N2 

during nitrogen purification is likely to have been of significant importance in the present 

system. NO is known to have a very short half life (-0.5 seconds) in the mass spectrometer 

used (Boyd, 1988), but secondary effects lasting for several weeks were noted by the same 

author. 

In the absence of any ammonia in the initial reactant mixture, thermodynamic modelling 

predicts equilibrium compositions as indicated in Figure 4.7 for the reaction between 

molecular nitrogen and oxygen as a function of initial molar ratio and for temperatures of 

850°C (that of the CuO oxygen reservoir during gas purification) and I 150°C (simulating 

reaction on the Pt finger). The 0.01 atm. total pressure closely approximates the partial 

pressure of 0z in equilibrium with CuO/CuzO at 850°C (see Figure 3.9). An oxygen-to

nitrogen initial molar ratio of 1,000:1 corresponds to -6.7 nanomoles of Nz, equivalent to a 

partial pressure of -1.0x lO-s atm. in the purification section (volume 15cm3 according to 

Boyd, 1988). The presence of traces of methane in the reactant mixture, as was the case for 

samples included in the present investigation, does not significantly affect the results 

presented. 

With regard to whether cryogenic trapping at ca. -170°C during the thennal extraction of fluid 

inclusion volatiles affects the isotopic data subsequently obtained for the nitrogen component, 

through the removal of ammonia from the total nitrogen -bearing fraction, no such effect was 

detected, suggesting that ammonia was either absent or present at sufficiently low levels as to 

be insignificant. 

The results of 'high resolution' incremental heating of quartz sample HEM-80-1 with the 

variable temperature cryogenic trap VTC#1 maintained at -170°C (nominal) throughout the 

duration of the experiment are shown in Figure 4.8, from which the following salient 

conclusions may be drawn: 
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Figure 4.8 
Stepwise thermal release of nitrogen in vacuo from quartz sample HEM-80-1 
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(i) Yield of nitrogen below 300°C is minimal and insufficient for isotopic 

analysis with an acceptable degree of precision. This indicates that the sample 

preparation procedures advocated are effective at minimising contamination and, 

furthermore, that loss of indigenous nitrogen incurred by outgassing the quartz sample 

at 300°C would be negligible. Fluid inclusion homogenisation temperatures reported for 

early W±Sn oxide-associated hydrothermal fluids at the other S W England localities 

included in this investigation are generally> 300°C; it is therefore reasonable to infer 

that outgassing at 300°C should not adversely affect the recorded yield of indigenous 

nitrogen in these cases. 

(ii) An abrupt reduction in nitrogen release to very low levels is noted for the temperature 

step 600-700°C. Mass decrepitation of fluid inclusions during the a-p quartz inversion 

would be consistent with the observed nitrogen release profile and is also consistent 

with findings reported elsewhere (see Bodnar et ai., 1989). 

(iii) The isotopic composition of nitrogen released during the six heating increments 

between 300 and 600°C is notably uniform, within the limits of experimental error. A 

minor contribution from adsorbed atmosphere is probably present in the gas yielded 

during the lowest temperature step (300-350°C); this is confirmed by the associated 

40 Ar peak being larger than for any subsequent heating step. It is also consistent with 

the corresponding 31SN value being slightly enriched in the lighter isotope compared 

with the results for the subsequent five steps. If the sample had been outgassed at 

350°C, however, a significant amount of indigenous nitrogen would have been lost. 

For the 350-600°C temperature range, the weighted mean of the five consecutive 815N 

results is 5.8%0, with all the measurements falling within ±O.4%0 of this value. 

(iv) Although nitrogen release at temperatures immediately above the a-p quartz transition is 

minimal, the progressive release of nitrogen at higher temperatures is a notable feature 

of the stepwise heating profile. Kelley et al. (1986) investigated argon release from 

similar samples and found that the proportion of argon released below 600°C was never 

more than 40% of the total up to 1600°C; releases above 600°C featured maxima at 

between -700 and I{)()()OC and also between 1100 and 1500°C. The high temperature 

release of nitrogen in the present case is equally difficult to explain. Possible sources 

include sub-micron inclusions or lattice defects or, alternatively, captive micas. In the 

present case, the isotopic composition of nitrogen released between 800-I000°C and 

from 1100-1200°C is similar to that released during the 300-600°C increments, 

suggesting that micro-inclusions are probably the source. A further enrichment in lSN 

of> 3%0 is seen, however, in the case of nitrogen released between 1000 and l100°C; 

this would be compatible with the decomposition of an ammonium-bearing solid 

phase, although the possibility that this single result is spurious cannot be discounted. 
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In the light of these findings, it was decided to outgas the quartz samples at 300°C, to 

minimise the contribution from any adsorbed atmospheric component without significantly 

affecting the yield of nitrogen indigenous to the sample. Nitrogen was then collected over the 

temperature interval300-600°C, corresponding to the major release from fluid inclusions, for 

the determination of yield and isotopic composition. By collecting the fluid inclusion nitrogen 

in a single heating step, it was possible to reduce the quantity of quartz required, compared to 

a multi -step analysis, whilst at the same time ensuring that the amount of nitrogen released 

was generally two orders of magnitude greater than the nitrogen blank of the analytical 

system. Samples generally consisted of three quartz grains, total weight 30-50mg; the 

maximum grain size was restricted by the internal diameter of the quartz reaction tube (4 

mm). In the case of samples found to contain very low levels of nitrogen (sub-ppm), the 

number of grains was increased accordingly. 

At higher temperatures, the decomposition of trapped micas and/or feldspars may be a 

significant source of nitrogen; this release would be superimposed on that derived from 

nitrogen dissolved in the quartz lattice and/or derived from the opening of sub-micron 

inclusions. To compare the isotopic composition of nitrogen released at high temperature 

(> 6O(}0C) with that representative of the fluid inclusions, a 60(} -11 OO°C heating step was also 

undertaken in many cases. 

4.6 Results of the palreofluid 015N analyses 

The results of nitrogen yield and isotope ratio analysis for the S W England samples are 

given in Table 4.2. Considerably more analyses (duplicates) were undertaken than is shown 

in this table, but a reproducible shift of oiSN to 'heavier' values was noted when the nitrogen 

blank was greater than -2ng. This effect was less severe for the 300-600°C temperature step, 

but still detectable. Rather than attempt to correct for bias introduced by the blank, all data 

thus affected are excluded from further consideration here. 

The data for major fluid inclusion nitrogen release (300-600°C) are illustrated in Figure 4.9, 

which also gives estimates of corresponding N2 (aq) molality values, derived using water 

yields from 'splits' of the same samples and assuming a homogeneous fluid phase. As 

secondary inclusions unrelated to the primary crystallisation event will inevitably be present 

to some extent, the N2 (aq) molality estimates probably represent lower limit values, if it is 

assumed that the secondary inclusions contained fluid of predominantly meteoric origin. 

It is apparent from the experimental results that, whereas the olsN range for the 300-6(X)OC 

nitrogen release is from 5.0 to 13.O%o(AIR), data from fifteen of the eighteen samples 

investigated fall within the range 6.5 ± 1.5%0. 
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Table 4.2 

Nitrogen yield and 515N data from S W England quartz samples associated with early hydrothermal 
mineralisation of the Comubian granites 

Nitrogen release 300-600'C Nitrogen release 6OO-1100'C 

Location I Sample reference Yield (ppm N) I 515N %. AIR (±o) Yield (ppm N)\ 515N %. AIR (±o) 

Hemerdon (1) HEM-79-2 5.2 6.3 (0.34) 

(1) HEM-SO-l 6.4 6.5 (0.49) 

(1) HEM-80-39 4.3 5.1 (0.53) 

(1) HEM-80-44 2.2 5.7 (0.62) 0.23 7.2 (1.02) 

(1) HEM-80-47 2.2 6.7 (0.45) 0.42 6.5 (0.92) 

South Crofty (2) SC-88-3 13.8 5.0 (0.43) 0.99 4.2 (0.78) 

(2) SC-88-3 ABC 13.3 5.0 (0.29) 

CliggaHead (3) CH-88-1 3.2 5.1 (0.59) 0.48 5.3 (0.70) 

Castle-an-Dinas (4) CD-88-1 6.6 7.0 (0.57) 0.29 6.7 (0.43) 

6.2 6.7 (0.25) 

Old Gunnislake (5) OG-88-1 2.9 10.0 (0.55) 1.5 9.6 (0.35) 

(5) SW-89-150 2.6 8.2 (0.29) 

South Bedford (6) SW-84-20 3.6 6.6 (0.47) 0.18 nm 

Prince of Wales (l) SW-84-27 6.3 6.2 (0.27) 

7.1 7.1 (0.31) 0.37 4.4 (0.47) 

Drakewalls (8) SW-84-15 3.5 7.0 (0.63) 

2.0 6.8 (0.56) 0.22 8.8 (0.93) 

East Vitifer (9) SW-89-l56 0.48 6.0 (0.30) 

1.0 8.8 (0.39) 0.29 12.7 (0.30) 

Golden Dagger (10) SW-89-159 0.37 6.7 (0.33) 

(10) SW-89-163 0.28 7.3 (0.30) 

Barracott (11) SW-89-164 1.4 13.0 (0.30) 0.42 8.4 (0.54) 

·0.07 ·9.9 (0.75) 1'0.12 1'9.6 (0.56) 

0.14 5.2 (0.69) 0.15 7.7 (0.40) 

Notes: 

(1) t Locations generally refer to mine identifiers. 
Associated number in parentheses refers to locality as indicated on Figure 4.4. 

(2) • 500-600OC step datum point. Stepped heating was performed, using a combination of 50 and 
100°C temperature increments, from 300 to 600°C: only the 500-600°C step yielded sufficient 
nitrogen for isotopic analysis of acceptable precision. Total nitrogen yield for the 300-600OC 
release was approximately 0.2ppm. 

(3) t 6OO-1000°C step datum point. 

(4) 'nm' indicates not measured. 



Flgure4.9 

Nitrogen yield and ~~ data for S W England palzo-hydrothennal fluids extracted from quartz. Refer to Figure 4.4 for key to sampling localities. 

LOCALITY SAMPLE PALIEOFLUID ~15NAIR (%0) 

CD HEM-79-2 
+4 +6 +~ +10 +12 

f-< 

CD HEM-80-1 ---
CD HEM-80-39 >-~ 

CD HEM-80-44 ........ -0 

CD 
I 

HEM-80-47 ....... 

® SC-88-3 >-1 ..... 

® i 
I SC-88-3 ABC HI-< 

® CH-88-1 I-.-. 

@ CD-88-1 ~ 
....... 

® 00-88-1 ~ ~ 

® SW-89-150 ... 
® I SW-84-20 , ...... 
(i) I SW-84-27 ~~ ... 
® SW-84-15 I'::; ~ 

® SW-89-156 ... ~ ..... ~ 
@) SW-89-159 ~ 

@) SW-89-163 r+' 

@ SW-89-164 ..... ~ lo---e f--o 

2 

• 
• 

• 

• 
• 
• 

H I-t • 

[N] ppm, quartz 

4 6 8 10 

• 
• 

• 

• 
• • 

• 
• 

• 

12 

I 

• 

Estimated 
N2 (aq.) molality 

0.14 

0.13 

0.10 

0.34 

0.07 

0.07 

0.07 

0.07 

0.22 

0.06 

0.01 

0.01 



Table 4.3 

Nitrogen yield and SlsN data for Carrock Fell quartz samples. 

Sample reference Temperature eC) Yield (ppm N) SISN%o(AIR) (J (%0) 

CF-76-7 300-600 12.8 5.1 0.24 

CF-76-25 300-600 10.3 5.3 0.34 

CF-77-39A 300-600 13.0 4.3 0.31 

CF-77-77A 300-600 7.5 4.3 0.30 

CF-77-77B 300-600 12.1 4.5 0.22 

CF-77-98 300-600 12.0 3.7 0.38 

CF-77-98 600-1100 0.30 4.0 2.31 



Of the three that do not lie within these limits, the two samples from Old Gunnislake mine 

gave a mean alSN value of 9.1 ± 0.9%0, which is also in good agreement with the measured 

high temperature alSN value. It is also notable that the high temperature release comprised 

approximately 33% of the total nitrogen yield, a considerably higher proportion than was 

found in any other sample. Triplicate analyses of SW -89-164 (hosted by the Dartmoor 

granite), the only other sample which did not not fit the 6.5± 1.5%0 range, indicated 

heterogeneous distribution of nitrogen, with variable nitrogen yield and no systematic 

relationship between a15N and nitrogen yield. (Similarly poor reproducibility was also 

obtained during quartz altlo analysis of sample SW-89-164.) Although it may be argued that 

the a l5N result of 9.9%0 is probably the most reliable, since the nitrogen released at high 

temperature was characterised by a similar ~lsN value, it would be unwise to base any 

hypothesis about nitrogen sources on such data. 

With regard to the high temperature (600-1 100°C) nitrogen releases, where data are available 

(Table 4.2), it is seen that a majority (six) of the eleven analyses produced ~lsN results 

indistinguishable from those of the corresponding low temperature releases, within the limits 

of analytical precision. Nitrogen released at >600°C, and characterised by l)l~ values 1-4%0 

'heavier' than the corresponding release at <600°C (as noted for three samples), might be 

attributable to thennal breakdown of ammonium-bearing solids. Only in two cases was the 

nitrogen found to be depleted in ISN with respect to the corresponding low temperature 

release: one of these was non-reproducible (sample SW-89-164), whereas the datum for 

SW-84-27 (Prince of Wales mine), showing a shift of -2.7%0, is difficult to explain. 

Table 4.3 gives the comparable data for the five samples analysed from Carrock Fell. 

Because of nitrogen blank problems, only in the case of one sample was reliable aUN 

measurement possible of nitrogen released at >600°C. All the alSN values fall within the 

range 4.5±O.8%0(AIR)' 

4.7 l)15N of the Comubian granites and metasedimentary rocks 

4.7.1 The granites 

The present investigation coincided with a study by Boyd et aL (1993) of the distribution and 

isotopic characterisation of nitrogen associated with the granites of the Comubian batholith. 

Stepped combustion procedures were used to release the nitrogen from both whole-rock and 

mineral separates; after purification, the nitrogen was analysed for isotopic composition by 

static vacuum mass spectrometry. Rather than attempt to duplicate that work in the present 

study, attention was instead focused on the nitrogen isotopic composition of the associated 

metasedimentary rocks. 
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4.7.2 The Palreozoic metasediments 

Detennination of the yield and isotopic composition of nitrogen in metasedimentary rocks is 

complicated by the nitrogen being present in combined form, either as the ammonium ion 

(which, in turn, may be either 'fixed' or 'exchangeable') in ammonium-bearing clay 

minerals; additionally, nitrogen may be present in organic components at various stages of 

thermal maturation. Some of the organically-fixed nitrogen may be in a form readily 

hydrolysed to yield ammonia, whereas nitrogen bound in kerogen, that organic constituent of 

sedimentary rock that is neither soluble in aqueous alkaline solutions nor extractable using the 

common organic solvents (Tissot and Welte, 1984), remains intractable. As referred to 

above, the extraction of organically-bound and inorganic nitrogen for isotope ratio analysis is 

generally based on either sealed tube combustion techniques, or on variations of the Kjeldahl 

method. Minagawa et al. (1984) compared the two methods and recommended combustion to 

8500C, using a double-walled tube, to prepare nitrogen for isotope ratio analysis in the case 

of biogeochemical samples. These authors analysed kerogen from Tanner Basin sediments, 

off the coast of southern California, by both methods: the Kjeldahl method was found to give 

only 88% of the nitrogen yield as obtained by the combustion method and, furthermore, the 

nitrogen was slightly depleted in lSN (by 0.21%0) compared to that obtained by combustion. 

Further adaptations of the sealed combustion tube method have been reported recently 

(Kendall and Grim, 1990), and a procedure appropriate to static vacuum mass spectrometry 

devised (Boyd and Pillinger, 1990). 

Experimental details of the procedures used to determine the yield and isotopic composition 

of nitrogen in metasedimentary rocks during the present investigation are presented in 

Chapter 6, together with the corresponding results. The nitrogen isotopic composition of 

ammonium-rich samples was found to range from +0.7 to +3.0%0(AJR)' except at the Dartmoor 

granite contact, where a value of +7.4%0 was noted. 

4.8 Discussion 

4.8.1 Fluid inclusion nitrogen stable isotope data 

The most notable feature of the palreofluid nitrogen isotope data for S W England is the 

relatively narrow range of values (see Figure 4.9), considering that the data set includes both 

endo- and exo-granitic quartz veins. In the case of the samples from Hemerdon, for 

example, both granite and killas host rock lithologies are represented. as are greisen

bordered veins and veins not exhibiting hydrothermal alteration, yet the variation in 81SN 

among the five samples investigated is only 1.6%0. This indicates that the source of the 

molecular nitrogen was a reservoir of uniform isotopic composition and, furthermore, that 
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any local isotopic fractionation effects involving nitrogen were minor compared to processes 

operating on a larger scale throughout the batholith. 

Additional support for a domination of the nitrogen isotopic characteristics by processes 

presumed to occur within the batholith, or possibly at the contact zone, is provided by the 

lack of correlation between ~lSN values and nitrogen yield. For example, the pal~ofluid 

nitrogen from South Crofty has identical isotopic composition (5'0%0AIR) within experimental 

error, to that from Cligga Head, even though there is an approximately four-fold difference 

in nitrogen yield (both with respect to the quartz and as nitrogen molality in the fluid). 

Of particular interest is the observation that quartz samples associated with early 

mineralisation of the central Dartmoor region, well away from contact with Pal~ozoic 

metasediments, contain measurable traces of nitrogen, albeit at the sub-ppm level with 

respect to the quartz. Furthermore, this component has a olsN signature similar to that found 

for nitrogen-enriched samples from the other localities included in this study. In conjunction 

with the reported distribution of ammonium throughout the granites of S W England (Section 

4.8.2), this finding provides the strongest evidence for palreofluid nitrogen being derived 

from ammonium -bearing minerals located within the granite. 

Although there is some overlap between the Carrock Fell fluid inclusion olsN data and those 

obtained for the S W England samples, it is seen that the fluids at Carrock Fell are in general 

comparatively less enriched in ISN. The Carrock Fell data are similar to those obtained by 

Bussink (1984) for the majority of quartz-wolframite samples investigated from 

Panasqueira, Portugal. Interestingly, wall-rock alteration at Carrock Fell is minimal 

(Shepherd et al., 1976), being evident only in the granite where the rock is converted to a 

quartz-muscovite greisen; this is similar to the situation at Cligga Head, where similar 

palreofluid olsN values were obtained. 

4.8.2 Ammonium contents and the'S' -type characteristics of the S W England granites 

Evidence of a substantial sedimentary (pelitic) contribution to the parent magmas of the 

S W England granites is provided by high initial 87Sr/86Sr ratios of the individual plutons 

(Darbyshire and Shepherd, 1985, 1987), ENd data (Darbyshire and Shepherd, 1987, 1994), 

together with high KzO contents and enrichment of trace elements most abundant in pelitic 

sediments: B, As, Li, Sn (Hall, 1990). 

In a survey of the ammonium contents of S W England granites, Hall (1988) found that 

ammonium levels differed markedly between intrusions, in contrast to the uniformity of 

major element compositions. Also reported was that pegmatite formation and greisenisation 

were both associated with an enrichment of ammonium, compared to the parent granite. 
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Enhanced ammonium in the greisenised granites was attributed to high NH.+ concentrations 

in the metasomatising fluid. It was noted that minor granite intrusions which contained high 

levels ofNH.+ were also the foci of intense post-emplacement hydrothermal activity. One of 

the most significant observations of Hall (1988) was the correlation between the average 

ammonium content of the S W England granites and their initial 87S r f86Sr ratios and 

peraluminosity. This supported the assertion that ammonium in the granites is derived from a 

sedimentary source, incorporated during anatexis either in the magma source region or as the 

result of magma contamination at a higher level prior to emplacement. 

For the present investigation, it is notable that the very low levels of fluid inclusion nitrogen 

associated with syn/post-emplacement hydrothermal activity in central Dartmoor correlate 

well with the finding by Hall (1988) that the mean NH.+ content of the Dartmoor intrusion 

(11 ppm) is the lowest of all those investigated from the Comubian batholith. Conversely, the 

highest levels of NH.+ reported by Hall (1988) for both unaltered and greisenised granites in 

the region were from Cligga Head; this correlates with the present finding of significant 

quantities (which may be arbitrarily defined for this purpose as 2ppmN or greater, with 

respect to the quartz host) of nitrogen in the associated early post-emplacement fluids at this 

locality. 

Unfortunately, data for the NH4+ contents of the other relevant minor intrusives (Cam Brea, 

Gunnislake, Hemerdon Ball) were not available. However, other lines of evidence suggest a 

significant sedimentary component to the granites. For example, initial ENd values for the 

Hemerdon Ball and Dartmoor granites (Darbyshire and Shepherd, 1987) indicate a greater 

contribution of crustal material to the magma in the case of Hemerdon Ball (initial ENd ca. 

-7.0) compared to the adjacent Dartmoor pluton (initial ENd -4.7). Also, initial ~d values of 

-6.9 to -7.3 for the Carnmenellis granite (Darbyshire and Shepherd, 1990) indicate similarity 

to Hemerdon Ball.t Major element oxide analyses of the Hemerdon Ball granite (Darbyshire 

and Shepherd, 1987), confirm the peraluminous nature of this intrusive. For the Gunnislake 

granite, Bull (1982) reported similar findings. 

As published nitrogen isotope data for the Skiddaw granite (N W England) are not available, 

it is difficult to extend the discussion of the origin of palreofluid nitrogen at S W England to 

the Carrock Fell locality . Furthermore, as noted by 0' Brien et aL (1985), the Lake District 

granites are not readily classified as typically 'I' -type or'S' -type. Hall (1987) noted that 

there is no apparent correlation between the ammonium content and initial 87Sr/86Sr ratios of 

Caledonian-age granites of the British Isles, although significant correlation between 

t More recent results (Darbyshire and Shepherd, 1994) include ~d values for the following plutons: 
Gunnislake (-6.9), Castle-an-Dinas, East (-7.6), St Austell (-6.2 to -7.7), Bodmin (-7.2), Land's End (-6.1 
to -6.2), and coarse-grained Cam Marth granite (-7.0). These data support the assertion that the Dartmoor 

granite protolith assimilated a lesser degree of sedimentary material than others of the batholith. 
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ammonium content and peraluminosity was obtained. In that study, however, only the Shap 

granite was included from the Lake District. Cooper and Bradley (1990) analysed the 

ammonium content of granitic rocks sampled from exposed components of the Lake District 

batholith, in an attempt to identify evidence for an ammonium-rich sedimentary protolith. 

The unaltered Skiddaw granite was reported to have a low ammonium content (24 ppm), 

whereas highly altered specimens of the same granite, containing appreciable secondary 

muscovite, sericite and clay, contained ammonium contents up to 251 ppm. Granites sampled 

from all parts of the batholith were found to contain low levels « 30 ppm) of ammonium, in 

cases where alteration was observed to be minimal. It was concluded by Cooper and Bradley 

(1990) that, as discussed by Hall (1987), the low primary ammonium content of the Lake 

District granites was not, per se, evidence to either support or refute the hypothesis of a 

sedimentary protolith. 

4.8.3 Palreo-atmospheric nitrogen in the fluid inclusions? Argon isotope evidence 

It has been suggested (Kelley et al., 1986; Shepherd and Miller, 1988; Turner and Bannon, 

1992) that a substantial proportion of the argon component in fluid inclusions associated with 

W±Sn oxide mineralisation in S W England may be of palreo-atmospheric origin, implying 

a meteoric source of the associated waters. Kelley et al. (1986) reported 40 Ar_39 Ar analyses 

of three samples of vein quartz from Hemerdon, including one (HEM-79-2) which was used 

in the present investigation of nitrogen isotopes. Similarly, Turner and Bannon (1992) 

included sample SW-84-15 (Drakewalls mine) from the present study, together with early 

wolframite-associated quartz from Old Gunnislake mine. 

A meteoric origin of the palreowaters in early-stage hydrothermal fluids of the Cornubian 

region is not in accord with the principal findings of the present work. Substantial excess of 

36 Ar in hydrothermal quartz from the north Pennines, accompanied by unfractionated 

atmospheric noble gas abundances (Stuart and Turner, 1992), indicates that present-day air, 

trapped in re-sealed microfractures, is a possible alternative explanation for the findings of 

Kelley et al. (1986) and the other studies referred to above. The stripping of noble gases of 

atmospheric origin from sedimentary rocks during hydrothermal circulation has also been 

proposed (Turner and Bannon, 1992). 

For samples from Hemerdon, Kelley et al. (1986) estimated atmospherically-derived .oAr 

concentrations of 506±80~/1 in the palreofluids and noted that this value is similar to that for 

(non-saline) air-equilibrated water at STP. Saline fluids would be argon-saturated at lower 

concentrations, although the present salinity of the fluid inclusions is not of direct relevance if 

high salinity values resulted from fluid-rock interaction after the fluids were isolated from 

equilibration with the atmosphere. 
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On the basis of the hypothesis by Kelley et al. (1986) that their experimentally-detennined 

atmospheric 4°Ar concentrations of 506±80~1/1 in the Hemerdon fluid inclusions were 

derived from air-equilibrated groundwaters which subsequently retained their full argon 

budget despite burial and heating to >400°C, the corresponding nitrogen concentration in the 

fluids should be -1.8 x 104~1/1, on the basis of the solubility data of Weiss (1970). This 

corresponds to a nitrogen molality of only -8 x 10-4. The molality of nitrogen in the 

Hemerdon palreofluids, as estimated during the present study, is ca. 0.10-0.14 (see Figure 

4.9). It is evident, therefore, that the contribution of any atmospheric component to the 

nitrogen yield and ~lsN data obtained during the present work will be insignificant. 

4.8.4 Sources of the palreofluid nitrogen - isotopic considerations 

The two major reservoirs of nitrogen in crustal rocks of S W England are, firstly, the 

metasediments, where values in excess of l000ppm of NH4+ have been recorded; secondly, 

the granites, where average NH4+ values for the unaltered whole rocks range from 11 ppm at 

Dartmoor to 179ppm at Cligga Head (Hall, 1988) and where hydrothermal alteration is 

associated with a substantial enrichment in NH4+ content. Pegmatites, although not a major 

rock type in the region, are substantially enriched in NH4+ compared to the associated 

granites; pegmatite from Megilligar Rocks in Cornwall contains the highest ammonium 

content (332 ppm) yet recorded from an igneous rock (Hall, 1988). This enrichment of 

ammonium in pegmatites suggests that aqueous fluids exsolved from crystallising magma 

may have initially contained substantial amounts of NH4+' 

Considering first the hypothesis that palreofluid nitrogen was primarily derived from 

interaction between the metasediments and hydrothermal fluids, ~lsN values for the former 

were found to be ca. 3 to 4%0 lower than those of the fluids, except when the metasediment 

was very close to the granite contact (Chapter 6, this work). To obtain a 81SN value in the 

range of 6.5 ± 1.5%0(AIR) for molecular nitrogen (as is the case for the majority of palreofluids 

analysed from S W England) by the oxidation of ammonium-bearing phases in the local 

metasediments would therefore require either: 

(i) Release of nitrogen only at the granite contact zone and involving quantitative oxidation 

of ammonium that was retained after contact metamorphism. It is difficult to envisage a 

mechanism for such a scheme. 

(ii) Leaching by hydrothennal fluids of soluble lSN -enriched ammonium or ammonia from 

metasediments located away from the granite contact zone, with subsequent quantitative 

oxidation of this component. 

With regard to (ii), experiments by Haendel etal. (1986) on metasedimentary rocks 

demonstrated that ammonium with a ~lsN value at least 10%0 greater than that of the whole-
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rock may be extracted by leaching with either water or 2M KCI solution (at room temperature 

and atmospheric pressure). The same authors also noted that the measured fractionation 

factors were in accord with equilibrium isotopic exchange between NH4+ and NH3 at 

200-300°C. 

No comparable experiments have been performed on metasediments from S W England, as 

far as the author is aware. It should also be noted that Haendel et al. (1986) did not 

investigate the leaching of ammonium under pressure and temperature conditions more 

appropriate to crustal fluids. If the S W England metasediments contained a soluble 

ammonium fraction enriched in lSN by 10-15%0 compared to the whole-rock, and assuming 

that this fraction was the major source of nitrogen to the fluid phase, nitrogen isotope 

equilibration between NH4+ and N2 would require a temperature of -100 to 200°C, depending 

on whether the fractionation data of Scalan (1958) or Hanschmann (1981) are used (see 

Figure 4.1) to account for the observed palreofluid olsN values. This temperature range is 

substantially lower than that associated with the hydrothermal activity considered here. 

Alternatively, if it is considered that the speciation of nitrogen released by leaching is as NH3 

(which is probable in this case, as discussed above), then consideration of isotopic 

equilibration between NH3 and N2 indicates that, at realistic hydrothermal temperatures, the 

diatomic molecular species would be enriched in lSN, relative to the ammonia, giving rise to 

substantially greater palreofluid olsN values than actually measured. 

The alternative hypothesis to that of direct mobilisation of nitrogen from the metasediments is 

to consider the granites and associated hydrothermally altered rocks as the dominant source 

of palreofluid nitrogen. In one sense, the sedimentary rocks must ultimately be the source of 

all the crustal nitrogen, if the fixed nitrogen in the granites was assimilated by magma during 

anatexis. The data of Boyd et al. (1993) show that 8 out of 10 whole - rock granite samples 

analysed for olsN were in the range 8.4 to 1O.2%0(AIR)" These analyses included samples from 

the Cligga Head, Hingston Down, Bodmin Moor, Cammenellis and Land's End intrusives. 

Two samples that did not lie within this range (olSN values 5.1 and 7.0%0, from the St. 

Austell and Dartmoor intrusives respectively) had low Sr contents «20ppm) and also 

contained the lowest NH4+ concentrations (15 and 8ppm, respectively). Nitrogen isotope 

analyses of muscovite and orthoclase from Cligga Head were also reported, for both the 

unaltered and greisenised granite. These data showed that there was no difference, within the 

limits of analytical precision, between the olsN of the muscovite from the unaltered granite, 

and that from the greisenised granite, even though the concentration (as ammonium) was 

substantially higher in the altered granite. This makes an interesting comparison with the 

fmdings of the present study with regard to Hemerdon, i. e. that the fluid inclusion oJ5N is 

independent of whether the host quartz vein is greisen -bordered or not. With reference to 

orthoclase, Boyd etal. (1993) found that samples from the hydrothermally-altered granite 

were relatively enriched in lSN by approximately 1 %0. 
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It is apparent from comparing the fluid inclusion BISN data (generally 6.5± 1.5%o(AlIll ) with 

those from the granite whole-rock samples (mostly 9.3±O.9%o, according to Boyd etal., 

1993), that the difference of approximately 3%0 is in accord with isotopic equilibration 

between ammonium and molecular nitrogen: 

15N + 104NH + <=> ISNH + + 104N 
2 4 4 1 

at temperatures between -350 to 500°C, using the fractionation factors of Hanschmann 

(1981). This corresponds well with the temperature range for the hydrothermal deposition of 

quartz samples used in the present study. Note, however, that the data cannot distinguish the 

case of initial equilibration at hydrothermal temperatures from that of initial isotopic 

equilibration at magmatic temperatures followed by equilibrated exchange during cooling 

down to a 'blocking temperature', where kinetic factors effectively prevent further isotopic 

exchange. Sheppard (1981) reported that, for carbon exchange between CO2 and CHo4 in 

geothermal fluids, isotopic eqUilibrium is maintained down to around 320°C; comparable data 

for nitrogen exchange between NH4+ and N2 are unknown to the present author. 

Note that if Scalan's (1958) data for the fractionation of nitrogen between Nl and NH4+ are 

used instead of Hanschmann's, the temperatures obtained are substantially higher (-950°C 

mean), indicating isotopic equilibration under magmatic conditions but no subsequent 

equilibration during post -magmatic cooling. This, in turn, would imply physical separation 

of the diatomic and ammonium components during cooling from magmatic temperatures. 

4.8.5 The oxidation of ammonia by Co and ClV components: potential mechanisms for 

the release of nitrogen to the fluid phase 

Apart from thermal decomposition and dehydration (Hallam and Eugster, 1976), the release 

of ammonium ions from NHo4+ - substituted Al- silicates to a fluid phase may occur by cation 

exchange with species such as H+ ('proton metasomatism') and K+; also NH .. CI and NH .. OH 

(Duil et al., 1986). Hydrogen ion exchange is probably the dominant mechanism (Bottrell, 

pers. comm.), the extent of this metasomatism being controlled by the pH. As discussed 

above, the current consensus of opinion based on eqUilibrium thermodynamic models 

suggests that N2 predominates over NH .. + and NH3 in crustal fluids, although Hallam and 

Bugster (1976) used similar considerations to conclude thatfNH >fN in the Earth's crust. 
3 1 

What needs to be identified, however, is the chemical pathway for the oxidation of 

ammonium ions and/or ammonia (depending on pH, salinity and temperature) released from 

armnonium-bearing micas. 

Haendel et al. (1986) noted that, during stepwise heating of a (200oC dried) phyllite in vacuo. 

both nitrogen and ammonia were released in the temperature interval between 400 and 700°C, 

whereas only molecular nitrogen was formed above 700°C. This latter finding was attributed 

to a rapid and quantitative oxidation by the rock. 
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In the case of ammonia in hydrothermal solutions, Kreulen and Schuiling (1982) first 

postulated the following reaction for post-entrapment generation of nitrogen in fluid 

inclusions: 

Duit et al. (1986) proposed a similar reaction for the oxidation of ammonium ions liberated 

from biotite: 

These latter authors also suggested that the water and hydrogen ions produced during this 

reaction may subsequently be used in retrograde hydrolysis reactions, such as the conversion 

of biotite to chlorite and the transformation of potassium feldspar to muscovite. In evidence, 

Duit et al. (1986) noted that CH4 - N 2 inclusions are particularly abundant in the vicinity of 

chloritised biotites and also in retrograde, recrystallised quartz at the D6me de l' Agout, 

indicating that the inclusions are probably related to the liberation of nitrogen during 

retrograde metamorphism. 

Dubessy et al. (1989) calculated the equilibrium constant of the above reaction between CO2 

and NH3 as a function of temperature for the range 300-900°C. Although not explicitly 

stated, it would appear that their data relate to ideal gas conditions at 1 atm. pressure. The 

resulting values were found to lie within the limits of _10 27 to 1020. What this analysis does 

not illustrate, however, is the effect of competing reactions in the equilibrium mixture. For 

the present study, the computational procedures of Gordon and McBride (1971), adapted by 

the present author to incorporate the modified Redlich -Kwong equation of state of Holloway 

(1981), were used to evaluate the reaction between ammonia and carbon dioxide at 

temperatures of 300-900oC and for pressures of 1, 250, 500 and 1000 atm. For these 

calculations, ideal gas conditions were assumed to apply for the case of I atm. pressure, 

whereas ideal mixing of 'real' gases was considered for the calculations as applied to higher 

pressures. 

The equation of state used to calculate the respective fugacity coefficients, although devised 

for gas mixtures of the C-H-O-N system, does not include provision for the non-ideality of 

ammonia. Hence the fugacity coefficient of this component was taken to be unity throughout 

the calculations. Equilibrium compositions were determined by the procedure of Gordon and 

McBride (1971), based on the minimisation of free energy. As ammonia is shown to be a 

trace component in the product mixture under a wide range of (T, P) conditions, however, its 

contribution to the total free energy of the system will be very small and consequently the 

effects of this approximation should not significantly affect the results obtained. 

192 



Figure 4.10 

Predicted equilibrium compositions (mole fractions) resulting from the reaction between SNH
3 
+ 3C0

2 

under a range of temperatures and pressures corresponding to crustal environments. Gordon and 
McBride (1971) procedure used for modelling, adapted to incorporate fugacity coefficients calculated 
using the equation of state of Holloway (1981) for total pressures >1atm, except for ammonia, which 
was assumed to behave ideally under all conditions. 
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Figure 4.10 (continued) 
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Figure 4.10 shows the predicted equilibrium compositions resulting from the reaction 

between ammonia and carbon dioxide under a range of temperatures and pressures 

corresponding to crustal environments, using the reactant stoichiometry as given by Kreulen 

and Schuiling (1982). The fonnation of molecular nitrogen, methane and water is shown to 

be favoured under the specified conditions, indicating that this postulated reaction is a viable 

mechanism for the source of molecular nitrogen in the palleofluids. With regard to the 

equilibrium composition calculations, it should be noted that the thermodynamic database did 

not include NH
4
+, which has therefore been excluded from the computations. 

The oxidation of ammonia by graphite, as an alternative to carbon dioxide, has also been 

shown to be theoretically feasible on thermodynamic grounds (Bottrell and Miller, 1990). 

Calculations by Bottrell (ibidem) for the reaction 

at 327°C, 1.8kbar, and assuming ideal mixing of real components, produced an estimate for 

the equilibrium constant of 1010.0 • It should be noted, however, that the effects of competing 

reactions such as ammonia decomposition are not considered by this analysis. Furthermore, 

under hydrous conditions, oxidation-reduction reactions of graphite with water will be of 

significance. Although reaction between graphite and ammonia may be a feasible source of 

molecular nitrogen input to a hydrothermal fluid phase in certain lithologies, it is considered 

that this mechanism was unlikely to have been of significance in the Comubian system. 

4.9 Summary and Conclusions 

Experimental techniques devised for the preparation and determination of nitrogen yields and 

stable isotope ratios at the sub -nanomole level have been assessed and applied to the study of 

traces of nitrogen in palleo-hydrothermal fluids, trapped as fluid inclusions in vein quartz. 

Early post-emplacement palleofluids associated with granite intrusives of the Cornubian 

batholith, S W England, and characterised by association with W ± Sn oxide mineralisation, 

have been shown to contain nitrogen at concentrations ranging from about 10-2 to 0.34 molal, 

and corresponding to < I to 13.8 ppm with regard to the respective quartz host. An empirical 

association between pal~fluid nitrogen concentrations and published ammonium contents of 

the associated granite pluton is evident. 

The concentration and BlsN values of nitrogen in the fluids do not appear to be significantly 

influenced by the host rock lithology. This is particularly evident at Hemerdon, where 

examples of veins hosted by unaltered granite, greisenised granite, and killas were 

investigated. These results suggest that little interaction occurred between the fluid and 

nitrogen sources in the host rock at high crustal levels in the evolving hydrothennal systems. 
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The SlsN isotopic data for the fluids range from +5 to + 1 O%o(AIR)' which is indicative of an 

organic precursor. Most of the SlsN results are grouped within the range 6.5±1.5%o. A 

notable rmding of the investigation is that nitrogen at sub-ppm levels may be isolated and 

isotopically characterised from quartz representative of the earliest pegrnatitic and cassiterite 

stage fluids hosted by the Dartmoor granite; furthermore, the isotopic characteristics are the 

same as found for fluids which are richer in nitrogen and associated with Comubian granites 

of a more pronounced'S' -type character. The source of nitrogen to the fluid phase is 

probably the oxidation of NH
4
+, which is an abundant species in both the regional 

metasedimentary rocks and locally within the batholith. By way of comparison with the fluid 

inclusion data for S W England, SlsN values of palreofluid nitrogen from five samples of 

early vein quartz (hosted by granite or gabbro) from the Carrock Fell wolframite deposit, 

Cumbria, all fall within the range 4.5±O.8%o(AIR)" 

The incorporation of a substantial pelitiC component to the parent magmas of the Comubian 

granites during anatexis is generally accepted, on the basis of initial 87Sr/86Sr ratios and ENd 

values, generally peraluminous major element chemistry, high KzO contents and high 

concentrations of elements (such as B, As, Li) abundant in pelitic sediments. Published work 

has shown that there is a good correlation between the average ammonium content of the 

individual intrusions and the corresponding initial 87Sr j86Sr ratios and peraluminosity, 

indicating that the ammonium in the granites is probably derived from a sedimentary source, 

although at what stage is uncertain. The apparent correlation between the nitrogen content of 

the fluids and the ammonium content of the associated granite, as identified in the present 

work, supports the hypothesis that the granites are the most probable source of nitrogen in 

the fluids. 

Using the most recently-published fractionation factors (Hanschmann 1981) for nitrogen 

isotopic equilibration between Nz and NH .. +, together with whole-rock SlsN data for the 

granites (Boyd et ai., 1993), it is evident that most of the isotopic data are in accord with 

equilibrated nitrogen exchange between N z in the palreofluid and NH4+ in the granites, at 

temperatures corresponding to hydrothermal activity (about 350-500°C) in the region. Initial 

equilibration temperatures cannot be determined from the isotopic data; consequently it is not 

possible to identify at what level in the system the oxidation of ammonium occurred. The 

more lSN -enriched palreofluid at Old Gunnislake mine (measured SlsN values of 

8.2±O.29%o and IO.O±O.55%o) may be explained by quantitative oxidation of granitic 

ammonium, if it is assumed that the SlSN value of the Gunnislake granite falls within the 

range of 8.4-10.2%0 published for Cornubian granite whole-rock samples containing 

>-32ppm NH .. +. The same mechanism is also proposed for the Dartmoor system, where 

mean SlsN values of early -stage hydrothermal fluids from three of the four samples analysed 

were within the range 6.7 -7.3%0; identical, within experimental error, to the published SUN 

value of the host granite. 
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Equilibrium thermodynamic modelling suggests that the oxidation of ammonia by carbon 

dioxide, which invariably occurs with the nitrogen component in the palreofluids 

investigated, is a viable mechanism for nitrogen formation under a wide range of (P,1) 

conditions. 

It is considered that the most feasible mechanism by which nitrogen of isotopic composition 

+5 to + lO%o(AlR) in the fluids may be derived directly from the oxidation of ammonium in the 

metasedimentary rocks would be via selective metasomatic release to the fluid phase of a 

labile ammonium component relatively enriched in 15N. 

4.10 Suggestions for further work 

Apart from the exploratory investigation of hydrothermal fluids associated with early 

mineralisation of the Dartmoor granite, the present study has focused on localities where 

nitrogen is a readily identifiable component, albeit at trace levels, of the ancient hydrothermal 

systems. In the light of the findings reported above, the use of nitrogen stable isotopes as 

tracers of magmatic-hydrothermal fluids derived from 'S' -type granites would appear to be 

feasible. Further work would be required to test how widely this idea may be applicable. 

In view of the proposed mechanism for the oxidation of ammonium in the granite by carbon 

dioxide, model experiments in which granite whole-rock samples are exposed to a CO
2
-rich 

aqueous fluid under simulated hydrothermal conditions are needed to confino the viability of 

this hypothesised source of molecular nitrogen. 

Leaching experiments on S W England metasedimentary rocks under hydrothermal 

conditions, with subsequent nitrogen isotopic analysis of any soluble NH,: fraction released, 

would help to establish whether several ammonium components of differing nitrogen isotopic 

composition may be present and also their relative propensities to partition into the solution 

phase. 
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Chapter 5 

The chemical composition of early mineralising fluids of the 
Comubian batholith 

5.1 Synopsis 

Recent improvements in crush -leach procedures for the extraction and chemical analysis of 

quartz-hosted fluid inclusions have been applied to an investigation of the solute chemistry of 

ancient fluids that characterised the earliest stages of high - temperature hydrothermal 

mineralisation associated with the granites of S W England. In particular, a comparative 

regional study has been undertaken of electrolyte concentrations in quartz-hosted aqueous 

inclusions characteristic of early, high-temperature (300-450°C) fluids associated with the 

presence of W ± Sn oxide assemblages in the region. The results, particularly when assessed 

in conjunction with complementary ~D and ~180 stable isotope data obtained on the 

associated palleo-water components (Chapter 2 of the present work), constrain hypotheses 

concerning the origin of these fluids in terms of the extent of contributions from 'magmatic' 

and other sources. 

W±Sn oxide assemblages are virtually absent from hydrothermal veins hosted by the 

Dartmoor granite, which is anomalous in many respects amongst the intrusives that 

collectively form the Cornubian batholith. Hydrothermal mineralisation of the Dartmoor 

granite typically comprises assemblages of tourmaline, cassiterite, hlematite and quartz. with 

individual deposits being distributed in a pattern indicative of large scale zoning within the 

pluton. In the present study, a detailed investigation of the chemical composition of 

palreofluids associated with various stages of mineralisation of the Dartmoor granite was 

undertaken, using representative examples from localities in the central and north-eastern 

regions of the pluton. Comparisons of the fluid electrolyte compositions associated with the 

different parageneses, in conjunction with complementary stable isotope data (~D, ~180), 

were used to assess the extent to which the primary fluids may have been diluted by local 

groundwaters during the progressive stages of protracted hydrothermal activity. The data also 

permit contrasts to be made between the nature of the early, high -temperature hydrothermal 

fluids hosted by the Dartmoor granite, on the one hand, and comparable stage fluids as 

characterised by W±Sn oxide mineralisation elsewhere within the batholith. Such 

information contributes to a better understanding of the hydrothermal phenomena associated 

with mineralisation of the Cornubian granites and establishes a framework for interpretation 

of the associated geochemical processes that operated diachronously on a regional scale 

throughout the batholith. 
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5.2 Introduction 

S.2.1 Procedures for the extraction and electrolyte analysis of aqueous fluid inclusions 

Fluid inclusions trapped during mineral fonnation often provide the only direct access to 

infonnation about the chemical composition of ancient (fonnedy high-temperature) crustal 

fluids at depth. Furthennore, knowledge of the electrolyte compositions of such fluids is of 

importance in the fonnulation and testing of geochemical models of fluid-rock interaction. 

Since the earliest investigations of fluid inclusion compositions by Davy (1822), a wide 

range of techniques has been applied to this field, as reviewed recently by Roedder (1990). 

Significant progress has been made during recent years with the application of modem 

microbeam techniques to analyses of aqueous fluid inclusion electrolytes. For example, 

Diamond etal. (1991) used secondary ion mass spectrometry (SIMS) to determine cation 

ratios in individual inclusions in quartz and obtained good agreement with results obtained by 

bulk crush-leach analysis; Bohlke and Irwin (1992, and references therein) applied laser 

ablation to individual inclusions in neutron -irradiated hydrothermal minerals, in conjunction 

with noble gas isotope ratio analysis, to measure the relative concentrations of pal~fluid CI, 

Br, I and K. 

Most published analyses of fluid inclusion electrolyte compositions, however, have been 

largely based on variations of the established crush -leach method as pioneered by Roedder 

(1958) and Roedder etal. (1963). In its original fonn, this involved the crushing under 

vacuum, in a copper tube, of sufficient quantity of mineral sample to enable a few mg of fluid 

to be extracted. The crushed sample was leached with high-purity demineralised water, with 

subsequent analysis of the filtrate by colourimetric and flame photometric methods. All 

samples were carefully selected and electrolytically cleaned before use. Quartz is generally the 

preferred host mineral for this type of analysis, on account of its chemical purity and minimal 

contamination of the leach solution t, although results have been reported for inclusions in 

e.g. halite (Lazar and Holland, 1988) and calcite (Christie etal., 1989). 

As noted by Roedder (1984), it is probable that many of the numerous analyses of fluid 

inclusion leachate composition that have subsequently appeared in the scientific literature are 

of questionable or unverifiable accuracy, because of insufficiently rigorous experimental 

procedures and/or a lack of detailed information about the techniques adopted. 

t Christie et al. (1989) showed that contamination from trace impurities in the host quartz may be a problem 

in crush-leach analyses of low-salinity. inclusion-poor material. In particular. Ca. Mg. Li and Zn. 

occasionally in balance with chloride, were found to be largely derived from the quartz, using water leaches; 
high levels of AI were also associated with the same problem. In the present study, these difficulties do not 

arise, due to the abundance of inclusions of high salinity. 
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Banks and Yardley (1992) and Channer and Spooner (1992) have recently reviewed the 

principal difficulties with crush -leach methods for the analysis of fluid inclusion electrolytes. 

These include: 

(i) Problems associated with the presence of mineral impurities. The presence of even 

trace quantities of extraneous solid phases can drastically affect the chemical composition of 

the leachate, as manifest by anomalous enhancement of the abundances of elements such as 

Ca, Mg, Al and Fe (depending on the nature of the impurity) and contribute to charge 

imbalance (generally manifest as an excess of cations). 

(ii) General lack of validation of procedures by recognised standards (usually synthetic 

inclusions of independently-verified composition); also few inter-laboratory (and inter

procedural) comparisons. 

(iii) The extraction of multiple generations of inclusions, each with a distinct chemical 

composition. This problem is sample dependent to a large extent. It can be significantly 

reduced in some cases by developing procedures which require a smaller quantity of material, 

thereby permitting a greater degree of control over sample characterisation. Ultimately, it can 

only be resolved by single inclusion analysis. 

(iv) Adsorption of polyvalent cations during crushing. Bottrell et al. (1988) showed that 

this was a serious problem; even with 1.28M HN0
3 

as the leach solution, recovery of Ca 

and Mg was <80%, for solutions of initial respective concentration 1.00 and 0.100 I1g/ mI. A 

leaching solution of composition O.13M HN03 + 200l1g/ml La3+ (as LaC~) was found to be 

the most effective adsorption inhibitor. These findings indicated that most previous published 

analyses for divalent cations in fluid inclusions were likely to be Significantly in error. 

Bottrell etal. (1988) utilised multiple crushes of -2g quartz in stainless steel or copper tubes, 

followed by leaching with doubly-distilled water or acidified LaC13, according to the 

elements to be analysed. Leachate solutions were analysed for Na (and K) by flame emission 

spectrophotometry (FES); other elements were detennined by a variety of analytical 

procedures. in order to optimise sensitivity in each case. Element abundances were recorded 

as ratios to Na, following established practice. 

Further refmements to the procedures of Bottrell et al. (1988) were subsequently reported by 

Banks and Yardley (1992). who developed a miniaturised adaptation of the crush-leach 

method. In particular, these latter authors showed that reproducible and accurate multi

element (Na, K, Mg, Fe, Mn, Zn) leachate analyses could be obtained on as little as 70mg of 

quartz sample. using a clean agate pestle and mortar to crush the quartz and using acidified 
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LaCl, as the leaching solution.t Furthermore, Banks and Yardley (1992) validated their 

procedures by analysis of a synthetic fluid inclusion sample. Additional developments by the 

same authors, such as the use of ion chromatography for the analysis of fluid inclusion 

anions (halogens and sulphate) were incorporated in the procedures used to investigate the 

fluid inclusion electrolyte chemistry of samples used in the present study. 

5.2.2 The chemical composition of granite-hosted thermal groundwaters in 
S W England: evidence for (low-temperature) hydrothermal alteration of the 
granite? 

The presence of thermal (up to 55°C) and saline groundwaters as inflows in Cornish tin 

mines has been documented since the second half of the last century (Miller, 1865; Phillips, 

1873). These are the only saline groundwaters recorded from igneous rocks in the UK and 

contain up to 19,300 mgl-! total dissolved solids (11,890 mgl-! CI-), with notably high 

concentrations of lithium, together with enhanced levels of other minor elements. The origin 

and evolution of saline and thermal groundwaters in the Carnmenellis granite has been 

investigated by Edmunds and co-workers (Edmunds etal., 1984; Edmunds etal., 1985; 

Edmunds etal., 1987; Edmunds and Savage, 1991); these studies have shown that the 

thermal groundwaters are probably of meteoric origin, being almost identical to shallow, 

non-thermal waters in terms of B180 (-S.S±0.5%o) and BD (-34±S%o), and have circulated to 

a depth of - 1200m. The temperature of these waters is higher than would be expected purely 

on the basis of the average regional geothermal gradient (29.0°C km-! in the granite; up to 

SOCC km- l in the aureole) and implies the operation of upward convection processes. An 

'end-member' high-salinitytt fluid component of approximate age -104 to 106 a was 

identified, containing possibly up to 30,000 mgl-! total dissolved solids. 

Edmunds et al. (1987) proposed that acid hydrolysis of plagioclase I and biotite in the granite 

were the principal origins of the groundwater Salinity and distinctive chemical compositions. 

t The samples were of high temperature, hydrothermal quartz associated with the St Austell granite, 

S W England, and contained an abundance of inclusions with an approximate salinity of 15 wt % NaCI 

equivalent. That analyses for only six elements were reported was due to the small volume of acidified 

lanthanum chloride leaching solution used (l-2ml), which precluded analysis bye. g. inductively-coupled 

plasma atomic emission spectrometry. Na and K concentrations were determined using FES; other 

elements were analysed by graphite furnace atomic absorption spectrometry. 

tt 'Salinity' is defined as the amount of dissolved salts, with Br and I represented by the equivalent quantity 
of Cl and all bicarbonate and carbonate converted to oxide. It is expressed in g/kg (%0). 'Chlorinity', by 

contrast, refers to the chloride content of the water, including the chloride equivalent of other halides, in 

g/tg (%0). 'Standard' modern sea water has a chlorinity of 19.4%0 and corresponding salinity of 35.5%0. 

I Na- and Ca- feldspars form a continuous series of solid solutions, tenned the plagioclase feldspars. These 

are triclinic Na-Ca aluminosilicates, ranging in composition from 100% albite (NaAlSi,O.) to 100% 

anorthite (Ca~S~08)' Oligoclase is characterised by 70-90% albite, 1()"30% anorthite. 

201 



As noted by Edmunds etat. (1987), plagioclase and biotite (amongst other rock-fonning 

minerals) derive their compositions under conditions of high-temperature fluid-rock 

interaction and are generally thermodynamically unstable under hydrous conditions at lower 

temperature. The following reaction schemes were considered probable: 

5Nao .• Cao.ZAll.ZSiZ.808 + 6H'" + 19Hp -+ 3AlzSizOs(OH). + 4Na+ + Ca2+ + 4H.SiO. 

Oligoclase Kaolinite 

~(Mg,Fe)iFe,AI,Li)z[Si6AIP20](OH)z(F,Cl)2 + 3HzO + 12W -+ AlzSizOs(OH). + 4H.SiO. 

Biotite + 2K+ + 4(Mgz+,Fe2+) + 2(Fe3+'AI3+,Li+) + 2(F-,Cn 

The formation of alternative reaction products of the acid hydrolysis of plagioclase, 

particularly laumonite (CaAlzSi.Olz.4HzO) and possibly other clay minerals, was also 

suggested in accord with this scheme and would be consistent with field observations.t 

A significant feature of the thermal groundwaters was the relative depletion of Na/ Ca ratios 

(1.3 to 4.0, on a molar basis) compared with bulk feldspar compositions. This was attributed 

to preferential reaction of Ca-rich centres of zoned plagioclase. The high Li+ concentration 

(up to 125 mgl- l ) was related by Edmunds etal. (1987) to stoichiometric biotite hydrolysis. 

a -, like Li+, is probably conservative in that its release into thermal groundwaters is unlikely 

to lead to subsequent assimilation into a secondary mineral lattice. The Cl- component of the 

groundwaters, however, whilst also postulated to originate from biotite, was considered to 

be derived by hydroxyl exchange without structural breakdown of the mineral. 

Concentrations in the thermal groundwaters of several minor and trace elements, including 

Sr, Ba, F, B, Br and Rb, were attributed to hydrolysis reactions of aluminosilicate minerals. 

5.2.3 Hydrothermal alteration of the granite at higher temperature: evidence from model 
experiments 

In an experimental investigation of the interaction of meteoric groundwater (simulated by a 

dilute Na-Ca-CI-HC0
3 

fluid of total dissolved salts <120mgl-l) with the Carnmenellis 

granite at 250°C and 50 MPa (500 bar), Savage et al. (1985) showed that the dissolution of 

plagioclase and K -feldspar was the dominant feature, with the concomitant precipitation of a 

Ca-aluminosilicate (probably laumonite), smectite, calcite and anhydrite. Interestingly, the 

nature of the hydrothermal alteration was similar to that reported by Giggenbach (1981) for 

geothermal systems of New Zealand. Savage et al. (1987) extended the results of the earlier 

t It has been suggested that the biotite -+ kaolinite reaction rarely occurs in practice; the intermediate 

muscovite is generally formed, with the subsequent muscovite-+kaolinile step being relatively unusual 
(Scrivener, 1982). Alternatively, the biotite may be altered to chlorite. 
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study by Savage et al. (1985) to show that the final reacted fluids were saturated with respect 

to quartz and fluorite and that concentrations of 15 of the 17 analysed chemical components 

showed net increases in the fluid phase, the exceptions being Ca (at 250°C) and Mg (at 250°C 

and at lower temperatures). It was also found that, under the experimental conditions used, 

certain trace elements (Li, B and Sr) did not behave conservatively in the fluid phase but were 

either incorporated into solids or adsorbed onto mineral surfaces. 

The significance of these results is that they bridge the transition in temperature between the 

thermal groundwater studies of Edmunds et al. (1987, and references therein) and the 

(ancient) magmatic-hydrothermal regimes which provide the focus of interest of the present 

investigation. 

5.2.4 The Dartmoor granite: magmatic activity and early hydrothermal alteration 

5.2.4.1 Chronology of magmatic activity 

Darbyshire and Shepherd (1985), in an investigation of the Rb-Sr geochronology of granite 

magmatism and associated mineralisation in S W England, reported an emplacement age of 

280± 1 Ma for the Dartmoor granite, with an associated nSr / 86Sr initial ratio of 

O.7101±0.0004. The age relationship between the Dartmoor granite and associated 

mineralisation was not investigated by these authors, however. More recently, a 

thermochronological study of the Comubian batholith by Chesley etal. (1993), whilst 

reporting U -Pb and 40 Ar f39 Ar ages for the Dartmoor granite statistically indistinguishable 

from the Rb-Sr age given by Darbyshire and Shepherd (1985), showed that the cooling rate 

of this pluton (-60 to 85°C Ma-1) was significantly slower than any other in the batholith, 

implying that the Dartmoor granite may be exposed at a deeper leve1.t On the basis of 

4OArf39Ar age spectra of muscovite samples, Chesley etal. (1993) concluded that the 

Dartmoor pluton is a composite body, having resulted from multiple episodes of magmatism, 

as suggested on the basis of field observations (e.g. Brammall and Harwood, 1932). 

According to Schneider (1990), the earliest stage of magma emplacement was characterised 

by initial crystallisation at -5kbar pressure, -800°C and a water content of 4.5% 

t This finding concerning the cooling rate, however, is disputed by the results of a parallel investigation by 
Clark and co-workers (Clark et al., 1993; Chen et al., 1993), using similar techniques. On the basis of their 

data. these authors suggested that there was no distinction between the cooling rates of component plutons 

of the batholith. Willis-Richards and Jackson (1989), on the other hand, proposed accelerated COOling of the 

Dartmoor granite, supposedly the result of rapid unroofing. 
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5.2.4.2 Paragenetic stages ofhydrothennal mineralisation 

The Dartmoor granite is unusual in several respects, among the plutons that collectively form 

the Comubian batholith of S W England. High-temperature tourmaline-quartz veins are 

widely distributed in the marginal and roof zones of the pluton, locally hosting cassiterite and 

hzmatite which occur separately or together in very variable proportions. The intra-granitic 

hydrothermal veins are sulphide-deficient, in contrast to those hosted by the surrounding 

metasedimentary country rocks, and are characterised by a relatively restricted mineralogy. 

Comprehensive accounts of the geology are to be found in Hawkes (1982) and Scrivener 

(1982); summaries incorporating more recent data have been given by Darbyshire and 

Shepherd (1985) and Chesley etal. (1993). According to Scrivener (1982), four distinct 

paragenetic stages of hydrothermal mineralisation of the Dartmoor granite may be recognised; 

the classification proposed by Scrivener (1982) is adopted throughout the present work. 

The initial stage (Stage I) involved fracture-filling deposition of tourmaline throughout the 

pluton, probably as the consequence of rapid decompression of highly saline, boron-rich 

fluids exsolved from late-stage magma. Deposition of quartz+tounnallne±cassiterite 

assemblages (Stage IT) followed; widespread evidence for fluid boiling, both before and 

during the deposition of cassiterite, was reported on the basis of fluid inclusion evidence 

(Scrivener, 1982; Shepherd etal., 1985). Hzmatite±quartz deposition (particularly well

developed in central Dartmoor and in the north-eastern part of the pluton) marked the post

cassiterite stage of mineralisation and characterises Stage m. The presence of a large area of 

the granite in which hrematite (both specular and micaceous) occurs is a feature unique to 

Dartmoor, among the plutons of the Cornubian batholith. Scrivener (1982) noted that coarse, 

specular hrematite is prevalent in the Birch Tor & Vitifer district of central Dartmoor, whereas 

micaceous hrematite predominates in cassiterite-deficient veins located in the north-east of 

the pluton, close to the contact zone; it was postulated that this may reflect the level in the 

hydrothermal system at which the mineralisation is exposed. Low temperature deposition of 

chalcedonic quartz characterised the final stage of the paragenetic sequence (Stage IV). The 

partial or complete alteration of plagioclase to clay minerals (primarily kaolinite) in both 

coarse-grained and fine-grained granite is evident in several areas on Dartmoor, mostly in 

the southern parts of the pluton; the initial alteration may also be the product of hydrothermal 

activity (Hawkes, 1982). 

Wall-rock alteration associated with hydrothermal mineralisation in the central region of the 

Dartmoor granite is complex. Albite, orthoclase, chlorite, sericite and kaolin are all presentt; 

t Orthoclase is the common rock-forming alkali feldspar KAISi30.. Chlorite is a hydroxy Mg-Fe 
aluminosilicate mineral of stoichiometric composition (Mg,FeMSi,Al).O.o(OH)z.(Mg,Fe)3(OH)6' Sericite 
is the term used to describe a fine- grained white mica. 
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sericitic alteration of the granite is particularly pervasive (Scrivener, 1982). The same author 

reported that, whilst it is difficult to establish the chronology of alteration phenomena, 

because of overlap in the sequence (and multiple episodes of hydrothennal activity), the 

fonnation of albite occurred early and was contemporaneous with the major deposition of 

tourmaline (Stage I), whereas the growth of orthoclase was recognised to be associated with 

later tourmaline and cassiterite deposition (Stage IT). 

5.2.5 Sampling localities 

Two sets of (quartz) samples were used for the present investigation. The first consisted of 

examples representative of various stages of hydrothermal alteration of the Dartmoor granite, 

from the earliest, high-temperature pegmatitic stage, through quartz+tounnaline±cassiterite 

assemblages, to later (and lower temperature) hrematite±quartz mineralisation. Appendix A 

details the sample descriptions and documents the sampling localities included in this work, 

from which it is apparent that most of the Dartmoor material derived from East Vitifer and 

Golden Dagger mines, in the central region of the pluton exposure and well away from the 

metasedimentary contact zone. A notable exception is the sample (SW-89-157) collected from 

the north lode of Great Rock mine (north-eastern Dartmoor), in close proximity to the contact 

and distinguished by the presence of pyrite as well as hrematite, which contrasts strongly 

with the sulphur-deficient environment characteristic of the intra-granitic hydrothennal 

veins. 

The second set of samples was selected as representative of quartz associated with the earliest 

post-pegmatitic stage hydrothennal fluids, characterised by the deposition of W±Sn oxide 

assemblages throughout S W England. Examples were included from four of the principal 

wolframite occurrences associated with the Cornubian batholith, viz. Hemerdon mine, Cligga 

Head, South Crofty mine and Castle-an-Dinas mine (St Austell district), together with 

examples associated with minor granite intrusives (Gunnislake and Hingston Down) located 

between the Dartmoor and Bodrnin Moor plutons. W±Sn oxide assemblages occur as fissure 

veins in the granites (sometimes in the fonn of stockworks and vein swarms, such as at 

Cligga Head and Hemerdon) and killas country rock. Intra-granitic vein swanns in the 

region are usually associated with greisening (the development of micaceous borders, 

through pneumatolytic alteration) and the presence of potassium feldspar. 

Samples from Hemerdon included examples of both endo-granitic and killas-hosted veins, 

both of which are, in general, greisen bordered, with variable amounts of K -feldspar. 

Sulphides are present in only minor quantities at Hemerdon, OCCurring as irregular patches of 

pyrite in the host rocks (Beer and Ball, 1987). The W±Sn oxide assemblages occur primarily 

in the granite, in association with both quartz-feldspar and greisen-bordered veins; the latter 

are distributed as swarms, similar to those found at Cligga Head. As noted by Beer and 
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Scrivener (1982), the granite within the mineralised stockwork has undergone extensive 

hydrothermal alteration, with hrematitic staining and variable near-surface kaolinisation. 

Minor occurrences of arsenopyrite are present at depth. 

5.3 Research objectives 

There were two principal objectives to the present investigation. One was to characterise 

chemically, on a regional basis, palreo-hydrothermal fluids associated with early W±Sn 

oxide mineralisation in S W England. 'Splits' of the quartz samples used in this study were 

also investigated with respect to fluid inclusion 5D and 5180 isotopic composition (Chapter 2) 

and stable isotopic characterisation of trace carbon species and molecular nitrogen in the 

fluids (Chapters 3 and 4 respectively). Analysis of the associated electrolyte compositions 

therefore provides additional constraints on the nature and origin of these fluids, which 

represent the transition from pegmatites to hydrothermal oxide mineralisation in the region. 

Such information also indicates the extent of fluid-rock interaction between the granites 

(and/ or metasedimentary country rocks) and the evolving hydrothermal system, ultimately 

leading to a better understanding of the high-temperature hydrothermal alteration of 

component plutons of the Comubian batholith. 

The second objective involved a comparative assessment of fluids responsible for the various 

paragenetic stages of early hydrothermal mineralisation of the Dartmoor granite. Such 

information, in conjunction with aD and a 180 measurements of the associated waters 

(Chapter 2), provides a basis for assessing the extent to which magmatically-equilibrated 

fluids were involved in the hydrothermal system, from the earliest pegmatitic quartz. through 

quartz+tourmaline±cassiterite (Stage IT) assemblages, to low-temperature quartz+hrematite 

deposition (Stage ill). In turn, this provides a basis for assessing whether external fluids 

entered vein fractures of the Dartmoor granite at an early stage after emplacement. The 

comparison might also be expected to lend support to (or refute) arguments for the degree of 

'S' -type character of the host pluton influencing the chemical composition of the associated 

magmatic-hydrothermal system. 

5.4 Experimental 

Fluid inclusion crush-leach analyses were undertaken using procedures largely based on the 

work of Bottrell etal. (1988); further information is provided in Banks etal. (1991), although 

procedures have since been modified in detail to incorporate more recent developments. As 

noted by Banks etal. (1991), sample preparation is of critical importance; all extraneous 

grains must be removed and stringent cleaning procedures subsequently applied, prior to 

extraction of the inclusion fluids. In the present work, quartz samples were prepared in 
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accordance with the recommendations of Bottrell et al. (1988), except that a coarser grain size 

(O.5-1.0mm) was used. The inclusions were opened by grinding, using an agate mortar and 

pestle; approximately 2 g of quartz grains were used for each leaching experiment. Acidified 

LaC~ solution (200ppm La3+ in 0.13M HN03 ) was used for leaching in the case of cation 

(and boron) analyses; separate 'splits' of the quartz were crushed and subsequently leached 

using doubly-distilled water for anion analyses.t Inclusion-free quartz samples were 

prepared using the same procedures, to determine blank levels. 

Each leachate solution was analysed by inductively-coupled plasma atomic emission 

spectrometry (lCP-AES) for the following cations: Na, K, Ca, Mg, AI, Ba, Li, Sr, Fe, Mn, 

Cu and Zn, together with B (as borate). ICP-AES has the advantage of simultaneous multi

element analysis on relatively small volumes of solution and is also particularly suitable for 

certain elements, such as boron. As noted by Bottrell etal. (1988), however, these 

advantages are generally at the expense of poorer detection limits and sensitivity compared to 

other methods. Na and K abundances were additionally determined by flame emission 

spectrometry (FES) and the concentrations of Cu, Ph, As, Be and Bi measured by graphite 

furnace atomic absorption spectrometry (GFAAS). Rb and U concentrations were determined 

by isotope dilution mass spectrometry. Anion analyses (F, Cl, Br, I and sulphate) were 

undertaken using ion chromatography. All analytical data were initially converted to element 

concentrations ratios (by mass) relative to Na, for comparison purposes. Following chemical 

analysis of the Dartmoor fluid inclusion leachates, 'splits' of the same quartz samples were 

used to supply Dr D M Wayne (University of Leeds) with replicate leachate solutions for 

determinations of the isotopic composition of fluid inclusion Sr and Ph. 

5.5 Results - fluid inclusion leachate analyses 

For both the investigation of quartz-hosted palreo-hydrothermal fluid electrolyte 

compositions associated with the different stages of early mineralisation of the Dartmoor 

granite, and for the comparative assessment of fluids characterised by W±Sn oxide 

association, the fluid inclusion leachate data are presented in a similar manner. 

5.5.1 Dartmoor hydrothermal quartz 

Element relative abundances in the fluid inclusion leachate solutions normalised by mass to 

Na.lO,OOO are shown in Table 5.1(a). Duplicate crush-leach cation (and borate) analyses 

were undertaken in two cases, with generally very good reproducibility of the resulting data. 

t Apart from the obvious problem of chloride interference from use of LaCl3 in O.13M HN0
3 

as the 

leaching solution for anion analysis, nitrate ion interferes with the analysis of bromide. 
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In Table 5.1(b), the same results are reported in terms of element mole ratios relative to Na, 

from which the degree of ionic charge imbalance (as characterised by the IQ+ -1: I Q-I charge 

difference and by the corresponding IQ+ /1:IQ-1 ratio) has been determined in all cases.t For 

the seven samples representative of Stages I and II of the paragenetic sequence, it is seen that 

the charge balances are excellent. Moreover, the example representative of Stage m fluids 

from East Vitifer mine exhibits reasonably good charge balance. Only in the case of quartz 

associated with hrematite deposition at Great Rock mine is the charge balance relatively poor. 

However, the anomalously high Al concentration noted for this example indicates probable 

contamination of the leachate by feldspar; also, the excessive abundance of Fe may be 

attributed to the presence of residual hrematite, intergrown with the quartz. 

To reconstruct the original inclusion fluid electrolyte concentrations (absolute values) from 

the corresponding leachate data, recourse is made to estimates of the inclusion fluid salinities 

as determined during microthennometric studies. Microthennometric analysis allows only 

rust-order estimates of palreofluid salinities to be derived in many of the examples included 

in the present investigation, however, because of the presence, in variable proportions, of 

distinct inclusion types (monophase or multi-phase; predominantly vapour-rich or otherwise; 

with or without one or more solid phases), generally characterised by different salinity 

ranges.' 

Furthermore, salinity data based on e.g. halite dissolution temperatures or final ice melting 

temperatures (or C02·5~ H20 clathrate melting temperature, in the case of CO2-bearing 

inclusions), are usually expressed in terms ofwt% NaCI equivalent; this simplification may 

lead to chloride concentration estimates that are significantly in error in the case of complex, 

multi-element chloride solutions (as considered here, on the basis of the present evidence). 

For these reasons, estimates of bulk palreofluid salinities are presented in terms of probable 

lower and upper limit values in the present work, as derived from an assessment of 

microthennometric data reported in the literature. It must be emphasised that the reconstructed 

palreofluid electrolyte compositions (absolute concentrations) based on these salinity 

estimates are therefore subject to the significant uncertainties inherent in the interpretation of 

the microthennometric measurements. 

t For the charge balance calculations, it has been assumed that all Fe in solution is divalent, as indicated by 

several experimental studies of iron-chloride complexing in (sulphur-free) hydrothennal fluids (Fein etal., 
1992, and references therein). Also, all B is assumed to be present as BOt. 

• A wide range of salinity may in some cases be attributed to boiling of the fluid. In such cases, however, 

most constituent solutes should be strongly partitioned into the liquid phase, thus not significantly 

affecting the respective ratios to sodium. 
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Table 5.1(a) 

Dartmoor bydrothennal quartz: fluid inclusion leac:hate data. Element relative abundances (by mass), nonnalised to Na .10,000 

Locality (mine) : Golden Dagger BIIIIlICOIt East Vitifer Golden Dagger East Vitifer Great Rock 
Paragenesis : Stage I SfaJeI stagen stagen stagen SfaJen (Ill) Stage n (Ill) Stagem en) StageID 
SaIqlle reference : SW-89-159 SW-89-160 SW-89-164 SW-89-155 SW-89-156 SW-89-162 SW-89-163 SW-89-154 SW-89-157 

Na 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 
K 2,239 2,401 1,888 1,934 1,870 2,322 1,557 1,568 2,113 1,944 2,112 
Ca 4,386 4,415 3,928 4,067 4,115 3,962 4,030 4,004 5,582 4,099 6,450 
Mg 23 28 41 34 26 20 36 35 98 58 74 
AI 194 202 155 lSI 124 108 259 271 346 338 11,183 
BII 22 23 27 28 21 27 12 14 21 21 57 
Be 0.24 DB 0.34 0.23 0.16 0.15 1.39 1.31 0.75 0.55 na 
U 40 2S 3S 3S 40 33 83 83 3S 68 46 
Sr 80 81 73 74 72 72 67 67 91 68 51 
Rb 40 DB DB 33 22 39 32 29 32 24 na 
Fe 1,021 1,033 458 471 848 1,030 497 465 968 922 2,226 
MIl 580 202 606 631 496 SOl 445 427 667 468 1,267 
Pb 35 22 29 30 27 22 20 21 54 24 26 
Zn 116 119 127 125 98 93 88 87 142 93 194 
Cu 5 6 3 5 5 8 12 12 19 28 11 
As 25 nB 16 12 14 14 27 25 26 25 DB 
Bi 0.5 DB Dd Dd 0.4 0.5 nd pd I 1.3 PB 
U 3.17 PB 0.45 0.25 0.46 2.3 PB 2.35 2.0 1.0 0.03 

B 179 200 132 114 138 140 254 255 363 180 63 
SO. 80 236 134 na 125 51 43 PB 106 66 PB 

F 130 DB 374 Da 132 74 1,304 pa 467 73 PB 
CI 25,738 25,082 24,923 pa 24,600 25,218 21,976 PB 27,453 23,763 24,950 
~ 46 40 45 Da 47 45 32 pa 53 44 45 

3.2 2.8 1.3 pa 3.1 1.7 1.5 Da 1.5 0.8 0.9 

Note&: (1) Da indicats 1101....".,; pd indk:ats 1101 tId«ud. 
(2) Samples SW-89-151 and SW-89-160 .... ere trated with fIu«oIilicic acid, HzSiF" in an aIIeDIpt to remoye traces offeldspar. 

The uae of lIzSiF, to selectively mmve feIdIIa" from quartz ,.. m:olDlllellded by Sym d al. (1968), a1tbougb !be feldlplw grain size in their experimeDts .... <50JUll. 
(3) Reaidual iDlalJOWll fdclqa in sample SW -89-151 is probably rapoDlible for the IIIOIIIalously higb AI. Ca and Mg values. 
(4) S8Jqlle SW -89-161 (GoldeD Dager mine, IIqe Ill) gave very low ion yield, • sIJJwn in Appendix G (Tables G3. G41111d GS). hence analytical resuIII oot considered here. 



Table 5.1(b) 

Dartmoor bydrotbennal quartz: fluid inclusion leachate data. Bement mole mos, nonnaliscd to Na .1 

Locality (mine) : Goldell J>aaa" Banacott East Vitifer Golden Dagger East Vitifer GreatRoct 
Paragenesis : Stage I Stage I StageD StageD StageD StageH(DI) StageD (HI) Stagem(D) stagem 
Samplemerence : SW·89-159 SW·89-160 SW-89-164 SW·89·155 SW·89-156 SW·89-162 SW·89·163 SW·89-154 SW·89-157 

Na 1 1 1 I I I I I I 
K 0.1317 0.1412 0.1124 0.1100 0.1365 0.0919 0.1242 0.1143 0.1242 
Ca 0.2516 0.2532 0.2293 0.2360 0.2273 0.2304 0.3202 0.2351 0.3700 
Mg 0.0022 0.0026 0.0035 0.0025 0.0019 0.0034 0.0093 0.0055 0.0070 
AI 0.0165 0.0172 0.0130 0.0106 0.0092 0.0226 0.0295 0.0288 0.9529 
Ba 0.00037 0.00039 0.00046 0.00035 0.00045 0.00022 0.00035 0.00035 0.00095 
Be 0.00006 na 0.00007 0.00004 0.00004 0.00034 0.00019 0.00014 na 
U 0.0132 0.0083 0.0116 0.0132 0.0109 0.0275 0.0116 0.0225 0.0152 

Sr 0.00210 0.00213 0.00193 0.00189 0.00189 0.00176 0.00239 0.00178 0.00134 
Rb 0.00108 na na 0.00059 0.00105 0.00082 0.00086 0.00065 na 
Fe 0.0420 0.0425 0.0191 0.0349 0.0424 0.0198 0.0398 0.0380 0.0916 

Mil 0.0243 0.0085 0.0259 0.0208 0.0210 0.0182 0.0219 0.0196 0.0530 
Pb 0.00039 0.00024 0.00033 0.00030 0.00024 0.00023 0.00060 0.00027 0.00029 

Zn 0.00408 0.00418 0.00443 0.00345 0.00327 0.00308 0.00499 0.00327 0.00682 
Cu 0.00018 0.00022 0.00014 0.00018 0.00029 0.00043 0.00069 0.00101 0.00040 
As 0.00077 na 0.00043 0.00043 0.00043 0.00080 0.00080 o.ooon na 
Bi 0.000006 na nd 0.000004 0.000006 nd 0.000011 0.000014 na 
U 0.000036 na 0.000003 0.000004 0.000022 0.000023 0.000019 0.000010 <0.000001 

B 0.0381 0.0425 0.0262 0.0293 0.0298 0.0541 0.0712 0.0383 0.0134 

SO. 0.00191 0.00565 0.00321 0.00299 0.00122 0.00103 0.00254 0.00158 na 

F 0.0157 na 0.0453 0.0160 0.0090 0.1578 0.0565 0.0088 na 
CI 1.6690 1.6265 1.6162 1.5952 1.6353 l.4251 1.7802 1.5409 1.6179 
Ill' 0.00132 0.00115 0.00129 0.00135 0.00129 0.00092 0.00152 0.00127 0.00129 

0.00006 O.OOOOS 0.00002 0.00006 0.00003 0.00003 0.00003 0.00001 0.00002 

Total cationic dIa'ge, IQ+ 1.8526 1.8291 1.7348 1.7576 1.7750 1.7462 2.0405 1.8362 5.0608 
Total aDionic dIa'ge, IQ. -1.8041 ·1.7666 -1.7476 ·1.7066 ·1.7373 ·1.7482 ·20749 ·1.6690 ·1.6594 

Cbqe dif(1ftIIC:e, IQ+.IIQ·I 0-0484 0.0626 -0.0128 0.0509 0.0376 -0.0020 -0.0344 0.1672 3A014 

CbIrge ratio, IQ+ /IIQ-I 1.027 1.035 0.993 1.030 1.022 0.999 0.983 1.100 3.050 

Notes: (1) naiDdic:ltea_lIJIGlyud; ndiDdic:ltea_~. 

(2) Fill' dJIrge baIaace c:a1c:uIaIiou. the followiDa fcrmal oxidIIIion Slates were --.I: Fe = +2. MIl = +2. As. = +3. Bi = + 3. U = +6. B = ·3. 
(3) SW-89-162 aDd SW·19-164 cilia __ Y8Iura or mpIiaIIe aaaIyIea. 

(4) SW-89-1S7 andSW·19-16Owere trated willi fIIKroIiIkK: acid.H,SiF,. Residual ~ feldlparin SW·19-157 p-obably responsible fill' anomalws AI. Ca and Mg values. 



Fluid inclusion microthermometric analysis by Shepherd etal. (1985) of quartz-hosted 

inclusions associated with Stages IT and ill (respectively) of hydrothermal mineralisation of 

the Dartmoor granite in the Birch Tor & Viti fer region indicated that four basic types of 

(intimately associated) inclusion may be described, exhibiting a wide range of salinities. For 

the present studYt the salinity data of Shepherd etal. (1985) were used and the assumption 

made that bulk salinity is predominantly controlled by the halite-bearing, multi-phase 

inclusions. Shepherd etal. (1985) reported that inclusions containing 20-25 wt% NaCl 

contained significant amounts of CaCI
2
, as inferred from the associated very low eutectic 

temperatures «-50°C); otherwise (excepting the notable absence of any detectable COJ the 

fluids were apparently similar in many respects to those associated with early oxide 

mineralisation at nearby Hemerdon. 

Shepherd et al. (1985) reported that Stage ill quartz at Birch Tor was poor in inclusions and 

that those present were invariably devoid of solid phases at room temperature; the 

corresponding salinity values were <20 wt% NaCI equivalent. Unpublished micro

thermometric measurements by Scrivener (pers. comm.) indicated that fluids associated with 

late-stage hrematite deposition at Great Rock mine were cooler (-180°C) and of lower salinity 

than those characteristic of the comparable stage at Birch Tor. This could not be verified in 

the present study because the quartz (sample SW-89-157) from Great Rock mine was 

disseminated as small, irregular grains in a predominantly hrematite matrix; it was 

consequently not feasible to have polished thin sections prepared from such material. 

Scrivener (1982) reported that fluid inclusions are virtually absent from Stage I quartz (and 

associated tourmaline) from Dartmoor. In contrast, optical examination by the present author 

of polished thin sections of early pegmatitic quartz examples included in the current 

investigation (samples SW-89-159 and SW-89-160t from Golden Dagger mine) indicated the 

presence of relatively large inclusions, sparsely distributedt together with an abundance of 

trails of much smaller inclusions, probably of secondary origin. Multiple daughter salts were 

also observed. For the purposes of the present investigation, it was assumed that, to a first 

approximation, the salinity range of the Stage I fluids is similar to that derived from 

published data relating to Stage IT examples. 

Estimates of palreofluid electrolyte concentration limits associated with the various 

paragenetic stages of hydrothermal mineralisation of the Dartmoor granite, as determined on 

the basis of the present fluid inclusion leachate results in conjunction with salinities derived 

from microthermometric data, are reported in Tables 5.2(a) and 5.2(b), in terms of 

JJ,g/cm3H
2
0 and as element molal concentrations, respectively. 

211 



Table 5.2(a) 

Rec:oosIrUCfed paleofluid eIedrolytc c:onc:eotradoos (ppn) com:spooding to estimated salinity limits of quartz-hosted aqueous inclusion fluids 
associated with bydrothennal mineralisation of the Dar1moor granite 

La:ality (miDe) : GoIdCII DaggCl' Batacou East VitifCl' 

Paragmesis : stage I Stage I Stage II StageD Stage n 
Sample rd'enucc : SW-89-159 SW-89-160 SW-89-164 SW-89-155 SW-89-156 

Wt .. NaCI equivalmt: 25 35 25 35 25 35 25 35 25 35 

Na 55,572 71.801 56,666 79,333 57,970 81.159 58,378 81,730 57,099 79,939 

K 12,443 17,420 13,606 19,048 11,078 15,509 10,917 15,283 13,258 18,562 

Ca 24,374 34,123 25,018 35.026 23,174 32,443 24.023 33.632 22.623 31,672 

Mg 128 179 159 222 217 304 152 212 114 160 

AI 1.078 1,509 1,145 1,603 887 1242 724 1,013 617 863 

III 122 171 130 182 159 223 123 172 154 216 

Be 1.3 1.9 na na 1.7 2.3 0.9 1.3 0.9 1.2 

Li 222 311 142 198 203 284 234 327 188 264 

Sr 445 622 459 643 426 597 420 588 411 576 

Rb 222 311 na na 191 268 128 180 223 312 

Fe 5,674 7,943 5,854 8,195 2.693 3,170 4,950 6,931 5,881 8,234 
Mn 3,223 4,512 1,145 1,603 3,585 5,020 2,896 4OS4 2,861 4,005 

Pb 195 272 125 175 171 239 158 221 126 176 

Zn 645 902 674 944 730 1,023 572 801 531 743 
Cn 28 39 34 48 23 32 29 41 46 64 

AI. 139 19S na na 81 114 82 114 80 112 

Bi 3 4 na na nd nd 2 3 3 4 

U 21 29 na na 2 3 3 4 13 18 

B 995 1,393 1,133 1,587 713 998 806 1,128 799 1,119 

SO. 445 622 1,337 1,872 177 1,088 730 1,022 291 4aI 

F 722 1,011 na na 2,168 3,035 171 1,079 423 592 
CI 143,031 200,244 142,131 198,983 144,480 202,272 143,611 201,055 143,992 201,589 

& 2S6 358 227 317 261 365 274 384 257 360 
18 25 16 22 8 11 18 25 10 14 

NCJk:a: (1) 'ThculiUy limit vaIuea waec:balaa OIl the _is oflllicaulalbOllldric datalqlOlUd by SbeP-d dal. (1985). 

(2) •• iIIdicIIIa ItOI Q1fQ/ysed. ad iDdiI:aa tbIl the~ _1101 tkt«I«I ill !be Ouid iDclusioa Iea:haIc soIutiOIl. 
(3) Far. WI 'II NaCI eqaiVlllalt wille of x, the kIfaI _ of dissolved salta, in aaita of jig pta" g of fluid, = 10,OOOx. Far cadi I8IIIplc, tbad"«e, !be eIemeut 

IdItne "-Iacca (by _),. dc:tcnaiIIed by fIaid iDclusiOllleadllfe -'yaa, _ DDrmatised to sum to Ibis value to geaentc the data sbown. 



Table 5.2(a) continued 

Reconstructed paIzofluid electrolyte concentrations (ppm) corresponding to es1imated salinity limits of quar1z-hosted aqueous inclusion fluids 
associated with hydrothennal mineralisation of the Dartmoor granite 

Locality (mine) : Golden Oaggc£ East Vitifcr Great Rock 

Paragcums : Stage IT (Ill) Stage IT (Ill) Stageill(ll) Stagem 

Sample refmu:e : SW-89-162 SW-89-163 SW-89-154 SW-89-157 

Wt% NaCl equivalent: 25 35 25 35 15 25 5 15 

Na 61,348 85,887 51,397 71,955 35,453 59,088 8,510 25,529 

K 9,586 13,420 10,860 15,204 6,892 11,487 1,797 5,392 

Ca 24,643 34,501 28,690 40,165 14,532 24,220 7 7 
Mg 218 305 504 705 206 343 7 7 
AI 1,626 2,276 1,778 2,490 1,198 1,997 7 7 
Be 80 112 lOS 151 74 124 49 146 

Be 8.3 12 4 5.4 1.9 3.2 na na 

Li 509 713 180 252 241 402 39 117 

Sr 411 575 468 655 241 402 43 130 

Rb 187 262 164 230 85 142 na na 

Fe 2,951 4,131 4,975 6,965 3,269 5,448 1,894 5,683 

Mn 2,675 3,745 3,428 4,799 1,659 2,765 1,078 3,235 

Pb 126 176 278 389 85 142 22 66 

a 537 752 730 1,022 330 550 165 495 

Cu 74 103 98 137 99 165 9 28 
AA 160 223 134 187 89 148 na na 

Bi nd nd 5 7 5 8 na na 

U 14 20 10 14 4 6 0.03 0.08 

B 1,561 2,186 1,866 2,612 638 1064 54 161 

SO, 264 369 545 763 234 390 na na 

F 8,000 11,200 2,400 3,360 259 431 na na 

Cl 134,818 188,745 141,099 197,539 84,247 140,411 21,232 63,696 

k 196 275 272 381 156 260 38 115 

9 13 8 11 3 5 2 

Notes: (1) EItimaIa of Ca, Mg, AI aod Fe c:ax:aJIrIIiaJs wC£e DOt feasible f« SW -89-157 because of probable contaminalion of IeadJate soIntim by feldspar. 

(2) na indK:us fIOt analysed. nd indicates dI8l die c:ompoDCIIl was fIOt deteckd in die fluid inclusioo leaclIate solutioo. 

(3) S-of ovtqJrimins by lat« stage t1uida, sdectioo of samplca tbat c:ootllin purely Stage IT t.- Stage m tluid.s is pr-obably not feasible. 
WhC£e a JWlIgClld:ic stage is rbown in paeutbcses, tbis indicates that mint.- veining by die asscciarcd fluids may be of signitK:aoce. 



Table 5.2(b) 

Reconstructed paIzofluid electrolyte concentrations (molal) cotresponding to estimated salinity limits of quartz-hosted aqueous inclusion fluids 
associated with hydrothermal mineralisation of the Dartmoor granite 

Locality (mine) : Golden Dagger BmacoU East Vitifa 

Paragcncsu : stagel Stage I Stagell Stagell Stagen 

sample refCR:DCe : SW-89-159 SW-89-160 SW-89-164 SW-89-155 SW-89-156 

Wt% NaCl equivalCllt 25 35 25 35 25 35 25 35 25 35 

Na 3.223 5.206 3.286 5.309 3.362 5.431 3.386 5.469 3.312 5.349 

K 0.424 0.685 0.464 0.750 0.378 0.610 0.372 0.601 0.452 0.730 

Ca 0.811 1.310 0.832 1.344 0.711 1.245 0.799 1.291 0.753 1.216 
Mg 0.007 0.011 0.009 0.014 0.012 0.019 0.008 0.013 0.006 0.010 

AI 0.053 0.086 0.057 0.091 0.044 0.071 0.036 0.058 0.030 0.049 

Ba 0.0012 0.0019 0.0013 0.0020 0.0015 0.0025 0.0012 0.0019 0.0015 0.0024 
Be 0.0002 0.0003 na na 0.0002 0.0004 0.0001 0.0002 0.0001 0.0002 

Li 0.043 0.069 0.027 0.044 0.039 0.063 0.045 0.072 0.036 0.058 
Sr 0.0068 0.0109 0.0070 0.0113 0.0065 O.ot05 0.0064 0.0103 0.0063 0.0101 

Rb 0.0034 0.0055 na na 0.0029 0,(1047 0.0020 0.0032 0.0034 0.0055 

Fe 0.135 0.219 0.140 0.226 0.064 0.104 0.118 0.191 0.140 0.227 
Mn 0.078 0.126 0.028 0.045 0.087 0.141 0.070 0.114 0.069 0.112 

Pb 0.0013 0.0020 0.0008 0.0013 O.ooll 0.0018 0.0010 0.0016 0.0008 0.0013 

Za 0.013 0.021 0.014 0.022 0.015 0.024 0.012 0.019 0.011 0.017 
Cu 0.0006 0.0009 0.0007 0.0012 0.0005 0.0008 0.0006 0.0010 0.0010 0.0015 

~ 0.0025 0.0040 na na 0.0014 0.0023 0.0015 0.0023 0.0014 0.0023 

Bi 0.00002 0.00003 na na nd nd 0.00001 0.00002 0.00002 0.00003 

U 0.00012 0.00019 na na 0.00001 0.00002 0.00002 0.00002 0.00007 0.00012 

B 0.123 0.198 0.140 0.226 0.088 0.142 0.099 0.161 0.099 0.159 

SO. 0.006 0.010 0.019 0.030 0.011 0.017 0.010 0.016 0.004 0.007 

F 0.051 0.082 na na 0.152 0.246 0.054 0.087 0.030 0.048 

CI 5.379 8.689 5.345 8.635 5.434 8.717 5.401 8.725 5.415 8.748 

III- 0.0043 0.0069 0.0038 0.0061 0.0044 0.0070 0.0046 0.0074 0.0043 0.0069 

I 0.00019 0.00030 0.00017 0.00027 0.00008 0.00013 0.00019 0.00031 0.00010 0.00016 

N~: (1) The Alinity limit values wac cbosal 011 the basis of micr<Jlbclmomdric data repmed by SIJ::pbmI et aI. (1985). 

(2) na indiI:Ia ItOt 1lIIIlly1ea. ad iDdic8les that the c:ompourm was not tkuctol ill the fluid iDclusiaa Ieacbatc dution. 

(3) F« a wt % Naacquivakat valaeofz. the total mara (g)ofdUdved salts per q ofwaa = l000z/(lOO-z). Fm-eachsampIe.theeianemre1ative 

abua~ (by mass) •• dc:tamiDed froID the fluid iDcIusim 1eacbaIc aoaly.-. were tb=forc oonoalised to sum to dIi5 value. Ibm C(]I1vCltcd to number 
of moIc:s, to laaare the remJra Jhown. 



Table S.2(b) continued 

Reconstructed pabeofluid electrolyte concentrations (molal) COIl'eSpOIlding to estimated salinity limits of quartz-hosted aqueous inclusion fluids 
associated with hydrothermal mineralisation of the Dartmoor granite 

Locality (mine) : Goldc:D Dacgcr East Vitifer GreatRocJc 

Pamgcncais : Stage U(ID) StageD (Ill) StageID(D) Stagelll 

Sample n:fcmICC : SW-89-162 SW-89-163 SW-89-154 SW-89-157 

Wt% NaCI equivalem: 25 35 25 35 15 25 5 15 

Na 3.558 5.748 2.981 4.815 1.814 3.427 0.390 1.306 
K 0.327 0.528 0.370 0.598 0.207 0.392 0.048 0.162 
Ca 0.820 1.324 0.954 1.542 0.427 0.806 7 1 
Mg 0.012 0.019 0.028 0.045 0.010 0.019 ? 7 

AI 0.080 0.130 0.088 0.142 0.052 0.099 7 1 
Ba 0.0008 0.0013 0.0010 0.0017 0.0006 0.0012 0.0004 0.0012 
Be 0.0012 0.0020 0.0006 0.0009 0.0003 0.0005 na na 
Li 0.098 0.158 0.035 0.056 0.041 0.077 0.006 0.020 

Sr 0.0063 0.0101 0.0071 0.0115 0.0032 0.0061 0.0005 0.0017 
Rb 0.0028 0.0046 0.0025 0.0040 0.0011 0.0022 na na 
Fe 0.070 0.114 0.119 0.192 0.069 0.130 ? 1 
Mn 0.065 0.105 0.083 0.134 0.036 0.067 0.021 0.069 

Pb 0.0008 0.0013 0.0018 0.0029 0.0005 0.0009 0.0001 0.0004 

Zn 0.011 0.018 0.015 0.024 0.006 0.011 0.003 0.009 

Cu 0.0015 0.0025 0.0020 0.0033 0.0018 0.0035 0.0002 0.0005 
~ 0.0028 0.0046 0.0024 0.0038 0.0014 0.0026 na na 
Bi nd nd 0.00003 0.00005 0.00003 0.00005 na na 
U 0.00008 0.00013 0.00006 0.00009 0.00002 0.00003 0.0000001 0.0000004 

B 0.193 0.311 0.230 0.372 0.069 0.131 0.005 0.Gl8 

SO. 0.004 0.006 0.008 0.012 0.003 0.005 na na 

F 0.561 0.907 0.168 0.272 0.016 0.030 na na 
CI 5.070 8.190 5.307 8.572 2.796 5.281 0.630 2.114 

Dr 0.0033 0.0053 0.0045 0.0073 0.0023 0.0043 0.0005 0.0017 

0.00010 0.00016 0.00008 0.00013 0.00003 0.00005 0.00001 0.00002 

Netas: (I) F.stimataI ofCa, Mg. AI aod FecalCClllndals wercDOlfeuible fO£ SW-89-157 becanseofprobablecontamiDalion ofleacbatcsolutim by feldspar. 
(2) Because of ovcrpintiDg by bt« stage flnids, sdection of s.mpIea tbat c:mtain purely Stage U or Stage m fluids is ~Iy DOl feasible. 

WIae. pmtgmetic stage is shown in ~ Ibia iDdicalcs that minar veiDing by 1be auocialcd fluids may be of significaDce. 



5.5.2 Hydrothennal quartz associated with W±Sn oxide mineralisation 

Table 5.3(a) shows the results of the fluid inclusion leachate analyses for constituent anion 

and cation concentrations, normalised by mass to Na .. 10,000. In contrast to the Dartmoor 

samples, Rb and U concentrations were not determined, nor were fluid inclusion Sr and Ph 

isotopic analyses undertaken. Table 5.3(b) presents the data in terms of element mole ratios 

relative to Na. On defining the percentage charge imbalance as 100 x 11- {1:Q+ /1: I Q-I } I, it 
is evident that the ionic charge balances are excellent for both Hemerdon sample HEM-80-1 

(1.4%) and the sole example from Cligga Head (4.7%). Two further samples from 

Hemerdon (HEM-79-2 and HEM-79-50) exhibited ionic charge imbalances of < 10%, 

whereas the corresponding data for the ten other leachates included in the investigation 

indicate a significant excess of cations, with values ranging from 14.3 to 93.9%.t Possible 

explanations for these findings are discussed in Section 5.6.2.1. 

Estimates of absolute concentrations of electrolytes in the Hemerdon palreofluids are 

presented in Table 5.4(a), which gives element concentrations by mass (~g/cm3H20); the 

corresponding molal values are given in Table 5.4(b). Comparable data for samples from 

Cligga Head, South Crofty mine, and quartz associated with minor occurrences of W±Sn 

oxides in the Gunnislake-Hingston Down area, are presented in Tables 5.5(a) and 5.5(b). 

Microthermometrically -derived salinity data from the following sources were used to 

estimate the respective molality limits of individual elements as present in the inclusion fluids: 

(a) Hemerdon: 

The salinity of the Hemerdon palreofluids was reported by Kelley etal. (1986) to be 

30±5 wt% NaCl equivalent. Salinity limits of 2S and 35 wt% NaCl equivalent were 

therefore used here. 

(b) Cligga Head: 

Salinity limits of the Cligga Head fluids were estimated from the data of Jackson et al. 

(1977) and Charoy (1981). The former reported salinities ranging from 2-12 wt% 

NaCI equivalent, although most of their values clustered between 6 and 12%. Charoy 

(1981) noted that the characteristics of the early fluids at Cligga were very similar in 

both veins and wall-rock greisen, with salinities of 8-10 wt% NaCI equivalent. 

t The lack of information on the fluoride content of many of the leachate solutions will serve to enhance the 

calculated ionic charge imbalance in those cases, possibly to a significant degree. The magnitude of this 

error may be estimated by comparing the total cationic-to-anionic charge ratios of all samples for which 

fluoride analyses were undertaken, with the corresponding ratios calculated on the basis of excluding the 
fluoride contribution to the total anionic Charge. The resulting increase in percentage charge imbalances are: 

5.4, 5.6, 11.2 and 14.5%, for samples HEM-SO-I, HEM-80-35, HEM-SO-50 and CH-S8-1, respectively. 
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For the present interpretation, a range of 8 to 12 wt% NaCI equivalent was therefore 

considered to be representative. It is worth noting, however, that Campbell and Panter 

(1990) measured the salinities of 69 primary inclusions in vein quartz from Cligga 

Head and reported a range of 3.7-12.3 wt % NaCI equivalent. 

(c) South Crofty mine: 

Scrivener et al. (1986) reported a wide range of salinities for fluids inferred to be 

responsible for W±Sn oxide mineralisation at South Crofty mine, as associated with 

extensive early tourmalinisation and pegmatite development. These authors noted that 

microthermometric measurements were difficult, owing to the scarcity of suitable 

primary and pseudo-secondary inclusions. Measurements were undertaken on quartz 

sampled from the Complex and 3ABC lodes; quartz from the latter location was 

subsequently forwarded by Dr Scrivener for inclusion in the present investigation 

(sample SC-88-3ABC). Salinity values were reported to be comparable with those of a 

'typical' quartz+tourmaline±cassiterite vein from Birch Tor, Dartmoor. Examination of 

the salinity data presented by Scrivener etal. (1986) suggests, however, that the salinity 

ranges of three-phase (liquid-vapour-halite) and CaC~-rich inclusions from South 

Crofty (predominantly influencing the bulk salinity) are shifted to slightly lower values 

compared to data from corresponding inclusion types at Birch Tor. Limits of 20 and 30 

wt% NaCI equivalent were therefore assigned for the present study. 

(d) Gunnislake-Hillgstoll Dowll area: 

In a comprehensive investigation of the geology and mineralisation of an area around 

Tavistock, S W England, Bull (1982) included microthermometric examination of 

quartz associated with early-stage W±Sn oxide occurrences in the Gunnislake

Hingston Down area. Analysis of an example from Old Gunnislake mine gave salinity 

values of 5.1-6.3 wt% NaCI equivalent, for primary inclusions in which the formation 

of the clathrate CO
2
-hydrate was not detected during low temperature observations. 

Where CO2-hydrate formation was observed, the corresponding salinities were <3 

wt% NaCI equivalent. Turner and Bannon (1992) subsequently published 

microthermometric data for the same sample t; their results also appeared in Bannon 

(1989). Inclusions containing a discrete CO2 phase were found; the salinity of the 

associated aqueous phase was 3.0 wt% NaCI equivalent. The salinity of coexisting 

inclusions devoid of CO
2 

was reported as 15 wt% NaCI equivalent, substantially 

higher than as reported by Bull (1982) and used as an upper limit in the present case. 

t Supplied to these authors from the sample collection used for the present dissertation (sample reference 

SW-84-18; see Appendix A). Fluid electrolyte analysis was not undertaken on this particular sample. 
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Microthermometric analysis by Bull (1982) of quartz-hosted inclusions associated with 

cassiterite from Drakewal1s mine indicated that the salinity range was very similar to 

that noted for early-stage fluids from Old Gunnislake mine. In contrast, Bannon 

(1989), as reported also by Turner and Bannon (1992), found a salinity range of 8.8-

11.4 wt% NaCI equivalent, on the basis of measurements taken on a sample supplied 

from the collection prepared for the present investigation (sample SW -84-15). Limits of 

8 to 12 wt% NaCI equivalent were assigned for the present study. 

Thermometric data for inclusions representative of early hydrothermal fluids at South 

Bedford mine were reported by Bull (1982), who undertook measurements on a quartz 

sample subsequently included in the present investigation (SW-84-20). CO
2
-hydrate 

formation at low temperature was reported to occur in most of the (primary) inclusions 

investigated. Salinities ranged from 5.2 to 10.9 wt% NaCI equivalent. Although 

comparable data for similar stage fluids at the Prince of Wales mine are not available, it 

is considered unlikely that the salinity values wi1llie outside the relatively narrow range 

defined by the collective results for the other samples from the Gunnislake-Hingston 

Down area included in the present study. Salinity limits were therefore estimated as for 

the Old Gunnislake sample, i. e. 5 to 15 wt % NaCI equivalent. 

Highly anomalous fluid inclusion leachate results were obtained during the present study 

from wolframite-associated quartz originating from the Castle-an-Dinas mine (St Austell 

district). These data are shown in Table 5.6, which indicates the very low ionic strength of 

the parent fluid t and also the unusually low relative abundance of Na. The finding that Al 

was the predominant solute species, together with the gross imbalance of ionic charges as 

calculated from the element concentration data, indicates that the results of the leachate 

analysis were probably dominated by a contribution from solid phases (feldspars?). 

t The very low abundance of solutes in the leachate cannot be simply attributed to a correspondingly low 
fluid inclusion content in the host quartz, as inclusion water yield was sufficient for D/H isotopic ratio 
analysis at the usual precision (Chapter 2). 
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Table 5.3(a) 

S W England quartz samples associated with W±Sn oxide mineralisation: fluid inclusion leachate data. Element relative abundances (by mass), nonnalised to Na .10,000 

LocaJity: Hemerdon Htmerdon HemmIon Hemerdon HemenIon HemmIon Hemerdon C1iggaHead South Crofty South Crotty Old Gunnislake Drakewalls South Bedford Prince of Wales 
mine mine mine mine mine mine mine mine mine mine mine mine mine 

Sa!qlle reference : HEM-79-2 HEM-80-1 HEM-80-35 HEM-80-39 HEM-80-44 HEM-80-47 HEM-80-50 CH-88-1 SC-88-2 SC-88-3 SW-89-1SO SW-84-15 SW-84-20 SW-84-27 

Na 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 
K 3,128 2,458 3,363 2,615 3,199 2,395 2,577 2,211 1,660 2,332 1,595 2,255 1,437 2,018 
Ca 2,603 3,452 3,928 3,148 5,557 3,316 3,715 1,009 3,262 9,619 2,943 2,009 2,374 850 
Mg 20 32 40 41 192 84 84 86 25 112 69 63 106 67 
AI 176 141 159 264 486 231 301 497 375 304 359 391 128 340 
Ba 15 28 47 18 97 19 33 35 15 nd 18 16 22 10 
Be nB 0.52 0.63 nB 1.06 nB 0.66 1.05 0.32 0.31 0.38 0.43 nB na 
U 64 117 43 77 45 73 47 93 39 33 75 125 60 62 
Sr 37 58 80 49 107 65 51 47 53 58 67 78 55 72 
Fe 1,867 1,479 1,718 1,278 2,998 1,316 1,226 408 174 665 398 246 593 1,241 
Mn 788 1,008 643 714 1,194 593 982 TI3 232 254 250 211 191 453 
Pb nB 43 27 45 43 2S 27 75 7 26 12 4 9 10 
Zn 315 223 2SO 241 234 165 268 278 33 1,293 182 16 57 700 
Cu 2 24 29 8 33 52 66 84 5 40 10 nd 5 10 
AI nB 66 9 nB 121 nB 16 9 3 7 4 12 Da nB 
Bi nB 1,142 11 nB 126 nB 7 2 4 7 6 4 nB na 

B 416 471 287 428 336 318 368 495 174 488 388 602 204 664 
SO. 90 497 132 97 570 458 189 291 28 94 128 97 54 87 

F nB 1,216 634 nB nB na 1,406 1,488 nB nB na na nB nB 
Cl 21,097 22,320 21,439 19,798 20,944 20,270 20,839 14,971 18,653 15,254 14,749 14,556 16,837 14,076 
Br 40 36 32 30 30 26 39 19 17 17 9 22 19 2S 
I 2.4 0.11 1.6 1.0 0.19 2.8 2.2 1.8 1.8 2.5 1.3 3.0 2.2 1.3 

Note: DB iIIdic:Ites IIOr lDIIIIyurl; nd indiamll.oI tIet«te.I. 



Table 5.3(b) 

S W EngJand quartz samples associated with W±Sn oxide mineralisation: fluid inclusion leachate data. Element mole ratios, nonnalised to Na.l 

Locality: Hemerdon HenB'don HenB'don Hemerdon Hemerdon HeDB'don Hemerdon Cligga Head South Crafty South Crafty Old Gunnis1ake DraIcewalls South Bedford Prince of Wales 
mine mine mine mine mine mine mine mine mine mine mine mine mine 

SBIqlIe ref_nee : HEM-79-2 HEM-80-1 HEM-80-35 HEM-80-39 HEM-80-44 HEM-80-47 HEM-80-SO CH-88-1 

Na 
K 
Ca 
Mg 
AI 
Sa 

Be 
U 
Sr 
Fe 
Mil 
Pb 
Zn 
Cu 
M 
Bi 

B 
SO. 

F 
CI 
Dr 

Total CIldonic cluqe, IQ+ 
Total anionic charge, IQ
Cbargedifference, IQ+ -I IQ-I 
Cbargeratio, ~+ /IIQ-I 

I 
0.1839 
0.1493 
0.0019 
0.0150 
0.00025 

nil 
0.0212 
0.00097 

0.0769 
0.0330 

nil 
O.Oll07 
0.00007 

1111 

1111 

0.0885 
0.0022 

nil 
1.3681 
0.00115 
0.00004 

1.7969 

-1.6390 

0.1579 

1.096 

1 
0.1445 
0.1980 
0.0030 
0.0120 
0.00047 
0.00013 
0.0388 
0.00152 
0.0609 
0.0422 
0.00048 
0.00784 
0.00087 
0.00203 
0.01256 

0.1002 
0.0119 

0.1471 
1.4474 
0.00104 

<1>.00001 

1.8939 

-1.9198 

-0.0259 
0.986 

Notes: (1) nil indiaIIealltlrGlllllyud; ndindiateuordetected. 

I 
0.1977 
0.2253 
0.0038 
0.0135 
0.00079 
0.00016 
0.0142 
0.00210 
0.0707 
0.0269 
0.00030 
0.00879 
0.00105 
0.00028 
0.00012 

0.0610 
0.0032 

0.0767 

1.3902 
0.00092 
0.00003 

1.9336 

-1.6573 

0.2763 

1.167 

1 
0.1538 
0.1806 
0.0039 
0.0225 
0.00030 

nil 
0.0255 
0.00129 
0.0526 
0.0299 
0.00050 
0.00847 
0.00029 

nil 
nil 

0.0910 
0.0023 

nil 
1.2838 
0.00086 
0.00002 

1.8023 

-1.5624 

0.2399 

1.154 

1 
0.1881 
0.3187 
0.0182 
0.0414 
0.00162 
0.00027 
0.0149 
0.00281 
0.1234 
0.0500 
0.00048 
0.00823 
0.00119 
0.00371 
0.00139 

0.0715 
0.0136 

nil 
1.3581 
0.00086 

<1>.00001 

2.3923 

-1.6007 

0.7917 

1.495 

1 
0.1408 
0.1902 
0.0079 
0.0197 
0.00032 

na 
0.0242 
0.00171 
0.0542 
0.0248 
0.00028 
0.00580 
0.00188 

nil 
na 

0.0676 
0.0110 

nil 
1.3144 
0.00075 
0.00005 

1.7983 

-1.5400 

0.2583 

1.168 

1 
0.1515 
0.2131 
0.0079 
0.0256 
0.00055 
0.00017 
0.0156 
0.00134 
0.OS05 
0.04l1 
0.00030 
0.00942 
0.00239 
0.00049 
0.00008 

0.0783 
0.0045 

0.1701 
1.3513 
0.00112 
0.00004 

1.8993 

-1.7847 

0.1146 

1.064 

1 
0.1300 
0.0579 
0.0081 
0.0423 
0.00059 
0.00027 
0.0308 
0.00123 
0.0168 
0.0323 
0.00083 
0.00977 
0.00304 
0.00028 
0.00002 

0.1053 
0.0070 

0.1801 

0.9708 
0.00055 
0.00003 

1.5S05 
-1.4812 

0.0693 

1.047 

(2) For cbarJe baIaDc:e cak::ubdioJII,1he (ollowina (crmal oxidalion Itatea were ~ Fe = +2, Mn = +2, M = +3, Bi = +3, B =-3 

SC-88-2 

1 
0.0976 
0.1871 
0.0024 
0.0320 
0.00025 
0.00008 
0.0129 
0.00139 
0.0072 
0.0097 
0.00008 
0.00116 
0.00018 
0.00009 
0.00004 

0.0370 
0.0007 

nil 
1.2096 
0.00049 
0.00003 

1.6258 

-1.3350 

0.2907 

1.218 

SC-88-3 

1 
0.1371 
0.5517 
0.0106 
0.0259 

nd 
0.00008 
0.0109 
0.00152 
0.0274 
0.0106 
0.00029 
0.04546 
0.00145 
0.00021 
0.00008 

0.1038 
0.0023 

nB 
0.9892 
0.00049 
0.00005 

2.5249 

-1.3024 

1.2225 

1.939 

SW-89-150 SW-84-15 SW-84-20 

1 
0.0938 
0.1688 
0.0065 
0.0306 
0.00030 
0.00010 
0.0248 
0.00176 
0.0164 
Om05 
0.00013 
0.00640 
0.00036 
0.00037 
0.00007 

0.0825 
0.0031 

nil 
0.9564 
0.00026 
0.00002 

1.6342 

-1.2089 

0.4253 

1.352 

I 
0.1326 
0.1152 
0.0060 
0.0333 
0.00027 
0.00011 
0.0414 
0.00205 
0.0101 
0.0088 
0.00004 
0.00056 

nd 
0.00037 
0.00004 

0.1280 
0.0023 

nB 
0.9439 
0.00063 
0.00005 

1.5615 

-1.3332 

0.2284 

1.171 

1 
0.0845 
0.1362 
0.0100 
0.0109 
0.00037 

nB 
0.0199 
0.00144 
0.0244 
0.0080 
0.00010 
0.00200 
0.00018 

na 
nil 

0.0434 
0.0013 

na 
1.0918 
0.00055 
0.00004 

1.5025 

-1.2287 

0.2738 

1.223 

(3) The excluIioli of fluorine from the dJarF baIaDce caIa1IIlioas in lII8IIy -. ckJe to the lack of data, may coDlribute significantly to the calcu1aled degree of ionic charge imbalance (excess of caIioDs) in those ex8IqIles. 

SW-84-27 

1 
0.1187 
0.0488 
0.0063 
0.0290 
0.00017 

na 

0.0205 
0.00189 
0.0511 
0.0190 
0.00011 
0.02461 
0.00036 

na 
na 

0.1412 
0.0021 

nil 
0.9128 
0.00072 
0.00002 

1.5307 

-1.3397 

0.1909 

1.143 



Table 5.4(a) 

Reconsttucted paIeofluid electrolyte concentrations (ppm) corresponding to estimated salinity limits of quartz-hosted aqueous inclusion fluids associated with 
bydrothermal W ± So oxide mineralisation, Hemerdoo 

Sample .efrralce : HEM-79-2 HEM~39 ~I HEM-8~35 HEM-80-44 HEM-8047 HEM~!so 

Host rock : Gratite <bnifc Killas KiUas Killas Killas Killas/ gRICIISklDcs (7) 
(grcUeD-booIcmI win) (gR:iIeD -bmIm:d w:io) (tourmaline also p"cscot) 

Wt ... NaCl equivalcot: 2!S 35 25 35 25 35 2!S 35 2!S 35 25 35 25 35 

Na 61.485 86.079 64.347 90.085 55.789 78.105 58.311 81.636 53.980 7!S,572 63.438 88.813 59.180 82.852 

K 19,232 26.925 16.827 23,557 13.713 19.198 19.610 27.454 17.268 24.176 15.193 21.271 15.251 21.351 

Ca 16.005 22,406 20,256 28.359 19,258 26.962 22.905 32.067 29.997 41.996 21.036 29.450 21.985 30.780 

Mg 123 172 264 369 179 250 233 327 1.036 1.451 533 746 497 696 
Al 1.082 1.515 1.699 2.378 787 1.101 927 1.298 2.623 3.673 1.465 2.052 1.781 2,494 

Ba 92 129 116 162 156 219 274 384 524 733 121 169 195 273 

Be na na na na 3 4 4 5 6 8 NA NA 4 5 

Li 394 551 495 694 653 914 251 351 243 340 463 648 278 389 

Sr 227 318 315 441 324 453 466 653 578 809 412 577 302 423 

Fe 11.479 16.071 8,224 11,513 8,251 11,552 1O.ot8 14.025 16.183 22.657 8.348 11.688 7.255 10.158 

MD 4.845 6.783 4,594 6.432 5.624 7.873 3.749 5.249 6.445 9.023 3.762 5.267 5.811 8.136 

Pb na na 290 405 240 336 157 220 232 325 159 222 160 224 

Zn 1.937 2.711 1,551 2.171 1,244 1.742 1.458 2.041 1.263 1.768 1.047 1.465 1.586 2.220 

Cu 12 17 51 72 134 187 169 237 178 249 330 462 391 547 

No na na na na 368 515 52 73 653 914 na na 95 133 

Bi na na na Da 6.371 8.920 64 90 680 952 na na 41 58 

B 2.558 3.581 2.754 3,856 2.628 3.679 1.674 2,343 1.814 2.539 2.017 2.824 2.178 3.049 

SO. 553 775 624 874 2.773 3.882 770 1.078 3.077 4.308 2.905 4.068 1.119 1,566 

F Da na Da Da 6.784 9.498 3$7 5.176 na na na na 8.321 11.649 

Cl 129.715 181.601 127.394 178.351 124,521 174.329 125.014 175.019 113.056 158,279 128,588 180.023 123.326 In.656 

Dr 246 344 193 270 201 281 187 261 162 227 165 231 231 323 

I l!S 21 6 9 1.0 1.4 9 13 1.0 I .• 18 25 13 18 

Nab: (1) The salinity of .,..m-boIfr.Id Oaid iDclusiau auoeiated with W±s. oxide ........ Iisation, Hemadca. was rcportccI by Kdlcy et at. (1986) _ 3O±5 WI ... NaC! cquivakut, OIl the basis of IIIicroIbcnnomd Malysia. 

(2) Da iDdicaa rIOIlIIUIlysed. Dd mu:..1bIt theCOlllpCmClllWUlfOttktecledia theftuid iDcluaion leadIafe dution. 
(3) Fer. WI ... N.a apri __ vat.: of %. the kICal_ of dUIoIved ........... cl PI II« g of fluid. = IO,OOOz. F« each sample. lbaefCR, the dcmaJl rdaIive IIbun4bDcea (by mus>. as dc:faminrd by Ouid inclusion 

leadIafe ...,... _l!QIIUIioed to _ to 1IIia vallie to 8-* ..., data *-t. 



Table S.4(b) 

Reconstructed paheofluid electrolyte concentrations (molal) corresponding to estimated salinity limits of quartz-hosted aqueous inclusion fluids associated with 
hydrothermal W ± Sn oxide mineralisation, Hemerdon 

SampIc mfermce : 

Hostroct: 

Wtlll> NaCI equivalcut: 

Na 
K 
Ca 

Mg 
AI 
Be 
Be 
Li 
Sr 

Fe 
Mn 
Pb 
Zn 

Cu 
M 
Bi 

B 
SO, 

F 
CI 
IIr 
I 

HEM-79-2 

Grmitc 
(geiaea-bmIrmI vein) 

25 

3.566 
0.656 

0.532 
0.007 

0.053 
0.0009 

na 
0.076 
0.003 
0.274 

0.118 
na 

0.039 

0.0003 
na 
na 

0.315 

0.008 

na 
4.878 
0.004 
0.00016 

35 

5.760 
1.059 
0.860 
0.011 
0.086 

0.0014 

na 
0.122 
0.006 
0.443 

0.190 

na 
0.064 

0.0004 

na 
na 

0.510 

0.012 

na 
7.880 
0.007 

0.00025 

HEM-80-39 

Granite 
(greisen-bmIrmI vein) 

25 

3.732 
0.574 
0.674 

0.014 
0.084 
0.0011 

na 
0.095 
0.005 

0.196 
0.112 

0.0019 
0.032 

0.001 

na 
na 

0.340 

0.009 

na 
4.791 
0.003 

0.00007 

35 

6.028 

0.927 

1.089 
0.023 
0.136 

0.0018 
na 

0.154 
0.008 

0.317 
0.180 

0.0030 
0.051 

0.002 
na 
na 

0.549 

0.014 

na 
7.739 

0.005 

0.00011 

HEM-80-1 

Killas 

25 

3.236 

0.468 
0.641 

0.010 
0.039 

0.0015 
0.0004 

0.125 
0.005 

0.197 
0.136 

0.0015 

0.025 

0.003 
0.007 

0.041 

0.324 

0.038 

0.476 
4.683 
0.003 

0.00001 

35 

5.227 
0.755 

1.035 
0.016 
0.063 

0.0024 
0.0007 

0.203 
0.008 

0.318 

0.220 

0.0025 

0.041 
0.005 

0.011 

0.066 

0.524 

0.062 

0.769 

7.565 
0.005 

0.00002 

HEM-80-35 

Killas 

25 

3.382 
0.669 
0.762 

0.013 
0.046 
0.0027 

0.0005 

0.048 
0.007 

0.239 
0.091 

0.0010 

0.030 

0.004 

0.001 

0.000 

0.206 

0.011 

0.259 

4.702 
0.003 

0.00010 

35 

5.463 
1.080 
1.231 

0.021 
0.074 
0.0043 

0.0009 
0.078 
0.011 

0.386 

0.147 
0.0016 

0.048 

0.006 
0.002 
0.001 

0.333 

0.017 

0.419 

7.595 
0.005 

0.00016 

HEM-80-44 

Killas 

25 

3.131 
0.589 
0.998 
0.057 

0.130 
0.0051 

0.0008 
0.047 

0.009 
0.386 

0.156 

0.0015 
0.026 

0.004 

0.012 
0.004 

0.224 

0.043 

na 
4.252 
0.003 

0.00001 

35 

5.057 
0.951 

1.612 
0.092 

0.209 
0.0082 
0.0014 

0.075 
0.014 

0.624 
0.253 

0.0024 

0.042 
0.006 
0.019 

0.007 

0.361 

0.069 

na 
6.868 

0.004 
0.00002 

HEM-80-47 

Killas 

25 

3.679 
0.518 
0.700 

0.029 
0.072 
0.0012 

na 
0.089 
0.006 
0.199 

0.091 
0.0010 

0.021 
0.007 

na 
na 

0.249 

0.040 

na 
4.836 
0.003 

0.00019 

35 

5.943 
0.837 
1.130 

0.047 
0.117 
0.0019 

na 
0.144 

0.010 
0.322 
0.147 

0.0016 
0.034 

0.011 
na 
na 

0.402 

0.065 

na 
7.812 
0.004 

0.00030 

HEM-8O-SO 

Killas/ greenstooes (1) 
(tourmaline also pt"esent) 

25 

3.432 
0.520 
0.731 
0.027 

0.088 
0.0019 
0.0006 

0.053 

0.005 
0.173 
0.141 

0.0010 

0.032 
0.008 

0.002 

0.0003 

0.269 
0.016 

0.584 
4.638 
0.004 

0.00014 

35 

5.544 
0.840 

1.181 
0.044 
0.142 
0.0031 

0.0009 
0.086 

0.007 
0.280 
0.228 

0.0017 

0.052 
0.013 

0.003 

0.0004 

0.434 

0.025 

0.943 

7.492 
0.006 

0.00022 

NoCica: (1) The SIIiDity of quIdz-hosted fluid illclusicJas IIIOCiIted wiIb w±Sn olliclc IIIiDt:nIiIIIti IIIamlm, was rcpmcd by Kelley et aI. (1986) as 30±5 wt Ill> NaCI cquivalmt. on the basis of microtbcnnometric analysis. 

(2) na iDdicaIta rIOt fIIIlIlysed. nd indicIIIaIlbIt 1bc COIIJIQlaIlwu not deIecred in the Ouid inclluioR laI:baIe solution. 
(3) Fora Wi Ill> NaCI equivaicml va!acob,1bctotal_W ofdissolv".habpa'q ofw..- = 1000%/(100-%). F«eacbSlllllplc, 1bcclemmtmlalive abmdaocea (bymass),as dermn8iedfrom thefJuid inclusion 

leachate...ty-. WQ'C tbm:fore oonp,6.,.", to _ to Ibia value, Ibm conwrtcd to IIIUIIber cllllOb, to gmente the resub shown. 



Table 5.5(a) 
Reconstructed paleotluid electrolyte concen1rations (ppm) corresponding to estimated salinity limits of quartz-hosted aqueous inclusion fluids associated with 

hydrothermal W ± Sn oxide mineralisation: Cligga Head, South Crofty and minor OCCWIences in the Gunnislake-Hingston Down area 

Locality: Cliualkad South Crofty mine South Crofty mine Old Gllllllisiake mine Drakcwalls mine South Bedford mine Prince of Wales mine 

Samp1e raCIaICC : 01-88-1 SC-88-2 SC-88-3 SW-89-150 SW-84-15 SW-84-20 SW-84-27 

Wt'" NaC! equivalent: 8 12 20 30 20 30 5 15 8 12 5 15 5 15 

Na 24.335 36,so3 57,536 86.303 49,254 73.881 15.989 47.967 26,050 39,075 15,551 46,632 16.294 48.882 
K 5.381 8,071 9,551 14,326 11.486 17,229 2,550 7,651 5,874 8,811 2,235 6,704 3.288 9,864 
Ca 2,455 3.683 18.768 28.152 47.377 71,066 4,706 14.117 5,233 7.850 3.692 11.075 1.385 4.155 
Mg 209 314 144 216 552 827 110 331 164 246 165 495 109 328 
Al 1,209 1,814 2,158 3.236 1.497 2.246 574 1,722 1,019 1,528 199 597 554 1.662 
Ba 85 128 86 129 nd nd 29 86 42 63 34 103 16 49 
Be 2.6 3.8 1.8 2.8 1.5 2.3 0.6 1.8 1.1 1.7 na na na na 

Li 226 339 224 337 163 244 120 360 326 488 93 280 101 303 
Sr 114 172 305 457 286 429 107 321 203 305 86 257 117 352 
Fe 993 1,489 1,001 1.s02 3,275 4.913 636 1.909 641 961 922 2.766 2.022 6.066 
Mn 1.881 2.822 1,335 2,002 1,251 1,877 400 1,199 550 824 297 891 738 2,214 

Pb 183 274 40 60 128 192 19 58 10 16 14 42 16 49 
Zn 677 1,015 190 285 6.369 9,553 291 873 42 63 89 266 1.141 3.422 
Cu 204 307 29 43 197 296 16 48 nd nd 8 23 16 49 
A. 22 33 17 26 34 52 19 58 31 47 na na na na 
Bi 5 7 23 35 34 52 10 29 10 16 na na na na 

B 1,205 1,807 1,001 1.s02 2,404 3,605 620 1,861 1,568 2,352 317 952 1.082 3.246 
SO, 708 1,062 161 242 463 694 205 614 253 379 84 252 142 425 

F 3.621 5,432 Da Da Da na Da Da Da na Da Da na na 
CI 36,433 54,649 107.321 160.982 75,132 112.698 23,582 70,746 37.918 56,877 26,182 78,547 22.935 68,806 
IIr 46 69 98 147 84 126 14 43 57 86 30 89 41 122 

4 7 10 16 12 18 2 6 8 12 3 10 2 6 

Noa: (1) The alinity Iimita _ c:t... CIB 1be buia of IIIicrodIrnaomd daD pubIUbed by J.cba et al. (1977), a.roy (1981) aod 0unpbeIJ IIId PanIer (1990) for CliUa Head; Sc:rivaler et aI. (1986) f<r South Crofty; 
Bull (1982) _ -r-aod B_ (1992) fiIr 1be wriOIIIloc:aIdia in 1be G.nUlate-HingItoIl Down area. 

(2) a. iadicIfI:a Il0l,,,_ ad iDcIicIta 1bIt 1be c:capoacnt was 110' dt!I«1ed in 1be Oaid iacl1IsiCIII bcbIte aoIuIim. 

(3) For. Wi" N.a eqIIivaIeat valle of z, 1be klIIII_ of di .. ohal ...... ia lIIIiIs of Jig per g of Ouicl, = 10,OOOz. For each IIIIIIpIc. thcRfon:, the eIemeDt rdMive abuodancaI (by mass), as cIctermmed by fluid inclusion 
bcbIte..alyRa. _____ to .... to .... VIIIae to ,......,1be ... --.. 



Table 5.5(b) 
Reconstructed palzofluid electrolyte concentrations (molal) corresponding to estimated salinity limits of quartz-hosted aqueous inclusion fluids associated with 

hyc:h'Othermal W±Sn oxide mineralisation: Cligga Head, South Crofty and minor OCCUlTences in the Gunnislake-Hingston Down area. 

Locality: OiggaHead South Crofty mine South Crotty mine Old GlIIIDislake mine Dratcwalls mine South Bedford mine Prince of Wales mine 

Sample rc(CIaJCC : 01-88-1 SC-88-2 SC-88-3 SW-89-150 SW-84-15 SW-84-20 SW-84-27 

Wt'" NaCl cquivalml: 8 12 20 30 20 30 5 15 8 12 5 15 5 15 

Na 1.151 1.804 3.128 5.363 2.678 4.591 0.732 2.455 1.232 1.931 0.712 2.387 0.746 2.501 

K 0.150 0.235 0.305 0.523 0.367 0.630 0.069 0.230 0.163 0.256 0.060 0.202 0.089 0.297 
Ca 0.067 0.104 0.585 1.003 1.478 2.533 0.124 0.414 0.142 0.223 0.097 0.325 0.036 0.122 

M8 0.009 O.oI5 0.007 0.013 0.028 0.049 0.005 0.016 0.007 0.012 0.007 0.024 0.005 0.016 

AI 0.049 0.076 0.100 0.171 0.069 0.119 0.022 0.075 0.041 0.064 0.008 0.026 0.022 0.072 

Ba 0.0007 0.0011 0.0008 0.0013 nd nd 0.0002 0.0007 0.0003 0.0005 0.0003 0.0009 0.0001 0.0004 

Be 0.0003 0.0005 0.0003 0.0004 0.0002 0.0004 0.0001 0.0002 0.0001 0.0002 na na na na 

Li 0.035 0.056 0.040 0.069 0.029 0.050 0.018 0.061 0.051 0.080 0.014 0.047 0.015 0.051 

Sr 0.001 0.002 0.004 0.007 0.004 0.007 0.001 0.004 0.003 0.004 0.001 0.003 0.001 0.005 

Fe 0.019 0.030 0.022 0.038 0.073 0.126 0.012 0.040 0.012 0.020 0.017 0.058 0.038 0.128 

Mn 0.037 0.058 0.030 0.052 0.028 0.049 0.008 0.026 0.011 0.017 0.006 0.019 0.014 0.047 

Pb 0.0010 0.0015 0.0002 0.0004 0.0008 0.0013 0.0001 0.0003 0.00005 0.00009 0.0001 0.0002 0.0001 0.0003 

Zo 0.011 0.018 0.004 0.006 0.122 0.209 0.005 0.016 0.0007 0.0011 0.001 0.005 0.018 0.062 
Cu 0.003 0.005 0.0006 0.0010 0.004 0.007 0.0003 0.0009 nd nd 0.0001 0.0004 0.0003 0.0009 

A& 0.0003 0.0005 0.0003 0.0005 0.0006 0.0010 0.0003 0.0009 0.0005 0.0007 na na na na 

Bi 0.00003 0.00004 0.0001 0.0002 0.0002 0.0004 0.00005 0.00016 0.00005 0.00008 na na na na 

B 0.121 0.190 0.116 0.198 0.278 0.476 0.060 0.203 0.158 0.247 0.031 0.104 0.105 0.353 

SO. 0.008 0.013 0.002 0.004 0.006 0.010 0.002 0.008 0.003 0.004 0.001 0.003 0.002 0.005 

F 0.207 0.325 na na na na na na na na na na na na 

Cl 1.117 1.752 3.784 6.487 2.649 4.541 0.700 2.348 1.163 1.823 0.777 2.607 0.681 2.283 .. 0.0006 0.0010 0.0015 0.0026 0.0013 0.0022 0.0002 0.0006 0.0008 0.0012 0.0004 0.0013 0.0005 0.0018 

0.00004 0.00006 0.0001 0.0002 0.0001 0.0002 0.00002 0.00006 0.00007 0.00010 0.00003 0.00010 0.00002 0.00006 

NOla: (1) The saImity limits wac choecu en the basis of miaodamomctric data pabIi.sbed by Jaa- d oJ. (1977). 0Jar0y (1981) and Campbell and J>antcr (1990) for Oigga Head; Scrivener et al. (1986) for South Crotty; 

Bull (l982)md 1iana: andBamoo (1992) for the various 10caIitiea ill the Gunaislake-Hiagston Down area. 

(2) Da iDdicatea IIOt 11Nlly1ed. Dd inclicatea that the compoDCDt was II0t detected ill the fluid inclusioo IcacbItc soiutien. 

(3) For a Wi" NaCl equivlllllll value ofx. thetot.a1 mass (g) of dissolved salts pa- kg ofwalel" = l000x/(I00-x). Foreacb sample. theclcmentrdativcabundaDcea (by mass). as dcttnnincd from the fluid inclusion lcacbatc 

..Iy", wac tIJcrefcR normaliIcd to sam to Ibis valnc, then CCDvmcd to nlUllbcr of moles. to gencntc the results shown. 



Table 5.6 

Leachate analysis of quartz associated with W±Sn oxide, Castle-an Dinas mine (St. Austell district): 
an anomalous example of very low ion yield, with gross imbalance of charge probably caused by 
the presence of residual feldspar 

Element Concentration in Abundance by mass, Molar ratio to Na 
leachate (Ppb) relative to Na == 10,()()() 

Na 65 10000 1.000 
K 90 13846 0.814 
Ca 242 37231 2.136 
Mg 33 5077 0.480 
AI 262 40308 3.434 
Ba 3 462 0.008 
Li 33 5077 1.682 
Sr 8 1231 0.032 
Fe 115 17692 0.728 
Mn 5 769 0.032 
Pb nd 
Zn 10 1538 0.054 
Cu 154 0.006 
As 4 615 0.019 
Bi 2 308 0.003 
Be 0.54 83 0.021 

CI (146.6) 22553 1.462 
B 1 153 0.033 
F (22.1) 3400 0.411 
Br (0.61) 94 0.003 
I (0.008) 1.2 0.00002 

Total cationic charge, l:Q+ 20.860 

Total anionic charge, l:Q- -1.974 

Notes: (i) Raw data corrected for procedural blanks. nd indicates 1IOt detected. 

(ii) Halogen concentrations measured using ion chromatography; Cu, As, Bi and Be data 
obtained by GFAAS; other cations (except alkali metals) and boron (as borate) 

analysed by ICP -AES. 

(iii) Na concentration in the leachate is anomalously low, both in absolute and relative 
terms. 

(iv) Halogen data in parentheses were derived from normaliSing raw data on pre

concentrated leachate solutions (containing 850ppb Na). Br/Cl and Ilel ratios are 

consistent with the respective data from S W England quartz samples associated with 

W±Sn oxides, as reported in the present study. 



5.6 Discussion 

5.6.1 Hydrothennal fluids associated with early mineralisation of the Dartmoor granite 

5.6.1.1 Chemical characteristics: salient features 

Data presented in Tables 5.1(a) and 5.1(b) show that palreo-hydrothennal fluids hosted by 

the Dartmoor granite consist primarily of Na-Ca-K chloride brines, containing relatively 

high concentrations of B, F, Li, AI, Fe and Mn. The most notable feature of the present 

findings is the relative invariance of chemical composition to both paragenetic stage and 

locality. This unifonnity of electrolyte composition parallels the finding, as reported in 

Chapter 2 of the present work, that the liD values of the corresponding water components are 

characterised by a relatively narrow range and appear not to depend on the associated mineral 

assemblage or proximity to the metasedimentary contact. 

A notable feature of the data is that, whereas Na is the predominant cation, the abundance of 

Ca exceeds that of K in all samples investigated. Furthermore, the KINa and Ca/Na mole 

ratios show relatively little variation, as illustrated in Figure 5.1. A mechanism to explain the 

relative enrichment of Ca in the Dartmoor hydrothennal fluids (which are characterised by 

larger Ca/Na ratios than are any of the Comubian palreo-hydrothennal systems associated 

with WiSn oxide mineral assemblages, as shown in Figure 5.1) is Ca-Na exchange during 

high-temperature albitisation of plagioclase feldspars in the granite. Such fluid-rock 

interaction would be consistent with field observations (e.g. Scrivener, 1982; Shepherd 

et al., 1985) that albite formation was associated with the earliest phase of hydrothennal 

activity. To explain the present finding that palreofluid Ca/Na values are independent of both 

locality and associated mineral assemblage (as a proxy for temperature), it is necessary to 

postulate that the measured Ca contents of the Stage II and ill palreofluids reflect an initial, 

high - temperature interaction with the anorthite component of plagioclase, with no subsequent 

gain (or loss) of Ca during cooling, prior to fluid entrapment. 

In view of the ubiquitous presence of early, high-temperature tounnaline mineralisation in 

the region, the levels of B and F in the present examples of Stage I fluids might be expected 

to be significantly greater then those actually found, unless tourmaline deposition occurred 

prior to entrapment of these fluids. Evidence that such precipitation occurred is provided by 

the finding of higher B, and substantially higher F, concentrations (nonnalised to Na) in 

Stage II fluids from the same locality (Golden Dagger mine). 

Although present at lower abundances (0.01-0.03 molal), Zn is also a significant component 

of all the fluids investigated, as seen from Table 5.2(b). The ubiquitous presence of high 

concentrations of Fe (and also Zn) in the hydrothermal fluids is consistent with the assertion 

that the fluids have not encountered sulphur-bearing wall-rocks. 
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Figure 5.1 

Ca/Na and K/Na molar ratios: comparison between palreofluids of the Dartmoor hydrothermaI 
system and fluids cbaracterised by association with early W ± Sn oxide mineralisation in 
SWEngland 
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x Old Gunnislake mine 

* Sea water (present day) 

Note: Samples for which fluid inclusion leachate analysis gave anomalously high levels of Al 
and/ or relatively poor ionic charge balance (excess of cations) are excluded from 
consideration here, as implied solid phase impurities may contribute significantly to the 
measured Ca levels. Thus, with reference to Tables 6.1(b) and 6.3(b), data from samples 
SW-89-157 (Great Rock mine, Dartmoor), HEM-80-44 (Hemerdon mine) and SC-88-3 
(South Crofty mine) are not included. 



5.6.1.2 Cation ratio geothermometry and fluid-rock interaction 

The application of empirical geothermometers based on cation ratios (e.g. Fournier and 

Truesdell, 1973; Lagache and Weisbrod, 1977; Giggenbach, 1988) to high-salinity fluids 

has been discussed recently by Pauwels etal. (1993). One of the most commonly-used 

cation geothermometer is that based on NalK ratios. Lagache and Weisbrod (1977) showed 

empirically that the NalK ratio in hydrothermal solutions in equilibrium with 2-alkali (Na, 

K) feldspars is effectively independent of pressure and chloride molality, in the case of a 

homogeneous fluid t , and that a linear relationship with temperature exists. No corresponding 

geothermometer for hydrothermal fluids in eqUilibrium with Na- K- and Ca-feldspars is 

known to the present author, although such a system would be more appropriate to the 

present discussion. 

Bottrell and Yardley (1988) noted that KINa ratios in the earliest granite-associated 

hydrothermal fluids of the Comubian region are unlikely to be of value for geothermometry 

because tourmaline and muscovite precipitation at relatively high temperature would have 

modified this parameter since the fluid separated from its parent 2-feldspar granite. Similarly, 

Charoy (1981) noted that temperatures derived from fluid inclusion KINa ratios in samples 

from Cligga Head formed a sequence opposite to that expected on the basis of the associated 

mineral paragenesis and microthermometric analyses. Charoy (1981) suggested that a 

constant state of disequilibrium existed between the hydrothermal fluids and the granite. 

In the present study, Dartmoor hydrothermal fluid inclusion KINa ratios ranged from 0.092 

to 0.141, as shown in Table 5.1(b) and Figure 5.1. Assuming that the fluids achieved 

chemical eqUilibrium with the host granite up to the time of entrapment, the corresponding 

temperature range is ca. 310-390°C, on the basis of the data of Lagache and Weisbrod 

(1977). This is in reasonably good agreement with values for Stage IT fluids as deduced from 

microthennometry (Shepherd et al., 1985), especially as the measured KINa ratios represent 

a composite analysis of more than one fluid inclusion population in a given sample and 

therefore relate to the predominant inclusion type. Furthermore, on the basis of the KINa 

geothermometer, the Stage I fluid examples group at the high end of the temperature range. 

Stage ill examples, however, have KINa ratios corresponding to unrealistically high 

temperatures; the actual values are 350°C and 365°C for samples SW-89-154 (East Vitifer 

mine) and SW-89-157 (Great Rock mine) respectively. A possible explanation for this is 

preferential, low-temperature hydrolysis of plagioclase, as suggested by Charoy (1981) to 

account for Similarly anomalous palreofluid KINa geothermometry results associated with 

kaolinite formation at Cligga Head. 

t If liquid/ vapour phase separation - 'unmixing' - has occurred, the invariance of the K/Na molar ratio to 

total pressure is true in the case of the liquid phase. 

228 



If the composition of the Dartmoor hydrothermal fluids was largely determined by interaction 

with (granitic) wall-rock, the relative solubility/hydrolysis rates of component mineral 

phases in the wall-rock should strongly influence the chemical composition of the fluids. In 

tum, these rates will be dependent on temperature and pH (Althaus and Herold, 1987). If the 

early hydrothermal fluids represent a high-salinity component initially exsolved from 

crystallising magma (Burnham, 1979), such fluids should be strongly acidic (and favourable 

to the transport of tin, according to Eugster, 1985, and Wilson and Eugster, 1990). As 

shown by Bottrell and Yardley (1988), the pH at a given temperature may be estimated from 

the potassium concentration by assuming that all the potassium is present as KCl and that 

equilibrium occurs with the assemblage K-feldspar + muscovite + quartz (Hemley, 1959): 

3 KAISips + 2 Hel ¢::> KA13SiPIO(OH)l + 6 sial + 2 KCl 

K-feldspar muscovite 

The presence of coexisting high-salinity and vapour-rich fluid inclusions in the Dartmoor 

granite (Rankin and Alderton 1985)+, similar to the assemblages characterising quartz+ 

cassiterite±tourmaline veins at Birch Tor (Shepherd etat., 1985), is consistent with a 

magmatic-hydrothermal origin for the mineralising fluids. If the salinity of the hydrothennal 

fluids was essentially derived from an exsolved magmatic phase, it is probable that wall-rock 

alteration by the fluids during cooling would have been largely confined to ion eXChange 

reactions controlled by the relative stabilities of different mineral assemblages at a particular 

temperature, rather than by large-scale hydrolysis/dissolution of constituent minerals. 

5.6.1.3 Halogen ion ratios: evidence for a magmatic origin? 

The relative concentrations of dissolved CI, Br and I in hydrothennal fluid inclusions vary by 

orders of magnitude, as they do in modem surface waters and groundwaters on a global scale 

(Bohlke and Irwin, 1992). They may consequently be used to investigate sources of fluid 

salinity, aspects of water-rock interaction, evaporation and fluid mixing processes in the 

Earth's crust. Bohlke and Irwin (1992) used laser microprobe extraction of neutron

irradiated fluid inclusions, in conjunction with noble gas isotope ratio mass spectrometry, to 

measure CI, Br, I and K concentrations in ancient hydrothermal fluids representative of 

probable 'magmatic', 'metamorphic' and 'geothennal' environments. The 'magmatic' 

example was a granite-hosted quartz-tourmaline-topaz rock (greisen) from St Mewan's 

Beacon, near St Austell, a 'split' of the same sample analysed by Bottrell and Yardley (1988) 

for fluid inclusion electrolyte composition and believed to contain primary granite-derived 

fluids trapped during recrystallisation at approximately 500-600OC. 

t The samples investigated by Rankin and Alderton (1985) were from Lee Moor, on the south-west 
periphery of the Dartmoor granite, not from the Birch Tor-Vitifer region. 
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Figure S.2 

Br / CI and 1/ CI molar ratios: Dartmoor pegmatitic and mineralising palreofluids 
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Figure 5.3 

Br ICI and IICI molar ratios: comparison between palreofluids of the Dartmoor bydrothermal 

system and fluids characterised by association with early W ± Sn oxide mineralisation in 
SWEngland 
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Figure 5.4 

(a). Br leI molar ratios in volcanic fumarole condensates: comparison with early hydrothermal 
pala!ofluids. S W England. 

0 

(Adapted from Bohlke and Irwin. 1992) 

Early hydrothennal palreot1uids, SW England: 
WtSn oxide-associated fluids (this study) 

Dartmoor mineralising fluids (this study) 

St Austell granite-derived fluid (Bjjhlke &.Irwin, 1992) 

Fumarole (locality) Temperature (0C) (n) 

Mid.Qcean Ridge total flux 
Global sub-aerial volcanic flux 
KHauea (Hawall) <100·600 7 (53) 
Showashinzan (Japan) 187 - 813 (18) 
Miharayama (Japan) 388 - 392 (2) 
Kuju-Ioyama (Japan) 508 (1) 
Issaikyoyama (Japan) 141 ·217 (3) 

Nasudake (Japan) 97 - 489 (11) 

New Tolbachik (Kamchatka) 10207 (1) 
Sheveluch (Kamchatka) 240- 360 (3) 
Kluichevskol (Kamchatka) 220 ·640 (4) 

Augustine (Alaska) 390-870 (10) 

EIChichon (Mexico) tolal acid flux 
Santiago (Nicaragua) tOlal gas nux 
Galeras (Columbia) 187 ·227 (2) 
Cumbai (Columbia) 257 (1) 
Cerro Negro (Nicaragua) 170-315 (7) 

Masaya (Nicaragua) 85 -150 (3) 

• Momotombo (Nicaragua) 456-666 (5) 

Vulcano (haly) 216·291 (36) 

Merapl 500-800 (7) 

1 2 3 4 

Briel (x 103
) 

5 

Notes: (I) Bars indicate the ranges of values; filled circles indicate the respective means. (n) refers to the number of analyses. 
Refer to Bohlke and Irwin (1992) for sources of original data. 

(2) The St Austell paialOfluid result reponed by BOhlke snd Irwin (1992) refers to fluid inclusions from a 

quartz-tourmaline-topaz rock (greisen) from St Mewsn's Beacon. St Austell. a split of the same sample snalysed 

for fluid inclusion electrolyte composition by Bottrell snd Yardley (1988). Subsequent snalysis by Banks 
(unpublished data) of a further split of this sample for fluid inclusion Br fCI ratio gave a result of 6.1 x 10 ~ which 
is not dissimilar to the value given by BOhlke snd Irwin (1992) of (8.StO.4) x lO~ 



Figure 5.4 (continued) 

(b). Ilel molar ratios in volcanic fumarole condensates: comparison with early hydrothermal 
palreofluids, S W England 

(Adapted from BOhlke and Irwin, 1992) 

Early hydrothennal palleoOuids, SW England: 

Dartmoor mineralising fluids (this study) 

W±Sn oxide-associated fluids (this study) 

St Austen granite-den ved fluid (BiJh/ke & Irwin. 1992) 

Fumarole Oocality) Temper81ure ("C) (n) 

Showashinzan (Japan) 187 -759 (23) 
Miharayama (Japan) 388 -392 (4) 
Kuju-Ioyama (Japan) 96·508 (10) 
Issalkyoyama (Japan) 141 ·213 (2) 
Vakadake (Japan) 163 ·168 (2) 

Iwalesan (Japan) 206 (3) 
K1rishina·Joyama (Japan) 121 ·220 (8) 
Nasudake (Japan) 97 ·489 (34) 

SheYeIueh (Kamchatka) 240 ·360 (3) 

KJulchevskoi (Kamchatka) 220 ·640 (4) 

0 500 

lie! (x 106
) 

Notes: (1) See Figure 6.4 (a) for an explanation of symbols. 

(2) Subsequent analysis by Banks (unpublished dota) of a further aplit of the St Austell sample for fluid inclusion 

IICI rOlio gave a result of 6.0 x 10-6, which is substantially less than the value given by B6hlke and Irwin 
(1992) of (S1±3) 1I 10-6. 



Subsequent analysis by Dr D A Banks at the University of Leeds (unpublished data, pers. 

comm.) of fluid inclusion halogen ratios in a further split of the same sample, using 

procedures adopted for the present work, gave a Br/Cl mole ratio of 6.1 x 10-4, which is not 

very different from the (8.5±0.4) x 10-4 obtained by Bohlke and Irwin (1992). With regard to 

the corresponding Ilel ratio, however, Banks obtained a significantly lower value of 6.0 x 

10-6, compared to the (81±3)x 10-6 reported by Bohlke and Irwin (1992).t 

The Br/Cl and Ilel ratios obtained during the present study are shown in Figures 5.2 and 

5.3. With regard to the Dartmoor hydrothermal system, it is apparent from Figure 5.2 that the 

Br/Cl values are invariant of parage netic stage and are uniformly about half that of present

day seawater, being very similar to that reported for the St Austell granite-hosted palreofluid 

trapped at 500-600°C. The Dartmoor hydrothermal II el ratios, however, range from -11 to 

-4lx that of present-day seawater and also exhibit a systematic relative enrichment in iodine 

in the earlier (higher temperature) stages of paragenesis. These I/el data thus contrast with 

the finding (obtained in the same laboratory, using identical procedures) that the high

temperature 'magmatic' fluid associated with the St Austell granite is characterised by a 

corresponding value of -7x that of present-day seawater. 

Bohlke and Irwin (1992) compared their halogen data for St Austell granite-associated fluid 

inclusions with published analyses of halogen compositions of volcanic fumarole gas 

condensates and estimates of oceanic and total global volcanic fluxes. As noted by Bohlke 

and Irwin (1992) and references therein, fluctuation of halogen abundances through cycles of 

condensation and sublimation in fumarole conduits may serve to limit the interpretation of 

such measurements. However, early (19608) data from fumaroles in Japan led to the 

observation that 'magmatic' fluids are characterised by Briel ratios less than that of present

day seawater, whereas the corresponding I/el ratios are significantly greater than that of 

present-day seawater. In Figure 5.4, the halogen ratio data obtained during the present study 

are compared with those of volcanic gases from several modem evolved magmatic arcs, as 

compiled by Bohlke and Irwin (1992). On the basis of these data it is apparent that the 

Dartmoor fluid inclusion Briel and I/Cl results correspond closely to those associated with 

(modem) volcanic gases at many localities on a global scale. It should be noted, however, 

that similar halogen ratios have been reported to occur in fluids associated with very different 

environments, including some sedimentary basin brines, so that a halogen ratio 'signature' 

characteristic of high -temperature aqueous fluids in continental magmatic systems is not 

unique (Bohlke and Irwin, 1992). 

t Two samples of synthetic fluid inclusions of known composition, supplied by the Centre pour Recherche 

sur la Geologie de I'Uranium (CREGU) at Nancy, France, were used as calibration standards at the Leeds 
laboratory. Good agreement was obtained between the experimentally-determined and actual halogen ratio 

values (0 A Banks, pers. comm.). 
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5.6.1.4 Sr and Pb isotopes in the hydrothennal fluids hosted by the Dartmoor granite 

Sr and Pb are both transported in hydrothennal fluids; their respective isotopic characteristics 

may be used to derive infonnation about the sources of these elements and also as tracers of 

fluid-rock interaction. Pb, in particular, has been shown to be highly mobile (and probably 

transported as PbCl+) in high-level crustal fluid systems operating over distances of up to 

-103 km (McCulloch and Woodhead, 1993, and references therein). Detailed consideration 

of the fluid inclusion U -Pb and R b -Sr results and isotope systematics is not within the scope 

of the present dissertation and will be presented elsewhere (Wayne et al., in preparation). For 

the purpose of the present work, a comparison of the fluid inclusion Rb-Sr data with those 

of the host granite and regional metasedimentary rocks is given in Section 6.4.3.1.3. 

5.6.2 

5.6.2.1 

Chemical characteristics of fluids associated with W ± Sn oxide mineralisation of 

the Comubian batholith 

Ionic charge imbalance of leachates: possible explanations 

As noted in Section 5.5.2, and shown in Table 5.3(b), many of the fluid inclusion leachates 

obtained from quartz associated with occurrences of W ± Sn oxide mineralisation exhibited 

> 1 0% imbalance of ionic charge. with ~Q+ / ~ 1 Q -I > 1 in all of these cases. Even so, the 

charge balances compare favourably with other recent studies: Channer and Spooner (1992) 

reported ~+ /~IQ-I values of 1.50-2.17 for leachate analyses of quartz-hosted fluid 

inclusions from a granitic pegmatite (Tanco, south-east Manitoba, Canada). The main fluid 

inclusion populations in the samples investigated by Channer and Spooner (1992) contained 

a discrete CO2 phase; the coexisting aqueous phase was therefore saturated with respect to 

dissolved inorganic carbon species. Channer and Spooner (1992) estimated from published 

solubility data the total dissolved inorganic carbon concentrations in the aqueous inclusions at 

room temperature, for the empirical mean salinity value; the ionic charge balances of the 

leachate solutions were then recalculated assuming that the total dissolved inorganic carbon 

was present either entirely as HC03-, or entirely as cot. As discussed in Section 3.2.7 of 

the present work, the latter case is quite unrealistic, requiring an improbably high pH value. 

For the same reason, it is also doubtful that HC03- would be of significance in pegmatite

associated fluids. Although the revised charge balances were closer to unity, the values still 

ranged from 1.24 to 1.69 on the assumption of total dissolved inorganic carbon being present 

exclusively as HC0
3
-. Channer and Spooner (1992) suggested that partial dissolution of 

microscopic Mg- and Ca-bearing mineral inclusions were possibly responsible for the 

residual charge imblances. Some authors (e.g. Kazahaya, 1986) have (unwisely!) assumed 

that ionic charge imbalance of fluid inclusion leachates is attributable exclusively to the 

presence of HC03- and have consequently used the ~Q+ /~ 1 Q -I values to the derive the 
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concentration of HC03- in the leachate solutions, whilst neglecting the possibility that cation 

excess may result from the presence of solid phase impurities in the host lattice. 

In the present study, the fact that leachate charge balances were very close to unity for some, 

but not all, of the samples associated with Wi Sn oxide assemblages, despite the presence of 

significant quantities of dissolved inorganic carbon in the aqueous fluid inclusions of all these 

samples (as discussed in Chapter 3), demonstrates that the postulate of HC0
3
- being 

responsible for charge imbalances cannot be substantiated, at least for the samples 

investigated herein. Furthermore, if the sulphate concentrations measured in the leachate 

solutions (Tables 3(a) and 3(b» accurately reflect the total palreofluid sulphur abundancest , 

reduced sulphur species are not responsible for the deficiency of anionic charge, either. The 

finding that significant quantities of nitrogen were released from separate 'splits' of these 

quartz samples during heating from 600 to I 100°C (Chapter 4 of the present work - see 

Figure 4.8 and Table 4.2) is consistent with the idea that microscopic inclusions of 

ammonium -bearing minerals were present; such material, whether authigenic or trapped 

during crystal growth, is a potential source of the recorded charge imbalances. 

5.6.2.2 Comparative overview: constraints on the origins of component elements 

If it is postulated that the chemical compositions of the hydrothermal fluids reflect 

equilibration with the respective associated 2-feldspar granite, with no subsequent 

modification prior to fluid entrapment (which, in tum, implies the absence of fluid-rock 

interaction with the local killas, besides the lack of precipitation of Na- and K-bearing 

minerals), model temperatures for the separation of the fluids from granite may be derived on 

the basis of the KINa cation ratio geothermometer of Lagache and Weisbrod (1977). The 

fluids at Hemerdon are characterised by consistently higher KINa ratios than encountered for 

similar stage (WtSn oxide-associated) fluids elsewhere in the region (see Figure 5.1) and 

correspond to a temperature range of ca. 400-490°C; there is no systematic variation with 

vein host lithology. The upper temperature limit indicated by this model is higher than fluid 

trapping temperatures estimated by Shepherd et al. (1985) on the basis of microthermometric 

data, although not substantially so. Application of the same cation geothermometry model to 

comparable stage fluids at the other localities investigated gives temperatures of ca. 310-

395°C. It may be noted that these lower temperature values coincide with microthermometric 

evidence for the fluids being of lower salinity than at Hemerdon (Section 5.5.2) and also 

deuterium-enrichment of the water, consistent with a meteoric component (Chapter 2). 

t Reduced sulphur species would be gradually oxidised by exposure to air during the time interval between 

the crush-leach extraction and anion analysis. Diamond etal. (1990), using similar procedures, assumed 

that the oxidation process was complete and hence that measured sulphate values reflect elemental sulpbur 

concentration, not speciation. 
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Examination of the Hemerdon fluid inclusion leachate composition data (Tables 5.3 and 5.4) 

reveals a clear distinction between the granite-hosted veins and those hosted by killas, in 

terms of Cu and S abundances (as ratios with respect to Na); the two granite-hosted 

examples (HEM-79-2 and HEM-80-39 respectively) are both relatively depleted in these 

elements. Stage I and II hydrothermal fluids hosted by the Dartmoor granite (Table 5.1) 

contain similarly low levels of Cu. The pattern observed for Cu not does not apply, however, 

to other chalcophile elements such as Fe or Zn; the presence of high levels of both of these 

elements in all the Hemerdon examples suggests that the fluids have not interacted to any 

great extent with sulphide-bearing wall-rocks, although evidence for a limited degree of 

interaction is provided by the fmding of higher Cu concentrations in killas -hosted veins. 

Cu and S concentrations are low in the Cornubian granites, relative to the regional shales and 

volcanic rocks (Hall, 1990). This is in accord with the postulate that, in the hydrothermal 

fluids, these elements were primarily derived from an aqueous phase exsolved during the 

crystallising of granite magma, rather than arising from subsequent leaching of wall-rocks. 

The data reported by Hall (1990) also show, however, that Zn is depleted in the granites, 

relative to the regional shales and volcanic rocks, whereas fluid inclusion leachate analysis by 

Bottrell and Yardley (1988) demonstrated that very high levels of Zn (-o.02m) are associated 

with a primary granite-derived, high temperature (500-600°C) hydrothermal fluid from the 

St Austell district (the associated Cu content was not measured). Indeed, Zn/Cu ratios in the 

granite-hosted vein fluids at Hemerdon and Dartmoor, as reported in the present work, 

greatly exceed those typical of the regional granites, shales and volcanic rocks.t 

The contrasting behaviour of Cu and Zn during magma crystallisation may provide a clue to 

this anomaly: Lowenstern etal. (1991) showed that Cu, unlike Zn, is preferentially 

partitioned into a magmatic vapour phase rather than the associated melt. These authors 

suggested that, in silicate melts with a high water content, or containing low-solubility gases 

such as CO2 , vapour saturation may occur at relatively low pressure (shallow depth), thereby 

providing a low -density volatile phase into which Cu could partition (probably as a chloride 

complex). Nevertheless, it is difficult to envisage a plausible mechanism that explains the 

palreofluid Znl Cu ratios, without recourse to the idea that Zn is preferentially concentrated, 

relative to Cu, in the saline fluids exsolved from crystallising magma. 

Salient features of the early hydrothermal fluids from Cligga Head, South Crofty mine, and 

localities in the Gunnislake -Hingston Down area, include: 

t Typical Zn/Cu ratio values in the granites, shales and volcanic rocks are: 4, 3 and 2.4 respectively (by 

weight), as derived from the results of Hall (1990). 
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(a) Consistently lower Ca/Na ratios than are characteristic of the hydrothennal system 

hosted by the Dartmoor granite; the values are also generally lower than those of the 

Hemerdon system. K/Na ratios are, without exception, lower than those recorded in 

the Hemerdon fluids; the range of values is similar to that which characterises the 

Dartmoor hydrothermal system. These points are illustrated in Figure 5.1. 

(b) Generally lower levels of Fe and Mn (relative to Na), compared to the fluids at 

Hemerdon. Furthennore, the Fe/Mn mole ratio is less than unity (0.52) in the example 

from Cligga Head and also in one of the South Crofty specimens (0.74), whereas the 

corresponding range at Hemerdon (1.2 to 2.6) is not dissimilar to that of the fluids 

characteristic of early hyctrothennal mineralisation in the Gunnislake-Hingston Down 

area (1.1 to 3.0). For comparison, corresponding values of the Dartmoor granite

hosted samples investigated in the present work ranged from 0.74 to 5.0, with no 

apparent correlation with paragenetic stage. 

(c) In the Cligga Head example, the reduced level of Fe was not coupled with a reduction 

in Zn concentration; furthennore, palieofluid eu and Ph abundances (relative to Na) 

were notably higher than in any other specimen investigated in the present study. In 

other respects (with the notable exception of the low Ca/Na ratio), the early-stage fluid 

at Cligga Head was not dissimilar, in terms of electrolyte composition, to fluids 

associated with the corresponding paragenetic assemblage at Hemerdon. It is interesting 

to note that Hall (1971) reported that the unaltered Cligga granite is unusually rich in Cu 

and suggested that this element was leached out of the granite by hydrothennal fluids 

responsible for greisening. Hall (1971) also reported that the unaltered granite is 

enriched in Ph and Zn, relative to the corresponding values for average granitic rocks. 

(d) It is difficult to make substantive inferences from the South Crofty data because of the 

degree of contamination of one of the samples (SC-88-3) by mineral impurities, as 

shown by the relatively high degree of ionic charge imbalance in the corresponding 

leachate data, coupled with the observation that the other sample from this locality 

(SC-88-2) was found (during in vacuo stepped heating extraction for palieOfluid carbon 

stable isotope analysis - Chapter 3) to contain significant quantities of hydrocarbons. 

Apart from Fe/Na and Mn/Na ratios being substantially lower than the corresponding 

values in the Hemerdon fluids, the most notable finding is probably the low values of 

total sulphur abundance (relative to Na), which are comparable to those characteristic of 

the granite -hosted vein samples from Hemerdon. 

(e) Low abundances of sulphur are also characteristic of early-stage hydrothennal fluids 

associated with minor granite intrusions in the Gunnislake-Hingston Down area At the 

Prince of Wales mine, this is coupled with anomalously high levels of Zn, significantly 

higher Fe and Mn abundances (relative to Na) than encountered elsewhere in the area, 

together with the lowest palieofluid Ca/Na ratio recorded in the present study. 
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Figure 5.3 shows that the range of Br/Cl ratios in the early hydrothennal fluids at Hemerdon 

is similar to that of the mineralising palreofluids hosted by the Dartmoor granite, whereas 

quartz-hosted fluids associated with W±Sn oxide assemblages at Cligga Head, South Crofty 

mine, and several localities in the Gunnislake- Hingston Down area, are generally typified by 

lower Br/CI values. Comparison with Br/CI ratios of modem volcanic gases, as discussed 

in Section 5.6.1.3 and illustrated in Figure 5.4(a), lends support to the idea (but does not 

unequivocally prove) that these halogen components of the hydrothermal palreofluids are 

primarily of magmatic origin.t 

With regard to the corresponding I/CI data, two examples ofki1las-hosted quartz veins from 

Hemerdon (samples HEM-80-1 and HEM-80-44 respectively) contained fluids characterised 

by I/Cl mole ratios (2.25 x 10.6 and 2.53 x 10-6 respectively) fairly close to that of modem 

seawater (0.84 x 10-6
); the majority of the Hemerdon palreofluids analysed, however, had 

I/CI ratios within the range defined by the corresponding data for the Dartmoor mineralising 

fluids, as shown in Figure 5.3. This Figure also indicates that, with the exception of 

examples from Drakewalls and South Crofty mines, which exhibit relative enrichment of I, 

the I/Cl data relating to quartz-hosted palreofluids characterised by association with early 

W±Sn oxide mineralisation at other localities in the Comubian province are within the range 

defmed by the Hemerdon fluids. 

Figure 5.4(b) compares the total data set with I/CI ratios in (modem) volcanic fumarole 

condensates and illustrates that, whereas the range of 1/ CI values in modem magmatic 

systems is very large, the results of the present study, in conjunction with the corresponding 

Br/CI data, are not incompatible with a magmatic origin for the iodine component of the 

palreofluids responsible for early hydrothermal oxide-associated mineralisation in 

SW England. 

Levels of boron (normalised to Na) in the fluids associated with early W±Sn oxide 

assemblages are notably higher than in the fluids associated with early mineralisation of the 

Dartmoor granite. This may be explained on the basis of the extensive tourmaline 

precipitation associated with the earliest phase of hydrothermal activity hosted by the 

Dartmoor granite. In general terms, boron abundances are greatly enhanced in argillaceous 

sediments (ca. lOOppm) compared to igneous rocks (ca. IOppm), whereas the boron content 

of modern seawater is, at 4.5 ppm, lower than either of these lithological types (Spivack 

et al., 1987, and references therein). This is explained on the basis of the major flux to the 

oceans being by direct injection from igneous degassing, rather than by fluvial transport 

t Available data on metamorphic fluids are inadequate for comparison, as noted by Yardley etal. (1993). 
These authors also indicated, however, that oilfield brines are characterised by halogen ratios which plot in 

fields quite distinct from the present S W England results (see their Figure 5). 
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following chemical weathering; the incorporation of boron from seawater by weathered clay 

minerals is then probably responsible for the reported enrichments. On this basis, it may be 

possible to distinguish between a fluid which has interacted with sediments from one which 

has interacted with igneous rocks. In the case of hydrothermal systems, Spivack et al. (1987) 

showed that interaction between seawater and argillaceous sediments in seafloor 

hydrothermal systems in the Guaymas Basin, Gulf of California, resulted in elevation of the 

dissolved boron content by a factor of 3 to 4. 

Hall (1990) showed that the granites of S W England are universally enriched in boron to an 

extreme degree, with concentrations of 20 to 30 times that typifying an 'average' granite 

outside this region. In a water-saturated granitic melt, the addition of 5 wt% or more of B
2
0

3 

lowers the solidus temperature at 1 kbar by 125°C (Chorlton and Martin, 1978), reflecting the 

substitution of tetrahedrally co-ordinated boron for aluminium in the melt and the resulting 

effect on the thermal stability of feldspars. The liquidus temperature was reported to be 

similarly affected. Hall (1990) also showed that the average boron concentration in the 

Comubian granites is, on a weight basis, typically 3.8 times that in the adjacent shales and 

-24 times that in the regional volcanic rocks. Furthermore, elements which have anomalously 

high concentrations in the Comubian granites (B, Li and Sn) are moderately enriched in the 

shales; conversely, elements such as Ba and Sr, which have very low abundances in the 

granites, are moderately depleted in the shales. Hall (1990) was therefore able to show that 

the Comubian geochemical anomaly predates the formation of the granite batholith, even 

though it is in the batholith that the most extreme trace element enrichments are found. 

Fluorine was not included in the study by Hall (1990) of the geochemistry of the Comubian 

province. In the present work, the limited availability of fluid inclusion leachate analyses for 

fluorine concentration precludes a comprehensive assessment of palreofluid fluorine 

variations with vein host rock lithology or locality. The generally low levels of fluorine in the 

hydrothermal fluids hosted by the Dartmoor granite probably reflects the widespread 

occurrence of early tourmaline depositiont, although the lack of correlation with boron 

abundance (see Table 5.1) suggests that other factors were also important, such as the 

incorporation of fluorine into mica group minerals. Conversely, the generally higher levels of 

fluorine in the hydrothermal fluids at Hemerdon probably represent the relatively restricted 

availability of mineral 'sinks' for this element at Hemerdon, rather than reflecting a greater 

enrichment of fluorine in the granite 'source'.f 

t According to Scrivener (1982), Table 8, fluorine constitutes approximately 0.4 to 0.8 weight percentage of 

tourmaline from Dartmoor. 

t Geochemical modelling at 300°C of a fluid of comparable composition (yardley et al., 1993) indicates that 

AI may be primarily present as AlF
3

, whereas Ca occurs mainly as a bicarbonate complex. This accounts 

for both the relatively high levels of Al and also the lack of high-temperature fluorite deposition, despite 

significant abundances of both Ca and F in the fluid. 
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5.6.2.3 Palreofluid Pb concentrations at Hemerdon: comparison with an earlier study 

An exploratory voltammetric investigation of Pb abundances in quartz-hosted hydrothermal 

fluid inclusions, undertaken earlier by the present author, included samples from the 

Hemerdon Sn-W deposit (Miller and Shepherd, 1984). The results of this study, undertaken 

as a prelude to the potential investigation of fluid inclusion Pb isotopic composition, indicated 

that the early mineralising fluids at Hemerdon may contain Pb concentrations in excess of 

l000~g/cm3Hp. These values were, however, derived on the basis of fluid inclusion water 

yields (obtained on • splits , of the same samples) that were subsequently found to be in error 

(too low); the corresponding palreofluid Pb abundance values will consequently be lower 

than those published, although the revised values still indicate significant levels of Pb, in 

absolute terms. 

One quartz sample from Hemerdon (HEM-80-1) included in the study by Miller and 

Shepherd (1984) was also investigated for fluid inclusion electrolyte composition in the 

present work. A direct comparison may therefore be made of estimates of the fluid inclusion 

Ph abundance data for this sample, as determined independently by the two different 

procedures: 

(i) Using the revised water yield value (with respect to the quartz host) of 1337ppm for 

sample HEM-80-1 (Shepherd and Miller, 1988), in conjunction with the bulk Pb content of 

0.73~g per gram of quartz as reported in Miller and Shepherd (1984), the average (bulk) 

concentration of Pb in the inclusion fluids of this sample, as determined by voltammetric 

analysis following total dissolution of the quartz, in conjunction with independent 

determination of the palreo-water content of the quartz, is 0.73/(106/1337)= 546~gPb per 

cm3 H
2
0, equivalent to (546 x 10-6 ) 1 (207.2 x 103) = 2.6 x 10-3 molal Pb. 

(ii) As seen from Table 5.4(b), the fluid inclusion Ph concentration (molal) in sample 

HEM-80-1 as determined from leachate analysis in conjunction with the estimated salinity 

value of 30±5 wt% NaCl equivalent (Kelley etal., 1986) is (2.0±0.5) x 10-3 molal. 

The results of fluid inclusion Pb analysis by the two different methods are thus remarkably 

close, considering the inherent assumptions and uncertainties. It should be noted, however, 

that procedures based on the total dissolution of quartz for the analysis of fluid inclusion 

components (as used by Miller and Shepherd, 1984; also by Darbyshire and Shepherd, 

1985) necessarily neglects partitioning of the species of interest between the fluid phase and 

the quartz under hydrothennal conditions. Although the partition coefficients for most 

electrolytes are likely to be strongly in favour of the solution phase, it is preferable, in the 
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absence of supporting experimental data t , to undertake the relevant measurements on the 

fluid phase directly (i. e. on leachates). 

5.7 Summary and conclusions 

The application of recent developments in fluid inclusion crush -leach analytical procedures to 

an investigation of early mineralising fluids hosted by the Dartmoor granite has revealed a 

surprising uniformity of palreofluid electrolyte composition, from the earliest pegmatitic 

quartz stage, through quartz + tourmaline t cassiterite association, to the stage characterised by 

quartzthrematite deposition. The excellent charge balances obtained for most of the analysed 

leachates support the assertion that the reported compositions are representative of the 

dominant generation of fluid in each case. Early mineralising fluids hosted by the central 

region of the Dartmoor granite exposure, isolated from contact with regional metasedimentary 

and volcanic rocks, provide a useful reference point for evaluating the origins of salinity and 

chemical composition of early fluids associated with other granites of the Cornubian region, 

where the comparable stage is characterised by W t Sn oxide assemblages and the vein host 

lithology is not exclusively granitic. 

It is proposed that the electrolyte compositions of the Dartmoor-hosted fluids are compatible 

with the postulate of magmatic -hydrothermal origin, with little evidence for mixing with 

external fluids. Whereas published microthermometric studies have drawn attention to the 

high salinity of fluids associated with quartzttounnalinetcassiterite veins of central 

Dartmoor and remarked on the presence of Ca in these Na-K chloride brines, CalK molar 

ratios exceeded unity in all fluids investigated in the present study, from earliest pegmatite

associated examples to those associated with quartzthrematite deposition. Furthermore, the 

enrichment of these fluids in B, F, Li, AI, Fe Mn and Zn shows an affinity with higher 

temperature (500-6000C) granite-derived fluids elsewhere in the batholith (St Austell area). 

For comparison, the results of Bottrell and Yardley (1988) are shown in Table 5.7. 

The ubiquitous presence of high concentrations of Fe and Zn in the fluids is in accord with 

the isolation of these fluids from contact with sulphur-bearing wall-rocks, such as the 

regional Palreozoic metasediments. Sulphur concentrations in the fluids were not negligible, 

however: reconstructed compositions of the original fluids indicate that values were typically 

(11 t8) x 10-3 molal, which places constraints on estimates of granite-derived sulphur input 

to hydrothermal systems elsewhere in S W England. Copper concentrations were notably low 

in the fluids, which is in accord with the relative depletion of this element in the granite. 

t Rossman etal. (1987) reported Rb, Sr, Nd and Sm concentrations in naturally-occurring quartz; 
comparable data for Ph would appear to be lacking. According to Peucker-Ehrenbrink and Behr (1993), 
solid phase micro-impurities (such as feldspar or mica), rather than fluid inclusions or elements fixed in 
the quartz lattice, are the predominant hosts for most elements even in "carefully-cleaned" quartz. 
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Table 5.7 

Fluid inclusion leachate analysis, as reported by Bottrell and Yardley (1988), of a granite-hosted topaz-quartz

tourmaline rock from St. Mewan's Beacon, St. AusteIl district: an example of a primary, granite-derived fluid 

(After Bottrell and Yardley, 1988) 

Molar ratio to Na (± 10) 
Inferred composition 

Element 
in leachate 

of original fluid 
(JOOlar) 

Na 1.00 (by definition) 1.719 

K 0.208 ± 0.007 0.357 

Ca 0.140 ± 0.005 0.240 

Fe 0.125 ± 0.003 0.214 

B 0.051 ± 0.00007 0.087 

AI 0.045 ± 0.0008 0.077 

Mn 0.034 ± 0.002 0.059 

Li 0.018 ± 0.001 0.031 

Zn 0.014 ± 0.0007 0.024 

Mg 0.003 ± 0.00007 0.005 

Rb 0.003 ± 0.001 0.005 

Sr 0.0009 0.002 

Ba 0.0006 0.001 

CI 1.746 ± 0.042 3.000 

F 0.025 ± 0.006 0.043 

Total cationic charge, ~+ 3.431 

Total anionic charge, IQ- -3.305 



Br/CI and I/CI molar ratios in the Dartmoor hydrothermal system, (7.5± 1) x 10-4 and 

(22± 13) x 10-6 respectively, are compatible with a magmatic origin for these elements, on the 

basis of a comparison with the corresponding values for volcanic fumarole condensates. The 

data are also similar to results, obtained in the same laboratory, of halogen ratio 

determinations on the high-temperature, granite-derived fluid from the St Austell area 

referred to above, supporting further the link between such high -temperature fluids and those 

responsible for early hydrothermal mineralisation of the central and north -eastern regions of 

the Dartmoor granite. 

Application of the same crush -leach analytical procedures to investigate the compositions of 

early hydrothermal fluids characterised by association with W ± Sn oxide assemblages in the 

Cornubian region resulted in a greater degree of leachate charge imbalance in many cases, 

although the charge balances compare favourably with those published in other recent 

studies. The presence of significant levels of dissolved inorganic carbon compounds, which 

distinguishes these fluids from those of the hydrothermal system hosted by the Dartmoor 

granite, was shown to be not the cause of leachate charge imbalances. The presence of 

microscopic mineral inclusions was considered to be the most probable source. 

The early hydrothermal fluids at Hemerdon are broadly similar, in terms of electrolyte 

composition, to those hosted by the Dartmoor granite. The principal differences, in general 

terms, are the greater enrichment of potassium and relative depletion of calcium at Hemerdon, 

together with even greater absolute abundances of F, B, Fe, Mn, Li, Al and Zn, as inferred 

from the reconstructed palreofluid compositions. The latter, in particular, demonstrate the 

very high capacity of these high -chlorinity fluids to transport metals. Ph concentrations in the 

Hemerdon fluids, as determined in the present investigation, are in good agreement with the 

result of an earlier study based on different analytical procedures. 

At other localities in S W England, early hydrothermal fluids characterised by association 

with W±Sn oxide assemblages were found to have consistently lower KINa ratios than at 

Hemerdon; the values were similar to those of the quartz±tourmaline±cassiterite±hrematite 

associated hydrothermal fluids hosted by the Dartmoor granite, although the corresponding 

Ca/Na ratios were lower than those of the Dartmoor system. Evidence for a magmatic

hydrothermal component in the W±Sn oxide-associated fluids at Cligga Head, South Crofty 

mine and localities in the Gunnislake-Hingston Down area is provided by the strong 

enrichment of boron (the abundance of which exceeds that of calcium at Cligga Head, 

Drakewalls mine and the Prince of Wales mine), distinctive minor element distributions and 

halogen ratios. The lower absolute abundances reflect the lower salinity values of many of 

these fluids, compared to the Hemerdon examples, which is consistent with the postulate of 

mixing with (dilution by) a low salinity, meteoric component. 
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The relative concentration of sulphur species (with respect to other components) in the fluids 

at South Crofty and the Gunnislake-Hingston Down localities was surprisingly low, in view 

of the proximity of (or even hosting of the quartz veins by) Palreozoic metasedimentary 

rocks, and indicates that leaching of the killas by the hydrothermal fluid systems did not 

occur to any significant extent in these examples. 

5.8 Suggestions for further research 

In view of the findings by Hall (1990) that the Comubian granites are anomalously enriched 

in tin (as well as boron and lithium), together with the fact that many of the samples 

investigated in the present study were associated with cassiterite deposits, it would be 

instructive to investigate the concentrations of tin in the fluid inclusion leachates. Lockett 

(1987) attempted to apply isotope dilution analysis to determine the abundance of tin in fluid 

inclusions, following crush-leach extraction procedures; what emerged from that study was 

the rmding that procedural blank levels were surprisingly high and derived from a variety of 

sources. Whereas the detection sensitivity ofICP-AES for tin (-IOOppb or less) is probably 

sufficient for the analysis of fluid inclusion leachates in the present case (but necessitating the 

use of HCI as the leaching agent, rather than HN03), it is likely that a high and variable blank 

would be found (S H Bottrell, pers. comm.), reflecting significant background levels of this 

element in the laboratory environment. Further work remains to be done to overcome these 

problems. 

The analysis, possibly by ion chromatography, of ammonium levels in the fluid inclusion 

leachates (if ammonium is present at all - see the discussion in Chapter 4, Section 4.2.12) 

would be of value to a consideration of nitrogen speciation in the fluids. Channer and 

Spooner (1992) reported minimum detection limits of O.6ppb for NH.t, using a Dionexlt 

2000i-SP ion chromatograph. Similarly, analysis of reduced sulphur levels in the fluid 

inclusions is feasible, using the technique developed by Bottrell and Miller (1989). This has a 

detection limit corresponding to -20ppm of sulphur in the inclusion fluids. 

To lend further support to the hypothesis that hydrothermal fluids associated with early oxide 

mineralisation in the Comubian province were primarily of magmatic origin, it would be 

advantageous to apply the fluid inclusion leachate procedures referred to in this work to 

determine the electrolyte compositions of fluids hosted by the unaltered granites, for direct 

comparison. 

North-south trending 'cross-course' quartz-fluorite veins in the Tamar valley, located 

south-east of the Gunnislake-Kit Hill area and hosting Pb-Zn mineralisation, are known to 

be derived from fluids of high salinity, relatively enriched in Ca and deposited at II O-1700c 

(Shepherd and Scrivener, 1987, and references therein). The age of these structures has been 

245 



established as -235Ma (Darbyshire and Shepherd, 1990). The fluids responsible for the 

cross-course veins were possibly mobilised in response to changes in the regional tectonic 

stress field (Shepherd and Scrivener, 1987). To date, however, these fluids have generally 

been considered to be evolved basinal brines, by analogy with systems elsewhere (Shepherd 

and Scrivener, 1987; Shepherd etal., 1985), or Mesozoic seawater (Durrance etal., 1982). 

The suggestion was offered in Chapter 2 of the present work that these fluids might be 

derived from inclusions in the unaltered granites, fractured by a changing tectonic stress 

regime. The salinity and calcium enrichment of these fluids (Shepherd and Scrivener, 1987) 

is not incompatible with such an explanation, on the basis of the present findings. 

Investigation of the electrolyte compositions of these fluids, using the procedures described 

in the present work, would help to test this hypothesis. 

Appropriately-designed experimental studies of fluid-rock interaction under hydrothennal 

conditions, involving leaching experiments on both granites and killas and with subsequent 

analysis of the reacted fluids for electrolyte composition, are needed to investigate further the 

hypothesis that the chemical compositions of high-salinity magmatic-hydrothennal fluids at 

300-450°C do not undergo substantial modification during contact with the killas. 

The high levels of boron in early hydrothermal mineralising fluids of the Comubian region, 

as established in the present work, are in accord with a magmatic origin for the fluids. This 

has been argued herein on the basis of the substantial enrichment of boron in the granites of 

S W England (Hall, 1990), relative to both 'average' granite compositions and also to the 

local country rocks; also the central role of this element in the earliest mineralisation of the 

Dartmoor granite (Scrivener, 1982), and the abundance of boron in higher-temperature 

(500-6O<fC) granite-derived fluids in the Comubian region (Bottrell and Yardley, 1988). In 

view of these findings, it is suggested that the application of boron isotope studies may shed 

further light on the source and transfer mechanisms of boron in the hydrothennal solutions. 

With regard to the Comubian shales, Hall (1990) found that the associated boron contents 

varied from about 50 to 150ppm, with no examples in which boron concentrations were low. 

There are two naturally-occurring stable isotopes of boron, lOB and 11B, the relative 

abundances of which are approximately 1: 4. Because of the large relative mass difference, 

exceeded only by 2HjlH and 180/160, large natural variations of HB/IOB occur, with 8uB 

valuest ranging from -31%0 in terrestrial rocks to +39%0 in modem seawater. The average 

continental crustal is characterised by values of -8 to +2%0. 

t Boron stable isotopic variations are generally reported using the conventional delta notation, with reference 
to the standard NBS SRM 951, a boric acid powder: 
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Aqueous speciation of boron is dominated by the tetrahedral B(OH); anion and the trigonal 

B(OH)3(aq.) entity; the equilibrium between these two species is dependent on both pH and 

temperature. B(OH).- is relatively enriched in lOB and is preferentially adsorbed onto clay 

minerals from aqueous solutions. Boron isotopic fractionation between tounnaline and 

coexisting fluid/vapour is -2%0 at 750°C and 6.5-8%0 at 350°C (Slack, 1989), with 

preferential enrichment of lOB in the fluid. 

Determination of boron stable isotope ratios is usually undertaken by thennal ionisation mass 

spectrometry ofCs2B.07 (prepared by the addition ofCs2C03 to aqueous samples), giving a 

311B precision of 0.24%0 at the 20 level (see Spivack et al., 1987, and references therein). A 

relatively recent variation of the usual procedure is to undertake the isotopic analysis by 

negative thermal ion mass spectrometry; this utilises the ease of conversion of boron to B02-

ions and permits untreated solutions to be loaded directly onto the filaments of a reverse 

polarity mass spectrometer. This has obvious advantages for the minimisation of 

contamination. Using such a procedure, boron concentrations as low as O.06ppm may be 

detected and 311 B measured with a 20 precision of 1.9%0 (Vengosh etal., 1989). With 

reference to the fluid inclusion leachates of hydrothermal quartz hosted by, for example, the 

Dartmoor granite, as prepared during the present work, absolute concentrations of boron in 

the leachate solutions ranged (with the exceptions of samples SW-89-1S7 and SW-89-161) 

from 169 to 660ppb (as borate), which should be sufficient to enable fluid inclusion 311B 

analysis to be performed. 
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Chapter 6 

Palreozoic metasediments of S W England: geochemical and isotopic 
constraints on the effects of granite emplacement. An exploratory 

study, with reference to the Dartmoor granite 

6.1 Synopsis 

An exploratory investigation was made of the effects of the intrusion of the Dartmoor granite 

into local Palleoloic host rocks, in terms of the alteration of both geochemical composition, 

and of the isotopic composition of selected trace elements, in the metasedimentary rocks. For 

this purpose, two traverses were sampled across the metamorphic aureole - one of Upper 

Famennian (Kate Brook) Slate, to the south -west of the pluton; the other comprised of 

Namurian (Crackington Formation) mudstones located north-east of the granite. In addition, 

a small number of borehole drillcore samples of Devonian sedimentary rock from localities 

west of the St Austell granite were included, for comparison purposes. 

Geochemical compositions of the metasedimentary rocks are compared with published data 

for the Cornubian region as a whole and indications for chemical alteration in the vicinity of 

the Dartmoor granite contact lone examined, to assess whether any localised effects resulting 

from the influx of an exsolved aqueous magmatic fluid may be detected. 

The Rb -Sr isotope systematics of the metasedimentary rocks of the Dartmoor granite aureole 

are compared with corresponding published data for the granite and also with fluid inclusion 

leachates of quartz associated with early hydrothermal mineralisation hosted by the granite. 

Resulting constraints on the chronology of mineralisation are discussed, together with the 

evidence for magmatic fluid infiltration versus closed system thermal resetting of the isotope 

systematics in the metasedimentary rocks during contact metamorphism 

Carbon and nitrogen abundances (the former as both carbonate and 'organic' carbon, the 

latter as ammonium), together with the respective stable isotopic compositions, were 

determined in the metasediment samples to investigate the influence of granite emplacement 

on these trace elements, which have been shown elsewhere in the present work to be of 

significance in early hydrothermal fluid systems associated with W±Sn oxide mineralisation 

in the Cornubian region and also to be probably of magmatic origin. The findings are 

discussed in terms of the feasibility of carbon and nitrogen assimilation into the granitic 

magma at a high crustal level, as an alternative (or an addition) to the anatectic mechanism 

proposed in earlier chapters of this work. 
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6.2 Research objectives 

The present chapter attempts to assess the extent to which carbon and nitrogen were 

assimilated into the granite from the surrounding low-grade (high anchizone/low greenschist 

facies) metasedimentary rocks at a high crustal level during granite emplacement. Two 

traverses across the thennal aureole of the Dartmoor granite were sampled: one representative 

of Upper Devonian metasediments, the other of Carboniferous mudstones. The fonner was 

of a stratigraphic type - Kate Brook Slate - which is also the predominant country rock at 

nearby Hemerdon and in the Gunnislake-Kit Hill area, where both granite and killas-hosted 

early hydrothennal quartz veins are characterised by relative enrichment of carbon 

compounds and molecular nitrogen in the palreofluids. Namurian shales of the Crackington 

Formation, representative of the youngest rocks intruded by the Dartrnoor granite, were 

sampled for the second traverse. 

All samples were analysed for chemical composition, to provide a comparison with the 

granite. Rb-Sr isotopic determinations of whole-rock samples were made in order to 

examine whether any systematic variation with distance from the granite contact was apparent 

of 87Sr /86Sr back -corrected (on the assumption of closed -system behaviour) to the time of 

granite emplacement. The carbon (carbonate and 'organic' carbon) and nitrogen (as 

ammonium) contents of the metasediment samples, together with the respective stable 

isotopic compositions, were analysed to assess the effects of contact metamorphism on these 

components of the mudstones and to examine the possibility of their incorporation into the 

granitic magma during its emplacement. 

6.3 Salient features of the regional metasedimentary rocks, with 
reference to the thermal aureole of the Dartmoor granite 

6.3.1 General observations 

A detailed consideration of the lithology of the mainly sedimentary rock sequences that 

comprise and surround the metamorphic aureole of the Dartrnoor granite is outside the scope 

of the present work. Detailed accounts of specific aspects are to be found in e. g. Hawkes 

(1982), Selwood and Durrance (1982), Thomas (1982), Bull (1982) and Whiteley (1983) 

and references therein. All the rocks were regionally metamorphosed (at low grade) before 

emplacement of the granite. The southern part of the Dartmoor pluton penetrated folded 

sequences of mainly argillaceous and silty Devonian rocks containing scattered calcareous 

horizons and sporadic tuff, lava and intrusions of mafic igneous origin. In contrast, the 

northern part of the granite intruded rocks of Carboniferous age; lithostratigraphically these 

consist of Culm Measures (Ugbrooke and Crackington Formation) and earlier formations 

(Transition Group and Lower Culm). 
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According to Hawkes (1982), mineralogical evidence (assemblages characteristic of 

hornblende-hornfels facies metamorphism) suggests that the temperature and water vapour 

pressure in the inner regions of the Dartmoor aureole were probably of the order of 500-

6000C and 1-2kbar respectively. The extent of the aureole (approximately 0.75 to 3.25km 

horizontal distance from the contact, depending on the general inclination of the latter) 

indicates that such pressures were maintained for a considerable length of time. This, in tum, 

implies confining pressures equivalent to a cover of at least 1-3 km. Hawkes (1982) also 

attributed the effects of the contact metamorphism primarily to the increase in temperature and 

to the circulation of hydrous fluids from the intruded granite. In the outer parts of the aureole, 

thermal spotting of slates is recognised, whereas closer to the contact, conversion to quartz

biotite-andalusite assemblages occurred. Within the thermal aureole, sedimentary rocks were 

converted to fine -grained calc -silicate hornfelses, containing a variety of accessory minerals. 

Mafic igneous rocks developed hornblende assemblages towards the inner parts of the 

aureole. 

6.3.2 Kate Brook Slate 

The Kate Brook Slate formation is a major sequence in the study area. It consists of a thick, 

monotonous sequence of hard, greenish -grey slates with sporadic thin sandstones, is now 

allochthonous and is everywhere fault-bounded (Selwood and Durrance, 1982). The 

remarkable lithological uniformity, even allowing for repetition of beds by folding, appears 

to have persisted through a very considerable thickness of strata. The mineralogy is 

dominated by chlorite with accessory micaceous minerals, all generally characterised by a 

grain size of <0.01 mm (Whiteley, 1983). The age of the formation is late Devonian, 

probably late Famennian (Whiteley, 1983; Molyneux and Owens, 1990), on the basis of 

palynomorphic evidence, which equates to an age of 364± 2Ma on the time scale of Harland 

et al. (1990). West of Dartmoor, slates identical to the Kate Brook Slate occur in an extensive 

east-west tract of country intruded by the Kit Hill and Gunnislake granites; in total, the 

outcrop extends from Tintagel to Chudleigh. The depth of the formation is unknown, 

although it is estimated to be at least 480m, on the basis of borehole evidence from the 

vicinity of Devon Great Consols mine, near Gunnislake (Whiteley, 1983). The Kate Brook 

Slate is quite barren of fossils throughout a considerable thickness of the succession 

(Selwood and Durrance, 1982). Rare fossil- bearing horizons indicate that the substrate was 

not inimical to life, and as there is no evidence to support the possibility of very rapid 

sedimentation, it seems that the depth of water may have been a limiting factor. The 

development of anoxic conditions is an alternative possibility. Basinal deposition is 

suggested by the lithology, in which the thin sandstones were introduced as distal turbidites 

(Selwood and Durrance, 1982); the indication is that accumulation took place in the axial part 

ofa basin. 
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6.3.3 Crackington Fonnation shales 

The pattern of Carboniferous sedimentation (Culm Measures) in S W England is consistent 

with the development of a deep water marine trough which accumulated a thick succession of 

shales and sandstones (Thomas, 1982). At the end of the Devonian, increased subsidence, 

coupled with a reduced supply of sediment, is believed to have resulted in overall deepening 

of the trough and consequently greater uniformity of the deep-water conditions. The 

Crackington Fonnation is a sequence of Upper Culm shales with thin turbidite sandstones 

and is a succession widespread throughout north and central Devon. The samples 

investigated in the present study are of Namurian age, H-R zones (R C Scrivener, pers. 

comm.), which corresponds to 324.5±4Maon the time scale of Harland etal. (1990). 

6.4 An investigation of selected characteristics of metasedimentary rocks 
sampled across the thermal aureole of the Dartmoor granite 

6.4.1 Samples used in the present study 

Kate Brook Slate samples (twelve) were collected along a traverse (-3km length) across the 

metamorphic aureole of the Dartmoor granite, to the south-west of the pluton, providing a 

suite of material representative of various stages of metamorphic alteration. A further sample 

was subsequently collected, at greater distance from the contact, to provide an example 

undisturbed by the thennal effects of the granite intrusion. The suite of Crackington 

Formation mudstones was collected from an area to the north-east of the pluton; the relatively 

poor exposure in this case prevented such a systematic approach to the sampling. Six 

examples were taken; although not strictly representing a traverse across the aureole, the 

samples were collected at various distances from the granite contact and the set was therefore 

deemed to be equally valuable. Road or railway cuttings were chosen where possible for 

collection of the sample suites, as such sites usually provide the best source of unweathered 

material. All weathered surfaces were, in any case, removed prior to subsequent preparation 

for analysis. Details of the respective sample localities are given in Appendix A. 

In addition to the above, drillcore material of Devonian age was made available to the author 

from three borehole sites to the west of the St Austell granite. The site localities are 

documented in Appendix A. Metasediments from these drillcores were included in the present 

study, for comparison with the rock samples from the Dartmoor granite thennal aureole. 

Initial preparation of whole-rock powders for geochemical and isotopic analysis consisted of 

sawing off all exposed surfaces, followed by use of a hydraulic rock-splitter to reduce the 

size of individual samples, where necessary, prior to jaw-crushing. This produced 

aggregate-Sized material, which was subsequently reduced to a fine powder (-200 mesh) 

using an agate Tema® mill. 
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6.4.2 Chemical compositions of the metasedimentary rocks 

Results of X -ray fluorescence analyses of the Kate Brook Slate for major and minor elements 

(as oxides), together with trace elements, are presented in Tables 6.1(a) and 6.1(b) 

respectively. The analyses were carried out at the University of Keele on the author's behalf, 

using fused beads for major and minor elements, and pressed powder pellets for trace 

elements. The corresponding data sets for the Crackington Formation samples and for the 

Devonian sub -surface (drillcore) samples obtained from an area to the west of the St Austell 

granite (and beyond the associated metamorphic aureole) are shown in the companion Tables 

6.I(c) and 6.1 (d). Additionally, measurements of carbon, nitrogen and sulphur 

concentrations were undertaken using an elemental analyser; all the resulting data were near 

or below the respective detection limits of the instrumentation, as shown in Table 6.2. The 

carbon and nitrogen results were used as a guide, prior to undertaking higher precision yield 

measurements during the course of SI3C and S15N analyses. 

No systematic trend of element depletion or enrichment with increasing distance from the 

Dartmoor granite contact is discerned from the data obtained in the present study. If the 

thermal metamorphic effects on the mudstones due to granite emplacement were accompanied 

by pervasive infiltration of a (high salinity) hydrous phase from the granite, as suggested by 

e.g. Hawkes (1982), it might be expected that the geochemical expression of such an event 

would be retained in the rocks of the metamorphic aureole. Indeed, the general uniformity of 

elemental composition of the rocks examined in the present investigation raises the question 

of what, if any, chemical changes to the Palreozoic sedimentary rocks of the region 

accompanied the emplacement of the granites. 

Since these data were obtained, Hall (1990) reported the results of a systematic investigation 

of the geochemical composition of the major rock types of the Comubian region. The results 

of that study demonstrated that elements which are present in abnormally high abundances in 

the Comubian granites (in particular, boron,lithium and tin) are moderately abundant in the 

shales; conversely, those elements which are present in very low concentrations in the 

granites (barium and strontium) are present in moderately low concentrations in the shales. 

Those findings indicated that the geochemically anomalous features of the region predate the 

fonnation of the granite batholith, even though it is in the batholith that the most extreme trace 

element enrichments are found. 

The results of the present study largely confirm the findings of Hall (1990) regarding element 

distribution in the shales, although it is unfortunate that B, Sn and Ba concentration data (not 

readily obtained by X-ray fluorescence analysis) were not available in the present study, for 

comparison. 
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Table 6.1 (a) 

X-ray fluorescence analyses of Kate Brook Slate from an area south-west of the Dartmoor granite: 
Major and minor element compositions (weight percentages, as oxides) 

S13 S7 S8 S9 S10 S11 S12 S6 S5 54 S3 S2 Sl AGV-1 

Si01 58.79 54.02 55.24 56.98 52.37 51.88 55.65 55.82 53.28 59.34 59.08 59.55 64.25 59.67 
Ti01 0.91 0.98 0.94 0.94 0.98 1.00 0.91 0.90 0.96 0.98 1.09 0.99 0.96 1.04 

~O, 20.45 23.77 23.45 21.66 25.11 24.95 22.55 22.33 23.84 19.60 21.66 20.44 16.96 17.14 
Fep,(T) 834 9.27 8.45 9.06 9.08 9.09 8.78 8.77 8.99 6.75 2.52 7.11 4.25 6.89 
MoO 0.08 0.09 0.16 0.15 0.17 0.16 0.08 0.15 0.09 0.05 0.Ql 0.09 0.01 0.09 
Cao 0.06 0.10 0.10 0.29 0.19 0.19 0.06 0.26 0.19 0.25 1.19 0.12 0.99 4.88 
MgO 2.14 2.16 2.14 2.35 2.38 2.36 2.27 2.31 2.35 2.55 2.45 1.78 4.45 1.62 

Nap 0.10 0.56 0.41 0.85 0.30 0.28 0.21 0.79 0.28 1.22 4.49 0.18 0.83 4.13 
Kp 4.79 4.39 4.25 3.74 4.69 4.81 4.45 3.97 4.91 4.10 2.91 3.69 0.05 2.88 

pps 0.13 0.12 0.13 0.18 0.13 0.13 0.06 0.13 0.12 0.12 0.08 0.08 0.03 0.50 
WI 3.72 4.70 4.62 4.02 4.73 4.73 4.48 4.10 4.49 4.93 3.75 5.73 1.73 1.07 

Total 99.50 100.16 99.86 100.22 100.13 99.57 99.50 99.52 99.50 99.89 99.22 99.76 94.51 99.92 

Notes: (1) 'The data were supplied by the University of Keele department of geology and were determined using an ARL 8420 spectrometer. 

(2) All sample references are prefixed by SW-87-

(3) Sample localities are listed in Appendix A. 

(4) AGV -1 is a USGS standard. WI refers to loss on ignition. Fep3 (1) refers to total iron. 

(5) Samples are listed in order of increasing distance from the granite contact 

(6) 'The analysis of sample Sl was repeated three times, in view of the very low total. An XRD trace showed that the sample consisted largely of tourmaline 

and quartz; the low total was therefore attributed to the non-determination of boron and fluorine (both of which would be present in the tourmaline). 



Table 6.1 (b) 

X -ray fluorescence analyses of Kate Brook Slate from an area soutb -west of tbe Dartmoor granite: 
Trace element compositions (ppm) 

S13 S7 S8 S9 S10 Sl1 S12 S6 S5 S4 S3 S2 SI AGV-l 

Cr 105 120 115 109 126 119 121 109 121 117 114 130 111 10 
Cu 43 27 31 26 31 32 37 26 26 51 31 40 4 63 
Ga 25 31 34 34 31 37 36 30 35 27 26 27 52 21 
Nb 18 18 18 17 19 19 17 18 18 19 19 18 14 14 
Ni 46 66 57 55 63 64 56 57 66 63 39 32 11 16 
Pb 56 26 30 6 34 30 31 36 5 22 30 33 43 32 
Rb 354 213 216 203 235 235 268 211 253 206 188 171 8 67 
Sr 39 115 107 76 102 104 60 109 66 46 201 59 130 673 
Th 21 20 19 16 20 18 20 20 17 18 15 16 13 5 
V 141 184 198 155 199 188 165 192 193 179 177 213 226 106 
Y 31 29 35 28 32 33 33 26 29 32 40 28 10 19 
Zn 80 113 122 130 124 123 87 102 130 74 52 130 23 88 
Zr 162 157 157 140 156 156 145 146 146 184 198 179 163 231 

(ri°2) (1.03) (1.12) (1.10) (1.08) (1.13) (1.10) (1.01) (1.09) (1.14) (1.04) (1.17) (1.13) (1.10) (1.08) 

Noles: (1) The data were supplied by the University of Keele department of geology and were determined using an ARL 8420 spectrometer. 

(2) All sample references are prefixed by SW-87-

(3) Sample localities ate listed in Appendix A 

(4) Samples ate listed in order of inaeasing distance from the granite contact 

(5) AGV-l is a USGS staodanI. 1102 values ate in weight pen:ent 



Table 6.1 (c) 

X-ray fluorescence analyses of Crackington Formation metasediments from an area north -east of U 
Dartmoor granite 

a) 

b) 

Major and minor element compositions (weight percentages as oxides) 

S14 S17 S18 816 S15 819 AOV-l 

Si02 60.53 54.83 59.73 54.01 50.40 62.43 59.67 
TiOz 0.82 0.99 1.00 0.93 1.08 0.92 1.04 
A1P3 20.61 23.14 20.55 23.75 25.46 17.97 17.14 
Fep, (T) 7.07 9.05 4.14 9.52 9.57 7.05 6.89 
MnO 0.06 0.16 0.01 0.16 0.17 0.10 0.09 
CaO 0.06 0.13 2.52 0.14 0.25 0.23 4.88 
MgO 1.95 2.35 2.49 2.48 2.43 2.24 1.62 
Nap 0.10 0.28 4.50 0.45 0.32 0.95 4.13 
Kp 4.73 4.40 1.87 4.51 5.09 3.09 2.88 
P2O, 0.11 0.13 0.12 0.11 0.17 0.11 0.50 

LO! 3.90 4.22 3.08 4.36 4.70 4.73 1.07 

Total 99.93 99.68 100.01 100.43 99.63 99.83 99.92 

Trace element compositions (ppm) 

S14 S17 S18 S16 S15 S19 AGV-I 

Cr 99 122 126 120 140 120 10 
Cu 152 34 51 23 74 41 63 
Oa 24 30 23 28 37 25 21 
Nb 17 19 18 18 20 15 14 
Ni 42 58 64 66 68 92 16 
Pb 55 64 23 20 27 17 32 
Rb 343 273 114 250 289 145 67 
Sr 50 53 266 89 81 58 673 
Th 13 14 13 18 19 15 5 
V 169 181 195 170 199 189 106 
Y 32 34 22 19 38 30 19 
Zn 74 108 14 89 121 168 88 
Zr 143 158 185 152 165 169 231 

(TiOz) (0.93) (1.11) (1.05) (LlO) (1.20) (1.03) (1.08) 

Notes: (1) 'The data were supplied by the University of Keele department of geology and were determined 

using an ARL 8420 spectrometer. 

(2) All sample references are prefixed by SW-87. 

(3) Sample localities are listed in Appendix A. 

(3) Samples are listed in order of increasing distance from the granite contact. 

(4) LOI refers to loss on ignition. Fep, (T) refers to total iron. 

(5) AGV -1 is a USGS standard. TI02 values in (b) are in weight percent. 



a) 

b) 

Table 6.1 (d) 

X-ray fluorescence analyses of Devonian metasediments (borehole drillcores) 
from an area west of the St Austell granite 

Major and minor element compositions (weight percentages as oxides) 

HFI HF2 HF3 AGV-l 

sial 56.09 48.68 45.60 59.67 
TiOl 1.05 1.98 1.12 1.04 
Al2O, 21.47 19.80 29.62 17.14 
Fep,(1) 9.19 11.73 8.97 6.89 
MnO 0.12 0.14 0.05 0.09 
CaO 0.23 2.42 0.30 4.88 
MgO 2.69 4.66 2.06 1.62 
Nap 1.17 1.81 1.02 4.13 
K 20 3.77 2.40 5.31 2.88 
P20 S 0.12 0.33 0.11 0.50 

WI 4.54 6.20 5.52 1.07 

Total 100.44 100.14 99.67 99.92 

Trace element compositions (ppm) 

HFI HF2 HF3 AGV-l 

Cr 124 183 143 10 
Cu 32 48 30 63 
Oa 26 27 43 21 
Nb 21 25 21 14 
Ni 76 94 58 16 
Pb 27 40 33 32 
Rb 214 120 237 67 
Sr 74 200 235 673 
Th 22 13 21 5 
V 206 283 215 106 
Y 36 41 36 19 
Zn 121 325 119 88 
Zr 189 217 158 231 

(Ti02) (1.18) (2.15) (1.33) (1.08) 

Notes: (1) The data were supplied by the University of Keele department of geology and were determined 
using an ARL 8420 spectrometer. 

(2) Sample descriptions and localities are listed in Appendix A. 

(3) LOI refers to loss on ignition. Fe20, (T) refers to total iron. 

(4) AGV -1 is a USGS standard. Ti02 values in (b) are in weight percent. 



a) 

Table 6.1 

C, Nand S analyses of SW England metasedimentary rock samples 

(All data were supplied by Dr S H Bottrell; analyses were undertaken at the University of Leeds 
department of Earth sciences, using a Carlo Erba· model 1106 elemental analyser) 

Upper Devonian rocks from an area south-west of the Dartmoor granite 
(Samples are listed in order of increasing distance from the granite contact - see Appendix A) 

Sample reference Wt% C(IOtaJ) Wt%N Wt%S 

SW-S7-S13 nd nd 0.04 
SW-S7-S7 nd nd nd 
SW-S7-SS nd 0.03 0.04 
SW-S7-S9 nd nd 0.04 
SW-S7-Sl0 nd 0.05 nd 
SW-87-S11 nd nd 0.03 
SW-87-Sl2 nd nd 0.06 
SW-87-S6 nd 0.01 0.06 
SW-87-S5 nd 0.07 0.11 
SW-87-S4 0.32 nd 2.24 
SW-87-S3 0.28 nd 0.63 
SW-87-S2 0.65 0.05 0.13 
SW-87-Sl nd nd nd 

b) Carboniferous rocks from an area north - east of the Dartmoor granite 
(Samples are listed in order of increasing distance from the granite contact - see Appendix A) 

Sample reference Wt% C(lotaJ) Wt%N Wt%S 

SW-87-Sl4 nd nd nd 
SW-87-S17 nd nd 0.10 
SW-87-S18 0.41 nd 1.34 
SW-87-Sl6 nd 0.01 0.05 
SW-87-Sl5 nd 0.07 0.05 
SW-87-Sl9 0.54 0.03 0.11 

c) Devonian rocks (borehole cores) from an area west of the St Austell granite 
(Sample localities are given in Appendix A) 

Sample reference Wt% C(lotaJ) 

HFI nd 
HF2 nd 
HF3 0.54 

Wt%N 

nd 
0.07 
0.03 

Wt%S 

nd 
0.05 
0.11 

Notes: (1) nd indicates 'not detected'. The detection limits of the carbon and sulphur analyses were 
",,0.025% (250ppm); the corresponding value for the nitrogen analyses was .0.01 % (tOOppm). 

(2) Analyses were undertaken on untreated, powdered samples. Although the background values 
(including nitrogen) were acceptably low, reproducibility close to the detection limits is poor. 

(3) Samples (l-3mg) for Nand C analysis were combusted in tin cups at 1400°C in a He/O
l 

atmosphere. Sulphur determinations were undertaken separately. 



What is of significance in the present data set, however, is that the calcium contents are in 

general considerably lower than the average value for shales (0.74% as CaD) given by Hall 

(1990). The few exceptions to this observation are substantially enriched in calcium, by 

comparison, indicating the presence of a significant amount of carbonate in those examples. 

6.4.3 

6.4.3.1 

Strontium, carbon and nitrogen isotopic behaviour during contact metamorphism 
of metasediments by the Dartmoor granite 

Strontium isotope studies 

6.4.3.1.1 Introduction: Sr isotope systematics 

The relative natural abundances (as percent values) in common terrestrial matter of the four 

naturally-occurring, long-lived isotopes of strontium (84Sr, 86Sr, 87Sr and 88Sr) and the two 

of rubidium (8SRb and 87Rb) are approximately 0.56: 9.87 :7.04: 82.53 and 72.17: 27.83 

respectively. 87Sr is a radiogenic isotope, produced by emission of a beta particle and anti

neutrino from 87Rb: 

87Sr + rr + v + Q (0.275 MeV) 

The associated decay constant (A) is 1.42 x 10-11 a-I (Steiger and Jager, 1977), corresponding 

to a half-life of 48.8Ga. On this time scale, the abundances of 84Sr, 86Sr and "Sr are 

invariant; any increase in the 87Sr/86Sr ratio in a (closed) rock system, for example, may be 

attributed solely to the decay of 87Rb. For this reason, it is usual to present the abundances of 

87Sr and 87Rb as nonnalised values with respect to the corresponding abundance of 86Sr; the 

amount of 87Sr produced by the decay of 87Rb over time t is then given by: 

where (87Sr / 86Sr)o refers to the initial ratio (t = 0). Modem instrumentation permits high 

precision determination of 87Sr/86Sr ratios, ultimately to ±10ppm or better. 

Isotopic evolution of Sr into distinct reservoirs over geological time, from a primordial 

I7Sr jB6Sr value of -0.699, reflects the corresponding Rb/Sr ratios. In general tenns, 

differentiation of the Earth has occurred via a process of fractional crystallisation, which 

concentrates Sr, and even more so Rb, into the melt, resulting in high Rb/Sr ratios in the 

continental crust and, correspondingly. a progressive reduction in the Rb/Sr ratio of the 

residual mantle. Consequently, present-day mantle (and oceanic crust) is characterised by a 

relatively depleted 87Sr/86Sr ratio of -0.703±0.OOI, whereas continental crust is enriched in 

radiogenic 87Sr, with 87Sr / 86Sr values of >0.710 and with the greatest enrichment occurring 

in the older continental blocks. 
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The process of mineral fonnation fractionates Rb with respect to Sr, but does not fractionate 

nSr with respect to 86Sr. In all but very young igneous and metamorphic rocks, the minerals 

that concentrate Rb with respect to Sr, such as micas and potassium feldspars, will be 

characterised by higher 87Sr / 86Sr ratios than those that do not concentrate Rb. In contrast to 

sedimentary rocks such as shales and sandstones, which mainly consist of minerals derived 

from older rocks and hence of a range of Rb/Sr ratios (and consequently exhibit 87Sr/86Sr 

ratios that vary on a relatively small scale), sedimentary rocks that consist of minerals 

precipitated from solution, such as limestones and dolomites, are generally more 

homogeneous, have low Rb / Sr ratios, and are predominantly comprised of calcium and 

magnesium carbonates that fonned in isotopic equilibrium with seawater. The 87Sr/86Sr ratio 

in marine carbonates is an excellent indicator of the 87Sr/86Sr ratio in seawater at the time of 

mineral deposition and has varied significantly over geological time (e.g. Holland, 1984; 

Veizer, 1989). Use of the 87Sr /86Sr isotope ratio to characterise the origin of groundwaters in 

crystalline rocks and to evaluate the degree of interaction of these waters with the host rocks 

and/ or fracture minerals is well established (e. g. Fritz et al., 1987; McNutt, 1987). 

1be strontium isotope systematics of sedimentary rocks that have been subjected to very low 

grade metamorphism are generally complex. Consequently, application of the Rb-Sr dating 

technique to shales is potentially fraught with difficulties, as summarised by Harland et al. 

(1990). One of the major problems is the uncertainty in initial 87Sr /86Sr ratio and the 

uniformity of this ratio from sample to sample. Shales generally consist of a mixture of 

detrital and diagenetic components and consequently the initial 87Sr /86Sr isotopic ratio is not 

homogeneous. Furthennore, Dasch (1969) demonstrated that, during the deposition of deep

sea sediments, detrital influences dominate; even prolonged contact between seawater and the 

detrital silicate fraction does not result in complete strontium isotopic equilibration. Other 

factors are the variable durations of diagenesis and the susceptibility to resetting, even at sub

greenschist to greenschist metamorphic grade. 

In spite of these drawbacks, Rb-Sr dating of low metamorphic grade mudrocks has been 

successfully applied to a variety of geological problems (e. g. Evans, 1990), including even 

diagenetic zone shales (J A Evans, unpublished data). Mudrock regression lines that satisfy 

the criterion for an isochron are unlikely to result from the mixing of two or more detrital 

components with different Rb/Sr ratios, ages and/or initial 87S r/ 86Sr ratios, as such a 

process would generally produce a mixing array with significant scatter (O'Nions etal., 

1973). What is not always clear, however, is what the isochron age represents. 
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6.4.3.1.2 Experimental 

87Sr/86Sr ratios in the Comubian metasedimentary rock samples were determined to six 

decimal places, with a precision of better than 50ppm (1<7), using a VG~ 354 thermal 

ionisation mass spectrometer. The corresponding 87Rb/ 86Sr values were determined to 

approximately 0.5% (10) from these data in conjunction with Rb/Sr atomic ratios as 

determined by X-ray fluorescence spectrometry. 

6.4.3.1.3 Results and discussion 

The measured Rb and Sr concentrations, with corresponding isotope ratios, are presented in 

Table 6.3. In Table 6.4 are shown the 87Sr/86Sr values back-corrected (assuming closed 

system behaviour) to an age of 280Ma, the age of emplacement of the Dartmoor granite 

(Darbyshire and Shepherd, 1985; Chesley et al., 1993). 

It is apparent from Table 6.4(a) that four of the five Kate Brook Slate samples obtained from 

well within the boundary of the thermal aureole give remarkably similar 87Sr/86Sr values 

(0.71962+0.00031-0.00049) when back-corrected to 280M a In contrast, those sampled 

outside or on the border of the aureole display a wide range of values, with no apparent 

systematic variation. This latter finding probably reflects the initial heterogeneity of the 

detrital grains. Regression of the complete data set (Kate Brook Slate) yields an 'errorchron', 

as shown in Figure 6.1(a). However, if the (five) samples from within the boundary of the 

aureole are considered in isolation, the regression diagram produces a linear array (MSWD 

5.7) as shown in Figure 6.1 (b), corresponding to an age statistically indistinguishable from 

that of the emplacement of the Dartmoor granite. The slope of this regression line is 

controlled by a single sample (SW-87S-13) that is considerably more enriched in 87Rb than 

the others. Removal of this sample from the data set improves the fit of the regression to give 

an isochron (MSWD value 2.0) corresponding to an age of 262± 11 Ma and initial 87Sr /86Sr 

ratio ofO.72139±O.OOl07. Nitrogen stable isotope data (see below) indicate that sample SW-

87S-13 was subjected to a higher temperature during granite emplacement than other samples 

collected from the aureole. The enrichment of 87Sr in this sample, with respect to the other 

Kate Brook Slate examples from the thermal aureole, was not due to the incorporation of a 

granite-derived component, however, as the granite (280Ma ago) was considerably depleted 

in 87Sr relative to all the shales (back-corrected to 280Ma ago) investigated in this study. If, 

however, the four-point isochron obtained by excluding sample SW-87-S13 from the group 

of Upper Devonian shales located within the aureole is considered to be representative of a 

metamorphic event, it is difficult to explain why the corresponding age should be younger 

than that of granite emplacement. Also problematic is the marked enrichment in radiogenic 

strontium of sample SW -87 -S 11, relative to the other Kate Brook Slate samples investigated. 
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a) 

Table 6.3 

Rubidium and strontium concentrations, together with "Sr /16 Sr and 87Rb/86 Rb isotopic ratios, in 

metasedimentary rocks from S W England. Sample localities are given in Appendix A. 

Upper Devonian rocks (metamorphosed Kate Brook Slate) from a traverse across the 
thermal aureole (south - west) of the Dartmoor granite 

(Samples are listed in probable order of increasing distance from the granite contact) 

Sample Rb (ppm) Sr(ppm) 87Rb/86 Sr 87Sr/86Sr 

SW-87-SI3 352 35.4 29.15 0.837190 
SW-87-S7 211 108 5.665 0.742495 
SW-87-S8 213 99.6 6.199 0.744333 
SW-87-S9 200 71.3 8.154 0.751609 
SW-87-SI0 235 96.6 7.052 0.747873 
SW-87-S11 233 95.9 7.061 0.766982 
SW-87-SI2 264 55.6 13.83 0.778321 
SW-87-S6 208 102 5.939 0.742870 
SW-87-S5 252 62.3 11.77 0.763412 
SW-87-S4 203 40.6 14.51 0.769154 
SW-87-S3 184 188 2.848 0.724444 
SW-87-S2 169 53.8 9.150 0.753407 
5W-87-S1 4.8 121 0.1146 0.713410 

b) Carboniferous rocks (Crackington Formation) sampled across the thermal aureole 
(north-east) of the Dartmoor granite 

e) 

(Samples are listed in order of increasing distance from the granite contact, except that 
SW -87 -S 18 and SW -87 -S 16 were approximately equidistant from the granite) 

Sample Rb (ppm) Sr(ppm) 87Rb/86 Sr 875r/865r 

SW-87-S14 342 46.4 21.53 0.804588 
SW-87-S17 273 49.0 16.25 0.781785 
SW-87-S18 112 255 1.274 0.716092 
SW-87-S16 247 82.5 8.712 0.753494 
SW-87-S15 287 76.1 10.98 0.759673 
SW-87-SI9 143 53.3 7.767 0.753152 

Devonian rocks (borehole drillcores) from an area west of the St Austell granite 

Sample Rb(ppm) Sr (ppm) I7Rb/86 Sr 87Sr/86Sr 

HFI 209 68.3 8.906 0.757030 
HF2 118 189 1.814 0.722595 
HF3 235 224 3.037 0.727162 

Note: Analytical errors associated with these data are of the order of 5% on the Rb and Sr 
concentrations, 0.5% on the 87R b/86 Sr values and less than 0.005% on the 
"Sr/MSr ratio measurements, respectively, at the 10 level 



Table 6.4 

S W England metasedimentary rocks: 87Sr /86 Sr isotopic ratios back -corrected to an age of 280 Ma, 
assuming closed-system bebaviour 

a) Upper Devonian rocks (metamorpbosed Kate Brook Slate) from an area south-west of 
the Dartmoor granite. 
(Samples are listed in probable order of increasing distance from the granite contact) 

Sample 87 Sr/86 Sr @ 280Ma Notes 

SW-87-S13 0.72107 Very close to the granite contact 

SW-87-S7 0.71993 

SW-87-S8 0.71964 

SW-87-S9 0.71913 Within the metamorphic aureole 

SW-87-S10 0.71978 

SW-87-S11 0.73885 On the border of the aureole (close to biotite isograd) 

SW-87-S12 0.72323 Outside the aureole 

SW-87-S6 0.71921 

SW-87-S5 0.71652 

SW-87-S4 0.71135 

SW-87-S3 0.71310 

SW-87-S2 0.71696 

SW-87-S1 0.71295 " (near to greenstones) 

b) Carboniferous rocks (Crackington Formation) from north-east of the Dartmoor granite 

Sample 87Sr /86Sr @ 280Ma Approximate distance from the granite contact 

SW-87-S14 0.71883 350m N of granite boundary 

SW-87-S17 0.71706 400m N of granite boundary 

SW-87-S18 0.71102 600m N of granite boundary 

SW-87-S16 0.71879 600m NE of granite boundary 

SW-87-S15 0.71591 1500m NE of granite boundary (outside aureole) 

SW-87-S19 0.72221 2100m NNE of granite boundary (outside aureole) 

e) Devonian rocks from west of the St Austell granite (outside the thermal aureole) 

Sample 

HFl 

HF2 

HF3 

87Sr /86Sr @ 280Ma 

0.72155 

0.71537 

0.71506 



Figure 6.1 

~Sr/ 86Sr and ~Rbj86Sr ratios in Kate Brook Slate sampled across the thermal aureole (south-west) of 

the Dartmoor granite 

<a> Complete data set: present-day whole-rock 87Srf6Sr ratios, presented as a regression line 

'errorchron' against the corresponding 81 Rb;&6 Sr values 
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Figure 6.2 

87Sr / 8~r and 87Rb / 86Sr ratios in Crackington Formation rocks sampled across the thermal aureole 

(north-east) of the Dartmoor granite 

<a) Complete data set: present-day whole-rock 87Sr;S~r ratios. presented as a regression line 

'errorchron' against the corresponding 87 Rb /6 Sr values 
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Figure 6.3 

17Sr/86Sr and 17Rb/86Srratios from Figures 6.1 and 6.2, back-corrected to an age of280Maon the basis 

of closed-system behaviour. Also shown, for comparison, are the corresponding values for the Darunoor 

and Hemerdon Ball granites, together with data from other Comubian metasediments, early 
bydrothermal fluids hosted by the Dartmoor granite, and contemporaneous seawater 
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.} Kate Brook Slates from a traverse across the tbennal aureole (south-west) of the Dartmoor granite. 
o (Filled squares indicate samples within the thermal aureole) 
.} Crackington Formation (Namurian) metasediments sampled across the thermal aureole (to the north 
o and east) of the Dartmoor granite. (Filled circles indicate samples within the thermal aureole) 
• Borehole drill-core samples (Devonian age) from west of the St Austell granite 
+ Dartmoor granite (Darbyshire and Shepherd, 1985) 
x Hemerdon Ball granite (Darbyshire and Shepherd, 1987) 

I Range of early hydrothermal fluids bosted by the Dartmoor granite (Wayne et al., in prep.) 

~I Seawater at 280Ma before present, estimated from the data of Burke et al. (1982) 

• Diagenetic zone shales (Crackington Formation), Wanson Mouth, near Bude I 
• Ancbizone metasediments (Crackington Formation), Crackington Haven Bishop (1990) 
• Epizooe shales (Upper Devonian), Boscastle 

Notes: (i) AU metasediment and granite data refer to whole-rock samples 
(li) Data points as shown are considerably larger than the associated analytical uncertainties 



In contrast, the strontium isotope results obtained from the admittedly limited data set for the 

Namurian rocks show no evidence of a resetting event around the time of granite 

emplacement. Linear regression of the complete data set (six samples) gives a considerable 

degree of scatter about the regression line, as shown in Figure 6.2 (a). A plot of the data from 

the four samples located within the aureole gives an errorchron 'age' of 320±30Ma, as 

indicated in Figure 6.2(b). The data fit may be considerably improved by rejecting one of 

these sample points (SW-87S-16), to produce an isochron (MSWD=O.3) corresponding to 

an 'age' of 308±2Ma (20) and initial ratio ofO.71052±O.OOOI7 (2<7). There is, however, no 

obvious justification for such a procedure. 

Figure 6.3 illustrates the present data set of 87Sr /86Sr and Rb/Sr ratios back-corrected to the 

time of emplacement of the Dartmoor granite, for comparison with the corresponding values 

for other Comubian metasediments, the Dartmoor and adjacent Hemerdon Ball granites, early 

hydrothermal fluids hosted by the Dartmoor granite, and contemporaneous seawater. Several 

notable features are apparent from this Figure: 

(i) The Kate Brook Slate samples from within the thermal aureole of the Dartmoor 

granite, although substantially more enriched in 87Sr than the granite, have 87Sr /86Sr ratios 

within the range recorded for the nearby Hemerdon Ball granite, on the basis of the whole

rock data of Darbyshire and Shepherd (1987). Back-correction of the latter shows that the 

average 87Sr /86Sr ratio of the Hemerdon Ball granite at 300Ma before present equates to the 

87Sr/86Sr ratio (0.7094) of the Dartmoor granite (Darbyshire and Shepherd, 1985) at the time 

of its emplacement. To explain the difference in 87Sr/ 86Sr characteristics of these two 

plutons, it may therefore be postulated that either the initial 87Sr / 86Sr ratios were similar at the 

respective times of emplacement and that the Hemerdon Ball granite is 20Ma older than the 

adjacent Dartmoor intrusive; alternatively, the two granites are of a similar age but the 

incorporation of a greater component of sedimentary matter in the initial melt at Hemerdon 

resulted in the relative enrichment of 87Sr. A combination of these 'end member' standpoints 

may alternatively be postulated. The case for a greater component of sedimentary matter in 

the Hemerdon Ball granite is supported by the Nd isotope data of Darbyshire and Shepherd 

(1987, 1994), besides the indirect evidence presented elsewhere in the present work. 

(ii) 87Sr / 86Sr ratios measured in fluid inclusion leachates of quartz associated with 

quartz±tounnaline±cassiterite±hrematite assemblages hosted by the Dartmoor granite 

(Wayne etal., in prep.; see also this work, Chapter 5) are consistently more 87Sr-enriched 

than the Dartmoor granite, when all data are back-corrected to 280Ma. By assuming that the 

granite was the sole source of the strontium in these fluids, the age of the fluids may be 

estimated on the basis of calculating at what age, after emplacement, the 87Sr /86Sr ratio of the 

granite equated to the contemporaneous limiting values of the fluid inclusion 87Sr /86Sr 
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results.t By approximating the palreofluid r7Sr/86Sr initial ratios to be the present-day values 

back-corrected to age 280Ma, the lower limit (0.7123280) corresponds to that of the granite at 

271 ± 14Ma (20), on the basis of the Dartmoor granite data (fourteen whole-rock samples) of 

Darbyshire and Shepherd (1985), whereas the upper limit of the palreofluid I7Sr/86Sr range 

(0.7141 280) corresponds to that of the granite at 266±22Ma (20) before present. 

(ill) The resetting of the whole-rock Rb-Sr systematics of the Upper Devonian 

metasediment samples from within the thermal aureole of the Dartmoor granite, to coincide 

with the emplacement age of the pluton but with a corresponding initial 17Sr / 86Sr ratio -0.01 
greater than that of the granite (0.7 I 94S±0.OO09 compared to 0.7094±0.OOO3, 20 errors) 

suggests that the thermal effect of the intrusion ('closed system' resetting) is predominant 

over any superimposition of a strontium isotopic signature derived from fluids exsolved from 

the granite during its emplacement ('open system' resetting). 

6.4.3.2 Carbon stable isotope compositions of the metasediments 

6.4.3.2.1 Scope of the investigation 

Black shales generally contain relatively high concentrations of organic matter and are not 

common in S W England. To investigate the variation of carbon stable isotopic composition 

in sedimentary sequences in the region, in terms of distance from the local granite contact, it 

was recognised that the two sample suites collected across the Dartmoor granite thermal 

aureole during the present study may not be sufficient to give a representative picture. It was 

also acknowledged that slates in the vicinity of the Carnmenellis granite were more likely to 

be enriched in carbonaceous matter, in view of evidence for the presence of bitumens in that 

locality (Parnell, 1988) and also the distinctive fluid inclusion compositions in early 

hydrothermal quartz from South Crofty mine, as reported in the present work (Section 

3.S.1). Areas of sedimentary cover where gravity data give an indication to the depth of 

buried granite, such as the shallow northern extension of the Cammenellis granite, together 

with the Kit Hill pluton, would be appropriate (P MAllen, pers. comm.) for similar studies. 

The Kate Brook Slate samples collected across the Dartmoor granite thermal aureole were 

considered particularly appropriate for the present investigation, however, on the basis of the 

following criteria: 

(i) Good exposure of relatively unweathered material, across the aureole. 

(ii) Close proximity to the Hemerdon Ball granite, located within the metamorphic 

aureole of the Dartmoor pluton but associated with an early palreo-hydrothennal fluid regime 

t Only quartz samples leached using O.13M HN03 spiked with 200ppm La3+ (as laO,> are considered here; 

thole leached with La-free acid invariably gave lower Sr yields. 
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exhibiting relative enrichment in carbonaceous components, in contrast to the Dartmoor 

granite-hosted hydrothennal system (see Sections 3.5.1 and 3.5.3 of the present work). 

(iii) The Kate Brook Slate is representative of the sedimentary country rocks into which 

were emplaced the minor granite intrusives of the Gunnislake-Kit Hill area. These plutons 

are associated with early hydrothennal fluids containing similar levels of carbon-bearing 

species as the comparable stage fluids at Hemerdon. 

The methodology was to determine the carbon abundance in the metasedimentary rocks, in 

tenns of both carbonate and 'organic' carbon components, together with the respective stable 

isotopic compositions, and hence to undertake an exploratory assessment of the effects of the 

emplacement of the Dartmoor granite as recorded by the carbon systematics of these rocks. 

6.4.3.2.2 Experimental 

6.4.3.2.2.1 Carbonate analysis 

Weighed quantities (-500mg) of the powdered whole-rock samples were reacted in vacuo 

overnight with 100% phosphoric acid under temperature-controlled conditions (25.18°C), 

following a method similar to that of McCrea (1950). Carbon dioxide yields were recorded 

manometrically and the gas samples analysed for stable isotopic composition using a 

VGf) SIRA Series II mass spectrometer. Raw data were corrected for instrumental and 

isobaric interference effects (Craig, 1957; Deines, 1970). Calcite 01'0 data were recorded 

from those whole-rock samples that yielded sufficient CO2 for isotopic analysiS at acceptable 

levels of precision. The calcite OIBO value relates to that of the liberated CO2 by: 

where, for the temperature of equilibration, (Xco -calcite = 1.0125. The OllOcalcite results 
2 

were converted to the corresponding values referred to SMOW, rather than PDB (as used for 

the raw data), by use of the relationship (Friedman and O'Neil, 1977): 

o·IOaample-SMOW = 1.03086 oilOsample_PDB + 30.86 (%0) 

6.4.3.2.2.2 'Organic' carbon analysis 

Powdered whole-rock samples were treated with 6MHCl at 60°C, to remove carbonates and 

sulphides, prior to oven drying at 110°C. Weighed quantities (-350mg) of sample were 

intimately mixed in an agate mortar with powdered CuO, pre-fired to 9500C, to give a weight 
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ratio of approximately 2: 1 rock:CuO.t In each case, the mixture was loaded into a pre-fired 

(l1000C) silica tube (9mm external diameter, -16cm length) which had been sealed at one 

end and incorporated a constriction -11.5 cm from the sealed end. The samples were then 

evacuated and subsequently sealed at the constriction by means of a glassblowing torch. Each 

resulting ampoule was then sheathed with a steel tube, to give protection to other samples in 

the event of an ampoule exploding in the furnace used to contain all samples during the 

course of the oxidation. A temperature of 900°C, maintained for - 3 hours, was used to 

promote the oxidation, after which the furnace was allowed to cool slowly to room 

temperature. During this period, unreacted molecular oxygen, released from the CuO at 

temperatures greater than - 600°C, was resorbed. 

CO2 was extracted by 'cracking' the ampoules in vacuo, followed by standard cryogenic 

separation procedures utilising liquid nitrogen (-196°C) and n-pentane/liquid nitrogen slush 

(-1300C) traps to separate the CO2 from the water component (and S02) also produced during 

the oxidation process. Carbon dioxide yields were recorded and isotopic analyses performed 

as for the caIbonate-derived components. 

6.4.3.2.3 Results and discussion 

The CO2 yields obtained from phosphoric acid treatment of the whole-rock powders 

indicated that the inorganic carbon content of all the metasedimentary rock samples collected 

from the vicinity of the Dartmoor granite was very low; the results were all within 

2.3± 1.1 ppmC (at the 10 level). Furthermore, mass spectral scans showed that the CO2 was 

significantly contaminated in most cases, predominantly with hydrocarbons but also with 

sulphur species in some cases. For this reason, the data were considered to be of little value. 

As an approximate indication of typical 813C values, duplicates of sample SW-87-S10, 

which gave relatively 'clean' CO
2 

traces, were characterised by 813C(PDB) values of -16.0 and 

-15.7%0 respectively. Another comparably 'clean' sample (SW-87-S14) gave -16.8%0. 

In contrast, the three drillcore samples (Devonian rocks) from west of the St Austell granite 

were relatively enriched in inorganic carbon; the yield in one example exceeded 3800ppmC. 

No contamination of the released CO2 was apparent. These results are reported in Table 

6.5(b). 

The 'organic' carbon yield and corresponding 813C results for the samples from the 

Dartmoor granite aureole are reported in Table 6.5(a). On the basis of the very low 

t It is important that the whole-rock powder is intimately mixed with the ground CuD prior to the oxidation 

pt"oceIIS, to effect complete conversion. Decreased CO2 yields otherwise result (S. H. Bottrell. unpublished 

data), with concomitant scope for isotopic fractionation. 
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Table 6.5 

(a) 'Organic' carbon content and corresponding stable isotopic composition of metasedimentary 
rocks from two traverses across the thermal aureole of the Dartmoor granite 

Sample reference ppmC ~\3C (%o)POB 

Upper Devonian examples 

Notes: (1) The isotopic data were reproducible to SW-87-S13 140 -24.88 
within 0.05%0. except for those SW-87-S7 302 -24.73 
samples containing only -100ppm duplicate 
carbon, in which case the precision 

293 -24.73 

was marginally worse. SW-87-S8 281 -24.84 
SW-87-S9 221 -24.07 

(2) All yield and isotopic data were SW-87-SlO 214 -23.66 
corrected for the procedural blank SW-87-S11 100 -25.97 
contribution. The blank (which was 

duplicate 106 -26.03 probably derived almost exclusively 
from the CuD used to perform the SW-87-S12 92 -25.64 
oxidation) was <6~C, and had an SW-87-S6 285 -25.29 
isotopic composition of -27.68%0. SW-87-S5 179 -23.06 

(3) The inorganic carbon content of all SW-87-S4 5000 -26.68 

these samples was very low: SW-87-S3 4229 -25.54 

2.3±l.lppm (10). hence the isotopic SW-87-S2 6957 -24.85 
values quoted are also representative duplicate 6974 -24.80 
of the total carbon reservoirs. 

SW-87-S1 120 -26.55 

(4) NBS-22 standard oil gave a ~13C value 
of -29.860/00, which is significantly 

Carboniferous examples less than the accepted value of 
-29.630/00. Coleman and Cox (1981). SW-87-S14 131 -25.81 
however. using similar procedures in SW-87-S17 152 -25.95 
the same laboratory. reported a value SW-87-S18 5594 -25.79 
of -29.84±0.04 (10) on the basis of 12 

SW-87-S16 198 -24.20 determinations. The data presented 
here were therefore not adjusted on SW-87-S15 163 -25.62 

the basis of the NBS-22 measurement. SW-87-S19 7397 -24.99 

(b) 'Organic' and carbonate carbon contents and corresponding stable isotopic compositions of 
metasedimentary rocks of Devonian age (borehole drillcore material) from an area to the west 
of the St Austell granite. Sample locations are documented in Appendix A. 

Sample 'Organic' carbon Carbonate (assumed to be calcite) Total carbon 
reference ppmC ~ 13C (0/00 )POB ppmC ~I3C (%o)PDB ~I'O (%o)SMOW ppmC 61lC (%o)POB 

HFI 3190 -27.19 92 -10.83 18.03 3284 -26.72 
HF2 1645 -26.19 3821 -10.19 15.36 5466 -15.01 
HF3 2856 -30.63 198 -13.83 15.68 3054 -29.54 



Figure 6.4 

Carbon content and corresponding stable isotope variations of the 'organic' component 
of metasedimentary rocks from the vicinity of the Dartmoor granite 
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corresponding inorganic carbon yields, the 'organic' carbon data may be taken to be 

representative of the respective total carbon contents. Figure 6.4 illustrates the same data set 

diagramatically. Comparable data for the borehole samples are presented in Table 6.5(b), 

which also shows the relative contributions of carbonate and 'organic' carbon fractions to the 

respective total carbon contents of these samples. 

With regard to the effect of intrusion of the Dartmoor granite into the local Upper Devonian 

shales, as recorded by the carbon content and associated stable isotope data of the latter, the 

following salient features are apparent from Table 6.5 (a) and Figure 6.4: 

(i) The carbon concentration data are strongly bimodal, with no samples containing 

between 300 and 4229 ppm C. Examples of both carbon -enriched and carbon -depleted rocks 

occur in Kate Brook Slate outside the thermal aureole, with an associated large range of 

stable isotopic compositions (-23.06 to -26.68%0). No systematic pattern is evident. 

(ll) With the sole exception of sample SW -87 -S I, which was shown by XRF analysis to 

consist largely of tounnaline and quartz and is therefore atypical, it is notable that the samples 

located furthest from the granite contact were also those relatively enriched in carbon. The 

abrupt transition from carbon-depleted to carbon-enriched rock occurs outside the limit of 

the aureole, however. 

(iii) No systematic shift in the isotopic data with increasing distance from the granite 

boundary is discerned. This parallels the established finding that 13C / llC ratios in 

sedimentary organic matter is not drastically changed during diagenesis or higher-grade 

metamorphic processes (Deines, 1980). 

(iv) Although the data were corrected for the procedural blank contribution, it is difficult 

to assess to what extent adsorbed atmospheric carbon-bearing contaminants (dust and 

microbiological matter) may have contributed to the reported results, bearing in mind the 

finely powdered nature of the sample (cf. Section 3.2.4). This is of particular relevance to the 

data obtained from the carbon-depleted samples. Evidence that any such contribution was 

relatively uniform is provided by the duplicate analyses of samples SW-87-S7 and 

SW-87-S11 (Table 6.5), where consistent yield and isotopic results were obtained even 

though the absolute carbon yield was only = 103 (ppm C) x 0.350(g of sample) = 36JLgC in 

the case of sample SW -87 -S 11. This latter value may therefore be considered to represent the 

upper limit (in terms of yield) of the carbon blank component derived from adsorption of 

airborne contaminants. The fact that the associated SHC result was -26.00±0.03%o rather 

than the value of ca. -27.5%0 as generally associated with such 'adventitious' carbon (e.g. 

Nadeau etal., 1990) implies that the actual yield of this component was probably 

significantly lower than the potential upper limit value. 
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With reference to the Carboniferous (Namurian) rocks analysed, it is notable that, in contrast 

to the Kate Brook Slate, one sample located within the thermal aureole (-600m north of the 

granite boundary) was enriched in carbon (5594ppmC). The associated isotopic 

composition, however, was indistinguishable (within the limits of the analytical precision) 

from that of the most carbon-depleted example of the group (131 ppmC), located closest to 

the granite contact. 

From the results in Table 6.5, it is clear that the only samples in this investigation that 

contained significant quantities of carbonate were from the borehole drillcores (Devonian age 

rocks) from west of the St Austell granite and located well outside the associated 

metamorphic aureole. The carbon and oxygen isotopic compositions of these carbonates 

indicate that they are not directly of marine origin.t It is noteworthy that the carbon results are 

similar to total palreofluid carbon (weighted mean BI3Cco + B13CCH ) values encountered in 
2 4 

early, high temperature hydrothermal fluids associated with W±Sn oxide assemblages in the 

Comubian region (see Chapter 3 of the present work). This lends support to the idea that 

CO2 derived from the thermal breakdown of such carbonates (under conditions such as 

anatexis and assimilation into granitic protoliths?) is the carbon source for these palreofluid 

components. 

6.4.3.3 Nitrogen stable isotope compositions of the metasediments 

6.4.3.3.1 Scope of the investigation 

Chapter 4 of the present work contains a detailed discussion of nitrogen stable isotope 

geochemistry, with reference to the trace molecular nitrogen component present in early 

palreo-hydrothermal fluids characterised by association with W±Sn oxide occurrences in the 

Comubian region. The purpose of the present investigation was to obtain infonnation on the 

nitrogen stable isotopic composition of 'extractable' ammonium in the local Palreozoic 

metasedimentary rocks, for comparison with the palreofluid data In particular, to assess 

what effects granite intrusion imposed on the nitrogen systematics of these rocks. 

6.4.3.3.2 Experimental 

A preliminary discussion of the alternative techniques available for measurement of the yield 

and isotopic composition of nitrogen in sedimentary rocks has been presented in Section 

4.7.2. For the present investigation, it was not considered practicable to attempt to resolve 

the relative abundances and isotopic compositions of nitrogen from organically-bound, 

t Marine carbonates have 8180 values ranging from +20 to +3O%c, relative to SMOW, with corresponding 

a13c values of generally -O%c relative to POB (see e.g. Faure, 1986, and references therein). 
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fixed-inorganic and exchangeable sites.t Sealed-tube combustion of the metasediment 

samples at 550 and 1100°C respectively was initially considered as a possible means of 

discriminating between organic and other sources of nitrogen. Kydd and Levinson (1986) 

recommended firing samples in air at 550°C for four minutes to remove any organic fraction 

from ammonium silicates; a modification of this procedure was also adopted by Bottrell and 

Miller (1990), prior to nitrogen yield determinations by combustion at llOOoC. A major 

difficulty with sealed -tube combustion techniques as applied to sedimentary rocks, however, 

is that copious amounts of water are liberated during heating. Consequently, steam pressures 

sufficient to cause explosion of the sealed tube are easily encountered unless adequate 

precautions are taken. Furthermore, a detailed investigation by Boyd et ai. (1993) of the 

oxidation characteristics of ammonium in micas and feldspars separated from S W England 

granites, including Cligga Head and Hingston Down, demonstrated that not all the 

ammonium is released from feldspars by combustion below 1300°C. Boyd etal. (1993) also 

reported that substantial kinetic fractionation of the nitrogen isotopes occurred during high

temperature stepped combustion experiments on these mineral separates. 

It is worthy of mention that, more than thirty-five years ago, Scalan (1958) investigated a 

variety of methods for extracting nitrogen from rocks and minerals, for subsequent isotopic 

analysis; only vacuum fusion in molten NaOH was considered to be effective in releasing the 

total nitrogen content. More recently, work by Zhang (1988) supports the use of fusion 

methods as providing the highest efficiency of nitrogen extraction. An alternative based on 

laser microprobe techniques, in conjunction with nitrogen isotope analysis by static vacuum 

mass spectrometry, shows great potential (Franchi et al., 1989). 

Hall (1988) used a variation of the Kjeldahl method (essentially based on the procedure 

reported by Urano, 1971) to estimate the amount of ammonium present in S W England 

country rocks. The same author noted, however, that any acid-resistant kerogen component 

would not contribute to the values obtained. For the present study, a similar approach was 

used to determine the yield of 'extractable' ammonium from the metasediments associated 

with the thermal aureole of the Dartmoor granite. For the acid extraction procedure, Ig of 

powdered whole-rock was reacted with a mixture of 2m1 of 1: 1 H2SO .. and lOml HF; details 

of the method are given by Bradley et al. (1990). 

For nitrogen stable isotope analysis of the metasediments, a similar experimental procedure 

was used to extract nitrogen from the samples, except that ammonia was collected as 

ammonium sulphate in H2S04, for sealed (double) silica tube combustion at 850°C using the 

procedure recommended by Minagawa (1984). 500mg of pre-fired (850°C) wire-form CuO 

t Classification of the different sites of nitrogen in igneous and sedimentary rocks is given in Section 4.2.9. 
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was used to effect the oxidation in all cases. Isotopic analyses were undertaken using a VG® 

SIRA Series n mass spectrometer. 

To obtain sufficient molecular nitrogen for isotopic analysis with acceptable precision in each 

case, it was necessary to scale up the quantity of powdered rock reacted with HF /HzSO 4' 

from 1 to 3 g (with a proportional increase in the quantities of acid used). After evaporating 

the resulting slurry down at -100°C to a minimum volume, a second 30ml aliquot of HF was 

added; this procedure was repeated once more in due course. However, the efficiency of the 

acid extraction procedure was found to be significantly reduced by scaling up the quantities 

of reactants used, as indicated by the resulting ammonium yields. 

Before commencing the HF /HzSO 4 extraction procedure, an estimate of the maximum 

contribution of 'organic' (including kerogen-derived) nitrogen to the total nitrogen content of 

the metasedimentary rock samples was made by performing a 550°C sealed-tube combustion 

(30 minutes) of sample SW-87-S19. This thinly-bedded sandy mudstone of Carboniferous 

age, darkened by organic matter, contained the highest 'extractable' ammonium yield, as 

reported below. Pre -fired (850°C) CUO was ground and intimately mixed with the powdered 

rock sample (1:3 weight ratio), prior to heating in vacuo at 550°C. 

Sample SW -87 -S 19 was located outside the thermal aureole of the Dartmoor granite. For 

comparison, similar analyses were made of both Carboniferous and Devonian metasediments 

collected close to the granite contact (samples SW-87-S14 and SW-87-S7 respectively). The 

results obtained for these latter samples indicated that only 3.6 and 2.6% respectively of the 

total ammonium yield was in the form of organically -bound nitrogen, a proportion of which 

might be in the form of kerogen. In the case of sample SW-87-S19, this value increased to 

6.6%, which was still not considered sufficient to invalidate the use of acid extraction for the 

preparation of ammonia and thence nitrogen for stable isotope ratio analysis. 

6.4.3.3.3 Results and discussion 

The results of the analyses for 'extractable' ammonium content are presented in Table 6.6. In 

Table 6.7 are shown the olsN isotopic data obtained from the metasedimentary rocks; all 

samples were extracted and analysed in duplicate. Also shown in this Table are the 

corresponding ammonium yield values, which may be compared with the data given in Table 

6.6. It is apparent from Table 6.7 that the ammonium yields obtained by scaling up the 

quantities of sample and reagents used were substantially lower than those obtained using the 

standard procedure for ammonium yield determination; this latter procedure has been verified 

by intemationallaboratory comparison (Bradley et al., 1990). The reproducibility of the 

nitrogen stable isotope data, however, was apparently not related to the ammonium yield 

reproducibility. 
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Table 6.6 

'Extractable' ammonium contents of metasedimentary rocks from the vicinity of the Dartmoor granite, 
determined using the procedures of Bradley et al. (1990). Analyses were undertaken on behalf of the author 
by D A Bradley. Samples are listed in order of increasing distance from the granite contact; the respective 
localities are given in Appendix A. Results of duplicate analyses are given in parentheses. The detection 
limit was -10ppm. 

Upper Devonian Carboniferous 

Sample reference [NH/l (ppm) Sample reference [NH/l (ppm) 

SW-87-S13 602 SW-87-S14 706 

SW-87-S7 1000 SW-87-S17 469 

SW-87-S8 982 SW-87-S18 88 

SW-87-S9 942 SW-87-S16 1050 

SW-87-S10 1160 SW-87-S15 942 

SW-87-S11 (212, 220) SW-87-S19 (1020. 1100) 

SW-87-S12 422 

SW-87-S6 1010 

SW-87-S5 1060 

SW-87-S4 (77, 71) 

SW-87-S3 70 

SW-87-S2 855 

SW-87-S1 «10, 17) 



Table 6.7 

Nitrogen stable isotopic composition of 'extractable' ammonium in metasedimentary rocks sampled 
across the thermal aureole of the Dartmoor granite. Results are tabulated in order of increasing distance 
from the granite contact. The respective sample localities are given in Appendix A. 

(a) Upper Devonian metasediments 

Sample reference SlsN %o(AlR) (mean) NH
4
+ yield (ppm) NH / yield data from 

Table 7.6 (ppm) 

SW-87-S13 
7.1 

7.4 
384 

602 
7.7 390 

SW-87-S7 
3.5 

3.0 
795 

1000 
2.5 601 

SW-87-S10 
3.0 

3.1 
nm 

1160 
3.2 806 

SW-87-S5 
1.1 

0.7 
701 

1060 
0.2 677 

(b) Carboniferous metasediments 

Sample reference SlsN %o(AlR) (mean) NH
4
+ yield (ppm) NH / yield data from 

Table 7.6 (ppm) 

SW-87-S16 
2.8 

2.0 
728 

1050 
1.2 747 

SW-87-S15 
2.7 

2.4 
792 

942 
2.1 824 

SW-87-S19 
2.3 

2.3 
626 

1020,1100 
2.3 935 

Note: nm indicates 'not measured' 



For example, the best 31SN replication «0.1%0) was obtained on the sample (SW-87-l9) for 

which the greatest variation of ammonium yield was found between duplicates. In contrast, 

where reproducibility of ammonium yield was to within 1% (sample SW-87-S7), the 

maximum variation of 31SN was noted (1 %0). 

It is notable that the Kate Brook Slate sample collected closest to the Dartmoor granite 

boundary (SW-87S-13) was characterised by a 31SN value of ca. +7.4%0 and contained a 

lower ammonium content than samples SW-87S-7 and SW-87S-8, next nearest to the 

contact. This is in accord with the findings of Haendel et al. (1986), who noted substantial 

increases in the 31'N values of mica schist sampled within one metre of the Ehrenfriedersdorf 

granite contact. It is also in agreement with the results of Bebout and Fogel (1992), who 

reported a similar phenomenon in connection with the Catalina schist, a subduction -related 

metamorphic terrane in southern California. These latter authors discussed the nitrogen data 

in the context of progressive devolatilisation, together with mechanisms of nitrogen release 

into the fluid phase during metamorphism (see Section 4.2.8 of the present work). Bebout 

and Fogel (1992) postulated that the high 31SN values in the sedimentary rocks at the granite 

contact indicated that nitrogen released into the associated fluids would have been 

correspondingly depleted in lSN. Their model, however, would appear to be inappropriate to 

an explanation of the source of molecular nitrogen in early hydrothermal fluids associated 

with the Cornubian batholith, where palreofluid 31~ measurements (Section 4.6) indicate 

enrichment of UN in the fluids, relative to the metasediments. Together with the 31SN 

measurements of Boyd etal. (1993) on the granites, recycling of the sedimentary nitrogen 

(ammonium) though the granites would appear to be a more probable scenario, prior to 

incorporation in the hydrothermal regime. 

For comparison with the S W England metasediments, duplicate 315N analyses of a sample of 

Ordovician shale from Carrock Fell, included in the same batch, gave a value of 

+0.53±0.1%0(AIR). Although it would be unwise to formulate a hypothesis to explain the 

origin of molecular nitrogen in the early stage hydrothermal fluid system at Carrock Fell on 

the basis of duplicate analyses of a single example of local shale, in conjunction with the 

palreofluid 31SN results reported in Table 4.4, it is notable that there appears to be a similar 

isotopic relationship between the nitrogen in the fluids and that in the sedimentary rocks (i. e. 

relative enrichment of ISN in the fluids, generally by -4%0) at both Carrock Fell and the 

various S W England localities studied in the present work. 

6.5 Summary and conclusions 

Any conclusions inferred from geochemical or isotopic data associated with metasedimentary 

rock samples from traverses across the thermal aureole of a granite must be tempered with the 

realisation that, in the absence of e. g. detailed gravity measurements to indicate the depth of 
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burial of the granite at the respective sampling sites, estimates of distance to the granite 

boundary must be viewed as provisional. What is easier to establish, for present purposes, is 

whether a given sample was within the boundary of the thermal aureole of the pluton. On this 

basis, the following conclusions were drawn: 

No systematic variation of elemental composition with increasing distance from the Dartmoor 

granite boundary was apparent in the mudrock examples studied in the present investigation. 

Any pervasive infiltration of an exsolved hydrous phase from the granitic magma during 

emplacement therefore occurred on a sufficiently large scale, and beyond the boundary of the 

metamorphic aureole, to overprint any pre-existing geochemical 'signature'. Alternatively, 

confinement of the hydrous phase may be postulated to explain the lack of significant 

geochemical inhomogeneity across the thermal aureole. 

The 87Sr/ 86Sr isotopic ratio in Kate Brook Slate from south-west of the Dartmoor granite and 

within the contact aureole shows a high degree of uniformity when back -corrected to the time 

of emplacement of the granite (280Ma before present); the data indicate that the Rb-Sr 

isotope systematics of the mudrocks were reset by emplacement of the granite, with a 

corresponding initial 87Sr/86Sr value -0.010 greater than that of the granite. This resetting 

does not extend to samples outside the thermal aureole, nor to examples of the youngest 

(Namurian) metasediments intruded by the granite, either within or outside the aureole. The 

results obtained on the Kate Brook Slate indicate that the isotopic system was not overprinted 

by external (exsolved magmatic) fluids during granite emplacement. 

fluid inclusion strontium isotope data indicate that the age of the earliest hydrothermal fluids 

hosted by the central region of the Dartmoor granite, at 271 ± 7.4 Ma, overlaps statistically 

with the published age for the granite emplacement, although the associated errors pennit a 

hiatus of up to -18Ma between granite emplacement and hydrothermal activity. 

Ammonium contents of the metasedimentary rocks of (and beyond) the Dartmoor granite 

aureole collectively ranged from <10 to > 1 000 ppm and showed no systematic variation with 

distance from the granite boundary. The nitrogen isotopic composition of several 

ammonium-rich samples was determined; mean values ranging from +0.7 to +3.0%0(AIR) 

were obtained, except at the granite contact, where a value of +7.4%0 was noted. Problems 

with low yields were encountered, however, in 'scaling up' ammonium extraction 

procedures based on whole-rock dissolution in conjunction with Kjeldahl distillation, as 

developed to determine the ammonium contents of geological samples. The experimental data 

indicate that no substantial fractionation of the nitrogen stable isotope ratio was associated 

with low recovery yields of ammonium during extraction, although reproducibility of the 

isotopic data was erratic. For future studies, development work on the experimental 

technique is clearly warranted. 
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The preliminary data obtained during the present study do not support the idea of substantial 

nitrogen loss from the metasediments during emplacement of the Dartmoor granite and 

consequently any incorporation of sedimentary nitrogen into the cooling granitic melt at a 

high crusta1level would probably have been minimal. 

Stable isotope ratio analysis of nitrogen in aureole metasediments of low ammonium content, 

and located away from the immediate vicinity of the granite boundary, would be of value in 

detennining whether any systematic relationship exists between ammonium content and 

associated SlsN value (cj Bebout and Fogel, 1992). This would help to identify whether the 

high SlsN value and relatively low ammonium abundance at the granite boundary are thermal 

devolatilisation effects, caused by granite emplacement. 

The inorganic carbon contents of all metasedimentary rock samples investigated from the 

vicinity of the Dartmoor granite (within and outside the aureole) were very low 

(2.3± 1.1 ppmC, 1<1 error). The 'organic' carbon abundance data were strongly bimodal; 

samples enriched in organic matter contained several thousand ppm of carbon. No systematic 

variation was discernible in the associated stable isotope characteristics, with either carbon 

abundance or proximity to the granite boundary. 

Significant quantities of inorganic carbon were found in borehole drillcore samples of 

Devonian age, obtained from localities west of (and outside the thennal aureole of) the St 

Austell granite. Isotopic data indicated that these carbonates were not directly of marine 

origin. Furthermore, the S13C values were similar to those obtained for the total carbon 

content of early hydrothermal fluids characterised by W ± Sn oxide association in the 

Cornubian region. This latter finding suggests that the palreofluid carbon may have been 

derived from the thermal breakdown of such a source, although the mechanism by which it 

was incorporated into the fluids is not unambiguously identified. 
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Chapter 7 

Synthesis and concluding remarks 

7.1 Overview 

As each chapter has a separate conclusions section, the objectives here are to summarise the 

salient findings of the present work, including advances in experimental techniques; 

secondly, to consider the overall implications of the geochemical and isotopic data with 

respect to a self-consistent description of hydrothermal processes associated with early 

mineralisation of the Comubian batholith. The ultimate objective of such an assessment is to 

delineate the relation between episodes of granite magmatism and spatially-associated high

temperature hydrothermal phenomena in the region, particularly with respect to the source of 

the fluids. 

7.2 Experimental procedures 

There are two principal achievements resulting from the present work: 

(i) A detailed appraisal of existing methods has led to the development of a low -blank, 

stepped-heating protocol for the extraction and subsequent isotopic analysis of CO
2 

from 

fluid inclusions in quartz, allowing reliable data to be obtained from much smaller samples 

than possible hitherto. The teChnique was validated, using both dual inlet (dynamically 

pumped) and static vacuum gas source mass spectrometry, by demonstrating consistency of 

013C results from quartz sample replicates over an approximately 50-fold mass range down 

to -20mg, besides giving consistency with 013C of CO2 released by crushing the quartz. 

Ultimately, the level of blank during stepped heating was sufficiently low to enable ol3C 

measurements to be made on 2 -3 nanomoles of gas, with an attendant accuracy within the 

analytical precision of measurement «± 1%0 at the 10 level). A procedure for abundance and 

ol3C measurements on coexisting fluid inclusion CH4 and CO2 was also devised; optimum 

013C reproducibility of ±O.5%0 was obtained on replicate extractions of fluid inclusion CH
4 

as small as 60 nanomoles, using 'conventional' (dual inlet) gas source mass spectrometry. 

(ii) Experimental procedures for the preparation and isotopic characterisation of nitrogen 

at the sub-nanomole level have been adapted to 015N measurements of fluid inclusion 

nitrogen, extracted by stepped heating. The analytical precision was usually <±O.S%o at the 

10 level, on sample aliquots of -0.8 nanomoles of Nz admitted to the mass spectrometer. 

Nitrogen blank yield during fluid inclusion extraction and purification was generally two 

orders of magnitude less than the sample yield, when the latter exceeded - 2.7 nanomoles. 
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7.3 Principal findings of the research 

(i) A comparison of hydrothermal fluids (represented by quartz-hosted fluid inclusions) 

associated with early-stage W±Sn oxide mineralisation throughout the Comubian region 

revealed that carbon-bearing species (carbon dioxide and methane, in varying proportions) 

and molecular nitrogen were present as trace components (generally 2-1Sppm Cor N, with 

respect to the quartz host) in all cases. In contrast, abundances of these species in 

comparable-stage fluids hosted by the Dartmoor granite (associated with quartz+tourmaline± 

cassiterite assemblages) were considerably lower. 

(ii) Extension of the comparison to fluids hosted by early pegmatitic quartz of the Land's 

End and St Austell granites showed that the presence of nitrogen and carbon-bearing 

volatiles in the earliest (high temperature) phase of hydrothermal activity was not restricted to 

W±Sn oxide association. 

(iii) Isotopic analysis showed that the range of pal~ofluid Sl3CIC values was relatively 

narrow, from -9.5 to -16.5%o(PDB)' despite variation in the associated CO/CH4 ratios of 

almost 50-fold. The data indicated isotopic disequilibrium between coexisting methane and 

carbon dioxide. An unusual example from the vicinity of the Carnmenellis granite contained 

an excess of methane over carbon dioxide, anomalous l3C-enrichment of both carbon species 

(SI3CCO of +4.2%0; 013CCH of -27.4%0), yet with palreofluid Sl1CIC of -15.6%0. 
2 4 

(iii) Modelling of the carbon isotope data suggests that the results are best explained in 

tenns of partial reduction of a primary reservoir of carbon dioxide (by wallrock reaction), 

with kinetic effects controlling the 13C distribution. The apparent independence of palreofluid 

CO/CH
4 

ratios to whether the host quartz is located in granite or metasedimentary rock, 

together with the 'buffering' of 013CIC values, mitigates against a local thermogenic methane 

source. 

(iv) Although the data are inconclusive, preliminary application of high sensitivity, static 

vacuum mass spectrometry indicated that carbon dioxide characterised by ol3e values in the 

region of -6 to -12%0 may be present at ultra-trace levels in fluids associated with early 

mineralisation of the Dartmoor granite. 

(v) The inorganic carbon content of Devonian and Carboniferous metasedimentary rocks 

sampled from within and adjacent to the metamorphic aureole of the Dartmoor granite was 

uniformly low (2.3± 1.1 ppm, 10). The corresponding 'organic' carbon abundances were 

strongly bimodal; samples most enriched in organic matter contained several thousand ppm 

of carbon. No systematic variation between the abundance of 'organic' carbon and either the 

corresponding 013C value or proximity from the granite contact was apparent. 
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(vi) Examples of Devonian metasediments relatively enriched in inorganic carbon (92-

3821 ppmC) were discovered in borehole drillcores from an area to the west of the St Austell 

granite. Isotopic analysis of the carbonates showed that the ol3e values were within the 

013Cl:C range characteristic of palreofluids associated with early-stage hydrothermal 

processes hosted by the Comubian batholith. This supports the view that the palreofluid 

carbon may have been derived from such a source, although the transfer mechanism (such as 

via assimilation of the carbonate into granite protoliths during anatexis, or by direct thermal 

degradation of the metasedimentary rock during magma ascent) is not uniquely identified. 

(vii) olsN measurements, by static vacuum mass spectrometry, of palreofluid molecular 

nitrogen associated with early-stage W±Sn oxide mineralisation at seven localities in the 

Comubian province gave mean values ranging from 5.0 to 6.9%0(AIR)' Two samples collected 

from Old Gunnislake mine gave corresponding values of 8.2 ± 0.29%0 and 1O.0±0.55%o (10-

error), respectively. 

(viii) Neither the concentration of nitrogen in the fluids, nor the associated oUN value, 

appeared to depend on whether the quartz host was located in unaltered granite, greisenised 

granite or metasedimentary rock. The highest concentration of nitrogen, however, both with 

respect to the quartz host (up to 13.8 ppm) and as nitrogen molality (-0.34) in the fluid, was 

found in samples from South Crofty mine, in the vicinity of the Carnmenellis granite. 

Published work has recently shown that this pluton contains the highest concentrations of 

ammonium (93 -109 ppm, with olsN::: 8.8%0), compared to the other major Comubian granite 

intrusives, whereas the Dartmoor pluton contains the lowest (8ppm, with olsN ==7.0%0). 

Extraction and isotopic analysis, during the present work, of nitrogen from hydrothermal 

fluids associated with early-stage mineralisation of the Dartmoor granite, indicated that sub

ppm abundances (with respect to the quartz) were present, corresponding to nitrogen molality 

in the fluid of _10- 2• Furthermore, mean olsN values of three of the four samples 

investigated were in the range 6.7 -7 .3%0. The apparent correlation between the nitrogen 

content of the fluids and the ammonium content of the associated granite supports the 

hypothesis that the granites are the most probable source of nitrogen in the fluids. 

(ix) The 'extractable' NH/ content of regional Devonian and Carboniferous 

metasedimentary country rocks from and beyond the thermal aureole of the Dartmoor granite 

ranged from <10ppm to >l000ppm. No systematic variation with distance from the contact 

zone was evident. Preliminary data from samples containing >600ppm indicated that this 

NH4+ was characterised by olSN values in the range of l.9± l.2%0. except at the granite 

contact, where a value of 7.4±0.3%0 was recorded. The data do not support the idea of 

substantial nitrogen loss from the metasediments during emplacement of the Dartmoor 

granite; incorporation of sedimentary nitrogen into the cooling magma at a high crustal level 

was thus probably minimal. 
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(x) On the basis of published B1SN data for the Comubian granites, together with the 

most recently-reported relevant isotopic fraction factors, palreofluid B1SN values of 5.0 to 

6.9%0 are in accord with equilibrated nitrogen isotope exchange with ammonium in the 

granite, at the hydrothermal (300-500°C) stage, or at magmatic temperatures if N1-NH/ 

equilibration was subsequently maintained during cooling. The more lSN -enriched 

palreofluid at the Old Gunnislake mine locality may be explained by quantitative oxidation of 

granitic ammonium, if it is assumed that the B1SN value of the Gunnislake granite falls within 

the range of 8.4-10.2%0 recorded for Comubian granite whole-rock samples containing 

greater than - 32 ppm NH/. The same mechanism is proposed for the Dartmoor system, 

where palreofluid nitrogen isotope compositions are also similar to those of the host granite. 

Nitrogen isotope data indicate that regional ammonium-rich metasedimentary rocks are not 

likely to have been the direct source of the palreofluid nitrogen. 

(xi) Carbon dioxide was invariably released with the nitrogen component from all quartz 

samples investigated herein. Equilibrium modelling indicates that oxidation of ammonia by 

carbon dioxide under magmatic or hydrothermal conditions is a thermodynamically viable 

mechanism for the formation of molecular nitrogen. This reaction may also have been one of 

the principal redox routes by which methane was generated in magmatic-hydrothermal 

regimes associated with the batholith. Indeed, the greatest abundances of methane were 

associated with anomalously high levels of nitrogen. Control of carbon speciation, however, 

is also likely to have been effected by wallrock Fe(II)HFe(ID) redox reactions on a local 

scale, prior to fluid entrapment. 

(xii) Fluids associated with oxide mineralisation of the Dartmoor granite, from the earliest 

pegmatitic quartz, through quartz + tourmaline ± cassiterite, to cooler (-180°C) fluids 

associated with quartz+hrematite, were characterised by a surprising uniformity of chemical 

composition. Excellent charge balances were obtained for most of the leachate analyses. 

CalK molar ratios exceeded unity in all cases. Furthermore, the enrichment in B, F, Li, AI, 

Fe, Mn and Zn indicated similarity to published values for higher temperature (500-6()()OC) 

fluids from the St Austell region and implied to be of granitic derivation. Briel and I!CI 

molar ratios in the Dartmoor granite-hosted fluids, (7.5±1) x 10-4 and (22±13) x 10-6 

respectively, are compatible with a magmatic origin for these elements. 

(xiii) The palreowater isotopic characteristics (BO, B180) of early mineralising fluids hosted 

by the Dartmoor granite are generally characterised by a narrow range (BO -24 to -33%0; B1SO 

values 7.1 to 8.1 %0), and exhibit no systematic variation with associated paragenetic stage. 

The hydrogen isotope data, in particular, are in accord with a magmatic origin of the fluids, if 

isotopic exchange occurred under equilibrium conditions between the fluids and hydrous 

silicates of the granite at sub-solidus temperatures. The relative invariance of isotopic and 

chemical composition to paragenetic association thus supports the idea of protracted (and 
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episodic) magmatic-hydrothennal activity hosted by the Oartmoor granite, with no significant 

influx of external fluids into the fracture systems. 

(xiv) Paheowater 00 values of early WiSn oxide-stage hydrothermal fluids associated 

with the Hemerdon Ball granite are indistinguishable from those of fluids associated with 

early tourmaline and greisen mineralisation of the Oartmoor granite. Despite extension of the 

hydrothennal system at Hemerdon into the metasedimentary country rock, the pabeowater on 
and 0180 values appear to be invariant to whether the associated quartz host is located in 

granite or metasediments. Furthermore, in terms of solute electrolyte composition, early 

hydrothermal fluids at Hemerdon were broadly similar to those hosted by the Dartrnoor 

granite. The principal difference was greater enrichment of potassium and depletion of 

calcium (relative to sodium) at Hemerdon. 

(xv) Early hydrothermal fluids characterised by WiSn oxide association at many other 

localities in S W England were characterised by relative enrichment in deuterium (00 values 

of the palreowaters being up to ca. -10%0). Published work has reported that such fluids were 

of relatively low salinity, compatible with a predominantly meteoric origin of the water. The 

present work, however, shows that such fluids were anomalously enriched in boron and 

contained distinctive minor element distributions and halogen ratios that support the case for a 

magmatic component. Furthermore, KINa ratios were generally similar to those of early 

mineralising fluids hosted by the Oartmoor granite (although the corresponding CaiN a 

values were lower). 

(xvi) Few data were obtained on the isotopic composition of palreowaters associated with 

'main stage' (sulphide) mineralisation, during the present work. Preliminary assessment 

indicated a range of 00 values (-14 to -32%0) broadly coinciding with that obtained overall 

for early Wi Sn oxide -associated fluids of the Comubian region. 

(xvii) Analyses of palreowater oD and 0180 values of late-stage (age -230Ma), cross

course fluids from the Tamar valley region (located some distance from the present-day 

granite outcrops and associated with lower temperature hydrothermal activity) do not support 

either of the two alternatives proposed in the literature for their origin, viz. Mesozoic 

seawater or sedimentary basin brines. The 00 values (-35 to -55%0) indicate that a fluid 

origin based on the release (through changes in the regional tectonic stress field) of primary 

magmatic fluid from inclusions in a sub-surface component of the batholith is a potential 

explanation. The relatively ISO-depleted nature of the fluids, however, (0180 values of ca. 

1.5-4.7%0) would require that any initial 'magmatic' value was substantially shifted by 

equilibrated oxygen isotope exchange at low temperatures between the fluid and wall rocks 

(as proposed in the literature in the case of Canadian Shield brines and pore waters in oceanic 

sediments). 
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(xviii) An apparent lack of systematic variation in elemental composition of metasedimentary 

rocks sampled across and beyond the thennal aureole of the Dartmoor granite was noted. 

This suggests that emplacement of the Dartmoor granite was not accompanied by chemical 

overprinting of the country rocks, such as might be expected from pervasive infiltration of an 

exsolved aqueous phase from the cooling magma. This view is supported by 87SrJ86Sr 

measurements on Devonian metasediments (Kate Brook Slate) from the aureole, indicating 

that the Rb-Sr isotope systematics were reset by the emplacement of the granite, but with a 

corresponding initial 87S/86Sr ratio -0.010 greater than that of the granite. 

7.4 Concluding remarks 

The exposed granite intrusives of the Cornubian batholith and associated mineralisation 

provide an excellent setting for a geochemical and isotopic investigation of the relation 

between hydrothennal activity and plutonism. Despite several recent studies of hydrothennal 

phenomena associated with the earliest stages of alteration and mineralisation of the batholith, 

the source of the fluids and the extent to which fluid compositions reflect high -level crustal 

processes involving the metasedimentary and metavolcanic country rocks is still a matter of 

debate. Opinion is divided on whether the granites served primarily as a heat source, driving 

hydrothermal systems which consisted essentially of meteoric water (with salinity 

subsequently deriving from water-rock interaction), or were themselves the source of at least 

the earliest fluids, through exsolvation of an aqueous phase during the cooling of emplaced 

magma. 

The distinctive contrast between early-stage mineralisation of the Dartmoor granite, on the 

one hand, and that associated with Hemerdon Ball, a minor pluton located within the 

metamorphic aureole of the Dartmoor intrusive, provided a focal point in the present work for 

testing hypotheses concerning the origin of fluids which characterised early stages of 

hydrothermal activity hosted diachronously throughout the batholith. Several lines of 

evidence throughout the present work support the assertion that the granites were primarily or 

exclusively the source of palreofluid constituents in the high - temperature pegmatitic stage and 

earliest mineralising fluids. One of the principal findings is that the abundance of traces of 

nitrogen and carbon-bearing species in the fluids may be directly linked to the degree of 'S'

type character of the associated granite intrusive. Published work has demonstrated (by initial 

87Sr /86Sr and ENd values, together with normative corundum data) that the extent of 

incorporation of sedimentary material by the parent magmas varies considerably between 

component intrusives of the batholith; also, that ammonium concentrations in the granites 

(and associated 51SN values) reflect the proportion of pelitic constituents in the 

metasedimentary material assimilated via the anatexis of crustal rocks. 
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A corollary of the present experimental work is that carbon -bearing species and nitrogen in 

palreo-hydrothermal systems are probably much more widespread than recognised hitherto, 

albeit at trace or ultra-trace levels. Limitations imposed by the lack of appropriate analytical 

techniques have probably precluded wider recognition of the value of these components 

(particularly the isotopic compositions thereoO as tracers of fluid origin. 

The results presented herein support the idea of a general, genetic link between granite 

magmatism and the earliest hydrothermal fluids of the Comubian region. Such fluids are 

likely to have been derived by exsolvation of a hydrosaline phase during the cooling of 

granitic magma. This explanation is also in accord with field evidence for a continuum 

linking the pegmatitic and 'pneumatolytic' stages of hydrothermal fluid evolution. 

Geochemical and isotopic data from Palreozoic metasedimentary rocks of (and immediately 

beyond) the metamorphic aureole of the Dartmoor granite indicate that major depletion or 

overprinting of metasediment constituents, at a crustal level equivalent to present-day 

exposure, did not occur during granite emplacement. Comparable data from a traverse across 

the aureole of the Hemerdon Ball granite (or of the Cammenellis pluton) would be 

appropriate to confirm whether this finding was also true at localities where early-stage 

hydrothermal fluids contain significant abundances of carbon -bearing species and nitrogen. 

Although anatectic incorporation of pelitic material appears to be the most probable route by 

which carbon and nitrogen was incorporated into the granitic protoliths, and thence into an 

exsolved aqueous phase after granite emplacement, assimilation of such material during 

magma ascent, at levels deeper than present exposure, cannot be categorically excluded. 

With regard to whether the role of the granites was primarily as a heat source, with the 

associated hydrothermal fluids being essentially of meteoric derivation, the present work 

indicates that this was not the case, at least for high -temperature fluids associated with 

W±Sn oxide mineralisation at Hemerdon, early tourmaline and oxide mineralisation of the 

Dartmoor granite, and comparable-stage phenomena associated with the St Austell and 

Land's End granites. However, published work by other authors has shown that elsewhere 

in the Comubian region, such as South Crofty mine, Cligga Head, and at various localities in 

the vicinity of the Gunnislake granite, the earliest hydrothermal stage was apparently 

characterised by fluids of relatively low salinity. Furthennore, the present work has shown 

that such fluids were also relatively enriched in deuterium, compared to the more saline 

examples (as at Dartmoor, Hemerdon, etc.). Explanations proposed elsewhere to account for 

these findings envisage either the progressive dilution of an initial magmatic (high salinity) 

fluid by low salinity groundwaters of meteoric origin, or indeed that the waters were entirely 

meteoric in derivation, with constituent solutes resulting from leaching of wallrocks. The 

hydrogen isotope data reported in the present work are consistent with the former of these 

two explanation. 
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In many respects, the findings of the present work broadly concur with the 'emanative 

centres' theory of Dines (1956), in the sense that the granites are considered to be the source 

of high-temperature hydrothermal fluids which, whilst not temporally related on a batholith

wide scale, are associated both spatially and temporally with particular episodes of magmatic 

intrusion that occurred diachronously throughout the batholith. 'Main-stage' hydrothennal 

activity, as characterised by quartz-sulphide assemblages, has not been the focus of attention 

of the present work. To extend the 'emanative centres' comparison to these fluids requires an 

assessment of whether the constituents were also primarily of magmatic origin. Application 

of the techniques reported in the present work may contribute to such an appraisal. 
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Appendix A 

Sample inventory 

(1) Samples used for palreofluid inclusion analysis (quartz unless specified otherwise) 

SWEngland 

'Pegmatltlc' (transitional) rock types preceding earliest hydrothermal oxides: 
Examples associated with the St Austell and Land's End granites, respectively. 

Supplied by Dr C Halls and Lin Yucheng, Imperial College, University of London. 

Sample Reference 

GunheaJh 
(St Austell granite) 
LYGUN-l 
LYGUN-15 

Priest's Cove, 
(lAnd's End granite) 
LYPC-88 

Trelavour Downs 
(St Austell granite) 
LYTD-88 

Description 

Sheeted quartz-tourmaline vein, greisen lode. 
Miarolytic pegmatite pods and cavities: Quartz, coexisting 
with feldspar, muscovite/gilbertite, tourmaline. 

Pegmatitic quartz pod with aplite, fluorite, topaz and 
wolframite. 

Pegmatitic quartz (unidirectional solidification textures) with 
protolithionite. 

Grid reference 

SW200568 

SW352316 

SW960575 

Quartz±tounnaline±cassiterite±h:ematite assemblages hosted by the Dartmoor granite: 
Stages of mineral paragenesis referred to below are as dermed by Scrivener (1982). Samples were 

collected under the guidance of, or supplied by, Dr R C Scrivener of the British Geological Survey. 

Sample Reference 

East Yitife r mine 
SW-89-154 

SW-89-l55 
SW-89-156 

Great Rock mine 
SW-89-157 

Golden Dagger mine 
SW-89-159 

SW-89-160 

SW-89-161 

SW-89-162 

SW-89-163 

Barracott mine 
SW-89-164 

Description 

Stage ill mineralisation (with some Stage n present also). 
Collected in situ by the author. 

Stage II mineralisation Collected in situ, as above. 
Stage II mineralisation. Quartz and tourmaline, with little 
cassiterite. 

N lode. Hlilmatite, pyrite and minor quantities of quartz. 
Stage ill mineralisation. Collected in situ by the author. 

Early quartz from pegmatitic pod within body of aplite. 
Collected in situ from adit roof by the author. 

Earliest pegmatitic quartz (Stage I), as above, with feldspar 
and tourmaline. Dump material. 

Predominantly Stage ill, although some Stage II also present. 
Quartz, tourmaline, blilmatite. Dump material. 
Mainly Stage n (with Stage ill veining). Dump material 

Predominantly Stage II mineralisation, although some Stage 
ill veining. Quartz, tourmaline, cassiterite & a little 
hlilmatite. Adit level. 

Quartz, tourmaline, cassiterite (Stage II). 
Supplied from Torquay museum collection. 
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SX705825 

SX 827 815 

SX679803 

SX738819 



S n -W oxide-stage assemblages associated with the Cornublan batholith: 

Sample Reference Description Grid reference 

Hemerdon mine Quartz vein samples, supplied by Dr T J Shepherd of the SX 5705S5 
British Geological Survey, from drill cores made available by 
Amax Exploration (U K) Inc. 

HEM-79-2 Borehole DDH36, 229.5m depth. Granite hosted, greisen-
bordered quartz vein. 

HEM-SO-I Borehole DOH6S, 150.8m depth. KilIas hosted. Mica, 
greisen borders and feldspar apparently absent. Wolframite 
present. 

HEM-80-35 Borehole DOH72, 11S.2m depth. Killas hosted. Mica, 
greisen borders and feldspar apparently absent. 

HEM-SO-39 Borehole DOH74, 33.9m depth. Granite bosted, greisen-
bordered quartz vein. Wolframite present. 

HEM-SO-44 ODH H74, 94.9m depth. Killas hosted. Wolframite present. 
HEM-SO-47 Borehole DOH H74, 137.5m depth. Killas bosted. Mica, 

greisen borders and feldspar apparently absent. 
HEM-80-50 Borehole DOH H74, -193m depth. Hosted by greenstones 

(1) and killas. Quartz vein and tourmaline. 

South Crofty mine (Cam Brea granite) SW 675 411 
SC-88-2 North Pool A zone. Sub-level below 335 fathom level. 

Quartz, wolframite, feldspar. Collected in situ by the author, 
with DrR C Scrivener. 

SC-8S-3 North Pool quartz lode, 380 fathom level. Quartz, 
wolframite. Collected in situ by the author, as above. 

SC-8S-3ABC 3ABC lode, 360 fathom level. Early cassiterite with quartz 
and feldspar. (Same generation as W -bearing fluid.) 
Sample supplied by Dr R C Scrivener. 

SC-8S-NTI.. North Tincroft lode (N branch from Robinson's shaft), 360 
fathom level. Quartz, arsenopyrite & wolframite. 
Sample supplied by Dr R C Scrivener. 

CliggaHead (Cligga granite) SW73753S 
CH-88-1 Quartz with wolframite. Supplied by Dr R C Scrivener. 

Castle-an-Dinas mine SW945624 

CD-8S-l Quartz with wolframite, adit level. 
Supplied by Dr R C Scrivener. 

Drakewalls mine Country rocks: killas overlying granite. SX425707 
SW-84-15 Veinlets of quartz/cassiterite/wolframite stockwork. 

Collected by Bull (1982): sample ref. 02. Representative of 
cassiterite mineralisation. 

SW-84-l6 As above (Bull, 1982: sample ref. 02). Representative of 
wolframite mineralisation. 

Old Gunnislake mine Mostly granite hosted, but some workings in killas. SX435725 
SW-84-18 Quartz, wolframite. Collected by Bull (1982): ref. M149. 
00-88-1 Quartz, wolframite; lode in adit. 

Supplied by Dr R C Scrivener. 
SW-89-1SO Early quartz, with some wolframite. Collected in situ by the 

author, in conjunction with J T Chesley. 

South Bedford mine Granite on west, overlain by metamorphosed killas with SX433721 
elvan dykes to East; junction outcrops beneath R Tamar. 

SW-S4-20 Quartz, wolframite. Collected by Bull (19S2): ref. M77. 

Prince of Wales mine Killas hosted. SX40770S 
SW-S4-25 Quartz, wolframite. Collected by Bull (1982): ref. M47. 
SW-S4-27 Quartz, wolframite. Collected by Bull (1982): ref. M50. 
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Sulphide-stage assemblages: (All samples supplied by Dr R C Scrivener) 

Sample Reference 

South Caradon mine 
SW-S4-1 

West Caradon mine 
SW-S4-2 

Devon Great Consols 
SW-S4-14 

Wheal Emma mine 
SW-S4-17 

Wheal Arthur mine 
SW-S4-19 

Cotehele Consols 

SW-S4-22 

Okeltor mine 
SW-84-23 

Description 

Host: granite (Bodmin Moor) overlain by killas in SE. 
Main stage sulphide mineralisation. All vein material: 
chalcopyrite, pyrite, chlorite, quartz. 

Intra-granitic (Bodmin Moor). 
All vein material; main stage mineralisation. 
Same paragenesis as sample SW-S4-1. 

(Includes Wheal Emma mine, amongst others.) 

Borehole sample (depth IIS9' OS") from the collection of 
Bull (1982): sample ref. 03. Small vein of quartz & 
chalcopyrite, in vicinity of Devon Great Consols. 

Hosted by metamorphosed killas. 
Quartz, arsenopyrite vein sample. Supplied from the 
collection of Bull (1982). 

Country rock: killas. 
Quartz, chalcopyrite. Supplied from the collection of Bull 
(1982): sample M86. 

Country rock: killas. 
Arsenopyrite strings in quartz/chlorite. Supplied from the 
collection of Bull (1982): sample M98. 

Country rock: killas. 
Arsenopyrite strings in vuggy quartz. Supplied from the 
collection ofBuU (1982): sample M92. 

Grid reference 

SX272 700 

SX 263 702 

SX42757320 

SX 441738 

SX 430 700 

SX 421694 

SX454690 

N-S cross-course veins: Galena and sphalerite, with minor silver minerals in quartz/fluorite gangue. 

Sample Reference 

Wheal Wrey mine 
SW-84-9 
SW-84-10 

Wheal Mary Ann 
SW-84-12 

Lockridge mine 
SW-88-4 

North Hooe mine 
SW-88-5 

Bunspill mine 
SW-8S-6 

South Tamar Consols 
SW-88-8 

All samples supplied by Dr R C Scrivener and collected from mine dumps. 

Country rock: killas. 
Quartz 
Quartz 

Description 

Country rocks: kill as with contemporaneous volcanics. 

Late quartz 

Country rock: killas. 
Quartz 

Country rock: kiUas. 
Quartz 

Country rock: killas. 
Quartz 

Country rock: killas. 
Quartz 

Grid reference 

SX297659 

SX288639 

SX439665 

SX 427661 

SX 437 678 

SX 437645 

SW -88-9 Quartz associated with sphalerite 

Note: Samples originally collected by Bull (1982) were supplied to the present author by 

Dr R C Scrivener, from collections held at the Exeter office of the British Geological Survey. 
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MlsceUaneous (SW England): (supplied by Dr T ] Shepherd) 

Sample Reference 

Birch Tor & Vitifer mine 

SW-8l-l4 

Description 

Host: Dartmoor granite 

Quartz+cassiterite ('Stage n' mineralisation) 

Grid reference 

SX 681812 

Carrock Fell mine, Cumbria (N W England) Grid reference: NY 322 329 

W oxide-stage assemblages: 

Vein quartz samples, made available by Dr T ] Shepherd of the British Geological Survey, who collected 

the material in situ from the Harding vein. 

Sample Reference 

CF-76-7 
CF-76-25 

CF-77-39A 

CF-77-39B 

CF-77-77A 

CF-77-77B 

CF-77-98 

S China 

Description 

Lower level; gabbro host rocks; quartz-wolframite-scheelite 

Lower level; granite host rocks; quartz, carbonates 

lA level; gabbro host rocks; quartz-wolframite 

lA level; gabbro host rocks; quartz (post-dating wolframite) 

Main level (North); granite host rocks; quartz (post-dating wolframite) 

Main level (North); granite host rocks; quartz-wolframite 

lA level; gabbro host rocks; quartz (post-dating wolframite) 

'Transitional' rock types associated with Yansbanlan granites: 
Quartz-wolframite vein samples from Jiangxi and Hunan provinces. 

Supplied by Dr C Halls and Lin Yucheng. Imperial College. University of London. 

Sample Reference 

Hunan province 

YGX-05 

Jiangxi province 

XHS-Ol 

XHS-02 

PT-496 

DP-560 

Location 

Yaoguangxian 

Xibuasban 

Xibuasban 

Piaotang 

Dangping 

Description 

Quartz-wolframite-molybdenite. Massive wolframite; 
vein located entirely within granite and greisen 
bordered. 

Quartz-wolframite-molybdenite. Massive wolframite 
and molybdenite; vein located entirely within granite 
and greisen bordered. 

Quartz- wolframite-molybdenite. Endogranitic. 

Quartz-wolframite-topaz-mica-sulpbide. 496m level, 
No.3 vein. Hosted by country rock. 

560m level at Banbianshan; quartz vein with beryl. 
Endogranitic. 
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(2) Metasedimentary rocks from the vicinity of the Dartmoor granite, S W England 

Samples are listed in order of decreasing distance from the granite contact. 

Upper Devonian metasediments from an area soutb -west of tbe Dartmoor granite: 

Sample Reference Location Grid reference 

SW-87-S1 Plym bridge SX525587 

SW-87-S2 300m SSW of Bicldeigh viaduct. SX 521613 

SW-87-S3 50m SSW of Bicldeigb viaduct. SX522614 

SW-87-S4 100m NNW of Bicldeigh viaduct. SX523616 

SW-87-S5 SOm SSW of road bridge, Bicldeigh. SX525619 

SW-87-S6 100m NNE of Bicldeigh road bridge. SX526620 

SW-87-S12 50m S of Ham Green viaduct. SX 525626 

SW-87-S11 Heleball Wood. SX 527631 

SW-87-S10 Heleball Wood. SX 527634 

SW-87-S9 Heleball Wood, 40m S of road bridge. SX 527636 

SW-87-S8 10m S of tunnel near Leighbeer farm. SX530640 

SW-87-S7 20m N of tunnel near Leigbbeer farm. SX530643 

SW-S7-S13 Collected between Shaugh bridge and Shaugh Mill. SX 533635 

Carbonlrerous (Crackington Formation) metasediments from an area north -east of the Dartmoor 
granite: 

Sample Reference Location Grid reference 

SW-87-S14 Track beneath Willingstone Rock. SX 761893 

SW-87-S17 Quarry above Steps bridge. SX 798882 

SW-87-S1S 50m S of Steps bridge. SX 805882 

SW-87-S16 Small quarry. B3212. SX794883 

SW-87-S1S Crossroads NE of Clifford bridge. SX782898 

SW-87-S19 B3193. 150m S of Dunsford Cross. SX 821888 

Notes: Samples SW-S7-S7 and SW-S7-SS were located virtually equidistant from the granite contact. 

Sample SW-S7-S13 was probably closer. although this was difficult to assess with certainty. 

The Upper Devonian samples were collected under the guidance of Mr A J J Goode, of the British 
Geological Survey Exeter office. whereas Dr R C Scrivener advised on the selection of the 

Carboniferous metasediment examples. 

(3) Devonian metasedimentary rocks sampled to the west of the St Austell granite. 

SWEngland 

Heat flow borebole drillcore material, supplied by Dr B Smith of the British Geological Survey. In total, five 

boreholes were drilled from surface to 300m at various locations across Cornwall, in order to measure heat 

flow within the killas as part of a Hot Dry Rock Geothermal Energy Project initiative. The sites ranged from 

near Newquay in the north to Veryan in the south. 10-20cm length sections of drill core (80mm diameter) 

were available from three of these boreholes for use in the present study. The following details relating to 
these samples were obtained from an unpublished. internal technical note of the Camborne School of Mines 

(,Heat flow boreholes field report'. document reference RB/AG/SERl406/0SI01: 1N03/23, dated 20 January 
1988): 
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General notes: 

The beat flow boreholes were all located in regionally metamorphosed Devonian sediments, known locally as 

killas. HFI and HF2 locations were in the Meadfoot Beds, Lower Devonian, which consists of slates, shales 

and siltstones, with some volcanic tuffs and greenstones. HF3, by contrast, was obtained from part of the 

Gramscatho Beds (Middle Devonian), which consist of slightly coarser sediments, silts and sandstones. 

Graded sandstones become dominant with depth in all cases. Volcanic tuffs occur in HF3, with greenstones. 

Very little mineralisation is present in the drillcore samples, except in the case of HF2. Shallow dipping quartz 

veins are present in all of the boreholes. All drillcores contain fairly similar gently dipping sediments, 

including slates, shales, sandstones and volcanic ash. 

Sample reference: HFI 

Location: Treago Farm, Crantock. Grid reference: SW 782602. Depth: 150.99 - 151.19m. 

The relevant section of the core log indicates that the rock type of this particular sample was shale (slate), with 

gentle folding, especially around quartz veins. 

Sample rererence: HFl 

Location: Gwinear Farm. Grid reference: SW 804575. Depth: 297.07 - 297.17 m. 

On the boundary of tuff (above) and shale (slate) containing thin tuff beds. 

Sample rererence: HFJ 

Location: Trevispian Yean, Trispen. Grid reference: SW 852503. Depth: 150.60 - ISO.7Sm. 

Shales and tuff. 
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Appendix B 

Stepped heating data: carbon yields and ~)1lC results as a function of the analytical protocol 

B.l 
Procedural combustion/ pyrolysis carbon blanks of the extraction line used in conjunction with the 
VG~SIRA 24 mass spectrometer. Sample: gem quality (inclusion-free) quartz. Released gases exposed to Pt 

foil catalyst at -1 050°C during extraction stage in all cases. 

Weight (mg) Release T(°C) Yield (~g C) Yield (ppm C) 613C(%o) 

200 Combustion 220 0.04 0.22 nm 
Combustion 350 0.27 1.36 nm 
Pyrolysis 600 0.38 1.90 nm 

Empty vessel Pyrolysis 350-600 0.07 nm 
(no pre-
combustion) 

B.2 

The measured variation of carbon yield (as CO
2
) and corresponding al3c isotopic composition, as a function of 

the quartz sample mass and analytical protocol, during stepped thermal release of fluid inclusion components 
from hydrothermal vein quartz. 

Table Bl.t Sample: HEM-80-1 

(8) Stepped 'combustion' to 350°C followed by 'pyrolysis' to 600°C (in the presence of a Pt foil catalyst 

at -1050GC during the extraction stage in all cases). 

Weight (mg) Release T(°C) Yield(~g C) Yield (ppm C) 613C (%0) 

1109 Combustion 220 1.16 1.05 -30.8 
Combustion 350 34.57 31.17 -23.91 
Pyrolysis 600 22.38 20.18 -9.52 

273 Combustion 220 0.57 2.09 nm 
Combustion 350 2.09 7.66 -24.6 
Pyrolysis 600 5.37 19.67 -13.15 

53.61 Combustion 205 0.05 0.86 nm 
Combustion 350 0.55 10.20 nm 
Pyrolysis 620 2.44 45.58 -22.9 

25.37 Combustion 200 0.18 7.25 nm 
Combustion 350 1.25 49.30 -27.3 
Pyrolysis 600 1.01 39.86 -20.1 

t 22.26 Combustion 200 0.13 0.60 -29.3 
Combustion 350 1.55 6.95 -29.6 
Pyrolysis 600 0.79 35.43 -20.9 

Note: t Isotopic analysis by static vacuum mass spectrometry. 
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(b) Single-step 'pyrolysis', in the absence of supplied oxygen; Pt catalyst at room temperature. 

Weight (mg) T(°C) Yield(~g C) Yield (ppm C) a13c (%0) 

261.00 630 4.78 18.33 -10.22 
125.34 630 2.60 20.71 -10.7 

44.07 630 0.99 22.40 -10.0 

(c) 'High resolution' stepped heating, in the absence of supplied oxygen; Pt catalyst at room temperature. 

Weight (mg) T(°C) Yield (~g C) Yield (ppm C) a13c (%0) 

1112.75 300 0.25 0.23 om 
400 2.34 2.10 -11.0 
450 3.62 3.25 -9.5 
500 3.57 3.21 -9.6 
550 3.40 3.06 -9.8 
600 2.00 1.76 -10.4 
650 1.14 1.02 -11.3 
700 0.62 0.56 -14.5 

(d) CrUShing of 3 quartz chips, using low volume, stainless steel screw action crusher, sealed with copper 
gasket. Bakeout tape at -100°C applied. Released gases not exposed to Pt catalyst. 

Sample weight: 282.76mg Yield: 0.69 ~gC (2.44ppmC) al3c: -9.6%0 

Table Bl.l Sample: HEM-80-39 

(a) Stepped 'combustion' followed by 'pyrolysis'. Released gases exposed to a Pt foil catalyst at -1050OC 

during all extraction steps. 

Weight (mg) Release TeC) Yield(~g C) Yield (ppm C) a13c (%0) 

993.3 Combustion 200 0.08 0.08 nm 
Combustion 390 0.72 0.73 -20.5 
Pyrolysis 612 9.87 9.94 -8.59 

(b) Stepped 'combustion' followed by 'pyrolysis'. Released gases exposed to a Pt foil catalyst at room 

temperature during all extraction steps. 

Weight (mg) Release TeC) Yield~g C) Yield (ppm C) a13c (%0) 

100.4 Combustion 205 0.03 0.27 nm 
Combustion 362 0.08 0.75 nm 
Pyrolysis 600 1.36 13.59 -6.6 

(c) Single-step 'pyrolysis'. in the absence of supplied oxygen. 

Weight (mg) Pt catalyst TeC) Yield (~g C) Yield (ppm C) a13c (%0) 

1123.64 _25°C 600 11.95 10.64 -6.96 

106.24 -25°C 620 1.27 11.91 -7.0 

130.80 -1050OC 610 1.37 10.51 -7.7 
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(d) Stepped heating, in the absence of supplied oxygen and with the Pt catalyst at room temperature. 

Weight (mg) T (0C) Yield(J.1g C) Yield (ppm C) ai3c (%0) 

978.37 300 0,01 0,01 om 
420 1.49 1.52 -8.3 
500 4.19 4.29 -6.72 
600 4.89 5.00 -7.34 
700 1.01 1.03 -8.3 

Table B2.3 Sample: HEM-80-44 

(a) Stepped 'combustion' followed by ·pyrolysis'. Released gases exposed to Pt foil at -1050°C during all 

extraction steps. 

Weight (mg) Release T(°C) Yield (1l8 C) Yield (ppm C) a13C(%o) 

1005.2 Combustion 204 0.15 0.14 nm 
Combustion 352 1.19 1.19 -29.1 
Pyrolysis 602 6.63 6.60 -10.92 

91.2 Combustion 220 0.18 1.99 nm 
Combustion 364 0.20 2.15 nm 
Pyrolysis 602 0.91 10.00 -17.3 

(b) Single- step 'pyrolysis' , in the absence of supplied oxygen; Pt catalyst at room temperature. 

Weight (mg) Yield (Ilg C) Yield (ppm C) 

107.81 625 0.85 7.85 -9.6 

(c) Stepped heating, in the absence of supplied oxygen and with the Pt catalyst at room temperature. 

Weight (1118) T(°C) Yield (J.l.g C) Yield (ppm C) 313C (%0) 

894.36 300 0.17 0.19 om 
400 0.61 0.68 -11.6 
500 2.76 3.08 -8.3 
600 3.43 3.84 * om 

Note:· Sample contaminated (wet?) 

(d) Crushing of several quartz chips, using low volume, stainless steel screw action crusher, sealed with 

copper gasket. Bakeout tape at -77°C applied. Released gases not exposed to Pt catalyst. 

Sample weight: 256.69mg Yield: 0.35 IlgC (1.38ppmC) 

Because of the very low yield, the accuracy of the isotopic measurement was probably -0.5%. 
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Table B2.4 Sample: HEM-80-47 

(a) Stepped heating, in the absence of supplied oxygen and with the Pt catalyst at room temperature 
(sample outgassed at 300°C). 

Weight (mg) 

862.52 300-400 
500 
600 

Yield (Ilg C) 

1.61 
4.11 
4.41 

Yield (ppm C) 

1.87 
4.77 
5.11 

Note: * CO
2 

from this step was contaminated by hydrogen sulphide. 

-10.5 
-8.32 

* nm 

(b) Crushing of several quartz chips, using low volume, stainless steel screw action crusher, sealed with 

copper gasket. Bakeout tape at -70°C applied. Released gases not exposed to Pt catalyst. 

Sample weight: 444.22mg Yield: 0.79 p,gC (1.78ppmC) 

Table B2.S Sample: SW -84-18 

(a) Stepped 'combustion' followed by ·pyrolysis'. Released gases exposed to Pt foil at -1050°C during 

all extraction steps. 

(b) 

Weight (mg) 

1004.0 

Release 

Combustion 
Pyrolysis 

390 
620 

Yield (Ilg C) 

2.33 
3.36 

Yield (ppm C) 

2.31 
3.35 

Single- step 'pyrolysis', in the absence of supplied oxygen. 

Weight (mg) Pt catalyst T(°C) Yield (Ilg C) Yield (ppm C) 

1016.14 -2.5°C 300-600 6.27 6.17 

603.26 _2.5°C 630 3.77 6.24 

100.17 -25°C 635 0.69 6.86 

101.0 -1050°C 613 0.81 7.98 

Table B2.6 Sample: SW-84-27 

-11.5 
-9.1 

a13c (%0) 

-7.48 

-8.7 

-11.0 

-17.4 

(a) Stepped 'combustion' followed by ·pyrolysis'. Released gases exposed to Pt foil at -1050°C during 

all extraction steps. 

Weight (mg) 

1121.0 

Release 

Combustion 
Pyrolysis 

350 
610 

Yield (J.1g C) 
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1.00 
4.87 

Yield (ppm C) 

0.90 
4.34 

-11.3 
-6.01 



(b) Single-step 'pyrolysis', in the absence of supplied oxygen; Pt catalyst at room temperature. 

Weight (mg) 

1049.0 

252.3 

600 

625 

Yield(llg C) 

5.71 

1.46 

Yield (ppm C) 

5.44 -6.66 

5.80 -6.4 

(c) Stepped heating, in the absence of supplied oxygen and with the Pt catalyst at room temperature. 

Weight (mg) T (0C) Yield(llg C) Yield (ppm C) anc (%0) 

1096.8 300 0.05 0.04 nm 
400 1.77 1.61 -8.1 
500 2.21 2.02 -7.0 
600 1.62 1.47 -7.0 
700 0.37 0.34 nm 

TableB2.7 Sample: CF-77-98 

(a) Stepped 'combustion' to -350°C followed by stepped 'pyrolysis' to higher temperatures. 

Released gases exposed to Pt foil at -1050°C during all extraction steps. 

Weight (mg) Release T(°C) Yield(llg C) Yield (ppm C) 013C (%0) 

1010.1 Combustion 220 0.64 0.64 -19.6 
Combustion 362 13.60 13.46 -13.92 
Pyrolysis 625 16.06 15.91 -11.63 
Pyrolysis 850 1.69 1.68 -11.9 
Pyrolysis 1200 1.46 1.45 -15.5 

51.12 Combustion 220 1.81 35.31 -27.1 
Combustion 370 1.26 24.70 -16.4 
Pyrolysis 600 0.57 11.17 -12.0 

(b) Single-step heating. in the absence of supplied oxygen. 

Weight (mg) Pt catalyst T(°C) Yield (J.lg C) Yield (ppm C) al3c (%0) 

480 -25°C 600 16.17 34.93 -11.03 

45.24 -25°C 600 1.54 33.96 -11.2 

28.99 -25°C 600 0.92 31.72 -11.4 

21.6 -25°C 600 0.95 44.13 -11.5 

22.65 -I050oC 600 0.98 35.44 -15.4 
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(c) Stepped heating, in the absence of supplied oxygen. 

Weight (mg) Pt catalyst TeC) Yield (Ilg C) Yield (ppm C) /)13C (%0) 

1060.6 -25°C 220 0.90 0.85 -12.2 
356 14.52 13.69 -11.71 
850 17.90 16.88 -10.71 

1200 1.11 1.05 -11.7 

159.04 -25°C 220 0.17 1.03 nm 
350 2.73 17.18 -12.2 
600 2.43 15.27 -11.1 

137.88 -1050OC 225 0.31 2.25 
350 2.73 17.07 -13.6 
620 2.44 17.69 -14.4 

(d) Crushing of quartz chips, using low-volume, stainless steel screw action crusher, sealed with copper 

gasket. Bakeout tape at _77°C applied. Released gases not exposed to Pt catalyst. 

Sample weight: 271.01 mg Yield: 2.891lgC (10.67 ppmC) 

B.3 

Results of carbon stable isotope replicate analyses of IAEA natural gas standard NGS-l (A8), using the 

preparation procedures described in Section 3.4.5.6.2. This material was collected (and supplied to the author) 

by G Hut, University of Groningen, The Netherlands. The gas is coal related and consists of 81.4% CH
4 

(&13C 

value of -28.95 ± 0.21%0, 10 error), with the remainder being primarily nitrogen (14.2%), together with COz 

(1.1%), C
Z
H

6 
(2.8%, /)uC value of -26.03t0.35%0) and C3HS (0.4%, ~13C value of -20.79%0). Higher alkanes 

are present at trace levels. 

Aliquot (flgC) 

146 -29.29 

146 -29.15 

151 -28.94 

80 -29.45 
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Appendix C 

Details of the gas purification protocol (after S R Boyd. unpublished) adopted during the investigation 
of ISN / 14N stable isotope ratios in nanomole quantities of fluid inclusion nitrogen. Analyses were 

undertaken using the mass spectrometer and associated preparation line described by Wright et al. 
(1988) and Boyd (1988). Refer to Figure 4.5 of the present work for details of the preparation line. 

Timer setting t 
(min. sec.) 

63.00 

53.30 

52.00 

40.30 
39.00 

28.30 

27.30 

26.30 

26.00 

24.00 

18.00 

14.30 

13.00 

11.30 

1.30 

0.00 

-6.00 

Notes: 

First sup only 

Commence fll'st extraction step. 

Reference gas aliquot into final purification stage (VTC#3)~ 
Reference gas aliquot admitted into mass spectrometer. 

Reference gas aliquot (#2) into final purification stage (VTC#3). 

Reference gas aliquot admitted into mass spectrometer. 

Molecular sieve (MS) cooled to -196°C. 

Reference gas aliquot into final purification stage (VTC#3). 

Reference gas aliquot admitted into mass spectrometer. 

Sample gas transferred from extraction section to MS at -196°C. 

Sample gas completely transferred to MS; purification section isolated. 
MS temperature raised to -200°C; temperature of CuD in purification section 
(Cu0#2) raised to 8S0°C. Next heating step commenced. 

Cu0#2 temperature reduced from 850 to 600°C. Liquid nitrogen trap placed 
around VTC#2; temperature ofVTC#2 maintained at -185°C. 

Reference gas aliquot into fmal purification stage (VTC#3). 

Reference gas aliquot admitted into mass spectrometer. 

Cu0#2 temperature reduced from 600 to 450°C. 

Sample gas aliquot into final purification stage (VTC#3) 

Sample gas aliquot admitted into mass spectrometer. 

Timer set to 33.00 minutes on commencement of pump-out of sample gas from 
mass spectrometer. (1bis allows provision for the analysis of two aliquots of 
reference gas between each sample gas aliquot). 

t Time before admitting sample gas to mass spectrometer inlet. 

• 
Variable temperature cold trap VTCt#3 maintained at -18SoC throughout. 



References 

Abrajano T. A., Sturchio N. C., BOhlke I. K., Lyon G. L., Poreda R. I. and Stevens C. M. (1988) 

Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: deep or shallow origin? In: M. Schoell 

(Guest-Editor), Origins o/methane in the Eanh. Chem. Geol. 71, 211-222. 

Abrajano T. A., Sturchio N. C., Kennedy B. M., Lyon G. L., Muehlenbachs K. and BOhlke 1. K. (1990) 

Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines. Appl. 

Geochem. 5, 625-630. 

Alderton D. H. M. (1978) Fluid inclusion data for lead-zinc ores from southwest England. Trans. Instil. 
Mining and Metallurgy 87, BI32-135. 

Alderton D. H. M. and Harmon R. S. (1991) Fluid inclusion and stable isotope evidence fa the origin of 

mineralizing fluids in south-west England. Min. Mag. 55, 605-611. 

Aldrich T. and Nier A. O. (1948) Argon 40 in potassium minerals. Pbys. Rev. 74, 876-877. 

Althaus E. and Herold G. (1987) Hydrothermal reactions between rock forming minerals, Falkenberg 

granite and heat exchange fluids in hot dry rock systems. Geol. Iahrb. E39, 177-192. 

Amari S., Anders E .• Virag A. and Zinner E. (1990) Interstellar graphite in meteorites. Nature 345, 

238-240. 

Andrawes F. F. and Gibson E. K., Ir. (1979) Release and analysis of gases from geological samples. 

Amer. Mineral. 64, 453-463. 

Arnorsson S. and Gunnlaugsson E. (1985) New gas geothermal exploration - calibration and application. 

Geochim. Cosmochim. Acta 49, 1307-1325. 

Arthur M. A., Dean W. E. and Claypool G. E. (1985) Anomalous 13C enrichment in modem marine 

organic carbon. Nature 315, 216-218. 

Ash R. D. (1990) Interstellar dust from primitive meteorites: a carbon and nitrogen isotope study. 

UnpUblished PhD thesis, The Open University, UK. 220 pp. 

Ash R. D., Arden I. W. and Pillinger C. T. (1989) Light nitrogen associated with silicon carbide in Cold 

Bokkeveld. Meteoritics 24, 248-249. 

Ash R. D., Arden I. W., Grady M. M., Wright I. P. and Pillinger C. T. (1990) Recondite interstellar 

carbon components in the Allende meteorite revealed by preparative precombustion. Geochim. 
Cosmochim. Acta 54, 455-468. 

Ash R. D., Arden I. W., Wright I. P., Grady M. M. and Pillinger C. T. (1988) An interstellar dust 
component rich in 12C. Nature 336,228-230. 

Baertschi P. (1976) Absolute 180 content of standard mean ocean water. Earth Planet. Sci. Lett. 31, 
341-344. 

302 



Bakker R. J. and Jansen J. B. H. (1990) Preferential water leakage from fluid inclusions by means of 

mobile dislocations. Nature 345, 58-60. 

Banks D. A. and Yardley B. W. D. (1992) Crush-leach analysis of fluid inclusions in small natural and 

synthetic samples. Geochim. Cosmochim. Acta 56,245-248. 

Bannon M. P. (1989) Argon isotope studies of fluid inclusions in quartz and fluorite from areas of 

mineralization. Unpublished PhD thesis, University of Sheffield, UK. 110 pp. (& appendices) 

Barker C. and Torkelson B. E. (1975) Gas adsorption on crushed quartz and basalt. Geochim. 

Cosmochim. Acta 39, 212-218. 

Bath A. H., Brassell S. C., Eglinton G., Hill R. I., Hooker P. J., O'Nions R. K., Oxburgh E. R., 

Parnell J., Robinson N. and Spiro B. (1986) Deep source gases and hydrocarbons in the UK. crust. Rep. 
Fluid Processes Res. Group, Br. Geol. Surv., FLPU 86-2. (ISBN 0 85272 1269) 

Bebout G. E. and Fogel M. L. (1992) Nitrogen-isotope compositions of metasedimentary rocks in the 
Catalina Schist, California: Implications for metamorphic devolatization history. Geocbim. Cosmocbim. 

Acta 56,2839-2849. 

Becker R. H. (1982) Nitrogen isotopic ratios of individual diamond samples. Abstracts, Fifth 

International Conference on Geochronology, Cosmochronology and Isotope Geology, 1982. 

Becker R. H. and Clayton R. N. (1975) Nitrogen abundances and isotopic compositions in lunar 

samples. Proc. Lunar Planet. Sci. Conf. VI, Pergamon, New York. pp.2131-2149. 

Becker R. H. and Clayton R. N. (1977) Nitrogen isotopes in igneous rocks. Eos, Trans. Amer. 

Geophys. Union 58, 536. 

Becker R. H. and Epstein S. (1981) Carbon isotope ratios in some low-81SN lunar breccias. Proc. 

Lunar Planet Sci. Conf. XII, 289-293. 

Beer K. E. and Ball T. K. (1987) Tungsten mineralisation and magmatism in S W England. Cbron. 

rech. min. 487, 53-62. 

Beer K. E. and Scrivener R. C. (1982) Metalliferous mineralisation. In: E. M. Durrance and D. J. 
Laming (Editors), The Geology of Devon. University of Exeter Press. Chapter 6 (pp. 117-145). 

Bergman S. C. and Dubessy J. (1984) CO2-CO fluid inclusions in a composite peridotite xenolith: 

implications for upper mantle oxygen fugacity. Contrib. Mineral. Petrol. 85, 1-13. 

Bigeleisen 1., Perlman M. L. and Prosser H. C. (1952) Conversion of hydrogenic materials to hydrogen 

for isotopic analysis. Anal. Chern. 24, 1356-1357. 

Bishop P. M. E. (1990) Isotope systematics and microstructures of slates from south-west England and 

north Wales. Unpublished PhD thesis, University of Leeds, UK. 235 pp. 

Blank J. G., Stolper E. M. and Carroll M. R. (1993) Solubilities of carbon dioxide and water in rhyolitic 

melt at 850°C and 750 bars. Earth Planet Sci. Lett. 119, 27-36. 

303 



Bodnar R. 1., Binns P. R. and Hall D. L. (1989) Synthetic fluid inclusions - VI. Quantitative evaluation 

of the decrepitation behaviour of fluid inclusions in quartz at one aunosphere confining pressure. J. 
Metamorphic Geol. 7, 229-242. 

BOhlke J. K. and Irwin J. J. (1992) Laser microprobe analyses of CI, Br, I and K in fluid inclusions: 

implications for sources of salinity in some ancient hydrothermal fluids. Geochim. Cosmochim. Acta 

56, 203-255. 

Bos A., Duit W., van der Eerden Ad M. J. and Jansen J. B. H. (1988) Nitrogen storage in biotite: an 

experimental study of the ammonium and potassium partitioning between IM-phlogopite and vapour at 
2kb. Geochim. Cosmochim. Acta 52, 1275-1283. 

Bott M. H. P., Day A. A. and Masson-Smith D. (1958) The geological interpretation of gravity and 
magnetic surveys in Devon and Cornwall. Phil. Trans. R. Soc. 251A, 161-191. 

Bottinga Y. (1969) Calculated fractionation factors for carbon and hydrogen isotope exchange in the 
system calcite-C0

2
-graphite-methane-hydrogen and water vapor. Geochim. Cosmochim. Acta 33, 49-

64. 

Bottrell S. H. (1986) The origin of the gold mineralization of the Dolgellau district, North Wales: the 
chemistry and role of the fluids. Unpublished PhD thesis, University of East Anglia, UK. 452 pp. 

Bottrell S. H., Carr L. P. and Dubessy J. (1988) A nitrogen-rich metamorphic fluid and coexisting 

minerals in slates from North Wales. Min. Mag. 52,451-457. 

Bottrell S. H. and Miller M. F. (1989) Analysis of reduced sulfur species in inclusion fluids. Beon. 
Gool. 84, 940-945. 

Bottrell S. H. and Miller M. F. (1990) The geochemical behaviour of nitrogen compounds during the 
formation of black shale hosted quartz-vein gold deposits, north Wales. Appl. Geochem. 5, 289-296. 

Bottrell S. H. and Yardley B. W. D. (1988) The composition of a primary granite-derived ore fluid from 

S W England, determined by fluid inclusion analysis. Geochim. Cosmochim. Acta 52, 585-588. 

Bottrell S. H., Yardley B. W. D. and Buckley F. (1988) A modified crush-leach method for the analysis 

of fluid inclusion electrolytes. Bull. Mintral. 111, 279-290. 

Boyd S. R. (1988) A study of carbon and nitrogen isotopes from the Earth's man tIe. Unpublished PhD 

thesis, The Open University, UK. 213 pp. 

Boyd S. R., Hall, A. and Pillinger C. T. (1993) The measurement of SlsN in crustal rocks by static 

vacuum mass spectrometry: application to the origin of the ammonium in the Comubian batholith. 

southwest England. Geochim. Cosmochim. Acta 57. 1339-1347. 

Boyd S. R., Mattey D. P., Pillinger C. T., Milledge H. J., Mendelssohn M. and Seal M. (1987) 

Multiple growth events during diamond genesis: an integrated study of carbon and nitrogen isotopes and 

nitrogen aggregation state in coated stones. Earth Planet Sci. Lett 86, 341-353. 

Boyd S. R. and Pillinger C. T. (1990) Determination of the abundance and isotopic composition of 

nitrogen within organic compounds: a sealed tube technique for use with static vacuum mass 

spectrometers. Meas. Sci. Technol. 1, 1176-1183. 

304 



Boyd S. R. and Pillinger C. T. (1991) Rubidium sulphate - ammonium sulphate solid solution: a 
standard for use during the detennination of nitrogen abundance and isotopic composition at the ppm level 
by static-vacuum mass spectrometry. Anal. Chern. 63, 1332-1335. 

Boyd S. R., Wright I. P., Franchi I. A. and Pillinger C. T. (1988) Preparation of sub-nanomole 
quantities of nitrogen gas for stable isotopic analysis. J. Phys. E: Sci. lnstrum. 21, 876-885. 

Bradley A D., Vickers B. P., Peachey D. and Levinson A A (1990) The geochemical significance of 
two different chemical attacks used in ammonium lithogeochemistry. Appl. Geochem. 5,471-473. 

Brammall A. and Harwood H. F. (1932) The Dartmoor granites: genetic relationships. Quart. J. Geol. 
Soc. 88, 171-237. 

Briden J. C., Drewry G. E. and Smith A. G. (1974) Phanerozoic equal-area world maps. J. Oeol. 81, 
555-574. 

Brigham R. H. and O'Neil J. R. (1985) Genesis and evolution of water in a two-mica pluton: a 
bydrogen isotope study. Chern. Geol. 49, 159-177. 

Brooks M., Doody J. J. and AI-Rawi F. R. 1. (1984) Major crustal reflectors beneath S W England. J. 
Geol. Soc. London 141, 97-103. 

Broucker W. S. and Oversby V. M. (1971) Chemical equilibrium in the Earth. McGraw-Hill, 318 pp. 

Brown P. W. and Pillinger C. T. (1981) Nitrogen concentrations and isotopic ratios from separated lunar 
soils. Meteoritics 16, 298. 

Bull B. W. (1982) Geology and mineralisation of an area around Tavistock, south west England. 
Unpublished PhD thesis, University of Exeter, UK. 338 pp. 

Burke E. A. J. and Lustenhouwer W. J. (1987) The application of a multichannel laser Raman 
microprobe (Microdil-28) to the analysis of fluid inclusions. Chern. Geol. 61, 11-17. 

Burke W. H., Denison R. E., Hetherington E. A, Koepnick R. B., Nelson H. F. and Otto J. B. (1982) 
Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10,516-519. 

Burnham C. W. (1979) Magmas and hydrothermal fluids. In: H. L. Barnes (Editor), Geochemistry of 
hydrothermal ore deposits, pp.71-136. John Wiley & Sons. 

Burnham C. W. and Ohmoto H. (1980) Late-stage processes of felsic magmatism. Min. Soc. Japan 
Special Issue 8, 1-11. 

Bussink R. W. (1981) Fluid inclusion studies of the W -So ore deposits of Panasqueira, Portugal. 
Abstracts, sixth European Conference 011 Research in Fluid Inclusions, Utrecht. 

Bussink R. W. (1984) Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica 
Ultraiectina 33, 1-170. 

Bussink R. W., Kreulen R. and de Jong A. F. M. (1984) Gas analyses, fluid inclusions and stable 
isotopes of the Panasqueira W -Sn deposits, Portugal. Bull. Min~ral. 107, 703-713. 

305 



Campbell A. R. and Panter K. S. (1990) Comparison of fluid inclusions in coexisting (cogenetic?) 
wolframite, cassiterite, and quartz from St. Michael's Mount and Cligga Head, Cornwall, England. 
Geochim. Cosmochim. Acta 54, 673-681. 

Carr R. H. (1985) High sensitivity stable carbon isotope ratio mass spectrometry: instrument 
development and applications. Unpublished PhD thesis, University of Cambridge, UK. 252 pp. 

Carr R. H., Wright I. P., Joines A. T. and Pillinger C. T. (1986) Measurement of carbon stable isotopes 

at the nanomole level: a static mass spectrometer and sample preparation technique. J. Phys. E: Sci. 

Instrum. 19, 798-808. 

Carr R. H., Wright I. P., Pillinger C. T., Lewis R. S. and Anders E. (1983) Interstellar carbon in 

meteorites: isotopic analysis using static mass spectrometry. Meteoritics 18,277. 

Channer D. M. DeR. and Spooner E. T. C. (1992) Analysis of fluid inclusion leachates from quartz by 

ion chromatography. Geochim. Cosmochim. Acta 56,249-259. 

Chappell B. W. and White A. J. R. (1974) Two contrasting granite types. Pacific Geal. 8, 173-174. 

Charoy B. (1979) Definition et importance des phenom~nes deuteriques et des fluides associes dans les 

granites. Cons~quences m~tallog6niques. Sci. nrre, Nancy, Mem. 37, 364 pp. 

Charoy B. (1981) Post-magmatic processes in south-west England and Brittany. Ussher Proc. Soc. 5, 

101-115. 

Chen Y., Clark A. H., Farrar E., Wasteneys H. A. H. P., Hodgson M. J. and Bromley A. V. (1993) 
Diachronous and independent histories of plutonism and mineralization in the Comubian batholith, 

southwest England. J. Geol. Soc. London 150, 1183-1191. 

Chesley J. T., Halliday A. N., Snee L. W., Mezger K., Shepherd T. J. and Scrivener R. C. (1993) 

Thermochronology of the Comubian batholith: implications for pluton emplacement and protracted 

hydrothermal mineralization. Geochim. et Cosmochim. Acta 57, 1817-1835. 

Chorlton L. B. and Martin R. F. (1978) The effect of boron on the granite solidus. Canadian 

Mineralogist 16, 239-244. 

Christie A. B. (1989) Problems of crush -leach analyses of low -salinity inclusion -poor material. Chern. 

Geol. 78, 35-51. 

Clark A. H., Chen Y., Farrar E., Wasteneys H. A. H. P., Stimac J. A., Hodgson M. J., Willis-Richards 
J. and Bromley A. V. (1993) The Comubian Sn-Cu (-As, W) metanogenetic province: product of a 30 

m.y. history of discrete and concomitant anatectic, intrusive and hydrothermal events. Proc. Ussher Soc. 

8, 112-116. 

Clark I. D. and Lauriol B. (1992) Kinetic enrichment of stable isotopes in cryogenic calcites. Chern. 

Geol. (Isotope Geosciences Section) 102,217-228. 

Clayton R. N. and Mayeda T. K. (1963) The use of bromine pentafluoride in the extraction of oxygen 

from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 27, 43-52. 

306 



Cline J. D. and Kaplan I. R. (1975) Isotopic fractionation of dissolved nitrate during denitrification in the 
Eastern tropical North Pacific ocean. Marine Chemistry 3,271-299. 

Coleman M. L. and Cox M. A. (1981) Inter-laboratory calibration of carbon isotope value for NBS-22 
lubricating oil. Institute of Geological Sciences, Isotope Geology Unit Stable Isotope Report No. 63, 10 
pp. 

Coleman M. L., Shepherd T. J., Durham J. J., Rouse J. E. and Moore G. R. (1982) Reduction of water 
with zinc for hydrogen isotope analysis. Anal. Chern. 54, 993-995. 

Cooper D. C. and Bradley A. D. (1990) The ammonium contents of granites in the Englisb Lake 
District Geol. Mag. 127, 579-586. 

Coplen T. B. (1988) Normalization of oxygen and hydrogen isotope data. Chern. Geot. (Isotope 
Geosciences Section) 72, 293-297. 

Coplen T. B., Wildman J. D. and Chen J. (1991) Improvements in the gaseous hydrogen-water 
equilibration technique for hydrogen isotope ratio analysis. Anal. Cbem. 63, 910-912. 

Cornwell J. D. (1967) Palreomagnetism of the Exeter lavas, Devonshire. Geophys. J. R. astr. Soc. 12, 
181-196. 

Cotton F. A. and Wilkinson G. (1988) Advanced inorganic chemistry. John Wiley & Sons, 1455 pp. 

Craig H. (1953) The geochemistry of the stable carbon isotopes. Geochim. Cosmochim. Acta 3,53-92. 

Craig H. (1957) Isotopic standards for carbon and oxygen and correction factors for mass spectrometric 
analysis of CO2, Geochim. Cosmochim. Acta 12, 133-149. 

Craig H. (196la) Isotopic variations in meteoric waters. Science 133, 1702-1703. 

Craig H. (1961 b) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. 

Science 133, 1833-1834. 

Criss R. E. (1991) Temperature dependence of isotopic fractionation factors. In: H. P. Taylor, Ir., 1. R. 
O'Neil and I. R. Kaplan (Editors). Stable Isotope Geochemistry: A tribute to Samuel Epstein. Special 

Publication No.3 of the Geochemical Society. pp. 11-16. 

Criss R. E. and Taylor H. P .• Jr. (1986) Meteoric·hydrothermal systems. In: J. W. Valley, H. P. 
Taylor, Ir., and J. R. O'Neil (Editors). Stable isotopes in high temperature geological processes. Reviews 
in mineralogy 16. Mineralogical Society of America. pp. 425-444. 

Dangerfield I. and Hawkes I. R. (1969) Unroofing of the Dartmoor granite and possible consequences 
with regard to mineralization. Proc. Ussher Soc. 2. 122-131. 

Dansgaard W. (1964) Stable isotopes in precipitation. Tellus 16. 436·468. 

Darbyshire D. P. F. and Shepherd T. I. (1985) Chronology of granite magmatism and associated 
mineralization. S W England. J. Geol. Soc. London 142, 1159·1177. 

307 



Darbyshire D. P. F. and Shepherd T. J. (1987) Chronology of magmatism in south-west England: the 
minor intrusions. Proc. Ussher Soc. 6, 431-438. 

Darbyshire D. P. F. and Shepherd T. J. (1990) Rb-Sr and Sm-Nd constraints on the age of 

mineralisation and the origin of hydrothermal fluids in S W England. Geological Society of Australia, 

Abstracts 27: Seventh International Conference on Geochronology, Cosmochronology and Isotope 

Geology, p. 24. Note: £Nd values do not appear in the published abstract, but were presented on the 
related conference poster. 

Darbyshire D. P. F. and Shepherd T. J. (1994) Nd and Sr isotope constraints on the origin of the 

Cornubian batholith, Southwest England. In press, J. Geol. Soc. London. 

Darimont A., Burke E. and Touret J. (1988) Nitrogen-rich metamorphic fluids in Devonian 

metasediments, Bastogne, Belgium. Bull. Min~ral. 111. 179-182. 

Dasch E. J. (1969) Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary 

rocks. Geochim. Cosmochim. Acta 33, 1521-1552. 

Davy H. (1817) Some new experiments and observations on the combustion of gaseous mixtures, with 

an account of a method of preserving a continued light in mixtures of inflammable gases and air without 

flame. Philos. Trans. R. Soc. London 107,77-85. 

Davy H. (1822) On the state of water and aeriform matter in cavities found in certain crystals. Royal 

Soc. London Philos. Trans. 2, 367-376. 

Deines P. (1970) Mass spectrometer correction factors for the determination of small isotopic variations 

of carbon and oxygen. Int. J. Mass Spectr. Ion Phys. 4, 283-295. 

Deines P. (1979) A note on hydrogen isotope fractionation involving acidic and basic solutions. 

Geochim. Cosmocbim. Acta 43, 1575-1577. 

Deines P. (1980) The isotopic composition of reduced carbon. In: P. Fritz and J. Ch. Fontes (Editors), 

Handbook of environmental isotope geochemistry, 1. The terrestrial environment A. Elsevier, pp.329-

405. 

Deines P., Harris J. W. and Gurney J. J. (1987) Carbon isotopic composition, nitrogen content and 

inclusion composition of diamonds from the Roberts Victor kimberlite, South Africa: evidence for 13C 

depletion in the mantle. Geochim. Cosmochim. Acta 51, 1227-1243. 

De Wit M. J., Hart R., Martin A. and Abbot P. (1982) Archaen abiogenic and probable biogenic 

structures associated with mineralized hydrothermal vent systems and regional metasomatism, with 
implications for greenstone belt studies. Econ. Gool. 77, 1783-1801. 

Delwiche C. C. (1970) The nitrogen cycle. Sci. Amer. 223, 136-147. 

Delwiche C. C. and Steyn P. L. (1970) Nitrogen fractionation in soils and microbial reactions. Environ. 
Sci. Technol. 4, 929-935. 

DesMarais D. J. (1978) Carbon, nitrogen and sulphur in Apollo 15, 16 and 17 rocks. Proc. Lunar 
Planet. Sci. Conf. IX, 2451-2467. 

308 



DesMarais D. J. (1983) Light element geochemistry and spallogenesis in lunar rocks. Geochim. 
Cosmochim. Acta 47, 1769-1781. 

Des Marais D. J. (1986) Carbon abundance measurements in oceanic basalts: the need for consensus. 
Earth Planet. Sci. Lett. 79, 21-26. 

DesMarais D. J., Donchin 1. H., Nehrig N. L. and Truesdell A. H. (1981) Molecular evidence for the 
origin of geothermal hydrocarbons. Nature 292, 826-828. 

DesMarais D. J. and Moore J. G. (1984) Carbon and its isotopes in mid-oceanic basaltic glasses. Earth 

Planet. Sci. Lett. 69, 43-57. 

DesMarais D. J., Stallard M. L., Nehring N. L. and Truesdell A. H. (1988) Carbon isotope 
geochemistry of hydrocarbons in the Cerro Prieto geothermal field, Baja California Norte, Mexico. In: 
M. Schoell (Guest-Editor), Origins o/methane in the Earth. Chern. Geol. 71, 159·167. 

Deuser W. G. (1970) Extreme 13Cj12C variations in Quaternary dolomites from the continental shelf. 
Earth Planet. Sci. Lett. 69, 43-57. 

Diamond L. W., Jackman J. A. and Charoy B. (1991) Cation ratios of fluid inclusions in a gold-quartz 
vein at Brosson, Val d' Ayas, northwestern Italian Alps: comparison of bulk crush-leach results with 
SIMS analyses of individual inclusions. Chern. Geol. 90, 71·78. 

Dines H. G. (1956) The metalliferous mining region of south-west England. Memoir Geol. Surv. Gt. 
Brit. London: HMSO (1988 reprint), 795 pp. 

Douthitt C. B. (1990) Isotope ratio monitoring mass spectrometry: a possible approach to a stable 
isotope microprobe. Geological Society of Australia, Abstracts 27: Seventh International Conference on 
Geochronology, Cosmochronology and Isotope Geology, p. 28. 

Dubessy J. (1984) Simulation des ~quilibres chimiques dans Ie syst~me C·O-H. Cons~uences 
methodologiques pour les inclusions fluides. Bull. Min~ra1. 107, 155-168. 

Dubessy 1. (1985) Contribution tt I'~tude des interactions entre pal~o-fluides et mineraux A partir de 
l'etude des inclusion flu ides par micros¢ctrometrie Raman. Cons~quences metallogeniques. Unpublished 
PhD thesis, Inst. National Poly technique de Lorraine, Nancy, France. 198 pp. 

Dubessy J., Poty B. and Rarnboz C. (1989) Advances in C-O-H-N-S fluid geochemistry based on 
micro -Raman spectrometric analysis of fluid inclusions. Eur. J. Mineral. 1, 517-534. 

Dubessy J. and Ramboz C. (1986) The history of organic nitrogen from early diagenesis to amphibolite 
facies: mineralogical, cbemical, mechanical and isotopic implications. 5th international symposium on 
water-rock interaction. Reykjavik, Iceland. Extended abstracts, 171-174. 

Dubessy J., Ramboz C., Nguyen-Truns C., Cathelineau M., Charoy B., Cuney M.t Leroy J. t Poty B. 
and Weisbrod A. (1987) Physical and chemical controls (f02' T, pH) of the opposite behaviour of U and 
SnoW as exarnplified by hydrothermal deposits in France and Great Britain, and solubility data. Bull. 
Min~ral. 110, 261-281. 
Dugan 

309 



Dugan J. P., Jr., Borthwick J., Harmon R. S., Gagnier M. A., Glahn 1. E., Kinsel E. P., MacLeod S. 

and Viglino 1. A. (1985) Guanidine hydrochloride method for determination of water oxygen isotope 

ratios and the oxygen -18 fractionation between carbon dioxide and water at 25°C. Anal. Chern. 57, 
1734-1736. 

Duit W., Jansen B. H., Breemen A. Van and Bos A. (1986) Anunonium micas in metamorphic rocks as 
exemplified by D6me de l' Agout (France). Amer. J. Sci. 286, 702-732. 

Durrance E. M., Bromley A. V., Bristow C. M., Heath M. 1. and Penman J. M. (1982) Hydrothermal 

circulation and post-magmatic changes in granites of south-west England. Proc. Ussher Soc. 5, 304-

320. 

Edmunds W. M., Andrews J. N., Burgess W. G., Kay R. L. F. and Lee D. 1. (1984) The evolution of 

saline and thermal groundwaters in the Carnmenellis granite. Min. Mag. 48, 407-424. 

Edmunds W. M., Kay R. L. F. and McCartney (1985) Origin of saline groundwaters in the Carnmenellis 

granite: natural processes and reaction during Hot Dry Rock reservoir circulation. Chern. Geo!. 49, 287-

301. 

Edmunds W. M., Kay R. L. F., Miles D. L. and Cook 1. M. (1987) The origin of saline groundwaters 

in the Cammenellis granite, Cornwall (UK.): further evidence from minor and trace elements. In: P. 

Fritz and S. K. Frape (Editors), Saline waters and gases in crystalline rocks. Geological Association of 

Canada Special Paper 33, pp. 127-143. 

Edmunds W. M. and Savage D. (1991) Geochemical characteristics of groundwater in granites and related 
crystalline rocks. In: R. A. Downing and W. B. Wilkinson (Editors), Applied groundwater hydrology: a 
British perspective, pp. 266-282. Clarendon Press. 

Eggler D. H. and Kadik A. A. (1993) The system NaAI30.-HP-C01 to 20kbars pressure: 1. 
Compositional and thermodynamic relations of liquids and vapors coexisting with albite. Amer. Mineral. 

64, 1036-1048. 

Ellis A. 1. (1957) Chemical equilibrium in magmatic gases. Amer. 1. Sci.1S5, 416-431. 

Emery K. 0., Orr W. L. and Rittenberg S. C. (1955) Nutrient budgets in the ocean. In: Essays in 
natural sciences in honor of Captain Allan Handcock. University Press, California US A, pp.299-310. 

Erd R. C., White D. E., Fahey J. 1. and Lee D. E. (1964) Buddingtonite, an ammonium feldspar with 

zeolitic water. Amer. Mineral. 49, 831-850. 

Eugster H. P. (1957) Heterogeneous reactions involving oxidation and reduction at higb pressures and 

temperatures. J. Chem. Phys. 26, 1760-1761. 

Eugster H. P. (1985) Granites and hydrotbennal ore deposits: a geochemical frameworlc:. Min. Mag. 49, 
7-24. 

Eugster H. P. (1981) Metamorphic solutions and reactions. In: D. T. Rickard and F. E. Wickbam 

(Editors), Chemistry and geochemistry of solutions at high temperatures and pressures. Pbysics and 
Chemistry of the Earth 13 & 14, 461-503. 

Eugster H. P. and Munoz J. (1966) Ammonium micas: possible sources of atmospheric ammonia and 

nitrogen. Science 151, 683-686. 

310 



Evans J. A. (1990) Reselling of Rb-Sr whole-rock isotope systems during low-grade metamorphism, 
north Wales. Unpublished PhD thesis, University of London, UK. 21 I pp. 

Evans R. J. and Felbeck G. T., Jr., (l983a) High temperature simulation of petroleum formation - I. 
The pyrolysis of Green River Shale. Org. Geochem. 4, 135-144. 

Evans R. J. and Felbeck G. T. Jr., (1983b) High temperature simulation of petroleum formation - III. 
Effect of organic starting material structure on hydrocarbon formation. Org. Geocbem. 4, 153-160. 

Exley R. A., Boyd S. R., Malley D. P. and Pillinger C. T. (1986/87) Nitrogen isotope geochemistry of 

basaltic glasses: implications for mantle degassing and structure? Earth Planet. Sci. Lett. 81, 163-174. 

Exley R. A., Malley D. P., Clague D. A. and Pillinger C. T. (1986) Carbon isotope systematics of a 

mantle "hotspot": a comparison of Loihi Seamount and MORB glasses. Earth Planet. Sci. Lett. 78, 
189-199. 

Exley R. A., Matley D. P. and Pillinger C. T. (1987) Low temperature carbon components in basaltic 

glasses - reply to comment by H. Craig. Earth Planet. Sci. Lett. 82, 387-390. 

Fallick A. E., Gardiner L. R., lull A. J. T. and Pillinger C. T. (1980) Instrumental effects in the 

application of static mass spectrometry to high sensitivity carbon isotope measurements. Adv. Mass 

Spectrometry SA, 309-317. 

FanaIe F. P. (1971) A case for catastrophic early degassing of the Earth. Chem. Geol. 8, 79-105. 

Farquhar J. and Chacko T. (1991) Isotopic evidence for involvement of CO2-bearing magmas in 

granulite formation. Nature 354,60-63. 

Faure G. (1986) Principles of isotope geology. John Wiley & Sons, 589 pp. 

Fein J. B., Hemley J. J., D'Angelo W. M., Komninou A. and Sverjensky D. A. (1992) Experimental 
study of iron-chloride complexing in hydrothermal fluids. Geochim. Cosmochim. Acta S6 3179-3190. 

Fein J. B. and Walther J. V. (1987) Calcite solubility in supercritical CO2 -H20 fluids. Geochim. 

Cosmochim. Acta 51, 1665-1673. 

Fine G. and Stolper E. (1986) Dissolved carbon dioxide in basaltic glasses: concentrations and 

speciation. Earth Planet. Sci. Lett. 76, 263-278. 

Asher C. R., Kennicutt M. C (II) and Brooks J. M. (1990) Stable carbon isotopic evidence for carbon 

limitation in hydrothermal vent vestimentiferans. Science 247, 1094-1096. 

Fournier R. 0. and Truesdell A. H. (1973) An empirical Na-K-Ca geothermometer for natural waters. 
Geochim. Cosmochim. Acta 37, 1255-1275. 

Franchi I. A., Boyd S. R., Wright I. P., and Pillinger C. T. (1989) Applications of lasers in small
sample stable isotopic analysis. In: W. C. Shanks III and R. E. Criss (Editors), New frontiers in stable 
isotope research: Laser probes, ion probes. and small-sample analysis. US Geol. Survey Bull. 1890,51-

59. 

311 



French B. M. (1966) Some geological implications of equilibrium between graphite and a C-H-O gas 
phase at high temperatures and pressures. Rev. Geopbys. 4, 223-253. 

Freund F. (1986) Solute carbon and carbon segregation in magnesium oxide single crystals - a secondary 
ion mass spectrometry study. Phys. Chern. Miner. 13, 262-276. 

Freund F., Kathrein H., Wengeler H. and Knobel R. (1980) Carbon in solid solution in forsterite - a key 
to the untractable nature of reduced carbon in terrestrial and cosmogenic rocks. Geochim. Cosmochim. 
Acta 44, 1319-1333. 

Frick U. and Pepin R. O. (1981 a) On the distribution of noble gases in Allende: a dfferential oxidation 
study. Earth Planet. Sci. Leu. 56, 45-63. 

Frick U. and Pepin R. O. (1981 b) Microanalysis ofniuogen isotope abundances: association of nitrogen 
with noble gas carriers in Allende. Earth Planet. Sci. Lett. 56, 64-81. 

Friedman I. (1953) Deuterium content of natural waters and other substances. Geochim. Cosmochim. 
Acta 4,89-103. 

Friedman I. and O'Neil J. R. (1977) Compilation of stable isotope fractionation factors of geochemical 
interest In: M. Aeischer (Editor), Dala of Geochemistry, Chapter KK; US Geol. Survey Prof. Paper 
44O-KK. 

Fritz B., Clauer N., Kam M. (1987) Strontium isotope data and geochemical calculations as indicators 
for the origin of saline waters in crystalline rocks. In: P. Fritz and S. K. Frape (Editors), Saline waters in 
crystalline rocks. Geol. Assoc. Canada Special Paper 33, 121-126. 

Frost A. A. and Pearson R. G. (1961) Kinetics and mechanism. John Wiley & Sons, 403 pp. 

Fuex A. N. and Baker D. R. (1973) Stable carbon isotopes in selected granitic, mafic and ultramafic 
rocks. Geochim. Cosmochim. Acta 37, 2509-2521. 

Galimov E. M. (1988) Sources and mechanisms of gaseous hydrocarbons in sedimentary rocks. In: M. 
Schoell (Guest-Editor), Origins ofmelhane in the Earth. Chern. Geol. 71,71-95. 

Galimov E. M. (1991) Isotope fractionation related to kimberlite magmatism and diamond formation. 
Geocbim. Cosmocbim. Acta 55, 1697-1708. 

Gardiner L. R., lull A. I. T. and Pillinger C. T. (1978) Progress towards a direct measurement of 
13C;t2C ratios for bydrolysable carbon in lunar soil by static mass spectromecry. Proc. Lunar Planet 
Sci. Conf. IX, 2167-2193. 

Gardiner L. R. and Pillinger C. T. (1979) Static mass spectrometry for the detennination of active gases. 
Anal. Cbem. 51, 1230-1236. 

Garlick G. D. (1969) The stable isotopes of oxygen. In: K. H. Wedepohl (Editor), Handbook of 
Geochemistry, 8B. Springer-Verlag. 

Geiss I. and Bochsler P. (1982) Nitrogen isotopes in the solar system. Geochim. Cosmocbim. Acta 46, 
529-548. 

312 



Gibson E. K., Jr., Carr L. P. and Pillinger C. T. (1985) Nitrogen isotopic composition of Arcbaen 
samples: evidence of the Earth's early atmosphere? Proc. Lunar Planet Sci. Conf. XVI, 270-271. 

Giggenbach W. F. (1980) Geothermal gas eqUilibria. Geochim. Cosmocbim. Acta 44,2021-2032. 

Giggenbacb W. F. (1981) Geothermal mineral equilibria. Geochim. Cosmochim. Acta 45, 393-410. 

Giggenbach W. F. (1982) Carbon-13 exchange between CO2 and CH. under geothermal conditions. 

Geochim. Cosmochim. Acta 46, 159-165. 

Giggenbach (1984) Mass transfer in hydrothermal systems - a conceptual approach. Geochim. 

Cosmocbim. Acta 48, 2693-2711. 

Giggenbach W. F. (1987) Redox processes governing the chemistry of fumarolic discharges from White 
Island, New Zealand. Appl. Geochem.2, 143-161. 

Giggenbach W. F. (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. 

Geochim. Cosmochim. Acta 52, 2749-2765. 

Gilmour I. (1986) The distribution of carbon stable isotopes within sedimentary organic matter. 

Unpublished PhD thesis, University of Cambridge, UK. 240 pp. 

Gilmour I. and Pillinger C. T. (1985) Stable carbon isotopic analysis of sedimentary organic matter by 

stepped combustion of sedimentary samples. OrganiC Geochem. 8,421-426. 

Gold T. (1979) Terrestrial sources of carbon and earthquake out-gassing. J. Petrol. Geol. 1, 3-19. 

Gold T. and Soter S. (1982) Abiogenic methane and the origin of petroleum. Energy Explor. Exploit. 
1,89-104. 

Gonfiantini R. (1981) The 8-notation and the mass-spectometric measurement techniques. In: J. R. Gat 

and R. Gonfiantini (Editors), Stable isotope hydrology, deuterium and oxygen-18 in the water cycle. 
International Atomic Energy Agency, Vienna, Technical Report Series No. 210, Chapter 4 (pp. 35-84). 

Gonraantini R. (1978) Standards for stable isotope measurements in natural compounds. Nature :&71, 
534-536. 

Gordon S. and McBride B. J. (1971) Computer program for calculation of complex chemical equilibrium 

compositions, rocket performance, incident and reflected shocks, and Chapman-Iouguet detonations. 

NASA Special Publication SP-273, National Aeronautical and Space Administration, Washington DC, 
USA. 

Grady M. M. (1982) The content and isotopic composition of carbon in stony meteorites. UnpUblished 

PhD thesis, University of Cambridge, UK. 216 pp. 

Grady M. M. and Pillinger C. T. (1990) ALH 85085: nitrogen isotope analysis of a higbly unusual 
primitive chondrite. Earth Planet. Sci. Lett. 97, 29-40. 

Grady M. M .• Wright I. P .• Swart P. K. and Pillinger C. T. (1985) The carbon and nitrogen isotopic 

composition of ureilites: implications for their genesis. Geochim. Cosmochim Acta 49, 903-916. 

313 



Graff J. and Riuenberg D. (1952) Microdetennination of deuterium in organic compounds. Anal. Chern. 
24, 878-881. 

Graham C. M. and Sheppard S. M. F. (1980) Experimental hydrogen isotope studies, II. Fractionations 
in the systems epidote-NaCI-Hp, epidote-seawater, and the bydrogen isotopic composition of natural 
epidotes. Earth Planet Sci. Lett. 49, 237-25l. 

Green D. H., Eggins S. M. and Yaxley G. (1993) The other carbon cycle. Nature 365, 210-211. 

Guilhaumou N, Dhamelincourt P., Touray J. C. and Touret J. (1981) Etude des inclusion fluides du 
sysOOme N1-C02 de dolomites et de quartz de Tunisie septentrionale. Do[m~s de la microcryoscopie et de 
l'analyse II eCfet Raman. Geochim. Cosmochim. Acta 45,657-673. 

Haendel D., Miihle K., Nitzsche H -M., Stiehl G. and Wand U. (1986) Isotopic variations of the fixed 
nitrogen in metamorphic rocks. Geochim. Cosmochim. Acta SO, 749-758. 

Hagemann R., Nief G. and Roth E. (1970) Absolute isotopic scale for deuterium analysis of natural 
waters. Absolute D/H ratio for SMOW. Tellus 11,712-715. 

Hall A. (1971) Greisenisation in the granite oC Cligga Head, Cornwall. Proc. Geol. Ass. 81,209-230. 

Hall A. (1987) The ammonium content of Caledonian granites. J. Gool. Soc. London 144,671-674. 

Hall A. (1988) The distribution of anunonium in granites from South-West England. J. Geol. Soc. 
London 145, 37-41. 

Hall A. (1989) Ammonium in spilitized basalts of southwest England and its implications for the 
recycling of nitrogen. Geocbem. J. 23, 19-23. 

Hall A. (1990) Geochemistry of the Cornubian tin province. Mineral. Deposita 25, 1-6. 

Hall D. L. and Bodnar R. J. (1990) Methane in fluid inclusions from granulites: A product of bydrogen 
diffusion? Geochim. Cosmochim. Acta 54, 641-651. 

Hall W. and Friedman I. (1963) Composition of fluid inclusions, Cave-in-Rock fluorite district, Illinois 
and Upper Mississippi Valley zinc-lead clistricL Econ. Gool. 58,886-911. 

Hallam M. and Eugster H. P. (1976) Ammonium silicate stability relations. Contrib. Mineral. Petrol. 
57, 227-244. 

Halls C., Exley C. S. and Brunton E. (1985) A bibliography of magmatism and mineralization in S W 
England. Institution of Mining and Metallurgy, 80 pp. 

Hampton C. M. and Taylor P. N. (1983) The age and nature of the basement of southern Britain: 
evidence from Sr and Ph isotopes in granites. J. Geol. Soc. London 140, 499·509. 

Hanscbmann G. (1981) Berechnung von Isotopieeffekten auf quantenchemiscber Grundlage am Beispiel 
stickstoftbaltiger Moleki1le. ZIT-Mitt. 41, 19-39. 

Harland W. B., Armstrong R. L., Cox A. V., Craig L. E., Smith A. O. and Smith D. G. (1990) A 
geologic time scale 1989. Cambridge University Press, 263 pp. 

314 



Harris N. B. W., Jackson D. H., Mattey D. P., Santosb M. and Bartlett J. (1993) Carbon-isotope 

constraints on fluid advection during contrasting examples of incipient cbarnockite formation. J. 

Metamorpbic Geo!. 11.833-843. 

Harting P. and Maass I. (1980) Neue Ergebnisse zum Kohlenstoff-Isotopenaustauscb im System 

CH.-C02. In: Mitteilungen zur 2. Arbeitstagung 'Isotope in der Natur' November 1979, Vol. 2b, 

Leipzig, pp. 13-24. 

Hasbizume K. and Sugiura N. (1990) Precise measurement of nitrogen isotopic composition using a 
quadrupole mass spectrometer. Mass. Spectrosc. 38, 269-286. 

Hawkes J. R. (1982) The Darunoor granite and later volcanic rocks. In: E. M. Durrance and D. 1. 
Laming (Editors), The Geology of Devon. University of Exeter Press. Chapter 5 (pp. 85-116). 

Heggie M. I. (1992) A molecular pump in quartz dislocations. Nature 355,337-339. 

Heinrich C. A (1990) The cbemistry of hydrothennal tin (-tungsten) ore deposition. Econ. Oeol. 8S, 
457-481. 

Hemley J. 1. (1959) Some mineralogical equilibria in the system ~O-AIP3-Si02-H20. Amer. 1. 
Sci. 257, 241-270. 

Higashi S. (1978) Dioctabedral mica minerals with ammonium ions. Mineral. 1. 9,16-27. 

Hirsch P. B., Hutchinson 1. L. and TItchmarsh 1. (1986) Voidites in diamond. Evidence for a crystalline 

phase containing nitrogen. Phil. Mag. A 54, L49-L54. 

Hoefs J. (1987) Stable isotope geochemistry. Springer- Verlag, 241 pp. 

Hoering T. C. and Ford H. T. (1960) Isotope effect in the fixation of nitrogen by Azotobacter. 1. Amer. 
Chern. Soc. 82. 376-378. 

Holland H. D. (1973) Ocean water. nutrients and atmospheric oxygen. In: E. Ingerson (Editor), Proc. 
Symp. Hydrogeochem. Biogeochem. The Clarke Co., Washington DC, USA, 2,68-8l. 

Holland H. D. (1978) The chemistry of the atmosphere and oceans. lobn Wiley & Sons, 351 pp. 

HoUand H. D. (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, 
USA, 582 pp. 

Hollister L. S. (1990) Enrichment of CO2 in fluid inclusions by removal of Hp during crystal-plastic 

defonnation. J. Struct. Geol. 12, 895-901. 

Holloway 1. R. (1987) Igneous fluids. In: I. S. E. Carmichael and H. P. Eugster (Editors), 

Thermodynamic 11/lJdelling of geological materials: minerals, fluids and melts. Reviews in mineralogy 

17, Mineralogical Society of America, pp. 211-233. 

Holloway J. R. (1981) Compositions and fluid volumes of supercritical fluids in the Earth's crust. In: 

L. S. Hollister and M. L. Crawford (Editors), Fluid inclusions: applications to petrology. Mineralogical 

Association of Canada, short course handbook 6. 

315 



Holloway 1. R. and Reese R. L. (1974) The generation of N2-C02-H20 fluids for use in hydrothermal 

experimentation. I. Experimental method and equilibrium calculations in the C-O-H-N system. Amer. 

Mineral. 59, 587-597. 

Holub R. and Vonka P. (1976) The chemical equilibrium of gaseous systems. D. Reidel Publishing 

Company, 279 pp. 

Honma H. and Ithihara Y. (1981) DisUibution of ammonium in minerals of metamorphic and granitic 

rocks. Geochim. Cosmochim. Acta 45, 983-988. 

Holser W. T., Schidlowski M., Mackenzie F. T. and Maynard I. B. (1988) Biogeochemical cycles of 

carbon and sulfur. In: C. B. Gregor, R. M. Garrels, F. T. Mackenzie and I. B. Maynard (Editors), 

Chemical cycles in the evolution a/the Earth. Iohn Wiley & Sons, pp.l05-173. 

Horita I. (1988) Hydrogen isotope analysis of natural waters using an H2 -water equilibration method: a 

special implication to brines. Chern. Geol. (Isotope Geosciences Section) 72, 89-94. 

Horita I. (1989) Analytical aspects of stable isotopes in brines. Chem. Geol. (Isotope Geosciences 

Section) 79, 147-158. 

Horita I., Cole D. R and Wesolowski D. I. (1993) The activity-composition relationship of oxygen and 
hydrogen isotopes in aqueous salt solutions: II. Vapor-liquid water eqUilibration of mixed salt solutions 
from 50 to 100°C and geochemical implications. Geochim. Cosmochim. Acta 57, 4703-4711. 

Hulston I. R. (1986) Further isotopic evidence on the origin of methane in geothermal systems. 5th Int. 
Symp. on Water-Rock Interaction, Reykjavik, Aug. 1986. Extended Abstracts, pp. 270-273. 

Hulston I. R. and McCabe W. I. (1962) Mass spectrometer measurements in the thermal areas of New 

Zealand. Geochim. Cosmocbim. Acta 26,399-410. 

Hutchinson G. E. (1944) Nitrogen in the biogeochemistry of the atmosphere. Amer. Sci. 32, 178-195. 

Irako M., Oguri T. and Kanomata I (1975) The static operation mass spectrometer. Iapan I. Appl. Pbys. 

14, 523-543. 

Itihara Y. and Honma H. (1979) Ammonium in biotite from metamorphic and granitic rocks of Iapan. 

Geochim. Cosmochim. Acta 43, 503-509. 

Iackson D. H. (1990) Charnockite formation in southern India. Unpublished PhD thesis, Tbe Open 

University, UK. 223 pp. 

Iackson D. H., Mattey D. P. and Harris N. W. B. (1988a) Carbon isotope compositions of fluid 

inclusions in charnockites from southern India. Nature 333, 167-170. 

Iackson D. H., Mattey D. P., Santosh M. and Harris N. W. B. (1988b) Carbon stable isotope analysis 

of fluid inclusions by stepped heating. Mem. Gool. Soc. India 11, 149-158. 

Iackson N. I., Halliday A. N. and Sheppard S. M. F. (1982) Hydrothermal activity in the St lust mining 

district, Cornwall, England. In: A. M. Evans (Editor), Metallization. associated with acid magmatism. 
Iohn Wiley & Sons, pp.137-179. 

316 



Jackson N. J .• Moore J. McM. and Rankin A. H. (1977) Fluid inclusions and mineralisation at Cligga 

Head. Cornwall. England. J. Geol. Soc. London 134, 343-349. 

Jackson N. J., Willis-Richards J .• Manning D. A. C. and Sams M. S. (1989) Evolution of the 

Cornubian ore field, southwest England: Part II. Mineral deposits and ore-forming processes. Econ. 

Geol. 84, 1101-1133. 

Javoy M. and Pineau F. (1986) The volatile record of a 'popping' rock from the mid-Atlantic ridge at 
15°N: concentrations and isotopic compositions. Terra Cognita 6, 2, 191. 

Javoy M., Pineau F. and Delorme H. (1986) Carbon and nitrogen isotopes in the mantle. Chern. Geol. 

57,41-62. 

Javoy M .• Pineau F. and Demaiffe D. (1984) Nitrogen and carbon isotopic composition in the diamonds 
of Mbuji Mayi (Zaire). Earth Planet Sci. Lett. 68, 399-412. 

Javoy M., Pineau F. and Iiyama I. (1978) Experimental determination of the isotopic fractionation 

between gaseous CO2 and carbon dissolved in tholeiitic magma: a preliminary study. Contrib. Mineral. 

Petrol. 67, 35-39. 

Junge C., Schidlowski M., Eichmann R. and Pietrek H. (1975) Model calculations for the terrestrial 

carbon cycle: carbon isotope geochemistry and evolution of photosynthetic oxygen. J. Geophys. Res. 

80, 4542-4552. 

Junge F., Seltmann R. and Stiehl G. (1990) Nitrogen isotope characteristics of breccias. granitoids and 
greisens from Eastern Erzgebirge tin ore deposits (Sadisdorf; Altenberg), GDR. In: U. Wand and G. 
Strauch (Editors), Proceedings of the 5th working meeting 'Isotopes in Nature'. Central Institute of 

Isotope and Radiation Research, Leipzig, Germany, 1990. pp.321-322. 

Junk G. and Svec H. J. (1958) The absolute abundance of the nitrogen isotopes in the atmosphere and 

compressed gas from various sources. Geochim. Cosmochim. Acta 14, 234-243. 

Karyakin A. V., Volynets V. F. and Kriventsova G. A. (1973) Investigation of nitrogen compounds in 

micas by infrared spectroscopy. Geokhimiya 3, 439-442. 

Kazahaya K. (1986) Isotopic and chemical studies on hydrothermal solutions. UnpUblished PhD thesis, 

Tokyo Institute of Technology. Tokyo, Japan. 185 pp. 

Kazahaya K. and Matsuo S. (1985) A new ball-milling method for extraction of fluid inclusions from 

minerals. Geochem. J. 19,45-54. 

Kelley S. P., Turner G., Butterfield A. W. and Shepherd T. J. (1986) The source and significance of 

argon isotopes in fluid inclusions from areas of mineralization. Earth Planet. Sci. Lett. 79, 303-318. 

Kelly W. C. and Rye R. 0. (1979) Geologic. fluid inclusion and stable isotope studies of the tin

tungsten deposits of Panasqueira. Portugal. Econ. Geol. 74, 1721-1819. 

Kendall C. and Coplen T. B. (1985) Multisample conversion of water to hydrogen by zinc for stable 
isotope determination. Anal. Chern. 57, 1437-1440. 

317 



Kendall C. and Grim E. (1990) Combustion tube method for measurement of nitrogen isotope ratios 
using calcium oxide for total removal of carbon dioxide and water. Anal. Chem. 62, 526-529. 

Kisbirna N. and Sakai H. (1980) Oxygen-18 and deuterium determination on a single water sample of a 

few milligrams. Anal. Chern. 52. 356-358. 

Kiyosu Y. and Krouse H. R. (1989) Carbon isotope effect during abiogenic oxidation of methane. Earth 

Planet. Sci. Lett. 95. 302-306. 

Klyakhin V. A. and Levitskiy N. F. (1968) Possible role of NH4+ in the hydrothermal process. 
Akademiya Nauk SSSR, Sibirskoe Otdelenie, Geologiya i Geofizika 9, 10-15. 

Knauth L. P. and Beeunas M. A. (1986) Isotope geochemistry of fluid inclusions in Permian halite, with 
implications for the isotopic history of ocean water and the origin of saline fonnation waters. Geocbim. 
Cosmocbim. Acta SO, 419-433. 

Kokubu N .• Mayeda T. and Urey H. C. (1961) Deuterium content of minerals, rocks and liquid 
inclusions from rocks. Geochim. Cosmochim. Acta :n, 247-256. 

Koster van Groos A. F. and Ter Heege J. P. (1973) The high-low quartz transition up to 10 kilobars 

pressure. J. Geol. 81, 717-723. 

Kreulen R. (1980) CO2-rich fluids during regional metamorphism on Naxos (Greece): carbon isotopes 

and fluid inclusions. Amer. J. Sci. 280, 745-771. 

Kreulen R (1981) Nitrogen and carbon isotopes in fluid inclusions from the DOme de l'Agout, France. 
Abstract, 7th European colloqium of Geochronology, Cosmochronology and Isotope Geology; Israel 

Acad. Sci. and Hwnanities, Jerusalem. 

Kreulen R. (1983) Nitrogen and carbon isotopes of metamorphiC fluids in the DOme de l' Agout; origin 

and fluid-rock interaction. Abstracts, 7th symposium European Current Research on Fluid InclUSions, 
Orltans. France. p.38. 

Kreulen R. (1987) Thermodynamic calculations of the C-O-H system applied to fluid inclusions: are 
fluid inclusions unbiased samples of ancient fluids? Chem. Geol. 61, 59-64. 

Kreulen R. and Schuiling R. D. (1982) N2-CH4-C02 fluids during the formation of the DOme de 
rAgout, France. Geochim. Cosmochim. Acta 46, 193-203. 

Kreulen R, van Breemen A. and Duit W. (1982) Nitrogen and carbon isotopes in metamorpbic fluids 
from the Dome de rAgout, France. Abstracts, fifth International Conference on Geochronology, 
Cosmochronology and Isotope Geology, Japan. p.191. 

Kydd R. A. and Levinson A. A. (1986) Ammonium halos in Iithogeocbemical exploration for gold at 
the Horse Canyon carbonate -hosted deposit, Nevada, USA. Appl. Geochem. I, 407-417. 

Lagacbe M. and Weisbrod A. (1977) The system: two alkali feldspars - KCI-NaCI-H20 at moderate to 
high temperatures and low pressures. Contrib. Mineral. Petrol. 62, 77-101. 

Laming D. J. C. (l982) The New Red Sandstone. In: E. M. Durrance and D. J. Laming (Editors), The 
Geology of Devon. University of Exeter Press. Chapter 7 (pp. 148-178). 

318 



Landis G. P. and Rye R. O. (1974) Geologic, fluid inclusion and stable isotope studies of the Pasto 
Buena tungsten-base metal ore deposit, northern Peru. Econ. Geol. 69, 1025-1059. 

Lazar B. and Holland H. D. (1988) The analysis of fluid inclusions in halite. Geochim. Cosmochim. 
Acta 52, 485-490. 

Leat P. T., Thompson R. N., Morrison M. A., Hendry G. L. and Trayhom S. C. (1987) Geodynamic 
significance of post- Variscan intrusive and extrusive potassic magmatism in S W England. Trans. Roy. 
Soc. Edinburgh: Earth Sciences 77 (for 1986), 349-360. 

Leroy J. (1979) Contribution ta l'~talonnage de la pression interne des inclusions fluides lors de leur 
dOCrepitation. Bull. Soc. fran~aise Min~ral. Cristall. 102, 584-593. 

Utolle R. (1980) Nitrogen-15 in the natural environment. In: P. Fritz and J. Ch. Fontes (Editors), 
Handbook 0/ Environmental Isotope Geochemistry, Vol. 1, The Terrestrial Environment (A). Elsevier. 

Chapter 10, pp. 407-433. 

Lewis R. S .• Anders E .• Swart P. K .• Grady M. M. and Pillinger C. T. (1983a) Isotopically anomalous 

carbon in the Murchison meteorite and its association with noble gas components. Proc. Lunar Planet. 

Sci. Cone. XIV, 438-439. 

Lewis R. S., Grady M. M., Wright I. P., Pillinger C. T. and Fallick A. E. (1983b) Isotopic 

composition of C and N in noble gas host phases in CI carbonaceous and Type 3 ordinary chondrites. 
Proc. Lunar Planet. Sci. Cone. XIV, 438-439. 

Lin Y. (1989) Comparative aspects of pegmatitic and pneumatolytic evolution in Cornish granites. 
Unpublished PhD thesis, University of London, UK. 247 pp. 

Lockett A. E. (1987) A technique for the determination of tin by isotope dilution and its application to 
fluid inclusions. Unpublished MSc dissertation, University of Leeds, UK. 54 pp. 

Longstaffe F. 1. (1987) Stable isotope studies of diagenetic processes. In: T. K. Tyser (Editor), Stable 
isotope geochemistry 0/ low temperature processes. Mineralogical Association of Canada short course 

handbook, Volume 13, pp. 187-257. 

Lovelock 1. E. (1972) Gaia as seen through the atmosphere. Atmos. Environ. 6,570-580. 

Lowenstern J. B., Mahood G. A., Rivers M. L. and Sutton S. R. (1991) Evidence for extreme 
partitioning of copper into a magmatic vapour phase. Science 252, 1405-1409. 

Lyon G. L. and Hulston J. R. (1984) Carbon and hydrogen isotopic compositions of New Zealand 
geothermal gases. Geochim. Cosmochim. Acta 48, 1161-1171. 

Magaritz M. and Gat J. R. (1981) Review of the natural abundance of hydrogen and oxygen isotopes. In: 
J. R. Gat and R. Gonfiantini (Editors), Stable isotope hydrology, deuterium and oxygen-18 in the water 
cycle. International Atomic Energy Agency, Vienna, Technical Report Series No. 210, Chapter oS (pp. 
85-102). 

Mango F. D., Hightower J. W. and James A. T. (1994) Role of transition-metal catalysis in the 
formation of natural gas. Nature 368, 536-538. 

319 



Mariotti A. (1983) Aunospheric nitrogen is a reliable standard for natural uN abundance measurements. 
Nature 303, 685·687. 

Mathez E. A. (1987) Carbonaceous matter in mantle xenoliths: composition and relevance to the 
isotopes. Geochim. Cosmochim. Acta 51, 2339-2347. 

Mathez E. A .• Blade J. D .• Beery J .• Hollander M. and Maggiore C. (1987) The geocbemistry of carbon 
in mantle peridotites. Geochim. Cosmochim. Acta 48, 1849-1859. 

Mathez E. A .• Blade J. D .• Beery 1., Maggiore C. and Hollander M. (1986) Carbon in olivine by nuclear 
reaction analysis. 4th. Int. Kimberlite Conf. Extended Abstr. Geol. Soc. Australia. Abstract No. 16, 
pp.273-275. 

Mathez E. A. and Delaney J. R. (1981) The nature and distribution of carbon in submarine basalts and 
peridotite nodules. Earth Planet. Sci. Leu. 56, 217-232. 

Mathez E. A .• Dietrich V. 1., Holloway J. R. and Boudreau A. E. (1989) Carbon distribution in the 
Stillwater Complex and evolution of vapor during crystallization of Stillwater and Bushveld magmas. J. 
Petrol. 30. 153-173. 

Matsuhisa Y .• Goldsmith J. R. and Clayton R. N. (1979) Oxygen isotope fractionation in the systems 
quartz-albite-anorthite-water. Geochim. Cosmochim. Acta 43. 1131-1140. 

Malley D. P. (1987) Carbon isotopes in the mantle. Terra Cognita 7,31-37. 

Mattey D. P. (1990) Carbon isotopes in basalt glass: significance of 'light carbon', vapour-melt 
fractionation effects and mantle source variations. Eos, April 24, p64S. 

Mattey D. P., Carr R. H .• Wright I. P.and Pillinger C. T. (1984) Carbon isotopes in submarine basalts. 
Earth Planet. Sci. Lett. 70, 196-206. 

Mattey D. P .• Exley R. A. and Pillinger C. T. (1989) Isotopic composition or CO2 and dissolved carbon 
species in basalt glass. Geochim. Cosmochim. Acta 53,2377-2386. 

Mattey D. P. and Macpherson C. (1993) High-precision oxygen isotope microanalysis of 
ferromagnesian minerals by laser-fluorination. Chem. Geol. (Isotope Geosciences Section) 105, 305-
318. 

Maltey D. P., Taylor W. R., Green D. H. and Pillinger C. T. (1990) Carbon isotopic fractionation 
between CO2 vapour, silicate and carbonate melts: an experimental study to 30 kbar. Contrib. Mineral. 
Petrol. 104, 492-505. 

Matthews D. E. and Hayes J. M. (1978) Isotope-ratio-monitoring gas chromatography-mass 
spectrometry. Anal. Chern. SO, 1465-1473. 

Mavrogenes J. A. and Bodnar R. J. (1994) Hydrogen movement into and out of fluid inclusions in 
quartz: Experimental evidence and geologic implications. Geochim. Cosmochim. Acta 58, 141-148. 

Mayne K. I. (1957) Natural variations in the nitrogen isotope abundance ratio in igneous rocks. 
Geocbim. Cosmochim. Acta 12, 185-189. 

320 



McCrea J. M. (1950) On the isotope chemistry of carbonates and a paIreotemperature scale. J. Chem. 
Pbys. 18, 849-857. 

McCulloch M. T. and Woodhead J. D. (1993) Lead isotope evidence for deep crustal-scale fluid ttansport 
during granite petrogenesis. Geochim. Cosmochim. Acta 57,659-674. 

McKinney C. R., McCrea I. M .• Epstein S .• Allen H. A. and Urey H. C. (1950) Improvements in mass 
spectrometers for the measurement of small differences in isotope abundance ratios. Rev. Sci. Instrum. 
21, 724-730. 

McNaughton N. I., Abell P. I., Wright I. P., Fallick A. E. and Pillinger C. T. (1983) Preparation of 
nanogram quantities of deuteromethane for stable carbon isotope analysis. I. Phys. E: Sci. Instrum. 16, 
505-511. 

McNutt R. H. (1987) 81Sr/86Sr ratios as indicators of water/rock interactions: Application to brines 
found in Precambrian age rocks from Canada. In: P. Fritz and S. K. Frape (Editors), Saline waters in 
crystalline rocks. Geol. Assoc. Canada Special Paper 33, 121-126. 

Metca1fe R., Banks D. A. and Bottrell S. H. (1992) An association between organic matter and localised, 
prehnite-pumpellyite alteraction, at Builth Wells, Wales, UK. Chern. Geol. 102, 1-22. 

Miller M. F. and Shepherd T. I. (1984) The determination of lead in fluid inclusions using voltammetric 
trace analysis: an exploratory investigation. Chern. Geol. 42, 249-259. 

Miller, W. A. (1865) Chemical examination of a hot spring containing caesium and lithium in Wbeal 
Clifford, Cornwall. Report of the British Association, 34th Meeting, pp. 36-36. 

Milodowski A. E. and Morgan D. J. (1980) Identification and estimation of carbonate minerals at low 
levels by evolved gas analysis. Nature 286, 248-249. 

Minagawa M., Winter D. A. and Kaplan I. R. (1984) Comparison of Kjeldahl and combustion methods 
for measurement of nitrogen isotope ratios in organic matter. Anal. Cbem. 56, 1859-1861. 

Molyneux S. G. and Owens B. (1990) Spores and acritarchs from samples of the Kate Brook Slates, 
Devon. Brit Geol. Survey Tech. Report WH/90/343R. 

Moore W. I. (1972) Physical chemistry. Longman, 977 pp. 

Morgan G. B. VI, Chou I.-M. and Pasteris J. D. (1992) Speciation in experimental C-O-H fluids 
produced by the thennal dissociation of oxalic acid dihydrate. Geocbim. Cosmocbim. Acta 56,281-294. 

Morse A. D. (1991) Attempts to analyse D/H ratios of sub-micromole quantities of bydrogen: 
applications in the study of ordinary chondrites. Unpublished PhD thesis, The Open University, UK. 
237 pp. 

Morse A. D., Wright I. P. and Pillinger C. T. (1993) An investigation into the cause of memory effects 
associated with the conversion of Hp to H2 for D /H measurement. Chern. Geol. (Isotope Geosciences 
Section) 107, 147-158. 

Mortland M. M. (1958) Reactions of ammonia in soils. Adv. Agron. 10,325-348. 

321 



Mueblenbacbs K. (1986) Alteration of the oceanic crust and the 180 history of seawater. In: I. W. 
Valley, H. P. Taylor, Jr., and J. R. O'Neil (Editors), Stable isotopes in high temperature geological 
processes. Reviews in mineralogy 16, Mineralogical Society of America, pp. 425-444. 

Muehlenbacbs K. and Clayton R. N. (1976) Oxygen isotope composition of the oceanic crust and its 
bearing on seawater. J. Geophys. Res. 81, 4365-4369. 

Murata K. I., Friedman I. and Madsen B. M. (1967) Carbon-13-rich diagenetic carbonates in Miocene 
fonnations of California and Oregon. Science 156, 1484-1486. 

Murphey B. F. (1947) The high temperature variation of the thermal diffusion factors for binary mixtures 
of H, D and He. Phys. Rev. 72,834-837. 

Nadeau S., Pineau F., Javoy M. and Francis D. (1990) Carbon concentrations and isotopic ratios in 
fluid-inclusion-bearing upper-mantle xenoliths along the northwestern margin of North America. 
Chem. Geol. 81,271-297. 

Nevins J. L., Altabet M A. and McCarthy J. I. (1985) Nitrogen isotope ratio analysis of small samples: 
sample preparation and calibration. Anal. Chern. 57, 2143·2145. 

Nielsen H. (1978) Sulphur isotopes in nature. In: K. H. Wederpohl (Editor), Handbook of 
Geochemistry, Chapter 16-B. Springer-Verlag. 

Nier A O. (1940) A mass spectrometer for routine abundance measurements. Rev. Sci. Instrum. 11, 
212-216. 

Nier A O. (1947) A mass spectrometer for isotope and gas analysis. Rev. Sci. Instrum. 18, 398411. 

Niggli P. (1929) Ore deposits of magmatic origin: their genesiS and natural clasSification. Thomas 
Murby and Co., London. 93 pp. 

Nitzsche H. M. and Stiehl G (1984) Untersuchungen zur lsotopenfraktionierung des Stickstoffs in den 
Systemen Ammonium/ Ammoniak and Nitrid/Stickstoff. Zfl Mitt 84,283-291. 

O'Brien C., Plant J. A, Simpson P. R. and Tamey J. (1985) The geochemistry and petrogenesis of the 
granites of the English Lake District. I. Geol. Soc. London 142, 1139-1157. 

Oberhauser G., Katbrein H., Demortier G., Gonska H. and Freund F. (1983) Carbon in olivine single 
crystals analysed by the 12C(D,p)13C method and by photoelectron spectroscopy. Geochim. Cosmochim. 
Acta 47, 1117-1129. 

Ohba T. (1987) 180/160 and D/H ratio determinations for small amounts of water. Geocbem. I. 21, 
183·186. 

Ohmoto H. (1986) Stable isotope geochemistry of ore deposits. In: J. W. Valley, H. P. Taylor. Ir., and 
J. R. O'Neil (Editors), Stable isotopes in high temperature geological processes. Reviews in mineralogy 
16, Mineralogical Society of America, pp. 491-559. 

Ohmoto H. and Kerrick D. (1977) Devolatilization equilibria in graphitic systems. Amer. J. Sci. 277, 
1013-1044. 

322 



Obmoto H. and Rye R. O. (1979) Isotopes of sulfur and carbon. In: H. L. Barnes (Editor), 
Geochemistry of hydrothermal ore deposits, pp. 509-567. John Wiley & Sons. 

O'Neil I. R. and Epstein S. (1966) A method for oxygen isotope analysis of milligram quantities of 
water and some of its applications. I. Geophys. Res. 71,4955-4961. 

O'Neil I. R. (1986) Theoretical and experimental aspects of isotopic fractionation In: J. W. Valley, H. 
P. Taylor, Ir., and I. R. O'Neil (Editors), Stable isotopes in high temperature geological processes. 
Reviews in mineralogy 16, Mineralogical Society of America, pp.l-40. 

O'Nions R. K., Oxburgh E. R., Hawkesworth C. J. and Macintyre R. M. (1973) New isotopic and 
stratigraphical evidence on the age of the Ingletonian: probable Cambrian of northern England. I. Geol. 

Soc. London 129, 445-452. 

Parnell I. (1988) Migration of biogenic hydrocarbons into granites: a review of hydrocarbons in British 
plutons. Marine and Petroleum Geol. 5, 385-396. 

Pauwels H., Fouillac C. and FouiIlac A. M. (1993) Chemistry and isotopes of deep geothermal saline 
fluids in the Upper Rhine Graben: Origin of compounds and water-rock interactions. Geochim. 
Cosmochim. Acta 57, 2737-2749. 

Pearce 1. A., Harris N. B. W. and Tindle A. G. (1984) Trace element discrimination diagrams for the 
tectonic interpretation of granitic rocks. J. Petrol. 25, 956-983. 

Peucker-Ehrenbrink B. and Behr H. -I. (1993) Chemistry of hydrothermal quartz in the post-Variscan 
"Bavarian Pfahl" system, F.R. Germany. Chern. Geol. 103, 85-102. 

Phillips 1. A. (1873) The rocks of the mining districts of Cornwall and their relation to metalliferous 
deposits. Quarterly J. Geol. Soc. London 31, 319-345. 

Pillinger C. T. (1984) Light element stable isotopes in meteorites - from grams to picograms. 
Geochim. Cosmochim. Acta 48, 2739-2766. 

Pillinger C. T. (1992) New technologies for small sample stable isotope measurement: static vacuum 
gas source mass spectrometry, laser probes and gas chromatography-isotope ratio mass spectrometry. 
Int. J. Mass Spectrometry and Ion Processes 118/119, 477-501. 

Pineau F. and Javoy M. (1983) Carbon isotopes and concentrations in mid-ocean ridge basalts. Earth 
Planet. Sci. Lett. 62, 239-257. 

Piperov N. B. and Penchev N. P. (1973) A study on gas inclusions in minerals. Analysis of the gases 
from micro-inclusions in allanite. Geochim. Cosmochim. Acta 37,2075-2097. 

Pollack I. B. and Yung Y. L. (1980) Origin and evolution of planetary atmospheres. Ann. Rev. Eanh 
Planet. Sciences 8, 425-487. 

Primmer T. J. (1985) Discussion on the possible contribution of metamorphic water to the mineralizing 
fluid of south -west England: preliminary stable isotope evidence. Proc. Ussber Soc. 6, 224-228. 

323 



Prosser S. J .• Wright I. P. and Pillinger C. T. (1990) A preliminary investigation into isotopic 
measurement of carbon at the picomole level using static vacuum mass spectrometry. Chem. Geol. 83, 
71-88. 

Ramboz C., Schnapper D. and Dubessy J. (1985) The P-V-T-X-/02 evolution of HP-C02-CH4-

bearing fluid in a wolframite vein: reconstruction from fluid inclusion studies. Geochim. Cosmochim. 

Acta 49, 205-219. 

Rankin A. H. and Alderton D. H. M. (1985) Chemistry and evolution of hydrothermal fluids associated 

with the granites of southwest England. In: High heat production (HHP) granites, hydrothermal 
circulation and ore genesis. Institution of Mining and Metallurgy, pp.345-364. 

Rau G. H., Arthur M. A. and Dean W. E. (1987) ISN / 14N variations in Cretaceous Atlantic sedimentary 

sequences: implication for past changes in marine nitrogen biogeochemistry. Earth Planet Sci. Lett. 82, 
269-279. 

Rayleigh J. W. S. (1896) Theoretical considerations respecting the separation of gases by diffusion and 

similar processes. Philos. Mag. 42. 493. 

Reynolds J. H. (1956) High sensitivity mass spectrometer for noble gas analysis. Rev. Sci. Instrum 

27, 928-934. 

Riebet P., Bottinga Y. and Javoy M. (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur, 
and chlorine stable isotope fractionation among gaseous molecules. Ann. Rev. Planet. Sci. 5, 65-110 

Robinson B. W. and Kusakabe M. (1975) Quantitative preparation of sulfur dioxide, for 34S/32S 

analyses, from sulfides by combustion with cuprous oxide. Anal. Chem. 47, 1179-1181. 

Roedder E. (1958) Technique for the extraction and partial analysis of fluid-filled inclusions from 

minerals. Econ. Geol. 53. 235-269. 

Roedder E. (1972) Composition of fluid inclusions. In: M. Fleischer (Editor), Data 0/ Geochemistry, 
US Geol. Surv. Professional Paper MO-n. 164 pp. 

Roedder E. (1984) Fluid inclusions. Reviews in Mineralogy 12, Mineralogical Society of America; 644 
pp. 

Roedder E. (1990) Fluid inclusion analysis - Prologue and epilogue. Geochim. Cosmochim. Acta 54, 

495-507. 

Roedder E., Ingram B. and Hall W. E. (1963) Studies of fluid inclusions III: Extraction and quantitative 

analysis of inclusions in the milligram range. Econ. Geol. 58, 353-374. 

Rosasco G. 1. and Roedder E. (1979) Application of a new Raman microprobe spectrometer to 

nondestructive analysis of sulfate and other ions in individual phases in fluid inclusions in minerals. 

Geochim. Cosmochim. Acta 43, 1907-1915. 

Rossman G. R., Weis D. and Wasserburg G. J. (1987) Rb, Sr, Nd and Sm concentrations in quartz. 

Geochim. Cosmochim. Acta 51, 2325-2329. 

324 



Rumble D., III, Duke E. F. and Hoering T. L. (1986) Hydrothermal graphite mobility in New 

Hampshire: evidence of carbon mobility during regional metamorphism. Geology 14, 452-455. 

Rumble D., III, and Haering T. L. (1986) Carbon isotope geochemistry of graphite vein deposits from 

New Hampshire, USA. Geochim. Cosmochim. Acta 50,1239-1247. 

Rye R. O. and O'Neil J. R. (1968) The lBO-content of water in primary fluid inclusions from 

Providencia, north central Mexico. Econ. Geol. 63, 232-238. 

Sackett W. M. and Chung H. M. (1979) Experimental conflfDlation of the lack of carbon isotope 

exchange between methane and carbon oxides at high temperatures. Geochim. Cosmochim. Acta 43, 

273-276. 

Sakai H., Des Marais D. J., Ueda A. and Moore J. G. (1984) Concentrations and isotope ratios of 
carbon, nitrogen and sulphur in ocean-floor basalts. Geochim. Cosmochim. Acta 48,2433-2441. 

Sakai H., Smith J. W., Kaplan I. R. and Petrowski C. (1976) Geochem. J. (1976) Micro-determinations 
of C, N, S, H, He, metallic Fe, 513C, 5lSN and 534S in geological samples. Geochem. J. 10, 85-96. 

Sarda P., Staudacher T. and AIl~gre C. J. (1985) 40 Ar /36 Ar in MORB glasses: constraints on atmosphere 

and mantle evolution. Earth Planet Sci. Lett. 72, 357-375. 

Savage D., Cave M. R. and Milodowski A. E. (1985) Interaction of meteoric groundwater with 

Carnmenellis granite at 250°C and 50 MPa: an experimental study. In: High heat production (HHP) 
granites, hydrothennal circulation and ore genesis. Institution of Mining and Metallurgy, pp. 315-327. 

Savage D., Cave M. R., MUodowski A. E. and George I. (1987) Hydrothermal alteration of granite by 

meteoric fluid: an example from the Carnmenellis granite, United Kingdom. Contrib. Mineral. Petrol. 
96, 391-405. 

Savin S. M. and Epstein S. (1970) The oxygen and hydrogen isotope geochemistry of clay minerals. 

Geochim. Cosmochim. Acta 34, 25-42. 

Saxena S. K. (1989) Oxidation state of the mantle. Geochim. Cosmochim. Acta 53,89-97. 

Scalan R. S. (1958) The isotopic composition, concentration, and chemical state of the nitrogen in 

igneous rocks. Unpublished PhD thesis, University of Arkansas, US A. 79 pp. 

Schidlowski M., Hayes J. M. and Kaplan I. R. (1983) Isotopic inferences of ancient biochemistries: 

carbon, sulfur, hydrogen and nitrogen. In: J. W. Schopf (Editor), Eanh's earliest biosphere: its origin and 
evolution. Princeton University Press, pp. 149-186. 

Schneider F. (1990) P~trographie, ¢tro)ogie et gOOchimie des granites du massif de Dartmoor (Devon, 

GB) et des minualisations associ~es (W, Sn). Mod~lisation des processus. Ecole des Mines de Paris 
Mrotoires des Sciences de la Terre, No. 11, 223 pp. 

SchoeU M. (1980) The hydrogen and carbon isotopic composition of methane from natural gases of 

various origins. Geochim. Cosmochim. Acta 44, 649-661. 

SchoeU M. (1988) Multiple origins of methane in the Earth. In: M. Schoell (Guest-Editor>, Origins 0/ 
methane in the Earth. Chem. GeoI. 71, 1-10. 

325 



Scbopf J. W. and Klein C. (Editors) (1992) The Proterozoic biosphere: a multidisciplinary study. 

Cambridge University Press, 1348 pp. 

Scrivener R. C. (1982) Tin and related mineralisation of the Dartmoor granite. UnpUblished PhD thesis, 

University of Exeter, UK. 229 pp. 

Scrivener R. C., Shepherd T. J. and Garrioch N. (1986) Ore genesis at Wheal Pendarves and South 

Crofty mine, Cornwall - a preliminary fluid inclusion study. Proc. Ussher Soc. 6, 412-416. 

Selwood E. B. and Durrance E. M. (1982) The Devonian rocks. In: E. M. Durrance and D. J. Laming 
(Editors), The Geology of Devon. University of Exeter Press. Chapter 2 (pp. 15-41). 

Shackleton R. M., Ries A. C. and Coward M. P. (1982) An interpretation of the Variscan structures in 
S W England. J. Geol. Soc. 139, 533-541. 

Shannon R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in 

halides and chalcogenides. Acta Cryst. A32, 751-767. 

Shepherd T. J., Beckinsale R. D., Rundle C. C. and Durham J. (1976) Genesis of CarrocIc Fell tungsten 
deposits, Cumbria: fluid inclusion and isotopic study. Trans. Inst. Mine. Metall. (Sect. B: Appl. Earth 

Sci.) 85, B63-B73. 

Shepherd T. J. and Miller M. F (1988) Auid inclusion volatiles as a guide to tungsten deposits, 

southwest England: applications to other SnoW provinces in western Europe. In: J. Boissonnas and P. 
Omenetto (Editors), Mineral deposits within the European Community. Springer-Verlag, pp. 29-52. 

Shepherd T. J., Miller M. F., Scrivener R. C. and Darbyshire D. P. F. (1985) Hydrothermal fluid 

evolution in relation to mineralization in southwest England, with special reference to the Dartmoor
Bodmin area. In: High heat production (HHP) granites, hydrothermal circulation and ore genesis. 
Institution of Mining and Metallurgy, pp.345-364. 

Shepherd T. J. and Scrivener R. C. (1987) Role of basinal brines in the genesis of polymetallic vein 
deposits, Kit Hill-Gunnisiake area, S W England. Proc. Ussher Soc. 6, 491-497. 

Sheppard S. M. F. (1977) The Comubian batholith, SW England: D/H and 180/160 studies of kaolinite 

and other alteration minerals. J. Geo!. Soc. London 133, 573-591. 

Sheppard S. M. F. (1981) Stable isotope chemistry of fluids. In: D. T. Rickard and F. E. Wickbam 

(Editors), Chemistry and geochemistry Of solutions at high temperatures and pressures. Pbysics and 

Chemistry of the Earth 13 & 14, 419-433. 

Sheppard S. M. F. (1986) Characterization and isotopic variations in natural waters. In; J. W. Valley, 

H. P. Taylor, Jr., and J. R. O'Neil (Editors), Stable isotopes in high temperature geological processes. 
Reviews in mineralogy 16, Mineralogical Society of America, pp. 165-183. 

Sherwood B., Fritz P., Frape S. K., Macko S. A., Weise S. M. and Welhan J. A. (1988) Methane 

occurrences in the crystalline rocks of the Canadian Shield. In: M. Schoell (Guest-Editor), Origins of 
methane in the Eanh. Chern. Geo!. 71, 223-236. 

Slack J., Palmer M. R. and Stevens B. P. J. (1989) Boron isotope evidence for the involvement of non
marine evaporites in the origin of the Broken Hill ore deposits. Nature 342,3189-3195. 

326 



Smith A. G., Briden J. C. and Drewry G. E. (1973) Phanerozoic world maps. In: N. F. Hughes (Edi1Ot), 

Organisms and continents through time. Special Papers in Palmontology No. 12, pp. 1-42. 

Spivack A. 1., Palmer M. R. and Edmond J. M. (1987) The sedimentary cycle of the boron isotopes. 
Geochim. Cosmochim. Acta 51. 1939-1949. 

Steiger R. H. and J!iger E. (1977) Sub-commission on geochronology: Convention on the use of decay 
constants in gea- and cosmochronology. Earth Planet Sci. Lett. 36, 359-362. 

Stevenson F. J. (1959) On the presence of fixed ammonium in rocks. Science 130, 221-222. 

Stevenson F. J. (1962) Chemical state of the nitrogen in rocks. Geochim. Cosmochim. Acta 26, 797-
809. 

Stolper E. and Holloway J. R. (1988) Experimental detennination of the solubility of carbon dioxide in 
molten basalt at low pressure. Earth Planet. Sci. Lett. 87,397-408. 

Stone J., Hutcheon I. D .• Epstein S. and Wasserburg G. J. (1991) Correlated Si isotope anomalies and 
large J3C enrichments in a family of exotic SiC grains. Earth Planet. Sci. Lett. 107, 570-581. 

Stone M. and Exley C. S. (1985) High heat production granites of southwest England and their 
associated mineralization: a review. In: High heat production (HHP) granites, hydrothermal circulation 
and ore genesis. Institution of Mining and Metallurgy, pp.571-593. 

Stuart F. M. and Turner G. (1992) The abundance and isotopic composition of the noble gases in ancient 
fluids. Chern. Geol. (Isotope Geosciences Section) 101, 97-109. 

Stumm W. and Morgan J. J. (1981) Aquatic chemistry. John Wiley & Sons, 780 pp. 

Sudzuki N. (1987) A water conversion method for D/H ratio analyses and its accuracy. Geocbem.l. 21, 
29-33. 

Suzuoki T. and Epstein S. (1977) Hydrogen isotope fractionation between OH-bearing minerals and 
water. Geochim. et Cosmochim. Acta 40, 1229-1240. 

Sverjensky D. A. (1992) Linear free energy relations for predicting dissolution rates of solids. Nature 
358, 310-313. 

Sverjensky D. A. and Molling P. A. (1992) A linear free energy relationship for crystalline solids and 
aqueous ions. Nature 356, 231-234. 

Swanenberg H. E. C. (1980) Fluid inclusions in high-grade metamorphic rocks from S W Norway. 
PhD thesis. University of Utrecht, Holland. 147 pp. 

Swart P. K .• Grady M. M. and Pillinger C. T. (1982) Isotopically distinguishable carbon phases in the 
Allende meteorite. Nature 297,381-383. 

Swart P. K., Grady M. M. and Pillinger C. T. (1983) A method for the identification and elimination of 
contamination during carbon isotopic analyses of extraterrestrial samples. Meteoritics 18, 137·154. 

327 



Sweeney R. E., Liu K. K. and Kaplan I. R. (1978) Oceanic nitrogen isotopes and their uses in 
determining the source of sedimentary nitrogen. In: B. W. Robinson (Editor), Stable Isotopes in the 
Eanh Sciences, DSIR New Zealand, Bull. 220, pp. 9-26. 

Tang M., Anders E. and Zinner E. (1988) Noble gases, C, Nand Si isotopes in interstellar SiC from the 
Murchison carbonaceous. In: Lunar Planet. Sci. XIX: Houston, Lunar and Planetary Institute, pp. 1177-

1178. 

Tang M., Lewis R. S., Anders E., Grady M. M., Wright I. P. and Pillinger C. T. (1988) Isotopic 
anomalies of Ne, Xe, and C in meteorites. I. Separation of carriers by density and chemical resistance. 
Geocbim. Cosmochim. Acta 52, 1221-1234. 

Taylor B. E. (1986) Magmatic volatiles: isotopic variation of C, H, and S. In: 1. W. Valley, H. P. 
Taylor, Jr., and J. R. O'Neil (Editors), Stable isotopes in high temperature geological processes. Reviews 
in mineralogy 16, Mineralogical Society of America, pp. 185-225. 

Taylor B. E. (1987) Stable isotope geochemistry of ore-fonning fluids. In: T. K. Tyser (Editor), Stable 
isotope geochemistry of low temperature processes. Mineralogical Association of Canada shon course 

handbook, Volume 13, pp. 337-445. 

Taylor H. P., Jr. (1974) The application of oxygen and hydrogen isotope studies to problems of 
hydrothermal alteration and ore deposition. Econ. Geol. 69,843-883. 

Taylor H. P., Jr. (1977) Water/rock interactions and the origin of H20 in granitic batholiths. 1. Geol. 
Soc. London 133, 509-558. 

Taylor H. P., Jr. (1979) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. 
In: H. L. Barnes (Editor), Geochemistry of hydrothermal ore deposits. John Wiley & Sons, pp. 236-277. 

Taylor H. P. and Sheppard S. M. F. (1986) Igneous rocks: I. Processes of isotopic fractionation and 
isotope systematics. In: J. W. Valley, H. P. Taylor, Jr., and J. R. O'Neil (Editors), Stable isotopes in 
high temperature geological processes. Reviews in mineralogy 16, Mineralogical Society of America, 
pp.227-271. 

Taylor S. R. and McLennan S. M. (1985) The continental crust: its composition and evolution. 
Blackwell Scientific Publications, 312 pp. 

Thode H. G., Monster J. and Dunford H. B. (1961) Sulphur isotope geochemistry. Geocbim. 
Cosmochim. Acta 25, 150-174. 

Thomas J. M. (1982) The Carboniferous rocks. In: E. M. Durrance and D. 1. Laming (Editors), The 
Geology of Devon. University of Exeter Press. Chapter 3 (pp.42-65). 

Thompson A. B. (1992) Water in the Earth's upper mantle. Nature 358, 295-302. 

Tingle T. N., Green H. W. and Finnerty A. A. (1988) Experiments bearing on the solubility and 
diffusivity of carbon in olivine. J. Geopbys. Res. 93, 15289-15304. 

Tingle T. N., Hocbella M. F., Becker C. H. and Malbotra R. (1990) Organic compounds on crack 
surfaces in olivine from San Carlos, Arizona, and Hualalai Volcano, Hawaii. Geocbim. Cosmochim. 
Acta 54, 477-485. 

328 



Tingle T. N., Mathez E. A. and Hochella M. F. (1991) Carbonaceous matter in peridotires and basalIS 
studied by XPS, SALI and LEED. Geochim. Cosmochim. Acta 55, 1345-1352. 

TIssot B. P. and Welte D. H. (1984) Petroleum formation and occurrence. Springer-Verlag, 699 pp. 

Tse R. S., Wong S. C. and Yen C. P. (1980) Determination of deuterium/hydrogen ratios in natural 

waters by Fourier transform nuclear magnetic resonance spectrometry. Anal. Chern. 52, 2445-2448. 

Tsang L. S. T. and Knipping U. (1986) Comment on "Solute carbon and carbon segregation in 

magnesium oxide single crystals - a secondary ion mass spectrometer study", by F. Freund. Pbys. Chern. 
Miner. 13, 277-279. 

Tsang L. S. T., Knipping U., Loxton Magee C. and Arnold C. (1985) Carbon on surfaces of 

magnesium oxide and olivine single crystals: Diffusion from bulk or surface contamination? Phys. 

Chem. Mineral. 12,261-270. 

Turner G. and Bannon M. P. (1992) Argon isotope geochemistry of inclusion fluids from granite

associated mineral veins in southwest and northeast England. Geochim. Cosmochim. Acta 56, 227-243. 

Urano H. (1971) Geochemical and petrological study on the origins of metamorphic rocks and granitic 

rocks by determination of fixed ammoniacal nitrogen. J. Earth Sciences, Nagoya University, Japan 19, 

1-24. 

Urey H. C. (1932) An isotope of hydrogen of mass 2 and its concentration. (Abstr.) Phys. Rev. 39, 

864. 

Urey H. C. (1947) The thermodynamic properties of isotopic substances. J. Chem. Soc., 562-581. 

Urey H. C. (1948) Oxygen isotopes in Nature and the laboratory. Science 108,489-497. 

Vaccaro R. F. (1965) Inorganic nitrogen in sea water. In: J. P. Riley and G. Skirrow (Editors), 

Chemical Oceanography. Academic Press. 1, 365-404. 

Van den Kerkhof A. M. (1988) The system CO
2
-CH4 -N2 in fluid inclusions: theoretical modelling and 

geological applications. PhD thesis, Free University of Amsterdam, Holland, 206 pp. 

Van Zeggeren F. and Storey S. H. (1970) The computation of chemical eqUilibria. Cambridge 
University Press, 176 pp. 

Vedder W. (1965) Ammonium in muscovite. Geochim. Cosmochim. Acta 29,221-228. 

Veizer J. (1989) Strontium isotopes in seawater through time. Ann. Rev. Earth Planet. Sci. 17, 141-

167. 

Vengosh A., Chivas A. R. and McCulloch M. T. (1989) Direct determination of boron and chlorine 

isotopic compositions in geological materials by negative thermal-ionization mass spectrometry. Chem. 
Geol. 79, 333-343. 

Vennemann T. W. and O'Neil J. R. (1993) A simple and inexpensive method of hydrogen isotope and 
water analyses of minerals and rocks based on zinc reagent. Chem. Geol. (Isotope Geosciences Section) 
103, 227-234. 

329 



Vinogradov A. P., Florenskii K. P. and Volynets V. F. (1963) Ammonia in meteorites and igneous 
rocks. Geochemistry 10, 905-916. 

Vityk M. 0., Krouse H. R. and Demihov Y. N. (1993) Preservation of al80 values of fluid inclusion 
water in quartz over geological time in an epithermal environment: Beregovo deposit, Transcarpathia, 
Ukraine. Earth Planet. Sci. Lett. 119, 561-568. 

Von Damm K. L., Edmond J. M., Measures C. I. and Grant B. (1985) Chemistry of submarine 

hydrothermal solutions at Guaymas Basin, Gulf of California. Geochim. Cosmochim. Acta 49,2221-
2237. 

Wahlen M., Tanaka N, Henry R.,Yoshimari T., Fairbanks R. G., Sberuesh A. and Broecker W. S. 
(1987). 13C, D and 14C in methane. Eos (Trans. Amer. Geophys. Union) 68, 1220. 

Wahler W. (1956) tiber die in Kristallen eingescblossenen FlUssigkeiten und Gase. Geochim. 
Cosmocbim. Acta 9, 105-135. 

Wand U., Nitzsche H.-M., Mtible K. and Wetzel K. (1980) Nitrogen isotope composition in natural 

diamonds - First results. Chern. Erde 39, 85-87. 

Watson J. V., Fowler M. B .• Plant J. A. and Simpson P. R. (1984) Variscan-Caledonian comparisons: 
late orogenic granites. Proc. Ussher Soc. 6, 2-12. 

Weiss R. F. (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Res. 
17, 721-735. 

Welhan J. A. (1981) Carbon and hydrogen gases in hydrothermal systems: the search for a mantle source. 
Unpublished PhD thesis, University of California, San Diego, California, USA. 194 pp. 

Welban J. A. (1987a) Characteristics of abiotic methane in rocks. In: P. Fritz and S. K. Fmpe (Editors), 
Saline water and gases in crystalline rocks. Geological Association of Canada Special Paper 33, pp. 225-
233. 

Welhan J. A. (1987b) Stable isotope bydrology. In: T. K. Tyser (Editor), Stable isotope geochemistry 
0/ low temperature processes. Mineralogical Association of Canada short course handbook, Volume 13, 
pp. 129-161. 

Welhan J. A. (1988) Origins of methane in hydrothermal systems. In: M. Schoell (Guest-Edita), 
Origins o/methane in the Earth. Chern. Geol. 71, 183-198. 

Whiteley M. J. (1983) The geology of the St Mellion outlier, Cornwall, and its regional setting. 
Unpublished PhD thesis, University of Exeter, UK. 264 pp. (& maps) 

Wickman F. E. (1956) The cycle of carbon and the stable carbon isotopes. Geochim. Cosmochim. Acta 
9, 136-153. 

Willis-Richards J. and Jackson N. J. (1989) Evolution of the Cornubian ore field: Part I. Batholith 
modelling and ore distribution. Econ. Geol. 84, 1078-1100. 

330 



Wilson G. A. and Eugster H. P. (1990) Cassiterite solubility and tin speciation in supercritical chloride 

solutions. In: R. J. Spencer and I-Millg Chou (Editors), Fluid-mineral interactions: A tribute to H. P. 
Eugster. Special Publication No.2 of the Geochemical Society, pp. 179-195. 

WlolSka F. (1961) Untersuchungen zur Geochemie des Stickstoffs. Geochim. Cosmochim. Acta 24, 

106-154. 

WlolSka F. (1972) Nitrogen. In: K. H. Wedepohl (Editor), Handbook of Geochemistry, sections 7-B to 

7-0. Springer-Verlag. 

Wood B. 1. (1993) Carbon in the core. Earth Planet. Sci. Lett. 117, 593-607. 

Wopenka B. and Pasteris J. D. (1986) Limitations to quantitative analysis of fluid inclusions in 

geological samples by laser Raman microprobe spectroscopy. Appl. Spectroscopy 40, 144-151. 

Worth R. Hansford (1953) The physical geography of Dartmoor. In: G. M. Spooner and F. S. Russell 

(Editors), Worth's Dartmoor, pp. 3-46. (Latest edition published in 1968 by David and Charles.) Article 

compiled posthumously from unpublished manuscript (No.2) 'On the structure of Dartmoor' . 

Wright I. P., Boyd S. R, Franchi I. A. and Pillinger C. T. (1988) High-precision determination of 

nitrogen stable isotope ratios at the sub-nanomole level. J. Phys. E: Sci. Instrum. 21, 865-875. 

Wright I. P., Carr R. H. and Pillinger C. T. (1988) Carbon stable isotope analysis of individual deep-sea 

spherules. Meteoritics 23, 339-348. 

Wright I. P., McNaughton N. J., FaIlick A. E., Gardiner L. R and Pillinger C. T. (1983) A high 

precision mass spectrometer for stable carbon isotope analysis at the nanogram level. J. Phys. E: Sci. 

Instrum. 16, 497-504. 

Wright I. P. and Pillinger C. T. (1989) Carbon isotopic analysis of small samples by use of stepped

heating extraction and static mass spectrometry. In: W. C. Shanks III and R E. Criss (Editors), New 
frontiers in stable isotope research: Laser probes, ion probes, and small-sample analysis. US Oeol. 
Survey Bull. 1890, 9-34. 

Yamamoto T. and Nakahira M. (1966) Ammonium ions in sericites. Amer. Mineral. 51, 1775-1778. 

Yardley B. W. D., Banks D. A., Bottrell S. H. and Diamond L. W. (1993) Post-metamorphic gold

quartz veins from N W Italy: the composition and origin of the ore fluid. Min. Mag. 57, 407-422. 

Yates P. D. (1992) The content and stable isotopic composition of carbon in spherical micrometeorites. 

Unpublished PhD thesis, The Open University, UK. 274 pp. 

Yates P. D., Wright I. P. and Pillinger C. T. (1992) Application of high-sensitivity carbon isotope 

techniques - a question of blanks. Chern. Geol. (Isotope Geoscience Section) 101, 81-91. 

Yates P. D., Wright I. P., Pillinger C. T. and Hutchison R. (1989) Carbon isotopic measurements of 
deep sea spherules. Proc. Lunar Planet. Sci. Conf. XX, 1227-1228. 

Zhang D. (1988) Nitrogen concentrations and isotopic compositions of some terrestrial rocks. 
Unpublished PhD dissertation, University of Chicago, USA. 156 pp. 

331 



Zhang D., Huang F. and Zheng S. (1984) The oxygen, hydrogen and carbon isotope studies of tungsten· 

bearing granitoids. In: Xu K. and Tu G. (Editors), Geology of granites and their metal/ogenetic relations 
(Proceedings of the International Symposium held at Nanjing, China, October 1982). Science Press, 

Beijing, China, pp. 875-890. 

Zhang L., Liu J., Zhou H. and Chen Z. (1989) Oxygen isotope fractionations in the quartz·water-salt 

system. Econ. Geol. 84, 1643-1650. 

Zhang Y. and Zindler A. (1993) Distribution and evolution of carbon and nitrogen in Earth. Earth 
Planet. Sci. Lett. 117, 331-345. 

Ziegenbein D. and Johannes N. J. (1980) Graphite in C-H·O fluids: an unsuitable compound to buffer 

fluid composition at temperatures up to 700°C. N. lb. Miner. Abh. 7, 289-305. 

Zijderveld J. D. A. (1967) The natural remanent magnetizations of the Exeter volcanic traps (Permian, 

Europe). Tectonophysics 4, 121-153. 

Zinner E. and Epstein S. (1987) Heavy carbon in individual oxide grains from the Murchison meteorite. 

Earth Planet. Sci. Lett. 84, 359-368. 

Zinner E., Tang M. and Anders E. (1987) Large isotopic anomalies of Si, C, N and noble gases in 

interstellar silicon carbide from the Murray meteorite. Nature 330, 730-732. 

332 



Addenda 

The following section contains a compilation of material that was excluded from the 

examined thesis in order to keep the total length of the submitted work to within prescribed 

limits. Inclusion of these addenda herein is by permission of the Research Degrees 

Committee of the Open University. Addenda I and II refer to the reproducibility of data 

presented in Chapter 2; Addenda III -VI are compilations of data from which various 

Figures presented in Chapter 4 were constructed. Addenda vn and IX document laboratory 

procedures (not devised by the author) as used to obtain experimental data reported in 

Chapters 5 and 6 respectively. Addenda vm and XII report analytical data obtained by 

Dr D M Wayne on samples supplied by the author; these data are reported herein with the 

permission of Dr Wayne. Addendum IX reports the author's interpretation of data obtained 

by Dr Wayne. Addendum X was prepared for the author by Dr N J Fortey. 
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Addendum I 

Reproducibility of SD analyses, S W England palmo-hydrothennal waters thennally 
extracted in vacuo from quartz 

Sample reference Sample location Laboratory (date) aD (%t,SMOW-SLAP) 

Examples associated with early hydrothennal mineralisation o/the Dartmoor granite 

SW-89-160 Golden Dagger mine KW (21.06.91) -23.7 

" -24.3 

SW-89-161 Golden Dagger mine KW (08.07.91) -30.4 

" -29.3 

SW-89-162 Golden Dagger mine KW (18.06.91) -25.0 

" -23.6 

SW-89-163 Golden Dagger mine KW (19.06.91) -33.8 

" -27.3 
KW (08.07.91) -31.0 

SW-89-154 East Vitifer mine KW (13.06.91) -34.05 

" -31.7 

SW-89-155 East Vitifer mine KW (13.06.91) -25.9 

" -22.9 

SW-89-156 East Vitifer mine KW (14.06.91) -28.1 

-26.4 

SW-89-1S7 Great Rock mine KW (20.06.91) -30.1 

" -28.05 

Examples associated with early W±Sn oxide assemblages 

HEM-80-44 Hemerclon GIR (28.10.88) -30.1 

GIR (25.04.89) -28.2 

CD-88-1 Castle-an-Dinas mine KW (09.07.91) -10.8 

KW (09.09.91) -10.1 

" -9.4 

SW-84-18 Old Gunnislake mine GIR (11.05.89) -17.1 
WL (15.01.85) -15.1 

SW-84-27 Prince of Wales mine GIR (25.04.89) -127 
OIR (11.005.89) -15.1 
WL (15.01.85) -16.7 

SC-88-3 South Crofty mine GIR (10.10.88) -16.4 

-18.2 

Key to laboratories: 

GIR: NERC Isotope Geosciences Laboratory. 64 Gray's Inn Road, London (closed December 1989) 

KW: NERC Isotope Geosciences Laboratory. Kingsley Dunham Centre. Keyworth 

WL: British Geological Survey. Hydrogeology Division. Wallingford, axon. 
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Addendum II 

Reproducibility of SI8Q analyses, S W England hydrothennal quartz 

Sample reference Sample location Date of analysis a180 (%D SMOW) 

SW-81-14 Birch Tor & Vitifer 11.11.88 14.03 
11.11.88 14.03 

SW-84-1S Drakewalls mine 11.11.88 13.73 
11.11.88 13.61 
19.11.88 13.52 

HEM-80-1 Hemerdon mine 15.11.88 14.66 

14.60 

00-88-1 Old Gunnislake mine 19.11.88 9.67 
19.11.88 9.85 

CD-88-1 Castle-an-Dinas mine 22.11.88 9.35 
22.11.88 9.57 

SW-88-8 South Tamar Consols 09.01.89 15.26 
09.01.89 15.22 

SW-84-20 South Bedford mine 11.01.89 12,Ol 
11.01.89 12.38 

SW-88-5 North Hooe mine 09.01.89 22.43 
09.01.89 22.87 
13.01.89 22.84 
13.01.89 23.09 

SW-84-17 Wheal Emma mine 18.01.89 14.92 

18.01.89 15.33 

All analyses undertaken by the author, at the NERC Isotope Geosciences Laboratory, 64 Gray'. Inn Road, 

London (closed December 1989). 8180 values were determined on the basis of the procedure described in 

Section 2.4.3 of the present work. 

Oxygen isotope raw data were initially related to the PDB standard, then converted to the corresponding 

values relative to SMOW. Following the standard practice of the NERC Isotope Geosciences Laboratory, the 

conversion factors reconunended by Friedman and O'Neil (1977) were used, rather than the more recent 

values recommended by Coplen (1988). 
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Addendum III 

Nitrogen equilibrium isotope effects: ISN _14N fractionation factors 

1) Experimental determinations: 

Solution of nitrogen gas: 

15N2 (g) + 14N2 (aq) ISN 
2 (aq) + 14N 

2 (g) 

Enrichment factor e (defined as 103a-1, where a is the fractionation factor) = 0.85±0.10 for distilled 
water at O°C (Klots and Benson, 1963). 
For aerobic seawater (down to about4400m depth), £ = +O.13±O.13%o(Benson and Parker, 1961). 

Ammonia volatilization: 

+ 14 + 
NH4 (aq) 

IS + 
NH4 (aq) + 14NH 

3 (g) 

a = 1.034 at 25°C (Kirschenbaum et al., 1947) 

Solution of ammonia gas: 

ISNH + 
3 (g) 

15NH 
3 (aq) + 14NH 

3 (g) 

a = 1.005 at 25°C (Kirschenbaum et al., 1947) 

Ammonia/ ammonium sulphate nitrogen exchange: 

ISNH 
3 (g) + 14NH 

3 (g) 

a = 1.0143 at 250°C; 1.0128 at 350°C (Nitzsche and Stiehl, 1984). The data from these experiments 
were reported subsequently by Haendel et al. (1986). 

References: 

Benson B. B. and Parker P. D. M. (1961) Nitrogen/argon and nitrogen isotope ratios in aerobic sea 
water. Deep-Sea Research 7, 237-253. 

Kirshenbaum I., Smith J. S., Crowell T., Graff J. and McKee R. (1947) Separation of the nitrogen 
isotopes by the exchange reaction between ammonia and solutions of ammonium nitrate. J. Chern. Phys. 
15, 440-446. 

Klots C. E. and Benson B. B. (1963) Isotope effect in the solution of oxygen and nitrogen in distilled 
water. 1. Chern. Phys. 38, 890-893. 

2) Equilibrium fractionation factors (a), as a function of temperature, of the following gas 
phase isotope exchange reactions, as determined theoretically from spectroscopic data: 

lSNH 
3 + 14NH+ 

4 <=> 15NH+ 
4 + 14NH 

3 ...... (1) 

lSN 
2 + 14NH+ 

4 <=> 15NH+ 
4 + 14N 

2 ...... (2) 

ISNH 
3 + 14N 

2 <=> ISN 
2 + 14NH 

3 ...... (3) 
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Urey, 1947: 

T(K) a(1) a(2) a(3) 

273.1 1.039 1.025 1.013 
298.1 1.035 1.023 1.012 
400 1.024 1.015 1.008 
500 1.017 1.012 1.006 
600 1.013 1.010 1.004 

Sealan, 1958: 

T(K) a(1) a(2) a(3) 

273.1 1.0341 1.0182 1.0159 
298.1 1.0311 1.0167 1.0143 
303.1 1.0292 1.0159 1.0131 
400 1.0216 1.0117 1.0099 
500 1.0136 1.0069 1.0066 
600 1.0104 1.0056 1.0048 
800 1.0077 1.0049 1.0028 

1000 1.0042 1.0037 1.0005 
1200 1.0035 1.0032 1.0008 

Hanschmann, 1981: 

T(K) a(1) a(2) a(3) 

298.16 1.0300 1.0124 1.0174 
400 1.0204 1.0064 1.0139 
500 1.0150 1.0047 1.0103 
600 1.0115 1.0038 1.0077 
800 1.0073 1.0023 1.0049 

1000 1.0051 1.0022 1.0030 

Riehet etaZ., 1977: 

TeC) a(3) TeC) a(3) 

0 1.0115 200 1.0051 
10 1.0110 250 1.0041 
20 1.0105 300 1.0032 
30 1.0101 350 1.0026 
40 1.0097 400 1.0021 
50 1.0092 450 1.0015 
75 1.0083 500 1.0011 

100 1.0075 600 1.0003 
125 1.0069 700 0.9999 
150 1.0061 800 0.9994 
175 1.0056 900 0.9992 

Note that Richet et al. (1977) tabulated theoretically-determined f3 factors for nitrogen exchange as a 
function of temperature; these were used to calculate the fractionation factors presented here. 
Physically, the ~ factor for equilibrated isotopic exchange of element Y is the fractionation factor 
between Xm Y n and Y. where Xm Y n is the compound of interest: 

p = [y* /yt]x y / [y * /yt] where y* is the rare isotope and yt the abundant isotope of element y. 
m D 

337 



Addendum IV 

The equilibrium speciation of nitrogen in hydrothennal fluids (as illustrated in Figure 4.3 a) 

The relative mole fractions of nitrogen and anunonia under equilibrium conditions, as a function of temperature 

and initial (N2 + NH3) mole fraction in the reactant mixture, under isobaric conditions of total pressure SOO or 

1000 atm, as predicted by thermodynamic modelling using the computational procedure of Gordon and McBride 

(1971). Ideal mixing of ideal gases is assumed. (Xi is the mole fraction of component 0. 

a) Total pressure: 500 atm. 

Temperature (0C) 

300 
400 
500 
600 
700 

Temperature (0C) 

300 
400 
SOO 
600 
700 

b) Total pressure: 1000 atm. 

Temperature (DC) 

300 
400 
500 
600 
700 

Temperature (0C) 

300 
400 
500 
600 
700 

loglO[X(N2)] 

-3.907 
-3.924 
-3.936 
-3.947 
-3.960 

log 1 o[X (N2)] 

-0.704 
-0.706 
-0.711 
-0.718 
-0.729 

log 10 [X (N2)] 

-3.969 

-3.992 
-4.007 

-4.019 
-4.031 

-0.704 
-0.707 
-0.711 
-0.716 
-0.724 
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loglO[X(NH~] loglO[X(N2)/X(NH3)] 

-3.821 -0.086 
-3.801 -0.123 
-3.794 -0.142 
-3.798 -0.149 
-3.809 -0.151 

loglO[X(NH3)] loglO[X(Nz>IX(NH3)] 

-2.418 1.714 
-2.333 1.627 
-2.298 1.587 
-2.287 1.569 
-2.291 1.562 

loglO[X(NH3)] log lO [X(Nl)/X(NH3)] 

-3.734 -0.235 
-3.713 -0.279 
-3.705 -0.302 
-3.705 -0.313 
-3.712 -0.319 

loglO[X(NH3)] loglO[X(Nz>IX(NH3)] 

-2.341 1.637 
-2.240 1.533 
-2.190 1.479 
-2.169 1.452 
-2.163 1.439 



Addendum V 

Equilibrium compositions, as a function of reactant stoichiometry. predicted by thermodynamic modelling 

using the computational procedures of Gordon and McBride (1971), for initial reactants N2 and 02 under 

isothermal, isobaric conditions. Total pressure: 0.01 atm. (Xi is the mole fraction of component i) 

Reaction temperature: 850°C 

1 -2.044 -4.316 -8.693 -4.357 
5 -1.693 -3.966 -8.693 -3.656 
10 -1.542 -3.814 -8.694 -3.355 
15 -1.453 -3.725 -8.693 -3.175 
20 -1.390 -3.662 -8.693 -3.049 

Reaction temperature: 1150°C 

1 -1.150 -3.993 -7.864 -1.859 
5 -0.792 -3.634 -7.864 -1.142 
10 -0.634 -3.4TI -7.864 -0.827 
15 -0.541 -3.384 -7.864 -0.640 
20 -0.474 -3.317 -7.864 -0.506 

The above data were used to construct Figure 4.7 
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Addendum VI 

Predicted equilibrium compositions (mole fractions) of the major products resulting from the reaction between 

reactants 8NH) + 3C02 under a range of temperatures and pressures corresponding to crustal environments. 

The computational procedure of Gordon and McBride (1971) was used for the modelling. adapted for P> 1 atm .• 

to incorporate fugacity coefficients (calculated using the equation of state of Holloway. 1981) for all components 

except ammonia, which was assumed to behave ideally under all conditions. 

(These data were used to construct Figure 4.10) 

(i) p= 1 atm. 

Temperature (DC) log 10 [X(CH
4
)] 10gI0[X(CO~ loglo[X(C02~ 10glO[X(Hz~ loglo[~O)] 

300 -0.6746 -4.4019 -1.8800 -1.2824 -0.3735 
400 -0.7515 -2.9282 -1.4494 -0.8384 -0.4491 
500 -0.9126 -1.8834 -1.2133 -0.5474 -0.5890 
600 -1.2688 -1.2292 -1.2070 -0.3716 -0.7781 
700 -2.0547 -0.9670 -1.3566 -0.3015 -0.9013 
800 -3.1088 -0.9070 -1.4749 -0.2963 -0.9016 
900 -4.0580 -0.8835 -1.5675 -0.3006 -0.8829 

Temperature (DC) log 10 (X(NI\)] 10glO[X(N
z
)] z 

300 -3.3574 -0.5236 1 
400 -3.4016 -0.5451 1 
500 -3.5139 -0.5818 1 
600 -3.6921 -0.6324 1 
700 -3.9410 -0.6692 1 
800 -4.2126 -0.6760 1 
900 -4.4501 -0.6766 1 

(ii) p = 250 atm. 

Temperature eC) 10glO [X(CH
4
)] log 10 [X(CO)] log 10 [X(COz)] log '0 [X(Hz)1 log,o[,,<~o)1 

300 -0.6426 -6.1620 -2.5670 -2.3036 -0.3416 
400 -0.6511 -4.7672 -2.2375 -1.7839 -0.3500 
500 -0.6677 -3.6970 -1.9444 -1.4087 -0.3664 
600 -0.6959 -2.8664 -1.7113 -1.1257 -0.3934 
700 -0.7406 -2.2231 -15486 -0.9054 -0.4324 
800 -0.8107 -1.7363 -1.4638 -0.7299 -0.4845 
900 -0.9191 -1.3851 -1.4578 -05897 -0.5494 

Temperature (0C) loglO[X(N~)] log,o[X(NI] Z 

300 -2.4072 -0.5153 1.055 
400 -2.3464 -0.5182 1.059 
500 -2.3282 -0.5234 1.059 
600 -2.3323 -0.5317 1.057 
700 -2.3496 -0.5440 1.054 
800 -2.3760 -0.5616 1.050 
900 -2.4121 -0.5848 1.046 
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(iii) p= 500 atm. 

Temperature eC) 10g\O[X(CH.)1 log I 0 [X(CO)l logI0[X(C0
1

)1 10g\O[X(~)1 10gI0[X(~O)] 

300 -0.6422 -6.3344 -2.5598 -2.4738 -0.3412 
400 -0.6485 -4.9757 -2.2893 -1.9378 -0.3475 
500 -0.6607 -3.9254 -2.0290 -1.5505 -0.3596 
600 -0.6814 -3.1007 -1.8065 -1.2586 -0.3795 
700 -0.7135 -2.4520 -1.6379 -1.0307 -0.4085 
800 -0.7625 -1.9490 -1.5323 -0.8476 -0.4474 
900 -0.8361 -1.5708 -1.4934 -0.6981 -0.4966 

Temperature (0C) 10gI0[X(~)1 log \0 [X(N
2
)] z 

300 -2.2915 -0.5157 1.151 
400 -2.2199 -0.5180 1.143 
500 -2.1928 -0.5220 1.134 
600 -2.1892 -0.5282 1.124 
700 -2.1985 -0.5374 1.115 
800 -2.2153 -0.5505 1.106 
900 -2.2382 -0.5682 1.097 

(iv) p= l000atm. 

Temperature eC) log 10 [X(CH
4
)1 10gI0[X(CO)1 10gI0[X(coz)1 10glO[X(Hz)1 10gI0[~o)1 

300 -0.6423 -6.4852 -2.5194 -2.6769 -0.3413 
400 -0.6469 -5.1648 -2.3103 -2.1217 -0.3459 
500 -0.6557 -4.1442 -2.0957 -1.7177 -0.3546 
600 -0.6704 -3.3340 -1.8967 -1.4131 ·0.3688 
700 .0.6931 ·2.6867 -1.7327 . ·1.1755 -0.3897 
800 -0.7268 -2.1744 -1.6161 -0.9840 -0.4180 
900 -0.7764 -1.7770 -1.5534 -0.8260 -0.4540 

Temperature (0C) 10glo[X(~)] log 10 [X(Nz») Z 

300 -2.1764 -0.5164 1.397 
400 -2.0953 -0.5184 1.348 
500 -2.0570 -0.5214 1.310 
600 ·2.0449 -0.5260 1.278 
700 -2.0474 -0.5327 1.251 
800 -2.0565 -0.5421 1.227 
900 ·2.0700 ·0.5551 1.207 

Notes: (1) The 'compressability factor' Z (=PV/nRT) is a measure of the departure of tho system from 
ideal gas behaviour. 

(2) The mole fraction of graphite was <10.25 for all P,T conditions considered. 
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Addendum VII 

Experimental procedures adopted for the extraction and chemical analysis of 

fluid inclusion leachates. 

vn. 1 Declaration of analytical work undenaken by the author 

The preparation of fluid inclusion leachate solutions for investigating the palreofluid chemistry 

associated with specific paragenetic stages of hydrothermal mineralisation of the Dartmoor granite 

was undertaken by the author, under the guidance of Dr D A Banks at the Department of Earth 

Sciences, University of Leeds. Analysis of the leachates for minor cations, using graphite furnace 

atomic absorption spectrometry (GFAAS), was undertaken by the author. The prepared solutions 

were subsequently submitted to the Department of Chemistry, University of Leeds, for analysis by 

inductively-coupled plasma atomic emission spectrometry (ICP-AES) of major and minor cations. 

Flame emission spectrometry (PES) determinations of the Na and K concentrations in the leachate 

solutions were made by Dr D A Banks. 

Replicate leachate solutions, but with doubly-distilled water (DDW) as the leaching agent rather 

than acidified lanthanum chloride, were subsequently prepared by Dr D A Banks, who determined 

the F", Cl-, Br-, r and sot contents of the leachates by ion chromatography on the author's 

behalf. FES was used to measure Na concentrations in the same solutions and hence permit the 

relative abundance of individual halogens and sulphate to be determined with respect to Na. Isotope 
dilution analyses for Rb and U ionic concentrations, also Sr and Pb isotopic analyses, were 

undertaken by Dr D M Wayne, also at the Department of Earth Sciences, University of Leeds, 

using leachate solutions subsequently prepared from 'splits' of the same quartz samples. 

A second batch of hydrothermal quartz samples, representative of association with W±Sn oxide 

occurrences in the Comubian region, was submitted to Dr D A Banks, who performed crush-leach 

analyses for fluid inclusion electrolyte composition on the author's behalf, using the same 

analytical procedures as reported herein for the vein quartz samples hosted by the Dartmoor granite. 

vn. 2 Preparation of quam. samples 

An essential requirement of fluid inclusion electrolyte analysis by crush -leach techniques is that no 

extraneous mineral grains are present whatsoever. The quartz samples used in the present 

investigation were originally prepared by the author for stable isotope ratio analysis of vuious 

palreofluid components. Quartz grain size O.5-1.0mm was used throughout. Samples were cleaned 

of extraneous material by hand-picking individual grains with the aid of a binocular microscope, 

followed by purification in boiling 6M HCI. The use of halogenated alkane 'heavy liquid' 

separation for the initial preparation of quartz concentrates was avoided throughout. For fluid 
inclusion leachate preparation, further purification of the quartz was undertaken by Dr D A Banks, 

based on the recommendations of Bottrell et al. (1988). These included boiling the quartz grains in 

concentrated HN03 (quartz-distilled), followed by electrolytic cleaning for 2-3 weeks to strip the 
quartz surfaces of adsorbed ions. 
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VII. 3 Sample extraction procedure 

All work was undertaken in a purpose-built 'clean' laboratory. Quartz samples were crushed and 

leached in a laminar flow fume cupboard, with standard precautions taken against the ingress of 

contamination. All water used in the experimental procedures was doubly-distilled in silica glass 

stills. 

For each of a batch of 15 samples, approximately 2g of quartz grains were finely crushed (dry) 

with an agate pestle and mortar and the resulting powder transferred into a screw-topped PI'FE 

centrifuge tube (volume 30ml). lOml of leaching solution, consisting of either (a) DOW or (b) 

O.13M HN03 containing 2001lg/ml La3+ (as LaCI3), depending on the elements to be analysed, 

was added to each tube, which was subsequently sealed and shaken vigorously two or three times 

over a 15 minute period (approximately). After being allowed to stand for 5 minutes, the tubes 

were spun at 5000 rpm in a centrifuge for lO minutes. The solutions were then decanted through a 

Buchner-type vacuum funnel, with the reduced pressure being provided by a hand pump (allowing 

a fine degree of control). A glass sinter in the funnel tube was overlain by a 0.45 J.1l11 Whatman® 

membrane filter (cellulose nitrate); this was pre-washed with leaching solution (-5ml) then DOW 

(-10ml) prior to filtering of the sample solution. Filtered solutions were collected for storing in 

10mi Savalex® beakers. At the end of each filtration, the membrane filter was replaced and the 

funnel thoroughly rinsed, first with 5 -lOml of leachate solution and then with DDW. 

For the batch of Dartmoor granite-hosted quartz samples (8) crushed and leached by the author for 

fluid inclusion cation analysis, three were prepared in duplicate (SW-89-l61, SW-89-l62 and 

SW-89-164 respectively) and the samples interspersed at regular intervals with a quartz 'blank' 

(gem quality, inclusion-free Brazil quartz). Four such 'blanks' were prepared, for this batch. 

A further two quartz samples associated with mineralisation of the Dartmoor granite (SW-89-157 

and SW-89-160) were visibly contaminated by intergrowths ofhrematite, in the case of the former 

sample, and orthoclase in the case of the latter. These samples were therefore excluded from that 

batch and analysed at a later stage (but not for As, Bi or Be) by Dr D A Banks on behalf of the 

author, after respective treatments with boiling HN03 (to minimise hrematite contamination) and 

~SiF6 at ambient temperature overnight, to remove orthoclase (both samples). 

VII. 4 Instrumentation and associated detection limits 

VII.4.1 FES and GFAAS: 

A Varian® Spectra AA-l 0 atomic absorption spectrometer was used (in conjunction with a GT A-96 

graphite furnace in the case of GFAAS measurements). The detection limit for Na was -lOppb. 

GFAAS was used for the determination of Cu, Bi, Pb, As, and Be; the approximate detection 

limits were 2, 2, 1,0.3 and 0.05ppb respectively. 

VII.4.2 ICP-AES: 

An ARL 3580-B instrument was used for the analyses. The detection limits, as measured using 

acidified LaC~ leaching solution, are given in Table VII-A. 
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VII.4.3 Ion chromatography: 

DDW was used as the leaching solution. A Dionex® 4500i instrument was used for anion analyses 

(halogens and sulphate) in the leachates. The system incorporated post-column suppression, a 

50~ sample loop volume, and an electrical conductivity detector linked directly to an Intel® 386-

based Elonex® computer, running AI-450 data acquisition software. With the exception of iodide 

analyses, a PAX-l 00 column was used, in conjunction with a CG-l guard column. 

For iodide measurements, the retention time would be -25 minutes under these conditions. This 

was shortened to -3.5 minutes (thereby increasing the magnitude of the associated peaks and hence 

improving measurement capabilities) by using a trace anion concentrator (2ml solution used) and 

removing the PAX-lOO column; anion separation was thus effected by the CG-I guard column. 

In both cases, the eluant used was DOW containing NaHC03 and NazC03 (both 3.2mM) and 

methanol (to a total concentration of 5%). Detection limits of the Dionex® system were: F--5ppb, 

CI --lOppb, Br--0.5 ppb, r -0.1 ppb and sot -2 ppb. 

VII. 5 Procedural blanks 

VII.5.1 ICP-AES measurements: 

Table VII-B gives the results of element blank concentrations (ppb in leachate solutions) 

associated with inclusion-free quartz leachates; also element blanks associated with the leaching 

solution (200ppm La3+ as LaCl
3 

in 0.13M HN03). The inclusion-free quartz was included in the 

batch of Dartmoor granite-hosted samples prepared by the author. Note that for some elements, 

negative values were obtained; this is because the corresponding regression line used for calibration 

did not pass through zero. This is particularly apparent for the aluminium data. Also, the sensitivity 

of the ICP-AES method for aluminium analysis is relatively low. 

VII.5.2 GFAAS measurements: 

For trace cations as measured using GFAAS, the following procedural blank values were obtained 

by the author, from leaching inclusion-free quartz: As-5ppb, Bi-2ppb, Cu-2ppb, Pb-lppb, 

Be<O.lppb. A 20J..ll injection was used for each analysis. 

VII. 5.3 Ion chromatography measurements: 

Anion procedural blanks, as recorded using the Dionex® system, were: P- -1 Oppb, Cl- -250ppb, 

sot -30ppb; Br- and r were not detected. Data obtained by Dr 0 A Banks. 

VII. 6 Analysis o/re/erence synthetic fluid inclusions/or CI, Brand I concentrations: 

Quartz samples containing synthetic fluid inclusions, supplied by the Centre de Recherches sur la 

Geologie de I'Uranium (CREGU) at Nancy, France, were used to verify the analytical procedures 

adopted for the determination of fluid inclusion halogen ion ratios. The results of the analyses, 

together with the corresponding 'true' values, are presented in Table VII-C. The data were 

obtained by Dr D A Banks. 

344 



VII. 7 Raw analytical data. Dartmoor mineralising fluid inclusion leachates: 

The results of ICP-AES analysis of cations and boron (determined as borate) concentrations in 

fluid inclusion leachate solutions (acidified LaCI) used as the leaching solution) are presented in 

Table VII-D. Minor cation concentrations. as measured using GFAAS, are reported in Table 

VII-E. The results of anion (halogen and sulphate) analysis of leachates prepared from separate 

'splits' of the same quartz samples are shown in Table VII-F. 
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Table VII-A 

Detection limits (at the 30 level), as measured using ICP-AES on acidified LaCl
3

1eaching solution: 

Element Concentration (ppb) Element Concentration (ppb) 

Li 2 Ba 2 

Na 19 B 4 

K 146 Al 17 

Mg 0.1 Mn 0.5 

Ca(1) 7 Fe 3 

Ca(2) 0.4 Cu 3 

Sr 11 Zn 5 

Notes: (i) The two calcium values refer to different spectral lines. 

(ii) The LaCl
3 

spike solution used for these determinations was subsequently discovered to 

have been more concentrated by a factor of lOx than intended; the actual limits of 

detection were thus probably better than the values quoted here. 

(iii) The relatively poor value for Sr probably reflects interference by La and/ or a high Sr 

blank, rather than low sensitivity of the instrumentation, for which the Sr detection 

limit is - O.lppb. 

Table VII-B 

Element blank concentrations (ppb in leachate solutions) associated with inclusion-free quartz 'leachates' 

and also of the leaching solution (200ppm La3+ as LaCl
3 

in O.13M HN03), determined using ICP-AES: 

Li Na K Mg Ca(l) Ca(2) Sr Ba B Al Mn Fe Cu Zn 

Leachates of inclusion -free quartz: element blanks (ppb), uncorrected for leaching solution blanks: 

(1) -3 25 36 3 31 52 46 -3 3 -Ill -12 -21 -51 -21 

(2) 0 24 38 5 72 91 44 -3 9 -108 -11 -14 -51 -23 

(3) -1 55 41 4 99 109 48 -2 12 -104 -10 -12 -51 -17 

(4) -2 20 45 32 51 41 -2 5 -119 -11 -18 -52 -22 

Mean: -2 31 40 3 58 76 45 -2 7 -110 -11 -16 -51 -21 

Leaching solution (acidified LaCl) element blanks (ppb): 

(1) -5 2 13 -1 -32 -14 44 -2 6 -132 -12 -26 -50 -24 

(2) -5 -16 -20 -2 -38 -15 52 -3 2 -143 -12 -28 -51 -24 

Mean: -5 -7 -4 -2 -35 -15 48 -3 4 -136 -12 -27 -51 -24 

Leachates of inclusion-free quartz: mean blanks (ppb), corrected for leaching solution blanks: 

Blank (ppb): 3 38 44 5 94 91 -3 1 3 26 1 11 0 3 
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Table VII-C 

Anion analyses of synthetic fluid inclusions, as measured in the same laboratory and using the same experimental procedures 
as adopted for the present study of palreo-hydrothermal fluids 

(0 A Banks, unpublished data) 

Sample Concentration in leachate solution (ppb) Weight ratio Mole ratio 

CI Br I Br/Q I/O Br/O I/O 

47 As analysed: 17007 274 148 0.0161 0.0087 0.0071 0.0024 

'True'value: 0.0163 0.0120 0.0072 0.0034 

48 As analysed: 4701 31 5.2 0.0066 0.0011 0.0029 0.0003 

'True'value: 0.0071 0.0011 0.0032 0.0003 

Detection limit: 10 0.5 0.1 



Table VII-D 

Cation (and boron as borate) concentrations (ppb) in fluid inclusion leachate solutions, Dartmoor granite-associated hydrothermal quartz, as determined using ICP-AES. 
Data corrected for procedural blanks. 

Locality (mine) : GoIdea n.gcr Barrarott East VitiCer Golden Dagger East Vitifer Golden Dagger Great Rock 

Paragenetic stage : I n n n n(Ul) n(Ul) Stagem(ll) Stagem Stagem 

Samplere{erence : SW-S9-159 SW·89-160 SW-89-164 SW-89-1SS SW-89-156 SW-89-162 SW-89-163 SW-89-154 SW-89-161 SW-89-157 

U 110 26 4S 66 141 92 146 133 64 83 9 15 8 

Na 27.690 10,278 12.810 18.670 35.610 27.650 17.640 16.060 18.190 12.250 357 512 1.752 

K 6.200 2.468 2.419 3.608 6,658 6.419 2.746 2.518 3.843 2.382 (153) (186) 370 

Ca 12,144 4,538 5.032 7,593 14.654 10.954 7.132 6.430 10.154 5.022 459 703 1.130 

Mg 65 29 52 64 91 55 63 57 178 71 52 73 13 

Sr 222 83 94 138 258 198 119 107 165 84 11 15 9 

IIa 62 24 3S 52 75 75 22 23 39 26 4 7 10 

B 496 206 169 212 490 388 448 410 660 220 5 12 11 

AI 538 208 199 282 441 2'17 457 436 630 414 177 312 196 

Mn 1.606 208 776 1.179 1.765 1,385 785 686 1.213 573 (12) (24) 222 

Fe 2826 1062 587 881 3.020 2.848 876 747 1.760 1.130 (8) (22) 390 

Cu 13 6 4 9 19 23 21 19 35 34 (22) (31) 2 

Zn 320 122 163 234 350 257 15S 140 258 114 (T) (5) 34 

Nola: (1) Aulyti1:al RIUIII ill pIRIIIhaeIlre of relltilely low precision. 

(2) QDdzIlqllel SW-89-157I11C1SW-89-160 wcrelJaled WillI tluoroIilil:icacid (H,SiF.> iliaD IGempt to muo~feldlplr. Residual feldspwill SW-89-157 probablyrespoosible Cor anomalously high AI. Ca IIICI Mg wlues. 

(3) The pncIomiIIIIIt ~ .... illiven ill all_. In aoDle -. sec:oadIry mDiDg by Jatcr .... fluidI will be of sigDifJCaDCe; for these saJqlles, the IDDor stage is indicaed ill plRDtheses. 

(4) DupJaeaulysa ofSaqlieSW-I9-161 pYe very low ion yieldl. CoaIequenlJy.lWItipJi<:aIion facial required to 9p'eIII eIemeJDI yields. a ratio to Na (on a weigbtor moJar basis) would be very J.gelllCl thus be likely to 

iJIcIJrpcne 1igJIifiaaIl-. 



Table VII·E 

Trace cation concentrations (ppb) in fluid inclusion leachate solutions, Dartmoor granite-associated 
hydrothennal quartz, as detennined using GFAAS 

Sample Cu Pb As Bi 

Barracott mine 

SW-89-164 4 37 20 <1 

duplicate 9 56 23 <1 

East Vitifer mine 

SW-89-155 20 (95) 50 1.4 

SW-89-156 21 61 38 1.5 

SW-89-154 25 30 30 1.6 

Golden Dagger mine 

SW-89-159 13 (97) 70 1.5 

SW-89-162 19 35 46 nd 

duplicate 17 33 40 nd 

SW-89-163 27 (99) 48 1.8 

SW-89-161 22 nd 7 nd 

duplicate 29 nd 20 1.5 

Notes: (i) All data corrected for procedural blanks. 
(ii) Numbers in parentheses are extrapolations beyond calibration curves. 
(iii) nd indicates not detected. 

Be 

0.44 

0.43 

0.57 

0.42 

0.67 

0.66 

2.46 

2.10 

1.34 

1.42 

2.52 

(iv) Analytical errors are in the region of -5 to 10%, except for As, where the enors may be 
significantly greater. 
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Table VII·F 

Fluid inclusion leachates from hydrothermal quartz associated with early mineralisation of the 
Dartmoor granite: anion concentrations (ppb), corrected for procedural blanks. 

Na + concentrations (ppb), determined on the same leachates using FES, are reported for comparison. 
(Analyses undertaken on the author's behalf by Dr D A Banks at the University of Leeds.) 

Sample Na+ cr p- Br- r SO 2-
4 

Barracott mine 

SW-89-164 5,300 13,209 23 71 
12,771 1.14 

duplicate 12,000 30,063 1.61 
2,598· 39·(451) 4· (46) 

East Vitlrer mine 

SW-89-155 12,610 30,996 55 158 
31,191 2.59 175 

duplicate 11,320 27,829 4.76 
6,451" 155·(669) 13· (56) 

SW-89-156 10,000 25,218 47 51 
25,420 0.52 76 

duplicate 11,050 27,879 1.92 
8,705· 82· (263) 15· (48) 

SW-89-154 8,750 20,793 35 58 
20,561 0.79 73 

duplicate 10,100 24,095 0.74 
2,502· 74· (713) 4· (39) 

Golden Dagger mine 

SW-89-159 10,800 27,797 51 86 
28,290 2.06 137 

duplicate 11,020 28,443 5.04 
7,388· 144· (554) 13· (50) 

SW-89-160 14,400 36,119 57 4.0 336 

SW-89-162 5,850 12,856 19 25 

12,556 1.08 31 
duplicate 8,150 17,935 0.99 

2,579· 53· (369) 

SW-89-163 7,550 20,727 40 80 

20,584 0.61 102 
duplicate 9,050 24,929 1.40 

4,289· 73· (424) 9· (52) 

SW-89-161 450 1,346 2 23(?) 

284· 48· (227) 
duplicale 1,000 3,111 0.18 

1, 184· 22· (58) 

Great Rock mine 

SW-89-157 3,550 8,857 na 16 0.3 

Notes: (i) Values marked by an asterisk indicate a dilution of the leachate solution referred to in the 
immediately preceding row. In these cases, element concentrations in the undiluted leachates, as 
calculated from applying the appropriate dilution factor (given by the ratio of the corresponding 
sodium concentrations) are given in parentheses. 

(il) Samples SW-89-157 and SW-89-160 were treated with fluorosilicic acid. 
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Addendum VIII 

a) Rb-Sr data obtained from fluid inclusion leachate analysis of early hydrothennal vein 
quartz hosted by the Dartmoor granite 

(Data produced by Dr D M Wayne at the University of Leeds, using samples supplied by the author) 

Sample Rb (Ppb) Sr(ppb) 87Rb/86Sr 87Sr/ 86Sr B7Sr/86Sr @ 280Ma 

Golden Dagger mine -pegmatitic quartz 

SW-89-159 112 197 1.64 0.71884 (6) 0.7123 

SW-89-160 (C) 30 50 1.74 0.71936 (4) 0.7124 

Golden Dagger mine - Stage II 

SW-89-162 (A) 56 101 1.60 0.71927 (6) 0.7129 

SW -89-162 (B) 46 84 1.59 0.71924 (7) 0.7129 

SW-89-162 (C) 28 50 1.67 0.71928 (12) 0.7126 

SW-89-163 59 121 1.40 0.71968 (5) 0.7141 

Ba"ocott mine - Stage II 

SW -89-164 (B) 61 126 1.41 0.71814 (6) 0.7125 

SW-89-164 (C) 26 50 1.61 0.71816 (18) 0.7118 

East Vitifer mine - Stage II 

SW-89-155 (A) 93 258* 0.71948 (3) 

SW-89-155 (C) 27 49 1.62 0.71956 (4) 0.7131 

SW-89-156 109 183 1.72 0.71935 (5) 0.7125 

East Vitifer mine - Stage III 

SW-89-154 (A) 37 84* 0.71870 (3) 

SW-89-154 (C) 47 85 1.61 0.71877 (7) 0.7123 

Golden Dagger mine - Stage III 

SW-89-161 (A) 6 0.67 0.71619 (10) 0.7135 

Great Rock mine - Stage III 

SW-89-157 (C) 11 23 1.33 0.71668 (10) 0.7114 

Notes: (i) An asterisk (*) denotes that the Sr concentration was detennined by ICP-AES. 

All other Sr concentration data were obtained by isotope dilution. 

(ii) All sample splits denoted by a 'C' suffix were leached in La-free O.13M HN0
3

; 

others were La spiked (200 ppm), as recommended by Bottrell et al. (1988). 

(iii) Stages II and ill refer to the paragenetic classification by Scrivener (1982). 

351 



b) The isotopic composition of Pb and U in fluid inclusion leachates of early hydrothermal vein quartz hosted by the Dartmoor granite. 
(Data produced by Dr D M Wayne at the University of Leeds, using samples supplied by the author.) 

Samplc Pb(ppb) u(ppb) 206pt, /204Pb 207Pb/2(Wpb ~/204Pb 238tJ /!04Pb 206Pb/204Pb @ 280Ma 207Pb/ 204Pb @ 280M. 

Golden Dagger mine. pegmatilic quartz 

SW-89-159 72 12.4 18.902 (17) 15.681 (18) 38.552 (61) 11.0 18.41 15.66 

SW-89-160(A) 28 18.615 (21) 15.673 (20) 38.444(91) 

SW-89-I60(C) 18 1.6 18.485 (13) 15.667 (17) 38.399 (50) 5.6 18.24 15.65 

GoIde1l Dagger mine - Stage H 

SW-89-162(B) 24 3.8 18.577 (31) 15.632 (28) 38.220 (110) 10.1 18.13 15.61 

SW-89-162 (C) 15 1.7 18.514 (13) 15.682 (16) 38.426(51) 7.0 18.21 15.67 

SW-89-I63 60 4.6 18.629 (14) 15.646(16) 38.381 (61) 4.9 18.41 15.63 

Barracott mine -Stage H 

SW-89-164 (A) 38 0.7 18.310 (14) 15.637 (16) 38326(71) 1.2 18.26 15.63 

SW-89-164(B) 47 0.5 18.324 (16) 15.642 (17) 38.340(67) 0.6 18.30 15.61 

SW-89-164(C) 21 ad 18.317 (12) 15.638 (16) 38.325 (50) 

Etut Vitifer mine - Stage H 

SW-89-155 (A) 73 2.0 18.349 (13) 15.636(16) 38.330(57) 1.7 18.27 15.63 

SW-89-155 (C) 30 0.9 18.361 (12) 15.646(15) 38.356(50) 1.9 18.28 15.64 

SW-89-156 61 7.7 18.545 (16) 15.668 (17) 38.392 (62) 8.0 18.19 15.65 

Etut Vitifer mille - Stage HI 

SW-89-154 (A) 33 1.6 18.553 (17) 15.642 (18) 38.349(80) 3.2 18.41 15.63 

SW-89-154(C) 16 0.6 18.437 (14) 15.657 (16) 38.320(53) 2.6 18.32 15.65 

GretII Rod.: /IIine - Stage HI 

SW-89-157 (A) 8 ad 18.381 (32) 15.665 (19) 38.596 (243) 

SW-89-157 (C) 16 ad 18.303 (13) 15.630(16) 38.309 (52) 

Notca: The IIqc IlIIIgC of2Olpt,j204pbra:ooled from sample SW-89-157 is ia part dac totbc rdaliYCIy lIqe bIaot c:orm:tioo m SW-89-157(A); 

1be mAlIt from sample SW-89-157(C) is probably _ ~tative. ad incIicIfa IIOl detected. 
All sample splits cbated by • 'C' suffix were leached ill La-free 0. 13M HNO); 0Ibas _La spited (200 ppn), as n:commcadcd by BOUIdI et aI. (1988). 



Addendum IX 

The time-dependant variation of 87Sr /86Sr in Rb-bearing systems: application to the 
age determination of early hydrothermal fluids hosted by the Dartmoor granite 

In system closed to loss or gain of strontium or rubidium, increase in the 87S r/87Sr ratio 

since closure of the system is attributable solely to the decay of 87Rb. The decay constant 

A = 1.42 x 10-11 a-I (Steiger and Jager, 1977). In terms of present-day 87Sr/86Sr and 87Rb/86Sr 

ratios, the 87Sr/86Sr value at time t before present is given by 

where the p subscript refers to the present-day ratios. Using this equation, palreofluid data 

given in Addendum VUIt and the whole-rock Rb-Sr data set (fourteen samples) of 

Darbyshire and Shepherd (1985) for the Dartmoor granite were used to construct the 

87Sr / 86Sr evolution curves shown in Figure IX -A. Assuming that the strontium in the fluids 

was derived exclusively from the granite, Figure IX-A permits age limits of the 

hydrothermal system to be estimated, on the basis of the time at which the 87Sr /86Sr value 

of the granite coincided with that of the fluids. The age corresponding to individual 

intersection points between the palreofluid curves and those of the granite whole-rock 

samples may be calculated from: 

By taking the data in entirety, the age of the fluids is poorly constrained to between ca. 246 

and 279Ma before present. It is, however, apparent from Figure IX-A(a) that if the (eight) 

poorly -megacrystic Dartmoor granite samples of Darbyshire and Shepherd (1985) are more 

representative of that pluton than the coarsely-megacrystic examples, for present purposes, 

the age limits of the associated early hydrothermal systems are much more tightly 

constrained, to ca. 273-279Ma. The corresponding mean is 276.6Ma (20=2.7Ma). This 

latter value is in accord with a 40 Ar_39 Ar (total gas) age of 277.2 (20 = 1.0Ma) for early 

mineralisation hosted by the Dartmoor granite, as reported by Chesley etal. (1993) for 

biotite from a fine- grained biotite-granite dyke. 

Conversely, if the set of (six) coarsely-megacrystic Dartmoor granite whole-rock samples 

of Darbyshire and Shepherd (1985) are used to constrain the palreofluid age estimate 

(Figure IX-A (b) ), the corresponding mean age is 258.6Ma, with 20 error of 9.6Ma. 

t With reference to Addendum Vill. only quartz samples leached using O.13M HN0
3 

spiked with 200ppm 
La3

+ (as LaCI3) are considered here; those leached with La-free acid invariably gave lower Sr yields. 

Furthermore. sample SW-89-161 is also excluded. on the basis of anomalously low concentrations of 
electrolytes in the inclusion fluids (see Chapter 5). 

353 



Figure IX-A 

87Sr/ 86Sr evolution in early hydrothennal fluids hosted by the Dartmoor granite: 
comparison with the granite whole-rock samples of Darbyshire and Shepherd (1985). 

(Bold curves refer to the fluids) 
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Addendum X 

Petrographic descriptions of metasedimentary rock samples collected in 
the vicinity of the Dartmoor granite. 

The following notes were compiled for the present author by Dr N J Fortey of the British Geological 

Survey, following his petrographic examination, in transmitted light, of supplied thin sections of two 

suites of slaty metasedimentary rocks sampled across the thermal aureole of the Dartmoor granite. 

Details of the sample locations are given in Appendix A. The samples are listed in order of increasing 

distance from the granite contact, in each case. (Note that samples SW-S7-S7 and SW-S7-SS were located 

virtually equidistant from the contact; sample SW -87-S 13 was probably located closer, although this was 

difficult to assess with certainty.) 

Upper Devonian metasediments from an area south-west of the Dartmoor granite 

SW·87·S13 

Retrogressive chlorite-sericite alteration of a schistose hornfels, very similar to sample SW-87-8 

(see below). 

SW·87·S7 

Contact metamorphism of a pelitic rock has resulted in a foliated (schistose) hornfels consisting largely of 

muscovite, biotite and quartz with porphyroblasts of muscovite, andalusite and possibly K-feldspar. 

Minute prisms of yellow schorI are common, and microgranules of opaque mineraVs and likely rutile are 

ubiquitous. Retrogressive hydrothermal alteration has resulted in chloritisation of biotite and andalusite, 

and also sericitic alteration of muscovite and likely feldspar. 

SW·87·S8 

Schistose semi-pelitic hornfels with a strongly foliated fabric of muscovite grains is accompanied by 

relict silt-grade quartz and a few conformable minute quartz lenses. Fine-grained prograde biotite is also 

present, but no tourmaline was located. Retrogressive hydrothermal alteration has caused chloritisation of 

biotite and sericitic alteration of once abundant porphyroblasts of possible andalusite and cordierite. Also, 

films of iron oxide material along grain boundaries indicate either late hrematitic alteration or, more 

probably, penetrative weathering during Permian redbed conditions penecontemporaneous with 

emplacement of the granite. 

SW·87·S9 

Metamorphism of a weakly-banded silty mudstone has resulted in development of a strongly foliated 

(lepidoblastic) bedding-parallel fabric composed of very fine-grained muscovite and quartz overgrown by 

non-oriented micro-porphyroblasts of biotite. Minute granules of opaque mineral/s and likely rutile are 

very common. A hairline veinlet of chlorite cuts the foliation at about 90°. 
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SW-87-S10 

Much of the fabric of this metamorphosed mudstone is a very fine grained, poorly foliated mat of white 

mica, chlorite and quartz. This fabric is patchily interwoven with areas of strongly foliated (lepidoblastic) 

fabric composed of muscovite and quartz accompanied by very fine grained biotite flakes. The rock carries 

slender veinlets and lenses of quartz micro -mosaic (with rare pyrite cubes, now goethite -altered) developed 

sub-parallel with the foliated fabric possibly on syn-metamorphic shears. These pre-date a quartz-chlorite 

veinlet which cuts about perpendicular to the fabric, and is accompanied by areas of chloritisation of the 

host rock. 

SW-87-S11 

Mudstone converted in metamorphism to a lepidoblastic muscovite fabric, with probable minor quartz and 

abundant overgrowing fine-grained biotite. Minute granules of opaque mineralls and likely rutile are 

common throughout. Penetrative iron staining has picked out numerous mm-scale patches rich in very 

fme-grained quartz and white mica, in which regularly spaced parallel films of iron oxide suggest relict 

cleavage preserved in altered former porphyroblasts of uncertain identity. Quartz veinlets occur at a high 

angle to the foliation and quartz lenses occupy minute gashes sub-parallel to the foliation. It is 

interesting to note deflexion of the muscovite fabric around the relict porphyroblasts, indicating that the 

schistose fabric is a product of the contact metamorphism rather than a regional fabric that has been 

inherited and overgrown. Contact metamorphism is not just a static process of recrystallisation. 

This sample appears to be the last in this sequence in which metamorphiC biotite was located, and so 

lies close to the biotite isograd of the Dartrnoor contact aureole. 

SW-87-S12 

A massive, very fine-grained silty mudstone, carrying a pervasive schistose fabric composed of tenuous 

muscovite laminre separated by slender lithons of quartz-muscovite-chlorite, some of which preserve an 

early fabric lying at a high angle to the prevalent fabric. Chlorite forms minute lenses within the 

dominant fabric. The rock is crossed by a slender veinlet at a high angle to the main fabric of quartz; 

traces of chlorite and grains of possible topaz or apatite. 

SW-87-S6 

Massive silty mudstone similar to SW-87-12 (above) in which muscovite laminre separated by slender 

litbons of unfoliated rock define a strong schistose fabric. 

SW-87-S5 

Mudstone in which very fine-scale sedimentary lamination is strongly contorted with development of a 

closely -spaced crenulation fabric on which schistose lamina: of new white mica have begun to grow. The 

crenulation fabric is also highlighted by films of darlc, possibly organic, residue. A bedding parallel fabric 

is preserved in the lithons between the crenulation planes. 
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SW-87-S4 

Massive mudstone in which trails of minute quartz grains indicate bedding. A pronounced bedding white 

mica foliation is crossed at about 30° (in the thin section) by a metamorphic fabric in which white mica 

laminre 10-20 microns thick are separated by layer 30-50 microns thick of undisturbed material. (The 

mica laminre display simultaneous optical extinction at an acutely oblique orientation to the laminre, 

which indicates the mica flakes within the laminre are oriented at this acute angle to the plane of the 

laminre.) 

SW-87-S3 

Homogeneous mudstone, much darkened by a pervasive opaque pigmentation of probably organic 

material; lacks metamorphic features but is intersected by an interconnecting network of replacement 

veinlets of pale (?) quartz-illite alteration of hydrothermal origin. 

SW-87-S1 

In this mudstone, the fine-scale sedimentary silty laminre have been contorted into a crenulated fabric on 

which a strong oblique crenulation cleavage has developed. The cleavage takes the form of dense packets 

of pressure-solution films of dark residue separated by slender lithons of mudstone in which the relict 

bedding-parallel fabric is preserved. In comparison with SW-87-5, this sample is marked by the absence 

of new mica growth along the crenulation fabric. This raises the question of the origin of the fabric: does 

it increase in development towards the granite (i. e. is it of contact origin), or is the change part of the 

underlying pattern of regional metamorphism? 

SW-87-S1 

Massive mudstone in which a strong pressure solution cleavage is seen as parallel films of opaque 

residue. The opaque laminre tend to occur in dense packets about 20 microns thick, separated by laminre 

of host mudstone 20 -40 microns thick; a pattern reminiscent of the fabric in SW -87 -2. 

Carboniferous metasediments (Crackington Formation) from north- east of the Dartmoor 
granite 

SW-87-S14 

Interbedded mudstone and fine-grained sandstone: the former component contains ovoid, mm-scale 

patches of muscovite-Quartz-goethite which suggest iron staining of proto-porphyroblasts of possible 

cordierite. The host mudstone carries a subtle fabric due to foliated alignment of white-mica flakes. An 

additional schistose fabric composed of closely-spaced, locally coalescing white mica laminre picked out 

by iron staining is developed in the mudstone component 
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SW-87-S15 

Mudstone in which contact metamorphism has produced a strong foliation in the abundant white mica, 

which is overgrown by disoriented biotite flakes, and is accompanied by porphyroblasts of andalusite with 

iron-stained rims. The rock is cut at a high angle to the foliation by undeformed veinlets of quartz and 

chlorite. 

SW-87-S16 

Massive silty mudstone with little bedding visible at the thin section level, except for a weak fabric 

which displays microcrenulations related to the strong pressure-solution cleavage which is expressed 

principally by closely-spaced planar films of goethitic material. 

SW-87-S17 

Semi-pelitic andalusite and biotite-bearing hornfels has undergone strong regressive hydrothermal 

muscovite-chlorite alteration. 

SW-87-S18 

This massive silty mudstone is darkened by abundant organic matter. Where the pigmentation is weakest, 

the rock is seen to be quartz rich, but not apparently rich in mica or clays. 

SW-87-S19 

Thinly-bedded sandy mudstone, darkened by organic matter. An oblique, weak, spaced pressure-solution 

cleavage is present. 

Discussion 

(1) Despite the enormous bulk of the adjacent granite pluton, it appears that contact metamorphism bas 

not developed extensive high-grade hornfelses. Although andalusite and possibly cordierite were 

formed, and fine grained biotite is abundant close to the granite, there is evidence of extensive 

retrogressive chloritic overprinting. This can be interpreted as encroachment by convective 

migration of heated fluids before coarse homfelses had time to develop fully. 

(2) Rocks from sites remote from the granite display strong crenulation and pressure-solution cleavage 

fabrics. Presumably, these belong to the pattern of regional deformation and very low grade (sub

greenschist) metamorphism. 

(3) Lepidoblastic or schistose foliations seen in several samples from sites within the biotite isograd 

may well have developed during the contact metamorphism. This may merely be mimetic 

intensification of pre -existing bedding or regional metamorphic fabrics, but it raises the question of 

whether granite emplacement entailed Significant defonnation and development of new fabrics. 
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Addendum XI 

Analytical procedures used for Rb-Sr analyses of metasedimentary whole-rock 
samples 

X. 1 Rb and Sr concentrations 

Rb and Sr concentrations, together with Rb/ Sr atomic ratios, were determined by X-ray 

fluorescence analysis, using a Philips®PW1450 automated spectrometer. 20g pellets were 

prepared for these analyses from -200 mesh rock powder mixed with 2m1 of Mowiol~ 

solution (aqueous polyvinyl alcohol) and pressed at 7 tonnes for 1 minute. Both sides of the 

powder pellets were measured (except in the case of sample SW-87S-18, where visible 

contamination on one side was noted) and the average taken. The batch of samples included 

international reference standards and appropriate corrections were made for instrumental 

dead time, background and line interferences, following the recommendations of Pankhurst 

and O'Nions (1973). Errors on the Rb/Sr atomic ratios were generally ±0.5% at the 1a 

level; the data are given in full in Table XI -A. In contrast, the Rb and Sr concentrations 

were determined from the molybdenum Compton scatter peak (Pankhurst and O'Nions, 

1973); the associated error is about ±5% (10). 

From the Rb/Sr atomic ratio, the corresponding 87Rb/86Sr isotopic ratio may be obtained 

by multiplying by a factor comprising the isotopic abundance of 87Rb as a proportion of the 

atomic weight of this element (which, in turn, depends on the isotopic composition and is 

therefore sample dependant), then dividing the result by the corresponding value for 86Sr 

(see e.g. Faure, 1986). The following algorithm relates the 87Rb/ 86Sr and Rb/Sr data 

reported in the present work, in terms of the S1Sr /86Sr as measured by mass spectrometry: 

87Rb/86Sr = (2.6218 + (0.283 x (S1Sr /86Sr») x Rb/Sr 

X.2 Sr isotopic composition 

Preparation of strontium for isotopic composition was undertaken following total 

dissolution ofO.2g of whole-rock powder in 10ml HF and 2ml HN03• After evaporation to 

dryness on a hot block at -60°C, another 2ml HN03 was added and the solution similarly 

evaporated to dryness. The residue was then converted to chloride by the addition of lOml 

of 6M HCI, before evaporation to dryness. After dissolution of the residue in 3 ml of 2.5M 

HCI, the resulting solution was centrifuged to remove any particulate matter; 1 ml was then 

transferred to a Dowex® -X8 cation exchange column. Following elution of the column 

with 28ml of 2.5M HCI, Sr was then obtained (as the chloride) by elution with a further 

12m1 of 2.5M HCl. This fraction was then evaporated to dryness and stored until required. 
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The hydrochloric acid was quartz-distilled; others were Merck® 'Suprapur' reagents. All 

chemical procedures were undertaken in a purpose-built 'clean' laboratory, with laminar 

flow of filtered air; the usual precautions against ingress of contamination were followed. 

For isotopic analysis, the Sr chloride residue was dissolved in a small quantity of water, for 

loading (-2Id) onto single tantalum filaments, together with (immediately after) a drop of 

7% phosphoric acid. 87S r/86Sr ratios were determined to six decimal places, using a 

VG®354 thermal ionisation multi-collector mass spectrometer. 

To correct for the variable amount of mass-dependant fractionation that occurs during the 

volatilisation of strontium from the mass spectrometer filament, a fractionation factor for 

each analysis was determined from a comparison of the measured ratio of two stable 

isotopes, 86Sr to 88Sr, to a standard value of 0.1194. This fractionation factor was then 

applied to the measured 87Sr/86Sr ratio. 

During the period of this study, two batches of samples were analysed for Sr isotopic 

composition; one each during July and November 1989 respectively. The second batch of 

samples comprised all (three) Devonian metasediment samples prepared from borehole 

drill core material obtained from localities to the west of the St Austell granite, together 

with six samples of Kate Brook Slate from a traverse across the thermal aureole of the 

Dartmoor granite (samples SW-87-S1 to SW-87-S5, together with SW-87-S7 respectively). 

All other samples (14 in total) were analysed in the earlier batch. The average 87Sr /86Sr 

ratio, determined on 10 analyses of the international standard NBS 987 during the earlier 

period, was 0.7 I 0248 ±23 ppm (10); during the second period, a similar number of analyses 

gave a value ofO.7102238±46ppm (10). 

X.3 Data analysis - regression procedure 

For a suite of igneous whole-rock or mineral samples of the same age, and which have 

remained closed with respect to gain or loss of Sr or Rb since emplacement, linear 

regression procedures of 87Sr/86Sr against 87Rb/86Sr may be used to determine the age of 

emplacement (from the slope of the regression 'isochron'); the corresponding 87Sr/86Sr 

(initial) ratio is given by the intercept (87Rb/ 86Sr ratio = 0). Similar procedures have also 

been applied, with varying degrees of success, to the dating of metamorphic events in 

mudrocks. To examine the feasibility of obtaining geochronological information from the 

metasedimentary examples studied during the present investigation, these regression 

procedures were applied to the respective data sets relating to samples collected across the 

thermal metamorphic aureole of the Dartmoor granite. 
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The regression lines were calculated using a York-Williamson least-squares fit (York, 

1969), incorporating errors assigned to both axes and with the mean square of weighted 

deviates (MSWD) describing the measure of fit of the data points (Brookes etal., 1972). 

The error assigned to the 87Sr/86Sr data was 0.01 % (10); the corresponding assignment for 

the 87Rbj86Sr ratios was 0.5% (10). The value of the 87Rb decay constant used in the 

calculations was as recommended by the lUGS Subcommission for Geochronology 

(Steiger and Jager, 1977), i. e. 1.42 x 10-11 a-I. When the MSWD value is less than a limiting 

value (2 in the case of modem, high precision analyses - Harland etal., 1990; 3 in earlier 

data sets), the data scatter can be accounted for entirely by random analytical errors and it is 

conventional to describe the plot as an isochron. Where the MSWD value exceeds the 

limiting value, the resulting plot is termed an 'errorchron'; such plots can convey useful 

information, although the data must be interpreted with due caution. In such cases (as in the 

examples presented in this work), the errors on the age and initial 87Sr /86Sr ratio have been 

'enhanced' by multiplying them by the square root of the MSWD, even though the 

geological factors responsible for the degree of scatter probably cannot be described by a 

Gaussian distribution. 'Enhanced' errors are those which would have been obtained if the 

analytical errors had been large enough to mask precisely the errors due to geological 

scatter at the 95% confidence level. 
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Table XI-A 

Averages of X-ray fluorescence analyses of Rb and Sr in metasedimentary rock samples from 

SWEngland 

Sample Rb (average) S r (average) Rb/Sr(l) Rb/Sr(2) Rb/Sr(avenae) °(1)% 0(2)% O(avcnae)% 

SW-87-S1 4.77 120.63 0.04162 0.03954 0.04058 3.43 3.61 3.52 

SW-87-S2 169.26 53.77 3.23152 3.22327 3.22740 0.52 0.52 0.52 

SW-87-S3 184.27 187.50 1.00643 1.00870 1.00756 0.35 0.35 0.35 

SW-87-S4 202.52 40.64 5.09355 5.12567 5.10961 0.61 0.61 0.61 

SW-87-S5 251.89 62.26 4.15777 4.13768 4.14773 0.49 0.50 0.50 

SW-87-S6 207.73 101.56 2.09647 2.09733 2.09690 0.41 0.41 0.41 

SW-87-S7 210.95 108.12 1.99969 2.00094 2.00031 0.41 0.41 0.41 

SW-87-S8 212.69 99.64 2.19827 2.17892 2.18859 0.41 0.41 0.41 

SW-87-S9 199.91 71.25 2.88159 2.87143 2.87651 0.47 0.47 0.47 

SW-87-SIO 234.55 96.62 2.49299 2.48454 2.48877 0.42 0.42 0.42 

SW-87-S11 232.74 95.92 2.48245 2.49250 2.48747 0.42 0.42 0.42 

GSPI 251.15 227.94 1.12830 1.13095 1.12963 0.34 0.34 0.34 

SW-87-S12 264.03 55.63 4.85057 4.88082 4.86569 0.52 0.52 0.52 

SW-87-S13 351.92 35.39 10.30838 10.08555 10.19697 0.67 0.67 0.67 

SW-87-S14 341.53 46.35 7.53374 7.57585 7.55480 0.56 0.55 0.55 

SW-87-S15 287.35 76.08 3.88552 3:85856 3.87204 0.45 0.45 0.45 

SW-87-S16 247.29 82.50 3.07991 3.06594 3.07293 0.44 0.44 0.44 

G2 165.90 467.84 0.36309 0.36402 0.36355 0.34 0.34 0.34 

SW-87-S17 273.22 49.02 5.72530 5.70414 5.71472 0.56 0.56 0.56 

SW-87-S18 112.06 254.67 0.45006 0.45219 0.45112 0.39 0.39 0.39 

SW-87-S19 142.55 53.34 2.74621 2.73355 2.73988 0.53 0.53 0.53 

HFI 209.28 68.32 3.13192 3.14883 3.14038 0.48 0.48 0.48 

HF2 118.11 188.72 0.64304 0.64028 0.64166 0.43 0.43 0.43 

HF3 234.95 224.24 1.07798 1.07034 1.07416 0.35 0.35 0.35 

Notes: (1) Rb(averaac) and Sr(avcrage) values are in ppm by weight 

(2) GSPI and G2 are international calibration standards. supplied by the US Geological Survey 

(3) The internal standard (to correct for instrumental drift) was P450 phonolite: 
Rb. 2.436~g/ g. Sr ... 1.706~g/ g. Rb/Sr = 1.428 

(4) A Philips~ PW 1450 machine was used for the measurements 
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AddendumXll 

Whole-rockPb and U isotopic data obtained from examples ofmewedimentary rocks sampled in the vicinity of the Dartmoor granite 

(Data trOOuced by Dr D M Wayne at the University of Leeds, using samples supplied by the author) 

Sample Pb (ppm) U (ppm) 206Pb/204Pb 207Pb/204Pb 2osPb/204Pb 238U/204Pb 206Pb/ 204Pb @ 280Ma 207Pb/ 204Pb @ 280Ma 2OsPb/204Pb @ 280Ma 

Upper Devonian metasediments (Kale Brook slate) from south -west of the Dartmoor granite 

SW-87-S10 11.7 2.3 19.239 (20) 15.703 (15) 39.916 (81) 4.9 18.41 15.63 39.09 

SW-87-S13 18.5 2.3 18.647 (19) 15.561 (15) 38.873 (78) 10.1 18.13 15.61 38.36 

CorboniferollS (Crockington formation) metasediment from north -east of the Dartmoor granite 

SW-87-S17 14.3 2.1 18.878 (19) 15.691 (15) 38.988 (78) 7.0 18.21 15.67 38.37 

Notes: (i) All isotope ratios were corrected for procedural blanks and mass fractionation. 

(li) lO6Pb /204Pb @ 280 Ma aod 207Pb /204Pb @ 280Ma data were ronected for in situ decay of U over the same period. 

(iii) 20IPb /204Pb @ 280M. data were ronected for in situ decay of 232Th, based on an estimated Th roncentration of 12 ppm (the value of the North American Shale Composite). 
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