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Abstract

This thesis is concerned with statistical aspects of credit scoring, the process of

determining how likely an applicant for credit is to default with repayments. In

Chapters 1-4 a detailed introduction to credit scoring methodology is presented,

including evaluation of previous published work on credit scoring and a review of

discrimination and classification techniques.

In Chapter 5 we describe different approaches to measuring the absolute and

relative performance of credit scoring models. Two significance tests are

proposed for comparing the bad rate amongst the accepts (or the error rate) from

two classifiers.

In Chapter 6 we consider different approaches to reject inference, the procedure

of allocating class membership probabilities to the rejects. One reason for needing

reject inference is to reduce the sample selection bias that results from using a

sample consisting only of accepted applicants to build new scorecards. We show

that the characteristic vectors for the rejects do not contain information about the

parameters of the observed data likelihood, unless extra information or

assumptions are included. Methods of reject inference which incorporate

additional information are proposed.

In Chapter 7 we make comparisons of a range of different parametric and non-

parametric classification techniques for credit scoring: linear regression, logistic

regression, projection pursuit regression, Poisson regression, decision trees and

decision graphs. We conclude that classifier performance is fairly insensitive to

the particular technique adopted.

In Chapter 8 we describe the application of the k-NN method to credit scoring.

We propose using an adjusted version of the Eucidean distance metric, which is

designed to incorporate knowledge of class separation contained in the data. We

evaluate properties of the k-NN classifier through empirical studies and make

comparisons with existing techniques.
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An introduction to credit scoring
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Chapter 1

Introduction

Consumer credit is granted by banks, building societies, retailers, mail order

companies and various other lending institutions and is a sector of the economy

that has seen rapid growth over the last thirty years. Traditional methods of credit

risk assessment involved the use of human judgement, based upon experience of

previous decisions, to determine whether to grant credit to a particular individual.

The economic pressures resulting from the increased demand for credit and the

emergence of new computer technology has led to the development of

sophisticated statistical models to aid the credit granting decision. Credit scoring

is the name used to describe the process of determining how likely an applicant is

to default with repayments. Statistical models which give estimates of these

default probabilities are referred to as scorecards or classifiers. Standard

methods used for developing scorecards are discriminant analysis, linear

regression, logistic regression and decision trees. An accept/reject decision can

then be taken on a particular applicant by comparing the estimated good/bad

probability with a suitable threshold.

Despite the widespread use of credit scoring techniques in the consumer credit

industry, there are several aspects of the methodology that have not received

sufficient attention in the literature. The two main reasons for this are

commercial confidentiality and the lack of widely available data sets. In this

thesis we examine statistical aspects of credit scoring with the aid of a real data

set from a large mail order company 2. Our attention is focused on

methodological and conceptual issues of relevance to the general credit granting

decision, rather than the prescription of models for specific populations or data

sets.

In Part 1 of this thesis we provide a detailed introduction to credit scoring

methodology:

2 See Henley and Hand (1995) for an overview of statistical credit scoring
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• In Chapter 2 we provide an outline of the consumer credit granting process.

This includes a discussion of the objectives of credit scoring and the nature of

credit data. We also describe the model construction process from a practical

perspective.

• In Chapter 3 we review previous published work on credit scoring and

identify areas needing more extensive research.

• In Chapter 4 we review discrimination and classification techniques and

assess their suitability for constructing credit scoring models.

The areas of research described in this thesis fall into two categories.

First, in Part 2 we consider fundamental aspects of credit scoring methodology:

(1) Assessment of c1assfiers.

Before we can draw conclusions about the suitability of different techniques for

credit scoring, we need some criterion for performance. Although we

concentrate on a specific criterion in this thesis (the minimisation of bad rate for

a particular acceptance rate), we include discussion of general performance

criteria. In particular we distinguish between two ways of assessing the

performance of a classifier: absolute and relative performance. In Chapter 5

we propose two tests for comparing classifiers: a likelihood ratio test and a

significance test which uses Fisher's Exact test. The two tests address subtly

different questions and can be seen as complimentary. Both tests can also be

adapted to assess different performance criteria, such as bad rate amongst the

accepts and error rate.

(2) Reject Inference.

Reject Inference is the name for the procedure of allocating probabilities of

becoming a good or a bad to the rejects. One reason for wanting to do this is

to help reduce the sample selection bias that results from using a sample

consisting only of accepted applicants to build new scorecards. In Chapter 6

we examine methods of reject inference that have been proposed in the

literature. Much of the work seems to have been based upon a poor

understanding of what can be achieved using the rejects. We aim to clarify this
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and propose some new methods which require additional information or

assumptions.

Secondly, in Part 3 we assess the merits of different approaches to classifier

design:

(1) A comparison of different classification techniques for credit scoring.

In Chapter 7 we discuss the application of linear and logistic regression to

credit scoring. Both of these techniques are widely used by developers of credit

scoring systems. However, as we discuss, logistic regression might be

considered more appropriate for credit scoring data than linear regression.

After considering the theoretical merits of the two methods we present an

empirical comparison. Further comparisons are made with a range of

parametric and non-parametric classification techniques including decision

trees, projection pursuit regression and Poisson regression. 	 Classifier

performance is found to be fairly insensitive to the particular technique used.

In Chapter 7 we also explore how the relative performance of the classification

techniques change as the defmition of credit default changes. This issue is

addressed by considering the construction of classifiers to identify fraudulent

applications for credit. The area of fraud is one that is becoming of increasing

importance to credit grantors. Comparisons are made between fraud classifiers

and standard good/bad classifiers.

(2) The proposal of a new approach to credit scoring: the k-Nearest

Neighbour method.

The k-Nearest Neighbour (k-NN) method is a standard technique in pattern

recognition and non-parametric statistics. In Chapter 8 we consider reasons

why it may be a suitable technique for building a credit scoring model. Part of

the implementation of the k-NN method is the selection of a suitable distance

measure. We propose using an adjusted version of the Euclidean distance

metric which attempts to incorporate knowledge of class separation contained in

the data. We evaluate properties of the k-NN classifier through empirical

studies and make comparisons with a range of standard credit scoring

techniques.
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Chapter 2

An outline of the consumer credit granting process

2.1 The objectives of credit scoring

In this thesis the term "credit" is used to refer to an amount of money that is

loaned to a consumer by a financial institution, for a fixed period of time. It is

assumed that the consumer is required to pay off a proportion of the loan each

month.

We are primarily concerned with the construction of credit scoring models to

estimate the probability of an applicant for credit defaulting with repayments

(this process is sometimes called "application scoring"). The model takes the

form of a relationship between creditworthiness and a number of predictor

variables, extracted from the application form and other sources. These

variables are called characteristics and the values they take are referred to as

attributes. The model or scorecard is constructed using a sample of applicants,

for each of whom the true creditworthiness is known.

We introduce some notation which will be used throughout the thesis. For a

particular applicant with characteristic vector x, a credit scoring model gives an

estimate of the predicted probability of that applicant being a good risk, given
by P(gx). An accept/reject decision is then taken by comparing P(gx) with

a threshold.

The usual objective of credit scoring is to produce a model which provides the

best possible discrimination between good and bad applicants. Various methods

of measuring the discriminabiity of a scorecard are possible. In particular, the

criterion adopted in this thesis is the minimisation of the bad rate amongst

accepted applicants for credit (see Chapter 5 for more discussion of this

criterion). Other criteria, such as the minimisation of the error rate of the

classifier, could also be adopted.
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The objective considered above includes the assumption that applicants for

credit can be split into two distinct classes: those with a high probability of

defaulting (the "bads") and those with a low probability (the "goods"). This

allows us to treat the prediction of creditworthiness as a two state problem and

to exploit techniques for dealing with binary response data. It might be more

appropriate to consider creditworthiness as a continuous property or to

distinguish between different types of defaulter. The effect of alternative

defmitions of credit default is considered by Crook et al. (1992). In Section

7.4 we consider the construction of scorecards to predict fraud using a tighter

defmition of credit default. Further research is needed into this aspect of credit

scoring to determine the implications of different representations of credit

behaviour.

Another standard assumption used in credit scoring is that the true class of each

credit applicant is fixed. In practice, the credit repayment behaviour of an

applicant may vary according to factors, such as employment status, which can

change over time. Models which allow a change of state between the good and

bad classes are considered in Section 4.12.

It can be argued that minimisation of bad debt is only one dimension of the

credit granting decision. Credit scoring techniques can be used to address more

general business objectives. For example:

• The main aim of the lender is usually to maximise profits. This objective

can conflict with minimising bad debt, because some high risk applicants can be

very profitable. Credit scoring methodology can be used to provide models to

estimate the profitability of an applicant for credit. This information can be

used to make an accept/reject decision. Alternatively, it could be combined

with an estimate of the probability of an applicant defaulting, as part of a more

complex decision making strategy. One potential difficulty with "profit

scoring" is the specification of a suitable definition of the profitability of an

individual applicant.

• Credit scoring techniques can be used to build up profiles of existing

customers and to make decisions about whether to offer new products. This is

referred to as "behavioural scoring".
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Application scoring is the most common form of credit scoring and we restrict

attention to it in this thesis because of the many unresolved methodological

issues relating to it. However, much of the discussion applies equally to profit

and behaviour scoring. A general review of literature on the objectives of

credit scoring is presented in Section 3.2.

2.2 Description of credit scoring data

The data used in our analysis consists of samples from the full population of

applicants for credit from a large mail-order company. Several different samples

are used in this thesis in order to assess different aspects of credit scoring. For

example, in Chapter 8 we use samples from two different time periods in order to

assess the robustness of our proposed k-Nearest Neighbour method to changes in

the population. Table 2.1 shows a description of the standard sample used.

Number of Number of Number of % of bads

variables	 classes	 cases	 in full

___________	 sample

Design set	 65	 3	 15728	 31.01

Test set	 65	 3	 4132	 31.34

Table 2.1: A description of a standard credit scoring data set.

The full sample was randomly split into a design set (80%) and a test set (20%).

The 8 0/20 holdout split was adopted to allow consistent comparisons with the

credit grantof s existing results. As discussed in Section 3.1.1, Reichert et al.

(1983) demonstrate that the holdout procedure gives stable mean error rates over

a range of holdout percentages (including 20%). Furthermore, our approach can

be justified because of the large numbers of applicants in both the design and

holdout samples, thus enabling accurate measurement of performance. We discuss

assessment of performance in Section 2.4 and Chapter 5.

For each sample, the following procedure was used to define creditworthiness.

The entire sample, including applicants who would normally have been rejected,

were given credit and observed over a period of a year. Applicants who defaulted

for three consecutive months were classified as bad and the remaining applicants

in our dataset were either classified as good or to an intermediate class (if one or
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two payments were outstanding at the end of the observation period). The

intermediate class was discarded from our analysis to make our results useful to

the credit grantor and to satisf,r commercial objectives. (Discarding "other"

classes is a common practice in the credit industry; see, for example, Crook et a!.

(1992)). We put forward our own interpretation of the commercial motives for

omitting the intermediate class:

• The credit grantor is primarily interested in the relative proportions of good

and bad risks accepted. The business depends upon balancing the conflicting aims

of maximising sales to good customers and minimising bad debt.

• The true status of the intermediate class is unclear and, thus, the credit grantor

has ambivalent feelings about whether to accept or reject them. Removing them

from the analysis allows one to concentrate on discrimination between the good

and bad applicants.

Although the above approach is not ideal, it was the problem we were asked to

solve. Moreover, there is not an obvious way to include three classes

(goods/bads/others) in the analysis when our aim is to split future applicants into

two classes (accepts/rejects). This problem is somewhat analagous to that of

reject inference (see Chapter 6). There is a need for further research into the

whole area of definitions of creditworthiness and into the specific issue of how to

treat the "other" classes when creditworthiness is defined as above. More

complex credit granting strategies could attach some relative importance to the

others (or even measure creditworthiness on some continuous scale) in order to

include them in the model construction.

In practice, rejected applicants are not given credit and so their true status cannot

be determined. This means that a credit grantor only has a sample of accepted

applicants with which to construct new scorecards. A new scorecard based solely

on the accepted applicants may be biased. A standard approach to this problem is

to infer the status of the rejects and combine this information with the known

status of the rejects to reduce the bias in the new scorecard. "Reject Inference" is

the name given to the process of attempting to infer the P(gx) for the rejects.

In Chapter 6 we consider methods of reject inference that have been proposed

and examine the theoretical assumptions that underpin them. In particular we

show that the characteristic vectors for the rejects do not contain information
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about the parameters of a credit scoring model unless additional information or

assumptions are included. Because we have access to a sample with the true

status known for the rejects, we are able to to ignore the question of reject

inference when assessing classifier performance in other chapters.

Characteristics for inclusion in credit scoring models are extracted from the

application form and databases containing information on the credit history of

households throughout the country. Table 2.1 shows that 65 characteristics were

available for use in our analysis (these characteristics are not all available at the

initial vetting stage described in the next section). Table 2.2 presents a range of

typical characteristics available for scorecard development. For reasons of

commercial confidentiality these characteristics do not correspond exactly to those

used in our analysis.

Characteristic Title

1	 Time at present address

2	 Home status

3	 Postcode

4	 Telephone

5	 Marital status

6	 Applicant's annual income

7	 Credit card

8
	

Type of bank account

9

Attributes

0-1, 1-2, 3-4, 5+ years

Owner, tenant, other

BandA,B, C,D,E

Yes, no

Single, married, divorced

£(0-lOk), £(1 1-20k), £21k+

Yes, no

Cheque and/or savings, none

18-25. 26-40. 41-55. 55+

Table 2.2: Description of credit scoring characteristics.

The characteristics available for inclusion in scorecards are usually nominal or

ordinal in nature. (Suitable examples from Table 2.2 are "Marital Status" and

"Time at address" respectively.) Characteristics which are nominal need to

undergo some form of processing before they can be used as predictor variables

for standard credit scoring techniques. Several ways of doing this have been

proposed:

(1) Indicator (dummy) variables can be used to represent each attribute of a

nominal characteristic. For a characteristic with r categories this involves the

introduction of (r - 1) binary variables. As r becomes large there is a danger of
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overfitting the data. Another weakness of this approach for methods that require

the predictor variables to be multivariate normal (such as linear discriminant

analysis), is that indicator variables violate this assumption.

(2) Krzanowski (1975) advocates building a different discriniinant function for

each possible combination of the nominal variables. As the number of nominal

variables becomes large this approach becomes impractical.

(3) Crook et at. (1992) and Boyle et at. (1992) describe approaches to

transforming a qualitative variable into a quantitative one. We briefly describe

the proposed transformations.

For a nominal characteristic with r attributes let g1 be the number of goods in

attribute i and let b7 be the corresponding number of bads. Let the total number

of goods and bads in the sample be given by:

G=g and B=b,

Then quantitative representations of the i th attribute are given by:
g1/b1

g1/(g1+b,)

ti =	 g1BIb1G

log(g1 B I b1G)

log(g1 /(g ^k))

Methods (1) and (2) from above are subject to limitations when the number of

attributes is large. For this reason we choose to adopt method (3) for dealing with

nominal characteristics.

The particular transformation that we choose (the 4th in the above list for t.) is

widely used in the credit industry. We express it in the following form in this

thesis. The values of the predictor variables are replaced by weights of evidence

where the weight of evidence of the fth attribute of the ith characteristic is given

by:
w=ln(p,/q)

where p is the number of goods in attribute] of characteristic i divided by the

total number of goods and q is the number of bads in attribute j of

characteristic i divided by the total number of bads.
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One added advantage of using weights of evidence to represent nominal

characteristics is that it orders the attributes so that they have a monotone

relationship with creditworthiness in the sample. Further work is needed to

identifr a transformation giving an optimal ordering and spacing of the attribute

values.

For the data sets used in this thesis, all characteristics, including continuous ones,

were categorised and put into weights of evidence form. This allows us to treat

all characteristics in the same way and exploit standard classification methods.

This simplification of the data is permissible because we are interested in

prediction rather than description of the data.

A decision tree combining several of the other available characteristics was

included in the analysis as a characteristic. This was included because the

credit grantor in our problem uses it and we wanted to make things as useful as

possible to them. From a theoretical point of view this helps models that fit a

linear combination of the predictors (such as linear and logistic regression) to

take account of interactions between variables. This approach is similar to the

hybrid classifier of discriminant analysis and decision trees proposed by Boyle

et al. (1992).

There are two other general properties of credit scoring data: high correlations

between variables (we return to this issue in Section 2.3.1) and missing values in

the predictor variables. Methods for dealing with missing data, such as the EM

algorithm can be used to alleviate this second problem. (The EM algorithm is an

algorithm for finding maximum-likelihood solutions when there are missing data.

See Dempster et al. (1977) for more details). In this thesis we take a different

approach to dealing with missing characteristic values: an attribute "no

information" is included as an additional attribute for characteristics with some

missing values. This is a suitable approach as long as the proportion of the sample

with missing values is not too large. One reason for treating missing values in this

way is that the mere fact that an item is missing can be predictive.
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2.3 Construction of credit scoring models

In this section we consider the construction of a credit scoring model using linear

regression. We give a brief description of some currently used approaches to

credit scoring development. The credit grantor, in our specific problem, uses a

two stage process for assessing creditworthiness. Credit applicants are assessed

using an initial vetting system (a "mini" scorecard). This results in three possible

outcomes: accept outright, reject outright or request further information. The

third option involves applicants filling in a more detailed application form and

being scored up under a "fill" scorecard. This two stage approach is taken for

practical commercial reasons. In order to concentrate on methodological issues,

we restrict attention to the initial stage of vetting throughout this thesis. We

return to the idea of a multi-stage vetting system in Section 8.2.5.1 where we

discuss the reject option for the k-NN method.

2.3.1 Variable selection

There are two main dangers of using highly correlated characteristics in a

scorecard: first, it may be difficult to determine the magnitude of the effect that

each individual characteristic has on creditworthiness. This is important as the

scorecard developer may be required to justify the contribution to the model of

each characteristic on business grounds. Secondly, it may lead to "inversions" in

the resulting scores; this means that for a particular characteristic expected score

rankings may be reversed (for example, giving more weight to an applicant who

does not have a current bank account than to one who does). These factors

provide a motivation for reducing the number of characteristics to an efficient

level and for finding ways of identifying the most predictive subsets.

Furthermore, as the number of characteristics becomes very large there is a danger

that the classifier will overfit the training data, particularly when the sample size is

small. (This consideration is not very important in our problem because the

sample sizes are relatively high). It is also desirable to limit the number of

variables in order to reduce application processing time and the number of

questions that have to be asked on the application form. Reliable customers may

be discouraged from applying for credit if they are confronted by a time-

consuming form to fill in.
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Three approaches to selecting characteristics are commonly used in combination

by credit scoring developers:

(1) Stepwise procedures: these represent the most common approach to selecting

variables for inclusion in regression models. The initial step involves selecting the

characteristic which best explains the variation in creditworthiness using a 1-way

analysis of variance. At subsequent steps characteristics can be added to the linear

predictors if this leads to a significant improvement in the explained sums of

squares. Similarly characteristics can be removed if this does not lead to a

significant deterioration. For more details of stepwise regression see, for example,

Draper and Smith (1981).

(2) Selecting individual characteristics using the information value:
I. V. = (pt, - q1 )w

where p , q and w are defined above. This is a common measure of the

discriminatory power of a characteristic and is used by many scorecard

developers in the credit industry. The higher the information value the more

the attributes of a characteristic distinguish between the good and bad classes.

Typically any characteristic with an information value of over 0.1 will be

considered for inclusion in the scorecard.

A similar method of assessing the relationship between creditworthiness and an

individual characteristic is to perform a chi-squared test. The calculated chi-

squared value is given by:
(0 E)2

where O, is the observed number of applicants from class j in attribute i, and

.E is the expected number of applicants from class j in attribute i (assuming

uniform proportions of goods across attributes). The sample chi-squared value

is then compared with the appropriate point of the chi-squared distribution with

(r - 1) degrees of freedom (where r is the number of attributes).

The danger of using one of these two methods is that they only consider the

individual relationship of a characteristic with the dependent variable. A

characteristic which individually may be uncorrelated with creditworthiness
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may be useful in combination with others. For further discussion of measuring

the discriminatory power of characteristics, including the information value, see

Blackwell (1993).

(3) Expert knowledge of the data: experience of which subsets of characteristics

have historically produced the best scorecards can be an effective method of

eliminating unpredictive characteristics. This method should always be combined

with one of the two approaches described above or there is a danger of

perpetuating a sub-optimal set of characteristics. A factor in the characteristic

selection also tends to be the need to justify the chosen subset on business

grounds.

We choose to use a combination of these methods for selecting characteristics in

our analyses. Typically about 16-20 characteristics are selected at the initial

vetting stage.

2.3.2 Scorecard construction

A standard approach to constructing scorecards is to fit a linear regression model

to the design sample using the chosen subset of characteristics with the weights of

evidence as predictor values (we consider a range of other classification

techniques that can be used in Chapters 3, 4, 6 and 8). The model takes the form:

y = fi0 ^/31 w 1 +. .

where y = 0 if an applicant in the design set is bad and y = 1 if an applicant in
the design set is good. For a particular applicant, w represents the weight of

evidence for the appropriate attribute j1 of characteristic i. p is the number of

characteristics. The parameters /3 are estimated by the method of least

squares.

The contribution to the model from attribute k of characteristicj is given by /3JWJk.

The scorecard comes from transforming these "scores" onto an integer scale. For
each characteristic the lowest value of 	 is transformed to zero. Then the

other attribute scores are transformed to integer values, such that the ratio of

differences between scores is kept (approximately) constant. The ratio between

the maximum and minimum difference in attribute scores is also kept
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(approximately) constant across characteristics. The advantage of transforming

the scores in this way is that it makes future calculations easier and gives a clearer

impression of the relative contribution of each characteristic in the model. We

note that the scores are scaled such that the probability of being a good risk has a

positive (monotonic) relationship with score.

The scorecard consists of a list of characteristics together with the transformed

attribute scores. A future applicant receives an overall score by summing

his/her particular attribute scores, which is then compared with an overall

threshold score: those scoring above the threshold are accepted for credit, while

those scoring below are rejected. For an example of a scorecard see Capon

(1982).

2.4 Assessment of scorecards

An important part of the development of credit scoring models is the assessment

of performance. We now consider three standard approaches. All three

approaches assume that the good and bad applicants in a test set have been

allocated a score under some classifier.

(1) The Divergence statistic:

D= PP
a

where Pg is the sample mean of the distribution of scores for the goods,

Pb is the sample mean of the distribution of scores for the bads,

is the sample variance of the distribution of scores for the goods,

a is the sample variance of the distribution of scores for the bads,
Ng is the number of goods in the sample,

N,, is the number of bads in the sample,

N 2 +N,,s2
and cr2 = g g	 b is the pooled sample variance for the good and bad

+ Nb

distributions.

The divergence statistic gives an overall measure of the separability between the

distributions of goods and bads. It should be positive because we would expect
the goods to score higher than the bads on average (i.e. P5 > Pb). The higher the
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Cumulative proportion

good

value of D, the greater the distance between the sample means and, thus, the more

the distributions of goods and bads are separated.

(2) The Lorenz diagram and the Gini coefficient:

This approach involves comparing the overall cumulative distributions of the

goods and bads. Let the cumulative sample proportion good and bad be given by:

F(gIs) = Ng(S)/Ng

F(bls) = Nb (s)! Nb

where Ng (S) is the cumulative number of goods with a score less than or equal to

s and Nb (s) is defined equivalently. The Lorenz diagram is a plot of F(g] s)

against F(bls). Figure 2.1 shows an example of a Lorenz diagram for an

imaginary classifier.

0	 B

Cumulative proportion bad

Figure 2.1: A Lorenz diagram.

The (3ini coefficient is defined to be:
G=_Area(QAC)

Area(AOBC)

It is used as a standard measure of the discriminatory power of a scorecard by

credit scoring practitioners. The higher the Gini coefficient the better the

scorecard discriminates between good and bad applicants.

Because the area of the triangle OBC is 1/2, the Gini coefficient can be reduced

to:
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G= 1-2Area(OACB).

This area can be calculated using the trapezium rule to give:
Area(OACB) = f (bps) {F(gs— 1) +F(gls)} /2

where F(gs —1) = 0 and f(bls) = F(bls) - F(bjs— 1). This formula can easily be

adapted for non-integer scores.

(3) Bad rate and error rate:

A different approach to assessing performance of a classifier is to fix a score

threshold and to consider the proportion of bad applicants amongst the accepts for

the test sample. Alternatively one can consider the error rate, given by the

proportion of misclassified good and bad applicants in the flail test sample

(alternatives to the hold-out method of estimating error rate are considered in

Chapter 5). The aim is to produce the scorecard with the lowest bad rate or error

rate. In Section 5.3 we develop significance tests to compare the bad rates or

error rates from different classifiers. These methods of assessing a classifier allow

one to focus on performance in a particular region of the characteristic space, by

changing the threshold. The threshold can be chosen to maintain a particular

acceptance rate or to fix the expected bad rate.

We have considered three approaches to assessing scorecard performance. The

first two methods suffer from one principal weakness: they do not tell you how a

scorecard distinguishes between good and bad applicants at individual points, such

as the thresholds. (For further discussion of these methods and other similar

methods that give an overall measure of the discriminability of a scorecard see

Wilkie (1992).)

The third approach does not have this weakness. Another advantage is that it

represents objectives that are likely to be of interest to the credit grantor (for

example reducing the proportion of bad applicants accepted will lead directly to

decreased costs). For these reasons we adopt the third approach in this thesis:

our criterion for performance is the minimisation of the bad rate amongst the

accepted applicants given a particular acceptance rate. This criterion is unusual

for a classification problem and leads to several interesting properties that are

discussed in Chapter 5.
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Chapter 3

A review of the literature on credit scoring

Eisenbeis (1978) and Crook et a!. (1992) describe how the literature on credit

scoring can be divided into two groups. First, those papers which deal with the

underlying objectives of credit scoring and different aspects of credit granting

policy. Secondly, those which consider the relative merits of different

classification techniques for constructing credit scoring models (e.g. discriminant

analysis, decision trees and logistic regression). The latter papers are considered

in Section 3.1 and form a major motivation for the work in later chapters (they can

be further subdivided into papers dealing with consumer loans and those dealing

with commercial loans). In Section 3.2 we present an overview of the work on

credit granting policy and consider other ways in which statistical methodology

has been applied in the credit industry (e.g. behavioural scoring, cluster analysis).

The emphasis throughout is on identifying areas for further research.

3.1 Review of credit scoring models

As was mentioned in Chapter 1, credit scoring models have largely replaced

judgemental methods for assessing credit applicants. This has been a product of

the increased demand for consumer credit and the emergence of new computer

technology, allowing practical implementation of credit scoring models. The

process has been accelerated in the U.S. by the Equal Credit Opportunities Act

(1974) and subsequent amendments which have banned discrimination on the

basis of sex, race, colour, religion, age and national origin (see Hsia, 1978, for

a description of the act). These and other legislative restrictions have

encouraged the credit grantor to look for objective methods of identifying good

and bad credit risks. Furthermore, general rules were laid down for the proper

development of credit scoring systems requiring them to be "demonstrably

statistically sound" and "empirically derived" with criteria for sampling and

validation.

Chandler and Coffman (1979) present a comparison of judgemental systems

with credit scoring models and conclude that, on the whole, the empirical
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evaluation process (credit scoring) has no deficiencies not also shared by

judgemental evaluation. They also highlight certain advantages of credit

scoring not shared by judgemental methods: that empirical methods are based

upon actual and not perceived performance and can be statistically validated

before implementation; that empirical methods produce more consistent

evaluations than judgemental methods; and that empirical methods are more

accurate than judgemental evaluation on the average. Having established some

of the benefits of adopting a credit scoring system to assess credit applicants,

we consider different techniques that have been proposed in the literature.

3.1.1 The use of discriminant analysis and regression techniques for

credit scoring

Historically, discriniinant analysis and linear regression have been the most widely

used techniques for building scorecards. Both techniques have the advantages of

being simple conceptually and having widely available routines in statistical

software packages. For a theoretical discussion of the two techniques see

Sections 4.1 and Chapter 7.

Discriminant analysis in particular has received widespread attention in the credit

scoring literature. The first published account of the use of discriminant

analysis to produce a scoring system was by Durand (1941). The work was

sponsored by the National Bureau of Economic Research (in the U.S.) and

produced results showing that discriminant analysis could produce good

prediction of credit repayment. (However, it seems that the results were not

tested out on new samples to determine the practical value of the scorecards.)

Other early studies, such as Myers and Cordner (1957), show that numerical

credit evaluation systems can provide good classification performance.

Myers and Forgy (1967) present a comparison of several credit scoring

methods: discriminant analysis, stepwise regression, assigning equal weights to

each of the predictive characteristics and a series of discriminant analyses

applied to subsamples of the original full sample. The subsamples chosen for

the last method came from ranking the good and bad risks separately under a

scorecard built on the full sample, and then selecting applicants with similar
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scores. In particular, this was done for the lowest scoring applicants with the

objective of improving discrimination in lower scoring ranges.

The sample used by Myers and Forgy consisted of 600 accepted loan contracts

on mobile homes, split randomly into an analysis sample (300 cases) and a

hold-out sample (300 cases). Twenty-one characteristics, out of forty-one,

were selected for inclusion in the analysis on the basis of a test of significance

of good/bad predictiveness. Using the point biserial correlation of actual and

predicted scores as an indicator of discriminability gave the surprising result

that equal weighting for all 21 characteristics performs best. However, the

discriminant analysis on selected cases is shown to be effective at eliminating

bad cases in the lower scoring region at the expense of few good cases. The

authors conclude that the study indicates there "may be ways in which the basic

discriminant analysis approach can be modified to improve its effectiveness,

particularly in the case of discrimination at lower score levels, which are of the

greatest practical importance in retail credit evaluation."

More recent studies have highlighted some of the methodological and statistical

problems that result from using discriminant analysis and linear regression for

credit scoring. An examination of the nature of credit data shows that some of

the assumptions required for these techniques are violated. (A comparison of

linear and logistic regression is presented in Chapter 7). In particular,

Eisenbeis (1978) highlights seven general areas of weakness with the traditional

approaches to credit scoring (they are based upon points raised in Eisenbeis

(1977)). Reichert et al. (1983) consider some of the same issues and attempt to

put the theoretical considerations into perspective using empirical results. A

sample consisting of 648 applicants for consumer loans from a medium-sized

bank was used. Variables which reflect ability and willingness to repay were

selected (e.g credit rating, time at present address, relative debt load). We

consider each of the points raised by Eisenbeis (1978) in turn with reference to

the empirical study described:

(1) Distribution of the variables:

The variables used in credit scoring are often of a qualitative nature (or are at

least categorical), and so the assumption of multivariate normal data, that is

required for discriminant analysis, is violated. However, it can be argued that
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discriminant analysis is fairly robust to non-normal data, a view that is backed

up by studies such as Myers and Forgy (1963).

One problem is the lack of available tests for multivariate normality; some are
discussed by Malkovich and Afifi (1973) although they have not yet been used
in the discriminant analysis case. A further problem arises as to how to treat
data once non-normality has been established. In Section 4.4 we discuss

classification techniques suitable for discrete data. Another approach has been

to attempt to transform the data into normal form before estimating the
discriminant function (see Pinches and Mingo (1973)). The danger of this type

of method is that the transformation may discard irregularities in the structure
of the underlying population.

The study by Reichert et at. illustrates some of these points. The data used in
the study contained categorical variables that do not satisfy the multivariate

normality assumption. This was checked by applying the studentized range test
to each of five variables in turn; the test fmds the quotient of the data range
divided by its standard deviation and looks to see if this falls within a 95 %

confidence interval. By plotting frequency distributions for the non-normal

variables it was found that they were generally skewed to the right for the bads
and to the left for the good cases. A common procedure for dealing with non-
normal data is to transform it prior to carrying out the analysis (estimating
discrimmant functions in this case). The appropriate transformations for data
skewed to the right are the natural and standard log transformations. A
standard log transformation was applied to the data in an attempt to normalize

it; as a result 10 out of 15 group variables satisfied the criteria for normality
described above.

The next step was to construct three group discriminant models (the three
groups were goods, bath and rejects- the justification for including the reject
class is examined in Hand and Henley, 1993(4) for the untransformed and
transformed data. It was found that the misclassification rate for the
transformed data was slightly higher than for the untransformed data. The
transformation had lIttle effect on the ability of the model to predict good loans,
but it caused a higher percentage of loans to be classified as bad rather than as

rejects. This study shows the problems associated with trying to normalize

categorical credit data.
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(2) Equality of population covariance matrices:

When using linear discriminant analysis it is assumed that the covariance

matrices for the two populations are equal. If this is not the case then a

quadratic discriminant function should be used. Therefore before constructing

a scoring model, the developer should test for equality of group covariances. It

seems that this has rarely been done for the credit scoring models described in

the literature and in almost every case linear discriminant rules were employed.

However, it should be taken into account that quadratic rules are more sensitive

to deviations from normality than linear ones. Moreover, Monte Carlo studies

by Marks and Dunn (1974) show that linear discriminant rules may give more

efficient estimates of the expected error rates than quadratic rules when the

group covariances are unequal, if the sample size is small and a relatively large

number of variables are used. The results of empirical testing indicate that

differences in predictive accuracy between scorecards built using linear and

quadratic discriminant functions, can be attributed to two factors: the degree of

inequality among the covariance matrices and the difference between group

means. Table 3.1 shown below summarises the relationship between these

factors and similarity of prediction shown by linear and quadratic rules. S

represents similar predictions from linear and quadratic rules whereas D stands

for significantly different results.

Close separation Wide separation

______________ between groups between groups

Low disparity in 	 S	 S

covariance

High disparity	 D	 S

in_covariance ______________________________

Table 3.1: comparison of linear and quadratic rules with

different types of covariance matrix and separation between

groups.

Reichert et al. consider tests of equality of group means and group covariance

matrices for their data. It was found that not only were the group means

significantly different, but so were the covariance matrices. From Table 3.1
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we would expect both linear and quadratic rules to yield similar predictive

accuracy; this analysis was carried out and the expected result was obtained,

although the quadratic rule showed a greater tendency to classify an applicant as

bad.

(3) The role of independent variables:

There may be a need for the system developer to demonstrate that each variable

contributes significantly to the discriminatory power of the model (to satisfy the

business, any court test of the validity of the model etc). This can be achieved

for a particular characteristic by using a significance test to compare the

performance of the model constructed with all the characteristics included with

a model constructed omitting the characteristic of interest.

(4) Group definitions:

Most credit scoring systems are constructed using simplistic definitions of credit

risk. The most common procedure is to classify a customer as a "bad" risk if

they default with repayments for three consecutive months and otherwise to

classify them as a "good" risk (as described in Section 2.1). It is assumed that

once a customer's true class is determined it cannot change in a subsequent

period. Under these assumptions the necessary conditions for using

discriminant analysis are satisfied: namely that the populations being considered

are discrete and identifiable. However, both these assumptions can be criticised

for being unrealistic in practice (as discussed in Section 2.1).

In particular a system where creditworthiness is measured on a continuous scale

instead of using a binary good/bad classification might be more appropriate.

One such approach is to model the number of payments that an applicant has

missed, although this gives an integer rather than a continuous measurement.

This is an area requiring further research. More ambitiously a credit grantor

might be interested in measuring creditworthiness on a multivariate scale.

(5) Use of inappropriate a priori probabilities and costs of misclassification

When performing linear or quadratic discriminant analysis one has to specify

prior probabilities of an applicant belonging to the good and bad classses. It is

also necessary to specify the relative costs of misclassification for the two

classes. It appears from the literature that little emphasis is given to choosing

the a priori probabilities (often they are assumed to be equal) and that the costs
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of misclassification for goods and bads are assumed to be equal. This means

that the misclassification rate may be a poor estimate of the true error rate

when the discriminant rule is applied to the applicant population. If the sample

used in the analysis is a random sample drawn from the full population of

applicants, then using the sample proportions as estimates of the population

priors will be appropriate.

Reichert et al. (1983) estimate population priors from a large sample from the

full population of applicants (which includes the analysis sample) and fmd their

new estimates to be significantly different from the analysis sample priors.

They then proceed to construct discriminant models using a) equal priors, b)

sample priors and c) the estimated population priors. The overall predictive

accuracy of methods b) and c) was found to be the same and superior to that of

a). However, method c) involved an increase in type II errors and a decrease in

type I errors over method b). This means that the estimated population priors

lead to a model that achieves higher accuracy than the sample priors model in

predicting goods, but lower accuracy for the bads and rejects. It does seem

more appropriate to use the population priors, but it is not clear without

examining the relative costs of misclassification whether it is beneficial in the

example mentioned above.

(6) Estimation of c1assflcation error rates:

Eisenbeis (1978) makes the assumption that the error rate is the most

appropriate measure of performance (but the discussion applies equally to our

criterion of minimising the bad rate amongst accepted applicants). The

different approaches to estimating the error rate are reviewed in Hand (1986)

and Toussaint (1974).

If the original analysis sample is used to estimate the expected error rate (the

reclassification approach) then biased results are obtained. However, the

majority of developers of credit scoring systems appear to use the hold-out

method. This involves randomly dividing the available sample into an analysis

sample, which is used to perform the discriminant analysis, and a hold-out or

test sample which is used to validate it.

Reichert et al. (1983) show that, given their data set, using the reclassification

approach to estimating error rates leads to a bias of about 2-3 % compared to
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using a 50% random holdout procedure. They then demonstrate that using the

holdout procedure leads to reasonably consistent and reliable discriminant

coefficients, by showing that the actual coefficients and relative coefficients

(obtained by dividing the coefficients for each variable by the coefficient for the

most predictive variable, credit rating) have almost the same degree of stability

based 01124 random 50% holdout samples.

Further analysis showed that the holdout procedure generates reasonably

consistent and reliable coefficients for characteristics with significant

discriminatory power. It was also found that the holdout procedure gives stable

mean error rates over a range of holdout percentages. An advantage of the

holdout method is that it is computationally much simpler than alternative

methods like the Lachenbruch procedure (and they give very similar results for

large samples). The authors concluded that, unless the sample size is extremely

small, the standard holdout method can prove to be a suitable testing procedure.

(In fact, the dimensionality of the characteristic space can also influence the

reliability of the holdout procedure.) The size of our samples are large (see

Table 2.1) and, thus, we choose to adopt the holdout method in this thesis. A

more detailed discussion of assessing scorecard performance and a comparison

of methods of error rate estimation is presented in Section 2.4 and Chapter 5.

(7) Selection of analysis samples

One additional problem that is associated with building credit scoring models

concerns the selection of representative analysis samples. The sample used to

construct the scoring system often only consists of accepted applicants. This is

because the true creditworthiness of the rejected applicants is usually unknown

(although, for the work described in this thesis, we do in fact have access to a

sample with the true creditworthiness known for the rejects). The result can be

bias in the scorecard. This provides a fundamental motivation for performing

reject inference. This issue is explored in depth in Chapter 6.

3.1.2 Other credit scoring models

Because of the statistical problems associated with the use of discriminant

analysis to build scorecards outlined in the previous section, there has been a

considerable amount of research devoted to identifying more suitable
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classification techniques for credit scoring data. This began with consideration

of standard statistical methods such as logistic regression and has moved on to

include the application of techniques from other fields, such as expert systems,

neural networks and genetic algorithms from computer science. We consider a

range of empirical studies covering most of the classification methodologies that

have been applied to the credit scoring problem:

(1) Chatterjee and Barcun (1970):

This is an early example of the application of a nonparametric approach to

credit scoring. The authors propose classifying an applicant to the class with

which it has most in common, this being done so as to minimise the expected

loss from misclassification. It is a variant of the "closest neighour" rule given

by Hills (1967) (and a simplified version of the nearest neighbour rule

described in Section 8.2.1). A jackknife method is used to estimate the

classification error rates. Results are presented for data consisting of personal

loan applications made to a bank in New York. The effect of varying the

relative costs of misclassification is investigated. Unfortunately, no attempt is

made to compare the nonparametric classification rule with other credit scoring

methods, such as discriminant analysis. This would have enabled a more

objective assessment of the proposed methodology.

(2) Wiginton (1981):

This represents one of the first published accounts of the application of a logit

model (logistic regression) to the credit scoring problem. Logit models are

more appropriate for credit scoring than techniques like discriminant analysis,

because they do not assume that the characteristics, are drawn from a

multivariate normal distribution. They also allow the assumption that the

dependent variable (creditworthiness) has a binomial distribution, the

appropriate distribution for binary data. (We consider the theoretical

differences between linear and logistic regression in more detail in Chapter 7).

An empirical study to compare the performance of the logit model with

discriminant analysis is presented using data collected by a major oil company.

Only three characteristics were used in the scoring models (in indicator form):

"years at present employment", "living status" and "occupation type". The

results showed that discriminant analysis gave identical performance to a

classifier based upon chance (by allocating all cases to the largest group). In
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comparison the logit model achieved a 62% correct classification result

compared with an expected 58% correct classification using chance.

The implication of the results is that, although the logit model outperforms

discriminant analysis, neither model is very useful for making classification

decisions with the given dataset. However, a couple of questions can be raised

about aspects of this study: first, the number of characteristics used was

unrealistically small. It might be possible to achieve better discrimination with

a larger number of variables (this appears to have been a limitation of the

dataset rather than the method of variable selection). Secondly, by changing

the threshold for the discriminant analysis it should, in theory, be possible to

produce a lower misclassification rate than the chance classifer.

Wiginton concludes by saying that credit grantors, such as the oil company who

supplied the data in this study, should shift the burden of assessing credit

applicants to specialized institutions, such as banks, who have access to more

data and expert technical knowledge. He argues that the cost of this service

may be less than the total cost of running a credit and collections department

for consumer accounts within the firm. This seems to be at odds with current

trends in the credit industry.

(3) Grablowsky and Talley (1981):

The authors make a comparison of probit analysis and linear discriminant

analysis for credit scoring. A probit model is an example of a generalised

linear model (see McCullagh and Nelder (1983)), first developed by Finney

(1952) for the analysis of toxicology problems. It assumes that there is an
underlying threshold, i) on a linear combination of the predictor variables, 1,,

for thejth individual, such that if i >l the jth individual is classified as a good

and if i <1 the jth individual is classified as a bad. The probit model was

thought to be more suitable for credit scoring than discriminant analysis

because, rather than assuming a multivariate normal distribution for the
response, it assumes that the underlying thresholds i	 have a normal

distribution. It also constrains the predicted response P(gx) to lie between 0

and 1. For more details of the probit model see Section 4.7.

The dataset used in this study comes from a large, midwestern retail chain in

the U.S. Eleven explanatory characteristics were used that had been found to
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be predictive over a ten-year period. Using a stepwise discriminant procedure

four of the characteristics were included in the model. For the probit analysis

the coefficients are unique and a likelihood ratio test can used be to test their

individual significance. Nine characteristics were found to be significant using

this procedure and thus included in the model. The resulting classification table

is shown in Table 3.2 in order to clarify a comment on the results made below.

Proportion classified as

True class	 ____________ Good	 risk	 Bad risk	 Total

Good	 Discriminant 1.00	 0.00	 1.00

__________ Probit 	 0.91	 0.09	 1.00

Bad	 Discriminant 0.20	 0.80	 1.00

__________ Probit 	 0.07	 0.93	 1.00

Table 3.2: classification results from the comparison of discriminant

analysis and probit analysis from Grablowsky and Talley (1981).

The authors state that, if the misclassification of the bad risks is more costly

than the misclassification of the good risks (excluding computation costs), then

the probit analysis has achieved superior performance. However, if we were to

alter the acceptance threshold for the discriminant analysis such that the correct

classification of the goods is lowered to the level achieved by the probit analysis

(91 %), then we would see a corresponding improvement in performance for the

bads. This might even be sufficient to increase the proportion of bads correctly

classified to the level 93% achieved by the probit analysis. Therefore, on the

basis of these results, it is not possible to conclude which technique is achieving

the best performance. In our comparison of classification techniques we choose

to fix an acceptance threshold for all techniques to provide a fairer comparison.

Nevertheless these results do indicate that a probit classifier is a viable

alternative to discriminant analysis, assuming that the computation costs are not

prohibitive. In fact, the probit model usually gives classification results that are

very similar to those from logistic regression and the latter is more popular

nowadays.

(4) Srinivasan and Kim (1987):

The authors carry out a general comparison study of several credit scoring

systems. Four statistical models were used: linear discriminant analysis,
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logistic regression (logit), goal programming (GP) and the recursive

partitioning algorithm (RPA - often referred to as decision trees). A

judgemental model based upon the Analytic Hierarchy Process (AHP) was also

used. All of the statistical methods are described in Chapter 4. They represent

a range of standard parametric and non-parametric classification methods that

have been applied to credit scoring. The authors anticipated that the RPA

would lead to better discrimination than simultaneous partitioning procedures

like MDA, logit and GP. This is because simultaneous partitioning procedures

make the implicit and unrealistic assumption of convexity of the class regions in

the characteristic space.

The data used in this study consists of a sample of accepted commercial

applicants for credit. The objective was to to replicate a loan officer's risk

rating of loans, after they had been accepted. Because the study was concerned

with commercial loans, the data consisted of less variables (8) and smaller

samples (215 cases) than are typically available for consumer loans.

Bootstrapping (see Section 5.2.1.2), a technique that is especially appropriate

when the data violate distributional assumptions of the classification method,

and the holdout method were used to estimate the error rates. The results

showed that the RPA did indeed give slightly superior performance. Of the

other techniques, the Logit model gave marginally better performance than the

discriminant analysis and GP.

In a discussion of the paper, Eisenbeis makes some criticisms of the study. He

argues that one can't tell whether the small differences in performance between

techniques are due to differences in the robustness of techniques when the

underlying assumptions are violated or whether they are truly due to superior or

inferior performance. He suggests that, because of the small sample sizes, a

Monte Carlo experiment drawing samples from known distributions and

populations with known parameters would be more appropriate. However, in

defence of the original paper, it should be pointed out that comparison studies

using real datasets are of more practical interest than studies using hypothetical

populations.

(5) Boyle et al. (1992):

This paper presents a comparison of credit scoring techniques, similar to that

conducted by Srinivasan and Kim (1987), using consumer credit data. The
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statistical methods discussed are discriminant analysis, the recursive partitioning

algorithm (RPA) and hybrid methods which use both techniques. To avoid the

problem of sample selection bias, the scoring system was designed to identify

slow payers amongst existing credit card holders. The dataset consisted of

1001 accounts with 24 standard application characteristics.

The best performance on a holdout sample was achieved by a hybrid classifier.

This classifier used RPA to construct decision trees to identify interactions

between the original characteristics. The hybrid method involves constructing

two decision trees in this way and including them in a linear discriminant model

as characteristics. The decision tree characteristics were found to be by far the

most important characteristics in the discriminant function.

It was also found that the standard linear discriminant method performed

slightly better than the standard RPA (for the test sample). In conclusion the

authors commented that discriminant analysis and decision trees have

complementary strengths that can be incorporated to give a successful hybrid

method. In particular, the strength of discriminant analysis is that it uses all of

the data in building the model and the strength of the RPA is that it enables the

modelling of complex dependencies between variables.

(6) Leonard (1988) and (1993):

Leonard (1993) summarises the findings of his PhD dissertation (1988) on the

application of random effect logit models to commercial loan applications. The

objective of the study is to simulate the decision process of commercial loan

officers. The random effects model is used to enable the estimation of the

effect of the branch making the loan. This innovation is needed because there

are multiple branches and data is only available on a small sample of the

branches. By including the branch parameters as random variables, this allows

inferences from the model to be extended to the entire population of branches.

Another problem that arises is for branches where there are only a small

number of loan applications made, the parameter estimates for the branch effect

using a fixed effects model can be extremely high (in some cases even infinite).

By assuming the branch effect to be random, the parameter estimates for the

branch effect shrink towards an overall central estimate for the branches where

the sample information is scarce.
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A comparison study of the logit model with fixed and random effects and a

linear discriminant model is presented. The method of error estimation was to

take repeated random holdout samples from the original sample. This

procedure was repeated 5 times and then the results were averaged. (We adopt

a similar approach to assessing performance in Chapter 8). The classification

results showed that the random effects logit model outperformed the

corresponding fixed effects model and discriminant analysis. This study

indicates the potential of the random effects model for use in credit scoring

problems.

(7) Fogarty and Ireson (1993/4):

In this paper a genetic algorithm is used to optimise a Bayesian classifier using

a set of examples. Genetic algorithms are sophisticated computing methods

based upon a biological metaphor of evolution (see Holland (1975), Goldberg

(1989), South et al. (1993)). They were thought to have potential for

competing with standard credit scoring methods because they are known to

efficiently search large solution spaces where conventional statistical theory is

inappropriate. In Section 4.11 we briefly discuss the principles behind the

genetic algorithm and consider its properties.

The authors describe the IDIOMS system, a software environment for

implementation of the genetic algorithm. They present a comparison of the

genetic algorithm with the default rule, a decision tree (a new version of 1D3

using entropy), a Nearest Neighbour algorithm (see Chapter 8) and a simple

Bayesian classifier (independence model). A large data set consisting of 51,020

accepted applicants for consumer credit (94% good and 6% bad) was randomly

split into ten equal test sets. At each stage a test set was selected and classifiers

constructed on the remaining dataset. The classifiers were then used to estimate

performance measures on the test set and the results averaged over test sets.

Three measures of performance were used: classification accuracy (the

proportion of goods and bads correctly classified), a simple measure of

profitability and acceptance rate.

The mean classification accuracy, profitability and acceptance rates are shown

for each classifier in Table 3.3. Using the default rule (classifying all

applicants as good) gave very high overall classification accuracy of 94%. In

fact, none of the other classifiers were able to achieve the same level of
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accuracy. However, the genetic algorithm (92.74%) did perform better than

the other three, with the simple Bayes rule (89.05 %) performing the worst.

Profit

Default

New ID

NN

Bayes

IDIOMS

94.022

91.202

91.009

89.046

92. 743

49.082

50.783

57.647

66. 153

68.804

100.00

90.386

74.010

74.400

79. 774

Table 3.3: Measures of performance in the comparison study

by Fogarty and Ireson (1993/4).

The profitability criterion used was given by the number of goods correctly.

classified minus eight times the number of bads incorrectly classified all divided

by the total number of goods. Because this gives a weighting of 8 to the bad

applicants it removes the advantage of the default rule. The results for

profitability show that the genetic algorithm gives the best performance,

followed by the simple Bayes classifier. The NN rule outperforms the decision

tree and the default rule.

An explanation for the differences in classifier ranking between the

classification accuracy and profitability results is provided by considering the

acceptance rates. Any classifier having a relatively low acceptance rate is likely

to have a relatively higher profitability rank than classification accuracy rank,

because of the importance the profitability criterion gives to bad applicants (and

the proportion of bad applicants accepted will decrease rapidly as acceptance

rate decreases). For this reason, although the simple Bayes classifier gives poor

classification accuracy, it gives the second best profitability. Using a similar

argument, the decision tree gives similar performance to the NN rule for

classification accuarcy, but appears significantly less profitable because it has a

higher acceptance rate. Despite these comments, it does appear from the results

that the genetic algorithm peforms well giving the best profitability and the

closest accuracy to the default rule.
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3.1.3 Summary and implications for future research

In this section we have reviewed some of the important contributions to the
literature on the appropriate classification techniques to use for credit scoring

models. We split the review into two parts: first, a discussion of the traditional

approach, discriminant analysis, with particular emphasis on methodological
and conceptual weaknesses; and, secondly, a discussion of papers proposing

new classification methodologies.

Eisenbeis (1978) and Leonard (1988) describe a number of papers that have not

yet been mentioned that deal with traditional credit scoring methodology.

Work on consumer loans includes Smith (1964), Orgler (1971), Apilado et a!.
(1974), Chandler and Coffman (1983/4) and Overstreet and Kemp (1986).

Work on commercial loans includes Altman (1968), Orgier (1970), Edmister
(1972), Blum (1974) and Doreen and Farhoomand (1983). Leonard (1988)
uses a tree diagram to illustrate different aspects of the literature on commercial

loans.

The work on alternative classification methodologies described in Section 3.1.2

indicates that there is potential to develop scoring models that can outperform
discriininant analysis. Logistic regression is becoming increasingly popular
with scorecard developers and a comparison with linear regression is considered
in Chapter 7. Other papers which include the application of logistic regression
to credit scoring are Steenackers and Goovaerts (1989) and Gilbert et at. (1990).

The recursive partitioning algorithm (decision trees) has been used extensively
and gave good performance in studies by Srinivasan and Kim (1987) and Boyle
et at. (1992). Other work on the application of decision trees and machine
learning algorithms to credit scoring is described by Carter and Catlett (1987)
and Davis et a! (1992). In Section 4.9 we describe decision trees in more detail
and consider two extensions: fanned trees and decision graphs.

Fogarty and Ireson (1993/4) have shown the potential of the genetic algorithm
for buliding credit scoring models. Other techniques such as neural networks
(see Section 4.10) have received less rigorous testing but, nevertheless, have
the potential to provide models that can outperform discriminant analysis
because of their ability to fit non-linear relationships.
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In this thesis one of our objectives is to search for new and appropriate

approaches to building credit scoring models. This motivates a theoretical

comparison of classification techniques in Chapter 4 and the application of the

k-Nearest Neighbour method in Chapter 8. To put this objective into

perspective, we note that if the data has poor separability then it may not be

possible to achieve significant improvements in performance using any

classification technique. Moreover, the search for more predictive

characteristics may be the only way to make a large difference to the

performance of a credit scoring model.

3.2 Aspects of credit granting policy

In the last section we considered different approaches to estimating the

probability of an applicant being a good risk given the characteristic vector,

denoted byP(glx). The models described are usually constructed with the aim

of minimising the bad debt rate (or the classification error rate). Eisenbeis

(1978) argues that much of the literature is incomplete because it does not take

into account other dimensions of the credit granting decision, in particular

profit maximisation. We now consider the consumer credit granting problem

from a more general perspective and examine ways in which estimates of

applicant risk can be incorporated into an optimal credit granting policy. Other

ways in which credit scoring methodology and statistical theory can be applied

in the credit industry are discussed in Section 3.2.2.

3.2.1 Strategies for credit granting

An early study of the problem of formulating an optimal credit granting

strategy was Greer (1967). He focused on selecting the optimal number of

contracts to be accepted by maximising "credit-related profits", which consist

of the sum of the present values of the (1) profit from credit sales in the current

period, (2) profit from credit sales in future periods and (3) profits from cash

sales in both the current and future period. Greer's model does not on its own

provide an accept/reject rule for an individual applicant. However, by fixing

the acceptance rate using Greer's model, one is able to get a bound on the
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maximum probability of default that should be accepted for an individual

applicant. In this way it can be combined with a standard scoring model to take

decisions on individual applicants. Another positive aspect of the model is that

it is a multi-period model, because it includes the future value and additional

businesses that might be gained as a result of granting a particular number of

loans.

Mehta (1968,1970) addresses the issue of how to make a decision on an

individual applicant. A sequential decision process is described that rests on

two premises: (1) information is costly and not all information is needed to take

a decision on a particular applicant and (2) past experience can be a reliable

way to predict the future credit performance of an individual. Three types of

cost are considered in the model:

(1) Acceptance cost = (Probability of non-payment).(variable product cost) +

average investment cost + average collection cost.

(2) Rejection cost = (Probability of payment). (contribution margin)

(3) Cost of further information = cost of acquiring additional information +

cost of additional decision.

For each given amount of information available, the credit grantor can choose

to accept, reject or collect more information on a particular applicant. The

strategy is chosen which minimises the expected cost.

In his second paper, Mehta extends the model to include optimal decisions for

collection of outstanding debts. This includes the value of any resulting future

sales or credit requests. A Markov process is used to estimate the costs of

collecting accounts i periods old.

Bierman and Hausman (1970) propose dynamic programming models which

incorporate and allow revision (based upon repayment performance) of

subjective prior estimates of the probability of default for a new customer. It is

assumed that loans are made for one period only. At the end of each period a

new loan can be requested. The outcome from each period is a Bernoulli trial

(with probability p of collection) and the cumulative outcomes over n time

periods is a binomial process. The prior distribution for p is assumed to be a

Beta distribution with parameters n and r, where r is the number of collections.

The parameters n and r increase as more loans are made and repayments
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received. At each stage the expected monetary return is compared with the

expected monetary cost leading to an accept/reject decision. Further work on

these models has been carried out by Dirickx and Wakeman (1976) and

Srinivasan and Kim (1987). However, their practical usefulness is limited

because of the restrictive assumption that credit is extended for one period only.

An interesting multi-period approach to modelling credit behaviour is taken by

Cyert et al. (1962). They model repayment behaviour using stationary Markov

chains. It is assumed that in each month an account can belong to one of (n+2)

states: paid, current, one month overdue, ..., (n-i) months overdue, and bad

debt. The probability that an account in one state in one period will move into

a particular state in the next period is defined by a transition matrix of

probabilities. The elements of this matrix are estimated using maximum

likelihood estimation. Cyert and Thompson (1968) propose using separate

transition matrices for different risk classes. Credit limits are then calculated to

maximise a profit criterion over n periods. Further work on the application of

stationary Markov chains is described by Corcoran (1978) and van Kuelen,

Spronk and Corcoran (1981).

Frydman, Kallberg and Kao (1984) make a comparison of stationary and

nonstationary Markov chains and an extension, the mover-stayer model. The

mover-stayer model assumes that the population consists of "stayers",

individuals who stay in their initial state, and "movers", individuals whose

repayment behaviour follows a stationary Markov chain. Residual matrices

were used to highlight a weakness of the Markov chain models. It was found

that the predicted transition matrices seriously underestimated the diagonal

entries of the corresponding observed matrices. They conclude that the mover-

stayer model provides a much better description of the data than either

stationary or non-stationary Markov chains.

This methodology could be extended to take into account the characteristic

vectors for credit applicants, as well as the different classes. As a result one

could use this type of stochastic system to make an accept/reject decision on an

individual applicant. It has the advantage over conventional credit scoring

techniques that it gives a probability of belonging to a range of states after a

fixed period of time, rather than a simple good/bad prediction. It may be of

considerable benefit to the credit grantor to be able to distinguish between the
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length of time that an applicant will default for. In Section 4.11 we consider

Markov models in more detail and examine how the transition matrix can

depend upon the characteristic vector.

Edmister and Schlarbaum (1974) consider the problem of selecting the optimal

credit granting system. They propose choosing the method of analysis which

maximises the difference between the expected net value of granting loans,

given a fixed number of applications and method of analysis, and the expected

net value without using the analysis. Eisenbeis (1978) points out that their

procedure is non-optimal because they do not include endogenous components,

such as interest rates and collections policies, in their model. Long (1976)

extends the Edmister and Schiarbaum model to include (1) startup and updating

costs, (2) changes in system efficiency over time and (3) changes in the number

of applicants.

Oliver R.M. (1992) proposes a model for profitable selection of individual

scored applicants for credit. The model works by splitting the risk score line

into accept/reject regions depending upon the expected profits at each score.

An investigation into the effect of score-splitting policy upon expected profit is
carried out using three possible score regions, 5, for i = 1,2,3. Two policies

are considered: first, an applicant with score S is accepted if S ^ 5, and is

rejected if S <S1 (this represents the standard approach); and, secondly, an

applicant with score S can be accepted or rejected for S ^ 5,, depending upon

the expected profit in the two regions, and must be rejected if S <5,. The

results showed that, in this simplified case, the score-splitting policy can lead to

increased expected profits depending upon the risk probabilities. Surprisingly,

it was found that the optimal score-splitting policy could lead to rejection of a

higher-score applicant and acceptance of a lower scoring applicant.

Having considered various aspects of credit granting policy we mention four

key elements identified by Eisenbeis (1978).

(1) The credit granting process is a multi-period problem. The decision to

grant credit in one period can also affect the value of the customer relationship

over future time periods. Many of the models considered in this section, such

as the Markov chain models and the approach of Edmister and Schlarbaum

(1974), take these factors into account.
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(2) Some authors, such as Mehta (1968,70) and Bierman and Hausman (1970),

emphasise the need to take into account the cost of information in constructing

a scoring system.

(3) Most of the credit policy models considered do assume a system of

estimating probabilities of applicants defaulting (or opportunity costs of

granting loans). In other words, they incorporate the types of credit scoring

models that we focus on in this thesis.

(4) Some of the methods considered, such as those of Bierman and Hausman

(1970), allow the probabilities of default to be readjusted over time to take into

account customer performance. An alternative approach to assessing customer

performance, in order to make new credit granting decisions, is to use

behaviour scoring (see Section 3.2.2).

3.2.2 Other statistical applications to the credit granting process

(1) Behavioural scoring:

Behaviour scoring is the process of determining the probability that a credit

account will remain in, or return to, a "good" state. It is clearly of paramount

importance that a credit manager is able to predict the performance of existing

accounts, whether to anticipate problems with repayments or to successfully

market alternative financial products. As a result behaviour scoring can be a

very important part of an overall credit granting strategy.

The standard credit scoring techniques used for building application scorecards

can be used to build behaviour scorecards (as described in Chapter 2).

However, there are some aspects of the data and the objectives of behaviour

scoring that call for different considerations: first, the characteristics available

for behaviour scoring are often highly correlated, because the performance data

is all based upon one account; and, secondly, the purpose of the behaviour

scorecard may be to perform some function, such as setting a credit limit,

which does not require a simple accept/reject classification.
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Blackwell and Sykes (1992) address the second point mentioned above. Using a

traditional scorecard approach, the optimal credit granting strategy would

appear to be to grant unlimited credit to applicants scoring above the threshold

and to grant nothing to those scoring below. However, it is clearly

inappropriate for a fmancial institution to adopt such a policy. Furthermore,

this approach does not enable differentiation between customers who pay back a

large proportion of their balance and those who pay back nothing.

The concept of marginal risk is introduced in order to allow the formulation of

an optimal credit limit strategy. The marginal risk (M(x)) is defined to be the

expected proportion of the last Lx of balance that is paid off in a given time

period. The authors demonstrate that for a given behaviour score, although the

overall risk is fairly constant, the marginal risk varies according to the

outstanding balance. A model which summarises the relationship between

marginal risk, average balance and behaviour score is proposed. This model

gives contours of equal marginal risk for different behaviour scores and average

balances. The optimal credit limits come from the contour which gives

expected profits of 0. A sensitivity analysis of the parameter x showed that the

optimal credit limits are quite sensitive to choice of this parameter. Despite

some practical problems with the approach taken in this paper, it does provide a

useful method of selecting credit limits. For further discussion of behavioural

scoring see Chandler and Coffman (1983/4).

(2) Cluster Analysis:

Another example of the application of standard statistical methodology to the

credit granting problem is the paper by Lundy (1992). Cluster analysis is used

to identify distinct subgroups of the population. The main application of the

results is likely to be the identification of suitable sub-groups of the population

for marketing purposes e.g. selecting customers to include in a particular

mailing. The clustering technique used is an optimisation method in which:

(1) The number of clusters is fixed at the start.

(2) Applicants in the sample are reallocated so as to minimise the within cluster

sum of squares.
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(3) The procedure terminates when no further significant reduction in the sums

of squares can be achieved.

Six clusters are identified which correspond well to distinct sub-groups in the

population (such as "School leavers", "Professionals", "Pensioners" etc). It

was also observed that the different sub-groups had different proportions of

good and bad applicants. Although this was not an objective of the cluster

analysis, it appears to have achieved reasonable discrimination between the

good and bad classes. This study illustrates that statistical methodology can be

used to tackle other aspects of the credit granting process. A second application

of cluster analysis to the credit granting procedure is described by Edelman

(1992).
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Chapter 4

Statistical classification techniques for credit scoring

In this chapter we review statistical methods for classifying cases to one of a

number of distinct populations. A range of parametric and non-parametric

techniques are considered, some of which are currently used by developers of

credit scoring models. In particular we focus on selecting methods to estimate

the probabilities of applicants for credit belonging to the good or bad classes,

based upon their application characteristics (P(glx) and P(blx)). Our aim is to

identify classification methods which are appropriate for credit data and can

provide good discrimination between classes.

We distinguish between direct and indirect methods of estImating F(gx). rn

the first approach, of which logistic regression is an example, we estimate
P(glx) directly as a function of some parameters. In the second approach, of

which discriminant analysis is an example, we estimate P(xg) and P(xI b)
separately and then derive P(gjx) using Bayes' theorem:

P(glx)=	
p(xg)P(g)	

(4.1)
p(xI g)P(g) + p(xI b)P(b)

where P(g) and P(b) are the population priors for the good and bad

populations, respectively.

Dawid (1976) refers to the indirect and direct methods of estimating P(gjx) as

the sampling paradigm and diagnostic paradigm approaches, respectively. He

points out that a sampling fraction which varies across the characteristic space

will lead to distortion of methods which use the sampling paradigm, but not of

methods which use the diagnostic paradigm. Thus, if a sample selection

mechanism is being used such that an applicant's characteristic vector affects

their chances of being included in the sample, it is more appropriate to use a

direct method of estimating P(g x). This has important implications for

selecting a method of reject inference (see Chapter 6 and Henley and Hand

(1993/4)).

A common approach to formulating a classification rule (see Hand (1992)),
based upon the estimated class probabilities P(gj x), is to classify an applicant
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to the class for which the expected cost of misclassification is minimised (the

Bayes minimum risk classification rule). However, as has already been

mentioned in an earlier chapter, we adopt an unusual performance criterion in

this thesis, namely the minimisation of bad rate amongst the accepts (see

Chapter 5). The relative costs of misclassification could be included in our

performance criterion if suitable values were known.

4.1 Discriminant analysis

4.1.1 Classical linear discriminant analysis

This has traditionally been the most popular method for building credit scoring

models described in the literature. It is one of the earliest statistical techniques

for discriminating between distinct populations and was first introduced by

Fisher (1936).

The method uses an indirect approach to estimating P(gI x). Adopting the

notation of Hand (1992), the method assumes that the conditional distributions

for the goods and bads, P(xIg) and P(xlb), are ellipsoidal (a class which

includes the multivariate normal) and have common covariance matrix and
mean vectors p1 (1 = 1 (good), 2 (bad)). The optimum linear discriminant

function is defmed to be the function ax (where x is the characteristic vector),

such that a maximises the standardized distance between the group means given

by:
at(p1 —i'2)

Jata

The resulting optimum formula for a, estimated from the data using maximum

likelihood estimation (MLE), is:
â='(i1 -12).

Classification of individual applicants involves imposing a threshold on the

linear discriminant function.

The linear discriminant approach to credit scoring is appealing because of its

conceptual simplicity and its wide availability in statistical software packages.

However, as we saw in Section 3.1, credit scoring data do not generally satisfy
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some of the basic assumptions required. In particular, the assumption of

ellipsoidal distributions for the goods and bads may be unrealistic. Because of

the discrete nature of most characteristics, a multinomial distribution would be

more appropriate. Reichert et al. (1983) also demonstrated that the assumption

of equal covariance matrices is unlikely to hold in practice.

4.1.2 Quadratic discriminant analysis

Quadratic discriminant analysis addresses one of the potential weaknesses of the

linear discriminant method by relaxing the condition of equal covariance

metrices. This allows the separating surface between the class distributions to

take a more complex quadratic shape.

Despite the greater flexibility of the quadratic discriminant rule, comparisons of

linear and quadratic discriminant rules using credit scoring data have shown that

there is very little difference in performance between the two techniques (e.g.

Reichert et al. (1983)). More general studies of the linear discriminant rule

have also shown its robustness relative to the quadratic rule (e.g. Aitchison et

al. (1977) and Titterington et a!. (1981)). Reasons for this are that the

quadratic rule involves estimating many more parameters and is vulnerable to

overfitting of the data. We conclude that the quadratic approach does not

appear to offer any advantage over the classical linear discriminant approach.

4.1.3 Regularized discriminant analysis

A potential problem with using linear discriminant analysis is highlighted by

Friedman (1989). This is that the discriminant function is heavily dependent

upon the smallest eigenvalues of the covariance matrix, E. As a result, a large

part of the variation in discriminant scores arises from characteristics with small

sample variances. Friedman proposes using a regularized form of discriminant

analysis, whereby the covariance matrix is shrunk away from the sample

estimate to some other value using a shrinkage parameter. It is pointed out that

linear discriminant analysis can be considered as a regularized version of

quadratic discriminant analysis, where the class covariance matrices are shrunk

to their average value. Because the methodological weaknesses of using linear
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discriminant analysis for credit scoring apply equally to the regularized version,

this does not seem an appropriate technique to adopt.

4.2 Linear programming

Linear programming involves the minimisation or maximisation of a linear

function subject to specified linear constraints. Freed and Glover (1981)

propose the application of linear programming techniques to discrimination

problems. Although the fitted model takes the same form as the linear

discriminant function, we discuss linear programming and linear discriminant

analysis separately because they are treated separately in the credit scoring

literature.

Srinivasan and Kim (1987) outline linear rules for the two group discriminant

problem, in the general case where it is not possible to completely separate the
two classes. If applicants have characteristic vectors x, where i = 1..

corresponds to good applicants and i = + 1... n to bad applicants, then a

suitable linear rule involves estimating the parameter vector a and a slack

variable s to satisfy the following conditions:

Mm	 s,

such that
ax,^b+s	 i=1...n1

ax1 >b—s	 i=n1+l...n

where b is any positive constant. The slack variable, s, is needed to take

account of non-separability and permit feasible solutions. The above

formulation constrains s according to the individual observations. Srinivasan

and Kim also consider the more restrictive case of constraining s according to

class (having one s component for each class).

Classification results presented by the above authors showed that the linear

programming rules gave comparable performance to linear discriminant

analysis, but did less well than logistic regression and the RPA. We conclude

that linear programming methods can provide robust credit scoring models.

However, by their nature, they are unable to model complex non-linear
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relationships (or interactions between characteristics) and they do not appear to

offer any significant advantages over linear discriminant analysis.

4.3 Independence models

A simple (and perhaps simplistic) approach to estimating P(gl x) is to assume

that the characteristic values are independent given the applicant class. The

resulting Bayes independence model for p characteristics is given by:
p(xlg) = p(x3 g)p(x2 I g) . . . p(x,, Ig)

where ; is the ith component of x. A similar relation holds for P(xl b ) and

Bayes theorem is used to combine them (as in equation 4.1) to estimate P(g ).

In most credit scoring applications the independence assumption is unlikely to

hold. However, despite the inappropriateness of this assumption for most

medical applications, Hand (1992) reports that the independence model is

widely used in the field of medical diagnosis and often does surprisingly well.

In a comparison of discrimination techniques for ordered categorical data by

Titterington et a!. (1981), a smoothed independence model is used to estimate

the class conditional densities given by:

p(xli)	
12	 1c

where nz (xr ) is the number of applicants in class i with attribute Xr Cr is the

number of attributes of characteristic r, N (r) is the number of applicants in

class i with characteristic r not missing and B is an association factor

representing the "proportion of non-redundant information" in the variables.

The results show that this independence model is robust and gives good

classification accuracy.

Hilden (1984) discusses why the independence model can often perform well

when the independence assumption is not met. One of the explanations put

forward is that the independence model requires the estimation of fewer

parameters than other methods which assume a more complex covariance

structure. This reduces the risk of overfitting the data, particularly if the

variable dimensionality is relatively high. We conclude that the independence

model may be a useful technique for building credit scoring models,
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particularly in view of its conceptual and computational simplicity. It does,

however, suffer from the disadvantage of estimating P(g x) indirectly.

Models which reduce the complexity of P(glx) by making less extreme

independence assumptions can also be considered. Hand (1992) describes

"structured conditional probability distributions" which use substantive

knowledge about the relationships between characteristics to make independence

assumptions.

4.4 Discrete multivariate techniques

Most of the standard techniques for building scorecards, such as discriminant

analysis, assume continuous feature variables. However, the characteristics

available for building credit scoring models are largely categorical (see Section

2.2). Therefore, although standard credit scoring methods can provide good

classification accuracy, they may be sub-optimal. This motivates a review of

multivariate methods for categorical data.

An important comparison study of discrimination techniques suitable for

categorical feature variables is provided by Titterington et a!. (1981). They

describe the results of an experiment in which a range of parametric and non-

parametric techniques are applied to the problem of diagnosing head-injured

patients. Their study provides the focus for this review because they use a

large complex data set that is similar in structure to typical credit data sets. In

particular, the similarities are multidimensionality, a mixture of categorical and

continuous data and a significant proportion of missing values.

4.4.1 The full multinomial model

The opposite extreme to the independence model of the last section is to make

no assumptions about the data structure. This gives the full multinomial model.
If there are p characteristics, each with a possible attributes, then the

multinomial model estimates a separate class conditional probability estimate

for each of the fl a1 possible cells, given by:

PIr	 kj	 j,
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where n is the number of applicants from class j falling in cell k and n1 is the

total number of applicants from class j. The multinomial model suffers from

two principal disadvantages: first, the number of cells grows exponentially

with the number of characteristics; this results in the data being too sparsely

distributed for reliable probability estimates to be estimated for even moderate

numbers of characteristics. Secondly, because the number of parameters to be

estimated is relatively high, there is a danger of overfitting the data. Therefore,

the multinomial model is not a practical method for building credit scoring

models.

4.4.2 Lancaster models

Lancaster models (see Goldstein and Dillon, 1978) permit a whole range of

structures to be fitted to the data ranging from the basic independence model to

the full multinomial model. A common version of the method is to fit only

first-order interactions between characteristics. Titterington et al. (1981) use

this type of Lancaster model in their comparisons. The two-way marginal

estimates for the model adopted are given by:
n.(x,x)+1/(CC)

p(x ,x Ii)=	 ' s	 for each z, r, s,AT,(r, ․)+1

where flj(Xr, x5 ) and N3 (r, s) are analogous to the corresponding terms defined

for the independence model.

The authors describe two problems which arise with this type of model: first,

negative cell estimates can be obtained (for cells where this occurred the

independence model was used instead). Second, the numbers of cells may be

too large when all the first order interactions are included, making it difficult to

obtain reliable parameter estimates (one way to reduce this problem is to

combine attributes for some characteristcs).

The comparison results were disappointing with the independence model

outperforming the Lancaster models for three out of four datasets. We

conclude that Lancaster models do not show potential for application to credit

scoring.
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4.4.3 Latent class models

Latent class analysis (see Fielding (1977)) involves the assumption that the
probability estimate for P(xlg) can be decomposed into a weighted linear

combination of underlying probability functions. 	 Using notation from

Titterington et a!. (1981) the estimate for class i is given by:

p(x l i) = w,p(x)

Here L denotes the number of "latent" classes and the {wJ are mixing weights.

Titterington et al. (1981) adopt a latent class model whereby the probability
mixture distributions, p1 (x), are represented by independence models (this

greatly simplifies the model construction). The EM algorithm (see Dempster et

a!., 1977) is then used to estimate the maximum likelihood estimates. The

classification results are disappointing, with the latent class models being

outperformed by at least one of the independence and Lancaster models on each

of the four data sets.

4.4.4 Loglinear models

Loglinear models represent a general approach to modelling categorical data.

(See, for example, Bishop et a!. (1975) or Fienberg (1977)). The model takes

the form of a linear relationship between the natural logarithm of the expected

cell counts and a set of parameters representing the effect of individual

variables and interactions between variables. The general loglinear model does

not specify a dependent variable and so allows more flexible examination of the

structure of the data. However, in the credit scoring context creditworthiness

represents a natural dependent variable and so this flexibility offers no

advantage.

Loglinear models are best suited to low dimensional data and become very

calculation intensive when dimensionality becomes high (as in our application).

For high dimensional data one would also have to limit the number of

interaction terms included, possibly to first order, to prevent overfitting of the

data. The results for the Lancaster models described in Section 4.4.2 indicate
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that loglinear models may not give better performance than the independence

model.

4.4.5 Other methods

Titterington et al. (1981) use three other multivariate techniques for estimating
P(xlg) for discrete data:

(1) A non-parametric kernel function in a factorised form proposed by

Aitchison and Aitken (1976). They consistently perform less well than the

range of other classification techniques considered. The authors point out that

the dimensionality of the problem results in the data being too sparsely spread

to obtain accurate estimates of the class conditional probabilities. We consider

kernel methods in more detail in Section 4.8.

(2) The linear logistic model given by:
p(gx) 

= exp(a +/3x) where a. and /3 are parameters to be estimated.
p(bJ x)

This model performs reasonably well, given a crude method of handling

missing data.

(3) Models involving treating the characteristics as discretizations of

continuous feature variables and assuming multivariate normal distributions.

This results in linear and quadratic discriminant rules depending upon whether

the class covariance matrices are assumed to be equal. In comparisons the

linear discriminant rule performed surprisingly well, beating the quadratic rule

and several of the theoretically "more appropriate" methods.

Other classification methods for categorical feature variables that were not

evaluated in this study are the location method (Krzanowski, 1975), methods

based upon orthogonal series (Goldstein and Dillon, 1978) and Hill's nearest

neighbour method (see Section 8.2.3.4).

In conclusion, despite the range of classification techniques available for

dealing with categorical feature variables, no technique seems to consistently

outperform the independence model and the linear discriminant rule. This
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result indicates that methods which may not be conceptually appropriate, can

give robust performance. This helps to justify a standard credit scoring practice

of converting the characteristics into pseudo-continuous form using the weights

of evidence transformation and using methods such as linear regression (see

Section 2.2). In the rest of this chapter we review classification methods for

Continuous as well as categorical feature variables.

4.5 Regression techniques

Two of the most popular credit scoring techniques are linear and logistic

regression. They both use a linear function of the predictor variables

(characteristics) to model P(g)x) directly. Because of their widespread use in

the credit industry, we devote Section 7.2 to making a detailed theoretical and

empirical comparison of the suitability of the two methods for credit scoring.

Other regression approaches are now considered.

4.5.1 Regression models for ordinal data

McCullagh (1980) introduces a class of regression models for dealing with

ordinal response variables. Two methods are proposed, the proportional odds

and the proportional hazards models, both of which have the same general form

given by:
link{y,(x)) = O, -fix

where y,(x) is the cumulative probability that the ordered response takes a

value less than or equal to j for a characteristic vector x and 9 and /1 are

parameters.

Models for dealing with ordinal response data could be useful in the credit

scoring context, in order to treat creditworthiness as a multi-state problem

(rather than using the normal two class goodlbad definitions). However, Hand

(1992) describes a simulation study by Campbell et al. (1991), which compared

ordinal approaches with multinomial logistic and linear discriminant analysis

and concluded that ordinal models confer no advantage when used for

classification purposes.
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4.5.2 Nonparametric regression

One disadvantage of parametric regression procedures (such as linear or logistic

regression) is that they impose restrictive assumptions on the model form. This

can prevent complex dependencies in the data from being identified. A wide

range of nonparametric regression techniques have been proposed to try and

take account of this. Among the most widely studied are the kernel method

(see Section 4.8), the k-NN method (see Chapter 8) and spline smoothing

(Stone, 1977). These methods use local averaging in the predictor space to

estimate P(gl x). However, because of the sparsity of data in high dimensional

spaces, these techniques do not generally perform well with multidimensional

data (this is not true for the k-NN method).

A second approach to nonparametric regression is to use a recursive partitioning

procedure (see Section 4.9). The general approach is to split the predictor

space into two regions and then fit a separate linear model to the points in each

region. The same procedure can then be applied recursively to each of the

regions obtained in this way. The advantage of these methods over the local

averaging methods described above (in higher dimensions), is that the local

regions are determined by the response variation. This means that the influence

of sparse regions of the characteristic space on the probability estimates is

reduced. However, the recursive partitioning methods do suffer from the

problem that the size of the sample available for model construction is

drastically cut at each split.

4.5.3 Projection pursuit regression

Friedman and Stuetzle (1981) introduce a new nonparametric approach to

multiple regression, which attempts to overcome the problems identified in the

last section. It provides a more flexible regression surface than standard linear

regression, by iteratively fitting a sum of smoothed functions of linear

combinations of the predictor variables.

The procedure for estimating the regression surface at a particular point is as

follows: at each successive iteration, project the data onto a plane spanned by

the response and a linear combination of the predictors, atx (projection step).
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The linear projection of the predictors is smoothed using local averaging.

Then, the parameter vector, a, is selected to maximise the amount of

previously unexplained variance in the response, that is explained by the

smoothed function of the predictors (pursuit step). The model at each iteration

is given by the sum of the smoothed functions that were subtracted from the

response to give the unexplained variance, and it summarises the structure

identified so far.

Projection pursuit regression is suitable for multidimensional data because it

uses a successive refmement approach, which allows complex data structures to

be modelled without reducing the size of the sample available at each iteration.

Interactions between variables are taken into account through the smoothing

process. In addition, the results of each iteration can be represented

graphically, thus aiding interpretation of the model structure. For these

reasons, projection pursuit regression appears to offer potential for building

credit scoring models. It is included in a general comparison of credit scoring

techniques in Section 7.3.

4.6 Generalized linear models

This represents a generalization of the standard regression approach. A

generalized linear model or GLM (see for example McCullagh and Nelder,

1983 and Dobson, 1983) is a model which specifies a relationship between a

linear combination of the predictor variables (fix) and the expected value p of

the response y, where /3 is a vector of parameters. Here the response y is

assumed to have a distribution from the exponential family. The general

relationship between the predictor variables and p can be expressed as

fix,
where the function g(u), which is assumed to be monotone and differentiable,

is called the link function. Particular GLM's are obtained by specifying a link

function and a probability distribution for y.

The parameters of the models, /3, are estimated using the method of maximum

likelihood. In general the likelihood equations are non-linear and they have to

be solved numerically by iteration using a procedure such as the Newton-

Raphson method or the method of scoring.
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Table 4.1 shows examples of common GLM's with their corresponding link

functions.

Model	 Link	 function,
______________ g(u)

Linear

Gamma	 11/1

Logistic	 log(u / (1— p))

Poisson	 log(p)

Probit	 ®- (u)

Extreme value	 log(—log(l - ,u))

Table 4.1: Some common GLM's.

We now consider selection of an appropriate GLM when the data has a binary

response, as in the problem considered in this thesis. In this case the expected
value of the response, p, is equal to P(y = 1). Under repeated sampling

(taking N such random variables) the sum of the responses has the binomial

distribution, b(N, p). Thus, the binomial distribution (or the normal

approximation to the binomial distribution) is the most appropriate distribution

and logistic regression is theoretically the most appropriate GLM in our

problem. Logistic regression is very widely used for analysing consumer credit

data and is described in more detail in Section 7.2.2. The Poisson model is

included in our comparisons in Section 7.3 to represent other GLM's. it is also

appropriate for categorical reponse data, in particular for modelling counts.

4.7 Kernel methods

A common nonparametric approach to density estimation and discrimination

problems is the kernel method. Hand (1982) shows how kernel methods have

developed from the simple histogram and provides a general review of the

standard work in this area. The general form of the multivariate kernel density

estimator for a point y in the feature space is (Terrell and Scott, 1992):

J(y)
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where the x. are points in the design sample (size n), K: SR" -^ R' is a kernel

function centred at 0 that integrates to 1, and h is a smoothing parameter that is

assumed to tend to 0 as n goes to (X)•

One of the most important aspects of kernel density estimation is the selection

of a suitable value for the smoothing parameter, h. Early papers, such as

Rosenblatt (1956), Parzen (1962) and Epanechnikov (1969), used a fixed h

throughout the feature space. Terre!! and Scott (1992) consider possible ways

of improving the multivariate density estimates by varying h according to

position in the feature space. In particular, three proposed approaches to

varying h are considered.

(1) The k-Nearest Neighbour density estimate, proposed by Loftsgarden and

Queensberry (1965), given by:

where hk(y) is the Euclidean distance from y to the kth nearest sample point,

and V, is the volume of the unit sphere in flP (The k-Nearest Neighbour

estimator can be expressed in the general form of the kernel estimator described

above, if K is chosen to be a uniform density on the unit sphere in p-

dimensional space.)

(2) The adaptive kernel estimate of Breiman, Meisel and Purcell (1977), given

by:

'	
4;—y)

where h1 is the Euclidean distance from x1 to the kth nearest other sample point.

This becomes asymptotically equivalent to choosing h f(x ). A popular

version of this method was introduced by Abramson (1982) who proposed using
x f(xJ'2 for all p.

(3) A generalised version of a suggestion due to Tukey and Tukey (1981)

called a balloon estimator and given by:

= nh(y)"
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The authors investigate the performance of the kernel method using the

different approaches to selecting h. Performance is measured using the

asymptotic mean squared error at a point and the integrated version of this

function over the real line. An important conclusion from their work is that it

is surprisingly difficult to improve upon the kernel method with fixed h.
(However, as the dimensionality increases, they show that the multivariate

balloon estimate becomes increasingly more asymptotically efficient than the

fixed kernel method.) They assert that, because of the difficulty of successfully

applying optimal adaptive kernel methods, higher order fixed kernel methods

seem a worthwhile option.

The most interesting results, from the credit scoring perspective, relate to the k-

Nearest Neighbour method. Table 4.2 shows the relative efficiencies (using the

asymptotic mean integrated squared error, AMISE) of the multivariate k-

Nearest-Neighbour estimates to the fixed kernel for multinormal densities.

Number of	 Relative

variables	 efficiency

1	 0

2	 0

3	 0.483

4	 0.866

5	 1.146

15	 1.545

100	 1.491

Table 4.2: Asymptotic relative efficiency of the k-Nearest

Neighbour method to the fixed kernel method for different

feature space dimensionalities.

The table shows that the k-Nearest Neighbour method performs very badly in

low dimensions, but gives relatively superior performance to the kernel method

in dimensions greater than 5. In particular, the maximum relative efficiency is

achieved for 15 variables, the correct order of characteristics for credit scoring

models. We conclude that the k-Nearest Neighbour method is more appropriate

for application to credit scoring than other kernel methods. In Chapter 8 we
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propose a k-Nearest Neighbour classifier for credit scoring, using an original

distance metric.

4.8 Decision trees and decision graphs

Decision trees are nonparametric classification rules which split the feature

space into regions of similar class membership probabilities (Friedman (1979)

and Breiman et al. (1984)). Because the method works sequentially, it is often

referred to as "recursive partitioning". In Section 4.6.2 we examined the

recursive partitioning algorithm in a regression context. Several reasons why

the method may be appropriate for credit scoring have been identified: first, it

is able to fit complex non-linear relationships, because it does not have a

restrictive parametric form; secondly, recursive partitioning constructs local

regions based upon the nature of the response variation and so does not suffer

from data sparsity in high dimensions (as local-averaging techniques like kernel

methods do); and, thirdly, the underlying decision process may be better

represented by a sequential process than a simultaneous one (where all the

characteristics are considered simultaneously in the model). As was discussed

in Section 3.1.2, decision trees have been used extensively for building credit

scoring models and have given good classification performance in comparison

studies (Srinivasan and Kim (1987), Boyle et al. (1992)). For these reasons,

we include several variants of the standard decision tree method in our

comparisons of classifier performance in Chapter 8. We adopt an inference

scheme for constructing decision trees based upon the Minimum Message

Length Principle, as proposed by Wallace and Boulton (1968). The

methodology we use is described below, including a discussion of fanned

decision trees and decision graphs, an extension of decision trees.

4.8.1 Decision trees

A decision tree consists of a series of sequential nodes, which split subsets of

the feature space into descendent subsets by partitioning the characteristic

values, and leaves, which specify a predicted class (or give predicted

probabilities of class membership). (We restrict attention to decision trees with

binary splits at each node.) An applicant is classified by following the nodes
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which correspond to the applicant's characteristic values to the resulting

decision leaf.

The idea behind the decision tree is that each split gives descendent nodes

which are purer in terms of class than the parent node. We consider two

components of constructing decision trees:

(1) The selection of rules for splitting a node (growing phase):

To begin with the decision tree consists of one leaf, which contains all points in

the sample. The growing phase involves repeatedly splitting a leaf of the

decision tree (and replacing the original leaf with a node) such that the

dependent leaves provide better class separation. At each split all the currently

unused characteristics are considered and the best splitting point for each

characteristic is determined. To do this the attribute values of each

characteristic are reordered into order of ascending proportion good (or bad).

Various splitting rules have been proposed. Friedman (1979) proposes the

myopic splitting rule which involves minimising the expected loss if this

particular split is the only split. Brieman et al. (1984) consider more

complicated splitting rules, including ones that can look ahead a number of

splitting steps before determining the best split at the original node.

In this thesis we adopt an encoding procedure for decision trees based 'apori ne

Minimum Message Length Principle (Wallace and Boulton, 1968). The MMLP

is a criterion for assessing the quality of different models, which involves

encoding a model and corresponding data as a binary string and selecting the

model which has the minimum message length. A procedure for encoding

decision trees is proposed by Wallace and Patrick (1993). We use splitting

rules which involve minimising the message length of the sets of decision trees

obtained from looking ahead 1 and 2 steps.

(2) The decision when to declare a node as terminal (pruning phase):

The tree is grown using a splitting rule until the number of sample points at a

particular leaf is less than a specified threshold or the possible splits are not

able to improve class separation. The resulting tree is likely to overfit the

design sample used to grow it. As a result, the tree is pruned by replacing

decision nodes, whose children are leaves, by leaves if this satisfies some

criterion (such as reducing the message length). The leaves of the final tree
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produced are designated as good or bad for classifying future applicants,

depending upon the proportion of goods and bads in the design sample and the

criterion for performance. Many authors (e.g. Brieman et al. (1984)) consider

pruning to be the most important part of the construction of trees.

4.8.2 Extensions of decision trees: fanned trees and decision graphs

Oliver J.J. (1994) proposes using fanned decision trees as an alternative to

pruning. It is assumed that a decision tree has been grown using a splitting rule

(such as minimisation of the message length for an encoded tree). Then, to

classify applicants who fall into a particular leaf of this tree, we calculate the

fanned set for this leaf. The fanned set of trees for a leaf are generated by

using every possible characteristic in turn to expand the tree by one level. An

applicant in this leaf is assigned class membership probabilities by averaging

the corresponding probabilities over the fanned set of trees. The author

implements a fanned decision tree procedure using the Minimum Message

Length Principle (MMLP) and presents comparisons with the standard pruning

criterion. The MMLP has the advantage over maximum likelihood approaches

that the message length of a tree can be used as a measure of goodness of fit

and, thus, it can be used to generate weights for the tree avearging process.

The comparison results for seven data sets showed that the fanned decision trees

almost always did as well as the pruning method and sometimes significantly

outperformed the standard decision trees. We use fanned trees constructed

using the MMLP in Chapter 8.

Decision graphs are another extension of decision trees (Oliver J.J., 1992). A

decision graph is similar to a decision tree in that it consists of decision nodes

and leaves and the method of categorizing objects is the same. It differs from

decision trees in that it may include Joins, where a Join is represented by two

nodes having a common child. The advantage of this is to allow two subsets of

the population that may have common features to be joined into one subset.

Oliver proposes constructing decision graphs using the MMLP. The procedure
includes a parameter, 1., corresponding to the probability of making a join,

which allows one to determine the separation of the nodes in the decision
graph. If ]. = 0 then the decision graph becomes a decision tree. The message

length of a decision graph (for different F.) can be used as a metric to
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determine whether a decision tree or a decision graph is more appropriate for a

particular data set. We examined the performance of decision graphs for
different values of the parameter F in the comparisons presented in Section

7.3.

4.9 Neural networks

Neural networks are computer models which use representations of human

neural systems to solve complex problems (see McClelland and Rumeihart

(1986) or Beale and Jackson (1990)). They consist of interconnected nodes,

representing neurons, which are usually hierarchically structured in layers.

Each node receives a weighted sum of inputs and computes an output value

using a suitable transformation. The most common transformation is the

sigmoid function given by f(x) =1 / (1+ e), where k is constant which

controls the spread of the function. The output value is then passed on to other

connected nodes. In this way the neural network emulates the processing of

information by the brain.

By choosing a suitable network architecture one can model complex statistical

relationships between variables. A standard model is the multilayer perceptron,

which consists of three layers of nodes: an input layer, an output layer and a

layer in between the two, referred to as the hidden layer. Information passed

into the input nodes propogates through the hidden layers to give an output at

the output nodes. The nodes in the different layers of the network are

connnected by links with variable weights, which correspond to the parameters

of a statistical model.

A neural network classifier for credit applicants can be constructed by training a

suitable network using the design sample. The input nodes correspond to the

applicants' characteristic vectors and the output nodes correspond to

creditworthiness. Construction of the network involves estimating the weights

between nodes using a learning algorithm. The learning algorithm for the

multilayer perceptron is called the "generalised delta rule" or the

"backpropogation rule" (Rumelhart, McClelland and Williams, 1986). It

modifies the network weights in order to minimise the difference between the
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expected and actual output values (corresponding to creditworthiness) for the

design set. The error function is given by:

Error=!(E1 0)2

where P21 is the expected output value for an applicant at node j and O is the

corresponding observed output. The error function is minimised using a

gradient descent on the error surface in the weights space. The weights are

modified from the output layer backwards according to
Awi, = w514

where w, is the weight from node ito nodej, a is a scalar parameter, 5, is an

error term for nodej and 4 is the network value at node i. For output nodes,
the error term 8 is given by

ô =O3(l—O3)(E1—01),

and for nodes in the hidden layer it is given by
8 =0J(1-0J)4w)k,

where the sum is over the nodes in the output layer. The design set are passed

through the network until the change in weights becomes negligible. The scalar

parameter, a, is used to adjust the rate of gradient descent. In selecting this

parameter, one needs to balancing the conflicting objectives of minimising

learning time and avoiding local minima on the error surface. The resulting

network can be applied to future applicants by inputting their characteristic

values into the input nodes to give predicted probabilities of class membership

at the output nodes.

Several alternatives to the multilayer perceptron have been considered in the

neural networks literature (for an introduction see Beale and Jackson, 1990).

One approach is to use a sum of nonlinear functions, known as radial basis

functions, to partition the characteristic space. Instead of using hyperplanes,
defmed by weighted sums of the form wx1 , the radial basis approach uses

hyperellipsoids, of the form Ø(IIx -yIJ), where II.. .11 is a distance measure. The

advantage of the radial basis approach is that, once the radial basis functions

have been selected, the problem reduces to optimizing a set of linear equations

(whereas the multilayer perceptron involves optimizing nonlinear functions of
wxj. The difficulty with this method is selecting appropriate radial basis

functions to enable the data structure to be modelled. Standard choices for the
radial basis function and distance metric are 0(r) = e 2 and
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lix -yll= (x1 —y1 )2 respectively. 	 If the structure of the inputs (the

characteristic vectors) is known a priori, then this can be used to provide

suitable radial basis functions.

Other approaches to constructing neural networks are Kohonen's seif-organising

networks and Hopfield networks. The former approach uses a technique known

as vector quantisation to organise the network so as to identify the structure of

the input vectors. The method is called seif-organising because it does not use

response vectors from the training set in order to construct the network. It

serves a similar function to cluster analysis and is unlikely to be of use for

classifying applicants for credit. The latter approach constructs a network

within which every node is connected to every other node in both directions and

the weights between two nodes are symmetrical. The Hopfield network takes

in an input at all nodes and iterates until a minimum on the error surface is

reached. As with the Kohonen networks there is not an explicit mechanism for

incorporating a response vector into the network.

Neural networks, in particular the multilayer perceptron described above, have

several advantages over standard parametric methods of building credit scoring

systems, such as discriminant analysis: first, they do not require the

assumption of potentially unrealistic distributional forms; secondly, the hidden

layer allows complex nonlinear relationships and dependencies between

variables to be identified (several hidden layers can be used to fit more complex

model forms); thirdly, the parallel nature of the method may be more

appropriate for complex high dimensional data structures than a serial approach

and, finally, the output layer can contain any number of nodes, thus enabling

the response, creditworthiness, to be multivalued. (It can be shown that a

neural network without a hidden layer is equivalent to a discriminant analysis

and linear regression model.) Neural networks also do not suffer from the

disadvantage of data sparsity in high dimensions shared by local averaging

methods, such as the kernel method.

There has been considerable interest in the application of neural networks to the

credit scoring problem, as indicated by papers such as Barley (1993). Beale

and Jackson (1990) report the results of a comparison of discriminant analysis

with a multilayer perceptron for credit scoring. The results predicted that the
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network would increase profitability by 7%. Comparison experiments in other

related fields, such as Yoon et al. (1993), have demonstrated that neural

networks can significantly outperform conventional statistical classification

methods. However, there is a need for further research to establish the most

appropriate forms of neural network for the credit domain (including the

number and size of the hidden layers) and to provide rigorous comparisons with

existing credit scoring techniques.

We end by noting that one particular weakness of neural networks is that they

do not provide a means of describing the relative contribution of different

characteristics to the classification rule. This could result in overfitting of the

data. There is also a danger that the network might be seen as a "black box" by

credit managers who would be responsible for its implementation. This could

result in a loss of managerial control over the credit granting process. Yoon et

al. (1991) describes a method of interpreting the relative importance of

different characteristics by linearly approximating the relative strength between

each input and output node. This can be used to provide a conventional

scorecard. Further research is needed into the interpretation of neural network

models.

4.10 Genetic algorithms

The genetic algorithm was introduced as a technique for assessing credit

applicants in Section 3.2. It is a classification method which uses the principles

of natural selection from population genetics to search efficiently through large

noisy solution spaces (Holland (1975), Goldberg (1989) and South et al.

(1993)).

The method starts by generating an initial parent population, usually randomly.

Each member of the population is represented by a (binary) string, which

represents a chromosome. A mating pooi is selected from the parent population

by selecting points which give the best values of an objective function. A new

population is produced by applying genetic operators (crossover and mutation)

to the mating pool and combining this with a proportion of points from the

initial population. The crossover operator randomly selects complementary

parts of two strings to combine. This enables the construction of new
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individuals from existing individual who perform well, so that the algorithm

can search new parts of the solution space. The mutation operator randomly

changes a part of any string with a probability inversely proportional to the size

of the population. This helps to prevent the premature loss of genetic material

and compensates for sampling error. By applying these genetic operators to the

mating pool, the "high performance" chromosomes are propogated through the

population. This process is repeated until some stopping criteria is reached,

such as an upper bound on the number of iterations.

There are two important components to the successful application of the genetic

algorithm: first, the selection of a suitable representation of the solution space,

which enables the genetic operators to select the "best" members of the

population; and, secondly, selection of a suitable objective function to evaluate

the difference between a member of the population and the required optimum.

Both of these issues are discussed in detail by South et al. (1993).

Fogarty and Ireson (1993/4) apply the genetic algorithm (an incremental

version) to credit scoring by using the method to identify ranges of attribute

values for particular characteristics, or combinations of characteristics, which

are common to low or high risk applicants. Estimates of the class membership

probabilities are obtained by applying Bayes rule. The objective function is the

accuracy of predictions for the training set, obtained by subtracting true class

from the predicted outcome. This is used to provide a fitness measure for

selecting members of the population. The classification results showed that the

genetic algorithm has the potential to outperform other parametric and

nonparametric classification methods applied to credit scoring.

South et al. (1993) highlight three reasons why the genetic algorithm can be

useful for classification problems, like credit scoring, where the characteristic

space is multidimensional with complex, non-linear relationships between the

response and the characteristics:

(1) Genetic algorithms search from a population of solutions, rather than a

single solution point. By using the crossover operator the genetic algorithm is

able to search new parts of the solution space. This reduces the chance of the

method converging to local optima.
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(2) The genetic algorithm uses available "scoring information" to assess the

value of potential solutions, rather than "auxiliary knowledge" (such as

derivatives).

(3) Genetic algorithms are probabilistic rather than deterministic transition

rules. This helps to reduce the chance of convergence to local optima and

alleviate the influence of noise.

We conclude that the genetic algorithm show clear potential for building credit

scoring models. Future research is needed to identify optimum values of the

genetic algorithm parameters (the crossover probability, mutation probability,

population size, generation gap and the reproduction and replacement scheme)

and alternative ways of representing the data.

4.11 nth order Markov chain models

In Section 3.2.1 we discussed how Markov chain models have been used for

modelling evolving credit portfolio performance over time (for example by

Cyert et a!., 1962). In this section we describe the methodology and show how

it can be applied to the initial credit granting decision in order to make

accept/reject decisions on individual applicants based on their characteristic

vectors.

It is assumed that each month an account can belong to one of s states:

{paid, one month delinquent....., (s-i) months delinquent).

The probability that an account in one state in one period will move into a

particular state in the next period is defmed by a transition matrix of

probabilities. If D(t,x) is the state after t months (t> 0), given a characteristic

vector x, then the 1st order Markov chain model involves estimating the

transition probabilities:
P(t,x) = P(D(tx) = jD(i - l,x) = 1).

The nth order Markov chain is defmed in a similar fashion with conditioning on

D(t-2x), D(t-3,x), ..., D(t-n,x). In other words, increasing the order of the

Markov chain increases the dependency of future predictions on previous states.
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Three approaches to modelling the F, (t, x) in the 1st order case are described

below:

(1) Nonstationaiy Markov chain:
P.(t,x) = g(f(t,x)),

where g(.) is a link function (as used in generalised linear models) and
f, (t, x) f31 x1 +. .	 a linear function of the characteristics.

(2) Stationary Markov chain:
1 1 (t,x) g(f,3(x))

where g(.) and j;(x) are defmed as above.

(3) Stationary Mover-Stayer model:
F.(t,x) = Sj(x)+(l—S(x))](x)

where 5', is the proportion of stayers in state i. The "best" applicants in our

problem could regarded as stayers because they have a very low probability of

missing any repayments.

The parameters /3, are estimated using maximum likelihood estimation. The

resulting model can be used to estimate the probability of an applicant being in

a particular state at a particular point in the future. The advantage of this

approach is its flexibility, allowing applicants' estimated creditworthiness to

evolve over time. Research is needed to identify both the appropriate order of

the Markov chain and the appropriate model assumptions.
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Chapter 5

Assessment of performance

5.1 Introduction

Assessment of classifier performance is an essential part of the construction of

credit scoring models. The aim of the credit grantor should be to select

performance measures which reflect the underlying objectives of the system. In

the particular problems we investigate in this thesis the primary objective is

identification of potential bad debt and so the most appropriate performance

measure is the expected proportion of bad applicants in the accept region.

(This criterion is discussed in Section 5.2.2.) However, other aspects of the

credit granting decision may require different ways of assessing performance.

This motivates a general review of approaches to measuring performance.

We distinguish between two broad approaches: the first involves assessing

whether the classifier is "good enough" by some objective standard (absolute

performance) and the second involves assessing whether the classifier is "better

than" an alternative classifier (relative performance). Assessment of relative

performance often involves using significance tests to compare absolute

performance measures (see Section 5.3). In this way the two approaches can be

complementary.

Measures of absolute performance can be further subdivided into measures of

discriminabilily and reliability (Habbema et al. (1978), Hilden et al. (1978a)

and Hand (1994)). Discriminabiity is concerned with measuring how

successful a classifier is in assigning an applicant to the true class. A good

classifier, in terms of discriminability, is one which provides high estimates of

P(cI x), where c is the true class, for applicants x. Reliability, on the other

hand, is concerned with measuring how accurately the classifier is estimating

the true class membership probabilities P(g(x).
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The most widely used measure of discriminability (and performance in general)

is probably the error rate. For this reason we make it the starting point for our

discussion of performance measures (see Section 5.2.1). A simple estimate of

the error rate is obtained by counting the proportion of misclassified applicants

in the design set. However, this can lead to underestimates of the error rate for

future cases sampled from the same distribution. We discuss various other

approaches to error rate estimation including the hold-out method,

crossvalidation, bootstrap methods and the average conditional error rate

approach. In Section 5.3.2 we present a likelihood ratio test to compare the

error rates from two classifiers.

The criterion for performance used in most of this thesis is the bad rate amongst

the accepts, given a fixed acceptance rate (see Section 5.2.2). The bad rate is a

discriminability measure which is often used in credit scoring problems and can

be considered as a component of the error rate. The assumption of a fixed

acceptance rate is unusual tor a classitication problem and has some

implications for the assessment of performance. In particular, by fixing the

acceptance rate we impose bounds on the best and worst performance that can

be achieved. This issue is also discussed with relation to the error rate and the

good rate amongst the rejects.

In Section 5.2.3 we present an overview of more sophisticated measures of

discriminabiity (continuous performance measures) which assess the agreement

between the estimated P(,g I x) and the actual outcomes. This is in contrast to

the error rate and bad rate which use categorizations of the estimated P(g Ix).

The advantages of using a continuous measure are assessed.

In some cases the accuracy of the estimated P(,g I x) may be more important than

discrimination between classes. One example is the when the objective is to

obtain accurate estimates of the true status of the rejects. In these situations

reliability measures are appropriate. We describe several such measures in

Section 5.2.4 and derive general statistics based upon these measures, which

can be used to test the hypothesis that a classification rule is reliable. Some

important weaknesses of the method are highlighted (see also Hand (1994)).

In Section 5.3 we turn our attention to assessing relative performance of

classifiers. We have developed two tests for comparing the bad rates of
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different classifiers. First, we present a significance test based upon Fisher's

exact test. This involves removing applicants classified as accepts under two

classifiers and comparing the remaining proportion of bads under each

classifier. Secondly, we derive a likelihood ratio test which can be used to

compare the bad rate. Both tests can be adapted to compare the error rate

under two classifiers (as well as more general performance criteria). These two

tests represent the major original contribution of this chapter.

5.2 Absolute performance

5.2.1 Error rate

The most common measure of classification performance is the error rate.

Hand (1986) distinguishes between three types of error rate:

(1) The Bayes error rate, e = J{1—maxF(ilx)V(x)dx, where P(iIx) is the

probability that an applicant with characteristic vector x belongs to class i (=
gib) and f(x) is the overall mixture distribution. This is the minimum possible

error rate given a set of characteristics.

(2) The true error rate: er = JP(b)P(xlb)dx + 
f 

P(g)P(xg)dx, where a and

are the accept and reject regions respectively. This is the expected

probability of misclassifying a new applicant.

(3) The expected error rate: this is the expected value of eT over design sets of

a particular size.

5.2.1.1 Traditional methods of error rate estimation

In the credit scoring context we are most interested in performance on future

applicants and so the true error rate is most appropriate. If a test sample is

available which is independent of the design sample used to construct the

classifier then estimation of the error rate is simple. An unbiased estimate is
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obtained by counting the proportion of incorrectly classified applicants in the

accept and reject regions.

However, if the test data is available before the construction of the classifier,

one might wish to add this to the design set (in order to use all the data to

produce the best possible classifier). There has been much recent research into

the identification of suitable methods of estimating the error rate in this

situation (Toussaint (1974), Hand (1986)). (The approaches described below

apply equally to estimation of the bad rate and other performance measures.)

One obvious approach when no test set is available is to build a classifier using

the full sample and then reapply it to the full sample to obtain the proportion

misclassified. This produces the resubstitution (or apparent) estimator which is

likely to yield optimistically biased results (it underestimates the proportion of

future cases that will be misclassified). As the design set size, N, increases this

optimistic bias will decline.

A standard approach to error rate estimation, which is popular in the credit

industry, is the hold-out method. This involves splitting the full data into two

sub-samples, designing a classifier using one (the design set) and testing using

the other (the test set). It has the advantage of computational simplicity.

However, for small samples, it suffers from the disadvantage of not using all of

the available data to design the classifier. The hold-out method was discussed

in Section 3.1.1. It was found to provide reliable model coefficients and robust

error estimates for different hold-out percentages. We concluded that when the

sample size is large enough, it can be a suitable testing procedure. This is the

standard approach we use in this thesis.

The hold-out method is a special case of a general approach to error rate

estimation involving splitting the data into two sets, designing a classifier using

one and testing using the other, then repeating the process with different splits

and finally averaging the error rate results over the test sets. In Chapter 8 we

adopt an extension of the hold-out method descibed by Leonard (1993). Other

methods using this principle are the rotation method and the leave-one-out

method (alsor called the Lachenbruch method or cross-validation).
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The leave-one-out method involves taking a test set of a single point at each

stage and using the rest of the sample (N-i points) to build the classifier, with N

splits being conducted. It was perhaps the most popular of the early methods

because the bias due to using a reduced design set is small. However, later

work has criticised it for having a relatively large variance and requiring

extensive computing time.

Over recent years whole new classes of error rate estimators have emerged

including the bootstrap estimator and the average conditional error rate. We

describe these two classes in more detail.

5.2.1.2 Bootstrap methods

The bootstrap approach, proposed by Efron (1982, 1983), represents a major

advance in the field of error rate estimation. It corrects the bias of the apparent

error rate by estimating this bias from subsamples drawn from the original data.

Let the original sample consist of N applicants for credit denoted by X and let F

be the overall mixture distribution. If b is the expected optimism of the

apparent error rate and e is the apparent error rate then the true error rate is

estimated by:

er = b + eA.

The bootstrap method estimates the nonparametric ML estimate of the bias term

b from the observed empirical distribution, F. In practice this estimate is

generated by Monte Carlo methods. That is one draws random design samples
from the empirical distribution and estimates the value of (e - a ) for each

sample, where e, is the true error rate for the classifier designed using X and

using X as the true population and a is the apparent error rate of the same

classifier. The bias b is then estimated by taking the average (expectation) over

the bootstrap samples to give:
b =Ej(ca).

Efron (1982) shows the similarity between the bootstrap method and the

jackknfe, a general statistical technique for removing bias. Efron (1983)

introduces several variants on the standard bootstrap procedure: (a) the

randomised bootstrap which is designed to compensate for the discontinuities in
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the empirical distribution F when the true distribution F is smooth; (b) the

double bootstrap which uses two applications of the procedure outlined above

to help reduce the negative bias of the ordinary bootstrap; (c) a novel approach,

referred to as the 632 estimator, which uses a linear combination of estimators.

A simulation experiment to describe the different estimators is described.

Despite having the weakest theoretical foundations, the 632 estimator

performed best.

The bootstrap method has received widespread attention in the statistical

literature and several futher extensions of the ordinary bootstrap have been

proposed (see for example Hand (1986)). Some authors, such as Srinivasan

and Kim (1987) and Leonard (1988), have used the bootstrap method to reduce

the resubstitution bias when constructing credit scoring models. However, we

suggest two reasons why the bootstrap approach may be less suitable than the

hold-out method in the problem considered in this thesis:

(1) The bootstrap method is most useful in problems where the sample sizes

are small. (This is rare in the credit scoring context.)

(2) The results of simulations by Chernick et al. (1985) showed that the hold-

out method (and their MC estimator) gave lower mean squared error rates than

a range of bootstrap estimators when the true error rate was in the range 25-

50%. This is the case for the classifiers we consider in Chapters 7 and 8.

5.2.1.3 Average conditional error rate methods

This approach, described by Hand (1986), involves splitting the true error rate

er into two components using:

e = $ e(x)f(x)dx,

where e(x) is the conditional probability of error given x and f(x) is the

corresponding overall mixture distribution. The probability functions e(x) and

f(x) can then be estimated separately to give:

eT = J(x)f(x)dx.

The advantage of this approach is that the mixture distribution f(x) can be

estimated entirely from unclassified data. Thus, in the credit context, rejected
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applicants for credit with unknown true status can be used to improve the

estimate of the true error rate.

To illustrate how the general approach works we describe an example presented

by Hand (1986). Given an independent test sample of size N, let the

conditional probability of error be given by the indicator function:
= I(c,,4),

where x is the characteristic vector for the ith point in the test set and c. and ê

are the true and estimated classes for the ith point respectively. The overall

mixture function for the test set is given by:
Il/N	 x=x.

0 elsewhere

Then the average conditional estimate of the error rate is given by:

e

Hand (1986) gives a general review of different approaches to average

conditional error rate estimation taken over the last twenty years. Two sources

of bias that can result from these methods are described: first, estimating the

error rate at a point from a fmite sample and secondly, resubstitution bias if the

same data is used to design the classifier and estimate the conditional error rate.

5.2.2 Bad rate and our criterion for performance

The criterion for performance used in this thesis is rather unusual and deserves

some discussion. Whereas most applications of classification procedures work

with the error rate, for commercial reasons in this application the proportion to be

accepted is pre-specified and the aim is to minimise the number of bad applicants

accepted. This criterion is thus involved with only part of the misclassification

space. This has some interesting consequences for the classification rule.

One immediate consequence is that it imposes bounds on the best and worst

performance that can be achieved. Suppose that a proportion a of applicants must

be accepted, and that the population contains a proportion p of good risk

applicants. The best bound for the bad rate amongst the accepts is given by:
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I1—(p/a) a>p
Bbr(a,p)=1 

0	 a^p

It is obtained by accepting all good applicants and making up the rest of the

lOOp% accepts from bads (note that it does not depend upon the number of

applicants in the sample). The worst bound for the bad rate amongst the accepts is

given by:

1r(C7,p)={(1_C1 ::;

It comes from accepting all the bad applicants and making up the rest of the

accepts from goods.

Corresponding bounds on the best and worst good rates for the rejects and error

rates can also be found.

B(a,p) {
	 0	 a>p

- (p—a)/(1—a) a^p

1	 1	 a>1—p
W(aP)=) 

a^1—p

I(a—p) a>p
Ber(a,P)=1	 a^p

12—(a+p) a>1—p

(a+p) a^1—p

As an example, we consider the test sample used to assess the k-Nearest

Neighbour method described in Table 8.5.1, which has p = 45.3%. Using the

above expressions yields Figures 5.1, 5.2 and 5.3, showing, respectively, the best

and worst bounds on the bad rate amongst accepts, the good rate amongst rejects,

and the error rate. When a = 0.70, as was trpically the case in the problems we

considered, this leads to the results in Table 5.1.

Best	 35.3%

Random	 54.7%

Worst	 78.1%

Table 5.1: Bounds on the bad rate for a 70% acceptance rate.
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These results allow us to put the performance of the classification methods we

consider into perspective. For example, while in general a bad rate of 36% might

represent disappointingly poor performance, in this context it is only just above

the theoretical best.

Note that it is the specification of a fixed acceptance rate which imposes these

bounds. In other applications a common classification rule is to assign a case to
the class i for which the estimated P(ilx) is highest (or nP(i Ix) where	 is the

population prior for class 1). This allows the acceptance rate to vary with the

sample. In this situation, if the classes are perfectly separable, it is theoretically

possible for a classifier to achieve zero error rate, whereas in our problem, even

with perfect separability, this may not be the case.

5.2.3 Measures of Discriminability

In the introduction to this chapter we defined a discriminabiity measure to be

one which measures how successful a classifier is in assigning an applicant to

the true class. A good classifier, in terms of discriminabiity, is one which

provides high estimates of P(c x), where c is the true class, for applicants x.

The bad rate and the error rate are specific examples of this general class of

performance measures. In this section we give a review of other

discriminability measures and evaluate their potential for assessing credit

scoring models. We distinguish between measures based on counts of

misciassifications, such as the error rate and bad rate, and measures which

assess the agreement between the estimated P(glx) and the actual outcomes

(continuous performance measures). We finish by considering the idea of a

strictly proper scoring rule which can be used to select between alternative

discriminatory measures.

5.2.3.1 Measures based on counts of misciassifications

One of the weaknesses of the error rate is that it gives no indication of which

type of misclassification accounted for an error (classifying a good as a reject or

a bad as an accept). In order to defme other measures based upon the

misclassification counts we consider the general 2 by 2 classification table

shown in Table 5.2.
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Good	 Bad

Accept	 a	 b

Reject	 c	 d

Table 5.2: Classification table resulting from a credit scoring

model.

The range of common performance measures are described below:

(1) The error rate is given by (b + c)I(a + b + c + d) and the non-error rate

is given by (a + d)I(a + b + c + d)

(2) The bad rate can be expressed as b/(a + b). In other contexts it is more

common to consider the positive predicted value a/(a + b) and the negative

predicted value dI(c + d).

(3) In epidemiology the terms false positive and false negative are used to refer

to the rates b/(b + d) and c/(a + c) respectively.

(4) The complements of the false positive and the false negative are the

sensitivity and the specificity given by a/(a + c) and dI(b + a) respectively.

(5) The prevalence (the prior probability of being a good risk) is given by (a +

c)I(a + b + c +d).

Although these measures are all interrelated the choice of which measure to use

in a particular problem can be important. Hand (1994) gives a medical

example to demonstrate how the sensitivity and specificity measures can

contradict the positive predictive value.

The class of measures considered above provide a simple but useful description

of the performance of a classifier. However, they suffer from the limitation of

using categorizations of the estimated P(g I x) rather than the actual values

themselves. This may not be important in the credit scoring context where the

objective is to divide the applicant population into two categories (accept/reject)
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in order to optimise a criterion such as the proportion of potential bad debt

accepted.

5.2.3.2 Continuous measures of performance

In this section we consider the class of continuous performance measures which

assess the agreement between the estimated P(gjx) and the actual outcomes

(Hilden et al. (1978b)). The measures that we consider are based on an average
over applicants of a function of the estimated P(c7 I x1 ), where c1 is the true class

of the ith applicant and x 1 is the corresponding characteristic vector. The most

important measures are considered in turn:

(1) The average probability assigned to the good/bad classes actually present:

c1 =4F(c1Ix1), [0, 1, high].

The minimum, maximum and desirable values are shown in sharp brackets after

the formula. This measure has an intuitive appeal because the higher the

probability assigned to an applicant's true class the higher the score. This measure

is used in the evaluation of our reject inference method 6 in Section 6.6.2.2.

(2) The quadratic score or Brier score:

C2 =	 - P(c l x ))2 +P(iIx)2} [0,2,10w].
i=1	 j^ci

This measure has the particular advantage that not only does it take into account

the predicted probability of an applicant's true class but also the size of the

predicted probabilities of an applicant belonging to the other class(es). This only

becomes valuable when the problem involves more than two classes.

The Brier score is intuitively reasonable because it takes low values (near to 0)

when the predicted probabilities for all the applicants' true classes are high, and

high values (near to 2) when these predicted probabilities are low.

(3) The logarithmic score:

C3 =-in(P(ci Ixi ))	 j-oq o, high].
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This measure has the undesirable property that if just one applicant has P(c, I;) =
0 then C3 becomes minus infinity. Therefore, it is usual to consider a modified

statistic which penalises very small and zero values of P(c1 I;) about equally.

One such modified logarithmic score is given by:

c4 =--in(P(c1 jx1 )+4 	[In(s), ln(l+s), high],

where e is an arbitrary constant (0.001 is sometimes used). In practice the Brier

score C2 may be preferable to C because it does not require inclusion of the

constant e.

We identiIj three potential advantages of this class of measures over the measures

described in Section 5.2.3.1 (see Shapiro (1977) for further details):

(1) The principle disadvantage of the error rate and bad rate is that they are

insensitive. In other words no account is taken of the magnitude of an error. For

example, a bad applicant scoring just above the acceptance threshold counts the

same as a bad applicant scoring the maximum possible number of points. In the

credit scoring problem it is sometimes desirable to assess the accuracy of

predictions near to the threshold. In this situation it is necessary for the

performance measure to take account of the difference between an applicant's

score and the threshold. Continuous measures such as the Brier score are able to

do this.

(2) Continuous measures allow one to distinguish a decision from the evidence

on which it is based. When the error rate is used the only information available

for evaluation of the classifier is whether the prediction was true or false. This

factor seems to be more applicable to the medical domain than the credit

domain.

(3) In some cases continuous performance measures can reduce the variance of

an estimator. To see this we make a comparison of the non-error rate (NER)

described in Section 5.2.3.1 with the continuous measure q.

We begin by expressing the NER in a different form:

NE!?

96



where c and ê, are the true and estimated classes of the ith applicant and

I(c1 , ) is the appropriate indicator function. It is immediately clear that NER

and C1 are measuring the same thing and that E(NER) = E(C). However,

NER is the sum of a random sample of zeros and ones whereas C1 is the sum of

a random sample of values in [0,1] which are unlikely to be exactly zero or
one. Hence the variance of C will be less than the variance of IVER.

This argument cannot be generalised to include all continuous performance

measures because they each take a different form.

5.2.3.3 Proper and strictly proper measures of performance

A property that helps one to choose between performance measures is

properness (Hilden et al. (1978b)). The measures that we have considered can

all be expressed in the form

=

Such a measure is said to be strictly proper (SP) if it satisfies

± P(jl x)f[P(jl x)] > ± P(jIx)f[P(Jx)1,

where the summation is over classes, j, and P(j x) is the true (unknown)

probability that an applicant with characteristic vector x belongs to class j . A

proper measure satisfies the above relation with ^ instead of>.

If the above relation holds it means that the performance measure gives the

highest expected score to a classifier which estimates the true PU I x) perfectly.
SP measures also give higher scores the nearer the predicted P(j!x) are to the

true values. These are clearly desirable properties of a performance measure.

In fact, the SP criterion is similar to the reliability criterion discussed in Section

5.2.4.

The SP criterion can be used to decide between alternative measures of
performance. Of the measures we have considered, C2 and C3 are strictly

proper, C4 is approximately proper, the NER is non-strictly proper and G is

non-proper.
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5.2.4 Reliability

Reliability measures (Hilden et a!., 1978a) assess the accuracy of the predicted

class membership probabilities P(glx). We give two simple examples to

illustrate how reliability differs from discriminability:

(1) Let P(glx) = P(gx) = k, where k is a constant, for all characteristic

vectors x. Although the estimated class membership probabilities are equal to

the corresponding true probabilities, the classifier is not able to distinguish

between the good and bad classes. Therefore, the classifier is reliable but non-

discriminating.

(2) Let P(glx)> t < P(gjx) > I (for a threshold t) and P(gx)	 for almost

all characteristic vectors x . This implies that the classifier achieves good

discriminabiity. Now if we add the condition that P(gjx) is far from

P(gjx) Vx and subject still to the above, then the classifier is unreliable.

Unfortunately, as noted above, the true P(g Ix) are unknown and so we cannot

make a direct comparison of P(glx) and P(g Ix). Hilden et a!. propose a

general procedure for deriving reliability measures based upon discriminabiity

measures.

Let the general discriminabiity measure be given by

D = - f(P(c1I x1)) 	(5.2.1),

where f(s) is a function which specifies the particular measure. To simplify

the notation we write p1 = P(cjx1 ) in what follows. The general approach is to

defme a reliability measure as the deviation of a discriminabiity measure from

its expectation, assuming it to be perfectly accurate. This last assumption is

somewhat analogous to the null hypothesis assumption used in hypothesis

testing. (We return to this analogy below.)

A general reliability measure can be written as:

R =
	 f(pj)_E*-jf(pj))
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= -	 [f(p1) - Es (f(p ))], where Es denotes expectation

with respect to the hypothesis of perfect reliability. The expectation can be

expressed as
E(f(p1 ))	 f() —(1 - )f(1 - )

Thus,

R =	 —pf(p) —(1— p )f(l — ps)]

(1— p ) [f(p1) - f(1 - p )1	 (5.2.2).

We use the general form (5.2.2) to derive reliability measures for two specific

discriminability measures:

(1) The average probability assigned to the true class, C1.

In this case the function f(p) = p. Equation (5.2.2) reduces to

R =(1—p)(2p1-1).

Figure 5.4 shows a plot of the contribution to R from one applicant against p.

(2) The non-error rate, NER =
N

Here f(p ) = I(c1 ,) and equation (5.2.2) becomes

R2

where ë, is the complement of the true class for the ith applicant.

Hilden et al. derive reliability measures for the other performance measures

considered in this chapter. The general procedure adopted for assessing the

value of a reliability measure is to perform a significance test using the

assumption of perfect reliability as the null hypothesis. Under the null

hypothesis the expectation of R is zero. Thus, the appropriate test statistic is

given by T = where S is the standard deviation of R. To calculate S we note

that for a reliability measure R based on a discriminabiity measure D (in the

general form 5.2.2):
Var*(R)= E*(R2)_E*(R)2 = E 5 (R2 ) = Var5(D).
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Fig 5.4: The contribution to R from one applicant for different p
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By independence of the observations we can write,
Var*(D) =	 Var(f(p1))

	

- 1	 [E*(f(p)2)E(f)2]
-

	1 	
[pf(p)2+(1—p)f(lp)2—(pf(p)+(1—p.)f(lp.))2I

=

	

- 1	
p1 (1—p1 )[f(p )2 +f(1—p) 2 —2f(p1)f(1—p)]

-
__1

p1 (l—p1 )[f(p1 ) — f(1—p1 )]2 	(5.2.3).

Combining (5.2.2) and (5.2.3) gives

R	 -(1—p1)[f(p3—f(1—p1)]
(5.2.4).

..JVar(D) - .Jp1(1_p1)[f(pa)_f(1_pa)]2

Assuming normality of the test statistic, we can compare T with the appropriate

normal critical values. Using a 5 % significance value the null hypothesis of
reliability is rejected if I ll > 1.96. Equation (5.2.4) can be used to derive test

statistics for reliability measures based upon any of the discriminability

measures considered in this chapter.

We discuss two limitations of the above approach to reliability:

(1) The general reliability measure R, given by (5.2.2), is equal to zero when
11/2 Vi

= 1 Vi or 
f(p) is a symmetric function, regardless of the true class

membership probabilities. For example, this means that a classifier which

assigns P(glx) = 1 / 2 for all applicants will be considered perfectly reliable

using any measure R.

The result of this property is that the reliability measure can take values

indicative of a reliable classifier when, in fact, it is highly unreliable. To some

extent this will be mitigated by the effect of the standard deviation on the test
statistic T. However, in the extreme example where P(gjx) =1/2 for all

applicants, the standard deviation is zero resulting in an undefined value of T.

We note that in most practical situations the true P(g I x) will range from 0 to 1.

When this is the case the above approach can provide a useful measure of the

reliability of a classifier.
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(2) The significance test for reliability presented above asssumes that, under

the hypothesis of perfect reliability, the reliability measure R is normally

distributed. Given the shape of the curve in Figure 5.4 it might be more

reasonable to expect the distribution to be skewed to the left.

In conclusion, despite limitations of the measures discussed above, reliability

can be a useful guide to classifier performance. Hilden et al. (1978a) assert the

importance of reliability in the medical context. As an example, it is important

to be able to place trust in the estimated probability of a patient having a fatal

disease. Reliability of a classifier is generally less important in the credit

scoring problem where the objective is to discriminate between good and bad

risks. However, it can play a useful secondary role by indicating whether a

classifier's predictions are too optimistic/pessimistic and whether it favours

either class. Furthermore, improving the reliability of a classifier often results

in an involuntary improvement in discriminability. In Section 6.6.2.2 the

reliability measure R1 is used to assess the accuracy of reject inference method

6 in predicting the proportion of goods in the reject region.

5.3 Relative performance

In Section 5.2 we discussed measures of absolute performance. For

commercial reasons, in this thesis, we choose to adopt the bad rate amongst the

accepts, given a fixed acceptance percentage. Having constructed classifiers

and calculated performance statistics, such as the bad rate, it is important to be

able to assess whether any differences are due to chance or can be attributed to

any real difference in performance. We have developed two tests for assessing

these differences.
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5.3.1 Significance test based on Fisher's exact test

5.3.1.1 Theory of the test

The general framework of this test can be adapted to compare a range of

different performance measures. We begin by comparing the bad rates under

two classifiers, S and 2• Both classifiers are applied to an independent test set

to give a score for each applicant in the sample, which is then compared with a

threshold leading to an accept/reject decision on that applicant.

Let n be the number of applicants from the test sample with the following

properties:
•_ Jl good

12 bad

._Ji Saccept

l2 S reject

k_fl S2accept

12 S2 reject•

The above information can be expressed in tabular form as shown in Table 5.3.

___________________________ S accept	 S reject

S2 accept	 Good	 fl111

Bad	 fl1	 fl221

S2 reject	 Good	 ,Zu2	 "fl

Bad	 n212	 '222

Table 5.3: A general 2 x 2 x 2 classification table for comparing

classifiers S and S2.

The overall bad rates for S and 2 are	
+	

and
fl1 + fl2fl + +

nil! +	 respectively.	 However, we cannot conduct
+ nifl + ni2l + 22l

straightforward tests on these two proportions because the observations are not

independent. To conduct a test we need to eliminate the common elements
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(since they are common this will not influence the conclusion about the relative

performance of S1 and S2). This yields the 2 x 2 table shown in Table 5.4.

Bads	 Goods

S1	 n212	 nil2

Si	 n221

Table 5.4: 2 x 2 classification matrix of applicants accepted

using either S or S2 but not both.

The two reduced accept samples S and 2 are now independent. The rates we

compare for S and S2 are	 and	 21 . In other words we
nii2 + fl212	 +

compare the bad rate amongst applicants accepted by S but rejected by S with

the bad rate amongst those accepted by S2 but rejected by S1.

A comparison of the bad rates for the two classifiers S and S is equivalent to

testing the null hypothesis of independence between rows in the 2 x 2

contingency table shown in Table 5.4. This is an example of a standard

problem that has received considerable attention in the statistical literature over

recent years (see, for example, Upton, 1982, Yates, 1984). The appropriate

test is Fisher's exact test.

When the two margins of the 2 x 2 table are fixed the distribution of the cell

counts is hypergeometric. The exact test generates the probability of obtaining

the observed cell counts under the null hypothesis of row independence, given

this distribution. The resulting probability estimate can be compared with a

significance level leading to either rejection or no rejection of the null

hypothesis. For more details of the exact test see Yates (1984) or Kendall and

Stuart (1977). If the null hypothesis is rejected then we conclude that there is a

statistically significant difference between the proportion bad amongst

applicants accepted under one but not both of S and	 We note that the

proposed test is two-tailed.

There may be other quantities, apart from the bad rates, that one is interested in

comparing, and this can be achieved using the general framework outlined

above. As an example, we consider the overall proportions misclassified by S

and S (the error rate). Using the above notation these proportions are
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n211 + n212 + 21 + ni22	 a211 + a221 + 12 + ni22	 respectively, whereand
N	 N

N = n. As before, to test the hypothesis that the two proportions are equal
ijJc

we must eliminate the common elements. Thus, the two proportions that we
fl2 +fl.	 fl2+fl1

need to compare are 	 12	 i21	 and	 21	 12	
. Since

nil2 +	 + ni2l + a221	 nii2 + fl212 +	 + fl1

these both have the same denominator, this is equivalent to testing the

hypothesis that	 a212 + niZl	 =!. Fisher's exact test can be applied
nil2 +	 + n121 + 221 2

to the reduced samples as before.

5.3.1.2 A numerical example

To illustrate how the proposed significance test works in practice, we describe

the results of comparing two reject inference methods (extrapolation and

Method 5 from Section 6.6.1). In both cases a classifier was constructed using

linear regression with eleven characteristics. An independent validation sample

consisting of 2020 goods and 2285 bads was split into accepts and rejects using

a 70% acceptance rate. The common elements in the two accept samples were

eliminated to give the reduced samples shown in Table 5.5.

bads	 goods

	

Extrapolation	 129	 61

	

Method 6	 122	 85

Table 5.5: 2 x 2 classification table for independent accept

samples.

Fisher's exact test was applied to the table giving a p-value for the one-sided

critical region of 0.0404. Therefore, adopting a significance level of 5 %, we

reject the independence hypothesis, and conclude that the classifier from

Method 5 gives improved discrimination amongst the reduced accept samples.

5.3.2 Likelihood ratio test

In this section we present an alternative test for comparing two classifiers, using

a likelihood approach, which addresses a subtly different question from the test
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considered above. Instead of comparing the values of performance measures

for applicants accepted under one but not both of two classifiers, it compares

the values of performance measures obtained from all applicants in the sample.

In this sense it can be considered as a more powerful test of performance. As

with the first test it can be adapted to consider the whole range of performance

measures based on counts (described in Section 5.2.3.1). In particular, we

focus on comparing the error rate and bad rate.

5.3.2.1 Comparison of error rates

We derive the likelihood ratio test for comparing the error rates when two

classifiers S and 2 are applied to a test set which is independent of the original

design set. Let n and p be the respective cell count and cell probability for

the cell (ij,k), where as before:

• 10 bad

'=11 
good

• - Jo S1 reject

li S1accept

k -
	 S2 reject

ii S2accepi

The log-likelihood for the full data is given by:
L =	 1og(p)	 (5.3.1)

ij•.t

where	 = 1 and	 = N.
ij,k	 ij,k

The likelihood ratio test involves comparison of the log-likelihood under two

conditions:

(1) Assuming no relationship between the parameters.

(2) Assuming that the expected probability of an error is the same under both

classifiers. This condition can be expressed as
P(g,7j)-FP(b,a1 )= P(g,,)+P(b,a2),

where a1 and r are acceptance or rejection under classifier i. In terms of the

p this condition can be re-expressed as:

+	 + Poio + Poii Piio + p100 + p011 +
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which reduces to
p101 + p010 = p110 + p001	 (5.3.2).

The condition (5.3.2) is the null hypothesis assumption of no difference in error

rate.

We derive the ML parameter estimates separately for the two conditions:

Case (1): No constraints

Using the Lagrange multiplier, ), define:

F = L +	 -
i,j,k

Then the likelihood equations are given by:

nijic
p01c=------,

Applying the condition p	 1,
ij/c

ik =
ij,k

.pik	 fori,j,k€0,l}.

Case (2: Constrained

In this case we have to maximise the log-likelihood function subject to the

conditions
(a) p=1

ij,k

(b) p101 + p010 = p110 + p001.

Again we use Lagrange multipliers:
G = L +	 —1) + -2(J1o1 + p010 - p110 - p001)

i.j,k

The likelihood equations take three distinct forms according to the p:
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(i) P={p11,p100,p011,p0}:

Let p represent a general element from the set P of p. Then the likelihood

equation for p is given by:
cSG fly,
- - + 2 =0,
Dpp

where n, is the cell count n corresponding to element p.

= -?	
(5.3.3).

(ii) Q= 1j101,p010}:

Let q be a general element of the set. Then the likelihood equation is given by

^2 =0.
q	

12

nq	
(5.3.4).

1+ 2

(iii) R={p110,p()1}:

Similarly, let r be a general element of the set. The likelihood equation is

given by

= - + 2 -22 = 0a-
.. r=-22 	(5.3.5).

The conditions (a) and (b) from above are now applied to the estimates of p

for each i, j and k.

Condition (a) gives:
(n	 fl'0' 

+	 +-_	 +_p010

2	 21 21 (2 + 22) (21 + 22 ) (2 -22) (2 -22))

Put ìç = m	 + p011 +fl000,

k2 =	 +

= n1, +

Then condition (a) reduces to:
_222_ k21 (21 - 22)- k321 (21 + 22 ) = 2(22 22)

(5.3.6)
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Condition (b) gives:
- fbi + polo = nib	

+ 
nOOl

+22 2 + 2	 a1 —22 a1

- 2) + n010 (21 - 22 ) = n110 (21 + 22) + n001 (21 + 22)

.22 =k4 .Z1 	(5.3.7),
(n + n010 -	 - n003)

where k4
+ n010 + n1 + n001)

Combining (5.3.6) and (5.3.7) gives:
- k42 ) + 2 12 [lç(1 - k42 ) + k2 (1 - k4 )+ k3 (1 + k4 )} = 0

[k1(1—k42)+k2(1—k4)+k3(1+k4)]
••.=-

(1—k42)

=_k1+ 

___k2 +k3

(1+k4 ) (1_k4))	
(5.3.8).

But we can express:
(n101 + n010 - n - n) = k2 - k3

K4
(n101 +n010 +; 10 +n001) k2+k3

giving,
2k2

(1+k4)— (k2+k3)'

(1—k4)— 2k3

Thus (5.3.8) reduces to:
=—(k1+k2+k3)=—N.

and hence	 = —k4N.

Substituting for 2 and 22 into equations (5.3.3) to (5.3.5) gives the ML

estimates for the parameters p from the three sets F, Q and R:

	

-	 flq	 flq(k2+k3)

2k2N

	

r=	
n(k2+k3)

(l—k4 )N	 2k3N

where k2 ,k3 and k4 are constants as defmed above.

To test the null hypothesis that the two classifiers S and S2 have equal error

rates, we use the deviance given by:
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D = _2(L(2) - L°),

where L 1 and L 2 are the log-likelihoods under conditions (1) and (2) from

above. Using the approximation to the deviance for the multinomial

distribution,

D-

where n is the number of cells and p is the number of independent unknown

parameters. In this problem n 8 and p = 5. Therefore, we reject the null

hypothesis that the two classifiers give equal error rates if the observed value of
D is greater than the upper lOOa% point of the z32 distribution, where a is the

significance level.

5.3.2.2 Comparison of bad rates

Similar likelihood statistics can be derived to compare the bad rates under two

classifiers S and S2 . In this case we ignore the cells (0,0,0) and (1,0,0)

because we are only concerned with applicants who are accepted using at least

one classifier. The two conditions under which we compare the log-likelihood

are:

(1) Assuming no relationship between parameters.

(2) Assuming that the expected probability of classifying a bad as an accept is

the same under both classifiers. Using the above notation this can be expressed

as

p010 +p011 = p011 +

which reduces to

polo = pool	 (5.3.9).

As before this condition represents the null hypothesis of no difference between

classifiers.

Because of the reduced number of parameters, the ML estimation of the log-

likelihood is easier in this case. In the unconstrained case, condition (1), the

parameter estimates are
-.	 _,jk
P0k N'

where ij and k range over the reduced set of possible values and N is redefined

accordingly.
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The ML estimates corresponding to the constrained model, condition (2), are

easily estimated by substituting condition (5.3.9) into the log-likelihood and

maximising subject to the usual condition that the cell probabilities sum to 1.

The resulting log-likelihood is given by:
L = n1 log(p111 ) + n1 log(p110 ) + n101 1og(p 0 ) + n011 log(p011 ) + (n010 + n001)log(p001)

and the constraint is p111 + p110 +p101 + p011 +2p00	 1	 (5.3.10).

The Lagrange multiplier is give by:
F=L+2(p111+p110+p101+p011+2p001—l).

The corresponding likelihood equations are given by:

= .-+ 2 = 0 for (i,j,k) ^ {(0,1,0),(1,0,0),(0,0,0)}

______ - (n001 + n010)
and	 -	 +22=0.

pool

Rearranging these equations gives:
nylc

Pyk
1%

and	
- (n001 + n010)

22

Applying (5.3.10):
2 = —(n111 +	 + n + n011 +	 + n001 ) = —N.

The resulting parameter estimates are given by:

P0k{ 

2N

(n001 + n010) (1 
j, k) = ((0,0,1), (0,1,0))

jk	 otherwise
N

As before the test statistic is the deviance between the log-likelihoods with

parameters estimated under the conditions (1) and (2) considered above. The

null hypothesis of equal bad rates is tested by comparing the observed value of
D with the appropriate point of the %32 distribution. This likelihood ratio test is

used to compare the relative performance of two classifiers in later chapters of

the thesis (see for example Section 7.2.3).
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5.4 Conclusions

For commercial reasons the criterion adopted in this thesis is the minimisation

of the bad rate amongst the accepts, given a fixed acceptance rate. This

criterion is unusual outside the credit scoring field and has implications for the

levels of performance that can be achieved. In Section 5.2.2 we discussed the

bounds on performance that result from fixing the acceptance rate.

In this chapter we presented a general review of other approaches to measuring

the performance of a classifier. In particular, we distinguished between

absolute and relative performance. Absolute performance was further sub-

divided into measures of discriminability and reliability. Discriminabiity

measures assess how successful a classifier is in allocating applicants to their

true class, whereas reliability measures assess the accuracy of the estimates of

P(gx).

The bad rate is a particular type of discriminability measure closely allied to the

error rate. It is less sensitive than continuous measures of performance,

described in Section 5.2.3.2, but may be more appropriate when the objective

of the system is to minimise bad debt. In Section 5.2.3.3, we discussed

another criterion for choosing between different discriminability measures, the

idea of properness. Using this criterion the bad rate would be rejected in
favour of continuous measures such as the Brier score, C2.

In Section 5.2.4 we discussed an approach to constructing reliability measures

from individual discriminabiity measures described by Hilden et al. (1978).

Although the approach taken is appealing, we identified several weaknesses.

Moreover, reliability is generally of less interest to a credit grantor than

discriminabiity.

In Section 5.3 we proposed two tests for assessing the relative performance of

two classifiers. Both tests can be used to compare bad rates or other measures

based upon the counts of misclassification (see Section 5.2.3.1). The two tests

are complementary and can be used together to decide whether one classifier is

better than other. In particular the two tests address slightly different questions.
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• The first test compares the bad rate amongst applicants exclusively accepted

under one of the two classifiers. By excluding applicants accepted under both

classifiers, any small but real difference in the overall bad rates is more likely

to be identified as significant.

• The second test uses a likelihood based approach to compare the overall bad

rate from two classifiers. Because all accepted applicants are included in the

test, it is more appealing from a conceptual point of view. This also makes it

more conservative in judging a difference in bad rate to be significant. As a

result there is less danger of mistakenly identifying a difference as significant

when it can be attributed to random fluctuation.
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Chapter 6

Reject Inference

6.1 Introduction

In Chapter 2 we described how applicants for credit are assessed using a credit

scoring model leading to a decision to accept or reject them. Because the

rejected applicants are not granted credit, their true creditworthiness cannot be

determined. Reject inference is the process of trying to infer the true credit

status of the rejects, using their characteristic vectors.

Two important reasons for needing reject inference are described below:

(1) Having developed a scorecard at some previous time, a credit grantor may

be interested in whether a better scorecard can be constructed using the current

information available on the accepts and rejects. One reason for wanting to do

this is degradation of scorecard performance due to population drift: the

tendency for populations to evolve over time. This problem is mentioned in a

medical context in Hand and Henley (1994) and ways of detecting population

drift are suggested. In the credit environment the state of the economy is

probably the most important factor, but undoubtedly changes in demographic

characteristics, fashions, and attitudes will play a part.

One problem that arises when building new scorecards is that, as mentioned

above, the true good/bad status for the rejects is unknown. If a sample

consisting only of accepted applicants is used to construct the new scorecard

then bias may be introduced. Traditionally reject inference has been used to try

and reduce this bias by inferring the true status of the rejects and combining this

with the known status of the accepts to produce a new scoring instrument.

However, much of the published work on reject inference seems to have been

based upon a poor understanding of what it is possible to achieve using the

characteristic vectors for the rejects. This is an important methodological issue

which needs to be addressed before constructing a credit scoring system.
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(2) Another motivation for using reject inference is to obtain an accurate

estimate of the proportion of potential goods (from the full applicant

population) being rejected by the existing scorecard. Other unknown aspects of

the structure of the reject population may provide further reasons for needing

reject inference (for example, if we wish to know the shape of the P(g I x) curve

in the reject region).

In this chapter we will concentrate on the first aim described: using reject

inference to update scorecards constructed on the accepts sample in order to

reduce the sample selection bias. We will precede this by a consideration in

Section 6.2 of the nature and size of the bias. We had access to a validation

sample which included the true creditworthiness of the rejects and this allowed

us to compare models built on the full and accept samples to confirm the

existence of bias. The validation sample allowed us to assess all the work

considered in this chapter.

Reject inference is a technique that is widely used by scorecard developers,

although it has not been given extensive treatment in the literature. In Section

6.3 we will discuss the methods that have been proposed.

Having considered the relevant literature we will proceed to describe the

various approaches to reject inference that we have taken. In Section 6.4 we

consider a first approach, extrapolation from a model built on the accepts

sample. We will see how this term can be used to describe a variety of

methods and examine factors that may affect their success.

In Section 6.5 we consider whether the characteristic vectors for the rejects can

be used to develop improved scoring rules. We present an analysis of

likelihood functions to show that the rejects' vectors do not contain information

about the parameters of the observed data likelihood. Therefore, one is not

able to produce a better scorecard than one obtained using the accepts sample,

except by chance or if extra information is incorporated in some way. This has

important implications for developers of credit scoring systems using reject

inference.
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The remainder of the chapter will focus on ways of incorporating additional

assumptions or supplementary information into methods of reject inference.

Section 6.5.4 considers how assuming distributions for the goods and bads

separately allows use to be made of the rejects' characteristic vectors. This

apparent gain in information needs to be balanced with the reasonableness of

the assumptions made. In Section 6.6 we look at the use of supplementary

information in the form of a subsample of cases from the reject region with true

status known. We call the sample used, for which the true status is known for

accepts and rejects, a calibration sample. Several methods of reject inference

which use the calibration sample are proposed and evaluated.

In Section 6.6.5 we present a novel approach which uses foresight data. This is

data that has been collected on applicants since they first applied for credit (for

instance, an applicant may receive a county court judgement from another debt

after being rejected by the credit grantor who wishes to perform reject

inference). This information obviously cannot be incorporated into the

scorecard, because it is not available at the time an applicant applies for credit,

but it will have a strong link with the true status of an individual. Two

methods of using this information to provide more accurate estimates of the

good/bad probabilities for the rejects are considered.

In the final section of this chapter we present an empirical comparison of some

of the reject inference methods considered and draw conclusions about the best

approach to reject inference.

6.2 Is reject inference necessary?

Eisenbeis (1978) reports that using a model based solely on the truncated

population of accepted applicants can frequently generate misleading results.

Other authors, including Hsia (1978), Reichert et al. (1983) and Joanes

(1993/4) have highlighted the possible bias that can result from using a sample

of accepted applicants to build a scorecard with which to assess the full

applicant population. However, little attention in the literature has been

directed to evaluating the factors which affect whether reject inference is

necessary and identifying the causes of the bias One reason for this is that the
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credit scoring developer does not usually have access to information about

x) in the reject region. In this section we explore these issues with the aid

of a validation sample from a previous time period, which includes the true

creditworthiness of the rejects.

The term bias is used to refer to the difference in performance (in terms of bad

rate) between the full and accept sample scorecards. A scorecard is said to be

biased if it differs in bad rate from the full sample scorecard. We address this

bias indirectly by considering the bias of the class membership probabilities for

the accepts. The accepts sample is said to be biased at a point in the

characteristic space if the proportion good at this point is different for the full

and accept samples. The validation sample is used to explore explore some

explanations for this bias.

In Section 6.2.1 we present comparison studies of the relative performance of

classifiers constructed using the full and accept portions of the validation

sample. Inferences are made about some of the factors influencing the relative

performance of a scorecard built on the accepts sample. We shall see that there

are situations in which reject inference is unnecessary. However, this is a very

dangerous assumption to make if no validation sample is available to confirm it.

In the majority of cases the accepts scorecard will be biased and so some form

of reject inference is desirable.

In Section 6.2.2 we consider a standard approach (in the credit industry) to

explaining the bias of a scorecard built on the accepts. This involves the

discussion of characteristics, called derogatory characteristics, which may not

be given sufficient weighting in models built on the accepts.

In Section 6.2.3 we describe several approaches to explaining the bias of linear

regression classifiers when the data is represented by weights of evidence. A

simple one characteristic example is used to assess their contribution. In

particular, we emphasise the importance of the set of characteristics used to

design the new classifier. We show that if this set does not include all the

characteristics used to make the original accept/reject decision, then the accepts

classifier will be biased. The validity of the assumption of a linear relationship

between P(g I x) and weights of evidence transformation is also considered.
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Additive and multiplicative models for the bias of the accept sample are

considered for the one dimensional case in Section 6.2.4.

Further discussion of these issues is presented in Section 6.4, where we

consider extrapolation from the accepts as an approach to reject inference.

There we discuss the effect of different approaches to classifier design on the

performance of extrapolation methods.

6.2.1 Comparison of accept and full sample classifiers

A first analysis was carried out using the validation sample described in Table

2.1. A maximum of twenty characteristics were available for both the full and

accept samples. To give an idea of how the supposed bias effect changes as the

proportion of accepts in the original sample changes, the analysis was carried

out with two different accepts samples. The first accepts sample came from

accepting the "best" 70% of the original full sample (where "best" is

determined by scoring up the sample under a previous scorecard) and the

second sample came from accepting the best 50% of the full sample.

Scorecards were constructed on the full and accept validation samples using

linear regression with the data in weights of evidence form. Characteristics

were selected using a combination of the methods described in Secfion 2.3.

The bad rates among those scoring above the threshold in the independent test

set are shown for different acceptance rates in Table 6.1. The overall bad rate

in the test set is 31.34%.

Acceptance rate

Design Sample	 30% accepts 50% accepts 70% accepts

FULL	 5.98	 12.68	 19.69

ACCEPTS SAMPLE (70%) 6.09 	 12.76	 20.23

ACCEPTS SAMPLE (50%) 5.89	 13.30	 21.08

Table 6.1: Bad rates at different thresholds for scorecards built using full and

accepts samples.

The bad rates for the different scorecards in Table 6.1 can be compared using

the significance tests described in Chapter 5. The results are significantly
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different at the 70% acceptance threshold with a significance level of 10%.

Because a small reduction in bad debt can result in a large saving for the credit

grantor, it can be argued that we should employ a significance level that allows

any real difference between two scorecards to be picked up (a high power).

The significance level of 10% was fixed in order to facilitate this.

Several additional points are suggested by the preceding results. First, when

there is a real difference between the performance of the full and accept

scorecards, the difference in terms of the bad rate appears to be quite small.

Thus, there is a small target range for the performance of reject inference

methods (because we would not realistically expect to be able to do better than

the full scorecard). This makes the problem hard to solve, but it is still one of

importance because of the savings and increased profits that could be made if

even a small reduction in bad rate was achieved.

A related point is that the difference between the accept and full scorecards

depends on the proportion of the full sample used to make the accepts sample.

The higher the proportion of accepts used to build a scorecard, the less the bias

in the bad rate. This should be taken into account when a credit scoring system

developer is considering how to proceed with reject inference. If only 30% of

the applicant population are accepted then some form of reject inference is

likely to be essential to reduce the bias effect.

Thirdly, the accept/reject mechanism affects how representative the accept

sample is of the full sample, and can thus affect whether there is any real

difference between the full and accept scorecards. In the example presented

above the classifier that was used to split the sample into accepts and rejects

was provided by the mail order company and achieves good discrimination

between goods and bads. Therefore, the accepts sample contains a particularly

low proportion of bads and is likely to weight incorrectly some of the attributes

of a bad credit risk. This will increase the possible difference between the full

and accept scorecards.

The conclusion that we can draw from Table 6.1 is that, in some circumstances,

there is a significant difference between scorecards built on the full and accept

samples. In these cases, the rejects with their true classes (which are unknown

in practice) do add vital information for discriminating between good and bad
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applicants in the full population. This necessitates the search for appropriate

methods of reject inference.

A second analysis was carried out to confirm the effect of the accept/reject

mechanism and the truncation points on the performance of accept sample

models. These factors were controlled by:

• Reducing the number of characteristics available for constructing the

original classifier. This was to decrease the discriminatory power of the

classifier used to make the accept/reject decision. (Twelve and fifteen

characteristics were used.)

S Fixing the truncation point so as to accept 70% of the full sample.

Fixing these two factors at the above levels should reduce the difference

between new classifiers built on the full and accept samples. Table 6.2 shows

the bad rates obtained at a threshold giving a 70% acceptance rate for an
independent test set.

12 char's	 15 char's

Full	 20.69	 20.63

Accepts	 20.77	 20.77

Table 6.2: Bad rates for the full and accept scorecards built using

linear regression.

There is not a significant difference between the bad rates for the full and

accept samples (using the significance tests described in Section 5.3),

suggesting that in this case it is not necessary to perform reject inference. It is

not possible to improve on the scorecard built using the accept sample. The

results confirm our prediction and show that reject inference becomes more

important as the original accept/reject classification becomes better.

We have seen in the second example that the accepts sample may not always be

sufficiently biased to warrant reject inference. Even if this is not the case, then

it may still be more economical for the scorecard developer to use the accepts

for scorecard construction rather than giving credit to a sample of rejected
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applicants in order to build a representative sample. As we shall see later,

reject inference has an associated cost in terms of the need for additional,

possibly expensive, information.

In practice a scorecard developer will probably not have access to a validation

sample with the true creditworthiness known for the rejects. Thus, they will

not be able to carry out the sort of analysis described above in order to

determine whether reject inference is necessary or not. This may explain the

reason why it is often assumed that reject inference is necessary together with

claims about the effectiveness of particular methods of reject inference (see

Section 6.3).

From the above it is apparent that bias can sometimes occur when constructing

scorecards using only the accept sample. We will now consider ways of trying

to explain the nature of the bias and examine whether this gives any indications

as to sensible ways to proceed with reject inference.

6.2.2 Derogatory characteristics

Some developers of credit scoring models explain the need for reject inference

using the idea of a derogatoiy characteristic. An informal defmition of a

derogatory characteristic is one which has attributes which do not distinguish

between goods and bads in the accepts sample, but give good discrimination

between goods and bads in the full population. The argument goes that, for

this reason, the derogatory characteristic will not get sufficient weighting in a

scorecard designed on the accepts sample. (Joanes (1993/4) uses a version of

this argument, without using the term derogatory characteristic, to justify the

need for reject inference.)

A common example of a derogatory characteristic (see Table 6.3 for details) is

"Weeks since last county court judgement". There are two reasons why this

satisfies the above defmition: first, whether an applicant has had a previous

county court judgement or not is highly correlated with creditworthiness and so

this characteristic discriminates well between good and bad applicants in the full

sample. Secondly, because of the first factor, this characteristic is likely to be

used in the original accept/reject classifier, thus screening out a high proportion
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of applicants with CCJs. This means that the characteristic will lose its

discriminatory power when the accepts sample is considered alone.

There are two basic properties of derogatory characteristics which, it is argued

by credit scoring practitioners, introduce bias into scorecards built on the

accepts (we examine these properties in more depth in Section 6.2.3):

• There are too few applicants from the accept sample in attributes of the

derogatory characteristic with low weights of evidence (e.g. few accepts are

likely to have county court judgements). As a consequence random variation

may cause there to be an artificially low (or high) number of bads from the

accepts in these "bad" attributes. Therefore, if we build a scorecard using the

accepts then the resulting values assigned to the bad attributes may be

unreliable.

• Attributes with low weights of evidence in the full sample may contain an

overly high number of goods in the accepts sample due to bias in the sample.

There are likely to be some good applicants who have one or more derogatory

attributes (e.g. a previous default due to extenuating financial circumstances)

and this may give an under-representative impression of the proportion of bads

in the full sample with this attribute. The result of this property is that when

using the accept sample to build new scorecards, simple linear interpolation

overestimates the proportion of goods for low values of the total score.

These properties are used to justify why a scorecard built on the accepts sample

may be biased. In order to reduce this bias it is necessary to adjust the

proportions and predicted numbers of goods and bads in attributes with low

weights of evidence. Ad hoc methods of reject inference which use this

approach could explain the claims of using the rejects to improve a scorecard.

In Section 6.5.3 we show that there is not an objective way of using the

characteristic vectors for the rejects to reduce bias.

6.2.3 Explanations for bias

In this section we consider explanations for the bias of linear regression

classffiers built on the accept sample. It is assumed that the data is represented
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by weights of evidence. We attempt to explain the underlying mechanisms

which introduce the bias and prescribe ways of reducing it. (For more general

discussion of extrapolation methods and the causes of bias see Section 6.4.)

We distinguish between two aspects of the original accept/reject decision which

can contribute to the bias. We then investigate their relative importance with

the aid of some simple examples:

(1) The sampling fraction used to select the accepts sample.

If a characteristic has a nonlinear relationship with P(g 
I 
x), then by taking a

sampling fraction which varies arbitrarily across the attribute values, a linear

regression model built on the accepts sample will be biased. (We call this

factor A) We examine the relationship between weights of evidence and

proportion good for different characteristics to identify whether the relationship

is non-linear.

A further cause of bias (factor B) is the random variation in the sample

proportion good as the sampling fraction varies. This is equivalent to the first

property of derogatory characteristics outlined above.

(2) The set of characteristics used to make the accept/reject decision.

If the accept/reject decision uses extra information, not available for building

new classifiers, then the proportion of goods among the accepts will typically

not equal the proportion of goods amongst the rejects at any particular point in

the characteristic space. This could lead to bias in a model built on the accepts

(factor C.).

To simplify the following analysis, we discuss the problem of building a

classifier using one characteristic, "Weeks since last county court judgement

(C.C.J)". Table 6.3 gives the attribute values, the proportions of goods and

bads in the full and accept portions of our validation sample and the

corresponding weights of evidence. The accepts sample comes from applying a

previous (and now unavailable) classifier to the full sample, using a range of

characteristics.
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Attribute	 Goods	 Bads	 P(g)	 Weights

1 (1-26 wks) 242	 825	 0.227	 -1.127

2 (27-52)	 253	 578	 0.304	 -0.726

Full	 3 (53-104)	 340	 742	 0.314	 -0.681

4 (105-208)	 633	 1043	 0.378	 -0.4

5 (209-312)	 509	 686	 0.426	 -0.199

________ 6 (No CCJ)	 5495	 4382	 0.556	 0.326

1	 83	 103	 0.446	 -0.898

2	 68	 77	 0.469	 -0.806

Accepts 3	 123	 127	 0.492	 -0.714

4	 301	 244	 0.552	 -0.472

5	 301	 176	 0.631	 -0.145

________ 6	 4743	 2114	 0.692	 0.126

Table 6.3: Description of the characteristic "Weeks since last CCJ".

The first stage is to consider plots of proportion good against weight of

evidence for the full and accept samples. Figures 6.1 to 6.3 show such piots

using weights of evidence calculated from the full sample, the accept sample

and the appropriate sample (full or accepts) respectively. 95 % confidence

intervals are added to all the plots to give an impression of how reliable the

proportions are. For an attribute that has P(g Ix) = ir and a total of m agents, an

approximate 95 % confidence interval is given by (pr— 21,z(l - ir) / m,

r+ 2I (1 - ,z) / m). This assumes the normal approximation to the binomial

distribution for large values of m. Because the full sample is considerably

larger than the accepts sample, the corresponding probability estimates are more

accurate and so the confidence intervals are smaller.

The above plots show that, given a particular sample, the proportion good has

an approximately linear relationship with weight of evidence when the weights

of evidence are calculated from that sample. In fact, the relationship can be

worked out explicitly. If an attribute has proportion good p and the total

number of goods and bads in the sample are equal, then the weight of evidence

for that attribute can be expressed as log 	 . The resulting curve of
(l—p)

proportion good against weight of evidence is approximately linear for
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0.2 ^ p ^ 0.8. (However, when the weights of evidence are calculated from a

different sample the relationship may not be approximately linear.)

It was found that for the majority of characteristics the relationship between

weight of evidence and proportion good was approximately linear. However,

for some characteristics the relationship was noticeably non-linear. This was

dependent on the range of values of the proportion good, p, as described above.

For example, Figures 6.4 and 6.5 show one-dimensional plots for a decision

tree characteristic (non-linear) and a characteristic combining postcode with

time at address (linear). In both cases the full sample curve is shown with full

sample weights of evidence.

Figure 6.6 shows a two-dimensional example with proportion good plotted

against weights of evidence for a postcode characteristic and a characteristic

describing previous mail order history. The values of proportion good were

smoothed using a kernel function to reduce sample variation. The resulting

surface is non-linear. In fact, departures from linearity are likely to increase as

the number of dimensions increases. This is because the weights of evidence

transformation is one-dimensional (by transforming the attribute values

according to the numbers of goods and bads from the marginal distributions).

As the dimensionality increases the interactions between characteristics distort

the approximately linear relationship with proportion good.

We conclude that in high dimensions factor A will be a significant cause of bias

in classifiers built on the accepts. However, in low dimensions (one or two

characteristics) the weights of evidence provide a suitable means of

transforming the characteristic values onto an approximately linear scale. In

this situationfactorA is not an important component of the bias.

In order to understand the contribution of factors B and C to the bias, we return

to the one-dimensional problem of building a classifier for the characteristic

"Weeks since last CCJ". Table 6.3 showed that the proportion of the full

sample in the accept sample varies according to attribute. To make this clearer,
the second column of Table 6.4 shows the sampling fraction, S1 , for the accepts

(it is given by the proportion of the full sample accepted by the original

classifier within each attribute).
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Sampling fraction

Attribute S1 	 ______________

1	 0.174	 0

2	 0.174	 0

3	 0.231	 0

4	 0.325	 0

5	 0.399	 0

6	 0.694	 0.857

Table 6.4: The sampling fraction for the characteristic "Weeks since

last CCJ".

The third column shows the sampling fraction, S2 , which would be used to

accept the same proportion (53.8%) of the full sample if this was the only

characteristic available.

Figures 6.1 to 6.3 indicate that for this characteristic there is an approximately

linear relationship between weight of evidence and proportion good.

Therefore, any bias caused by varying the sampling fraction can be attributed to

factor B. Furthermore, if a classifier is constructed using the portion of the full

sample obtained using sampling fraction S1 . the resulting bias will be

independent of factor C. This is because no extra informationlcharacteristic is

used to make the accept/reject decision. This gives us a way of assessing the

contribution of factor B to the bias.

The contribution of factor C can be identified by building a classifier using the

same sampling fraction S from the full sample, but including extra information

in the decision. The accepts sample that we have available satisfies these

conditions. The resulting contribution of factor C comes from the difference in

bias between the two classifiers described.

The above approach was utiised by constructing simple linear regression

models using three different sampling methods: (1) using the full sample, (2)
using the sub-sample obtained from the full sample with fraction 3 and (3)

using the accepts sample. Figure 6.7 shows the regression lines for the three

methods described. The full sample mean values are added for each of the
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attributes using the full sample weights of evidence to represent the "true"

values of proportion good.

The above plot indicates that there is a difference in level between the three

regression lines, but that they all roughly parallel. This indicates that the bias

is approximately constant across attribute values. (We present further

investigation into how the bias changes with attribute value in the next section.)

The bias from factor B is represented by the difference between the full and

sampling fraction regression lines. The bias from factor C is represented by the

difference between the sampling fraction and accept sample lines. Both these

factors are contributing to bias of the regression model.

Performance of the methods was assessed more formally using the bias

measure:

j=1

where y, is the true class of the ith applicant and r1 is the regression estimate

for the ith applicant. The resulting values of the bias are shown in Table 6.5.

Method	 Bias

1	 0.0000217

2	 0.00189

3	 0.0339

Table 6.5: Bias of regression lines constructed from "Weeks

since last CCJ".

The table confirms that both factors B and C contribute to the bias of classifiers

built on the accepts sample. In this example factor C has a much bigger effect.

To conclude, we have identified three causes of bias in accept sample models

using linear regression. In particular we have found:

(1) The assumption of a linear relationship between weight of evidence and

proportion good (P(g x)) may not be appropriate in high dimensions. Bias is

introduced by classifiers which vary the sampling fraction across the

characteristic space (factor A).
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(2) The weights of evidence transformation may provide a linear relationship

between attribute value and proportion good in low dimensions. Bias can still

result from random variation in the sample (factor B).

(3) An important cause of bias is the set of characteristics used to build the

new classifier. If the accept/reject decision is made using a set of

characteristics X arid a new scorecard is to be constructed using a set of

characteristics, Y, then an accepts scorecard will generally be biased if Y c X

(see also Hand and Henley, 1993/4). The same argument applies if the new

scorecard uses a set of characteristics, Z, where Z does not include all of X.

Therefore, in order to reduce the bias in an accepts classifier it is necessary to

include all the characteristics used to make the original accept/reject decision.

(4) We have seen that there may be a difference in level between the good/bad

proportions for the full and accept samples. (This corresponds to the regression

lines being parallel.) However, this form of bias may not, in itself, lead to

inferior classification performance. This is because imposing suitable

thresholds on parallel probability surfaces will lead to the same applicants being

accepted under both classifiers. On the other hand, if the bias changes with

attribute value (when the regression lines are not parallel or monotonically

related) then imposing a threshold may lead to a change in performance.

(5) We can use the results of this section to explain the two properties of

derogatory characteristics described in Section 6.2.2. The first property of

derogatory characteristics is equivalent to the bias due to random sampling

which results from taking an arbitrary sampling fraction across the

characteristic space (factor B). The second property of derogatory

characteristics results from using extra information, not available for building

new classifiers, to make the original acceptance decision (factor C). We note

that any characteristic which has attributes which differentiate between good

and bad applicants in the full sample can have these properties.

In Section 6.2.4 we give further attention to the nature of the bias. Formal

tests are used in the one-dimensional case to assess whether the accept sample

bias changes with attribute value. We consider both additive and multiplicative

models.
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6.2.4 Additive and multiplicative models of bias

We present models for bias in the accept sample when the original acceptance

decision uses information not available for constructing new classifiers. For

simplicity we continue to consider the problem of constructing a classifier with

one characteristic, "Weeks since last CCJ" (see Table 6.3 for details).

The bias of the accept sample can be split into two types:

(1) A constant bias across attribute values. This form of bias may not lead to

inferior classification performance. It is represented by the difference in level

between the full and accept curves of proportion good in Figures 6.1 to 6.3.

(2) A variable bias across attribute values. This form of bias is more

important than the first because it is more likely to lead to a change in ranking

by P(g Ix) and, thus, a change in classification performance. It is represented

by a difference in shape between the full and accept curves of proportion good.

It is not clear from Figures 6.1 to 6.3 whether there is a difference in shape

between the two curves for the accept sample considered.

We focus on testing for the second type of bias because it has a more significant

influence on classification performance. Two ways in which the bias can vary

with attribute value are discussed: additive and multiplicative relationships.

Table 6.6 shows the proportion good for the full and accept samples together

with the ratio of the accept to full probabilities and the difference between

probabilities across attributes. Variation in the ratio corresponds to

multiplicative bias and variation in the difference corresponds to additive bias.
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Attribute Full	 sample Accept sample Accept! 	 Accept - Full

proportion	 proportion	 Full ratio	 difference

1	 0.227	 0.446	 1.964	 0.219

2	 0.304	 0.469	 1.542	 0.165

3	 0.314	 0.492	 1.567	 0.178

4	 0.378	 0.552	 1.460	 0.174

5	 0.426	 0.631	 1.481	 0.205

6	 0.556	 0.692	 1.245	 0.136

Table 6.6: Ratios and differences of the proportion good for the accept and

full samples on the characteristic "Weeks since last CCJ".

Column 3 shows clearly that the ratio of the two proportions decreases as

attribute value increases. This indicates that a multiplicative model would be an

appropriate way to describe the relationship between attribute value and the

level of bias. Column 4 shows a fluctuating difference between the two

proportions of goods. This indicates that an additive model is not an

appropriate way of describing the data.

In order to formalise the previous discussion, we introduce statistical tests to

evaluate the nature of the relationship between attribute value and proportion

good. In order to ensure independence of the observations it is necessary to

compare the accept sample with the reject sample, rather than the full sample.

(1) The additive test involves comparing the relative fit of the models given

by:

yj, = a + +

y, = a + + +

where i represents attribute value and j is 0 for the accept sample and 1 for the

reject sample. The response y represents the proportion of goods in the

sample.

The parameters a, 1', c and d are fitted by maximum likelihood estimation and

the models compared using analysis of variance to see if the second equation
adds significant information about the response y through the term d (the

135



Attribute

Sample

Interaction

I Residuals

Table 6.7:

ccJ".

Attribute

Sample

Interaction

I Residuals

Table 6.8:

last CCJ".

interaction between attribute value and sample). The term c is included in

both models to allow a difference in level between the two curves of proportion

good. This removes the influence of the first type of bias identified above on

the significance test.

(2) The multiplicative test involves comparison of the models given by:
1og(y.,) = a + +

1og(y)= a+b1 +c +d

where the parameters are defined above. The testing procedure is similar to

that for the additive model.

These tests give a formal method of assessing whether the accepts sample

exhibits bias for individual characteristics. The ANOVA tables for the

characteristic "Weeks since last CCJ" are shown in Tables 6.7 and 6.8.

Df	 Sum of Sq Mean Sq F value	 P(F)

1	 0.1059	 0.1059	 129.4	 0.0000032

1	 0.0967	 0.0967	 118.1	 0.0000045

1	 0.0006	 0.0006	 0.780	 0.4028102

8	 0.0065	 0.0008

ANOVA table for additive model of bias for "Weeks since last

Df	 Sum of Sq Mean Sq F value	 P(F)

1	 0.5630	 0.5630	 205.3	 0.0000006

1	 0.5412	 0.5412	 197.3	 0.0000006

1	 0.0438	 0.0438	 16.0	 0.0039799

8	 0.0219	 0.0027

ANOVA table for multiplicative model of bias for "Weeks since

The tables show that for both models the individual effects for the sample and

attribute value are highly significant. This confirms that proportion good

varies with attribute and that there is a difference in level between the full and

accept curves for proportion good. However, as expected, the significance

result for the interaction effect differs between the two models. The interaction
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effect is significant for the multiplicative model and non-significant for the

additive model. We conclude that when the acceptance decision is taken on the

basis of extra information, the accept sample is biased and the bias has a

multiplicative relationship with attribute value.

The tests considered above allow us to consider the nature of the bias of the

accepts sample for individual characteristics. Further work is neeed to assess

the bias in the multivariate case.

6.3 Survey of reject inference methods proposed in the
literature

Reject inference is a process that is used by almost all developers of credit

scoring systems, but one about which there is little published work in journals

on statistics or financial modelling. There does not appear to be an accepted,

standard method of using the characteristic vectors for the rejects; rather each

firm or consultant employs a subtly different technique that for commercial

reasons they wish to keep secret. However the argument of this chapter is that

there is no systematic way of doing reject inference unless extra information is

incorporated in some way. (See also Hand and Henley (1993/4) and Henley

and Hand (1995))

We now consider methods of reject inference that have been publicised.

Method 1

The first and most important of these, because of its longevity, is the

Augmentation method that was first developed by the Fair Isaac company. It is

described by Hsia (1978), who reports that it is widely used by developers of

scoring systems to take account of the rejects' characteristic vectors. The key

assumption of the method is that P(g I x) is the same for the accepts and the

rejects.

The first step is to develop a model which discriminates between the accept and

reject groups instead of the goods and bads. The same selection and weighting

techniques that will be used to build the final scorecard are employed. For
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each score under this initial model, the proportion of accepts in the full sample

are calculated. This acts as a probability of acceptance for each member of the

accepts sample. The accepts are weighted proportional to the inverse

probabilities of acceptance. The weighted accept sample is then used to

construct a scorecard that discriminates between goods and bads in the normal

way.

We have two criticisms of this approach:

(1) The augmentation method is not applicable if all the characteristics used to

make the original accept/reject decision are available for inclusion in the new

scorecard. If this is the case then we can achieve perfect discrimination

between the accept and reject classes by employing the original classifier.

There would then be no regions of the new characteristic space where the

accept and reject classes overlap. As a result it would not be possible to

reweight the good/bad probabilities for the accepts to take account of the

characteristic vectors for the rejects (as the augmentation method attempts to

do).

On the other hand, if the set of characteristics Y available for building a new

scorecard is a subset of the set X used in the original classifier, then we know

from Sections 6.2.3 and 6.2.4 that the accept sample will be biased. The

probability of being good amongst the accepts at any point in the characteristic

space may not equal the corresponding probability for the rejects. Thus, when

the accepts are reweighted to take account of rejects with similar characteristic

vectors bias will be introduced.

(2) If an accurately specified model is used, then the weighting described

above will have no effect on the estimated parameters. Therefore,

augmentation does not offer any objective advantages over models built on the

accept sample. As we shall show in Section 6.5.3, the characteristic vectors for

the rejects cannot be used to improve a scorecard, except by chance or if

additional information is being incorporated in some way.
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Method 2

Joanes (1993/4) proposes an approach to reject inference which utilises iterative

reclassification, a technique described in the context of discriminant analysis by

McLacblan (1975).

The proposed method involves the construction of a classification rule using a

logistic regression model estimated from the accepts sample. The logistic

regression model can be expressed by the log-odds ratio:
P(gx)

logzt(P) =log P(blx) I0 +/3x1 +..

The classification rule can be expressed as:

Accept applicant if logit(P)> 0 and

Reject applicant if logit(P) ^ 0.

The author states that it is necessary to incorporate the prior probabilities of

class membership and the relative costs of misclassification into the
classification rule.	 Given prior probabilities 7rg and lrb and costs of

misclassification c(glb) and c(bg), the new rule is defmed to be:
____	 c(gb)Accept applicant if fix + log g log

c(bg)

and reject applicant otherwise.

Joanes proposes two methods of iteratively reclassifying the rejects in order to

produce an unbiased scorecard: the first (method A) involves allocating the

rejects to the class to which they have the highest probability of belonging

(based on the accept model) and the second (method B) involves allocating class

membership probabilities to the rejects from the accept model. In both cases a

new classification rule is then constructed using the accepts with their true

good/bad classification and the rejects with their estimated class or good/bad

probabilities. The process is iterated until there is no change in the predicted

class or probabilities of the rejects. This approach is a form of extrapolation as

described in Section 6.5.1.

In order to illustrate how the method works, it is applied to a simulated data set

with three characteristics. It is shown that the first and second iterative
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reclassification procedures converge after two and six iterations respectively.

These two approaches to reject inference have several limitations:

• There is no objective basis for classifying rejects as good or bad at each

stage in method A. The method only serves to reinforce the structure of the

accepts model. This can be seen from looking at the adjusted posterior

probabiites which only show a marginal change from the accepts model to the

model after the first iteration. Furthermore, there is no change in the adjusted

posterior probabilities in subsequent iterations.

• If the prior probabilities and relative costs of misclassification were excluded

from the classification rule then the iterated models from method B would be

identical to the accepts model. (This is shown for linear regression in Section

6.5.1.) The only difference in the model comes from incorporating extra

(subjective) information (and this information makes little difference to the

posterior probabilities).

• We show in Section 6.5.3 that the characteristic vectors for the rejects do

not contain information about the model parameters. Therefore, neither method

A or B is able to reduce the bias of the accepts scorecard. These approaches

could only be of use if meaningful values are known for the relative costs of

misclassification.

A more general criticism of Joanes's paper is that no attempt is made to

compare the performance of methods A and B with other reject inference

methods, such as extrapolation. (This was partly due to the unavailability of a

real data set.) We conclude that iterative reclassification is not a suitable

approach to reject inference.

Method 3

Reichert et al. (1983) discuss a different way of tackling reject inference

without incorporating extra information. They considered a three-group

discriminant model (the groups were goods, bads and rejects) and compared it

with a two-group (goods, bads) model based on the accepts sample. They

found that the introduction of the rejects did not lead to improved
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discrimination between the known goods and bads. It simply split the bads into

two: half were predicted to be rejects and the other half to bads. However, the

three-group model was assumed to be superior because it was conceptually

more appropriate than a two-group truncated model in that it applied to the

entire applicant population. Reichert et al. (1983) stated that this was also

desirable because it accorded with regulatory rulings pursuant to the U.S.

Equal Credit Opportunity Act which require that statistical credit scoring

systems represent the complete population of applicants for credit.

Despite these apparent advantages the method adopted is subject to criticism.

The assertion (on page 105) that the "key decision is whether to grant credit in

the first place and not to identify good or bad borrowers once a loan has been

granted" is true, but it fails to take into account that the main objective is to

split the population of applicants into two groups. Therefore it does not seem

appropriate to use a three group model. We can identify the rejects' class

perfectly using the original classifier and so it seems odd to attempt to

incorporate this function into a new classifier. Some form of extrapolation

approach would be more appropriate.

One other potential advantage of this method arises with classical linear

discriminant analysis. The method assumes a common covariance matrix for

the three (or however many) groups in the data. The rejects can lead to more

accurate estimates of this common covariance matrix and as such may lead to

slight improvements in the classification rule. However, it is unlikely that this

factor will outweigh the negative aspects of the method. Furthermore, in

Section 3.1.1 we saw that credit scoring data often do not satisfy the

assumptions of linear discriminant analysis. In many real situations the sample

covariance matrices are unequal leading to the rejection of a linear discriminant

rule in favour of a quadratic rule. Method 3 does not give the same benefit in

this case.
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(3) If an incorrectly specified model is used in the accept region. This is

obviously more a property of poor model construction than a feature of the

data. However, it is usual for scorecards to be constructed using standard

methods, such as linear or logistic regression, without much consideration of

whether the data really fits the model. Therefore, if the data differs from this

"standard" model then we can consider it as a property of the data.

If the data structure falls into any of the three categories described above then a

model built on the accepts will probably perform significantly less well than a

model built on the full sample. This means that before deciding to carry out a

particular form of reject inference careful examination should be made of the

data. However, we believe that credit scoring data is often monotonic, if not

quite linear, so that the above conditions are unlikely to be met.

The other factor that can have an important effect on the performance of

extrapolation from the accepts is the type of model used for classifier design.

We defme, as in Chapter 2, the probability density function for the good risk

applicants to be P(xI g), with P(xI b) the corresponding function for the bads.

There are two possible approaches that can be taken to building a scorecard on

the accepts (the diagnostic and sampling approaches of Dawid (1976)). The

first involves direct estimation of the P(g I x) and includes techniques like linear

and logistic regression. The second approach is to estimate the P(x I g) and

P(x b) separately and then use Bayes theorem to calculate P(g x); an example

of this type of method is classical linear discriminant analysis.

Our assertion is that there is an important difference between these two

approaches when used for building a model on the accepts. Direct methods of

estimating P(g I x) are less prone to introducing bias into the classifier than

indirect methods. This is because the direct methods are less likely to give

distorted models for P(g x) when sampling fractions are taken from the

characteristic space, that are only dependent on x. In our context the

accept/reject decision is based solely upon the characteristic vectors x and leads

to a zero sampling fraction in the reject region and normal sampling in the

accept region. This means that, subject to the conditions mentioned earlier in

this section, we would expect models built on the accepts using direct methods

to perform well and those constructed using indirect methods to perform less

well. Two simple examples are presented to illustrate the point:
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P(gx)

(1) A direct method of classifier design: assume that the data is distributed

about a straight line along the attributes of one characteristic that is to be used

to build a classifier. If a linear regression model is built on the accept sample

then it will perform well over the reject region as illustrated in Figure 6.8.

P(g lx)

Reject I	 Accept

x

Figure 6.8: An example where a direct method of estimating P(gx)

can lead to a good model when only the accept sample is used.

The curve represents the true distribution of the data and the line represents the

fitted regression line.

(2) An indirect method of classifier design: assume that the P(x I g) and P(x I b)

are normally distributed for one characteristic that is to be used to build a

model to predict creditworthiness. Figure 6.9 shows the true distributions of

the goods and bads. The curve for the bads distribution in the reject region is

represented by a dotted line.

Reject	 Accept
x

Figure 6.9: An example where an indirect method of estimating

P(g Ix) can lead to a biased accepts model.
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Using just the accepts to estimate the group means and dispersion matrices leads

to distorted results for the P(xj b) distribution. Eisenbeis (1978) describes how

Avery (1977) has looked at the effects of estimating discriminant analysis

models for truncated sub-samples from the full distributions of goods and bads,

where the full distributions are normal with known population parameters. He

showed that one obtains biased estimates of the group means and dispersions,

the true cut-off points and the true error rates. The direction and extent of the

bias depends on the original truncation points and so is not readily available to

the developer of a credit scoring model. Furthermore, the results show that

even when the underlying populations have equal dispersions, the use of

truncated samples leads to the rejection of the equal dispersion hypothesis. This

means that quadratic rules will be selected in favour of linear ones.

To summarise the above discussion, we have investigated the factors that affect

whether extrapolation from the accepts can lead to adequate models for P(g I x).
The main factors that have been identified are the type of model used to make

the accept/reject classification, the nature of the data, the adequacy of the

model chosen to represent the data and whether it models P(g I x) directly or

indirectly. In cases where the accept/reject decision is based solely on the

characteristic vectors x, we would expect direct models such as logistic

regression to extrapolate quite well. This was confirmed by the second

example presented in Section 6.2 (but not by the first example). In contrast we

would expect that indirect methods of model building, such as classical linear

discriininant analysis, would not perform well when used to build a model on

the accepts. It might be possible to adjust the model to take account of the

truncated sample, but the success of this approach would depend on how

accurate the model assumptions were (e.g. the muhivariate normality

assumptions).

Extrapolation from the accepts is an intuitively simple and appealing approach

to building a scorecard when the true creditworthiness of rejected applicants is

not known. When this approach is used, a direct method of estimating P(g Ix)
should be employed to build the scorecard. The results obtained will form a

natural baseline against which to compare more sophisticated methods of reject

inference that will be considered later.
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6.5 Using the characteristic vectors for the rejects

Much attention has been focused on using the rejects to improve on simple

extrapolation. In Section 6.3 we discussed methods of reject inference which

have been proposed in the literature: augmentation (Hsia, 1978), iterative

reclassification (Joanes, 1993/4) and a three group discriminant model (Reichert

et aL, 1983). It was found that all the proposed methods have theoretical

weaknesses.

In this section we show that the rejects do not contain information that can be

used to improve the predictive power of a scoring model, unless the new rule is

better than the old one by chance or if expert knowledge is being incorporated

in some form. This will be approached from several angles in Sections 6.5.1 to

6.5.3. In section 6.5.4 we will discuss how the assumption of particular forms

for the the separate distributions of the characteristic values of the goods and

bads, P(x g) and P(x I b), can allow P(g x) to be calculated by mixture

decomposition methods. This is one way in which the characteristic values for

the rejects can contribute to the scorecard, but it is implicitly making use of

extra information through the assumption of distributional forms for P(xJ g) and

P(x l b). More extensive discussion of reject inference methods which

incorporate extra information is provided in Section 6.6.

6.5.1. Use of extrapolation

To begin with we will look at simple ways of using the characteristic vectors

for the rejects as part of a reject inference strategy. One approach is to build a

model on the accept sample and extrapolate from this model to provide

estimates of P(g Ix) for the rejects. A new model could then be constructed

using the accept sample with their true good/bad classification and the rejects

with their estimated creditworthiness. This may be an appealing idea but there

will be no change in the fmal scorecard if the same method of model building is

used for constructing the accept model and the fmal model. This is easy to

show and we will do so below in the special case of linear regression. Two

approaches are described: an algebraic proof and an argument based upon

residuals.
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Approach 1:
Let Xa and X,. represent the data matrices for the accept and reject data

respectively, with corresponding class vectors 1 and 1. The values of 1 are

unknown and so are estimated from a model built on the accepts. A linear

regression model for the accepts is given by

E(Ya) = XJ3a (6.1)
where /3a is the vector of parameters to be estimated.

The parameters are estimated by maximum likelihood estimation giving (see for

example Draper and Smith, 1981)

Pa = (XXa )'XY, (6.2)

Estimates of the true classes for the rejects are then obtained by extrapolation

from the accepts model to give

Yr = Xr/3a	(6.3)

The final scorecard is obtained by building a model using the accept sample

with their true classes and the rejects with their estimated classes. Let Y

represent the full vector of classes given by y = (yr y)t and X the

corresponding data matrix given by X = (X ,X. The parameters of the full

sample model, ,8, are then given by:

8= (XOXY

= [(Xa ', X:)(Xa t , X t ) ] (Xa t , X,')(Y t ,(XriSa 
)t)t

= [Xa'Xa + XX} 1 (X0 ,X)(1' , (Xrfla)t)t

= {X tX +	 ] 1[XatY ('r)fla}

= [Xa tXa + r]'[XatXa +X:Xrl/3a	 by rearranging 6.2

=/3a.

We have shown above that the new full sample model will have the same

parameter estimates as the accept sample model, and thus the characteristic
vectors (in X) are not adding information to the model. Therefore this

approach to reject inference will not lead to an improved scoring rule. Similar

results can be proved for generalized linear models.

Approach 2:

Another way to obtain the same result for linear regression is to consider

residuals. Linear regression estimates parameters by choosing them so as to

minimise the overall squared differences between observed values and fitted

values. This is equivalent to minimising the sum of squared residuals. If the

4
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true classes of the rejects are estimated by Yr = Xr/3a , then the rejects have zero

residuals for the accepts model. Furthermore, the parameters of the accepts

model were chosen to minimise the residuals for the accepts sample. Thus, if

the accepts sample, with true creditworthiness known, is combined with the

rejects sample, with true creditworthiness estimated from the accepts model, the

parameters which minimise the overall sum of residuals will be equal to the

parameters of the accepts model. As above, the characteristic vectors for the

rejects do not add information about the full model parameters.

The previous discussion indicates that the rejects' characteristic vectors alone

are not sufficient to reduce the bias of models built on the accepts sample.

However, if one is prepared to make additional assumptions, then it may be

possible to incorporate successfully the characteristic vectors for the rejects into

an extrapolation approach. We consider two possible approaches:

(1) In Section 6.4.1 we discussed the situation where the required model form

differs between the accept and reject regions. We considered a one dimensional

example where the data has a linear relationship with creditworthiness in the

accept region and a quadratic relationship in the reject region. If a linear model

is built on the accepts and extrapolated over the reject region then biased

estimates of P(g Ix) will be obtained for the rejects. Knowledge of the shape of

P(g lx) in the reject region could be obtained using a calibration sample (see

Section 6.6). One possible extrapolation approach, which uses this additional

information, is to build a model on the accepts using the appropriate form for

extrapolation over the reject region (a quadratic model in the above example).

The bias in the estimates of the true creditworthiness for the rejects can thus be

reduced.

(2) Another possible approach to using the characteristic vectors for the rejects

is to make the assumption that the rejects with the lowest scores under the

original accept/reject classifier (if available) have a zero probability of being

good (P(g I x) = 0). A model can then be built using the accepts with their true

creditworthiness and the worst rejects with P(g Ix) =0 (a constrained regression)

and this can then be extrapolated over the reject region to provide estimates of

P(g Ix) for the remaining rejects. The validity of the initial assumption can be

assessed using a calibration sample. Examination of our sample confirmed that
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it is a reasonable assumption to make for a small proportion of the rejects.

However, this approach is ad hoc and too dependent upon the original

classifier.

In both of the above examples the extra assumptions will lead to a difference

between the accept and full sample models, and possibly to an improvement in

discrimination.

6.5.2 Standard missing data approaches

One way of looking at reject inference is to regard it as a missing data problem.

This area has been the subject of much recent study in statistics, with the

increased sophistication of computers and statistical packages allowing practical

application of techniques often requiring intensive calculations. A description

of many of these techniques is given in Little and Rubin (1987). Four basic

procedures are considered:-

(a) Removing incompletely recorded observations and analyzing the complete

data.

In our terms this means working just with the accepts. This approach has been

covered in detail in Sections 6.2 and 6.4.

(b) Imputation-based procedures.

Missing values are filled in with values estimated from the observed data (e.g

using the class of the "nearest" point in the accept region- cf. k-NN method in

Chapter 8) and the resultant data set is then analysed using complete-data

techniques. This approach differs from extrapolation and approach (d) (see

below) in that it does not use a model for the observed data to estimate the

missing values

(c) Weighting procedures.

This approach is used for randomization inferences from sample survey data

with nonresponse. For example, the population mean can be adjusted for

nonresponse by weighting every term by an estimate of the corresponding

probability of response. (Weighting is related to mean imputation.)
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(d) Model-based procedures.

This heading covers a wide range of techniques that involve defining models for

the partially missing data and basing inferences on the likelihood under that

model. The likelihood for the parameters based on the incomplete data is

derived and maximum likelihood estimates are found by solving the likelihood

equation. By assuming a model form in this way we are assuming extra

information (as in the mixture decomposition approach). This approach is more

flexible and less ad hoc than the first three procedures and was the starting

point for our investigation of possible methods of reject inference. The

extrapolation approaches we have considered in previous sections can also be

described as model-based procedures.

Two important components of the work on model-based procedures are the

consideration of different missing data mechanisms and the solution of the

likelihood equations using the EM algorithm. These are both considered in

detail below.

6.5.2.1 Missing data mechanisms

Little and Rubin (1987) point out that knowledge, or absence of knowledge, of

the mechanisms that led to certain values being missing is a key element in

choosing an appropriate analysis and in interpreting the results. The

mechanism that gives rise to missing data corresponds to the method used to

make the accept/reject decision in the credit scoring problem. In what follows

we assume that there are more than one observable variables (characteristics),

but only one variable Y (creditworthiness) is subject to nonresponse. Little and

Rubin describe three mechanisms for missing data which have different

implications for maximising the observed data likelihood (see Section 6.5.3).

(1) The data is missing completely at random (MCAR) if the probability of

response is independent of all the variables.

(2) The data is missing at random (MAR) if the probability of response does

not depend on Y, but may depend on one or more of the other variables
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(3) The data is non-ignorably missing (NI) if the probability of response

depends on Y and one or more of the other variables.

In case (3) the missing data mechanism is non-ignorable, meaning that in

making likelihood-based inferences it is necessary to model the missing data

mechanism. In both cases (1) and (2) the missing data mechanism is ignorable

for likelihood-based inferences. Whether the mechanism is ignorable or non-

ignorable has significant implications for maximising the observed data

likelihood.

In the credit scoring problem, the appropriate missing data mechanism depends

upon the set of characteristics used to make the original accept/reject decision.

We distinguish between two possible scenarios as in Section 6.2.3:

(1) If the set of characteristics Z available for building new scorecards includes

all the characteristics from the set X used to make the original accept/reject

classification then the data will be MAR. This is because the probability of

response depends on the set of characteristics Z alone and not on the response

Y.

(2) If the set of characteristics Z available for building new scorecards does not

include all the characteristics from the set X used to make the original

accept/reject classification then the data will be NI. This is because the

probability of response is indirectly dependent upon the true creditworthiness Y

through the characteristics in X / Z.

In Section 6.5.3 we present a likelihood approach to incorporating the

characteristic vectors for the rejects into a scorecard. We consider different

non-response models for the three missing data mechanisms. In Hand and

Henley (1994) we apply our arguments in a medical screening context.

6.5.2.2 The EM algorithm

With some patterns of missing data it is possible to use standard complete-data

techniques to solve directly the likelihood equations (see Section 6.5.3).

However, in practical problems it is often the case that closed-form solutions of
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the likelihood equations cannot be found and so an iterative technique needs to

be employed. The most widely used technique in the statistical literature is the

Expectation-Maximization (EM) algorithm which relates maximum likelihood

(ML) estimates for the observed data likelihood to ML estimation based on the

complete-data likelihood (including missing values). It was introduced by

Dempster et al. (1977). Because of its central importance in the field of

missing data problems it was thought necessary to examine the EM algorithm

and determine its applicability to our reject inference problem. A second

reason for considering the EM algorithm was suggested because of the striking

similarity between the iterative nature of the mail order company's current

method of attempting to improve scorecards using reject inference and the

iterative steps of the EM algorithm.

In fact, the EM algorithm is only an iterative method for solving the likelihood

equations, based on the observed data, when a closed form solution does not

exist. In the special cases where the rejects true status is estimated using

equation (6.1), the EM algorithm converges to the same parameter values that

are obtained from a model built on the accept sample (the proof of this is

analogous to approach 1 in Section 6.5.1). This means that the rejects do not

provide any information about class membership. This result is stated in Section

8.4.1 of Little and Rubin (1987):

"When a scalar outcome variable Y is regressed on p predictor variables
X1 , X2 . . . X,, and missing values are confmed to Y, the incomplete observations

do not contain information about the regtession parameters."

The result of this is that although the EM algorithm can be applied to our

problem of reject inference, it does not convey any advantage over simply

constructing a scorecard using the original accept sample. It is worth noting

that the EM algorithm could be useful in tackling a slightly different problem:

namely how to perform maximum likelihood estimation of model parameters

when characteristic information is missing for some of the applicants in the

sample. This is likely to be the case in practice, but we choose to avoid the

problem by creating an attribute called "no information".
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6.5.3 A Iikeihood based approach

In this section we provide a likelihood based argument to show that the

characteristic vectors for the rejects do not provide information about the

parameters of the observed data model, except when certain specific conditions

are satisfied. It should serve to clarify our view of reject inference in a

rigorous manner.

We begin by defining the terms we shall use.

Let Y be the observed good/bad indicator for the accepts,

Y be the unobserved good/bad indicator for the rejects,

Xa be the observed characteristic matrix for the accepts,

X,. be the observed characteristic matrix for the rejects,

b be the observed accept/reject indicator (0 for reject, 1 for accept),

and a,ft, y, 8 be parameter vectors for the indicated probability functions. (We

shall write all such functions as f(S), relying on their arguments to distinguish

them.)

The overall likelihood of the observed data is then given by:
L = f(},xa,Xr,b;a,f3,y,6)

=Jf(Ya,Yr,Xa,Xr,b;a,/3,r,5)dYr

= Jf(b l Ya, Yr, Xa, Xr; a)f(Ya, Yy, Xa, Xr;/3, y, 5) dYy	 (6.5.1)

The second term inside the integral in (6.5.1) is the full data model, which

describes how the data arises. The first term is the non-response model. It

corresponds to the classifier used to make the original accept/reject decision.

The parameter vector a can be regarded as constant, because it is fixed by the

original classifier. Despite this, the non-response model needs to be considered

because it affects estimation of the parameters in the data model through the

integration of (6.5.1).

We consider the non-response models corresponding to the three missing data

mechanisms described in Section 6.5.2.1.

(1) If the data are MCAR the non-response model factorises to give:
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f(bYa ,Yr ,Xa ,Xr ;a)= f(b;a)

(2) If the data are MAR the non-response model factorises to give:
f(bIYa ,Yr ,Xa ,Xr ;a) = f(bIXa,Xr(2)

(3) If the data are NI the non-response model does not factorise.

The MCAR case is not of further interest because it corresponds to the original

accept/reject decision being made independently of the rejects' characteristic

a1ues.

The NI case corresponds to the new classifier being constructed on a set of

characteristics which does not include all of the set used to make the original

classification. In this situation the observed data likelihood cannot be

factorised. It is not possible to obtain explicit maximum likelihood estimates

for the model parameters. In particular, the problem does not reduce to

estimating the parameters for the accepts data. Thus, a model built on the

accepts sample will be biased. This justifies the conclusion of Section 6.2.2.

The most common missing data mechanism for credit scoring data is MAR.

This occurs when all the characteristics used for making the original selection

are available for constructing the new scorecard. In this case the observed data

likelihood can be factorised to give:

L = f(bIXa,Xr;a)Sf(Ya,Yr,Xa,Xr;f3,r,5)dYr
= f(bXa,Xr;a)f(Ya,Xa,Xr;/3,r,3)

= f (bIXa ,X; a)f(} ,Xa e8, Y)f(Xr; 6) by independence

= f (bjXa ,X;.;a)f(1 af(Xa;Y)f(Xr;5)	 (6.5.2)

Given the data is MAR, we consider the implications of different assumptions

about the sampling scheme:

(1) When the sampling is conditional on x the functions f(X;y) and f(X;6)

are prespecified and so can be ignored for parameter estimation. As mentioned

above, the parameter vector a comes from the classifier used to make the
original accept/reject classification. Therefore, the term f(b JX ,X; a) can be

disregarded and the likelihood reduces to
Lf(1 lXa/3)
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This means that estimating the parameters of the observed data likelihood
reduces to estimating the parameters, fi, of the model for the accepts data.

This means that including the characteristic vectors for the rejects does not lead

to an improved scoring instrument.

(2) When sampling is from the overall mixture distribution and there is no

intersection between the parameter spaces for a,/3, ', 5 then the observed data

likelihood reduces to
L	 f(1 1X0;/3')

as in the above case. As before the characteristic vectors for the rejects do not

contribute to the parameter estimates. This sort of scenario is common in

practice and can occur when direct methods of estimating P(g I x), such as

logistic regression, are used with no assumptions made about the separate

distributions of goods and bads.

On the other hand, if we make assumptions about the distributional form of the

probability density functions for the good and bad applicants, P(x I g) and
P(x I b), then the parameter space spanned by ,8 intersects with the parameter

space spanned by y and 5. In this case the characteristic values for the rejects

contribute to the parameter estimation. This apparent gain in information

comes from the assumption of distributional forms for the goods and bads

separately. The reasonableness of these assumptions will determine the success

of this approach to reject inference. This mixture decomposition approach is

discussed in more detail in Section 6.5.4.

Our conclusion from this section, and one that has important implications for

developers of credit scoring systems, is that reliable reject inference is

impossible unless additional information is available or assumptions are made.

6.5.4 Method 4: the mixture decomposition approach to reject

inference

If one makes assumptions about the distributions of goods and bads separately,

P(x) g) and P(x b), and an indirect method of classifier design is used, then it is

possible to include the rejects in the parameter estimation to reduce bias of

models built on the accepts.
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As an example of this approach, suppose that one is using linear discriminant

analysis to build credit scoring models. Thus, we can assume that P(x I g) and

P(x I b) are normally distributed with population means p1 and 1u2 , and common

covariance matrix Z.

In the MAR case, the likelihood function is given by:

L = f(bIXa,Xr;ct)f(l'aIXa;/3)f(Xa;r)f(Xr;5)
= f(bIXa ,Xr ;a)f(Ya IXa)f(Y,6)

where f(X; ', 6) is the overall distribution of applicants (for accepts and

rejects).

We begin by showing that, as mentioned in the previous section, the parameter

space spanned by y and 8 intersects with the parameter space spanned by fi.

To see this we consider the two parameter spaces separately.

First, the parameter estimates of the discriminant function are:

= E(u1 —p2 )	 (6.5.3)

If we incorporate prior probabilities p = {P(g) ,P(b) } into the discriminant

function then the parameter vector fi =	 - p2),p}.

Secondly, we consider the parameter space for the overall distribution of

characteristics. Ignoring the parameter vectors, the appropriate distribution

function can be expressed as:

f(X; y,b) = f(x) = P(x I g).P(g) + P(x I b).P(b)	 (6.5.4).

Using this relationship we can express the parameter vectors y and 8 in terms

of the parameters p1 , p2 , and p. Thus, the parameter vectors r and 8

contain information about /3 = {	 (i's - i 2 ) p}.

Equation (6.5.4) gives a means of incorporating the characteristic vectors for

the rejects into the model to reduce the bias. The functionf(x) on the left hand

side of the equation can be estimated from the overall distribution of the

sample. Then, given assumed values for the population priors P(g) and P(b),

the parameters of the P(x I g) and P(x I b) distributions can be estimated using

the EM algorithm. They are chosen so as to minimise the difference between

the left and right hand sides of the equation. The parameters of these

distributions can then be used in the discriminant function (6.5.3). In this way
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the characteristic vectors for the accepts and rejects can be combined to

estimate the model parameters. For this approach to be valid, applicants must

be sampled randomly from the overall mixture distribution. If this is not the

case then the parameter estimates will be invalid (although if the sampling

mechanism can be described, it is possible to allow for it in the analysis).

Because the space spanned by 8 is a subspace of that spanned by y and 5, one

can find estimates of /3 (and hence P(g I x)) without knowing the true classes for

any of the applicants in the sample. Therefore, given assumed distributions for

P(x I g) and P(x b), it is possible to estimate P(g I x) throughout the

characteristic space using just the rejected applicants.

The mixture decomposition method is an appealing approach to reject inference

which attempts to make use of all available information. However, its relative

performance is dependent upon the reasonableness of the assumed parametric

forms for the data. Unfortunately, the assumption of multivariate normality

may not be realistic for credit scoring data. Furthermore, there does not seem

to be an appropriate parametric alternative.

One other disadvantage of the method (as described above) is that it is only

compatible with indirect methods of estimating P(,g I x). We conclude this

section by considering whether the approach can be adapted to apply directly to

the P(g Ix) functions. This would enable its application when methods such as

logistic regression are used for building scorecards.

The equivalent expression to equation (6.5.4) is
P(g) = $ P(gx)f(x)dx

The parametric form for P(g I x) in the logistic case is
1

P(gx)= 
(1+e)'

where ft is a vector of parameters.

In other words, we estimate /3 such that

P(g) = _____
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This problem is solvable in the special case when 5 consists of one parameter,

but not when the data is multidimensional. Therefore, this approach cannot be

applied to logistic regression in a general context.

6.6 Methods of reject inference that use supplementary
information

We have seen that the characteristic vectors for the rejects do not provide

useful information unless we are prepared to make extra assumptions, such as

the distributional assumptions considered in the last section. We now consider

other ways in which supplementary information can be incorporated into the

reject inference procedure.

In simple terms the problem of reject inference arises because there are regions

of the characteristic space where no information is available about true

creditworthiness (namely the reject region). The ideas considered so far have

mainly focused on building a model in the region we do have such information

(the accept region) and extrapolating the model over the reject region in some

way. This may perform well, but suffers if there are differences between the

good/bad probability structure of the two regions. Another appealing approach

that avoids this is to collect some information about the nature of the reject

region. The easiest way to do this is to collect a subsample of rejected cases.

The problem with doing this is that the proportion of bad applicants in the

rejected region is likely to be higher than in the accept region (assuming the

present method of screening is sensible) and each accepted bad applicant

represents a fmancial loss. Therefore, for this strategy to be profitable, the

saving made from the reduction of bad debt due to increased accuracy of the

new scorecard needs to be greater than the losses due to the bad loans among

the rejected applicants taken on.

For the rest of this section we will assume that supplementary information on

the rejects is available in the form of a calibration sample. The definition of a

calibration sample that we shall use is a subsample from a full population of

accepts and rejects that includes the good/bad definitions for the rejects. It will

be used to adjust the scoring instrument constructed on the accepts from a

current sample.
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We need to draw a distinction between two possible options that have different

implications for the use of the calibration sample: first, the calibration sample

may be randomly drawn from the same population as the new sample that we

are using for model construction and, secondly, the calibration sample may

come from some other source such as a sample collected in a previous year or

from a different product or geographical location.

In the first case the most obvious policy would be to combine the accepts and

calibration sample and use a direct method of estimating the P(,g I x) function,

such as logistic regression (we should not use an indirect method for the

reasons outlined in Section 6.4.1). In this situation the new accepts sample

may add little to the information contained in the calibration sample (depending

on the relative size of the two samples).

In the second case the above method may lead to a severely biased scorecard

because the calibration sample will not give a representative picture of the

population of interest. Therefore, a much more cautious use of the calibration

sample is necessary. This could begin with an examination of the accepts

portion of the calibration sample and a comparison with the new accepts sample

to identify similarities of the two samples and how to incorporate these into a

reject inference method. For the data that we were interested in a calibration

sample was available that had been collected in time periods previous to the

collection period for the current accepts sample. In the remainder of this

section we will devote our attention to the consideration of this case where the

calibration sample and new sample are from different populations. This is

likely to be the case in most practical applications.

We consider four methods of reject inference that use calibration samples. The

common theme is the assumption of various relationships between the

calibration sample and the new sample. These relationships are used in two

ways:

(1) To infer the performance of the rejects from the new sample and then

construct a new scorecard using the accepts with their true creditworthiness

and the rejects with their estimated goodThad probabilities
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(2) To adjust a model built on the new accepts using the differences between

the calibration sample accepts and the new sample.

6.6.1 Method 5

The first method that we consider here makes the least allowance for

differences between the new and calibration samples. It is an intuitively simple

procedure that has been developed and used in practice by the mail order

company supplying the data.

The basis of the method is the construction of a scoring rule on the calibration

sample and its subsequent use to infer good/bad probabilities for the rejects of

the new sample. The new accepts with their true classification and the new

rejects with their estimated good/bad probabilities are used to construct a new

scoring rule. This is a way of using the calibration sample to provide a more

informed extrapolation into the reject region.

The main weakness of the method is its dependence on the similarity of the

new and calibration samples. Rejects with similar characteristic vectors will

receive the same estimated goodlbad probabilities regardless of the type of new

sample that they come from. If the state of the economy had led to an overall

reduction in the level of bad debt in the new sample, this would not be

reflected in the estimated probabilities allocated to the rejects by the model

from the calibration sample. This provides a motivation to look for more

robust method of reject inference. Results of comparison with other methods

will be presented in Section 6.7.

Variants of this method are possible that make some allowance for the

differences between the two samples. One could provide good/bad probability

estimates for the rejects using inferences from models built on both the

calibration sample and the new accepts sample and combine these estimates in

some way.
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6.6.2 Method 6

This represents a new, and we believe original, approach to the problem of

reject inference. It involves the partition of previous complete data sets

(calibration samples) into sub-groups with particular properties. It is assumed

that there are a significant number of these calibration samples and that between

them they represent a variety of different good/bad probability structures that

will be encountered in practice. The aim of the method is to model the

relationship between P(g I x) in the accept and reject regions for different

samples. For a new sample with known class membership probabilities in the

accept region, the method provides estimates of P(g I x) in the reject region.

We outline in general terms the various stages involved in the construction of

reject inference models using Method 6.

The first stage of the method is the selection of suitable calibration samples.

One approach is to divide a sample up into the individual years in which it was

collected. This enables one to model how the relationship between

creditworthiness in the accept and reject regions changes over time (for a

discussion of population drift see Hand and Henley (1994)). Other ways of

obtaining these multiple calibration samples are to collect samples from

different geographical locations or for different products.

The second stage is to partition the calibration samples into accepts and rejects

using the original classifier that was used to partition the new sample. (It is

assumed that the original classifier is available along with the same range of

characteristics for each sample.) Characterising features of the P(g x)

distributions in both the accept and reject regions are then identified. This is

possible because the calibration samples include the true classes for the rejects.

The third stage is to model the relationship between the characterising features

of the accepts distribution and the rejects distribution. These relationships are

then used to map from the characterising features of the new accepts sample to

give predictions of the characterising features for the new sample rejects.

These predictions of the characterising features map to give estimates of P(g I x)

for the new rejects. A classifier can then be constructed using the new accepts

with their true class and the new rejects with their estimated P(g x).
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P(glr)

6.6.2.1 A simplified application

We consider a simplified application of the general procedure outlined above in

order to gain insight into the potential of the method for reject inference. It is

assumed that there are few enough cells (combinations of attributes for all the

characteristics in the model) to use the proportion good in a cell as the

characterising feature of the accept and reject distributions. (In practice we will

need to use more subtle summarising statistics, such as low order log-linear

models. This issue is addressed in more detail in Section 6.6.2.2.). There

follows a general outline of the method, given the above assumption, followed

by the results of applying it to a simple data set.

Suppose that we start with n calibration samples. Each can be represented by a
point in the space spanned by PA and PR where PA is the vector of p (good)

values, with i ranging over the cells in the accept region, and PR is the vector

of p1 (good) values, with i ranging over the cells in the reject region. In other

words, we could plot a point for each calibration sample in r-dimensional

space, where r is the total number of accept and reject cells. Figure 6.10

shows such a plot in the trivial case where there are only two cells: one reject

cell and one accept cell. The vertical axis shows the predicted probability of an

applicant in the reject cell being good and the horizontal axis shows the

corresponding probability estimate for the accept cell. The "o"s represent

different samples.

P(ga)

Figure 6.10: A hypothetical example of the relationship between

P(g I x) in the accept and reject regions for different calibration

samples.
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The next step is to fit a model (by a multivariate regression or a series of

multiple regressions) to the n points in r-dimensional space. This gives the

fitted curve shown in Figure 6.10. Using this model we can predict the

good/bad probabilities for the reject cell(s) from just an accept sample. By

doing this we obtain predicted probabilities of class membership for all the

rejects in the design set. A new scorecard is then constructed using the accepts

sample with their true status and the rejects with their predicted good/bad

probabilities. We calculate a new acceptance region and could then iterate the

process by obtaining updated good/bad probability estimates for those original

rejects that are in the reject region of the new scorecard and so on.

This procedure was applied to a simple data set and a comparison was made

with the results from extrapolation. The data set consisted of a calibration

sample with 2189 applicants from two classes and a new sample with 3741

applicants again from two classes. (The new sample included the true status of

the rejects so that we could compare our predictions with the true values).

Although 26 characteristics were available, only two were used (each with three

attributes) to keep the analysis simple. As a result there were nine possible

cells of which eight were accept cells and one was a reject cell. The reject cell

was selected under the criterion of lowest weight of evidence within each of the

two characteristics used. In this example we have only considered one reject

cell to avoid having to predict a vector of responses.

The calibration sample was split into ten sub-samples by splitting on one of the

characteristics excluded from the analysis that related to geographical location.

This gave us ten calibration samples with between 71 and 399 applicants in

each one. These calibration samples were used to construct a linear regression

model to predict the proportion good in the reject cell from the proportion good

in the accept cells. This regression model was then applied to the accept cells

of the new sample to give a prediction of the proportion good in the reject cell.

Table 6.9 shows the results of Method 6 and extrapolation together with the

true proportion good in the reject cell.
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_______________ P(g reject)

True	 0.27

Method 6	 0.29

Extrapolation	 0.1

Table 6.9: The predicted proportion good in the reject cell for

extrapolation and method 6.

The results shown in Table 6.9 indicate that extrapolation severely

underestimates P(g I reject) for this set of characteristics. In contrast, Method 6

provides an accurate estimate of the true proportion good. The procedure was

repeated several times using a different two characteristics selected from the 26

available each time. The results for Method 6 were found to be consistently

closer to the true values than the extrapolation results. However, in some cases

the results for Method 6 and extrapolation were very similar.

We conclude from this simplified analysis that information about the reject

region contained in calibration samples can be used to provide more accurate

estimates of the true proportion good. However, two outstanding issues remain

to be resolved in order to allow practical implementation of the method.

First, the method requires access to enough samples to represent adequately the

feature space for P(g accept) and P(,g I reject). Our calibration sample does not

have natural sub-groups so it is necessary to split on characteristics which are

not included in the analysis.

Secondly, there is very high dimensionality of both PA and PR It is not

possible to ignore the problem because there are 2T cells for r binary

characteristics and so the number of cells soon becomes unmanageable. One

approach to solving the problem is to use shrinkage techniques. Another

approach, which we adopt in Section 6.6.2.2, is to replace PA and PR by PA

and PR predicted from a model and work with the parameters of the model. A

similar approach would be to work with applicant scores (on the initial

scorecard) rather than individual cells. This would be a way of grouping

together cells with similar properties (the r-dimensions would be the total

number of possible scores on the initial scorecard and this number can be

controlled).
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6.6.2.2 A second comparison of method 6 with shnple extrapolation

We now address the second problem outlined above through a second

comparison experiment of Method 6 with extrapolation. We consider the

performance of the two reject inference methods for different numbers of

characteristics (up to a maximum of six) and compare the accuracy of the

predicted P(g I x).

The data used in the analysis consisted of the calibration sample split into

eleven sub-populations according to a characteristic, "media code", which was

not used in the classifiers. "Media code" describes the media through which an

applicant applied for credit (e.g. newspaper adverts, mailed offers). Six

characteristics were selected for inclusion in the experiment by building a

stepwise regression model. The characteristics were used in weights of

attribute form and are shown below:

(1) A decision tree combining several characteristics related to previous

credit history (14 attributes)

(2) A characteristic combining time at address with postcode (10

attributes)

(3) Weeks since last default with other retailers (7 attributes)

(4) Postcode groups (40 attributes)

(5) A characteristic related to previous mail order experience (4

attributes)

(6) Time on electoral role (6 attributes)

An independent classifier was used to identify the accept and reject regions of

the different calibration samples. The rejects account for 22 % of the full

sample.

To avoid the problem of having too few applicants in each cell to estimate

accurately the proportion of goods in that cell, it was decided to work with

parameters of a model. To further simplify the analysis each of the reject

parameters was estimated separately from the accept parameters rather than

using a multivariate method. Specifically logistic regression models were

constructed on the accepts and rejects for each of the eleven sub-populations in
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the analysis sample. Each of the reject parameters was then regressed linearly

on the accept parameters to provide a model predicting the reject parameters

from the accept parameters. These estimates of the reject parameters can be

used together with the weights of evidence to provide predicted good/bad rates

for the reject cells/applicants.

The extrapolation approach involved building a scoring instrument on the

accepts portion of the full calibration sample using logistic regression.

Estimates of the good/bad probabilities for the rejects were then obtained by

extrapolation.

Two independent test sets were used to validate the results: a hold-out sample

from the same population as the calibration sample and a hold-out sample from

the same population as the new sample. Performance was assessed by

considering two measures of discriminabiity and one measure of reliability for

applicants in the reject region (see Chapter 5). The first measure of

performance was the average probability assigned to the true class given by:
A=1In	 P(c7!x1),

where x is the characteristic vector for applicant i and c1 is the true class of

applicant i. A suitable measure of reliability, based on this discriminatory

measure, is given by:
B=l/n	 (2P(c1Ix1)-1)P(cIx)

The second discriniinabiity measure we consider is
C=1In	 (I(x1)-P(gx1)) where 1(x1) is 1 if applicant i is good

and 0 otherwise. A classification rule is achieving good discriminabiity if

measure A has a high value and measure C has a low value. Reliability

measure B tells us how accurately the system is predicting the true good/bad

rates in the reject cells. A value close to zero indicates good reliability.

In this comparison experiment we place particular emphasis on the reliability of

a classification rule. This is to gain insight into how accurately Method 6 can

predict P(g Ix) for the rejects. The aim of this experiment is to explore the

properties of Method 6 rather than provide a practical classification rule. (In

practice our aim is to achieve maximum discriminabiity through minimising

the bad rate amongst the accepts.)
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The procedure described above was carried out for three, four, five and six of

the selected characteristics in turn, and the three performance measures were

calculated for the two validation samples in each case. The results are shown in

Table 6.10. Si refers to the hold-out sample from the full calibration sample

with 839 rejects and S2 refers to the new sample with 102 rejects. The

number in brackets refers to the number of characteristics included in the

analysis. The column headings consist of the letter of the performance measure

followed by an abbreviation of the method name in brackets ("M6" stands for

Method 6 and "extra" for extrapolation).

A	 A	 B	 B	 C	 C

S1(3)	 0.591	 0.605	 -0.007	 -0.026	 0.208	 0.211

S2(3)	 0.591	 0.596	 -0.019	 -0.062	 0.214	 0.233

S1(4)	 0.594	 0.570	 -0.016	 -0.064	 0.211	 0.247

S2(4)	 0.614	 0.619	 -0.046	 -0.044	 0.216	 0.212

S1(5)	 0.606	 0.580	 -0.022	 -0.068	 0.208	 0.244

S2(5)	 0.622	 0.629	 -0.084	 -0.050	 0.231	 0.210

S1(6)	 0.650	 0.591	 -0.114	 -0.050	 0.232	 0.229

S2(6)	 0.472	 0.629	 -0.101	 -0.043	 0.314	 0.207

Table 6.10: The results of the second experiment to compare Method 6 with

extrapolation.

Several comments can be made about the above results:

(1) The values of measure B remain approximately constant for the

extrapolation method as the number of characteristics increase, whereas there is

a sharp deterioration in reliability for Method 6. One reason for this

deterioration is that as the number of dimensions increases, the number of

predictors in the regression of the reject parameters on the accept parameters

increases towards the number of cases (equal to the number of calibration

samples). However, Method 6 has a lower reliability score than extrapolation

when only three characteristics are used.
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(2) The discriminability measures A and C show that Method 6 and

extrapolation give similar discrimination between the goods and bads in the

reject region across samples and numbers of characteristics. However, there is

a significant drop in performance for Method 6 with 6 characteristics using

Sample S2.

(3) This experiment has illustrated the difficulty of trying to pick suitable sub-

populations to model the accept and reject feature spaces. The calibration

sample was split by media type, which is one of the characteristics not usually

used in the analysis, and although there was a range of different bad rate values

across the various sub-populations, it was not possible to get an adequate

representation of the relationship between the accept and the reject bad rates.

This is borne out by the end results.

(4) The version of Method 6 described in this comparison did not involve a

multivariate technique for predicting the reject parameters from the accept

parameters. It is appropriate to use a regression which allows for multiple

response variables in order to take into account the covariances between them.

We carried out a further analysis using a canonical correlations analysis.

However, the resulting canonical variates were non-significant. This is

probably because the calibration samples do not give an adequte representation

of the feature space as mentioned in (3). Furthermore, the number of

observations (calibration samples) may be insufficient.

(5) Inaccurate 3 values estimated from a small calibration sample can detract

from the effectiveness of the method. Therefore, it might be more appropriate

to use a weighted linear regression to model the relationship between the

parameter estimates for the accept and reject regions.

6.6.2.3 Conclusions

Despite its theoretical appeal, Method 6 is difficult to implement effectively. In

particular we can identify several considerations that need further attention.

First, it is difficult to fmd ways of splitting the data into distinct populations

that give a suitable representation of the feature spaces for P(g (x) in the accept

168



and reject regions. If the data does not come in readily identifiable sub-

populations then the best option appears to be to split on the attributes of a

characteristic that is not needed in the analysis.

Related problems are the need to have sufficient numbers of applicants in each

calibration sample to enable accurate estimation of the characterising features,

and the need to have sufficient numbers of calibration samples to enable a

suitable mapping to be set up. Further work is needed to identify a method of

balancing these conflicting aims.

We have seen that Method 6 can perform well in low dimensions where the

number of reject cells is small. However, as the number of dimensions

increases performance deteriorates rapidly. More work is needed on the

identification of characterising features in high dimensions. There are two

main problems with using regression parameters (as in experiment 2): first, the

individual parameters are not robust. This is because they do not represent the

individual relationship of one characteristic with creditworthiness. Secondly,

because the parameters represent the combined relationship between the

predictor variables and creditworthiness, it is necessary to use a multivariate

technique to estimate the relationship between the accept and reject parameters.

6.6.3 Method 7

We have seen that there are situations in which an extrapolation approach can

provide a good scoring instrument for the full applicant population. The factors

that effect this strategy were considered in Sections 6.2 and 6.4. However, the

assumption that a model will extrapolate accurately into the reject region is

risky unless some information is available about the structure of P(,g x) in this

region (such as a calibration sample). The characteristic space has been split

into accept and regions because we believe there to be fundamental differences

between them. Thus, there are questions as to the legitimacy of an

extrapolation approach. This argument has been used to justify the approaches

to reject inference described in the literature (see Section 6.3). We propose a

new approach, which we believe to be original, that requires a single

calibration sample. The aim of Method 7 is to use the information contained in
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the calibration sample to adjust a model built on the new accepts to reflect the

influence of the rejects.

As mentioned earlier, if the new and calibration samples are from the same

population it is appropriate to take a "pseudo-Bayesian" approach to reject

inference, where the calibration sample represents subjective information about

the model parameters. It can be shown that this is equivalent to combining the

two samples and constructing a scoring instrument on the enlarged sample (we

refer to this as Method ES below). Method 7, like Method 6, is designed for

the more general situation where the two samples may come from different

populations. The one assumption that we make is that the relationship between

P(g Ix) in the accept and reject regions will remain constant for different

populations of credit applicants. Although similar in concept to Method 6,

Method 7 does not require the existence of suitable calibration samples to span

the set of characterising features. It also has an appealing and intuitive concept.

The first stage is to construct a scoring instrument on the new accept sample.

Then the calibration sample is split into accepts and rejects using the classifier

that was used to make the original accept/reject decision. We construct two

scoring instruments on the calibration sample: one on the full sample and one

on the accepts portion. These two models will differ to some extent due to the

factors affecting the performance of extrapolation. Method 7 uses this

difference to adjust the scoring instrument built on the new accept sample.

Figure 6.11 shows the principle behind the method in the simplified case where

only one characteristic is available. The relationship between the accept and

full curves is the same for the calibration and new samples even though the

appropriate model form changes from a straight line to a curve.

New (A)

New(Fl...........................
P(gx)

Caj

Caj'

x

Figure 6.11: A hypothetical example where Method 7 can adjust the
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model for P(g I x) on the new accepts to take account of the difference

between the full and accept calibration samples.

An important part of the method is the selection of an appropriate

transformation to represent the difference between the models built on the full

and accept calibration samples. We describe a simple first approach. Logistic

or linear regression models are constructed for the new accept sample and the

accept and full calibration samples. This gives sets of regression coefficients

13N4' fi and /3CF• The relationship between the coefficients for the calibration

sample, I3CA and /3CF' can be described through a simple diagonal matrix M with

entries given by the ratio of the /3C4 to the fl . This matrix can then be used to

give an estimate of the regression coefficients for the full new population, M/3NA.

(The regression coefficients serve a similar function to the characterising features

of Method 6.)

Many other adjustment schemes are possible. Graphs of the f values for the

full and accept calibration samples can be used to suggest suitable

transformations. We summarise some simple transformations:

(a) 13CF = M fl. The fl are estimated by fl = M /3N4• In the simplest

case M is a diagonal matrix of constants.

(b) I3NA = N /3. The /J are estimated by fi = N/3cF . In the simplest

case N is a diagonal matrix of constants. It can be shown that (a) and (b) are

equivalent if MN NM.

(c) Fitting a simple one-dimensional regression model /3CF	 a fi + error,

where the values (ft, fi) are considered as observations from a bivariate

sample.

We carried out a comparison experiment of Method 7 with Method ES. The

samples used were a calibration sample (3102 cases with 2213 accepts) and a

new sample (27000 cases with 18801 accepts). A crude classifier constructed

on an independent sample was used to split the two samples into accepts and

rejects.
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Linear regression models were constructed on each of the relevant samples and

the diagonal matrix M, as defined above, was calculated. This transformation

was used to provide estimates of the linear regression coefficients for the new

full sample. This adjusted model was then used to classify an independent test

sample of 7189 applicants from the same population as the new sample. The

analysis was carried out using 12 and 15 characteristics.

The range of samples/methods used to construct classifiers are described below:

(1) The full calibration sample and full new sample. This sample includes the

reject data for the new sample (with true status known) and so is not a realistic

option. It was included for completeness.

(2) The full calibration sample and the new sample accepts (Method ES).

(3) The full new sample. As with approach (1) this is not a practical option.

It was included to provide a hypothetical target for the reject inference

methods.

(4) The new accepts sample. This is the extrapolation approach.

(5) The full calibration sample. This is a possible option for reject inference,

but one that does not take any account of differences between the new and

calibration samples.

(6) Method 7 was used to construct the scorecard with the transformation given

by the diagonal matrix M.

(7) Method 7 was used to construct the scorecard with the transformation given

by (c) from above (where the regression coefficients for the full calibration

sample are regressed on the coefficients for the calibration accepts sample).

Table 6.11 shows the proportions of bads at a 70% acceptance rate for the

different approaches.
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Sample/method	 12 characteristics 15 characteristics

1: C(A+R), N(A+R) 20.07	 20.36

2: C(A+R), N(A)	 20.67	 20.59

3: N(A+R)	 20.69	 20.63

4: N(A)	 20.77	 20.77

5: C(A+R)	 29.42	 26.66

6: Method 7 (a)	 21.12	 21.10

7: Method 7 (c)	 21.38	 21.25

Table 6.11: A comparison of classification performance for Method 7

and the Bayesian approach to reject inference.

First, the classifier built on the full calibration sample (approach 5) performs

very badly relative to the other methods. In fact, it hardly performs better than

a random classifier, which would have an expected bad rate of 31.12%. This

result suggests that there are fundamental differences between the calibration

sample and the new sample. Despite this factor Method ES performs better

than Method 7.

The second striking feature of the results is that, leaving aside sample/approach

(5), the classifiers produced give similar bad rates. This suggests that reject

inference is unnecessary for this data set and that the most suitable approach to

constructing classifiers is extrapolation.

Unfortunately, Method 7 does not perform well in this comparison given the

simplistic assumptions made. It may be that differences between the full and

calibration samples were such as to make the method unworkable. If the

differences between samples are due to truncation or bias in the calibration

sample then it may not be reasonable to expect the relationship between accepts

and rejects to be the same in the two samples. This was a fundamental

assumption of Method 7. (Alternatively, if the difference between the new and

calibration samples is due to a shift in the nature of the applicant population

over time, then it may still be reasonable to expect the relationship between the

accept and reject samples to remain stable.)

We have used regression coefficients as characterising features of the accept

and reject distributions. If one of these coefficients is estimated inaccurately
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(perhaps it is close to zero) by the accepts calibration sample then this will give

an unstable transformation matrix (M). This causes distortion in the

coefficients for the new sample. Further work is needed on the identification of

more complex and realistic transformations. One could weight the regression

coefficients according to the amount of confidence that one has in them. A

comparison of coefficients for different samples would give an impression of

the stability of different coefficients.

A second weakness of using regression coefficients as characterising features

arises because credit scoring characteristics are highly correlated. This results

in unstable coefficients making it very difficult to identify suitable

transformations. We could look for alternative characterising features to assess

the differences between the calibration and new samples. One way to avoid this

problem is to include a window in the transformation that determines the

maximum deviation from the original coefficient to the new predicted value.

This would reduce the influence of individual characteristics and help to

provide a more robust transformation.

In contrast, Method ES performs robustly in this experiment. It achieves

comparable performance to extrapolation and a classifier built on the full new

sample. Because the new sample is relatively larger than the calibration

sample, the distorting influence of the calibration sample is reduced.

In conclusion, we have presented a general approach to performing reject

inference with a calibration sample. We assessed a simple version of the

method and found that it did not compete with extrapolation and Method ES.

However, this was partly due to the limitations of the data available and the

sensitivity of the method to our choice of characterising features.

6.6.4 Method 8 - the mixture-decomposition approach

In Section 6.5.3 we demonstrated that extra information or assumptions are

needed if use is to be made of the rejects' characteristic vectors. One such

approach that we considered in Section 6.5.4 was to assume distribution forms

for P(x g) and P(x I b). The parameters of these distributions are estimated by

comparing their mixture distribution with the empirical distribution of f(x). If
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the true status of some of the applicants is known then this can be used to

improve the estimate, although this is not an essential part of the method.

The weakness of the mixture decomposition approach is that there may not be

suitable parameterized distributions for the data. In particular, the assumption

of multivariate normality is unrealistic for the credit scoring problem. If we

were to use the new accept sample to identify suitable class conditional

distributions, the sample truncation might result in the selection of inappropriate

distributions for the reject region. Method 8 avoids this problem by using the

calibration sample to select suitable families of distributions for P(x g) and

P(x I b). The parameters of these distributions are then estimated using the

approach described in 6.5.4. This is a much more modest use of the calibration

sample than adopted by Methods 6 and 7. This approach has not been tested in

practice.

6.6.5 The utilisation of foresight data

So far in this chapter we have considered two sources of additional information

to aid the reject inference process: distributional assumptions and a calibration

sample including the true status of the rejects. In this section we introduce a

novel form of data that is sometimes available in practical situations and can be

used in a reject inference procedure. It is called foresight data and involves

information that becomes available on applicants in a data sample after their

application is made (and before the model building procedure is carried out).

This information might include notification of a county court judgement for

non-payment of another debt or a default with another credit grantor.

The foresight data cannot be incorporated into a scorecard as a standard

characteristic because it is never available at the time an application is made

(hence the name foresight data). For this reason it is never normally of use to a

credit system developer. However, it is a reasonable assumption that the

behaviour described by the foresight data, such as defaulting with another

company, is highly relevant to the future performance of the applicant. In

other words the information may be highly predictive of an applicant's

creditworthiness. This motivated the idea that foresight data could be used in
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the reject inference procedure to help predict the true status of the rejects and,

thus, to allow improved scoring rules to be developed.

Two methods of reject inference which use foresight characteristics are

presented.

Method 9

This method is a simple extrapolation approach and does not require a

calibration sample. The procedure is to build a scoring instrument on the new

accepts sample using foresight and historical data (historical data is the normal

data that is available at the application stage). This can then be used to infer

the true status of the rejects in the sample. A new scoring instrument is then

constructed from the accepts with their true status and the rejects with their

estimated good/bad probabilities. The aim is that by using the foresight data

we obtain more accurate estimates of the true status for the rejects and thus are

able to build improved scorecards. Of course, as already discussed, if we did

not use foresight data to infer the status of the rejects then the parameter

estimates for the new scorecard would be unchanged from the original ones.

Method 10

This method is a variant of Method 5 considered in 6.6.1 and requires access to

a calibration sample. The procedure is to build a scoring instrument on the

calibration sample using historical and foresight data and infer good/bad

probabilities for the rejects. This model should provide more accurate

estimates of the true status of the rejects than the accepts model used in Method

9. As before, a new scorecard is constructed from the accepts with their true

status and the rejects with their estimated probabilities.

6.7 A comparison of reject inference methods

This section describes a comparison of some of the reject inference methods

considered in this chapter. We applied the techniques to a real data set used for

scorecard construction in order to get an idea of their practical feasibility.

176



The data set used in the comparison consisted of three samples: a calibration

sample (Sample A), a "new" sample (Sample B) and a sample from a future

time period (Sample C). One of the limitations of the analysis is that Samples

A and B were drawn from the same population, which would be unlikely in

practice. Sample B is meant to represent the current sample used for scorecard

development for which the rejects' true status is unknown. Sample C

represents a sample from the population of future applicants. In practice it is

the performance of a scorecard on this sample that is most important. The

sample sizes for Samples A, B and C are 8000, 24000 and 4000 respectively.

A hold-out sample was taken from each of Samples A and B in order to assess

the reject inference methods.

The seven methods of analysis are described briefly:

(1) A scorecard was constructed on the calibration sample using linear

regression and historical data only.

(2) The scorecard from (1) was used to infer good/bad probabilities for

the rejects from Sample B. A new scorecard was then developed from

the Sample B historical data using the rejects with their inferred

good/bad probabilities and the accepts with their true status (reject

inference Method 5 from 6.6.1)

(3) A scorecard was developed on the calibration sample using

historical and foresight data. This scorecard could not be used in

practice because foresight data would not be available for new

applicants, but it does provide an indication of the predictability of the

foresight data.

(4) The rejects from Sample B were allocated good/bad probabilities

using the scorecard from (3). A new scorecard was then developed

from the Sample B historical data using the rejects with their inferred

good/bad probabilities and the accepts with their true status (Method 10

from Section 6.6.5).
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(5) A scorecard was constructed on the Sample B accepts and this was

used to infer good/bad probabilities for the Sample B rejects. A new

scorecard was then developed from the Sample B historical data using

the rejects with their inferred good/bad probabilities and the accepts

with their true status (Method 9 from Section 6.6.5).

(6) A scorecard was developed on the Sample B accepts (extrapolation)

The fmal scorecards constructed by each method were applied to Sample C and

the hold-out samples from Samples A and B with acceptance rates of 50% and

70%. The resulting bad rates are shown in Table 6.12.

________ Sample A	 Sample B	 Sample C

Accept	 Rate	 Accept	 Rate	 Accept	 Rate

Method 50%	 70%	 50%	 70%	 50%	 70%

(1) 12.22	 19.22	 12.39	 19.64	 8.39	 13.94

(2) 12.78	 19.77	 12.19	 19.71	 8.14	 14.14

(3) 6.77	 16.10	 7.73	 16.41	 3.99	 9.27

(4) 12.70	 19.64	 12.17	 19.61	 8.36	 14.07

(5) 14.04	 20.24	 13.48	 20.24	 8.86	 14.37

(6) 13.72	 20.88	 13.06	 21.06	 8.82	 14.49

Table 6.12: Bad rates at 50% and 70% acceptance rates for various methods of

reject inference.

For reference a scorecard was built on the full Sample B (including the true

status for the rejects) and validated on the hold-out part of Sample B. This

gave bad rates of 12.11 and 19.30 at acceptance rates of 50% and 70%

respectively. Theoretically this should be the best scorecard when tested on

Sample B (which by a narrow margin it is). This serves as a convenient

baseline against which to compare the other results.

There are several points of interest that arise from the results:

First, when considering Sample B we see that there is little difference between

the bad rates from approaches (1), (2) and (4). These methods all have in

common the use of a calibration sample. They are all significantly better than
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the results of extrapolation (method (6)). Thus, for this data set, reject

inference is necessary and the use of a calibration sample can produce improved

results. The limitation of this result is the inherent similarity between the

calibration sample and the new sample.

Secondly, we compare the bad rates for methods (5) and (6). For all three

samples the extrapolation method does better at the 50 % acceptance rate and the

foresight data method performs better at a 70% acceptance rate. In order to

investigate this phenomenon we plotted bad rate against acceptance rate to give

the plot shown in Figure 6.12. This shows that the bad rate curve for Method 6

is below the corresponding Method 5 curve for low acceptance rates and above

it for higher acceptance rates. The crossover point occurs when 56% of the

sample are accepted.

Looking at the results of using the foresight data in method (3) shows that this

data is highly predictive of creditworthiness. The difference between methods

(1) and (3) is purely attributable to the foresight data. This difference is far

higher than the difference in bad rates between using the full and accept

samples (method (6) compared to the results for the full Sample 13). This

would lead us to expect that the foresight data would allow more accurate

prediction of the true good/bad probabilities for the rejects. However, this does

not lead to an overall improvement in the predictive accuracy of the model

because method (2) and method (4) do not lead to significantly different results.

This is a disappointing result.

The explanation is that method (2) is already performing at the same sort of

level as a model built on the full sample (our baseline) and so there is no room

for an improvement in the bad rate. This result illustrates that new data is more

likely to lead to an improvement in bad rate than a new statistical technique.

6.8 Conclusions

Reject inference is the process of inferring the true creditworthiness of rejected

applicants for credit. One important reason for needing reject inference is to

reduce the sample selection bias that results when a scorecard is constructed

using a sample of accepted applicants. We provided an in-depth study into the
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nature of the bias and identified several factors which contribute. In particular,

we pointed out the necessity of including all the characteristics used to make the

original accept/reject decision in the new classifier.

We considered the performance of simple extrapolation methods for reject

inference. The success of this approach was seen to depend upon the adopted

approach to classifier design: direct methods of estimating P(g Ix), such as

logistic regression, are much less susceptible to introducing bias than indirect

methods such as discriminant analysis. Comparison experiments with more

sophisticated reject inference methods showed that extrapolation is surprisingly

robust.

We reviewed models proposed in the literature which attempt to use the

characteristic vectors for the rejects. A likelihood based approach was used to

show that this approach cannot lead to improved parameter estimates unless

additional assumptions are made about the class conditional distributions.

A third class of reject inference models was described which makes use of

additional information in the form of a calibration sample. These are samples

which include the true creditworthiness of the rejects, but may not come from

the same population as the current sample. Four methods of using this

information were described. In some circumstances these methods were found

to reduce the bias of extrapolation methods.

To conclude, we assert that reliable reject inference is impossible. In

particular, there are three ways in which the performance of an extrapolated

model can be improved:

• Chance. The new classifier may be better than the old one by luck

• The use of additional information/assumptions. Two possible approaches

are the assumed distributional forms included in the mixture decomposition

method, and information about P(,g I x) in the reject region in the form of a

calibration sample.

• Ad hoc adjustment of the accepts class jfier. Expert knowledge of the data

may allow the adjustment of parameter estimates in a direction likely to reduce
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bias. For example, if a characteristic receives insufficient weighting in a

scorecard built on the accepts, it might be possible to reduce bias in the

classifier by multiplying the attribute scores by subjective weights.
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PART 3

Approaches to classifier design
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Chapter 7

A comparison of classification techniques for credit
scoring

7.1 Introduction

One aspect of building credit scoring models is the selection of appropriate

classification techniques. In this thesis we restrict attention to identifying

techniques suitable for discriminating between two populations: the good and

bad classes. There are many techniques that have been applied to this problem

including discriminant analysis, linear regression, logistic regression and

decision trees. More recently other techniques, such as neural networks and

genetic algorithms, have been the subject of much interest in the credit industry

(see Chapter 4 for a review).

The aim of this chapter is to provide an empirical comparison of a range of

classification techniques for credit scoring using a real data set. We divide the

discussion into three parts:

(1) In Section 7.2 we focus on a comparison of linear and logistic regression,

because of their popularity with credit grantors. This is largely due to their

widespread availability in statistical software packages. In Section 7.2.1 we

describe why consumer credit data often violates some of the distributional

assumptions required by linear regression. In Section 7.2.2 we describe logistic

regression, a parametric alternative to linear regression which is more

appropriate for binary response data. An empirical comparison considered in

Section 7.2.3 provides a surprising result: although the logistic regression

classifiers give consistently better performance, the differences are not

significant using either of the tests of relative performance discussed in Section

5.3. An explanation for this phenomenon is proposed, based upon the slope of

the surface of P(g Ix). To assess the nature of any differences we explore how

the relative performance changes with acceptance rate and the robustness of the

parameter estimates.
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(2) In Section 7.3 we extend the comparisons to include other classification

techniques that are popular in the statistical literature, but have not been widely

applied to the credit scoring problem: projection pursuit regression (see Section

4.6.3) and Poisson regression (see Section 4.7). We also consider decision tree

and decision graph classifiers (see Section 4.9). Throughout this chapter we

use the performance of linear regression as a baseline for the other methods to

beat. Our finding, in line with earlier studies described in Section 3.2, is that

linear regression is surprisingly robust to departures from the required

distributional assumptions.

(3) In Section 7.4 we assess how the relative performance of the classification

methods changes with the defmitions of credit default. In particular, this

enables us to address the problem of identifying fraudulent applications for

credit, an issue of interest to many credit grantors.

In Henley and Hand (1995) we present our conclusions on the selection of

classification techniques for credit scoring. We state that sophisticated and

sensitive use of any method will lead to performance near the optimum. We

also believe that because the relationships between credit characteristics are

often monotonic, if not quite linear, the performance of basic statistical

methods, such as linear and logistic regression, will be difficult to improve

upon.

7.2 A comparison of linear and logistic regression

7.2.1 Linear regression

Linear regression has traditionally been used for building scorecards because of

its conceptual simplicity and the widespread availability of statistical software

with linear regression routines. The fitted model is given by:

E(yI)=flo+fi]x]I+...fikx (7.1)
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where y, = 0 if the ith applicant is bad and y1 1 if the ith applicant is good.

Here x11 represents the attribute value of the jth characteristic of the ith

applicant. The parameters /3 are estimated by the method of least squares.

The predicted E(y1 ) from the model can be interpreted as the predicted

probability of the ith applicant being a good risk. To see this we note that if p,

is the probability of the ith applicant being good, then

E(y)=l.p1^O.(l—p1)=p.

It can also be shown that linear regression is equivalent to discriminant analysis

when only two groups are used (Leonard (1988), Orgier (1971)). We discussed

linear discriminant analysis in Section 4.1.1 and highlighted why it may be

inappropriate for building credit scoring models. The related problems of using

linear regression to construct credit scoring models are discussed in more detail:

(i) For binary response data a suitable distribution for the ith observation, y1,

is the binomial distribution with parameters n. =1 and p. This means that Var(

y1) = p.(1-p1 ). Thus, the variance of the observed values is not constant and

depends on the unknown p 1 . This breaks one of the distributional assumptions

of linear regression. The problem can be tackled by using a variance stabilizing

transformation or using iteratively weighted least squares to estimate the

parameters.

(ii) One of the assumptions of linear regression is that the response variable

(and the residuals) are normally distributed. For the reasons mentioned in (i)

this is not appropriate for credit scoring data. This assumption is only

necessary for tests of significance of individual coefficients and goodness of fit

of the model.

(iii) Because the estimated parameters fl are unconstrained, the estimated

values of p, are not constrained to lie in the interval [0,1]. Thus, it is

inappropriate to use a linear model to predict p. This type of probability

surface is better approximated by a sigmoid function.
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7.2.2 Logistic regression

For the reasons outlined above, linear regression is not a theoretically

appropriate method for constructing credit scoring models. There are several

types of model that are more suitable for binary response data including logistic

regression and probit analysis (see Section 4.7 for a discussion of generalized

linear models). They involve transforming the probability scale for the

response variable and then fitting a linear model to the transformed values.

In this section we focus on logistic regression because of its widespread use in

the credit industry. Furthermore, unlike the probit transformation, logistic

regression has a direct interpretation in terms of the logarithm of the odds in

favour of being a good. The fitted model is given by:

log(p1 /l—p1 )= fl0 +fllxi+...flkx	 (7.2)

where the parameters p 1 , x,, and /3 are defmed as for linear regression.

The logistic regression model satisfies the criticisms of the linear regression

model: first, the response is assumed to be binomially distributed; secondly,
the model constrains p. to lie between 0 and 1 and, thirdly, the curve of

logit(p1 ) against p7 is sigmoid and symmetric about p. = 0.5. (However, we

note that the curve is essentially linear between for 0.2 <p <0.8).

Titterington (1992) highlights two difficulties of using logistic regression to

build credit scoring models:

(1) There is no explict formula for the ML estimates. As a result it is

necessary to use a numerical optimisation algorithm such as the Newton

Raphson algorithm or the method of scoring (see Dobson 1983).

(2) There is no standard software routine for building a logistic model in the

case where the response (creditworthiness) is assumed to lie on a continuous

scale.
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Despite these minor considerations one might expect logistic regression to

outperform linear regression in the credit scoring domain.

7.2.3 Empirical comparisons of linear and logistic regression

The full sample used in this study is summarised in Table 7.1:

Number of Number of Number of % of bads in

variables	 classes	 cases
	

full samole

Full sample 116	 2
	

19186
	

54.54

Table 7.1: A description of the data set used for assessing the relative

performance of linear and logistic regression.

The sixteen characteristics available in the sample were pre-selected from a

larger set using the combined set of most predictive characteristics from

stepwise linear and logistic regressions.

In this study the bad rates resulting from the linear and logistic regression

models are compared using an extension of the hold-out method (see Section

5.2.1.1). This involves repeatedly splitting the full sample into design and

hold-out samples (with an 80/20 split), building regression models on the

design sample and testing on the hold-out sample. The bad rates are then

averaged over hold-out samples. Following Leonard (1988) we use five

iterations. The proportion of bads was allowed to vary in the design and hold-

out samples, because we are interested in prediction performance on future

applicants and the proportion of bads in such a sample will vary.

We split the discussion of the results into three parts:

(1) A comparison of model performance at particular threshold points

(corresponding to 30%, 50% and 70% accepts).

(2) A comparison of overall model performance (across all acceptance rates).

(3) An examination of the robustness of the model parameters.
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7.2.3.1 Comparison of performance for fixed acceptance rates

In the comparisons that follow the full set of sixteen characteristics were

included in both the linear and logistic models. In each case all the

characteristics were found to make a significant contribution to the model.

Fixed acceptance rates of 30%, 50% and 70% were chosen to represent the

type of thresholds that would be used in practice. Figures 7.1 to 7.3 show

curves of bad rate averaged over samples against acceptance rate for the linear

and logistic classifiers (for particular intervals of acceptance rates about the

fixed values). These curves indicate that the two methods give similar relative

performance. However, the logistic classifier gives consistently lower bad rates

in all three regions of acceptance rate. This consistency gives some grounds for

believing there to be a real but small difference in performance.

Table 7.2 displays the bad rates at each of these acceptance rates for the linear

and logistic classifiers averaged over samples.

30% accepted 50% accepted 70% accepted

Linear	 118.58	 33.39	 43.36

Logistic	 118.44	 33.08	 43.30

Table 7.2: Classification results for the linear and logistic regression

classifiers averaged over samples.

Although all the differences are small, the logistic classifier does give slightly

lower bad rates in each case. The smallest difference in bad rate occurs when a

= 70% (the value of interest to the credit grantor in our problem). In order to

assess whether the differences in bad rate are due to a genuine improvement in

performance we applied the two significance tests of Section 5.3 to each

sample. Because the results were consistent for the five samples, we only

present the test results for Sample 4.

The classification results for Sample 4 are shown in Table 7.3.
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Fig 7.3: Average bad rates in region around a = 70%
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30% accepted 50% accepted 70% accepted

Linear	 I 16.70	 32.04	 42.16

Logistic	 116.27	 31.85	 42.16

Table 7.3: Classification results for the linear and logistic regression

classifiers for Sample 4.

The classification results are equal at the 70% acceptance rate, so we do not

need to test for a significant difference in performance. Table 7.4 shows the

swapsets for the two classifiers at the 30% and 50% acceptance rates. This

table summarises the differences between the accepts under the linear and

logistic classifiers.

30% acceptance	 50% acceptance

___________ Goods	 Bads	 Goods	 Bads

Linear	 9	 13	 6	 15

Logistic	 15	 7	 10	 10

Table 7.4: Swapsets for the linear and logistic classifiers for Sample 4.

Table 7.5 shows the resulting p-values from (1) the test based upon Fisher's

Exact test and (2) the likelihood ratio test.

____________ 30% accepts 	 50% accepts

Test (1)	 0.1292	 0.2082

Test (2)	 0.6141	 0.7984

Table 7.5: Significance test results at 30% and 50% acceptance rates.

Using either test we come to the same conclusion: for this sample there is not a

statistically significant difference between the performance of the linear and

logistic regression classifiers. (The big difference between the p-values for the

two tests results from the different hypotheses tested in each case. Both tests

can be useful in assessing relative performance for the reasons discussed in the

conclusion to Chapter 5.)
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It was also found that there was not a significant difference between the linear

and logistic classifiers for the other four samples considered individually, at any

of the fixed threshold points. These results are surprising because, as argued in

Section 7.2.2, logistic regression is theoretically more appropriate than linear

regression for consumer credit data.

Although the differences in performance for each sample are not significant, the

logistic classifier does give consistently better average bad rates (see Table 7.2).

Table 7.4 shows that if there is a real difference in performance, then logistic

regression is able to replace about five misclassified bads in the accept region

with goods. Although this is a relatively small improvement, one bad applicant

can cost the credit grantor a considerable sum of money. Therefore, if faced

with a choice between using linear and logistic regression to build classifiers, it

would seem more sensible to opt for the logistic classifier.

7.2.3.2 Comparison of overall performance

Figure 7.4 shows curves of bad rate against acceptance rate for the linear and

logistic regression models for Sample 1. The best and worst bounds on

performance are added. This indicates that the two models give very similar

relative performance over the entire range of acceptance rates. The graph

shows that the relatively high bad rates for high acceptance rates are close to

the best that can be achieved. Thus, the models are providing (at least)

reasonable discrimination between goods and bads.

Figure 7.5 shows corresponding curves for Sample 3. The only noticeable

difference between the curves for Samples 1 and 3 is the sharp peak for very

low acceptance rates for Sample 3. Although the bad rate jumps to 0.2, the

peak is caused by the acceptance of just one bad applicant. The large jump in

bad rate results because of the low acceptance rate.

Figure 7.6 shows the bad rate curves for linear and logistic regression averaged

over samples. This shows that the effect of the blip in the low acceptance

region for Sample 3 has been diminished by the effect of the other samples.

The average curves for linear and logistic regression are very similar across the

entire range of acceptance rates indicating similar overall performance. To
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assess the consistency of these curves, Figures 7.7 and 7.8 show the averaged

bad rate curves for linear and logistic regression respectively with upper and

lower 95% confidence points. The confidence limits are almost identical for

the two curves. The difference between the linear and logistic curves is

negligible compared to the width of the confidence intervals.

To assess the nature of any differences in performance, Figure 7.9 shows the

difference in average bad rate (logistic minus linear) against acceptance rate.

There are two interesting features of these results: first, the graph clearly

shows how the difference in performance between the two classifiers diminishes

as acceptance rate increases. Secondly, for acceptance rates above about 20%

the logistic classifier gives slightly better performance on average than the

linear classifier. For acceptance rates below 20% the differences in

performance fluctuate erratically from positive to negative. The sponsors of

this project place particular emphasis on an acceptance rate of 70%. At this

acceptance rate, as discussed above, there is little difference between the two

classifiers, but the logistic classifier might be preferred.

Another approach to assessing the overall performance of a credit scoring

model, and one that is commonly used in the credit industry, is the Lorentz

diagram and the Gini coefficient. Figure 7.10 shows the Lorentz curve for the

linear regression classifier on Sample 2. The logistic curve was found to be

indistinguishable from the linear curve. (This was consistent across the five

samples). The Gini coefficients are given by 0.58399 for the linear classifier

and 0.58407 for the logistic classifier. The similarity of these two values gives

further evidence of the lack of substantial difference in relative performance.

7.2.3.3 Robustness of the parameter estimates

Although the results of the last two sections showed that there was not a

statistically significant difference between the performance of the linear and

logistic classifiers, Figure 7.9 gave some indication that the logistic classifier

performs slightly better for acceptance rates above 20%. In this section we

further explore sources of differences between the two classifiers in order to aid

a decision as to which technique to adopt. We consider two possible criteria

for choosing between techniques:
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(1) The robustness of the model to sampling variation.

If a technique provides stable model coefficients then the credit grantor will

have more confidence in applying the model to similar populations. One way

of assessing the model stability is to consider the coefficient of variation for

each characteristic. If the mean and standard deviation of the model
coefficients for the five samples used above are given by i and s., where i

corresponds to the characteristic number, then the coefficient of variation for

characteristic i is given by:

xi

Figure 7.11 shows the coefficients of variation for the sixteen characteristics

included in the linear and logistic models. Both models have relatively low

variation for fifteen of the characteristics. The twelfth characteristic has a

much higher coefficient of variation because it is the least important

characteristic in the model and takes a negative value for some of the samples.

The plot gives further evidence of the strong similarity of the two models.

Another approach to assessing the stability of the model coefficients is to

consider boxplots for individual characteristics. Figure 7.12 shows such plots

for a selection of four characteristics. Again the similarity of the sample

distributions for the linear and logistic classifiers is apparent.

(2) The relative positioning of the model coefficients.

A credit grantor is likely to prefer a model which gives emphasis to

characteristics which experience has shown to be highly correlated with

creditworthiness and which appear sensible. As a result we looked for

differences in the relative importance of characteristics in the linear and logistic

models. Table 7.6 shows the ratio of each model coefficient (averaged over

samples) to the largest average coefficient for the linear and logistic models. In

Figure 7.13 the relative ratios are plotted against the characteristic number. As

expected the curves are very similar indicating that the relationships between

individual regression coefficients are indeed similar for the two models. This

results in similar classification performance under the two models. In the next

section we propose an explanation for why the fitted models have this similar

form.
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Char. no Linear	 Logistic Char, no Linear	 Logistic

1	 0.774	 0.764	 9	 0.469	 0.499

2	 0.679	 0.646	 10	 0.182	 0.207

3	 0.593	 0.588	 11	 0.241	 0.209

4	 0.289	 0.280	 12	 0.017	 0.021

5	 0.387	 0.407	 13	 0.211	 0.217

6	 1.000	 1.000	 14	 0.487	 0.431

7	 0.342	 0.391	 15	 0.349	 0.253

8	 0.669	 0.716	 16	 0.449	 0.552

Table 7.6: Ratio of model coefficients to the largest coefficient for linear

and logistic regression.

7.2.3.4 An explanation for the similar relative performance

In Section 8.5.4.2 we justify with the aid of suitable plots that the slope of the

true P(g x) is relatively shallow across the characteristic space. This means

that the true curve of P(,g I x) is between 0.2 and 0.8 for a relatively high

proportion of the population. As mentioned earlier, the logistic curve is

approximately linear in this region. This means that the predicted P(g I x) from

the linear and logistic models will be similar for a large proportion of the

sample. (It is only when there are substantial numbers of applicants with

P(g Ix) close to 0 or 1 that the fitted models will differ substantially.) Thus, the

two models will give similar classification accuracy. Any small but real

improvement in performance can be attributed to the increased accuracy of the

logistic model in the regions of extreme P(,g I x).

7.3 Comparisons with other classification techniques

The aim of this chapter is to identify techniques that give better classification

performance than linear regression in empirical comparisons. The results of the

previous sections indicate that despite the theoretical advantages of logistic

regression over linear regression, this is not reflected in a substantial difference

in classification performance for our data set. More generally we believe that

varying the classification technique will not lead to big changes in relative
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performance of credit scoring models. In this section, to test this hypothesis

out, we assess the relative performance of a range of other classification

methods. Poisson regression (see Section 4.7) and projection pursuit regression

(see Section 4.6.3) were included to represent other suitable parametric and

non-parametric regression techniques. Neither of these techniques has received

previous treatment in the credit scoring literature. We also include comparisons

with decision trees and decision graphs (see Section 4.9). Decision trees were

included because of their popularity in the credit scoring field and decision

graphs were included to represent a recent development in classification

methodology. In what follows we take the performance of linear regression as

a baseline for the other methods to beat.

In all the credit scoring models constructed in this comparison we use the same

sixteen characteristics used in the previous section. Although this may give a

small advantage to the linear and logistic classifiers, it reduces the number of

variable factors in our experiment. A fixed acceptance rate of 70% was

adopted because of its interest to the credit grantor in our problem. In the

previous comparisons the main effect of acceptance rate on relative

performance was on the strength of the result, rather than the result itself.

Table 7.7 shows the bad rates at a 70% acceptance rate for the range of

techniques described above for each sample. Because the decision graph

method includes a metric which indicates whether a graph or tree is more

appropriate to the data, we present the results of these two methods together.

Sample j Linear	 Logistic	 Projection Poisson	 Decision

1	 43.87	 43.92	 43.79

2	 44.03	 43.94	 43.89

3	 43.54	 43.45	 43.47

4	 42.16	 42.16	 42.16

5	 43.20	 43.01	 43.03

	

43.91	 44.09

	

44.11	 44.50

	

43.54	 44.19

	

42.14	 42.60

	

43.09	 43.46

Table 7.7: Bad rates at a 70% acceptance rate for a range of classification

techniques.
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As in Section 7.2 none of the differences in bad rate between two classifiers are

significant using the two significance tests from Chapter 5. Despite this, the

decision tree/graph results are consistently worse than the results for other

classification techniques. One possible explanation for this difference is the

inclusion of a decision tree as a characteristic (because this may indirectly give

the advantages of the decision tree approach to the other classification

methods).

Table 7.8 shows the bad rates averaged over samples for the range of

classification techniques considered.

Method	 Bad rate

Linear regression	 43.36

Logistic regression	 43.30

Projection pursuit	 43.27

Poisson regression	 43.36

Decision graphs/trees 43.77

Table 7.8: Bad rates averaged over samples for different

classification techniques.

The table shows the expected performance of the different classification

techniques when applied to the population from which our sample is drawn.

Projection pursuit regression and logistic regression give slightly better average

performance than linear regression, although the differences in performance are

not statistically significant for samples tested individually. Even though this

difference is small, if real it could result in large savings for the credit grantor.

In order to assess further the nature of any differences in performance between

classification techniques, Figure 7.14 shows the averaged bad rate curves for

linear regression, Poisson regression and projection pursuit regression for a

range of acceptance percentages centred on 70%. This shows that relative

performance fluctuates with acceptance rate in an apparently random manner.

We conclude that there is no discernible real difference in classification

performance for the range of parametric and non-parametric techniques

considered. This supports our assertion at the beginning of this section that
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varying the classification technique does not lead to large changes in

performance. However, if a choice has to be made about the appropriate

classification technique to adopt for building credit scoring models, linear and

logistic regression appear to be the most suitable of those considered because of

their inherent simplicity.

7.4 The influence of alternative definitions of credit default
on classifier performance: fraud scoring

7.4.1 An introduction to fraud scoring

The area of fraud is becoming of increasing interest to credit grantors. Leonard

(199314) describes an expert system model designed to alert banks and other

financial institutions to the fraudulent use of credit cards. This type of fraud

can arise in two ways: counterfeit fraud occurs when an unauthorized duplicate

of the credit card is in circulation and non-receipt fraud occurs when a card is

intercepted and used by a third party. The proposed model attempts to detect

these types of fraudulent activity by identifying deviations from normal

spending patterns. This allows the credit grantor to react by contacting the

customer and, if necessary, blocking any futher use of the account. Leonard

describes an experiment to compare the expert system with a naive model

which classifies all customers as either good accounts or fraudulent accounts.

The results show that, taking into account different costs of misclassification,

the fraud alert model can lead to substantial savings (estimated at $245,183 per

month).

In this section we consider a different type of fraud that is more specific to the

mail order industry. This occurs when a customer spends up to the allocated

credit limit and then makes no repayments. This can be viewed as fraud

because the customer exhibits no willingness to repay. For operational reasons

we simplify the defmition slightly: a fraud is defined to be a customer who

makes no repayments but does not necessarily spend up to the credit limit. In

Section 7.4.2 we describe the construction of classifiers to discriminate between

frauds and non-frauds and make comparisons with standard good/bad risk

classifiers.
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The approach we take can be seen as a way of varying the definition of credit

default. Our definition of fraud can be seen as a laxer definition of a bad risk.

A similar approach is taken by Crook et al. (1992). They make a comparison

of the ranking of the predictor variables under the standard definition of credit

default used in this thesis (see Section 2.1) with a more stringent definition.

The stringent definition of a bad risk was an applicant who subsequently missed

at least one repayment.

The authors constructed credit scoring models using discriminant analysis on a

sample of 1001 applicants for a credit card with 23 characteristics available. A

few characteristics were deleted before carrying out the model construction in

order to reduce the correlations between the predictor variables. This was

especially important in this study because highly correlated predictor variables

lead to unstable model coefficients, thus making it difficult to assess the relative

contribution and true ranking of each characteristic. The final models obtained

using the two definitions of credit default were then assessed on a 20% hold-out

sample. The proportions correctly classified by the discriminant models were

compared with the proportional chance criterion:
=p2 +(1—p)2

where p is the proportion of applicants in one of the classes (e.g. goods).

The results show that for both definitions of credit default the discriminant

models give better classification accuracy than would be expected by chance.

The rankings of the predictor variables were examined for the two models and

useful differences were identified. We briefly discuss three points arising from

this paper of relevance to our study of fraud:

(1) The analysis was limited by omitting applicants who did not use their credit

card in the observation period. This group corresponds to the "other" class in

our problem. As discussed below, we choose to include the "others" in the

model construction as goods.

(2) The assessment of classification performance was limited to comparing the
discriminant models with the chance criterion Cproj,. In Section 7.4.2 we

include a comparison of different regression classifiers to assess whether the

appropriate classification method varies with the definition of creditworthiness.
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(3) It is not usually sensible to make a direct comparison of classification

models constructed using different definitions of credit default. This is because

there is no objective definition of creditworthiness that can be used in the

comparison. Thus, it is difficult to assess whether a new definition of credit

default allows a better representation of credit behaviour. (The paper by Crook

et al. (1992) was not aiming to do this.) In the fraud context, if one is happy

with the chosen definition of fraud, then one can use this as the "objective"

response defmition to enable suitable comparisons.

7.4.2 Fraud classifiers

The analysis described in this section is divided into two parts: first, we

attempted to construct linear regression classifiers which could identify frauds

more effectively than standard risk classifiers; secondily, we considered

whether using an alternative definition of credit default (the fraud definitions)

led to any change in the relative performance of the classification techniques

discussed in Sections 7.2 and 7.3.

The following defmition of fraud was used in our comparisons: applicants who

made no repayments were classified as fraudulent (the "bads"). All other

applicants, including applicants who were normally placed in the "other"

classes, were classified as non-fraudulent (the "goods"). The broad definition

of a non-fraud was chosen because all the applicants in this class showed some

willingness to repay by making at least one repayment.

7.4.2.1 A comparison of fraud and standard risk classifiers

The samples used in this study are summarised in Table 7.9:

Sample	 Number of Number of Number of

____________	 variables	 classes	 cases

Analysis	 81	 2	 11216

Validation	 81	 2	 2784

Table 7.9: A description of the data sets used for constructing and assessing
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fraud classifiers.

Fraud and risk classifiers were constructed using stepwise linear regression on

the analysis sample with the full set of 81 characteristics and the appropriate

definition of credit default. In each case twenty characteristics were included in

the final classifier.

The two classifiers were compared using the validation sample with the fraud

definitions. Model performance was assessed by considering the fraud rate

amongst accepted applicants for different acceptance rates. Figure 7.15 shows

the overall curve of fraud rate against acceptance rate. This shows how the

classifier achieving the best performance varies with acceptance rate: for

acceptance rates between 30% and 50% the risk classifier is more successful at

rejecting frauds, whereas the fraud classifier is more successful at rejecting

frauds for acceptance rates between 60% and 80%. It is surprising that a

classifier constructed using inappropriate response definitions (the risk

classifier) outperforms a classifier constructed using appropriate response

defmitions (the fraud classifier). Further testing is needed with other samples

to test whether this result is due to sampling variation. The results do give

some evidence that omitting the other* classes from the analysis sample (as is

done in the construction of risk classifiers) does not lead to a big change in the

resulting performance of the classifier.

Because of the criterion of the credit grantor we focused attention on an

acceptance rate of 70%. The corresponding fraud rates amongst the accepts

were 4.93% for the risk classifier and 4.46% for the fraud classifier. The two

significance tests of Section 5.3 were used to assess whether these rates are

significantly different. Table 7.10 shows the swapsets for the two classifiers.

Goods	 Bads

Risk	 167	 29

Fraud	 176	 20

Table 7.10: Swapsets for the risk and fraud classifiers.

The resulting p-values from (1) the test based upon Fisher's Exact test and (2)

the likelihood ratio test are 0.11 and 0.65 respectively. We conclude that there
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is not a significant difference between the performance of the two classifiers at

a 70% acceptance rate. If this result is robust for other samples then there is no

advantage in building specific fraud classifiers to identify fraudulent

applications for credit in our problem.

7.4.2.2 A comparison of different classification techiiiques for fraud

scoring

Further comparisons were carried out to assess whether the relative

performance of the techniques considered in Section 7.3 is sensitive to the

definitions of credit default adopted. To achieve this fraud classifiers were

constructed using the definition of fraud defined above. Table 7.11 shows the

resulting fraud rates amongst the accepts in the validation sample at an

acceptance rate of 70%.

Method	 Fraud rate

Linear regression	 4.46

Logistic regression	 4.11

Projection pursuit	 4.31

Poisson regression	 4.62

Table 7.11: Bad rates averaged over samples for different

classification techniques.

None of the differences in fraud rate were found to be significant using either

test from Section 5.3 with a significance level of 5%. This result is consistent

with the corresponding conclusions of Section 7.3.

7.5 Conclusions

In this chapter we have constructed credit scoring models using a range of

parametric and non-parametric classification techniques: linear regression,

logistic regession, Poisson regression, projection pursuit regression, decision

trees and decision graphs. The results have shown that, given our data set:
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• Linear regression is surprisingly robust to departures from the

required distributional assumptions.

• There is not a statistically significant difference between the

performance of the range of techniques considered. If this insensitivity

of classifier performance to the technique used to build it can be

confirmed for other data sets then this has implications for further

research into credit scoring methodology. It indicates that research time

may be more profitably spent on other aspects of the credit granting

process such as identifying new sources of data.

• The results are insensitive to whether the fraud or risk definitions of

credit default are used. However, future work should assess the

influence of more radical innovations on classifier performance, such as

use of continuous defmitions of credit default.

212



Chapter 8

Application of the k-Nearest Neighbour method to credit
scoring

8.1 Introduction

Traditional credit scoring methodology has focused on using techniques such as

discriminant analysis and linear and logistic regression to discriminate between

good and bad applicants for credit. As has been discussed in earlier chapters,

these techniques can provide good discrimination between the good/bad classes.

However, they all suffer from the disadvantage of assuming an overall

parametric model form (usually linear) for P(g I x). Two aspects of consumer

credit data give reason to question the appropriateness of these assumptions:

the high correlations between variables (resulting in complex non-linear

interactions) and the categorical nature of the data. This has prompted

researchers to consider alternative classification procedures for assessing

consumer creditworthiness, which do not make restrictive parametric

assumptions. Many non-parametric classification techniques have been

developed over the last thirty years (e.g. k-Nearest Neighbour, kernel methods,

neural networks, decision trees) and the emergence of new computer

technology has allowed their application to large data sets. In this chapter we

consider the application of the k-Nearest Neighbour method (k-NN) method to

credit scoring.

The k-NN method is a standard non-parametric technique used for probability

density function estimation and classification originally proposed by Fix and

Hodges (1952) and Cover and Hart (1967). It was introduced in Section 4.7 as

a specific type of variable kernel density estimator. It was chosen as a suitable

method for applying to consumer credit data for several reasons:- the non-

parametric nature of the method may allow subtle aspects of the data to be

modelled that cannot be identified by a parametric method such as logistic

regression; the k-NN method has been found to perform better than other non-

parametric techniques such as kernel methods when the data is multi-
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dimensional (Terrell and Scott (1992)); the k-NM method is a fairly intuitive

procedure and as such could be easily explained to business managers who

would need to approve its implementation. A simple MN classifier was applied

to credit scoring data in Fogarty and Ireson (1993) in a general comparison of

techniques. The results were promising despite the simplicity of the NN

classifier used.

The k-NN method involves estimating the good/bad probabilities for an

applicant to be classified by the proportions good and bad amongst the k "most

similar" points in a training sample. The similarity of points is assessed using a

suitable distance metric. An important part of our analysis will be the selection

of suitable distance metrics for the k-MN method. We begin by discussing the

literature on the k-NN method in Section 8.2, with particular emphasis on

distance metrics. An adjusted version of the Euclidean metric which

incorporates knowledge of underlying equi-probabiity contours for class

membership is proposed in Section 8.3.1. These contours are estimated using

regression weights, calculated from the data, with the intention of incorporating

into the metric knowledge of class separation in the sample. A general

transformation of the data which has the same property is defined in Section

8.3.2. This allows one to transform the data before using any standard metric,

thus providing a general framework for selecting a data dependent metric. We

consider a range of possible metrics including the city-block and the general

Minkowski distance.

The aim of this chapter is to provide a practical classification model that can

improve upon traditional credit scoring techniques and so in Sections 8.4 and

8.5 we describe the application of our k-NN methodology to a data set supplied

by a large mail order company. In Section 8.4 we consider issues relating to

the implementation of the method. In Section 8.5 we describe a simplified

investigation of the performance of the k-NN method, designed to assess

whether it is likely to be competitive with other methods. Our conclusions are

• the k-NN method with adjusted Euclidean metrics shows the potential

to give better performance than a range of traditional credit scoring

techniques when the two k-NN parameters (k and a distance parameter,

D) are estimated using a simplified approach (which cannot be used in

practice).
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• the k-NN method with the adjusted Euclidean metric gives better

performance than the method with the standard Euclidean metric and

similar performance to the "optimal" versions of the general Minkowski

distance.

• plots of bad rate against k showed that the k-NN method is fairly

insensitive to the choice of parameters k and D and, in particular, the

curves have surprisingly flat valleys.

S other interesting features of the results include the high optimal k.

• although the bias of the estimates of P(g I x) from the k-NN method

increase as k increases, the consequent deterioration in performance is

slow due to the shallow slope of P(gx).

This is followed by a more in-depth study in Section 8.6, which includes a

practical procedure for estimating the parameters k and D, as well as a more

robust evaluation of performance using several design/test resamples from the

data (see also Henley and Hand (1994) and Henley and Hand (1995)). We

include comparisons with a range of other classification techniques including

linear regression, logistic regression and decision trees. We conclude that

• the k-NN method with adjusted Euclidean metrics gives better

performance than the range of other classification techniques in practical

comparisons. However, the differences are not statistically significant.

• an appropriate method for selecting the k-NN parameters is to select

the values of k and D which minimise the smoothed curves of bad rate

against k.

In Section 8.7 we discuss a second comparison study using a test sample from a

future population. The idea was to evaluate the robustness of the k-NN method

to changes in the nature of the population over time. It is found that

• the k-NN method is less robust to population changes than linear

regression.
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• a hybrid of the k-NN and linear regression classifiers can lead to

improved performance over the individual classifiers.

8.2 Review of k-NN methodology

8.2.1 Description of the k-NN classifier

The theory of the k-NN method is explained in many text books including for

example Hand (1981). We will briefly outline the essential details of the

method. Using the notation of Chapter 2, the aim of the method is to obtain

estimates of P(i Ix) and assign the point x to the class i for which this estimate

is largest. One starts by fmding the k "most similar" points to the point x to be

classified (what we mean by similarity is described below). Here k is an

integer parameter that is chosen by the model developer. An estimate of P(i fx)

is given by kI k, where k is the number of applicants from class i that are

contained in the nearest k points. The classification rule is as follows: classify x

as belonging to class j if kj = maxm(km). Costs could be included in the

classification rule if we knew that the implications of the different types of

misclassification were different (and we knew the costs).

In order to measure the similarity of two points x and y we use a suitable

distance measure or metric, denoted by d(x, y). To fmd the k most similar

points to x we calculate the value of the distance metric d(x, y) for all the

applicants y in the training set and select the k points with the lowest value.

We use a slight variation on this classification rule, due to our criterion for

measuring performance. Instead of assigning a point with characteristic vector

X1 to the class to which the majority of its k-nearest neighbours belong, we

choose to accept (i.e. classify as being good) a certain proportion of the sample

on the basis of ranking the estimated P(g Ix). This procedure has similarities

with the fuzzy k-nearest neighbour algorithm described in Section 8.2.5.3.
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8.2.2 The single nearest neighbour rule

One of the first descriptions of the nearest neighbour method was provided by

Cover and Hart (1967). Under the assumption that points that lie close together

in the feature space are likely to belong to the same class, they proposed using a

single nearest neighbour rule. This is a special case of the general k-NN rule

described in 8.2.1 and involves assigning each point to the class of its single

nearest neighbour. A considerable proportion of the literature on nearest

neighbour methods has concentrated on this special case. In particular much

attention has been focused on the asymptotic convergence of the nearest

neighbour classification rule. Cover and Hart (1967) showed that the error rate

of the NN rule converges asymptotically to a value between the Bayes

misclassification rate r* and twice this value. This is of interest because it

allows one to place bounds on the Bayes error rate. Hand (1981) proves that
r*(2N/(Nl)r*) is a tighter upper bound on the NN asymptotic misclassification

rate r, where N is the sample size. If we did know r then we could obtain an

indication of the best and worse performance of the NN rule for large samples.

In practice this inequality is more useful when inverted to give asymptotic

bounds on the unknown Bayes error rate:
* N—i IN-i IN-i

r^	 -I	 I	 —r.
N VNVN

Because in practice the data analyst may not have access to a suitably large

sample for asymptotic results to hold, it is important to understand how the

performance of the NN rule will vary with factors such as sample size,

dimensionality, metric and distributions. An important question that has been

addressed by several researchers concerns the bias of the fmite-sample nearest

neighbour error from its asymptotic value. Cover (1968) has considered the

case of finite sample NN classification rules and found that the bias of the NN

error rate from its asymptotic value is bounded by the function O(N 2) where N

is the sample size. Fukanaga and Hummels (1987) derive an expression for the

bias of the NN classifier in terms of the factors mentioned above and show that

it can be expressed as the product of two terms, one of which is independent of

the distributions and the other of which is independent of the sample size. This

allows one to estimate the increase in sample size necessary to reduce the bias

by a certain amount, and the relationship between that value and the

dimensionality of the data. The results are shown to be a generalization of
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Cover's result to more than one dimension. These results are of limited use for

our application because we do have access to a large sample, and the size of the

sample and the dimensionality of the problem are to a large extent fixed before

we begin the analysis.

Another aspect of the NN rule that has not received proportionate attention in

the literature is the selection of distance measures. This is a vital factor in the

production of successful nearest neighbour and k-NN rules and will be

considered separately in Section 8.2.3 as it forms a key part of our analysis.

For the remainder of this chapter we will concentrate on k-NN methods of

which the NN method is a special case.

8.2.3 Distance measures for the NN and k-NN methods

Fundamental to the identification of the k nearest design points is a distance

metric. Much of the work on the NN rule has focused on selecting a distance

metric to minimise the difference between the finite sample misclassification

rate and the asymptotic misclassification rate. In our case, for commercial

reasons, the aim is to select a distance metric to minimise the expected bad rate

among the accepts from the classification rule. Ways of doing this are

proposed in section 8.3.

We now consider the form of metrics that have been proposed in the literature

to measure the distance between a point x to be classified and a point y in the

training set. Traditionally the most popular measure of distance has been the

Euclidean metric given by:
d (x, y) = {(x - y)t (x -

Myles (1991) gives two simple examples to show why the Euclidean metric

may not always be the most sensible distance measure to use. The problems

arise because the Euclidean metric weights equally the distances parallel to each

axis. To try and take account of this the Euclidean metric can be generalised to

give:
d2 (x, y) = {(x - y)t A(x - y)'2

where A can be any p x p symmetric positive definite matrix and p is the

dimension of the characteristic space. Note that d1 occurs when A = I.
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Myles (1991) reviews two approaches to selecting A: local metrics are defined

to be those for which A can vary with x and global metrics are defined to be

those for which A is independent of x. In the global case the distance between

two points depends only on their relative position in Euclidean space.

8.2.3.1 LocalMetrics

Short and Fukunaga (1981) adopt a local metric in order to minimise the

distance between the finite sample NN classification error and the asymptotic
NN error. If x is the point to be classified and y is the nearest neighbour of

x then the appropriate distance metric is given by:
d3 (x,y)= Vt(x)(x—y)

where

V(x)	 P(classlIt).

This can be derived by considering a linear approximation of P(c1assY) in a

local region of x. Because of the linear approximation implicit in the distance
metric, we can only apply d3 to points that are close to x in the Euclidean

sense. Two methods of using this metric are suggested. The preferred option

is to pick a value m and select the m nearest points to x using the Euclidean

metric. Among these m points the nearest neighbour to x is determined by the
measure d3.

Before this metric can be used we need to obtain an estimate of the function

V(x) described in the metric definition. The authors describe a non-parametric

estimate obtained using the mean of the class 1 design points and the mean of

all the design points within a local circular region around x. A simulation

experiment is described in which the above procedure is compared with the

Euclidean metric. The authors conclude from this that the new procedure using
d is superior to the Euclidean metric d, and that the improvement increases as

the dimensionality does.

In Fukunaga and Flick (1984) a parametric estimate of V(x) is proposed based

upon the assumption of a multivariate normal distribution for each class. A

simulation experiment is described to compare this metric with the non-

parametric version mentioned above and the Euclidean metric. The results
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seem to indicate that the parametrically defined metric is the best. However,

Myles (1991) raises two important objections. The first was that the criterion

for measuring success was closeness to the asymptotic nearest neighbour risk,

whereas in practice the metric which gave the smallest error rate would be

preferable (this is certainly the case for our particular application). The results

showed that the non-parametric version of the method gave a lower error rate

when the covariance matrices of the two classes were equal. The second

objection was that multivariate normal distributions were used to provide the

simulated data making the parametrically defined metric particularly suitable.

If the analysis was repeated with non-normal data then we might expect to see a

deterioration in performance for this method. As a consequence of these

comments it would be dangerous to draw general conclusions about the relative
performance of the parametric and non-parametric versions of the metric d3

from these results.

A local metric has the advantage over global metrics that it preserves the local

structure of differences between class membership probabilities (P(1 I x) and

P(2 I x)). However, this is achieved at considerable extra computational cost,

since the metric itself has to be recalculated for each x. Moreover, a danger of

using a local metric approach is that the metric will incorporate local features of

the training data set that are not representative of the population from which the

sample is drawn (i.e. the estimator will overfit the data). It is also difficult to

determine the metric accurately since for each x the metric has to be

determined from a small region around x. For these reasons a global approach

to selecting a nearest neighbour metric might be preferred. A global metric is

also more likely to be robust to changes in the population. As will be seen in

Section 8.3 we choose to take a global approach to metric selection.

8.2.3.2 Global Metrics

Fukanaga and Flick (1984) propose using a global metric that is optimised with

respect to the mean-squared error between the asymptotic and finite sample NN

risk. They derive an expression for A that minimises this quantity given by:

A0 = 
f 

cv(x)Z(x)Z(x) t P(x)'2"dx

where

Z(x) = P(1Ix)P(2!x)--P(1ft)

220



The authors present a method of estimating A 0 from a sample of selected

points. The metric with this estimated value of A 0 can then be applied to any

points in the feature space.

8.2.3.3 A comparison of global and local metrics

Fukanaga and Flick carried out a simulation experiment to compare the global

approach with the local metric approach. Four different distance measures are

considered: the Euclidean metric (E), the non-parametric local distance measure

proposed by Short and Fukanaga (5), the parametric version (F) and the global

metric (A). Samples of size N=40n (where n is the number of dimensions)
were drawn from two multivariate normal distributions where 1k - 11=2.6
and = 2 = The resulting Bayes error rate was 0.097 and the asymptotic

nearest neighbour risk was 0.143. The analysis involved taking 20 test sets

from the same distribution and classifying each using the 4 distance measures

described. The mean R and standard deviation s,. of the misclassification rate

was calculated for each measure X. The results are shown in Table 8.2.1.

rmptotic NN risk	 R=0. 143

N RE	 RA	 R	 SE	 Ss	 Sp

80 0.155 0.162 0.133 0.151 0.0518 0.0642 0.0528 0.0658

200 0.161 0.154 0.136 0.143 0.0406 0.0364 0.0287 0.0366

320 0.164 0.143 0.135 0.143 0.0197 0.0191 0.0158 0.0246

Table 8.2.1: Sample statistics from Fukanaga and Flick's simulation to compare

global and local distance metrics with the Euclidean metric.

The results show that the metric P performs the best in terms of closeness to the

asymptotic nearest neighbour result. As in the previous study this is

unsurprising as the data distributions chosen by the authors give an advantage to

this metric. This also applies to the global metric which performs well for

n=8. We note that, in fact, the lowest misclassification rates are given by the

Short and Fukanaga metric S.

These results confirm that using a global metric can be a practical way of

improving upon the k-NN method with the standard Euclidean metric.

However, the evidence is limited because the data is simulated and the results
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are sensitive to the selected criterion for performance. Fukanaga and Flick

(1984) end by acknowledging that the selection of other types of optimal

distance measures for NN risk estimation is an area for further study. This

provides the motivation for our proposal of a global metric in Section 8.3. Our

aim is to extend the problem to the general k-NN case and use the bad rate

amongst the accepts as the criterion for optimality. We incorporate into our

global measure knowledge of class differences across the feature space.

8.2.3.4 Other variations on the Eucidean metric

The generalisations of the Euclidean metric that we have considered so far have

all been of the form
d2 (x,y) = {(i—y)tA(x—y))112

A different class of measures, of which the Euclidean metric is one example,

arise from the general Minkowski distance:
d4 = {Jx1 _y,Jr]ur

When r = 2 we have the Euclidean metric and when r = 1 we have another

important special case, the city block distance measure:
d5=Ix1-y1I

One way of looking at distance metric selection is as an attempt to combine

different variable types into a single. meaningful scale. The city block measure

does this in quite an intuitive way according to the sum of differences in units

over all the variables. As explained in Chapter 2 we transformed the data in

our problem before trying to build a classification rule in order to standardise

the scales and provide a suitable ordering of the data. However, the city block

measure may still be an effective measure to use and we will include it in our

analysis. We will also make a comparison of different values of the parameter

r in the general Minkowski distance.

8.2.3.5 Distance measures for categorical data

The distance measures described above are appropriate for continuous data or

data in a pseudo-continuous form such as weights of evidence. If we wish to

treat the data as discrete dummy variables (taking values of 0 or 1) then it is

fairly easy to extend the ideas. Hand (1981) describes one such approach,

similar to the city block metric, where the distance between two points is the
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number of components in which they differ. A small problem arises because
(d

there are ( 
J 

cells at a distance i from any given cell. The result is that the kth

nearest neighbour may be included among several points at the same distance

from the point to be classified. This can be solved by taking an appropriate

proportion of these points at random.

Extensions of the local and global metric approaches from above to categorical

data are considered in Chapter 3 of Myles (1991). Simulation experiments are

described which show that the proposed methods can be used to improve on the

simple application of the Euclidean metric. We choose not to take this route

because the data in weights of evidence form has a natural ordering and has far

fewer variables than would be necessary to describe the same data in dummy

variable form.

8.2.3.6 Evaluation of the influence of different metrics on k-NN
performance

Todeschini (1989) describes the results of applying the k-NN method to ten data

sets using six different metrics and four data transformations. In this discussion

we focus on the influence of metrics rather than data transformations, because

by using weights of evidence we have already tried to put the characteristic

values onto a suitable scale (the selection of optimal data transformations is an

area for further research). The following metrics were considered:

(a) Euclidean metric (given by d1 (x,y))

(b) City block metric (given by d5(x,y))

xiyi
(c) Correlation (cosine) coefficient: d(, y)

(d) Camberra metric: d(x, y) =	
Xi

(x1 +y1)
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Ix -yI(e) Lance-Williams metric: d(x, =	
, + y1)

(f) Lagrange metric: d(x, y) = maxj x1 —y1

The Camberra (d) and Lance-Williams (e) metrics are not applicable to data

with negative values and so are not appropriate for credit data in weights of

evidence form. Of the other metrics, we have already discussed the Euclidean

(a) and city block (b) metrics. The Lagrange metric (f) is a version of the city

block metric where all the emphasis is given to the distance in the direction

with the largest component. The correlation coefficient (c) represents a

different approach to measuring similarity between points.

The k-NN method with the six metrics described above was applied to ten data

sets including Fisher's Iris data (see Fisher (1936)). The resulting error rates

showed variability between different metrics within data sets. No metric

consistently beat the others across data sets and overall metrics (a), (b), (c) and

(e) gave similar performance. However, the correlation coefficient (c) and the

Lance-Williams metric (e) achieved the lowest average error rates. The

Lagrange metric gave the worst average performance.

8.2.4 Selecting a value of k in the k-NN method

Choice of k is an important issue in the implementation of the k-NN method

and involves a trade-off between the bias and variance of the probability

estimates of P(gI x). As k increases the bias may increase because the points in

the training sample being included become further from the point x to be

classified. At the same time the variance of the predicted class membership at

x, Var [ P(i I x)] = pq / k (where p is the probability that a point within the k

nearest neighbours belongs to class i), decreases as k rises. Therefore, in order

to select a suitable value of k it is sensible to consider a measure that

incorporates bias and variance. A common measure that is used is the Mean

squared error given by:

MSE = E(P(ilx) - P(ilx))2

= E(P(ilx)— E(P(ilx))) 2 + (E(P(ilx)) -
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MSE

= var(P(ilx)) +bias(P(ilx))2

This measure will decrease until it reaches an optimal value and then start to

increase as the increasing bias outweighs the improvement in the variance (as

shown in figure 8.2.1).
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Figure 8.2.1 A plot of Mean Square Error against k.

As has been mentioned before, for our application of the k-NN method the

objective is to minimise the bad rate amongst the accepted applicants. We are

not concerned about the bias and variance of the probability estimates provided

that the bad rate is minimised. For this reason the Mean Square Error is not a

suitable measurement for us to use to select k. Although there is not a direct

relationship between the bad rate (or error rate) and the Mean Square Error one

would intuitively expect their relationship with k to be similar. In fact this has

been demonstrated for the error rate for various real data sets as referred to in

Myles (1991). Thus we would expect the relationship between bad rate and k
to be similar to Figure 8.1. We note that the curve of error rate against k has

often been found to be very shallow near to the optimum value of k.

Other work on the selection of an optimal k has been carried out by Fukanaga

and Hostetler (1973). This includes the development of a functional form for

the optimal k in terms of the number of points in each class, the sample

dimensions and the underlying probability distribution.

Enas and Choi (1986) consider the effects of different covariance matrices and

sample sizes on the probabilities of misclassification for different k values.

They carry out a simulation study using a mixture of continuous and categorical

variables. Table 8.2.2 summarises their rough guidelines for a suitable value of

k to select.



Difference between samule oronorti

Small

Difference between Small	 N318	 N218

covariance matrices Large	 N218	 N318

Table 8.2.2: Guidelines for selecting optimal k based upon the sample

size, N.

The authors also present an adaptive nearest neighbour rule (ANN) which

selects k by iteratively maximising the Mahalanobis distance in a local region.

They perform simulations to compare this rule with the standard k-NN rule,

using their recommended optimal k, and show that the ANN method can be

more efficient.

Two points can be made about the results described above with reference to our

application. To begin with the data was simulated from particular distributions,

including the bivariate normal and Bernoulli distributions. Credit scoring data

is categorical and unlikely to fit any standard distribution. A second point to

note is that, although the suggested optimal k give quite good performance,

they are only crude estimates (based upon the results of one study). If we were

to select a value of k for our design set with N = 15054 then the suggested

values of k would be 37 and 12. We shall see later in this chapter that these

values of k are by no means optimal for our data sets. In order to allow more

flexibility in the selection of k, we choose to consider the performance of the k-

NN for a broad range of values of k and make selections based upon the

corresponding values of the error rate. The issue of selecting a suitable value

of k will be returned to in Section 8.6.

8.2.5 Variations of the k-NN method

In this section we review other aspects of the k-NN method that have received

attention in the literature and may have relevance to our search for the best k-

NN classifier for consumer credit data.
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8.2.5.1 The reject option

The first variation on the standard k-NN procedure that we will consider is the

reject option as introduced by Chow (1957). It uses the basic premise that

borderline classifications contribute more significantly to the error rate than

cases with more extreme class probabilities. In some situations it may not be

necessary to take decisions on the doubtful cases, thus allowing a verdict of no

classification to be returned. These cases can then either be ignored altogether

or more information can be collected in order to allow a judgement to be made.

This choice of whether to classify a point or reject it for classification is called

the reject option. The result is likely to be a reduction in the error rate. In fact

this is very similar to the procedure for vetting credit applicants used by the

credit grantor in our problem: a mini scorecard is used to assess all the

applicants, leading to a decision to accept or reject 60% of the population (the

mini accepts and mini rejects) and defer the decision on the remaining 40%.

An application form is then sent to the unclassified applicants leading to more

information about the true creditworthiness of the marginal applicants.

For the purpose of evaluating classification procedures we are interested in

classifying all applicants and then comparing the resulting error rates. In this

study we restricted attention to the construction of a mini-scorecard. As a

consequence it is not practical for us to include the reject option. If we were to

simulate the two stage classification procedure (with mini and full classifiers)

then the reject option could be used to select 40% of applicants at the mini

stage for assessment using the full classifier.

8.2.5.2 Distance-weighted nearest neighbour rules

An intuitively appealing adaption of the k-NN rule is described by Dudani

(1976) involving giving more weight to observations closer to the point to be

classified than to those a larger distance away. The distance-weighted k-NN

rule is as follows. Suppose that we wish to classify a point x and that the k
nearest neighbours to x have distances d1 . . . d. A weight wi is assigned to

each of the neighbours i 1.. .k where
_J(dk d)/(dk_ dl ) dk^dl

i_i	 1	 dk=dl
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For each class j we pick out the class j points among the k nearest neighbours to

x. The sum of the corresponding weights Wj is then calculated. The

classification rule assigns x to the class for which the weighted sum is greatest.

Dudani performs a simulation experiment to assess the performance of the

distance-weighted k-NN rule. The analysis was carried out using three classes

and moderate sample sizes. The conclusion drawn is that the distance-weighted

rule performs significantly better than the simple majority k-NN rule. He also

asserts that the error rate is more likely to remain at a level similar to the

minimum as k becomes very large. This would allow one more room for error

in choosing a suitable value of k. One of the limitations of the work is that ties

were counted as errors and the probability of a tie occurring was much lower

for the distance-weighted rule. We note that the distance weighted k-NN rule is

similar to the kernel method, where the kernel function weights according to

distance from the point to be classified.

8.2.5.3 Fuzzy nearest neighbour rules

Keller et al. (1985) assert that one of the problems with the k-NN decision rule

is that each of the points in the training set is given equal importance in

determining the class membership of the point to be classified, regardless of

how representative of the population that point is. They propose the application

of fuzzy set theory to create a fuzzy version of the k-NN algorithm.

Fuzzy sets were introduced by Zadeh (1965) and provide a way of defining

categories that are imprecise in nature. This is done through the idea of a

membership function which specifies the degree of belonging to a set. We will

consider how this is done in the k-NN case. It is assumed that we have a

design sample x, x2 ,. . . . A fuzzy c partition of these vectors, which

specifies the degree of membership of each class, is given by a cn matrix U,
where u = uI (xk ) for i 1...c, and k = 1. ..n. Here Ulk represents the degree

of membership of Xk in class i. The following properties must hold for U to be

a fuzzy c partition

I u& = 1,

O <u1k <n,
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U1k E[O,1].

By selecting suitable values for the class membership of the training set using a

fuzzy c partition we are able to tackle the problem that occurs from having

"atypical" vectors in the training set. In regions where we are confident that

the points in the design set represent the underlying class distributions we can

merely use the true class as normal via the crisp partition
Ii f x.eclass i

'	 jO	 otherwise

Keller et a!. perform an experiment on Fisher's Iris data in which they compare

the crisp labelling for the design set defined above with a measure based on the

L nearest neighbours of x given by
IO.51+(n1 IL)*0.49 f xEclass i

u(x) =
	 (n IL)	 otherwise

where 11, is the number of class i points among the L nearest neighbours to x.

The classification rule then involves fmding the k nearest neighbours to a point

x to be classified using the Euclidean metric and allocating fuzzy class
memberships using the function u. (x) defined below

u, (1 / 1k - x1 ll2(m_1

u1(x)= k

(1 / - XfI21(m)

where [X , . . X, } represents the k nearest neighbours of x.

The point x is classified to the class i for which u3 (x) is greatest. Incorporated

into the membership function is distance-weighting allowing more emphasis to

be given to points near to x (see above for more discussion of this issue).

The results of the experiment described show that the fuzzy k-nearest neighbour

rules can lead to lower misclassification rates than the standard k-NN classifier.

The fuzzy k-NN method also allows one to look at the probabilities assigned to

incorrectly classifed points in the test set. By doing this it was seen that points
x for which 0.5 < u(x) < 0.7 were much more likely to be misclassified

than points for which ii, (x) > 0.7. Thus the allocated memberships from the

fuzzy rule provide a useful measure of confidence in the classifications being

made.
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In conclusion the fuzzy k-NN rule seems to have potential for application in the

credit scoring context. It is able to incorporate the advantages of the distance-

weighting method as well as allowing for unrepresentative points in the design

set through fuzzy class partitions. Jozwick (1983) has carried out a simulation

experiment where a fuzzy k-NN rule performed better then the edited k-NN rule

(see below) of Koplowitz and Brown (1981). The ability to measure confidence

in the fuzzy rule's predictions is also useful.

8.2.5.4 Methods of reducing the size of the design set

A weakness of the standard k-NN methodology is that the classification of a

new point requires the calculation of the distances from that point to all the

points in the design sample. This can be computationally slow and means that

memory needs to be set aside for storing the design set points. We discuss

three modifications of the k-NN method that aim to reduce the size of the

design set.

The condensed-nearest-neighbour (CNN) rule of Hart (1968) works by splitting

the design set into two stores, S and 2• To begin with all but one of the

points in the design set are placed into S1 . The method works by successively

taking points from S1 and classifying them using the NN method with S2 as the

design set. If a point is incorrectly classified it is added to 2' otherwise it is

returned to S. The process continues until a complete scan through the

remaining points in S fmds no new points to transfer. The resulting set S2 is

used as the design set for classification.

The reduced-nearest-neighbour rule of Gates (1972) is an extension of the CNN

rule. It allows points from 2 to be returned to S1 after completion of the CNN

procedure. Points are successively removed from 2 to form a new set

Then each point is transferred to S 1 if the particular point and all the points in

s1 are correctly classified using 2 as a design set. In practice this approach

leads to a relatively small reduction in the size of the design set after the CNN

rule, given the number of extra iterations needed.

A third approach to reducing the size of the design set is the edited-nearest-

neighbour rule described by Hand and Batchelor (1978). This involves pre-
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processing of the data to remove outliers followed by standard application of

the CNN rule. Outliers are removed using the rule:

Remove points from class i if P(iIx) <t, for some threshold t.
P(j x)

Hand and Batchelor estimate the class membership probabilities using the k-NN

method. This innovation is necessary because if outliers are present in the

sample to which the CNN method is applied, they are likely to be misclassified

by S2 and, thus, retained in the design set. (Furthermore, neighbouring points

from the other class may have to be retained in the design set because otherwise

they too will be misclassified by the outlier in S2 .) By using the edited-nearest-

neighbour rule the size of the design set can be reduced significantly.

8.3 A proposal for a new approach to metric selection

In Section 8.2.3 we considered distance measures that have been proposed in

the literature for the NN method. The major part of the discussion was given

to global and local variations of the Euclidean metric. In this section we

propose an original k-NN global metric that attempts to incorporate knowledge

of class differences contained in the data and show how it can be derived in two

ways. The first approach is considered in Section 8.3.1 and centers on

selecting a suitable matrix A for the metric d2 defmed in Section 8.2.3. In

Section 8.3.2 we present a more general derivation of the same metric via an

appropriate transformation of the data. This can form the framework for a

more general approach to metric selection. This framework involves the

transformation of the data prior to use of one of the standard metrics available

e.g. Euclidean, city block or other form of the general Minkowski distance. In

section 8.3.3 we apply this transformation to metrics other than the Euclidean.

Other issues relating to the implementation of the methodology are discussed in

Sections 8.3.4 and 8.3.5.

8.3.1 The adjusted Euclidean metric

One of the assumptions of the k-NN method is that P(glx) is constant within

the region of the feature space containing the k nearest neighbours. To avoid

bias in the probability estimates resulting from the k-NN rule we want to make
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this assumption as true as possible. A weakness of the Euclidean metric is that

it gives equal weighting to distances parallel to each axis and as a result makes

no use of knowledge from the data about how P(glx) changes with x. To

reduce this problem, we define the distance between two points as being the

separation between them in the direction orthogonal to equi-probability contours

with allowance for random variation. If we did know the equation of the "true"

equi-probability contours then the best metric to use would be the distance in

the orthogonal direction. In practice the equi-probability contours are estimated

using some model form and so we have to make allowance for inaccuracies in

this model. The derivation of our metric involves selecting a suitable matrix A

for the metric
d2 (x, y) = {(x - y)t A(x - y))112

Before deriving an expression for A we consider a simple example to help

illustrate the idea behind our proposal.

Let us assume that we have a sample of data with two characteristics X1 and

X2 as shown in Figure 8.3.1. Added to the figure are supposed "true"

contours of equal P(glx) and a score line, w, is shown in an orthogonal

direction.

xl

Figure 8.3.1: A good metric to use will give extra emphasis to

distance in the direction along the score line, w.

In the example shown above, the score direction, w, represents the line of

maximum class separability and is orthogonal to equi-probability contours. If

we know the equation of the score direction then we can use this information to

distort the Euclidean distance measure. By giving extra weighting to distance
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along the score direction, similarity under our metric corresponds to similarity

in terms of P(classlx). This helps to reduce the bias in the probability

estimates obtained from the k-NN rule. We would expect this to lead to

improved discrimination between classes.

More formally, the squared distance between two points x and y in the direction

orthogonal to equi-probability contours (denoted by w) is given by:
(wt (x—y))2 = (x—y)twwt (x—y)	 (8.1)

In practice we estimate the equi-probability contours from the data via a

regression model and so our metric needs to take into account random variation

in the estimates. Moreover the true contours are unlikely to be exactly linear in

practice. (The issue of how to select the equi-probabiity contours and score

direction will be covered in more detail in Section 8.3.4.) For these reasons our

proposed metric includes a contribution from the squared Euclidean distance

between x and y given by:

(x—y)(x—y)=(x—y)I(x—y) 	 (8.2)

Combining terms (8.1) and (8.2) gives the "overall squared distance":

(x—y)tI(x—y)+(x—y)twwt(x—y)

(x - y) t [I + ww J(x -

The measure that we propose comes from the the overall squared distance

considered above with a parameter, D, included to allow one to vary the extra

weighting given to distance orthogonal to the equi-probability contours. The

resulting adjusted Euclidean metric is given by
d6 (x, y) = {(x - y) t [I + Dwwt ](x -

Our metric is in the form of the generalisation of the Euclidean metric, d2,

proposed by Fukanaga and Flick (1984) where the matrix A is given by:

ADW (J+Dwwt)

The metric d6 includes the distance parameter, D, and selection of a suitable

value for this parameter will be an important part of the implementation of the

methodology. A simple way to achieve this is to use trial and error: compare
the performance of k-NN classifiers using the adjusted Euclidean metric, d6,

for different values of D and select the value which leads to the lowest resulting

error rate. An alternative approach is described in Section 8.3.5.

In computational terms the simplest way to view the metric is as
d6 (x,y) = ((x —y) t (x— y)+ D(w t (x —y))2}"2
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We now propose an alternative metric that tries to fulfil the same aim and has a
similar form to this version of metric d6 . Our intention in doing this was to

explore whether there might be a better way of incorporating knowledge of

equi-probability contours from the data. Our proposal for an alternative

adjusted Euclidean metric is given by
d7 (x,y) = {(x—y)t(x—y)}"2 +DIw t (x -y)I

The metric d7 takes the Euclidean distance and adds to it an extra term that

represents a multiple of the distance between two points x and y in the

direction of w. The difference from d6 is that the weighted distance in the

direction w is added on as an extra term rather than being incorporated into the
Euclidean distance. As a result it is not possible to express d7 in the general

form of metric d2 . Thus there is less theoretical justification for d7 than d6,

but we include it in our analysis for comparison purposes.

8.3.2 A general transformation of the data

In the last section we derived an adjusted Euclidean metric to take account of

information about the distribution of P(gx) contained in the data. This was

done by including in our metric d6 a term giving extra emphasis to distance

orthogonal to equi-probability contours. We now show how this metric can be

derived in a more general way through a transformation of the data and the

standard application of the Euclidean metric to the transformed data.

The general transformation that we will use is given by:

T:x i- x+ Dwwtx
where wis the direction vector perpendicular to the equi-probability contours

and .13 is a distance parameter (the metric adjustment constant) as before.

Our proposal for a general data dependent k-NN method is to shift all points

using the transformation T and then the Euclidean metric (or any other metric)

is used to calculate the distance between two points as usual. We can explicitly

show the effect of the transformation T on the Euclidean metric and justify that

this approach is equivalent to the adjusted Euclidean metric advocated in the

previous section.
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T:d1(x,y)2
(x_y+Dwwt(x_y))t(x_y+bwwt(x_y))

:(x_y)t(x_y)+132(xy)twwtwwt(x_y)

- y)t !wwt (x - y) + (x - y) t bww t (x - y)

+213(x_y)twwt(x_y)

= (x -y)t (x -y)+D(x-y)'wwt(x -y)

= d6(x,y)2

where D=D2Wtw+2D.

We have confirmed that applying the transformation T to the data and then

using the Euclidean metric is equivalent to using the adjusted Euclidean metric
d6 from above. In fact, as we have mentioned before, this general

transformation can be applied to the data before applying any distance metric.

In this way all the standard metrics that are used with the k-NN metric can be

treated in a data dependent way. In the next section we derive the data

dependent versions of other metrics using the transformation T defined above.

8.3.3 Other data dependent metrics

The city block was defined in Section 8.2.3 to be:
d5 =Ix1-y1I

This metric suffers from the same weakness as the Euclidean metric in terms of

giving equal weighting to distance parallel to each axis in the feature space

regardless of the data. This motivates the suggestion that one could use the

general transformation of the data described in the last section to make

allowance for class probability differences across the feature space. The effect

of the transformation 7', from 8.3.2, on the city block metric is shown below.
T:d8 (x,y) T:x, -y,I'-	 j(x+15ww tx) 1 -(y+Dwwty)j

=	 I(x1 _yi)+13(wtx_wty)wjI

We would expect this data dependent metric to perform better than the standard

city block measure.

The data dependent version of the general Minkowski distance can be derived

in a similar way and is given by:
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d9 = [ I(x1 _y1)+15(whx_wty)w1 r 
]IIr

We will include data dependent versions of the city block measure and the

Minkowski distance for different values of r in our analysis described in Section

8.5.

8.3.4 Selection of weights

The general transformation of Section 8.3.2 and the adjusted Euclidean metric

of Section 8.3.1 both make use of a vector of weights orthogonal to contours of

equal probability. In practice we do not have access to the underlying equi-

probability contours for the population of interest. The information we have is

in the form of a sample drawn from the underlying population. Before we can

make use of the preceding results we need to estimate appropriate contours and

the corresponding weights from the data.

As has been mentioned in Section 8.3.1 a simple way of estimating appropriate

weights is to fit a linear or logistic regression to the data and use the resulting

regression weights. We investigate which of these methods provides the most

suitable set of weights. We might expect that the logistic regression weights

would best describe the underlying probability distribution and as such would

be the most appropriate.

An initial study was carried out using the adjusted Euclidean metrics d6 and d7

with linear and logistic weights to determine which set of weights gives the best

performance. The criterion for performance of the classification rule was the

bad rate at a 70% acceptance rate. We discuss two approaches to comparing

the results:

(1) Select optimal values of k from the test set and compare the corresponding

bad rates using the two sets of weights for different D. In practice the test set

results are unknown until after the accept/reject decision is made and so a value

of k would have to be selected from the design set and fixed before classifying

the test set. Our simplified approach was taken to allow us to explore the

potential of the method, rather than provide a practical classification rule for

implementation. By selecting k from the test set predictions, we were able to

cut the amount of computation required by a factor of 4.6. This was important
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because running the k-NN algorithm for one value of D takes more than two

hours. A more realistic method of estimating k and D, which uses the design

set, is proposed in Section 8.6. (In fact, we find that the performance of the k-

NN method with adjusted Euclidean metrics is fairly insensitive to the choice of

kandD.)

(2) Consider graphical plots of bad rate against k for the two sets of weights.

We consider the two approaches in turn:

(1) For each metric and set of weights the procedure was as follows: choose a

value of D and find the corresponding value of k which gives the lowest bad

rate in the test set (k was allowed to range from 1 to the number of points in the

design set); then, repeat the process for a range of values of D. The resulting

"lowest" bad rates for each set of weights can then be compared.

The sample used in the comparison is described in Table 8.5.1. Tables 8.3.1

and 8.3.2 show the bad rates for ranges of D values for the two metrics using

linear and logistic weights.

Value of D Linear	 Linear	 Logistic	 Logistic

____________ (bad rate) 	 (value of k) (bad rate)	 (value of k)

1.50	 42.73	 830	 42.79	 1230

1.55	 42.74	 930	 42.79	 980

1.60	 42.73	 1000	 42.76	 1630

1.70	 42.74	 990	 42.74	 1170

1.75	 42.74	 920	 42.77	 1160

2.00	 42.76	 1560	 42.80	 1040

Table 8.3.1: Bad rates for the k-NN classifier with the adjusted Euclidean
metric d6 using linear and logistic weights.
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Logistic

of k) (bad rate

Value of D I Linear

	

0.25
	

42.81

	

0.30
	

42.75

	0.35
	

42.67

	

0.40
	

42.72

	

0.50
	

42.75

	0.60
	

42.85

Linear

860

870

930

970

820

750

42.79

42.78

42.75

42.78

42.86

42.86

Logistic

(value of

1000

960

1060

1110

760

140

Table 8.3.2: Bad rates for the k-NN classifier with the adjusted Euclidean
metric d7 using linear and logistic weights.

The results are only presented for values of D around the minima. They show

that the linear and logistic weights lead to similar optimum performance of the

k-NN method with adjusted Euclidean metrics. We anticipated that this would

be the case because the results of Chapter 7 showed that linear and logistic

regression give similar ratios between model coefficients for our sample.

However, a few minor points can be made about the results:

• The minimum bad rate for the linear weights is flatter than the
minimum for the logistic weights when metric d6 is used.

• In general the linear weights have a lower "optimal" k for both

metrics.

• The metric d6 is less sensitive to changes in D than metric d7.

• Although the results are similar for the two sets of weights, the linear

weights give bad rates that are consistently just below the corresponding

logistic weights. The average bad rates (for the ranges of D values

considered) are shown in Table 8.3.3:
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Metric

Weights	 d6	 ci.,

Linear	 42.74	 42.76

Logistic	 42.78	 42.81

Table 8.3.3: Averaged bad rates for linear and logistic weights
using metrics d6 and d7.

(2) Graphical comparisons of performance using linear and logistic weights:

To obtain a more global picture of the relative performance of the k-NN

classifiers with linear and logistic weights, we considered plots of bad rate

against k for the two sets of weights. Figures 8.3.2 and 8.3.3 show examples

of these curves for the test set with the optimal D.

The curves illustrate the similarity of the two classifiers. In order to make any

differences more apparent, Figures 8.3.4 and 8.3.5 show the corresponding

difference in bad rates between the two classifiers for different values of k (bad

rate for logistic weighted classifier - bad rate for linear weighted classifier).

These show the marginally superior performance of the k-NN classifier with

linear weights for most k. It is interesting to note how the classifier with

logistic weights suddenly starts to perform better than the classifier with linear

weights for k near to 3000. This is consistent with point (b) from above, where

it was mentioned that the optimal k is higher when logistic weights are used.

When considering the curves in the above figures, it should be remembered that

the differences are small (all with a magnitude of less than 0.001, which

corresponds to approximately 4 applicants).

To end this graphical comparison, Figures 8.3.6 and 8.3.7 show the difference

in bad rates for the linear and logistic weighted k-NN classifiers for the range
of k and D values together using metrics d5 and d,. These plots display an

undulating bad rate surface. The curves for particular D, such as Figure 8.3.5,

seem to display a periodic relationship similar to a sine wave. This indicates

that the relative performance of the linear and logistic weighted classifiers is

sensitive to changes in k. Figures 8.3.6 and 8.3.7 also indicate some sensitivity
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I.

Fig 8.3.6: Difference in bad rate between k-NN with logistic and linear weights (metric d6)

Fig 8.3.7: Difference in bad rate between k-Nt4 with logistic and linear weights (metric d7)
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of the bad rate differences to changes in D: the logistic weights give relatively
better performance for low values of D (more noticeable for metric d7).

The implication of the above plots is that the choice of weights should depend

upon the estimated parameters k and D. Because the k-NN classifier with linear

weights performs at least as well as the k-NN classifier with logistic weights

over the range of optimal k and D, we choose to focus on linear weights in the

rest of this chapter. However, further work is needed on the identification of

the most appropriate weights to use. Until now the models that we have used

to describe the class probability structures in the data have involved linear

probability contours. We could consider more complex model forms and in

particular quadratic probability contours might lead to a better description of

the data structure.

8.3.5 A variable distance parameter for the adjusted Euclidean

metric

The approach to metric selection that we have proposed in this chapter has

stressed the need to take into account knowledge from the data about how

P(g J x) changes with x. This involved a transformation of the data which gave

extra weighting to the distance along a specified direction vector. The amount

of this weighting can be controlled through the distance parameter, D. One

way to select an optimum value for D is to perform an exhaustive search

through all possible values.

An alternative method of selecting D is to let the emphasis given to distance in

the direction orthogonal to equi-probabiity contours depend on the rate of

change of P(g Jx). One way of doing this is to make the distance parameter, D,

equal to a multiple of the slope of the score direction, w.

If linear regression weights are used then the slope of the score direction is

constant and so this has no effect on the value of D selected. In the case of

logistic regression the score direction does have a variable slope. If the

predicted probability of belonging to class 1 from the logistic regression is
P = e / (1+ e)

where fi is a vector of regression parameters, then we set
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D(J3'x)= C cfttx) = ce /(1+e)2

where c is a scaling constant. We note that it is still necessary to select a

suitable value for the constant c defined above.

We did some initial investigations to test whether this approach could improve

upon the adjusted Euclidean metric with constant D. Initial results are

presented below for different values of the parameter c.

Value of c Lowest bad Value of k

rate

1	 42.92	 1000

2	 42.79	 1140

Table 8.3.4: Results of using a variable distance parameter with
the adjusted Euclidean metric d6 and logistic weights.

Table 8.3.4 shows the lowest raw bad rates that were obtained, and the

corresponding values of k, for each value of the parameter c. These results are

, obtained using a fixed distance parameter and suggest that there

is no advantage to be gained from adopting this approach. We hypothesise that

this is because there is an optimal value for the parameter D across the entire

characteristic space (see Section 8.5.1) and by varying D we end up using sub-

optimal values in some regions. As a result the variable distance parameter will

give bad rates close to or worse than the value obtained from the optimal fixed

D. We focus on using the adjusted Euclidean metric with linear weights and

fixed D in the rest of this chapter.

8.4. The implementation of the k-NN method with adjusted
metrics

Having described the theoretical basis for our approach to metric selection for

the k-NN classifier, we implemented the proposed method and carried out

experiments to assess its performance. The experiments involved comparisons

of our k-NN classifier with other standard classification techniques applied to

two credit scoring data sets. These comparisons are covered in detail in
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Sections 8.5, 8.6 and 8.7. In this section we restrict attention to practical

considerations relating to the implementation of the k-NN method.

We begin by highlighting a fundamental practical difference between the k-NN

method and the traditional method of scorecard building using a technique such

as linear or logistic regression. As described in Chapter 2, the traditional

method involves assigning numerical values to each of the attributes of the

relevant characteristics. A future applicant receives an overall score by

summing his/her particular attribute scores, which is then compared with an

overall threshold score. The scorecard consists of a list of characteristics with

the appropriate attribute scores created by the statistical model.

In the case of the k-NN method we cannot build a scorecard with weights for

each variable. To classify a future applicant we have to calculate the distance

from the new point to all the points in the existing design set and then select the

k nearest neighbours and calculate a good/bad probability estimate based upon

the proportions of goods amongst them. There are two disadvantages of this

approach: first, it is computationally expensive to calculate these distances for

each new applicant that we wish to classify; secondly, we are not able to

specify the contribution that each characteristic makes to the accept/reject

decision in a meaningful way (it is arguable whether we are able to do this

when building a traditional scorecard).

Despite the drawbacks of the k-NN method highlighted above, it was our hope

that this approach would lead to improved discrimination between good and bad

applicants. We implemented the method with data dependent metrics on a Sun

workstation using a "C" program. There were two main problems encountered

during the implementation of the method and we will mention each in turn.

Problem 1

First we found that our method of storing and updating the k nearest neighbours

was very inefficient. This was based upon maintaining an array of the k nearest

neighbours to date, then calculating the distance to the next point and shuffling

it up the table one-by-one until it reaches a point that has a smaller distance.

We were able to decrease the running time of the program by about 40 times

using a tree-sorting algorithm.
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Problem 2

A second major problem that was encountered while implementing the k-NN

method concerned the interpolation function that was used to compare the

results. As has been described in Section 8.2.1 and above, the classification

rule involves estimating a probability of belonging to each class for the

applicant under consideration and comparing this with a threshold. This

threshold is chosen to allow a fixed proportion of the test set to be accepted and

is calculated by rank ordering the estimated good/bad probabilities for the test

set (this is unusual for a classification problem- see Chapter 5 for a detailed

discussion of the assessment of scorecards). To compare different classifiers

we fix an acceptance threshold that we want to compare at (e.g. 70% of

applicants) and interpolate the bad rates from the nearest possible acceptance

rates to this threshold for each classifier.

A problem that arose was that, for very low and high values of k, there was

only a small range of possible estimated P(g Ix). The result of this was that the

nearest possible acceptance rates to 70% were some distance away. This led to

highly inaccurate predictions of the bad rate at the fixed threshold using our

initial interpolation function. This was important because we might expect the

k-NN classifier to perform well for low values of k, thus necessitating accurate

estimates of the bad rate.

The initial interpolation function was given by:

I ={(b1*d2)+(b2*d))/(d1+d2)

where b1 and b2 are the bad rates corresponding to the acceptance rates above

and below the threshold and d and d2 are the differences between these

acceptance rates and the threshold.

We devised a new interpolation function that took account of the number of

applicants above and below the threshold. It is given by:

'2 =((n *b*d)+(n*b*d)}/(n *d^n *d)

where ii and n2 are the numbers of applicants above the corresponding

acceptance rate.
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This problem is neatly illustrated by considering a different data set introduced

by Buntine and Niblett (1992). The data comes from a study of pole balancing

among human subjects and a summary of its properties is given in Table 8.4.1.

Continuous	 Classes

Attributes

Number of % in class 1

subiects

Pole data	 4	 2	 1847	 51

Table 8.4.1: The pole balancing data set supplied by Buntine and Niblett

(1992).

The data set described above was randomly split into a design set of 1000 cases

and a test set of 847 cases. The test set was then classified using a k-NN rule

based on the design set and the resulting error rate among the cases from class I

was calculated (this is analogous to our usual criterion of looking at the bad rate

among the accepted applicants). The curve of error rate against k for the old

interpolation function is shown in Figure 8.4.1.

The lowest value of the error rate at an acceptance rate of 50% is 0.2654 when

k = 997. If we were to trust this value then we would always choose to look at

997 out of the 1000 cases in the design set in order to make a classification on a

new case. This is ridiculous and is a result of the original interpolation

function. When the new interpolation function is added in Figure 8.4.2 we see

that for k = 997 the error rate is 0.4770. This value is consistent with the

error rates for similar values of k and reflects the expected poor performance as

k becomes close to the number of cases in the design set.

The example we have just presented shows how the original interpolation

function used can lead to highly erratic and inaccurate error rate predictions for

high and low k. We have solved this problem by introducing an interpolation

function that takes into account the number of cases contributing to a particular

error estimate. This new interpolation function has been incorporated into the

working version of the program.
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8.5 An investigation into the properties of the k-NN
classifier

This section describes the results of a first investigation into the properties of

the k-NN classifier applied to consumer credit data. The emphasis is on the

potential of the methodology, rather than the practical implementation. For this

first study we choose to select k and D using the oversimplified approach

described in Section 8.3.4: namely, by taking the values of the parameters

which give the lowest bad rates for the test set. This gives us an upper bound

on the performance of our method, allowing us to evaluate whether it has the

potential to improve upon other techniques. The results for linear and logistic

regression and decision trees are presented in order to provide a baseline for the

k-NN method to beat. We also explore the relationship between bad rate and k.

[A more extensive analysis is carried out in Section 8.6, including the proposal

of a practical method for selecting the k-NN model parameters (k and D) using

the design set (this version of the k-NN rule can be implemented in practice).

A more robust comparison of the different classifiers is also presented.]

The data set used in this study is an updated version of the sample described in

Table 2.1. Summarising statistics are given in Table 8.5.1.

Number of Number of Number of % of bath

variables	 classes	 cases
	

in full

Design set	 16	 2
	

15054
	

54.49

Test set	 16	 2
	

4132
	

54.70

Table 8.5.1: A description of the data set used for assessing the

performance of the k-NN classifier.

One interesting feature to note is that there are only two classes (good and bad).

We choose to exclude the others from the analysis in order to concentrate on

discrimination between goods and bads. The data is used in weights of

evidence form (see Chapter 2). Characteristics were selected on the basis of

availability at the mini vetting stage and an examination of information values.

The same set of characteristics is used for each of the techniques considered in

this chapter.
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The set of characteristics included two decision trees that were used to take

account of interactions between characteristics. This was done to give

assistance to the techniques using assumed linear relationships (linear and

logistic regression). This approach is similar to the hybrid classifier of

discriminant analysis and decision trees proposed by Boyle et al. (1992). We

would expect that by adopting this approach we would remove one of the

advantages of the k-NN method and thus set a harder baseline for it to beat.

Performance is assessed using the bad rate amongst the accepts (see Chapter 5

for a discussion of this criterion). The bounds on classifier performance come

from putting p = 45.3% and a = 0.70 into the appropriate equations in Section

5.2.2 and are shown in Table 8.5.2.

Description	 Bad rate

Best	 35.3%

Random	 54.7%

Worst	 78.1%

Table 8.5.2: Bounds on the bad rate.

8.5.1 Properties of the bad rate curves for the adjusted Euclidean

metrics

Figures 8.5.1 to 8.5.4 show plots of bad rate amongst the test set accepts

against k for a combination of different metrics and values of D as described

below. They illustrate the different types of bad rate curves encountered in

practice.

(a) The standard Euclidean metric (D = 0):

Fig. 8.5.1: 0 < k < 15050

Fig. 8.5.2: 0 < k < 3000

(b) The adjusted Euclidean metric d6:

Fig. 8.5.3: 0 <k < 3000 and a range of D values from the interval

0.5<D<5
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(c) The adjusted Euclidean metric d7:

Fig 8.5.4: 0 < k < 3000 and a range of D values from the interval

0.25 <D < 10

The horizontal broken lines represent the performance of a classifier using

linear regression. This provides a baseline against which to compare the

performance of our k-NN classifier. A number of observations may be made

about the above figures:

(i) The curves appear very jagged. In fact, the bad rate criterion was evaluated

for k= 10, 20, 30, ... up to the indicated maximum values. If it had been

evaluated for every value of k the curves would have been even more irregular.

Marked jaggedness clearly has implications for choosing a value of k, since it

implies that slight differences will produce large consequences. However,

examination of the vertical axis shows that even the largest jumps in the body

of the curve are produced by no more than about ten data points. That is,

although the curve appears irregular, the consequences are fairly small.

Despite this, we propose a smoothed version of the k-MN estimator in Section

8.6.1.2.

(ii) The early parts of the curves are more jagged - even less regular - than the

later parts. These curves are the end product of two averaging processes.

First, the averaging inherent in using the k nearest neighbours to estimate

probabilities. And second, the averaging over test set points to produce an

overall estimate of performance at each particular value of k. For the test set

this second part is always an average of 4132 estimated probabilities but the

first part involves averaging over samples of size k. Since early parts of the

curve are based on smaller k values the associated probability estimates will be

expected to have larger variances (the variance of the estimated probabilities

from the k-NN rule is given by Var [ P (i l x)] = pq / k where i is the class, p is

the true probability of belonging to class i and q = l—p).

There may also be a dependence effect since, the larger the value of k, the more

design set points each classification is likely to have in common. (With k

equal to the entire design set all classifications would be based on the same data
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set and so the curve would rise up to the full sample bad rate. This is

illustrated by Figure 8.5.1)

(iii) The k-NN curves remain below the linear regression line for a

considerable range of values of k and, in general, the range of "best" values of

k is large - the curves have broad flat valleys. The breadth of these valleys

came as something of a surprise to us. We might reasonably expect that as k is

increased the rising bias of the probability estimates will overcome any

improvement in the variance of the estimates, resulting in a consequent loss of

classification accuracy.

In order to explore this phenomenon we considered plots of P(g x, kj) against

F(gjx, k2 ) for the points in the original test set, using different values of k and

k2 . Figure 8.5.5 shows such a plot when k = 100 and Ic2 1000. The

increased variation in the ordering of points in the middle of the range is due to

the higher variance of the probability estimates in this region. The solid lines

represent the 70% thresholds for each classifier.

Figure 8.5.5 shows that, although there is variation in the ordering of the test

set points using the k-NN method with the two k values, most points are placed

into the same class by the two classifiers. This means that the points accepted

using both k values swamp the points only accepted using one.

Table 8.5.4 shows the numbers of good and bad applicants accepted by the k-

MN classifier using either one or both of Ic = 100 and k2 = 1000.

___________________________________ Goods 	 Bads

Accepts (Ic = 100), Rejects (k = 1000)	 49	 123

Accepts (k = 1000), Rejects (k = 100)	 53	 119

Accepts (k =100 and 1000)	 1594	 1127

Table 8.5.4: Numbers of goods and bads accepted using the k-NN

method with k = 100 and/or 1000.

The proportions of bads amongst the accepts in rows 1 and 2 are very similar,

indicating the similar creditworthiness of the swapsets. This, combined with
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the "swamping" effect of the points accepted under both classifiers, helps to

explain the "flat valley" phenomenon.

Figure 8.5.6 shows further piots of P(gx,k1 ) against P(glx,k2 ) using different

values of kj and Ic2 . The plots show how the variation in the ordering of points

increases as the difference in k values increases. This is not surprising because

a larger change in k corresponds to an equal or greater number of "uncommon"

points used to make each classification. In each plot the "swamping effect"

described above can be observed.

(iv) The consequence of the flat valley phenomenon described above is that the

bad rate stays near to its minimum until the value of k represents well over 90%

of the design sample (for example see Figure 8.5.1). This indicates that if we

merely exclude the points that are most different from the point to be classified

then we will get a reasonable prediction of the true class. This is a sort of

"most distant neighbours" approach. This feature of the results is unexpected.

We might reasonably expect that as k is increased a rising bias of the

probability estimates will overcome any improvement in the variance of the

estimates resulting in a consequent loss of classification accuracy (see Section

8.2.4).

(v) The implication of the flat minimum described above for choosing an

optimal value of k is that there is a wide choice of suitable values of k. In this

section the optimal k is chosen such that it gives the lowest bad rate in the test

set (it represents an upper bound on the performance that can be achieved in
practice for the test set). The optimal k for the adjusted Euclidean metric, d6,

are shown for different D under this criterion in Table 8.5.5.

It can be seen from Table 8.5.5 that there is considerable fluctuation in the

selected value of k for different values of D (the selected k range from 340 to

1560). This is not a cause for concern because the flat minimum of the bad

rate curve means that we expect good performance over a wide range of k.
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Value of D Value of k Bad rate

0.00	 700	 42.93

0.50	 1110	 42.86

0.75	 770	 42.85

1.00	 780	 42.79

1.50	 830	 42.73

1.55	 930	 42.73

1.60	 1000	 42.73

1.70	 990	 42.74

1.75	 920	 42.74

2.00	 1560	 42.76

2.50	 740	 42.82

3.00	 750	 42.83

5.00	 340	 42.89

100.00	 Any	 43.40

Table 8.5.5: Bad rates at a 70% acceptance rate for metric d6

with different values of D.

The values for the optimal k (all over 340) shown in Table 8.5.5 are a lot

higher than are normally used in applications of the k-NN method (of course,

we have a relatively large design sample so we would expect a relatively higher

k). In particular our optimal k are higher than the values proposed by Enas and

Choi (1986) and discussed in Section 8.2.4. For N = 15054, the proposed

values of k were 37 and 12 depending upon the covariance structure and the

proportions of each class.

In Section 8.5.4 we take a graphical approach to estimating the bias for

different values of k and propose an explanation for the high optimal k: we

believe that the structure of the population is such that P(,g Ix) lies between 0.2

and 0.8 for a higher than expected region of the characteristic space. This

implies that bias might be expected to increase relatively more slowly than

variance decreases, resulting in a high optimal k.

(vi) Throughout this initial study, the linear regression bad rate of 43.44 is

used as the baseline against which to compare the k-NN results. It has been

added to each of Figures 8.5.1 to 8.5.4. It can be seen that the k-NN method
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with adjusted Euclidean metrics outperforms linear regression for k between

about 300 and 2500 as D varies.

(vii) Figure 8.5.7 shows what happen to the bad rate curves as D increases to a
large value (in this case 100) using metric d6 . Such a large D means that

distance is effectively being measured orthogonally to the equiprobability

contours of P (g I x). As a result the characteristic space is reduced to a one

dimensional score line and the k-NN method involves looking at differences in

score. Because the method used to provide the weights (linear regression in

this case) gives a direction of increasing P(g), the k-NN method will tend to

keep the same ordering of the test set as comes from the regression. This

means that the method of selecting weights and the k-NN method with an

adjusted Euclidean metric will give very similar performance (although the

actual estimated probabilities may differ). The figures illustrate how the curves

"converge" to the linear regression line as D increases. It can be seen that the

curve has converged to the linear regression line for most k by D = 10. The

only appreciable difference between the curves for D 10 and D = 100 is the

region of low k (i.e. the optimal region where k < 1000).

Another feature of Figure 8.5.7 is the large fluctuations in bad rate for high k.

From (i) we know that the bad rate curve must reach the sample bad rate as k

tends to the number of points in the design set. From above we know that for

high D the k-NN method gives similar performance to linear regression. As k

becomes very large the influence of the first of these factors starts to overcome

the second. The large fluctuations are due to the instability of the probability

estimates for very high k.

To complement the above plots of k, Figures 8.5.8 and 8.5.9 show curves of
bad rate against D for the test sample using metrics d6 and d7 . The curves

show global minima, as we hoped, although the differences in bad rate are quite

small. We conclude that the bad rate is fairly insensitive to the choice of D.

The only difference between the curves is that minimum valley is slightly
broader for metric d6 . The irregular shape of the curves is due to the limited

number of D values considered and the jagged nature of the relationship

between bad rate and k and D.
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Figure 8.5.9: Graph of bad rate against D for metric d7.

To make the last statement more evident and bring discussion of the raw data

results together, Figures 8.5.10 - 8.5.13 show different plots of the bad rate
against the range of k and D values together for metrics d6 and d7 . This

highlights the insensitivity of the minimum to the choice of both k and D.
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8.5.2 k-NN results for the adjusted Euclidean metrics

Despite the insensitivity of the minimum bad rate to the choice of k and D, we

choose to consider smoothed test set curves in order to reduce the jagged nature

of the curve. By considering smoothed bad rate curves we hope to remove

local minima that do not represent features of the population and thus obtain

more robust estimates of the optimum parameters and performance of the k-NN

method. This is important because, although the improvements from this

approach are likely to be small (due to the insensitivity to k and D), a small

reduction in bad debt can result in huge savings for the credit grantor.

To find the smoothed bad rate for a particular value of k we average the raw

bad rates for a range of values of k around the value in question. The

smoothing function is defined in Section 8.6.12. A parameter, h, is used to

control the degree of smoothing. Our initial investigations showed that the

results are fairly insensitive to the choice of h. In this study h was fixed as 20

because this value consistently gave near optimum performance using the

criterion described above. As an example, Figures 8.5.14 and 8.5.15 show
plots of smoothed bad rate against k for metrics d6 and d7 with the optimal D

in each case. These plots suggest that we may be undersmoothing the bad rate

curves. However, further investigations where k was selected from the design

set showed that our choice of h is robust.

Tables 8.5.6 and 8.5.7 show the smoothed/unsmoothed bad rates and optimal k
for metrics d6 and d7 . We restrict attention to the values of D which give the

best performance, together with results for the standard Euclidean metric (with

D = 0). The bad rates from the smoothed curve are consistently higher than

the minimum values from the unsmoothed curve as we would expect (since the

raw data results represent an upper bound on performance). Our assertion is

that the smoothed results give a more robust estimate of the performance that

one can expect to achieve. However, we note that the optimum values of k for

the raw and smoothed results are fairly similar (at about 800 - 1000). This

indicates that the raw data results are giving a reasonable representation of the

true performance of the k-NN rule. It remains to provide a practical method of

selecting k and D (using the design set) and this is considered in Section

8.6.1.2.
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Fig 8.5.16: Smoothed bad rate curves for metric d6 with different 0
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Smoothed results 	 Unsmoothed results

Value of D Value of k	 Bad rate	 Value of k	 Bad rate

	

0.00	 820	 43.03	 700	 42.93

	

1.50	 920	 42.79	 830	 42.73

	

1.55	 920	 42.81	 930	 42.73

	

1.60	 980	 42.81	 1000	 42.73

	

1.70	 970	 42.80	 990	 42.74

Table 8.5.6: Smoothed/unsmoothed bad rates for the adjusted Euclidean
metric d6.

Smoothed results	 Unsmoothed results

Value of D Value of k	 Bad rate	 Value of k	 Bad rate

	

0.30	 960	 42.81	 870	 42.75

	

0.35	 1000	 42.78	 930	 42.67

	

0.45	 910	 42.85	 970	 42.72

	

0.50	 760	 42.87	 820	 42.75

Table 8.5.7: Smoothed/unsmoothed bad rates for the adjusted Euclidean
metric d7.

The tables show that the optimal bad rates from the smoothed k-NN results are

below the linear regression result (43.44%). This indicates that, after taking

into account peculiarities of the test sample, there is a range of values of k and

D for which our k-NN method can outperform regression. It just remains to

identify these ranges of D and k values from the design set so that the method

can be applied in practice. This provides the motivation for a more extensive

comparison study in Section 8.6.

The results also indicate that the adjusted Euclidean metrics d6 and d7 can give

improved performance over the standard Euclidean metric (D 0). The

lowest smoothed bad rate for the adjusted Euclidean metric is 42.81 compared

to 43.03 for the standard Euclidean metric.

Figures 8.5.16 and 8.5.17 show plots of smoothed bad rate against k for a

range of D values for the two metrics. We note that, in both cases, the curve
for the optimal D value (1.7 for d6 and 0.35 for d7 ) is below the other curves
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for almost all values of k. This consistency gives us grounds for believing that

we have smoothed out peculiarities of the data and are describing properties of

the underlying population. It is also further evidence that an optimal value of D

exists.

Figures 8.5.18 and 8.5.19 show smoothed bad rate against the range of k and D

values for the two metrics. They are analogous to the raw data plots shown in

Figures 8.5.10 and 8.5.12. The insensitivity of the minimum to the choice of k
and D is now even more apparent. However, metric d6 does appear to have a

slightly flatter minimum than metric d7 . This may be partly due to the

different scaling of the parameter D under the two metrics.

We end by noting that the metrics d6 and d7 give very similar performance (but

the optimal values of D are different - see Tables 8.5.6 and 8.5.7). Figure

8.5.20 shows the smoothed bad rate curves for the optimal values of D under

the two metrics. The curves look very similar in their optimum regions (circa k

= 1000) and give almost identical bounds on performance. We choose to use
the metric d in the rest of this chapter because of its stronger theoretical basis.

8.5.3 Other metrics

Until this point we have concentrated exclusively on the adjusted Euclidean

metrics. We have seen that by giving extra emphasis to distance orthogonal to

equi-probability contours, it is possible to improve upon the performance of the

standard Euclidean metric. In Section 8.2.3.5 we discussed work by

Todeschini (1989) which indicated that the city block metric (amongst others)

can lead to improved performance over the standard Euclidean metric. For this

reason we investigate the performance of the city block metric and the more

general Minkowski distance. We also consider data dependent versions of these

metrics by applying the transformation of the data defined in Section 8.3.2.

Figure 8.5.21 shows four bad rate curves for the city block metric d5 as

described below:

(1) The city block metric is shown with D = 0.
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Fig 8.5.22: City-block metric v Euclidean metric (using optimal D)
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(2) The curve for the Euclidean metric with D = 0 is superimposed. For this

value of D, the city block metric is superior to the Euclidean metric for most

values of k.

(3) The city block measure is shown with D = 1.5 (a value in the optimal

region).

(4) The curve for the Euclidean metric with D = 1.5 is superimposed. For

this value of D, and other values in the optimal region, the Eucliudean metric

outperforms the city block metric for most k.

The above plots show that if we use the standard Euclidean and city block

metrics (with D 0) then the city block metric gives the best performance.

However, if we use the data dependent versions of the two metrics (using the

same value of D in each case) then the adjusted Euclidean metric gives the best

performance.

To make a more useful comparison of the two metrics, we selected the optimal

values of D for each metric and then compared the results. Figure 8.5.22

shows the resulting smoothed plot for the test set.

The adjusted Euclidean metric gives better performance over the region of

optimal k (although the city block performs better for lower k). Table 8.5.8

summarises the bounds on performance from the smoothed and unsmoothed

curves.

Smoothed results	 Unsmoothed results

Value of Value of k Bad rate Value of k Bad rate

________ D _____________ _____________

Euclidean	 1.70	 1060	 42.81	 990	 42.74

City block	 0.00	 800	 42.88	 830	 42.74

Table 8.5.8: Bounds on performance for the k-NN method using the adjusted

Euclidean and city block metrics with optimal D.
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The table shows that, although the bounds are identical for the unsmoothed

results, the smoothed bound is slightly lower for the adjusted Euclidean metric.

We also note that the adjusted Euclidean metric has a flatter minimum than the

city block metric (see Figures 8.5.21 and 8.5.22). For these reasons we

believe that by using an adjusted version of the Euclidean metric we have been

able to improve performance over both the standard Euclidean metric and the

city block metric.

Further work was carried out to investigate the influence of the parameter r in

the general Minkowski distance d4 . To start with we restricted attention to the

case where D = 0 to reduce the number of variables in the analysis. Figure

8.5.23 shows the raw bad rate curves for four values of r.

There is noticeable variation in the shape of the curves for different r. In order

to assess whether these are real differences, we smoothed the bad rate curves to

remove sample variation. Figure 8.5.24 shows the smoothed bad rate against k

and r. This indicates the insensitivity of bad rate to both k and r.

Table 8.5.9 shows the bounds on performance for different r.

Smoothed results	 Unsmoothed results

Value of r Lowest bad Value of k Lowest bad Value of k

____________ rate	 rate

0.4	 42.80	 1320	 42.71	 1370

0.5	 42.83	 1200	 42.71	 1250

0.6	 42.85	 1260	 42.79	 1010

0.8	 42.92	 890	 42.82	 470

1	 42.88	 800	 42.74	 830

Table 8.5.9: Bad rates for the general Minkowski distance d4 for

different r.

The results show that the Minkowski distance metrics with r = 0.4 and 0.5
give comparable bounds to the adjusted Euclidean metrics d6 and d7.

We also applied the transformation of the data defined in Section 8.3.2 to the

general Minkowski distance measure to see if this could lead to improved
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discrimination. We found that, as with the adjusted Euclidean metric, the

adjusted general Minkowski distance is insensitive to the choice of D. A value

of 1.6 was found to give near optimal results across the range of r values

between 0 and 1. Table 8.5.10 shows the resulting "best" bad rates amongst

the accepts in the test set for different values of r.

Smoothed results	 Unsmoothed results

Value of r Lowest bad Value of k Lowest bad Value of k

_____________ rate	 rate

0.1	 42.95	 370	 42.81	 280

0.2	 42.75	 430	 42.64	 440

0.3	 42.75	 480	 42.65	 480

0.4	 42.73	 560	 42.63	 520

0.5	 42.77	 390	 42.70	 360

0.6	 42.71	 390	 42.57	 360

0.8	 42.80	 720	 42.66	 660

1	 42.94	 580	 42.84	 530

Table 8.5.10: Bad rates for the general Minkowski distance d4 for

different r given D = 1.6.

The table shows that the transformation of the data has led to improved

performance of the general Minkowski distance metric for all the values of r

considered apart from r=1. Furthermore, the metric gives better optimal

performance than the adjusted Euclidean metric for 0.2 ^ r ^ 0.8, although the

differences are small. In the rest of this chapter we focus on using the adjusted

Euclidean metric because the resulting k-NN performance is less sensitive to k.

Further work is needed on the application of the k-NN method with the general

Minkowski distance metric to credit scoring and, in particular, on the selection

of optimal values of the parameter r.

8.5.4 Explanations for the high optimal k

One of the features of the k-NN results that holds for all the metrics considered

is the high optimal value of k. In this section we try to explain this by

examining the estimates of P(g x) using a graphical approach.
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As we discussed in Section 8.2.4 the choice of a suitable value of k involves a

trade-off between minimising the variance and bias of the estimates of P(g Ix).

The variance of P(gx) is given by

v&()=p(l—p)/k

where p = P(gx). Therefore, as k increases, so the variance decreases. On

the other hand, the bias of the estimate may increase as k increases, as points

more distant from x are considered.

We consider two possible explanations for the high optimal value of k both of

which relate to the bias of the estimates P(gx):

(1) The bias of the probability estimates may be unimportant as long as the

order of P(glx) is the same as the order of P(gx).

(2) The structure of the population is such that P(g x) lies between 0.2 and 0.8

for a higher than expected region of the characteristic space. This implies that

bias might be expected to increase relatively more slowly than variance

decreases, resulting in a high optimal k.

For the second of these explanations to hold, we need to confirm the slope of

P(g J x) and show that the bias of the good/bad probability estimates is relatively

small for the optimal k (approx 1000). For the first explanation to hold the bias

can be quite large for the optimal k.

8.5.4.1 Bias of the P(gx) estimates

We now take a graphical approach to estimating the bias of the predicted

probabilities from the k-NN method. We started by reducing the data to one

dimension by fitting a linear regression model. Figure 8.5.25 shows four plots

designed to compare the true P(g I x) with the estimated probabilities from the k-

NN rule for k in the optimal region (fixed at 1000 in this study):

(1) An estimate of the true P(g I x) was obtained by taking kernel smoothed

estimates of the sample responses at each regression score. A key assumption

is that this gives an accurate representation of the true good/bad probabilities at

each regression score.
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Fig 85.29: Histogram of scores with estimated P(goodlscore)
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(2) Estimates of P(g x) from the k-NN method (using the full characteristic

space) are superimposed for each member of the test sample. The probability

cloud represents variation in the creditworthiness of points not accounted for by

the linear regression scores. We note that there is more variation in the

probability estimates for mid-range scores. In order to provide a more robust

classification rule, we could vary k across the characteristic space according to

the variance of the probability estimates.

(3) The variation described in (2) is removed by taking a kernel smoothed

estimate of the k-NN probability estimates at each regression score.

(4) A logistic regression model was fitted to the linear regression scores using

the true classes and this is superimposed. It shows greater bias from the "true"

P(g I 
x) than the k-NN estimates do.

The above figure shows that the k-MN probability estimates for optimal k have

lower bias than the logistic regression estimates. To further explore how the

bias of the k-NN rule changes with k, we plotted estimated P(g I x) for different

values of k. Figure 8.5.26 shows the k-NN curves for k values greater than the

optimum. Figure 8.5.27 shows k-MN curves for k less than the optimum. The

kernel estimate of the true P(gx) is added to both plots. Figure 8.5.28 shows

the estimated bias for the range of k values (i.e. difference between kernel

estimate and k-NN estimate)

The piots show that bias does indeed increase as k increases. The optimum k

does give more biased estimates than the sort of values advocated by Enas and

Choi (1986). However, the magnitude of the bias for k = 1000 is not

sufficient to reject our second explanation for the high optimal k.

8.5.4.2 Slope of P(gjx)

Figure 8.5.29 shows a histogram of the linear regression scores with the kernel

estimate of the true P(,g I x) superimposed. 14% of the test sample lies outside

the interval 0.2 < P(gscore) < 0.8. If the data were uniformly distributed

across [0,1] then we would expect 40% of the sample to lie outside this
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interval. This indicates that the slope of P(g x) is shallow, thus satisfying the

condition required for our second explanation from above.

To confirm this condition, we repeated the procedure outlined above using

logistic regression scores instead of linear regression scores as a method of

dimension reduction. Figure 8.5.30 shows the histogram of scores with the

kernel estimate of the of the true P(g x) superimposed. In this case, only

9.27% of the sample lies outside the interval 0.2 < P(gscore) < 0.8, giving

a further indication of the shallow nature of P(g Ix).

The preceding analysis has provided some evidence that the slope of P(g x) is

shallow, with the probabilities in the range [0.2,0.8] for most of the

characteristic space. This is combined with evidence from Section 8.5.4.1 of

some bias at the optimum k. The bias was less than the bias of the probability

estimates from the logistic regression. These factors combine to suggest that

our second explanation for the high optimal k is most likely.

To complete our discussion of the nature of the predicted probabilities of class

membership from the k-NN method, we looked at histograms of predicted

probability for different values of k. These are shown for k = 100, 500, 1000

and 5000 in Figure 8.5.31. We observe that as k increases so the estimated

probabilities occur on a smaller range (this corresponds to the increase in bias).

The histograms are bimodal and the largest mode occurs for low proportion

good. It is surprising that there are two modes because we believe that the

population of credit applicants cannot be sub-divided into distinct sub-

populations and that instead applicants can be arranged somewhere on a good-

bad continuum. This phenomenon may be due to the omission of the class of

"other" applicants from the analysis.

8.5.5 Standard credit scoring techniques

In the earlier parts of this section we have used linear regression to provide a

baseline against which to assess the k-NN method with adjusted Euclidean

metrics. To provide a more representative picture of the performance of

standard credit scoring techniques, we now consider the results of applying

logistic regression, decision trees and decision graphs. For a discussion of the
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properties of these techniques see Section 4.9 and Chapter 7. Table 8.5.11

shows the bad rates at a 70% acceptance rate. Results are shown for the

decision tree method using look-ahead 1 and 2 and for the decision graph

method using different values of the join parameter.

Classification method
	

Bad rate

Linear regression

Logistic regression

Decision tree (LA1)

Decision tree (LA2)

Decision graph (Pj =0.05)

Decision graph (Pj =0.1)

Decision graph (P =0.

43.44

43.37

44.50

43.88

43.88

43.43

43.78

Table 8.5.11: Bad rates at a 70% acceptance rate for linear

regression, logistic regression and various decision trees/graphs.

Logistic regression gives the lowest bad rate but only by a very small margin.

To confirm that there is no significant difference between the linear and logistic

regression results we performed the two significance tests of Chapter 5. The

swapsets are given by Table 8.5.12.

bads	 goods

Linear	 16	 6

Logistic	 18	 4

Table 8.5.12: 2*2 classification table for applicants

accepted by either linear or logistic scorecard (but not both).

Neither test showed a significant difference between the bad rates. We also

note that the best decision graph gives almost identical performance to the

linear regression model.

We conclude that the range of standard classification techniques considered give

very similar performance for this data set and the criterion used. We have seen

in Section 5.3 that the k-NN method has the potential to provide improved
discrimination: the minimum bound on performance was 42.67 for metric d7

with D = 0.35. In Section 6 we use repeated sampling to test whether it is
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possible to provide a practical k-NN classification rule that can approach the

bounds on performance.

8.6 An empirical study of the application of the k-NN
method to credit scoring

There are two limitations of the analysis in Section 8.5:

• We did not pre-select the parameters k and D from the design set

before applying the classifier to the test set.

• The results are subject to sample variation.

We now present a further study of the k-NN method with adjusted Euclidean

metrics designed to satisfy these two considerations. In order to reduce the

influence of sample variation our analysis involves taking 5 random design/test

sample splits from the combined design and test samples described in Table

8.5.1 (using the same ratio between sample sizes). The method is then applied

to each of the design sets in turn and the results are assessed using the

corresponding test set. If the results are then averaged our assessment

procedure becomes similar to that adopted by Leonard (1993). This approach

is often called (n-fold) cross-validation.

8.6.1 Estimation of k and D

In order to apply our k-NN methodology to future samples it is necessary to

choose values for the two parameters k and D. We propose a procedure for

doing this using the design set and assess performance using an independent test

sample from the same population.

In principle the estimation of suitable k and D is straightforward, requiring a

simple bivariate optimisation (for example using a steepest descent algorithm)

of the criterion. In what follows we present a more detailed discussion of the

properties of this criterion for different choices of k and D so that better

understanding is gained.
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8.6.1.1 Bad rate curves

Figures 8.6.1 to 8.6.5 show plots of bad rate against k for the 5 randomly

selected design/test sets using various choices of D. The figures were chosen to

illustrate the subtle variations in the bad rate curves across different samples

and values of D. For each curve the bad rate amongst the accepts is shown

using both the design and test samples. The design sample curve comes from

classifying each design set point using its k nearest design set points (excluding

itself). The design set curve could be used to select the appropriate value of k

to consider for the corresponding test set. The resulting k are shown by the

vertical lines joining the lowest points on the design set curves with the

appropriate test curves (we consider alternative ways of selecting k after a

discussion of properties of these curves). The horizontal broken lines represent

the performance of a classifier using linear regression.

Figure 8.6.6 shows the averaged bad rate curve for the five samples, using, in

each case, the optimal value of D as estimated from the design set.

The observations made in Section 8.5.1 about the jagged nature of the bad rate

curves, the high optimal k and the breadth of the minimums apply equally to

these curves. We add a couple of points:

(i) There is a difference in level between the bad rate curves for the design and

test samples in Figures 8.6.1 to 8.6.6. This is explained by the difference in

bad rates amongst the full design and test samples in these cases. For example,

sample 1 has a bad rate of 54.24% in the design sample and 55.59% in the test

sample. We chose not to fix the proportion of goods in each randomly selected

test sample because we were interested in prediction performance on future

applicants and the proportion of bads in such a sample will vary.

(ii) We found that for samples 2-5 there exist values of D and ranges of k for

which the test sample curves drop below the line representing the performance

of a classifier using linear regression. This indicates that our method has the

potential to lead to improved discrimination.
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Fig 8.6.3: k-NN using data set 3 and D = 1.40
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8.6.1.2 Smoothing of the bad rate curves

As has already been suggested, we could simply use the values of k and D

which give the lowest bad rate for the design set. However, this approach is

risky because of the fluctuations in the bad rate curves for small k described in

Section 8.5.1. The result that we have observed for the design set may be due

to random variation and not attributable to a feature of the underlying

population. In order to try to obtain a more robust choice of k we propose

smoothing the bad rate curves for the design set. To find the estimated bad rate

for a particular value of k we average the raw bad rates for a range of values of

k around the value in question. To formalise the procedure we choose a
smoothing parameter h and estimate the bad rate for k = Ic0 by

= l/(2h+1)r(i) for h<k0<3000—h
s(k0) {

	

k0+h

i=1c0—h

r (k0)	
otherwise

where r(k0 ) and s(k0 ) are the raw and smooth bad rates respectively for

Ic = Jc.

Smoothing was not performed for very low and high values of k because we are

only interested in fmding estimates of the optimum values, which can be seen

from Figures 8.6.1 to 8.6.6 to occur for 100 < k < 2000. We choose to use

this smoothing function because of its intuitive appeal and simplicity.

This approach to selecting k and the choice of a suitable smoothing parameter h

is analogous to kernel density estimation (see for example Hand (1982)). In

choosing k we wish to balance the conflicting aims of ironing out anomalies in

the design set and preserving the structure of the data. For example, Figure

8.6.1 shows a sharp minimum in the design and test sets for k = 100 when D

0. Because this k value is close to values giving much higher bad rates, the

minimum is smoothed out by the above function.

Figure 8.6.7 shows an example of a smoothed bad rate curve for the design set

from sample 5. The raw curves for the design and test set are added. The

vertical lines represent the selected values of k using the smoothed and raw

design curves.
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By the same reasoning as above we could choose to use an average of the

predictions from a range of values of k to predict the true class for the test sets.

This is equivalent to considering smoothed versions of the test set curves.

More complex weighted averages could be adopted. (This would be like

working out a kernel density estimate based upon the value of the smoothing

parameter selected from the design set.)

8.6.2 k-NN results

We now bring together the results of applying the various methods of selecting

k and D discussed in the last section. For each sample we begin by selecting

the value of D which gives the lowest overall bad rate in the design set (we

choose to use smoothed results). Having focused on a particular value of D,

we select a value (or range of values) of k from the design set (with or without

smoothing) and use this value to classify the test set. The results for the test set

could then be smoothed as explained in the last section.

Table 8.6.1 shows the bad rates at a 70% acceptance rate for each sample using

the four combinations of smoothing/non-smoothing of the design and test set

curves.

_______ Design (smoothing) 	 Design (no smoothing) 	 D

	sample Test	 Test	 k	 Test	 Test	 k

__________	 (s)	 (ns)	 (s)	 (ns)	 ________

1	 44.02 43.96 1260 44.01 44.01	 1160	 1.6

2	 43.66 43.63	 690	 43.90 43.90	 340	 1.8

3	 43.38 43.45	 200	 43.42 43.46	 150	 1.4

4	 41.55 41.55	 750	 41.85 41.85	 100	 1.4

5	 42.86 42.84	 820	 42.85 42.83	 780	 1.4

Table 8.6.1: Bad rates and selected values of k using smoothing/no

smoothing of the design and test set curves for each sample.

The table shows that the choice of k is highly sensitive to the sample and

whether smoothing is employed. However, since the bad rate curves are fairly

flat over a wide range of k and D values, a large change in k does not give rise

to much change in performance.
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Although the method of smoothing employed is fairly crude it does lead to

more consistent results than the case where no smoothing is used. It is clear

from the results that smoothing of the design set curves is more effective than

smoothing of the test set curves. In particular, for Samples 2 and 4 the results

are between 0.24 to 0.3% better when the value of k is chosen from the

smoothed design set results. For the other samples there is little difference in

the results whether smoothing is employed or not. This indicates that if the raw

curve minimum represents a real feature of the population then smoothing the

bad rates will not lead to a significant change in performance; however,

smoothing will help to reduce the chance of selecting a k which is only a

minimum in one sample (due to random variation).

One could consider more complex smoothing functions and this might lead to

improvements in the overall performance of the method. However, we chose

not to do this because the shallow nature of the bad rate curves means that the

performance of the method is not particularly sensitive to the choice of k. In

the rest of this chapter we focus on using a smoothed version of the design set

curves to select k, but do not perform smoothing on the test set curves when

assessing performance.

In order to provide a baseline against which to compare our k-NN predictions

Table 8.6.2 shows the bad rates for each sample from linear regression models

(and from the k-NN method with k selected from the smoothed design set

curve). The k-NN classifier with adjusted Euclidean metrics performs better

for Samples 2-5 and linear regression performs slightly better for Sample 1.

The result for Sample 1 gives grounds for being cautious in our interpretation

of the results.

Linear	 k-NN

1	 43.87	 43.96

2	 44.03	 43.63

3	 43.54	 43.45

4	 42.16	 41.55

5	 43.20	 42.84

Table 8.6.2: Bad rates for linear regression and k-NN models

for samples 1-5.
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The averaged bad rates for linear regression, the k-NN method with the

standard Euclidean metric (i.e. D = 0) and the adjusted Euclidean metric are

43.36, 43.25 and 43.09 respectively. These results indicate that use of the k-

NN method with adjusted Euclidean metrics can lead to improvements over use

of the standard Euclidean metric and linear regression. However, applying the

likelihood ratio test (Section 5.3.2), the individual sample differences are not

significant. There is a need for application of our k-NN methodology to other

data sets to assess whether the differences in bad rate, although small, are

consistent across samples. If the difference is real then it could result in large

savings for the credit grantor.

8.6.2.1 Removing the decision tree

We investigated the effect of omitting the decision tree characteristic from the

set of characteristics used to design scorecards. It was not found to make a

significant difference to the relative performance of the k-NN and linear

regression methods for any of the samples used in this chapter. To illustrate

this we describe the results for samples 1 and 4. Table 8.6.3 shows the bad

rates at a 70% acceptance rate for the linear and k-NN classifiers with and

without the decision tree.

Sample 1	 Sample 4

Decision tree	 Decision tree

+	 -	 +

Linear	 44.13	 43.87	 42.64	 42.16

k-NN	 44.28	 43.96	 41.94	 41.55

Table 8.6.3 Bad rates at a 70% acceptance rate for the linear and k-NN

classifiers with and without the decision tree.

For both these samples the differences between the linear and k-NN

performance are similar with and without the decision trees. To further explore

this Figures 6.8 and 6.9 show the bad rate curves for the k-NN method (for the

test set) and linear regression with and without decision trees. These figures

show that the effect of omitting the decision tree is sensitive to the value of k in

the k-NN method. There do exist ranges of k values where omitting the
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decision tree does lead to a relative improvement in the performance of the k-

NN method.

8.6.2.2 Comparisons with other methods

In order to assess further the potential of the k-NN method with adjusted

Euclidean metrics for credit scoring, we extended the comparisons to include

logistic regression (Chapter 7), decision trees and decision graphs (as described

in Section 4.9). Logistic regression and decision trees were included to

represent popular parametric and non-parametric credit scoring techniques.

Decision graphs were included in the comparisons to represent a recent

development in classification methodology.

Table 8.6.4 shows the bad rates averaged over samples for the range of

classification techniques considered. The results show that the k-NN method

with adjusted Eudlidean metrics gives the lowest bad rate.

Method	 Bad rate

k-NN (any D)	 43.09

k-NN (D = 0)	 43.25

Logistic regression	 43.30

Linear regression	 43.36

Decision	 43.77

graphs/trees	 ___________________

Table 8.6.4: A summary of the averaged bad rate results

using different classification techniques.

These results represent the expected performance of the different classification

techniques when applied to the population from which our sample is drawn.

We have proposed a practical k-NN classification rule which performs well,

achieving the lowest overall bad rate. It was also found that the adjusted

Euclidean metric led to an improvement over the standard Euclidean metric.

However, if the classification rule is to be implemented, it is necessary to

assess how robust it is to changes in the population over time. For this reason,

in Section 8.7 we consider the use of a training sample from one population to

classify applicants for credit in a future population.
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8.7. An examination of the robustness of the k-NN method

This section explores the relative performance of the k-NN and linear

regress ion methods when models are constructed using one population and

applied to a different population.

8.7.1 The data

Samples from two different time periods were used in this analysis in order to

simulate the real life scenario where scorecards are constructed on a sample at

one point in time and then applied to applicants in future time periods. The

first data set (Sample A) represents a sample collected in a previous time period

for which the true creditworthiness of all applicants is known. The second data

set (Sample B) represents a sample from the current population of applicants on

whom an accept/reject decision needs to be taken. We use a design set from

the past sample to classify the applicants in the current sample. For

completeness we also classify an independent test set from the past sample.

Table 8.7.1 gives a summary of the two data sets. One immediate difference

between Samples A and B is the percentage of bads in the sample (51.4/7%

against 46.5 %). This was due to a strategy of not accepting any of the "worst

rejects" for Sample B. Note also that we restrict attention to the mini stage of

the vetting procedure.

Number of Number of Number of % of bads

variables	 classes	 cases	 in full

sample

Design set (A)	 21	 2	 14032	 51.7

Test set (A)	 21	 2	 3915	 51.4

Current sample (B) 21	 2	 4187	 46.5

Table 8.7.1: A description of Samples A and B.

Characteristics were selected for inclusion in the analysis using stepwise linear

regression. We chose to use the same set of characteristics for both techniques,
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despite the fact that the characteristics chosen may be sub-optimal for the k-NN

method. This was to standardize comparisons and to avoid giving any unfair

advantage to the k-NN method. As with previous studies in this chapter, the

data was put into weights of evidence form. The assessment criterion was the

bad rate at a 70% acceptance rate.

8.7.2 Classification results

The k-NN method with the adjusted Euclidean metric d6 and the design sample

A was used to classify the test sample A and the current sample B. A scorecard

constructed on the design set A using linear regression was used to provide a

baseline to compare the k-NN results against.

Figures 8.7.1 and 8.7.2 show the bad rate curves for the design set A, the test

set A and the current sample B using D = 0 and D = 1.6 respectively. The

bad rate curves forD = 1.6 are typical of the curves obtained using D from the

optimal region (1.5 < D < 2). The broken lines represent the performance of

the linear scorecard on the two test samples.

Figure 8.7.1 shows that when D = 0, the k-NN classifier does not do as well as

linear regression on Sample B (the bad rate curve for the test set is above the

linear regression line for all k). On the other hand, it gives superior

performance for the test sample A for most k. This indicates that the k-NN

method with the standard Euclidean metric is less robust to changes in. the

population than linear regression. The effect of using the adjusted Euclidean

metric, as shown in Figure 8.7.2, is to improve the k-NN performance to about

the level of the linear regression classifier on Sample B. To make this more

evident, Figure 8.7.3 shows the smoothed test set curve for Sample B with D =

1.6. It fluctuates about the line representing the performance of linear

regression. By increasing the smoothing parameter the bad rate curve

converges to the linear regression line. However, this does not lead to an

improvement in performance.

In order to make a more exact comparison between classifiers we considered

the performance of the k-NN classifier with estimated parameters. We used the

same procedure for estimating k and D that was described in Section 8.6.
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Fig 8.7.1: k-NN for samples A and B with D = 0
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Fig 8.7.2: k-NN for samples A and B with D = 1.6
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Table 8.7.2 shows the bad rates and optimal k obtained using smoothed and

unsmoothed design set curves for different D.

Design (smoothing)	 Design (no smoothing)	 D

Sample Sample	 k	 Sample Sample	 k

A B	 A B	 __

39.21	 34.87	 640	 39.27	 34.88	 630	 0.0

39.14	 34.60	 720	 39.17	 34.67	 680	 1.5

39.05	 34.52	 720	 39.12	 34.76	 640	 1.6

39.11	 34.63	 690	 39.18	 34.53	 490	 1.7

Table 8.7.2: Classification results for Samples A and B using the k-MN

method with smoothed/unsmoothed results.

The optimal value of D was estimated as 1.6 from the design set. Table 8.7.3
shows the classification results for linear regression and the k-NN method with

optimal parameters (using the smoothed design set results to estimate k).

____________ Sample A Sample B

k-MN (D = 1.6) 39.05	 34.52

Linear	 39.48	 34.53

regression_________________________

Table 8.7.3: Classification table for the k-NN method and linear

regression using Samples A and B.

The results for Sample A are consistent with previous studies, giving further

evidence that the k-NN method can outperform linear regression on samples

from the same population. However, the two classifiers give almost identical
performance for Sample B. This suggests that the k-NN methodology is less
robust to changes in the nature of the population. Perhaps, this should not
come as a great surprise: one advantage of a non-parametric, locally fitting
model like the k-NN method is that It can identify subtle features of the
population that cannot be picked up using a rigid parametric model like linear

regression. When the structure of the population changes this advantage may
be lost. The parametric constraints of linear regression may, in fact, be an
advanlage if one is trying to fit a model to a rapidly evolving population. In
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this way knowledge of the underlying population gives a valuable pointer as to

which type of approach to classification is most appropriate.

8.7.3 Hybrid methods

We have seen above that the k-NN method and linear regression give similar

performance when applied to a sample from a future population (sample B).

However, examination of swapsets reveals that the two classifiers are

identifying subtly different groups of applicants. To see this we consider Table

8.7.4 which shows the numbers of goods and bads exclusively accepted under

one classifier when D = 1.6 and k = 500.

____________ Goods	 Bads

k-NN	 73	 122

Linear	 77	 118

Table 8.7.4: Swapsets from the k-NN and linear regression

methods applied to sample B.

The table shows that there are very similar proportions of goods and bads in

each swapset (applying Fisher's exact test the p-value is 0.755). This is why

the two classifiers give similar performance. (In fact, the overall bad rates are

34.69% for the k-NN method and 34.55 % for linear regression.) However, the

total number of applicants in the swapsets (those accepted under one classifier

and rejected under the other) is relatively high at 390 (or 13 %) of the 2932

accepted applicants. It was this observation that suggested the idea of trying to

combine the two methods to form a hybrid classifier.

As a first approach we ranked the P(gx) for each applicant, x, in the test set

under the two classifiers. Figure 8.7.4 shows a scatter plot of the ranks for

each applicant. This indicates that there is considerable variation in the

ordering of the test set under the two classifiers. There appear to be two

clusters of points suggesting that there are two identifiable groups of applicants

which are assessed differently under the two classifiers.
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Let K1 and L, denote the ranks of the ith point in the test set under the k-NN

and linear regression classifiers respectively. Then we define the hybrid rank
of the ith point in the test set, .H to be:

H1 =w*K,+(1_w)*L1., where wis a weighting term.

We note that by setting w = 0 the hybrid rank reduces to the linear rank and by

setting w = 1 the hybrid rank reduces to the k-NN rank. In general one would

expect to be able to improve performance over the linear and k-NN classifiers

by varying the weight w. The difficulty is in choosing suitable (and robust)

values for w.

In this exploratory study we chose to use the hybrid ranks, H,, to accept 70%

of the test sample and consider performance for different values of the

weighting term, w. Table 8.7.5 shows the bad rates for different values of the

weighting term, w.

w	 10.0
	

0.2	 0.4
	

0.5	 0.6	 0.8	 1.0

Badrate 134.55 34.38 34.31 34.31 34.24 34.28 34.69

Table 8.7.5: Bad rates from the hybrid classifier for different weights.

By taking w = 0.6 we are able to reduce the bad rate below the level of both

individual classifiers to 34.24. The practical problem is that, as with estimating

k and D, we cannot select w from the test set. Further work is needed to

estimate w from the design set.

In the example considered above the k-NN and linear classifiers gave very

similar performance when applied separately. By taking a hybrid classifier we

were able to produce a slight improvement in performance. We now consider

an example (using Sample 4 from Section 8.6) where one classifier is superior

to the other. We use the k-NN method with D 1.4 and k = 750. In this

case the k-NM classifier gives a bad rate of 41.55 and the linear regression

classifier gives a bad rate of 42.20 (see Table 8.6.2). Table 8.7.6 shows the

resulting swapsets.
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bads	 goods

Linear	 79	 19

k-NN	 61	 37

Table 8.7.6: Swapsets for data set 4 from Section 6.

Applying the significance test from Section 5.3.1, the p-value is 0.0025.

Consequently, we reject the null hypothesis of no difference between the bad

rates in the swapsets. This gives some evidence that the k-NN classifier is

outperforming the linear classifier.

The hybrid procedure was adopted as described above. After ranking the

probability estimates under the two classifiers, the hybrid rank was calculated

for different w and used to accept 70% of the test sample. Table 8.7.7 shows

the resulting bad rates.

w	 0.0	 0.2	 0.4	 0.6	 0.8	 1.0	 1.17

Badrate 142.20 41.99 41.82 41.68 41.64 41.55 41.47

Table 8.7.7: Bad rates from the hybrid classifier for different weights.

The table shows that the hybrid classifier can only just improve performance

beyond the level achieved by the k-NN method applied separately (a bad rate of

41.47 when w = 1.17). This is not a sufficient improvement to be achievable

in practice.

As an alternative approach to hybrid classification we investigated applying

classifiers sequentially. In other words accepting a proportion p (< 0.7) of the

sample under one classifier and then accepting a further proportion (O.7-p) from

those rejected the first time, by applying the second classifier. This gave very

similar results to the hybrid ranking approach described above.

To conclude we have not yet found sufficient evidence to justify the hybrid

classifier approach. However, our analysis was limited because we only

considered two examples and more extensive testing is required. It is our belief

that this approach could prove to be a successful way of adding some

improvement to the performance of the k-NN and linear regression methods.
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8.8 Conclusions

In this chapter we have considered a new approach to discriminating between

good and bad applicants for credit using the k-Nearest Neighbour method. We

began by reviewing the standard methodology with particular attention given to

the selection of a distance measure. We proposed application of the k-NN

method using an original distance measure, an adjusted version of the standard

Euclidean metric. An initial study was carried out to investigate properties of

the classifier and bounds on performance were calculated. Plots of bad rate

were considered for different values of the parameters k and D. We saw that,

in fact, our /C-NN classification rule is fairly insensitive to the choice of these

parameters and, in particular, the curves of bad rate against k have surprisingly

flat valleys. Other interesting features of the results were discussed such as the

high optimal k. A comparison study showed that the adjusted Euclidean metrics

perform at least as well as other standard metrics, such as the city block metric

and the general Minkowski distance.

In Section 8.6 we described a more extensive and realistic study of the

performance of the k-NN classifier. A practical strategy for selecting values of

the parameters k and D was proposed using smoothed functions of the bad rate

curves. A comparison was made between the performance of the k-NN method

and a range of other classification techniques. Linear and logistic regression

and decision trees were selected to represent the accepted credit scoring

techniques and decision graphs were included to represent a recent development

in the classification literature. It was found that the k-NN method peformed

well, achieving the lowest expected bad rate. It was also found that the

adjusted Euclidean metric led to an improvement over the standard Euclidean

metric.

Further testing with a data set from a future population was carried out to assess

the robustness of the k-NN classifier to changes in the population. It was found

that linear regression was more robust, achieving similar performance on the

future sample (despite doing less well on the original population). Although the

linear and k-MN classifiers gave similar performance for the future sample, it
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was found that they identified subtly different types of applicant. This

motivated the idea of combining the two classifiers to form a hybrid classifier.

There remains one other computational limitation of the k-NN method as a

practical technique for credit scoring: to assess one new applicant, one needs to

calculate the distances to all the points in a design set. This is computationally

a lot more expensive than techniques such as linear regression where each

applicant receives a score from the sum of his/her attribute scores. This

problem can be reduced by using an edited, reduced or condensed k-NN

approach (see Section 8.2.5.4). Further work could investigate the influence of

these approaches on the performance of the k-NN method.
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Chapter 9

Conclusions

9.1 Summary of research

The aim of this thesis has been to investigate the statistical foundations

necessary for building credit scoring systems. In Chapter 2 we provided an

introduction to current approaches to credit scoring used by practitioners in the

credit industry. This included discussion of the objectives of a credit scoring

system and the nature of the data available. In Chapter 3 we reviewed previous

published work on credit scoring. This was divided into literature on building

credit scoring models and literature on aspects of credit granting policy. We

focused on the former in this thesis. From a statistical perspective we identified

three major areas requiring further research:

• the identification of suitable measures of performance and tests to compare

them for different classifiers.

• the selection of appropriate analysis samples for building credit scoring

models (the need for reject inference).

• the selection of appropriate classification techniques for building credit

scoring models given the nature of the data and the objectives of the credit

grantor.

Our conclusions are presented for each of these three areas in turn:

(1) Assessment of performance:

In Chapter 5 we considered different approaches to measuring the performance

of credit scoring models (both relative and absolute performance). Absolute

performance measures were further sub-divided into measures of

discriminability and reliability. Differentiability measures assess how

successful a classifier is in allocating applicants to their true class, whereas
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reliability measures assess the accuracy of the predicted class membership

probabilities.

The appropriate measure depends upon the commercial objectives of the lender.

In our problem the lender was most interested in the bad debt amongst accepted

applicants given a specific acceptance rate (with particular emphasis on 70%).

Thus, the bad rate amongst the accepts was chosen as the criterion in this thesis

(it is an example of a discriminability measure based upon counts of

misciassifications, similar to the error rate). We discussed this criterion in

some detail because it is unusual outside the credit scoring field and it imposes

bounds on the levels of performance that can be achieved.

Reliability measures may be of interest to the credit grantor in some problems,

such as reject inference, where accuracy is of more interest than group

separation. In Section 5.2.4 attention was given to evaluating the approach to

constructing reliability measures proposed by Hilden et al. (1978). A test for

assessing the reliability of a classification rule was derived, given the general

form of a reliability measure, and weaknesses of this approach were identified.

In particular, the test is not able to identify whether a classification rule is

reliable: it can only identify a subset of the cases where the rule is unreliable.

This detracts from the practical value of the described approach.

The most important contribution of our work on measuring classifier

performance was the proposal of two tests for assessing the relative

performance of two classifiers. Both tests can be used to compare bad rates or

other measures based upon the counts of misclassification, although they

address subtly different questions.

The first test fixes applicants classified the same way under both classifiers and

models the variation amongst applicants accepted under one and rejected under

the other (using Fisher's exact test). By excluding applicants accepted under

both classifiers, the test is better able to identify any small but real differences

in performance.

The second test uses a likelihood based approach to compare performance. It

models both possible sources of variation: first, the proportion of goods

amongst applicants exclusively accepted under one of the two classifiers, and,

308



secondly, the proportion of applicants exclusively accepted under one classifier.

It can be argued that both these sources of variation contribute to differences in

classifier performance. However, this approach is also more conservative than

the first test in judging a difference in performance to be significant.

(2) Reject Inference:

In Chapter 6 we considered different approaches to reject inference, the process

of inferring the true creditworthiness of the rejects (and using this information

to build improved classifiers). To begin with we carried out an experiment to

evaluate which factors contribute to the bias of models built on the accepts

sample. An important factor for reducing sample selection bias is the inclusion

of all the characteristics used to make the original accept/reject decision. Other

factors such as the adopted approach to classifier design were also discussed.

We reviewed reject inference methods proposed in the literature which attempt

to use the characteristic vectors for the rejects. A likelihood based argument

was used to show that the characteristic vectors for the rejects do not contain

information about the parameters of the full sample model. Thus, this approach

should not lead to improved performance except by:

• Chance. The new classifier may be better than the old one by luck

• The use of additional information/assumptions. Two possible approaches

are the assumed distributional forms included in the mixture decomposition

method, and information about P(g I x) in the reject region in the form of a

calibration sample. Several methods of reject inference that use a calibration

sample were proposed. In some circumstances these methods were found to

reduce the bias of extrapolation models.

• Ad hoc adjustment of the accepts classifier. Expert knowledge of the data

may allow the adjustment of parameter estimates in a direction likely to reduce

bias. For example, if a characteristic receives insufficient weighting in a

scorecard built on the accepts, it might be possible to reduce bias in the

classifier by multiplying the attribute scores by subjective weights.

(3) Comparison of classification techniques:
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In Chapter 7 we made a comparison of different classification techniques for

credit scoring: linear regression, logistic regression, Poisson regression,

projection pursuit regression, decision trees and decision graphs. The results

have shown that, given our data set:

• Linear regression is surprisingly robust to departures from the

required distributional assumptions.

• There is not a statistically significant difference between the

performance of the range of techniques considered. If this insensitivity

of classifier performance to the technique used to build it can be

confirmed for other data sets then this has implications for further

research into credit scoring methodology. It indicates that research time

may be more profitably spent on other aspects of the credit granting

process such as identifying new sources of data.

• The results are insensitive to whether the fraud or risk definitions of

credit default are used. However, future work should assess the

influence of more radical innovations on classifier performance, such as

use of continuous defmitions of credit default.

In Chapter 8 we considered the application of the k-NN method to credit

scoring using an adjusted Euclidean metric. An initial study was carried out to

investigate properties of the classifier and bounds on performance were

calculated. Plots of bad rate were considered for different values of the

parameters k and D. We saw that, in fact, our k-NN classification rule is fairly

insensitive to the choice of these parameters and, in particular, the curves of

bad rate against k have surprisingly flat valleys. Other interesting features of

the results were discussed such as the high optimal k. A comparison study

showed that the adjusted Euclidean metrics perform at least as well as other

standard metrics, such as the city block metric and the general Minkowski

distance.

In Section 8.6 we described a more extensive and realistic study of the

performance of the k-NN classifier. A practical strategy for selecting values of

the parameters k and D was proposed using smoothed functions of the bad rate

curves. A comparison was made between the performance of the k-NN method
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and a range of other classification techniques. It was found that the k-NN

method peformed well, achieving the lowest expected bad rate. It was also

found that the adjusted Euclidean metric led to an improvement over the

standard Euclidean metric.

Further testing with a data set from a future population was carried out to assess

the robustness of the k-NN classifier to changes in the population. It was found

that linear regression was more robust, achieving similar performance on the

future sample (despite doing less well on the original population). Although the

linear and k-NN classifiers gave similar performance for the future sample, it

was found that they identified subtly different types of applicant. This

motivated the idea of combining the two classifiers to form a hybrid classifier.

9.2 Suggestions for further research

One of the important conclusions of this thesis is that the performance of credit

scoring models is fairly insensitive to the choice of classification technique.

Therefore, if significant improvements are to be made, radically new

approaches to modelling credit behaviour need to be identified. One possible

area for future research is to consider alternative approaches to defming and

modelling creditworthiness. Three possible approaches are:

• nth order Markov chain models. This approach allows

creditworthiness to evolve over time with changes in state (see Section

4.11 for further details).

• Survival analysis. This involves modelling the time until an

applicant defaults, which may be of more interest to the credit grantor

than looking at performance in a constrained time period.

• Continuous/multivariate representations of creditworthiness. It

is unrealistic to treat creditworthiness as a two state problem: in practice

applicants will lie somewhere on good/bad continuum. The ideas of

fuzzy set theory could be used to solve this problem.
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