
Open Research Online
The Open University’s repository of research publications
and other research outputs

The feasibility of using standard Z notation in the
design of complex systems
Thesis
How to cite:

Reed, David John (1994). The feasibility of using standard Z notation in the design of complex systems.
PhD thesis The Open University.

For guidance on citations see FAQs.

c© 1993 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

UN EST &I ci' D
Systems Architecture Group

Electronics Systems Engineering

Faculty of Technology

The Open University

The Feasibility of using Standard Z Notation in the
Design of Complex Systems

Volume 1 of 2

by

David John Reed

BSc BA MSc MIEE CEng

4 January 1993

Thesis submitted for the Degree of Doctor of Philosophy

kxv6r's ik, n6tr : Loo 2 .0 35

-ý
111'3

Dav. 0 awoxd (ýEh ýGnuar 1991ý-

-i-

Preamble

This thesis is based on collections of Z schemas that describe three systems. The thesis is

lengthy because all the schemas have been included in the main text; this has eliminated

cumbersome cross references to appendices and other documents that would otherwise had

been necessary. The schemas were also type set using the computer tool CADiZ. Including

all the Z schemas in each chapter facilitated referencing and expansion by CADIZ.

EX12

Ace
HIGHER DEGREES OFFICE

LIBRARY AUTHORISATION FORM

Please return this form to the Higher Degrees Office with the bound library copies of your thesis.
All students should complete Part 1. Part 2 applies only to PhD students.

Student: 1) A� ii, pi: L E, `O 2ZO -S 5

Degree: F {ý D

Thesis title:
the ý egg uä r ,,

itvýd
.

rC/ 2 Ak 11h
,- . mot -T /7 E

L214
,1 r4 `U<'YT ýýýZ)C �c tc M

Part 1 Open University Library Authorisation (to be completed by all students)

I confirm that I am willing for my thesis to be made available to readers by the Open University
Library, and that it may be photocopied, subject to the discretion of the Librarian.

Signed- Date: z . s/ i/ 24

Part 2 British Library Authorisation (to be completed by PhD students only)

If you want a copy of your PhD thesis to be held by the British Library, you must sign a British
Doctoral Thesis Agreement Form. You should return it to the Higher Degrees Office with this form
and your bound thesis. You are also required to supply a third, unbound copy of your thesis. The
British Library will use this to make their microfilm copy; it will not be returned. Information on
the presentation of the thesis is given in the Agreement Form.

If your thesis is part of a collaborative group project, you will need to obtain the signatures of
others involved for the Agreement Form.

The University has agreed that the lodging of your thesis with the British Library should be
voluntary. Please tick either (a) or (b) below to indicate your intentions.

(a) 9(I am willing for the Open University to supply the British Library with a copy of my thesis. A
signed Agreement Form and 3 copies of my thesis are attached (two bound as specified in
Section 9.4 of the Research Degree Handbook and the third unbound).

(b) OI do not wish the Open University to supply a copy of my thesis to the British Library.

Signed: Date: ZSi cl ý-

EX12/January 1993/dg/akb

-ii-

Abstract

Formal design methods are becoming increasingly recognised as being useful for specifying

complex systems. Incorporating formal methods in the early stages of a design process in-

troduces the possibility of using mathematical techniques, hence improving the effectiveness

of a design process.

The Z notation has been applied mainly to specifying software, although it has also been

used for specifying hardware and general systems. The Z notation fulfils two functions in

this thesis. The first function is as a notation for representing specifications of complex

systems, and the second function is as a notation for representing implementations of the

same complex systems. The suitability of the Z notation for these functions is investigated

in three studies. Both the specifications and implementations are represented as unified col-

lections of Schemas that describe the behaviour in response to each set of input conditions.

In each of the studies, both the specifications and implementations of the complex system

take place at an early stage in a design process. Throughout this thesis non rigorous proof

sketches prove that the implementations meet the requirements of the specifications.

- iii -

Acknowledgements

I wish to express my gratitude to the Open University for supporting this research. In

particular I would like to thank my supervisor Professor John Monk for all his patience and

support.

- iv -

Contents

Preamble ..
i

Abstract ...
ri

Acknowledgements ...
iri

Contents
..

iv

List of Figures .. xii

List of Tables ... xv

I Introduction ...
1

1.1 Background ..
1

1.1.1 Formal Methods 2

1.1.2 Advantages of Formal Methods 3

1.1.3 Limitations of Formal Methods
3

1.1.4 Proof Sketches
4

1.1.5 Design Processes
5

1.2 Research Summary
7

-V-

1.2.1 Premises 7

1.2.2 Notation 7

1.2.3 The Studies 8

1.2.4 Similarities between the Studies 9

1.2.5 Differences between the Specifications of the Studies 9

1.2.6 Differences between the Proof Sketches in the Studies 9

1.3 Organization of the Thesis 10

2 The Z Notation
... 11

2.1 Introduction .. 11

2.2 Related. Applications of the Z Notation 13

2.3 Unified Descriptions in the Z Notation 14

2.4 CADIZ:........................... 17

2.5 Summary .. 19

3 An Implementation of a Communications Network 20

3.1 Specification and Implementation 22

3.1.1 Initial Description 22

3.1.2 Informal Statement of Properties used in this Study
........ 23

3.1.3 Informal Description of the Z Implementation 23

3.2 Data Types and Invariant 25

3.2.1 Given Sets 25

3.2.2 Free Data Types 26

3.2.3 Network State Schema 28

3.3 Network Operations 32

3.3.1 The Join Operation 32

- vi-

3.3.2 The Leave Operation
46

3.3.3 The Call Operation 49

3.3.4 The Clear Operation 55

3.3.5 The Send Operation _. 59

3.3.6 The Receive Operation
63

3.3.7 Network Implementation at this Design Stage 69

3.4 Formal Statement of the Safety Properties 69

3.5 Additional Properties as a Consequence of the Implementation 76

3.6 Formal Specification of Liveness Properties 80

3.7 Discussion ...
90

3.7.1 Verification Conditions
90

3.7.2 Isolated Operation Specification
92

3.7.3 Disjunction of Schemas
93

3.7.4 Style of Writing Schemas
95

3.7.5 Concurrent Activities
96

3.8 Summary .. 97

3.8.1 Complete Description of an implementation 97

3.8.2 Proof Obligations 97

3.8.3 Preconditions
98

3.8.4 Postconditions
99

3.8.5 Properties 99

3.8.6 Liveness 99

4 Replicated Database Systems 101

4.1 Introduction .. 101

- vii -

4.2 Serializabiliry Theory
104

4.2.1 Serialization Graphs
104

4.2.2 Serialization Graphs for Replicated Databases 107

4.2.3 Replicated Data Serialization Graphs 109

4.3 Concurrency Control Techniques in Replicated Database Systems 110

4.3.1 Two Phase Locking
111

4.3.2 Quorum Consensus
111

5 Serializability Constraint on Replicated Database Systems
113

5.1 One Copy Serializable Property
116

5.1.1 Data Definitions
116

5.1.2 Conflicting Transactions
119

5.1.3 One Copy Serialization Property 126

5.1.4 One Copy Serialization Histories "
130

5.1.5 Initial State
132

5.2 Implementation of a Replicated Database System 132

5.3 Site Operations
135

5.3.1 Invariants for Site Schemas 136

5.3.2 Requests for Physical Operations 140

5.3.3 Site Response to Requests to Perform Operations 143

5.3.4 Change of Site State in Response to Execution of Operations .. 159

5.4 Management Operations
172

5.4.1 Invariants for Management Schemas 174

5.4.2 Response to Logical Operation Requests 180

5.4.3 Execution of Logical Operations 188

- viii -

5.4.4 Progress of Site Requests 206

5.5 Complete Implementation 208

5.6 Proof Sketches of the Serializability of the Implementation 209

5.6.1 Proof Sketch of One Copy Serializability 210

5.6.2 Proof Sketch of the Behaviour meeting the Specification

Property .. 212

5.7 Summary
..

218

Volume 2 of 2

6 Graceful Degradation of Queues
220

6.1 Introduction .. 221

6.2 Priority Queue 224

6.2.1 Specification of a One Copy Priority Queue
.............. 224

6.2.2 Implementation of a Replicated Priority Queue
............ 232

6.2.3 Verification using Refinement Conditions of a Priority Queue... 245

6.2.4 Verification using a Proof Sketch of Equivalent Behaviour of

a Priority Queue 257

6.3 Multiple Priority Queue 259

6.3.1 Specification of a One Copy Multiple Priority Queue 260

6.3.2 Implementation of a Replicated Multiple Priority Queue 267

6.3.3 Verification using Refinement Conditions of a Multiple

Priority Queue 270

6.3.4 Verification using a Proof Sketch of Equivalent Behaviour of

a Multiple Priority Queue
............................... 277

6.4 Out of Order Priority Queue 280

6.4.1 Specification of a One Copy Out of Order Priority Queue 280

-1X-

6.4.2 Implementation of a Replicated Out of Order Priority Queue ... 284

6.4.3 Verification using Refinement Conditions of an Out of Order

Queue ... 286

6.4.4 Verification using a Proof Sketch of Equivalent Behaviour of

an Out of Order Priority Queue 294

6.5 Degenerate Priority Queue
295

6.5.1 Specification of a One Copy Degenerate Priority Queue 295

6.5.2 Implementation of a Replicated Degenerate Priority Queue 300

6.5.3 Verification using Refinement Conditions a Degenerate

Priority Queue
......................................

301

6.5.4 Verification using a Proof Sketch of a Degenerate Priority

Queue ...
307

6.6 Lattice Structure of Behaviours 308

6.7 Summary
..

310

7 Conclusions ... 314

7.1 Complete Descriptions 314

7.2 Proof Sketches 315

7.2.1 Success of Proof Sketches 316

7.2.2 Proof Framework 317

7.2.3 Difficulties with Proof Sketches 318

7.3 Future Work 319

Glossary
.. 321

Bibliography
.. 324

A Definition of Terms .. 336

-X-

B Examples for Chapter 3 356

B. 1 CADiZ Output Examples for Chapter 3 356

B. 1.1 Expansion of the Schema Pre_Join_Sch 356

B. 1.2 Expansion of the Schema Simplified-3-1 357

B. 1.3 Expansion of the Schema . Pre-Error Join 357

B. 1.4 Expansion of the Schema Simplified-3-2 358

B. 1.5 Expansion of the Schema Simplified 3_3 358

B. 2 Verification of Preconditions in Schema Simplified-3_3 359

B. 3 Next Stage of Design Process 363

B . 3.1 Initialization Condition 369

B. 3.2 Applicability Condition 370

B. 3.3 Correctness Condition 370

B. 4 Concurrent Activities 371

C Examples for Chapter 5 378

C. 1 Example of Dead Locking History 378

C. 2 Example of Transactions 378

C. 3 Animation of Specification 383

C. 4 Animation of Implementation 387

C. 5 CADiZ Expansion of Simplified_5_3
....................... 393

C. 6 Verification of Preconditions in Schema Simplified-5-3
.......... 395

C. 7 Concurrent Activities 398

C. 8 Disjunction and Conjunction of Schemas 407

C. 9 Alternative Specification 408

D Examples for Chapter 6 418

- xi -

D. 1 Example of a Priority Queue
418

D. 1.1 One Copy Queue
418

D. 1.2 Replicated Copy Queue
419

D. 2 Example of a Multiple Priority Queue
421

D. 2.1 One Copy Queue
421

D. 2.2 Replicated Copy Queue
423

D. 3 Example of an Out of Order Priority Queue
425

D. 3.1 One COPY Queue
425

D. 3.2 Replicated Copy Queue
427

D. 4 Example of a Degenerate Priority Queue
431

D. 4.1 One COPY Queue
431

D. 4.2 Replicated Copy Queue
433

D. 5 CADiZ Expansion of Simplified_6_2
436

D. 6 Verification of Preconditions in Simplified-0-2 439

E Syntax of the Z Notation
.....................................

444

- xii -

Figures

1.1 Design Process
......................................

6

2.1 Isolated Operation Schemas
15

2.2 Combination of Isolated Schemas 15

2.3 Unified Operation Schemas
16

2.4 Combination of Unified Schemas 17

2.5 Internal Structure of CADIZ 18

3.1 Overview of the Network Implementation 31

3.2 Interactions between the Join Operation Schema and the State

Schema .. 42

3.3 Interactions between the Leave Operation schema and the State

Schema .. 48

3.4 Interactions between the Call Operation Schema and the State

Schema .. 53

3.5 Interactions between the Clear Operation Schema and the State

Schema .. 57

-X111-

3.6 Interactions between the Send Operation Schema and the State

Schema .. 61

3.7 Interactions between the Receive Operation Schema and the State

Schema .. 67

4.1 Serialization Graph for H1 106

4.2 Serialization Graph for H2
.............................. 107

4.3 Serialization Graph for H3 108

4.4 Replicated Data Serialization Graph for H3 110

5.1 Construction of the One Copy Serialization Property 131

5.2 Interactions between the Management and the Site Schemas 134

5.3 Interactions between the Site State Schema and the Site Operation

Schemas ... 136

5.4 Schema for Site Requests 140

5.5 Schemas for Site Response 143

5.6 Schemas for Site Execution
.............................. 159

5.7 Main Interactions between Management Schemas 173

5.8 Mapping of the Function Site-Data 178

5.9 Management Response to Requests 180

5.10 Schemas for Management Execution 188

5.11 Schema for Site Progress 206

5.12 Inclusion Relationship for One Copy Serialization Property 213

6.1 Interactions in the Specification of a Priority Queue 224

6.2 Interactions in the Implementation of a Priority Queue
............ 233

6.3 Schema Abstract-Queue Mappings 247

6.4 Data Refinement for Priority Queues 251

-xiv-

6.5 Interactions in the Specification of a Multiple Priority Queue 260

6.6 Interactions in the Implementation of a Multiple Priority Queue 268

6.7 Data Refinement for Multiple Priority Queues 273

6.8 Interactions in the Specification of an Out of Order Priority Queue 280

6.9 Interactions in the Implementation of an Out of Order Priority Queue .. 284

6.10 Data Refinement for Out of Order Priority Queues
............... 290

6.11 Interactions in the Specification of a Degenerate Priority Queue 296

6.12 Interactions in the Implementation of a Degenerate Priority Queue 300

6.13 Data Refinement for Degenerate Priority Queues 304

6.14 Lattice Structure for Priority Queues
308

A. 1 Refinement Activity
337

B. 1 Interactions of the Property Oriented Implementation of the Join

Operation ... 376

C. 1 Relationship between Transactions 379

C. 2 Partially Ordered History 380

C. 3 Serialization Graph 381

C. 4 Replicated Data Serialization Graph 382

C. 5 Replicated Data Serialization Graphs 385

C. 6 Interactions of the Property Oriented Implementation of the Site

Request Operations .. 402

C. 7 Interactions of the Property Oriented Implementation of the Site Read

Operation ... 405

- xv -

Tables

3.1 Summary of Design Stage in Chapter 3 22

5.1 Summary of Design Stage in Chapter 5 115

6.1 Summary of Schemas in Chapter 6
223

6.2 Analysis of Queue Implementations
311

-1-

Chapter 1
Introduction

Formal design methods are useful for specifying complex systems. They can be automated

and this helps in coping with complex system designs. Incorporating formal methods dur-

ing the early stages in a design process makes these stages amenable to mathematical analy-

sis which can detect errors early on. It is particularly important to avoid errors in the early

stages of a design process because of the increasing cost of re-work when errors are identi-

fied in later design stages.

This thesis investigates the use of the Z notation and proof sketches as part of a formal ap-

proach to the design of complex systems. The investigation takes the form of three studies.

Each study represents an early design stage of a complex system before the system is parti-

tioned into functional subsystems. Standard Z notation expresses complete descriptions of

both a specification and an implementation. Each of the three studies exhibits a different as-

pect of the relationship between a specification and an implementation. In all the three stud-

ies, proof sketches are used to verify an implementation correct with respect to a specifica-

tion.

1.1 Background

Computer hardware description languages (sometimes referred to as design languages) have

been developed to specify and design the hardware components of computers, that is digital

-2-

electronic circuits [Dud83, Milne88]. Most of the languages developed have been for de-

scribing the functional and structural properties of hardware, leaving the description of other

properties of hardware to ad hoc methods.

Not all computer hardware description languages use formal languages. The lack of formal-

ity means that the descriptions cannot be verified formally. At present there are a number of

formal languages used in hardware design methods, such as CIRCAL [Milne86] and HOL

[Gord85], plus a number of semi formal ones, such as VHDL [Aylor86, Marsh861, MoDL

[Smit87] and ELLA [Mori85].

1.1.1 Formal Methods

A formal method for a design process is a set of well defined procedures and practices with

their associated notations. Formal methods, in general, encompass other practices in addi-

tion to the notations applied in the descriptions of implementations. The additional practices

include such topics as configuration control and design team organisation. The term formal

method has caused some confusion because of the problem of defining the term method sat-

isfactorily. Nicholls suggested that instead of the term method the three terms process, stage

and technique should be used [Nich92]. A process is an approach taken in the design of a

system. A stage is an identifiable phase in the process of design. A technique is a set of

rules applied within a stage.

The important characteristic of a formal method, in the context of this thesis, is that it is

based on a mathematically formal system [Gibb88J. The mathematical basis of formal tech-

niques enables theorems about implementations to be proposed and verified. Camurati and

Prinetto stated that implementations are verified with respect to specifications by two broad

approaches [Cam88]:

1 Specify the required behaviour of the system in a formal language and then prove that

any subsequent implementation is mathematically implied by the specification.

2 Specify properties possessed by all correct implementations in a formal language and

then prove rigorously that a proposed implementation exhibits the required properties.

Both approaches have been investigated in the three studies of the research reported in this

thesis.

-3-
1.1.2 Advantages of Formal Methods

It is a widely held view in the academic community that using a formal language reduces the

chances of inconsistencies, unintended ambiguity and incompleteness.

One of the major advantages of formal methods is that, if both the specification and imple-

mentations are expressed in formal notations, then it is theoretically possible to verify that

the implementations are correct with respect to their specifications [Wing901. The correct-

ness is based on mathematical analysis that can cover all possible conditions. Other possi-

bilities such as testing or simulating can only demonstrate correctness under a subset of the

possible conditions. In practice, strict mathematical verification may not be feasible because

of the magnitude of the task, so informal techniques have to be applied.

A formal design process is one in which all implementations are verified with respect to

specifications that are derived rigorously from the initial specification. This reduces some of

the uncertainty and vagueness that occurs with informal specifications. Morgan expressed

the opinion that one of the benefits of a formal specification is that it forces a decision to be

made on every issue within the context of the specification: ̀mathematical notation cannot be

vague' [Morg83]. The implication is that the mathematical basis of formal languages en-

courages clarity of thought.

Informal methods using mathematical analysis based on heuristic techniques can support a

design activity, but because of the lack of mathematical rigour, less confidence is likely to be

attached to the results.

1.1.3 Limitations of Formal Methods

Implementations can only be proved correct with respect to a specification. The imprecise

nature of how ideas are formulated in the human mind means that there is no formal way of

ensuring that the specification is a correct representation of the required system [Cohn89].

Implementations can be verified completely with respect to their specifications, but still be

incorrect because of the mismatch between the specifications and what is actually required.

Wing described the intrinsic bounds that are placed on formal techniques due to the informal

mapping between the ̀ ideal' and ̀ real' worlds [Wing9O]. In addition, she states that as-

sumptions can be made about the systems environment which are not valid under all cir-

-4-

cumstances. This point is stressed by Pyle who warned that formality by itself does not en-

sure reliability in software engineering [Py1e89]. Pyle maintained that human skills of

judgement, awareness and forethought are also necessary to design reliable systems.

Any description of a system represents a limited view, or an abstraction, of the system and

features of the requirements may be omitted because of the inconvenience of expressing

them in the chosen formal language. Once the abstraction process has been completed, it is

difficult to see what is missed out. This leads designers to focus on the representation of the

problem and ignore the actual problem.

There is a theoretical limit to proving valid statements expressed in a formal language. This

limit is embodied in Göde1's theorem which states that it may not be possible to prove certain

valid statements correct within a formal system or language. In practice the consequences of

Gddel's theorem may not significantly limit the application of formal techniques. The in-

ability to prove some statements can be overcome by accepting a proof which is dependent

on assumptions about the behaviour of the system. The assumptions are in the form of ad-

ditional axioms, thereby placing restrictions on the validity of the proof. Alternatively, it

may be possible to change the statements to a form that can be proved correct.

1.1.4 Proof Sketches

The difficulty of analysing complex systems because of the combinatorial explosion of the

number of possible behaviours leads to proof sketches. Proof sketches are partial proofs.

They indicate how completely formal proofs can be constructed, but do not include all the

links required in formal chains of reasoning. Completely formal proofs are called proof

demonstrations. Each statement in a proof demonstration is either an axiom or a conse-

quence of applying the rules of inference to previous statements.

Although formal notations make verification by formal proofs possible, for realistic prob-

lems proof demonstrations are not feasible because of their complexity. This is one of the

reasons why some practitioners of formal methods advocate a liberal approach to verifica-

tion, that is, where formal proofs are not considered essential [Nich92]. The application of a

liberal approach in this thesis is to use proof sketches and not proof demonstrations.

-5-
1.1.5 Design Processes

The term process describes the approach taken to design, and not the actual events that occur

in the act of designing. The main features of a design process presented here are that each

stage in a design process has a specification' and each stage results in a representation of an

implementation' that meets the given specification. To ensure the continuity of the design

process, the implementation at one design stage becomes the specification for the next stage

[Milne86]. The goal in following a design process is to create an implementation in a form

suitable for directing the construction of a system that meets the initial specification. In

creating an implementation several intermediate forms are likely to be developed. The inter-

mediate forms are in terms of components or features that cannot be realised directly. The

final representation is in terms of components that are readily available. These components

may be physical objects or instructions in an established programming language.

In the context of a design process, a specification is a statement of the required behaviour of

an implementation. Specifications can be written by stating the properties that must be pos-

sessed by an implementation. The term property can signify different characteristics re-

quired of a system. For example, properties can specify:

1 Functional behaviour: for example, a database system is to read the latest value writ-

ten to a data object when requested, or a priority queue is to return the data object with

the highest priority when data is requested.

2 Performance properties: for example, the response time required for every operation,

or the minimum number of simultaneous operations that must be possible.

3 Reliability: for example, the maximum number of acceptable errors, or the availability

of the system.

4 Qualitative features: such as, ease of use, attractive appearance, or maintainability.

The properties considered in this thesis specify predominantly the functional behaviour of a

system.

1 The term 'representation of an implementation' is abbreviated to 'implementation' throughout this thesis.

-6-

The properties given in the initial specification are relevant throughout the design process

and more properties may be added during the design process. Additional properties that are

made explicit can have their relevance questioned at later stages of design. Properties intro-

duced at one design stage, if relevant, are applied in all subsequent stages.

At any design stage it may be possible to verify that all the properties are satisfied by the

implementation constructed at that stage. However, this is not always the case and the ab-

stractions may not be sufficiently detailed to verify that the proposed implementation will

have certain properties.

Normally, design is not a linear sequence of stages culminating in a final representation.

Usually it involves exploring the ways in which various implementations will satisfy the

properties and re-evaluating previous design decisions. Each design stage includes deci-

sions that affect subsequent design stages. These decisions are taken after weighing up the

advantages and disadvantages of each possible implementation, then selecting the most suit-

able based on value judgements. Different proposed implementations may be carried for-

ward in parallel through a number of stages before an option is eliminated. Figure 1.1 gives

a diagrammatic view of the hierarchy of design stages.

Figure 1.1 Design Process

I implementation

at stage iI

implemenia on
auuage i+!

I implemcatation
bat itagc i+1

implernenutiaa I implemenutioý implementation
a at wge i+2 ba at (tage i+2b. b at stage i+2

-7-

The design process illustrated above is a simplified interpretation of the plausibility driven

approach described in detail elsewhere [Agü87, Dasg87].

1.2 Research Summary

1.2.1 Premises

The two premises of the thesis that are being tested in the research are:

1 that the standard Z notation can express both the properties required of complex sys-

terns and complete descriptions of implementations of those systems

2 that using a formal notation without invoking the rigour of mathematical proof

demonstrations has advantages over informal notations in terms of reducing the am-

biguity and increasing the conciseness of descriptions.

The two premises are investigated by studies of the application of the standard Z notation to

specify and implement three complex systems at a single design stage. The studies are used

to provide a framework for discussing the problems of using the Z notation and proof

sketches for practical systems.

1.2.2 Notation

The Z notation is employed in this thesis because it is widely used in industry and academia.

In addition, computer tools are now available which increase the ease of using the Z nota-

tion.

The Z notation is flexible and it is tempting to make minor amendments to the notation to

meet the needs of the current problems. Such temptations have been resisted and no devia-

tions from the standard Z notation [ZipBS91] have been made in the three studies. Standard

Z notation has been enforced by the CADiZ computer tool [CADiZ91, Jord91] which checks

the syntax of the schemas and type sets the descriptions expressed in the Z notation.

The primary published applications of the Z notation have been to specify aspects of the be-

haviour required of systems in terms of states and the operations that change the state. In

those applications, the specification of a system contains isolated Schemas that refer to dis-

tinct operations and parts of the composite state. In contrast, the Z notation is applied in this

thesis as a design language for describing the behaviour of complete systems as integrated

-8-

entities. The integrated nature of the models provides information about the flow of control,

signals, inputs and outputs which is necessary for the interpretation of the formal text. An

example of the differences in the approaches is given in Section 2.3.

1.2.3 The Studies

The first study is contained in Chapter 3 and is a description in the Z notation of an imple-

mentation of a communications network. Schema equations indicate the structure of the

model of the system and different interpretations of the equations are discussed. This chap-

ter also includes an example of using schema equations to describe liveness properties of a

system. The first study includes many examples of simple theorems about properties of a

communications network and examples of proof sketches for verifying these theorems.

The other two studies are about the concurrency control of transactions executed on repli-

cated database systems. Replicated database systems are inherently complex systems and

have properties that are difficult to specify formally. They provide a challenging bench mark

for the techniques being proposed.

Chapter 5 contains a specification of the one copy serializability property and an implemen-

tation of a replicated database system that is controlled by a two phase locking algorithm

[Bern87]. The property schemas and implementation schemas are developed separately.

The verification condition is that the implementation (expressed in the Z notation) implies the

one copy serializability property (also expressed in the Z notation). The purpose of this

study is to illustrate the effectiveness and limitations of the standard Z notation applied to a

complex system.

Chapter 6 uses a different way of specifying with the Z notation in the investigation of grace-

ful degradation characteristics of a quorum consensus algorithm in the context of priority

queues [Herl9l]. In this chapter, two model oriented descriptions are created; one represent-

ing the specification and the other representing the implementation. The proof obligation re-

quired in this chapter is that the two models are equivalent in terms of the types of possible

behaviours. This chapter provides important illustrations of the data refinement rules for the

Z notation and some of the difficulties that can arise when strict equivalence between a spec-

ification and an implementation is not required.

-9-
Sections 1.2.4 to 1.2.6 summarise the main similarities and differences between the three

studies.

1.2.4 Similarities between the Studies

The principal similarities between the three studies are:

1 Each implementation is represented in the Z notation as a set of schemas. To provide

complete descriptions, the operations are explicitly identified with values for inputs

in the schemas.

2 Proof sketches discharge proof obligations that are about the means of implementa-

tion.

3 Proof sketches verify the implementations.

1.2.5 Differences between the Specifications of the Studies

The specification for each study differ in the following ways.

1 Communications Network

The specification is in the form of a set of properties. The properties are initially

stated informally and later formalised in the context of the implementation.

2 Replicated Database System

The specification is in the form of a single property based on existing mathematical

theory and re-expressed in the Z notation as a set of Z Schemas.

3 Distributed Queues

Four queues are specified and implemented. The specifications are given as models

of the required behaviour. The models are expressed in the Z notation.

1.2.6 Differences between the Proof Sketches in the Studies

The use of proof sketches in the verifications differ in the following ways.

1 Communications Network

Each property is expressed in predicate logic as a consequence of a theorem. The

verification takes the form of proof sketches confirming the theorems.

-10-
2 Replicated Database System

Two approaches are taken with the verification of the implementation. The first ap-

proach uses a proof sketch to verify that the implementation satisfies the Z notation

expression of a mathematical property. The second approach uses a proof sketch to

verify that the implementation meets an informal understanding of the required prop-

erty.

3 Distributed Queues

The verification takes the form of showing the equivalence between a model of a

specification and a model of an implementation. Two approaches are taken with the

verification. The first approach is based on using proof sketches to verify the data

refinement conditions for the Z notation. The second approach is based on proof

sketches to demonstrate the similarities of the behaviours inherent in the specification

and implementation of each type of queue.

1.3 Organisation of the Thesis
The whole description in the Z notation of each study is included in each associated chapter.

This has the effect of making the chapters containing the studies appear quite long. The

whole descriptions are retained to indicate the size of the representations required at a high

level of abstraction. The schemas are integrated into the text to avoid excessive cross refer-

encing. Diagram are used throughout the text to illustrate the interactions between schemas.

The three studies are contained in Chapters 3,5 and 6.

Chapter 2 contains a review of the applications of the Z notation and an explanation of how

the Z notation is used in this thesis.

Chapter 4 introduces the topic of replicated database systems in preparation for an analysis

of these systems.

Chapter 7 presents the main conclusions of the research.

The terms used in this thesis are defined informally in Appendix A as an aid to reading sub-

sequent chapters. In addition, a glossary of symbols is provided in a separate chapter.

-11-

Chapter 2
The Z Notation

This chapter assumes some knowledge of the Z notation. The level of detail contained in the

articles by Spivey [Spiv89B] and Woodcock [Wood89B] is sufficient to understand the de-

scriptions and applications of the 2 notation reviewed in this chapter.

2.1 Introduction

The Z notation was initially used in 1978 at the Programming Research Group in the Oxford

University Computing Laboratory. The device of a schema to structure specifications was

included in the Z notation in 1982. The Z notation has been applied mainly to specifying

software, although it has been used for specifying hardware and general systems [Hayes87].

At the time of writing, the Z notation is being standardised in anticipation of being accepted

internationally.

The Z notation is a language and a style for expressing formal specifications of computing

systems [Spiv88, Spiv89A, Spiv89B]. It is based on a typed set theory and the concept of a

schema is one of its key features. A schema consists of a collection of named objects with a

relationship specified by axioms. The Z notation includes a mechanism for defining

schemasl and combining them in various ways defined by a schema calculus. The partition

'Some authors have used the plural schemata instead of schemas.

- 12 -

provided by schemas allows large specifications to be built up in stages. Schemas can have

generic parameters and there are operations in the Z notation for creating instances of generic

schemas.

A number of introductory books about the Z notation have been published recently. Diller

[Dill 9O] introduces formal methods for specifying software systems in the Z notation. The

book contains extensive examples of producing formal proofs, giving several inference rules

for the predicates in Z schemas. The book also contains some case studies of the Z notation.

The book by Potter, Sinclair and Till [Pottr9l] introduces formal specification with the Z

notation in the context of computer systems and the last part of the book covers the topic for

computer program development. Craig [Craig91] presents the Z notation for specifying two

artificial intelligent architectures. The specifications given by Craig are fairly large and de-

tailed. Some of the Z schemas in these specifications are not quite correct according to the

standard syntax of the Z notation since they use schema names instead of the bindings of the

schemas. However, this practice is quite common and does not seem to present any prob-

lems when automated tools do not analyse the schemas.

The Z notation has been applied to representing various aspects of the functional behaviour

of systems. Refinement techniques for the Z notation have been developed for software

systems that cover abstraction levels from an initial specification to an implementation in a

programming language [King9O]. The main published application of the Z notation for non

software systems has been restricted to specification at one level of abstraction; in this appli-

cation, the level of abstraction is chosen so that the specification is free from implementation

bias and is easy to analyse.

The Z notation is widely accepted as a readable (when combined with informal text) and an

expressive notation for describing state in terms of data types. But it has been reported that

the Z notation is less useful for describing concurrent actions and the timing or ordering of

events. There can also be difficulties with structuring descriptions in the Z notation of large

systems because of the global nature of the schema definitions [Duke9O, Duke92]. A num-

ber of variations of the Z notation have been proposed to ̀ improve' its ability to represent the

behaviour of systems.

-13-

A formal denotational semantics for the Z notation is presented by Spivey [Spiv88], al-

though the semantics is considered by some not to be sufficiently formal [Saal92] and work

is continuing to give a completely formal version for the Z semantics [Brien91, ZitBS91].

2.2 Related Applications of the Z Notation

Object orientation in the Z notation was discussed in a workshop [ZipOb9l, Carr92] and the

participants came to the conclusion that the Z notation supports objects as a language feature,

but is not an object oriented language according to Wegner's classifications.

Hall describes some methods to specify systems using the object oriented approach with the

Z notation [Ha1190]. The usual approach with the Z notation is to specify a system as a state

machine, with schemas describing parts of the state and the operations that change the state.

The object oriented approach divides a system into objects, each with its own set of opera-

tions. Examples of different styles of using the Z notation in an object oriented approach to

specifications are found in the ZIP report [ZipOb9l]. An objected oriented version of the Z

notation is used to specify the behaviour of concurrent systems by modelling process be-

haviour [Sch90]. There are some similarities with the methods developed by Hall and the

approach used in Chapter 5 for describing sites in a replicated database system.

The terms decomposition and refinement sometimes occur in descriptions of design pro-

cesses involving the Z notation. The Z notation can be used to specify the functional be-

haviour of systems in terms of abstract operations performed by the systems. A design pro-

cess will decompose, or break up, these operations into less abstract operations. Also, as

part of a design process, the abstract data types are refined, or reified, into more concrete

data types used by different implementations [Spiv89A, Dillr90, Pottr9l].

The Z notation has been integrated into several design processes. These processes include

an information systems type of environment [Swat92], a SSADM design process [Polac92],

and the Yourdon method of specification [Semm91].

In the paper by Duke and Smith [Duke89], the Z notation is used to capture liveness proper-

ties of a communications protocol. The paper compares the specifications of liveness in the

standard Z notation and the enhanced Z notation which includes temporal logic operations.

-14-

The book Specification Case Studies edited by Ian Hayes [Hayes87] has a number of case

studies of specifications written in the Z notation. The book contains several studies in simi-

lar application areas to the three presented in this thesis, however there is no direct connec-

tion with the studies in the book and those used in this research. One of the aims of using Z

schemas in the case studies in the book [Hayes87] is to specify systems at an abstraction

level free from any bias towards an implementation, this is either to allow novel implementa-

tions to be considered or to provide user documentation that is not obscured by the compli-

cations of the implementation of the system.

Morgan presents some non constructive descriptions in the Z notation of properties required

of a communications system [Morg83] that are similar to the descriptions in the book by

Hayes [Hayes87].

Woodcock and Loomes present an extensive case study of a telephone exchange [Wood88].

The state of the exchange is similar to that used by Morgan. A number of theorems and pre-

conditions are derived by Woodcock and Loomes for their case study.

Zave and Jackson describe their work on techniques for specifying a switching system in the

paper [Zave92]. The switching system described by Zave and Jackson is a small PBX that

has a large number of features. The specifications generated for this PBX incorporate a state

that is based on the kinds of connections and is an extension of that used by both Morgan,

and Woodcock and Loomes.

2.3 Unified Descriptions in the Z Notation

The following example of a simple counter illustrates the differences in the isolated approach

commonly taken with the Z notation for specification and the integrated approach taken in

this thesis for creating unified description at a design stage.

Assume that the behaviour of the counter is controlled by two operations add and reset.

The add operation adds one to the value stored by the counter and the reset operation

causes the counter to store the value zero.

Figure 2.1 shows the Z schemas that describe the behaviour of the counter in the foam of

two isolated operation schemas.

-15-
Figure 2.1 Isolated Operation Schemas

State
1

n: N

Add_Op

AState

n' = n+1

Reset_Op
I

AState

n' =0

Note that no information is given about what determines which operation is performed.

Since the only two operations performed by the counter are add and reset, a total descrip-

tion of the counter is formed by the disjunction of the two operation schemas. This is

shown in Figure 2.2 with the expansion of the resulting schema.

Figure 22 Combination of Isolated Schemas

Counter_Op_Expand
1

n :W

n' :W

n'=n+1

v

n' =0

Counter Op = Add_Op V Reset Op

The behaviour described by the schema Counter Op is that the new value held by the

counter is either one more than the old value or zero. This is correct but it does not indicate

what determines which response. The informal method of selecting the operations is lost.

-16-
The approach taken in this thesis is to include the information that determines the operation

within the operation schema. Figure 2.3 shows the equivalent operation schemas for the ex-

ample of the simple counter.

Figure 2
.3

Unified Operation Schemas

State
1 Instruction :: = add I reset

n: N

Add_Inst

AState

in? : Instruction

in? = add

n' = n+1

Reset_Inst

OState

in? Instruction

in? = reset

n'-0

This time the disjunction of the operation schemas results in the schema Counter_Inst in

Figure 2.4 and the expansion indicates that the behaviour of the counter is still deterministic.

-17-
Figure 2.4 Combination of Unified Schemas

Counter Inst Expand
Counter_Inst ^ Add_Inst V Reset Inst

in? : Instruction

n: W

n' :W

in? = add A n'=n+1

V
in? =resets n'=0

2.4 CADiZ

The schema device of the Z notation is awkward to produce satisfactorily with standard

word processing packages. Several computer tools [ZipCt911 are available for type setting

documents that incorporate Z schema boxes.

The Z notation includes a rigorously defined syntax and set of type rules. Checking that the

rules of the Z notation are obeyed is very laborious and prone to error if performed manu-

ally. Several computer tools are available that perform syntax and type checks on documents

written in the Z notation [ZipCt9l].

The computer tool employed in this thesis is CADiZ (Computer Aided Design in Z), which

is a suite of computer tools to check and type set specifications written in the Z notation

[Jord9l]. The interactive mode of CADiZ allows some properties of specifications to be in-

vestigated by displaying the expansion of schemas and deriving their signatures.

CADiZ operates in a UNIX environment and incorporates the trofft family of computer

tools to produce typeset documents that are printed on paper or viewed on a screen.

2Troff is a text processor for the UNIX computer system that formats text for printing.

-18-

Figure 2.5 is based on a figure in a paper by Jordon, McDenznid and Toyn [Jord9l]. Figure

2.5 illustrates the internal structure of CADiZ and shows the main three phases of operation.

All the schemas included in this thesis are produced using CADiZ and, unless otherwise

stated, do not produced any error reports. The syntax of the Z notation used by CADiZ is

reproduced in Appendix E from the CADiZReference Manual [CADiZ91).

Figure 25 Internal Structure of CADIZ

fi e2

filc. dit

-19-

2.5 Summary
This thesis builds on the extensive work carried out in the development of the Z notation and

formal techniques in the design of complex systems. Later chapters will apply the Z nota-

tion to the new area of replicated database systems and use the Z notation in a way more ap-

propriate to the process of design, while keeping to the syntax and semantics of the standard

version of the Z notation.

-20-

Chapter 3
An Implementation of a Communications Network

A communications network represents a system that can be easily understood, while being

sufficiently complex to reveal the difficulties in unambiguously stating both the properties

and implementation.

In this chapter the implementation of a simple communications network is expressed in the Z

notation. The operation schemas are defined in a constructive style. The implementation is

shown to possess the basic properties of a communications network, plus additional proper-

ties that result from the method of implementation.

The design in Section 3.3.7 is a schema equation formed by the disjunction of operation

schema terms. Each term represents the behaviour of a network operation. All the schema

terms use the same state variables and the disjunction is completely deterministic because of

the disjointness of the preconditions of the schema terms.

The study presented in this chapter raises a number of questions about the application of the

Z notation in a design process of complex systems. Section 3.7 discusses the main styles

adopted for using the Z notation in this chapter and some of the important questions about

the usefulness of the Z notation for this application.

One of the questions discussed is how best to represent concurrent activities with the Z nota-

Lion without relying on informal interpretations or reducing the intelligibility of the represen-

-21 -

tations. The technique found to be most successful for representing concurrent activities is

to describe a system as a disjunction of operation schemas that are written in a non construc-

tive style that does not exclude multiple operations from occurring simultaneously. This is

discused in Appendix B.

This chapter represents one stage of a design process. Several stages are required before a

final implementation can be reached. Appendix B contains an example of the form of an

implementation for the next stage and contains examples of the three data refinement rules

that must be checked.

This study illustrates the progression of the properties from informal statements to mathe-

matical predicates and theorems.

Section 3.1.2 contains an informal description of the properties required of a simple com-

munications network.

The safety properties stated informally in Section 3.1.2 are given formal interpretations in

Section 3.4. The properties are stated to be the consequences of theorems that have imple-

mentations as the antecedents. The implementation also give rise to several additional prop-

erties, these additional properties are described in Section 3.5.

Most of the properties discussed in this chapter are safety properties. One of the ways in

which liveness properties can be expressed in the Z notation is discused in Section 3.6.

Table 3.1 summarises the elements of the design in this chapter and refers to their associated

sections.

-22-

Table 3.1 Summary of Design Stage in Chapter 3

Section Description

3.1.2 Informal specification of the safety and liveness properties used in the study of a com-

munications network.

3.2 - 3.3 Description in the Z notation of an implementation of a communications network.

3.4 Formal expression of the safety properties and their verification. Theorems 3.1 to 3.5.

3.5 Additional properties implied by the implementation. Theorems 3.6 to 3.9.

3.6 Formal expression of the liveness properties and their verification. Theorems 3.10 to

3.15.

3.1 Specification and Implementation

3.1.1 Initial Description

For the purposes of this chapter, a communications network is a system that enables sub-

scribers to send and receive data.

In the network there are a number of subscribers connected to the network who wish to ex-

change data. Any subscriber can transmit data to any other subscriber and the data are re-

ceived intact by the intended subscriber only. Two subscribers exchange data in the form of

a conversation and conversations between different pairs of subscribers can occur simulta-

neously.. Privacy of data is vital and a third subscriber should not be able to eavesdrop on a

conversation between two other subscribers.

The destination subscriber must be able receive data before a conversation can take place.

One of the reasons for a subscriber not being able to receive data is that the destination sub-

scriber is disconnected from the network, hence inaccessible to any originating subscriber.

Integrity of data must be maintained so data must not be duplicated or lost by the network.

-23-

3.1.2 Informal Statement of Properties used in this Study

The safety properties addressed in this study are:

1 Each conversation has two subscribers.

2 It is impossible for a third subscriber to receive data destined for the second sub-

scriber of a conversation.

3 Subscribers can be busy.

4 Subscribers can be inaccessible.

5 Data are received at most once.

The liveness properties of the behaviour of a network addressed in this study are:

1 Operations are eventually executed by the system if their preconditions are satisfied.

2 All data sent will eventually be received.

The list of properties impose requirements on the network without indicating how to achieve

them. This is characteristic of a property oriented specification.

3.1.3 Informal Description of the Z Implementation

This section contains an informal description of a communications network in terms of op-

erations performed on the network.

The subscribers, or users, of the network are people who can use it. Subscribers do not

have to be connected to the network, but are capable of being connected. For subscribers to

be connected they have to joins the network, subscribers who have not joined the network

are inaccessible to other subscribers. Similarly, subscribers who have joined the network

can leave and once again be inaccessible to other subscribers.

The protocol for exchanging data between two subscribers is that the originating subscriber

must first call the destination subscriber before data can be transmitted. For a call to be suc-

lln the following description a bold typeface is used for the names of the operations that are defined later in

the Z notation.

-24-

cessful there must be a free pair of communications paths to carry the data through the net-

work between the two subscribers.

Once a call has been set up, either subscriber can send data for the other subscriber to re-

ceive.

When all the data have been transmitted and received by both subscribers, either subscriber

can clear the communications paths.

-25-

3.2 Data Types and Invariant

3.2.1 Given Sets

In CADO, the file toolkit contains all the operations listed in the tool kit described by

Spivey in the book The Z Notation: A Reference Manual [Spiv89A]. The statement

Import toolkit

makes these operations available. Two given sets are used in the schemas in this chapter.

[SUB, WORD]

The only other data types assumed are those contained in the mathematical tool kits pro-

vided automatically by CADO. The source and destination of data transmitted over the

network are represented by the given data type SUB and the data transmitted over the net-

work are represented by the given type WORD in subsequent schemas.

Proof Obligation for the Consistency of Given Sets

A potential problem with given sets is that it is possible to introduce inconsistencies

into the mathematical models. One method of guaranteeing that given sets have at

least one feasible solution is to show that the given sets can be represented by `known'

data types that do not introduce any inconsistencies. This does not imply that the

given sets have characteristics of the known data types in addition to those specified in

the model. The known data types simply demonstrate that the given sets have at least

one solution.

Because both SUB and WORD are used only to discriminate between elements in the

sets, a consistent model is constructed if the set of natural numbers is substituted for

SUB and if the set WORD is replaced by the set of all possible sequences of ASCII

characters. These are not the only possible representations and only serve to indicate

the consistency of the description of the communications network.

-26-

The data transmitted between subscribers is represented by the a sequence of elements from

the given set WORD in the syntactic definition below:

Package == seq WORD

3.2.2 Free Data Types

The operations allowed in the communications network are represented by the free data

type given below:

Operation :: = join I leave I call I clear I send I receive

Proof Obligation for the Free Type Definition of Operation

The data type definition for Operation contains six branches. All the branches are

non recursive, i. e. do not include a reference to Operation. Since the definition is non

recursive, the free type Operation is consistent [Arth92].

The calls between subscribers in the communications network use the concept of. paths

between the subscribers. These paths have the status of either established or free,

represented by the identifiers in the free type data definition below.

Path_Status :: = Established I Free

The free type called Path_Status represents the two options of Established and Free.

-27-

Proof Obligation for the Free Type Definition of Path Status

The free type definition Path_Status contains two non recursive branches and is

therefore consistent.

An operation performed on the communications network is either successful or unsuccess-

ful. These possibilities are represented by a free type definition below:

Error Status :: = Okay I Error

Proof Obligation for the Free Type Definition of Error Status

The free type definition Error Status has two non. recursive branches labelled with

the Okay and Error identifiers, and is therefore consistent.

Three types of messages are modelled in the implementation of a communications network.

One type represents the actions of subscribers joining and leaving the network. A second

type represents the actions of setting up and clearing down calls through the network. The

final type represents the sending and receiving data through the network.

Message

member << (SUB x {join, leave})» I

setup <(((SUB x SUB) x {call, clear})» I

active « (((SUB x SUB) x Package) x {send, receive})

The data type Message represents all the six operations in three branches. The operations

join and leave are included in the branch identified by member. Tuples of the branch

member are pairs consisting of an element with type SUB and either a join operation or a

leave operation identifier.

-28-

The two operations call and clear are contained in the branch identified by setup .

Members of the branch setup are tuples containing pairs of the type SUB and either the

call operation or the clear operation identifier.

Each package of data is sent by a subscriber using a send operation and is received by

another subscriber by a receive operation. These operations are included in the branch

labelled active. Members of the branch active are tuples that contain a pair of elements of

the type SUB, a data Package, and either the send operation or the receive operation

identifier. Note that each message value identifies an operation as well as the parameters

for that operation.

Proof Obligation for the Free Type Definition of Message

None of the branches in the definition of Message are recursive, hence the free type

definition is consistent.

3.2.3 Network State Schema

The schema Network defines the common data variables included in subsequent schemas

and provides a description of the state of the system.

Network

Present :P SUB

Conversation : (SUB x SUB) --ý seq Package

Path : (SUB x SUB) -ý Path_Status

Since the components Conversation 2 and Path are defined as total functions, any opera-

tions on them must contain the characteristics of functions.

2 Component identifiers of schemas are expressed in italics in the informal text using troff formatting commands. A dif-

ferent method of highlighting the components is to use CADiZ to express the component identifiers in a different font, for

example Network. Conversation and Network Path. The positions of all schema references are identified by CADiZ in

its interactive mode to help checking the text. However, using CADIZ' to highlight schema components has the disadvan-

-29-

The schema Network is the invariant of the implementation of a communications network.

The state space is all combinations of mappings that conform to the invariant of the proper-

ties of functions. The invariance of the characteristics of functions is a proof obligation. In

this case, the discharge of this obligation is obvious for all the operation schemas, however,

a brief sketch is given to emphasise the importance of discharging such obligations.

Initial State of the Network

It is important to demonstrate that there is at least one feasible state for the system. This is

done by constructing a schema that specifies the conditions of an initial state. The schema

Initial_State defines a valid state of the system.

Initial State

Network'

Vul, u2 : SUB "

Conversation' (u 1, u2) =0A Path' (ul, u2) = Free

Present' =0

The schema Initial_State follows the convention of using decorated variable names for

defining the initial state [Dillr90, Pottr9l].

Proof Obligation for the Initial State

The invariants given by the schema Network' are obviously true. That is, Conversa-

tion' and Path' are functions, and Present' is a set.

tage of having to qualify the component identifiers with the schema names which makes some sentences appear awN-ard.

-30-

Diagrams of Interactions between Schemas

Figure 3.1 provides an overview of the interactions in the complete implementation in the Z

notation. Each operation schema is given a more detailed diagrammatic representation fol-

lowing the associated schema definitions. The diagrams are to help understanding the for-

mal descriptions in the Z notation by showing the relations between the schemas. The

diagrams are not intended either to add to the formality of the descriptions or to provide

interpretations of their behaviour. Using the diagrams to add information to the schemas

can introduce ambiguity, hence such diagrams should be used with care.

Diagrams are useful for providing references to the schemas in a large system that are inev-

itably dispersed over several pages. The diagrams also provide a picture of the interactions

between the parts of a complex description, such interactions are often difficult to acquire

directly from the schemas. Moreover, the process of drawing diagrams that are based on Z

schemas is very useful for identifying slips such as missing components from the schemas.

Figure 3.1 is typical of the interaction diagrams contained in this thesis. Schemas that

describe the state of the system are shown as rectangular boxes, whereas operation schemas

as shown as boxes with rounded comers. Elliptical boxes are used to identify components

of schemas. Relations between two schemas and between a schema and a component are

described by comments contained in rectangular boxes. Arrows are used to indicate

whether the before, after or both versions of components are used. An input variable is

considered to be a before variable and an output variable is considered to be an after vari-

able.

-31-

Figure 3.1 Overview of the Network Implementation

Key
mm input or betan vwiabla urea output a altsr v&iibis

°pu. uo°'mema cmvaomt

G; -M) Mdom 4w coffunom

At

sCJ®.

ma before and dla v iabka

Sm Kbms

C-

-32-

3.3 Network Operations

3.3.1 The Join Operation

Before subscribers can send or receive data over the network they must first join the net-

work.

Join Sch

iNetwork

M? : Message

Status' : Error Status

3 sub : SUB; op : Operation

M? = member (sub, op) A op = join A sub (4 Present "

Conversation' --

Conversation ®{u: SUB " (u, sub) - (> }

{u : SUB" (sub, u)HO}A

Path' =

Path ® {u : SUB " (u, sub) H Free}

{u: SUB " (sub, u) H Free} A

Present' = Present U (sub} A Status' = Okay

All Network variables changed

The schema Join_Sch represents the operation of subscribers joining the communications

network. This schema describes one aspect of the dynamic behaviour of the communica-

tions network. The schema is split into two parts; the upper part declares the data types, as
in the schema Network, and the lower part defines the predicates associated with the

schema. The predicate part of schema defines the preconditions that must be satisfied

before any change of state and the postconditions that apply to the after state. There is no

formal separation of the preconditions and postconditions in the predicate part of schemas.

-33-

The predicate part of a schema must be true for each change of state.

The postconditions define the after state of the system and are defined in terms of values of

the after variables. Any after variable not defined in the schema can take any value con-

sistent with its declared data type.

The declaration part of the schema uses the notation zNetwork which has the effect of

declaring all the data types in the schema Network both in their decorated and plain forms.

Placing a schema identifier in the declaration part of a schema is called schema inclusion.

The plain forms represent the variables before the operations are performed and the

decorated variables (i. e. the same identifiers but postfixed with apostrophes, also called sin-

gle dashes or primes) represent the variables after the operations have been performed; sub-

sequently called after variables. The Join_Sch also uses the convention of ending each of

the the identifiers representing an input variable with a question mark, as in the case of the

M? variable [Spiv89A, DilIr90, Pottr9l].

The M? input represents a join operation, hence the elements of the tuple in the member

branch of the data type Message are extracted by equating M? with the two existentially

quantified variables sub and op which represent the joining subscriber and operation

respectively. The two other branches of the data type definition of Message do not meet

this precondition. The other preconditions of the schema Join_Sch are that the operation

is a join operation and the value of the subscriber is not a member of the set Present, which

is the set of all subscribers that have joined and not left.

The function Conversation is updated so that all the tuples in its domain that have an ele-

ment of the same value as the sub variable map to the empty sequence. Similarly, the func-

tion Path is updated so that the tuples in its domain that refer to subscribers with the same

value as sub map to the value Free.

The set Present is updated so that on completion of the operation it contains the subscriber

value represented by sub.

Finally, the Status' variable is bound to the value Okay to indicate a successful completion

of an operation.

-34-

Preconditions for Join_Sch

In this study the preconditions are used for two main reasons. The first reason is that the

preconditions allow the implementation to be checked that it is defined for all conditions.

The second reason is that the operations are verified to be disjoint; it is not possible for two

operations to respond when in the same state and receive the same input.

Preconditions are formed by moving all the declarations of after variables (identified by

dashes as the final character of their names) and output variables to the predicate part of the

schema by existential quantification [Wood89A, Dillr9O]. The preconditions define the con-

ditions necessary for a change of state and the possible changes of state are identified by an

operation schema. The after variables and output variables reflect this change of state,

however, their actual values do not affect when the operation can be performed as the after

variables and data variables are determined by the schema itself, hence they are existen-

tially quantified. The preconditions are only concerned with the after variables and output

variables in as far as the schema invariants are not violated, that is, they define a valid state.

A valid state is one in which the invariant evaluates to true.

The preconditions of the schema Join_Sch are represented by the schema below which is

created using the pre operator [Spiv89A, Dillr9O].

Pre_Join_Sch ̂ pre Join_Sch

The preconditions of the Join_Sch are made explicit in the schema

Pre Join_Sch_Expand below.

-35-

Pre_Join_Sch_Expand

Present :P SUB

Conversation : (SUB x SUB) -4 seq Package

Path : (SUB x SUB) -4 Path-Status

M? : Message

3 Present' :P SUB;

Conversation' : (SUB x SUB) --) seq Package;

Path' : (SUB x SUB) -ý Path_Status;

Status' : Error Status "
3 sub SUB; op : Operation

M? = member (sub, op) A op = join A sub a Present "

Conversation' =

Conversation ® (u : SUB " (u, sub) H 0)

{u: SUB" (sub, u)H0}A

Path' =

Path ®{u: SUB " (u, sub) H Free} ®

{u: SUB " (sub, u) H Free} A

Present' = Present u {sub} A Status' = Okay

Simplifying the Preconditions

The CADO tool in its interactive mode expands schema expressions, such as

Pre-Join-Sch, to display the schemas in full, which can help simplifying the precondi-

tions. See Appendix B. 1 for examples of the outputs produced by CADiZ.

The precondition schema Pre_Join_Sch_Expand is simplified to give the schema

Pre_Join_Sch_Simple by repeated application of the one point rule [Wood89A].

-36-

Pre_Join_Sch_Simple

Network

M? : Message

3 sub : SUB " M? = member (sub, join) A sub 4 Present

The fact that the simplified version of the preconditions of the schema Join_Sch is true in

precisely the same conditions as the rudimentary form of the preconditions given by the

schema Pre Join Sch is expressed in the schema Simplified_3_1 below.

Simplified 3_1 ^ Pre_Join_Sch 4 Pre Join_Sch_Simple

Emphasising earlier comments about preconditions; the equivalence comes about because

preconditions are only concerned with the existence of valid next states, not the actual next

state.

Restrictions of CADiZ

The equivalence between the rudimentary preconditions and the simplified preconditions is

stated in the form of a schema definition to allow CADS in its interactive mode to expand

the schema definition. This is particularly useful if one of the schema terms includes the

pre operator.

The expansion of the schema produced by CADI is contained in Appendix B. 1.2. Using

schema declarations for equivalence relations in this manner eases the comparisons

between the Schemas produced by CADi2.

Although CAW can be used to expand schemas and display some expansions of precon-

ditions, it cannot be used to simplify the preconditions, which means that all the

simplifications of the preconditions in this chapter were performed manually using simple

cut and paste commands on a word processor. See Appendix B. 2 for an example of the

simplification process.

-37-

Strengthening Schema Definitions of the Join Operation

The initial definition of the join operation in the schema Join-Sch is a partial definition

because it leaves the behaviour unspecified when the join operation is attempted and the

subscriber is already connected to the network. The schema Error_Join rectifies this by

making the definition of the join operation total for all possible conditions for that opera-

tion.

Error Join

7 Network

M? : Message

Status' : Error Status

3 sub : SUB; op : Operation I

M? = member (sub, op) A op = join A sub r Present "

Status' = Error

The schema Error Join increases the robustness of the join operation by including a

precondition that is true if the subscriber is a member of the set Present.

The notation ENetwork represents the declaration of the variables in the schema Network

in both the decorated and plain forms [Spiv89A, Dilli9Q Pottr9l], with the additional

predicate that all the decorated terms are equal to the plain terms, i. e. there is no change of

state identified by those variables declared in the schema Network.

The only change of state is represented by the Status' variable in the schema Error Join.

Preconditions for Error Join

The preconditions are defined by the schema equation:

-38-

Pre_Error_Join - pre Error_Join

The above schema definition can be expanded using CAW. Unfortunately, CADi2 does

not existentially quantify the after variables for schemas declared using the -E schema name

declaration. See Appendix B. 1.3 for an example. Using the explicit form for no change of

state in the predicate part of the schema given in The Z Notation: A Reference Manual

[Spiv89A] is also not expanded by CAD2.

The schema Pre_Error Join_Expand is written out in full below.

Pre_Error Join_Expand

Present :P SUB

Conversation : (SUB x SUB) -* seq Package

Path : (SUB x SUB) -4 Path_Status

M? : Message

3 Present' :P SUB;

Conversation' : (SUB x SUB) -ý seq Package;

Path' : (SUB x SUB) -' Path-Status;

Status' : Error Status "
3 sub : SUB; op : Operation I

M? = member (sub, op) A op = join A sub r= Present "
Status' = Error A

(Present' = Present A Conversation' = Conversation A

Path' = Path)

Simplification of Preconditions

The preconditions are simplified to the schema Pre_Error Join_Simple below.

-39-

Pre_Error_Join_Simple

Network

M? : Message

El sub : SUB " M? = member (sub, join) A sub E Present

The schema Pre_Error_Join_Expand is equivalent to the preconditions of the schema

Pre_Error_Join_Simple, which is defined in the schema below.

Simplified 3_2 ^ Pre_Error_Join ý=> Pre_Error Join_Simple

The robust version of the join operation is described by the disjunction of the two schemas

Join_Sch and Error Join in the definition of the schema Join_Op shown below.

Join_Op ^ Join_Sch V Error_Join

The disjunction of the two Schemas has the two effects of combining their declarations and

forming the disjunction of their predicates. All declarations of the same identifiers must

have the same signatures, i. e. agree in basic type as expressed in terms of the predefined

types of the Z notation.

The expansion of the schema Join_Op is given in the schema Join_Op_Expand below to

illustrate the amount of information represented by the declaration of the schema Join_Op

above.

-40-

Join_Op_Expand

Conversation : (SUB x SUB) - seq Package

Conversation' : (SUB x SUB) -ý seq Package

M? : Message

Path (SUB x SUB) -ý Path_Status

Path' : (SUB x SUB) -* Path_Status

Present :P SUB

Present' :P SUB

Status' : Error Status

(3 sub : SUB; op : Operation

M? = member (sub, op) A op = join A sub a Present "

Conversation' =

Conversation e{u: SUB " (u, sub) () }

{u: SUB (sub, u) HO}A
Path' =
Path ® {u : SUB " (u, sub) H Free }

{u : SUB (sub, u) H Free} A

Present' = Present u {sub} A Status' = Okay)

V

(3 sub : SUB; op : Operation

M? = member (sub, op) A op = join A sub E Present "

Status' = Error) A Present' = Present A

Conversation' = Conversation A Path' = Path

-41-

Diagram of Interactions of an Operation Schema

The interactions between the schema Join_Op and the other components in the system are

shown in Figure 3.2. One of the disadvantages of using diagrams that indicate the relations

between schemas by lines is that the diagrams soon become confusing for systems that

share the same state. In this study all the network operations use the schema Network, but

showing all six operations on the same diagram at the level of detail of Figure 3.2 would be

too confusing to be of practical use. The approach adopted in this thesis is to have an over-

view diagram, such as Figure 3.1, and more a detailed diagram for each set of schemas for

an operation, such as Figure 3.2.

Note that in Figure 3.2 double ended arrows are drawn between all three components in the

schema Network and the schema Error Join, indicating that the before and after versions

of the components are used. Although the schema Error_Join does not change the bind-

ings to the components in the schema Network, it does specify that their bindings remain

unchanged.

-42-

Figure 3.2 Interactions between the Join Operation Schema and the State Schema

-43-

Note that the schema is still partial over the complete set of conditions as it does not define

the behaviour in response to other operations. The interactions shown in Figure 3.2 are

considered in the following proof obligation.

Proof Obligation for the Invariant of Schema Join_Op

It is necessary to ensure that the invariants for the state schema are not violated by the

changes of state described by the operation schema Join_Op. Although there are no

predicates in the schema Network that restrict the number of valid states, both the

components Conversation and Path are defined to be total functions. This means that

the functional property must not be violated. The property for a total function can be

expressed for total function, F, as:

{F: XHY IVx: X; y, z: Y"xFyAxFz:: *y=z]A(domF=X)

CADi2 checks that functions retain their relation characteristic of the correct mapping

from type X to type Y. but the deterministic characteristic for each element in the

domain of a function is not checked.

The schema Join_Sch updates the functions Conversation and Path using the func-

tional override operator to replace elements in their domains with exactly one element

in their ranges, hence maintaining the functional property. This can be seen in the

general case of the functional override operator maintaining the functional characteris-

tics if it is applied correctly. The type of the functional override is given as

[Spiv89A]:

(X -+- Y) X (X +-I Y) --) (X -+- Y)

However, from the law that

dom (f (D g) = (dom f) U (dom g)

the type of the functional override can be expressed for total functions as:

(X)Y)x (X +)Y)-ý(X --)Y)

-44-

The changes introduced to the functions Conversation and Patz are given in terms of

sets of mappings that correspond to partial functions of the correct type, hence the

total functional properties of both functions are not violated by the schema Join_Sch.

The schema Error Join does not change either of the functions Conversation and

Path, hence cannot inviolate their characteristics.

Finally, the schemas Join_Sch and Error_Join have mutually exclusive precondi-

tions, hence there can be no interference between the two schemas when they are

combined to form the schema Join_Op.

Preconditions for Join_Op

The precondition for the schema Join Op is described by the schema Pre_Join_Op

below.

Pre_Join_Op = Pre_Join_Sch V Pre_Error Join

The schema Pre_Join_Op is simplified to the schema Pre Join_Op_Simple defined

below.

Pre_Join_Op_Simple

Network

M? : Message

3 sub : SUB " M? = member (sub, join)

The equivalence of the precondition schemas is represented by the following schema

Simplified_3_3:

-45-

Simplified_ 3_3 = pre Join_Op Pre_Join_Op_Simple

The simplification of the preconditions for the join operation is given in Appendix B. 2.

Other Expressions of Simplifications

The above is not the only form of equivalence relation between the simplified and rudimen-

tary preconditions. Another expression of the preconditions is defined as the disjunction of

the preconditions of the individual schemas in the definition of the schema Join_Op and is

declared as the schema Simplified_3_4 below.

Simplified 3_4

pre Join_Sch V pre Error_Join 4 Pre_Join_Op_Simple

A further possibility is using the following schema equation below.

Simplified 3_5 = Pre_Join_Op 4 Pre_Join_Op_Simple

A general theorem about preconditions is proved by Woodcock [Wood89A] for the dis-

junction of schema terms is that:

pre (Schema_ 1V Schema_ 2) = (pre Schema_ 1) v (pre Schema_ 2)

The expression chosen to represent the equivalence between two forms of the preconditions

will depend on which is easiest to verify.

-46-

3.3.2 The Leave Operation

The counterpart to the join operation is the leave operation.

Leave_Sch

Network

M? : Message

Status' : Error Status

3 sub : SUB; op : Operation I

M? = member (sub, op) A op = leave A sub e Present A

(Vu: SUB -
Conversation (u, sub) =0A Conversation (sub, u) =0A

Path (u, sub) = Free A Path (sub, u) = Free) "

Present' = Present \ {sub} A Status' = Okay

No change in the other Network declarations

Conversation' = Conversation

Path' = Path

The two preconditions for subscribers leaving the network are that the subscriber is not

involved in a conversation with any subscriber and is a member of the communications net-

work before the operation is performed. The above schema Leave_Sch defines the neces-

sary preconditions and postconditions for the leave operation. The postconditions are

defined to be that the set Present' has the member with the value given by sub removed

and the variable Status' has the value Okay after the operation has been completed.

-47-

Improving the Robustness

The schema Error Leave defines the preconditions necessary to trap the conditions that

would cause the leave operation to fail and the postcondition is the variable Status' has the

value Error after the operation had been attempted.

Error_Leave

Network

M? : Message

Status' : Error Status

3 sub : SUB; op : Operation I

M? = member (sub, op) A op = leave A

(sub a Present v

(Vu: SUB -

Conversation (u, sub) =UA
Conversation (sub, u) =0A Path (u, sub) = Free A

Path (sub, u) = Free)) " Status' = Error

A robust version of the leave operation is defined as the disjunction of the two schemas

Leave_Sch and Error_Leave in the schema Leave_Op below.

Leave_Op ̂ Leave_Sch V Error Leave

Figure 3.3 shows the interactions between the schema Leave_Op and the other com-

ponents of the system.

-48-

Figure 3.3 Interactions between the Leave Operation Schema and the State Schema

-49-

Proof Obligation for the Invariant of the Schema Leave_Op

CADi2 has ensured that the basic types are not violated, and the functions Conversa-

tion and Path are not changed, hence the functional properties are maintained.

Preconditions for Leave_Op

The preconditions of the robust version of the operation are simplified to the schema

Pre_Leave_Op_Simple below.

Pre_Leave_Op_Simple

Network

M? : Message

3 sub : SUB " M? = member (sub, leave)

The equivalence between the two expressions of the preconditions is expressed as the fol-

lowing schema.

Simplified_3_6 ̂ pre Leave_Op 4 Pre_Leave_Op_Simple

3.3.3 The Call Operation

The first two operations define the effects of subscribers joining and leaving the communi-

cations network analysed in this chapter. A call path must be established between the two

subscribers before any data are transmitted between two subscribers in the network. This is

certainly not the only possible implementation, for example E-mail does not require any

call path to be established before data transmission. Decisions at this stage in the design

process have large impacts on the final implementation of the communications network and

-50-

it may be necessary to compare different implementations at this level of abstraction before

deciding which one to refine further.

The schema Cail_Sch below specifies the operation of setting up a call path.

Call-Sch

ANetwork

M? : Message

Status' : Error Status

3 calling, called : SUB; op : Operation

M? = setup ((calling, called), op) A op = call A

calling E Present A called E Present A calling called A

Conversation (calling, called) = () A

Conversation (called, calling) =0A

Path (calling, called) = Free A Path (called, calling) = Free "

Path' =

Path ® ((calling, called) H Established) e

{(called, calling) H Established) A Status' = Okay

No change in the variables Conversation and Present

Present' = Present

Conversation' = Conversation

The first terms of the above schema extract the elements of the tuple given by the value of

the M? input message. This is done by equating M? to the existentially quantified tuple of

the calling subscriber, called subscriber and operation op. The following preconditions are

specified using these bound variables:

I both subscribers are connected to the network, which is represented by both sub-

scribers being members of the set Present

2 the two subscribers are not identical, which is represented by calling # called

-51-

3 no data are in transit in either direction between the two subscribers, which is

represented by both possible orders of the pairs of subscribers mapped to empty

sequences by the function Conversation

4 there is not a path established in either direction between the two subscribers, which is

represented by the function Path mapping both possible orders of the pairs of sub-

scribers to the identifier Free.

After the call operation, the function Path is updated so that both orders of the pair of sub-

scribers are mapped to the identifier Established.

There are no changes to the variables Conversation and Present introduced by the schema

Call-Sch.

Improving the Robustness

The schema Error Call includes the preconditions necessary to ensure that the Network

state does not change if the call operation is attempted when the preconditions of the

schema Call Sch are not satisfied.

-52-

Error_Call

ENetwork

M? : Message

Status' : Error Status

3 calling, called : SUB; op : Operation I

M? = setup ((calling, called), op) A op = call A

(calling a Present v called 4 Present V calling = called v

Conversation (calling, called) ;e0V
Conversation (called, called) 0V

Path (calling, called) x Free V Path (called, calling) ý Free) "

Status' = Error

The Status' variable in the schema Error Call is updated to be bound to the value Error

should any of the four preconditions listed above be false.

The robust version of the call operation is represented by the schema Call_Op and is

defined as the disjunction of the schemas Cali Sch and Error Call.

Call_Op = Call_Sch V Error Call

Figure 3.4 shows the interactions between the schema Call_Op and the other components

in the system. These interactions are considered in the following proof obligation.

-53-

Figure 3.4 Interactions between the Call Operation Schema and the State Schema

-54-

Proof Obligation for the Invariant of the Schema Call_Op

CADiZ has ensured that the basic types are not violated.

The function Path is changed by the schema CaII_Sch such that elements of its

domain are mapped to single elements in its range, therefore maintaining the type

required by the functional override operator to ensure that the resulting type of Path is

still a total function.

The schema Error_Call does not change either the functions Conversation or Path,

hence cannot violate their functional properties.

The preconditions of the schemas Call_Sch and Error Call are mutually exclusive,

hence there can be no conflict in changes of state.

Preconditions for Call_Op

The simplified preconditions of the schema Call-Op are calculated to be that defined by

the schema Pre_Call_Op_Simple given below.

Pre_Call_Op_Simple

Network

M? : Message

3 calling, called : SUB " M? = setup ((calling, called), call)

The equivalence between the rudimentary preconditions and those derived are expressed as

the schema given below.

Simplified 3_7 ^ pre Call-Op Pre_Call_Op_Simple

-55-

3.3.4 The Clear Operation

The counterpart to the call operation is the clear operation.

Clear_Sch

ANetwork

M? : Message

Status' : Error Status

3 calling, called : SUB; op : Operation

M? = setup ((calling, called), op) A op = clear A

Path (calling, called) = Established A

Path (called, calling) = Established A

Conversation (calling, called) = l> A

Conversation (called, calling) =0"

Path' =

Path ® {(calling, called) H Free}

{(called, calling) - Free} A Status' = Okay

No change in the variables Conversation and Present

Present' = Present

Conversation' = Conversation

The schema Clear Sch specifies the effects of the clear operation on the state of the sys-

tem. In this implementation of a communications network, all the data must be received

before a call is cleared.

The preconditions restrict the clearing of a call to the cases where a path has been esta-
blished in both directions and that there are no data packages in transit. The effects of the

clear operation are that the members in the domain for both possible orders of the pair of

subscribers in the function Path' map to the value Free and the variable Status' is bound to

the value Okay.

-56-

Note that there is not a precondition for the subscribers being present in the schema

Clear_Sch since this condition is covered by having established paths. Also, the precondi-

tion in the schema Call_Sch that ensures that there are no data packages in transit is redun-

dant when associated with the precondition of the call path being free. However, the

preconditions are left in their original form to reduce the uncertainty about the initial condi-

tion of the network before any operations have been performed.

Improving the Rebustness

The schema Error Clear is required for the cases when the preconditions in the schema

Clear Sch are not satisfied for the clear operation.

Error_Clear

=Network

M? : Message

Status' : Error Status

3 calling, called : SUB; op : Operation

M? = setup ((calling, called), op) A op = clear A

(Path (calling, called) x Established V

Path (called, calling) ý Established V

Conversation (calling, called) ý0v

Conversation (called, calling) ý 0) " Status' = Error

A robust version of the clear operation is defined in the schema Clear Op defined below

as the disjunction of the schemas Clear Sch and Error_Clear.

Clear_Op ̂ Clear Sch V Error_Clear

-57-

Figure 3.5 Interactions between the Clear Operation Schema and the State Schema

-58-

Proof Obligation for the Invariant of the Schema Clear Op

CADO has ensured that the basic types are not violated.

The function Path is changed by the schema Clear Sch such that elements- of its

domain are mapped to single elements in its range, therefore maintaining the type

required by the functional override operator to ensure that the resulting type of Path is

still a total function.

The schema Error Clear does not change either the functions Conversation or Path,

hence cannot violate their functional properties.

The preconditions of the schemas Clear_Sch and Error_Clear are mutually

exclusive, hence there can be no conflict in changes of state.

Preconditions for Clear_Op

The preconditions for the clear operation are simplified to those represented by the schema

Pre Clear Op Simple defined below.

Pre_Clear_Op_Simple

Network

M? : Message

3 calling, called : SUB " M? = setup ((calling, called), clear)

The equivalence between the derived and actual preconditions are expressed the schema

below.

Simplified 3_8 - pre Clear Op t==> Pre_Clear_Op_Simple

-59-

3.3.5 The Send Operation

Data can be transmitted between a pair of subscribers after a call path is established

between the subscribers.

The schema Send_Sch specifies the operation of sending data to another subscriber.

Send_Sch

Network

M? : Message

Status' : Error Status

B sending, receiving : SUB; data : Package; op : Operation I

M? = active (((sending, receiving), data), op) A op = send A

Path (sending, receiving) = Established "

Conversation' =

Conversation

{(sending, receiving)

Conversation (sending, receiving) - (data)} A Status' = Okay

No change in the set Present and function Path

Present' = Present

Path' = Path

The data are represented by the type Package and assigned to the bound variable data.

The input message M? has the components sending, receiving, data and op which are

existentially quantified in the predicate part of the schema. The preconditions of the schema

are that the operation, identified by op, is a send operation, and there i: i a path established

between the sending and receiving subscribers. The postconditions are that the new data

are concatenated on to the sequence of existing data for the conversation between the two

subscribers and the value of the variable Status' is given the value of Okay.

-60-

Improving the Robustness

The schema Error_Send below has the preconditions required to catch any errors in the

application of the send operation.

Error_Send

=Network

M? : Message

Status' : Error Status

3 sending, receiving : SUB; data : Package; op : Operation

M? = active (((sending, receiving), data), op) A op = send A

Path (sending, receiving) ; e- Established " Status' = Error

A robust version of the send operation is defined as the schema Send_Op below.

Send_Op ^ Send_Sch V Error_Send

Figure 3.6 shows the interactions between the schema Send_Op and the other components

in the system. These interactions are considered in the following proof obligation.

-61

Figure 3.6 Interactions between the Send Operation Schema and the State Schema

-62-

Proof Obligation for the Invariant of the Schema Send_Op

CADi2 ensures that the basic type rules are applied correctly.

The schema Send_Sch changes the function Conversation using the functional over-

ride operator such that the overring function is a single maplet, hence following the

functional override type requirements to ensure that the resulting type of Conversation

is a total function.

The schema Error Send does not change either the functions Conversation or Path,

hence cannot violate their functional properties.

The preconditions of the schema Send-Sch and Error Send are mutually exclusive,

hence cannot conflict about any changes of state.

Preconditions for Send_Op

The preconditions of the schema Send_Op are simplified to give the schema

Pre_Send_Op_Simple below.

Pre_Send_Op_Simple

Network

M? : Message

3 sending, receiving : SUB; data : Package "

M? = active (((sending, receiving), data), send)

The correctness of the preconditions is expressed by the following schema definition.

Simplified 3_9 ^ pre Send_Op ' Pre_Send_Op_Simple

The data transmitted to a subscriber must be accepted by a receive operation.

-63-

3.3.6 The Receive Operation

The schema Receive_Schl below specifies the effects of the receiving subscriber accept-

ing data from the sending subscriber.

Receive Sch 1

ANetwork

M! : Message

Status' : Error Status

3 sending, receiving : SUB; data : Package; op : Operation I

M! = active (((sending, receiving), data), op) A op = receive A

Path (sending, receiving) = Established A

Conversation (sending, receiving) ý () A

data = head (Conversation (sending, receiving)) "

Conversation' =
Conversation

{(sending, receiving) H

tail (Conversation (sending, receiving))} A Status' = Okay

No change in the other Network declarations

Present' = Present

Path' = Path

The schema Receive Schi uses the convention of representing output variables by

identifiers ending with an exclamation mark, such as M! defined above. The preconditions

for this schema are that a path is established between the sending and receiving subscribers,

and the operation is of the type receive as indicated by the bound variable op. The precon-

ditions do not involve any input variable. After the operation, the function Conversation is

updated so that the tuple representing the sending and receiving subscribers maps to the tail

of the value of the previous mapping. The value of the head of its previous value is bound

-64-

to the output variable and the status value is updated to be Okay.

The preconditions are expressed entirely in terms of state variables, hence an output vari-

able can be assigned a value whenever the state of the system satisfies the preconditions.

The preconditions of this schema can be satisfied at the same time as the preconditions of

other schemas are satisfied. In general, such concurrent changes in a state are possible, but

are contrary to a simple finite state machine model in which changes of state are caused by

input events. In this case, because the values of the after state variables are defined

uniquely, the operation specified by the schema Receive_Sch1 cannot be performed

simultaneously with other operations and there is no possibility of it interfering with the

changes of state defined by other schemas.

Alternative Schema for the Receive Operation

It is intuitively simpler to define the receive operation as an input operation and the data

part of the input variable not being used by the schema. This leads to the physical interpre-

tation that the subscriber generates an input when ready to receive a message. This

interpretation is embodied in the schema Receive_Sch below.

-65-

Receive Sch

ONetwork

M? : Message

M! : Message

Status' : Error Status

3 sending, receiving : SUB; data, d: Package; op : Operation

M? = active (((sending, receiving), d), op) A

M! = active (((sending, receiving), data), op) n op = receive A

Path (sending, receiving) = Established A

Conversation (sending, receiving) 0A

data = head (Conversation (sending, receiving)) "

Conversation' =
Conversation

{(sending, receiving)

tail (Conversation (sending, receiving))} A Status' = Okay

No change to the set Present and fiinction Path

Present' = Present

Path' = Path

The input operation is included in the preconditions of the schema Receive-Sch and

specifies the subscribers and the type of operation.

Improving the Robustness

The schema Error Receive specifies the preconditions necessary to cater for error in the

application of the receive operation. In this case the output takes the data value from the

input operation because it cannot be obtained from the function Conversation.

-66-

Error Receive

'Network

M? Message

M! : Message

Status' : Error Status

B sending, receiving : SUB; d: Package; op : Operation

M? = active (((sending, receiving), d), op) A

M! = active (((sending, receiving), d), op) A op = receive A

(Path (sending, receiving) ;e Established V

Conversation (sending, receiving) = 0) " Status' = Error

A robust version of the schema specifying the effects of the receive operation is defined as

the schema Receive_Op below.

Receive_Op = Receive_Sch V Error_Receive

Figure 3.7 shows the interactions between the schema Receive_Op and the other com-

ponents in the system. These interactions are considered in the following proof obligation.

-67-

Figure 3.7 Interactions between the Receive Operation Schema and the State Schema

-68-

Proof Obligation for the Invariant of the Schema Receive_Op

CADi2 ensures that the basic type rules are applied correctly.

The schema Receive_Sch changes the function Conversation using the functional

override operator such that the overriding function is a single maplet, hence following

the functional override type requirements to ensure that the resulting type of Conver-

sation is a total function.

The schema Error Receive does not change either the functions Conversation or

Path, hence cannot violate their functional properties.

The preconditions of the schema Receive_Sch and Error Receive are mutually

exclusive, hence cannot conflict about any changes of state.

Preconditions for Receive_Op

The preconditions of the schema Receive_Op are simplified to the schema

Pre Receive Op_Simple below.

Pre_Receive_Op_Simple

Network

M? : Message

3 sending, receiving : SUB; data : Package "

M? = active (((sending, receiving), data), receive)

The equivalence between the simplified preconditions and rudimentary preconditions is

represented by the schema Simplified 3_10 below.

-69-

Simplified_3_10 = pre Receive_Op Pre_Receive_Op_Simple

3.3.7 Network Implementation at this Design Stage

The effects of any operation performed on the system is specified to be the disjunction of

the robust versions of the six operations.

Network-Imp

Join_Op V Leave_Op V Call_Op V Clear Op V Send_Op V

Receive_Op

The preconditions for this overall schema are the disjunction of the six preconditions for the

operations, which covers all possible values of input messages, hence provides a total

implementation of the communications network.

3.4 Formal Statement of the Safety Properties

Each of the properties stated informally in Section 3.1.2 is represented in this section as a

predicate compatible with the schema Network Imp. The mapping from informal to for-

mal descriptions cannot be verified; other predicates can represent different valid interpreta-

tions of the informal descriptions. Each property is given as the right hand sequent (the

consequent) of the theorem and the left hand sequent (the antecedent) contains the schema

Network Imp.

The specification of the safety properties is in the form of the five theorems 3.1 to 3.5 stated

below.

Theorem 3.1 Conversation Definition

Properties 1: each conversation has two subscribers.

-70-

Network_Imp I-

3S: F (P (SUB x SUB)) " dom Path ES

V Si, s2 : SUB; p1, p2 : Path_Status "

Path (Si, s2) = p1 A Path (s1, s2) = p2 = p1 = p2

The above theorem states that the domain of Path has the type of the set of tuples of pairs

of subscribers and that Path is a function. This theorem does not preclude a subscriber

having more than one conversation established at the same time, but each conversation

must have a separate pair of paths. The purpose of this theorem is to prevent the possibility

of a path involving more that two subscribers, e. g. a tuple of the type (SUB x SUB x SUB)

being an element of the domain of Path.

Proof of Theorem 3.1

Since the data type of Path is

(SUB x SUB) ---) Path_Status

the domain is given by

domPath =IP(SUB xSUB)

which is the require type.

Each operation schema has been verified to maintain the functional properties of Path,

hence completing the proof.

Theorem 3.2 Privacy

Property 2: it is impossible for a third subscriber to receive data destined for the second

subscriber of a conversation.

-71-

Network_Imp F-

3S: P (I' (SUB x SUB)) " dom Conversation c- S

V si, s2 : SUB; p1, p2 : seq Package

Conversation (Si, s2) = p1 A

Conversation (s1, s2) = p2 p1 = p2

Proof of Theorem 3.2

The proof is identical to that for theorem 3.1, except that the function Conversation is

specified instead of Path.

Theorem 3.3 Busy Subscriber

Property 3: subscribers can be busy.

Network-Imp I--

m: Message; calling, called : SUB; op : Operation

m= setup ((calling, called), op) A op = call "

Path (called, calling) = Established

Proof of Theorem 3.3

Providing the given set SUB has at least two non equal members, then it is possible to

create the function Path such that there is a pair of non equal subscribers that maps to

the identifier Established.

-72-

It follows that there is an implicit assumption about the given type SUB such that

#SUB>1

Thus, a subscriber can never be in an established conversation in a communications

network that contains only one subscriber.

Theorem 3.4 Inaccessible Subscribers

Property 4: subscribers can be inaccessible.

Network_Imp F-

3m: Message; calling, called : SUB; op : Operation I

m= setup ((calling, called), op) A op = call " calling a Present

Proof of Theorem 3.4

The proof is similar to that for property 3.

Theorem 3.5 No Duplicate Data

Property 5: data are received at most once.

Before stating the final form of the theorem, it is worthwhile to consider an initial attempt

as defining this property.

-73-

Network-imp F-

V data : Package; sending, receiving : SUB "

{ ml : Message

ml = active (((sending, receiving), data), receive) " m1 }

{ m2 : Message

m2 = active (((sending, receiving), data), send) " m2}

The intended interpretation of the above theorem is that the number of times any particular

data value is received by a subscriber does not exceed the number of times the same value

is sent. The theorem includes the possibility that the same data value being sent more than

once between the same pair of subscribers. The messages are assumed in the above

theorem to be identifiable uniquely by some means not visible at this level of abstraction,

hence being separate messages.

However, it is not as simple as this because there is no history of operations attached to the

schemas as they stand, nor is there any intrinsic sense of operations being executed in the Z

notation as if it were a programming language executed by a computer.

Another attempt at specifying Property 5 involves defining an additional schema that is

conjoined with the schema Network Imp. The following schema Input History records

all the operations accepted by the system.

Input History

Input Trace : seq Message

The component Input Trace can be considered to be constructed by observing all messages

that give rise to the component Status' being bound to the value Okay. This interpretation

is represented by the schema Input-Monitor below that is conjoined with the schema

-74-

Network-imp.

Input_Monitor

AInput_History

M? : Message

Status' : Error Status

Status' = Okay A Input_Trace' = Input Trace - (M?)

V
Status' = Error A Input Trace' = Input-Trace

The schema Input_Monitor is total for both possible values of the component Status', but

the component Input Trace is changed only in the cases of successful operations. The ini-

tial state for the schema Input_Monitor is given by the schema Initial_Input_Monitor

Initial_Input_Monitor I

Input_History'

Input Trace' =0

Proof of the Initial State

The empty sequence is obviously a valid binding of the sequence Input Trace.

-75-

Network_Imp A Input_Monitor I-

V ml, m2 : Message; sending, receiving : SUB;

data : Package I

ml = active (((sending, receiving), data), receive) A

m2 = active (((sending, receiving), data), send) "

count seq (ml, Input_Trace) < count_seq (m2, Input Trace)

where

count seq : (Message x seq Message) W

Vm: Message; h: seq Message "

(h =0 count seq (m, h) = 0) v

(h 0A m= head h==>

count_seq (m, h) = count_seq (m, tail h) + 1) v
(h 0Amx head h

count seq (m, h) = count_seq (m, tail h))

The above theorem defines a function called count seg that evaluates the number of times a

message occurs in a sequence of messages.

Proof of Theorem 3.5

The proof of this theorem can be seen by noting that from the schema Input_Monitor,

each message of the form m2 for a send operation in the component Input Trace

gives rise to the component Status' having the value Okay. In addition, from the

schema Send_Op it follows that the sequence given by Conversation(sending,

receiving) is changed by the value data added to it once.

Similarly for messages of the type ml, where the schema Receive_Op specifies that

for each successful receive operation the value data is removed from the sequence

-76-

Conversation(sending, receiving) once. Therefore, because the receive process can

never remove more elements than are sent, the number of messages of the type nil in

the sequence Input_Trace can never exceed the number of occurrences of the mes-

sages of type m2.

Theorem 3.5 more accurately represents the intended interpretation of property 5 than the

initial attempt. However, it still uses an informal interpretation of schemas being executed,

but this time the past behaviour of schemas is recorded formally.

3.5 Additional Properties as a Consequence of the Implementation

The implementation described in the previous section results in some extra properties being

included in subsequent stages in the design process as a consequence of the method of

implementation. This section contains statements of theorems that represent these proper-

ties. The additional properties identified in the implementation are given an interpretation in

the context of a communications network. If the additional properties generated by the

implementation are not acceptable, then changes will have to be made to the schemas.

Import yorkkit

The standard tool kit does not contain a definition for functional inverse and the tool kit

yorkkit is imported into this specification to provide the required definitions.

Theorem 3.6 Send Data During a Conversation

Property A: subscribers can only send data after a conversation has been established.

This is expressed as the following theorem:

-77-

Network-imp F-

Vm: Message; sending, receiving : SUB; op : Operation;

data : Package I

m= active (((sending, receiving), data), op) A op = send A

Status' = Okay " Path (sending, receiving) = Established

Proof of Theorem 3.6

This theorem follows from the specification of the send operation given by the

schema Send Sch, in which the function Path must denote an established path for

the sending and receiving pair of subscribers.

Theorem 3.7 Clear after all Data has been Sent

Property B: a conversation is cleared after all data has been received.

The following theorem specifies Property B:

Network Imp I-

Vm: Message; calling, called : SUB; op : Operation

m= setup ((calling, called), op) A op = clear A

Status' = Okay "

Conversation (calling, called) =0A

Conversation (called, calling) =0

-78-

Proof of Theorem 3.7

The specification of the clear operation given in the schema Clear Sch is used to

verify the above theorem. The predicate in the schema Clear_Sch ensures that the

function Conversation must denote empty sequences for the calling and called sub-

scribers in both orders for the Status' to have the value Okay.

Theorem 3.8 Data Received in Order Sent

Property C: data are received in the order they are sent.

The following theorem contains the predicate for Property C:

Network Imp A Input-Monitor I-

V s1, s2, r1, r2 : Message; sending, receiving : SUB;

dl, d2 : Package

Si = active (((sending, receiving), d1), send) A

s2 = active (((sending, receiving), d2), send) A

rl = active (((sending, receiving), dl), send) A

r2 = active (((sending, receiving), d2), send) "

-1 -1 Input Trace s1 < Input Trace s2 =

-1 -1 Input_Trace rl < Input_Trace r2

The predicate in this theorem states that if a data packet, dl, is sent before another data

packet, d2, from one subscriber to another, then the first packet must be received before the

second packet. The order in which data packets are sent and received is given by their

positions in the sequence Input Trace.

-79

Proof of Theorem 3.8

The above theorem is proved from the properties of sequences in the two Schemas
Send Sch and Receive Sch.

The schema Send-Sch adds new data to the sequence given by

Con versation(sending, receiving) by concatenating the value to the end of the existing

sequence. Similarly, the schema Receive_Sch obtains data by removing the first

element in the sequence given by Conversation(sending, receiving). Therefore, the

order in which elements are stored and removed from the sequence maintains a first-

in, first-out queue discipline, which ensures that the order in which elements are

removed is the same as in which the elements are stored.

Theorem 3.9 One Path between Two Subscribers

Property D: there can only be one communications path between each pair of subscribers.

This is defined by the predicate in the theorem below:

Network Imp F-

V calling, called : SUB "

is : Path_Status I ((calling, called), s) E Path "
(calling, called) }=1

Proof of Theorem 3.9

This theorem is verified from the properties of functions. Since Path is defined to be

a function, and none of the operation schemas violate the functional properties of
Path, each pair of subscribers in its domain maps to a single element in its range.

Whether these extra properties are continued throughout subsequent stages in a design

-80-

process depends on how the subsequent implementations are verified. For example, if the

Z schemas represent an implementation of the system at the next stage in the design process

and the schemas introduced in this chapter are verified to be equivalent:

Network Imp > Network Next Imp

then the extra properties will be retained.

However, if the original properties are used to verify:

Network Next Imp > Property Set

then different extra properties can result.

3.6 Formal Specification of the Liveness Properties

The safety properties specify the functional behaviour in terms of only good things will

happen. The liveness properties specify that something will happen. The network imple-

mented in this chapter is represented by the schema Network Imp
, which defines each

change of state in response to an input signal. The occurrence of input signals is not within

the control of the implementation. Any liveness specification must be dependent on the

external activities in the form of input signals.

Temporal logic has been used to specify the liveness properties with Z schemas [Duke89],

however, introducing temporal logic necessitates a new notation and deviates from the

predicate logic defined in the semantics of standard Z notation.

The approach taken here is similar to that by Duke et al. [Duke88] and defines sequences of

all schema states and messages that are experienced by the system. Such a sequence can be

infinite and, obviously, does not actually exist because it looks into the future. The

sequences of schema states is a convenient notion to specify the type of dynamic behaviour

required of a system. This approach is very similar to that of using the schema

Input History in Section 3.4, where the schema Input History records all the input mes-

sages received by the system.

The state of the network model is given by the schema Network and a history of states

therefore has the type of a sequence of elements of the type Network, similarly a history of

-81-

messages has the type of a sequence of elements of the type Message.

History

State Trace : seq Network

Input_Trace : seq Message

State_Trace 1E{ Initial-State)

The schema History specifies the sequences State_Trace and Input Trace. This schema

does not give any other information about the sequences, except that the first state must be

a valid initial state. The sequences are for specification purposes only and there is no

suggestion that such sequences are implemented. However, it is useful to have the interpre-

tation of some monitor that records all changes of state that accompany messages that give

rise to the error status Okay. This interpretation is represented by the schema

State Monitor below.

-82-

State Monitor

AHistory

ANetwork

M? : Message

Status' : Error Status

Status' = Okay A Input_Trace' = Input_Trace - (M?) n

State Trace' = State Trace - (6 Network')

V
Status' = Error A Input Trace' = Input-Trace A

State Trace' = State Trace

The schema State_Monitor is total for both possible values of Status' and the after state

value of Network is not constrained by this schema beyond its signature. This leaves the

changes of state to be determined by the network implementation schema Network Imp.

The initial state for the schema State_Monitor is given by the schema

Initial-State-Monitor.

initial-State-Monitor

History'

Input Trace' =0
State_Trace' 1E{ Initial_State }

Proof of the Initial State

The empty sequence is a valid binding of the sequence Input Trace and Initial-State

-83-

represents valid bindings of the schema Network. Therefore, the initial value of

State Trace also meets the invariants of the schema History.

From the definition of the initial state, it follows that the after state value that arises from an

input message in the ith position in the sequence Input Trace will appear in the (i + 1)th

position in the sequence State-Trace. This fact is used to express the theorems in this sec-

tion.

The proof sketches are based on the existence of the sequences Input Trace and

State Trace, hence they presuppose that state changes occur in response to messages. The

main objective of this section is to indicate how liveness properties can be specified in Z in

relation to an implementation. The proof sketches do not set out to verify that the imple-

mentation has the required liveness properties. This cannot be done because the implemen-

tation is at a too high level of abstraction. What the proof sketches set out to verify is that

the state changes that occur are described by the appropriate operation schema. The

existence of the traces themselves must be proved at a lower level of abstraction that deals

with the required level of detail to guarantee the response to changes. This means that the

proofs are conditional on an interpretation of any future implementation of the system.

One of the basic liveness properties is that: providing the preconditions are satisfied, an

input causes a change of state. This section illustrates how theorems can express this live-

ness property for each of the network operations.

The specification of the liveness properties take the form of theorems 3.10 to 3.15 given

below.

The format for each consequence of the theorems for all the operations is

input message A before state meets preconditions = after state meets preconditions

where the input message is given by Input Trace, and the before and after states are given

by State_Trace.

Theorem 3.10 Join Operation

Informally this theorem states that operations requesting a subscriber to join the network

-84-

such that the subscriber is not already a member, then the operations will be successful.

Network_Imp A State_Monitor I-

Vi: N; sub : SUB; m: Message; state, state' : Network "

State-Trace i= state A Input Trace i= mA

m= member (sub, join) A State_Trace (i + 1) = state' A

sub (Z state. Present = sub F state'. Present

Proof of Theorem 3.10

From schema Join_Sch the preconditions for a change of state are that the operation

represented by the input M? is a join operation and the subscriber is not a member of

the set Present. For the predicate in the schema Join_Sch to be true, the component

Present is given by:

Present' = Present U [sub]

hence

sub E Present'

making the term

sub E state'. Present

in the theorem true.

Theorem 3.11 Leave Operation

For all leave operations successfully performed in the network, there are two states such

that in one state the subscriber was a member of the network and in the next state the same

subscriber was not a member.

-85-

Network_Imp A State_Monitor I-

Vi: N; sub : SUB; m: Message; state, state' : Network -
State_Trace i= state A Input Trace i=mA

m= member (sub, leave) A State_Trace (i + 1) = state' A

(Vu: SUB -

Conversation (u, sub) = (> A

Conversation (sub, u) =0A Path (u, sub) = Free A

Path (sub, u) = Free) A sub E state. Present =

sub 0 state'. Present

Proof of Theorem 3.11

The schema Leave Sch includes the preconditions of the operation represented by

the input M? is a leave operation, the subscriber, sub, is a member of the set Present,

the function Conversation maps all pairs in its domain that includes sub to the value

of an empty sequence and the function Path similarly maps all such pairs of sub-

scribers to the value Free. This corresponds to the left hand predicate of the implica-

tion in the consequence of the theorem. The after state given in the schema
Leave Sch includes the term

Present' = Present \ [sub)

Therefore,

sub a Present'

hence, the right hand predicate in the implication is true.

Theorem 3.12 Call Operation

For all call operations such that the preconditions of the operations are satisfied, then there

must be a change of state as specified by the schemas.

-86-

Network_lmp A State_Monitor I-

Vi: N; calling, called : SUB; m: Message;

state, state' : Network "

State Trace i= state A Input_Trace i=mn

m= setup ((calling, called), call) A

State Trace (i + 1) = state' A calling F state. Present A

called c- state. Present A calling ;t called A

state. Conversation (calling, called) =0A

state. Conversation (called, calling) =0A

state. Path (calling, called) = Free A

state. Path (called, calling) = Free =

state'. Path (calling, called) = Established A

state'. Path (called, calling) = Established

Proof of Theorem 3.12

The left hand predicate of the implication in the theorem corresponds to the precondi-

tions of the schema CaII_Sch. The postconditions of the schema Call_Sch include

the term

Path' = Path ® ((calling, called) H Established) ® ((called, calling) ti Established)

Therefore,

Path' (calling, called) = Established A Path' (called, calling) - Established

and the right hand predicate of the implication in the theorem is true.

Theorem 3.13 Clear Operation

Similarly for the clear operation.

-87-

Network_Imp A State_Monitor I-

Vi: N; calling, called : SUB; m: Message;

state, state' : Network "

State_Trace i= state A Input Trace i=mA

m= setup ((calling, called), clear) A

State_Trace (i + 1) = state' A

state. Path (calling, called) = Established A

state. Path (called, calling) = Established A

state. Conversation (calling, called) =0A

state. Conversation (called, calling) =0=

state'. Path (calling, called) = Free A

state'. Path (called, calling) = Free

Proof of Theorem 3.13

The left hand predicate of the implication in the theorem corresponds to the precondi-

tions of the schema Clear Sch
.

The postconditions of the schema Clear_Sch

include the term

Path' = Path ® [(calling, called) H Free) ® [(called, calling)---', Free]

Therefore,

Path' (calling, called) = Free A Path' (called , calling) = Free

and the right hand predicate of the implication in the theorem is true.

Theorem 3.14 Send Operation

For all send operations that meet the preconditions, the next state of the system is such that

the data included in the operation are the last element of the sequence of data mapped by

the two subscribers in the conversation.

-88-

Network_Imp A State_Monitor I-

bi: N; sending, receiving : SUB; data : Package;

m: Message; state, state' : Network "

State_Trace i= state A input_Trace i= mA

m= active (((sending, receiving), data), send) A

State_Trace (i + 1) = state' A

state. Path (sending, receiving) = Established

last (state'. Conversation (sending, receiving)) = data

Proof of Theorem 3.14

The left hand predicate of the implication in the consequence of the theorem

corresponds to the preconditions of the schema Send-Sch. The predicate in the

schema Send Sch includes the term

Conversation' = Conversation ® ((sending, receiving)-)

Conversation (sending, receiving) "(data))

hence

last (Conversation' (sending, receiving)) = data

Thus, denoting that the right hand predicate of the implication in the consequence of

the theorem is true.

Theorem 3.15 Receive Operation

In the case of all successful receive operations, the element at the head of the sequence of

data between two subscribers is removed.

-89-

Network_imp A State_Monitor f-

di: W; sending, receiving : SUB; data, d: Package;

m: Message; state, state' : Network "

State_Trace i= state A Input Trace i=mA

m= active (((sending, receiving), d), receive) A

State_Trace (i + 1) = state' A

state. Path (sending, receiving) = Established A

state. Conversation (sending, receiving) ;t0

state'. Conversation (sending, receiving) =
tail (state. Conversation (sending, receiving))

Proof of Theorem 3.15

The left hand predicate of the implication in the consequence of the theorem

corresponds to the preconditions of the schema Receive_Sch. The predicate in the

schema Receive Sch includes the term

Conversation' = Conversation ® ((sending, receiving) H

tail (Conversation (sending, receiving))]

hence

Conversation' (sending , receiving) = tail (Conversation (sending
, receiving))

Thus, denoting that the right hand predicate of the implication in the consequence of

the theorem is true.

-90-

3.7 Discussion

This section contains some comments on the approaches taken with the Z notation in this

chapter, with particular emphasis on combining Schemas to form complete descriptions of

the implementation.

3.7.1 Verification Conditions

The goal of verification is to prove that the implementation represented in the Z notation

does exhibit the required properties of the system. The type of proof that is required

depends on the design approach.

The strongest relationship between a specification and an implementation is an equivalence

relation:

Specification 4 Implementation

The equivalence relation means that whenever the specification is true so is the implemen-

tation, and whenever the implementation is true so is the specification. For the equivalence

relation to be applicable, the specification and implementation must use the same state

space. The correctness of the equivalence relation means that the specification and imple-

mentation are true in the same states and define the same state transitions.

A weaker relation between a specification and an implementation is an implication rela-

tions:

Implementation Specification

Whenever the implementation is true it follows that the specification must also be true.

However, the converse is not necessarily true and the specification can be true in conditions

in which the implementation is false. For the implication relation to be used in the above

form, the implementation must be a subset of the state space of the specification. The

interpretation of an implementation in the implication relation is that the implementation is

more restrictive (stronger) that the specification. However, this may not always be the case

and implementations may be required to be less restrictive (weaker) than specifications.

-91-

This means that the implication relation is in the opposite direction:

Specification Implementation

The type of implication relation that is appropriate will depend on the type of behaviour

that is being compared. In the case of static behaviour, where the implementation is

required to be applicable in more states than the specification (less restrictive), the implica-

tion relation is:

Specification Implementation

Since it is only the before states and input variables that are relevant, the relation is better

expressed as:

pre Specification pre Implementation

In the case of dynamic behaviour, where the implementation is more restrictive than the

specification, the implication relation is:

Implementation Specification

In the cases where the specification is given in terms of properties, the implication relation
is:

Implementation Property

If the implementation uses a different state space to the specification, there must be a

homomorphic relation, 4, between the two state spaces such that:

Implementation 4 (Specification)

where

ý: abstract states H concrete_states

Once again, the direction of the implication relation depends on the type of behaviour that

is being compared. Because of the different forms the verification condition can take, it is

-92-

necessary to explain what aspects of the implementation and specification are being con-

sidered so that the verification condition is interpreted correctly.

3.7.2 Isolated Operation Specification

For comparison between complete descriptions for a design process and isolated descrip-

tions for specification only, this section contains two examples of schemas written as

specifications of operations in isolation of each other. The schemas Join_Sch_Loose and

Send_Sch_Loose below are based on the schemas Join_Sch and Send_Sch.

Join Sch Loose

Network

Sub? : SUB

Status' : Error Status

Sub? a Present

Conversation' =

Conversation ®{u: SUB " (u, Sub?) H l) } ffý

fu : SUB (Sub?, u) H 01

Path' _

Path ®{u: SUB " (u, Sub?) H Free} e

{u: SUB (Sub?, u) H Free}

Present' = Present U {Sub? }

Status' = Okay

The schema Join_Sch_Loose does not include any information about how the schema

determines that it is a join operation. In the schema Join-Sch, the type of operation is

included in the input message variable.

-93-

Send_Sch_Loose

Network

Subl ?, Sub2? : SUB

Data? : Package

Status' : Error Status

Path (Subl ?, Sub2?) = Established

Conversation' =

Conversation

{(Subs ?, Sub2?) H Conversation (Subl ?, Sub2?) - (Data?))

Status' = Okay

Present' = Present

Path' = Path

The input variables in the schema Send_Sch_Loose do not identify the operation to be

performed and there is no association between the different input variables in the schema to

indicate how the data are supplied to the system.

The isolated schema terms such as Join_Sch_Loose and Send_Sch_Loose can be con-

nected by logical operators, but the resultant schema cannot be used to identify which

operation causes the change of state, see Section 2.3.

3.7.3 Disjunction of Schemas

The disjunction of the six operation schemas forming the network specification schema has

the effect of merging all the declarations. Those variables with the same name must have

the same signature to avoid clashes. The composite predicate is the disjunction of the

separate predicates in the six operation Schemas. In this study, the operation schemas are

chosen to give a total specification for all possible input messages for a particular operation

and each operation schema excludes the other five from their preconditions. This can be

-94-

proved as a theorem of the implementation as a desirable property of the implementation.

If the schema Receive_Schl is used instead of Receive_Sch, then the input message

does not form any part of the preconditions of that schema and all possible input messages

are included in the other five operation schemas. The network is specified as:

Network_Imp1

Join_Op V Leave_Op V Call_Op V Clear Op V Send_Op V

Receive Sch 1

Which is again a disjunction of six operation schemas, but this time their preconditions are

not disjoint.

The introduction of the schema Receive_Sch 1 raises questions about sharing variables

between schemas and, although the Z notation is not a programming language, raises ques-

tions about possible interference between schemas that are not mutually exclusive. Such

interference is excluded by making the schemas specify the after state values uniquely.

The non determinism that can occur when the preconditions are satisfied for more than one

operation is illustrated by the following simple schema that is formed using the disjunction

of two non exclusive schemas Op_1 and Op_2.

Op_1

S, S' : IN

S>7

S'=5

Op_2

S, S' :

S>10

S'=10

Op_l
_or_Op_2

= Op_l V Op
_2

Expanding the definition of the schema Op_i_or_Op_2 gives the schema below.

-95-

Op_l
_or_Op_2_Expand I

S, S': N

S>7AS'=5

V

S> 10 A S' = 10

The value of S' when S is greater than 10 is non deterministic. Either Op_1 or Op_2 can

have effect, but the only way to determine which one is to examine the after state.

The effects of the disjunction of schemas should be checked both for semantical sense in

the interpretation of the model and for syntactical sense for the whole of the system, i. e.

that it is acceptable or desirable to have such non determinism in the context of the required

behaviour of the system.

3.7.4 Style of Writing Schemas

All the schemas presented in this chapter are written in the style:

3 declarations I preconditions " postconditions

This makes it a simple act to identify the terms that affect different aspects in the predicate.

The actual preconditions are still verified from the preconditions of the Schemas by

simplification.

The equivalence relation between the rudimentary preconditions given by the pre operator

and the simplified preconditions is expressed as a schema equation so that CADIZ can be

used to expand the schema definitions.

-96-

3.7.5 Concurrent Activities

Activities that occur simultaneously are called concurrent. If the activities have access to

the same information (e. g. share data), then the activities can interfere and cause unwanted

results. The ability of activities to occur concurrently both reduces the time required to

complete the activities and removes the need to ensure that activities do not occur simul-

taneously, hence concurrency is useful.

Questions about concurrent activities of systems specified in the Z notation can be avoided

by assuming that all operations are performed instantaneously and no two operations can be

performed at the same instant. In physically realizable implementations of systems, instan-

taneous performance of operations is not possible and it is necessary to consider the effects

of operations being performed concurrently.

Appendix B. 4 contains a discussion of representing concurrent activities in the Z notation.

-97-

3.8 Summary

This chapter contains a study of using the Z notation both to specify some basic properties of

a communications network and to describe an implementation of a communications network.

Proof sketches are given to verify that the implementation implies the properties.

The implementation presented in this chapter represents the first stage of a design process,

hence it is useful to include details of how the schemas are combined to represent the whole

system and still retain all the information about the operations.

The interactions between schemas are given a diagrammatic representation in this chapter to

highlight the effects caused by particular operation schemas. The action of drawing the dia-

grams is also very useful for uncovering mistakes in the schemas. The mistakes come to

light because the schemas provide the information for drawing the diagrams, hence must be

studied carefully.

3.8.1 Complete Description of an Implementation

An implementation of a communications network is described by a set of Z schemas. These

schemas are combined to give a single schema, Network Imp, that represents the complete

description of the implementation. Each operation is described separately, but is an inte-

grated manner based on an input component common to all operations. The properties of the

schema Network Imp are analysed formally in Sections 3.4 to Section 3.6. This analysis

is simplified by the type of operation being readily identified with an input message, thereby

selecting parts of the schema Network Imp that are relevant to the operation associated with

the input message.

3.8.2 Proof Obligations

The schema equations must be checked to ensure that the schemas are combined in sensible

ways. Apart from the data refinement rules, there are no general guide lines as to what are

the checks. The proof obligations discharged in this chapter are:

1 The given sets and free type definitions are consistent.

2 The invariants are maintained by all the operation schemas.

3 At least one valid state exists in the form of an initial state.

-98-

4 The preconditions are calculated and simplified. The preconditions of all the opera-

tions are compared to ensure that all input conditions are covered and no ambiguity is

introduced.

5 The implementation is verified with respect to formal statements of the required prop-

erties.

All the verifications are presented in the form of proof sketches. Proof sketches, although

not as formal as is possible with the Z notation, do give a strong indication of the correctness

of statements about schema equations. Any problems or difficulties encountered in develop-

ing a proof sketch will also arise in constructing proof demonstrations and, whereas proof

demonstrations are very difficult to complete, proof sketches are relatively easy to construct.

The proof sketches in this chapter have been very elementary due to simple data definitions

and operation schemas used in the study, however, they are still needed to reduce the pos-

sibility of making mistakes and to reveal assumptions about the implementation. For in-

stance, the proof sketches in Section 3.4 resulted in the requirement for the size of the given

set SUB to be greater than one. The type rules for the Z notation is enforced by the use of

CADiZ, thereby simplifies the requirements of the proof sketches.

3.8.3 Preconditions

The preconditions for each operation schema in this chapter are expanded and simplified to

express the conditions under which the operation can occur. Examples of the expansion of

preconditions are given in Section 3.3 and an example of the simplifications is given in

Appendix B. 2.

The preconditions in this study show that

1 The implementation is defined under all conditions. Since each operation schema is

defined for all conditions for that operation and the collection of operations includes

all possible input values, the complete implementation is defined under all condition.

2 Each operation is disjoint from the other operations. Because the input value identi-

fies explicitly a single operation schema, no two operation schemas can respond to the

same input value and have disjoint behaviours.

-99-

3.8.4 Postconditions

The after states of all the operation schemas are specified in a constructive style such that the

after state variables incorporate the before state variables and change the binding only to al-

low the one operation to take place. This style is very straightforward to use when consider-

ing each operation in isolation from other events.

The double ended arrows in the interaction diagrams indicate that all the operation schemas

use both the before and after versions of the state components. A non constructive style of

defining schemas is discussed in the context of concurrency in Appendix B. 4, where state

changes can occur as a result of multiple operations occurring simultaneously.

3.8.5 Properties

One of the main reported advantages of using a formal notation for the initial stage specifica-

tion of a system is that subsequent implementations can be compared and verified against

this specification, hence increasing the confidence in the design.

One of the important points stressed in this chapter is the importance of unambiguous speci-

fication of the required properties to prevent different interpretations being applied to the

same property. Although initially the properties are stated informally in Section 3.1.2, they

are given a formal representation as predicates that are compatible with the Z schemas in

Sections 3.4 and 3.6. It is this formal representation that expresses the properties through-

out the design process. However, it must be remembered that there is no method of verify-

ing that the formal descriptions of the properties represent the informally stated requirements

correctly.

3.8.6 Liveness

A concept of possible histories, or traces, of messages is introduced in this chapter to state

theorems about some of the properties required of the system. Since there are no intentions

of actually implementing such variables, the histories of messages do not form part of the

implementation, instead they are used to represent properties required of the implementation

expressed at the current level of abstraction. Eventually these properties will have to be ex-

hibited by an implementation at a lower level of abstraction.

-100-
The liveness behaviour of the implementation is specified in this chapter by the device of

analysing a sequence of possible state values (or bindings) of the schema Network. This

data structure has strong analogies with state transition diagrams, but uses a more abstract

and flexible representation.

- 101 -

Chapter 4
Replicated Database Systems

This chapter is an introduction to replicated database systems that provides a context for the

descriptions in the Z notation contained in Chapters 5 and 6. This introduction includes de-

scriptions of a general model of a database system and some of the concurrency control

problems that arise in replicated database systems.

4.1 Introduction
A database is a collection of data objects, where each data object has a value which is either

read or changed by writing a new value. A database system is both the hardware and soft-

ware that supports access to the database accessed by several users simultaneously. That is,

data is shared by the users. The sharing of data gives rise to both physical and organiza-

tional problems. The physical problems are a consequence of limitations of hardware that

cannot support simultaneous access of the same components. The organizational problems

are a consequence of the need for maintaining consistency between the data objects during

changes activated by different users. Some of the organizational problems are addressed in

this chapter.

An ideal replicated database system contains replicas of the data objects stored at distributed

sites. Physical constraints add to the problem of maintaining consistency between data ob-

-102-

jects that are nominally identical. Any change to one copy of a data object must be reflected

in all copies.

The model of database systems described in this chapter is based on the work of Bernstein,

Hadzilcos and Goodman [Bern87], and is an abstraction of the many different types of

database management systems, transaction processing systems and file systems.

The access of the data held in the database system is modelled as a transaction, where a

transaction contains a number of read and write operations performed on data objects.

Each operation is viewed as an atomic event, so a read or write operation cannot be broken

down into more basic operations. A transaction is terminated by either a commit operation,

to effect any changes to the data objects, or an abort operation, to cancel any changes to the

data objects referred to in the transaction. A data object appears at most once for a read and a

write operation within the same transaction, i. e. no multiple read operations or write opera-

tions involve the same data object. Some additional restrictions are sometimes imposed,

such as a read operation on a data object must always appear before a write operation on the

same data object within transactions [Abbad89].

Database systems impose restrictions on the execution of transactions to ensure that each

transaction accesses shared data without interfering with other transactions. This is known

as concurrency control.

The particular problem of database systems addressed in this chapter is concurrency control.

The types of problems that can arise with concurrency control are appreciated by considering

an example of the way in which operations in transactions can interfere. A banking system

updates the amount of money held by customers. The amount held by a customer is updated

by a transaction that reads the current balance, adds the value of the new deposit and writes

the new value. This type of transaction can be invoked by any user. Consider two transac-

tions, where transaction number I deposits £50 and transaction number 2 deposits £25 to the

same account. Assuming that transactions are executed simultaneously, the following se-

quence of events is possible:

I transaction number I reads the current balance of £150

2 transaction number 2 reads the current balance of £150

- 103 -
3 transaction number I writes the new balance of £200

4 transaction number I commits its operations

5 transaction number 2 writes the new balance of £175

6 transaction number 2 commits its operations.

The deposit of £50 by transaction number I is lost.

This is an example of the way transactions can interfere and arises due to the interleaving of

operations contained in different transactions.

One method of ensuring that transactions do not interfere is to prevent the operations in dif-

ferent transactions interleaving. This is known as serial operation. Serial operation pro-

hibits database systems from executing transactions concurrently, this makes very inefficient

use of its resources.

Database systems can allow some interleaving of operations in different transactions if the

effects are equivalent to the same transactions executed in some serial order. This is known

as serializable operation. As any serial operation is correct, it follows that the equivalent se-

rializable operation is also correct because the results are the same.

The previous example of the two deposits made to the same bank account is not serializable

because there is no equivalent serial operation that produces the same effect. That is, if ei-

ther the serial order of transaction number 1 followed by transaction number 2, or transac-

tion number 2 followed by transaction number I was executed, the value of the final balance

would be £225, not £ 175.

The main reasons for using replicated databases are:

1 To increase availability. The database system can still operate even if some sites have

failed.

2 To improve performance. Holding data at geographically close sites can improve the

speed of access to the data objects.

One of the apparently contradictory objectives of a replicated database system is that it

should behave like a one copy database, apart from availability and performance. A correct-

- 104 -

ness criterion of replicated databases is called one copy serializable [Bern87], which means

that the execution of the transactions has the same effects as the equivalent transactions being

executed in some serial order on a one copy database. If a replicated database system pro-

duces the same effects as a one copy database system, then it is considered correct. A repli-

cated database system with the one copy serialization property both exhibits the correct be-

haviour of a one copy database system, and has better availability and performance proper-

ties than a one copy database system,

4.2 Serializability Theory

The concept of conflicting transactions is used in concurrency control, where two operations

in different transactions conflict if they both operate on the same physical data object and at

least one of the operations is a write.

The execution of the operations in a group of transactions is known as a history and it is this

history of operations that is referred to in the serializability theory.

4.2.1 Serialization Graphs

The serializability theory presented by Bernstein, Hadzilcos and Goodman is based on a dia-

gram called a serialization graph [Bern87]. A serialization graph is a directed graph whose

nodes are the committed transactions in a history and has edges (Ti, Tj), where i 0j, if an

operation in transaction Ti precedes and conflicts with an operation in transaction Tj. A very

similar notation to that described by Bernstein, et al., is used below. The main difference is

that a more restricted interpretation of histories of the transactions is used so that the history

gives the exact order of all the operations, not just the essential ones referred to in the history

diagrams in the book Concurrency Control and Recovery in Database Systems [Bern87].

That is, the histories in this section give the total order of operations, instead of a partial or-

der.

Serialization graphs are drawn for complete histories. The term a ̀ complete history' means a

sequence of operations such that all the transactions are either committed or aborted That is,

no proper subsets of operations in a transaction are included in the history.

In the notation used for transactions, data objects are identified by the lower case letters,

such as x and y. For replicated data objects it is necessary to distinguish between logical ob-

-105-

jects and physical objects. A logical object refers to all the copies of the same data object,

whereas a physical object refers to a particular copy of that object. To distinguish between

the physical and logical objects, letters, such as a and b, identify the site holding a copy of

the data object. Physical data objects are identified by two letter abbreviations, such as xa

and yb.

The operations that are contained in transactions are read, write, commit and abort.

These are abbreviated as r, w, c and a respectively. Transactions are numbered to allow op-

erations to be identified with a transaction, hence, rl is a read operation in transaction num-

ber 1. Bringing all the terminology together, a read operation in transaction 1 on the physi-

cal data object xa is abbreviated as rl (xa).

Examples below are similar to those in the book Concurrency Control and Recovery in

Database Systems [Bem87] and illustrate the application of the serializability theory.

Consider the history:

HI = rl(xa) r2(xa) wl (xa) r3(xa) w2(yb) c2 wl (yb) w3(xa) cl c3

which is a consequence of executing the following three transactions concurrently:

TL = rl (xa) wl (xa) wl (yb) cl

72 = r2(xa) w2(yb) c2

T3 = r3(xa) w3(xa) c3

The conflicting operations in the history H are:

Ti -º T3 for data object xa

72 -+ TI for data objects m and yb

72 -+ T3 for data object xa

The serialization graph is shown in Figure 4.1.

-106-
Figure 4.1 Serialization Graph for HI

T2 T1 T3

The serializability theorem states that a history, H, is serializable if and only if the serializa-

tion graph of H is acyclic [Bern87].

In the above example the serialization graph is acyclic and an equivalent serial order of the

transactions is: 72 Tl T3

which has the serial history of:

r2(xa) w2(yb) c2 rl(xa) wl(xa) wl (yb) cl r3(xa) w3(xa) c3

An example of a non serializable history of the same transactions is:

H2 = rl(xa) r2(xa) wl(xa) wl (yb) r3(xa) w2(yb) cl w3(xa) c2 c3

The transactions that are in conflict are:

Ti -+ T3 for data object xa

7'2 -º Ti for data object xa

Ti -+ 72 for data object yb

77 -# T3 for data object w.

The serialization graph is given in Figure 4.2.

-107-

Figure 42 Serialization Graph for H2

T2 Ti T3

The serialization graph of history H2 has the cycle n TI 72, which means that there is no

equivalent serial order of transactions. Neither 72 before Ti, nor TI before 72 has the same

effects as the history H2. This can be seen by observing that the operation r2(xa) appears in

H2 before wl (xa), implying that 72 must appear before Ti in a serial order to have the same

effect. However, the operation wl(yb) appears before w2(yb) in history H2, implying that

TI must appear before T2 in a serial history, hence there is no equivalent serial history of

H2.

4.2.2 Serialization Graphs for Replicated Databases

The criterion of one copy serializability requires that all the histories of the transactions per-

formed on a replicated database system are equivalent to a serial order of the equivalent

transactions performed on a database system that does not have replicated data objects

[Bern83, Bern871. In the case of one copy database systems, there is only one physical data

object for each logical data object.

Consider the history of the transactions performed on a replicated database system:

H3 = wl (xa) wl (xb) wl (yc) w] (yd) cl r2(xa) w2(yc) c2 r3(yd) w3(xb) c3

of the transactions:

Ti = wl (xa) wl(xb) wl (yc) w] (yd) cl

7-2 = r2(xa) w2(yc) c2

T3 = r3(yd) w3(xb) c3

-108-

The history H3 is a serial history of the transactions TI 72 T3, hence is serializable and has

the serialization graph shown in Figure 4.3.

Figure 43 Serialization Graph for H3

/
72

Ti

T3

However, when considering the one copy serializability the logical data objects have to be

accessed. The transactions become:

TI' = wl(x) wl(y) cl

72' = r2(x) w2(y) c2

T3' = r3(y) w3(x) c3

The equivalent versions of the data objects in the replicated database system must cause the

transactions to appear in the following order.

1 transactions T2' and T3' have to be executed after transaction Ti' as both read the lat-

est version of data object x

2 transaction 72' has to be executed before T3' as 72' uses the version of data object x

before transaction T3' has updated it

3 T3' has to be executed before T2' as T3' uses the version of data object y before

transaction 72' has updated it.

It follows that it is impossible to find an equivalent one copy serial history for H3.

-109-

4.2.3 Replicated Data Serialization Graphs

The problem of cyclic dependency is identified in a modified version of the serialization

graph, called replicated data serialization graph [Bem83, Bem87].

A replicated data serialization graph of a history is the serialization graph for the same his-

tory, but with edges added such that the following two conditions hold for all logical data

objects x:

1 if transaction Ti and Tk write to data object x, then either there is a path from Ti to Tk

or there is a path from Tk to Ti

2 if the following cases apply

(a) transaction Tj reads from data object x the value that was written to x from

transaction Ti

(b) transaction Tk writes some copy of data object x, where koi and k oj

(c) there is a path from transaction Ti to transaction Tk

then there is also a path from Tj to Tk, this is known as a read before path.

The read before path indicates that transaction Tj reads data object x logically before

transaction Tk writes x [Bern83].

Condition 1 imposes a write order for H and condition 2 imposes a read order for H.

Using the second condition for the history H3:

1 transaction T2 reads a copy of data object x from transaction Tl

2 transaction T3 writes a copy of data object x

3 there is a path from TI to T3 (indicating that transaction TI precedes T3).

It follows that there is an added path between transaction 72 and transaction T3, indicating

that transaction 72 precedes transaction T3.

Similarly,

I transaction T3 reads a copy of data object y from transaction TI

2 transaction 72 writes a copy of data object y

- 110-

3 there is a path from transaction Ti to transaction T2 (indicating that transaction TI

precedes T2).

It follows that there is an added path between T3 and T2, indicating that transaction T3 pre-

cedes T2.

A replicated data serialization graph for history H3 is shown in Figure 4.4. Note that there

is not a unique replicated data serialization graph for this history, but cycles in the graphs are

the same for all versions.

Figure 4.4 Replicated Data Serialization Graph for H3

/ýi
Ti

T3

The one copy serialization theorem in the book Concurrency Control and Recovery in

Database Systems [Bern871 asserts that if a replicated data history, H, has an acyclic repli-

cated data serialization graph, then H is one copy serializable.

Chapter 5 represents serialization graphs and replicated data serialization graphs in the Z no-

tation as sets of end points. The expression of the serializability theory in the Z notation is

used as the specification of the replicated database system implemented in Chapter 5.

4.3 Concurrency Control Techniques in Replicated Database

Systems

This section contains descriptions of two techniques for concurrency control that are ad-

dressed in this thesis. For a review of the problem refer to the paper by Bernstein and

Goodman [Bern8l], which gives a survey of the techniques up to the time of writing that

paper.

- 111 -

4.3.1 Two Phase Locking

A two phase locking technique prevents conflicts between concurrent operations by applying

read locks and write locks.

Before executing a read or write operation on a data object, a transaction must establish

ownership of that object by preventing, or locking out, all other transactions that contain op-

erations that conflict with the operation to be performed by the transaction claiming owner-

ship of the object.

The ownerships of the locks are determined by the two rules [Bern81]:

1 Different transactions cannot simultaneously own conflicting locks.

2 Once a transaction relinquishes a lock, it can never obtain an additional lock.

The second rule leads to the transaction obtaining the locks in two phases; a growing phase

and a shrinking phase. This enforces a serializable order on the transactions. A proof is

presented in the book by Bernstein, et al., [Bern87].

Multiple copies of data objects are handled by a read lock on a single copy of the data object

and a write lock on all copies of the data object before a write operation is executed. This

technique is known as read once, write all. If a lock cannot be granted because the data ob-

ject is already allocated to a transaction executing a conflicting operation, the operation is

delayed. This can lead to deadlock, with one transaction waiting for a second transaction to

complete, however, the second transaction cannot complete because it is waiting for the first

transaction to complete. Moreover, the read once, write all algorithm does have some prob-

lems in cases of network or site failures.

Variations of the basic two phase locking technique are described by Bernstein and

Goodman [Bern8l].

A read once, write all concurrency control procedure expressed in the Z notation is contained

in Chapter 5.

4.3.2 Quorum Consensus

The concept of quorums is also used in quorum consensus algorithms, where a quorum is a

set of sites that are accessed in the execution of an operation.

- 112-

The read and write operations are performed on quorums of sites according to the following

rules [Her186]:

The initiating site sends an invocation request to the transaction manager, which for-

wards it to an initial quorum of database copies.

2 Each database in the initial quorum sends its log to the transaction manager.

3 The transaction manager merges the logs to construct a composite history called the

view. The transaction manager determines the response from this view of the current

state of the database system.

4 The transaction manager generates a new entry and appends the new entry to the com-

posite history. This updated view is sent to all the databases in a final quorum for the

operation.

5 When all the databases in the final quorum acknowledge the update, the transaction

manager returns the response to the initiating site.

An operation is aborted if the transaction manager cannot complete the above actions.

In this technique of concurrency control, there must be a consensus between each read quo-

rum and write quorum such that [Bern83]:

The intersection between each read and write quorum is non empty.

2 The intersection of each pair of write quorums is non empty.

The sizes of the read and write quorums can be assigned to optimise the performance of the

replicated database system. Also, the read and write quorums can be changed dynamically

to reflect changes in the database system due to communications links and site failures

[Her186].

A model expressed in the Z notation of a quorum consensus concurrency control algorithm

is contained in Chapter 6.

-113-

Chapter 5
Serializability
Systems

Constraint on Replicated Database

This chapter applies the Z notation to the problem of concurrency control of replicated

database systems. Chapter 4 contains an introduction to replicated database systems and the

mathematical basis of the one copy serialization property. The study presented in this chap-

ter uses the Z notation for both expressing a property oriented specification of a replicated

database system and for modelling the concurrency control aspects of an implementation. In

particular, the serialization property is written as a specification, and a simple two phase

locking read once, write all protocol is implemented. Both the specification and the imple-

mentation are written in the Z notation. The main verification theorem is that all the possible

histories of operations conforming to the description of the replicated data objects, also con-

form to the specification of the one copy serialization property. Although the theorem stating

the verification theorem is expressed elegantly in the Z notation, the means of proving the

theorem using both the specification and implementation is not immediately clear.

The main points that should be drawn from this chapter are:

The implementation is formed by combining several schema terms together such that

not only are all the operations defined, but so is the method of invoking the opera-

tions.

- 114 -

2 Once an operation has been defined by aZ schema, the preconditions of the schema

are calculated and simplified to ensure that the preconditions are sufficient for the re-

quired span of state space.

3 Proof sketches are useful both for discharging proof obligations of the Z notation and

for verifying an implementation with respect to a specification.

The specification of the one copy serializability property is contained in Section 5.1.

An implementation of a replicated database system with a two phase locking method with a

read once, write all algorithm is contained in Sections 5.2 to 5.5. The implementation repre-

sents the functional behaviour of the whole system in terms of the changes of state caused by

the four database operations that can be performed (i. e. read, write, commit and abort) on

data objects. All the schemas follow a unified approach to implementing a replicated

database system such that the Schemas, when combined, retain information about when the

operations are invoked. That is, the applicability of each operation schema is determined by

values of input variables and state variables, not informal text associated with the schemas.

Section 5.6 contains two proof sketches of the one copy serialization property. The first

proof sketch proves by an induction argument that all histories of operations executed by the

implementation must be one copy serializable. The second proof sketch shows that all pos-

sible sequences of operations possible by the implementation are also possible by the speci-

fication of the one copy serialization property, hence the implementation must also have the

one copy serialization property.

Section 5.7 contains a summary of the main findings of this chapter.

Appendix C contains examples and discussions of topics relevant to the study of replicated

database systems.

Diagrams are included in the informal descriptions of schemas to provide insight into the in-

teraction between schemas and to help cross referencing between the main components of

the descriptions in this Chapter.

- 115-

All the schemas defined in both the specification and implementation of the study are in-

cluded in this chapter. This is both for convenience of presentation and to illustrate the level

of abstraction used in this study.

Table 5.1 lists the sections that contain the descriptions of the elements of the design stage

given most emphasis in this chapter.

Table 5.1 Summary of Design Stage in Chapter 5

Section Description

5.1 Formal description of the one copy serializability property in the Z notation in the form

of the schema Senalizable_History

5.2-5.5 Description in the Z notation of an implementation of a replicated database system in the

form of the schema DBS_Imp

5.6 Proof sketches of the verification of implementation

-116-

5.1 One Copy Serializability Property

This section describes the construction of the schema Serializable_History that represents

the one copy serialization property. The property is expressed as a set of all histories that

exhibit the one copy serialization property. In addition to the restriction of the one copy

serializability property, the order in which operations can occur in any history is restricted

by a precedence relation that is represented by the set Trans-Precedence.

5.1.1 Data Definitions

Before specifying the one copy serialization property in a schema it is necessary to define

the data types and operations that are assumed by this schema.

Import toolkit

Import yorkkit

The tool kits provided by CADi2 contain the definition of data types such as natural

number and postfix operations such as inverse.

[LOGICAL_OBJECT, VALUE, LETTER]

The first given set in this chapter is LOGICAL_OBJECT which represents the data objects

(or entities) stored in the database. They are called logical because they refer to all physical

copies of the same data object. The second given set is VALUE which refers to the set of

values that can be stored in the data objects. The third given set is LETTER which

identifies each of the sites that contains a copy of the database.

Site == LETTER

The type Site is defined to be syntactically equivalent to the given set LETTER. This ties

up with the notation used to represent data objects in Chapter 4.

117-

Trans Num == E

Each transaction is identified uniquely by a transaction number, which is represented by the

type Trans_Num and has the type of a set of natural numbers.

Physical-Object == (LOGICAL-OBJECT x Site)

The physical objects stored in the database system are represented by the type

Physical-Object which has components for LOGICAL_OBJECT and Site.

Proof Obligation for the Consistency of the Given Sets

The given sets do not have any operations performed on them to change their values

and are used for identification only. This means that the given sets introduced above

are consistent because they can be replaced by standard types such as ASCII charac-

ters for LETTER, real numbers for VALUE and strings of alphanumeric characters

for LOGICAL_OBJECT to give a consistent model.

Operator :: = read I write I commit I abort

The free definition of the type Operator defines the four identifiers that represent the four

operators in transactions executed by a database system.

Proof Obligation for the Free Type Definition of Operator

All four branches of the definition are non recursive, hence the free type definition is

consistent.

- 118-

Op :. =
access « ((({read, write} x Trans_Num) x Physical_Object) x

VALUE)>> I end «({commit, abort} x Trans_Num)»

The operations executed by the database system are represented by the type Op which is

defined as a free type with two branches representing the two types of operations.

Proof Obligation for the Free Definition of Op

Both branches of the definition are non recursive, hence the definition of Op is con-

sistent.

The first branch is identified as access and represents the operations using either read or

write operators. The second branch is identified as end and represents the operations using

either commit or abort operators.

The access branch has elements composed of the components of either a read or a write

operator, a Trans_Num element, a Physical_Object and a VALUE making a tuple with

four elements. The end branch has components of the form of ordered pairs of elements,

composed of either a commit or an abort operator and a Trans_Num element.

A record of all the operations executed by the database system is maintained in subsequent

schemas. This record is represented by the data type of a sequence of operations.

The operations represented by Op are uniquely identifiable. The transaction numbers are

unique and a single read and/or a single write operation is at most performed once to/from

the same data object within a transaction. Since each operation in a history of operations is

unique, the inverse function of the history will give the single position that the operation

occurs in the sequence of operations executed by the database system.

- 119-

5.1.2 Conflicting Transactions

Two operations conflict when they both refer to the same data object and at least one of the

operations is a write operation.

Conflicting_Operator == {(read, write), (write, read), (write, write)}

The type Conflicting_Operator is defined syntactically to be the set of ordered pairs of

operators that can conflict.

The schema History_Invariant defines an invariant property of the historical record of all

operations executed on the replicated database system.

History_Invariant

History_Rec : seq Op

Trans_Precedence :P (Op x Op)

The invariant is that the history record is consistent

with the partial order of operations within transactions

Vol, 02 : Op 1 (01,02) E Trans-Precedence

-1 -1 History_Rec 01 < History_Rec o2

Note that sequences are equivalent to functions from integers to elements. This means that

functional inverses of sequences give the positions in which elements occur. If elements in

a sequence are unique, then the inverse of the sequence will give the single position in the

sequence of an element.

The function History Rec can be regarded as an input that must satisfy the conditions given

in the predicate part of the schema. The schema History-invariant restricts the possible

functions for HistoryRec to those that are consistent with the partial order of operations

supplied by the set Trans Precedence. The set Trans_Precedence has its members

-120-

predefined such that each member is an ordered pair of operations. The first operation con-

tained in each pair must occur before the second in all histories of operations. The usual

precedence relation defined in Trans_Precedence is that operations are executed in the

order in which they occur in the transactions and that transactions can be executed in any

order.

The schema Precede Set below defines a set that indicates whether one operation occurs

before another.

Precede_Set

History_Invariant

Precedes :P (Op x Op)

Precedes =
-1 -1 { o1, o2 : Op I History_Rec o1 < History_Rec o2 " (ol, o2)1

The schema Precede_Set defines the set Precedes to be the set of ordered pairs of opera-

tions such that the first element occurs before the second in the history of operations that is

given by the function HistoryRec.

The schema Conflicting_Set below defines the set of all transactions that conflict.

- 121 -

Conflicting_Set

Precede_Set

Conflicting :P (Trans_Num x Trans_Num)

Conflicting =
{ numl, num2 : Trans_Num I

3 01, o2 : Op; opt, op2 : Operator;

obj1, obj2 : Physical_Object; vi, v2 : VALUE "

01 = access (((op1, numl), obji), v1) A

02 = access (((op2, num2), obj2), v2) A

(o1, o2) ¬ Precedes A objl = obj2 A numi num2 A

(opt, op2) F Conflicting_Operator " (num1, num2)}

The schema Conflicting_Set constructs the set of pairs of transaction numbers that refer to

transactions containing operations that conflict in the history defined by the sequence

HistoryRec used in the schema History_Invariant.

The schema Conflicting_End_Points below defines the set of all transactions that conflict

either directly or indirectly.

- 122-

Conflicting_End_Points

Conflicting_Set

Conflicting_Points :P (Trans_Num x Trans_Num)

Conflicting_Points =

Conflicting u

{ n1, n2, n3 : Trans_Num

(ni, n3) E Conflicting_Points A (n3, n2) E Conflicting_Points

(n1, n2)}

The schema Conflicting_End_Points gives a constructive definition of the set

Conflicting Points that contains all the ordered pairs of transaction numbers that refer to

transactions containing operations that conflict in a sequence of transactions. The schema

Conflicting_Set identifies the edges in the serialization graph for the given history. The

schema Conflicting_End_Points as identifies all the end points of paths in the serialization

graph.

The schema Conflicting_Trans pulls together the other schemas in this subsection to

define the invariant for serializable history. The invariant is equivalent to the requirement

that there are no cycles in the serialization graph of the history of operations.

Conflicting_Trans

Conflicting_End Points

Invariant for the serializability property

Vn: Trans Num " (n, n) 0 Conflicting_Points

- 123 -

Proof Sketch of the Representation of Serialization Graphs

The validity of the Z description depends on the schemas representing serialization

graphs correctly.

The representation of serialization graphs can be proved correct by considering the

construction of the set Conflicting Points and comparing it with the construction of

the serialization graph for new operations as they are added to the history record.

The constraints of the set Trans Precedence applies to the values of the history record

that is used to construct both the set Conflicting Points and the serialization graph.

The restriction on completed histories applies to both the set Conflicting Points and

the serialization graph once all the transactions have completed their operations.

When the sequence HistoryRec is either empty or has one element there can be no

conflicting operation, hence the serialization graph is either blank or a single node for

the transaction number. The set Precedes is empty.

An induction argument can deal with more complicated sequences. Starting with the

sequence History Rec with two conflicting operations.

Let

History =(opi, opj)

where opi is an operation in transaction i and opj is an operation in transaction j.

There are two cases to consider:

1 The operations are either in the same transactions or in different transactions and

do not conflict.

(i) The serialization graph will either consist of a single node if the operations

are in the same transaction, or two isolated nodes if the operations are in

different transactions.

-124-

(ii) The set Precedes will contain just one member

Precedes = [(opi, opj)]

From the schema Conflicting_Set , the set Conflicting will be empty

because the predicate is not satisfied. Therefore, the set Conflicting Points

will also be empty.

2 The operations are in different transactions and the operations conflict.

(i) The serialization graph will consist of a single edge between two nodes.

(ii) The sets Precedes. Conflicting and Conflicting Points will have a single

member

Precedes = Conflicting = Conflicting Points = ((i, j)]

The induction step for the proof assumes that the history record has some arbitrary

value and the set Conflicting Points correctly represents the corresponding serializa-

tion graph. Let

History Rec =h

Assume that a new operation opk is added, representing an operation in transaction k.

There are two possibilities to consider.

1 Operation opk does not conflict with any operation in the history h that are in a

different transaction.

(i) The serialization graph does not change.

(ii) The set Precedes has new members added to represent all previous opera-

tion preceding the new operation opk. The new members will be of the

form

V opi : Op I opi E ran h" (opi, opk) E Precedes

The set Conflicting is not changed because the predicate in the schema

- 125 -

Conflicting_Set is not met for any new member of the set Precedes.

Therefore, the set Conflicting Points is also unchanged.

2 The operation conflicts with one or more operations in the history h that are in

different transactions.

(1) Extra edges are added to the serialization graph that link the nodes

representing the transactions containing the conflicting operations to the

node representing transaction k if edges are not already in place.

If any edge completes a cycle, then a directed path links k with itself,

thereby indicating that the history

h -opk

is non serializable.

(ii) The set Precedes has new members as in case (1).

The set Conflicting will have new members of the form (j, k), where j is the

number of a transaction that contains an operation that conflicts with opk.

New elements. (i, k), are added to the set Conflicting Points if there are

now members

(j, j) E Conflicting Points A (j, k) F Conf licting_Points

The extra members correspond to the nodes being connected by the extra

edges added to the serialization graphs in (i) above.

Should there already exist a member such that

(k, j) E Con f licting_Points

indicating a partial loop, then adding (j, k) to the set Conflicting Points

means that

(k, k) E Conflicting Points

Thereby violating the invariant of the schema Conflicting_Trans and

-126-

indicating that

h -' opk

is non serializable under the same conditions as in the serialization graph.

The above proof sketch demonstrates the direct correspondence between serialization

graphs and the set Conflicting-Points for the same history record.

5.1.3 One Copy Serialization Property

To represent the property of one copy serialization, extra edges are added to the serializa-

tion graph to form the replicated data serialization graph, see Section 4.2.3.

The initial step in defining the one copy serialization property is represented by the schema

Conflicting_Op_Set that defines the set of all transactions that conflict.

The set Conflicting_Op below contains all the paths in the form of pairs of transaction

numbers representing the end points of the paths. The set is constructed by adding

members to the set Conflicting_Op. Additional members are included for the following two

reasons:

1 The transactions have operations that write to the same logical object.

2 There are three transactions, Ti, 72 and T3, such that TI reads a value of a logical

data object after T2 has written to the same logical data object, an operation in T3

writes to the same logical data object and, finally, there is a conflicting relation

between transactions T2 and T3 such that T2 must occur before T3. If these condi-

tions are satisfied, there is an addition constraint that transaction Ti must occur before

transaction T3 and is represented by the additional member (TI, T3).

127-

Conflicting_Op_Set

Confticting_Trans

Conflicting_Op :? (Trans_Num x Trans_Num)

Conflicting_Op =
Conflicting_Points u

{ of , 02 : Op; opt, op2 : Operator; num 1, num2 : Trans_Num;

obj 1, obj2 : Physical Object; v1, v2 : VALUE

of = access (((opt, numl), objl), v1) A

02 = access (((op2, num2), obj2), v2) A opt = write A
op2 = write A first obj 1= first obj2 A (oi, 02) F Precedes -

(numl, num2)} u

{01,02, o3 : Op; opt, opt, op3 : Operator;

num1, num2, num3 : Trans_Num;

obj1, obj2, obj3 : Physical-Object; v1, v2, v3 : VALUE

01 = access (((op1, numl), objl), v1) A
02 = access (((op2, num2), obj2), v2) A

03 = access (((op3, num3), obj3), v3) A (o2,01) E Precedes A

opt = read A opt write A first obj1 = first obj2 A

03 E ran History_Rec A op3 = write A

first obj3 = first objl A num3 numl A num3 ý num2 n

(num2, num3) E Conflicting_Points " (num1, num3) }

The schema Ordered-End-Points below defines the set Ordered Points to contain all the

transactions that have operations that conflict in terms of logical data objects.

- 128-

Ordered End Points

Conflicting_Op_Set

Ordered_Points :P (Trans_Num x Trans_Num)

Ordered Points =

Conflicting_Op u

{n1, n2, n3 : Trans_Num ý

(n1, n3) E Ordered_Points A (n3, n2) E Ordered_Points "

(n1, n2)}

Finally, the one copy serialization property is expressed in the following schema.

One_Copy_Serialization

Ordered End Points

Invariant for the one copy seriability property

Vn: Trans_Num " (n, n) a Ordered_Points

Proof Sketch for the Representation of Replicated Data Serialization Graphs

The proof sketch that demonstrates that the schema One_Copy_Serialization

correctly represents a replicated data serialization graph is similar to that used for seri-

alization graphs.

The differences between the serialization graphs and replicated data serialization

graphs are embodied in the schema ConfIicting_Op_Set. This schema forms the set
Conflicting_Op from the set Conflicting_Points and additional members. The addi-

tional members correspond to the extra edges being added to serialization graphs to

- 129-

form replicated data serialization graphs, see Section 4.2. Thereby establishing a

direct correspondence between the replicated data serialization graphs and the set

Ordered Points similar to the direct correspondence between the serialization graph

and the set Conflicting Points.

The replicated data serialization graphs must refer to complete histories. The following

schema Complete_History restricts all histories to contain either a commit or an abort as

the last operator for each transaction.

Complete_History

History_Rec : seq Op

d o1 : Op; opt : Operator; numl : Trans_Num;

obji : Physical_Object; v1 : VALUE I

of = access (((opl, numl), objl), v1) "

cl E ran History_Rec

(3 02 : Op; op2 : Operator; num2 : Trans Num I

o2 = end (op2, num2) "

numl = num2 A

History_Rec
1

01 < History_Rec
1

02)

The one copy serialization property for complete histories is specified as the schema

Complete_Sedalizable below.

Complete_Serializable = One_Copy_Serialization A Complete_History

- 130-

5.1.4 One Copy Serialization Histories

This subsection defines a schema that represents the set of all one copy serializable his-

tories of operations based on the partial ordering provided by the set Trans Precedence

provided for the schema History_Invariant.

Serializable_History

Complete_Serializable

Histories :P seq Op

Histories =

{h: seq Op I Complete_Serializable "h} [hMistory_Rec]

The schema Serializable_History does not include details of how the set Histories is con-

structed.

The notation used for renaming is described in reference [Wood89B] and takes the form in

CADt2 of Schema_Idt�P�.
_;
d, old_k! J-

Any history that is a member of the set History conforms to the predicate part of the

schema Complete_Serializable, but with the variable HistoryRec renamed by the bound

variable h. The declarations in the schema Serializable_History providing the declarations

of variables in the predicate part of the schema Complete_Serializable.

The final schema Serializable_History is constructed from several intermediate schemas

and Figure 5.1 illustrates the inclusion relationship between the schemas used in the final

expression of the one copy serialization property. The symbols used in the structure

diagram in Figure 5.1 are similar to those used in the interaction diagrams in Chapter 3.

However, in Figure 5.1 it is convenient to label the arrows to indicate the relation between

two schemas or between schemas and components, instead of indicating the relation by

comments in boxes.

-131-

Figure S, 1 Construction of the One Copy Serialization Property Schema

History

]24

rv; cts

defines uses History_ restricts
defines

of or Trans- Invariant History_Aec Sequence of
pain of op precedence

I0

I uses
c

defines
,,,. ý{

Pfecede_Sct produces
Precedes

tof Ord

_12-0-1 pairs of OP

e s us

c

defines defines
Podgy oe licting_Set uses Conflicting_ Set of Opera

Set o(p"b Conflicting

ends
11

Operator tors that can-

I

defines produces onlLarogEn
ints P Conflicting-

p i ts
o

122 o n

restricts
m

uses

Conflicting- Based on Sraphs
Trans

122]04

m w
.S

'erkies produces uses

127

use

5 ate'ongraphs

defa+es produces Ordered- 109

Oed`o'ý
points

128

restricts

Ow-Copy- and
COmpleO_

and
Serialization

l28
Saializable

129

w C
tW

Key
Serialixabte_ products

jell oe scbm"oar" re

History
130

Mstoria

Compollem

aS

t of
sequences of

- 132-

5.1.5 Initial State

A feasible initial state is specified by the schema Initial_Serializability_State below.

Initial_Serializability_State

Serializable_History'

History_Rec' =0

Proof Obligation for the Initial State

An empty sequence is a valid binding for History Rec, hence an initial state does

exist.

5.2 Implementation of a Replicated Database System

The implementation described in this section incorporates a basic two phase locking

method at each site to ensure that no conflicts occur, see Section 4.3.1. The scheduling

mechanism represented in the Z notation in this section is a strict two phase locking scheme

in which the locks are not released until the transaction has completed all its operations.

If there is an attempt to execute a conflicting operation on an object that is waiting for a

transaction to commit, the other operation is delayed until the conflict is resolved by the

first transaction committing its operations. Should a deadlock condition arise then the

scheduler has to abort one or more transaction and the transactions are repeated. The possi-
bility of deadlocks is not addressed by the schemas.

The schemas that model an implementation of a replicated database system are described in

the following three sections. Section 5.3 deals with the site operations in four subsections.

Similarly, Section 5.4 deals with the transaction management operations in four subsec-

tions. Finally, Section 5.5 contains a statement of the complete implementation of the

- 133 -

system. These sections contain all the component schemas in the implementation of the

concurrency control aspects of a replicated database system. The definitions of the sche-

mas and preconditions are included in the subsections to give an understanding of the com-

plete description in the Z notation. However, the main features of the implementation can

be appreciated without studying the schemas in detail.

The model of the behaviour of a replicated database system uses the concept of logical

operations being received by a central management component of the replicated database

system. The central management component translates the logical operations into one or

more physical operations which are communicated to the distributed site components of the

model. The sites then communicate their ability to perform the operations back to the cen-

tral management component. The management component forms the physical operations

that construct the historical record and form input variables for the site schemas.

The overall flow of control of the schemas is that a logical operation is treated as an input

by the management request schemas. The management schemas change the state of the site

request schemas by binding a new value to an input variable. The site request schemas

respond to these inputs by updating their state variables. The changes to state variables

cause the site request schemas to update the state variables of the management schemas.

The new state values result in the management execution schemas constructing physical

operation values that are incorporated both in a history representing the execution of physi-

cal operations and in the values of the input variables of the site execution schemas. The

site execution schemas respond to these changes, to model the effects of the physical opera-

tions. Figures 5.2 illustrates the interaction between the management and site sets of sche-

mas.

- 134-

Figure 5.2 interaction between the Management and Site Schemas

Management Site

DBS AMP In_Req?

usec
Man_iteq

Trans_Man_Req RNew
Sice_

Franc Man R ii tomes

IWv
Site_Read

site write

Site-Commit

Global]2 fI/j Site. -Abort

Man
F Vial

I? /
/

_1 i"ýi 1/

M nn Op km

Tcans_Msa_Read
In-Ex?

TrjnsýMwLwritc
M4 uses e Site_Req-Tots! (EM

Tans-Man-commit
ff 9-71

UM Sice_Req_ ml
Operations

.
Site_Req__Read

" Site_R eq_Write

st_ p1 r_ cl"
f -2H

NOT Pre_Req-
Operations_Simple

Site-Req. -Progress Sste_ido C'tsange

- 135 -

5.3 Site Operations

The schemas defined in this section fall into four categories:

1 The invariants for site schemas, Section 5.3.1.

2 The site schema for receiving requests for new physical operations, Section 5.3.2.

3 The schemas for defining the response to requests for access operations, Section 5.3.3.

4 The schemas for defining the response to execution of the operations, Section 5.3.4.

Before defining the schemas that model the site operations it is necessary to define an

axiomatic schema that specifies an operator required by subsequent schemas.

[XJ

squash : (N *4 X) --4 seq X

squash {} =0
df: 94 -- X; i: W Ifx DA i= min (dom f) "

squash f= (f i> ý squash ({i} e f)

The operator squash converts a function into a sequence of elements [Wood88] and is

used to recreate a sequence of elements after some have been removed.

-136-

5.3.1 Invariants for Site Schemas

Figure 5.3 shows the basic interactions between the operation site schemas and the schema

Site Data that defines the state of each site.

Figure 5.3 Interactions between Site State Schema and Site Operation Schemas

- 137 -

The basic invariants of the site schemas are defined by the schema Site_Data below.

Site Data

home Site

Op_Q seq Op

Read_Lock : ? Op

Write_Lock : ? Op

New_Value : Physical_Object ---) VALUE

Old_Value Physical-Object -4 VALUE

The only objects that have both read and write locks

are in the same transaction

V o1,02 : Op; opt, op2 : Operator; numl, num2 : Trans_Num;

obj 1, obj2 : Physical-Object; v1, v2 : VALUE I

of = access (((opi, numi), objl), v1) A

02 = access (((op2, num2), obj2), v2) A o1 x o2 A

of r: Read_Lock A o2 E Write_Lock A obji = obj2 "

numl = num2

If two operations have permission to write, then it is either to

different physical objects or within the same transaction

V o1, o2 : Op; opt, op2 : Operator; num1, num2 : Trans_Num;

obj 1, obj2 : Physical-Object; v1, v2 : VALUE

ci = access (((opt, numl), obj1), v1) A

o2 = access (((op2, num2), obj2), v2) A 01 x 02 A

of E Write_Lock A o2 E Write-Lock -

obj1 x obj2 v numi = num2

The data type Op_Q records all operations referring to physical objects held at that site in

which the operations have not been executed. A sequence ensures that the order in which

-138-

the operations are to be performed is conserved.

The data type Read Lock maintains a record of all read operations that have been granted

permission to read physical objects held at that site.

The data type Write_Lock maintains a record of the requests that have been granted to per-

form write operations.

The value of the variable home represents the identity of the site in which the instances of

the schema Site_Data are currently bound. This allows different sites to be modelled by

the same schema definition but with different values of the variable home. The reason for

this component will become more apparent when the management schemas are defined.

These later schemas treat the composite state of the system as containing a collection of

independent subsets of values that correspond to individual sites. These subsets of state

space can be interpreted loosely as objects in an object oriented approach to specification

[Ha1190], but they are `weak' objects because they violate one important criterion of

objects, in that their state is visible in the form of shared variables to other objects. How-

ever, familiarity with an object oriented approach to specification will allow the schema

Site_Data to be viewed as an object, and the site request and site execution schemas

representing operations performed on the objects. Using the concept of objects will help

following the description of the implementation presented in this chapter.

The functions Old Value and New Value map physical data objects to their previous and

current values respectively.

The first invariant specified by the schema Site_Data is that permits to read and write to

the same data object cannot be given to different transactions. The second invariant is that

permission cannot be given for two different operations to write to the same physical object

unless they are within the same transaction.

The initial value held by a data object is defined below to have the type VALUE.

-139-

Initial : VALUE

An initial state, defined in the following schema, uses the global variable Initial as the

default value held by data objects.

Initial Site State

Site Data'

OQ_Q' =0
Read Lock'

Write Lock'

Old Value' _

New Value'

There is no inf

(d : Physical Object "d Initial }

id : Physical_Object "d ti Initial l

ýrmation about the home variable

Proof Obligation for the Initial State

Each of the bindings for the components in the schema Site_Data are valid from their

data definitions. In addition, none of the invariants in the predicate part of the schema

Site Data are violated.

-140-

5.3.2 Requests for Physical Operations

A diagrammatic view of the interactions involving the schemas New Site_Req and

Site_Data is given in Figure 5.4.

Figure 5.4 Schema for Site Requests

ite_Data

Silo i- ---i defines
,II{

borne

ýaquence ofý
Operation

opaati°as

dcfina

New Site_Req
set of operation i Read Lock

141

Sire-Chan In_Req?

iai
dermes Write-Lock

Fýctioo bam
Physical ob defines New Value

ate VAL

defines 11 OId Vatue

Also used in definition

of Site_Base 175

- 141 -

In all the site operations the variable home does not change value. This is represented by

the schema Site_Change, which is included in all the site operation schemas.

Site_Change

Site Data

home' = home

The schema New_Site_Req is the only schema in the second category of site schema and

it represents a receiver of physical operations as inputs from the management schemas.

New_Site_Req

Site_Change

in_Req? : Op

Op_Q' = Op.

No other chars

Read Lock'

Write Lock'

Old Value' _

New Value'

_Q
- (ln_Req?)

, es to the state variables

Read Lock

Write Lock

Old_Value

New Value

The schema New_Site_Req receives the physical operation as an input and adds it to the

sequence of operations waiting to be handled by the site request schemas.

Proof Obligations for the Invariants of Schema New_Site_Req

The only component changed by the schema New_Site_Req is the sequence Op_Q.

The type rules are obeyed and have been checked by CADIZ. The predicate of the

142

schema Site_Data does not use the sequence Op_Q, hence is not affected by the

change.

Thus. the invariants are not violated by the schema New_Site_Req.

Preconditions of the Schema New_Site_Req

The only precondition for the schema New_Site_Req is that the components are of the

correct type, in particular, In_Req? has the type Op, i. e. a physical operation. This is given

by the schema Pre_New_Site_Req.

Pre_New_Site_Req

home : Site

Op_Q : seq Op

Read_Lock :P Op

Write-Lock :P Op

New_Value : Physical_Object --j VALUE

OId_Value : Physical_Object -4 VALUE

ln_Req? : Op

-143-

5.3.3 Site Response to Requests to Perform Operations

Figure 5.5 shows the interactions between the site request schemas and the site data

schema.

Figure 5.5 Schernas for Site Response

Site-Data

sir J--ý de1. a 1I(same

sequaws of does cQ

m o(oprr ioo)---i ""ý 1 -^---} Rad-Löck

writk-t. ock

Bmabm O=
Pli """`ý il New Yalaa

of valm

Of s; o_s.., 5

Site Req_Tota]
158

site_RN-opmu; oa

154

Sha_Re4L-ReW
144

SileSh-ga
141

s; le_Regwrite
IF 1

Lall

NOT Pne_Req
Oper*dons_Simpi

Siu N*_C bAW

The schema Site_Req__Read is one of the third category and represents the changes of

state that occur as the result of state values only; no inputs are involved.

144-

Site_RecLRead

Site_Change

3 of Op; opi : Operator; objl : Physical_Object;

v1 : VALUE; numl : Trans_Num I

of = access (((opi, numi), obji), v1) A

home = second obj1 A opt = read "

The operation is the first operation waiting to be executed

for that transaction

01 e ran Op_Q A
(V o2 : Op; op2 : Operator; obj2 : Physical-Object;

num2 : Trans_Num; v2 : VALUE

02 = access (((op2, num2), obj2), v2) A

o2 F ran Op_Q A numi = num2 -

Op_Q
1

01 < Op_Q-1 02)

No other transaction has a conflicting lock on the same object

i\

(3 o2 : Op; opt : Operator; obj2 : Physical_Object;

num2 : Trans_Num; v2 : VALUE "

02 = access (((op2, num2), obj2), v2) A

numl x num2 A o2 F Write_Lock A obj2 = objl) A

Read_Lock' = Read_Lock U {ol }

No change in other Site_Data declarations

Op_Q' = Op_Q

Write Lock' = Write Lock

New Value' = New Value
i

- 145 -

Old Value' = Old Value

The input operation is taken from the sequence Op_Q such that it is the first operation to be

performed for that transaction and, if there is no write lock on the same physical object, the

state is updated as indicated. That is, the operation is added to the set Read Lock which is

accessed by the management schemas.

Proof Obligation for the schema Site_RegRead

The proof obligation is split into two parts:

(i) the type properties of the components are not violated

(ii) the predicate of schema Site_Data is not invalidated.

(i) The only component changed by the schema Site_Req Read is the set Read Lock.

These changes conform to the type rules of the Z notation as interpreted by CADi2.

(ii) The set Read Lock is changed so that

Read Lock' = Read Lock U (o 1)

such that

--' 3o2: Op "o2E Write Lock A object (o 2) = object (o 1) A

number (o 2) x number (01)

where object is a projection function that extracts the physical object value from phy-

sical operations, hence has the type

Op -4 Physical Object

and number is a projection function that extracts the transaction number from physical

operations, hence has the type

-146-

Op -4 Trans_Num

Therefore, with

o1E Read Lock'

for all o2 such that

o2E Write Lock A object (o 2) = object (o 1)

then from the predicate in the schema Site_Req Read, the physical operations must

have the same transaction numbers, i. e.

number (o 2) = number (o 1)

hence conforming to the first universally quantified predicate in the schema

Site Data.

The set Write_Lock is not changed, hence cannot invalidate the second universally

quantified predicate in the schema Site Data.

Note that the operation selected from the range of Op_Q is not unique. The state of Op
-Q

could be such that several members in its range meet the preconditions, in such cases the

value chosen is non deterministic. When viewed in isolation from other schemas, this non

determinism has the advantage of not over specifying the requirements. However, when

schema terms are connected together, there can be cases when multiple preconditions are

true simultaneously, thereby causing ambiguity about the changes in state. To overcome

any possible difficulties an extra component can be included in the schema declaration part

that externally identifies the operation that takes place. The advantages of including an

extra component in the schemas for this purpose are not important in this study, therefore

no such extra components are used.

Preconditions for the Schema Site_Req_Read

Preconditions for the expanded schema Site_Req_Read are expressed by the following

schema.

-147-

Pre_Req__Read_Expand

home : Site

Op_Q : seq Op

Read_Lock >; Op

Write_Lock P Op

New_Value Physical_Object - VALUE

Old_Value : Physica!
_Object --4 VALUE

3 home' : Site; Op_Q' : seq Op; Read_Lock' :P Op;

Write_Lock' :P Op;

New_Value' : Physical_Object -4 VALUE;

Old_Value' : Physical-Object -4 VALUE "

(B 01 : Op; Opi : Operator; obj1 : Physical_Object;

vi : VALUE; numi : Trans_Num I

01 = access (((op1, num 1), obj i), vi) A

home = second obji A opt = read "

o1 ran Op_Q A

(V o2 : Op; op2 : Operator; obj2 : Physical_Object;

num2 : Trans_Num; v2 : VALUE

02 = access (((op2, num2), obj2), v2) A

o2 E ran Op_Q A numl = num2 "

Op_Q
1

01 < Op_Q
1

02) A

(3 02 : Op; op2 : Operator; obj2 : Physical_Object;

num2 Trans Num; v2 : VALUE "

o2 = access (((op2, num2), obj2), v2) A

numl x num2 A o2 E Write Lock A

-148-

obj2 = objl) A

Read_Lock' = Read_Lock U {o1}) n

Op_Q' = Op_Q A Write_Lock' = Write_Lock A

New_Value' = New_Value A Old_Value' = Old-Value A

home' = home A

(Vol, 02 : Op; opt, opt : Operator;

numi, num2 : Trans_Num; objl, obj2 : Physical_Object;

v1, v2 : VALUE I

of = access (((opi, numl), objl), v1) A

o2 = access (((op2, num2), obj2), v2) A 01 ý 02 A

01 F Read_Lock A o2 E Write_Lock A objl = obj2 "

numl = num2) A

(Vol, 02 : Op; opt, op2 : Operator;

num1, num2 : Trans_Num; obj1, obj2 : Physical_Object;

vi, v2 : VALUE I

of = access (((op1, numl), obj1), v1) A

o2 = access (((op2, num2), obj2), v2) A of x 02 A

01 E Write Lock A o2 E Write_Lock "

objl obj2 v numl = num2) A

(Vol, o2 : Op; opt, op2 : Operator;

num1, num2 : Trans_Num; obj1, obj2 : Physical_Object;

v1, v2 : VALUE I

cl = access (((op1, numi), objl), v1) A

o2 = access (((op2, num2), obj2), v2) A o1 02 A

01 E Read_Lock' A o2 E Write_Lock' A objl = obj2 "
numi = num2) A

(Vol, o2 : Op; opt, op2 : Operator;

-149-

num1, num2 : Trans_Num; obj1, obj2 : Physical_Object;

v1, v2 : VALUE I

of = access (((opl, numl), objl), v1) A

02 = access (((op2, num2), obj2), v2) A of 02 A

01 F Write Lock' A o2 F Write Lock' "

objl x obj2 v numl = num2)

The preconditions are simplified to give the schema Pre_Rec_Read_Simple below.

-150-

Pre_Req Read_Simple

Site Data

3 01 : Op; objl : Physical_Object; vi : VALUE;

numl : Trans_Num

of = access (((read, numl), objt), vi) A

home = second obj 1"

of E ran Op_Q n

(V o2 : Op; op2 : Operator; obj2 : Physical-Object;

num2 : Trans_Num; v2 : VALUE I

c2 = access (((op2, num2), obj2), v2) A

02 E ran Op_Q A numl = num2 "

-1 -1 Op_Q 01 < Op_Q o2) A

(3 o2 Op; op2 : Operator; num2 : Trans_Num;

v2 VALUE "

o2 = access (((op2, num2), obj 1), v2) A

numl x num2 A o2 E Write_Lock)

This leads to the following schema which expresses the equivalence between the simplified

preconditions and the rudimentary preconditions given by the pre operator.

Simplified_5_1 = pre Site_Req_Read Pre_Req Read_Simple

Note that an input operation is not required for a change of state.

The change of state as a result of analysing a write request is described by the following

schema Site_ReQWnte.

-151-

Site_Req_Write

Site_Change

3 of Op; opt : Operator; objl : Physical_Object;

v1 : VALUE; numl : Trans_Num

01 = access (((opt, num1), objl), v1) A
home = second objl A opt = write "

The operation is the first one waiting to be executed for

that transaction

cl c- ranOp_QA

(V o2 : Op; op2 : Operator; obj2 : Physical-Object;

num2 : Trans_Num; v2 : VALUE I

02 = access (((op2, num2), obj2), v2) A

02 E ran Op_Q A numl = num2 "

-1 -1 Op_Q of < Op_Q o2)
There are no conflicting locks on the same data object

A

--,

(3 02 : Op; op2 : Operator; obj2 : Physical-Object;

num2 : Trans_Num; v2 : VALUE "

02 = access (((op2, num2), obj2), v2) A

numl x num2 A o2 F Read_Lock u Write_Lock A

obj2 = objl) A Write_Lock' = Write Lock u {o1}

No change in value for other declarations in Site_Data

Op_Q' = Op_Q

Read Lock' = Read Lock

New Value' = New Value

-152-

Old Value' = Old Value

The Site_Req_Write schema obtains an operation which is a member of the range of the

sequence Op_Q and, if there are no locks to read or write to the same physical object,

changes the state of the site variables.

Proof Obligation for the Schema Site_Req_Write

Similar to the proof sketch for the schema Site_Req_Read, the proof obligation is

split into two parts:

(i) the type properties of the components are not violated

(ii) the predicate of schema Site_Data is not invalidated.

(i) The only component changed by the schema Site Req_Write is the set Write Lock.

These changes conform to the type rules of the Z notation as interpreted by CADO.

(ii) The set Write Lock is changed so that

Write Lock' = Write Lock U {o 1)

such that

-3o2: Op "o2E Read Lock U Write Lock A

object (o 2) = object (o 1) A number (0 2) number (o 1)

Therefore, with

o1E Write Lock

for all o2 such that

o2E Read Lock A object (o 2) = object (o 1)

then the physical operations must have the same transaction numbers, i. e.

- 153 -

number (o 2) = number (o 1)

hence conforming to the first universally quantified predicate in the schema

Site Data.

Similarly, for

oIE Write Lock

for all o2 such that

o2E Write Lock

then from the predicate in the schema Site_ReQ Write the physical operations must

either have the same transaction numbers or be to different physical objects, i. e.

object (o 2) x object (o 1) V number (o 2) = number (o 1)

hence conforming to the second universally quantified predicate in the schema

Site Data.

Preconditions for the Schema Site_Req Write

The preconditions for the schema Site_Req. Write are simplified in the following schema.

- 154 -

Pre_Rec_Write_Simple

Site Data

3 of : Op; objl : Physical_Object; v1 : VALUE;

numl : Trans_Num I

of = access (((write, numl), objl), v1) A

home = second objl "

01 E ran Op_Q A

(V o2 : Op; op2 : Operator; obj2 : Physical-Object;

num2 : Trans_Num; v2 : VALUE

o2 = access (((op2, num2), obj2), v2) A

o2 E ran Op_Q A numl = num2 "

Op_Q 1
o1 < Op_Q 1

02) n

-I

(3 02 : Op; op2 : Operator; num2 : Trans Num;

v2 : VALUE "

02 = access (((op2, num2), objl), v2) A

numl x num2 A o2 E Read_Lock u Write_Lock)

The correctness of the preconditions is expressed in terms of the following schema.

Simplified_5_2 = pre Site_Req_Write Pre_Rec-Write_Simple

The two request site schemas are combined to form the schema Site_Req_Operations.

Site_Rec_Operations = Site_Req Read V Site_Rec_Write

Because both the schemas define uniquely the postconditions of the operation, any change

of state is the consequence of one of the schemas. The preconditions of the two site request

- 155 -

schemas are not mutually exclusive because different bindings of objects can be used for

the existentially quantified variable ol. Using the rule:

3P (x) v3 Q(. r) 3 (P(x)v Q(x))

The preconditions identify the conditions under which the disjunction of the two schemas is

true. When the combined preconditions are simplified to use the same quantified variable

of it gives the impression that the preconditions of each operation cannot be simultane-

ously true. However, this is not the case because the bound variables in the operation sche-

mas can take different values independently of each other.

The preconditions for the schema Site_Rec. Operations are simplified to the schema

Pre_Req_Operations_Simple below.

-156-

Pre_Req_Operations_Si mple

Site Data

3 01 : Op; objl : Physical_Object; v1 : VALUE;

numl : Trans Num "

01 = access (((read, nu ml), obj 1), v1) A

home = second objl A 01 E ran Op_Q A

(V o2 : Op; op2 : Operator; obj2 : Physical_Object;

num2 : Trans_Num; v2 : VALUE I

02 = access (((op2, num2), obj2), v2) A

o2 E ran Op_Q A numi = num2 "

Op_Q
1

01 < Op_Q o2) A

-I

(B 02 Op; op2 : Operator; num2 : Trans_Num;

v2 VALUE "

02 = access (((op2, num2), obji), v2) A

numi ;t num2 A o2 E Write_Lock)

Read request

V

of = access (((write, numl), objl), v1) A

home = second objl A of r- ran Op_Q A

(V 02 : Op; op2 : Operator; obj2 : Physical_Object;

num2 : Trans_Num; v2 : VALUE

02 = access (((op2, num2), obj2), v2) A

o2 E ran Op_Q A numl = num2 "

-1 -1 Op_Q o1 < Op_Q o2) A

- 157-

1

(3 o2 : Op; op2 : Operator; num2 : Trans Num;

v2 VALUE

02 = access (((op2, num2), objl), v2) A

numl num2 A o2 E Read_Lock U Write_Lock)

write request

The site request operations are not total since for some values of the state described by the

schema Site_Data the preconditions are false. It is necessary to make explicit that there is

no change of state when the site request operation occurs and the preconditions are false.

First, a schema must be defined that represents no change of the site data.

Site_No_Change

OSite Data

home' = home

Op_Q' = Op_Q

Read Lock' = Read Lock

Write Lock' = Write Lock

New Value' = New Value

Old Value' = Old Value

Proof Obligation for the Schema Site_No_Change

Since none of the components are not changed, the invariants must be maintained.

-158-

The notation ESite_Data cannot be used in this case because it causes problems with

CADi2 later when the schema Site_ReQTOtal is expanded.

The total specification of the site request operation is:

Site_RecLTotal

Site_RecOperations V

- Pre_Req_Operations_Simple A Site_No_Change

-159-

5.3.4 Change of Site State in Response to Execution of Operations

The fourth category of site schemas are those that describe the execution of the operations

that are triggered by the management schemas changing the values bound to the input vari-

able for physical operations to be executed by a site. Figure 5.6 illustrates the interactions

between the site execution schemas and the site data schema.

Figure 5.6 Schemas for Site Execution

FIT-71
Site_Op_Execution

sloe adios. home

Site Read 160

Sequence of

sKZee. o-e
141

opersticalt

si>e_w, ioe CHI
met o[opentios derimes Read-Lock

lal

defames Write-Lock
site

-Commit l9

site_C. ft-.

Ammon from
141

pbyskW object derma New_Value
VAL

Site Abort 168

Germes old Vlue Site_Cý. oýe
tar

75 of Sib goss 11

aetmec

operauon

- 160 -

The first schema of this category is for the read operation and is the schema Site-Read

below.

Site Read

Site_Change

In_Ex? : Op

-9 p_site : Operator; b_site : Physical_Object;

n_site : Trans_Num; v_site : VALUE I

In_Ex? = access (((p_site, n_site), b_site), v_site) A
home = second b_site A p_site = read "

v_site = New_Value b_site A In_Ex? F ran Op_Q A

Op_Q' = squash (Op_Q B {In_Ex? })

No other changes to site data

n Read Lock' = Read_Lock A

Write_Lock' = Write_Lock A Old_Value' = Old_Value A

New_Value' = New-Value V

(v-site New_Value b_site v In_Ex? e ran Op_Q)

No change to any site data variables if In_Ex? not in Op_Q

or the wrong value is given

A Op_Q' = Op_Q A Read_Lock' = Read_Lock A

Write_Lock' = Write_Lock A Old_Value' = Old_Value A

New_Value' = New_Value

The schema Site_Read uses the value of the input variable In_Ex? for initiating a change

of state. Should In_Ex? meet the preconditions of this schema, the physical operation is

removed from the variable Op_Q to indicate that the operation has been executed. A read

operation does not involve any other change of state. The value of the data object read by

this operation is that given by the function New Value, but the model of the

-161-

implementation does not describe how this value is communicated to the environment.

At this level of abstraction, the value read from the database is presented as a precondition.

This implies that the input variable must include this value before it can read it, which is

contrary to the expected normal sequence of events. It is presented in this manner because

the actual transfer of data does not affect the concurrency control of the model of a data-

base system, hence the details of how the management functions obtain the value are hid-

den from the view of the operation of database systems. Should the value not equal that

given by the function New_Value then there is no change of state. It follows that the

schema is total over all values of the v_site component. A value is required for the v
_site

component to identify the operation in the Op_Q component. A different approach is to

change the definition of the read operation such that it does not have a VALUE component.

Proof Obligation for the Schema Site_Read

The only component to be changed under some conditions is the sequence Op_Q. The

changes to this component do not impact on the predicate in the schema Site-Data

and the changes obey the type rules for the Z notation. Therefore, the invariants are

not violated by the schema Site_Read.

Preconditions for the Schema Site_Read

The preconditions for the schema Site_Read are simplified to the following schema.

- 162-

P re_Si te_Read_Si m ple

Site Data

In_Ex? : Op

Existentially quantifying components of In_Er?

3 b_site : Physical_Object; n_site : Trans_Num;

vsite: VALUE -

In_Ex? = access (((read, n_site), b_site), v_site) A
home = second b

_site

Leading to the schema below that represents the equivalence between the simplified

preconditions and the rudimentary preconditions.

Simplified_5 3= pre Site Read ' Pre_Site_Read_Simple

The execution of the write operation is defined by the schema Site_Write below.

- 163-

Site Write

Site_Change

In_Ex? : Op

Existentially quantifying components of In_Ex?

3 p_site : Operator; b_site : Physical_Object;

n_site Trans_Num; v_site : VALUE

In_Ex? = access (((p_site, n_site), b_site), v_site) A
home = second b

_site A p_site = write "

In_Ex? e ran Op_Q A

Op_Q' = squash (Op_Q B {In_Ex? }) A

New_Value' = New Value ® {b_site H v_site}

No other changes to variables in Site_Data

A Read_Lock' = Read_Lock n

Write_Lock' = Write_Lock A Old_Value' = Old.
_Value

v

In_Ex? e ran Op_Q

No changes to the variables in Site Data if In_Ex? is not in Op_Q

A Op_Q' = Op_Q A New_Value' = New_Value A

Read_Lock' = Read_Lock A Write_Lock' = Write_Lock A

Old Value' = Old Value

The schema Site_Write existentially quantifies the components of the variable In Ex? and

updates the current value of the specified data object, provided the input operation is in the

sequence Op_Q. The physical write operation is also removed from the sequence of opera-

tions held in the variable Op_Q. There is no change of variables in the schema Site Data

if the input value is not in the sequence Op_Q.

Proof Obligation for the Schema Site_Write

In addition to the possible changes to the sequence Op_Q, the function New_Value

- 164 -

may also be updated. Neither Op_Q or New Value impact on the predicate in the

schema Site Data. hence cannot invalidate the conditions.

The function Neºti Value is changed by using the functional override operator such

that the overriding function is a single maplet. Thereby, conforming to the type

requirements to ensure that the resultant type is a total function.

Preconditions for the Schema Site_Write

The schema Pre_Site_Write_Simple gives the simplied preconditions for the schema

Site Write.

Pre_Site_Write_Simple

Site Data

In_Ex? : Op

3 b_site : Physical_Object; n_site : Trans_Num;

v -site
: VALUE 9

In_Ex? = access (((write, n_site), b_site), v_site) A
home = second b_site

The correctness of the simplified preconditions is stated in the schema below.

Simplified_5_4 - pre Site Write <=: > Pre_Site Write_Simple

The last two operations to be executed by the site schemas are the end operations of com-

mit and abort.

The commit operation is represented by the schema Site-Commit.

- 165 -

Site Commit

Site_Change

In_Ex? : Op

Existentially quantifying components

3 p_site : Operator; n_site : Trans_Num

In Ex? = end (p_site, n_site) A p_site =commit "

Old Value' _

Old_Value

(01 : Op; Opi : Operator; numl : Trans_Num;

obji : Physical_Object; v1 : VALUE I

01 = access (((op1, numl), objl), v1) A

01 E Write Lock A numi =n _site "

obi 1- New Value obj 11 A

Read Lock' _

Read_Lock \

{ 01 : Op; opt : Operator; numl : Trans_Num;

objl : Physical_Object; v1 : VALUE I

01 = access (((op1, numl), objl), v1) A numl =n _site "
01) A

Write Lock' _

Write Lock \

(01 : Op; opt : Operator; numl : Trans_Num;

obji : Physical_Object; v1 : VALUE I

of = access (((op1, numi), obj1), v1) A numi = n_site "
01)

No change in the other declarations in Site Data

- 166 -

Op_Q' = Op_Q

New Value' = New Value

The schema Site Commit uses the operation determined by In_Ex? to update the com-

ponents Old Value, Read Lock and Write_Lock for the transaction that has been commit-

ted.

Proof Obligation for the Schema Site Commit

CADi2 ensures that the basic type rules have been correctly followed.

The function Old_Value is updated by the functional override operator in which the

overriding function is a partial function defined as a set of maplets. This is a correct

use of the functional override operator, therefore the function Old Value retains its

total functional properties.

The sets Write Lock and Read Lock are updated by removing members, hence if the

restrictions imposed by the predicate in the schema Site Data were valid for their

before values, they must also be valid for their after values. Therefore, the invariants

of the schema Site Commit have not been violated.

Preconditions for the Schema Site-Commit

The schema P re_Site_Commit_Si m pie defines the simplified preconditions, which are

verified by expanding the schema Simplified-5__5.

- 167 -

Pre_Site_Commit_Simple

Site Data

In_Ex? : Op

3 n_site : Trans_Num " In_Ex? = end (commit, n_site)

Simplified_5_5 = pre Site_Commit 4 Pre_Site_Commit_Simple

Finally, the abort operation is very similarly modelled by the schema Site Abort.

- 168-

Site_Abort

Site Change

In Ex? : Op

Eristentialhv quantifying components

p_site : Operator; n_site : Trans_Num I

In_Ex? = end (p_site, n_site) A psite = abort "

New Value' _

New
-Value

(D

{ of : Op; opi : Operator; numl : Trans Num;

obji : Physical-Object; vi : VALUE

01 = access (((opi, numi), objl), v1) A

01 F Write_Lock A numi = n_site "

objl ' Old_Value objl }A

Read Lock' =
Read

_Lock
\

{ 01 : Op; opt : Operator; numl : Trans_Num;

objt : Physical_Object; v1 : VALUE I

of = access (((opi, numl), objl), vi) A numl =n _site "

01) A

Write Lock' _

Write Lock \

(01 : Op; opt : Operator; numl : Trans_Num;

obji : Physical_Object; v1 : VALUE j

01 = access (((opi, numl), obj1), v1) A numi =n _site "

01)

No change in the other declarations in Site Data

-169-

Op_Q' = Op_Q

Old Value' = Old Value

The difference between the schemas Site_Abort and Site_Commit is that in the former

schema the current values of the data objects used by the operations in the transactions and

in the latter schema the values held by the data objects are restored to their previous values.

Note that, for simplicity, the schema Site_Abort does not address the question whether

some other value should be used instead of its previous value because other transactions,

which are not aborted, also change the data object.

Proof Obligation for the Schema Site-Abort

The proof sketch is identical to that for the schema Site-Commit, except that the

function New Value is updated instead of the function old Value.

Preconditions for the Schema Site_Abort

The following schema gives the simplified preconditions for the schema Site_Abort.

Pre-Site-Abort-Simple

Site Data

In_Ex? : Op

3 n_site : Trans_Num " fn_Ex? = end (abort, n_site)

The schema Pre_Site Abort Simple defines the simplified preconditions.

- 170-

Simplified_5_6 - pre Site_Abort 4 Pre Site_Abort_Simple

The atvvc schema specifies the correctness condition for the simplified preconditions.

The site oreration schcmas are combined to form the schema Site_Op_Execution below.

Site_Op_Execution

Site_Read v Site-Write V Site_Commit V Site_Abort

The preconditions of the schema Site_Op_Execution are given by the following schema.

-171-

Pre_Site_Op_Execution_Simpie

Site Data

In_Ex? : Op

3 b_site Physical_Object; n_site : Trans_Num;

vsiteVALUE -

In_Ex? = access (((read, n_site), b_site), v_site) A
home = second b

_site

read operation

V

In_Ex? = access (((write, n_site), b_site), v_site) A

home = second b
_site

tit-rite operation

v

In_Ex? = end (commit, n_site)

commit operation

v

In_Ex? = end (abort, n_site)

abort operation

This schema indicates that the schema Site_Op_Execution specifies the behaviour of the

site execution schema for all values of the physical operations bound to the input variable

In Er? that refer to the site with the value of home. Note that only one operation can be

performed at any change of state.

- 172-

5.4 Management Operations

This section defines the Schemas that model the management aspects of the replicated data-

base system. The schemas presented in this section fall into the four categories:

1 The invariant schemas. Section 5.4.1.

2 The schemas that describe the behaviour of the implementation in response to input

logical operations, Section 5.4.2.

3 The schemas that describe the behaviour of the implementation executing the opera-

tions, Section 5.4.3.

4 The schema that describes the progress of all the site requests, Section 5.4.4.

Figure 5.7 illustrates the main interactions between the state schemas and the management

operation Schemas.

-173-

Figure 5.7 , 'fain Interactions benveen Management Schemas

DBS_Imp F2 0---8

Read

In 0?
Write

Commi

Global
Uil

Hsrwy

Distrib_Sites

I75

Swe...

Man.. Data

178

Wak_Op
CommK T-

AOU&TCWA

Um S Dw

137

Abort

8 Global 174

Man_Op_Total 0-5- 1

Man_Op

No_Change_Man_Op

Site_Req_Progress 207

- 174-

5.4.1 Invariants for Management Schemas

The schemas in the first category of management schemas include the schema Global

below which defines a function that accumulates the execution of operations represented by

the model of a replicated database system.

Global

History : seq Op

An initial state for the schema Global is defined as the following schema.

Initial_State_Global I

Global'

History' =0

Proof Obligation for the Initial State

The empty sequence is a valid binding for the sequence History and hence a valid ini-

tial state must exist.

The schema Global is used only by the schemas that define operations that appear in the

historical record.

The management of transactions uses logical operations as inputs and generates physical

operations for the site schemas. The device of shared variables is used to exchange data

between schemas instead of using input and output variables to exchange data. This allows

Schemas to be combined without using the pipe operator which is, although recognised by

CADiZ, is not defined in the standard Z notation [Spiv89A].

- 175 -

Logicat_Op :: _

I_access . ((((read, write} x Trans_Num) x
LOGICAL_OBJECT) x VALUE)»

I_end ý ((commit, abort) x Trans_Num)»

The free type definition for Logical-Op is identical to the definition of Op except for using

logical data objects instead of physical data objects.

Proof Obligation for the Free Type Definition of Logical_Op

Both branches are non recursive, hence the definition of Logical_Op is consistent.

The schema Distrib_Sites represents the concept of a number of sites operating indepen-

dently, but all described by the same schema. Schema variables can be used instead of the

function Site Base. but this necessitates being explicit about the number of sites.

Distrib Sites

Site Base : Site --8 Site_Data

ds: Site " (Site Base s). home =s
Site x0

One of the invariants of the schema Distrib_Sites is that the type Site is a non empty set,

which represents the requirement that there is at least one site that has a copy of the data-

base.

The function Site Base provides a mapping from the type Site to the schema type

Site_Data. The result of applying the function Site_Base to a value of a site is a particular

binding of a schema such that the home component is equal to the value of the site used in

the mapping.

- 176-

The concept of bindings is difficult to understand in the context of abstract types. Some

introductory books on the Z notation avoid using bindings [Hayes87, DiIlr90, Craig9l,

Pottr9l1. but it is used in the book The Z Notation: A Reference Manual [Spiv89A] and is

referred to in the semantics of the Z notation [ZipBS91]. The interpretation of bindings

here is that a binding provides a mapping between an identifier and an element of the type

of that identifier. For instance, a possible binding of an identifier i that represents natural

numbers is (i- 3).

Schemas can be used as types in the Z notation and elements of a schema type are given by

the bindings of that schema [Spiv89A, Wood89B). A binding provides a means of naming

an element (or mathematical object) that has the schema type. Bindings are formed in the Z

notation by using the 6 operator, for example the expression:

0 Initial-Site-State

is a binding with

() as the value of the component Op_Q'

* as the value of the component Read Lock'

* as the value of the component Write Lock'

{d - Initial } for all physical objects for Old Value'

{d- Initial) for all physical objects for New Value'

The value bound to the variable home' is not specified by the schema Initial_Site_State.

The binding 0 initial Site_State is an element of the type Initial_Site_State which is the

same type as Site_Data.

Note that, the names of the components in the binding must be in scope at the point it is

used.

An initial state for the schema Distrib Sites is defined as the following schema.

- 177-

Init DS
_.. -

DistribSites'

Site Data'

Vs: Site -

Site_Base' s=6 Initial_Site_State A

(Site_Base' s) .
home =s

The schema tnit_DS initialises each element in the mappings of Site Base to the initial

state of the the schema Site_Data, with the component home bound to a particular site

value. The schema inclusion of Site Data' is necessary to declare the variables used by

the bindings given by the 0 operator.

Proof Obligation for the Initial State

The binding given by Initial_Site State is of the correct type and a value does exist

that can be bound to each member of the set Site, which is syntactically equivalent to

the given set LETTER. The component home can be bound to each member of the set

Site. Should the given set LETTER be empty, then the predicate for the schema

Distrib Sites is false, hence cannot occur.

The purpose of the function Site Base is to set up subsets of bindings of the schema type

Site_Data to represent the bindings that are associated with each site. Figure 5.8 illus-

trates the mapping provided by the function Site Base. The elements of the type Site-Data

that refer to site s have the home component bound to the value s, similarly for other site

values. The purpose of this partitioning of elements is to represent the concurrent activities

of the sites by defining independent groups of states. An alternative interpretation of this is

that the state is partitioned into a group of objects and the component home is the identity

of each object.

- 178 -

Figure 5.8 Mapping of the Function Site-Data

Site Site_Data

all possible bindings with
a how =a

all possible bindings with br home=b

all possible bindings with
c home =c

0

0

all possible binding with
y home=y

all possible bindings with
z 10 home=z

The state of the management schemas is expressed in the following schema which defines

the final state variables of the implementation.

Man Data

Wait_Op :P Logical-Op

Commit Trans :P Logical-Op

Abort_Trans :P Logical-Op

All three sets Wait_Op, Commit_Trans and Abort Trans are disjoint because only read

- 179-

and write operations are members of Wait Op. commit operations are members of

Commit_Trans. and abort operations members of Abort_Trans. This can be specified as an

invariant of the schema Man-Data, but it has no benefits because of the constructive style

of the operations Schemas.

An initial state for the schema Man_Data is defined by the schema Initial_Man_Data

below.

Initial_Man_Data

Man Data'

WaitOp'=0

Commit Trans'

Abort_Trans' _0

Proof Obligation for the Initial State

The empty set is an obvious valid state for all three sets Wait Op, Commit Trans and

Abort
-Trans.

- 180-

5.4.2 Response to Logical Operation Requests

Figure 5.9 illustrates the interactions between the schemas for management requests to

operations and the management state schemas.

Figure 5.9 Management Response to Requests

- 181 -

The definitions of the second category of management schemas include the request sche-

mas. The first operation considered is the logical operation defined by the schema

Trans_Man_Req_Read below.

Trans_Man_Req_Read

ODistrib Sites

AMan_Data

In_O? : Logical_Op

p_man : Operator; n_man : Trans_Num;

lb man LOGICAL_OBJECT; v_man : VALUE ý

In_O? = I_access (((p_man, n_man), lb_man), y--man) A

p_man = read "

(31 s: Site; op_man : Op I

op_man =

access (((p_man, n_man), (Ib man, s)), v_man) "
Site Base' =
Site Base
{s '-*

(p. New_Site Req I

8 Site_Data = Site_Base sA In_Req? = op_man "

6Site Data')}) A Wait_Op' = Wait_Op u {In_O? }

No change to other management data variables

Commit_Trans' = Commit Trans

Abort_Trans' = Abort-Trans

The schema Trans_Man_Req_Read models the change of state that occurs as a conse-

quence of receiving an input operation in the form of In O?. Note, as was mentioned ear-

lier, that this schema assumes that the read operation already has the value that is read

- 182-

from the database.

The appropriate binding for the schema Site_Data is selected by using the function

Site_Base within the µ operator that constructs a new unique binding of the schema type

Site Data.

The 6 operator equates a binding of the schema Site_Data from the mapping provided by

the function Site_Base. The local binding in the µ operator of the components of the

schema Site_Data are equal to those of the binding of the target of the function Site Base

for the source value of s. It is this binding of the schema Site_Data that is used to update

the data types in the site schemas by adding a physical read operator to exactly one site.

The only change of state caused by this operation is adding a new logical operation to the

set Wait_Op.

Proof Obligation for the Schema Trans_Man_Req_Read

The management data components that are changed by the schema

Trans_Man_Req,
_Read are the set Wait Op and the function Site Base. The type

rules for the set Wait_Op are applied correctly, hence the invariant of the schema

Man Data is maintained.

The function Site Base is updated using functional override, this ensures that the total

functional characteristics are retained for Site_Base. The schema New_Site_Req is

used to change the mapping for site s in the function Site Base, this ensures that the

component home in the schema Site Data is not changed, hence maintaining the

invariant of the schema Distrib_Sites.

The preconditions are not simplified for the single schema Trans_Man_Req_Read
,

instead the preconditions are given later for the disjunction of this and other request opera-

tion schemas defined below.

- 183-

Trans_Man_Req_Write

ADistnb Sites

AMan Data

ä In_O? : Logical-Op

p_man Operator; n_man : Trans_Num;

lb_man : LOGICAL_OBJECT; v_man : VALUE I

In_O? = I_access (((p_man, n_man), lb-man), v_man) A
p_man = write -

Site-Base' =
Site Base 6)

is : Site; op_man : Op I

op_man =

access (((p_man, n_man), (lb_man, s)), v_man) "
S ý-'

(jtNew_Site_Req

8 Site_Data = Site_Base SA In_Req? = op-man -
0 Site_Data')) A Wait Op' = Wait Op u {ln_O? }

No other changes to management data variables

Commit_Trans' = Commit Trans

Abort-Trans' = Abort Trans

The schema Trans_Man_ReQWrite specifies the change of state for a logical write

operation received by the schema as an input. In this case, physical write operations are

requested for all the sites, i. e. a write all procedure is used.

Proof Obligation for the Schema Trans_Man_Req__Write

The management data components that are changed by the schema

Trans_Man_RegLWrite are the set Wait Op and the function Site Base. The type

-184-

rules for the set Wait Op are applied correctly, hence the invariant of the schema

Man Data is maintained.

The function Site Base is updated using functional override, this ensures that the total

functional characteristics are retained for Site_Base. The schema New Site_Req is

used to change the mapping for site s in the function Site_Base. this ensures that the

component home in the schema Site Data is not changed, hence maintaining the

invariant of the schema Distrib_Sites.

The schema Trans_Man_RecLCommit receives an input of the type of a commit opera-

tion and adds the logical operation to the set of committed transactions.

Trans_Man_Req_Com mit

AMan_Data

In_O? : Logical Op

3p
_man

: Operator; n_man : Trans_Num

In_O? = fend (p_man, n_man) A p_man = commit "

Commit Trans' = Commit Trans u {In_O? }

No other changes to management data

Wait Op' = Wait-Op

Abort_Trans' = Abort-Trans

Proof Obligation for the Schema Trans_Man_Re(LCommit

The only change to the management data is to the set Commit Trans in the schema

Man-Data. Since the type rules are obeyed, the invariants are not violated.

- 185 -

Trans_Man_Req_Abort

, SMan_Data

In_O? : Logical_Op

3 p_man : Operator; n_man : Trans_Num I

In_O? = Lend (p_man, n_man) A p_man = abort "

Abort-Trans' = Abort Trans u {In_O? }

No other changes to management data

Wait_Op' = Wait_Op

Commit Trans' = Commit Trans

Trans_Man_Req_Abort receives an input logical abort operation and adds the logical

operation to the set for aborted transactions.

Proof Obligation for the Schema Trans_Man_RecLAbort

The only change to the management data is to the set Abort Trans in the schema

Man_Data. Since the type rules are obeyed, the invariants are not violated.

The schema Trans_Man_Req is defined as the disjunction of the four schemas for each

operation.

Trans_Man_Req 22

Trans_Man_RecLRead V Trans_Man_RecLWrite V

Trans_Man_ReQCommit V Trans_Man_Req. Abort

Note that only one operation is possible for each change of state.

The data declarations in the management request Schemas are not the same. In particular

the Commit and abort management request schemas do not use the schema Distrib_Sites

- 186-

that is included in the read and write management request schemas. This means that each

schema in the disjunction does not specify all the components of the composite state.

Strictly, those variables not included in the component schema declarations should be

defined explicitly as being unaffected by the operation defined by the schema. This is

achieved by declaring a schema that indicates that there is no change of state for these vari-

ables in the conjunction of the commit and abort schemas.

Trans_Man_Rec_Commitl

Trans_Man_RecLCommit A EDistrib_Sites

and

Trans_Man_Req_Abortl = Trans_Man_Req_Abort A Mistrib_Sites

These new schemas can be used to give new versions of the schema Trans_Man_Req, but

to simplify the presentation it is not done here.

Preconditions for the Schema Trans_Man_Req

The preconditions for the schema Trans Man_Req are simplified to those given by the

schema Pre_Man_Req_Simple below.

- 197-

Pre_Man_Req_Simple

DistribrSites

Man_Data

In_O? : Logical_Op

3 n_man : Trans_Num; lb_man : LOGICAL OBJECT;

pb_man : Physical-Object; v man : VALUE "

In_O? = I_access (((read, n_man), lb_man), v_man)

read operation

v

ln_O? = I_access (((write, n_man), lb_man), v_man)
write operation

v

In_O? = I_end (commit, n_man)

commit operation

v

In 0? = Lend (abort, n_man)

abort operation

The correctness of the simplified preconditions is expressed in the schema below.

Simplified_5_7 = pre Trans_Man_Req t-ý Pre Man_Req_Simple

The schema Trans_Man_Req models the queueing of requests for physical access opera-

tions to be performed by the sites in the distributed database system. The site schemas grant

these requests when there are no conflicting operations.

-188-

5.4 3 Execution of Logical Operations

Figure 5.10 illustrates the interactions between the management execution schemas and the

management state schemas.

Figure 5.10 Schemas for Management Execution

Global 174 MarLop 202

r"ý
Hbwy Trans-Man-Read

1ý
Distrib Sites

Trans_Man_Write

V

175

-

Man-Data

,r dm dmný wakes
anno..

97

178
C

Try ManAboR
adle,. - Tho

200 X

N Abc&Trýn decA
,

No Change_
Man_OP

205

Site-Op- 170 Execution

- 189-

The following four Schemas form the management execution category of schemas. These

Schemas respond to the grants generated by the site schemas by constructing the physical

operations that are executed at the sites and forming the historical record of operations.

The following schema Trans_Man_Read specifies the management read operation. The

schema Site_Read to define the change of state instead of the schema

Site_Op_Execution. This is justified because any expansion of the schema will simplify

to using the schema Site_Read.

- 190

r
Trans_Man_Read

AGlobal

, Distnb Sites

AMan_Data

3 p_man : Operator; n_man : Trans_Num;

Ib_man : LOGICAL_OBJECT; v_man : VALUE;

Ir man Logical_Op I

Ir-man = I_ac cess (((p_man, n_man), Ib_man), v_man) A

p_man = read rN Ir-man E Wait Op -

s: Site; op_man : Op

op_man =

access (((p_man, n_man), (lb_man, s)), v_man) "
op-man E (Site_Base s) .

Read_Lock \ ran History A

Site Base' =
Site Base

(s -0
(NSite_Read

6 Site_Data = Site_Base sA In_Ex? = op man "
6 Site_Data')) A Wait Op' = Wait Op \ {Ir man} A

History' = History -'(op-man)

No other changes to the management data variables

Commit Trans' = Commit_Trans

Abort-Trans' = Abort-Trans

The schema Trans_Men_Read selects a member from the set Wait Op and existentially

quantifies the components in the free type definition of a LogiCal_Op. The additional

preconditions of this schema include both that there exists a single site that has granted

-191-

pcrmission for a read operation to occur on the physical object stored at a site and that the

opcrauc n has not be executed already (as denoted by the set difference between the set

Read Lork and the operations in the sequence History).

The schema Site_Data is given the appropriate binding for the site in question by the func-

tion Sire Base.

The change of state is indicated by changes to the particular binding of the schema

Site_Data. and updating of the set Wait Op and sequence History, all within the scope of

the existential quantifier with the bound variables.

In the schema Trans_Man_Read, the preconditions and postconditions are combined

because of the scope rules of predicate calculus makes this approach simpler than separat-

ing the preconditions.

I'he changes of the variables declared by the schema Site_Data are responded to by the

site schemas for the execution of operations.

Proof obligation for the schema Trans-Man- Read

The schema Trans_Man_Read changes the set Wait Op, the sequence History and

the function Site_Base. The only invariants for the set Wait Op and the sequence His-

Cory relate to their types. Since the type rules are applied correctly, the invariants are

not violated.

The changes to the function Site Base use the functional override operation such that

a single element is overridden. This means that the total functional properties of

Site Bast are not violated. The schema Site Read does not change the component

home in the schema Site_Data, hence the invariant for the schema Distrib_Sites is

maintained.

Preconditions for the Schema Trans_Man_Read

The schema Pre_Man_Read_Simple gives the simplified preconditions for the schema

Trans_Man_Read.

-192-

P re_Man_Read_Simple

Global

Distrib_Sites

Man_Data

I n_man Trans_Num; lb_man : LOGICAL OBJECT;

v_man VALUE; Ir_man : Logical-Op I

Ir_man = I_access (((read, n_man), lb-man), v_man) A

Ir_man E Wait_Op "

3s: Site -

access (((read, n_man), (lb_man, s)), v_man) F
(Site_Base s). Read_Lock \ ran History

The following schema is verified to ensure that the preconditions are correct.

Simplified_5_8 = pre Trans_Man_Read 4 Pre_Man_Read_Simple

The schema Trans_Man Write uses a generic operator for mapping a set of elements to a

sequence of the same elements in any order. The relation between sets and sequences is

given below.

[X]

ordering :PXH seq X

V set -x :PX; seq x: seq XI ordering set_x = seq x"

ran seq_x = set_x

The schema Trans_Man_Write models the effects of all sites simultaneously agreeing to

- 193 -

write operations being executed on the physical data objects that correspond to the logical

data object.

-194-

Trans Man Write

AGlobal

ADist b Sites

Man Data

p_man : Operator; n_man : Trans_Num;

Ib_man : LOGICAL_OBJECT; v_man : VALUE;

Ir_man : Logical_Op I

Ir_man = I_access (((p_man, n_man), lb_man), v_man) A

p_man = write A Ir_man E Wait Op "

(V s: Site; op_man : Op

op_man =

access (((p_man, n_man), (lb_man, s)), v_man) "
op_man E (Site_Base s). Write_Lock \ ran History) A

Site Base' _
Site Base

(s : Site; op_man : Op

op_man =

access (((p_man, n_man), (lb_man, s)), v_man) "
S-+

(FtSite_Wrlte

6 Site Data = Site_Base sA In-Ex? = Op-man

0 Site_Data') }A

History' _
History

ordering
(s : Site; op-man : Op I

- 195-

op_man =

access (((p_man, n_man), (Ib_man, s)), v_man) "
op_man) n Wait_Op' = Wait_Op \ {Ir man}

No other changes to the management data variables

Commit_Trans' = Commit Trans

Abort-Trans' = Abort-Trans

Proof Obligation for the Schema Trans_Man_Write

The schema Trans_Man_Write changes the set Wait Op, the sequence History and

the function Site_Base. The only invariants for the set Wait Op and the sequence His-

tory relate to their types. Since the type rules are applied correctly, the invariants are

not violated.

The changes to the function Site Base use the functional override operation such that

all the elements in its domain are overridden. This means that the total functional pro-

perties of Site Base are not violated. The schema Site Write does not change the

component home in the schema Site-Data, hence the invariant for the schema
Distrib_Sites is maintained.

Preconditions for the Schema Trans_Man_Write

The preconditions of the schema Trans Man_Write include that the logical operation is in

the set Wait_Op and that all the sites have granted permission for the associated physical

write operations, as indicated by the condition of the different bindings of the set

Write Lock given by the function Site Base.

- 196-

Pre_Man_Wnte_Simple

Global

Distnb Sites

Man Data

9 n_man Trans_Num; lb_man : LOGICAL OBJECT;

v -man
VALUE; Ir_man : Logical-Op

Ir_man = I_access (((write, n_man), lb-man), v_man) A

ir_man E Wait_Op "

Vs : Site

access (((write, n_man), (lb_man, s)), v--man) E
(Site_Base s). Write Lock \ ran History

The schema Pre_Man_Write_Simple defines the preconditions that are derived from the

schema Trans_Man_Write . The simplification is verified by expanding the following

schema.

Simph ied_5_9 2 pre Trans_Man_Write ý Pre_Man_Write_Simple

The schema Trans Man_Commit below models the management functions associated

with the execution of a commit operation.

-197-

Trans-Man-Commit

AGlobal

ADistdb Sites

AMan_Data

3 Ir man : Logical_Op; n_man : Trans_Num; op_man : Op;

p_man : Operator

Ir_man = I_end (p_man, n_man) A p_man = commit A

Ir man E Commit Trans n

(3 12 : Logical-Op; num2 : Trans_Num; op2 : Operator;

log_obj2 : LOGICAL_OBJECT; v2 : VALUE "

12 = I_access (((op2, num2), log_obj2), v2) A

num2 = n_man A 12 E Wait_Op) "

op_man = end (commit, n_man) A

History' = History ' (op man) A

Commit Trans' = Commit Trans \ {Ir man} ý.
Site Base' =

Site Base

(S: Site -
S '-ý

(µSite_Commit

A Site Data = Site_Base SA In_Ex? = op-man "
6 Site_Data'))

No other changes to management data

Wait Op' = Wait Op

Abort-Trans' = Abort-Trans

- 198-

Proof Obligation for the Schema Trans_Man_Commit

The schema Trans_Man_Commit changes the set Commit Op, the sequence History

and the function Site_Base. The only invariants for the set Commit Op and the

sequence History relate to their types. Since the type rules are applied correctly, the

invariants are not violated.

The changes to the function Site Base use the functional override operation such that

all the elements in its domain are overridden. This means that the total functional pro-

perves of Site Base are not violated. The schema Site_Commit does not change the

component home in the schema Site Data , hence the invariant for the schema

Distrib_Sites is maintained.

Preconditions for the Schema Trans_Man_Commit

The preconditions and postconditions are combined in the above schema because both sets

of conditions use the same quantified variables. The first existential quantifier extracts a

member from the set Commit Trans. This set contains all the commit operations waiting to

be executed. The second existential quantifier ensures that there are no logical operations

with the same transaction number waiting to be executed, as indicated by membership of

the set Wait Op. A commit operation is sent to all sites for each transaction, whether that

site has been involved or not.

The schema Pre_Man_Commit Simple below specifies the simplified preconditions for

the schema Trans-Man-Commit.

- 199

Pre_Man_Commit_Simple

Global

Distrib Sites

Man_Data

3 Ir_man : Logical_Op; n_man : Trans Num

Ir_man = Lend (commit, n_man) "

Ir man F Commit Trans A

1

(312: Logical-Op; num2 : Trans_Num; op2 : Operator;

Iog_obj2 : LOGICAL OBJECT; v2 : VALUE "

12 =I -access
(((op2, num2), Iog_obj2), v2) A

num2 = n_man A 12 E Wait Op)

The schema below indicates the condition for the simplified preconditions to be correct.

Simplified_5_10

pre Trans Man_Commit Pre-Man-Commit-Simple

The schema Trans_Man_Abort below models the functions associated with the execution

of an abort operation, which are very similar to those functions associated with a commit

operation.

- 200 -

Trans_Man_Abort

AGlobal

ADisthb Sites

AMan_Data

3 Ir_man : Logical_Op; p_man : Operator;

n_man : Trans_Num; op_man : Op I

Ir man = I_end (p_man, n_man) A p_man = abort A

Ir man E AbortTrans A

-,

(212: Logical-Op; num2 : Trans_Num; op2 : Operator;

log_obj2 : LOGICAL OBJECT; v2 : VALUE "

12 = I_acc ess (((op2, num2), Iog_obj2), v2) A

num2 = n_man A 12 E Wait_Op) "

op_man = end (abort, n_man) n

History' = History - (op man) A

Abort-Trans' = Abort-Trans \ {Ir_man} N

Site Base' =

Site Base

{s: Site -
S '-'

(LSite Abort

8 Site_Data = Site_Base sA In_Ex? = op-man -
0 Site_Data') }

No other changes to management data

Wait Op' = Wait Op

Commit Trans' = Commit Trans

- 201 -

Proof Obligation for the Schema Trans_Man_Abort

The proof sketch is identical to that for the schema Trans_Man_Commit except that

the set Abort_Trans is changed and the schema Site Abort is used to update the bind-

ings in the function Site_Base.

Preconditions for the Schema Trans-Man-Abort

The preconditions are simplified to give the following schema.

Pre Man_Abort Simple

Global

Distrib_Sites

Man_Data

3Ir man : Logical_Op; n_man : Trans Num I

Ir man = Lend (abort, n_man) "
Ir man E Abort-Trans A

-I

(3 12 : Logical-0p; num2 : Trans_Num; op2 : Operator;

Iog_obj2 : LOGICAL-OBJECT; v2 : VALUE "

12 =I _access
(((op2, num2), Iog_obj2), v2) A

num2 =n _man A 12 ¬ Wait Op)

The correctness of the simplified preconditions is expressed by the schema below.

- 202 -

Simprhfied_5_11 n- pre Trans_Man_Abort < Pre_Man_Abort_Simple

The schema Man_Op forms a disjunction of the management request operations. Note

that all the schema terms are mutually exclusive because each term defines the postcondi-

tuns uniquely.

Man_Op

Trans_Man_Read V Trans_Man_Wdte V

Trans_Man_Commit V Trans_Man_Abort

Only one logical operation is possible for each change of state in the schema Man-Op,

however, a logical operation may involve multiple sites.

The preconxhdons of the schema Man Op are given by the following schema.

- 203 -

Pre_Man_Simple

Gbbal

Distrib Sites

Man_Data

3 n_man : Trans_Num; lb man : LOGICAL OBJECT;

pb_man : Physical_Object; v_man : VALUE;

Ir_man : Logical_Op "

Ir man =l _access
(((read, n_man), lb_man), v_man) A

Ir man E Wait Op A

(3
1s:

Site "

access (((read, n_man), (lb man, s)), v_man) E

(Site Base s). Read_Lock \ ran History)

read operation

v

Ir man = I_access (((write, n_man), lb_man), v_man) A

Ir man E Wait Op A

(Vs: Site -
access (((write, n_man), (lb_man, s)), v_man) E

(Site Base s). Write_Lock \ ran History)

write operation

v

Ir man E Commit Trans A
Ir man = Lend (commit, n_man) A

(312: Logical Op; num2 : Trans_Num; op2 : Operator;

- 204 -

log_obj2 : LOGICAL OBJECT; v2 : VALUE "

12 = I_access (((op2, num2), Iog_obj2), v2) A

num2 = n_man A 12 F Wait_Op)

commit operation

v

Ir man E Abort_Trans A Ir man = Lend (abort, n_man) A

(B 12 : Logical-0p; num2 : Trans_Num; op2 : Operator;

Iog_obj2 : LOGICAL OBJECT; v2 : VALUE "

12 =I _access
(((op2, num2), iog_obj2), v2) A

num2 = n_man A 12 E Wait_Op)

abort operation

The schema Man_Op is not total over all possible state values. The states other than those

that meet the precondition Pre_Man_Simple are given by the schema below.

Not Pre_Man_Simple = Pre_Man_Simple

This also includes the states that do not meet the invariants of the schema
Pre_Man_Simple. The invariants are included in the following schema:

Not Pre_Man_Simplel

- Pre-Man Simple A Global A Distrib_Sites

However, the schema invariants can also be included by specifying that there is no change

of state as in the schema below.

-205-

No_Change_Man_Op

- Pre_Man_Simple A -Global A EDistrib_Sites

Giving the final total specification of the management execution operation in the form of

the schema below.

Man_Op_Total Man_Op V No Change_Man_Op

- 206 -

5.4.4 Progress of Site Requests

Figure 5.11 illustrates he interactions between the schema for the progress of the site

requests and the management state schemas.

Figure 5.11 Schema for Site Progress

Global 174 I Site_ReýProgress

--H; uý. y ' 207

Distrib_Sites

eo. sie sien_s. ýe

F-17-31
Site_R

_Total
She-Dodua Si Rsq_ope atico.

site Req-Reac

Man Data

w. ýUv a of daft ° °ý site Rey-Wr"
178

Otis"

dýlfeýs AboR_Traro
SIteý1o_ChanQe

- 207 -

The state changes brought about by the site request operations to all sites are represented by

the schema Site_Req_Progress.

Site_Req_Progress -

ODistrib Sites

E Man Data

Global

Site Base' _

Site Base

{s: Site -

S '-p

(RSite_Rec-Total 18 Site_Data = Site_Base s"

6 Site_Data') }

Note that a number of sites can be affected in a single change of state.

The schema Site_ReQ. ProgreSS includes the conditions that the variables in the schemas

Man Data and Global are not changed, hence prohibiting concurrent changes of site

request actions and any other type of action.

Proof Obligation for the Schema Site_Rec Progress

The function Site Base is changed by all elements in its domain being overridden by

the results of the schema Site_Req_Total for that element being bound to the com-

ponent home of the schema Site_Data. This can result in changes to the bindings in

the range of Site Base, however, the component home is never changed, thereby

maintaining the invariant of the schema Distrib_Sites.

- 208 -

Preconditions for the Schema Site_Req_Progress

The only preconditions for the schema Site_Req_Progress are the correct types for the

components in the management data. The schema Site_Req_Total is total for all the state

values. Some state values result in changes to the components Read Lock and Write Lock

for particular sites. Other state values do not cause any change to the bindings of

Site Base.

5.5 Complete Implementation

The schema Man_Req combines the transaction management request schema with the

declaration of the history records since they are not changed by this management schema.

Man_Req = EGlobai A Trans_Man_Req

The implementation of the replicated database system is defined as:

DBS_Imp a Man_Req V Man_Op_Total V Site_Req_Progress

Again, schema disjunction indicates the independent actions of each of the three schema

terms. Because the preconditions of the schemas are not mutually exclusive there is a pos-

sibility that state changes are caused by more than one schema term. However, the

postconditions ensure that the change of state is due to one schema only.

The interpretation of the functional behaviour represented by the schemas is summarised as

follows. An input representing a logical operation is received by the schema

Trans_Man_Req . The schema Trans_Man_Req updates the input variable to the

schema New-Site-Req. The schema New_Site_Req in turn updates the sequence of

operations for each site. The schema Site_Req_Progress monitors the sequence of

operations for each site and updates the components Read Lock and Write Lock when pos-

sible. The schema Man_Op responds to the values of the components Read Lock and

Write Lock to change the values bound to the input variable in the site operation execution

- 209 -

schemas included in Site_Op_Execution.

The verification condition applies to complete histories of the operations contained in the

transactions. The operation schemas in the implementation apply to individual operations

and, as a byproduct, construct a historical record of the operations. The historical record

that is referred to in the verification is constructed from a sequence of operations whose

behaviours are specified by the operation Schemas in the implementation.

The schema DBS_Imp represents all the possible bindings that meet the conditions of the

schema, hence are the effects of the operation schemas that constitute DBS_Imp.

The schema DBS_History below represents the states of the implementation that exist for

complete histories.

DBS_History = DBS_Imp A Complete History [History/History_Rec)

5.6 Proof Sketches of the Serializability of the Implementation

This section presents two informal proof sketches of the serializability of the transactions

performed on the implementation of a replicated database system presented in this chapter.

The first proof sketch verifies that all the transactions are one copy serializable by means of

an induction on the length of the historical record of operations without explicit reference to

the one copy serialization property that is expressed in the Z notation.

The second proof sketch uses both the specification of the one copy serialization property

and the implementation to prove that all histories in the implementation can occur in the

histories generated by the property schema.

Appendix C contains several example animations of the schemas contained in this chapter.

Looking at the examples may make the proof sketches easier to follow.

-210-

5.6.1 Proof Sketch of One Copy Serializability

The proof is an induction proof based on the length of the sequence of operations bound to

the variable History.

Base Case:

History =()

Since there are no operations, there cannot be any conflicts.

Induction step:

History =h1 of length m

Assume that a history, hl, of length m is serializable. A new history, hl', of length m+1

is formed by concatenating an operation ol, such that

hl'=hl '(o1)

All possible replicated data objects histories are serializable histories is proved by case

analysis on each of the four types of operators:

I Read operation of physical object xa by transaction i.

Any conflict this operation has with previous operations is caused by either of the fol-

lowing two possibilities:

(i) The previous operation is a write operation to the same logical object x from a

completed transaction with number j.

From the write all algorithm specified by the schema Trans_Man_Write, all

sites locked a write request to the physical copies of x, including the physical

object xa. The physical operations in the set Write Lock are removed by the

schemas Site_Commit or Site Abort , indicating a completed transaction.

Therefore the effects of this previous write must occur before the current read

operation and an equivalent serial order of transactions is j occurs before i.

(ii) The previous operation is a write operation to the same logical object x from an

-211 -

uncompleted transaction with number j.

This is impossible because all bindings given by the function Site_Base of the set

Write_Lock will have a member which is a physical write operation to each copy

of x. including xa. hence making the preconditions of the schema

Site_Req_Read false.

2 Write operation of physical object xa by transaction i.

Any conflict this operation has with previous operations is caused by one of the fol-

lowing four possibilities:

(i) A previous operation is a write operation to the same logical object x from a

completed transaction with number j.

Because of the write all algorithm, all copies of the logical object x have been

updated, hence transaction j can be put in a serial order with transaction i such

that transaction j occurs before transaction i.

(ii) A previous operation is a write operation to the same logical object x from an

uncompleted transaction with number j.

This cannot occur because the members of Write Lock include a physical opera-

tion to object x.

(iii) A previous operation is a read operation to the same logical object x from a

completed transaction with number j.

The transaction j cannot have any conflicting operations with transaction i at the

time of completion, hence an equivalent serial is possible with transaction j

occurring before transaction i.

(iv) A previous operation is a read operation to the same logical object x from an

uncompleted transaction with number j. There must exist some site that has a

physical read operation as a member of the set Read Lock. Thus causing the

preconditions of the schema Site ReCLWrite to be false and, as a consequence,

also causing the preconditions of the schema Trans_Man Write to be false,

hence this combination of events cannot occur.

- 212 -

3 Commit operation

Since a commit operation can be performed at any time, provided if it is the last

operation of any transaction, hl' is a one copy serializable history because hl is a one

copy serializable history.

4 Abort operation

Identical reasoning applies to the abort operation as to the above commit operation.

5.6.2 Proof Sketch of the Behaviour meeting the Specification Property

Even with both the specification and the implementation written in the same notation, it is

not a trivial task to relate a description of a specification to a description of an implementa-

tion because of the different levels of abstraction. However, in this case the specification is

written in terms of a data type that is also in the implementation, i. e. that of a sequence of

operations. This common data type allows direct comparisons to be made between the two

descriptions.

If different data types are used, then some relation (i. e. an abstraction relation) has to be

given that specifies the rules for converting from one data type to the other.

The hypothesis is that each possible complete history under the replicated database schemas

is also possible under the serializability schemas. The correctness criterion is of the form:

implementation Specification

This can be considered in terms of behaviours where, if an implementation can give rise to

a certain behaviour, then that behaviour possesses the required property. Figure 5.12

represents this relationship as a Venn diagram, the set representing the behaviour of an

implementation is a subset of the set representing the behaviour implied by the

specification.

- 213 -

Figure 5.12 Inclusion Relationship for One Copy Serialization Property

One Copy Serialization Plvperty Behaviour

In both the implementation and the specification in this study, the behaviour is represented

as sequences of operations and the verification that the implementation of the replicated

database system has the one copy serialization property is expressed as the following

theorem for all complete histories:

DBS_History A Serializable_History I- History E Histories

This states that all complete histories of operations that are produced by the implementation

are members of the set of all histories of operations that have the one copy serialization

property.

This can be interpreted as, there can be histories of operations that possess the one copy

serialization property other than those capable of being generated by the version of the

strict two phase locking implementation, but all those possible by the implementation do

have the one copy serialization property.

The proof strategy is to show that any complete history of operations that can occur in the

implementation, is also possible in the specification.

- 214 -

Proof Sketch of Correctness

Consider an arbitrary history value, h. that records the operations that meet the implemen-

tation represented by the schema DBS_History. It must be shown possible to construct the

same history value using the schema Complete Serializable that represents the

specification.

The following proof refers to the Schemas that are used to construct the specification and it

will be useful to refer to Figure 5.1 while reading this proof sketch.

The serialization property only applies to complete histories. The history value h satisfies

the schema Complete History that is part of the specification because the same schema is

also used in the implementation. Therefore, all the transaction in h are terminated by either

a commit operation or an abort operation.

The schema History_Invariant restricts the component HistoryRec, which in this case has

the binding of the value h. The component Op_Q in the schema Site_Data is defined to be

a sequence of physical operations, this data structure is used by the schema

Site_Req_Operations to ensure that the order in which physical operations are performed

by each site is the same as the order in which the operations appear in the transactions. The

only precedence relation in the implementation is between operations within transactions

and that there are no other restrictions placed on the operations. This reflects the usual

requirement for transactions to be independent of each other. Assuming that this is the only

form of restrictions in the set Trans Precedence, the history value h will conform to the

schema History_Invariant.

The schema Precede_Set produces the set Precedes based on the binding h to the com-

ponent HistoryRec. The set Precedes contains all the pairs of physical operations such

that the first operation precedes the second in the sequence h.

The schema Conflicting. Set, based on the set Precedes, produces the set Conflicting. The

set Conflicting contains all the members of Precedes that have conflicting operations.

The schema Conflicting_End_Points, based on the set Conflicting, produces the set

Conflicting Points. The set Conflicting_Points contains the transaction numbers of the

transactions that are linked by a series of conflicting operations.

-215-

The schema Conflicbng_Trans restricts all members of the set Confiicting_Points such

that

(n, n) E Conflicting-Points

It follows that the history, h, is a valid binding of the component HistoryRec if it does not

give rise to the set Conflicting Points such that (n, n) is a member for any transaction

number n.

Assume that i and j are transaction numbers that appear in h, such that i ;tj and j contains

an operation that conflicts with an operation in i where the operation in i occurs before the

operation in j. hence

(i, j) E Conflicting Points

For example, the value of h can have the form

h =... ri(xa)... wj(xa)...

From the strict two phase locking mechanism of the implementation DBS_History, no

operations in different transactions can conflict unless the first transaction has completed all

its operations before the conflicting operation in the second transaction occurs. Hence,

transaction i must have either a commit or an abort operation in history h before the

occurrence of the conflicting operation in transaction j. For example, h can have the form

h =... ri(xa)... ci ... wj(xa)...

This means that there can be no other operations in transaction i that occur after the

conflicting operation in transaction j. Therefore, transaction i must complete before tran-

saction j.

A cycle of the form

(i, i) E Conf licting Points

will occur if the set Conflicting Points is produced such that

- 216 -

(i, j) F Conf licting_Points A (j, i) F Con f licting_Points

However, if

(j , i) E Con f licting_Points

then an operation in transaction j occurs before an operation in transaction i such that the

operations conflict. Because of the strict two phase locking mechanism employed in the

schema DBS_History, if

(j , i) E Con f licting Points

then transaction j must have completed before the occurrence of the conflicting operation in

transaction i. Therefore, transaction j must complete before transaction i. However, this

contradicts the conclusion for the case

(i, j) E Con f licting Points

Therefore, if

(j, j) F Conf licting Points

then

(j, i) iF Conf licting Points

It is also necessary to consider whether it is possible to form a path of conflicting transac-

tions such that

(i, j) E Conflicting Points A (j, k) E Conflicting Points A ...

(p, i) E Conf licting Points

This forms a chain of reasoning such that

i completes before j completes before k ... completes before p completes before i

Since completes before is an obvious transitive and antisymmetric relation, the above

- 217 -

simplifies to

i completes before i

which is a contradiction and hence is not allowed by the two phase locking mechanism.

Therefore, any history value h produced by the schema DBS_History will give rise to the

schema Conflicting_End_Points producing the set Conflicting Points such that

(n, n)e Conflicting Points

The schema Conflicting Op_Set produces the set Conflicting--Op by adding members to

the set Conflicting Points that result from conflicts between logical data objects. The pro-

tocol implemented by the schema Trans_Man_Req is a write all protocol. This has the

effect making the distributed physical data objects perform as a single data object. That is,

no data object is updated in isolation to the others and a write lock must be obtained from

all the physical data objects. Therefore, the schemas Conflicting_Op Set and

Ordered_End_Points will not add any new members, hence

Ordered Points =Conflicting Points

and the condition

(n, n) e Ordered Points

in the schema One Copy_Senalization is true, thereby indicating that the history value h

is a valid binding of the component History Rec and is therefore one copy serializable.

Note that the only restriction on the order operations in the implementation is that given by

their order within transactions, hence the implementation does not meet the full flexibility

represented by the specification. Should any additional precedence relation be required
between transactions, as represented by the set Trans Precedence, then the implementation

must be changed.

-218-

5.7 Summary

This chapter contains a detailed study of an integrated implementation of the concurrency

control aspects of a replicated database system. By integrated, it is meant that all the

schemas are combined into a single, coherent model of the system that defines all the data

necessary to identify each operation.

As revealed by the schemas contained in Chapter 3, it is useful to maintain a consistent style

of writing schemas and in some cases this does entail extra variables to be existentially

quantified. In most schemas, the preconditions are clearly separate from the postconditions,

however for some schemas, such as Trans_Man_Read, the preconditions and posteondi-

tions are part of the same quantification because of the scope rules of the quantifiers. The

predicates can be separated by repeating the quantified predicates; once to establish the pre-

condition and a second time to define the postconditions. However, this is at the expense of

further complicating the schema definitions.

The one copy serializability property is specified in the form of the schema

Serializable History that defines all possible histories that are one copy serializable, given

the precedence relation determined by the set Trans_Precedence. Figure 5.1 indicates the

construction of this schema from other schemas defined in Section 5.1 and provides a good

summary of the relations between all the schemas defined in Section 5.1.

Interaction diagrams are employed in Sections 5.2 - 5.5 to emphasise the connection be-

tween sets schemas, such relations are not always apparent from the definitions in the Z no-

tation.

The two proof sketches in Section 5.6 that verify the implementation are quite straightfor-

ward and elegant, although they lacked strict formality. However, as the specification and

implementation are described precisely, the possibility of error is reduced compared to using

natural languages, or semi formal languages. The completely formal proof (i. e. a proof

demonstration), which although may be possible with computer assistance, is very difficult

to complete manually. Also, the benefits of completely formal proofs have not been demon-

strated to warrant the expenditure of effort required to perform them.

- 219 -

Proof sketches are capable of revealing hidden assumptions, for instance, the proof sketch in

Section 5.6.2 revealed an underlying assumption of the implementation about the form of

precedence relations expected between operations in the same transactions. The specification

of the precedence relation is not as restrictive as that in the implementation and this mismatch

may had not been apparent without the aid of proof sketches.

The proof obligations of this chapter are the same as those discharged in Chapter 3, see

Section 3.8.2.

