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Abstract 

The purpose of the thesis is to present an account of Henri Poincare's famous memoir 

on the three body problem, the final version of which was published in Acta 

Mathematica in 1890 as the prize-winning entry in King Oscar II's 60th birthday 

competition. The memoir is reknowned both for its role in providing the foundations 

for Poincare's celebrated three volume Methodes Nouvelles de la Mecanique 

Celeste, and for containing the first mathematical description of chaotic behaviour 

in a dynamical system. 

A historical context is provided both through consideration of the problem itself 

and through a discussion of Poincare's earlier work which relates to the 

mathematics developed in the memoir. The organisation of the Oscar competition, 

which was undertaken by Gösta Mittag-Leffler, is also described. This not only 

provides an insight into the late 19th century European mathematical community 
but also reveals that after the prize had been awarded Poincare found an important 

error in his work and substantially revised the memoir prior to its publication in 

Acta. The discovery of a printed version of the original memoir personally 

annotated by Poincare has allowed for a detailed comparative study of the 

mathematics contained in both versions of the memoir. The error is explained and it 

is shown that it was only as a result of its correction that Poincare discovered the 

chaotic behaviour now associated with the memoir. 

The contemporary reception of the memoir is discussed and Poincare's subsequent 

work in celestial mechanics and related topics is examined. Through the 

consideration of sources up to 1920 the influence and impact of the memoir on the 

progress of the three body problem and on dynamics in general is assessed. 
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1. Introduction 

1.1 Aims and organisation of the thesis 
The main purpose of my research is twofold. First I provide a full account of Henri 

Poincare's famous memoir on the three body problem which was published in Acta 

Mathematica at the end of 1890 as the prize winning entry of the important 

international competition sponsored by King Oscar II of Sweden and Norway to 

celebrate his 60th birthday. The memoir's publication had been eagerly awaited by 

the mathematical community since January 1889 when the results of the competition 

were announced. Its appearance fulfilled expectations for it contained substantial 

new and exciting results pertaining to a longstanding and important problem, and it 

has continued to be lauded by succeeding generations of mathematicians as a 

milestone in the study and development of both celestial mechanics and dynamics. 

In 1902 F. R. Moulton wrote: 

"The methods employed by Poincare were incomparably more profound and 

powerful than any previously used in Celestial Mechanics, and mark an 

epoch in the development of the science. " [1914,320], 

and in 1925 George Birkhoff introduced a paper with: 

"Le Probleme de (sic) trois corps ... contained the first great attack upon the 

non-integrable problems of dynamics. ... Acta Mathematica has had many 

I 



2 Introduction 

remarkable articles, but perhaps none of larger scientific importance than 

this one. " [1925,297]. 

Much more recently, Philip Holmes [1990) described the memoir as: 

"... the first textbook in the qualitative theory of dynamical systems ... ". 

In his introduction to the memoir Poincare stated that he had revised the paper for 

publication, but he did not document the nature and extent of his alterations. 
However, the discovery of a printed version of Poincare's original memoir annotated 

personally by him, reveals that the paper which appears in Acta differed quite 
dramatically from the paper which actually won the prizes. Some of the principal 

results for which the paper is best known today are nowhere to be found in the 

original version. I make a comparison between the two versions which shows that 

their differences are not merely the result of refinements and additions but they 

exist largely as a consequence of corrections which Poincare made upon the discovery 

of an important error after the prize had been awarded, and I show that the 

correction of the error is critical with regard to our perception of the memoir today. 

Second, I give a description of the mathematical environment in which the work 

was produced and published. By placing [P2] into a historical context, I demonstrate 

that it marks an important change in approach to dynamical problems and can be 

regarded as a starting point for the beginnings of dynamical systems theory. In 

association with this second objective, I indicate how the many new and innovatory 

ideas which appear in [P2] have been extended and developed, not only in the 

context in which they were created, but also in other branches of mathematics. 

I begin by providing a mathematical framework for [P2] both in terms of the three 

body problem itself and in terms of Poincare's earlier related work. In order to 

clarify the mathematical difficulties associated with the problem, I give a modern 

mathematical description before giving an outline of its history. With regard to the 

historical development of the problem, I look particularly at the progress made in 

the 19th century and consider the contributions made by the mathematical 

astronomers Delaunay, Gylden, and Lindstedt, whose work on infinite series 

solutions was of special interest to Poincare, and I pay close attention to the research 

I Henceforth I shall refer to the published version of the Memoir as [P2], the first printed version 
of the Memoir as [P1] and the copy of [P1] personally annotated by Poincare as [Pla]. 
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of the American G. W. Hill whose ground-breaking investigation into the theory of 

periodic solutions was a fundamental influence on Poincare's work. 

With respect to Poincare's earlier work, I concentrate particularly on the celebrated 

memoirs on curves defined by differential equations, as it was these memoirs which 

provided the first qualitative account of the theory of differential equations, and 
formed the foundation for a large part of the mathematical theory to be found in his 

celestial mechanics which received its first exposure in [P2]. In addition, I also 

examine papers in which Poincare either addressed specific aspects of the three 
body problem, such as his first paper on periodic solutions, or treated related 

mathematical techniques, such as his paper on asymptotic series. 

Then I give an account of the circumstances which led up to and surrounded the final 

publication of the memoir. The organisation of the Oscar competition was the 

responsibility of the Swedish mathematician and editor of Acta, Gösta Mittag- 

Leffler, who engaged the support of two of the leading analysts in Europe, Charles 

Hermite and Karl Weierstrass, to make up the prize commission. From the 

competition's beginnings in 1884 until the appearance of Poincare's memoir in Acta in 

October 1890, Mittag-Leffler was beleaguered by problems which reached a climax 

with Poincare's discovery of the error, and an examination of the surviving 
documents provides an interesting insight into the life of the late 19th century 
European mathematical community. 

The central core of the thesis is a description and analysis of [P2] in conjunction with 

a comparison with [PI]. In the analysis of the memoir, I follow Poincare closely in 

order to describe clearly the significant differences between [P1] and [P2]. I have 

used [P2] as the basis, inserting descriptions from [P1] when these differences arise. 
It will be seen that in both versions Poincare divided the memoir into two parts: 
theory and application, and in each case he applied the theory to a simplified form 

of the three body problem now known as the restricted three body problem. 

The major part of the development of the theory is taken up with the two important 

topics of invariant integrals and periodic solutions. Although Poincare had touched 

on the subject of invariant integrals in earlier papers, it is here that he provided the 

first detailed account of the theory, and included for the first time his famous 

recurrence theorem. With regard to the periodic solutions, Poincare had earlier 
demonstrated the potential of these solutions for resolving qualitative questions in 

the theory of differential equations, but it was in [P2] that this potential was 
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successfully put to the test and led to the discovery of his exciting new theory of 

asymptotic solutions. 

The second part of [P2] is largely concerned with the application of the theory of 

asymptotic solutions to the restricted three body problem, but it also contains 
Poincare's theorem concerning the non-existence of any new transcendental integrals 

of the restricted three body problem, and his proof of the divergence of Lindstedt's 

series. In his application of the theory of asymptotic solutions Poincare proceeded 
by a series of approximations which involved taking account of an increasing number 

of terms in the power series expansions used to describe the solutions. I show that 

although it was his geometrical description of the asymptotic solutions which was 

affected most dramatically by the discovery and correction of the error, the error 
itself arose in the preceding analysis. 

Briefly, in his original account Poincare did not draw a distinction between 

autonomous and non-autonomous Hamiltonian systems of differential equations, and 

as a result drew mistaken conclusions about the convergence of the series used to 

describe the asymptotic solutions of the problem. In [P1] Poincare believed that the 

series were convergent and led to asymptotic trajectories with behaviour which was 

easily understood. In [P2] he showed that the series were actually asymptotic 

expansions with the result that the behaviour of the trajectories was anything but 

easy to describe and in fact was what today would be called chaotic. Thus contrary 

to what is generally believed, I show that Poincare did not win the Oscar prize for 

his discovery and analysis of the behaviour of what he called doubly asymptotic 

solutions (and later called homoclinic solutions), but rather he won the prize for the 

underlying theory which eventually led to his correct description of these solutions. 

Since the objective of my discussion of the memoir is to give an analysis of the new 
ideas contained in it and to make clear the nature and extent of Poincare's error, I 

have not given the details of mathematical arguments where they are either well 
known or uncontentious. For further details the reader is referred to the copy of [P2] 

in Volume VII of the Poincare CEuvres. 

In discussing the reception of the memoir, I look first at the prize commission's views 

on [P1] as revealed through the correspondence and then describe the response to the 

news of Poincare's success in the competition. Considering the period after the 

publication of [P21, I examine commentaries on the memoir as well as the 

contemporary response to some of the ideas contained in it. 
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With regard to Poincare's work after 1890, I describe the relationship of [P2] to his 

renowned three volume Methodes Nouvelles published between 1892 and 1899, the 

first and last volumes of which are largely an elaboration and refinement of [P2]. I 

then examine other papers on the three body problem and celestial mechanics 

which are either related to or develop ideas contained in [P2]. These range from 

specific corrections and criticisms of the work of other mathematicians and 

astronomers through to articles of a general nature on the stability of the solar 

system. 

I also consider two later papers in which Poincare developed his ideas about the 

existence of periodic solutions in the three body problem within a topological 

framework. The first of these, which was his first on periodic solutions after an 
interval of more than ten years, was a study of geodesics on a convex surfaces which 

was published in 1905, appearing shortly after the final paper in his fundamental 

series on the study of topology (or Analysis Situs as it was then called). The second 

paper, which was published in 1912 only shortly before he died, contained his 

famous "last geometric theorem", a complete proof of which sadly had eluded him, 

but which was supplied shortly afterwards by the young American mathematician 
George Birkhoff. 

The latter part of the thesis is devoted to an examination of both the influence of 
[P2] on the progress of the three body problem, and the memoir's role in the 

foundation of dynamical systems theory. I consider the period up until 1920 by 

which time not only had a function theoretical proof to the three body problem been 

obtained, but also dynamical systems theory started to move into a new phase no 
longer centred around problems in celestial mechanics. Part of the reason for this 

change was the inadequacy of computing techniques which meant that verification 

of the accuracy of the predictions generated by the theory was not feasible, 

comparable quantitative analysis only becoming possible with the development of 

the modern digital computer. Not only did this lack of computing power help to 

engender a move towards more generalised problems but also astronomy itself was 

changing. The announcement of Einstein's general theory of relativity in 1915 and 

the rise of quantum mechanics in the 1920s created additional diversions away from 

some of the traditional problems in celestial mechanics with mathematicians eager 

to find applications for the new methods. 
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Prior to examining the progress of the three body problem, I extend the context in 

which Poincare's work was produced, by first considering Alexander Liapunov's 

qualitative study of stability theory. Although Liapunov's memoir, which 

appeared in 1890, was produced independently of [P2], it provides an interesting 

alternative account of one of the topics discussed by Poincare. Also in connection 

with stability theory I consider briefly the ideas of Tullio Levi-Civita. 

With regard to the three body problem, I begin by discussing the regularisation of 

the equations, a process which was begun by Paul Painleve in 1895. In particular I 

describe the important contribution made by Levi-Civita, and the final resolution of 

the problem achieved by Karl Sundman in 1912. I then look at the influence of 
Poincare's ideas on the quantitative development of the problem by examining the 

work of Sir George Darwin on periodic orbits. 

Turning to more general problems of dynamics, I show that it was Poincare's methods 

which, being characterised by a global geometric viewpoint, led to the opening up of 

a new qualitative approach to the subject. In particular I examine the related work 

of both Jacques Hadamard and George Birkhoff each of whom were greatly 
influenced by Poincare and professed the greatest admiration for his work. 

Hadamard's ideas were presented in two seminal papers in which he discussed 

geodesics on surfaces and which were published in 1897 and 1898. The first, for 

which he was awarded the Prix Bordin de 1'Academie des Sciences, deals with the 

case when the surfaces are everywhere of positive curvature, while the second is 

concerned with surfaces of negative curvature. With regard to these papers the 

importance of topology in the study of differential equations as initiated by 

Poincare is clearly evident. 

George Birkhoff made outstanding progress in the field of dynamics and the general 

theory of orbits. He was especially influenced by Poincare's Methodes Nouvelles, 

and recorded particular successes in geometrical aspects of dynamics, notably in 

providing a proof for Poincare's last geometric theorem. I look at how Birkhoff 

expanded Poincare's ideas in his own work on the restricted three body problem and 
dynamical systems to become one of the founders of modem dynamics. 

Finally, I end by signalling the work of the next generation of mathematicians 

working in the same tradition. I mention here the work of Marston Morse, who was a 

student of Birkhoff's and took up both his ideas and those of Hadamard, and, 

moreover, described himself as a "mathematical descendant of Poincare". He 
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understood topology through dynamics and in 1917 wrote papers on dynamics and 

geodesic flow which can be considered the starting point for symbolic dynamics. I 

also look forward to the work Kolmogorov, Arnol'd and Moser on the existence of 

quasi-periodic solutions of Hamiltonian systems. 

References are cited in the [year] or [year, page number] form, for example 
Whittaker [1937,339] refers to E. T. Whittaker A treatise on the analytical 
dynamics of particles and rigid bodies, page number 339. All page numbers in 

references to works of Poincare, Birkhoff, Darwin, Hadamard and Hill refer to the 

collected works where applicable. References to the thesis will be by chapter and 

section number. The references, together with a name and date index, are collected 

at the end of the thesis. Unless otherwise stated all translations are my own. 



2. Historical Background 

2.1 Introduction 
The three body problem, described by Whittaker as "the most celebrated of all 
dynamical problems"1, and which for Hilbert fulfilled the necessary criteria for a 

good mathematical problem2, can be simply stated: three particles move in space 

under their mutual gravitational attraction; given their initial conditions, 
determine their subsequent motion. 

However, like many mathematical problems, the simplicity of its statement belies 

the complexity of its solution. For although the one and two body problems can be 

solved in closed form by means of elementary functions, the three body problem is a 

complicated non-linear problem and no similar type of solution exists. 

Apart from the intrinsic appeal of such a simple to state problem, there is another 

compelling reason for wanting to study three body problem and that is its intimate 

link with the fundamental question of the stability of the solar system. Over the 

years attempts to find a solution have spawned a wealth of research. Between 1750 

and the beginning of this century more than 800 memoirs relating to the problem 

I Whittaker [1937,339). 

2 See the introduction to Hilbert's famous speech on mathematical problems given at the Paris 
Congress in 1900 which first appeared in Got finger Nachrichten 1900,253-297; and in Archiv 
der Mathematik und Physik (3) 1 (1901), 44-63 and 213-237; and translated for the American 
Mathematical Society Bulletin 8 (1902), 437-479, by Mary Winston Newson. 

8 



Historical Background 9 

were published, invoking a roll call of many distinguished mathematicians and 

astronomers3. The interest generated by the problem has resulted in significant 

advances in mathematics in many different fields including, in recent times, the 

theory of dynamical systems. 

At the beginning of this century a Finnish mathematical astronomer, Karl Sundman, 

mathematically "solved" the problem by providing a convergent power series 

solution valid for all values of time4. However, since Sundman's solution gives no 

qualitative information about the behaviour of the system, and the rate of 

convergence of the series is considered to be too slow to be of any real practical use, it 

leaves plenty of issues surrounding the problem still unresolved. 

It is helpful to begin by giving a current mathematical description in order to 

provide a context for the historical development. 

2.2 Mathematical description of the three body problem 
2.2.1 The differential equations of the problem 

Let Pi represent the three particles with masses m; distances P; Pj = rq, and 

coordinates q, ý (i, j=1,2,3) in an inertial coordinate system. The equations of motion 

are 
d2 1ý - k2m 

(q21 - 9r) 
+ k2m3 - ql1) 2.2. i d t2 2r 23 3 r133 

() 

d2 2, _ k2m 
(91; - q2, ) 

+ k2m 
(3i - 2+) 

dt21 r123 3 r233 

d2 3+ _ k2m 
(91i - q3+) 

+ k2m 
(9r - 93i) 

t=12 3) 1 r, 33 
2 x233 

(ii) 

where kis the gravitational constant. The problem is therefore described by nine 
differential equations each of second order. 

3 Whittaker [1937,339] 

The history of the three bod problem has been well documented, most notably by Gautier [1817], 
Cayley [1862], Whittaker [1899], Lovett [1912] and Marcolongo [1919]. Whittaker's famous 
report describes the situation from 1868 to 1898, while that of Lovett is concerned with the 
following decade. Marcolongo's book is a full account, superbly referenced and deserves to be 
better known. 

4 Sundman's work is discussed in Chapter 8. 
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If the units are chosen such that k2 is equal to one, the force of attraction between the 
ith and jth particles becomes m; mj/r12, and the corresponding term in the potential 

energy becomes -mim1/r11. The potential energy V of the whole system is therefore 

given by 

m2m3 m3n2, m, m1 
V= -- - 

r23 r3, r12 

Writing 

Pt)=m'dALH t 

and 

H-v +v 
Zmi 

the equations take the Hamiltonian form 

dg1aH dd,. 
__-r dt -dp; 1' dt- dq; j 

and these are a set of 18 first order differential equations. 

So for a closed solution to the problem the system needs 18 integrals. However, as 
described below, it is only possible to reduce the system to one of order six. Briefly, 

this is achieved through the use of the so-called ten classical integrals - the six 
integrals of the motion of the centre of mass, the three integrals of angular 

momentum, and the energy integral - together with the elimination of the time and 
the elimination of what is called the ascending node. Bruns [18871 proved that when 

the rectangular coordinates are chosen as dependent variables the ten classical 
integrals are the only independent algebraic integrals of the problem and all others 

can be formed by a combination of these. It will be seen later how Poincare extended 
Bruns' result by establishing that no new single-valued transcendental integrals of 

the problem exist, provided the masses of two of the bodies are very small when 

compared with the third. 

2.2.2 Reduction to 6th order 

If the ijth equation of equations (2.2. i) is multiplied by in, a summation can be 

performed to give three equations 
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3 

(j=1,2,3) 
i. 1 

These equations can be integrated twice to give the equations 
3 

Xme,, =Ait + Bt (f=1,2,3) 
i-I 

in which the Aj and B1 are constants of integration. This set of equations shows that 

the centre of mass of the three particles either remains at rest or moves uniformly in 

space in a straight line, which is as expected since there are no forces acting except 

the mutual attractions of the particles. The six constants serve to describe the 

motion of the centre of mass in the original arbitrary inertial coordinate system and 

they play no part in the motion of the bodies about the centre of mass. 

If in the first set of equations (2.2. i) the first equation is multiplied by -q12, the 

second equation by -q22 and the third equation by -q32, and in the second set the first 

equation is multiplied by q11, the second equation by q21 and the third equation by q37, 

and these two sets are added together, then this gives 
33 

dZ 
,I 

dq,, 
m, q,, m, i2' _ 0, 

and two similar equations can be obtained by a cyclic change of the variables. The 

three equations can be integrated to give 
3 

r d; 3 d; zl m; I9; z dt -9; sdt I=C, 

3 

( d;, d; al I= C2 m; l 9; 3 d t- 9; l dt 

3 

'"; 
(9; 

l dt -9; zdf' 
l=C3. 

r. i \l 

These equations represent the conservation of angular momentum for the system, i. e. 

they show that the angular momentum of the three particles around each of the 

coordinate axes is constant throughout the motion. 
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Looked at geometrically, the terms in brackets represent the projections of the areal 

velocities of the various bodies upon the three coordinate planes and hence the 

integrals are also known as the integrals of area5. 

Since 

a 
_k_ ; agrf 

(rrk) 
r,, 3 0 

the equations of motion can be written in the form 

d2qij 
_oy m' d t2 ,- a9;; 

Multiplying by 
dt, 

and sumtning, gives, since V is a function of the coordinates only 

3 

fLi. 
_ 

dv Y. 

dptj atz _d t 
"I -i 

This equation can be integrated to give 

m; 

where C is a constant of integration. This is the expression for the Hamiltonian 

with H=C. The left hand side of the equation is the kinetic energy T of the system, 
hence the integral can be put into the form T-F=C which expresses the 

conservation of energy6. 

Two further reductions can be made to the order of the system. Firstly the time can 
be eliminated by using one of the dependent variables as an independent variable, 

and secondly a final reduction can be made by the so-called elimination of the nodes, 

a procedure made first explicit in Jacobi [1843), although indicated in Lagrange 

[1772). 

The first stage of Jacobi's process is to make a linear change of variables which 

effectively changes the configuration to one in which two "fictitious" bodies orbit a 

third. Since the change of variable is linear, the form of the integrals of angular 

3 
Eal 

5 Relative to a fixed origin, the areal velocity of a point is the area swept out by the radius 
vector per unit time. 

6 Sometimes called the "Vis Viva" integral. 
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momentum are unchanged and the total angular momentum vector c remains constant 

and perpendicular to an invariant plane (see FIG. 2.2. i). Jacobi showed that the 

intersection between the orbital planes of the two bodies remains parallel to this 

invariant plane, which gives the result that the difference in longitude between the 

ascending nodes is always n radians. 

Using these two last integrals in conjunction with the ten classical integrals, reduces 

the original system of order 18 down to a system of order 6. This result can be 

generalised to the n body problem in which the differential equations constitute a 

system of order 6n. Using the same integrals this system can be reduced to system of 

order (6n -12). 

C: total angular momentum vector 
AB: lines of nodes 
r. radius vector of inner orbit 
R. radius vector of exterior orbit 

C 

A 

FIG. 2.2. i. Elimination of the nodes 

2.2.3 The restricted three body problem 

A special case of the three body problem which, due to its simplified form and its 

practical applications, has featured prominently in research is what today is known 

as the "restricted" three body problem7. In this formulation two of the bodies 

The term "probleme restreint" was first used by Poincar6 in [MN III, 69]. 
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revolve around their centre of mass in circular orbits under the influence of their 

mutual gravitational attraction and thus form a two body system in which their 

motion is known. A third body (generally known as the planetoid), assumed 

massless with respect to the other two, moves in the plane defined by the two 

revolving bodies and, while being gravitationally influenced by them, exerts no 

influence of its own. The problem is then to ascertain the motion of the third body. 

This particular case of the three body problem is the simplest one of importance, 

and, with regard to what is to follow, is especially significant since most of the 

results in Poincare's memoir pertain to this formulation. Apart from its simplifying 

characteristics, it also provides a good approximation for real physical situations, 

as, for example, in the problem of determining the motion of the moon around the 

earth, given the presence of the sun. In this instance, the problem is almost circular 

(the eccentricity of the earth's orbit is approximately 0.017), almost planar (both 

the earth's orbit and the moon's orbit are nearly in the plane of the ecliptic), and 

the values of the mass ratios and the mean distances between the bodies satisfy the 

conditions. 

The differential equations of motion for the problem can be derived as follows. 

Let m, =1- p and mz =p denote the masses of the two finite bodies, choose the unit of 

distance so that the constant distance between the two finite bodies a is unity, and 

choose the unit of time so that the gravitational constant k2 is also unity. If the 

coordinates of in,, in, and the planetoid P are (ý� 11, ), (ýZ, 772), and (ý, ij) respectively 

and 

r1` (17 
-t)7)2 

r2` ( -ý2)2+(TI -T1z)2 

then the equations of motion of the planetoid are 
d2 (ý- ý, ) (- 2) 
dtz -- (1- µ) 

r1a -µ r23 
(2.2.11) 

d? n (? 1- 171) (11- n2) 
dt2 --(1-p) r, 3 -µ r23 

By Kepler's third law, the mean angular motion n of the finite bodies is 

(1-u)+u n=ka 312 

which, due to the way the units have been chosen, is equal to unity. 
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77 

Mass m, =1-p 
Mass "h 

P 

Ml ý- µ -ºý 1- E1 ßm2 

FIG. 2.2. ii. The restricted three body problem in rotating coordinates 

15 

If the motion of the bodies is now referred to a new system of axes x and y having the 

same origin as the old but rotating in the ýrl plane in the direction in which the 

finite bodies move with uniform angular velocity, then the coordinates in the new 

system are defined by 

= xcost -ysint (2.2. iii) 

77 = xsint + ycost 

with similar sets of equations for (c,, r7, ) and (ý2,772). Differentiating equations 
(2.2. iii) twice, substituting the resulting expressions in equations (2.2. ii), 

multiplying the two equations by cost and sint respectively and adding, and then 

multiplying them by - sint and cost respectively and adding, gives 
d2x (x-x, ) (x-x2) 

dt2 -2dt =x-(1-µ) r13 -µ res 
dd 

+2dx-y-(1-µ) 3I)(Y-Y2) 
t2 dtr, r2 

Since it is always possible to choose the direction of the x axis so that the two finite 

bodies lie on it, in which case yj = yi = 0, the equations then become 

2-41 =x-(1-p) 

(x 
3x, 

)-µ(x-3 
2) (2.2. iv) 

dt2 dt r, rZ 
dt2+2dt L 

_y-(1-p) JU 3 r, 3 

These differential equations, which have the important property that they do not 
involve t explicitly, are the equations of motion of the planetoid with respect to the 
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rotating coordinates. Since they are a set of two second order equations they 

represent a system of order 4. However, they do admit a solution, known as the 

Jacobian integra18, which reduces the system to one of order 3. 

If a function U is defined by 

U=2(x2+y2)+l 
rlj+Ij 1 r2 

then equations (2.2. iv) can be written 
1 

at1 -2d -3x (2.2. v) 

a 
+2dx _ar dt1 dt ay 

and multiplying these by 2dt, and 2dt respectively gives 

dX9U 
2äf 

äf2 
+zä at -2d ý3x 

+2dt äy (2.2. vi) 

which is an exact differential since U is a function of x and y alone. 

Integrating equation (2.2. vi) gives 

( dtI+ra)=zu-c 
where C is a constant of integration and the left hand side is the square of the 

velocity of the planetoid in the rotating frame. If the latter is denoted VZ then 

V2 =2U-C 
and this solution is known as the Jacobian integral of the restricted three body 

problem. It is sometimes misleadingly called the energy or relative energy integral, 

but this terminology is erroneous as the integral does not express conservation of 

energy. Although the total energy of the original two body system remains constant, 

that of the planetoid does not, and so the total energy in the restricted problem is 

not constant. As Szebehely points out, the solution should be regarded purely as an 

integral of the equations of motion of the restricted three body problem using 

rotating coordinates9. 

Equations (2.2. ii) can also be written 

8 Jacobi [1836] first announced his integral in an inertial coordinate system. 
9 See Szebehely 11967,12-13,38). 
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d2ý OF d217 dF 
dt2-d ' dt2-& 

where F= m' 
+ 

m2. 
r, r2 

If = q� 17 = qI, 
dt=p,, 

and 
df= 

p2, then the Hamiltonian form of the equations is 

dq; 
_aHý 

d ax 
(i-1 2) dt dp; dt 'q-, 

where H=2 (p, 2 + p22) - F. 

17 

Since the function F is not only a function of the variables q; but it is also a function of 

the time t, and hence 

H= constant 

is not a solution of the system. However, if, as in the previous formulation, a 

transformation is made such that the axis of rotation and a line perpendicular to 

this through the centre of gravity of the two bodies become the coordinate axes, then 

a solution can be found. As Whittaker has shown [1937,354], this can be done by 

applying the contact transformation defined by the equations 

aw aw 
9i y P; ' 

Pi = äQ; 

where 

W=p, (Q, cosnt - Q2sinnt) + p2(Q1sinnt + Q2cosnt) 

and n is the uniform angular velocity of the rotating axis which, due to the choice of 

units, is equal to unity 10. 

The new Hamiltonian, which has no explicit dependence on time, is then given by 

H'= H- aw 
at , 

and 

H'= constant 

is a solution of the system corresponding to the Jacobian integral. 

10 The idea of contact transformations originated with Sophus Lie in the early 1870s. See 
Hawkins [1992). 
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2.3 History of the three body problem 
2.3.1 Origin of the three body problem 

Since bodies in the solar system are approximately spherical and their dimensions 

extremely small when compared with the distances between them, they can be 

considered as point masses, and so the origin of the problem can be thought of as 
being synonymous with the foundation of modern dynamical astronomy. This part of 

celestial mechanics, which connects the mechanical and physical causes with the 

observed phenomena, began with the introduction of Newton's theory of 

gravitation. From the time of the publication of the Principia in 1687, it became 

important to verify whether Newton's law alone was capable of rendering a 

complete understanding of how celestial bodies move in space, and, in order to pursue 
this line of investigation, it was necessary to ascertain the relative motion of n 
bodies attracting one another according to the Newtonian law. 

Newton himself had geometrically solved the problem of two bodies for two spheres 

moving under their mutual gravitational attraction [1934, I, section XIJ while in 1710 

Johann Bernoulli had proved that the motion of one particle with respect to the 

other is described by a conic section> 1. In 1734 Daniel Bernoulli won a French 

Academy prize for his analytical treatment of the two body problem12, and the 

problem was solved in detail by Euler [1744). Although these results cleared the 

way for the natural extension of the problem from two to three bodies, there was 

already a special interest in the three body problem generated by the needs of 

navigation for knowledge about the motion of the moon. The system formed by the 

sun, the earth and the moon was already a focus of attention and the lunar theory 

(as the study of the moon's motion came to be called) dominated the early research 
into the problem. 

2.3.2 Early attempts at solution 

The investigations arising from a search for a solution to the problem led in two 

directions: those which were concerned with finding general theorems concerning the 

motion, and those which were searching for good approximations for the solutions 

II See Wintner [1941,420]. 

12 See Kline [1972,492]. 
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which would hold for a given period of time starting from an instant at which data 

was available. 

Newton himself was the first to treat the problem and he achieved results in both 

types of investigation. On the one hand, having shown that the centre of mass of n 

bodies moves with uniform speed in a straight line, he made a general investigation 

into the motion of attracting bodies [1934, I, Section XIj, while on the other, using an 

essentially geometric approach to the method of variation of parameters, he 

applied perturbation theory to the motion of the moon. Having treated the motion 

of the moon about the earth and obtained an elliptical orbit, he considered the 

effect of the sun on the moon's orbit by taking account of variations in the latter. 

However, the calculations caused him great difficulties and his computation for the 

motion of the lunar apsides13 gave a value which was approximately half that of 

the observed value. A fact which he encapsulated in later editions of the Principia 

in the brief sentence: "The apse of the moon is about twice as swift. " [1934 I, 147]. 

Indeed, the problems he encountered were such that he was prompted to remark to 

the astronomer John Machin that "... his head never ached but with his studies on 

the moon. " 14. 

During the 18th century, the gradual recognition of the power of analytic methods 

meant that dynamics in general, and celestial mechanics in particular, began to 

break free from the constraints of geometry. With this freedom came the realisation 

of the impossibility of finding a closed solution in terms of elementary functions. 

Clairaut in [1747] announced the first successful approximate resolution to the lunar 

problem by using infinite series solutions to an improved simplification of the 

differential equations. However, the difficulty he had in explaining the motion of 

the lunar perigee was such that he even considered a modification to the inverse 

square law. But in [1749], by carrying his original approximation one step further, 

he reached results which almost accounted for the motion, and in 1752 his Theorie 

de la Lune won the St. Petersburg Academy prize. The value of Clairaut's methods 

was amply confirmed by his prediction of the date of the perihelion passage of 
Halley's*comet in 1759 which was accurate to within one month, almost exactly the 

margin of error he had allowed himself. (In 1872 it was discovered that Newton, in 

13 The two points in the orbit of the moon at which it is respectively at its greatest and least 
distance from the earth, also called the apogee and the perigee. 
14 Keynes MSS 130.6, Book 3; 130.5, Sheet 3- Newton Ms in the Keynes collection in the library 
of King's College, Cambridge. See Westall [1980,544]. 
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an unpublished manuscript in the Portsmouth Collection, had in fact corrected his 

original calculations for the motion of the lunar perigee by including the second 

order perturbations, although the correction was completely unknown until the 

manuscript's discovery15. ) 

Meanwhile, Euler [1748] was the first to use the method of variation of parameters 

to treat perturbations of planetary motion and in [1753] he published his first lunar 

theory. His second lunar theory [1772] which, jointly with a memoir by Lagrange, 

shared the Prix de 1'Academie de Paris, contained many new and important 

features, including the first formulation of the restricted problem based on a rotating 

coordinate system and for which he found particular solutions 16. 

Lagrange's prize winning memoir [1772] was an analysis of the three body problem in 

which he showed that the problem could be reduced from a system of order 18 to a 

system of order seven. His method was first to determine the mutual distances 

between the bodies, then to determine the plane of the triangle in space, and finally 

to determine the orientation of the triangle in the plane. In addition, he also found 

two types of particular solution to the general problem. Jacobi in [1843], unaware of 

Lagrange's work, achieved an explicit reduction of the general problem to a 6th 

order system through the elimination of the nodes. 

2.3.3 Particular solutions 

Particular solutions are those in which the geometric configuration of the three 

bodies remains invariant with respect to time. Thus, either the configuration 

simply rotates in its own plane around the centre of mass, or an expansion or 

contraction takes place in which the mutual distances between the three bodies 

remain in fixed ratios to each other. If there is no change in scale, the solutions are 

called stationary. 

The particular solutions found by Euler in his revolving coordinate system were 

collinear solutions, while those of Lagrange took the form of both collinear and 

15 Catalogue of the Portsmouth Collection of Books and Papers written by or belonging to Sir 
Isaac Newton, Cambridge, 1888, xi-xiii, xxvi-xxx, section 1, div ix, numbers 7,12. See Newton 
[1934,649]. 

16 Whittaker [1899,123] incorrectly credits the first discussion of the restricted problem to 
Jacobi. 

17 According to Whittaker [1937,341], the reduction frorri 7th to 6th order through the 
elimination of the nodes is implicit in Lagrange's memoir. 
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equilateral configurations. In the collinear case, the bodies are all set in motion 
from positions on a straight line and, given appropriate initial conditions, they 

continue to stay on that line while the line rotates in a plane about the centre of 

mass of the bodies. In the equilateral case, the initial positions of the three bodies 

are at the vertices of an equilateral triangle and the bodies continue to move as 

though attached to the triangle which rotates about the centre of mass. 

Associated with these particular solutions are five equilibrium points, also called 
Lagrangian or libration points, Li - L5 (FIG2.3. i). 

Jupiter 

II ýJ-l 

FIG. 2.3. ii. Jupiter's orbit and 
the Trojan asteroids 

From a physical point of view, the libration points are the points where the forces 

acting on the third body in a rotating system are balanced and so there is no motion 

relative to the rotating system, and only the gravitational and centrifugal forces 

have to be considered. Lagrange proved the existence of triangular equilibrium 

points in the Sun-Jupiter system, and in so doing predicted the presence of. the Trojan 

asteroids (FIG 2.3. ii), observational verification of which was not made until 1906 

when Max Wolf discovered Achilles. 

2.3.4 "Small divisors" 

In 1785 Laplace announced the resolution of several of the outstanding anomalies in 

the theory of the solar system, one of which concerned the observed deviations from 

FIG. 2.3. i. Lagrangian points of the 
three body problem 
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Keplerian orbits of the planets Jupiter and Saturn. He had discovered a long-period 

inequality in the motions of these two planets which was due to terms of the third 

order in the eccentricities. 

In planetary perturbation theory the disturbing function can be expanded in a series 

of periodic terms which when integrated produces terms of the form 

` ik sin [(jnl + kn2)t +B] Un, + kn2) 

where j, k are integers, n1, n2 are the mean motions of the planets, A and B are 

constants, and the order of magnitude of A diminishes rapidly as j and k increase, 

and hence these terms arise in the expressions for the Keplerian elements. If the 

mean motions are commensurable then terms with argument [(jn, + kn2)t + B) 

contribute to the secular term, but if they are incommensurable then the denominator 

can become arbitrarily close to zero. In practice, of course, the mean motions are 
determined by observation and given to a certain number of significant figures and 
hence it is always possible to find values for j and k so that the denominator is 

arbitrarily small. Nevertheless, the problems only really arise when the mean 

motions are not only incommensurable but can be closely approximated by the ratio of 

two small integers, since in this case the amplitude A remains large. It is this 

situation which gives rise to the phenomena known as the effect of small divisors, a 

notorious problem in celestial mechanics. Put in more general dynamical terms the 

problem of small divisors translates into the problem of resonance caused by near 

commensurability of the natural frequencies. 

In the case of Jupiter and Saturn, the mean motions are approximately in the ratio of 
5: 2, and the expansion of the disturbing function gives a term with j= -2 and k=5 in 

its argument which is of the order of three in the eccentricities. Although the value 

of the term in the disturbing function is very small, its effect becomes very prominent 
in the perturbation of the mean longitude since this contains the square of its 

reciprocal. Furthermore, the period of the perturbation is 27r/(fnl +kn2), hence the 

term long-period inequality. In this particular case the period is approximately 900 

years. 

2.3.5 The restricted three body problem 

As previously mentioned, the restricted formulation was first proposed by Euler in 

[1772]. An important insight into this formulation was provided by Jacobi [1836] who 

showed that it could be represented by a system of fourth order differential 
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equations, one solution of which (the Jacobian integral) could be found. G. W. Hill, 

the American mathematician and astronomer, was the first to show that an 
important application of the Jacobian integral is in establishing the regions of 

motion for the planetoid [1878]. Hill's idea was later used to great effect by George 

Darwin [1897] in his quantitative investigations into periodic orbits. 

2.3.6 Series representation 

By the middle of the 19th century, it was clear that the possibility of finding a 

closed solution to the problem was becoming increasingly unlikely. Consequently, 

the objective became to improve the approximations which resulted from the 

solution of the differential equations being given as infinite series. This involved 

attempting to eliminate the secular terms, that is those terms which increase or 
decrease indefinitely with time (the existence of which ultimately leads to an 

entirely new configuration of the system), in order to try to confine the expansion to 

series in which the time only occurs within the arguments of the periodic terms. (It 

is. easy to see that the presence of secular terms can be extremely misleading: for 

example, if the true solution contains a term involving sinat, then the series will 

contain terms in odd powers of at. ) 

However, in conjunction with the progress being made, a concomitant problem 

evolved. The people who were working on the topic were primarily astronomers 

rather than mathematicians and as such were interested in numerical rather than 

theoretical research. This variance between the two disciplines resulted in a 
different understanding of the meaning of the word convergence. For the astronomers 

a series was considered to be convergent'if all the terms they calculated decreased 

rapidly, despite having no knowledge of the behaviour of subsequent terms which, 
in the long term, might or might not decrease. While for the mathematicians, for a 

series to be convergent it had to be rigorously proved to be so. Later it became clear 

that in general the series being proposed as solutions were not convergent in a 

rigorous mathematical sense. 

For all practical purposes the calculation of the first terms provided a very 

satisfactory approximation, but if the series were intended for the establishment of 

rigorous theoretical results, such as the question of the stability of the solar system, 

the divergence of the series posed a serious problem. Furthermore, if the series were 
divergent then, in general, they were not capable of providing an arbitrarily close 

approximation. Poincare, while giving due credit to the value of the results of the 
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astronomers - he singled out the achievements of Delaunay, Lindstedt and, in 

particular, Gylden, as worthy of special mention - was the first to prove the general 
divergence of their series. 

2.3.7 Delaunay 

Delaunay, using the method of variation of parameters, completed the first total 

elimination of the secular terms in the problem of lunar theory by forming a purely 

trigonometric series which formally satisfied the equations of motion [1860,1867]. 

Beginning with the three dimensional elliptical restricted three body problem18, 
he completely developed the disturbing function R up to the seventh order of the 

small parameters and then repeatedly applied canonical transformations in order to 

eliminate the more important terms of R. The number of calculations involved in the 

project was immense and it took Delaunay over twenty years to complete. He 

announced an outline of the principle of his method in [1846], but his final results, 

which occupied two large volumes, did not appear until 1860 and 1867. 

Delaunay's variables were three canonically related pairs of orbital elements 

which gave the equations of motion Hamiltonian form. If a is the semi-major axis, e 

the eccentricity, i the inclination of the orbit to a fixed plane, p the sum of the 

masses of the bodies whose relative motion is being considered, 1 the mean 

anomaly19, g the angular distance of the lower apsis from the ascending node, h the 

longitude of the ascending node, then putting L=G=L (1- ez), H= Gcogi, 
z 

and F=R+ 282 , the equations are20 

dL aF dG dF dH dF 
dt -d1' dt -dg' dt ah' 

dl OT dg X dh dF 
_ dt -dL' dt -_ate' dt _ dH 

The Hamiltonian F was expanded as an infinite series (Delaunay's expansion 

contained 320 terms) and, using successive canonical transformations, the important 

periodic terms of the disturbing function R were eliminated term by term and the 

equations solved. 

18 The two primaries describe elliptic orbits, while the motion of the planetoid does not take 
place in the plane defined by the motion of the primaries. 
19 The mean anomaly is the angle the radius vector would have described if it had been moving 
uniformly with average speed 2r/period. 

20 For a complete derivation of the equations see Hill [1876]. 
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Although the method was accurate up to one second of arc, its practical use was 
hampered by the progressively increasing complexity of the expressions involved, 

combined with the slow convergence of its series. Nevertheless, since its publication 
Delaunay's formulation in terms of canonical systems of elements has been recognised 

as one of the important landmarks in the analytical development of the lunar 

theory. In particular it was admired by Hill, whose own research was to provide 
inspiration to Poincare, and whose work is discussed at the end of this chapter. In 

the introduction to Hill's collected works Poincare [1905] described Delaunay's use of 

canonical variables in perturbation theory as the greatest contribution to celestial 

mechanics since Laplace. 

2.3.8 Gylden 

1881 saw the publication of the first of a long series of papers by Hugo Gylden, the 

Director of the Observatory at Stockholm, in which he developed his theory of 

absolute orbits for calculating the motion of planetary bodies21. These papers, 
founded on the use of elliptic functions, culminated in 1893 in the publication of the 

first volume of what was intended to be a three volume work devoted to the theory, 

the remaining volumes of which Gylden never completed due to his death in 189622. 

Gylden`s system consists of the sun and two planets, of which one planet is 

designated the disturbing planet while the other is designated the disturbed. 

planet. The differential equations which represent the motion of the disturbed 

planet are solved by means of sums of periodic terms whose arguments are linear 

functions of a quantity which Gylden called the planet's true longitude. The terms 

which vanish when the disturbing mass is equal to zero are called coordinated terms 

and are equivalent to the periodic inequalities of the classical theory. Those which 
do not vanish when the disturbing mass is equal to zero but coalesce with those 

which represent the elliptic motion of the disturbing planet around the sun are 

called elementary terms and correspond to the secular inequalities of the classical 

theory. Those which have the disturbing mass in the denominator of their 

coefficients are called hyper-elementary (they do not occur in the final result); 

21 For full references to Gylden's papers see Whittaker [1899]. 

22 A second volume of Gylden's work on planetary theory edited by Bäcklund with assistance 
from Sundman and von Zeipel was published in 1908. See Marcolongo [1919,721. 
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while those of long period (which occur when the period of two planets are nearly 

commensurable) are called semi-elementary or characteristic terms. 

If in the expression for the coordinates, all the coordinated terms are removed, then 

the modified expression, which will only contain elementary terms, will define a 

new orbit very close to the true one (the order of difference between them being of the 

same magnitude as the disturbing forces) and this new orbit is called the absolute 

orbit. The solution of the differential equations is obtained by substituting 

expansions of the disturbing function into the differential equations and integrating. 

The six arbitrary constants of integration are the elements which fix the absolute 

orbit of the disturbed body. 

Using the planet's longitude as the independent variable throughout the 

integrations involves a large number of complicated transformations and these, 

combined with the necessity of keeping the elementary and non-elementary terms 

separate, mean that the whole process is extremely complex. So much so that Hill, 

when writing about the method, said: 

"A degree of complexity is thus imparted to the subject, which makes it 

difficult to see when one has really gathered up all the warp and woof of it. 

Professor Gylden has nowhere removed the scaffolding from the front of his 

building and allowed us to see what architectural beauty it may possess; ... 
The advantages claimed for the method are that it prevents the time from 

appearing outside the trigonometrical functions, and that it escapes all 

criticism on the score of convergence. The first is readily conceded, but many 

simpler methods possessing this advantage are already elaborated, and it is 

not clear that the second ought to be granted. No completely worked out 

example of the application of this method has yet been published. The 

great labor involved will naturally deter investigators from employing it. " 

[1896a, 1311. 

Since Gylden's constants of integration represented hitherto undefined quantities, an 

added difficulty in comprehension was provided by the new terminology which 

Gylden invented to describe them. 

With regard to the convergence of the series, in order to counteract the problem of 

small divisors (divisors of the order of the planetary masses), Gylden modified the 

coefficient of the first power of the dependent variable through the incorporation of 

a function which he called the horistic (or limiting) function [1893]. Nevertheless, 
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despite his efforts which resulted in several lengthy papers, he did not in fact prove 

convergence, as Poincare [1905a] was later to show. 

However, prior to Gylden's introduction of the horistic function in 1893, the question 

of convergence of Gylden's series had already been a cause for contention between 

Gylden and Poincare. In 1889 Gylden on learning of the content of Poincare's Oscar 

prize-winning paper had immediately claimed priority with his own paper of 1887. 

The controversy which quickly became a subject for public debate is discussed in 6.3. 

In spite of their differences, Poincare was a great admirer of Gylden's methods, and 

publicly acknowledged his contribution to celestial mechanics on several occasions. 
For evidence of which, there is no need to look further than the introductions to both 

the first and second volumes of his Methodes Nouvelles. Poincare opened the 

latter, which was essentially an exposition of the work of astronomers, with the 

paragraph: 

"The methods which I want to discuss in this second volume are due to the 

efforts of a great number of contemporary astronomers, but it is the methods 

of Gylden which are the best and to which I shall give the greatest 

exposure. " [MN II, v]. 

2.3.9 Lindstedt 

Another Swedish astronomer, Anders Lindstedt, was apparently prompted to get 
involved in the search for trigonometric series solutions in order to simplify the 

work of his compatriot Gylden23. Lindstedt's first paper to attract attention 

appeared in 1883 and introduced a method for integrating an important class of 
differential equations which frequently occur in perturbation theory in celestial 

mechanics [1883]. These equations, which essentially represent a perturbed 
harmonic oscillator, and had arisen in Gylden's researches, were of the general form 

z dtz 
+ nZx = a(P(x, t) 

where a is very small and O(x, t) is a function expanded in powers of x with 

coefficients which are periodic functions of t. Subject to certain restrictions 

concerning the symmetry of the coefficients (Lindstedt had thought that the 

perturbing forces should be either odd or even functions of the angle variable 

23 See von Zeipel [1921,328]. 
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involved), the method avoids secular and mixed secular terms and shows how the 

equations can be satisfied by x expanded as a trigonometric series. 

Later the same year, Lindstedt applied his method in order to find trigonometric 

series solutions for the three body problem [1883a]. He began from the equations in 

Lagrange's 1772 paper and, making the assumptions that the eccentricities, the ratio 

of the radius vectors and the inclinations of two of the bodies were sufficiently 

small, he reduced the system to four second order differential equations, which he 

then solved by successive approximations, eventually eliminating all the secular 

terms so that the time only appeared in the arguments of the periodic functions. 

This gave him the coordinates of the three bodies as trigonometric series of four 

arguments, each of which was a linear function of time. He then simply assumed 

that it was possible to choose the constants of integration in such a way that 

convergence was assured. 

Lindstedt was not the first astronomer to provide such a series, chronologically the 

credit is due to Simon Newcomb [1874] who proved that the differential equations 
describing the motion of the planets could formally be satisfied by trigonometric 

series. However, since Lindstedt's method was the less complex of the-two and 

consequently capable of greater generalisation, it became the more widely known. 

Lindstedt's method was also considerably simpler than Gylden's, although it was 

also correspondingly less powerful as the increased simplification brought with it 

an accompanying reduction in the range of its application. 

2.3.10 Hill 

Shortly before Gylden and Lindstedt started publishing in earnest, there appeared 

two papers which were to have a profound effect on the future development of 

celestial mechanics in general and the three body problem in particular. In 1877 

Hill privately published an exceptional paper on the motion of the lunar perigee 
[1877]. In it appeared the first new periodic solutions to the three body problem 

since Lagrange's discovery of special periodic solutions in 1772. In the following 

year, 1878, the first issue of the American Journal of Mathematics contained another 
important paper by Hill on the lunar theory which included a more complete 
derivation of the periodic solutions [1878]. These two famous papers have long been 

acclaimed for the originality and elegance of the mathematical methods they 

contain, as well as for their substantial contribution to the progress of celestial 

mechanics. 
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The paper of 1877 is plainly a logical continuation of the researches contained in the 

paper of 1878, and it is unclear why Hill should have chosen to publish them in 

apparently reverse order. Furthermore, since Hill's work was characterised by 

modesty of style and brevity of expression, to grasp an understanding of the 

innovatory ideas contained in the first paper without the support of the second 

paper would have added an extra difficulty. With regard to this point, Ernest 

Brown, the eminent astronomer who later took up and continued Hill's work, 

providing an almost exhaustive treatment of the lunar problem, remarked: 

"Hill was not a great expositor; even for those familiar with the subject, his 

work is often difficult and sometimes obscure ... he is rarely anything else 
but concise. " [1916,293]. 

Nevertheless, Hill's discovery and use of a new class of periodic solutions was a 

turning point in the history of the three body problem and dynamical systems in 

general. So original was Hill's approach that in the introduction to Volume I of the 

Methodes Nouvelles, Poincare made the observation: 

"In this work ... it is possible to see the germ of most of the progress that 

science has since made. ", 

and Whittaker was prompted to suggest that the publication of Hill's paper in 1877 

signified: 

"... the beginning of the new era of Dynamical Astronomy. " [1899,130]. 

The prevailing influence on Hill's work came from Delaunay, whose two volume 

work provided him with a major stimulus. He professed considerable admiration for 

Delaunay's method and, apart from employing it in the lunar theory, outlined ways 
in which it could be applied to other problems. Hill was also considered to be one of 

the few people who fully comprehended the work of another lunar theorist, the 

German astronomer P. A. Hansen, whose main work concerning the motion of the 

moon became the basis for extensive tables of lunar motion, published at the expense 

of the British Government in 1857. 

The problem that concerned Hill in the paper of 1877 was the discrepancy between 

the theoretically computed values for the motion of the lunar perigee and those 

values derived from observation. Did this discrepancy arise because the 

approximations were not continued far enough or was it because there were other 
forces acting on the moon which had not yet been considered? Since the question 
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could only be answered if a limit could be put on the error incurred by the 

approximation method, Hill set out to compute the value of the motion of the lunar 

perigee: 

"... so far as it depends on the mean motions of the sun and moon, with a 
degree of accuracy that shall leave nothing further to be desired. " [1877,1]. 

Hill's innovation was to abandon the idea of using an elliptic orbit for the Moon as a 

starting point, i. e. abandon the idea of neglecting the action of the sun as a first 

approximation, and instead begin with a circular orbit. He then used the effect of 

solar perturbation to vary the circular orbit before varying it again by the 

introduction of the eccentricity of the lunar orbit. In essence, he began by solving a 

modified version of the restricted three body problem before making a variation in 

order to attempt the general problem. Previous efforts had always begun by first 

solving the two body problem and then making the appropriate variation. 

Hill had recognised that of the five parameters which were involved in Delaunay's 

series for the longitude, latitude and parallax, the one whose expansion provided 

the slowest rate of convergence in the series was the ratio of the mean motions of the 

sun and the moon. This gave him the idea of beginning his attempt on the problem 

by neglecting the other lunar inequalities and finding the series in powers of this one 

alone. He embarked on this first stage of the problem in [1878), while he dealt with 

the second stage, which was to take account of the lunar eccentricity, in [1877]. His 

original intention had been to treat all five different classes of lunar inequalities (as 

listed by Euler in [1772]), i. e. the two mentioned above, the lunar inclination, the 

solar eccentricity and the solar parallax, but shortly after [1877,1878] had been 

published, Simon Newcomb, the director of the American Ephemeris, persuaded 
Hill to become involved in the theories of the motion of Jupiter and Saturn, as a 

consequence of which he did not complete his original programme. 

By initially only considering the ratio of the mean motions of the sun and the moon, 

Hill substantially simplified the differential equations. For, as pointed out by 

Poincare [1905], by excluding the solar eccentricity and parallax, in Hill's 

formulation the sun can be said to describe a circle with a large radius. Hill's second 

insight was to choose rectangular coordinates uniformly rotating with the angular 

velocity of the sun, so that the time no longer appeared explicitly in the 
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equations24. This choice of coordinate system was in contrast to the prevailing 

methods which invariably involved polar coordinates. 

Using this formulation, the expressions for the coordinates of the moon referred to 

the rotating axes can be represented by Fourier series (with undetermined 

coefficients) and are periodic. The solution is then obtained by substituting the 

Fourier series into the differential equations and determining the coefficients as 
functions of the parameter m which depends on the ratio of the mean motions of the 

sun and moon. In order to avoid the multiplication of trigonometric functions, and to 

enable a reduction to algebraic form, Hill took a further innovatory step and 

introduced complex variables. Substituting the complex variables into the 

differential equations gave rise to an infinite system of algebraic equations from 

which the coefficients could be determined in terms of m, either algebraically or 

numerically. One particular advantage of Hill's method was the ease with which 

the approximation could be extended as far as desired. 

Hill, having realised that the periodic solution he had found was of interest beyond 

its application to the lunar problem, varied the value of ni, by taking moons of 

10,9,.... ,3 lunations (the time from one new moon to another) in the periods of their 

primaries, and obtained a family of different periodic solutions which he then 

studied in detail. For moons of longer lunation, he found that the method was not 

practicable and resorted to mechanical quadrature. His final periodic solution 

involved a moon with a cusped orbit, which he called the moon of maximum 

lunation (FIG. 2.3. iii)25. However, this attribution was shown to be mistaken first 

by Adams and then by Poincare who subsequently proved that the cusp was in fact 

succeeded by looped orbits (FIG. 2.3. iv)26. 

24 An idea for which Hill acknowledged his debt to Eisler. 

25 Hill [1878,331-335]. 

26 Hill [Collected Works I, 326] and Poincare [MCI, 104-109]. 
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FIG. 2.3. iii. FIG. 2.3. iv. 

Another fundamental idea included in the 1878 paper was that of curves of zero 

velocity which Hill used to show that the moon could never escape from its orbit 

around the earth. He derived this property by considering Jacobi's integral which 

gives the square of the velocity relative to the moving axes. Since this quantity is 

necessarily positive, equating it to zero gives the equation of a surface which 

separates space into parts: those in which the velocity is real and those in which 

the velocity is imaginary. Since the surface consists of various curves and folds, it is 

hard to understand in detail. However examination of it does reveal certain 
limitations on the motion of the moon's orbit, in particular it provides an upper limit 

for its radius, and as a result certain conclusions can be drawn about the stability of 

the motion. This idea was taken up and used to great advantage by Darwin [1897] 

and is discussed in 8.4.1 in relation to Darwin's work. 

In [1877], having determined a periodic solution (now called the intermediate orbit 

or variational curve), Hill wrote the equations of variation from this periodic 

solution taking account of the first power of the lunar eccentricity. This led him to a 
fourth order system of linear differential equations with periodic coefficients. By 

the use of known integrals combined with elegant transformations of his own he 

reduced the system to a single linear differential equation of second order [1877,246], 
1 

dt +av=O (2.3. i) 
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where w is the normal deviation of the moon from the intermediate orbit and e only 
depends on the relative position of the moon with reference to the sun. O can, 

therefore, be expressed as a Fourier series 

©= eo+ e, cos2t+ e2cos4t+.... 

sec; 

where ý= ei' and 9; = 9.4, and so equation (2.3. i) can be written 

42 
dt +w y, ei ci= 0. (2.3. ii) 

and this equation is now generally known as Hill's equation27. 

If Bo is much greater than B; (i = 1,2, ... ) then an approximate form of equation 
(2.3. i) is 

d2 W 
dtz +00w=0 

which has the particular solution 

w=K +K'c-c, 
where K and K'are arbitrary constants and c= is the ratio of the lunation to the 

anomalistic month28. When the additional terms of e are considered this has the 

effect of modifying the value of c and adding to w extra terms of the general form 

A4'', and a particular solution of equation (2.3. i) is therefore 

Y_bi +2i 

where each b; is a constant coefficient and the value of c is to be determined. 

Substituting this value of w into equation (2.3. ii) and setting the coefficient of each 

power of equal to zero generates a doubly infinite system of algebraic equations. 

These equations can then be used to determine the ratios of all the coefficients bj to 

one of them bo which can be regarded as the arbitrary constant. If all the bi are 

27 Hill's equation can also be considered as a generalised form of Mathieu's equation 
z 

+ (a + bcos2t)ur- 0. dt -F 

See Whittaker and Watson [1927, Chapter XIX]. 

28 The time taken for the moon to pass from perigee to perigee. 
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eliminated from these equations, then this gives rise to an infinite determinant 

involving c, denoted D(c), which, when equated to zero, determines c. 

From this determinant Hill derived an expression for c in terms of the parameter m. 
In the first approximation, the value of c is q 9a, while in the second 

This is a remarkably simple expression for an approximate value of the motion of 

the moon's perigee and one which gives a value only about 1/60 in excess of that 

given by observation, the difference being mainly due to the neglect of the lunar 

inclination. 

By performing further manipulations and transformations, Hill reduced the 

determinant to an infinite series in what he assumed to be a convergent form. Hill's 

final expression for the determinant turned out to be equivalent to starting with the 

equation D(c) = 0, assuming c= NFO-O as the first approximation, and then expanding 

the expression sin2 
(2 

C) in powers and products of the coefficients (0k, 02, ... ). 

Taking this expression up to terms of order twelve in m Hill achieved a value for c 

which was accurate up to the 15th decimal place. By contrast, he showed that 

Delaunay's method calculated up as far as terms in m9 produced a solution which 

was not even correct up to four significant figures, and, furthermore, he estimated 

that Delaunay's series would have to be prolonged up to terms in m27to obtain a 

result of comparable accuracy to his own. 

Immediately after the publication of Hill's 1877 paper, J. C. Adams, the English 

astronomer who had been among the first to predict the presence of the planet 
Neptune from unexplained perturbations in the orbit of Uranus29, communicated a 
brief paper to the Royal Astronomical Society [1877] in which he remarked that 

many years previously (1868) his own work on the lunar theory had followed a very 

similar course. Although his investigations had dwelt on the motion of the moon's 

node, and he had not used rotating rectangular coordinates and so had been unable to 

find the rapidly converging series which Hill had deduced, he had found the same 

infinite determinant. Unfortunately he had not published his work as he had 

29 Adams' predictions, originally made in 1845, were contemporaneous with those of the French 
astronomer Le Verner and prompted a bitter priority dispute. The two astronomers took almost 
no part in the controversy, the feud being largely conducted by English and French journalists. 
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thought it insufficiently complete, and he did admit that he considered his method 
to be much less elegant than that proposed by Hill. 

Although the idea of an infinite determinant had occurred elsewhere prior to Hill's 

1877 paper, it appears not to have been widely known30. Hill himself had not 

previously encountered it and the general possibility of using it does not seem to 

have been considered until the publication of Hill's paper. However, there was a 

problem with Hill's idea in that his results depended on the convergence of the 

determinant, a property which he did not prove. He was well aware of the defect, 

as he made plain in the introduction to [1878]: 

"I regret that, on account of the difficulty of the subject and the length of the 

investigation it seems to require, I have been obliged to pass over the 

important questions of the limits between which the series are convergent, 

and of the determination of the superior limits to the errors committed in 

stopping short at definite points. ". 

The incompleteness of Hill's result meant that the theory of infinite determinants 

was not immediately taken up as mathematical technique. Almost ten years later 

the missing convergence proof was supplied by Poincare [1886d], and from then on the 

power of Hill's theory began to be recognised. Hill's position is now secure as the 

founder of the theory of infinite systems of linear equations, his research in this 

field ranking alongside his contribution to dynamical astronomy as one of his 

principal achievements. 

Despite the results he obtained in [1877,1878], it was some time before Hill's work 

received the recognition it deserved. In 1888 when Darwin began to study Hill's 

papers he remarked that although they seemed to be very good scarcely anybody 
knew about them31. This could have been partly due to Hill's nationality (America 

was only beginning to emerge as a mathematical force in the 1870s) as well as his 

own rather solitary disposition. On the other hand there was also the comparative 
inaccessibility of his particular style of mathematics combined with the deficiency 

30 Infinite determinants first appear in the researches of Fürstenau [1860]. See Whittaker and 
Watson [1927,36]. 

31 Brown [1916a, lii]. 
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in his theory of infinite determinants. Nevertheless, given the nature of Hill's 

research it is still surprising to find that his work took so long to be appreciated32. 

However, from 1886 Hill's work did reach a wider audience, for in that year not 

only did Poincare prove the convergence of the infinite determinant but also Hill's 

1877 paper was republished in Acta (the first paper in English to appear in the 

journal). And it was not very much later that through Poincare's theory of periodic 

solutions that the impact of Hill's work on the progress of dynamical astronomy and 

the three body problem began to be felt. 

Poincare clearly respected and admired Hill's work, and Hill's new perspective on 

three body problem, encapsulated by his introduction of a new class of periodic 

solutions, was certainly an important source of inspiration for him. Darwin [1900] 

even went so far as to propose that it may have been as a consequence of Hill's work 

that Poincare was prompted to embark on his work in celestial mechanics. 
Furthermore, there is the evidence of Poincare's continued interest in Hill's 

research, both astronomical and mathematical, as exemplified by his improvements 

and extensions to Hill's results, and it has been said that when Poincare travelled to 

the United States in 1904, the one person he made a point of visiting was Hi1133. 

32 For example, as Wintner observed [1941,440], the sigruficance of Hill's periodic solutions 
escaped Heinrich Bruns who reviewed [1878] for the Jahrbuch über dir Fortschritte der 
Mathematik 10,782. 

33 Sternberg [1969, I, 129]. 



3. Poincare's Related Work before 1889 

3.1 Introduction 
Poincare's 1890 memoir on the three body problem brought together a whole host of 

mathematical ideas and techniques which he had developed over the previous 
decade. Almost from the beginning of his academic career he had been concerned 

with the fundamental problems of celestial mechanics and many of the papers 

which he published during the 1880s relate to his interest in the subject. These 

include several of a broad theoretical nature as well as those in which he responded 
to explicit questions of dynamical astronomy. 

Firstly, at the very backbone of [P2] is Poincare's acclaimed memoir on curves 
defined by differential equations. In this memoir, published in four parts between 

1881 and 1886, he initiated the qualitative theory of differential equations [1881, 

1882,1885,1886] in the real domain. These papers are full of new ideas many of 

which form the basis for results in [P2]. The three body problem features 

prominently in these pages and Poincar6 is quite clear about its motivating role in 

the development of his ideas. 

Secondly, there are the papers in which he addressed either a particular aspect of 
the three body problem or a connected problem of celestial mechanics, and in some 

cases these involved developing the work of another mathematician or astronomer. 
All of these papers are comparatively short, none of them approaching the scale of 

37 
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[P2], but in them can be found his initial researches into periodic solutions and his 

early investigations into the convergence of trigonometric series used in celestial 

mechanics. 

Finally, there are other papers in which Poincare developed ideas and techniques 

which he used in [P2] but which can be considered to have been generated in a more 

general context. Notable amongst these are his thesis [1879] and his paper on 

asymptotic series [1886a]. 

3.2 The qualitative theory of differential equations 
During the 18th century, the realisation that it was not possible to integrate the 

majority of differential equations using known functions had increasingly led to the 

study of the properties of the differential equations themselves1. By the middle of 

the 19th century this practice had become firmly established, and by the 1860s, the 

success of complex function theory, meant, with a few isolated exceptions, that the 

emphasis was firmly placed on the investigation of the behaviour of the function in 

the neighbourhood of a point in the plane. Thus at the beginning of the 1880s when 

Poincare began his memoir on the analysis of functions defined by differential 

equations, research was, in effect, centred on studying the local properties of a 

solution to a differential equation. Poincare's approach was radically different. He 

looked beyond the confines of a local analysis and brought a global perspective to 

the problem undertaking a qualitative study of the function in the whole plane2. 

In [1880] Poincare stated that his objective was to provide a geometric study of the 

solution curves of a first order differential equation, and indeed it was his 

geometrical insight which became one of the the hallmarks of his work on 
differential equations. As Gilain [1991] and Gray [1992] have argued, what was new 

and important was Poincare's idea of thinking of the solutions in terms of curves 

rather than functions and it was this which marked a departure from the work of 
his predecessors whose research had been dominated by power series methods. 

1 See Kline [1972, Chapter 21]. 

2 As Gilain [1991] in an excellent article has pointed out, Poincare's qualitative approach to 
differential equations was not entirely without precedent. In 1836 Charles Sturm made a 
qualitative study of second order linear differential equations in the real domain. However, the 
two approaches were set in quite different contexts. For a comparison between them see Gilain 
[1991,224-225]. Sturm's papers are treated in detail in Lätzen 11990,435-446). 
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Importantly, Poincare's interest in differential equations was not only driven by an 
intrinsic interest in the equations themselves. He also had a particular interest in 

some of the fundamental questions of mechanics, most notably the question of the 

stability of the solar system, and he recognised the necessity of a qualitative theory 

of differential equations for furthering the understanding of this type of question. In 

this context therefore he saw it as important to consider the global properties of real 

as opposed to complex solutions. His attention to the real case marked another 

notable departure from the work of earlier investigators which had been 

concentrated on the complex case. 

Although the memoir was published as four papers, in terms of content it divides 

into two parts. The first two papers, which constitute the first nine chapters, were 

published in consecutive issues of Liouville's journal in 1881 and 1882 and are 
devoted to the study of the simplest type of differential equation. The third and 
fourth papers which appeared in 1885 and 1886, are concerned with equations of 
higher order and degree. 

3.2.1 Papers I and II 

Poincare divided the study of a function into two parts: qualitative - the 

geometrical study of the curve defined by the differential equation - and 

quantitative - the numerical calculation of values of the function. He was quite 

explicit at the beginning of the first paper that his work was going to centre on the 

first part and that an element of his motivation for a qualitative study was his 

interest in the three body problem: 

"Moreover, this qualitative study has in itself an interest of the first order. Several 

very important questions of analysis and mechanics reduce to it. Take for example 
the three body problem: one can ask if one of the bodies always remains within a 

certain region of the sky or even if it can move away indefinitely; if the distance 

between two bodies will infinitely increase or diminish, or even if it will remain 

within certain limits? Could one not ask a thousand questions of this type which 

would be resolved when one can construct qualitatively the trajectories of the three 

bodies? And if one considers a greater number of bodies, what is the question of the 

invariability of the elements of the planets, if not a real question of qualitative 
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geometry, since to show that the major axis has no secular variations shows that it 

constantly oscillates between certain limits. "3. 

This point was later succinctly summarised by Jacques Hadamard when commenting 

on Poincare's work: 

"The most important of them (questions of analysis and mechanics) is well known, 

and its example presents itself with the whole spirit of the progress of astronomy: it 

is the stability of the solar system. The single fact that this question is essentially 

qualitative suffices to show the necessity of his point of view. " 4. 

Apart from identifying the question of the stability of the solar system as an 

essentially qualitative problem, Poincare had. another stimulus for the qualitative 

consideration of differential equations: the analogy provided by research into 

algebraic equations. The proven success of qualitative investigations into algebraic 

equations was to him a clear indication of the potential of this approach. 

Following the analogy, he began by constructing the curves defined by the 

differential equations. His initial researches centered on the simplest case: the 

construction of the solution curves of the equation 
dxy 
x-Y (3.2. i) 

where X and Y are polynomials in x and y, and so 
dx 

is given as a single-valued 

rational function of x and y. 

Although this equation, by virtue of its simplicity, has no direct application in 

celestial mechanics, by using it as the foundation for his study, Poincare provided 
himself with a basis from which he could extend and elaborate his results to take in 

more complex systems. 

To circumvent the problem that was posed by the difficulty of the construction of 

curves with infinite branches, Poincare first projected the plane onto a sphere5. The 

3 Poincare [1881,4). 

4 Hadamard [1912,240). 

5 The projection was made gnomonically, that is the centre of the sphere is the centre of 
projection. Thus each point on the plane is projected into two points on the sphere and the 
projection of a straight line is a great circle. 
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differential equation then associates a determined direction with each point on the 

sphere and no two solution curves can intercept except at singular points. 

Looking for relationships between the different solution curves of the same 
differential equation, Poincare began with a local analysis and examined the 

behaviour of these curves in the neighbourhood of a singular point. Unlike his 

predecessors Briot and Bouquet who had studied singular points without the 

constraint of distinguishing between the real and complex case, Poincare only 

considered real values. He showed that there were four possible different types of 

singular points and classified them by the behaviour of the nearby solution curves: 

Nceud Col 

ýJ 00 Foyer Centre 

FIG 3.2. i. Singular Points 

ncEuds (nodes) through which an infinite number of solution curves pass; cols (saddle 

points) through which only two solution curves pass, these two curves acting as 

asymptotes for neighbouring solution curves; foyers (foci) which the solution curves 

approach in the manner of a logarithmic spiral; and centres (centres) around which 

the solution curves are closed enveloping one another. 
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Having used direct algebraic computation to show that these four types do 

necessarily exist, he studied their distribution. He found that in the general case 

only three types prevailed: nodes, cols and foci; centres only arising under very 

exceptional circumstances. This was an unexpected result since earlier studies of 
differential equations had shown that in the cases where elementary integration is 

possible the most usual singular points are nodes, cols and centres. 

To describe the nature of a singular point Poincare introduced the idea of an index 

which gave a measure of the direction of the flow given by the solution curves about 

the singular point. Using this idea in relation to a system which could be described 

by equations (3.2. i) (i. e. for the case which corresponds to a simply connected surface 

with a single direction associated with each point on it, such as the flow on a 

sphere) he was led to a relationship between the different types of singular points: 

the number of nodes N plus the number of foci F is equal to the number of cols C plus 

two, i. e. N+F=C+2, which is now known as the Poincare index theorem for a flow 

on a sphere. 

He next looked at the behaviour of solution curves beyond the neighbourhood of 

singular points. Here again the results he found were unexpected. 

Since the differential equation assigns a direction at each point of the solution 

curve, Poincare took an algebraic curve on the surface and studied the direction of 

the solution curve at the points where the two curves cross. He called the points 

where the algebraic curve was tangent to the solution curve points of contact. He 

found that in a great number of cases there existed branches of closed curves (cycles) 

which were nowhere tangent to the solution curves and he called these cycles 

without contact. Knowledge of the presence of these cycles is important because a 

solution curve- cannot meet such a cycle in more than one point (otherwise some 

solution would have a contact), and so if it crosses such a cycle, it cannot recross it. 

Cycles without contact were not the only closed curves which played an important 

role in Poincare's theory. Poincare also found closed solution curves which he called 
limit cycles. These are solution curves which have no singular points and which 

other solution curves approach asymptotically. The solution curves spiral in 

towards a limit cycle but never actually reach it. His discovery of their existence 
originated from his idea of indefinitely following a solution curve in one direction 

and looking at all the possible outcomes. Engaging in this process led him to the 

important result that every solution curve which does not end in a node is a cycle or a 
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spiral. In other words, all solution curves are either closed or, with the exception of 

those which end in a singular point, they asymptotically approach a limit cycle. 

To prove the existence of limit cycles Poincare considered the consecutive crossing 

points of a given (unclosed) solution curve C with an algebraic curve which cut the 

solution curve in an infinite number of points. To facilitate the handling of these 

crossing points he introduced the idea of consequents (iterates), where if M, and M2 

are two such consecutive crossing points he called M2 the consequent of M,. (This was 

an idea he was to expand and use to particular effect in [P2]. ) Then, using the fact 

that no two curves satisfying the equation can intersect (except at a singular point 

which is excluded), he showed that the successive crossing points must approach a 

common limiting position, say H, and since H is therefore its own consequent, the 

solution curve through it must be closed and so must be a limit cycle for the given 

curve C. 

FIG. 3.2. ii. Consequents FIG. 3.2-iii. Limit cycle 

By obtaining results about the distribution of limit cycles Poincare began to generate 

a qualitative description of the flow described by the differential equation. He was 

able to determine the number of limit cycles within a given region of the sphere and 

also to find the particular regions in which a given number of limit cycles exist. But 

it was not until the next paper that he gave a dynamical interpretation of his 

results. 
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3.2.2 Papers III and IV 

Poincare opened the third paper with a discussion on stability which he began by 

reenforcing the connection with celestial mechanics: 

"One cannot read the first two parts of this memoir without being struck by 

the resemblance between the various questions which are treated there and 

the great astronomical problem of the stability of the solar system. This 

latter problem is, of course, much more complicated, since the differential 

equations of the motion of celestial bodies are of much higher order. 

Furthermore, one meets in this problem a new difficulty essentially 
different from those which we have had to overcome in the study of first 

order equations, and I intend to bring it out, if not in this third part, at least 

in the final part of this work. 6" [1885,901. 

This is the first occasion on which Poincare explicitly tackled the question of 

stability, and in order to do so he began to use the language of dynamics to describe 

the differential equations. He reformulated equation (3.2. i) as 

cit =X, 
ä 

=Y, (3.2.1") 

where x, y are regarded as the coordinates of a moving point, and t is the time. He 

said that the orbit of a point was stable if the point returned infinitely often 

arbitrarily close to its initial position7. Although this is essentially an impractical 

definition of stability in that it allows for intervening oscillations of any 

magnitude, nevertheless, from a theoretical point of view it does encompass a great 
degree of flexibility and it allowed Poincare (and later Birkhoff) to derive some 

remarkable results. 

Poincare first, translated his results concerning cycles without contact and limit 

cycles into dynamical terms before considering them in the context of stability. In 

both cases, he showed that their presence is sufficient to indicate instability, 

although in the case of limit cycles, it is the solution curves which asymptotically 

approach a limit cycle which are unstable while the limit cycle itself is stable. 

6 Poincare tackled the problem of higher order equations in the fourth paper, concentrating on 
the higher degree case in the third paper. 
7A definition Poincare later attributed to Poisson. See [P2,313). 
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Poincare's analysis revealed that in the simple case described by equations (3.2. i) it 

was generally possible to cover the sphere with an infinite number of closed cycles of 
both types, and, furthermore, that the number of limit cycles was usually finite. 

Consequently, he was able to conclude that for this case instability was the rule, 

stability the exception. The exception occurring when there were no cycles without 

contact and all the solution curves satisfying the differential equation were closed, 

mutually enveloping one another, as, for example, in the neighbourhood of a centre. 

To study differential equations of first order but of higher degree, i. e. equations of 
the form 

F(x, y, 
dy) 

=0, 

F being a polynomial, Poincare adopted a geometric representation. He considered 
the surface S with equation 

F(x, y, z)=0 

and investigated the motion of a point upon it, putting the equations of motion into 

the form 

dx_ dy_ 
Y 

dz 
dt-X' dt ' dt=Z 

where X, Y, and Z are polynomials in x, y, and z such that 

dF x+ayY+ä z -o. 

In other words, he studied the solution curves of a vector field tangent to the surface 
S. In general, his discussion followed his treatment of the simpler case. He showed 
that the surface S was covered by an infinite number of closed curves which were 

either cycles without contact or limit cycles. He then examined the distribution of 

singular points and found that the relationship between them was given by 

N+F-C=2-2p 

where p is the genus of the surface S, and is a fundamental 'invariant of the 

problem8. Since the sphere has genus 0, he recognised this as a generalisation of the 

relationship he had previously found for equations of first degree. Moreover, the 

relationship showed that the only surface upon which there can be a flow with no 

8 If at most 2p closed cycles can be drawn on a surface S without dividing the surface into two or 
more separate regions, then the surface is said to have genus p. 
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singular points is a surface with genus 1, i. e. a surface which can identified with a 

torus. As Gray [1992,511] has observed, it was this result which led Poincare to a 
detailed study of non-singular flows on the torus since, apart from a flow on a surface 

of genus 0, these are the simplest type of flows to study. 

On the torus Poincare chose variables co and 0, with the differential equations given 
by 

dw d5 
dt -ý' dt -`ý 

where S2 and 0 are given continuous periodic functions of co and 0 which never 

vanish simultaneously. 

In the particular case when 
dw_ d¢ 

_ dt -a' dt 

where a and b are positive constants, and the general solution is 

ý- 
-0 = constant, 

ab 

Poincare found that there were no limit cycles, and hence the orbit of the point was 

stable. 

Examination of the more general case where 0 and 0 are both positive and again 

there are no singular points on the torus led Poincare to the development of what 

was to be one of the most important ideas used in [P2]: the idea of the first return 

map. 

He considered the cycle without contact defined by the meridian ¢=0 and defined a 

set P to be the set of points M. with - oo <i<+ oo, where Mo is the point on the 

meridian at time t=0, M;, the ith consequent of Mo and M.; the ith antecedent of Mo. 

Then, skilfully employing Cantor's innovative idea of derived sets9, he was able to 

draw conclusions about the stability of the orbits of the points in the set P. Denoting 

P' as the derived set of P, he showed that either: 1) every point of P belongs to P' and 

the orbit of the point is stable, or 2) no point of P belongs to P' and the orbit is 

unstable, and moreover both these situations could occur. In other words, in the case 

9 Cantor [1872] defined the derived set of a given point set to be the set of its limit points. For a 
full discussion of Cantor's work on set theory see Dauben [1979]. 
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of equations with degree greater than one, stability was not the exception, in 

contrast to the case of equations of first degree. 

Poincare also determined the circular order (in a fixed direction) in which the points 

of M were distributed on the meridian 0=0. Excluding the case of a limit cycle, he 

found that the order depended on an irrational number p (now known as the rotation 

number of the flow10). By defining a; as the length of the arc M; M;. 1, he proved 

that the limit as n tends to infinity of 
a+... 

n+ 
a" " is independent of i, i. e. it is 

independent of the initial point, and is equal to , where r is the radius of the 

meridian. Having found p he employed an elementary procedure to place each 

successive point M; on the meridian. Then, using the fact that p was irrational, he 

showed that the derived set P' was what Cantor called a perfect set11 

There was, however, one problem which Poincare could not resolve. Given a 
differential equation where the set P' was the same for all orbits, he was unable to 

establish whether it was possible for certain orbits to belong to the case where every 

point of P belongs to P', while other orbits belonged to the case where no point of P 

belongs to P'. In other words, was it possible that some orbits could be stable while 

at the same time others were unstable? Or put in yet another way, was it possible 
for the perfect set P' to be disconnected? Although Poincare was able to indicate 

some circumstances under which such a situation was impossible, he was unable to 

prove that it was always impossible. 

He outlined how this problem was linked with the question of convergence of 

trigonometric series, in particular the method used by Lindstedt: 

"It is impossible not be struck by the analogy of this method of 

approximation with that of Lindstedt in celestial mechanics, and not to 

realise that the convergence of the process which I have shown is closely 

related to the convergence of series used by the learned astronomer from 

Dorpat. But the problem that we have treated here is evidently much 

simpler than the analogous questions of celestial mechanics, and if the 

difficulties are similar they are less numerous and without doubt easier to 

10 Birkhoff [1920a, 87]. 

11 Cantor called a set perfect if it was unchanged by derivation. In other words, a set is perfect 
if every point in it is a limit point and the set is closed. See Dauben [1979]. 
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overcome. It is this consideration which has led nie to persist with this 

question which has been the object of this chapter and to which I shall 
doubtless return as I find new results. " [1885,157]. 

To study higher order differential equations Poincare considered x as the coordinates 

of a point moving in n-dimensional space with t as an auxiliary variable 

representing time, so that the differential equations are written as 

=X n) 

where X are polynomials in x, and the solution curves are represented by the 

trajectory of the point moving in n-dimensional space. 

By considering the second order case where the equations can be put in the form 

dx_ dy dz_ 

dt ' dt Y' 
dt - 

he established the existence of five different types of singular points together with 

three different types of singular lines defined by the points of intersection of the 

three surfaces 

X=O, Y=O, Z=O. 

He then classified the solution trajectories according to their behaviour in relation 

to the singular points. 

Poincare also considered the question of finding solutions to the equations in terms of 

convergent series valid for all real values of the time from t=-- to t=+ oo. In one of 
his earlier notes [1882a] he had considered the differential equations defined by 

dx, dx2 dx� 
XI=XZ=... =X» 

and observed that if an auxiliary variable s is defined by equating the common 

value of the above ratio to 

ds 
X12 + X22 +... + Xn2 +1 

then it is possible to choose a positive constant a such that the x's can be expressed 
by series in powers of 

e-- 
1 e- + 
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which are convergent for all real values of s, but only under the condition that the 

trajectories do not meet a singular point except for infinite values of the variables s 

and t. 

He now considered this result in the context of the three body problem. He found 

that for all real values of the time t the coordinates of the three bodies could be 

expressed in powers of 

eat -1 
e1+1 

but only providing that it was known in advance that the distance between any two 

of the three bodies would remain greater than a given distance. In other words, the 

expansion is only valid providing there is never a collision between any two of the 

bodies. Since there is no way of foreseeing mathematically from the initial 

conditions whether or not such a collision will take place this is a formidable gap in 

the theory. As a result, Poincare was led to admit that he could not see any 

possibility of being able to take advantage of this method in celestial mechanics12. 

With regard to using the distribution of the singular points as a way of gaining 

qualitative information about the behaviour of the solutions of the differential 

equations, Poincare found that the increase in the number of different types of 

singular points made the investigation correspondingly more difficult. However, by 

returning to an idea which he had used in [1884] which involved a theorem due to 

Kronecker, and introducing Kronecker's index for a closed surface he was able to 

make some progress13. In [1884] (details of which are discussed in 3.3.2) he had 

generalised Hill's idea of a periodic solution by applying Kronecker's theorem to 

the three body problem and thereby established the existence of an infinite number 

of periodic solutions. Now he considered the closed solution curves to the 

differential equations. What he found was that in the case of second order equations 

the closed trajectories, which represent the periodic solutions, play an analogous 

role to that of the singular points in the first order case. Thus in order to gain an 

understanding of the nature of the flow, instead of studying the solution curves close 

to a singular point he studied the trajectories neighbouring a closed trajectory. 

12 Thirty years later Sundman utilised an analogous expansion with remarkable results. See 
8.3.2. 

13 Kronecker [1869]. For indications of its history see Scholz [1980,278-281]. 
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Poincare's idea of using periodic solutions in this way showed remarkable insight 

and one which was to be of central importance in [P2]. 

In order to investigate the behaviour of the trajectories in the neighbourhood of a 

periodic solution, he introduced the idea of a surface without contact (analogous to a 

cycle without contact), now better known as a transverse (or Poincare) section. This 

is a surface F(x, y, z) =0 on which there is no real point which satisfies 

dx 
X+ 0-F 

dy Y+ 
dz=o, 

and so F is not tangent to any trajectory. Again he undertook his analysis on the 

simplest type of solution space available within the constraints of the system, 

which in this case was a torus without contact which contained no singular points in 

its interior. 

He studied the different types of trajectory which approach a closed trajectory by 

examining their intersection with a transverse section. He chose axes in the 

transversal with an origin at the point where t=0, and at each point M of the closed 

trajectory he constructed a transversal. Since each point in the neighbourhood of the 

closed trajectory will lie on a unique transversal it can be represented by a point 

x, y, t where x, y are coordinates of the point in the plane of the transversal and t 

represents the particular transversal. 

Any trajectory starting infinitely close to the closed trajectory (say at m) will meet 

the transversals as the motion proceeds and will return to the original transversal 

when t= 2ir, meeting it at the point ins (the consequent of m). This is the idea of the 

first return map. The trajectory will continue and then meet the original transversal 

again at a third point m2, the consequent of nil, and so on. The problem is then 

reduced to investigating the distribution of the successive consequents, or, in modern 

terminology, the iteration of a point transformation. 

Providing the point transformation is sufficiently regular, it is possible, as a first 

approximation, to consider only its linear terms. Poincare showed that the 

behaviour of the trajectories depended on the nature of the eigenvalues of the linear 

transformation and, furthermore, that a striking correspondence could be made 
between these eigenvalues and the different types of singular points. In [P2] he 

further investigated the properties of these eigenvalues (which he then named 

characteristic exponents) in order to deal with the question of stability of periodic 

solutions. 
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Studying the different situations corresponding to the different kinds of eigenvalue, 
he identified four types of trajectory: three whose behaviour could be easily 

understood, which he classified as corresponding to nodes, foci and cols, and a 
fourth, which arose when the eigenvalues were conjugate pure imaginary, whose 

behaviour was more complex and which he initially thought corresponded to centres 

but which turned out to contain subtle and important differences. He found in this 

latter case that if none of the constant terms in the trigonometric series which 

satisfy the differential equations were equal to zero then this fourth case was 

equivalent to the first and there was instability. 

Poincare next looked for the conditions under which all the constant terms in the 

trigonometric series were equal to zero. As he observed, the case when all the 

constants are equal to zero is the case which, although appearing extremely 

unlikely to occur, is the one which is encountered in the study of the general 

equations of dynamics. Importantly, Poincare showed that the conditions under 

which the constants vanished involved another new and important idea, and one 

which was later to play a fundamental role in [P2], the idea of an invariant 

integral. 

To understand what Poincare meant by an invariant integral, first consider a system 

of n first order differential equations as defining the motion of a point in an n- 

dimensional space. Then consider a set of such points having a certain volume of 

space Vat time t and so at any subsequent time t' the set has a new volume V. If the 

volume V' remains constant whatever the value of t', then the volume is an 

invariant integral. For example, in the case of the differential equations of motion 

of an incompressible fluid, the volume is an invariant integral. 

This was not Poincare's first published reference to the concept. The idea first 

appears in [1886b], a paper published earlier in the same year. But in this earlier 

paper he had simply shown that it was the presence of a specific invariant integral 

which was the necessary condition for a particular result to hold and he had not 

provided any discussion of the underlying theory. Although, importantly, he had 

recognised that it was the presence of an invariant integral which accounted for the 

success of Lindstedt's method in eliminating the secular terms from the series used in 

celestial mechanics. It was knowledge of this property which was unknown to 

Lindstedt which, as he now explained, had enabled him to widen the class of 

equations for which Lindstedt's method was valid. 
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In his consideration of the question of the conditions under which the constant terms 

in the trignometric series vanish, Poincare first proved that the constant terms were 

equal to zero providing there was no closed surface without contact. He then showed 

that the existence of a certain invariant integral, which would now be called the 

volume in phase space, was sufficient for this latter condition to be met. 

Although Poincare did not at this stage give any indication of the relationship 
between invariant integrals and the equations of dynamics, implicit in his argument 

is one of the important results of his theory of invariant integrals. For, as he later 

showed in [P2], Hamiltonian systems always admit the volume in phase space as an 

invariant integral. In other words the existence of an invariant integral is a 
fundamental property of Hamiltonian systems, and hence the constant terms are 
bound to vanish. It was only in [P2] where the idea of an invariant integral played 

an essential role in his stability arguments that Poincare gave a name to the concept 

and developed a coherent theory. 

Having discovered a condition under which stability was possible, Poincare still 
had the problem of deciding when it occurred. He realised that apart from the 

perennial problem of "small divisors" arising from the near commensurability of the 

frequencies of the interacting motions, the question also turned on whether or not the 

series concerned were uniformly convergent, and being able to decide under what 

conditions uniform convergence was assured. However, despite a long and detailed 

discussion of a particular example in which he examined the different situations 

which could arise depending on different initial conditions, he was forced to 

conclude that even in the general case when the constants did all vanish the series 

were not necessarily uniformly convergent. Hence the stability question was still 

unresolved. 

To summarise, in looking at the behaviour of trajectories near a given periodic 

solution, what Poincare had shown was that there were principally three different 

situations which could arise. Firstly, the moving point could either continuously 

recede from the periodic solution or asymptotically approach it, in which case the 

orbit of the point did not possess Poisson stability. Secondly, the moving point could 

oscillate within given limits close to the periodic solution, in which case the orbit 

did possess Poissson stability. Finally, the moving point could come arbitrarily 

close to any other point in the domain, in which case there was not only Poisson 

stability since the point would always return as close as desired to its initial 
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position, but there was also instability in the sense that the point could go 

arbitrarily far away from its initial position and it was impossible to assign limits 

to its coordinates. Since Poincare's methods did not allow him to distinguish 

between the second and third situations, this presented a significant problem, not 
least because the cases represented by these situations are precisely those which are 

encountered in the general equations of dynamics. 

Thus, although he had established many substantial and important results for 

second order differential equations, Poincare's analysis was still less complete than 

that for the first order case. Discussion of the periodic solutions had proved 

extremely fertile but the difficulties of convergence and small divisors still 

remained. Poincare ended the fourth and last paper in the series with his view of 

the implications of his results for the future progress of celestial mechanics: 

"From the above, one can easily understand to what extent the problems due 

to small divisors and the quasi-commensurability of mean motions that one 

meets in celestial mechanics result from the nature of things which cannot be 

changed. It is extremely likely that they will be encountered whatever 

method is used. " [1886,222]. 

3.3 Celestial mechanics and the three body problem 
3.3.1 Trigonometric series 

Poincare's earliest work in celestial mechanics concerned the convergence of 

trigonometric series of the form 

1�sina7t +YB�cosa.,, t 

which were used by astronomers to integrate differential equations such as 
d2x 
dtz + n? x = OXx, t). 

These series are quite different from Fourier series in that the coefficients of time 

appearing as arguments inside the trigonometric functions are not proportional to 

integral coefficients and may decrease or increase indefinitely. The problem with 

the use of these series in celestial mechanics is in establishing their convergence. 

Are they convergent and if so, is that convergence absolute? If they are not 

absolutely convergent are they what are now called asymptotic? If they are 

absolutely convergent are they uniformly convergent? These are all questions which 
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had not been addressed until Poincare made them the subject of a detailed 

mathematical investigation, most notably in [1884b]14. In particular Poincare was 
interested in the series derived by the Swedish astronomers Gylden and Lindstedt 

and, beginning in 1882, he published several papers discussing the above issues, often 

specifically in response to the astronomers' work. 

Poincare's initial researches dwelt on the distinction between absolute and uniform 

convergence. His first result showed that if the convergence was not uniform then 

the function could attain arbitrarily large values, either by indefinitely increasing 

or by the amplitude of its oscillations indefinitely increasing [1882b, 1885a]. This 

was an important result in that it meant, contrary to what the astronomers had 

previously believed, that the ordinary convergence of a trigonometric series was not 

a sufficient condition for stability and so could not be used as a criteria for 

establishing results such as the stability of the solar system. 

When in 1883 Lindstedt proposed a new series solution for the three body problem, 
Poincare did not take long to respond [1883a, 1884b]. Lindstedt [1883a, 1884], instead 

of providing a formal proof of convergence for his series, had supposed that it was 

possible to choose the necessary constants in such a way that convergence was 

assured, at least for a given interval of time. Poincare proved that if the series was 

absolutely convergent for such an interval of time, however short, then it was 

always convergent. He also showed that there could not be two solutions to the 

problem, since a function can only be represented by one such absolutely convergent 
series. Furthermore, he pointed out. that although it was true that there were 

particular values of the constants for which the mutual distances of the three bodies 

could be expanded as convergent trigonometric series, it was by no means certain, 
indeed it was unlikely, that the convergence would subsist for other values of the 

constants, even for those arbitrarily close. As a result he was led to the conjecture 

that Lindstedt's series were in fact asymptotic rather that absolutely convergent. 
That is, he thought that the series represented the mutual distances for a limited 

period of time only and did not do so indefinitely. 

Later Poincare was prompted by a paper of Gylden's to consider the question of 

convergence in a slightly different context. In his paper, Gylden had been concerned 

with the problem of improving the convergence for a given trigonometric series. In 

14 Hadamard [1922,160] described this paper as "... a work remarkable for its shortness and 
simplicity in comparison with its fundamental importance. ". 
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[1886c] Poincare showed that, providing the function and its derivatives were finite 

and they satisfied certain continuity conditions, then it was possible to find an upper 

bound for the coefficients in the trigonometric series representing the function and 

hence ascertain the strength of the convergence of the series15" 

Poincare's first published proof of the divergence of Lindstedt's series was contained 

in [P2], where it stood out as one of the results which he considered to be of 

particular importance. He later returned to the topic in the second volume of the 

Methodes Nouvelles where he gave a complete discussion of the methods used by 

astronomers in relation to the series used in celestial mechanics. This and Poincare's 

later work in celestial mechanics are discussed in 7.2 and 7.3. 

In [1886b] Poincare addressed a particular problem in Lindstedt's perturbation 

method. It will be recalled that Lindstedt's method involved a symmetry 

restriction. Lindstedt had introduced this restriction as a way of ensuring that at 

each stage of the approximation only one secular term was introduced which was a 

necessary condition for his method to work. By a clever application of Green's 

theorem and, for the first time, using the idea of an invariant integral, Poincare 

showed that the secular term which appeared in each approximation was 

necessarily unique and therefore the restriction was unnecessary. In other words, the 

class of equations for which Lindstedt's method was valid was more general than 

Lindstedt himself had supposed. 

In [1889] Poincare gave a new derivation for Lindstedt's series using Hamilton-Jacobi 

theory. This new derivation had the advantage of completely by-passing 

Lindstedt's earlier restriction, and thus rendered superfluous Poincare's earlier idea 

involving Green's theorem. 

3.3.2 Periodic solutions of the three body problem 

The best known of Poincare's early papers in celestial mechanics is his first paper on 

periodic solutions of the three body problem [1884a]. This is the paper which was 

IS Given a trigonometric series L4msinmx + IB, 
ncosmx 

Poincare said that the convergence of the 
series was of order p if 

mPAR, 1: 5 K, I mPBR, 15 K, 

where K is a positive quantity independent of m, and he then measured the strength of the 
convergence by its order. 
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mentioned in [1886] and which was published in the Bulletin Astrononiique in 1884, 

an abstract having appeared in the Comptes Rendus during the previous year [1883]. 

Poincare's interest in the work of Hill and periodic solutions, a topic which 
dominated Poincare's later researches in celestial mechanics, manifested itself here 

for the first time. By the application of a theorem due to Kronecker on solutions in 

systems of equations16, Poincare proved that it was possible to choose the initial 

conditions for the three body problem (in the case where two of the masses were very 

small relative to the third) in such a way that the mutual distances of the three 

bodies were periodic functions of time. He thereby proved the existence of a whole 

continuum of periodic solutions, thus giving a generalisation of Hill's result. 

Furthermore, Poincare showed that this type of periodic solution could be 

distinguished into three different kinds: 

1. Those in which the inclinations are zero, i. e. all the bodies move in the 

same plane, and the eccentricities of the orbits are very small; 

2. Those in which the inclinations are zero and the eccentricities finite; 

3. Those in which the inclinations are finite and the eccentricities are very 

small. 

He also speculated on the idea of a fourth kind of periodic solution in which both 

the inclinations and the eccentricities were finite, although he was unable to prove 
its existence except for certain values of the ratio of the two smaller masses. 

Although the probability of the actual occurrence of such solutions was essentially 

zero (since they depended on particular values of the initial elements), Poincare's 

insight was to realise that their importance lay in interpreting their relationship 

with other nearby solutions. He saw that if the initial elements of a solution were 

very close to those which corresponded to a periodic solution, it was possible to 

relate the true positions to the positions they would have occupied in the periodic 

solution and, to quote Gylden, use this solution as an intermediate orbit. By 

supposing that the order of the inclinations and the eccentricities was sufficiently 

small so that their squares could be neglected, Poincare showed that the differences 

between the true orbits and the intermediate orbits could be expressed by 

trigonometric series with no secular term. This greatly reduced the error which 

16 Kronecker [1869]. 
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arose through the general method which involved the secular variation of the 

eccentricities. 

As previously mentioned, Poincare extended his ideas on periodic solutions from this 

paper into an investigation into the properties of closed solution curves in his 

memoir on curves defined by differential equations. In turn, the theory which he 

developed there provided the fundamental backdrop for his later discussion on 

periodic solutions which formed the central part of [P2]. 

3.4 Other papers 
The final category of Poincare's earlier work to be considered concerns two papers 

which are both related to the theory of differential equations, and although they 

are of a general nature and not specifically related to the three body problem, they 

contain results which make an important contribution to the development of the 

theory in [P2]. 

3.4.1 Thesis 

Poincare's thesis [1879] which was examined by Bouquet, Bonnet and Darboux, 

concerned the study of integrals of first order partial differential equations in the 

neighbourhood of a singular point. It was his second paper on the theory of 
differential equations and, as Hadamard remarked, it contained a strong pointer 

towards his future success with the topic and its applications to celestial mechanics: 

"Even Poincare's thesis contained a remarkable result which was destined 

later to provide hint with a powerful lever in his researches in celestial 

mechanics. " ». 

Looked at in the context of the theory of differential equations already in existence 

at the time, Poincare's thesis was the natural convergence of two streams of thought. 

On the one hand, Cauchy, and later Kovalevskaya, had applied Cauchy's method 

of majorants18, to obtain results about the solutions of partial differential equations 
in the neighbourhood of an ordinary point, while on the other, Briot and Bouquet, 

and later Fuchs, using similar methods, had studied the solutions of ordinary 

17 Hadamard [1921,206]. 

18 Cauchy called the method calcul des limites because it establishes the lower bounds or limits 
within which the series in question will necessarily converge. 
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differential equations in the neighbourhood of a singular point. Poincare both 

followed Cauchy by considering the solutions of partial differential equations, and 
followed Briot and Bouquet by considering these solutions in the neighbourhood of a 

singular point. 

Poincare's analysis divided naturally into two parts according to whether the 

singularities under consideration were essential. In the case where the singularities 

were non-essential, he found that the solutions satisfied algebraic equations with 

coefficients analytic with respect to the variables. Although his treatment 

concerned a single partial differential equation, his results were analogous to those 

that would have been obtained by applying the theory to a system of ordinary 

differential equations, and it was in this analogous form that he applied the results 

in [P2]. 

With regard to the second and more difficult case concerning the essential 

singularities, one of the equations he considered was of the form 

a Zx, +.. + dz x�= 2, z dxl 

where the X; can be expanded as powers of x1, ..., x�, with no constant term, and the 

first degree terms can be reduced to Ax,, ..., A,, x,,. He showed that this equation 

admits an analytic solution in x,...., x� providing, firstly, there is no relation of the 

form nz2X2 + ... + m�;.,, = A, where the m are positive integers, and, secondly, that in 

the plane for the complex variable A the convex polygon containing the points 
A� ..., )� does not contain the origin. This latter condition was the result to which 
Hadamard later referred, and its importance is contained in the fact that it defines 

a space of non-existence for the solutions of the equations. In [P2] Poincare not only 

used this result explicitly but also further extended it for use in connection with his 

celebrated asymptotic solutions. 

As in the previous case, there is a sense in which this single partial differential 

equation can be thought of as being equivalent to a system of ordinary differential 

equations, and seen in this light Poincare's work can be considered as a 

generalisation of Briot and Bouquet's researches on a single differential equation. 

3.4.2 Asymptotic series 

With the emphasis on the rigorisation of analysis in the first half of the 19th 

century the question of the legitimacy of divergent series became increasingly 

controversial. On the one hand divergent series were known to produce fallacious 
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results if used indiscriminately, but on the other it was known that there were some 
divergent series, called semiconvergent series, which, for a given number of terms, 

provided an increasingly better approximation to the function as the variable 
increased, the best known example being that of Stirling's series for the gamma 
function19. In addition, it had long been recognised that some divergent series 

provided good numerical approximations for the functions they represented. In the 
latter part of the 19th century the increased application of these "useful" divergent 

series, particularly in dynamical astronomy, meant that there was a growing need to 

find some way of distinguishing them from amongst other divergent series20. 

In [1886a] Poincare's tackled exactly this question and his solution provided the first 

formal definition of asymptotic series. He began with a divergent series of the form 

Axi, 

in which he defined the sum of the first n+1 terms to be S. He said that a series of 
this type asymptotically represented a functionf(x) if the expression 

xn ((x) - Sn) 

went to zero as x increased indefinitely. In other words he had defined a general 

series which had exactly the same property as Stirling's series: the larger the value 

of the variable, the closer the series approximates the function. This can be put 

more formally, by saying that a series is an asymptotic expansion for a functionf(x) 

if for each n and each x sufficiently large but depending on n, 

x^If(x)-SI(x)I <E 

where e is arbitrarily small. Thus the value of the function f(x) can be calculated to 

a high degree of accuracy for large values of x by taking the appropriate number of 
terms in the partial sum S,,. Since the constants of the series are defined uniquely, it 

follows that if a function has an asymptotic series representation it is unique, 

19 The garruna function is defined b: F(z) - t=-1 e-4 dt, for Re(z) > 0; and Stirling's series is given 
0 

by: 

r 1B, 
log log z-z+ log(2yr)+ý2r(2r) 

1ýI -'' 

20 The history of asymptotic solutions of differential equations in the 19th and early 20th 
centuries is well described by Schussel [1976]. 
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although one asymptotic series can represent several different functions. 

Importantly, Poincare showed that asymptotic series satisfy most of the same 

properties as convergent series, with the exception that in general they cannot be 

differentiated to form another asymptotic series21. 

Having formalised the distinguishing property of these series, Poincare applied the 

theory to a particular class of ordinary differential equations. During the 1860s and 

1870s Fuchs and Thome had established important results concerning the solution of 

linear ordinary differential equations in the neighbourhood of a singular point22. 

Building on their results Poincare considered the integration of equations of the form 

n 

Pnd +... +P- +Pay=O 

where the P; are polynomials in x. 

If the equation has an irregular singular point at x= oo, then Thome had shown that 

in addition to m possible convergent series solutions (m < n), there exist series of the 

form 

eQxa(AO + 
A, 

+ 
A2 

+... 
x7 x2 

where Q is a polynomial in x, which formally satisfy the equation but which are 

generally divergent, and it was these divergent series on which Poincare focused his 

attention. Since the dominant characteristic of the series was the degree of the 

polynomial Q, Poincare identified them by this property. Thus if the polynomial Q 

is of degree p, then Poincare called the series a normal series of order p. 

Firstly, Poincare proved that the order of the differential equation's normal series 

solutions at x=- could be determined. This involved introducing the idea of the 

rank of the differential equation. Let M. be the degree of the polynomial P; and 

N =M'-m" 'n-i 

If h is the largest of the n quantities Ni, and k is the integer equal to or immediately 

larger than h, then Poincare said that the equation has rank k at x= oo, or the 

equation has a singularity of rank k at x= oo. He then proved that if the 

21 With regard to the differentiation of asymptotic series, consider the function e-zsin(e`). 

22 See Schlissel [1976] and Gray [1984]. 
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differential equation has an irregular singularity of rank k at x= oo, then all its 

normal series solutions at x= Do were of order k. Next, considering an equation with 
first order normal series solutions, i. e. an equation of rank one, he proved that each 

series, although divergent, represented asymptotically one integral of the 

differential equation for large positive values of x. In the case of equations of 
higher rank, he first reduced them to rank one before attempting to find the 

asymptotic solutions. 

Although Poincare himself did not obtain many specific results using asymptotic 

series, the impact of the paper was far reaching. By creating a formal framework 

for these series, he provided a stimulus for investigations into asymptotic solutions 

of a variety of classes of ordinary differential equations. Moreover, from the point 

of view of his later work and looking ahead to [P2], the theory played a 
fundamental role in his discussion of the asymptotic solutions of the restricted three 

body problem. 



4. Oscar II's 60th Birthday Competition 

4.1 Introduction 
In the autumn of 1890 Poincare's memoir on the three body problem was published in 

the journal Acta Mathematica as the winning entry in the international prize 

competition sponsored by Oscar II, King of Sweden & Norway to mark his 60th 

birthday on January 21,1889. 

A combination of royal patronage and carefully planned public relations meant that 

the competition achieved the unusual distinction of gaining recognition that 

stretched well beyond the world of mathematics. In the numerous obituary notices 

and commentaries on Poincare's oeuvre, not only is the memoir singled out for 

particular acclaim but the point is often made that it was as a consequence of 

winning the Oscar prize that Poincare's name entered the public domain. Paul 

Painleve in a speech at Poincare's funeral said: 

"In 1889, at the announcement of the result of the competition, France learnt 

with joy that the gold medal, the highest award of the new competition, 
had been awarded to a Frenchman, a young scholar aged thirty five, for a 

62 
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marvellous study of the stability of the solar system, and the name of Henri 

Poincare became known. "1. 

A view which was endorsed by Gaston Darboux, the Permanent Secretary of the 

French Academy of Sciences, in a speech made at the Academy in honour of Poincare: 

"From that moment on, the name of Henri Poincare became known to the 

public, who then became accustomed to regarding our colleague, no longer as 

a mathematician of particular promise, but as a great scholar of whom 

France has the right to be proud. "2. 

However, the paper which appeared in Acta differed remarkably from the version 

which had actually won the prize almost two years earlier. Its eventual 

publication drew to a close the competition which, despite appearances to the 

contrary, had been beset with difficulties from its inception more than six years 

previously. 

4.2 Organisation of the competition 
By the late 19th century mathematical prize competitions had become well 

established as a method for seeking solutions to specific mathematical problems. 

These competitions usually emanated from the national Academies, particularly 

those in Paris and Berlin, the questions set reflecting the interests of the Academy 

concerned. Although the prizes offered were generally financial in nature, they 

were valued much more in terms of academic prestige. Thus the existence of a 

mathematical competition at this time was no novelty, but the Oscar competition 

was somewhat unusual in that its sponsor, anxious that it should transcend national 
barriers, did not associate his prize with an institution but chose rather to link it to 

an academic journal. 

Oscar was well known within mathematical circles, and in her autobiography the 

Russian mathematician and protege of Weierstrass, Sonya Kovalevskaya, who 

spent the last years of her life in Stockholm in the position of being the only 

European female professor of mathematics, said of him: 

I Painleve Discours prononcees aux fiinerailles. Archives de I'Academie des Sciences, Paris. 

2 Darboux [19141. 
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"King Oscar is a pleasant and cultivated person. As a young man he 

attended lectures at the university, and still today shows an interest in 

science, although I cannot vouch for the profundity of his erudition. He has 

no official contact with the university but is extremely sympathetic to it 

and very amicably disposed towards its professors in general and to myself 
in particular. "3. 

As a student at the University of Uppsala Oscar had distinguished himself in 

mathematics and throughout his life continued to maintain an active interest in the 

subject (as well as education in general) through publishing and making awards to 

individual mathematicians. Thus the establishment of an important prize 

competition in mathematics would have been seen as a natural extension of his role 

as a patron of the subject. 

From its beginnings in 1884, the competition was organised by Gösta Mittag-Leffler, 

who was the professor of pure mathematics at the newly established Stockholm 

Högskola (later the University of Stockholm) and founder and editor-in-chief of 

Acta Mathematica4. Having obtained his doctorate from the University of 

Uppsala in 1872, Mittag-Leffler had studied under Hermite in Paris, Ernst Schering 

in Gottingen and Weierstrass in Berlin and therefore had first-hand experience of 

life within the premier mathematical communities in Europe. This, combined with 
his involvement with Acta, meant he was well placed to promote the idea of an 

international competition. 

Inspired by Weierstrass, Mittag-Leffler's own mathematical interests lay almost 

entirely in the realms of analytic function theory. His Habilitationsschrift on the 

foundations of the theory of elliptic functions had been published in 1876, followed 

in 1877 by the first publication of the "Mittag-Leffler" theorem on the analytic 

representation of a single-valued complex function, and his later work focused on the 

problem of analytic continuation. However, he was not only a talented 

mathematician but he was also a skilled communicator. He assiduously cultivated 

3 Kovalevskaya [1978,228]. 

4 The first issue of Acta Mathematica appeared at the end of 1882. For the history of its 
foundation see Domar [1982]. 
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and nurtured mathematical contacts both at home and abroad, and maintained an 

extremely vigorous correspondence5. 

Prior to the start of the competition, Mittag-Leffler had established a relationship 

with the King through the foundation of Acta 6 but it is not clear whether the idea 

of holding the competition came from Mittag-Leffler or whether it can be attributed 

to the King himself. Certainly Mittag-Leffler was always keen to enhance his 

reputation within the mathematical community and would have relished the 

opportunity to be involved in a major mathematical competition. It therefore seems 

quite likely that the project emerged as a consequence of his initiative. 

What appears to be the first reference to the competition occurs in a long letter from 

Mittag-Leffler to Kovalevskaya written in June 1884, although the contents of the 

letter show that the topic was already under discussion. The letter also provides 

clear evidence that from the outset the competition was intended to be one of pre- 

eminent importance in the mathematical field. The following extract outlines the 

proposed form of the competition: 

"1 agree with Weierstrass, if none of the answers on the set question are 

worthy of the prize, then the medal must be awarded to the mathematician 

who within recent years has made the best discoveries in higher analysis. 

... we should not award our prize more frequently than every fourth year. 
Malnuten and the King want the prize jury to be appointed by the King and 

to consist of 

1. The main editor of Acta Mathematica 

2. A German or Austrian mathematician -= Weierstrass 

3. A French or Belgian mathematician -= Hermite 

4. An English or American mathematician -= Cayley? or Sylvester 

5. A Russian or Italian mathematician -= the first time Brioschi or 
Tschebychev, the second time Mrs Kovalevskaya. 

5 Mittag-Leffler's considerable correspondence which is preserved at the Mittag-Leffler 
Institute is described in Grattan-Guinness [1971]. 

6 In 1882 Oscar had provided both financial and moral support to help Mittag-Leffler found 
Acta. See Domar [1982]. 
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After each prize giving two of the prize judges should leave the jury and new 

ones should be appointed by King Oscar as long as he is alive - he must be 

able to appoint (substitutes) for both the leaving members. After King 

Oscar's death, the three remaining must appoint two new members but 

always in such a way as to fit the categories mentioned above. "7. 

In the event, Mittag-Leffler was unable to fulfil any one of Oscar's requirements 

exactly. The difficulties with which he was faced are well illustrated by 

Kovalevskaya's reply written while on holiday in Berlin: 

"In regard to the question of the prize Weierstrass has promised me that he 

will write you his opinion on that in more detail as soon as he receives a 
letter from you. I did not inform him of what you wrote me in the letter 

before last with regard to the choice of jury, for I was sure in advance of his 

complete disapproval. Indeed I believe that in this way the thing presents 

many practical difficulties. Just consider how one could hope that four 

famous mathematicians, Weierstrass, Hermite, Cayley and Tschebychev 

would ever agree on the merits of a memoir. I believe it is certain that each 

of the four would refuse to become part of the jury as soon as he learned the 

names of the other three. As for Weierstrass, I am so sure of this that I 

didn't even venture to talk to him about it. In general Weierstrass thinks 

that it will be quite difficult for the jury to agree when they have no 

opportunity to talk face to face. To do it by mail is considerably more 
difficult; and at bottom, why would these old gentlemen take so much 

trouble for us? There, I fear, is a very great difficulty! As for the honour, 

quite the contrary, each of the four that you named will be outraged that 

you chose the others along with him. "8. 

Although there was a certain amount of melodramatic effect in Kovalevskaya's 

letter (Hermite and Weierstrass certainly had a healthy respect for each other), 
for the most part her presentiments proved to be well founded. The eventual outcome 

was a commission comprised of only three: Charles Hermite, Karl Weierstrass and 
Mittag-Leffler himself. 

Letter from Mittag-Leffler to Kovalevskaya 7.6.1884, M-L I (tr. S. Norgaard). For the complete 
extract see Appendix 1. 

8 Cooke [1984,106]. 
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Hermite was one of the dominant figures of French analysis in the second half of the 

19th century, and from 1869 a professor both at the $cole Polytechnique and at the 

Sorbonne, resigning from the former in 1876 while maintaining his position at the 

latter until 1897. By the time of the competition he had established an 
international reputation in both teaching and research, and his courses attracted an 

audience from all over Europe. Not only was he a leading exponent of Cauchy's 

complex function theory, but also he actively promoted Weierstrass' ideas in France. 

His career had begun in the 1840s with work on elliptic and Abelian functions, topics 

which continued to occupy him throughout his mathematical life. By the late 1870s, 

having achieved notable success with his research into a variety of other topics 

such as quadratic forms, invariant theory, and fifth degree equations, he returned 

once again to elliptic function theory. Throughout his life Hermite maintained an 

extensive and influential correspondence with other mathematicians, most notably 

with the Dutch mathematician Stieltjes9, but also, significantly, with Mittag- 

Leffler'O. 

In 1873 Mittag-Leffler had studied with Hermite in Paris and a close friendship 

had developed between them. From the time of Mittag-Leffler's arrival, Hermite 

made no secret of the high regard in which he held the work of his German 

counterpart, Weierstrass. As Mittag-Leffler later recalled, his earliest memory of 
Hermite was of being greeted by the words: 

"You have made a mistake, Monsieur, you should have taken the courses of 

Weierstrass in Berlin. He is the master of us all. " 11. 

As a result of his connection with Hermite, Mittag-Leffler was able to remain in 

constant touch with the mathematical life in Paris, and moreover Hermite's 

friendship had proved to be extremely valuable with regard to the launching of 
Acta. Not only did Hermite show his support for the idea by sending him a 
handsome donation towards the initial financing of the project, but, more 
importantly, it was with Hermite's help that Mittag-Leffler had been able to 

secure papers for the first issue of the journal from three extremely talented young 

9 Correspondence d'Hernzite et de Stieltjes, edited by B. Baillaud and H. Bourget, 2 volumes, 
Paris, 1905. 

10 The Hermite-Mittag-Leffler correspondence 1874-1883; 1884-1891; 1892-1900 is published 
in Cahiers 5 (1984), 49-285; 6 (1985), 79-217; 10 (1989), 1-82 respectively. 
II Mittag-Leffler 11902,131]. 
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French mathematicians: Appell, Picard and Poincare, all of whom were former 

students of Hermit. And, importantly for Mittag-Leffler, all three of them 

continued to contribute to the journal, as well as Hermite himself. 

Weierstrass was a professor at the University in Berlin, a position he had held 

since 1864. He was a leading, if not the foremost, analyst in Germany, and his 

reputation as an expositor of new ideas drew students from across the world. 
Weierstrass had first come to prominence with his papers on Abelian functions 

published in 1854 and 185612, having spent the previous decade establishing his 

theory of analytic functions on the foundation of power series. He lectured on a 

variety of topics including several aspects of elliptic function theory, as well as the 

theory of Abelian functions, and the calculus of variations. He was also interested 

in the application of analysis to problems in mathematical physics, and in 

particular the n body problem. 

However, Weierstrass' compulsion for rigour meant that he found it extremely 
difficult to complete anything for publication, with the result that his fame rested 
largely on his power as a teacher, and his influence was to a great extent carried by 

his former students, one of whom was Mittag-Leffler. While in Berlin Mittag- 

Leffler had established a good relationship with Weierstrass, and when he left in 

1876, continued their association through correspondence13. 

Thus although Mittag-Leffler had failed in his original task of appointing a 

commission of five members, he had managed to engage two of the leading analysts 

of the day, one from each of the premier mathematical nations, and, importantly, 

two mathematicians with whom he had already established warm and productive 
friendships14. 

However, despite the reduction in the number of people involved, such a choice of 

commission did still present certain practical difficulties. Apart from the obvious 

12 Zur theorie der Abelschen Functionen Crelle's journal 47 (1854), 289-306; Theorie der 
Abelschen Functionen Crelle's journal 52 (1856), 285-380. 

13 Domar (1982] has noted that there was a slight lull in their correspondence at the beginning of 
the 1880s which coincided with the founding of Acta and with Weierstrass being put in charge of 
Crelle's journal. 

14 Not only did the composition of the commission not accord with the King's original 
conception, but also the idea of making the competition a regular event was never taken any 
further. That the competition was held only once was probably due both to the original 
difficulties in organising a commission and to the considerable problems which the commission 
later encountered. 
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problems arising from the different geographical locations involved, Weierstrass in 

Berlin, Hermite in Paris and Mittag-Leffler in Stockholm, there was the additional 

complication engendered by the lack of a common first language. Although Mittag- 

Leffler was more than competent in both French and German and usually happy to 

use either, Hermite and Weierstrass, while familiar with each other's languages, 

preferred to correspond in their own15. 

The commission being appointed, Mittag-Leffler was faced with the formidable 

undertaking of achieving a consensus of opinion with regard to the question to be set. 
Naturally, for the competition to establish a international reputation, it was 

essential that it should attract entries of the highest international calibre which in 

turn would depend on the nature of the question to be solved. However, it soon 
became clear that to limit the competition to one question alone was going to be 

counter-productive. As pointed out by Hermite, there were by this time an 

unprecedented number of mathematicians working in different branches of 

analysis16. Thus to single out a particular topic on which to pose the question would 
be to impose a constraint which inevitably would restrict the quality of the entries. 
Moreover, the imposition of such a limitation would preclude the inclusion of any 

work of an innovatory nature. The difficulty was compounded by the fact that the 

King himself was keen that the competition should address a specific question. The 

possibility of having a single very open question was discounted because of the fear 

that it might lead to a situation in which it would have been impossible to identify 

a winner from several entries of comparable merit, each on an entirely different 

topic. 

After an intensive correspondence between all three members of the commission, 

with Hermite and Weierstrass exchanging ideas through Mittag-Leffler17, and the 

King becoming increasingly impatient, a format was finally agreed. The 

competition would consist of four questions but the possibility of submitting an entry 

on an alternative topic would also be included. 

15 Mittag Lefflei s correspondence shows that he was extremely proficient in both French and 
German but he did occasionally claim otherwise, as, for example, in a letter written to Kronecker 
in July 1885 which he began with, "Please excuse me for writing to you in French. However badly 
I write French I find it easier and make less mistakes than in German. '. Mittag-Leffler-Kronecker 
correspondence, M-L I. 

16 Hermite to Mittag-Leffler, 25.2.1885, No. 150, M-L I. Cahiers 6 (1985), 100. 

17 Mittag Leffler used Kovalevskaya to translate Weierstrass' questions into French for 
Hennite. Letter from Mittag-Leffler to Hermite, 20.2.1885, No. 356, MLI. 
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In mid-1885 the official announcement of the competition was published in both 

German and French in Acta18. Mittag-Leffler also sent an English translation for 

publication in Nature where it appeared in the issue for July 30,188519. 

The announcement gave details of the prize (a gold medal together with a sum of 
2,500 Crowns20), named the commission, listed the questions and stipulated the 

conditions of entry. The entries were to be sent to the chief editor of Acta before June 

1,1888, and, as was customary in such competitions, they were to be sent in 

anonymously, identifiable only by a motto and accompanied by a sealed envelope 
bearing the motto and containing the author's name and address. The entries were 

not to have been previously published and notice was given that the winning entry 

would be published in Acta. 

Of the four questions set, the first three were proposed by Weierstrass and the 

fourth by Hermite. The first question addressed the well-known n-body problem, 

reflecting Weierstrass' longstanding interest in the problem21. The second question 

required a detailed analysis of Fuchs' theory of differential equations; the third 

question asked for further investigation into the first order non-linear differential 

equations studied by Briot and Bouquet; the last question concerned the study of 

algebraic relations connecting Poincare's Fuchsian functions which have the same 

automorphism group. 

4.3 Kronecker's criticism 
The publication of the announcement had one unintentional and unwelcome 

consequence. It provoked an angry reaction from Leopold Kronecker, also a professor 

at the University in Berlin. Kronecker, apparently incensed by being left out of the 

commission, wrote to Mittag-Leffler with a catalogue of complaints about the 

18 Acta 7,1-VI. 

19 See Appendix 2. 

20 For comparison: Domar [1982] cites Mittag-Leffler's annual salary in 1882 as a professor in 
Stockholm as 7,000 Crowns, and Nature (February 21,1889,396) in the announcement of the 
competition result states that it is equivalent to £160. 

21 In a letter dated 15 August 1878, Weierstrass told Kovalevskaya that he had constructed a 
formal series expansion for solutions to the problem but was unable to prove convergence 
[Mittag-Leffler 1912,311, and in 1880/81 he gave a seminar on the problems of perturbation 
theory in astronomy [Moser 1973,6]. Despite Weierstrass' own difficulties with the problem, 
certain remarks made by Dirichlet in 1858 had led him to believe that a complete solution was 
possible, and hence his choice of the Problem as one of the competition questions. Weierstrass' 
interest in the problem is chronicled in Mittag-Leffler [1912]. 
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competition22. However, it was no secret that an intense rivalry existed between 

himself and Weierstrass and he was undoubtedly equally angry at the latter's 

inclusion on the commission. It is more than likely that this was the real 

motivation for the attack23. 

Kronecker accused Mittag-Leffler of using the competition as a vehicle for 

advertising Acta. Why had the competition not been proposed by the Swedish 

Academy? It was an accusation Mittag-Leffler could easily refute: the King wished 

the competition to be announced in Acta, not only because Acta could claim a wider 

readership in the mathematical world than the transactions of the Swedish 

Academy, but also because of the King's personal interest in the journal. On being 

challenged on the choice of members for the commission, Mittag-Leffler explained to 

Kronecker that his instructions had been to choose a commission of three, consisting 

of a representative from each of the two premier mathematical nations, Germany 

and France, while the third member was to come from Sweden. With regard to the 

German representative, it had been a straight choice between him and Weierstrass, 

both of whom were equally suited to the task, but Weierstrass, being some 8 years 

older than Kronecker, had been chosen purely on the grounds of his "venerable" age. 
This may have mollified Kronecker but, not surprisingly, Weierstrass was not 
impressed by this particular line of reasoning. However, Kronecker levelled his 

most serious charge at Question 4, the question set by Hermite. Kronecker not only 

maintained that he was the best person to judge algebraic questions of this type but 

also that he had already proved that the results required to resolve this particular 

question were impossible to achieve and he threatened to tell the King as much24. 
As a defence, Mittag-Leffler could only plead ignorance on behalf of himself, 

Hermite and Weierstrass25. Mittag-Leffler concluded his reply with a barrage of 
flattery well calculated to appeal to Kronecker's vanity. 

22 The contents of Kronecker's letter to Mittag-Leffler have been reconstructed from Mittag- 
Leffler's reply which was written in July 1885 and which is at the M-L I. 

23 Weierstrass believed that Kronecker's avowed antipathy to the work of George Cantor 
reflected Kronecker's opposition to his own work. See Biermann [1988, Chapter 5]. 

24 Mittag-Leffler to Hermite, August 1885, M-L I. 

25 Shortly afterwards Hermite met Kronecker and told him that he accepted full responsibility 
for Question 4. He explained his intentions in setting the question and, moreover, admitted that 
he had set it specifically with Poincar6 in mind. Hermite s explanation seems to have satisfied 
Kronecker as he did not pursue the issue. Perhaps it was sufficient that Weierstrass was not 
involved. Cahiers 6 (1985)), 108-111. 



72 Oscar II's 60th Birthday Competition 

Kronecker let matters rest, but not for long. In 1888 he launched another attack but 

this time it was directed at the contents of Question 1. On this occasion he did not 

write to Mittag-Leffler but instead made his complaint into a public affair by 

presenting a Note at a meeting of the Berlin Academy26. 

Weierstrass, in composing the question, had drawn on information contained in a 

speech on Dirichlet given by Kummer27. This had led Weierstrass to say that 

Dirichlet had told a "friend" that he had discovered a method for integrating the 

differential equations of mechanics and through this method had succeeded in 

proving the stability of the solar system. However, since Kronecker was the 

"friend" to whom Dirichlet had communicated his results Kronecker felt he could 

claim to know what Dirichlet had really said and disputed the accuracy of 
Weierstrass' remarks. Kronecker's version of the events was that Dirichlet had 

first told him about the stability proof and then only later and on a separate 

occasion told him about the method, in other words the two events were not 

contingent as Weierstrass had implied. 

The content of Kronecker's second offensive would not have come as a complete 

surprise to Mittag-Leffler since, in August 1885, he had received a long letter from 

Kroneckei part of which centred on this question28. In addition, in October the 

following year, 1886, Kronecker had openly declared that he considered Dirichlet 

to have been misquoted in the question and he intended to publish his version of 

events29. Since Kronecker's complaint concerned unpublished work by Dirichlet who 
had died in 1859, almost 30 years before, it is not clear why he waited a further 

three years before going public rather than pursuing the issue at the time he first 

raised it with Mittag-Leffler. 

However, the fact that Kronecker had seen fit to use the Berlin Academy of Sciences 

to air his views, combined with the fact that it was Weierstrass who had set the 

question, gave the commission strong grounds for thinking that this attack was yet a 

26 Kronecker [1888]. 

27 See Appendix 2. 

28 Kronecker also disputed that the definition of "higher analysis" could be used to describe 
Questions 1 and 4. In addition he also claimed to be highly competent to answer both these 
questions. Letter from Kronecker to Mittag-Leffler, 16.8.1885, M-L I. 

29 Mittag-Leffler to Hermite, 7.10.1886, Archives de 1'Acad6mie de Science, Paris. Archive for 
History of Exact Sciences 10,1973,162. 
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further manifestation of the rivalry between the two Germans rather than a direct 

assault on the commission as a whole. Nevertheless, since Kronecker steadfastly 

maintained that he did not know who had composed the question, it was difficult 

for the commission to know how best to respond to him. Should they do so 

collectively and in the name of the commission, or should Weierstrass personally 
take on the responsibility? 

Hermite made it quite plain that he did not wish to be involved in the dispute. Not 

only did he consider the matter to be an entirely German affair between the "two 

princes of analysis", but also he considered it his patriotic duty to avoid doing 

anything that could be construed as having a national connection30. He was 

convinced that Kronecker was a committed Francophobe and in consequence felt 

there was nothing to be gained by his intervention. 

Weierstrass had no difficulty in dealing with Kronecker's complaints but was 

reluctant to do so on his own - he considered it the responsibility of the 

cömmission31. He believed that his own description of the events was essentially 
true. For even if Dirichlet had told Kronecker about the proof and the method at 
different times (which probably meant at the most one or two days apart) that did 

not mean that they had not been connected by Dirichlet. Likewise neither was the 

order in which Dirichlet related his discoveries to Kronecker evidence that that 

was the order in which he had discovered them. The only point Weierstrass was 

willing to concede was that he had omitted Kronecker's name as the "friend" to 

whom Dirichlet had communicated his results. In any case, from Weierstrass' point 

of view, what was important about Dirichlet's remarks was the fact that they 

provided real hope that a solution to the n body problem could be found and hence a 

good reason for including the question in the competition. 

After much deliberation the commission decided that they would be in a better 

position to reply to Kronecker when the judging of the competition had been 

completed and the winning paper(s) published. Thus they elected to leave the 

matter open until then. It turned out to be a wise decision. Not only did subsequent 

events overshadow the issue but the need to reply was obviated by Kronecker's 

death which occurred in 1891 shortly after the publication of the winning memoirs. 

30 Hermite to Mittag-Leffler, 6.6.1888, M-L I. Cahiers 6 (1985), 140-2. 

31 Weierstrass to Mittag-Leffler, 23.5.1888, M-L I. Mittag-Leffler 11912,47-49]. 
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4.4 The entries 
Despite the fact that the identity of entrants for the competition was supposed to be 

secret, all three members of the commission were aware before the closing date that 
Poincare meant to submit an entry. As early as July 1887 Poincare, who was at that 

time the professor of mathematical physics and probability at the Sorbonne, had 

made clear his intentions to Mittag-Leffler32, explicitly mentioning Question 1. In 

October of the same year Hermite told Mittag-Leffler that although he knew 

Poincare was working on something for the competition, he did not know whether 
Poincare would submit it and, in any case, he was not sure whether Poincare was 

working on astronomy (Question 1) or Fuchsian functions (Question 4). Mittag- 

Leffler, still scarred from Kronecker's original attack, admitted to Poincare that he 

hoped he would provide an answer to Question 433. 

In fact the selection of topics for the competition was such that it would have been 

possible for Poincare to have submitted an entry on any one of them. This begs the 

question: had they all been chosen with Poincare in mind? This was certainly the 

case with Question 4 (see Footnote 25), but perhaps Weierstrass too had designed his 

questions to appeal particularly to Poincare. In any case Mittag-Leffler was an 

unquestionable champion of Poincare's work34. In the event, Poincare chose to 
devote himself to seeking a solution to the most difficult of the four, the one on the 

n-body problem. 

By the closing date twelve entries had been received. Shortly afterwards a list of 
their titles was published in Acta where, in accordance with the rules of the 

competition, the authors were identified solely by their respective mottos35. 

The entries were numbered in the order in which they were received and five of the 

entries, including that of Poincare (number 9), attempted Question 1, one attempted 

question 3 (number 4), and the remaining six covered a variety of topics of their own 

choice. 

32 Poincar6 to Mittag-Leffler, 16.7.1887, M-L I. Acta 38 (1921), 162-3. 

33 Mittag-Leffler to Poincare, 17.11.1887, M-L I. 

34 Mittag-Leffler secured Poincare's support for the launch of Acta, publishing important papers 
by him in each of the first five volumes. 
35 See Appendix 3 and Acta 11,401-402. 
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When Poincare's entry arrived it was clear that his reading of the competition 

regulations had been somewhat perfunctory. As required he had inscribed his 

memoir with an epigraph, Nunquam pra? scriptos transibunt sidera fines (Nothing 

exceeds the limits of the stars), but, contrary to the correct procedure, he had 

omitted to enclose a sealed envelope containing his name, and instead had written 

and signed a covering letter. In addition to this official letter he had also sent a 

personal note to Mittag-Leffler to tell him that he had sent in an entry36. This 

infringement of the rules was doubtless a complete oversight on Poincare's part, as 
from his point of view anonymity was an impossibility since he had already told 

Mittag-Leffler and Hermite that he intended to send in an entry. Added to which 
his entry was an explicit development of his earlier work on differential equations 

with which all three members of the commission were familiar, and in any case his 

handwriting would not have gone unrecognised. 

Apart from Poincare, it has only been possible to identify positively the authors of 
three of the other entries: numbers 4,8, and 10. With regard to entry number 8, the 

correspondence between the members of the commission makes clear that they 

themselves quickly established its author. The paper had been submitted with a 

covering note from Paul Appell, professor of rational mechanics at the Sorbonne and 

a regular contributor to Acta, claiming that it had been written by someone "well- 

known to him"37. Having originally surmised that the author was a student or 
friend of Appell's, the commission rapidly came to the correct conclusion that it had 

been written by Appell himself38. 

The authors of numbers 4 and 10 are identifiable as a result of the communication 

they had with the commission after the winner of the competition had been 

announced. Number 4 came from Guy de Longchamps, a professor in Paris, who, 
having a rather high opinion of his own work and having been passed over for the 

prize, saw fit to complain to Hermite (who did not share his opinion) about the 

manner in which the competition had been conducted39. Number 10 was the entry of 
Jean Escary, a professor at the Military School of La Fleche, who later became a 

professor at the Lycee de Constantine in Algeria. On learning of Poincare's success he 

36 poincare to Mittag-Leffler, 17.5.1888, Nos. 40,41, M-L I. 

37 Appell to Mittag-Leffler, 13.5.1888, M-L I. 

38 Mittag-Leffler to Hermite, 17.10.1888, No. 1146, M-L I. 

39 Hermite to Mittag-Leffler, 4.2.1889. Cahiers 6 (1985), 160. 
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wrote to Mittag-Leffler enclosing some corrections to his own paper and praising 

Poincare40. Earlier Mittag-Leffler, having spotted one of Escary's mistakes and 

unaware of the paper's authorship, had confided in Weierstrass that he thought 

that the paper was by Dillner, a professor in Uppsala since "... for a long time the 

poor man has been unable to deal with mathematics. "41. 

Although there were officially twelve entries to the competition, the 

correspondence at the Mittag-Leffler Institute does reveal one further entry which 

was not only personally addressed to the King, but also having been written on 26th 

December 1888, arrived too late for consideration42. Nevertheless, had it arrived 

on time, it would not have added significantly to the commission's task since the 

entrant, Cyrus Legg from Clapham, London, claimed the prize for his proof of the 

trisection of the angle by ruler and compass alone! 

4.5 Judgement of the entries 
A large part of the judging of the competition was done by correspondence. Mittag- 

Leffler, having received the entries in Stockholm, appointed one of the editors of 

Acta, Edvard Phragmen, the task of doing the preliminary reading prior to having 

copies of the most significant entries made and sent to Hermite and Weierstrass. 

Within a fortnight of the closing date Mittag-Leffler had written to both Hermite 

and Weierstrass with his opinion that there were only three entries worthy of 

consideration: those from Poincare and Appell, and one which came from Heidelberg 

(number 5), although none of them had provided a complete solution to any of the set 

questions. Poincare's entry on Question 1 was essentially concerned with the 

restricted three body problem (rather than the n body problem); Appell had not 

attempted any of the set questions but instead had provided a memoir on the 

expansion of Abelian functions by trigonometric series; and the entry from 

Heidelberg had treated Question 1 from an astronomical point of view. By the 

beginning of July Mittag-Leffler's confidence in the outcome was sufficient for him to 

40 Fortschritte for 1889 and 1893 lists editions of Escary's paper as being published elsewhere 
but gives no further details. 

41 Mittag-Leffler to Weierstrass 16.11.1888, M-L I. 

42 Cyrus Legg to King Oscar II, 26.12.88, M. L. I. 
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write to Weierstrass to say that he thought Poincare should win43. Shortly 

afterwards he added the further endorsement that Phragmen thought Poincare's 

paper quite remarkable. 

Mittag-Leffler then spent August in Germany with Weierstrass so that they could 

study the different memoirs together. After which he wrote to Hermite to tell him 

that they now considered only two of the memoirs were contenders for the prize: 

those of Poincare and Appell, and since Appell had not attempted any of the 

proposed questions, the prize should go to Poincare, with an honourable mention for 

Appe1144. Meanwhile Hermite himself had been studying Poincare's memoir and 

conveyed to Mittag-Leffler that he too was absolutely convinced as to the 

importance of the work45. 

The commission had quickly reached a unanimous decision but the hard part of their 

work had barely begun. It was one thing to recognise the quality of Poincare's work 
but quite another to understand it. Not only was Poincare's entry extremely long but 

also it contained many new ideas and results which required careful study. 
Moreover, as Hermite freely admitted, the difficulties of comprehension were 

compounded by Poincare's customary lack of detail: 

"But it must be acknowledged, in this work ([P1]) as in almost all his 

researches, Poincare shows the way and gives the signs, but leaves much to 

be done to fill the gaps and complete his work. Often Picard has asked him 

for enlightenment and explanations on very important points in his articles 
in the Comptes Rendus, without being able to obtain anything except the 

statement: "it is so, it is like that", so that he seems like a seer to whom 

-truths appear in a bright light, but mostly to him alone. "46. 

The correspondence shows all three members of the commission struggling with 

various parts of the memoir, but it was Mittag-Leffler who, determined that the 

version submitted to the King should be as complete as possible, entered into 

correspondence with Poincare (notwithstanding the rules of the competition 

whereby he should have been ignorant of the paper's authorship) appealing for 

43 Mittag-Leffler to Weierstrass, 3.7.1888, M-L I. 

44 Mittag-Leffler to Hermite, 17.10.1888, No. 1146, M-L I. 

45 Hermite to Mittag-Leffler, 17.10.1888, Cahiers 6 (1985), 146. 

46 Hermite to Mittag-Leffler, 22.10.1888. Cahiers 6 (1985), 147. 
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clarification on several issues47. In answer to these appeals, Poincare produced 

substantial Notes to be appended to the paper, the nature and extent of which can be 

clearly seen in the table of contents as it appeared when the paper was originally 

printed for publication in Acta48. These supplements eventually amounted to an 

additional 93 pages, which represented more than a fifty percent increase in the 

length of the memoir. Mittag-Leffler also took the opportunity to ask Poincare for a 

sealed envelope containing his name and address in order to remedy Poincare's 

earlier omission49. 

Mittag-Leffler may have had no qualms about his contact with Poincare but 

Weierstrass certainly did and he made a point of asking Mittag-Leffler not to 

mention the fact that he knew for certain that Poincare had entered the 

competition50. He later told Mittag-Leffler that it was almost an axiom in 

Germany that a prize paper must be published exactly in the form in which it was 

submitted51. From his own point of view Weierstrass thought that the proper time 

for additions and corrections was when the paper was being edited for publication, 
but then only providing they were clearly acknowledged52. 

With regard to the jury's opinion of the other papers, Weierstrass wrote to Mittag- 

Leffler in November with a report on five of the entries, although in reality the 

result of the competition had already been decided53. Of note in this report was his 

dismissal of number 5 as insufficiently mathematical, his recognition of the quality 

of Appell's paper, an opinion which had been further endorsed by Schwarz to whom 
he had given Appell's paper to review, and, of course, his opinion on Poincare's 

paper. He reiterated his belief that Poincare's paper deserved the prize and 

singled out the particular results which he thought most important, the details of 

which are discussed in 6.2. 

47 Mittag-Leffler to Poincar6,15.11.1888, M-L I. 

48 See Appendix 5a. 

49 poincar6 to Mittag-Leffler, 25.10.1888, No. 43, M-L I. 

50 Weierstrass to Mittag-Leffler, 6.7.1888, M-L I. 

51 Weierstrass to Mittag-Leffler, 2.4.1890, M-L I. 

52 Weierstrass to Mittag-Leffler, 8.3.1890, M-L I. 

53 Weierstrass to Mittag-Leffler, 15.11.1888, M-L I. Mittag-Leffler [1912,50-52]. 
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4.6 The prize announcement 
It now only remained for the commission to fulfil their final obligations to the King. 

This involved producing reports on the competition, one on each of the winning 

memoirs and one on the competition as a whole, the intention being for the reports on 

the memoirs to be published alongside the memoirs themselves. It fell to 

Weierstrass as the originator of the question to write the report on Poincare's paper, 

although Mittag-Leffler did express certain reservations about Weierstrass' 

capacity for the undertaking on account of the poor state of Weierstrass' health54. 

The question of who should write the report on Appell's paper proved rather more 

difficult. Although it seemed without doubt that it would put an impossible strain 

on Weierstrass to write both reports, Hermite felt that since Appell was both A 

friend and a compatriot (not to mention a relation by marriage) the objectivity of his 

judgement would be called into question and so he was reluctant to shoulder the 

responsibility55. Nevertheless, in the end Mittag-Leffler was able to persuade 

Hermite to take on the task. The writing of the general report, which was to be in 

French, was undertaken by Mittag-Leffler, Oscar having already made clear the 

sort of detail he required. 

On the 20th January 1889, the day before the King's 60th birthday, Mittag-Leffler 

went to the palace and the result was officially approved. The King decreed that 

the general report should be translated into Swedish and printed in the newspaper 

Postlidningen56. The following day Mittag-Leffler wrote to Poincare to tell him 

that he would be receiving an official copy of the report via the Swedish 

ambassador in Paris within the next few days57. Everything had been completed to 

the King's satisfaction with the sole exception of Weierstrass' report on Poincare's 

memoir. Weierstrass, who had made no secret of his ill health throughout the 

competition, was sufficiently unwell to fulfil his obligation within the allotted 

time but gave assurances that it shortly would be completed. 

Needless to say, Kronecker too was keenly awaiting Weierstrass' report as Mittag- 

Leffler confided to Poincare: 

54 Mittag-Leffler to Hermite 17.10.1888, No. 1146, M-L I. 

55 Hermite to Mittag-Leffler, 22.10.1888. Cahiers 6 (1985), 147-149. 

56 Mittag-Leffler to Weierstrass, 26.1.1889, M-L I. 

57 Mittag-Leffler to Poincar6,21.1.1889, M-L I. For a copy of the report see Appendix 4. 
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"Kronecker is dreadful and he is only waiting for the publication of the 

report so that he can criticise it. "58. 

Mittag-Leffler also wrote to the Academy of Sciences in Paris with details of the 

competition results, adding that, as stated in the announcement of the competition, 

the winning memoirs would be published in the next volume of Ada, which he 

hoped would appear that October59. The news of Poincare's and Appell's success 

was well publicised in the French press60 and in recognition of their achievement, 

they were both made Knights of the Legion of Honour. The French triumph also 

proved favourable for Mittag-Leffler since he too was similarly honoured for his 

role in promoting French mathematics. 

Nevertheless, Mittag-Leffler's troubles were far from over. The publication of the 

general report, which contained only a cursory indication of Poincare's results, 

signalled the start of a distressing polemic between Mittag-Leffler and the 

astronomer Gylden who at the time was not only lecturing at the Stockholm 

Högskola alongside Mittag-Leffler but was also on the editorial board of Acta. 

From what Gylden could glean from the report, he believed that most of Poincare's 

results were already contained in his own [1887] memoir on the convergence of series 

used in celestial mechanics, and said as much in the February meeting of the 

Swedish Academy of Sciences. Once again Mittag-Leffler was placed in an 

uncomfortable position. Called upon by the King to defend Poincare's memoir at the 

March meeting of the Academy, he wisely wrote to Poincare explaining his 

dilemma and asking for further assistance. Although he completed the defence to 

his own satisfaction, the issue refused to die down immediately and continued to 

haunt him during the ensuing months. The details of the controversy are discussed in 

6.3. 

However, Mittag-Leffler's dispute with Gylden paled into insignificance when 

compared with the problem which subsequently emerged. As already remarked, 
Mittag-Leffler, having allowed time for editing, had hoped to have the volume of 
Acta containing the winning memoirs published by October 1889. Apart from 

Weierstrass' report, for which he had continued to press although without success, 

58 Mittag-Leffler to Poincar6 23.2.1889, M-L I. 

59 Comptes Rendus 108 (25.2.1889), 8. 

60 Hermite to Mittag-Leffler, 28.1.1889. Cahiers 6 (1985), 159. 
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the actual printing was completed by the end of November. But the volume did not 

appear until the end of the following year and, furthermore, it did not contain a 

replica of the memoir Poincare had submitted for the prize. What had occurred in 

the interim? 

4.7 Discovery of the error 
The first glimmer that anything was awry occurred in July 1889. Phragmen, who 

was editing Poincare's memoir for publication, alerted Mittag-Leffler to some 

passages in it which seemed to him a little obscure. Thus prompted, Mittag-Leffler 

wrote to Poincare for yet further clarification61. However, it was not until much 
later that the scale of the problem became evident. Poincare, in the course of 
dealing with Phragmen's queries, realised that he had made a serious error in a 
different part of the paper. At the beginning of December, he wrote to Mittag- 

Leffler and, making no attempt to conceal his distress, told him that he had written 

to Phragmen to tell him of the error, the consequences of which were more far- 

reaching than he first thought, and as a result of which he was having to make 

substantial changes to the memoir62. 

This was most unwelcome news for Mittag-Leffler since, although the volume of 
Acta had not been published, a limited number of printed copies of the memoir had 

already been circulated. Once more Mittag-Leffler's carefully nurtured 

mathematical reputation was in jeopardy. Despite his confidence in the overall 

quality of the memoir, he was only too conscious of the inevitable damage he would 

suffer should word of the error become public. Although he knew to whom the copies 
had been sent, procuring their return would not be easy since several had been 

dispatched to destinations outside Sweden. 

Mittag-Leffler wrote to Poincare to let him know the whereabouts of some of the 

copies63. As far as those outside Sweden were concerned, Hermite and Weierstrass 

had each received one, as had the analyst Camille Jordan and the editor of 
Mathematische Annalen, Walther von Dyck. The one piece of good news was that a 

61 Mittag-Leffler to Poincare, 16.7.1889, M-L I. 

62 Poincare to Mittag-Leffler, postmarked 1.12.1889. The contents of this letter are given in full 
at the end of 5.8.3. 

63 Mittag-Leffler to Poincar6,5.12.1889, M-L I. 
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copy had not been sent to Kronecker! With regard to those in circulation in 

Stockholm, Mittag-Leffler was particularly anxious to retrieve the copies from 

Gylden and Lindstedt without arousing suspicion. In an attempt to minimise the 

scandal, he suggested to Poincare that everything concerning the error should be 

kept between themselves at least until publication of the new memoir. 

Several other recipients of pre-publication copies of the memoir can be identified 

from a note sent by Phragmen to Mittag-Leffler at the end of January64. In this 

Phragmen listed Gylden, Lindstedt, Lindelöf, Mohelins, Lie, Hill, Stone, 

Kovalevskaya and Lindquist, as well as the Royal Swedish Academy of Sciences 

and the Minister of justice, as either still being in possession of a copy or having 

returned one to the Institute. 

Mittag-Leffler appears to have been tireless in his determination to ensure that no 

evidence of the incorrect memoir should remain outside the offices of Acta. Today 

there are two bound copies of the original printed paper in existence at the Mittag- 

Leffler Institute and inside the front cover of one of them, written in Mittag-Leffler's 

hand, is a Swedish phrase which translated means "whole edition destroyed". 

In order to safeguard himself still further, Mittag-Leffler gave detailed instructions 

to Poincare as to how he would like the introduction to the reworked memoir to 

appear65. Furthermore, he also asked Poincare to pay for the printing of the 

original memoir. A request to which Poincare agreed without demur, despite the 

fact that the cost turned out to be just over 3,500 Crowns, some 1,000 Crowns more than 

the prize he had originally won. 

Mittag-Leffler was also faced with the problem of telling Hermite and Weierstrass 

about the error. As fellow members of the commission, he knew that the news of its 

discovery would be most unwelcome. He adopted two quite different approaches. 

In Hermite's case, Mittag-Leffler had little choice but to be open about the situation 

since he knew that inevitably Hermite would hear about it from Poincare himself. 

Thus, as soon as Mittag-Leffler heard the news from Poincare he immediately sent 
Hermite copies of the correspondence between himself and Poincare, admitting that 

he believed the error to be so serious that he thought it likely that almost every 

64 Phragmen to Mittag-Leffler, 26.1.1890, M-L I. 

65 Mittag-Leffler to Poincare, 5.12.1889, M-L I. 
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page in the memoir would contain a false result66. Meanwhile, Hermite had seen 
Poincare who had told him not only about the error but also that he thought things 

were not quite so bad as he had originally described to Mittag-Leffler. As a measure 

of his confidence, Poincare had offered to prepare a summary of his results for 

Hermite so that Hermite could give a report to the Paris Academy of Sciences the 

following week67. 

Unfortunately, Poincare's original fears were realised. Exactly a week later 

Hermite was writing to Mittag-Leffler to tell him that he thought the situation 

was very serious after all68. He had heard nothing from Poincare in the interim, 

the promised summary had never arrived and he had not been able to make his 

report to the Academy. Thereafter Hermite, not wishing to cause Poincare undue 
distress, communicated with him no further on the subject, leaving the matter 

entirely for Mittag-Leffler to handle. Nevertheless, it is clear from the 

correspondence that despite Hermite's anxiety he was convinced that Poincare 

would eventually resolve the problem. 

With regard to Weierstrass, Mittag-Leffler took an entirely different line. He 

initially played down the seriousness of the problem and managed to give 

Weierstrass the impression that the delay in publication was simply due to the 

correction of some minor details. Doubtless Kronecker's presence in Berlin served to 

strengthen Mittag-Leffler's resolve to minimise the problem. As a result, in 

February 1890 when Gylden and Wolf brought to Berlin the rumours of serious errors 
in the paper, Weierstrass was placed in an extremely embarrassing position69. 
Awkward questions were asked which he was in no position to answer. He 

demanded an explanation. 

In defence, Mittag-Leffler claimed that his decision not to reveal everything about 

the error had been purely motivated by his consideration for Weierstrass' delicate 

state of health70. He told Weierstrass that he believed Gylden was only acting in 

self interest and that the situation was nothing like so bad as Gylden was trying to 

66 Mittag-Leffler to Hermite, 6.12.1889, No. 1372, M-L I. 

67 Hermite to Mittag-Leffler, 10.12.1889. Cahiers6 (1985), 180-181. 

68 Hermite to Mittag-Leffler, 17.12.1889. Cahiers 6 (1985), 181-182. 

69 Weierstrass to Mittag-Leffler, 8.3.1890, M-L I. 

70 Mittag-Leffler to Weierstrass, 15.3.1890, M-L I. 



84 Oscar II's 60th Birthday Competition 

make out. Moreover, he claimed that the French mathematicians, including 

Poincare and Hermite, were quite relaxed about the problem, and since the critics, 

such as Kronecker, whom he denounced as only being able to recognise something as 
important if he had done it himself, and Gylden, were in a minority, there was no 

need for Weierstrass to worry! Weierstrass could do little except express his 

dissatisfaction at the way things had turned out and ask Mittag-Leffler to send him 

a proof of the new version as soon as possible71. He was clearly frustrated at not 
discovering the error himself, although he was more concerned about the 

inaccuracies which might be contained in the general report, the extent of which he 

could not ascertain until he knew the details of the error. Fortunately, his worries in 

this direction were groundless. The generalities the report contained still held true 

and the lack of mathematical detail meant that there was nothing in it that could 

not equally well be applied to the revised memoir. 

Phragmen's role in setting Poincare on the trail of an error which had escaped the 

attention of all three members of the commission was certainly worthy of 

recognition. However, and characteristically, Mittag-Leffler did not see it in his 

best interests to acknowledge Phragmen's participation publicly. Nevertheless, he 

did ask Poincare for his written support to help Phragmen in his attempt to secure 
the chair in mechanics at the university in Stockholm72, and perhaps it may be 

more than coincidence that Phragmen was promoted to the editorial board of Acta in 

the following year. It is also of interest to note that in November 1889 Phragmen 

wrote a paper in which he showed that some of Poincare's results could be applied 
to dynamical problems other than the restricted three body problem. 

4.8 Publication of the winning entries 
However, and doubtless to the relief of Mittag-Leffler, by the beginning of January 

1890 Poincare had completed his reworking of the memoir and sent a copy to 

Phragmen to edit for publication. Not only had he made substantial alterations to 

accommodate the corrections but also, where appropriate, he had incorporated the 

explanatory Notes into the paper itself. Thus the revised paper took on a 

significantly different appearance to that of its predecessor. 

71 Weierstrass to Mittag-Leffler, 2.4.1890, M-L I. 

72 Mittag-Leffler to Poincare, 4.12.1889, M-L I. 
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Although printing began at the end of April that year, a backlog of other work 

meant that it was not completed until the middle of November. When Volume 13 of 
Acta eventually appeared it contained both Poincare's and Appell's memoirs 
together with Hermite's report on the latter. Weierstrass' report on Poincare's 

memoir, still not finished, was promised for a future volume. As Weierstrass 

himself remarked to Mittag-Leffler, it was extremely fortunate that he had never 

completed the original report, but in the event, he never managed to complete a 

revised report either. 

Prior to the discovery of the error Weierstrass had got as far as writing an 
introduction for the proposed report which he had eventually sent to Mittag-Leffler 

in March 1889. But this was only concerned with issues connected with the actual 

question and contained no mention of Poincare's paper. So although the comments in 

it were not invalidated by the error, it did not provide the much-needed guide to 

Poincare's paper. Nevertheless, it was certainly not without interest and Mittag- 

Leffler [1912] selected it to appear in his biography of Weierstrass which was 

published in Acta and which solely focused on Weierstrass' interest in the n body 

problem73. A discussion of this introduction is given in 6.3 where it is put into 

context with Weierstrass' private remarks about Poincare's memoir, many of which 
Mittag-Leffler also saw fit to publish in [1912]. 

Given Mittag-Leffler's initial concern over obtaining Weierstrass' report, it might 

seem somewhat surprising that he was not able to induce him to complete it. 

However, after the discovery of the error, there is a marked reduction in Mittag- 

Leffler's concern for the report. Weierstrass had made it quite plain to Mittag- 

Leffler that he felt a moral obligation to make public the history of the error, but 

Mittag-Leffler's preoccupation with his own reputation meant that he was 

extremely keen to play down the error's importance and undoubtedly he wanted 
Weierstrass to do likewise. Weierstrass' position being contrary to that of Mittag- 

Leffler's, it is tempting to assume that Mittag-Leffler considered it in his own best 

interests for Weierstrass' report never to appear. 

Thus, over. a year later than Mittag-Leffler had originally planned, the climax to 

the competition, the publication of the winning entries in Acta, finally took place. 
More than six years had elapsed since Mittag-Leffler had written optimistically to 

73 Mittag-Leffler 11912,63-65]. 
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Kovalevskaya with the original plans for the competition. Despite 

Kovalevskaya's less than enthusiastic response, Mittag-Leffler could scarcely have 

foreseen the turbulent course of events which were to follow. Nevertheless, in the 

final analysis Mittag-Leffler's considerable efforts were rewarded. Once the Acta 

volume was in circulation, the rumours of the error faded and the brilliance of 

Poincare's memoir was acknowledged. Importantly for Mittag-Leffler, his hope 

that the competition would result in some major new mathematics had been amply 

fulfilled. Poincare's memoir had ensured that King Oscar's 60th birthday 

celebration would not be forgotten. 



5. Poincare's Memoir on the Three 
Body Problem 

5.1 Introduction 
Poincare's memoir is remarkable in many ways. Firstly, Poincare's unprecedented 

qualitative approach to the three body problem and its intrinsic dynamics is 

unequivocally more powerful than any previous methodology. Starting from a 

reductionist view and considering the periodic solutions of the restricted three body 

problem, Poincare's global qualitative perspective led to the brilliant discovery of 

asymptotic solutions which constitute a whole new class of solutions for the problem. 
The discovery of these solutions and the complex nature of their behaviour was quite 

unpredicted and mark a turning point in the history of dynamics. Secondly, the 

paper contains many new and innovative ideas which have been extended, not only 

within the context in which they were developed, but also in several other branches 

of mathematics. Thirdly, it provided the fundamental basis for what is often 
described as his chef d'ruvre, his three volume Les Methodes Nouvelles de la 

Mecanique Celestes. Furthermore, the paper contains what is essentially the first 

mathematical description of chaotic motion in a dynamical system, and it will be 

1 Henceforth referred to as [MN, I-III]. 
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shown that this latter aspect, as well as being historically important in its own 

right, has an added significance in the context of the history of the paper itself. 

In 4.5 and 4.7 the circumstances were described which resulted in Poincare making 
two major changes to the content and structure of the memoir before its publication in 

1890. The first of these, the addition of substantial explanatory Notes, was made in 

response to requests for more detail from Mittag-Leffler, and the second, the 

extensive rewriting, was the result of the discovery of an important error. Although 

Poincare touched on the subject of these changes in his introduction to the published 

paper [P2], he did not make clear the extent of the alterations. Unfortunately, it 

has not been possible to trace the paper Poincare originally submitted for the prize 
but correspondence at the Mittag-Leffler Institute suggests that, excluding the 
Notes, it assumed a very similar form to the first printed version [P1], copies of 

which still exist at the Institute. Of especial importance amongst the latter is the 

one [Pla] which was personally corrected and extended by Poincare, and to which he 

attached a note detailing the changes. This copy in its altered form corresponds 

almost exactly to the published memoir and it provides a remarkable record of the 

way the memoir was rewritten. Its existence has made it possible to follow the 

metamorphosis of the entire memoir and provide a complete picture of the exact 

nature of the error. 

This chapter, as well as containing a detailed mathematical analysis of the 

memoir, also describes how [P2] relates both to the version which actually won the 

prize and to the Notes. It is shown how much of the originalversion was retained in 
[P2], how the Notes were integrated (or not) into [P2], and to what extent [P2] was 

shaped by the detection of the error. Furthermore, it is argued that the discovery 

and correction of the error plays a fundamental role in the perception of the memoir 
today. 

As a prelude to the mathematics, the tables of contents of both printed versions are 

compared in order to give a preliminary idea of the overall structure of each version 

and their relationship to each other. The differences detailed here are also noted 

at the appropriate points in the mathematical study. This is accompanied by an 

comparison of the two introductions since this provides an interesting insight into 

how Poincare's own perspective on his work changed. 

Poincare's chapter and section headings from [P2] are followed, and copies of the 

tables of contents of [P1] and [P2] are included as Appendices 5a and 5b respectively. 
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5.2 Tables of contents 
In each case the memoir is prefaced with an introduction before being split into two 

parts: Generalities and The equations of dynamics and the n body problem. The first 

part is devoted to developing the theory and the second to applying it, each part 
being divided into chapters which are then subdivided into sections. The only 
difference in the format being that in [P1] the sections are numbered within each 

chapter, while in [P2] the section numbering runs straight through the memoir 

making it easier for cross-referencing. [P1] concludes with nine explanatory Notes, 

the individual topics being additionally identified by the letters A to I. 

A comparison of the table of contents shows two major changes in the first part of the 

memoir. Chapter I in [P2] contains four sections as opposed to only one in [PI]. In 

addition to the identical first section on notation and definitions, [P2] includes two 

sections, §2 and §3, on the method of majorants, as well as a section, §4, on the 

integration of linear differential equations with periodic coefficients. Most of §2 

and all of §3 are taken from Note E, and §4 is Note D reproduced in its entirety. The 

format of Chapter II is identical in both versions, although there are significant 

changes to the content. Note C is incorporated at the end of §6, and §8 contains major 

alterations. Chapter III contains the most important change in Part 1 with the 

addition in [P2] of a new concluding section, §14, on the asymptotic solutions of the 

dynamical equations, the contents of which, apart from including the latter half of 
Note I, do not appear in [P1]. The other sections in Chapter III carry the same 
headings in both versions but there are significant changes and additions to their 

content. 

In the Part 2 the differences are more marked. 

In [P1] the application of the theory to the equations of dynamics is confined to the 

first chapter which contains five sections, with a second chapter devoted to a 

general resume of the results (positive and negative) and a final chapter consisting 

of a single section on Poincare's endeavours to generalise his results to the n body 

problem. [P1] then concludes with the nine Notes. 

In [P2] the first section corresponds with that in [P1] but it is now the only section in 

the first chapter. Significantly, the topic of asymptotic surfaces has been revised to 

merit a chapter in its own right. The new second chapter consists of four sections, 
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none of which retain an exact title from [P1]. One of the sections, §17, contains 

material from [P1], one, §18, contains an amended version of Note F together with 

some additions, and two, §16 and §19, are entirely new. The third chapter on 

miscellaneous results includes as §20 the section on periodic solutions of the second 
kind taken from the first chapter in Part 2 of [P1], a section on the divergence of 
Lindstedt's series, §21, taken both from the negative results in [P1] and Note A, and 

a section on the non-existence of uniform integrals, §22, which contains the rewritten 

contents of Note G. The last chapter in [P1] on the n body problem is transferred 

almost intact to become the last chapter of [P2]. The section on positive results from 

[P1] is omitted altogether. 

Insofar as the Notes are concerned, with the exception of Note B, New statement of 

results which is entirely deleted and Note H, Characteristic exponents (rewritten 

and expanded to appear as part of §12), they are incorporated, either whole or in 

part, into the main text of [P2] as indicated above, and the exact places where they 

occur are indicated. Note B was a summary of Poincare's main results described in 

more practical terminology for the benefit of astronomers and its exclusion from [P2] 

is discussed. 

Whenever a particular piece of the memoir is not specifically ascribed to either [P1] 

or [P2], then it is correct to assume that it appeared in the same form in both 

versions. 

5.3 Poincare's introductions 
Poincare began the introduction to [P1] with the admission that although the 

memoir had been written in response to Question 1 of the four competition questions, 
he had not been able to achieve a complete resolution of the problem sett. He was 

plainly keen to emphasise that he had not found a definitive answer to the three 

body problem and made it clear that he had concentrated on the restricted problem 

which he specified as follows: 

2 Question 1: "A system being given of a number whatever of particles attracting one another 
mutually according to Newton's law, it is proposed, on the assumption that there never takes 
place an impact of two particles, to expand the coordinates of each particle in a series proceeding 
according to some known functions of time and converging uniformly for any space of time. " For 
the complete question see Appendix 2. 
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"I consider three masses, the first very large, the second small but finite, the 

third infinitely small; I assume that the first two each describe a circle 

around their common centre of gravity and that the third moves in the plane 

of these circles. An example would be the case of a small planet perturbed 
by Jupiter, if the eccentricity of Jupiter and the inclination of the orbits are 
disregarded. " [P1,8]. 

He gave an indication of the main mathematical techniques which he had 

employed in the memoir. These included the trigonometric form of the power series 

solutions derived by both Lindstedt and Gylden which he had used to avoid the 

inclusion of secular terms known to exist in the series used by Laplace and Poisson; 

Cauchy's method of majorants which he had applied to prove the convergence of 

the series; his own geometric methods (taken from his earlier memoir on differential 

equations) which he had used to prove the stability of the solution; and his new 

idea of invariant integrals, the theory of which he had developed in order to 

facilitate the application of his geometric methods to the equations of dynamics. 

He emphasised that the central topic of the memoir would be provided by his 

discussion of periodic solutions, and drew attention to the fact that he had been able 

to develop the theory using Cauchy's methods since the periodic solutions were 

untroubled by the problem of small divisors. 

[P1] was printed as though it was an exact replica of Poincare's competition entry 

and as such retained its "anonymous" format. However, apart from the other 

indicators mentioned in the previous chapter, a cursory reading of the introduction 

would probably have been sufficient to identify the author. In outlining the 

background to his methods, Poincare needed to reference his own work, and 

consequently give his name, no less than five times. 

Poincare opened the introduction to [P2] by revealing that it was a reworking of his 

competition entry. He explained that the revision had resulted from incorporating 

the Notes and some additional explanations into the main body of the paper, a task 

which he considered a logical necessity but which he had not had time to do 

earlier. Although he did mention the error, acknowledging both Phragmen's role in 

detecting it and his assistance in general, he adhered to Mittag-Leffler's request and 

gave no hint of what it might have been. 

Nevertheless, he did make it clear that he had included some substantial additions 

to the opening chapter by the way of reformulation of established theorems. In 
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drawing attention to his work on the periodic solutions he mentioned both the 

asymptotic and the doubly asymptotic solutions, and in this connection indicated the 

nature of the restricted three body problem although this time without completely 

stating the problem. He also mentioned his proof of the recurrence theorem. 

Above all, he stressed what he called his negative results. These were his proof of 

the non-existence of uniform integrals for the restricted three body problem, and his 

proof of the divergence of Lindstedt's series, although he was careful to point out 

that he did not consider the divergence to detract in any way from the practical 

usefulness of the series. As a measure of the difficulties he had encountered in trying 

to generalise his results, he said that he believed a complete solution to the three 

body problem would require analytic tools quite different and infinitely more 

complicated than any of those known at present. 

Finally, in connection with one of the series he had discussed, he acknowledged an 

analogy with a paper by Karl Bohlin [1888] which, since it had been published 

shortly before the closing date of the competition, he had not originally referred to. 

Comparing the two introductions shows that Poincare changed his emphasis from 

one which concentrated on mathematical techniques to one which stressed so-called 

negative results. In the introduction to [P1] there is a sense of optimism and it 

appears to herald the memoir as a step forward in a progression which is inexorably 

going on towards a complete resolution of the problem. The tenor of the introduction 

to [P2] is quite different. The future progress of the problem has lost its air of 
inevitability. In what follows it will be seen that the mathematical implications 

of the memoir's essential revision were both far-reaching and quite unexpected, and 

undoubtedly account for Poincare's change in attitude. 

5.4 General properties of differential equations 
The first chapter of the memoir provided the definitions and background for the 

theory to follow. Although most of the terminology used by Poincare would have 

been familiar to the contemporary mathematical community, the length of the 

memoir and the fact that it was directed towards an international audience meant 

that Poincare would have been conscious of the need to avoid any ambiguity or 

misunderstanding. 
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With regard to the background, Poincare's concern was the integration of the 
differential equations using series methods. To this end he discussed and extended 
Cauchy's method of majorants with regard to both ordinary and partial differential 

equations, and concluded with a section on the use trigonometric series based on the 

methods of Floquet. 

5.4.1 Notation and definitions 

The memoir centred on the system of ordinary differential equations given by 

dx; 

where the X; are single-valued analytic functions of the n variables x� ..., x,,, and 

which may or may not be autonomous. In the case when n=3, then, as in the earlier 

papers on the qualitative theory of differential equations, Poincare made a 

geometric representation of the system. The x; are considered as the coordinates of a 

point P in space so that as the time varies P describes a trajectory, and the set of 

trajectories which pass through each point of a given curve in space form a surface 

trajectory. From this representation Poincare was led to a definition of stability in 

which he defined the system as stable if all its surface trajectories were closed. In 

other words the system was stable if any point P remained within a bounded region 

of space . 

5.4.2 The method of majorants 

The method of majorants had originated with Cauchy in [1842] in the search for 

proofs for the existence of solutions to differential equations. Broadly speaking, the 

method is used to show that a power series in the independent variable (derived by 

the method of undetermined coefficients) which satisfies the differential equation 
does have a definite domain of convergence. It had been simplified by Briot and 
Bouquet [1854], used by Weierstrass in [1842] although not published until 18943, 

studied by Fuchs4, and as previously mentioned, Poincare himself had already 

worked on it in his thesis published in 1879. 

Poincare gave Cauchy's basic principle in the following form: 

3 Weierstrass' work became known to his students and colleagues in the late 1850s. See Cooke 
[1984,28]. 

4 See Gray [1984]. 
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Given a system of differential equations 

d 
=fi(x, y, Z), dx =f2(x, y, Z) (5.4. i) 

where f, and f2 can be expanded in increasing powers of x, y and z, then the equations 
have a unique solution 

01 (x), z=O2(X) 

where 0; are Taylor series in x which vanish with x. 

To verify that such a solution does indeed exist, it is necessary to prove that the 

series are convergent. The two functions f, and f2 are replaced by the majorant 
function 

f (x, y, z) _M (1 - ax)(1 - ßy)(1 - yz) 

M, a, ß, y being chosen in such a way that each term off has a larger coefficient (in 

absolute value) than the corresponding term in f, and f2. Replacing f, and f2 by f 

increases the coefficients of 0, and 02 and since the series for f is convergent, the two 

series created by the exchange must be convergent, which in turn implies convergence 

of the original series for f, and f1. 

In [P1], Poincare made extensive reference to Cauchy's results, but he confined to 

Note E both his own exposition of the method, as well as some new developments 

which he had derived. In [P2] he extended these developments and, in 

incorporating the method into the memoir, he added two new sections. In the first, 

§2, he was concerned with theory as applied to ordinary differential equations, 

while in the second, §3, he dealt with its application to partial differential 

equations. Almost all the results from Note E were transferred into these two 

sections, and, in addition, three new theorems, III, V and VI, were included in §2. 

The importance of these theorems within the context of the memoir is due to the fact 

that Poincare's theory of periodic solutions depends fundamentally upon them. By 

formally including them at the beginning of [P2] Poincare put into place an essential 

part of the foundations of the theory. In [Pi) he used the results on frequent occasions 
but often with little or no reference, which made it extremely difficult to validate 
his arguments. Although not connected with the error the addition of this section 
(together with the following one) represents a significant contribution towards his 

aim of creating a more logical structure to the memoir. 
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Although most of the theorems contained in §2 are now well known, they are all 

stated here for ease of reference later. 

In his first theorem, Poincare extended Cauchy's original result by finding an 

expansion for the solution in terms of a parameter p as well as the independent 

variable t. 

Theorem I. Suppose that the functions f, and f2 depend, not only on x, y and z, but also 

on an arbitrary parameter p and that they can be expanded as series in x, y, z and p. 
The equations (5.4. i) can be written in the form 

ä1=f(x' y' z' p) =1, 
fi=f1(x, 

y, z, p), ät 
=fi(x, y, z, u) (5.4. ii) 

and it is possible to find three series 

X- 0(t, ji, x0, YO, z0) =t+ x0, y= 01(t, A xo, yo, zo), Z= 02(t, u, xo, Yo, zo) 

which formally satisfy the equations and which reduce respectively to x0, yo and zo 
for t=0. Then, provided t, p, x0, yo and zo are sufficiently small, these series are 

convergent. 

To prove the theorem Poincare simply replaced the functions ff, and f2 by the 

function 

M 
f"(x, y, z, p)=(1 

-ßp)(1 - a(x+y+z)) 

and formed majorant series for x, y and z which converge for sufficiently small 

values of t, p, x0, yo and zo. However, although this gives the desirable result that 

the series solution is an expansion in ascending powers of the parameter as well as 

the independent variable, it also necessarily contains a severe restriction on the 

value of t. As Poincare was ultimately looking for solutions valid for all values of 

time, it was essential that this restriction should be relaxed. In the following 

theorem, which has now become a classic in the theory of differential equations 
depending upon a parameter, Poincare showed how the restriction could be loosened 

by proving the existence of a series solution which is an expansion in powers of the 

parameter and not of the independent variable. 

Theorem 11. Excluding one exceptional case, x, y and z can be expanded as powers of 

µ, xo, yo and zo for any value of t, provided p, x0, yo, and zo are sufficiently small. 

Briefly, consider the solution to equations (5.4. ii) 
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x=w, (t, p), y= w2(t, p), z= w3(t, p) 

which is such that x=y=z=0 when t=0 and which converges when 0<t<t,. Then 

if x, y, and z are replaced in the equations (5.4. ii) by 

x= +ý, y=17+(P21 Z=C+( 

the differential equations become 

ä= ý(, n, ý, u), at= ýý(, 77, ý, u), är= ý2(, 77, ý", u), (5.4. iii) 

and ¢, 01 and 02 vanish when ý= tj =ý=p=0. Since it has been supposed that f, f, 

and f2 can be expanded in powers of p then the same will be true of 0,01 and 0Z, and 

these expansions can also be shown to be convergent in 0<t<t,. Thus there exists a 

solution of equations (5.4. iii) as series in p, which is such that ý= 17 =ý=0 when 

t=0, and which converges in 0<t<t,. 

The exceptional case occurs when the functions f, and f2 are no longer analytic in the 

variables x, y, and z, i. e. when they become infinite or cease to be single-valued. For 

if the functions are not analytic then it is no longer possible to expand the functions 

in series as required. In other words if as t changes the trajectory goes through a 

singular point, the theorem no longer holds. In the three body problem the functions 

given by the equations cease to be analytic in the case of a collision. However, since 

Weierstrass had specifically excluded collisions in the competition question, 
Poincare considered the theorem sufficient in this respects. 

Poincare next proved explicitly that the solutions depend analytically on the 

initial conditions. This theorem did not appear in [P1] and it seems likely that he 

originally believed the result to be self-evident from Theorem II. 

Theorem III. Let 

X= w1 (t, P, X0, YO, z0), y= Q01(t, P/ XOi y0+ z0), z= w3(t, pi x0 i Yo' Z0) 

be the solutions of the differential equations which reduce to xo, yo, zo for t=0. Then 

the functions cv, (t, + T, p, xo, yo, zo), (i = 1,2,3) can be expanded as powers of µ, xo , yo' 

zo, and T, provided that these quantities are sufficiently small. 

5 Poincare appears not to have considered the possibility of non-collision singularities. The 
impossibility of such singularities in the three body problem was proved by Painlev6 in [1897]. 
See 8.3. 
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Poincare attributed the next theorem, now more familiarly known as the implicit 

function theorem, to Cauchy and his method of majorants6. Although it was not a 

new result, he had originally included it in Note E because it played such a pivotal 

role in his own investigations. Theorems V and VI which only appear in [P2] are 
direct extensions of it. 

Theorem IV. A system of n equations 

fiV']f..., Y"Xl,..., Xp)=0, (i=1,..., n) 

where the f are analytic functions of the n+p variables y and x, and vanish with 

them, can be solved for yl, ..., y� in increasing powers of x� ..., xp, if the Jacobian of 

the functions f with respect to y is not zero when x and y vanish together. 

The final two theorems and the accompanying corollaries take account of the case 

when the Jacobian does vanish. Poincare did not include them in [PI], although he 

did make use of the results. In [P2] he did not provide proofs but instead referred to 

his own thesis and the work of Pusieux. 

Theorem V. Let y be a function of x defined by the equation 

f(y, x)=0 

where f can be expanded in powers of x and y. Suppose that for x=y=O, f and 
mIf 

d y'd y2, ym, l vanish, but 
dym 

does not vanish. There will exist in series of the 

following form 

y =a, xlM+a2x2M+... 

(n a positive integer, a,, a2 .... constant coefficients) which satisfy the original 

equation. 

Corollary I. If the above series satisfy the equation, then so does the series 

y =a, ax'M+a2a2xu^+... 

where a is an nth root of unity. 

Corollary II. The number of series of the form given in Theorem V which can be 

expanded in powers of x'In (which cannot be expanded in powers of x''', p< n) is 

divisible by n. 

6 The history of the implicit function theorem is convoluted and worth further research. It is 
certainly not clear that Poincare was right in his attribution. 
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Corollary 111. If k1n, is the number of the series which can be expanded as powers of 

x'ý', ..., and if kknp is the number of the series which can be expanded as powers of 

x1Mp, then 

k, n, +... +konp=m 

and if m is odd, at least one of the numbers n,,..., ny is also odd. 

Theorem VI. Given the p equations: 

f(Ji, ..., yv, x)=0 (i=1,..., P) 

where the left hand sides can be expanded in powers of x and y and vanish with 

these variables, then, providing the equations are distinct, it is always possible to 

eliminate y21 ..., yo and arrive at a unique equation f(y� x) =0 of the same form as the 

equation in Theorem V. 

Corollary to Theorems V and VI. Since Theorem IV holds whenever the Jacobian of f 

is not equal to zero, then whenever the x vanish, y, = ... = y� is a simple solution of 

equationsf, =... =f�=0. 

Furthermore, by Theorems V and VI and their Corollaries, Theorem IV is also true if 

this solution is multiple, provided the order of multiplicity is odd. 

5.4.3 The method of majorants applied to partial differential equations 

In applying the method of majorants to partial differential equations, Poincare 

began with the Cauchy-Kovalevskaya theorem7. This is an important result in the 

theory of partial differential equations which continues to play a major role today8. 

In stating the theorem, Poincare accorded due credit to Kovalevskaya, and the 

acknowledgement he gave to her here is often cited: 

7 See Kovalevskaya [1875]. 

In its modem form the simplest case of the theorem can be stated as follows: 

Any equation of the form =f(x, y, z, 
9z) 

where the function f is analytic in its arguments for 

values near the given initial conditions (xo, yo, zo, ) where 
ý is evaluated at x= xo, y= yo, 

possesses one and only one solution z(x, y) which is analytic near (xa yo). 
The theorem can be generalised to functions of more than two independent variables, to 
derivatives of higher order and to systems of equations. 
8A good and thorough study of Kovalevskaya's work together with some applications of the 
theorem are given by Cooke [1984,22-381. 
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"Mme Kovalevskaya has considerably simplified Cauchy's proof and has 

given the theorem its definitive form. " [P2,26]. 

Poincare himself had previously extended Kovalevskaya's results in his thesis (see 

3.4.1). He now generalised these results, which concerned the first order partial 
differential equation 

j-X1 
+ 

dz dz 

ZX2 
+ ... +X_ý, z, 

where the X; are power series in x7, ... x, to the equation 
ä+ dz dz 

i+ ZX2 
+ ... + X� = ý, z, 

and found sufficient conditions for this equation to have an integral which can be 

expanded in powers of x and which is periodic with respect to t. 

Poincare then considered the partial differential equation 
ä+X, 

+&X2 +... + X0, &1- 1 

and showed that a general integral of this equation is given by 

-x�r z =f(T, e , ..., 
Tne ), 

where f is an arbitrary function, and T; are power series in x and periodic with 

respect to t. Furthermore since solving this partial differential equation is 

equivalent to solving a system of ordinary differential equations of the form 

dt-dx, 
dx2- dx,, 

XI XZ 

he observed that a general integral of equations (5.4. iv) is given by 

Alt x� T ý=K, e ,..., T�=K�e , 

where K; are n constants of integration9. 

In order to determine the variables x1, ..., xp, as functions of x, +1, Xp+2, ..., x, he 

considered 
axi axr O? X i 0Xi 

di +ax Xp+i+ Xp, 2+..., + X� =X; (i = 1, 
..., P) (5.4. v) 

p+7 p+2 n 

9 This is a standard technique for solving partial differential equations which was introduced 
by Lagrange and extended by Cauchy. See Kline [1972,531-535). 
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and showed that these equations admit a series solution in xp+,, x 2, ..., x,,, and sines 

and cosines of multiples of t, provided the A satisfy certain conditions. Returning to 

his earlier work on differential equations [1886,172] he was further able to show 

that providing the initial conditions on A were changed in a certain way, then the 

equations (5.4. v) have a particular integral of the form 

Xi= 0i(Xy+li Xp+2i ... ' Xnr Of (i = 1, 
..., p) 

where the 0 can be expanded as series in xv,, xp+2, ..., x� and sines and cosines of 

multiples of t. 

Given the above result, and if the equations 
dx, 

_ _ 
dx2 dx� 

dt=X, x2 .. x 

are in the same form as the equations (5.4. iv) except that the A no longer satisfy the 

sufficiency conditions for equations (5.4. v) to have an analytic solution, then 

Poincare found, not a general solution, but one containing n-p arbitrary constants. 

5.4.4 Integration using trigonometric series 

In the final part of Chapter I of [P2], which exactly followed Note D in [P1], 

Poincare considered the integration of differential equations using trigonometric 

series. Using a result which he had derived in [1886c] concerning the convergence of 

trigonometric series, he showed that the series 

f(x)=Ao+A, cosx+... +A�cosnx+... +B, sinx+... +B�sinnx+..., 

where f is continuous and periodic of period 2ir, is absolutely and uniformly 

convergent. 

He then considered the system of linear differential equations 
dx; 

where the n2 coefficients Oa are periodic functions of t of period 21r. 

Since if 

XI = Vi. z(t), ..., 

are n linearly independent solutions of the system of equations, then 

xý = ';., (t + 27r), ..., x� = ';. �(t + tic) 

are also solutions, and linear combinations of the n solutions can be written as 
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'i. 
k(f + 21r) = Ai. 

]'Pl. k(t) +... + Ai. 
nWn. k(t) 

where the A are constant coefficients. This in turn leads to the eigenvalue equation 
for the matrix A 

A1.1-S A1.2 
""" 

A1. 
n 

A2.1 A2.2-S ... Az. 
� =0. 

A.. 1 An. 2 ... An. n S 

If S, is a root of the eigenvalue equation, then 81.; (t + 2n) = S191.; (t), where 

81.; (t)= ZBI Pk. i, and B; are constant coefficients. By putting S, = e2 and substituting 
k=1 

for S� Poincare showed that eai'91,; (t) was a periodic function (with period 2n) 

which could be expanded as an (absolutely and uniformly convergent) trigonometric 

series A,,;. Hence he could write a particular solution to the differential equations as 

xi = ca"Al.; (t), 

which gave a correspondence between each root of the eigenvalue equation and each 

particular solution of the differential equations. 

Providing all of the roots of the eigenvalue equation are distinct, there will then be 

n linearly independent solutions to the differential equations. Thus the general 

solution is 

x. = C, eai'),., (t) +... + Cnea. t zn. 
i(t) 

where C and a are constants. 

In addition, Poincare showed that if the eigenvalue equation has a double root then 

terms of the form erjht)(t) will be introduced into the solution for the differential 

equations. Similarly a triple root will introduce terms of the form eaYt2)(t) and so 

on. 

In this analysis Poincare was augmenting results on the theory of differential 

equations which had originated with Euler and Johann Bernoulli, been generalised 
to the complex case by Fuchs and finally connected to the Jordan canonical form by 

Hamburger10. Poincare's innovation was to extend the theory to a system of 
differential equations with periodic coefficients. 

10 See Gray [1984,1-5]. 
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5.5 Theory of invariant integrals 

5.5.1 Introduction 

In accordance with his qualitative approach to the theory of differential equations, 
Poincare's investigations into the three body problem are dominated by his research 
into the geometry of the problem. As the first stage of this research he made a 

thorough analysis of the concept of invariant integrals which he had originally 

introduced in [1886]. 

Although Poincare was not the first to recognise the existence and value of invariant 

integrals, they are earlier encountered in both Liouville [1838] and Boltzmann [1871], 

he was the first to formalise a theory centred on the concept. In [1886a] he had used 

the idea of a particular invariant integral within the context of a problem 

concerning the stability of the solutions of differential equations. He now considered 

the whole concept in a broader sense, developing a general theory which revealed 

that the existence of an invariant integral is a fundamental property of 
Hamiltonian systems of differential equations. Of particular importance is 

Poincare's use of the theory in connection with the stability of the motion in the 

restricted three body problem. 

The last part of the chapter is devoted to a series of theorems, all of which are 

characterised by their geometric nature and include one of Poincare's most celebrated 

results: the original formulation of his recurrence theorem. These theorems provide 

Poincare with the geometrical framework for his later analysis, the qualitative 

study giving him an insight into the global behaviour of the system. The 

introduction to Note F in [P1] (which does not appear anywhere in [P2]) includes an 
interesting remark which gives his own view on these theorems: 

"These theorems have been given in a geometric form which has to my eyes 

the advantage of making clearer the origin of my ideas .... " 
11. 

The chapter is also particularly important with regard to Poincare's error. For it 

was at the end of this chapter that the initial stages of the error occurred. In 

essence, Poincare failed to take proper account of the exact geometric nature of a 

11 "Ces theoremes ont ete presentes sous une forme eometrique qui await ä mes yeux l'avantage 
de mieux fair comprendre la genese de mes idees ... ". [Pl, 220]. 
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particular curve. It will be seen later how the correction of this mistake led to 

dramatic changes in the geometric description of his later results. 

5.5.2 Definition of invariant integrals 

Poincare considered the system of differential equations 
d x; 
dt (5.5. i) 

where the X; are given functions of x, ... x, and the equations are regarded as 
defining the motion of a point with coordinates (x7, ..., x�) in an n-dimensional space. 
Thus, if the initial positions of an infinite number of such points form an arc of a 

curve C in the n-dimensional space, then at time t they will have formed a 
displaced arc C', its shape determined by the differential equations. 

Poincare defined an invariant integral of the system as an expression of the form 
f ZYjdx; which maintains a constant value at all times t, where the integration is 

taken over the arc of a curve and Y are given functions of x. He then extended the 

definition to encompass double and multiple integrals, where the order of the 

invariant integral is defined to correspond with the dimension of the region of 

integration. 

To give a dynamical interpretation of the idea, he used the example of the motion of 

an incompressible fluid, where the motion of the fluid is described by the 

differential equations 
dx d dz 

dt +X' _ dt -Y' dt -Z 
together with the condition 

a -x 
+äy+ý =o, 

which asserts that the fluid is incompressible. As the fluid is incompressible, the 

flow is volume preserving and so the volume, which is given by the triple integral 
Sjldxdydz, is an invariant integral. 

More generally, if the equations (5.5. i) have the added relation 

It ax; = 0, 

then the "volume" ff ... jdx, dx2 ... dx,,, is always an invariant integral. Thus the 

equations in Hamiltonian form 
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where F is a function of the double series of variables x� ..., x,,, y,, ..., y,,, and the 
time t, always admit the volume in phase space, j ... Jdx, ... dx�dy,... dy,,, as an 

invariant integral, since 

2ý a 
'Fl 

By considering a particular solution of the variational equations, Poincare found a 
second invariant of the Hamiltonian system, namely the double integral JJJdxjdy;. 

Looking specifically at the n body problem, he found that there not only existed 
invariant integrals which could be deduced from the ten classical integrals of the 

problem, but there was also a further invariant not associated with any integral of 

the original equations. The additional invariant was given by 

5y, 
(2xiiy; + ydx; ) + 3(C, - C0)t, 

where Co and C, are the values of the energy constant at the extremities of the arc 

along which the integral is evaluated (in 6n dimensional space). 

The proof of these last two results first appeared in Note C. 

5.5.3 Transformation of invariant integrals 

The transformation of variables is one of the most frequently employed methods of 

solving differential equations in celestial mechanics and Poincare's next 

consideration was the effect of such transformations on the associated invariant 

integrals. 

Considering the system of differential equations (5.5. i) with the condition 
I7(MX; ) 

0ý 2x; 

such that J= JMdxl 
... dx� is a positive invariant, he found that the transformation 

Xi = Fi(zi 
r ... ' 

Z") (i = 1, 
... i nýi 
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left the invariant J positive, provided that in the domain under consideration the x 

are single-valued functions of the z and vice versa12. 

In the case where one of the new variables is chosen to be z,, = C, where 

F(xl, ..., x�) =C is a particular integral of the original equations, he found that the 

transformed equations 
dz, dz�_, 
dt- Zl' ..., dt=Z. -z, 

admit a positive invariant integral of order n -1. 

He further observed that the situation was significantly different if the 

transformation included the independent variable t. For if equations (5.5. i) have an 

invariant integral of order n, and if t2 is the new independent variable which is 

defined by t, = 6(x,, ..., x�), then the new invariant integral is given by 

SM ( 
ßx1 

i ... + 
nÄ�ýX, ... dX�. 

From this result Poincare was led naturally to the consideration of sections 

transverse to the flow. For in the case where n=3, where x; are regarded as the 

coordinates of a point P in space, then a transverse section S of a surface 

6(x1, x2, x3) = 0, is the part of the surface on which all the points satisfy 
901 

+ 

90X2 
+ 

de 
X3 ý o. 

CýX1 09XZ ÜX3 

In other words, the flow defined by the differential equations goes through the 

surface S and is nowhere tangent to it. 

To investigate the existence of invariant integrals over S, Poincare used his idea of 

consequents which in [1882] he had introduced as point iterations on transverse 

sections, and which he now extended to include curves and areas. He considered a 

volume V bounded by a surface trajectory, where the surface trajectory was formed 

from a curve C on S bounding an area A passing to its consequent C' bounding an area 

A'. He then showed that if there is a positive invariant integral which extends to 

the volume V, there is another integral which conserves its value over the area A or 

any of its consequents. 

12 The function M satisfying the linear partial differential equation, called the last multiplier of 
the system of differential equations, was introduced by Jacobi in [1844). 
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To look at the role of invariant integrals in relation to the stability of the solutions 

of the restricted three body problem, Poincare extended his original definition of 

stability to include the definition he had used in [18851 and which he now called 
Poisson stability. In this definition the motion of a point P is said to be stable if it 

returns infinitely often to positions arbitrarily close to its initial position. 

Using the result, which today is more familiarly known as his recurrence theorem, 

Poincare established that, given certain initial conditions, there are an infinite 

number of solutions of the restricted three body problem that are Poisson stable, and 

that those which are not Poisson stable can be considered exceptional in a sense 

which he made precise. 

Theorem I (recurrence theorem): Suppose that the coordinates x,, x2, x3 of a point P in 

space remain finite, and that the invariant integral JJJdx1dx2dx3 
exists; then for any 

region ro in space, however small, there will be trajectories which traverse it 

infinitely often. That is to say, in some future time the system will return 

arbitrarily close to its initial situation and will do so infinitely often. 

In other words, given a system with three degrees of freedom in which the volume is 

preserved, there are an infinite number of solutions which are Poisson stable. 
Poincare's proof of the theorem is attractively simplel3. 

Consider a region R with volume V within which the point P remains. Then consider 

a very small region ro of R with volume v which at time t consists of an infinite 

number of moving points. At time r these points will have filled out a region r1, at 

time 2, r a region r2, etc., and at time nT a region r,,, where ro and r, have no point in 

common and r� is the nth consequent of ro. Since the volume is preserved, each region 

ro... rn will have the same volume v. Thus if n>v then at least two of the regions 

have a part in common. Consideration of the successive consequents of this common 

region shows that there is a collection of points which belong simultaneously to ro 

and to an infinite number of other regions, and that this collection of points itself 

13 It is sometimes suggested that in order properly to rigorise Poincard's argument it is necessary 
to have the concept of the "measure" of a set of points, a concept which was not available until 
Lebesgue presented his ideas on integration in [1902). In 1915 Van Vleck [1915,335] 
reformulated the theorem in terms of measure theory and shortly afterwards Caratheodory 
[1919] provided a proof. Wintner [1947,414] believed Poincare's proof to be correct, and 
according to Brush [1980] this view is endorsed by Clifford Truesdell who considers 
Carathedory's reformulation to be simply "cosmetic". 
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forms a region a. From the definition of the region a, every trajectory which starts 
from a point within it goes through the region ro infinitely often. 

Corollary: It follows from the above that there exist an infinite number of 
trajectories which pass through the region ro infinitely often; but there may exist 

others which pass through it only a finite number of times, although these latter 

trajectories may be regarded as exceptional. 

By exceptional Poincare meant that the probability that a trajectory starting in the 

region ro does not pass through the region more than k times is zero, however large k 

and however small the region ro. The corollary and its proof were additions to [P2]. 

In [P1] Poincare had simply stated the claim that the stable trajectories would 

outnumber the unstable, in direct analogy with the irrational and rational numbers. 

As Poincare pointed out, the theorem holds in a variety of other cases, namely, 

when the volume is not an invariant integral but there exists a positive invariant 

integral j= JJJMdx, dx2dx3, which remains finite; when n>3 providing there exists a 

positive n-dimensional invariant integral and the n coordinates of the point P in the 

n-dimensional space remain finite; and when the positive n-dimensional invariant 

integral extended over the whole n-dimensional space remains finite, even if the n 

coordinates are not constrained to remain finite. 

He also distinguished between the cases when a known integral of equations (5.5. i) 

F(x,,..., x�) = constant, 

is the equation of a system of closed surfaces in an n-dimensional space, and when 

the integral is the equation of a system of unbounded surfaces in an n-dimensional 

space. In the former the conditions of the theorem are satisfied without any further 

constraints, but in the latter the theorem only holds providing a positive invariant 

integral exists which has a finite value when extended to all systems of values of x 

where C, < F< C2. 

In [P2] Poincare used this last property to extend a result in Hill's lunar theory. Hill 

[1878] had proved the existence of an upper bound for the radius vector of the moon. 
Now Poincare was able to strengthen Hill's result by proving that the moon returned 
infinitely often to positions as close as desired to its initial position. In other words, 
he proved that the moon possesses Poisson stability. 

Poincare regarded the variables in Hill's differential equations as representing the 

coordinates of a point in four-dimensional space so that the accompanying integral 
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represented a system of unbounded surfaces. He then proved that the fourth order 
invariant integral of the system extended to all the points contained between two of 

these surfaces was finite. It therefore followed that the recurrence theorem held, 

which implied the existence of trajectories which pass infinitely often through any 

region of the four-dimensional space however small the region. 

With regard to the restricted three body problem, Poincare appealed to Bohlin's 

[1887] generalisation of Hill's result in which Bohlin had proved the existence of an 

upper bound for the radius vector of the planetoid. Poincare then showed that 

providing the Jacobian integral remained within certain limits, which in general is 

the case, the motion of the planetoid also possesses Poisson stability. 

Poincare was unable to extend the resul to the general three body problem because in 

this case it is no longer possible to assign limits to the coordinates. 

In [P1] Poincare included very little of the above concerning Hill's theory and made 

no explicit statement about stability in connection with either the lunar theory or 

the restricted three body problem. He did not prove the result concerning the fourth 

order invariant integral nor did he make its significance more accessible by putting 

it into the context of a particular problem. It was therefore very difficult to get a 
full understanding of what he was trying to achieve. The problems were partly 

ameliorated by the addition of Note B in which he translated his results into the 

more physical language used by astronomers and gave proper references to the work 

of both Hill and Bohlin. Nevertheless, the lack of detail and firm statements on 

the behaviour of the radius vector still left Mittag-Leffler confused and he found it 

necessary to ask Poincare for a summary of his definition of stability14. Poincare's 

detailed response in which he carefully spelt out the differences between his results 

and those of Hill [1878] and Bohlin [1887] (i. e. that he had proved the existence of a 
lower bound for the radius vector of the planetoid as well as an upper bound) formed 

the basis for An addition to Note B15. 

Poincare's next theorem is a generalisation of the result he had applied in [1886b] 

when he used the idea of an invariant integral for the first time. This and the rest 

of the results in this chapter are concerned with the properties of the mapping 

associated with the flow which takes a transverse section into itself. 

14 Mittag-Leffler to Poincare, 21.12.1888, M-L I. 

15 Poincare to Mittag-Leffler, 15.1.1889, No. 45a, M-L I. 
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Theorem H. If x,, x2, x3, represent the coordinates of a point in space, and there exists 

a positive invariant integral, then there is no closed transverse section. 

For n>3, the theorem can be given in analytic form. 

Many dynamical problems, particularly those of celestial mechanics, involve very 

small parameters, and these can often be used to form power series expansions of the 

solutions to the differential equations. In the case of the restricted three body 

problem, the natural parameter which arises is that of the mass of the smaller of 

the two primaries, generally designated by p. The beauty of using p as the 

parameter in this problem is that it is possible to change the nature of the problem 
by changing the value of p. For if p=0, the problem reduces to two two body 

problems and can therefore be solved. This leads to the idea of starting with a 

particular solution for which p=0, and then seeing if it is possible to find solutions 
for values of p which are close to but not equal to zero, and this is exactly what 
Poincare did. 

In order to apply his theoretical results to the restricted three body problem, 
Poincare now started to consider the differential equations 

dx, dx2 dx3 
ä-t =X,, dt =XZ, dt =X3, 

as functions of the x; and p, the solutions of which could be expanded in terms of the 

parameter. 

Lemma 1: Consider part of a transverse section S, passing through the point ao, bo, co; 
if xo, yo, zo are the coordinates of a point of S, and if x1, y1, z, are the coordinates of its 

consequent, then xj, y7, z1 can be expanded in powers of xo - ao, yo - bo, zo - co and fit, 

providing these quantities are sufficiently small. 

Lemma I originally appeared in Note E, its proof referring to what is now Theorem 

II in the section on the method of majorants. In [P2] Poincare adjusted the proof by 

referring to Theorem III from the same section. In addition, rewriting the memoir 

gave Poincare the opportunity to move the Lemma into a more logical position. It 

made sense to insert it where it now came because the reason for its inclusion was its 

specific role in the proof of the following Lemma which had appeared in the main 

text of [P1]. 
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Lemma 11: If the distance between two points AO and Bo belonging to part of a 
transverse section S is very small of nth order, then it will be the same for their 

consequents A, and B1. 

Poincare also changed what he meant by the expression "small quantity of nth 

order". In [P1] he had defined a function of x,, x2, x3 and u, as being a small quantity 

of nth order if it could be expanded in powers of p with the first term in the 

expansion being a term in p. In [P2] he defined a function of p, which need not have 

a power series expansion in p, as a small quantity of nth order if it tended to zero 

with p in such a way that the ratio of the function to p° tended towards a finite 

limit. The change was necessary in order to accommodate the alterations which he 

subsequently made to Theorem IIl. 

So far Poincare's revisions have in general been what might loosely be described as 

cosmetic. Theorems have been added, proofs enhanced but no fundamental 

alterations have been made to any of the results in [Pl], and overall the effect has 

been to give this early part of the memoir an altogether more coherent structure. 
The rest of this chapter tells a rather different story. The changes that Poincare 

made from now on were no longer simply improvements but instead were necessitated 
by the discovery of a mistake in the Corollary to Theorem III [P1], as a result of 

which Poincare had to alter the Theorem substantially, a change which involved 

removing the Corollary altogether. In order to better describe the mistake, the 

published conclusion to the chapter will be given first, followed by its erroneous 

counterpart. 

Theorem III involved the use of what Poincare called an invariant curve. He 

defined an nth order invariant curve as a curve on S which coincides with its nth 

consequent. 

Theorem III IP21: Let A, AMB, B be an invariant curve, such that A, and B, are the 

consequents of A and B. Suppose that the arcs AA, and BB, are very small (i. e. they 

tend to zero with p) but that their curvature is finite. 

Suppose that the invariant curve and the position of the points A and B depend upon 

p according to some rule, and that there exists a positive invariant integral. If the 

distance AB is very small of the nth order and the distance AA, is not very small of 

the nth order, then the arc AA, intersects the arc BB,. 
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Proof The points A and B can always be joined by an arc of the curve AB wholly 

situated on the part of the transverse section S and whose total length is of the same 

order of magnitude as the distance AB, i. e. a very small quantity of nth order. Let 

A1B, be the arc of the curve which is the consequent of AB. It will also be very small 

of nth order by Lemma H. The possible hypotheses are: 

1. The two arcs AA, and BB1 intersect each other (as in FIG. 5.5. it6) 

2. The curvilinear quadrilateral AA, B, B is such that the four arcs which 

comprise its sides do not have a point in common except for the four corners A, 

A� B, B, (as in FIG. 5.5. ii17). 

3. The two arcs AB and A, B, intersect each other at a point D (as in FIG. 

5.5. iii18). 

4. One of the arcs AB or A1B1 intersects one of the arcs AAS or BBS; but the 

arcs AAS and BBB do not intersect each other, neither do the arcs AB and 
A7B1. 

A. 

FIG. 5.5. i. 

16 Poincar8 did not include a diagram of this possibility. 
17 Poincare [P2,329] 

18 Poincar6 [P2,329] 
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A. 

A 

Poincare swiftly established that the first hypothesis was the only acceptable one. 

In other words, he established that the curve AJAMB, B was self-intersecting. 

In Theorem III [P1] Poincare introduced a new term, quasi-closed, which he did not 

use in [P2] but which is important with regard to the error. He defined an nth order 

curve C (which in general depends on p and is contained on part of a trans-versal 

section S) to be quasi-closed if it has two points A and B on it which are separated by 

a finite arc, and whose distance apart is very small of pth order, A and B being the 

two points of closure. Unfortunately, it is not clear from this definition what exactly 

Poincare meant by the term, although he did attempt to clarify it by including a 

particular example in which the distance AB was shown to be of order n-1, 

providing p was sufficiently small. He also used the example to show that if a 

curve is quasi-closed and it depends on p, then it will be closed for p=0. 

Theorem III [P11: If an invariant curve C is quasi-closed such that the distance 

between the points of closure A and B is very small of nth order, and there exists a 

positive invariant integral, the distance from the point A to its consequent A, and 

that of B to its consequent B, are very small of nth order. 

Poincare's proof first showed that FIG. 5.5. iii and not FIG. 5.5. ii provided the 

correct description of the curve C. (He used the same diagrams in both [P1] and [P2]). 

He then achieved the desired result by an application of the triangle inequality. 

The relationship between the two theorems is in Poincare's consideration of the 

distance between the point A and its consequent A,. The purpose of Theorem III [P1] 

was to show under what conditions the distance AA, would be very small of nth 

FIG. 5.5. iii. FIG. 5.5. ii. 
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order, whereas in Theorem III [P2] Poincar6 was considering the situation in which 
the distance AA, was particularly specified not to be very small of nth order. The 

third hypothesis in Theorem III [P2] gives the correct description of the curve 
defined by Theorem III [Pl]. 

Poincar6 introduced the Corollary to Theorem III [Pl], somewhat presciently as it 

turned out, by saying he believed it would reveal the importance of the theorem. 

Corollary [Pl]: If it has been proved that invariant curve C is quasi-closed so that 
the distance between the points of closure A and B is very small of nth order at least, 

if moreover it is known that the distance of the point A to its consequent is a finite 

quantity or a small quantity of n- 1th order at most, and finally if there is a 

positive invariant integral, then the curve C is closed. If it was only quasi-closed, 
then the distance from the point A to its consequent would have to be of nth order. 

This is where the mistake occurred. Poincard thought that he had proved that the 

curve C was closed, whereas, as he later showed in Theorem III [P2], the curve was in 
fact self-intersecting. It will be seen later that when Poincare invoked the 

Corollary in [P1], his contingent results made essential use of the fact that the curve 

was supposed to be closed. He did not consider the possibility that the curve might 
be self-intersecting. What will become clear is that the distinction between closed 

and self-intersecting curves lies at the heart of the profound alterations to 

Poincare's final conclusions. Thus with regard to fully comprehending the error, it 

would have been helpful to have had a clearer definition of the term quasi-closed. 

Why did Poincare make this mistake? One possibility is that it was quite simply 

an oversight. As remarked in 4.5, it was well known that Poincare often paid scant 

attention to detail, and certainly the deadline for the competition would not have 

encouraged him to do otherwise. Perhaps a more convincing argument might be that 

he originally had a preconceived idea about how he thought the curve would 
behave. So if he thought he had found what he was expecting, he might not have 

felt the necessity to closely scrutinise his results, particularly if he was short of 

time. As is shown later, the behaviour of the self-intersecting curve is extremely 

complex and quite unlike anything Poincare (or anybody else) had previously 

encountered. Indeed, it is evident from the correspondence that when he did 

discover the mistake, it came as a significant shock (see 5.8.3). 

In [P1] Poincare also included two extensions to Theorem III, as well as a further 

theorem, Theorem IV. None of these appear anywhere in [P2], either because the 
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discovery of the error made them redundant or because they had no special 

relevance to any other part of [P2]. They are stated here for the sake of 

completeness. 

First Extension to Theorem III: Suppose that A�B� coincides partly with AOB0 and 

partly with the extension of AOB0 such than AOB0 is an nth order invariant curve. 
Suppose also that the distance between AO and Bo is a small quantity of qth order, 

where p is prime to n, then the distance from AO to its nth consequent A� is a very 

small quantity of qth order. 

This is the case described by FIG. 5.5. iv where n is taken to be 5. 

AS 
A4 

3 

.., Aý 

FIG. 5.5. iv. 

Combining this generalisation with the Corollary, Poincare deduced a further 

generalisation in which he gave the conditions under which he claimed that the set 

of curves formed by AOB0 and its successive consequents would form a "closed" 

invariant curve of first order. By invoking the Corollary he again reiterated the 

error he had made earlier. 

Poincare prefaced the second extension to Theorem III [P1] by saying that he did not 

expect to use it in what followed, although he later cited it twice, both references 
becoming redundant in the revision. 

Second Extension to Theorem III: A curve without being rigorously invariant may be 

invariant up to a very small quantity of pth order. If the distance between a curve C, 

which is not rigorously invariant, and an arbitrary point of its nth consequent is a 
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very small quantity of pth order, then such a curve is called nth order semi- 
invariant up to very small quantities of pth order. If a semi-invariant curve is 

quasi-closed such that the distance between the points of closure A and B is very 

small of qth order, the distance from the point A to its nth consequent A,, will be very 

small of order at least q providing 2q < p, and of order p-q providing 2q >p>q. 

Theorem IV: Consider a transverse section S which is simply connected. Let a point 

on S be determined by a particular system of coordinates (to be defined) which is 

analogous to polar coordinates. Let 0 be an arbitrary point on S at which infinitely 

many branches of a curve meet, in the same way that radius vectors meet at the pole 
in polar coordinates. Suppose that 0 is the only common point of any two branches of 
the curve and that an arbitrary branch is defined by the angle 0 between its tangent 

at 0 and a fixed fine passing through 0. 

Consider a second system of closed concentric curves containing the point 0. 

Furthermore, suppose that any curve of the second system has one and only one point 
in common with any curve of the first system. Consider a fixed branch of the first 

system BO and let P be the point where it cuts a moving curve of the second system. 
Let p be the length of the arc of the curve BO between 0 and P. The moving curve can 
then be defined by p. Finally suppose that through an arbitrary point P of S there 

passes one and only one branch of the first system. The coordinates p and 0 can then 
be used to define the position of P on S. 

Let cc be a simply connected area of S limited by a closed curve k. Let a,, be the nth 

consequent limited by the closed curve k,,. If the two areas a and a,, have a part in 

corrunon and 0 belongs to this communal part, if the points of k have same coordinate 
0 as their n consequents, if the curve k meets each of the branches of the first system 

at one point (such that when one crosses the closed curve k, e varies between 0 and 
21r), if there is a positive invariant integral, then two at least of the points k 

coincide with their nth consequents. 

Poincard also gave a second more succinct statement of the theorem which did not 
involve the coordinate system defined above. Let k be a closed curve on a simply 

connected transverse section S with nth consequent K. If each of the points of k can be 

joined to its nth consequent by arcs of curves on S in such a way that no two of these 

arcs have a point in corrunon, and, moreover there is a positive invariant integral, 

two at least of the points of k will coincide with their consequents. 
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There is no direct reason why Poincare included this Theorem in [P1] as he made no 

use of it there. His only reference to it was an expression of regret that he did not 
have the opportunity to show how it could be applied in the study of the spatial 
distribution of closed trajectories. It could have been that because he was writing to 

a deadline it was just easier to keep it in, or maybe because he was not good at 

organising his material. On the other hand, he might have decided that having 

established the result it made sense to publish it so that it was available should he 

need it at some later date. 

5.6 Theory of periodic solutions 
5.6.1 Introduction 

Poincar6's discussion of periodic solutions forms the central topic of the memoir. In it 

he brings together principles and techniques both from the previous chapters and 
from his earlier papers on differential equations and the three body problem. The 

chapter is dominated by two important ideas connected with the stability of the 

periodic solutions. The first of these concerns certain constants which arise in the 

solutions and which he originally introduced in [1886]. These are now identified as 

characteristic exponents and an investigation into their behaviour reveals 
information about the stability of the solutions. Secondly, there is his remarkable 
discovery of an entirely new class of solutions which asymptotically approach an 

unstable periodic solution and which he called asymptotic solutions. 

Poincard's rewriting of the memoir resulted in several additions and alterations to 

the chapter, only the section on characteristic exponents surviving the transition 

intact. The most radical change concerned the analytical description of the 

asymptotic solutions which underwent a major revision, culminating in the addition, 

at the end of the chapter, of a completely new section concerned with the asymptotic 

solutions of the autonomous Hamiltonian equations. 

5.6.2 Existence of periodic solutions 

Poincare began with the equations 
dx; 
dt =X' (i 1,..., n) (5.6. i) 

where the X; are functions of x, t and the mass parameter p, but now he assumed the 

functions X; to be periodic of period 2ir with respect to t. If for p=0 there exists a 
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periodic solution x; = ¢, (t), where'; is a periodic function of t with period 27r, then 

the question Poincare asked was whether this periodic solution could be 

analytically continued for small values of the disturbing parameter p. 

Poincar6 began by looking for series in powers ofu with periodic coefficients which 
would satisfy the differential equations. If, having proved the existence of such 
series, he could also prove their convergence, then he would have proved the 

existence of the required periodic solutions. However, having got as far as proving 
the existence of the series, rather than prove their convergence, he decided instead 

to prove the existence of the periodic solutions, which would then imply the 

convergence of the series. It is not clear why Poincar6 changed his approaclý, 
especially as he said he thought that the convergence argument could be made 
directly although he gave no indication as to how this could be done. Perhaps, as 
Ian Stewart suggests, he could foresee complications or maybe he was not absolutely 
sure how to go about it19. 

He considered a particular solution close to the original periodic solution 

x, (0) = 00) + ß� x, (2ir) = 0, (0) +A + Ti, 

where 'P are analytic functions of p and ß which vanish with these variables, and 

then sought Y; such that they satisfy the equations 

, Fj= = Vn =0. 

His analysis showed that providing the Jacobian A of W with respect to ß was not 

zero these equations could be resolved and hence equations (5.6. i) do have periodic 

solutions for small values of p. 

In considering the case when 0=0, he used the same method in both [P1] and [P2] but 

its dependence on the method of majorants meant that his improvements to Chapter 

I in [P2] were particularly beneficial with respect to clarifying his procedure. 

If equations (5.6. ii) are distinct, then Q,, ..., ß,,., can be eliminated to give a unique 

equation 0=0. If p and /j� are then regarded as coordinates of a point in a plane, this 

equation can be regarded as representing a curve passing through the origin with 

each of its points corresponding to a periodic solution. By constructing the part of the 

19 Stewart [1989,67] 
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curve close to the origin, Poincar6 was then able to study the behaviour of periodic 

solutions which correspond to small values of p and P. 

If A=0, then (for p 0) 
do 

= 0. The curve 0=0 is then tangent to the line p=0 dp,, 

at the origin, and, moreover, when p=0, the equation 0=0 will be an equation in 

which admits zero as a multiple root. If the order of multiplicity of the root is m, 
then, by Theorem V of Chapter 1, there exist m series in positive fractions of P, 

which vanish with p and, when substituted for P,,, satisfy 'P = 0. Using these series, 
Poincar6 considered the intersection of the part of 0=0 which is close to the origin 

with the two lines p=e, p=-E which are very close to the line p=0. If M) (M2) are 
the number of points of intersection of 0=0 with p=E (ju =- E) which are real and 

close to the origin then Poincar6 claimed that in, mI and ill 2 all have the same 

parity20. Thus if m is odd, then nil and M2 are at least equal to one and there exist 

periodic solutions for small values of p. The result holds for both positive and 

negative values of ju, although clearly in the context of the restricted three body 

problem no physical meaning can be attached to the latter. 

The above analysis also led Poincare to the important result that as p varies the 

periodic solutions disappear in pairs in the same way as real roots of algebraic 

equations. For if MI 36 m2i then, since they have the same parity, their difference is 

an even integer and so asp increases continuously, the number of periodic solutions 

which disappear as p changes sign will be even. In other words, a periodic solution 

can only disappear when it becomes identical with another periodic solution. 

Poincare looked at the case when for p=0 the differential equations admit an 

infinite number of periodic solutions of the form 

X] _ 
O1(t, l1)ß 

... r 
�= Y'n(ti 

lx), 

where h is an arbitrary constant. The equations (5.6. ii) are then no longer distinct 

for p=0 and 0 contains p as a factor, i. e. 0= puh,. In this case Poincare showed that 

the equations still have periodic solutions for small values of p but only providing 

that when p=0, the equation 7=0 admits ß� =0 as a root of odd order. 

20 The justification for this claim is not immediately obvious and Poincare later gave an 
explanation in [MN 1,70-71]. 
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In [P2] he made the additional point that in the case where the equations admit a 

single-valued integral F (x� ..., x�) = constant, equations (5.6. ii) will not be distinct 

unless further conditions are imposed. 

Poincare next considered the existence of periodic solutions when the functions X; are 

autonomous and periodic solutions can be of any period. In which case, if the 

equations have one periodic solution, they will have an infinite number. For if x; = 
0; (t) is a periodic solution, the same will be true of x; + h), whatever the value 

of the constant h. 

If for p=0 the equations have a periodic solution x; = ¢, (t) of period T, and if for 

small values of u 

xß(0)=$; (0)+ f3, xi (T+z)=0, (0)+ß, +`Y; 

where Pi are analytic functions of A, A, ..., ß,,, z, then periodic solutions will exist for 

small values of p providing it is possible to resolve the n equations 

Y', = YJ2=... = 71. =0 

with respect to the n+1 unknowns /3� ..., an, T. 

Poincare showed that having chosen any one of the ß; = 0, then a sufficient condition 
for the existence of periodic solutions for small values of p is that not all the 

determinants in the matrix 

1971, af, aT, alp, iß3 ßßi 
riß� 

it 
a ý2 a '2 a tF2 a F2 

aßß dß2 
cdßn dr 

äßn äIF, äw� äßn 
a dß2 äR,, ar 

are simultaneously zero for p=ß; =r=0, although in this case the periodic solutions 
have period T+z as opposed to period T. 

5.6.3 Characteristic exponents 

Having established the existence of periodic solutions, Poincar6 now turned his 

attention to the question of their stability. Assuming a periodic solution 0(t) of 

equations (5.6. i) had been found he formed the variational equations in order to 

study the behaviour of nearby solutions. 
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Since the variational equations are linear differential equations with periodic 

coefficients, the results from the end of Chapter I give n particular solutions 

41x = eQ''S1k, - "' `Sn. k = ea`'S. k, (k = 1, ..., n), 

where the a are constants and the S& are periodic functions oft with the same period 

as ¢(t). 

The constants a are what Poincar6 called the characteristic exponents of the 

periodic solution, and his insight was to realise that they were the key to the 

stability problem. For if a is purely imaginary then the ý remain finite and the 

solution can be said to be stable and, conversely, if a is not purely imaginary then 
the solution can be said to be unstable. In other words, investigating the stability of 
the periodic solutions is equivalent to investigating the properties of their 

characteristic exponents. As already mentioned, the idea was not entirely new to 
Poincare at this time, it had first appeared in [1886), but, as with the case of 
invariant integrals, he now engaged in a more detailed study. 

Drawing further from his results from Chapter I, he proceeded to show that if two 

characteristic exponents are equal then terms of the type tecIJSjk appear in the 

solution, and, similarly, if three characteristic exponents are equal then terms 

which include t' outside the exponential and trigonometric functions appear, and so 
on. He also showed that if the system is autonomous or it has a single-valued 
integral, then in either case one of the characteristic exponents vanishes. 

With regard to Hamiltonian systems, he found that the characteristic exponents can 
always be arranged in pairs of equal magnitude but opposite sign. Thus if the 
Hamiltonian system is autonomous then two of the characteristic exponents are zero. 
He called the n distinct quantities a2 the ýoefficients of stability of the periodic 
solution. 

By considering a particular solution of the variational equations in which ý; = ß; for 

t=0, and ý; = ß; + Y'; for t= 2ir, he derived the eigenvalue equation 

a 
1, 

+ 1- e2ax 1 
Cl r, 

dI, 

aýý aß1 dßn dA dp1 
+1_ elaa 

dp 

... 

äff� äff� ýýý 
... 

äff� 
+ 1- e2ax aß aß1 aßn 

=0 
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from which it can be seen that if cr = 0, then the equation is equivalent to A= 021. 

Conversely, it also implies that ff A is zero then one of the characteristic exponents 

must vanish. Consequently, Poincar6 could re-express his result concerning the 

existence of periodic solutions by saying that if equations (5.61) have a periodic 

solution for p=0 for which none of the characteristic exponents vanish, they will 
have also have a periodic solution for small values of y. 

5.6.4 Periodic solutions of the equations of dynamics 

Poincar6 next considered the existence of periodic solutions in the autonomous 

Hamiltonian system 
dx, dF d y 
dt- dyi dt &j (i = 1,2,3) (5.6. iii) 

F= TO + jjFj +, WF2 + 

where FO is a function of the x only (since in the general problem of dynamics the 

force function is dependent only on the distance) and F,, F21 ... are functions of all 

variables x, y and periodic of period 2n with respect to each y. 

Thus when p=0, xi are constants and yj = nit + Mi, where ni 
LFO 

and Mi are dXi 

constants of integration. So for a solution of the differential equatioris to be periodic 

when p=0, it is necessary and sufficient for the ni to be conunensurable, and, 

providing the 
dFO 

are independent of each other, the xi can always be chosen so that ýX-i 

this condition is fulfilled, and the period Twill then be the lowest common multiple 

of the 
LIr. 

In other words, when p=0 there are an infinite number of choices for the 
ni 

constants xiwhich will lead to periodic solutions. 

The question then arises of whether these periodic solutions can be analytically 

continued for small values of p. What Poincard found was that such analytic 

continuation was possible providing the periodic solutions correspond (in the 

simplest case) to pairs of Kepler circles with rational frequency ratio and a certain 

phase relation determined by the critical points of a function IF, where IF is the 

mean value of F, considered as a periodic function of t. 

21 If the solution being considered differs only slightly from the periodic solution, so that the 
squares and higher powers of ý can be neglected, then the squares and higher powers of A can be 
neglected likewise. 



122 Poincare's Memoir on the Three Body Problem 

Although he approached the question of analytic continuation using the same 
methods in both [P1] and [P21, the two presentations appear rather different. The 

results are essentially similar but in [P2] they are expressed in a more logical order 
with additional explanations. In [P1] he began by expanding the coordinates as a 
series in p and then proving the existence of the periodic solutions, whereas in [P2] 
he first proved the existence of the periodic solutions before expanding the 

coordinates and determining the coefficients of the series. Furthermore, [P2] contains 

a discussion of the application of the theory to the restricted three body problem 
which is not found in [PI]. 

He started in [P2] by supposing that for p#0a particular solution at t=0 is given by 

xi =a; +&i;, y; =uT; +&c7; 

and that for t=T the solution has the values 

x; =a; +Ea;, +da;, y; =[i; +n; T+SC3; +iiii. 

Thus the solution will be periodic if 

dad=4R1= 
3=4Ql =AM2=403 0. 

However, since F= constant is an integral of equations (5.6. iii) and F is periodic with 

respect to y, these equations are not independent. Hence it is only necessary to 

satisfy five of them. Furthermore, choosing t=0 when yj = 0, gives q= 45CU, = 0. 

Poincare showed that the five equations could be satisfied provided both that tt72 

and tri3, were chosen in such a way that 

aw aW 
aal=aý3=o, 

(5.6. iv) 

and that neither the Hessian of '}' with respect to 1132 and m3, nor the Hessian of F° 

with respect to x; ° were equal to zero22. 

Since T is finite and periodic in tul and tU3, equation (5.6. iv) is always satisfied, and 

so providing p is sufficiently small and neither of the two Hessians vanish, there 

exists a periodic solution of period T, where T is detem-Lined'by the choice of the 

numbers ni. 

22 The Hessian of a function is the determinant of the matrix of wl-dch the entries are given by the 
second partial derivatives of the function. It is named after the German geometer L: udwig Otto 
Hesse (1811-1874). 
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Furthermore, if nj' = n; (1 + F) then, providing e is small, there exists a periodic 

solution for small values of p, 

OP, pi e), Oi'(t, pi 0 

with period T'--1 
+ which is nearly equal to T. 

In the case of the restricted three body problem, where there are only two degrees of 
freedom, the function T depends only on 02 and so the relations (5.6. iv) reduce to 

dw 
= aal 0 (5.6. v) 

and the Hessian of W reduces to Hence, corresponding to each of the simple dM22 ' 

roots of equation (5.6. v) there is a periodic solution for all sufficiently small values 

of p, and, as established in 5.6.2, the same is true for each of the roots of odd order. 

Returning to the case where the periodic solutions have period T, and having shown 
that they could be expressed in the form of convergent series in powers of p, 

x; =x; °+jail +pzx12+... (i=1,2,3) 

yi=y; °+py; l+p 2y,? +... 

Poincare 's next step was to determine the coefficients of the series. 

Considering the unperturbed motion gives values for x, jD and y, P but calculating the 

remaining coefficients requires a careful analysis. PoincarOs procedure, although 

somewhat lengthy, did not, however, impose any further restrictions on the periodic 

solutions since the only constraint on its validity was that the Hessian of FO with 

respect to x, P did not vanish. 

Applying the theory to specific problems, Poincar6 began with the system described 

by the differential equation 
da 

+ nzp + mp3 = pR(p, t). 

This equation, now generally known as Duffing's equation, is often encountered in 

celestial mechanics, where it occurs in the theory of hbration23. It also arises in 

solid mechanics where it can be modelled by a pendulum under the action of an 
imposed periodic force. 

23 Duffing [1918] made an extensive study of this equation in the context of solid mechanics. 
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To prove the existence of periodic solutions, Poincar6 simply applied a series of 
transformations to put the equation into Hamiltonian form, from which it was 

straight-forward to see that the requisite conditions were fulfilled. Although, as 
he observed, when the non-linearity is absent, the Hessian with respect to F. is zero, 
and the theory can no longer be applied. 

Turning to the three body problem Poincar6 encountered the same difficulty with the 

vanishing Hessian although, as he described, in the case of the restricted problem it 

can be easily overcome. In this particular case the small number of variables means 
that it is possible to find a function of F which can be used legitimately to replace F 

in the Hamiltonian equations and for which the Hessian of FO does not vanish. 
Unfortunately, the same method does not work in the general problem and an 

alternative method of establishing the existence of periodic solutions needs to be 

found24. 

5.6.5 Characteristic exponents of the equations of dynamics 

To calculate the characteristic exponents of the autonomous Hamiltonian system, 
Poincar6 began by supposing that a periodic solution of the equations was given by 

xi = 0, (t), yj = W, (t) with a nearby solution given by xi = Oi(t) + ýj, yj = Ti(t) + i7j. This 
leads to the equations of vi 

d; ýF 
dt ? y; axk + 

d 7h o-112F 
dt c7x; rýxk 

with solutions in the form 

iriation 

i, 
gyk 

jr) 
Ilk, (i, k=1,2,3) 

_ 
Z_ 

jd äxt Ilk, 

ýj=elS;, t1; =ealT;, (5.6. vi) 

Si and Tj being periodic functions of t. Since it is an autonomous Hamiltordan system, 
two of the characteristic exponents are zero and so there are only four particular 

solutions. 

When p=0, F is reduced to FO, and the variational equations are reduced to 

did? 1i JFo 
dt _ 01 dt -- 

,ok 
fk, 

24 Poincare resolved this difficulty in [MN I, 133). 
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where the coefficients of the second equation are constants. In this case, the most 

general solution is given by ýj = 0, and t1i = i7, P, where tl, P are constants of integration, 

and so all six characteristic exponents are zero. 

To find values for the functions a, Si and Tj which satisfy equations (5.6. vi) for small 

values of y, Poincar6 sought series expansions in powers of the parameter. The 

difficulty is that since all the characteristic exponents are zero when /I = 0, a cannot 
be expanded in integer powers of y since the conditions necessary for the implicit 

function theorem to be valid are no longer fulfilled. n-tis leads to the question of 

whether a can be expanded in fractional powers of ju. 
What Poincar6 found was that a, as well as Si and Ti, could be expanded in powers of 
4-ju-, and so could be written25 4 

a=a, I +a2p+... (%=0, sincep=0=> a=0) 

Si =S°+Si 'qµ+S; p+... 

T; =T°+T? N +Till, +... 

To calculate the coefficients in these series, he proceeded by first substituting these 

series in equations (5.6. vi), and differentiating with respect to t. Next, having 

expanded the second derivatives of F as series in integer powers of P, he made the 

appropriate substitutions in the variational equations, and then determined the 

coefficients by equating powers of -\Fp-. By this process he was able to calculate the 

coefficients as far as a;, S; '^ and Tim. 

In [P1] Poincar6 went straight into the calculation of the coefficients without first 

proving that such series do indeed exist, and, moreover, giving no mathematical 

explanation as to why they should be series in powers of rather than p, or 

indeed rather than any other fractional power of p. He went some of the way 

towards rectifying this omission in Note H although his proof for the existence of 

the series invoked theorems concerning the method of majorants which only 

appeared in [P2]. [P2] contained a much more detailed existence proof for the series 

for (r, including showing that the expansion for a only contains odd powers of 4-ju, 

25 Poincar6 was not the first to form series in powers of the square root of the parameter. As he 
acknowledged in his introduction to [P21, series of this type occur in Bohlin's [1888] aper 

., 
p 

where they are used to overcome the problem of small divisors in planetary perturbation theory. 
Poincar6 later made a careful exan-dnation of Bohlin's series in [MN 11]. See 7.2.3. 
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and it also contained a proof for the existence of the other two series, neither of 

which had been included in [pl]26. 

In his deterrnination of the coefficients in the series for a, Poincar6 found that the 

sign of Cý2 depended on the sign of ln-j in other words it depended on the derivative doV 

of equation (5.6. v), the roots of which correspond to periodic solutions. Since the 

stability of the periodic solutions depends on the sign of a2, if y is sufficiently small, 
this translates into the stability being dependent on the sign of Cr12. Poincard was 
therefore interested in the behaviour of equation (5.6. v). He considered the general 

case when the equation only has simple roots, i. e. the roots correspond to maxima 

and minima of the function W. Since W is a periodic function, there is at least one 

maximum and one minimum within each period, and exactly the same number of 

each. Consequently there are precisely as many roots for which the derivative and 
Cr 12 are positive, as roots for which the derivative and a, 2 are negative. This means 
that, corresponding to each system of values of n, and n2 there is at least one stable 

and one unstable periodic solution and, providing p is sufficiently small, there are 

exactly the same number of each. 

In [P2] Poincard also showed how it was possible to continue the calculation of the 

coefficients for the series for Si and Tj beyond the terms Sj- and Tiln already 

calculated. 

Many of the changes Poincar6 made to this section can be directly attributable to 
intervention from Phragm6n. In the introduction to [P2] Poincar6 specifically 

mentions Phragm6n's help with regard to the calculation of the coefficients for the 

series for Sj and Ti. Furthermore, 'according to Mittag-Leffler, PoincarOs additions of 
the existence proofs were also prompted by queries from Phragm6n27. 

26 Althouglý Poincar6 had shown algebraically why the expansions had to be in powers of -FT-, 
he &ave no d an-dcal explanation of the result. In essence, the square root arises because near a 

ut periodic so ution a perturbation changes the nature of some of the phase curves so 
straightforward erturbation theory cannot be used. However, a local transformation can be 
found in which tKe unperturbed Hamiltonian is similar to that of a vertical pendulum for which 
the separatrix (the special phase curve which separates the phase curves with different 

properties) width is of the order of -Fu-, and this automatically introduces a into the new 
perturbation. 
27 Mittag-Leffler to Poincar616.7.1889, M-L I. 
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5.6.6 Asymptotic solutions 

Poincar6 now turned his attention to the unstable periodic solutions and the 
behaviour of other solutions in their inunediate neighbourhood. 

Starting with equations (5.6. i), he supposed that 

x1=x1o,..., x. = x�0 

was a periodic solution with a neighbouring solution xi = xjO + ýj. He then derived a 

system of equations to determine ý, 
d ;_ 
dt - '-' (5.6. vii) 

where the -- are functions which can be expanded in powers of ý, are periodic with 

respect to t, and have no terms independent of ý. Neglecting powers of ý, equations 
(5.6. vii) reduce to the linear equations of variation with general solution 

= jAk&J0, j, where A are constants of integration, a characteristic exponents, and 

periodic functions of t. 

To solve the equations when they include powers of ý, Poincar6 made the linear 

transformation 

- 
Y, 7%kOki 

so that (5.6. vii) become 

dgý 
= Hi = Hil ++ HIP ý -t (5.6. vii') 

where the Hi are functions of t and 77 of the same form as F, and HiP represent the 

collection of terms of Hi of degree p with respect to 17. He then looked for general 

solutions to equations (5.6. vii) and (5.6. vii'). 

By writing 

1]i=Iliß +... +T7i" +... 

where 77, P represent the terms of i7i of degree p with respect to A, replacing Tjj in H, A. 

and calculating i7, q by recurrence, he found 

dT)il 

dt-a; ttI = JCAgef-ý 

where Aq=AA,, P-, D= r4 --l + YaB, y is a positive or negative integer and 

lap = aA +... + oýfl.. 
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This equation is satisfied by 
Y, CA9ea 9 

. f1- a; 
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where C is generally imaginary, #are positive integers with sum q, excluding the 

exceptional case when 12 - cý- = 0, when terms in t are introduced. 

He then proved that the series 
A, ßAZß... A�ß 

11, = IN enr, 

where rl, which represents the product of the divisors 12 - aj, is convergent, 
providing that 12 - ai does not become less than any given quantity E for positive 
integer values of P and positive or negative integers y, i. e. if neither of the two 

convex polygons containing a± 4--1 contain the origin or if the real part of the 

quantities a are the same sign and not equal to zero. Although he observed that the 

convergence followed immediately from his results on the method of majorants 
applied to partial differential equations (see 5.4.3), he also provided a direct proof. 

With the restricted three body problem in mind, Poincar6 next considered the 

particular system represented by the differential equations 
dx7 dx2 
dt =XI, dt =Xz, 

with the added condition 
aX, -XZ 
&1 

+&2 =0, 

which implies that the "volume" is an invariant integral. 

As Poincar6 remarked, since a state of the system only depends on the variables, x,, 
X2, and t, it can be represented by the position of a point in space with coordinates 
exicost, exisint, x2. A periodic solution can then be represented by a closed curve, and if 
the periodic solution is unstable the coefficient of stability a2 will be real and 
positive. In this case the t1i can be expanded as a series in Aeol and Be-. Thus if A= 
0, and t --> + -, then ill and 772 -4 0 and the corresponding solution asymptotically 

approaches the periodic solution. Similarly, if B=0, and t -4 - -, then again 77, and 
172 -ý 0 and the solution again asymptotically approaches the periodic solution. 
These two series of solutions, the first corresponding to t=+-, and the second 
corresponding to t=--, are what Poincar6 called asymptotic solittions. Moreover, 

since each of these series corresponds to a sequence of curves which asymptotically 
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approaches a closed curve C, Poincar6 called the surface formed by the set of these 

curves an asymptotic surface. Thus, there are two asymptotic surfaces, one 

corresponding to t+-, and the other corresponding to t and both of these 

surfaces pass through the closed curve C. 

In (Pl] Poincar6 went through a similar analysis to show that in the case of 

equations (5.6. i) the series for Tj could be expanded in a convergent series in AecO. 
But at the end of the analysis he added the claim that if the differential equations 
depend on the parameter it then the series could also be expanded in powers of y or 

-Fli, according to the circumstances. Nowhere did he prove that such expansions 

were actually possible. Furthermore, implicit in his claim was that the series in 

each case was convergent. Particularly significant is the fact that he made no 

attempt to distinguish between the autonomous and nonautonomous cases. As he 

later discovered, neglecting to make this distinction was a serious oversight. 

In [P2] the ending of the section was quite different. Poincar6 proved that the 77 

could be represented by a series in p, and, moreover, that these series were 

convergent providing, firstly that the differential equations depend on the 

parameter p and the functions Xi can be expanded in powers of the 

parameter; secondly that for p=0, all the characteristic exponents a are distinct 

and can be expanded in integer powers of ju; and thirdly it is possible to remove all 

the constants A which correspond to an a whose real part:! ý- 0. 

The significant condition to observe is the second one which concerns the 

characteristic exponents. For this condition means that if the system under 

consideration is an autonomous Hamiltonian system, then the series are not 

convergent, and in particular the series are not convergent in the case of the 

restricted three body problem. This point is central with regard to Poincar6's error. 
For in [PI] Poincar6 had not appreciated that in describing the behaviour of 

asymptotic solutions there was a critical difference between autonomous and 

nonautonomous systems, a difference which initially manifests itself in the values 

of the characteristic exponents. In [P2] the distinction between the two cases is 

clearly made, the nonautonomous case having been dealt with here and the 

autonomous case being the subject of the next section. 

5.6.7 Asymptotic solutions of the equations of dynamics 

Poincar6 had already proved that there were circumstances under which the 

autonomous Hamiltonian system would have periodic solutions, and so to establish 
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the existence of asymptotic solutions he only had to make certain that one of the 

corresponding characteristic exponents a was real. That being so, it only remained to 

ascertain the form of the asymptotic solutions. 

In the case discussed in the previous section the functions Xj were expanded in powers 

of p and the characteristic exponents were distinct for p=0. In the case of the 

autonomous Hamiltonian equations, the right hand side of the equations can again 

be expanded as powers of p, but now all the characteristic exponents vanish when 

P=0. 

This results in several important differences. Firstly, as Poincar6 had already 
described, the expansions for the characteristic exponents are in powers of -\Fu- rather 
than p. Similarly, the expansions of the functions Oil which appear in the general 

solution to the variational equations and which, in this case, are the expansions of 
the functions Si and T,, are also in powers of NFp rather than p. Furthermore, this 

implies-that the expansions of the functions Hi, are in powers of 71, exp(t4 1, exp(- 
tNr--l, and -%Fp- (and not ofU). Although i1i can be derived as before 

AIAA2A... A�e. 
ý1ý _VM 2' en's 

the expansions of N and 11 are now also in powers of 

These differences led Poincar6 to ask the following questions: 

1. Since N and 11 can be expanded as powers of -5-1 can the quotient 
N 

also ri 

be expanded in powers of '? 

2. If the answer to Question I is yes, then this implies the existence of series 
in NFp-, A jeail, exp(N-1), and exp(-t V-1), which formally satisfy the 

equations; are these series convergent? 

3. If the series are not convergent, can they be used to approximate the 

asymptotic solutions? 

With regard to Question 1, since both N and 11 can be expanded in powers of 
Poincar6 realised that the only problem which could arise with the expansion of 

T- their quotient is the appearance of negative powers of p. For if this should occur 
then the asymptotic solutions would cease to exist for 0. His answer therefore 

consisted in proving that these negative powers never arise. He had previously 



PoincarPs Memoir on the 77tree Body Problem 131 

recognised the existence of this particular problem and an earlier version of the 

proof is included in Note L 

Poincar6 had therefore proved the existence of series which formally satisfied the 

equations but were these series convergent? Importantly, Poincard showed that they 

were not. However, when he first discovered the divergence of these series it was 
entirely unexpected. His analysis in [Pl] had led him to believe that the series 
were actually convergent. Put in the context of the whole memoir, his original 
failure to appreciate the divergence of these series is essentially the analytical 

analogue of the geometrical mistake which he made at the end of of his discussion 

on invariant integrals in [PI]. 

In [P2] Poincar6 proved that, rather than being convergent, the series belonged to the 

class of divergent series which he had defined in [1886a] as asymptotic series. [Pla) 

reveals that he was slightly concerned about the status of this particular proof 
despite describing it in [P2] as "rigoureuse". In [Pla] the word "rigoureuse" was 

originally preceded by the word "plus", which was then crossed out and replaced by 

the word "absolument", which was then also crossed out. 

He began with the expression (d2 - ai)-'. If y is not equal to zero, then this, 

expression can be expanded in powers of -Fu but the radius of convergence of the 

series will tend to zero as -Y- tends to zero. Thus if the expression is expanded in 

powers of -ýp-, there will always be an infinite number of such expressions for which 
the radius of convergence of the expansion is arbitrarily small. If the same is true 
for -ý! then this implies that the series are divergent. IV 

Rather than considering the series for 17, Poincar6 began with the simpler series 

W? j F(w, p) = 
11 

+. nP 

where w= Ait-1. This series in w is unifom-dy convergent when p>0 and IwI <wO <1, 

and if differentiated the resulting series is also unifom-dy convergent. 

On the other hand, if the function F(w, p) is expanded as a series in 

F(w, µ) = 7_w"(-n)pµp 
nip 

(5.6. viii) 

then as Poincar6 knew from his theory developed in [1886a), the series is not 

convergent but is an asymptotic expansion. 
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Poincar6 then claimed that the series (5.6. viii) was completely analogous both to 

the series which represent the functions i7j, 

WIA ... wjAe7l41 w,, -, Wk, (wi = Ai ea, l) 

and to the series 

dp 
N 

w ... w ýeN"ýý ý--i 
_ 

d°F 
. (dý)° (dý) 

These two series are unifomily convergent when expanded in powers of w provided 
IwI< wo <I and -\Fp is real, but if LrI is expanded in powers of Fu, then they are 

divergent. Thus if they are analogous to the series (5-6. viii) they must be 

asymptotic expansions. 

Poincar6 first defined OP(4-p- w, ..., wk, t) to be a polynomial of degree p in -\FP which 

can be expanded in powers of w, and exp(-4hT--1 - The series for 
F- 45' 

is then given 

by 

1N-H lw, ß,... wkeerr' 

where Hp is the group of terms in the expansion of in which the exponent of -ýFp- is 

at most equal to p. To prove that the series for t1i is an asymptotic expansion, this 

series must be shown to be uniformly convergent with its terms tending to zero as p 

tends to zero. This convergence proof turned out to require a long and delicate 

analysis and Poincar6's attempt in IP2] included some unproven assertions which 
doubtless accounts for his concern about the rigour28. 

Nevertheless, he correctly concluded that the series for the asymptotic solutions 

xi = xio + -5x, 1+ pX, 2 + yj = nit + yiO + 4pyil + Uy, 2 + 

were asymptotic expansions and, in addition, that if they were differentiated they 

would also give asymptotic expansions. 

28 Later, in the first volume of the Methodes Nouvelles, Poincard gave a fuller version of the 
proof in wl-Lich he supplied the missing details [MN 1,353-3821. 
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5.7 Study of the case with two degrees of freedom 
In [PlI the opening chapter of the second part of the memoir consisted of five sections 
and constituted the major part of this half of the memoir. In [P2] Poincar6 changed 
the structure so that only the first of these sections, which concerned the geometric 

representation of systems of differential equations, was contained in the first 

chapter of the second part of [P2]. 

In this part of the memoir Poincar6 was primarily concerned with applying the 
theory from the previous part to the restricted three body problem, and consequently 
he focused on the Han-dltonian form of the differential equations with two degrees 

of freedom 
dx, dF dý- aF, 

i_1,2 dt -d y; dt dx; (5.7. i) 

where xi are linear variables, yj are angular variables, and F is an autonomous 
function of xi and yi, periodic with period 21r with respect to yi. 

H. is strategy was to begin by showing in general how such a system can be given a 

geometric representation which uniquely identifies its each and every state, the 

chosen representation depending on the given constraints of the particular problem 

under consideration. 

In the first instance, since the four variables are linked by the Jacobian integral, 

F= (x2, x2, y,, y2)=C, 

Poincar6 could represent each state of the system by a point in space. Adding further 

conditions he developed representations in which each state of the system was 

either represented by a point contained between two tori, or represented by an 
interior point of a torus. He then showed how this kind of representation could be 

used in the restricted three body problem. 

With the restricted three body problem he started by defining the position of the 

planetoid using the osculating elements, i. e. the variables defined by means of the 
instantaneous ellipse described by the planetoid round the centre of gravity of the 

system. He adopted Tisserand's [1887] notation (derived from Delaunay), to write 
the equations of motion in canonical form 

dLA dl OR 

df - dl dr - dL 
(5.7. ii) 
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dGdR dg 
dt - dg' dt -off' 
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where I is the mean anomaly of the planetoid, g is the longitude of its perihelion, n 
is the mean motion of the planetoid, L= 4a, where a is the semi-major axis of the 
instantaneous ellipse, and G= 4-a(l- e2) , where e is the eccentricity of the ellipse. 
In order to preserve the canonical form, the standard perturbation function is 

increased by the addition of the te 
II 

to give the Hamiltonian R. - 2a - 2L2 

Poincar6 chose his units so that the masses of the two primaries were I -ju and P, the 

gravitational constant was equal to one, the mean motion of the smaller of the two 

primaries was equal to one and its longitude was equal to t. Under these conditions 
the angle from wl-dch the distance between the two smaller masses is seen from the 
larger differs from I+g-t by a periodic function of I of period 2; r. 

Since the distance between the primaries is constant and the distance between the 
larger of the two primaries and the planetoid is only dependent on L, G and 1, the 
function R is therefore only dependent on L, G, I and I+g-t. Moreover, since R is 

periodic with period 27r with respect to 1, and with respect to I+g-t 
dR dR 
at+ - o, 

and equations (5.7. ii) admit the integral R+G= constant. 

However R has an explicit dependence on t, and so equations (5.7. ii) are not in the 

required form of equations (5.7. i). To remedy this Poincar6 made the transformation 

x, =G, x2=L, y, = g- t, y2=1 

F(x�x2, y�y2)=R+G. 

The function F is dependent on the mass parameterju, and so can be written 

F=Fofp, 

which if p=0 reduces to 

F=Fo= 
1 

+G = x, + 
1Z, 2a 2x 

wWch is a function of only the linear variables. 

By definition L2 >- G2, which implies that X2 2ý X1 ýý - X2- If X1 =+ X2, then the 

eccentricity is zero, and the perturbation function and the state of the system only 
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depend on the difference of the longitude of the two smaller masses, i. e. they only 
depend on 

I+g -t=y, +y2. 

Consequently 

dF dF 
ay' dy2i 

which implies 

d (x7 - x2) 
_ dt -0' 

and since x2l >- x, ', the maximum value of x, - x2 is 0. (x, is not identically equal to x2 

since in equations (5.7. i) x, = x2 only if there is a singularity. ) If x2 =-x,, again the 

eccentricity is zero but the motion is then retrograde, which always occurs when x, 

and x2 are of different sign. 

To create a geometric representation for the restricted three body problem, Poincar6 

heeded to represent the system using only three variables. He therefore sought to 

express x, and x2 as single-valued functions Of YR Y2 and a new variable ý. 

He began with y=0 and considered the plane in which the coordinates of a point are 
defined by 

X=xJ+C, Y=x2 

which, from the definition of F and the constraint on xj, implies 

X+-L=O, Y>X+C>-Y. 2Y' 

1 
The construction of the curve X+ jy7 =0 together with the lines X+CY, takes 

two different forms depending on the value of the constant C as shown in FIGS. 5.7. i 

and 5.7. ii29, the transition point which occurs when the line CD becomes tangent to 

the curve takes place when X= 1/2, Y=1, and C= 3/2. Although the inequalities 

are satisfied by the curves BC and DE, in FIG. 5.7-i and BC in FIG. 5.7. ii, the part of 
the curve which is of interest with respect to the problem is the part which is 

bounded, that is BC in FIG. 5.7-i- 

29 Since the figures are symmetric with respect to the X axis, Poincar6 only included diagrams of 
the top half orthe X, Y plane [P2,402]. 
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V 

FIG. 5.7. i. FIG. 5.7. ii. 

V 

For p=0, choosing 
X2 - X1 

, fulfils the required conditions since along the arc CB, 
X2 + XI 

will increase constantly from 0 to -. 

For small values of p, ý can be chosen in the same way, but only if x2 > 0, and the 

Jacobian 49(ý, F) 
is not equal to zero. Providing the value of C is not close to 3/2 these t9(XI, X2) 

conditions are satisfied for small values of p, and 4 can be taken as the independent 

variable. 

Finally, in order to make the most convenient representation, Poincar6 made a 
further transformation to another set of canonical variables 

x, =x, +x1, x2 =x, -x2, 

yi, =1 (y, + Y2), Y2 t=l 
22 (Y' - Y2)' 

In this form yi' are angular variables which if increased by 21r generate an identical 
increase in yj and so the system remains unchanged. The system also remains 
unchanged if simultaneously yj' and y2' are each increased by ir. A state of the 

system can then be represented by a point in space with rectangular coordinates 

cosyl'exp(ýcosy2') Y= siny, 'exp(ýcosy2') Z= ýsiny2. 

In this representation each point in space corresponds to a single state of the system, 
while the two systems of values (X, X2, Yl', Y2) and (X, ', X2r, YIf + 7r, Y2' + 7*1 which 
correspond to two different points of space, correspond to only one state of the system. 
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In addition, applying the transformation has the effect of reducing the fourth order 
invariant integral of the Hamiltonian equations to a third order positive invariant. 
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When p=0, equations (5.7. ii) integrate to give 

L= constant, G= constant, g= constant, I= nt + constant. 

These solutions can be represented by trajectories which are closed whenever the 

mean motion n is a rational number. They lie on the surface trajectories which are 
defined by the general equation ý= constant and, consequently, generate closed 
surfaces of revolution analogous to tori. 

In his next chapter, Poincard showed the effects on these results when the system no 
longer remains unperturbed and p takes on small values. 

Meanwhile he concluded the current chapter with the consideration of two more 
dynamical problems. For the first he returned to the system described by Duffing's 

equation, and for the second he considered a heavy point mass moving on a 
frictionless surface in the neighbourhood of a stable equilibrium. In each case he 

generated a similar representation to the one he had derived for the restricted three 
body problem. 

It is noticeable that Poincard accorded this section on geometrical representations a 
higher degree of prominence in [P21 than in [Pl]. In the latter it is included as the 

opening section of the first chapter of the second part of the memoir, while in the 
former it warrants an entire chapter to itself. What prompted this change of 

emphasis? 

It is clear that for Poincar6 framing dynamical problems geometrically came 

naturally (as exemplified by his remarks on the theorems concerning invariant 

integrals). However, his kind of geometric approach to celestial mechanics 

represented something quite new in mathematics, and its sheer novelty would have 

been sufficient to make the contents of the memoir almost inaccessible to those of a 
more practical persuasion. This was certainly the view adopted by Mittag-Leffler 

who, while studying the original memoir, expressed the concern that Poincar6's 

resolution of the restricted three body problem was given in a form which would be 

difficult to understand by anyone except those very familiar with his work, and 

that astronomers in particular would not understand it all3o. Mittag-Leffler 

identified as the main source of potential difficulty the fact that Poincar6 was 

30 Httag-Leffler to Poincar6 15.11.88, M-L 1. 
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working in a three-dimensional multiplicW (= manifold) which was not the 
Euclidean three-dimensional space in which the bodies actually moved. 

Poincar6 responded to Mittag-Leffler's remarks by translating his most important 

results into a more traditional format known to be familiar to astronomers, and 
which he added as Note B. However, the discovery of the mistake invalidated a 
large part of the Note, and he completely excised all trace of it in the revision. 

So it could be argued that he chose to use the structure of the memoir to stress the 

geometrical representation rather than include a revised version of Note B. Given 

the nature of the new results, the rewriting would have been a delicate undertaking 
and not one he would have relished in the time he had available. In any event, he 

would have been primarily concerned with the response from mathematicians 

rather than astronomers, and so it is perhaps not surprising that he chose not to 
develop this side of the problem any further at this stage. However, he did not 

entirely forget the astronomers, for in the following year he wrote a summary of his 

results from [P21: 

"... for the readers of the Bulletin astronomique who do not have time to 

read 'in extenso' the original memoir which is very voluminous. " [1891,4801, 

which, although materially similar to Note B, was in fact a new paper which had 

a quite different structure. 

5.8 Study of asymptotic surfaces 
Poincard now set out to find the exact equations for the asymptotic surfaces (the 

geometric representations of the asymptotic solutions of the differential equations), 
and thereby derive an understanding of the behaviour of the asymptotic solutions. 
Although he approached the problem in a similar way in both [Pl] and [P2], in [P2] 
he added an entirely new section purely for the purpose of stating the problem and 
outlining a strategy for dealing with it, giving a clear indication of the importance 
he now attached to the topic. 

His method was to calculate the coefficients of an increasing number of terms in the 

asymptotic series 

Xi ý-- SAYI, Y2, X2 I-- SAYIP Y2f -ýP 

and then use the series to make better approximations to the asymptotic surfaces 
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X, =fl(Yll Y2), X2 «=f2(Ylr Y2)f (5.8. ii) 

where the xi satisfy 
dFdxi 

+ 
dF&i 

+ 
dF 

0. 
OýXlo9jll OýXAY2 O'Yi 

(5.8. iii) 

The first approximation would only involve the first two terms in the series (5.8. i), 
i. e. the error would be of the order of y. The second approximation would then 
involve a larger number of terms so that the error would be of the order pP for any 
fixed p, no matter how large, and the final analysis would concern the exact 
equations (5.8. ii). Poincar6's initial problem, therefore, was to form the series si 

which, when substituted for xi would formally satisfy equations (5.8. iii). 

He had already shown that the generating periodic solution could be represented 

geometrically by a closed curve through which passed two asymptotic surfaces, and 
that it was possible to move from one surface to the other by changing -FP to - 

4p. 

As a result, it was clear that changing -Gy to -NFp in equations (5.8. ii) would give 

rise to a second asymptotic surface which would cut the first. Moreover, considering 
these two asymptotic surfaces as two sides of the same surface, then this surface 

would have the notable feature of a double curve. 

If sjP and s2P are the sums of the first p terms of the series s, and S2, then the equations 

Xi = S, "(Yll Y2,4JU Xi = SAYI, Y2, -4JU 1,2) 

represent two surfaces differing only slightly from the two sides of the asymptotic 

surface and so they too must cut each other. Thus if these two surfaces are considered 
as two sides of a single surface, then this, single surface will also display a double 

curve. In what follows Poincar6 proved that this condition was sufficient to 
distinguish s, and s2 from all the series of the same form which satisfy equations 
(5.8. iii). 

5.8.1 First approximation 

Most of this section in [P2] came from two consecutive sections from Chapter I in [Pl]. 

It began with Vie Equation of Asymptotic Surfaces and ended with the first half of 
The Construction of Asymptotic Surfaces (flrst approximation). 

Poincar6 had already shown that, providing p is sufficiently small, the differential 

equations have periodic solutions of which exactly half are stable and half 

unstable. He had also shown that through each closed curve representing an 
unstable periodic solution pass two asymptotic surface trajectories, and that these 
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surface trajectories have a series expansion in terms of Nrp-. His aim now was to 
determine the coefficients of the first two terms in this series, that is the first two 
terms in the series (5.8. i). 

Since he was concerned with the restricted three body problem, he began with the 
Hamiltonian equations (5.7. i) assuming that F could be expanded in powers of the 

mass parameter li 

F= Fo + JJFI + y'F2 +..., 

with FO independent of y. In order to ensure the existence of a generating periodic 

solution, he supposed that for certain values of xi, say xjO, 
ýF 0 (= n j) were Oxi 

commensurable. 

The general f6rM of the equation of a surface trajectory is then given by 

xi = d5, (yl, y2), (i = 1,2) 

providing the functions Oi are chosen such that F(01,02, yjy2) = C, and they satisfy 

equations (5.8. iii). 

To integrate equations (5.8. iii) Poincar6 supposed 

xi = xio + 4-pxil + pxil + .. - 
(5.8. iv) 

where xi are very close to x, O, the latter having been chosen such that the ratio nl: n2 
is commensurable. It then remained to determine the coefficients x, A such that when 
the series (5.8. iv) are substituted into the equations (5.8. iii) the equations are 
formally satisfied. 

To generate a sequence of equations from which he could determine xik, Poincar6 

substituted the series for xj in the series for F then equated powers of p. 

In his determination of the coefficients x, ý Poincar6 first showed that they were 

periodic functions of yj and as such could be expanded as trigonometric series in sines 

and cosines of multiples of yl. He then found that 

X, 1 =X1=2 ([F, ] + Cl) 01 (5.8. v) 

where the notation [FI] represents the average value of the function F, considered as 

a periodic function of yl, N 
a2Fo 

and C, is an integration constant. Thus he could ýX20) 2' 

write the series to be used in the first approximation as 
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x, = x, 0, [F, ] + Cl). p([j 
x2 = x20 

F-N- 

At this point in [P2] poincar6 stopped following the section on the Equation of 
Asymptotic Surfaces from [P1] and continued instead with material taken from the 

section on Construction of Asymptotic Surfaces (first approximation). 

The remaining pages from the Equation of Asyniptotic Surfaces, which did not 
appear in [P2], contained an outline of Poincar6's method for determining the 

remaining coefficients x, A, which was clearly not required for the first 

approximation and which, for each coefficient, involved the choice of Ck, an 
arbitrary constant of integration. The section concluded with three points raised for 
discussion: 

1. When are the series thus obtained convergent? 

2. How should the arbitrary constants CI C2, ... Ck. 1, ... be determined? 

3. What are the properties of the functions defined by the series? 

all of which he addressed in later sections (see 5.8.3). 

In [P2] Poincar6 considered his results in the context of the geometric representation 

of the restricted three body problem. To simplify the notation, he suppressed the 

primes and called the variables xi and yj (not to be confused with the original xi and 
yi, i. e. G, L, g-t, and 1). The new yj are linear functions of 

Yl I=i (g-t+l) Y2 I=i 
22 

and the ratio 
L' is a linear function of ý. Poincar6 was now able to define completely XI 

the position of a point P in the space so that every relation between y1f Y2, and the 

ratio 
L2 

was the equation of a surface, and both y, and Y2 could be increased by a X, 

multiple of 21r without changing the position of A 

The coefficients from (5-8-v) then gave the first approximation for the equation of 

the surface trajectories 

2( 
N 

x2 x70 + x21 x20 

+ 
ýý -0 2 [F, ] + Cl). (5.8. vi) Xi x, 0 + x, ' X, 0 X, 0 N 

Poincar6's next problem was to identify the particular surfaces which, as he had 

earlier described, displayed a double curve. This led him to consider the 
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intersections of the surfaces defined by equations (5.8. vi) with the transverse section 
S defined by the surface yj = 0. 

The position of a point P on the surface S is defined by the two coordinates 
L2 

and Y21 X1 

which, since they are analogous to polar coordinates, means that the curves 
L2 

= constant are closed concentric curves on the surface S and the position of a point X, 
P on S is unchanged when Y2 is increased by 27r. Since -\Fp- is very small, the 

intersections of the surfaces defined by equation (5.8. vi) with the transverse section 

defined by yj =0 differ very little from the curves 
L= 

constant. 
XI 

In order to investigate the curves formed by the intersections, Poincar6 needed to 

understand the nature of the function [FI]. He found that it was a finite periodic 
function of y2, in other words, it was similar to the function W he had found 

previously. To look at a general function of this type he supposed that as Y2 varied 
from 0 to 27r, [F, ] varied as in FIG. 5.8331, where 0, > 03 > 02 > 04. 

y2 

I- j Ly. J. Q. 9. 

He then constructed a set of curves defined by 

ju x2 X2 0p 
+0 

02 
ej + CI), 

-. 
0N XI X] 

ý' 

31 Poincar6 [P2,418]. 
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the shape of each curve depending on the value of the constant C, as shown in FIG. 

5.83i 32. Each one of these curves lies in the plane y, = 0, and so if yj is now varied 

from 0 through to 27r, the curves will each sweep out a surface. More precisely, if 

through each point on an arbitrary one of these curves is drawn one of the lines 

defined by the equations y2 = constant, 
L2 

= constant, then the set of all these lines 
X1 

constitutes a closed surface which is exactly one of the surfaces defined by equation 
(5.8. vi). 

--------------- 

.......... 

------------ 

FIG. 5.8. ii. 

Since each of the roots of the equation 
'dF" 

=0 corresponds to a periodic solution dY2 

(cf equation 5.6. v), the periodic solutions correspond to the extremum points of [Fj]. 

In this case (due to the choice of [F, ]) there are four extremurn points, which 

represent four periodic solutions, two stable and two unstable. The two stable 

periodic solutions correspond to the two isolated closed curves of the surfaces 
C, =-0. and C, =-0, (points A and B), and the two unstable periodic solutions 

correspond to the double curves of the surfaces C, =- 02 and C, =- 04. By the criteria 

established earlier, the latter two are the ones in which Poincard was interested 

and which represent his first approximation. 

32 Poincard JP2,4191. 
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In [P11, Poincar6 arrived at the same result but, due to his earlier analysis and his 
(erroneous) belief that the asymptotic surfaces could be represented by convergent 
series in Nry-, he also included the following conclusions: 

1. At the first approximation the asymptotic surfaces are closed surfaces, 

and this result is confirmed by following approximations. 

2. Since every asymptotic surface is a surface trajectory, its intersection with 

the transverse section S wiU be an invariant curve C. Consider a curve C. 

02 

�ý[Fll - 
04). 

Xl XIO +0N 

This will differ very little from the invariant curve C (up to the order of /I). 
Its consequent will also differ very little from the consequent of C, i. e. C 
itself. Thus the curve C'will differ very little from its own consequent (up to 
the order of p). 

3. The curve C'is a closed curve; the curve C from which it differs only 

slightly will thus be a quasi-closed curve such that the distance between the 

points of closure will be of the order of u. Thus the asymptotic surface cuts 

the surface y, =0 as a quasi-closed curve. 

The distance of an arbitrary point P on the surface C, = -04 to its consequent 
P' will be of order -Fy. Likewise the distance of an arbitrary point on the 

curve Cto its consequent will also be of order 4-p-. 

Later it is shown how Poincar6 used these results in [P11, and how they were 
invalidated by the discovery of the error. 

5.8.2 Second approximation 

The purpose of the second approximation, which only appeared in [P2], was to 
determine some arbitrary number of coefficients of the series (5.8. iv). Since Poincard 
had originally believed the series to be convergent rather than asymptotic, there 

was no equivalent section in [PI]. 

Nevertheless, most of the section is in fact taken from Note F which Poincar6 had 

added to [Pl] because he wanted to include an analytic description of the asymptotic 

surfaces to complement his geometric one. Note F, therefore, contained what 
Poincar6 then believed to be a description of the entire series. It is therefore not 
surprising to find that in editing Note F for inclusion as the second approximation 
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Poincard made what he described in the note attached to [Pla] as an "important 

correction". 

Poincar6 began the second approximation in the same fashion as the first, but he 

then transformed the problem using Hamilton-Jacobi theory33. 

Since the system of differential equations is an autonomous Hamiltonian system, the 

expression x1dy, + x2dy2 is an exact differential and so can be written 

dS -ý XIdYJ + X2dY2 

where S(YI, Y2) is a solution of the Hamilton-Jacobi partial differential equation 
as as 

Ylt Y2 C, 

which can be expanded as a series in -ýp- 

S= SO +S jTu + Sp + S, P, \Tp- + ... 
where the coefficients Si are functions of y, and y2. Moreover since 

dsk 
=XIk 

dsk 
= X2k* 6ý2 0 

the problem of determining the coefficients of the asymptotic series amounts to 
determining partial derivatives of the coefficients in the series for S and hence to 
determining the coefficients in the series for S. 

When C,, > -04 Poincard proved that -ýS-- and -ýS-- could be determined as (divergent) dy, dY2 

trigonometric series in sines and cosines of multiples of yj and y2. However, his main 

concern was with the case when C, and the series represent the asymptotic 

solutions. When this occurs the expression [FI] + C, is never negative, and it only 

reaches zero when y2 = 173- 

Choosing 713 as the origin for Y2, he put the expression into the form of a trigonometric 

series 

[F, ] + C, = YA. cosmy2 + Y-B�sinnzy2. 

For Y2 =0 this function and its derivative vanish. Since the function is always 

positive, zero is, therefore, a minimum. As a result, the function 

33 See Jacobi [1866). 
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[Fj + C, 

sin2y-2 2 

can also be expanded in sines and cosines of multiples Of Y2, and since it is a periodic 
function of y2 which neither vanishes nor becomes infinite, it is possible to write 

, Y-2 
sin 2 "COSMY2 + YB,, ýmy2. 4-[F, ]+ C, 

From this expression Poincar6 showed that 
'S' 

and 
'S' 

are periodic functions of yj dy 1 Oý2 

and Y2 where the period is 21r with respect to yj and 4; r with respect to Y2' 

Furthermore, after a detailed analysis he showed that it was also possible to ensure 

that the functions remained finite and so could be expanded as sines and cosines of 

multiples of yj and 
Y-2 

where if p is even they will contain only the even multiples of 2' 
Y2 

and if p is odd they will contain only the odd multiples of 
Y2 

22 

He was then able to write the approximate equations for the asymptotic surfaces as 
the asymptotic series 

p-n P. n 

pp12 

as 
P1 x2 =1 pp12 

as 
P* 

p=O 
dY ,p. 0 

dy 
2 

These series, as he had previously proved, are divergent, but since they are 

asymptotic, if they are stopped at the nth term then the error is very small, 

providing, of course, p is very small. 

The "important correction" that Poincar6 made to Note F concerned these series. His 

earlier analysis in Chapters 11 and III of Part 1 in [Pl], had led him to believe that 

the asymptotic surfaces could be represented by series in \FP, which were convergent 
for arbitrary values of yj and y2, providing ju was sufficiently small. As a result he 

thought that his calculations in Note F had shown that the asymptotic surfaces 

could be represented by the infinite series 
p. -p . - 

XI=I pp/2 
as 

P: 

Y 

j 
pp12 

dSl' 

0 
C-ly 

X2 

0 
ONY2 

which he believed to be convergent. 
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5.8.3 Third approximation 

In the final approximation Poincard constructed the asymptotic surfaces exactly, or 
rather their intersection with the transverse section yj = 0. Here the differences 

between [P11 and JP2] are quite dramatic. 

In [P11 Poincard's objective was to determine the coefficients of the series defining 

the asymptotic surfaces. He began by quickly disposing of the two cases where the 

series were clearly divergent. In the first case,. when C, >- 04, he likened the series 
to those derived by Lindstedt: divergent but nonetheless useful since the divergence 

derives from large multipliers rather than small divisors and so it is relatively 

slow. 
' 
In the second, whenCI 'C - 04, he gave an analysis which became the 

introduction to Periodic solutions of the second class in [P2] and which is discussed 

later. 

He then moved on to the case where C, which he believed gave rise to 

convergent series defining the asymptotic surfaces. He therefore set about 
determining the coefficients of the series given the properties he thought he had 

previously established, namely that they were periodic with respect to y,, that 

they were real and finite, and that they were convergent for sufficiently small 

values of p. This involved showing it was possible to choose the series of constants 
derived in the section on the Equation of Asymptotic Surfaces so that the series were 

convergent. That being done, he returned to the geometry in order to give an actual 
description of the asymptotic surfaces. 

To clarify the description, he used FIG. 5.8. iii34. The plain lines which identify 

the two curves AO'B' and A'O'B represent the two asymptotic surfaces which cut 

the surface yj = 0, and the dashed line represents the curve YJ = Y2 = 0, The dotted 

and dashed line, which is a closed curve with a double point at 0, represents the 

curves with equation 

x2 x2 0+ Tßý &[F, 
] 04). 

Xl x10 x, o 

which arise when the surfaces which differ very little from the asymptotic surfaces 

cut the surface y, = 0. The generating (unstable) periodic solution is represented by a 

34 Poincard [P2,438]. 



148 Poincari's Memoir on the Three Body Problem 

closed trajectory cutting the surface y, =0 at the point 0, and the distance 00'is of 
order g 

0 :/ A'ýI. - -", 0' 1 
B' 

B 

Y2 
10 

FIG. 5.8. iii 

Poincar6 used his results from the end of the first approximation to infer, firstly, 

that the curve BO'B'is quasi-closed, the distance between the points of closure being 

infinitely small of order p, and, secondly, that the distance of the point B to its 

consequent is of the order of -\Fp. Appealing to the (invalid) Corollary to Theorem 

III he concluded (erroneously) that the curve BO'B' was rigorously closed, i. e. that 

the points B and B'were coincident, and consequently that the asymptotic surfaces 

were closed. Furthermore, inherent in this conclusion was the implication of 

stability. 

He ended by adding that a simila 
*r 

argument could be used to establish that the 

asymptotic surfaces corresponding to the unstable periodic solution C, = -02 were 

also closed. 

Thus Poincar6 believed he had proved, given certain initial conditions, i. e. 
sufficiently small values of p, that relative to a given unstable periodic solution, 
there was a set of asymptotic solutions which could be considered stable in the sense 
that they remained confined to a given region of space, and, moreover, that this set 
of solutions was well behaved and their behaviour could be completely understood. 
His analysis in [P2] led to a very different conclusion. 

In [P2] Poincar6 used the same diagram as in [P1] (FIG 5.8. iii),. with the same 
labelling, except that in [P2] the dotted and dashed line represented the curves with 
equation 
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Y12--ol Xl: ýSIPRY2)1 X2 = S2P (01 Y2)* 

As before, sP were the sums of the first p terms of the series Si (Y11 Y2), and were 

periodic functions of period 2yr with respect to yj and 41r with respect to y2. 

The first question Poincar6 considered was whether the curves AOT'and A'O'B 

were closed. It was clear that they would be if the series si were convergent. For in 

this case, the plain curves would differ as little as required from the dotted and 
dashed curves, since the distance from a point on the former to a point on the latter 

would tend to zero as p increased indefinitely. But he had already proved that the 

series were divergent. Nevertheless, the question still remained. Was it possible 
for the curves AOT'and A'O'B to be closed even though the series were divergent? 

Poincar6 tackled the question by looking at the specific example of a simple 

pendulum weakly coupled to a linear oscillator. In this case the Hamiltonian is 

given by 

-F= p+q2 -2Xin 
2 1_1 

_ IICCOSXO(Y) 
2 

where p and E are two very small parameters, and O(y) is a periodic function of y of 

period 2r. The Hamiltonian equations are 

dp OT ESMXO(Y)l i dx dt dy gsiny + pzcosxo'(y), 

dx c9F dy dF 
- =-T =1, = 2q, 

v dt p dt dq 

where the variables p, q, x and y correspond to the variables XI, X2t yj and Y2 

respectively in equations (5.7. i). 

If E=0, then the equations have a periodic solution 

p=o, q=o, y=o, 

the two non-zero characteristic exponents are equal to * NF2_y, and the equations of 
the two asymptotic surfaces are 

OSO O-SO P= _IX I, -\F-I- 0 
q= Y 

So =-+ 22j coj; 

from which 

p= -12-p s4, 
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and hence the surfaces enclose a region which has a width which is of the order of 
4-/-J. 

Since there are non-zero characteristic exponents for -=0, there are also periodic 

solutions for small values of e. The equations of the corresponding asymptotic 

surfaces are given by 

49S O's P- ax q=19 

where S is a function of x and y, satisfying the equation 
ds dS 2 

2p. sin2y- + IIECOSXO(y). +2 

Moreover, the existence of non-zero characteristic exponents for E=0 implies that p 

and q and, therefore, S, can be expanded as series in e- So S can be put in the form 

SýSO+fSI+102S2+*** 
* 

So has already been found and equating powers of E shows that S, must satisfy the 

equation35 
as, 

+ 2Nf2-p sij t9sl = licosxo(y). dx dy 

To determine SI, Poincar6 defined a new function I to be the function which satisfies 
di E 

+ 2, ý2-, -u sin 
Y-L 

= pe"O(y), dx 2 dy 

so that SI is the real part of E. This equation can then be satisfied by eix IF (y) 

which gives a linear equation in T 

(dT i YJ + 24-2/1 sij - =, UO(Y). dy 

If 0(y) = 0, then36 

tany-)a, 

and if 0(y) is arbitrary, the integral can be written 

35 Poincar6 omitted the factor 2 in the second term of this equation, although he included it in 
[Pla] and crossed it out. 

36 Poincar6 put cr 
2 
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W=(tany- "fý'8'0(y)(sirj)'(tan4y-)-Ody, 
4) 

where T can be expanded in integer powers of y for small values of y. If 0(0) = 0, 

then the integral is also equal to zero and hence its limits are 0 and y. 

If the curves A OB' and A' O'B are closed37, then the function S and its derivatives 

will be finite for all values of y as weU as being periodic of period 47r with respect to 

y (cf the functions sjP and s2P ). Since this must be true for any given value of -, it 

must also be true for SI, and hence for IF. 

Thus, for values of y close to 27r, T should be expansible in integer powers of y- 27r. 

But since 
(tan. YT 

cannot be expanded in this way, the condition can only hold if the 

integral 
2n 

J= 
f4'8"0(y)(sq)'(tan4y-)-"dy 

0 

is zero. However, evaluating J, using 0(y) = siny, gives 

27d sech 
(ijkju7) 

which is clearly not equal to zero and so the curves AO'B' and A' O'B cannot be 

closed. 

However, the lack of closure still left open the possibility that the extended curves 
O'B and O'B'could intersect. For if this 

' 
should occur, any trajectory which passes 

through the point of intersection would simultaneously belong to both sides of the 

asymptotic surface and therefore would be a doubly asymptotic trajectory. 

In other words, if C is the closed trajectory which passes through the point 0'and 

represents the periodic solution, then if the trajectory is doubly asymptotic, it would 
begin by being very close to C when t is very large and negative, it would then 

asymptotically move away to deviate greatly from C, before asymptotically 

reapproaching C when t is very large and positive. 

37 Poincar6 wrote BO'B'and AO'A'. 
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To prove the existence of doubly asymptotic trajectories Poincar6 needed to show 
that the system fulfilled the conditions of Theorem IH in Chapter IH of Part 1. 

To do this he established that none of the curves O'B, O'B, O'A and O'A, were self- 

intersecting, i. e. that none of them have a double point; that the curvature of the 

curves O'B and O'B'was finite, i. e. that it does not increase indefinitely as P tends 

to zero; and that the distances BB', BIB, 'together with the ratios 
EB: 

and 
BB' 

BBI B'Bl' 

tend to zero as p tends to zero, where B, is the consequent of B and Bl'is the 

consequent of B'. Furthermore, since the system is in Hamiltonian form, it also 
possesses a positive invariant integral and hence all the conditions of Theorem HI 

are satisfied. 

Therefore the arcs BBI and BBl'intersect each other, i. e. the extended curve O'B' 

intersects the extended curve O'B, and through the point of intersection passes a 
doubly asymptotic trajectory 38. 

Poincar6 had constructed the figure so that the points B and B'Iie on the curve 

Y, = y2 = 

and since the origin Of Y2 is arbitrary he supposed that at the intersection of the 

curves O'B and O'B, y2 = 0. In this case the points B and B'are coincident and so are 

their consequents B, and Bl'. Thus the two arcs BB, and B'BI'have the same end 

points. But by Theorem HI (in which the area limited by the two arcs is not convex), 

the two arcs must intersect again at a different point N, and thus he proved that 

there are at least two doubly asymptotic trajectories, one passing through the point 

B and one passing through the point N. 

He then gave the following proof that there are in fact an infinite number of doubly 

asymptotic trajectories. 

If the points B and Bare always coincident and BMN is the part of the curve O'B 

between B and N, and BPN is the part of the curve O'B'between the point B= B'and 

the point N, then these two arcs will limit a certain area a. Furthermore, if the 

system is one in which the conditions of the recurrence theorem are satisfied, such as 

the restricted three body problem, then there are trajectories which cross this area 

38 In [MN 111,384] Poincar6 called this type of solution homoclinic. See 7.2.3. 
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a infinitely often. Hence among the consequents of the area a, there will be an 
infinite number which will have a part in common with a- 

The closed curve BMNPB which limits the area a has an infinite number of 
consequents. The arc BMN cannot intersect any of its own consequents; for the arc 
BMN and its consequents; belong to the curve O'B and the curve O'B is not self- 
intersecting. Similarly, the arc BPN does not intersect any of its own consequents. 
Therefore either the arc BMN intersects with one of the consequents of BPN, or the 

arc BPN intersects with one of the consequents of BMN (as in the case under 
consideration). In either case the curve O'B or its extension will intersect the curve 
O'B'or its extension. 

Thus these two curves intersect each other at an infinite number of points, and an 
infinite number of these points of intersection will be found either on the arc BMN or 

on the arc BPN. These points of intersection are all points of intersection of the curve 
O'B' or its extension with the curve O'B or its extension, and, since through each of 
these points of intersection passes a doubly asymptotic trajectory, there are an 
infinite number of doubly asymptotic trajectories. Similarly, the asymptotic surface 

which cuts the surface y, =0 along the curve O'A also contains an infinite number of 
doubly asymptotic trajectories. 

This is arguably the first mathematical description of chaotic motion within a 
dynamical system. Significantly, Poincar6 made no attempt to draw a diagram of 
the behaviour he had discovered, but, rather surprisingly, neither did he in any 

way emphasise the complexity of the situation. Nevertheless, there is no doubt 

that he was profoundly disturbed by his discovery as he revealed in a letter to 
Mittag-Leffler: 

"I have written this morning to M. Phragmin to fell him o an error I have 

made and doubtless he has shown you my letter. But the consequences of this 

error are more serious than Ifirst thought. It is not true that the asymptotic 
surfaces are closed, at least in the sense which I originally intended. What 
is true is that if both sides of this surface are considered (which I still 
believe are connected to each other) they intersect along an infinite number 

of asymptotic trajectories. * - 

I had thought that all these asymptotic curves having moved away from a 

closed curve representing a periodic solution, would then asymptotically 
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approach the same closed curve. What is true, is that there are an infinity 

which enjoy this property. 

I will not conceal ftom you the distress this discovery has caused me. In the 
first place, I do not know if you will still think that the results which 

remain, namely the existence of periodic solutions, the asymptotic solutions, 
the theory of characteristic exponents, the non-existence of uniform 
integrals, and the divergence of Lindstedt's series, deserve the great reward 

you have given them. 

On the other hand, many changes have become necessary and I do not know 

if you can begin to print the memoir; I have telegraphed Phragmin. 

In any case, I can do no more than to confess my confusion to a friend as loyal 

as you. I will write to you at length when I can see things more clearly . ..... 

*and moreover that their distance becomes infinitely small of order higher 

than pP however great the order of p. -39. 

Perhaps a further indication of Poincar6's concern and confusion at his discovery of 
the strange behaviour of these solutions can be detected in the introduction to [P2]. 

Of all the results in the memoir this was clearly the most extraordinary, and yet it 

is not amongst those he singled out for special mention. Possibly tl-ds was because he 

was complying with Mittag-Leffler's request not to give details of the error which 

undoubtedly he would have felt obliged to do had he drawn attention to the 

complexity of the doubly asymptotic solutions. Or perhaps it was simply because he 

had had so little time in which to assess the further implications of his discovery 

that he felt it wiser not to emphasise it. 

5.9 Further results 
The penultimate chapter of IP2] was devoted to three separate topics: periodic 

solutions of the second class, the divergence of Lindstedt's series and the non- 

existence of any new integrals for the restricted three body problem. 

Most of the chapter is derived from [PlI enhanced by some additions. The first 

section on periodic solutions of the second class opens with part of The Exact 

39 Poincar6 to Mittag-Leffler, postmarked 1.12.1889, No. 54a, M-L 1. 
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Construction of Asymptotic Surfaces, continues with most of the section with the 

same name from [PI] and concludes with some new material. The section on the 
divergence of Lindstedt's series is essentially Note A, while the final section on the 

non-existence of uniform integrals is derived from Note G. 

The last two sections contained the results to which Poincarc. had drawn particular 
attention in the introduction to [P2] and which quickly came to be amongst the best 
known in the memoir. It is therefore quite surprising to find that originally he did 

not consider it necessary to include the full proofs for these results, and that they 

only appeared in the Notes as a result of prompting from Mittag-Leffler. 

5.9.1 Periodic solutions of the second class 

In PoincarOs investigation of asymptotic solutions (5.8.1) he began by showing how 

the periodic solutions could be represented by curves on the transverse section 
defined by the surface yj = 0, the nature of the curves depending on the value of a 

particular constant C1, and his discussion then centred on the unstable periodic 

solution corresponding to C, = 0,. In what follows he considered the situation when 

the value of this constant was less than -04, i. e. when the coefficient X21 = 
2 

[FI] + CI) in the series for x2 is not always real. N( 

Poincar6 found that in this case regions of motion did exist and, furthermore, that 

these regions contained periodic solutions which made more than one revolution 
around the origin before closing up. In other words these periodic solutions were of a 
different type to those which he had previously found and to distinguish them he 

called them periodic solutions of the second class. They can be described more 
formally by saying that if a system has for small values of pa periodic solution of 
period T, then the periodic solutions of the second class are those periodic solutions 
which are close to the original periodic solution but whose periods are integral 

multiples of T. 

Since [F, ] is a function of y2, the behavigur of the system for different values of the 

constant C, wW depend on Y2- If for a chosen value of C,, x2l is real as the value of y2 
varies between, say 175 and 176, then since xA are determined by a recurrence relation 
which is dependent on x2l, xk can be determined for all values 177 of y2 in this range. 
The existence of the square root means that xA has two sets of values equal in 

magnitude but opposite in sign. If xO. IA are the functions of y2 when the square root is 
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positive and xl., * are the functions of Y2 when it is negative, then the latter win be 

the analytic continuation of the former. 

What Poincar6 now needed to establish was how the behaviour of the system was 

affected by a change in the constant C1. Were there regions in wl-dch the value of y2 

would remain finite? Since his method of using a transverse section to understand 
the evolution of the system reduced the dimension of the system by one, it was 

possible that a small change in the constant could induce some strange behaviour in 

Y2 which manifest itself in the other dimension and which would not be captured on 
the transverse section for individual choices for the constant. 

He therefore looked at the change in values Of Y2 for a very small change in the 

constant C,. He replaced C, by a new constant C, "very close to C1, so that 
: 2ý 

[FI] + Cj') 
V2 

was real whenever Y2 was between 177 and a certain value 718 very N N 

Close to 176. Again he could determine the functions xA for all values Of Y2 in this 

range, where X2., A are the functions of y2 when the square root is positive and x3., A the 
functions of y2 when it is negative. 

He then constructed the four branches of the curve: 

YI = 0/ Xl ý OÄ. 1(Y2)p X2 ý Ok. 2(Y2), (k = 0,1: 775: gY2: 5i77; k=2,3: 177 5Y2: 5179) 

where 

Op. 
q(Y2) ý-- Xp. qo + Xp. ql4JU + --- + Xp. qk Ilk/, 

the first and second branches of the curve corresponding to the constant Cl, and 
meeting at a tangent to the curve y2 = t17, and the third and fourth branches of the 

curve corresponding to the constant Cl'and meeting at a tangent to the curve y2 = 778, 
as shown in FIG. 5.9J40. 

Poincar6 had begun by regarding C, as given and Cj'as close in value to C, but 

nevertheless arbitrary. He now determined Cj'by imposing the condition that the 
first and third curves meet, i. e. the points B and B' are coincident. Then appealing 
to an earlier theorem (Theorem 111,5.5.4), he derived the result that the distance 

DD' between the second and the fourth curves was infinitely small of the order 

plk+1)12. Hence he could conclude that for a limited period of time there do exist 

regions in which the values of y2 remain finite. These are the regions known as the 

40 Poincard [P2,447]. 
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regions of libration. The time constraint resulted from the fact that the series 
involved were asymptotic rather than convergent. 

A 

175 

'g 

FIG. 5.93. 

177 

Poincar6 next made a precise formulation of these regions of libration in order to 

ascertain whether they contained periodic solutions and, if so, what form these 

periodic solutions would take. 

The equations 

0+ XI = XIO + ýa12, x2 ý x2 [F, ]+ Cl) + pu2 2 

N (5.9. i) 

define, up to the order of g, the surfaces just constructed (see FIG. 5.9J) and so 

approximately satisfy equations (5.8. iii), where U2 2 is a finite function of y, and Y2 
which only differs from X22 by a function of y2, so that 

-ýX22) -ýU22) 0 0 

0 

Poincar6 then modified the form of F in the Hamiltonian equations so that the 

equations (5.91) exactly satisfied equations (5.8. iii). The new form of the equations 

can then be integrated exactly and following the same argument as given previously 

shows that there exist an infinite number of closed surface trajectories defined by the 

equation 
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X2 0+ q11 '2 ([FI] + CI) + lIU22 X2 

qR 

X1 X1 
0+ PXI 2 

which is of the same form as equation (5.8. vi). 

Thus the same hypotheses can be made about the function [FI] in equation (5.9. ii) as 
about [F, J in equation (5.8. vi), and the two surfaces of (5.9. ii) which correspond to 
the values - 02and - 04 of C, are therefore closed with a double curve. The space can 
then be divided into three regions: interior, exterior and between the two sheets of 
the surface, the last being the region of libration. 

Since the closed surface corresponding to a given value of C, (which must be <- 04) 
has the same connectivity as a torus, the existence of periodic solutions depends on 
the behaviour of the two angular variables defining the surface. By investigating 

the behaviour of these angular variables Poincar6 showed that there were an 
infinite number of values for C, for which periodic solutions exist. 

Thep by deriving an equation in which C, was defined as a continuous function of P, 
he showed that it was possible to make p so small that the equation no longer had a 

root. This means that although there exist an infinite number of closed trajectories 

which represent periodic solutions, as p decreases these solutions will disappear one 

after the other. In other ývords, if along a closed trajectory, p decreases continuously, 
then the trajectory deforms continuously and eventually disappears at a certain 

value of p. As a result, whenp =0 all the periodic solutions in the region of libration 

will have disappeared. This is in contrast to the behaviour of the periodic solutions 
of the first class (those which only have one revolution around the primary) which 

continue to exist for p=0. 

Since he had proved that in the neighbourhood of a periodic solution (stable or 

unstable) there existed an infinite number of other periodic solutions, he conjectured 
the possibility that every region of the space, however small, was crossed by an 
infinite number of periodic solutions, in other words that the periodic solutions were 

everywhere dense. Although his work was insufficient to prove it, he believed it to 
be extremely likely, his belief having been strengthened by Cantor's recent work on 

set theory which had shown that it was possible for a set to be perfect without being 

connected4l. 

41 Thds point is taken up again in [MN 1,821. See 7.2.2. 
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All the above is contained in both [P1] and [P2]. There is, however, an important 

addition to the section which only appears in [P2]. In both versions in his proof of 
the existence of periodic solutions of the second class, Poincar6 had shown that 

periodic solutions exist for small values of a certain parameter E, but in [P1] he had 

thought that if e= it automatically followed that periodic solutions also 

existed for small values of the mass parameter p. In the revision he realised that 

this result needed to be rigorously established. 

He therefore returned to the Hamiltonian equations (5.7. i) and considered a stable 

periodic solution 

xi = 01(y]), Y2 = 02(YI), 

of period 27r. 

This periodic solution can be approximately represented on FIG. 5.83i by the 
isolated closed curve of the surface C1 2-- 703, and has two characteristic exponents 
± a, the square of which is be real and negative. If 

XI = 01(Yl) + ý11 Y2 = 02(YI) + ý2 

is a nearby solution and P, and P2 are the initial values of ýj and ý2 for y, = 0, and 

, 61 + VII and P2 + W2 are the values of 41 and 42 for yj = 2k7r (k an integer), then the 

solution will be periodic of period 21r if 

TI 
«= 

T2 = ()0 

where T, and IF2 can be expanded in powers of A and P2 which depend on IL 

If P1, P2 and p are regarded as the coordinates of a point in space, then the equations 
(5.9. iii) represent a curve, each point of which corresponds to a periodic solution. If 

ýj = ý2 = 0, then fl, = P2 = 0, which implies V11 = 712 =0 and a periodic solution of period 
2n is obtained which can also be regarded as being periodic with period 2kir. 

Thus the curve (5.9. iii) consists of the entire ju axis. Poincar6 proved that if ka is a 

multiple of 2br when p= po, then there exists another branch of the curve (5.9. iii) 

which passes through the point 

p ««2 Pci A, 2 0, ß2 
"' ': 

0. 
f 

and so, from the previous theory, for values of p close to yo, there exist periodic 

solutions other than ý, = ý2 = 0. 
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The proof, which depended on the theory of invariant integrals, involved 

expanding W, and IF2 in terms of #I, P2 and (U - Jjo), and then showing that fil and P2 

could themselves be expanded in positive fractional powers of (u - po). Thus there 

exists a series in (p - po) which is not identically zero and which satisfies equations 
(5.9. iii). Consequently there exists a system of periodic solutions in which the 

expressions for the coordinates can be expanded in positive fractional powers of 
(p -juo), and the period of which is a multiple of the generating periodic solution. 
When p=A the solution is simply the original periodic solution. 

5.9.2 Divergence of Lindstedt's series 

In [P1] Poincar6 had included a section entitled Negative Results in which he had 

incorporated the result that no analytic single-valued integral of the restricted 

three body problem exists apart from the Jacobian integral. He claimed that a 

consequence of this result was that the series generally used in celestial mechanics, 

and in particular the series derived by Lindstedt (see 2.3.9), were, contrary to what 
had been previously thought, divergent. But he gave no evidence of why this 

assertion should be true. That it was not immediately obvious is plainly expressed 
by Mittag-Leffler who told Poincar6 that he had spent a month with Weierstrass 

trying to work it out but without success42. Poincar6 responded with Note A in 

which he gave two forms of a proof, but, according to Mittag-Leffler, Weierstrass 

was still not satisfied. Poincar6 had proved that there were circumstances under 

which Lindstedt's series were not convergent but he had ignored the wider question 

of whether convergent trigonometric series solutions could ever be found. 

Furthermore, since Dirichlet's original remarks had led Weierstrass to believe that 

the such solutions did exist, he Was particularly anxious to have this important 

point clarified43. Mittag-Leffler again asked Poincar6 for a proof44. This time 

Poincar6 replied that he thought that he had covered the point in Note A although 
he admitted that he could not be sure as he had mislaid his own copy of it451 

Mittag-Leffler did not pursue the issue, in spite of further requests from Weierstrass 

to do so, and, significantly, Poincar6 left Weierstrass' question unresolved. In [P21 

Poincar6 only gave the first form of the proof since the second depended on the proof 

42 Mittag-Leffler to Poincard, 15.11.1888, M-L I. 

43 See Appendix 2, Question 1. 

44 Mittag-Leffler to Poincar6,23.2.1889, M-L 1. 

45 Poincar6 to Mittag-Leffler, 1.3.1889, No. 49, M-L 1. 
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of the non-existence of any new integrals which he had placed in the following 

section. 

Poincar6 first showed how Lindstedt's method for approximately integrating 

differential equations of the form 

d'x 
y+ n2x t) 

by deriving a formal trigonometric series solution without any secular terms, could be 

adapted to accommodate the system of Hamiltonian equations (5.7-i). He 

considered the system with Hamiltonian 

F= Fo +, uF, 

where FO is independent of y, and Y21 and F, is a trigonometric series of sines and 

cosines of multiples of yj and Y2 with coefficients which are analytic functions of x, 

and x2. The xi and yj are then regarded as functions of two variables wi = 4. + tui, (as 

opposed to simply functions of the time) where the frequencies Aj are to be 

detem-iined, t7i are constants of integration and 

xi = xio + pxil + PXil + ... (i = 1,2) (5.9. iv) 

yi = wi + pyi, + lilyi, + ... 

,4=+ PA" + PIA� + ... - 
The coefficients ; L, A are constants, and the coefficients x, * and y, A are trigonometric 

series in sines and cosines of multiples of w, and W2. Poincar6 then sketched a 

method which, in line with Lindstedt's result, demonstrated that it was possible to 
determine the 2q +2 constants AjO,..., Aq, so that the 4q trigonometric series xiO,..., xf, 

yIP, r ..., yf, however large q, satisfy the Han-dltonian equations up to the order of pq -1. 

The frequencies ;ý and ;ý can be expanded in powers of p, aý and &ý, and the solutions 

corresponding to the values of o), and 0)2 for which the frequency ratio is 

coinmensurable are therefore periodic. Corresponding to each of these periodic 

solutions are characteristic exponents each of which can be calculated if the general 

solution of the equations is known. Thus if the series are uniformly convergent, and 

consequently give the general solution of the equations, then the characteristic 

exponents of the periodic solutions can be calculated. 

When Poincar6 calculated the characteristic exponents under the assumption that 

analytic solutions do exist, he found that they were all zero. But when he put this 



162 Poincari's Memoir on the Three Body Problem 

result into the eigenvalue equation which detern-dnes the characteristic exponents in 
the restricted three body problem, he arrived at a contradiction. He therefore 

concluded that his original assumption (that there is a general solution given by 

uniformly convergent series) must be false, and hence: 

" ... in the restricted three body problem and consequently in the general 
case, Lindstedt's series are not uniformly convergent for all the values of the 

arbitrary constants of integration which they contain. " [P2,470]. 

But, as Weierstrass had observed, Poincar6's discussion was incomplete. He gave no 
consideration to the circumstances under which convergence could occur, with the 

result that he gave no indication of what proportion of the series were divergent. 
However, Poincar6 did not abandon the question. In the second volume of the 
M6thodes Nouvelles he reworked it in greater depth and generality and his 

conclusions are described in 7.2.3. 

5.9.3 Non-existence of single-valued integrals 

The final section in the chapter contained what soon became one of the best known 

results in the memoir: the proof of the non-existence of any new transcendental 

integral for the restricted three body problem. Only two years earlier Heinrich 

Bruns, a former student of Weierstrass, had proved the non-existence of any new 

algebraic integral for the general three body problem [1887]46, and so Poincar6's 

result was an important complement to that of Bruns'. 

Poincar6 had given an outline of a proof of this result in the Negative Results in [P11, 

and in response to yet another of Mittag-Leffler's requests for details, he had also 

produced an extension to the proof which he had intended to appear as Note G47. In 

[P2], having reshaped his original thoughts, he completely rewrote the proof. 

More specifically, Poincar6 proved that if the differential equations (5.7. i) possess 

the solution F= constant, where F is a single-valued analytic function of xi, yj and p, 

which can be expanded in powers of p and is periodic of period 2; r with respect to yi, 

then the equations possess no other solution of the same form. 

Suppose 45 = constant is another such solution. If X1 = 01, X2 = 02f YZ = 03, Y2 = 04, is a 

periodic solution of the differential equations such that x, = 01 + Y2 ý 04 +A 

46 For a clear exposition of Bruns' result see Whittaker [1937, ý58]. 

47 Mittag-Leffler to Poincar6 21.12.1888, M-L 1. 
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when t=0 and x, = 01 + 01 + T, y2 = 04 + P4 + Pj when t=T, then T can be 

expanded as a power series in P and the eigenvalue equation in S 

dy" 
s 

dy', d tp, dyi, 
TA do, A dA 
d yj 2 t dF2 

S 
t d F2 d -F2 

dp, dp2 dA A 
d W3 d yj 3 d yj 3 j3 dv 
TA -dP2 S -TA dp" 
d W4 dw, dT4 d W4 

dpj dA 

can be formed. 

=0 

The roots of this equation are eaT - 1, a being the characteristic exponents. Since it 
is the restricted three body problem which is being considered, two of the roots are 
zero and two are non-zero. 

Furthermore, 

i9F d'YI LF d ýV2 LF 3 ýLW aF 9 ýV, 
02X1 dßi + 

02 dßt 2x + 
0 dßi 9Y1 + 91J2 aßi =0 (i = i, .., 0 

ao dw, 90 
0 

ýf2 90 9P3 0 - o-o a ýv4 

j7 - 
1 

äß, + 'X2 dßi 0 
+ 

0Y1 9A 3 = + 
e2 aßi 

where, in the derivatives of F and 0, xi and yj are replaced by Oj(T) (i 4). 
Hence either 

dF dF dF dF 

OdY 2 
dip - d4P do dO 

OY2 

(5.9. x) 

or the jacobian of T with respect to P is zero, together with all the n-dnors of first 

order. 

On the other hand, if 0'(t) is the derivative of 0(t) then 

Y ! iy-fi 
. api 0 i(O) =01,.., 4) 

9F ýIF 9F 9F 
jý7 0 l«» + 

02r2 
0'2(0) + -ýi 3(0) +- 4(0) =0 

0 
0' 

19Y2 
0' 

945 2. -0- 0, (0) + ý20- 0, (0) +! MP 01 (0) =0 jý7 0 1(0) + gx2 2 dy, 3 
oý, 4 

and if it can be shown that if equations (5.9. x) are not satisfied, then either 
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0 
l(o) = 012(o) = 0'3(o) = 0'4(o) = (5.9. xi) 

or the equation in S has three zero roots. But since S only has two zero roots and 

equations (5.9. xi) are only satisfied for certain particular periodic solutions where 

the planetoid has a circular orbit48, the equations (5.9. x) must be satisfied for 

x, = OI(T), -, Y2 "= 0, (T). Furthermore, since the origin of the time is arbitrary, they 

must also be satisfied for x, =-- OA01 -I Y2 = OX), that is for all points of the periodic 

solutions. 

For the final part of the proof Poincar6 showed that equations (5.9. x) were in fact 

satisfied identically which proved that 0 is a function of F. Hence the two 

solutions F and 0 cannot be distinct. Thus the equations (5.7. i) do not admit any new 

single-valued transcendental integral, providing the value of p is sufficiently small. 

5.9.4 Positive and negative results 

In [P1] Poincar6 did not have a chapter dealing specifically with the three topics 

treated in 5.9.1-5.9.3, although, as has been described, much of the material did 

appear in [Pl] but in a less organised fashion. However, [P1] did include a chapter in 

which he gave a general resum6 of his results. The chapter was fairly brief, 

amounting to only five pages, and was divided into two parts, positive and negative 

results, of which very little was reproduced in [P2]. 

With regard to the positive results PoincarCs main conclusion was that the 

trajectories in the restricted three body problem could be classified into three types: 

closed trajectories corresponding to periodic solutions; asymptotic trajectories; and 
the general trajectories which did not fit into either of the above categories. He 

commented that the difficult and unexpected result which. he had established was 
that the trajectories which asymptotically approach an unstable closed trajectory 

were the same trajectories as those wl-dch asymptotically move away from the same 

unstable closed trajectory, and that the set of these asymptotic trajectories formed a 

closed asymptotic surface. This of course was the error which caused him so much 
trouble. 

Of the results he described as negative, although he mentioned the divergence of 
Lindstedt's series, the one he considered the most important was the one concerning 
the non-existence of any new integrals for the equations of dynamics. He gave only a 

48 See Laplace [1789-1825, X, Chapter VI]. 
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brief outline of the proof of this result in which he related it to the restricted three 
body problem, although, as previously mentioned, he added a more detailed proof 
in Note G. 

5.10 Attempts at generalisation 
5.10.1 Thenbodyproblem 

In the last chapter of the memoir Poincar6 returned to the competition question: the 

n body problem. He had originally thought that the main obstacle to generalising 
his results from the restricted three body problem to the n body problem would be 
difficulties associated with the increase in the number of variables and the 

resulting impossibility of creating a geometric representation. Unfortunately, this 
did not turn out to be the case. 

Generalising the first part of the memoir presented Poincar6 with little problem, 

since in a system with p degrees of freedom, a state can be represented by the 

position of a point in a space of 2p -1 dimensions. As a result he was in a 
straightforward way able to extend to the generalised case many of his conclusions 

concerning periodic and asymptotic solutions. For example, as he observed, it can be 

shown that in the n body problem there are an infinite number of periodic solutions, 
stable and unstable, as well as an infinite number of asymptotic solutions. 

It was in attempting to generalise the second part of the memoir that Poincar6 found 

himself beset with difficulties. For example, he cited the example where the 

autonomous Hamiltonian equations have three degrees of freedom, and the problem 
is then to find three functions, xi = Oi (yi, y2, y3), satisfying 

9xi JF dxi 9F dxi dF 9F 0 -+0. (i = 1,2,3) 
0 Xi 0Y2 Otr2 0 X3 0 
9y 

1 02,2 9Y3 al', ýi 

He found that even this relatively simple case led to the consideration of three 
different situations, of which two led to the problem of small divisors, while the 

third led to inscrutable integrals. 

A second difficulty which Poincar6 encountered concerned the motion of the 

perihelions. For in the unperturbed case when the system is in a state of Keplerian 

motion, since the Hessian of FO with respect to the linear variables xi is zero, as well 

as the Hessian of any arbitrary function of FO, the perihelions remain fixed. As he 

observed, this difficulty does not arise in the restricted three body problem because 
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it is not necessary to use the longitude of the perihelion, g, as a variable, the 

variable (g - t) can be chosen instead. 

Poincar6 also drew attention to the fact that he had not made a full investigation of 
the periodic solutions of the unperturbed motion in the three body problem, that is 

when the orbits of the two smaller bodies or planets reduce to Keplerian ellipses. 
He had so far only considered the obvious case of periodic solutions which arise 

when the two mean motions are commensurable, and he had not considered the 

possibiBty of any others. 

Thinking about this particular question led him to the idea of periodic motion 

resulting from two planets passing infinitely close to each other without actually 

colliding. He conjectured that if the planets did move in such a way then this would 

give rise to a change in their orbits which would give the appearance of a collision, 

and it might be possible for the initial conditions to be chosen in such a way that 

these "collisions" occurred periodically. If this were the case, then discontinuous 

solutions would be obtained which would be proper periodic solutions of the 

Keplerian motion. Shortage of time precluded him from pursuing the idea further at 

this stage but he did discuss it some ten years later in the final volume of the 

Mgthodes Nouvelles where he called these solutions periodic solutions of the second 

sort49. 

Poincar6 thus attributed several reasons for his inability to generalise his results as 
he had originally hoped. Although it was evident that some of the difficulties 

would be overcome in the fulness of time, there were some which appeared to be 

beyond the scope of available techniques. His work had made it plain that the n 
body problem required much more research before mathematicians would be in a 

position to claim a full understanding of it. 

With characteristic modesty, Poincar6 concluded the memoir by saying that he 

regarded his work as only a preliminary survey from which he hoped future 

progress would result. 

49 Poincar6 [MN III, Chapter XXXI]. See 7.2-4. 



6. Reception of Poincare's Memoir 

6.1 Introduction 
The discovery of the error in PoincaWs original memoir and the accompanying 
delay in the publication meant that almost two and a half years elapsed between 

the submission of the manuscript to the competition and the corrected memoir's 

publication in Acta. As a result the contemporary reception of the memoir can be 
divided into two phases. In the first phase there was the reaction to [PI] which 

consisted of the opinions of those who had had unrestricted access to the memoir, 
namely the prize commission, together with the opinions of those whose knowledge 

of [Pl] had been derived solely from Mittag-Leffler's report. The second phase 
contained the reaction to [P21 . 

Since at the time the prize was awarded the only publicly available information 

about the mathematical content of the prize-winning memoir was Mittag-Leffler's 

brief report, no mathematical commentaries were included in the press coverage of 
Poincar6's triumph. Furthermore, the prepublication copies of [PI] which made a 
brief appearance at the end of 1889 were in circulation for such a short period that 

none of the recipients would have had time to master the contents in order to make a 
judgement. Added to which Mittag-Leffler's campaign of secrecy after the 
discovery of the error, plus the additional delay caused by the backlog of publishing 

at Acta, meant that when [P2] was published, those members of the mathematical 

community who had heard any rumours about the error would have had plenty of 

167 
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time to forget the details. The result was that by the time [P2] finally appeared, 

any remaining concerns about the error, if indeed they existed, seem to have 

disappeared, despite Poincar6's allusion to it in the introduction. 

6.2 The views of the prize commission 
As described in 4.5, the three members of the prize commission were quick to come to 

a unanimous decision concerning the overall merit of Poincar6's entry. However, in 

their correspondence to one another during the adjudication period, the only one who 

ventured anything more than a general opinion on the mathematics was 
Weierstrass. 

Mittag-Leffler, although he openly indicated to Poincar6 the particular points in 

the memoir which he felt needed further elaboration, fought shy of discussing the 

relative merits of any of the results with either Poincar6 or his fellow members of 
the commission. His prime concern seems to have been in fulfilling his role as a 

mediator between Hermite and Weierstrass, communicating information from one to 

the other. 

Of a more public nature was Mittag-Leffler's responsibility for the commission's 

general report. But since the purpose of the report was to present the opinion of the 

whole commission on the results of the competition, and was written with help from 

Hermite and Weierstrass, it gave no insight into NEttag-Leffler's personal views. In 

any case, the task of providing a mathematical analysis of Poincar6's memoir had 

been left to Weierstrass and so the report contained no details of the winning entry 
beyond giving a general indication of the nature of the results and emphasising the 

power of analytic methods in treating questions of celestial mechanicsI. 

In addition to writing the general report, the King had also asked I'VEttag-Leffler to 

give a resum6 of Poincar6's results at the February meeting of the Swedish Academy 

of Sciences. In the event Mittag-Leffler's talk was not given until March, and then 
in rather less than favourable circumstances, the background of wl-dch is described in 

the followipg section. 

Hermite, by virtue of being in Paris, was in the unique position of being able to speak 
directly to Poincar6 about the memoir. Although he was unequivocal about his view 

I See Appendix 4. 
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of the memoir, as he told NUttag-Leffler, he too had sought help from Poincar6 over 
the details: 

"Poincarg's memoir is of such rare depth and power of invention, it will 

certainly open a new scientific eraftom the point of view of analysis and its 

consequences for astronomy. But greatly extended explanations will be 

necessary and at the moment I am asking the distinguished author to 

enlighten me on several important points. -2. 

It is not clear exactly which parts of [Pl) Hermite felt needed explaining, nor is 

there any indication of those results which he considered the most important. The 

implication that Hermite felt uneasy about his ability to fully comprehend the 

mathematics is confirmed by his reaction to the suggestion that he might have to 

write the official report on the memoir. Although it was more or less understood 

that Weierstrass as proposer of the question should be the author of the report, 

Mittag-Lefflei, as a result of Weierstrass' declining health, did express concern to 

Hermite about Weierstrass' fitness for the undertaking3. Hermite's response left no 
doubt as to his own feelings on the matter: 

"The task of writing the report falls by right to Weierstrass who proposed 
the question, the famous mathematician can with authority express 

reservations which would put me into an indescribably difficult position 

should I have to make them. Indeed what would be my position vis-h-vis 
Poincarg to whom I would necessarily have to appeal for explanations in 

order to understand the most important points of his memoir; I would no 
longer be in the role of judge, and I must tell you in all ftankness, if I have to 

make the report, it would be the echo of what I had heard from listening to 

the author, with the intention of justiffing my admiration for his genius. ... 
Besides, to satisjý the demand of public opinion, and taking into account the 
importance and seriousness of the announcement of the prize, do you think 

that it is advisable that the prize awarded to a Frenchman should rest on 
the report of a Frenchman who is his colleague and ftiend? -4. 

2 Hem-dte to Mittag-Leffler, 17.10.1888. Cahiers 6 (1985), 146. 

3 Mittag-Leffler to Hem-dte, 17.10.1888, M-L 1. 

4 Herrrdte to Mittag-Leffler, 2-2.10.1888, Cahiers 6 (1985), 147-148. 
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Mittag-Leffler needed no further convincing and the responsibility for the report 
remained with Weierstrass who, as it will be seen, also displayed doubts about 
Hern-dte's ability to to deal with the mathematics unaided. 

At the 1889 public meeting of the Paris Academy of Sciences, Hermite in his official 
speech as Vice President, prompted by Mittag-Leffler's letter to the Secretary, used 
the occasion to comment on the results of the competition and cornmend the contents 

of Poincard's memoir. In particular he drew attention to Poincar6's discovery of the 

asymptotic character of the series used in celestial mechanics. Rather ironically, 
he chose to describe this result in terms of Poincar6 having discovered an error: 

"The error having been recognised, it opens a new avenue in the study of the 

three body problem, and this is where PoincarCs talent is displayed with 
brilliance., '5. 

He could have had no idea how prescient those words would turn out to be. 

Weierstrass' opinion of [P1] is mostly revealed in three letters to Mittag-Leffler, 

parts of which were published in Acta in Mittag-Leffler's [19121 biography of 
Weierstrass. The most significant of these is the first in which he gave his 

judgement of the competition entries. Although he commented on only five of them, 
he devoted more than four times the space to Poincar6's work than the other four put 
together6. 

Weierstrass considered the most important results to be what Poincar6 had 

described as the negative results, that is the divergence of Lindstedt's series and the 
theorem on the non-existence of single-valued integrals. Although Weierstrass was 

convinced that these results showed that an entirely new approach would be needed 
if the problem was to be solved, he was still of the opinion that a solution existed. 
On the positive side, he singled out PoincarOs discoveries in the various realms of 

stability, invariant integrals, periodic solutions and asymptotic solutions as being 

especially notable, and was altogether enthusiastic abou t the treatment of the 

analytic solutions of algebraic differential equations. 

Nevertheless, despite Weierstrass' extensive praise for Poincar6's work, his 

comments were not entirely without criticism. Alongside his compliments he also 

5 Hermite [1889]. 

6 Weierstrass to Mittag-Leffler, 15.11.1888, M-L 1. Mittag-Leffler [1912,50-52]. 
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admitted that he had found the memoir extremely difficult to read and he 

expressed concern about its general lack of rigour. 

In the second letter written some seven weeks later, he stressed that despite having 

spent the intervening period working hard on the memoir he still had not 
completely mastered it7. Nevertheless, he was even more enthusiastic about it than 
before. He now believed that the results on periodic solutions and the discovery of 

asymptotic motion were achievements of the highest importance, even to the extent 
of describing them as epoch-making. On a critical note he was rather concerned 
about PoincarOs treatment of the stability question in the restricted three body 

problem. He queried the physical validity of Poincar6's definition which appeared 

only to put an upper bound on the distance between two points without considenng 

what would happen if two points became infinitely close. For, as he pointed out, 

should this occur it would inevitably affect the form of motion and so a distinction 

should be drawn which would take this into account. 

The manuscript of the letter also reveals a careful piece of editing by Mittag- 

Leffler. Tactfully omitted from the published version is Weierstrass' remark in 

which he confided to Mittag-Leffler that he thought Hermite must have had 

somebody to explain the memoir to him. 

In the third letter Weierstrass explained why, contrary to what he had said in his 

previous letter, he was now satisfied that Poincar6's analysis does ensure that the 

planetoid cannot come infinitely close to the other two bodies8. He had simply 

overlooked that Poincar6 had incorporated the condition that the value of the 

constant C in the equation: 
1 

+G+pF, =C 2a 

had to be essentially greater than 3/2. Again his letter was not entirely free of 

criticism. As mentioned in 5.9.2, he questioned PoincarOs claim that the non- 

existence of any new single-valued solution necessarily implied the non-existence of 

convergent trigonometric solutions. 

Finally, he told Mittag-Leffler that although he would definitely have the report 
finished by the end of the week, he was having difficulty with the introduction. 

7 Weierstrass to Mittag-Leffler, 8.1.1889, M-L 1. Mittag-Leffler [1912,53-55]. 

8 Weierstrass to Mittag-Leffler, 2.2.1889, M-L 1. Mittag-Leffler [1912,55-58]. 
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This was because he believed the report should begin with a justification of the 

question in order to counter the adverse criticism which it had been lodged against 
it. The criticism was on two fronts: there were those who claimed that the question 

as it stood was completely insoluble, while others censured the limitation induced 
by the assumption that a collision between two points can never take place. 
Weierstrass indicated to Mittag-Leffler his intended response to these accusations, 
but his real concern was how to condense into a few lines something which he felt 

warranted a long discussion. Clearly much of the criticism had arisen as a result of 
Kronecker's [1888) publication, and given the brittle nature of the relationship 
between Weierstrass and Kronecker, Weierstrass was understandably keen for his 

defence to be carefully drafted. 

Despite his intentions, Weierstrass never finished the report on [1`11 (or indeed on 
[P2]), however, he did manage to complete the introduction, sending a copy to 
Mittag-Leffler in March 1889. It threw no further light on Weierstrass' judgement of 
the memoir, but it did give the reasons for his particular formulation of the n body 

prob lem in the competition question, as well as the criteria he had used in judging 

the entries which had attempted to provide a solution9. 

In the question Weierstrass had asked for an expansion of the coordinates as infinite 

series of known functions of time which were uniformly convergent for unbegrenzter 

Dauer (=unlirrdted time), the implication being that such a series did actually exist. 

It was the phrase unbegrenzter Dauer which had been the main casuse of the 

misunderstanding. For it had been interpreted as meaning that Weierstrass required 

series which were uniformly convergent for infinite time, i. e. for 0 :5t :5 co, rather 

than, as he had intended, series which were uniformly convergent for a fixed value 

of time, however large, i. e. for 0: 5 V5 a (a <-o). The distinction was critical because 

Weierstrass believed that he had managed to prove that such a series did indeed 

exist in the latter case, whereas he had no such proof for the former. 

For the existence to be proven, it has to be shown that the distance between any two 

points can never become infinitely small or infinitely large as time approaches a 
finite limit. 

The first case amounts to dealing with the possiblity of a collision, and not only does 

the possibility of a binary collision have to be considered but also the possibility of 

9 Mittag-Leffler [1912,63-65]. 
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multiple collisions. Weierstrass' difficulty was that when he had originally set 
the question he had constructed a proof in which he believed he had overcome the 

problem of collisions but in the interim he had forgotten it. In his letter to Nlittag- 

Leffler he only managed to give an outline of a proof which dealt with binary 

collisions and to state a conjecture (with no indication of proof) about triple 

collisions. He gave no consideration to collisions of four or more particles. 

To deal with a binary collision he assumed that the time t was sufficiently close to 

the moment of collision to so that the coordinates of all the points could be expanded 
in positive powers of 

(to - 011, 

and the expressions would then contain not 6n but 6n -2 arbitrary constants 10. Then 

for arbitrary initial conditions, the probability of a collision between any two of the 

points would be infinitely small and so could properly be ignored. He did, however, 

admit that he was concerned by the fact that this method did leave open the 

possibility that after an infinitely long period of time two points could approach 

each other infinitely closely without actually colliding. 

As far as triple collisions were concerned, Weierstrass claimed that it was easy to 

show that all three points can only collide when the three constants of angular 

momentum are simultaneously zero. With regard to the three body problem this was 

clearly an important result but unfortunately Weierstrass did not give a proof and 
TýIittag-Leffler did not press him for one; and it was not until the beginning of the 

next century that Sundman, unaware of Weierstrass' conjecture, provided a proof of 

this resultl 1. 

10 Saari [1990] gives a clear account of the derivation of this expansion. Briefly, the e uations 
of motion for two colliding points in the colfinear central force problem are given by dPx' 1 

P* -P 

with solution x(t) - A(t -t0 )2/3 as t--) t., where A is a positive constant and to is the time of 
collision, and it can be shown for the n body problem that the same rate of approach holds for 
collisions of any kind taking place at t= to. Assuming that to =0 and substitutfng X(t)12ý1 = x(t) 
into the equations of motion gives 

2 
tzý§ dX 

dt + (4/3)ITt - (2/9)X Xn 

Making the change of variable s P13 leads to 

2d2X dX 
s J-Sr + 2s=dý-S- - 2X 

which has an analytic solution in s. 
II Sundman's work is discussed in 8.3.2. 
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Rather curiously Weierstrass does not appear to have considered the possibility of 
the mutual distances becoming infinitely large, and it was not until 1895 that Paul 

Painlev6 formally proved that such a situation cannot arise in the case of the three 
body problem 12. 

Weierstrass ended his letter to Mittag-Leffler by saying that he felt that he had 

provided sufficient results to validate the claim that in general the coordinates of 
the points in the three body problem could be developed in series of the form he had 

specified in the question. However, since he had neither provided a proof of the 
impossibility of triple collisison, nor eliminated the possibility that the mutual 
distances cannot become infinitely large, his claim was somewhat tenuous. 

Nevertheless, since Weierstrass did consider it legitimate to suppose that, given an 

unlimited time interval, the coordinates in the n body problem were single-valued 

continuous functions of time and as such could be represented by a series as specified 
in the question, he did believe that a solution was possible, and so his question was 
then whether such a solution was actually feasible. That was why he had asked 
for the description of a method which would calculate successive terms of the series 

rather than asking for a complete expansion. In other words, he believed it was 

possible to give an approximate expression for the functions such that the difference 

be 
' 
tween the expression and the function did not exceed a specified arbitrarily small 

limit within a time interval of arbitrary length. If this could be done. then the 
function would be represented by an absolutely and uniformly convergent series and 
the problem would be solved as required. 

In setting the question Weierstrass had hoped to achieve a better understanding of 
the true nature of the motion of celestial bodies as well as obtaining a reliable result 

concerning the stability of the solar system, and he had little doubt that the latter 

could be achieved, even without a solution which was valid for infinite time. 

Earlier attempts to obtain a solution had resulted in the coordinates of the planets 

or variable orbital elements being represented by series of the for-in 
Y, JCV, 

V2 - Sirl(CO -ý VIC] + V2C2 + 

VIIV21 *** 

12 Painlev6's contribution and the question of non-collision singularities in the n body problem 
is discussed in 83.3. 
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where vi are integers, t is the time and (Cv, v2,... ' cl, ... ) are independent of t. It 

had been shown that, under certain assumptions, such series do formaUy satisfy the 
differential equations but what had not been resolved was whether such series were 
convergent and thus true expressions of the quantities to be represented. Since this 

problem was clearly one of the fundamental issues raised by the competition 
question, its treatment provided Weierstrass with a criteria on which to base his 
judgement. 

Unfortunately, Weierstrass; completed no more of his report. Nevertheless, it seems 
very probable that his analysis of [PI] would have been largely based on the letters 
described above. What is clear from the later correspondence is that his continuing 
delay in producing a report on [Pl] was due to his difficulties over the parts of the 

memoir which he considered insufficiently explained and which he felt necessary to 

master. 

He did however make one further comment concerning [P1] and that was to criticise 
Mittag-Leffler for the letter he had sent to the Secretary of the Paris Academy 

announcing the results of the competition13. The total French triumph had 

apparently proved rather hard for the German mathematicians to bear and, in 

particular, exception had been taken to Mittag-Leffler's description of Poincar6's 

memoir as being one of 

"... the most important pieces of mathematics of the century 

6.3 Gylden's reaction 
Undoubtedly one of the first people outside the commission to know about Poincar6's 

memoir was Gyld6n. As a member of the editorial board of Acta, as well as being a 
lecturer in astronomy at the Stockholm Hbgskola, he was in close touch with 
Mittag-Leffler and well placed to hear about the result of the competition. 
However, unfortunately for Mittag-Leffler, when Gyld6n learnt of the results in 
Poincar6's memoir, his reaction mirrored that of Kronecker's to the competition 

announcement of more than three years earlier. Gylddn, having seen the general 

report with its remarks about the discovery of asymptotic solutions, believed that 
he had already discovered similar results he had had published in Acta [1887]. 

13 Comptes Rendus 108 (8) 25.2-1889,387. 



176 Reception of Poincari's memoir 

Gyld6n must have made his displeasure immediately obvious because at the end of 
January Mittag-Leffler wrote to Poincar6 to ask him (in strictest confidence) for his 

opinion on Gyld6n's [18871 paper, and in particular whether he thought the series 

proposed by Gyld6n were convergent. This resulted in several replies from Poincar6 

which, some 30 years later, Mittag-Leffler published as part of the Acta volume 
dedicated to Poincar614. However, the correspondence had only just got under way 

when GyId6n brought the issue into the public arena. 

As already mentioned, in February 1889, Nfittag-Leffler had been due, at the King's 

request, to give a report on the principal results in PoincaWs paper at the monthly 

meeting of the Swedish Academy of Sciences. However, illness prevented him from 

attending, although given that he had already expressed a certain reluctance to 

make a public speech about Poincar6's work without the support of Weierstrass' 

report, he might well have felt somewhat relieved that the task was at least 

postponed. Nevertheless, those attending the February meeting of the Academy 

were not left in complete ignorance of Poincar6's work. For Gyld6n chose to make it 

the occasion for declaring his views on the results in Poincar6's memoir, claiming 

that all those of importance were already contained in his own 1887 paper] 5. 

Not surprisingly, after Gyld4n's announcement, the King was more anxious than ever 

for Mittag-Leffler to make his speech at the Academy. He made it plain to Mittag- 

Leffler that he wanted it to be heard at the March meeting and since Mittag-Leffler 

knew that he could not be certain of being in possession of Weierstrass' report, it 

became a matter of urgency for him to have PoincarOs views on Gyld6n's results. 

Prior to Gylddn's public declaration, Poincar6 had already begun his side of the 

correspondence by adn-dtting that he had found Gyld6n's style very hard to read and 

he had also told Nfittag-Leffler that to give a definitive answer to the convergence 

question, he would have to read each and every line of the memoir which he was 

reluctant to do16. From what he had seen, he was unable to say whether Gyld6n's 

method led to a proof of either convergence or divergence, although he thought 

divergence the more likely. In addition he expressed dissatisfaction at a particular 

aspect of Gyld6n's method. From his understanding, the successive terms in the 

14 Acta 38 (1921), 163-173. 

15 Nfittag-Leffler to Weierstrass, 22.2.1889, M-L 1. 

16 Poincar6 to Mittag-Leffler, 5.2.1889, No. 48, M-L I. Acta 38,163-164. 
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expansion were not deduced recurrently but rather at each stage of the calculation 
choices were made which incorporated an element of chance into the process. 

On hearing from Mittag-Leffler about Gyld6n's communication in the Swedish 

Academy17' Poincar6 responded again and at length18. He made the point that the 
dispute brought into sharp focus the difference between the mathematician and 

astronomer with regard to their interpretation of convergence. He reasoned in detail 

against the rigour of Gyld6n's arguments, reiterating that he believed Gyld6n's 

method to rely heavily on questions of judgement. 

Nevertheless, despite the critical appearance of this correspondence Poincar6 

maintained a high regard for Gyld6n's work, appreciating the flexibility ana 

practical advantages of his methods. He had not intended to demolish Gylddn but 

rather he had wanted to show how words such as proof and convergence take on 
different meanings depending on the perspective of the user, i. e. depending on 

whether the user is a mathematician or an astronomer. Moreover, he was sensitive 
to the fact that Gyld6n's approach was coloured by a practical interest in the 

problem which he himself did not share. 

In the final letter of this correspondence he showed quite clearly why he believed 

that following Gylddn's argument exactly led to divergent series19. Briefly, he 

started with the equation 
dT- 

+ n2sAsinVcosV = n2(X) where (X) = 7-slAlsin(,; ýnt + mV + h) dt2 

where h is a constant and ;ý and m are integers, and following Gylddn he put 

V= VO + V, , Vo =- 2arctane-ý + ; r/2, ý= Cwt + C. 

Gyld6n's method then involved integrating by successive approximations and at 

each stage of the approximation choosing suitable values for the two constants of 
integration and the coefficient a. 

Poincar6's argument hinged on the fact that he did not consider it legitimate for 

these choices to be arbitrary. With regard to the constants he believed that 

Gyld6n's method meant that there was in fact only one particular value of the 

17 Mttag-Leffler to Poincar6,23-2.1889, M-L I. 

18 Poincar6 to Mittag-Leffler, 1.3.1889, No. 49, M-L 1. Acta 38,164-169. 

19 Poincar6 to Mittag-Leffler, 5.3.1889, No. 50, M-L 1. Acia 38,169-173. 
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constants, from an infinite number of choices, which would lead to a convergent series 
and hence to a proof of the existence of asymptotic solutions. Moreover, from what 
he could see, Gyld6n's method gave no way of recognising which of the series was 
convergent. As far as ix was concerned, he emphasised that its value was completely 
determined and could not, as Gyld6n proposed, be changed with each new 
approximation, adding that ern was equivalent to what in his own memoir he had 

called the characteristic exponent. 

Not surprisingly Hermite and Weierstrass were also drawn into the polemic. 
Hermite, who had first heard about the dispute from Kovalevskaya, thought 
Gyld6n's series, like Lindstedt's, were asymptotic. However, he carefully avoided 
drawing any direct comparisons between the two memoirs. He had himself received 

a letter from Gyld6n but since it was written in Swedish he had been unable to read 
it, although given the formulae it contained he had deduced that it must be about 

the convergence question. 

Meanwhile Mittag-Leffler having given his talk at the Academy, had written in 

jubilation to Weierstrass and Poincar6, convinced that those who had heard him 

were agreed that Poincar6 deserved to win the prize20. Although Gyld6n had 

raised objections, insisting that his series were convergent for all time, he did admit 
that in the neighbourhood of any set of the constants c,, ..., c., there were other 

values for which the series did not converge. 

However Mittag-Leffler's triumph was short lived. The academic community in 
Stockholm decided to weigh in on the side of Gylddn, and, despite the fact that 
Poincard's memoir was not available to be seen, adopted the view that Gyld6n had 
indeed published proofs of everything Poincar6 had done2l. The consensus was that 
Mittag-Leffler's denial of Gylddn's results had been motivated purely by jealousy, 

and the mathematician Backlund reinforced the idea by drawing attention to the 
fact that Gyld6n's memoir had recently been awarded the St. Petersburg prize. 
Meanwhile Gyld6n himself steadfastly maintained that the values of the constants 

cl, ..., c,, for which his series diverged formed only a countable set and so it was 
infinitely unlikely that the series was actually divergent. Mittag-Leffler continued 
to argue against him since, with Poincar6, he believed that the series were 

20 Mittag-Leffler to Weierstrass, 24.3.1889, and Mittag-Leffler to Poincar6,28.3.1889, M-L 1. 

21 Mittag-Leffler to Weierstrass, 15.4.1889, M-L 1. 
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divergent not just for a countable set but for a perfect set in the neighbourhood of the 

constants cl,..., c, And moreover, he told Weierstrass that he thought Gyld6n not 
enough of a mathematician to understand. 

Although not directly relevant to the disputes over Poincar6's memoir, it is of 
interest to record that in May that year Gyld6n met with Kronecker in Berlin, a 

meeting which, within the context of competition, Mittag-Leffler would surely 
have viewed with some misgivings. In any case, the occasion prompted Mittag- 

Leffler to remark to Weierstrass that although he had been led to believe that his 

two adversaries had understood each other perfectly, he suspected that Gylddn 

really understood as little of Kronecker as Kronecker understood of Gyld6n! 22 

With the publication of the memoir not scheduled for several months, the 

controversy with Gyld6n died down, that is until the rumours about the error began 

to emerge. As mentioned above, Gyld6n was instrumental in bringing the rumours to 
Berlin and having had temporary possession of a copy of [PI], he was certainly as 

well qualified as anyone outside the commission to speak about it. Later when [P2] 

was finally published, Gyld6n attempted to reopen the controversy by writing 
directly to Hermite to protest against Poincar6's results23. He had probably hoped 

that he could count on Hermite's support for his own work since Hermite was known 

to be interested in the applications of elliptic function theory in celestial 

mechaniCS24. 

Nevertheless, Hermite was not to be drawn. His response was to stand by the 
judgement of the commission declaring his loyalty to Mittag-Leffler and 
Weierstrass. In addition, Gyld6n's actions prompted Hermite to reassure Mittag- 

Leffler by telling him how well PoincarOs memoir had been received in Paris. 

Shortly afterwards Gyld6n sent Hem-dte part of his [1891] Acta paper for comment. 
This time Hern-dte managed to avoid the issue completely by replying with the 

claim that the paper was beyond his own mathematical domain25. However, as 
indicated in a subsequent letter to Mittag-Leffler, it appears that Hermite was not 
impressed by Gyld6n's grasp of analysis; in fact he described Gyld6n as a ghost from 

22 Mittag-Leffler to Weierstrass, 12.5.1889, M-L 1. 

23 Hermite to Mittag-Leffler, 10.1.1891. Cahiers 6 (1985), 188-189. 

24 Picard 11902] specifically mentions Hermite's sympathy for the work of Gyld6n in this 
respect. See Hem-tite 11877]. 

25 Herrnite to Nfittag-Leffler, 1.3.1891. Cahiers 6 (1985), 193. 
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a bygone age, who had been left behind as the world of analysis transformed about 
him261 

6.4 Minkowski 
One of the first documented comments about [P2] came from the young Hermann 
Minkowski, then a lecturer at the University in Bonn. In a letter dated 22nd 
December 1890 to David Hilbert, he revealed that he had so far studied the first 

third of the memoir and that what he had seen had reminded him of Dirichlet27. 

Minkowski was also the author of the report on [P2] which appeared in the 

jahrbuch iiber die Fortschritte der Mathematik for 1890 which was published in 

1893, by which time Minkowski had become an associate professor at the 

University. This report, which appears to be the first mathematical commentary 

on [P2], was of quite a remarkable length28. Most reports in the jahrbuch merited at 

most a single page, Minkowski's report on [P2] ran to seven. 

Since the function of the jahrbuch was to provide information about the current state 

of mathematical research, Minkowski's priority would have been to provide a 
factual rather than a critical account of the memoir. Nevertheless, it is clear from 

the report that he had a good grasp of PoincarOs ideas. He skilfully picked out the 

salient features, emphasising their relative importance, and presented them in an 
accessible way. 

Various aspects of Minkowski's report invite special comment. These include his 

clear and concise description of the theory of invariant integrals in which he drew 

attention to the recurrence theorem; his discussion of Poincar6's use of the method of 
analytic continuation in the theory of periodic solutions; and the clarity with 
which he distinguished between Poincard's use of the parameter p and its square 

26 Hermite to Mittag-Leffier, 17.3.1891. Cahiers 6 (1985), 195-196. 

27 L. Rildenberg and H. Zassenhaus Hermann Minkowski Briefe an David Hilbert, Springer- 
Verlaý, 1973i 40-. It seems likely that Hilbert had asked Minkowski for his opinion on the 
memoir since he had alread)ý told Klein that he had orpnised for a report on the memoir to be 
made at his Konigsberg seminar. See G. Frei Der Briýftvechsel David Hilbert - Felix Klein (1886- 
1918) Vandenhoeek & Ruprecht, Gottingen 1985,72. 

28 jahrbuch Uber die Forischritte der Mathematik 22,907-914. 

The jahrbuch report was certainly not the first report of some of the ideas in [P21, although it 
does appear to be the first full report of the memoir. The first volume of Poincar6's Micanique 
Cilesfe which was derived from parts of [P2] was published in 1892 and a review appeared in 
the Bulletin of the New York Mathematical Society later the same year. See 7.2.5. 
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root. Especially notable is the fact that Minkowski freely acknowledged the 
difficulties associated with Poincar6's doubly asymptotic solutions. Rather 

paradoxically, this probably indicates that Minkowski had a better understanding 
of the concept than some of his contemporaries who refrained from passing any 
comment at all on these solutions. 

6.5 Hill 
The first person to openly question some of Poincar6s results in [P2] and to do so in an 

entirely formal setting was Hill. On December 27,1895 Hill delivered the 

presidential address to the American Mathematical Society (AMS). His speech, 

which was reported in the AMS Bulletin, had as its subject the progress in celestial 

mechanics since the middle of the century. Although meant for a general 

mathematical audience, the speech was far from a model exposition of clarity and 
the threads of Hill's arguments are often difficult to unravel. 

Having begun with a description of Delaunay's contribution, Hill continued: 

"Perhaps the most conspicuous labours in our subject, during the period of 
time we consider, are those of Professor Gyldjn and M. Poincarg.,, 29. 

With regard to Poincar6's work, he cited both [P2] and the first two volumes of the 

M6thodes Nouvelles which contained many of the results from [P2] reworked in an 

extended and clearer form. Although his discussion was essentially centred on the 

Mgthodes Nouvelles, most of his conunents apply equally well to both works. 

It is perhaps rather surprising that Hill took the opportunity presented by the 

occasion to query some of Poincar6's results. His actions can be partly explained by 

his belief that his own concerns were shared by other astronomers whom he thought 

would feel reassured by his criticism, especially those with less mathematical 
insight than himself. He may also have believed that a straightforward 

presentation of the results in a form accessible to astronomers would have been 

somewhat superfluous since Poincar6 himself had done that in [1891], and so another 

account might have been considered at best repetitious or at worst confusing. 

In particular Hill was concerned by Poincar6s proof of the divergence of Lindstedt's 

series, a result which was clearly of great practical importance to astronomers. 

29 Hill [18961. Hill's view of Gyld6n's work is described in 2.2.7. 
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However, before discussing Hill's criticisms voiced in the speech, it is relevant to 

note that earlier in the same volume of the AMS Bulletin there is another article by 

Hill on the convergence of Lindstedt's series30. This article was a direct response to 

Poincar6's proof of the divergence of the series which had appeared in [MN IEI] and 

which focused on the case where the mean motions are incommensu rable3l. In this 

paper Hill demonstrated the existence of a class of cases where convergence can be 

shown, although he made no attempt to disprove PoincarOs argument. 

Returning to the speech, Hill, having noted the periodic solutions, drew attention to 

the asymptotic solutions and the role of the associated characteristic exponents. 
His first objection concerned the actual use of asymptotic solutions. He reasoned that 

since most of practical astronomy is concerned with systems which describe almost 

circular motion, a first approximation can be given by a periodic solution. This being 

the case, the coefficients of stability are then all real and negative which implies a 

situation which is of no interest to the working astronomer. 

He next dwelt on Poincar6's different methods of proof of the divergence of 
Lindstedt's series. This discussion was largely aimed at re-enforcing his earlier 

article and although both. articles quoted results from [MN III rather than JP2), it 

was the essential principle of the divergence of the series which was at issue. 

Finally, he questioned Poincar6's assertion that the convergence of Lindstedt's series 

would imply the non-existence of asymptotic solutions, arguing that this was an 
irrelevant observation since the domain of the two things were quite distinct, i. e. 

where Lindstedt's series were applicable there were no asymptotic solutions and 

vice versa. 

Since these objections concerned what Poincar6 considered to be one of his most 
important results, and, moreover, since their author was someone whose academic 
integrity Poincar6 respected, his defence was swift. 

In [1896] which appeared in the Comptes Rendus for March 2, he replied to Hill's 

first article. He made it clear that there was in fact no contradiction between his 

result and that of Hill's: they had both, and moreover in a similar way, proved the 

30 Hill [18961. 

31 Poincar6 [MN U, 277-280]. 
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existence of cases where the series converged. However, he did emphasise the point 
that it was possible for the convergence not to be uniform. 

In [1896a] Poincar6 countered most of the claims made in Hill's speech. Essentially 

Hill believed the series to converge provided the variables remained within a 

certain domain. What Poincar6 showed was that the series could not converge in 

any part of an arbitrary domain if in that domain there existed a periodic solution, 

and, furthermore, he showed that there were periodic solutions in every domain, 

however small. Thus if the series were convergent at all, they could only be 

convergent for certain discrete values of the variables and could not be convergent for 

values between given limits, however small those limits. 

Finally Poincar6 dealt with Hill's objection concerning the existence of asymptotic 

solutions and the divergence of Lindstedt's series. With regard to Hill's remarks 

about asymptotic solutions and the imaginary nature of the characteristic exponents 
in all cases of practical interest, he thought that the objection had arisen because 

Hill believed that asymptotic solutions could only exist when the variables 

satisfied certain inequalities. He pointed out that he had proved the existence of 

asymptotic solutions for the restricted three body problem in any domain, however 

small, for sufficiently small values of the perturbing mass. He attributed Hill's 

error to the fact that Hill had only considered periodic solutions of the first kind. 

6.6 Whittaker 
In 1898 Edmund Whittaker, who was then a fellow at Trinity College, Cambridge, 

was asked by the British Association for the Advancement of Science to draw up a 

report on the current state of planetary theory32. He responded with a substantial 

32 Whittaker became one of the most influential mathematicians of his generation. He was 

c? 
ointed Astronomer Royal for Ireland in 1906, and was elected to the chair of mathematics at y 

inburgh in 1912, a post which he held until his retirement in 1946. His great treatise Modern 
Analysis 119271 which was first published in 1902 was followed only two years later by the 
first edition of his comprehensive Analytical Dynamics [19371. The latter, which remains a 
standard work on the subject, includes a thorough introduction to the three body problem, and 
contains much of his own research related to topics in dynamical astronomy. 
Several of ViThittaker's early papers are of interest in relation to the work of Poincar6. Of note 
are [19011 in which he gave a new method for expressing the solution of a dynamical problem in 
terms of trigonometric series; 119021 and 11902a) in which he established a new criterion for 
finding periodic solutions of the differential equations of dynamics and for the restricted three 
body problem; and in articular [1917] which concerns his discovery of the adelphic 
("brotherly") integral oFa dynamical system. The adelphic integral is associated with 
infinitesimal contact transformations between adjacent periodic solutions and Whittaker 
showed that when such an integral can be constructed the equations can be integrated and the 
convergence difficulties indicated by Poincard [P2,470] overcome. Whittaker also gained 
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review of recent work on the three body problem [1899]. Vn-dttaker's report, which 
was essentially an exhaustive account of the development of dynamical astronomy 
from 1868 to 1898 (the dates being chosen to coincide with the publication of the last 

volume of Delaunay's Lunar Theory and the third and last volume of Poincard's 
M6thodes Nouvelles), naturally included a detailed account of [P2] and this account 
provides the first commentary on the memoir to be published in English. 

As befitted the nature of the report in which it appeared, Whittaker's review of 
[P2] was an objective summary rather than a subjective discussion. Nevertheless, 

echoing Minkowski's treatment of the memoir in the Jahrbuch, Whittaker afforded 
it greater attention than any of the other works he included in his review. In 

contrast to Hill, his treatment of [P2] was both complimentary and easy to follow. 

He began: 

"A new impetus was given to Dynamical Astronomy in 1890 by the 

publication of a memoir by Poincare. - 33, 

and then gave a clear and concise description of many of the ideas discussed in the 

memoir: invariant integrals, stability, periodic solutions, characteristic exponents, 
asymptotic solutions, doubly asymptotic solutions and periodic solutions of the 

second class, explaining Poincar6's terminology and emphasising important results 
such as the recurrence theorem, and the theorem concerning the non-existence of any 
new single-valued integrals. His concluding remark about the final section of the 

memoir (in which Poincar6 indicated the problems involved in generalising his 

results) was somewhat ambiguous in that he did not make it clear that Poincard was 
raising questions concerning the general n body problem rather than solving them. 

Rather curiously, given the extent of his report, Whittaker made no attempt to 

relate [P2] to Poincar6's earlier papers on differential equations, beyond a single 
reference to his result concerning the conditions for stability. Nor did he attempt to 
describe PoincarOs geometric representation and the innovative technique of using a 
transverse section in order to make the problem more tractable. Perhaps this was 
because he thought that the conceptual difficulty of the ideas would distract from 

international recopition through an article on perturbation theory and orbits which he 
contributed to Mein's "En7klopa'die" [19121. For a sensitive and informative biography of Whittaker, see McCrea [5 
33 Mduaker [1899,144). 
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the actual results, although that had not prevented him from revealing some of the 

rather complicated details of Gyld6n's method earlier in the report. 

Furthermore, with regard to the doubly asymptotic solutions, he simply described 

them as being: 

" ... approximately periodic when t and t=+-, but (they) are not 
periodic in the meantime. - 34. 

While this is certainly true it hardly gave an indication of the complex nature of 
the behaviour of these solutions. Admittedly Poincar6 himself had not stressed this 

point in [P2] but he certainly did in [MN IIII. But Whittaker did not mention the 

complexity aspect in his review of [MN III] either. It is possible that he thought it 
inappropriate to emphasise them since the probability of their appearance in 

reality was negligible, but this seems unlikely since the same is also true of all 
Poincar6's periodic solutions. Nevertheless, since he again passed over the point in 
his treatise on analytical dynamics [19371, perhaps it was because he felt his own 

understanding was not sufficiently adequate to provide a discussion. 

6.7 Other commentators 
Following Whittaker's report, the continuing interest in the three body problem was 
described by Edgar Lovett [1912] who charted the further developments of the n 
body problem between 1898 and 1908. Apart from the burgeoning literature on the 

problem by way of journal articles, the period was especially notable for the 

publication of Hill's Collected Works, Moulton's Introduction to Celestial 

Mechanics and Whittaker's Analytical Dynamics. Furthermore, by the end of the 
decade the publication of Poincar6's lectures on celestial mechanics [LMC] was 

almost complete, and that of the Collected Papers of the applied mathematician 
George Darwin who pioneered the quantitative study of periodic orbits was about to 
begin. 

Significantly, part of the structure of Lovett's essay leads straight back to Poincar6. 

Of the five headings he used, he included one on the qualitative resolution of the 

problem and one on periodic solutions. More specifically, he made several references 
to Poincard's methods identifying certain areas in which the influence of Poincar6's 

34 Whittaker 11899,149]. 
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methods had been clearly felt. In particular he noted how PoincarOs preference for 

the canonical form of the differential equations had led to the adoption of this 
formulation in other investigations. Lovett also referred to developments in the 
theory of invariant integrals, as well as the importance of Poincar6's theorem on 
the non-existence of any new single-valued integrals for the problem. 

With regard to particular results in [172], some interesting observations were made by 

the mathematical physicist Lord Kelvin [1891] who, having had the memoir 
brought to his attention by Arthur Cayley, was especially struck by the 

relationship between some of Poincar6's results and some conclusions of his own 
which he had published the previous year. 

In particular, he drew attention to the similarity between PoincaWs conjecture 
concerning the denseness of the periodic solutions [P2,4541 and a proposition of 
Maxwell's concerning the distribution of energy. Maxwell had proposed: 

"... that the system if left to itself in its actual state of motion, will, sooner 
or later, pass through every phase which is consistent with the equation of 
energy.,, 35 

which, as Kelvin pointed out, was essentially equivalent to saying that every 
region of space would be traversed in every direction by every trajectory. If this 

proposition was true, which Kelvin believed to be highly likely, then he concluded 
it was a necessary consequence that every motion would be infinitely close to a 
periodic motion. In addition, he also commented on the agreement between 
Poincar6's results and his own results on the instability of periodic motion observing 
that: 

" Poincarg's investigation and mine are as different as two investigations of 
the same subject could well be, and it is very satisfactory to find perfect 
agreement in conclusions. "3 6. 

As Brush [1966] and Gray [1992] have described, one of the first of Poincar6's ideas 

from [P2] to emerge in a different context was that of his recurrence theorem. TI-ds 

was because the theorem appeared to demonstrate the futility of contemporary 

efforts to deduce the second law of thermodynamics from classical mechanics. In 

35 Quoted in Thomson [1891,512]. 
36 Thomson 11891,512]. 
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1896 a debate took place in Annalen der Physik between Ernst Zermelo, who 
believed that Poincar6's theorem disproved the absolute validity of the second law 

of thermodynamics, and Ludwig Boltzmann, who believed in the correctness of 
Poincar0s theorem but disputed Zermelo's application of it37. According to 

Zermelo, PoincaWs theorem implied that there were no "irreversible" processes at 

work and hence the concept of a system with continuously increasing entropy was 
invalid. Boltzmann's defence was that the theorem was evidence of sudden brief 

moments of decreasing entropy but that the statistical nature of his kinetic theory 

predicted that these moments would be so far apart that they would never actually 
be observed and so entropy would in general increase. Although Zermelo and 
Boltzmann's personal debate came to an end within a year, the controversy continued 

to arouse interest and eventually became one of the sources for the foundation of 

modem ergodic theory38. 

Further attention was drawn to Poincar6's work on the three body problem by his 

compatriot and predecessor in the chair of celestial mechanics at the Sorbonne, Mix 

Tisserand. In the fourth and final volume of his acclaimed Micanique Cileste [1896) 

which was published in the year of his death, Tisserand included a chapter which 

consisted of Poincar6s own summary [1891] of [P2] together with some further 

explanations about Poincar6s periodic solutions. 

Various aspects of [P2] and its underlying role in the Wthodes Notivelles were 

naturally mentioned in Poincar6's numerous obituaries39. In addition to which, 

volume 38 of Acta, which was dedicated to Poincar6, included two long articles 

describing his work: one on his mathema 
* 
tics by Hadamard and the other on his 

celestial mechanics and astronomy by von Zeipel, both of which placed a firm 

emphasis on the significance of the memoir4O. Hadamard [1921] concentrated on the 

relationship of [P2] to Poincar6's earlier memoirs on differential equations, while 

von Zeipel 11921] considered its results in conjunction with the Mithodes Nouvelles. 

Of particular note is the fact that both authors quoted the passage from [MN III] 

where Poincard described the complexity of the doubly asymptotic solutions. There 

37 Translations of the papers by Zermelo and Boltzmann are contained in Brush [1966]. 
38 See 9.3.4. 
39 See for example Baker (1914] and Darboux [1914]. 
40 Mittag-Leffler had begun preparing Acta 38 soon after Poincar6's death but the outbreak of 
the First World War meant that publication was delayed until 1921. 
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is no doubt that the importance of these solutions had by this date been recognised, 
even if little further had been discovered about them. The fact that [P21 featured so 
strongly in both of these important tributes to Poincar6's career is a fitting 

compliment to the breadth of vision it embraced. 



7. Poincare's Related Work after 1889 

7.1 Introduction 
After the revision of the memoir, Poincar6 channelled much of his energy into 

amplifying the results it contained. Within two years of its publication the first 

volume of his celebrated Les MModes Nouvelles de la Micanique C61este was 

published. Its appearance heralded the start of an enterprise which occupied him 

in part for almost twenty years. The second volume was published in 1893, and the 

third (and final) volume was completed in 1899. The Mgthodes was followed by its 

didactical counterpart, the Lefons de Micanique C61este. The Lefons were based on 
Poincar6's lectures given at the Sorbonne in his role as professor of mathematical 

astronomy and celestial mechanics, a position to which he had succeeded on the 
death of Tisserand in 1896. They contained a treatment of perturbation theory, the 
lunar theory, and the theory of tides, and were published in three volumes between 

1905 and 1910, although according to Sarton [1913,10] the project was unfinished. 

As well as producing these major works, Poincar6 also published several more papers 

on different topics in celestial mechanics, some of which were connected to ideas 

which had appeared in [P2] and the Mithodes, and some of which were in response 
to the work of other mathematicians. There were, for example, several papers on 
the expansion of the perturbation function, two notes connecting the principle of least 

action with the theory of periodic solutions, as well as papers on the form of the 

189 
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equations in the three body problem. Other related papers included a correction to 
Bruns' theorem on the integrals of the three body problem, discussions of Gyld6n's 
horistic methods, as well as some general articles. 

There were also two important papers in which Poincar6 continued his research into 

the periodic solutions of the three body problem outside the specific context of 
celestial mechanics. The first of these, which he originally presented to the 
American Mathematical Society at the St Louis Congress in 1904, was an 
investigation into the geodesics on a convex surface. In this paper the discussion 

centred on the closed geodesics since they enjoy an analogous role to the periodic 

solutions in the three body problem. The second was the paper in which he 

announced what is today called his Last Geometric Theorem. This paper became 

well known not only because of the importance of the theorem it contained, but also 
because, despite strenuous efforts and having treated a variety of special cases, 
Poincar6 had been unable to provide a general proof. 

7.2 "Les Methodes Nouvelles de la Mecanique Celeste" 
7.2.1 Introduction 

When George Darwin was describing the Mithodes Nouvelles on the occasion of 

presenting the medal of the Royal Astronomical Society to Poincar6 in 1900, he said: 

"It is probable that for half a century to come it will be the mine from which 
humbler investigators will excavate their materials. "I. 

With the benefit of hindsight it is now possible to say that had Darwin on-titted the 

word "half" his prediction would still have been fulfilled. Since its publication 

almost a hundred years ago, Poincard's Mffiodes Nouvelles has continued to attract 

and delight mathematicians, providing a rich and varied source for researchers in 

celestial mechanics and dynamical systems2. Moreover, it is largely through the 
M6thodes Nouvelles that the contents of [P2] have become so widely known, for it 

contains the principal ideas from [P2] but in a more fully explained and developed 

form. A greater number of applications of the theory are included, as well as a 

I Darwin [1900,412]. 
2 See the Foreword by J. Kovalevsky to the Blanchard edition of [MN 11,1987. 
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substantial amount of new material. Perhaps most notably, the focus of attention is 

as much on the general three body problem as on the restricted problem. 

Volume I, which was published in early 1892, essentially covered the analytical 

part of the theory. Of the topics previously discussed in [P2], it contains an 

amplified treatment of the periodic solutions, characteristic exponents, asymptotic 

solutions and the non-existence of new single-valued integrals. In addition, there is 

a long chapter on the expansion of the perturbation function. 

The second volume which appeared in the following year was devoted to the 

methods of contemporary astronomers, namely Newcomb, Gyld6n, Lindstedt and 
Bohlin. Most of the material was completely new. There is an overlap with [P2] in 

the discussion of the divergence of Lindstedt's series, and the reference to Bohlin's 

series which Poincar6 made in the Introduction to [P2] is clarified. 

The final volume, which is characterised by Poincard's geometrical ideas, was 

published in 1899. Here Poincar6 returned to the subjects of invariant integrals, 

stability, periodic solutions of the second class and doubly asymptotic solutions, and 
he also included a discussion of what he now called periodic solutions of the second 

species, the existence of which he had conjectured at the end of [P2]. 

7.2.2 Volume I 

In the opening chapter of Volume I Poincar6 provided a fuller introduction to both 

the general and the restricted three body problems than he had done in [P2). This 

included placing a greater emphasis on the role of the Hamiltonian form of the 

equations 
dx, 

_ 
dF Ai dF 

dt -dyi dt dx, ' 

F= Fj) + ItF, + 112F2 + .... 

by giving an outline of Hamilton-Jacobi theory and showing how the number of 
independent variables are reduced through the use of the classical integrals. 

The earlier treatment of periodic solutions is enhanced by the inclusion of several 

new applications of the theory, and Poincar6s conviction as to the importance of 

these solutions is encapsulated in his now renowned description in which they are 

described as: 

"... the only breach by which we can penetrate a fortress hitherto considered 
inaccessible. " [MN 1,82]. 
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Furthermore, the conjecture concerning the denseness of the periodic solutions is more 
strongly affirmed. Poincar6 now proposed that given any particular solution of 
equations (7.2J) it should be possible to find a periodic solution (which may have an 
extremely long period) such that the difference between these two solutions is as 
small as desired for any given length of time [MN 1,82]3. 

The classification of the three different kinds of periodic solutions first described in 

[1884a] are reintroduced and the conditions under which they exist are carefully 
described. The first kind, in which the inclinations are zero and the eccentricities 

very small, are the analytic continuation of the solutions of the circular two body 

problem; the second kind in which the inclinations are zero and the eccentricities 
finite, are generated from the solutions of the elliptic two body problem; and the 

third kind, in which the inclinations are finite and the eccentricities very small, 

are generated from an elliptic solution not in the same plane as the motion of the 

primaries. In other words, all Poincar6's periodic solutions are solutions which are 
the analytic continuation of solutions of the two body problem and hence are only 
valid for small values of the mass parameter. 

In [P2] Poincard had proved the existence of periodic solutions in the restricted 
problem which was equivalent to proving the existence of periodic solutions of the 
first kind. However, his proof depended on the non-vanishing of a particular 
Hessian, a condition which did not hold for the general three body problem. Thus in 

order to establish the existence of periodic solutions of the second and third kinds he 
first had to establish the conditions under which periodic solutions would exist 
when the Hessian was equal to zer04. 

One issue which Poincar6 did not raise in [P2] was the actual use of his periodic 

solutions. Since his analysis had shown that the probability of the occurrence of 

such periodic solutions was negligible, what practical purpose could they serve? He 

now made it clear that their practical value lay in the fact that they could be used 

as a starting point for approximating other solutions rather than as actual solutions 

themselves. In the case of solutions of the first kind, apart from Hill's solution, he 

3 Schwarzschild [1898] in his endeavour to prove the conjecture gave a phase spýce 
interpretation in which he proposed that arbitrarily close to any point in phase space there is a 
F int representing a periodic solution. A rigorous proof was eventually provided by Hopf 
109'301. 

4 Szebehely [1967,437] notes that Poincar6's proof of the existence of periodic solutions of the 
second kind contains an error which was pointed out by Wintner 11931]. See also Sternberg 
[1969, H, 275], and Siegel and Moser [1971,182). 
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identified as particular examples both Laplace's theory of the satellites of Jupiter, 

and Tisserand's study of the motion of Hyperion, a satellite of Saturn5. 

With regard to the theory of asymptotic solutions, Poincar6 followed the same 

reasoning as in [P21 but provided a more complete theory elaborating on certain 

points which had previously been left unexplained. 

In his discussion of the question of the non-existence of any new single-valued 
integral, Poincar6 made significant changes to his argument in [P2] in order to 

accommodate the general three body problem. As in [P21, he began by assuming the 

existence of another independent integral 0, but this time he introduced Poisson 

brackets. As he observed, the existence of 0 implies the condition IF, 0] = 0, and this 
Poisson bracket can be expanded to give 

[Fo, 001 + p([F� Ool + [Fo, 4511 )+ ... +... = 

If this expression is true, then each of the Poisson brackets is equal to zero. 
Poincar6's strategy was to prove the invalidity of this expression. He first proved 
that 00 is not a function of FO, and moreover that it is independent of y. Thus since FO 

is also independent of y 
dOo dF, 

+ 
jdFO d0l 

0, 

and since F, and 0, are both periodic with respect to y they can be expanded as 

exponentials in the form exp [ý---1(m, y, + ... + m,, y,, )] where m, are positive or 

negative integers. Considering F, and d5, in their exponential form leads to the 

equafion 

BEmi'900 = CEmi i9FO 
19xi gxi 

where B and C depend only on x. This equation shows that the jacobian of FO and of 
Oo with respect to any two xi must vanish, providing B does not vanish, and that this 

occurs for all values of x such that 
dFo 

are commensurable. Thus in any domain, dxi 

however small, there is an infinite system of values of x for which the jacobian 

vanishes, and since the jacobian is a continuous function, it must vanish identically. 

But the vanishing of the Jacobian implies that 00 is a function of FO which is 

contrary to the original assumption, and so the equations cannot admit any other 

5 Although Poincard gave no practical illustrations of periodic solutions of the second and third 
kinds, thise are found in nature as, for example, in the motion of comets. 
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single-valued integral. To complete the proof Poincar6 also dealt with the case 
where one or more of the coefficients B vanish, as well as the case where the 
fimction FO does not depend on all the variables xi. 

Finally, he applied these results to the three body problem, dealing first with the 

restricted problem, then the planar three body problem and finally the general 
problem. In the latter two cases, he found necessary but not sufficient conditions for 

the existence of another integral of the equations. He then proved that these 

conditions, which were in the form of relations between the coefficients in the 

expansion of the perturbation function F, did not exist, and hence that there are no 

new transcendental or algebraic integrals for the three body problem, providing p is 

sufficiently small. 

In the case of the general problem, proving that these conditions did not exist 

required a more detailed analysis and in order to complete it Poincar6 was led into a 
discussion of the perturbation function. It was not a topic which had arisen in [P2], 

although he had drawn attention to its role in a note in the Comptes Rendus [1891b]. 

Briefly, when the mean motions are incommensurable then, due to the presence of 

small divisors, certain terms in the perturbation function, independent of their order, 

may acquire relative importance. It is not generally necessary to calculate these 

terms exactly since what is important is to recognise whether they are negligible or 

not, and for this purpose an approximate value will suffice. Poincar6 was therefore 
looking for an approximate expansion of the function and to this end his analysis 

was concerned with what he defined as the principal part of the function. He 

proceeded by recalling Darboux's method for finding the coefficients of high order 
terms in a Fourier or Taylor series for functions of a single variable which can be 

applied when the analytic properties of the functions represented by the series are 
known. He next extended the method to accommodate functions of two variables in 

order to apply it to the perturbation function and thereby derive an approximate 

value for the principal part of the function. 

As Poincard himself observed there was a sense in which his result concerning the 

non-existence of integrals was more general than the one given earlier by Bruns 

[1887]. For while Bruns had proved that the ten classical integrals were the only 
independent algebraic integrals of the three body problem, Poincar6 had not only 

proved the non-existence of any new transcendental integral but he had also shown 

that the integral could not remain single-valued in a restricted domain. 

Nevertheless, Poincar6 did also admit that there was a sense in which Bruns' result 
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was more general than his, since Bruns had shown the non-existence of an integral 

for any value of the masses, whereas his method was only valid for sufficiently 

small values of the masses6. 

7.2.3 Volume 11 

Throughout his researches Poincar6 had become increasingly aware of the 
differences which had evolved between the perceptions of mathematicians and 
astronomers as to what constituted a rigorous solution to a problem in celestial 

mechanics. As indicated in 6.3, this difference largely manifested itself through 

their respective understanding of the concept of convergence and, as illustrated by 

the controversy between Gylddn and Poincar6, this difference sometimes led to what 

appeared to be inconsistent results, which were followed by disagreements between 

the different proponents. Poincar6 now tackled this problem by making a close 

analysis of the principal methods for solving the equations of motion which were 

currently in use by astronomers, and carefully explaining the reasons for the 
discrepancies between the results derived in each of the disciplines. The outcome 

was an account of the astronomers' methods presented to facilitate comparison 
between them rather than to make them amenable to numerical calculation. 

Each of the methods which Poincar6 had selected to discuss represented an attempt 
to expand the coordinates in the planetary theory as series in which all the terms 

are periodic, the secular terms having been eliminated. He recognised that common 
to all the methods there was one question which required very careful scrutiny: the 

question of the convergence of the series derived. 

For a mathematician before a series can be described as convergent it has to be 

rigorously proved to be so, whereas for the practical purposes of an astronomer, a 

series may be considered convergent if the first, say, 50 terms decrease sufficiently 

rapidly, with no account being taken of any later terms. To quote Poincar6's 

example, given the two series 

6 Painlev6 11897a, 1898] gave an extension to Bruns' theorem which showed that apart from the 
classical integrals the n body problem has no other integrals which are algebraic functions, of the 
velocities. In f1900] he made the corresponding extension to Poincard's theorem. Bruns' and 
Poincard's theorems were more restrictive in that they only allowed for integrals which are 
functions of both the coordinates and the velocities. 

tý 
[1924) proved that PoincaWs theorem no longer holds if the restriction that the integral Cher 

must e expanded in powers ofu is relaxed. 
Wintner pointed out [1941,97,2411 that since Bruns' and Poincard's results are only valid for 
unspecified values of the masses they are void of actual dynan-dcal interpretation. 
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a mathematician would consider the first to be convergent and the second divergent, 

whereas an astronomer would label them conversely [MN H, 1]. Nevertheless, both 

approaches have a validity in their respective domains: the first in theoretical 

research and the second in numerical application, the point is that it is essential to 
know which domain is being considered before a decision is made on the approach. 

As Poincar6 had made clear in his introduction, from a practical point of view, the 

question of whether the series was actually convergent or not was not the important 

issue. An asymptotic series, although divergent, can provide a very good 

approximation to a function and can be of great practical value. What is important 

is to have an idea of the upper limit of the error involved in using such series, and to 

appreciate that these series cannot be used to establish theoretical results such as 
the stability of the solar system. Thus Poincar6's objective in making this 
distinction was not in any way aimed at devaluing the work of astronomers but 

rather his hope was to clarify an area of possible misunderstanding. Indeed, he 

emphasised the legitimacy of asymptotic expansions in practical work, quoting 

results from his earlier paper on the topic [1886a]. 

Poincar6 began with Lindstedt's method, having acknowledged its equivalence with 
the method put forward by Newcomb in [1874]7. Using Han-dlton-jacobi theory he 

generalised the method by developing a full canonical analogue which included 

results from his earlier paper [1889]. He also identified and resolved two particular 
difficulties with the method. The first, which he had previously described in the 
Comptes Rendus [1892], concerned the condition that for the method to be valid there 

should be no linear relationship between the mean motions. But, as he observed, in 

the three body problem the mean motions are not only those of the two planets but 

also those of the perihelions and nodes, and in the first approximation, that is in 
Keplerian motion, the perihelion and node are fixed and the mean motions are 
therefore zero and the condition is therefore not fulfilled. He showed how this 

property could be taken into account by making an appropriate change of variable. 
The second problem was related to the magnitude of the eccentricities, the squares of 

which enter into the denominators of the expansions and so cause problems when 

7 As a result of PoincarOs treatment of Lindstedt's method in the Wthodes Nouvelles, the method 
has now become a well-established perturbation method in applied mathematics. See Arnold 
[1988,175-179). 
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they are very small. Poincar6 countered this difficulty by taking a periodic solution 

as a starting point rather than a Keplerian ellipse. 

With regard to the divergence of Lindstedt's series, Poincar6, perhaps with 
Weierstrass' comments in mind, went into the question in a more detailed way than 
he had in [P2]. In his discussion of the method itself he had shown that the 
Hamiltonian equations (7.21) can be satisfied by series of the form 

x, = xio + pxil + pIxi2 + ... 
(i =n) 

y, = W, + py, l + p2yJ2 + ... 

where the coefficients x, A (or y, A ) are periodic functions of wi = nit + tui, and the 
frequencies are given by the series 

n, = n, P + pnl + p2n, ý + ... , 

and, in the case of two degrees of freedom, the coefficients xil can be represented by 

series of the form 

xil Ao+ 1B,,,, Sin(M, Wl + n12W2 + 

mjn, O +M2n2o 

To prove that the series do provide a valid solution to the differential equations, it 

is a question of proving the convergence of both the series (7.2. ii) and (7.2. iii). If the 

series (7.2. iii) are uniformly convergent, then (as Poincar6 had shown in [1884b]) the 

absolute value of the coefficients 
B,,, 

M, nlo + nl2n2o 
(7.2. iv) 

must be bounded, in which case njO and 7120 must be incommensurable unless of course 
B=0. Nevertheless, even if the frequencies are incommensurable the series can still 
be divergent since it is always possible to find aB such that the denominator is as 

small as desired and the absolute value of the coefficients (7.2. iv) is therefore not 
bounded. But, on the other hand, it is also possible to choose the values of njO and n2o 

so that the series are convergent, and Poincar6 gave the example of the case where 

the ratio of the frequencies is incommensurable but the square is commensurable. 

Furthermore, since the the frequencies are determined by observation, they can only 
be given to within a certain approximation, and therefore it is always possible to 

choose the frequencies so that the series are convergent and at the same time remain 

within the limits of the approximation. The next question is then whether the 

series are convergent for all values of the constants of integration x, jO within a certain 
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interval (since the n, O depend on the x, O). It turns out that although in general this is 

not the case, in practice it is always possible to restrict sufficiently the calculation 
so that the series (7.2. iii) are only composed of a finite number of terms and the 

series (7.2. ii) can then be formed. 

It therefore remains to discuss the convergence of series (7.2. ii). In this case, there 

are two questions to consider. First, are the series uniformly convergent for all values 

of p and xjO within a certain interval? And second, are the series uniformly 

convergent for all sufficiently small values of P for suitably chosen values of xjO7 
Poincar6 showed that the answer to the first question was no, i. e. that the series 

were divergent. With regard to the second he distinguished between the case when 

the frequencies depend on the parameter p and the case when the frequencies are 
independent of p as above. In the first case, he observed that for sufficiently small 

values of y it was always possible to find values of p such that the frequencies were 

rationally related (since the ratio is a continuous function of P). The series then 

represent a periodic solution of the Hamiltonian equations for all values of the two 

constants of integration tui. Hence if the series are convergent then corresponding to 

this ratio there are a double infinity of periodic solutions. But as Poincar6 had 

previously shown both in [P2] and in IMN 1], this only occurs in very exceptional 

cases. As a result he concluded that the series (7.2. ii) were not convergent but with 

the important caveat that: 

"The preceding argument does not suffice to establish this point with 
complete rigour. " [MN 11,103]8. 

When the frequencies are independent of the parameter, the question is whether 

values of x, P can be chosen so that the series are convergent. In this situation the 

choice of the values of xjO can be made by imposing some condition on the ratio of the 
frequencies such as, for example, its square being rational. But in this case Poincar6 

was even more non-committal. AD he would say was that: 

"The arguments presented in this Chapter do not allow me to affirm that 

this (i. e. that the series are convergent) cannot happen. They only allow me 
to say it is very unlikely. " [MN 11,105). 

8 Moser [1973,9] mistakenly ascribes this quote to the case where the frequencies are 
independent of the parameter. 
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Thus although Poincar6 had reached fundamentally the same conclusion with 

regard to the divergence of the series as he had in [P2], his approach was altogether 

more thorough and, importantly, he had cast a shadow of doubt over his results in 

the cases where the frequencies can be chosen in advance. Nevertheless, despite 

Poincar6's note of caution it was generally accepted that he had proved the 
divergence of the series with the result that it looked as if Weierstrass must have 
been wrong. From what Poincar6 had shown, there did not appear to be a set of 

conditions under which the series were in general convergent. But, almost seventy 

years later, it was shown that Poincar6's reservations were indeed prescient, for, 

contrary to expectations, the question was finafly resolved in Weierstrass' favour by 

Kolmogorov, Arnol'd and Moser whose contribution is outlined in the Epilogue. 

With regard to the work of Gyld6n, Poincar6 centred on the integration of the 

particular form of Hill's equation given by 
d2X 
-=x (-q2 + qlcos2t) dt2 

which Tisserand [1894, Chapter 1] had called the Gyld6n-Lindstedt equation. 

Poincar6 described not only Gyld6n's method of integration but also the methods of 
Bruns, Hill and Lindstedt. He also discussed the more difficult non-linear equation 

of evection9 
dlx 
Ttj +x(q2-qcos2t)=ao(xt) 

which had also been extensively analysed by Gyld6n. 

In the final part of the volume Poincar6 considered the problem of small divisors 

and turned to a method devised by Bohlin. Bohlin's method was essentially an 
improved version of Delaunay's in that it involved the same basic ideas but without 
the inconvenience of numerous changes of variable. However, although the method 
did successfuly eliminate small divisiors it had the disadvantage of generating the 

reciprocal problem of large multipliers. The analogy between Bohlin's series and 
PoincarOs series for the asymptotic solutions of the restricted problem referred to in 

the introduction to [172] is here clear to seelO. Moreover, to prove the divergence of 
Bohlin's series Poincard used the same example as the one he had used to prove the 

9 The evection is the largest lunar perturbation and is caused by the periodic variation in the 
eccentricity of the lunar orbit. 
1 ()See 5.3.2 and 5.6.7. 
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divergence of his own series. In the final chapter Poincar6 extended Bohlin's 

method in order to eliminate some of the difficulties which arise when the basic 

method is applied to the three body problem. 

In this second volume Poincar6 forcefully demonstrated the importance of 
understanding the nature of the convergence of the different series used in the 

expressions for the coordinates of the planets. He identified the respective 
advantages and disadvantages of each of the different methods for obtaining these 

series, while at the same time making improvements and corrections. He recognised 
Newcomb's and Lindstedt's methods to be the simplest, and in particular 

recommended them to be used when there was not a problem with small divisors. 

His verdict on Gyld6n's methods was that although they were too complex to be of 
any real practical help, they were extremely valuable both in terms of the insight 

they lent to particular problems and in terms of their use in overcoming specific 
difficulties. In the case where the mean motions give rise to the problem of small 
divisors, then PoincarOs analysis had shown that it was necessary to use 
Delaunay's or Bohlin's methods. In particular, in the case of the three body problem 
Poincar6 preferred Bohlin's methods, which were similar to his own. Most 
important of all, in contrast to what their authors' had assumed, he had shown that 

most of these series were not convergent but were instead asymptotic expansions II- 

The methods of Newcomb, Lindstedt and Gyld6n resulting in series in p, and Bohlin's 

method resulting in series in 4-1-1 
- 

7.2.4 Volume III 

In the final volume of the Mithodes Notivelles Poincar6 concentrated on the 

geometric aspects of his investigations. The first third of the volume is devoted to 
the theory of invariant integrals where the topic is given a much improved and 
more logical structure than in [P2]. Poincar6 applied the theory to the general three 
body problem and concluded with a table detailing the number of invariants in the 
different formulations of the problem. He also included a long discussion on 
invariant integrals and asymptotic solutions in which he proved that in the case of 

Baker [1915) proved that the fomial series solution to the equation 
d2X YI= A coscd + Bcosfit, dtT +x (1 + 0' 

where A and B are small, a and P are incommensurable, and A and B have a small common factor 
p, was not, as Poincar6 had claimed [MN 11,277], divergent. 
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the Hamiltonian equations it is extremely unlikely that there exist any other 

algebraic or quadratic invariant integrals other than those he had already found, 

showing how this fundamental property is related to the non-existence of any new 
integrals for the equations. With regard to the geometric theorems which had been 

established at the end of the chapter on invariant integrals in [P2], he included 

these in a separate chapter on the theory of consequents where he gave them a more 

comprehensive treatment than in [P2]. 

On the question of stability in the three body problem, Poincar6 stated three 

sufficient conditions: 

1. The bodies can never get infinitely distant from each other; 

2. The mutual distances between the bodies is never less than a given limit; 

3. The system returns infinitely often arbitrarily close to its initial position; 

As he observed, Hill had already proved that the first condition was satisfied in 

the case of the restricted problem. He then left on one side the second condition, and 

went on to establish, via his recurrence theorem, as he had done in JP2), that the 

third condition is generally satisfied for the restricted problem, although the result 

cannot be extended to the general problem. 

He gave periodic solutions of the second class, those periodic solutions which make 

more than one orbit around the primary, a more extensive analysis than in [P2]. In 

particular he developed the connection between these solutions and the principle of 
least action, a topic which he had introduced in two notes in the Comptes Rendus 

[1896c, 1897]. In the first of these notes he had shown that this principle could be 

used to infer the existence of different kinds of periodic solutions, where the law of 

attraction is some inverse power of the distance higher than the square. In the 

second note he used the principle to distinguish between two different types of 

unstable periodic solutions, showing that if the constants of motion are varied 

continuously it is impossible to move directly between the two types of unstable 

periodic solu tion without passing through a stable periodic solution. 

PoincarC- also related his study of the periodic solutions of the second class to the 

periodic solutions discovered by Darwin through numerical analysis. He found that 

almost all of Darwin's results were in accordance with his own theory. The one 
discrepancy concerned the stability of a certain family of Darwin's periodic 
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solutions where Poincar6 identified an error in Darwin's theory. This is explained 
in 8.4.1 in the discussion of Darwin's work. 

At the end of [P2] Poincar6 had postulated the existence of a system in which two 

very small bodies are describing orbits around one large body and the orbits are such 

that collisions almost take place at definite intervals. These orbits would then be 

ellipses with elements which remain almost constant except near each "collision" 

point where they suddenly change dramatically. In other words, Poincar6 

considered the possibility that all the elements in the system could vary in such a 

way that the motion was periodic. He now investigated this idea further. 

He considered equations (7.2. i) with p degrees of freedom, with periodic solutions of 

period T such that when t is increased by T, the variables yl, ..., y;,, increase by 

2k, 7r, ..., 2kp7r respectively, where k,, ... ' kP are any integers. In the case of the three 
body problem y,,..., y6, represent the mean longitudes, the perihelions and the nodes 

of the planets, and FO depends only on the variables. x, and X2 which are proportional 
to the square roots of the major axes. A solution will then be periodic if the 
differences between the y increase by multiples of 21r as t increases by a period T, and 
in tl-ds case F only depends on these differences. If al7r, ..., agr are the increases in 

YI - Y6, Y2 - Y61 Y3 - Y61 Y4 - Y6f YS - Y6f 

as t increases by a period, then, as Poincar6 had previously established in Volume 1, 

there are periodic solutions for arbitrary values of k,, k2 providing k3, k4 and k5 are 

zero. Poincar6 now considered the idea of solutions in which the five integers k take 

arbitrary values. 

From considerations of continuity and the fact that very little modification is 

required to the function F in order to regain the original Hamiltonian equations it 

seems likely that such solutions do exist. But when the mass parameter p is zero the 

two planets follow Keplerian orbits and it appears then that k2, k, and k5 must be 

zero. In order to counter this difficulty Poincar6 assumed that the two planets 
describe almost Keplerian orbits except at a certain moment when their mutual 
distance becomes small enough to produce a strong perturbation, as a result of which 

their perihelia and nodes change by large amounts. For such orbits the perihelia 

and nodes are certainly not fixed and so for p=0, k2, k, and k. are therefore not zero. 
Although Poincar6 then claimed that his procedure was sufficient to prove the 
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existence of such orbits which he called periodic orbits of the second species, it is 

now not clear that his claim is justified12. 

The final chapter of Volume III was devoted to a discussion of doubly asymptotic 

solutions. TNs contained essentially the same analysis as in [P2] but with one 
important addition. In [P2] Poincar6 had shown that corresponding to each unstable 

periodic solution there is a system of asymptotic solutions, the sets of which form 

asymptotic surfaces, and the intersection of these asymptotic surfaces with a 
transverse section forming an asymptotic curve. He had distinguished two families 

of asymptotic solutions, one family which approached the periodic solution as 
t ---> -- and one family which approached it as t -ý +o-. He had then proved that 

that two asymptotic curves can only intersect if they come from different families 

and if such an intersection should occur then this defined a doubly asymptotic 

solution. 

However, in [P2] Poincard had only considered the possibility of doubly asymptotic 

solutions arising from different families of asymptotic solutions associated with the 

same unstable periodic solution. Now he proposed the idea of doubly asymptotic 

solutions arising from asymptotic solutions associated with two different unstable 

periodic solutions. To distinguish between the two different types he called the 
former homoclinic solutions and the latter heteroclinic solutions. 

He established the existence of homoctinic solutions in the restricted three body 

problem, as he had done in [P21, but this time he added an unequivocal statement 

about their bewildering complexity: 

" When one tries to depict the figure formed by these two curves and their 
infinity of intersections, each of which corresponds to a doubly asymptotic 

solution, these intersections form a kind of net, web, or infinitely tight mesh; 

neither o the two curves can ever intersect itself, but mustfold back oil itself f 

in a very complex way in order to intersect all the links of the mesh 
infinitely often. 

One is struck by the complexity of this figure that I am not even attempting 
to draw. Nothing can give us a better idea of the complexity of the three- 

12 Levy [1952] questions the sufficiency of PoincaWs proof and observes that P. Semirot in his 
thesis (1943) gives some counterexamples. 



204 Poincari's related work after 1889 

body problem and in general all the problems of dynamics where there is no 
single-valued integral and Bohlin's series diverge. " [MN HI, 389). 

Poincar6 concluded with a discussion of the heteroclinic solutions in which he 

proved, as he had done in the homoclinic case, that the existence of one solution of 
this kind is sufficient to prove the existence of an infinite number. 

The difficulties that Poincar6 had encountered in trying to understand doubly 

asymptotic solutions is evident from the fact that almost ten years had passed since 
he had first introduced the idea in [P2], and despite the time interval he had added 

relatively little to his original discussion bar the inclusion of heteroclinic solutions. 
It seems likely that the reason that he did not consider the possibility of the latter 

in [P2] was because he had discovered the homoclinic solutions as a result of 

realising that the asymptotic surfaces arising from one unstable periodic solution 

were not closed but intersecting. Thus it would have been quite natural for him only 
to consider the implications of this particular intersection. In any case since he had 

found this result sufficiently shocking in itself, it is perhaps not surprising that he 

did not consider the possibility of any even more complex solutions. For a homoclinic 

solution only involves one curve folding back on itself without self-intersecting 

while simultaneously cutting another curve infinitely often, but a heteroclinic 

solution involves two curves folding back on themselves and is as a result 

correspondingly more complicated. It is therefore no wonder to find that 

contemporary reviewers of the Wizodes Nouvelles had nothing to say about 
Poincar6's analysis of these solutions, except to reiterate his words about their 

complexity! 

FIG. 7.2. i, which is a modern representation of Poincar6's homoclinic and 
heteroclinic solutions, has been included to give an indication of the complex 
behaviour of these solutions. They represent the intersections of the asymptotic 

surfaces with a transverse section showing the solutions in the early stages of their 

development. S and S' are the unstable periodic solutions, C and C' are two 

asymptotic curves corresponding to S, D and D'are two asymptotic curves 

corresponding to S, and P and Q are what today are known as a homoclinic and a 
heteroclinic point respectively. 
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7.2.5 Reviews 
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An enthusiastic review of IMN I] was given by Brown [1892] in the first volume of the 

Bulletin of the New York Mathematical Society, in which he welcomed the 

appearance of a mathematical treatise on the problems of celestial mechanics 

while at the same time recognising the wider applications of Poincar6's methods. In 

particular, he was impressed by PoincarOs "penetrative genius" for dealing with 

convergence arguments, and Poincar6's treatment of periodic solutions with its 

application for the lunar theory. Brown successfully managed to communicate in a 

concise style unencumbered by mathematical detail the essence of most of Poincar6's 

ideas, although, whether due to a time constraint (the review was in print by the 

middle of 1892) or whether because he was unfamiliar with the mathematics, he 

glossed over the last two chapters, the one on the perturbation function and the one 

on the theory of asymptotic solutions, only signalling the titles and giving no 
indication of the contents. 

Whittaker's [18991 report contains a brief review of all three volumes of the 
Mthodes Nouvelles but due to similarities with JP2), his observations are mostly 

confined to a brief outline of the new results in the second volume. As with his 

commentary on [P21 there is nothing in the way of subjective discussion, but 

Heteroclinic solution 
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nevertheless it is surprising to find that there is no real indication of the stature of 
the work. 

An extremely detailed synopsis of [MN I] was given by Perchot [18991, presumably 

prompted by the appearance of [MN III], who noted Poincar6's emphasis on the 
importance of questions of convergence. Although Perchot went into considerable 

mathematical detail, he essentially reproduced Poincar6's own arguments without 

providing any additional explanations. Since he made almost no comment on either 
PoincarOs methods or his results, his review provides no new insights into any of the 

material or how it was received. Maybe he felt it was not his position to pass 
judgement on Poincar6 or maybe he simply did not have enough confidence in his own 

ability to deal with the mathematics. 

Maurice Hamy [1892,1896,1900], an astronomer at the Observatory in Paris, 

provided coherent and concise reviews of all three volumes of [MNI. Clearly meant 
for a general scientific audience, these reviews conveyed the spirit of Poincar6's 

ingenuity without getting lost in the mathematical detail. 

7.3 The three body problem and celestial mechanics 
Of Poincar6's many other papers on the three body problem and celestial mechanics 

which he produced after [P2], several heralded results which later appeared in a 

volume of [MN] and several were refinements to results which had already been 

published. Included amongst these were several papers on the expansion of the 

perturbation function, and others on the calculation and convergence of the series 

used to integrate the differential equations of the three body problem. These will 
not be discussed here but they can be found in Volumes VII and VIII of the Poincard 
CEuvres. 

7.3.1 Bruns'theorem 

In [1896b] Poincard added further to his work on the question of the non-existence of 

new integrals of the three body problem by making a correction to Bruns [1887] 

theorem in which Bruns had proved the non-existence of any new single-valued 

algebraic integral for the general three body problem for all values of the mass 

parameter. 

The mistake in Bruns' paper related to an expression wl-dch Bruns had believed to be 

an exact differential, a condition which had to hold for his theorem to be true. 
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PoincarOs correction involved giving a simple counter example which demonstrated 

that the condition did not hold in the generality which Bruns had described. 

However, PoincaWs discovery did not in fact invalidate Bruns' result, for he went on 
to prove that although it was possible for functions to exist which did not satisfy 
the exact differential condition but which satisfied all the other necessary 

conditions for Bruns theorem to be true, these particular functions could not arise from 

the three body problem. Thus, although Bruns' argument had been technically 
incorrect, his conclusion regarding the integrals of the three body problem was in 

fact valid. 

Characteristically, Poincar6 did not elaborate on the details of his method and only 

sketched his proof in the broadest outline. It was clearly a delicate analysis, for not 

only was a detailed proof supplied by Forsyth found by Whittaker to contain an 

error, but Whittaker's own proof, although rectifying Forsyth's error, also included 

an error. The latter was pointed out by MacMillan [1913] in his discussion of 

Poincar6's correction. 

7.3.2 Gyldin's horistic methods 

Poincar6's discussion of Gyld6n's horistic methods can be traced through a series of 

notes in the Comptes Rendus culminating in a memoir in Acta [1905a]. Beginning in 

[1901] he raised objections to Gyld6n's first horistic method, and then in [1904] turned 

his attention to the second method. In the latter his investigations showed that 

Gyld6n's method could not, as Gyld6n had claimed, be used to determine the general 

solution to the differential equations, although with certain modifications it could 
be used to determine a particular periodic solution. In addition he proved the 

falsity of Gyld6n's conclusion that high order terms in the perturbation function 

could never cause libration. Shortly afterwards, BAcklund, who after Gylddn's 

death in 1896 had been given the responsibility for editing Gyld6n's manuscripts13, 

called into question PoincarOs results, which in turn elicited a response from 

Poincar6 11904a]. Poincard brought together his ideas on Gyld6n's theory in a more 

comprehensive form in [1905a]. 

Although Poincar6 began 11905a] by pointing out the great service Gylddn had done 

to celestial mechanics by the creation of new methods which had been used to great 

effect in, for example, the theory of small planets, he further observed that these 

13 See Whittaker 11899,144]. 
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had now been largely superceded by more convenient methods such as those of Hill 

and Brown, and he was unable to speak so kindly of his later work. The paper is 

essentially a criticism of the method which Gylddn had developed in order to 

overcome the problem of small divisors and which Gyld6n had described in a long 

paper on the convergence of series used in celestial mechanics [1893]. 

Since the usual methods used to solve problems in celestial mechanics result in 

solutions with certain terms which have coefficients of the form blPI which become 

infinite when p vanishes, it is clearly desirable to try to improve the methods so 
that they do not result in terms of this type. What Gyld6n tried to prove was that if 

when using the traditional methods a more exact calculation is made then these 

terms would not arise and instead there would be what he called horistic terms, 
these being terms with coefficients of the form bl (v2 + p2), v being a very smaU but 

non-vanishing quantity. The point being that if Gyld6n was right and these terms 
did exist then they could be used to prove the convergence of the series. In addition, 
Gyld6n had argued that the horistic method led to an important result concerning 
the conditions for libration. As Poincar6 was to show, both these conclusions were 
false. 

Originally Poincar6 had believed that the mistakes in Gyld6n's paper derived from 

Gyld6n's misunderstanding of what was meant by a mathematical proof of 

convergence. Moreover, since Gyld6n's method was so obscure, Poincar6 felt very 

reluctant to try to unravel the errors, especially as he thought, like Hill, that this 

obscurity would deter anyone else from using the method and so the errors would not 

get perpetuated. As a result, he had been tempted to let matters rest. But on a more 

careful examination of Gyld6n's paper he found, apart from the problems relating to 

the definition of convergence, that there were also errors contained in Gyld6n's first 

approximations which occurred right at the beginning of the analysis. In addition, 

other astronomers and mathematicians, notably Bdcklund, had been tempted into 

applying the method to practical problems and had run into difficulties. Thus 

Poincar6 eventually felt compelled to try to provide an explanation for the 

mistakes. 

In addition to trying to identify the faults in Gyld6n's analysis, Poincar6 was also 

anxious to put the record straight regarding Gyld6n's result about libration. In the 

final part of his paper, Gyld6n had applied the principles of his method to the 

three body problem with the result that he thought he had proved that higher 
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order terms in the perturbation function were not responsible for fibration. This 

deduction was based on the belief that in these higher order terms the horistic 

terms, which oppose libration, dominate. Poincar6, referring to his own results in 
[MN I] showed why this conclusion was false. His argument was based on the fact 

(which he had already proved) that each term of the perturbation function 

(however high the order) was equivalent to a system of periodic solutions. Since 

close to each stable periodic solution (there being as many stable as unstable 

periodic solutions) there are solutions which oscillate and cause libration, this 

means that any term in the perturbation function can cause libration, providing not 

all the characteristic exponents vanish, which for terms of sufficiently high order 
does not occur. Thus Gyld6n's conclusion is false. 

Although Poincar6 had been able to uncover some of the errors in Gyld6n's paper and 

prove the falsity of his conclusions, he was still unable to grasp fully the intricacies 

of Gyld6n's procedures. His final comments were somewhat reminiscent of his 

remarks about Gyld6n's [18871 paper discussed in 6.3: 

"Several of his (GyId6n's) results are clearly correct, but they could have 

been reached by a much quicker method; a great number are clearly false; 

most of them are given in a way which is too obscure to decide whether they 

are true orfalse. " [1905a, 618]. 

7.3.3 General papers 

Apart from the papers dealing with specific questions arising in celestial 

mechanics, Poincar6 also wrote three papers of a more general nature, two on the 

three body problem and one on the stability of the solar system. These embraced a 

greater practical perspective than the other papers and were a response to the need 
for a more popular exposition of his ideas. 

Mention has already been made of Poincar6's synopsis of [P2] which appeared in the 

Bulletin Astronomique [1891]14. This was essentially a. n outline of the main ideas 

and results from [P21 framed in such a way so as to be accessible to those, such as 

astronomers, whose interest in the three body problem was motivated by practical 

considerations. Thus in this paper he concentrated on his use of the more familiar 

methods of infinite series rather than on his innovative geometric insights. He 

again referred to the practical value of his periodic solutions, pointing out that, 

14 This paper was also reproduced in its entirety by Tisserand 11896, Chapf er 271. 
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although they were clearly an artificial construction since the probability of the 
initial conditions being such as to generate them was theoretically zero, they could 
be used to provide a very good first approximation for the intermediate orbit. 

During the same period, Poincar6 also provided a second review of [P2] where the 

exposition of his results regarding the restricted three body problem was almost 

completely descriptive [1891a]. He illustrated the concepts using examples rather 
than theoretical mathematics and even managed to avoid including a single formula 

either for a differential equation or an infinite series. Again he made a reference to 

the practical value of his theoretical solutions, and in addition, he also touched on 
the relationship between some of his mathematical results and the physical 

question of the stability of the solar system. 

The stability of the solar system was also the subject of an article [18981 which 

appeared not only in two different publications in France in 1898 but also in Nature 

(in translation) in the same year. The article explained the basis of earlier 

stability proofs, such as those supplied by Lagrange and Poisson, which were 
founded on methods of successive approximations which showed that the variations 

in the elements were reduced to oscillations of a small amplitude about a mean 

value, and that this mean value itself was subject to oscillations. It also contained a 
discussion of the limitations afforded by the theoretical representation of the solar 

system as a system of material points subject to the exclusive action of their mutual 

attractions. 

Acknowledging that real bodies are subject to forces other than gravitational 

attraction, Poincar6 enquired into the nature and magnitude of what he termed these 

complementary forces. For, as he observed, if it could be shown that the effect of 

these forces was actually greater than the effect of the terms neglected by the 

approximations made in a theoretical proof of the stability, then the degree of 

accuracy lost through making the approximations could be legitimately ignored. 

The question Poincar6 posed, therefore, was whether the stability was more easily 
destroyed by the complementary forces or by gravitational attraction. 

With regard to the nature of these complementary forces, there was of course the 

recognised problem of the inconsistency of Newton's law with regard to the motion of 
the perihelion of Mercury. But, as Poincar6 pointed out, providing any replacement 
law was sufficiently close to the inverse square law, it could be considered as 
equivalent from the stability point of view and thus would not effect the final 
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outcome. However, he identified another more compelling reason which argued 

against stability: the second law of thermodynamics, according to which there is a 
continuous dissipation of the energy generated by transforming work into heat. He 

suggested that this manifested itself in the motion of celestial bodies, both in the 

continuous action of tides, which, since the bodies are not perfectly elastic occurs 
even when the bodies are solid, and in the forces created by the magnetic fields of 
the bodies. 

Having examined these forces he concluded that although the dissipation of energy 

resulting from their effect was extremely slow, it was still fast enough to be greater 
than the effect which would be imposed by those terms which were neglected by 

approximation in a theoretical proof of stability. In other words, from a practical 
point of view, Poincar6 believed that the accuracy of the theoretical proof had 

reached its useful limit, although that did not in any way detract from the interest 

or value in continuing research into the purely theoretical problem. 

7.4 General dynamics and "The Last Geometric Theorem" 
7.4.1 Geodesics on a convex surface 

As Poincard had stressed in [P2] and [MN 1], the study of periodic solutions was of 

the utmost importance in analYsing the motion in the three body problem. However, 

after his initial assault on the topic, more than ten years elapsed before he 

presented another paper on the subject, and when he did it was within quite a 
different framework. His discovery of the complexity of the periodic and 

asymptotic solutions of the restricted three body problem had made him realise 
that to gain a greater understanding of the underlying dynamics it was first of all 

necessary to study a simpler dynamical problem than the one he had treated. The 

paper [1905b] he presented at the St Louis Congress investigated just such a 
dynamical problem: the question of the existence of geodesics on a convex surface. On 

the one hand it is a problem with two degrees on freedom and so in that sense 

analogous to the restricted three body problem, while on the other, there is the 

inherent simplification from the lack of singular points which implies a constant 

velocity which can be regarded as given. Furthermore, it has a direct application to 

the three body problem since the trajectories of the three body problem are 

comparable to geodesics on such a surface, and the closed geodesics therefore 
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represent periodic solutions. Nevertheless, despite the simplification, it is still an 
extremely difficult problem. 

The force of the paper lay in PoincarOs use of variational calculus and the method 
of analytic continuation. Having shown how the property of a minimum used to 

characterise geodesics can be used to establish the existence of closed geodesics on an 
ellipsoid only slightly different from a sphere, and moreover that the total number 
of closed geodesics must be odd, Poincar6 then considered a continuous family of 

analytic convex surfaces depending analytically on a parameter t, connecting a 
sphere where t=0 to a given surface where t=1. He found that by continuously 
varying the parameter the closed geodesics appeared and disappeared in pairs 
Furthermore, using topological considerations he was able to distinguish between 

the different types of closed geodesics by the number and arrangement of their 
double points. He was then able to extend his earlier result to show that on an 
arbitrary convex surface there is at least one closed geodesic without a double point, 

and, furthermore, since on an ellipsoid there are three, by continuity there are 

alwa ys an odd number of them. Thus Poincar6's results pointed towards the idea 

that there were in fact at least three closed geodesics on such a surface, although he 

did not attempt to prove such a conjecture. Later Birkhoff established the existence 

of three closed geodesics on an arbitrary convex surface, subject to certain limitations 

[1927,180], and a complete solution was finally provided by Lusternik and 
Schnirrelmann [1930]. 

Poincard also addressed the question of the stability of the closed geodesics. Here 

again he used his idea of characteristic exponents, and he also drew specific 

analogies with his results from [MN III] concerning periodic solutions and the 

principle of least action. Considering all the closed geodesics without a double point 

on an arbitrary convex surface, he found that the excess of the number which were 

stable over the number which were unstable remained constant. Furthermore, since 

on an ellipsoid this excess is equal to one (the largest and smallest of the principal 

ellipses on an ellipsoid are stable closed geodesics while the third is unstable), by 

continuity there is always at least one stable closed geodesic on an arbitrary convex 

surface. 

Although extensive, Poincar6's account was by no means exhaustive. He did not, for 

example, consider higher dimensional ellipsoids, and with regard to his result that 

closed geodesics appear and disappear in pairs, he did not take into account the fact 

that infinite families of closed geodesics of the same length can appear on a 
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particular surface, such as occurs in the case of a sphere. Furthermore, although he 
had shown that for values of t sufficiently close to 0, it was possible to use analytic 
continuation to obtain from the principal ellipses on the ellipsoid an odd number of 
closed geodesics on an arbitrary convex surface, he gave no criteria for how far this 

method could be carried out15. 

7.4.2 'The Last Geometric Theorem" 

Poincar6's last attack on the three body problem [1912] was also connected with the 

question of periodic solutions but again the form was quite different to his original 
investigations. This time his arguments were based on considerations of algebraic 
topology. In the paper, which was published only a few weeks before his death, 
Poincar6 announced a theorem which if shown to be true would confirm the existence 
of an infinite number of periodic solutions for the restricted three body problem for 

all values of the mass parameter g Furthermore, he also believed that the theorem 

would eventually be instrumental in establishing the denseness of the periodic 
solutions. However, although he had been working on the theorem for two years he 
had not been successful in finding a complete proof. Nevertheless, as he explained in 
the introduction, he felt it important to publish it despite the fact that it was in an 
unfinished state: 

"It seems that in these circumstances, I should refrain from any publication 
for as long as I am unable to resolve the question; indeed after the useless 

efforts that I have made for so many months, it appeared to me that it 

would be wisest to leave the problem to mature, while resting for several 

years; that would be all very well if I was certain to be able to return to it 

one day; but at my age I cannot be sure. On the other hand, the subject is so 
important (and I will search further to understand it) and the set of results 

already obtained so considerable, that I am resigning myself to leave them 

incomplete. I hope that the mathematicians who will interest themselves 

in this problem and who without doubt will be more successful than me, will 
be able to take advantage of them and use them to find the way in which 
they should go. " [1912,500]16. 

15 For a discussion of the difficulties and firnitations of Poincard's paper see Morse [1934, 
305-358]. 

16 Painlev6 11912) wntijý& on the day of Poincard's death, described the introduction as a simple but noble testame'n't to a We completely dedicated to the search for truth. 
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As is well known, shortly after PoincarOs death, the young American 

mathematician George Birkhoff [1913] was indeed successful, and supplied a 
brilliantly elegant proof, creating one of the mathematical sensations of the 
decade17. 

Poincar6's theorem can be given in the foRowing form: 

Theorem: Suppose that a continuous one to one area-preserving transformation T 

takes the ring R, formed by the concentric circles of radii x=a, and x=b (a >b> 0), 
into itself in such a way so as to advance the points on x=a in a positive sense and 
the points on x=b in a negative sense, then there are at least two points of the ring 
invariant under T. 

In fact, as Poincar6 observed, to prove the theorem it is sufficient to prove the 

existence of just one invariant point, since topological considerations, show that if 

there is one invariant point then there must be a second 18. 

In considering the application of the theorem to the restricted three body problem, 
Poincar6 began with the customary formulation of the problem in a rotating 
coordinate system with the Jacobian integral, 

l= 
1 (X12 + y12) +H (x, y) = 

where x' and y' are the components of the velocity. The motion then takes place in 

the plane region P defined by H<C which is bounded by a closed curve a. The 

velocity is given in magnitude but not in direction and at each point of a the velocity 
is zero. Therefore to each point of P there correspond an infinite number of elements 
(defined by a particular geodesic together with a point on that geodesic) comprising 
both speed and direction, and to each point of the boundary a there corresponds only 
one element. 

Poincar6 first made a topological mapping of the region P into the interior of a circle 
P' so that the boundary a is mapped into the circumference a. To examine the 

motion in the region P', he considered a circle ywhose plane is perpendicular to the 

plane of P' with diameter MM . where M is a point either in fl'or on a'. and M'is its 

17 Some measure of the effort it required on Birkhoff's part to provide the proof can be estimated 
from the fact that several years later he apparently admitted to losing 30 lbs in weight while 
working on it. See Parikh [1991,40]. 

18 Poincar6 modestly attributed this result to Kronecker, although it essentially derives from his 
own index theorem for the case of the sphere [1885,125). 
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inverse with respect to the circle a. Then to each element through M he made a 
correspondence with a point on y, the correspondence being determined by the 
direction of the element through M. Thus if M is in P' there are an infinite number of 
related points, one for each element, and if M is on a' there is exactly one related 
point. Therefore each element corresponds to one and only one point in space and 
conversely. 

The trajectories are therefore represented by the members C of a family of twisted 

curves, where the closed curves represent the periodic solutions, and one, and only 
one, curve passes through each point in the space. Poincar6 then considered a closed 

curve CO which represents a periodic solution Go, and an area A bounded by this curve 

and which lies on a curved surface S. If A is simply connected and without contact; 
that is no curve C other than CO is tangent to S at a point of A, and if P is a point of A 

with consequent P, then the transformation T which transforms P to P'is a point 
transformation of A onto itself, and as Poincar6 showed, the transformation is 

continuous. He further observed that the transformation T admits a positive 
invariant integral and is therefore area-preserving'9. 

If P is a point of A close to the boundary curve CO, then the curve C, through P, 

represents a trajectory i3l close to the periodic solution Go. Poincard showed that 

when P is very close to CO, a function which he called the reduced argument of P and 
27r 

that of its consequent P' differ by 
cc +m, where ± ia are the non-zero 

characteristic exponents for the stable periodic solution Go, m is an integer, and the 

reduced argument has the property that it varies steadily from 0 to to 27r around Co. 

He next considered a topological mapping of the area A onto the interior of a circle 
so that, using polar coordinates (x, y), CO becomes the circle x=a, and on this circle y 
is equal to the reduced argument. The transformation T then maps the circle into 

itself and each point on the circle is advanced through the angle 
27r 

' By his 
cc +m 

index theorem such a mapping has an odd number of fixed points in the interior of A, 

each of which corresponds to a periodic solution, and at least one of which is stable. 
If PO is the fixed point corresponding to the stable periodic solution, and the 

coordinates are chosen such that PO is the centre of the circle, x=0, then T leaves the 

19 Poincar6 did not prove the proposition conceýniin8 the existence of an invariant integral but 
ft instead made reference to the appropriate parts f the Mithodes Nouvelles. 
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centre of the circle unchanged and maps the circumference onto itself in such a way 
that all the points are moved in the same direction through the same angle. 

If CO' represents the stable periodic solution through PO, and P is now considered to be 

a point close to PO, then Poincar6 showed that in this case the increase in the value 

of y in passing from P to its consequent P. was 21r(p + n) where ± ip were the two non- 

zero characteristic exponents of the periodic solution passing through PO, and n is a 
fixed integer. 

Finally, he considered the iterated transformation P, where p is a positive integer. 

TP therefore conserves both x=a, and x=0, and is area preserving. If T (x, y) = (X, Y), 

then the iterated transformation will give, on x=a, 

Y-y =27rýý a+ nl), 

and on x=0, 

Y-y = 2np(p+ n). 

The transformation is unaltered if Y is increased to Y+2; rq, where q is an integer, 

thus on x=a, 

Y-y ==21r 
p +q 

(a+m )l 

and on x=0, 

Y-y = 2n[p(p+ n) + q]. 

If n is chosen such that (P + n) (ix + m) # 1, then an infinite number of pairs of values of 

p and q can be found such that 

q) [p(p+n) +q] <0 

and hence either, 

1 
>-' >P+n or 

1 
<--' <P+n. a+mp a+m p 

Since the transformation fulfils the conditions for the theorem, if the theorem is 

true there will be at least two points which remain invariant under the 

transformation. Since p and q can take an infinite number of values, if there are two 
invariant points, there will be an infinite number and hence an infinite number of 



Poincari's related work after 1889 217 

periodic solutions. Furthermore, the existence of these periodic solutions does not 
depend on the value of g 

Poincar6 also pointed out that the periodic solution corresponding to a particular 
pair of values of p and q can only disappear if it coincides with either CO or CO', in 

other words ff 

-1 =1 or P+n. 
p a+m 

Birkhoff established the proof of PoincarCs theorem through a reductio ad 
absurdum. His strategy was to show that the assumption that an invariant point 
did not exist for the transformation led to a contradiction. As Poincar6 himself had 

remarked, if there exists one invariant point, then there necessarily exists a second, 
hence the theorem fails if it can be proved that there is no invariant point. 

If T(x, y) = (X, Y) represents the transformation, then the condition that it has no 
invariant point is described by 

(X -X)2 + (Y-Y)2 > d2> 0 

for aH points (x, y) of the ring. 

Birkhoff used the coordinate system x=e, y= r2, whereeis the angle which a line 
from the centre to (x, y) makes with a fixed line through the centre, and r is the 
distance of the point (x, y) from the centre of the ring. The transformation T is then 

given by 

x= O(x, Y), y= (P(X, Y) 
where X-x and Y-y are both single-valued and continuous in the ring R. 

He next considered the transformation T, defined by 

X=X, Y=Y-C, (O<E<b2) 

which takes the circles C,: y= a2, and Cb: y=F, into the circles C. ': y= a2 -C ', and 
Cb': y=F- Eý , respectively. It is then possible to form the auxiliary transformation 

TT, and providing E<d this auxiliary transformation TT, will also have no 

invariant point. 

If now (x, y) are taken to be the rectangular coordinates of a point in the strip S 

-- <x<+-, b25y29a2, 
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corresponding to the ring R, then the transformation TT, carries the upper edge of the 

strip a2 <y :5 a2+ E into the lower edge, and the strip is carried into a second strip 
lying below the first but with a common boundary. By a repetition of the 

transformation a series of strips is obtained with eventually the bottom edge of one 

of the strips, say the kth, overlapping the edge y=R 

Birkhoff next constructed a curve PQ, where P is a point on C, with image P under 
TT,, and Q= P(k) is the point derived from P by a Wold repetition of TT, which is 

the first inter-section of the succession of arcs PP', ..., P(k-I)P(k) with the lower side of 
Cb, i. e. Q lies at most E below Cb (see FIG. 7.4.0. The curve PQ is then invariant 

under TT, 

P 

FIG. 7.4. i. 

C', 
ca. 

Cb 

Cb. 

If a point B moves along PQ, then its image B'under TT, will move along the same 

curve never coinciding with it- (since there are no invariant points under the 
transformation). The angle which the vector BB 'makes with the positive direction 

of the x axis can be taken to be a positive acute angle, and when B has varied to its 
final position, the same angle lies in the second or third quadrant since P(k) lies to the 
left of PO-1) by the hypothesis of the theorem. A rotation of the vector BB'is then 
the least positive angle from the first direction to the second. Furthermore, if B 

moves in any manner from a point on C, to a point on Cb then the corresponding vector 
BB'along the new curve will undergo exactly the same rotation as along PQ. 

Birkhoff considered the inverse transformation T(-') which is similar to T except 

that points on C, and Cb, are moved in the reverse direction. Arguing as above, if the 

vector BB(-') with end point BI-) = T(-')(B) has its initial point B varied from a point 

of C, to a point of Cb, then the angle of rotation will be the least negative angle 
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consistent with its initial and final positions. But the total rotation of BB(-Il is the 

same as the rotation of the vector B(-')B which joins a point B(-') to its image under T. 

Thus by the earlier result, the rotation must also be the least positive angle, which 
is a contradiction. Hence there must be at least one invariant point. To show that 

there are at least two invariant points it is sufficient to observe that the total 

rotation of the vector BB' around the rectangle 0 :5x :5 2yr, F<y :5 a2 is zero, but 

around a simple invariant point it is ± 27r. There must be therefore at least two 
invariant points inside the rectangle. 

Birkhoff continued to work on the ideas involved in Poincar6's theorem, and in 

particular its applications, devoting a chapter to the topic in his general account of 
dynamical systems [1927,150-1881. In [1925] he extended the theorem to a non-metric 
form by removing the condition that the outer boundaries a and T(a) of the ring R 

and the transformed ring T(R) must coincide, and replacing it instead with the 

condition that a and T(a) are met or-dy once by a radial line e= constant. In its 

revised form he proved that the theorem held for ring-shaped regions with 

arbitrary boundary curves, and that there are always two distinct invariant points. 
Since the extension does not involve an invariant area integral it is essentially a 
topological result. Its importance lies in the fact that it can be used to establish the 

existence of infinitely many periodic motions near a stable periodic motion in a 
dynamical system with two degrees of freedom, from which the existence of quasi- 

periodic, i. e. motions which are not periodic but limits of periodic motions, follows. 

In [1928] Birkhoff explored the relationship between the dynamical system and the 

area-preserving transformation used in the theorem. Having shown that corres- 

ponding to such a dynamical problem there exists an area-preserving transformation 
Tin which the important properties of the system for motions near periodic motions 

correspond to properties of the transformation T, he then showed that a converse 
form of this correspondence also exists. In other words given a particular type of 

area preserving transformation there exists a corresponding dynan-Lical system. 

Later Birkhoff [1931] gave a generalisation of the theorem to higher dimensions. 

A further discussion of some of Birkhoff's early work on dynamical systems is given 
in 9.3. 



Associated Mathematical Activity 

8.1 * Introduction 
During the period when Poincar6 was working on the three body problem and 

theoretical problems of celestial mechanics there were of course other 

mathematicians and astronomers independently pursuing related topics of research. 
Mention has already been made of Gyld6n and the somewhat unhappy consequences 

of his priority claim over the discovery of asymptotic solutions, but another 

mathematician whose work (eventually) enjoyed a far happier fate was the 

Russian Alexander LiapunovI. While Poincar6 had been working on the three body 

problem, Liapunov had been engaged in a qualitative investigation into the theory 

of the stability of motion, and in 1892, some two years after its completion, his 

memoir was finally published. However, since the memoir appeared in Russian, the 

penetration of Liapunov's ideas into the mathematical circles of Western Europe 

was initially rather slow, and for the most part they were only known through a 

series of short notes in the Jahrbuch iiber die Fortschritte der Mathematik which 

appeared in 1893 and an extract published in the journal de MathematiqueS2. But 

with the publication of a French translation by Davaux in 1907 (reviewed and 

corrected by Liapunov), the memoir gradually began to reach a wider audience and 

I For a biography of Liapunov see Sn-dmov 11992]. 

2 journal de Mathimatiques (5) 3,1897,8. 
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Liapunov's study of the stability question began to be recognised as forming an 
important complement to the work undertaken by Poincar6. The first part of the 

chapter is concerned with Liapunov's work on the development of stability theory 

and its relationship to the ideas of Poincar6. 

The subject of stability was also taken up in a slightly different way by the Italian 

mathematician Tullio Levi-Civita. Through his combined interest in geometry, the 

three body problem and analytical mechanics, Levi-Civita had been led to the 

study of the qualitative theory of differential equations and associated questions of 

stability. At the turn of the century he produced a long paper on stability theory 
[1901] in which he took account of both Poincar6's and Liapunov's ideas and paid 

particular attention to the restricted three body problem. A discussion of LevP 

Civita's paper concludes the first part of the chapter. 

With regard to the early responses to Poincar6's researches, these can be broadly 

divided into two categories. On the one hand there was the work of those who were 

engaged in pursuing a solution to the three body problem and for whom Poincar6's 

memoir was a source of ideas and inspiration, and on the other there was the work of 
those who focused more generally on the qualitative theory in Poincar6's memoir. 
The remainder of the chapter will be devoted to two topics which fall into the first 

category and concern the progress of the solution of the three body problem: 

regularisation and numerical investigations. The second category, which involves 

the work of Jacques Hadamard and George Birkhoff which formed the basis for the 

emerging theory of dynamical systems is the subject of the next chapter. 

As indicated by Lovett [1912], Poincar6's contribution to knowledge on the three body 

problem served to generate interest in the problem in several ways, but in the years 
immediately following the publication of [P2] and [MN I-III], there was one issue 

which dominated: that of the regularisation of the equations of motion. It will be 

recalled that Weierstrass' description of the problem included the assumption that 

no collisions between the bodies would take place and Poincar6 had based his 

analysis accordingly. But if a complete solution to the problem was to be found then 

collisions had to be taken into account. Since collisions are described by singularities 
in the differential equations, this raised the question of regularisation. Could the 

equations be regularised at the points of singularity? This in turn raised a further 

question about the nature of the singularities. Were collision singularities the only 
type of singularity or was it possible that noncollision singularities could exist? If 
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these problems could be resolved then, as Poincar6 had indicated [1882a, 1886], it 

was theoretically possible that a complete solution to the problem could be found. 

Several distinguished mathematicians applied themselves to these issues and in 

the second part of this chapter consideration is given to the contributions made by 

Paul Painlev6, Tullio Levi-Civita, Giulio Bisconcini, Karl Sundman and Hugo von 

Zeipel. 

Another aspect of the three body problem which has so far eluded discussion is the 

question of numerical solutions. Although Poincar6's interest had been in the 

theoretical side of the problem, to what extent did his results affect the pursuits of 
those seeking a practical solution? One area in which PoincarOs influence is 

unquestionably present is the numerical construction of periodic solutions. Work in 

this field was pioneered by Sir George Darwin who devoted several years to its 

study with notable success. Darwin's work is of particular interest not only because 

he directly inherited ideas from Poincar6 but also because he laid strong foundations 

for a field of activity which is more than ever flourishing today. The availability 

of powerful electronic computers has meant that numerical integration is now often a 

relatively quick and efficient way of gaining an insight into a complex dynamical 

problem, in complete contrast to the painstaking efforts required by numerical 

analysts at the end of the 19th century, of which Darwin's work was a model of 
tenacity. A discussion of Darwin's research on periodic solutions concludes the 

chapter. 

In addition, as a further indication of the extent of Poincar6's sphere of influence, 

mention should be made of some other mathematicians who were motivated by 

considerations not necessarily confined to the realms of the three body problem and 

celestial mechanics, and whose study of Poincar6's techniques resulted in further 

new discoveries in other related fields, although their work will not be discussed 

here. With regard to the theory of ordinary differential equations, Ivar Bendixson 

[1901] successfully extended some of Poincard's ideas concerning the behaviour of 

solution curves near singularities, and included amongst his results is the theorem, 

now called the Poincar6-Bendixson theorem, which provides a positive criterion for 

the existence of a periodic solution in a dynamical system with one degree of 
freedom. 
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Another topic in which notable progress was recorded was Poincar6's theory of 
invariant integrals, as for example in the work of Koenigs [1895] who made a 
connection between it and Lie's theory of contact transformations3. While at the 
beginning of the 1920s Elie Cartan [192-2] undertook an analysis in which he looked 

particularly at the relationship between invariant integrals and his own idea of 
integral forms. In studying the application of the theory relative to the integration 

of differential equations, Cartan also established the link with Lie's theory of 
transformation groups. 

The selection of topics discussed in this chapter is not intended to be a 
comprehensive account of mathematics connected with PoincarOs work on the three 
body problem, neither is their treatment intended to be an in-depth mathematical 
analysis. Rather the objective is to put Poincar6's work into context with some 
contemporary and later research by both indicating how his work fitted in with 
corresponding mathematical ideas and giving an insight into the breadth of his 
influence with regard to the three body problem. 

8.2 Stability 

8.2.1 Introduction 

As has been described in 3.3.2, Poincar6 first discussed the stability of solutions to 
differential equations in [1885]. As he himself had explained, part of his original 

motivation for developing the qualitative theory had been his desire to tackle the 

problem of the stability of the solar system, and so stability per se was a natural 
topic for him to pursue. Furthermore, while he had been discussing stability in 

[1885], he had also been undertaking an investigation into stability of another sort: 
that of the different forms of rotating masses of fluid. This not only resulted in an 
important paper [1885b4] but it also provided the first connection with his work and 
the work of Liapunov. Only the year before Liapunov had completed his master's 
dissertation on the subject of the stability of figures of equilibrium, and, as Gray 

[19921 has pointed out, there were strong similarities between his methods and those 

3 See Whittaker [1937,275]. For a thorough systematic study of the early theory of invariant 
integrals, see De Donder [1901). 

For an appreciation of Poincar6 [1885b] see Danvin [1900). 



224 Associated Mathematical Activity 

of Poincar6, and the publication of Poincar6's paper prompted Liapunov to initiate a 

correspondence between them5. 

However, in the early 1890s when they each put forward their ideas about the 

stability of a given state of motion, there were marked differences between the two 

accounts. Although Liapunov freely acknowledged the influence of Poincar6's [1885] 

ideas, he used a different definition of stability to that adopted by Poincar6, and 

while Liapunov developed a precise theory which was quite general in its 

application, Poincar6's treatment was altogether less rigorous. 

Liapunov's memoir, which had originally been prepared as his doctoral thesis, was 

completed in 1890 but since the process of publication had taken two years, it 

appeared after Poincard's account in [P2] and in [MN I]. It was, therefore, entirely 
independent of Poincard's work although, as Liapunov explained in the preface, the 
delay had allowed him the chance to add notes to the text indicating the analogies 

with [P2]; [MN I] appeared too late for a similar exercise. 

8.2.2 Liapunov 

Liapunov defined the solution of a system of differential equations as stable if other 

solutions which start at a given time sufficiently close to the given solution remain 

arbitrarily close to it at all later times. More formally, he stated that a solution 
O(t, a) is stable if given E>0, there exists a positive number N (not necessarily an 
integer) which depends on e such that I 0(t, a+ b) - (P(t, a) I<E for all t provided 
13 1<N. This was in contrast to the rather freer definition employed by Poincar6 

(which he had originally used in [1885] and in [P2] had ascribed to Poisson) in which 
he regarded the motion of a point as stable if it returned infinitely often to positions 

arbitrarily close to its initial position. 

The motivation for Liapunov's research was the desire to ascertain the domain of 
validity of a certain method of solving differential equations. In this method, in 

order to obtain a solution, the equations were reduced to linear approximations 
through the retention of only the first order terms in the dependent variables6. This 

was a considerable simplification of the original equations, and especially useful in 

the case of equations with constant coefficients, but, as Liapunov realised, there was 

5 See the Liapunov-Poincare correspondence published by V. I. Smirnov and A. P. Youshkevitch 
in Cahiers 8 ý1987), 1-18- 

6 Liapunov quotes Thomas and Tait; Routh; and Zukovsky as being the main proponents of this 
method [1907,204]. 
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no a priori reason for such a linearisation procedure to be valid. He therefore set out 
not only to define the cases where the linear approximations could legitimately be 

used to replace the original equations, but also to derive procedures which would 
show when it was invalid. What resulted was a complete stability theory armed 
with a battery of techniques designed to deal with a variety of situations. 

To make the problem more manageable, Liapunov limited himself to examining only 
those equations where the coefficients were either constant or periodic, the first case 
being regarded in essence as a particular case of the second. As he observed, this was 
not a severe restriction since, from the point of view of practical applications, many 
important examples consist of equations of these two types. 

In his determination of stability of a system Liapunov derived two different 

methods. The first was applicable when it could be presupposed that an explicit 

solution to the equations of perturbed motion, generally in the form of infinite series, 

was known. While the second (known as Liapunov's direct method) could be used 

when there was no explicit knowledge of the solutions, the method being essentially 
based on energy considerations due to Lagrange and made rigorous by Dirichlet. 

Broadly speaking, the method exploits the intuitive idea that an equilibrium state 

of a physical system is stable if nearby the energy is always decreasing. The 

stability of the system can then be determined by means of the properties of a 

certain scalar function positive definite in the domain of the state of equilibrium7. 

In the case where the coefficients of the equations were constant, Liapunov studied 
the equations of perturbed motion to discover that the stability of the solution was 
determined by the roots of a certain eigenvalue equation, these roots being 

equivalent to what Poincar6 was later to call characteristic exponents. Liapunov 
found that if all the roots had negative real parts, stability was guaranteed, and, 
providing the initial perturbations were small enough, the perturbed solution 
asymptotically approached the original solution, and the linear approximation 
could be freely used. If only some of the roots had negative real parts, he-found that 
the system did have a certain conditional stability which could be defined, while if 

the roots had positive real parts then the system was unstable and the 

approximation invalid. 

7 For a clear and concise account of Liapunov's direct method with applications see La Salle 
and Lefschetz [1961]. 
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Looking at the question from the other way round, his analysis showed that in most 

cases where the equations had constant coefficients, studying the linear 

approximation was sufficient to resolve the stability question, the only exception 
being when some of the roots, without having any positive real parts, had zero real 

parts. Although these cases were very difficult to analyse, Liapunov recognised, as 
Poincard had done, that they were of particular interest, especially if the system of 

equations was canonical. For in this latter case, the roots are equal in magnitude but 

opposite in sign, and so absolute stability is only possible if all the roots have zero 

real parts. 

Since the difficulties in the analysis were determined by the number and type of root 

generated by the equations, Liapunov made a detailed examination of the two 

simplest cases: the case in which one root was zero, and the case in which two roots 

were purely imaginary, in each case the remainder of the roots having negative real 

parts. In both these cases he was able to define the conditions for stability. In the 

first he found that it essentially depended on the form of a particular series 

obtained from the equations of the perturbed motion, while in the second he found it 

was the existence of a periodic solution to the original unperturbed equations which 

provided the key. Furthermore, as he discovered [1907,392], showing how this 
latter condition worked in practice provided a direct overlap with a result of 
PoincarOs from [P2]: for different reasons and using different methods they had each 

proved the existence of a periodic solution to a system of non-linear equations. 

In the case of equations with periodic coefficients, Liapunov showed that the 

stability depended on the roots p of another eigenvalue equation which were 

related to the roots A of the previous case by 

A=1 log P, 

where w is the period of the coefficients. In this second case, the stability is 

determined by the modulus of the roots. If all the roots have modulus less than one 

then there is stability, and, as in the first case, if the initial perturbations are 

sufficiently small, the perturbed motion will asymptotically approach the original 

motion. Similarly, roots with a modulus of greater than one imply instability, and 

roots with modulus equal to one are the ones which require a more detailed analysis. 

Thus there were certainly many similarities between the sort of results obtained by 

Liapunov and those obtained by Poincard. However, the variance in their 
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definitions of stability meant that the scope of their analysis was substantially 
different. Liapunov's theory, while extremely rigorous and detailed, was limited in 

its range by his definition. The disadvantage with Liapunov's theory is that his 

definition is too demanding. For if a solution is Liapunov stable not only can the 

perturbed motion not stray far from the unperturbed motion, but also each point in 

the trajectory of the perturbed motion has to be close to its contemporaneous point in 

the unperturbed motion. In practical terms there are very few dynamical systems 

which completely satisfy Liapunov's criteria, and as a result the application of his 

theory is essentially confined to local analysis. 

On the other hand, Poincar6's stability theory, being based on a less restrictive 
definition, could be applied to problems of a far more complex nature than thosý 

which could be considered by Liapunov. The point of departure for Poincar6 was his 

theory of invariant integrals which, in conjunction with his definition, meant that 
he could attack general questions about the stability of dynamical systems, deriving 

results such as his recurrence theorem which allowed him an insight into the 
b ehaviour of the solutions of the restricted three body problem. His theory 

therefore led to knowledge about the global behaviour of systems, knowledge which 

would have been impossible to obtain within the constraints of Liapunov's theory, 

although this was to some extent counter-balanced by the accompanying imprecision 

in his local analysis. Moreover, Poincar6's ideas about stability provided George 

Birkhoff with the foundation for his theory of recurrent motion which is discussed 

in 9.3.1. 

The initial inaccessibility of Liapunov's work meant that it was Poincar6's ideas 

which met with the first response8. However, with the publication of the French 

translation of Liapunov's memoir, Liapunov's stability theory became more widely 
known and the potential of his work began to be recognised. Liapunov's theory, as 

well as being capable of greater generalisation and having a definition which was 
intuitively more natural than that of Poincar6, provided a precise and conventional 
framework within which to work. Today the theory is generally regarded as one of 

the fundamental achievements within the qualitative theory of differential 

equations. A substantial literature has grown up around Liapunov's work9, 

8 See Gray [1992,520]. 

9 For an extensive bibliography on the qualitative theory of differential equations and Liapunov 
stability in particular see Cesari 11959]. 
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particularly recently in the area of control theory, and in 1992 the centenary of the 

memoir's original publication was commemorated by the appearance of an English 

translationIO. 

8.2.3 Levi-Civita 

An alternative approach to stability theory was put forward by Levi-Civita in a 
series of abstracts in the Comptes Rendus [1900,1900a, 1900b]. These were brought 
together in a long paper [1901] in which he placed the new ideas of both Poincar6 

and Liapunov into the structure of the classical analytical mechanics of Lagrange. 
As Dell'Aglio and Israel [1989] have eloquently argued, Levi-Civita's work on the 
qualitative theory of differential equations and related issues of stability provides 
a convincing example of Thomas Kuhn's "essential tension" between tradition and 
innovation. 

Levi-Civita's interest in classical mechanics was combined with a deep geometrical 
insight which meant that the qualitative theory of differential equations formed a 

natural subject for his research. However this alignment of mechanics and geometry 
led him to a definition of stability which, although very similar to that of 
Liapunov, differed in one critical respect. While Liapunov's definition only took 

account of future stability, Levi-Civita's definition incorporated both past and 
future stability, reflecting the principle of reversibility in physical processes. 
Another important aspect of Levi-Civita's wor k is that, in contradistinction to that 

of Liapunov, it allows for the treatment of the case when the first order 

approximation is insufficient. Levi-Civita gave his definition in the following 

form. 

He considered a system of differential equations with periodic coefficients 
dx. 

ý! = X. (Xl, X, t) n) dt 

and said that the periodic solution xi =0 was stable if and only if for any small 
neighbourhood E of the origin, there exists a second neighbourhood H such that if 
the initial position of the moving point is taken in H, the point remains in E for all 
positive and negative values of t. Although Levi-Civita had opened [1901] by 

acknowledging Liapunov's definition, when he gave his own definition he made no 
reference to Liapunov, and later in his classic work on rational mechanics he 

10 See "Liapunov Centenary Issue", International Journal of Control, 55 (March 1992), 531-773. 
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referred to his definition as being "absolute stability in the sense of Dirichlet", 

giving the explanation that it had been derived from a configuration space 

interpretation of the classic definition of a stable equilibrium 11. 

To deal with the question of the stability of the periodic solutions of equations 
(8.2. i) Levi-Civita employed a geometric model which reduced the question to an 

analysis of certain point transformations associated with the solutions. He applied 
the theory to the restricted three body problem and derived the interesting result 
that when a periodic solution in the restricted three body problem is such that the 

mean motions of the planetoid and the other two bodies are commensurable, then the 

motion is unstable and there will be solutions approaching and receding from the 

given periodic solution. 

As Dell'Aglio and Israel have lucidly described12' there is clear parallel between 

Levi-Civita's geometrical model and Poincar6's method of transverse sections, and 
from this point of view, Levi-Civita's work can be seen naturally as coming between 

that of Poincar6 and Birkhoff 

With regard to Poincard and stability, although Levi-Civita did not use the concept 

of Poisson stability, he did explicitly state his agreement with Poincams's conclusion 
that instability is the rule and stability the exception13. Although Poincar6's 

conclusion specifically related to differential equations of first order and first 

degree, in Levi-Civita's work it was shown to be true in a more general sense. 

8.3 - Singularities and regularisation 
8.3.1 Introduction 

There were essentially two problems which arose in connection with the 

singularities of the differential equations of the n body problem. In the first place 
there was the question of the determination of the type of singularities which could 

arise and the corresponding investigation of their properties. In this respect, there 

was not only the subject of the singularities caused by collisions which, although 

11 (With U. Arnaldi) Lezioni di meccanica razionale 2 (1926/27), 464. See Dell'Aglio and Israel 
[1989,297). 

12 Dell'Aglio and Israel [1989,301-3041. 

13 Levi-Civita [1901,222]. See 3.2.2. 
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acknowledged still required a detailed study since it had largely been ignored as 
being of little practical consequence, but also the question of the existence of other 
types of singularities. Once the nature of the singularities was established the 

second problem arose: the task of trying to eliminate them, the so-called 
regularisation of the equations. 

The three body problem eventually succumbed to resolution on both these issues. The 

collisions were analysed and a complete knowledge of the type of singularities was 
obtained. However, resolving these questions with regard to the general n body 

problem has proved much more elusive, and it is only very recently that significant 

progress has been made. 

8.3.2 The three body problem 

In the autumn of 1895 Oscar 11 once more showed his enthusiasm for mathematics by 

sponsoring a series of mathematical lectures held at the University of Stockholm. 

The King had originally intended for the lectures to be an extension to his 

competition, and so he had hoped to entice Poincar6 to Stockholm with an 
invitation to lecture on recent progress in analysis. When Poincar6 was unable to 

accept the offer, the position was filled (on the recommendation of Mittag-Leffler) 

by another French mathematician, Paul Painlev614. The lectures, inauguratedby 

the presence of Oscar himself, were a great success and subsequently gained 

additional renown through their (beautifully lithographed) publication15. 

Painlev6, following the brief to lecture on analysis, took as his principal subject the 
theory of transcendental functions defined by differential equations. In the final 

part of the lectures he considered the application of his earlier theory to the three 

and n body problems, and investigated the singularities in the differential 

equations. It was obvious from the equations that a collision point was a singular 

point, but what was not so clear was whether any other type of behaviour would 

also lead to a singular point. 

In the three body case Painlev6 supplied the answer: the only singularities are 
collisions. More precisely, he stated that starting from an initial time t and given 
initial conditions, singularities can only occur when at least one of the three mutual 

14 CEuvres de Painlev! 1,199. See Cahiers 10,1989,194. 

15 Pairdev6 [1897]. 
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distances tends to zero as t converges to a finite time t,. In other words, either the 

motion is regular as t increases indefinitely or there is a collision. 

What was especially important about the theorem was that it allowed Painlev6 to 

conclude that the equations of motion of the three body problem were integrable 

using convergent power series (fundamentally equivalent to Taylor series), but only 

providing the initial conditions were such as to exclude the possibility of a two or 
three body collision within a fir-dte time. 

Ibus it was clear to Painlev6 that a mathematical solution to the three body 

problem could be found if it was possible to define precisely the initial conditions 

which corresponded to a collision. In [1896,1897] he conjectured that these initial 

conditions should satisfy two distinct analytic relations (which would reduce to one 
in the case of planar motion). Then, having made a generalisation of Bruns' theorem 

on the existence of algebraic integrals for the three body problem [1897a, 1898), he 

was able to prove that the relations had to be transcendental [1897b), but proceeded 

no further16. 

As far as singularities of the n body problem were concemed, Painlev6 made little 

headway. He did manage to find a sufficient condition for a singularity to be a 

collision, but he was still left with the unresolved question of whether 

pseudocollisions (the name he gave to singularities which are not due to collisions) 

could exist for n>4. 

In 1903 Levi-Civita published the first of several papers on regularisation in the 

three body problem. It was a topic which maintained his interest for over twenty 

years and which began with two notes in the Comptes Rendus [1903,1903a), the 

results in which were united in an important paper on the singular trajectories and 

collisions in the restricted three body problem [1903b]. In this paper he 

characterised the singular trajectories in the restricted problem, finding the 

analytic relation predicted by Painlevd. 

Levi-Civita formulated the problem by considering the bodies as material points, S 

and j with masses I-p and p, and planetoid P with negligible mass, and putting the 

equations of motion into canonical form 
dr OF dO dF dR dF d0' OF 
dt -dR' Ti ý-- 55, -dt 2-- --jý -dt -'ý -dO 

16 See 7.3.1. 
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with the Hamiltonian 

F=' R2+r2 -! 
2-1 

U+btrcos0-1r2 
(r2 )21 

- 

where 

u='-p P-, SP, A= IP, 0= ZISP. 

The conjugate variables R, 0 are, respectively, the derivative of the radius vector r, 
and twice the (absolute) areal velocity. 

As Levi-Civita knew from Painlev6's theorem, every singularity of the motion 

occurs only when, as t approaches a finite value tI, the limit (t -4 tI) r=0 or the 
limit (t -4 tI) A=0, that is the differential equations have singularities at S and J 

respectively. Since S and J enjoy a symmetric role in the problem, it is sufficient to 
investigate the behaviour of the system about only one of these points, say S, and 
characterise the singular trajectories I along which a collision between S and P can 
occur. 

The motion is regular before t=t, and so r*0 for t<t,. Therefore there exist values 

of t arbitrarily close to to t, for which drldt =R is not identically zero. Using the 

Jacobian integral and eliminating dt, R can be defined as a function of r, eand Q, and 

the system of equations (8.3. i) takes the reduced form 

do dR de OR 
dr --dW dr do 

Since along the trajectories E there are values of r arbitrarily close to 0 for which 0 

and 0 are analytic functions of r (since drldt is not identically zero), these 

trajectories can be separated from the other solutions to equations (8.3. ii). 

Putting 

p= tr=ý2 -11 H= -pR. P, 

wheree, is the relative angular velocity dOldt, Levi-Civita arrived at the system 
dO 0, 
dp =_ 2p2 H 

de, 4(ff + 1) -2pp 
W 

dp H (8.3. iii) 

whereW=sine 1-1 A3 

He then proved that the singular trajectories along which S and P collide within a 
finite time correspond to the single infinity of solutions of (8.3-iii) which are 
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analytic for p=0 and to those alone. If 00 is the value of 0(0) and 0'(0) = -1, then 

these solutions are of the form 

0= eo + P«p, oo) u+1= PAA 0, ) 

a and P being power series in p. 

(8.3. iv) 

Hence if a collision takes place, the motion must be along one of these trajectories: 

that is it is necessary and sufficient that at each instant p, 0 and e, satisfy the 

equation derived from (8.3. iv) by eliminating eo. Since the first expression in 

(8.3. iii) shows that eo is an analytic function of p and e, the second expression can be 

written 

fr +1= jýý, 0) (8.3. vj 

where f is an analytic function of p in the domain of p=0, for all real e, and which, 

as Levi-Civita showed, is a periodic function of e and can be theoretically 

determined. He then proved that not only is the relation (8.3. v) algebraic in the 

velocities, periodic and single-valued but also, as predicted by Painlev6, it is 

unique. In [1915] he extended this result to the problem of three bodies in a plane. 

Encouraged by Mittag-Leffler and Phragm6n, Levi-Civita reworked [1903b] in [1906], 

and he now removed the singularities using the transformation defined by 

+ jy + itl)2 p- iq 2(ý +I itl), 

which had the advantage of being a simpler transformation than the one he had 

used in [1903b] as well as being canonical. To regularise the system at the point S, he 

simply used the auxiliary variable rdefined by 

d, r = 
dt 
P, 

In addition to rationalising his result from [1903b], Levi-Civita was also concerned 

about its theoretical nature. When the bodies are treated as material points 

regularisation only requires the absence of a collision. But from a practical point of 

view, if the bodies concerned are real celestial bodies, then for the motion to remain 

regular, it is necessary to know not only that there will not be a collision but also 
that the distances r and A will not go below a certain given. limit E. Thus Levi- 

Civita wanted to establish the initial conditions which would ensure that these 

mutual distances remained greater than E. 
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By regularising the equations he had obtained an analytic representation of all 
possible arcs A of a trajectory inside a sufficiently small neighbourhood D around S. 
Since every arc not passing through S remains a finite distance away from S, the 

minimum distance 45 from S to an arc A can be expressed as a function (single-valued 
inside D) of the initial conditions. Thus either 8=0 (impact) or 6>0, and if 3> 

then, as Levi-Civita required, physical sense can be given to the mathematical 
result. However, he realised that was possible for a trajectory to penetrate D 
infinitely often, leaving along one arc A and re-entering along another arc A*, each 

arc giving rise to a new value of 8 (with the possibility of having 3=0 as a 
minimum). The problem was then to find out exactly what the lower limit of 3 

would be. Unfortunately, Levi-Civita was unable to obtain any information about 
this lower limit, which meant that he could not make long term predictions about 
the value of 3. He could only conclude that if in the region D the distance 6 is 

greater than c, then the motion is regular in the neighbourhood of S, but if the 
trajectory leaves D and later re-enters again, then it is impossible to forecast its 
behaviour. 

Of special interest in [1906b] is a result which Levi-Civita derived at the end of the 

paper concerning a solution to the differential equations. When considering the arcs 

of the trajectories inside the region D, he found a new single-valued solution to the 

differential equations different to the one given by the Jacobian integral. This was 

an unexpected result since it appeared to be in contradiction to Poincard's theorem on 

the non-existence of any new solutions. 

However, as Levi-Civita himself explained, there was no contradiction because the 
domains of validity of the two results were quite different. Poincar6's theorem 

established the non-existence of integrals single-valued with respect to the 
Keplerian variables which implied they were single-valued in the neighbourhood. 

of all trajectories which have the same osculating ellipse; whereas Levi-Civita's 

result implied the existence of single-valued integrals either for only a part of the 
trajectory, or in the neighbourhood of trajectories which are not entirely elliptic. 

While Levi-Civita was concerned with defining the conditions for a collision in the 

restricted three body problem, Bisconcini, a young lecturer at the University of 
Rome, was working on the same problem but in the general three body case. His 

results [1906] were published just prior to Levi-Civita [1906b] in the same volume of 
Acta, although they had been completed some two years earlier. 
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Starting with a system of three bodies P., PI, P2, with p, :ý POPP P2 ý-- POP2, Bisconcini 

considered the relative motion of P, and P2 with respect to PO and derived the 

equations of motion in Hamiltonian form. He then concentrated on the case where in 

the limit as (t--. ) tj) p, =0 and P2 * of i. e. the case of a collision between PO and P1. 

Making the appropriate change of variable he arrived at a system of equations, 

which he called (S), analogous to the equations of motion (8.3. iii) derived by Levi- 

Civita in [1903b]. 

In order to proceed further, he found that he had to make the additional 
independent assumption that in the neighbourhood of PO the angular velocity of p, in 

the motion relative to PO must be finite. Although he was unable to prove that this 

was necessarily the case, he had two good reasons for believing it to be true. In the 
first place, the assumption was known to be true in the restricted problem, and, in 

the second, as p, gets progressively smaller the influence of the point P2 on the 

relative motion of PO and P, tends towards zero, at which point PO and P, essentially 

move as a two body system, in which case the angular velocity of P, tends towards a 
finite limit. 

Having made this additional assumption he was able to show that it was possible 
to put the singular trajectories of the system along which the points PO and P, 

collide, in a one-to-one correspondence with the solutions of the equations (S) which 

are analytic in the neighbourhood of the collision. Finally, he deduced two distinct 

analytic relations between the initial conditions which when satisfied proved that 

the motion was taking place along a singular trajectory, thereby indicating the 

existence of a collision in finite time. 

Bisconcini's result was an important contribution, but it did not provide an 
altogether satisfactory solution to the problem. In the first place, his solution 
involved a complicated infinite series (in powers of the distance p) which was not 
easy to use. But rather more problematic was the fact that the series was not 
directly applicable except when the interval of time between the initial instant and 
the collision was sufficiently short, and he gave no condition for this latter criteria. 
There w as, therefore, still a need both to simplify the solution and to increase the 

range of its application. Moreover, neither Levi-Civita nor Bisconcini had 

addressed the question of the conditions for a triple collision. 

A complete solution of the three body problem was finally achieved by Karl 
Sundman, an astronomer at the Helsinki Observatory. Sundman originally 
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published the essential features of his work in Acta Societatis Scientiaru"? Fennicae 

11907,1909] and then later, in response to an invitation from Mittag-Leffler, brought 

them together in a single memoir published in Acta 11912]17. Not only was 
Sundman's result quite remarkable but the methods he used were surprisingly 

simple. Essentially they depended on the application of Picard's extension to 

Cauchy's well known theorem on the existence of solutions to differential equations. 
The memoir also included a more direct proof of Painlevd's result, as well as a proof 

of the validity of Bisconcini's postulate concerning the angular velocity of the 

radius vector in the case of a binary collision. 

One of the best known of Sundman's results involves the case of a triple collision. 

He proved that such an event could occur only if all the constants of angular 

momentum (areal velocity constants) were simultaneously zero, in confirmation of 

Weierstrass' conjecture made some twenty years earlier18. This then led him to the 

result that if these constants are not all simultaneously zero, and the initial 

conditions are known, there is a positive limit below which the two greatest of the 

mutual distances between the bodies cannot go. He further established that if the 

three bodies collide at the same point in space they move in the same plane which 

passes through their common centre of gravity, and as they approach collision they 

asymptotically approach the equilateral triangle or collinear configuration. 

In the case of a binary collision, he showed that the singularity of the differential 

equations is not essential and so can be removed by a suitable change of variables. 
Considering the case where the differential equations ceased to be regular for t= tj, 

he introduced a new independent variable u defined by 

dt = rdu (t = to, for u= 0) 

from whidi 

t 
P 

I r 
to 

17 Wintner [1947,4281 observed that Sundman [1909] which included the theoy of triple 
collisions did not warrant a review in Forteschritte or reproduction in Sundman 1191. ]1. 

18 Mittag-Leffler 11912,58). See Chapter 6. 
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where to is a real constant which is chosen in an appropriate way each time the 

variable u is employed. Thus the system is regular for u=0, and u is known as the 

regularising variable. 

Having introduced u into the equations Sundman established that the coordinates of 
the bodies could then be expanded in powers of (t - t, )"3, and his insight was to 

realise that an analytic continuation of this expansion could be used to define a 

continuation of the motion of the bodies after collision. The coordinates then satisfy 
the differential equations for t>t, with the same values of the energy constant and 
the areal velocity constant. 

Sundman's description of the motion after a binary collision, showed that the orbiis 

of the colliding bodies have a cusp point at the point of collision whereas the orbit 

of the third body is continuous in the neighbourhood of the collision. Furthermore, 

his analysis also showed that the motion can be continued after each new collision 

providing not all three bodies collide. In other words, the successive times of binary 

collision, fl, t2, t3, ... tk, ... cannot have a limit point, so ff the sequence of collisions is 

infinite, then t* ý lim. tk : -- + -. Thus the motion can be continued indefinitely for 

values of t as great as desired. 

However, there was a limitation to Sundman's regularisation transformation, 
dt = rdu, since it was dependent both on the constant to and on whichever of the 

mutual distances was tending towards zero. To overcome this restriction Sundman 

introduced another variable o) defined by 

dt = Ildco, 

where 

F= (i - e-, A) (i - e-,,, ') (1 - e-, -') 

so that co =0 when t=0, and where the two greater of the mutual distances ro, rl, r2 is 

greater than 1. 

F has a given value for each real value of the time satisfying 0 :ýF :51, and 

consequently the variables o) and t increase and decrease together. Thus there exists 

a continuous one-to-one correspondence between the real values of f and the real 

values of co, so that when t varies from -- to + -, a) varies likewise. 

Given a real and finite value of o), say 0, the coordinates of the three bodies, their 

mutual distances and the time can be expanded as power series in (0) - af), where 
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the radius of convergence of these expansions is always greater than a positive limit 

independent of the value of 0, i. e. 

10) - W. 1: 5 D. 

The coordinates of the three bodies, their mutual distances and the time are thus 

analytic functions of co in a band of breadth 212 contained between two fines parallel 
with the real axis and symmetric with respect to this axis. 

Finally by introducing a new variable T defined by 

e 
Zan 

and using the transformation 

w= 
20 log 1+ Ir 
7r 1-T, 

analogous to the transformation used by Poincar6 11882a, 1886), the band in the a) 

plane can be transformed into a circle of unit radius in the plane of the new variable 

, r. The coordinates of the three bodies and the time are now analytic functions of T 

everywhere within the unit circle in the r plane and can be expanded in convergent 

series in -r for all real values of the time. Furthermore, the same values of I and 0 

hold for a group of motions corresponding to different initial conditions, and the 
different terms of the expansions can be calculated by successive differentiation 

with respect to r as soon as the values of I and 12 are determined. 

Sundman summarised his acbdevement in the final theorem of [1912]: 

"In the three body problem, if the constants of angular momentum are not all 

zero and the initial coordinates and velocities of the bodies are given for a 
finite time, then two constants I and 0 can be found such that by introducing 

the variable r instead of the variable t, the coordinates of the three bodies, 

their mutual distances and the time can be expanded in entire power series in 

T, which converge for Ir I< 1 and represent the motion for all time, 

whatever collisions occur between the bodies, provided that the motion is 

continued analytically as described above. " [1912,178]. 

Sundman had thus provided a function theoretical proof to the problem which had 

engaged the minds of many great mathematicians and astronomers since the 

publication of Newton's Principia, a period of well over two hundred years. He had 

theoretically solved the three body problem. It was a remarkable achievement and 
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all the more so considering the simplicity of his solution: throughout his analysis 
depended only on classical results in the theory of differential equations. It is worth 

recalling that it was only some twenty years earlier that Poincar6 had stated that 
he believed the complete resolution of the problem would require the use of new 
transcendental functions [P2,61. Furthermore, Tisserand, in the final volume of his 

Wcanique Cileste published in 1896, had said: 

"The rigorous solution of the three body problem is no further advanced 
today than during the time of Lagrange, and one could say that it is 

manifestly impossible. "19. 

Although the significance of Sundman's achievement was certainly recognised by 

his contemporaries - Mittag-Leffler's encouragement had resulted in the rewriting 

and publication of his results in Acta; in 1913 the French Academy awarded him the 

prix Ponticoulant and doubled the value of the prize; and both Picard [1913] and 
Marcolongo [1914] wrote enthusiastic reviews - interest in his work was not 

consistently maintained. In the decade after the publication of the Acta paper 
minor corrections, simplifications and extensions to his results appeared, the most 

notable of which was a simplification due to Levi-Civita [19181 which provided a 

canonical regularisation of the three body problem in the neighbourhood of a binary 

collision20. But from then on and for the next thirty years, Sundman's work seem to 
have been almost forgotten. Why did such an important and long-awaited result 
almost fade into obscurity? 

Firstly there was the practical limitations of his results. The rate of convergence of 
the series which he had derived was perceived to be extremely slow and so for 

practical purposes the classical divergent series were thought to be more useful2l. 
For example, while George Birkhoff enthusiastically embraced Sundman's 

theoretical achievement: 

19 Tisserand 11896,463]. 
20 See also Hadamard [1915] and Birkhoff [19221. An analysis of the relationship between the 
work of Sundman and that of Levi-Civita is given in the article by L. Dell'Aglio and G. Israel 
"La regolarizzazione delle equazioni del problema dei tre corpi- Levi-Civita e Sundman, due 
diverse direzioni di ricerca" to appear in Physis. 
21 For an explanation of the slow rate of convergence see Saari [1990). It is of interest to note a 
challenge to this traditional view put forward by Cesco 11961]. 
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"It is not too much to say that the recent work of Sundman is one of the most 

remarkable contributions to the problem of three bodies which has ever been 

made.,, 22. 

his verdict on its application was in quite another vein: 

"Unfortunately these series are valueless either as a means of obtaining 

numerical information or as a basis for numerical computation, and thus are 

not of particular importance. -23. 

Secondly, the results Sundman obtained furnished no qualitative information about 
the nature of the motion. He had provided a mathematical solution but not one 

which revealed general information about the form of the trajectories. 

Forty years after the appearance of Sundman's Acta paper interest began to be 

revived in his work. Jean Chazy [19521 published an appreciation of Sundman's 

result in which he looked both at the contents of the memoir as well as its influence. 

Although not ignorant of the limitations imposed by the generality of Sundman's 

result, Chazy's account is a glowing testimonial to its effect on the direction of 

subsequent research into the three body problem: 

"Already this solution (Sundman's) has led to researches into collisions and 

close approaches between the three bodies, and prompted the study of 
infinite branches of the trajectories of the three bodies, and the study of 

motion as time goes towards infinity. Already the determination of singular 

trajectories has led to substantial results in the representation and the 

distribution of trajectories of the three body problem - the consideration of 

which is as necessary as the study of singular points in the study of an 

analytic function. Without having resolved in one go all the qualitative 

questions posed by the three body problem, Sundman's solution has given rise 

to essential progress in the resolution of these questions. And plenty of 

questions remain open following Sundman's work - just as in the work of 
Poincarg. -24. 

22 Birkhoff [1927,2601. 

23 Birkhoff [1920,53]. 

24 Chazy [1952,1901. 
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Chazy himself had researched extensively into aspects of both the three and n body 

problems with notable success and so was well qualified to judge Sundman's 

achievement. In particular he had investigated the long term behaviour of the 

solutions of the three body problem making extensive use of both Sundman's 

regularising variable and Poincar6s theory of invariant integrals. By studying the 

12-dimensional phase space defined by the positions and velocities of two of the 
bodies relative to the third, he provided a classification of the final motions of the 

problem [19221. Apart from the bounded and oscillatory motions, he found three 
different types in which all three mutual distances became infinite: hyperbolic, 

parabolic, hyperbolic-parabolic; and two different types in which two of the 

mutual distances became infinite: hyperbolic-elliptic, parabolic-elliptic. In each 

case the different types were distinguished by the nature of the final velocities of 

all three bodies25. 

Chazy's account of Sundman's work was followed in 1955 by a modemised version of 
Sundman's theorems in Carl Siegel's acclaimed text on celestial mechanics [1971). 

Siegel was in no doubt as to the importance of Sundman's results, placing them as one 

of the most signffýcant developments in the transformation theory of differential 

equations after the work of Poincar6. 

8.3.3 The n body problem 

The first person to make an impression on the closing question in Painlev6's 

Stockholm lectures on whether non-collision singularities exist in the n body 

problem for n ý: 4 was Hugo von Zeipel [1908]. Although von Zeipel ultimately 
devoted himself to the more practical aspects of astronomy, he had begun his 

academic career by studying periodic orbits for his doctoral thesis. His interest in 

singularities almost certainly stems from his stay in Paris (1904-1906) where he 

studied under both Poincar6 and PainleV626. As noted in 6.7, von Zeipel was the 

author of an extensive article on Poincar6's celestial mechanics which appeared in 

1921 in the edition of Acta devoted to Poincar6. 

Von Zeipel's theorem on singularities in the n body problem (as given by McGehee 

[1986]) states: 

25 Further details of Chazy's research can be found in Arnold [1985,67]. 

26 See McGehee [1986]. 
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"If some of the particles do not tend to finite limiting positions as t 

approaches t,, then one has necessarily 

lim (t --) tl) R= co, 

where R is the maximum of the mutual distances. " 

In other words, a noncollision singularity can occur only if the system of particles 
becomes unbounded in finite time. At first sight, it would seem that such a 
singularity is an impossibility, since a particle escaping to infinity in finite time 

would have to acquire an infinite amount of kinetic energy. However, as Xia [1992] 

points out, since the potential energy of the system is not bounded from below, there 
is no reason why the kinetic energy should be bounded from above. Unfortunately, 

von Ziepel's work appears to have faded into obscurity, for twelve years after his 

theorem was published, Chazy [1920] published exactly the same theorem but with 

no reference to the earlier version, indicating that by that date von Ziepel's work 
had become forgotten27. 

However, despite von Zeipel's result and the interest in it rekindled by Chazy, the 

proof of whether there exist noncollision singularities turned out to be particularly 

elusive, and it is only recently that definite results have been achieved. Mather 

and McGehee [1975] made a significant contribution by constructing a solution to the 

collinear four body problem in which the particles escape to infinity in finite time, 

although this was still not a complete resolution of the problem since their solution 

contained infinitely many elastic collisions prior to the appearance of the 

noncollision singularity. 

The question was finally resolved in the affirmative by Zhihong Xia [1992] who, 

using "symbolic dynamics"28 proved the existence of a noncollision singularity for a 

system of five particles moving in three dimensional space. Xia's example involves 

two binary pairs, the particles in the same pair having the same mass, and a 

particle oscillating between them. The single particle oscillates along a fixed axis 

and each binary pair orbits in a different plane at right angles to the fixed axis, 

each pair rotating in opposite directions. With this symmetric configuration Xia 

showed that it is possible to set the initial conditions so that the energy gain of the 

27 McGehee's [1986] paper traces the history of Von Zeipel's result and gives a modem version 
of von ZeiPel's proof. 
28 For further observations about "symbolic dynan-Lics" see the discussion of Morse's work 
given in the Epilogue. 
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single particle and the corresponding energy loss in the binary pairs is such that all 
five particles tend to infinity in finite time, and furthermore, that the example can 
be modified for n>5. 

After Xia's result was announced, and using a different approach, Gerver [1991] 

proved the existence of a noncollision singularity in a planar 3n body problem with n 
very large. The question for n=4 still remains open29. 

8.4 Numerical investigations into periodic solutions 
8.4.1 Darwin 

George Darwin, the second son of Charles Darwin, was elected a fellow of Trinity 

College, Cambridge, in 1868, and from 1883 held the Plumian Chair of Astronomy30. 

Darwin was very much a traditional applied mathematician whose interest in a 

problem was stimulated by putting a mathematical hypothesis to the test by way of 

numerical calculations. Unlike some of his contemporaries, such as Adams and Hill, 

he was essentially a practical mathematician who, rather than calculating to an 

exceptional degree of accuracy, took the pragmatic approach assessing the situation 

and calculating accordingly. 

Darwin was a great admirer of PoincaWs work, and their shared interest in the 

work of Hill and periodic orbits was not the first time that their work had 

overlapped3l. Some ten years earlier they had both been involved in investigating 

the figures of equilibrium of a rotating liquid and comparing their work on this topic 

provides a good illustration of the complementary nature of their approaches to a 

problem. Although each investigation had resulted in the evolution of a "pear- 

shaped" figure, Poincard's analysis had involved a process of evolution forwards, 

while that of Darwin consisted of working backwards through time32. Darwin's 

study of periodic orbits, although owing much to Hill, clearly shows the 

29 A discussion'of the research into the existence of noncollision singularities of the n body 
problem is given in Diacu 11993]. 

30 For a biography of Darwin see Sir Francis Darwin 11916), and for an assessment of 
Darwin's scientific work see Brown [1916a]. 

31 See Darwin [19001. 
32 Poincar6 11885b), Darwin 11887]. 
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continuation of his interest in the work of Poincar6, his orbits giving clear and 
tangible illustrations of many of the features previously identified by Poincar6. 

Despite the interest in periodic orbits which had been generated by by Poincar6's 

memoir and the subsequent appearance of the first volume of the Mithodes 

Nouvelles, Darwin's 11897] paper contained the first systematic search for such 

orbits The paper, which had taken him three years to complete, contained the 

numerical calculation of periodic solutions of the restricted three body problem, 
together with a discussion of their stability. It provided not only extensive details 

of the numerical results but also a full description of the mathematical methods 

used to obtain them. 

He derived the equations of motion for the problem using a formulation in which S, 

the larger of the two primaries, was placed at the origin of a coordinate system 

which was rotating concurrently with the second primary 1, with the planetoid P 

moving in the plane of J's orbit. 

y 

>1 

x 

FIG. 8.4d. Darzvin'sformulation of the restricted three body problem in rotating coordinates 

Solving the. equations he obtained the jacobian integral 

V2 = 20 - C, f2=v r2+Z)+(p2+Z 
r P) 

where V is the angular velocity of the planetoid, S2 is the overall potential of the 

system inclusive of its rotation, and C is the Jacobian constant. 
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Darwin then took up Hill's idea of partitioning space according to the value of the 
Jacobian constant C. Since for real motion VI > 0, which implies that 20 > C, and 

consequently the family of curves 2D =C (Hill's curves of zero velocity) define the 

regions of space in which the motion of the planetoid is in some way confined. The 

curves themselves are the locus of points for which the three bodies move for an 
instant as parts of single rigid body. 

Darwin considered p (the distance between the planetoid and the body 1) as fixed 

and looked for solutions for r (the distance between the planetoid and the body S). 

This led to cubic equations in r which could then be solved to get values of r and p to 

satisfy 212 = C. He then looked at what happened for different values of C. He 

found that as he changed the value of C, the curve went through four critical stages 
(a), (P), ()) and (3), each of which marked a transition of the shape of the curve, 
the points in (a), (P) and ()) being situated on the line SI, while the points in (3) 

were syrru-netrically placed either side of Sj (see FIG. 8.4di). More specifically, at 

(a) the intemal ovals coalesce to a figure-of-eight, and r=1-p; 

the hourglass shape coalesces with the extemal oval, and r+p; 

the horse-shoe breaks at the toe, and p=r+1; 

(b) C is a minimum, and r=1, p=1, and C= 3v+ 3. 

C= 40.18 

C= 34.91 

C= 33 
0,5 

5 40.18 C= gs 40.18 

y 

FIG. 8.4-ii. Curves of zero velocity, V= 10. 
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In the first three cases Darwin found that the motion at the points was dynamically 

unstable, while in the last case, which is in fact Lagrange's equilateral solution, he 

believed the motion to be always stable. (Later the astronomer S. S. Hough [1901] 

showed that Darwin had made a error with regard to this last conclusion and 

proved that the (6) points were only stable for v> 24.9599, otherwise they were 

unstable). 

Using the particular value v= 10 (which is equivalent to a value for the mass 

parameter y of 1/11), Darwin made a classification of the possible periodic orbits 
depending on the value of C. To give some examples, he found that if C is greater 
than 40.1821 then the planetoid could either move as a superior planet around both 

S and 1, or it could move as an inferior planet around S, or it could move as a satellite 

around 1; whereas if C is less than 40.182 and greater than 38.8760 then the 

planetoid could move in the three ways as above but in addition it could also move 
in an orbit which incorporated both of the two latter characteristics; or if C is less 

than 33, there is no region which is forbidden to the planetoid. All these and the 

other different possibilities can be deduced quite easily from FIG. 8.43i. 

Darwin included a detailed exposition of his methods of integration as well as a 
discussion on the question of stability of the orbits. In the latter he found that his 

conclusions were in agreement with those of Poincar6 concerning the disappearance 

in pairs of periodic solutions. 

As far as actually calculating the orbits was concerned, due to the difficulties 

involved in discovering periodic orbits making more than one revolution around 

either of the primaries (or any other point in space) Darwin confined his attention 
to looking for what he called "simple" periodic orbits. These were periodic orbits 

which were re-entrant after a single circuit, although they could (and did) include 

loops. He conjectured that the periodic orbits were the critical cases which 

separated the orbits into different classes33. Thus to find these orbits it was 

necessary to trace an orbit through its transformation from one class to another. 

Due to the potential extent of the field of investigations, Darwin limited himself 

further by ignoring both the superior planets and retrograde orbits, although later 

33 As Szebehely 11967,434] has pointed out, Darwin's conjFcture if true provides a good 
periodic orbits, but unfortunately it imprecise formulat on make motivation for studyinF ss it 

impossible to establish its validity. 
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he did make start on investigating these two cases [1909). In addition, he only 

considered a range of values for the jacobian constant between 38 and 40.5. 

Darwin's classification of periodic orbits included one family of planets orbiting S, 

two families of oscillating satellites each oscillating around a Lagrangian point on 
the line S1, and three families of satellites orbiting 1. He was however struck by the 
fact that one of these latter families appeared to exhibit a strange characteristic. 
As the value of the jacobian constant decreased, the orbit seemed to develop from a 

simple closed oval into the form of a figure-of-eight in which one loop went round I 

and the other went round a Lagrangian point on the line S1. Moreover, accompanying 
this change of form was a change from stability to instability, a discontinuity 

which Darwin was unable to explain. Clearly there was some aspect of the 
behaviour which Darwin's analysis had failed to capture. As mentioned in 7.2.4, 

this seemingly anomalous result attracted the attention of Poincar6 who provided 
the explanation [MN 111,352]. There was in fact no anomaly, Darwin had simply 
been mistaken in classifying the two forms of orbit together when in reality they 

each belonged to independent families. However, although Poincar6 had proved 
the existence of two different families, his account did not explain the 
disappearance of the stable orbits and the appearance of the unstable ones. These 

details were filled in by Hough [1901], who recognised that one of the sources of error 

was Darwin's failure to take into account that the retrograde orbits were the 

analytical continuation of the direct orbits. In addition, Hough also indicated the 

existence of another family of figure-of-eight orbits which Darwin himself had not 
detected. 

In the meantime, Darivin had independently discovered his mistake and in [1909) 

added computational confirmation to Hough's theoretical results34. Also included 

in this second paper are further investigations into the periodic orbits of superior 

planets, retrograde orbits and orbits of ejection, the latter being those which provide 

the transitional form between direct and retrograde orbits. 

34 Darwin's appreciation of Hough's contribution is marked by his inclusion of Hough's [1901) 
paper in his own collected works, sandwiched between [1897] and [1909]. 
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8.4.3 Moulton and Str6mgren 

Associated Mathematical Activity 

Taking their lead from Darwin, two important centres of numerical activity grew up 

which were involved in the study of periodic orbits and which made significant 
contributions to the quantitative analysis of the three body problem. 

The first of these was in the United States where, between 1900 and 1917, under the 
leadership of F. R. Moulton, a research group prospered engaged in both analytical 

and numerical explorations of periodic orbits. Their work was published in a series 

of papers which were assembled in a substantial volume in 192035. As far as the 

restricted three body problem was concerned, their numerical work centered largely 

on locating periodic orbits for the case where the two primaries have equal masses, 

that is when the mass parametery = 0.5, which is important in stellar dynamics. 

The second, and ultimately the more prolific of the two research groups, was based 

at the Copenhagen Observatory. Here from 1913 to 1939, Elis Str6mg-ren and his 

colleagues calculated a comprehensive classification of the periodic orbits for the 

restricted three body problem, again most of them for the case when the masses of 
the primaries are equal. Indeed so extensive was their work in this particular case 
that it has now become known as the Copenhagen problem. Of special note is that 

the calculations of Str6mgren and his fellow astronomers provided the foundations 

for the celebrated work of Maurice H6non [1965] who studied the stability of 

periodic orbits by considering their intersections with Poincar6's transverse sections. 

A clear and concise account of the work of the schools of both Moulton and Str8mgren, 

together with comprehensive references, is given in Szebehely [19671. 

Finally, it is interesting to note a point made by Szebehely concerning the value of 
the mass parameter p. By making a comparison between certain results of Darwin 

and Str6mgren which shows, contrary to what might have been expected, that the 

value of ju 
is not necessarily representative of the magnitude of perturbations, he 

provides an attractive example of the value of this kind of quantitative analysiS36. 

35 Moulton et al [1920]. 

36 Szebehely 11967,491]. 
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.1 Introduction 
In 1896 the prestigious Prix Bordin de IAcadgmie des Sciences was won by Jacques 

Hadamard, then a professor at the University of Bordeaux. The set topic had been 

to improve the theory of geodesics, the interest in the topic deriving from the use of 

geodesics on surfaces to represent the trajectories of motion in dynamical systems. 
Hadamard's response resulted in two papers [1897] and [1898]. The first, which 

contained most of the material he had submitted for the prize, was primarily a 

study of geodesics on surfaces of positive curvature, while the second, which was 

published after he had moved to the Sorbonne, expanded on ideas proposed in the 

prize paper and dealt with geodesics on surfaces of negative curvature. Both these 

papers are characterised by a qualitative analysis inherited from Poincar6. In the 
first Hadamard appealed to results from classical differential geometry, while in 

the second, in which PoincaWs influence is strikingly evident, Hadamard's 

discussion is dominated by topological considerations. Moreover, it was through 

working on these areas of mathematics directly derived from Poincar6 that 
Hadamard was led to one of his most important and profound ideas: that of the 
"well-posed problem". 

Hadamard's use of Poincar4's qualitative approach to the theory of differential 

equations in his Bordin paper provides a powerful illustration of the strength of 
Poincar6's new methods. However, although Hadamard continued to promote 

249 
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Poincar6's ideas in the genre, he himself did no further active work on the topicl. 
This was not the case with George Birkhoff. Poincar6's Mgthodes Nouvelles 

provided Birkhoff with inspiration which resulted in an abundance of remarkable 
research throughout his career. As Oscar Veblen remarked: 

"Birkhoff took up the leadership in this field (dynamics) at the point 
where Poincari laid it down.,, 2. 

Birkhoff's generalisations and extensions of Poincar6's ideas incorporated a vigorous 
use of topology and, as with Poincar6, the periodic motions play a central role in his 
theory. His ideas are presented with an admirable clarity of exposition and it was 
as a result of his efforts that the qualitative theory of dynamical systems emerged 
as a fully-fledged subject independent of its roots in the discipline of celestial 
mechanics. The second part of this chapter contains a discussion of three of 
Birkhoff's early papers on dynamics: [1912], [1915] and [1917]. 

In the spirit of the previous chapter, the following account is intended only to give 
an overall view of the different ways that Hadamard and Birkhoff took up and 
developed some of Poincar6's ideas, thereby providing the foundations for modern 
dynamical systems theory. As stated at the beginning of the thesis, consideration 
has been given predominantly to work which was produced prior to 1920. 

9.2 Hadamard and geodesics 
Hadamard's submission for the Bordin prize was the first major paper in which he 
tackled a subject other than analysis. He had been attracted to the qualitative 
theory of differential equations through studying Poincar6, and so was well-placed 
to take advantage of the opportunity presented by the Bordin competition to 
investigate a topic with importance for the qualitative understanding of dynan-tical 

problems. In particular he was drawn by PoincarOs idea of the centrality of the 

periodic motions, and in the context of the theory of geodesics he made an appealing 

I In 1920 and 1925, while at the Rice Institute in Texas, Hadamard gave a series of lectures on Poincard's work, each of which included a discussion of Poincar6's qualitative theory of differential equations. See Hadamard [19221, [1933]. 

For Hadamard's views on Poincar6's mathematical ceuvre, see Hadmard [1912), [19131, [1921). 
2 Veblen [1946,2821. 
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analogy in which he described the closed geodesics as fulfilling the role of a 

coordinate system to which all other geodesics are then related [1898,7751. 

9.2.1 Geodesics on surfaces of positive curvature 

Underlying Hadamard's first paper on geodesics on surfaces was the concept of 

partitioning the surface using properties of the force function of the dynamical 

system in order to categorise the behaviour of the trajectories of the system . 

To illustrate the basic idea Hadamard considered the problem of the motion of a 

mass particle on a smooth surface of revolution with cylindrical polar coordinates 
(r, 0, z) under the action of a force function U independent of 0. In general the 

trajectory of the particle will remain between two parallels of the surface which, 
through a suitable choice of the constants of integration, can be chosen so that the 

smaller of the two values of r corresponds to the larger of the two values of U and 

vice versa, and so in the case of a geodesic the two parallels will have the same 

value of r. In this way a region of the surface is defined in which r and U vary 
inversely. Thus if the particle is moving on the surface of a sphere then it generally 

passes infinitely often into the lower hemisphere. 

More specifically Hadamard considered the motion of a particle moving on a smooth 

surface under the influence of a single-valued potential function V of the coordinates 

of the surface. He then made a partition of the surface based on the distribution of 
the successive maxima and minima of the function V. 

He began with the system of differential equations 
dx' 

- 
Lxa 

= dt Xi Xi (XI, ..., X. ) X, - X. 

in which X, are analytic functions of the xI, ..., x,,, which are regarded as the 

coordinates of a point M in an ji dimensional space E, Thus as M describes a 
trajectory, V will in general have an infinite number of successive maxima and 
n-dnima. If 

X(f) = Xj-df ++X 
df 

dx, - ndx., 

then these maxima and minima are described by 

X(V) =0 i) 
which represents a manifold of n-1 dimensions. If V is a maximum, then 
X[X(V)] 5 0, and if V is a minimum then X[X(V)] !: 0, the former inequality defining 

that part of the surface (9.1J) where the trajectory passes from the region X(V) >0 
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to the region X(V) < 0, and the latter inequality defining the converse. The 
boundary of these two parts of the surface is then composed of the points where the 

trajectory is tangent to the surface (9.1. i). Thus, excluding certain exceptional 
trajectories, each trajectory crosses the surface (9.1. i) infinitely often and passes 
successively into each of the regions determined by the two inequalities. The 

exceptions occur when the variation in V is always in the same direction. For 

example, if V is always increasing, then either it becomes infinite or it tends to a 
limit. Hadamard excluded the first possibility by assuming that V remained finite 

in the domain in which the x remain finite, but took account of the second with the 
lemma (now sometimes known as the derivatives theorem3): 

Lemma: If, when t increases indefinitely, the function V(t) tends towards a limit 

and the first n+1 derivatives exist and are finite, then the first n derivatives tend 

to 0. 

Thus if the function V and its partial derivatives up to 3rd order, and the functions 

Xi and their partial derivatives up to 2nd order, are finite as M moves along a 
trajectory, then either the trajectory crosses the regions of the surface (9.1. i) defined 

by the inequalities infinitely often or it is asymptotic to the boundary of these two 

regions. 

In the particular case of a particle confined to move on a two-dimensional smooth 

surface, and where the function V has an infinite number of maxima and minima, 
Hadamard showed that the surface itself could be divided into two regions. The 

first, which he called the attractive region, contains all points of the trajectory 

where V has a minimum, i. e. it contains an infinite number of distinct parts of the 

trajectory each of which is of finite length. The second, which he called the 

repellent region, contains all points of the trajectory where V has a maximum and is 

a region in which the particle cannot indefinitely remain. The particle passes 
infinitely often through each of the regions and, consequently, crosses the boundary 

between the regions infinitely often. If the surface is regular at every point and V is 

a regular function of the coordinates of the surface, then in the exceptional cases 

where, after some given moment, the variation in V remains in the same direction, 

i. e. where there are only a finite number of maxima and minima, the theory shows 

3 This lerruna was also proved independently by both Kneser and Littlewood. See Cartwright 
[1965,7441. 
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that either the trajectory remains in the attractive region for an arbitrarily long 

period or it asymptotically approaches either a point of unstable equilibrium or a 

closed trajectory. 

If the particle describes a geodesic, then the geodesic passes through each of the two 

regions infinitely often or it is asymptotic to a closed geodesic which represents the 
boundary between the two regions. Thus each geodesic which passes through each of 
the regions infinitely often cuts the closed geodesic infinitely often. Moreover, when 
the curvature of the surface is everywhere positive Hadamard was led to the 

stronger result that every closed geodesic is cut infinitely often by every other 

geodesic. In particular, a surface of positive curvature cannot have two closed 

geodesics which do not intersect. A result which is clearly demonstrated on the 

surface of a sphere where every great circle is cut by every other great circle. 

A second important result which was contained both in the Bordin paper and in 

118971 was Hadamard's proof of the converse of Dirichlet's theorem on the stability 

of equilibrium: that a position of equilibrium is unstable if the kinetic energy is not a 

maximum. In 1895 Kneser had proved the result for the particular case in which the 
kinetic energy is a minimum, and at the time of the competition a general proof was 

still believed to be unavailable. However, as Hadarnard acknowledged in [18971, 

he had in fact been preceded in the general result by Liapunov [190714. 

In the final part of [1897] Hadamard considered the question of the domain of a 
trajectory or a geodesic, and here he made explicit use of several of Poincar6's ideas. 

To explain what he meant by the domain he used the simple example of a geodesic 

on a surface of revolution. If the geodesic is not closed but oscillates in a strip 
between two parallels then following the geodesic in a given direction, the strip is 

gradually filled out by the geodesic and hence the strip is the domain of the 

geodesic. 

Hadamard's ideas about the domain stemmed from a direct analogy with the sets 
introduced by Poincar6 in [1885,142] and also involved the use of Poincams's theory of 
invariant integrals. To define the domain of a given trajectory Hadamard referred 
to the simplest case of a dynamical system with two degrees of freedom in which a 

4 At the time of the competition, Liapunov's aper had only been available in Russian and was 
unknown to Hadamard, and it w týfe following year when an extract of Liapunov's 
results was published in the journal de Mathimatiques that Hadamard became aware of 
Liapunov's work. See 8.1. 
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state of the system is represented by the coordinates of a point in a four-dimensional 

space E.. He considered the part of a surface -7 in a three dimensional space E3 

wl-dch is crossed infinitely often by the trajectory. If the trajectory is not closed then 

the points of intersection will be distinct. This set of points will admit at least one 
limit point and, for increasing values of the time t, the trajectory will pass 
infinitely often through the neighbourhood of this point. By considering all 

possible surfaces X, this gives rise to a closed set of limit points which is then 
defined to be the domain of the trajectory in the space E3. Moreover, if the trajectory 

returns infinitely often to the neighbourhood of an arbitrary one of the limit points 
then the set is not only closed but it is also perfect. Hadamard used PoincarOs 

recurrence theorem to show that the trajectories for which this is not the case can be 

considered exceptional. 

Although Hadamard did not obtain many complete results in [1897], he was 

successful in establishing a new kind of framework from which a cogent theory could 
be developed. To echo Poincar6's sentiments expressed in his report on the 

competition5' the importance in Hadamard's paper lay in the abundance of new 
ideas it contained and the potential for future research which it provided, a 

potential which Hadamard himself developed in [1898]. Hadamard had not only 
boldly followed Poincar6 in adopting a strictly qualitative approach to the problem 
but he had also demonstrated the power of PoincarOs ideas by showing how several 

of them could be applied to a particular class of problems. 

9.2.2 Geodesics on surfaces of negative curvature 

In terms of actual results Hadamard was much more successful in his second paper 
[1898] for it contained a full classification of the different types of geodesics that 

could exist upon surfaces with everywhere negative curvature. As Poincar6 [1905a, 

39] observed, Hadamard in responding to the Bordin committee's observations 

concerning future research on geodesics, provided a complete solution to the problem 

of geodesics on surfaces of negative curvature. Again Hadamard's approach was 

qualitative but this time he focused on the topology of the surface, in particular the 

order of connectivity, and used this to categorise the geodesics. 

Hadamard opened the discussion by making the hypothesis that the surface under 

consideration consisted of n infinite independent sIzeets, each of which is limited by 

5 Comptes Rendus 123 (December 1896), 1109-1111. 
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a curve C and is generated by the motion of the curve as it extends to infinity. Each 

infinite sheet can then be regarded topologically as bounded by the curve C in its 

initial position and by the same curve as it extends to infinity, and therefore 

topologically equivalent to a circular annulus. In other words it is a doubly- 

connected surface. 

The best known examples of such surfaces are the hyperbolic paraboloid and the 
hyperboloid of one sheet, but, as Hadamard pointed out, surfaces of negative 

curvature can be formed having any number of infinite sheets. There are, as he 

observed, surfaces represented by equations of the type 

z=k log 

where k is a constant, and 6,; 8'1, ..., 6,, are the distances projected on the x, y 

plane of the point (x, y) to the fixed points PI, ... ' P,,; P 1, ..., P,, on the plane. This 

surface has m+n+I infinite sheets, with m directions on the side of z>0, n 
directions on the side of z<0 and one direction in the horizontal sense. 

As an example, Hadamard included a diagram of the surface 

45 z=k log 
., 

which corresponds to m=n=1 and which has the general form of FIG. 9.2J 
[1898,7411. 

FIG. 9.2. i. 

Furthermore, Hadamard observed that surfaces of negative curvature can also have 

an arbitrary number of holes and he considered the example of two hyperboloids 
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U=0, V=0, which cut each other in a hyperbola. The part of surface UV = E, where 

e>0, in the region U>0, V>0, has negative curvature and it has the general form 

of FIG. 9.2. ii, which is a surface with two infinite sheets and one hole [1898,744]. It 

is easy to see that it is possible to construct a surface with an arbitrary number of 
holes and two infinite sheets simply by combining an arbitrary number of similar 
hyperboloids. 

FIG. 9.2. ii. 

Hadamard investigated the topology of these surfaces by considering the type of 

curves which could be drawn upon them. He said that two closed curves belonged to 

the same species if they were reducible one to the other by a continuous deformation 

on the surface, and distinguished between the different species by using two sorts of 
elementary curves: si . mple curves which were equivalent with respect to different 

edges of the surface, and curves which corresponded in pairs to different handles. 

Since any curve can be reduced to a sequence of elementary curves in a given direction 

and order, Hadamard had the powerful idea of representing the curves 

symbolically by using a sequence of symbols, each symbol in the sequence 

representing an elementary curve. 

If a and b are any two points of the surface then Hadamard said that two paths that 

go from a to b belong to the same type if it is possible to pass from one to the other by 

a continuous deformation in which the points a and b remain fixed. By this 
definition, two paths ab, ac, which start from a point a and finish on a curve L, are 
also of the same type if it is possible to pass from one to the other by a continuous 
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deformation in which the point a remains fixed while the other extremity describes 

the curve L. If the curve L is closed, then there are an infinite number of ways of 

going from the point b to another point c of this curve without leaving it, and if the 

curve can be reduced to a point, then all the arcs are equivalent. In particular, on a 
doubly-connected surface all the paths from a given point to a given closed curve are 

reducible one to the other. 

In accordance with Poincar6's dictum on the importance of periodic solutions6' 
Hadamard began his investigation into the different types of geodesics by 

considering the closed geodesics. He started by showing that corresponding to each 

type of line joining two distinct points, there is one and only one arc of a geodesic 
belonging to each type, a result which, as he observed, is equivalent to the theorem 

that on a surface of negative curvature two infinitely close geodesics cannot intersect 

more than once. By proving the impossibility of drawing, either between two points 

or from a point to a geodesic, two geodesics reducible one to the other, he showed 

that corresponding to each type of closed curve there is one and only one closed 

geodesic. Furthermore, he showed that on a surface of negative curvature there are 

no reducible closed geodesics; that if the surface is doubly-connected then it only has 

one closed geodesic; and if the connectivity is greater than two then the closed 

geodesics form a denumerable infinity. 

Hadamard next considered the distance between two geodesics. It is straight- 
forward to see that there are only three possibilities: either the two geodesics 
intersect, or the distance between them has a minimum absolute value, or the 

geodesics approach each other asymptotically. The existence of the first two 

possibilities is without question but what about the third? Clearly it only makes 

sense to think of geodesics asymptotically approaching a closed geodesic but do such 

asymptotic geodesics exist? To establish that they do, Hadamard appealed to non- 
Euclidean geometry. 

Let a' be a point of the surface, Aa geodesic joining this point to a point a of a 

geodesic L. Consider m which stretches indefinitely along L in a given direction, 

leaving from the point a and tracing the geodesic a'm of the type of A (see FIG. 

9.23H). The angle maa is constantly increasing but it remains less than a given 
limit, namely the exterior angle a of the triangle maa'. Thus a'm tends towards a 

Poincar6 [MN 1,82). See 7.2.2. 
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limit L'and the geodesic L'is asymptotic to L. It then follows that corresponding to 

each type of line joining a point to a geodesic there are two asymptotes of that 

particular type. These asymptotes can then be considered as geodesics which join 

the given point to the points at infinity on the given geodesic. 

L 
fl: 0 

�4 

FIG. 9.2. iii. 

With regard to his classification of geodesics, since the existence of asymptotic 

geodesics depends on the existence of closed geodesics, Hadamard put both these 

types of geodesic in the same category. 

Hadamard next focused his attention on funnel-shaped infinite sheets 17,. 

Corresponding to each infinite sheet 17jof this sort is a simple curve and hence a 

closed geodesic 'Yj which can be regarded as the initial position of the curve Ci which 
bounds the infinite sheet. Furthermore, the theory shows that on 17i there is only 

one type of line going from an arbitrary point m to the bounded curve %, hence the 

geodesic distance u of the point m to this curve is a completely defined single-valued 
function of the position of the point. Since this distance cannot have a maximum on a 

geodesic and must increase constantly and indefinitely if it increases at all, a 

geodesic which enters the sheet Hi cannot leave it again: it is forced to extend to 

infinity along the sheet, and, moreover, it must do so regularly (i. e. without 

returning to a finite distance). It is clear that if one geodesic extends to infinity, 

then so does every geodesic infinitely close to it. These infinitely extending 

geodesics made up Hadamard's second category of geodesics. 

If all n infinite sheets are funnel-shaped, then the corresponding set of n closed 

geodesics yidivide the surface into n infinite sheets and a bounded part S'which is 

thefinite part of the surface. If a geodesic does not extend to infinity regularly on a 
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defined sheet, then it is always confined in the finite part of the surface. However, 

this is only true if the infinite sheets are funnel-shaped, since if the sheet is not 
funnel-shaped then there are no closed geodesics corresponding to the simple curves 

and hence any closed geodesics must be considered as being rejected to infinity. 

With the above results Hadamard was able to draw some conclusions about the 

relationship between the geodesics and the order of connectivitY of the surface 

considered. 

If the surface is simply connected then there are no closed geodesics, and the distance 

from a point M to an arbitrary fixed point 0 (a distance which is a completely 
defined function of the position of M) increases indefinitely as M describes a 

geodesic. Consequently, every geodesic goes to infinity, and the distribution is 

entirely analogous to that of the lines of a non-Euclidean plane. If the surface is 

doubly-connected then there is only one elementary curve, the simple curve 

corresponding to either one of the infinite sheets. The corresponding closed geodesic 
then divides the surface into two infinite sheets and there is no finite part of the 

surface. Hence every geodesic extends to infinity, except for the closed geodesic and 
its asymptotes and of these latter there are two through each point of the surface. 
However, if the order of connectivity is higher than 2 then not only are the closed 

curves infinite in number but also the simple curves relative to each infinite sheet 

are distinct. 

Finally, Hadarnard found a third category of geodesics quite different to any of 
those which he had previously described. These geodesics were bounded but they 

were neither closed nor asymptotes to closed geodesics. They appeared to approach 

a closed geodesic asymptotically but then move away before approaching another 

closed geodesic and so on. Furthermore he found that corresponding to each of these 

geodesics was an infinite sequence of closed geodesics which got progressively closer 
together and at the same time progressively increased in length. As he observed, 
including a direct quote from Poincar& 

" ... the geodesic in question possesses the property indicated by Poincari 
WN 1,821, namely that the equations of the problem admit 'a periodic 

solution (whose period may be very long), such that the difference between 

the two solutions is as small as desired for any given length of time'. -7. 

7 Hadarnard [1898,768-7691 
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In other words Hadamard's discovery of this third type of geodesic was strong 

evidence to support Poincar6's conjecture that the periodic solutions are in fact dense. 

Hadamard's proof of the existence of this third and final category of geodesics was 

especially notable in that it involved an early and novel use of Cantor's theory of 
transfinite sets8. Given a point 0 and the set E of tangents to the bounded geodesics 

passing through 0, Hadamard found that the tangents to the geodesics he had 

already found, namely the closed geodesics and their asymptotes, were insufficient 

in number to form the totality of the set E and hence another category of geodesics 

must exist. 

Furthermore, he found that in the neighbourhood of a tangent belonging to E there 

exists a geodesic which extends to infinity along an arbitrarily chosen sheet and in 

the neighbourhood of the same tangent there also exist geodesics belonging to third 

category. Hence the set E is perfect but nowhere dense. This remarkable result 
brought out an important distinction between the unbounded and bounded geodesics. 
For he had earlier shown that every unbounded geodesic is surrounded by a 

continuum of unbounded geodesics, but now he had shown that in the case of bounded 

geodesics an infinitesimal change in the initial direction of a geodesic is sufficient to 

make an absolutely arbitrary variation in the final behaviour of the curve. In other 

words, the boundedness property is not preserved by such a change. 

This phenomena of sensitivity to initial conditions led Hadamard to propose the 
idea of the "well posed problem". Since in reality it is never possible to measure the 
initial data completely, he reasoned that it did not make sense to ascribe physical 

validity to a solution unless the solution had continuity with respect to the initial 

data. In a discussion of [1898] written only three years later he concluded: 

"Above all it must be acknowledged that the behaviour of these trajectories 
[geodesics] may depend on arithmetical discontinuous properties of tile 

constants of integration. Secondly, as a result the important problems of 

celestial mechanics, such as the stability of the solar system, may belong to 

the category of ill-posed problems. If we substitute the search for the 

stability of the solar system with the analogous question related to 

geodesics of surfaces with negative curvature, we establish that each stable 

8 In his discussion of the formation of the set E Hadamard not only made reference to the work of 
Cantor and the similar sets encountered by Poincar6, but he also acknowledged an earlier 
contribution by Bendixson although without providing a reference [1898,771]. 
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trajectory can be transformed, by an infinitely small variation in the initial 

conditions, into a completely unstable trajectory extending to infinity, or, 

more generally, into a trajectory of any of the types given in the general 
discussion: for example, into a trajectory asymptotic to a closed geodesic. 
But, in astronomical problems the initial conditions are only known 

physically, that is to say with an error which can only be reduced by 
improving the means of observation but which cannot be eliminated. 
However small if is, this error might cause a total and absolute perturbation 
in the result. "9. 

9.3 Birkhoff and dynamical systems 
Birkhoff's deep study of Poincard's work on dynamics is evident from his first 

publication devoted to theoretical dynamics [1912) in which he introduced his idea 

of "recurrent motion" as a natural extension of periodic motion. This was followed by 

his resolution of PoincaWs last geometric theorem [1913] (described in 7.4.2), and 
two prize-winning papers in 1915 and 1917, the first on the restricted three body 

problem and the second on dynamical systems with two degrees of freedom. Many of 
the essential ideas from these early papers are collected together in his acclaimed 
book Dynamical Systems [1927], which was based upon his Colloquium Lectures 

delivered before the American Mathematical Society in 1920, and which was 

greatly influenced by Poincard's work on celestial mechanics. 

9.3.1 Recurrent motion 

Birkhoff's first paper on dynamics [1912] marks the beginning of a new phase in 
dynamical theory. Not only did Birkhoff explicitly consider a general dynamical 

system as opposed to addressing a particular dynamical problem, but instead of 
thinking simply in terms of a particular type of motion, he thought in terms of "sets" 

of motions which resulted in his novel concept of "minimal" or "recurrent" sets of 
motions. 

Birkhoff considered the general class of dynamical systems defined by the 
differential equations 

9 Hadamard [1901,14]. 
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dx, 
= dt (i = 1, ..., n), xi 

where the Xi are n real analytic functions and a state of motion can be represented by 

a point P in a closed n-dimensional manifold. A motion can then be represented by a 

trajectory in the manifold and its domain is its closed set of limit points. Birkhoff 

called the limit points of a motion as t becomes negatively or positively infinite a- 

and o). -Iin-Lit points respectively. He defined a stable motion as one which never gets 

arbitrarily close to a singularity of the manifold. 

If M' is a closed set of limit motions (i. e. trajectories composed of limit points) of a 

motion M and M' contains no proper subset then Birkhoff called the members of the 

set M' recurrent motions and the set itself he called a minimal set. More specifically 
he proved that a. motion is recurrent if and only if for every E>0, there exists an 
interval of time T so large that the arc of the trajectory corresponding to the motion 
during the interval has points within a distance e of every point of the trajectory. In 

other words, a motion is recurrent if during a sufficiently long time interval T, it 

comes arbitrarily close to all its states of motion, and thus a recurrent motion is 

stable in the sense given above. 

A direct connection can be made between Birkhoff's concept of recurrent motion and 
MncarCs ideas about stability. Since by definition every point on the trajectory of 

a recurrent motion is a limit point, hence the motion must approach every point on 
the trajectory infinitely often and arbitrarily closely. In other words, every 

recurrent motion must be Poisson stable. Clearly the simplest type of recurrent 

motions are the stationary and periodic motions, since in each case M'coincides with 
M and contains a single motion, whereas in every other case M'contains an infinite 

number of motions. 

With regard to the general problem of determining all possible motions in a 
dynamical system, Birkhoff highlighted the value of the idea of recurrent motion 
with two particular results. On the one hand he proved that the set of limit motions 
of any motion contains at least one recurrent motion, and on the other he showed that 

any point P either generates a recurrent motion or it generates a motion which 

approaches with uniform frequency arbitrarily closely a set of recurrent motions. 
Thus the concept of recurrent motion can be used to derive definite results about the 

motion in an arbitrary dynamical system and one of the significant features of the 
theory is that it is valid for systems with any degree of freedom, in contrast to 



Hadantard and Birkhoff 263 

Poincar6's theory of periodic motion which is only known to be valid for systems 

with two degrees of freedom. 

Birkhoff also made a connection between recurrent motion and Hadamard's 

classification of geodesics on surfaces of negative curvature. It will be recalled that 
Hadamard's final category of geodesics contained those bounded geodesics which 

asymptotically approach a closed geodesic and then move away before returning to 

approach another closed geodesic. Since the motion corresponding to a geodesic of 
this type is necessarily stable, there must exist at least one geodesic corresponding to 

a recurrent motion. This cannot be either an asymptotic geodesic or an unbounded 

geodesic and hence either every geodesic in the third category approaches 
infinitely often and arbitrarily closely one particular closed geodesic, or there exists 

a recurrent motion given by a geodesic from Hadamard's final category. 

In the case where the differential equations ceased to be analytic Birkhoff proved 
that recurrent motions do exist but they are neither periodic nor do they occur in the 
immediate neighbourhood of any periodic motion, and hence he called them 
discontinuous recurrent motions. The question of whether discontinuous recurrent 

motions exist in the analytic case was resolved by his student Marston Morsel 0. 

9.3.2 The restricted three body problem 

As discussed in 7.4.2, Birkhoff's first paper which concerned the restricted three 
body problem was his acclaimed proof of PoincarOs last theorem [1913] which 

appeared shortly after his paper on recurrent motion. With regard to his treatment 

of the problem in its generality, he published three principal papers [1915], [19351 

and [1936], of which only the first will be discussed here. This paper, for which he 

won the Quirini Stampalia prize of the Royal Venice Institute of Science, provided 
the first major qualitative attack on the problem since Poincar6. But, unlike 
Poincard, Birkhoff made little concession to analysis, and his investigation was 
founded almost entirely on topological ideas 

Birkhoff formulated the problem in the standard way using a rotating coordinate 

system (x, y) with the two primaries S and I located on the x axis with the origin at 
their centre of gravity (see FIG. 2.23i) 11, and, as customary, he reduced the system 

1() Morse 11921a]. See the Epilogue. 
II As Szebehely has observed 11967,37], the formulation of the restricted three body problem 
seems peculiarly prone to error. In Birkhoff's formulation his description of the problem, his 
diagram, and one of his equations all contradict. 
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from fourth to third order by only considering the totality of motions for which the 

Jacobian constant C has a given value. 

He first established a transformation of the variables which not only allowed him 

to derive Levi-Civita's [1906] equations and hence remove one of the singularities, 
but it also enabled him to derive a new form of the equations in which the 

singularities at both S and I are simultaneously removed and in which the equations 

are regular providing the planetoid is not rejected to infinity. From this new form of 

the equations he created a geometric representation in which the manifolds of 

motion are represented by the stream-lines of a three-dimensional flow and are 

without singularity unless C takes one of five exceptional values. Provided these 

five values are excluded the totality of the states of motion can then be represented 
by the stream lines of a flow occupying a non-singular manifold in a four- 

dimensional space. Since the five singular values mark the positions where two of 

the manifolds are about to join or separate, they act to distinguish between six 
different Manifolds according to the value of C. By considering the representation 
from a topological point of view, Birkhoff demonstrated that each of these six 

manifolds required a different model, thereby giving an effective illustration of the 

problem's dependence on the value of C. 

Birkhoff restricted most of his research to the case in which the planetoid is 

confined to move inside an oval about one of the primaries. This case, which is the 

simplest of the six, occurs when C is sufficiently large and positive. The relative 

simplicity of the case is associated with the fact that providing C is sufficiently 
large (or y is sufficiently small) the restricted problem closely resembles a two body 

problem. In this case Birkhoff's topological model shows that the states of motion 

are in one-to-one continuous correspondence with the points of a sphere, providing 

the diametrically opposite points are taken as identical. 

If the motion is unperturbed the planetoid moves in a rotating ellipse with semi- 

major axis a, where the Minimum value a, of a corresponds to a retrograde circular 

orbit, and the maximum value a2 corresponds to a direct circular orbit. To consider 

the structure of the manifold of motion Birkhoff chose the variables to be the semi- 

major axis a, the longitudeeof the line of apsides (the line joining the perihelion 

and the aphelion) of the ellipse with respect to the rotating x axis, and the mean 

anomaly q? of the planetoid taken in the same direction as the motion. The variable 
e then determines the instantaneous position of the ellipse while the variable (p 
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determines the position of the planetoid on the ellipse. Thus, providing the circular 

orbits are excluded (since in this case e and 9) are undetermined) the totality of states 

of motion can be represented in a one-to-one continuous way upon the interior of the 
hollow cylinder aI<a< a2l 0 :5 q) :5 27r, and the trajectories are spirals on the 

cylinders a= constant. The direct circular orbits are represented by the outer 

cylindrical surface e+ ip = constant and the retrograde circular orbits are represented 
by the inner cylindrical surface e- 9= constant. 

However, as Poincar6 had shown [MN 111,372-381] the representation of the 

problem as a three-dimensional flow can be reduced to a representation which 

depends on the transformation of a two-dimensional ring into itself. For if K is any 

point on the ring 4p =0 in a given cylinder and L is the point at which the trajectory 

through K first meets the ring q) = 21r, then corresponding points on the two rings will 

represent the same state of motion of the planetoid. In this way the two ends of the 

hollow cylinder are identified to form a torus with an internal hole of radius a,. 

Thus the transformation T which takes K into L defines a transformation of the ring 

(P =0 into itself. Moreover, T preserves certain essential properties of the 

trajectories. For example, if the trajectory is periodic then a certain number of 

applications of T will take the point K into itself. 

Birkhoff therefore constructed in the x, y plane a series of concentric retrograde 
(direct) circles of radius less than a, 02) about the primary. These can then be 

regarded as generating a ring of two leaves joined at the origin in the x, y plane. For 

any point K of a circle of the ring, there exists a positively tangent orbit which will 

again become positively tangent at a point L for the first time. This establishes a 

one-to-one continuous transformation of the ring into itself taking any point K into its 

corresponding point L, leaving radial distances unchanged and regresses each point 
by an amount dependent on the ellipse of motion of the planetoid. He then proved 

that for sufficiently small values of M and any value of C>N 32, it is possible to 

analytically continue the direct and retrograde periodic orbits and hence generalise 
the ring construction for the perturbed motion. In this case the transformation is a 

precise generalisation of the transformation forp = 0. It is one-to-one, continuous 

al ong the boundaries and varies continuously with p from the transformation for 

p=0. He further proved that a necessary and sufficient condition for a ring bounded 

by a retrograde periodic orbit and a direct periodic orbit to exist which is cut by all 
the stream lines infinitely often is that every orbit in a sufficiently large time 
interval makes an arbitrary number of positive circuits of the retrograde orbit. 



266 Hadamard and Birkhoff 

Birkhoff also showed that the transformation T possesses two important properties 
each of which can be used to form the basis for further results. Firstly, T is an area- 

preserving transformation. Birkhoff used this property to show that for a given 
value of C and a given point in the plane there are an infinite number of streamlines 

of the flow which pass through the point at a later time. Secondly, T is a product of 
two involutory transformations and from this property Birkhoff proved the 

existence of an infinite number of symmetric periodic orbits and also deduced results 
concerning their characteristic properties and distribution. 

One other problem which Birkhoff addressed in [1915) concerned the restriction on 

the value of y which was inherent in his method for determining both the 

retrograde and direct periodic orbits. In the case of retrograde orbits he found that 

he could remove the restriction by returning to the differential equations of the 

problem and employing a transformation similar to the one used by Levi-Civita 

[1906]. In this way he was able to establish that for an arbitrary value of p there 

exists at least one retrograde periodic orbit symmetric with respect to the x axis 

which makes a single orbit around the primary, providing the value of C is such 

that the planetoid is confined to move within a closed oval of zero velocity about 

the larger of the two primaries. The case of direct periodic orbits was rather more 
difficult and required a different approach. In this case Birkhoff sought a new 

transformation whose construction was based on the existence of a retrograde orbit 

already known to exist rather than, as above, a transformation whose construction 

was based on the existence of both retrograde and direct orbits. The transformation 

he used was one in which the variables (a, e, 9) are replaced by 

a. = 
1 

_-L , e- = e, (p-e a a2 

and PoincarOs ring transformation is replaced by the transformation T* of a disc into 

itself whose only boundary corresponds to the retrograde periodic orbit. A 

correspondence is then set up between the retrograde orbit for P=0 and the 

retrograde periodic orbit for p#0. By Brouwer's fixed point theorem, the 

transformation T* necessarily possesses an invariant point, and this point 

corresponds to a direct periodic orbit making a single revolution about the primary. 
Thus providing the conditions for the existence of T are fulfilled, there exists a 

transformation T* and at least one direct periodic orbit. 

Twenty years elapsed before Birkhoff's next publication on the problem. In the 
interim he had researched prodigiously into general dynamical systems, the 
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crowning result of which was another prize memoir Nouvelles recherches sur les 

syWmes dynamiques [1935a]. In his two later papers on the restricted problem, 
[1935] and [1936], of which the second was a continuation of the first, Birkhoff 

combined his ideas from [19151 together with some of the general results from 

[1935a], notably his development of Poincar6's idea of a transverse section. In [1935] 

he focused on the analytic properties of the transverse section and the 
transformation T used in [1915], while in [1936] he used qualitative methods to 

explore the results from [1935) in order to obtain further information about the 
different types of motion and the relationships which exist between them. 

Birkhoff also contributed to another paper which concerned the restricted three 
body problem. In 1922 the National Research Council Committee on Celestial 

Mechanics, of which Birkhoff was a member, drew up a report on the state of 

celestial mechanics [1922]. Amongst other topics the report contained a short 
discussion on the restricted three body problem and there seems little doubt that 
Birkhoff himself was the author of this part of the report. It set out the particular 
difficulties associated with the problem and contained an admirably concise and 

accessible explanation of Poincar6's method of reducing the problem to the 

transformation of a transverse section. 

9.3.3 Dynamical systems with two degrees of freedom 

One of Birkhoff's most important papers on dynamics and a paper which was 

clearly inspired by Poincar6 was his famous paper on dynan-dcal systems with two 

degrees of freedom [19171 which won the 136cher Prize of the American 

Mathematical Society in 1923. According to Morse, Birkhoff declared in about 1925 

that he thought [1917] as good a piece of research as he would be likely to do 12. 

As previously mentioned, the interest in dynamical systems of this type stems from 

the fact that they represent the simplest type of non-integrable dynamical 

problems. Thus, as exemplified in the work of Poincar6 and Hadamard, they form 

the natural starting point for qualitative explorations into questions of dynamics. 

Furthermore, as Birkhoff showed in [1917), they have the advantage that it is 

always permissible to consider the motion as the orbit of a particle constrained to 

move on a smooth surface. 

12 Morse (1946,3801. 
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Birkhoff began with the equations of motion in standard Lagrangian form 
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where the function L, which is quadratic in the velocities, involves six arbitrary 
functions of x and y. By making an appropriate transformation of variables he 

reduced the equations to a normal form which only involved two arbitrary functions 

of x and y. 

In the reversible case, i. e. when the linear terms in the velocities are lacking in L so 
that the equations remain unchanged when t is replaced by -t, this transformation 

was well known. In this case the equations of motion can be interpreted as those of a 

particle constrained to move on a smooth surface and the orbits of the particle 
interpreted as geodesics on the surface. But in the irreversible case, for example in 

restricted three body problem, Birkhoff's transformation was new and he gave a 
dynamical interpretation in which the motions can be regarded as the orbits of a 
particle constrained to move on a smooth surface which rotates about a fixed axis 

with uniform angular velocity and carries with it a conservative force field. 

The central part of the paper concerned various methods by which the existence of 

periodic orbits could be established. In the first instance Birkhoff considered the 

method which he called the minimum method. Briefly, given a certain type of 
Lagrangian dynamical system and any closed curve I not deformable to a point on the 

surface then for a given value of the energy constant there exists a periodic orbit of 
the same type as I for which a certain integral is a minimum. In the reversible cases 

where the surface is closed and of Positive genus then this integral corresponds to 
the arc length on the surface and the periodic orbit corresponds to a closed geodesic. 
In other cases, Birkhoff showed that the knowledge of boundaries of a particular 
type was required before the method could be used. In the irreversible case the 

situation is different because the integrand of the integral is no longer of one sign. As 
Birkhoff observed, the method only yields the completely unstable periodic orbits 

and hence has a limited application. 

Secondly, Birkhoff developed his new minimax method] 3. This method which is 

applicable only to the reversible case establishes the existence of a large and 

13 As noted by Birkhoff [1927,139] and Veblen [1946,283], Birkhoff's minimax method 
provided a startingFoint for Morse's worlý on calculus of variations in the large which 
introduces topologica considerations into analysis. 
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completely different class of periodic orbits. As Birkhoff described in [1927,133] 

this method can be most easily understood in an informal way by considering a torus 

in three-dimensional space. Clearly the minimum method will yield a closed 

geodesic having the type of a closed curve not deformable to a point on the surface of 
the torus. If now a closed curve of the same type is moved away from the minimising 

geodesic while at the same time one of the angular variables defining the torus is 

increased by 2nir then the leng-th of the closed curve will increase during this motion 

and the curve will have to reach a least upper bound in length in order for the 

motion to be possible. When the curve reaches this least upper bound length it will 
be taut and this is the position of the curve which corresponds to a closed geodesic of 

minimax type. 

Thirdly, Birkhoff considered Poincard's method of analytic continuation which is 

applicable to both reversible and irreversible periodic orbits. One of the problems 

with the method was that it was only valid for a small variation in the value of 

the parameter. The restriction was due to the possibility that the period of the 

orbit under consideration might become infinite. To increase the interval of the 

variation it is therefore necessary to show that this possibility cannot arise and 
this is precisely what Birkhoff did for a wide range of periodic orbits. 

Finally, it was in this paper that Birkhoff first began to generalise Poincar6's idea 

of a transverse section and formally. develop the theory attached to it. Poincar6 

had used the idea specifically to reduce the restricted three body problem to the 

transformation of a ring to itself but if the method was to have a general validity it 

was important to establish under what circumstances transverse sections exist. 
Birkhoff was able to show that not only do they exist in a wide variety of cases but 

also they can be of varying genus and have different numbers of boundaries. 

With regard to the transformation of a transverse section, Birkhoff emphasised the 
fact that it possesses an invariant area integral. This is important because it means 
that the transformation only involves one arbitrary function of two variables as 
opposed to the normal form of the differential equations which involves two 

arbitrary functions. In other words, reducing a dynamical problem to a 
transformation of a transverse section into itself is both a qualitative and an 
analytic reduction. 

By considering the invariant points of these transformations Birkhoff derived two 
important results about the periodic orbits. In the first place he found that the 
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difference between the number of unstable and stable periodic orbits is a constant, 
the constant depending only on the nature of the transformation and the genus and 
number of boundaries of the original surface. The second result involved a 
modification to Poincar6's last theorem. As has been described, the theorem 
involves the use of a ring-shaped transverse section to prove the existence of an 
infinite number of periodic orbits. Birkhoff now proved not only that the theorem 

can be used to establish the same conclusion for a general transverse section of genus 
p=0, but also that a modified version of the theorem can be used to establish the 

same conclusion for a transverse section of genus p>0. 

9.3.4 Later papers 

Birkhoff's work on dynamical systems continued throughout his life and mention 
has already been made of his later papers which relate to Poincar6's last theorem 

and to his research on the restricted three body problem. The following is a very 
brief synopsis of some of his other work which is included to give an indication of 
the extent and direction of his later research. 

In 1920 Birkhoff published a major paper on Surface transformations and their 
dynamical applications [1920] which was essentially an extensive elaboration and 
extension of some of the ideas he had broached at the end of [1917]. He began with a 
classification of different types of invariant points and then considered the 
behaviour of points in the neighbourhood of invariant points under the one-to-one, 
direct, analytic transformation of an analytic surface into itself. He also considered 
the problem of determining the behaviour of other different classes of points. The 
dynamical applications, which involved questions of integrability, stability and 
the classification of different types of motion, were only made briefly at the end of 
the paper. 

In [1927a] Birkhoff considered the question of stability and the role of the 

Hamiltonian form of the equations. He argued that essentially the only 

significance of the Hamiltonian equations is that they possess the property of 

complete formal stability, i. e. any set of n equations possessing complete formal 

stability at a point of equilibrium can be given Hamiltonian form by an appropriate 

change of variables. 

In [1927b] Birkhoff considered the distribution of periodic motions in dynan-dcal 

systems with two degrees of freedom. As an example of how Poincar6's theorem and 
his own generalisation [1925] could be applied he discussed the motion of a billiard 
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ball on a convex table. He showed that if such a dynamical system adn-dts a stable 
periodic motion then it adn-dts an infinite number of other stable periodic motions 
within its immediate vicinity and the totality of these stable periodic motions form 

a dense set. Although he did not resolve Poincar6's question of whether the periodic 

motions are densely distributed throughout the possible motions, his example did 

show that this cannot be true unconditionally. 

Finally, it is appropriate to mention Birkhoff's famous "ergodic theorem" [1931a], 

since its origins relate back to Poincar6's recurrence theorem14. The proof of the 
theorem is one of the major mathematical achievements of the period and in 
Birkhoff's ceuvre ranks alongside his proof of Poincar6's last theorem. 

The ergodic theorem states that for any dynamical system given by differential 

equations which possesses a certain n-dimensional invariant integral, there is a 
definite time probability p that any moving point, except those of measure zero, 
will be in an assigned region. Birkhoff's proof combined Poincar6's topological 

approach with the use of Lebesgue measure theory, and a clear explanation of the 

theorem and the nature of its applications is given in Birkhoff [1942]. 

14 The term "ergodic" originated with Boltzmann who used it to describe mechanical systems 
which had the property that each particular motion when continued indefinitely passed through 
every configuration and state of motion of the system which was compatible with the value of 
the total energy. 



10. Epilogue 

In discussing the impact made by PoincarOs memoir during the three decades 

following its publication a two-sided picture has emerged. On the one hand 

Poincar6's memoir stimulated interest in different aspects of the three body problem 

as exemplified most notably in the work of Painlevd, Levi-Civita, Sundman and 
Darwin, but, on the other, PoincarOs innovative topological approach to dynamics, 

although lauded by his contemporaries, found little expression in their work. 
Hadamard, despite the success of his Bordin paper did not use it as a focus for later 

research, and although Birkhoff made remarkable progress with his development 

of Poincar6's ideas, his investigations did not begin until 20 years after the 

publication of Poincar6's memoir. Furthermore, certain issues raised by Poincar6's 

work, such as the convergence of the series used in celestial mechanics and the 

strange characteristics exhibited by his doubly asymptotic solutions, were not the 

subject of any extensive research during the period under review. Much more recently 
each of these topics has resurfaced in the foundations of important new branches of 

mathematics, the former in KAM theory and the latter in chaos theory. This 

prompts questions about why these issues were not raised earlier and the general 
lack of contemporary response to Poincar6s dynamical ideas. In conclusion I want to 

consider these questions and in doing so look forward to some aspects of the next 

generation of research. 

272 
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It is conspicuous that during the early years of the 20th century no serious attempt 

was made to understand further the behaviour of Poincar6's doubly asymptotic 

solutions - the complexity of which Poincar6 so forcefully described in the final 

volume of the Mgthodes Nouvelles published in 1899. Certainly this lack of 

research can to a great extent be explained by the inability to engage in a 

quantitative analysis due to inadequate computing techniques. The advent of the 

modem digital computer has meant that such an analysis is now possible with the 

result that during the last twenty years there has been an explosion of research into 

nonlinear systems. One of the results of this has been the unfolding of modem chaos 
theory, the roots of which go back to Poincar6's theory of doubly asymptotic 

solutionsl. In addition to the problems of numerical computation, there was thb 

further difficulty caused by the fact that the seemingly random behaviour 

exhibited by Poincar6's doubly asymptotic solutions did not fit in with the widely 

accepted Laplacian model of a clockwork universe. As observed earlier, this may at 
least partially explain why Poincar6 himself originally missed the chaotic 
behaviour in his original memoir: he was simply expecting the solutions to evolve in 

a well-ordered way. 

On a more general level, Poincar6's qualitative approach involved such a 

completely new way of looking at dynamical problems and such considerable 

conceptual difficulties that a period of assimilation was inevitable. One of the 

most striking examples of Poincar6's new ideas is his method of using a transverse 

section in order to reduce the dimension of a dynamical problem and more easily to 

investigate the behaviour of trajectories. Although the idea was acknowledged by 

Levi-Civita (19011, it was only through the work of Birkhoff that the potency of the 

method began to be realised2. Poincar6's creation and use of the method is a 
testimony to his remarkable talent for the visualisation of the long term evolution 

of a dynamical system. 

With regard to the work of Birkhoff, although interest in his research was assured 
through his proof of Poincar6's last theorem, the actual response to it was slow. 
Although this again can be partly attributed to the novelty of his ideas, there were 

I See Ekeland 11988] and Stewart [1989) for informative popular accounts of Poincar6's work 
in relation to chaos theory. 

2 As for example in the work of Thomas Cherry who in the 1920s did extensive research into the 
general solutions of equations of dynan-dcal systems. Of note is Cherry's paper on the periodic 
solutions of Hamiltoruan systems (1928] in which he drew analogies with Poincard's resu ts . 
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also several indirect factors which inhibited the response. On the one hand there 

was the effect of the Great War which inevitably took its toll on mathematical 

activity, and on the other, by 1927, the time of the publication of Birkhoff's seminal 
book, dynamics had to compete in the mathematical arena not only with Einstein's 

general theory of relativity but also with the new ideas of quantum theory. 

Concomitant with these theories came a wealth of new mathematics which served 

to focus interest away from the traditional problems of celestial mechanics and the 

related dynarnics3. 

Nevertheless, one of Birkhoff's students, Marston Morse, was deeply influenced by 

his teacher's interest in Poincar6's topological approach to dynamics. Morse, who 

was bom in 1892, the year of the publication of the first volume of PoincaWs 

Wthodes Nouvelles, became one of the foremost mathematicians of his generation 

and produced outstanding work in topology and the calculus of variations. 

ol 

91 

FIG. 10d. 

92 

Morse's early papers on geodesics [1921,1921a], which resulted from his thesis of 
1917, drew on results both from Hadamard [1898] and Birkhoff [1912]. In these 

papers Morse discussed the behaviour of geodesics on surfaces of negative curvature 

embedded in three-dimensional space, the surfaces being of the type shown in 

3 That is not of course to say that dynamics and these topics were thought to be mutually 
exclusive. For example, Einstein showed his farniliarity with PoincarCs ideas in [1917) where 
he discussed the quantisation conditions for nonseparable but integrable Hamiltonian systems 
considering the nature of motion of classical systems with more than one degree of freedom. 
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FIG. 10j4. These surfaces have boundaries which have closed geodesics g and they 

are assumed to have genus at least equal to two. 

Morse, using Hadamard's existence theorems and the fact that if the surface is cut 

along the geodesic segments h it becomes simply connected, created a symbolic 

representation of the geodesics lying entirely on the surface. He assigned to each 

geodesic a sequence of symbols where each symbol represented a geodesic segment 

and the whole sequence represented an unending ordered set of geodesic segments 

which he termed a normal set. Using this representation he obtained results about 

sets of geodesics and their limit geodesics. Notably he proved the existence of a 

certain class of geodesics which constituted a set of discontinuous recurrent motions 

and so resolved Birkhoff's question posed in [19121. These particular geodesics are 

now known as Morse trajectories. 

Morse's symbolic representation for the geodesic flow followed naturally from 

Hadamard's representation of curves on a surface given in [18981. Morse took up the 
idea in more detail at the end of the 1930s when, with Hedlund, he presented a 
formalised account of "symbolic dynamics" [19381. Their work provided the 

foundations for a powerful new method of dynamical investigation through which 

dynamical questions could be given an algebraic formulation quite distinct from the 

classical theories of differential equations. 

Finally, turning to the questions concerning the convergence of Lindstedt's series. As 

described in 7.2.3, Poincar6s research had indicated, contrary to what Weierstrass 

had hoped, that Lindstedt's series were, apart from some exceptional cases, 
divergent. However, Poincar6 had made it clear that he had not given a rigorous 

proof for the cases when the frequencies can be fixed in advance. With the work of 
Kolmogorov, Arnol'd and Moser it is now known that in these latter cases the 

majority of the formal series solutions are in fact convergent, and hence Weierstrass' 

intuition was after all correct. Their results form the basis for what is now known as 
Kolmogorov-Arnol'd-Moser (KAM) theory which provides methods for integrating 

perturbed Hamiltonian systems which are valid for infinite periods of time. 

The basis of KAM theory can be understood by considering the autonomous 
Hamiltonian system with n degrees of freedom 

4 Bott 11980,915). 
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dq 49H dp dH 
dt dp' dt q 

with an analytic Hamiltonian 

H(p, q) = Ho(p) + pH, (p, q) +... 

(p = pi, ..., p,,; q= ql, ..., q,, ) 

where H is periodic in q of period 27r, andju is a small parameter. 

When the motion is unperturbed and y=0 
4r ýI dHo 
dt ýo' dt ap QXP), (0) = mi, ..., W. ) 

Epilogue 

the system is integrable and the phase space is foliated by invariant tori 

p= constant. If the frequency ratios wi are incommensurable then the motion is 

termed quasi-periodic with n frequencies o),, ..., ro, and each trajectory p(t), q(t) is 

everywhere dense in the torus. The variables p, q are known as action-angle 

variables, and the unperturbed system is said to be nondegenerate if the motion is not 
described by a smaller number of frequencies than the number of degrees of freedom. 

d2H 
In other words the system is nondegenerate providing the Hessian determinant M) 

do, es not vanish identicaUy. 

If now the system is slightly perturbed what happens to the invariant tori? The 

answer is given in the famous theorem of Kolmogorov [1954]. Clearly, the conditions 

under which the invariant tori are preserved are precisely the conditions under 

which solutions to the Hamiltonian equations exist (for fixed frequencies 

independent of the perturbation parameter) and the formal series expansions are 

convergent. 

Kolmogorov's theorem states that if the unperturbed motion is nondegenerate then, 

under sufficiently small analytic perturbations of the Hamiltonian, the majority of 
invariant tori are not destroyed but only shifted slightly in the phase space, and 
the corresponding motion remains quasi-periodic. Moreover, these invariant tori 
form a closed nowhere dense set of positive measure whose complement has a 

measure which is smaH with respect to y. 

More specifically, the tori which persist under small perturbations are those whose 
frequencies o)j are not only incommensurable but also satisfy the inequalities 

n 
T, kicoi KIk -v, (v= n+ 
j-1 
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for all integers ki with ik I= II ki I ýt 1, and a suitable K(a)) > 0. These relations 

give a condition under which the small divisors are bounded below in absolute 
value, and it is known by the theory of Diophantine approximation that for the 

majority of frequencies these relations are satisfied. These relations are naturally 
preserved under the perturbations since Kolmogorov's theorem asserts that the 
frequencies are independent of the perturbation parameter. 

It is necessary to have relations of the type (10J) which exclude conunensurable 
frequencies since in any neighbourhood of an invariant torus of the unperturbed 
system there exists an invariant torus with frequencies co, which are conunensurable, 
and, in general, under a small perturbation such an invariant torus will collapse. 
These resonant tori consist of periodic solutions and, as Poincar6 had shown when 
n=2, only a finite number of periodic solutions persist for small values of p. 

Furthermore, when n=2, the two-dimensional invariant tori divide the three- 
dimensional energy level H= constant (FIG 103i) and a trajectory originating in the 

region between two invariant tori remains confined there. The measure of the gap 
between two invariant tori limits the magnitude of the oscillations of the corres- 

ponding action variables and hence these variables remain close to their initial 

values. When n>2, the n-dimensional tori do not divide the (2n - l)-dimensional 

energy level manifold H= constant. 

FIG. 103i. 

The proof of Kolmogorov's theorem, which was proposed by Kohnogorov [1954] and 

made rigorous by his student Arnol'd 11963), was based on Lindstedt's method of the 
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construction of a succession of coordinate changes which progressively annihilate 

certain terms in the Hamiltonian in increasingly higher order of the parameter. 
Due to the presence of the small divisors, the convergence of the series satisfying the 

equations depends on the rate of contraction of the numerators. Kolmogorov's 

suggested form of proof used Newton's method of approximation which introduces 

quadratic convergence, i. e. the error r, of the nth approximation is of the order r,. 12 
for n=1,2..., and e<1. An important improvement to the theorem was made by 

Moser [1962] who showed that the requirement of the analyticity of the 

Hamiltonian can be abandoned and replaced by the condition that several hundred 

derivatives exist. In the two degree of freedom case he proved that it is sufficient 
that 333 derivatives exist! 

Thus with the development of KAM theory Weierstrass' question was finally 

answered in the affirmative. The proof of Kolmogorov's theorem conclusively 

establishes the existence of convergent series solutions for the n body problem, and, 

moreover, these solutions are not exceptional in measure-theoretic terms. 

Arnol'd's description of Kolmogorov's theorem in his introduction to the proof 

encapsulates the spirit of Kolmogorov's achievement: 

"A simple and novel idea, the combination of very classical and essentially 

mode rn methods, the solution of a 200 year old problem, a clear geometrical 

picture and great breadth of outlook ... ... [1963,9]. 

It is an appropriate tribute to an idea which incorporates much of the rich legacy 

inherited from Poincard's great work on the three body problem. 



Appendix 1. A letter from Glista Mittag-Leffler to Sonya 
Kovalevskaya 
Nfittag-Leffler Institute 

Helsingfors, 7.6.1884 

I agree with Weierstrass, if none of the answers on the set question are worthy of the 

prize, then the medal must be awarded to the mathematician who within recent 

years has made the best discoveries in higher analysis. But I cannot agree with the 

view that it will not further the progress of science to propose specific prize 

questions, in particular if they are stated reasonably. What about the significance 
for the development of the theory of linear differential equations resulting from the 
last prize question from the French Academy. This question provided the starting 

point for Poincar6's work. Furthermore, there does not exist a prize exclusively 
intended for pure analysis, hardly a prize exclusively intended for pure 

mathematics, apart from Steiner's prize in Berlin. The shortcoming of the Steiner 

prize is that it is awarded too often, every year. But we should not award our prize 

more frequently than every fourth year. Malmsten and the King want the prize jury 

to be appointed by the King and to consist of 

1. The main editor of Acta Mathematica 

2. A German or Austrian mathematician -= Weierstrass 

IA Frendi or Belgian mathematician -= Herrnite 

4. An English or American mathematician -= Cayley? or Sylvester 

5. A Russian or Italian mathematician -= the first time Brioschi or 
Tschebychef, the second time Mrs Kovalevskaya. 

After each prize giving two of the prize judges should leave the jury and new ones 

should be appointed by King Oscar as long as he is alive - he must be able to appoint 
(substitutes) for both the leaving members. After King Oscar's death, the three 

remaining must appoint two new members but always in such a way as to fit the 

categories mentioned above. Imagine if one had to award a prize to the best 

mathematical work which has appeared during the last four years. Then the 
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national differences would certainly show up and the different views on what 

constitutes the essential substance of mathematics would be clearly expressed. 

Cayley and Brioschi might want to make the award to God knows which master of 

calculating and Tschebychef might opt for God knows what odd ideas. It is quite a 

different matter when one has to judge answers to a specific question. In this case one 

is forced to stick to much more objective criteria. 

And finally one more reason. King Oscar is convinced that we should only announce 

specific prize questions and I doubt that it will be possible to change his n-Lind unless 
I propose that the prize should be used to honour Swedish or Norwegian papers - 
like the anatomic prize you mentioned which is probably restricted to Russian works 

- but I do not want this at all. The competition would not get the international 

scientific reputation which I had imagined. I think that honouring only the works 

published in Acta would be more in the interests of the journal than in the interests 

of science. And this I do not want either. The interests of science must come first. If 

later I can do something for Acta at the same time then that is another matter and I 

will do it with all my heart. 



Ap endix 2. Announcement of the Oscar Competition 
. Pp 

Nature, 30.7.1885 

THE HIGHER MATHEMATICS 

Prof. G. Mittag-Leffler, principal editor of the Acta Mathematica, forwards 

us the following communication, which will shortly appear in that journal: - 

His Majesty Oscar II, wishing to give a fresh proof of his interest in the 

advancement of mathematical science, an interest already manifested by his 

graciously encouraging the publication of the journal Acta Mathematica, which is 

placed under his august protection, has resolved to award a prize, on January 21, 
1889, the sixtieth anniversary of his birthday, to an important discovery in the 
field of higher mathematical analysis. This prize will consist of a gold medal of 
the eighteenth size bearing his Majesty's image and having a value of a thousand 
francs, together with a sum of two thousand five hundred crowns (1 crown = about 1 
franc 4- centimes). 

His Majesty has been pleased to entrust the task of carrying out his 
intentions to a commission of three members, Mr. Carl Weierstrass in Berlin, Mr. 

Charles Hermite in Paris, and the chief editor of this journal, Mr. Gbsta Mittag- 
Leffler in Stockholm. The commissioners having presented a report on their work to 
his Majesty, he has graciously signified his approval of the following final 

propositions of theirs. 

Having taken into consideration the questions which from different points of 
view equally engage the attention of analysts, and. the solution of which would be of 
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the greatest interest for the progress of science, the commission respectfully proposes 

to his Majesty to award the prize to the best memoir on one of the following subjects: - 

(1) A system being given of a number whatever of particles attracting one 

another mutually according to Newton's law, it is proposed, on the assumption that 
there never takes place an impact of two particles to expand the coordinates of each 

particle in a series proceeding according to some known functions of time and 
converging uniformly for any space of time. 

It seems that this problem, the solution of which will considerably enlarge 

our knowledge with regard to the system of the universe, might be solved by means 

of the analytical resources at our present disposition; this may at least be fairly 

supposed, because shortly before his death Lejeune-Dirichlet communicated to a 
friend of his, a mathematician, that he had discovered a method of integrating the 
differential equations of mechanics, and that he had succeeded, by applying this 

method, to demonstrate the stability of our planetary system in an absolutely strict 

manner. Unfortunately we know nothing about this method except that the starting 

point for its discovery seems to have been the theory of infinitely small 

oscillationsl. It may, however, be supposed almost with certainty that this method 
was not based on long and complicated calculations but on the development of a 

simple fundamental idea, which one may reasonably hope to find again by means of 

earnest and persevering study. 

However, in case no one should succeed in solving the proposed problem 
within the period of the competition, the prize might be awarded to a work in 

which some other problem of mechanics is treated in the indicated manner and 

completely solved. 

(2) Mr. Fuchs has demonstrated in several of his memoirs2 that there exist 

uniform functions of two variables wl-dch, by their mode of generation, are connected 

I See p. 35 of the Panegyric on Lejeune-Diricl-det by Kummer, "Abhandlungen der K Akaden-de der 
Wissenschaften zu Berlin, " 1860. 

2 These memoirs are to be found in (1) "Nachrichten von der K. Gesellschaft der Wissenschaften 
zu G6ttin&en, " February, 1880, p. 170; (2) Borchardt's "Journal, " Bd. 89, p-251 (a translation of 
this memoir is to be found in the 'Bulletin" of Mr. Darboux, 2me s6rie, t. iv); (3) "Nachrichten von 
der K. Gesellschaft der Wissenschaften zu G6ttingen, " June, 1880,, p. 445 (translated into French 
in the "bulletin" of Mr. Darboux, 2me s6rie, t. iv); (4) Borchardt's 'journal, " Bd. 90, p. 71 (also in 
the "Bulletin of Mr. Darboux, 2me s6rie, t. iv); (5) "Abhandlungen der K. GeselIschaft der 
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with the ultra-elliptical functions, but are more general than these, and which 
would probably acquire great importance for analysis, if their theory were further 
developed. 

It is proposed to obtain in an explicit form those functions whose existence 
has been proved by Mr. Fuchs, in a sufficiently general case, so as to allow of an 
insight into and study of their most essential properties. 

(3) A study of the functions defined by a sufficiently general differential 

equation of the first order, the first member of which is a rational integral function 

with respect to the variable, the function, and its first differential coefficient. 

Mr. Briot and Mr. Bouquet have opened the way for such a study by their 

memoir on this subject (journal de Itcole polytechnique, cahier 36, pp. 133-198). But 

mathematicians acquainted with the results attained by these authors know also 
that their work has not by any means exhausted the difficult and important subject 
which they have first treated. It seems probable that, if fresh inquiries were to be 

undertaken in the same direction, they might lead to theorems of high interest for 

analysis. 

(4) It is well known how much light has been thrown on the general theory 

of algebraic equations by the study of the special functions to which the division of 
the circle into equal parts and the division of the argument of the elliptic functions 

by a whole number lead up. That remarkable transcendant which is obtained by 

expressing the module of an elliptic function by the quotient of the periods leads 
likewise to the modulary equations, that have been the origin of entirely new 
notions and highly important results, as the solution of equations in the fifth degree. 

But this transcendant is but the first term, a particular case and that the simplest 
one of an infinite series of new functions introduced into science by Mr. Poincar6 under 
the name of "fonctions fuchsiennes, " and successfully applied by him to the 
integration of lineary differential equations of any order. These functions, which 

accordingly have a r6le of manifest importance in analysis, have not as yet been 

Wissenschaften zu Gbttingen, " 1881 ("Bulletin" of Mr. Darboux, t. v); (6) "Sitzungsberichte der 
K. Akademie der Wissenschaften zu Berlin" 1883, i, p. 507, (7) The memoir of Mr. Fuchs 
published in Borchardt's "Journal, " Bd. 76, p-177, has also some bearings on the memoirs quoted. 
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considered from an algebraical point of view as the transcendant of the theory of 
eUiptic functions of which they are the generalisation. 

It is proposed to fill up this gap and to arrive at new equations analogous to 
the modulary equations by studying, though it were only in a particular case, the 
formation and properties of the algebraic relations that connect two "fonctions 
fuchsiennes" when they have a group in common. 

In case none of the memoirs tendered for competition on any of the subjects 

proposed above should be deemed worthy of the prize, this may be adjudged to a 

memoir sent in for competition that contains a complete solution of an important 

question of the theory of functions other than those proposed by the Commission. 

The memoirs offered for competition should be furnished with an epigraph and, 
besides, with the author's name and place of residence in a sealed cover, and 
directed to the chief editor of the Acta Mathematica before June 1,1888. 

The memoir to which his Majesty shall be pleased to award the prize as 

well as that or those memoirs which may be considered by the Commission worthy 

of an honorary mention, will be inserted in the Acta Mathematica, nor can any of 
them be previously published. 

The memoirs may be written in any language that the author chooses, but as 
the members of the Commission belong to three different nations the author ought to 

subjoin a French translation to his original memoir, in case it is not written in French. 

If such a translation is not subjoined the author must allow the Commission to have 

one made for their own use. 

THE EDITORS OF ACTA MATHEMATICA 



Appendix 3. Entries received in the Oscar Competition 
Acta 11,401-402 

The titles of the entries received for the competition, listed in the order in which 
they were received. 

1. M6moire sur 1'equation trin6me de degr6 impair x" ±x=r. 

2. Nuova Teoria des Massimi e Minimi degli Integrali definiti. 

3. Allgemeine Entwicklung der Functionen (Diveloppement gdniral des 
fonctions). 

4. Les Fonctions Pseudo- et Hyper-Bernoulliennes et leurs premiýres 
applications. - Contribution glimentaire a Vintigration des lquations 
diffirentielles. 

Über die Bewegungen in einem System von Massepunkten mit Kräften der Form 

r2 

Intigration des Jquations simultanies aux d6rivies partielles du premier ordre 
d'un nombre quelconque defonctions de plusieurs variables indgpendantes. 

7. Über die Integration der Differentialgleichungen, weiche die Bewegungen 
eines Systems von Punclen bestimmen (Sur l'intdgration des dquations 
diffirentielles qui dgterminent les mouvements d'un systýme de points 
matdriels). 

8. Sur les intigrales de fonctions 4 muliplicateurs et leur application au 
d6veloppernent des fonctions abiliennes en siries trigonomitriques. 

9. Sur le Probkme des trois Corps et les tquations de la Dynamique. 

10. Sur le ProWme des trois Corps. 

11. Über die Bewegung der Himmelskörper im widerstehenden Mittel. 

12. Recherches sur la formule sommatoire d'Euler. 
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Appendix 4. Report of the Prize Commission 
Poincar6 CEuvres XI, 286-289 

French translation sent to Poincar6 after the announcement of the competition result. 

Traduction 

Proc6s-verbal dress6 par devant S. M. le Roi au palais de Stockholm, le 20 janvier 

1889, en pr6sence de S. Exc. M. le Comte EhrensvArd, Ministre des Affaires 

Etran&res, M. G. Wennerberg, Ministre des Cultes et de l'Instruction Publique, M. R. 

0. Schjött, Ministre Norvegien et de M. G. Nüttag-Leffler, professeur a l'universitd 

de Stockholm. 

§1. La conunission, nomme6 par S. M. le Roi, en date du 25 Novembre 1884, pour 

examiner des m6moires, ayant concouru pour le prix en math6matiques offert par Sa 

Majest6, et composd de M. Carl Weierstrass, professeur A l'universitd de Berlin, M. 

Charles Hermite, professeur A la Sorbonne A Paris, et M. G6sta Mittag-Leffler, 

professeur A l'universit6 de Stockholm, ayant termind ses travaux, le rapport de la 

conunission fut sournis au Roi. 

Il ressort de ce rapport que la commission aW de Yopinion unanime, que le m6moire 

qui est intitul6 Sur le probMme des trois corps et les iquations de la dynamique avec 
la devise "Nunquam praescriptos, transibunt sidera fines", est Yceuvre profonde et 
originale d'un g6nie math6matique dont la place est marqu6 parmi les grands; 

g6om6tres du si6cle. Les plus importantes et les plus difficiles questions, comme la 

stabilit6 du syst6me du monde, 1'expression analytique des coordonn6es des plankes 

par des series de sinus et de cosinus des multiples du temps, puis 1'6tude on ne peut 

plus remarquable, des mouvements asymptotiques, la d6couverte de formes de 

mouvement oij les distances des corps restant comprises entre des limites fixes, on ne 
peut cependant exprimer leurs coordonne, 6s par des s6ries trigonom6triques, d'autres 

sujets encore que nous n'indiquons point, sont traitds par des m6thodes qui ouvrent, il 

West que juste de le dire, une epoque nouvelle dans la m6canique c6leste. Les notions 

analytiques inconnues de Lagrange et de Laplace, qui Wont 6te acqu ises que de notre 
temps, ont un r6le essentiel dans ces questions si difficiles oii le talent de Fauteur se 

montre dans; tout son 6clat. Une fois de plus se trouve ainsis confirm6 cette 
observation que les plus grands progr6s en astronomie, en physique et les d6couvertes 
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qui 6tendent le domaine des mathdmatiques abstractes, se produisent simultan6ment, 

comme si elles dtaient appelks ý se seconder en concourant ý un m6me but, et que la 

corrunission de m6me aW unanime dans Yopinion, que I'auteur du m6moire qui porte 

pour titre Sur les iWgrales des fonctions h multiplicateurs et leur application au 
dkeloppement des fonctions abiliennes en siries trigonometriques, et a pour devise 

"Nous devons l'unique science 
Que Phonune puisse conqu6rir 
Aux chercheurs dont la patience 
En a laiss6 les fruits mfirir. " I 

a montr6 un talent math6matique de premier ordre, et que son m6moire est 

extrýmement cligne de Fattention des g6omkres. 

§2. S. M. le Roi daigna d6cerner le prix offert par Sa Majest6 et compos6 d'une 

m6daWe sen or evalu6e A environs 1,000 francs ainsi que la somme 2,500 couronnes ý 

Yauteur de m6moire muni de 1'6pigraphe "Nunquarn praescriptos transibunt sidera 
fines" et un exemplaire de la m6daille A Yeffigie de Sa MajeW et portant 
Finscription "in sui memoriam" A Yauteur de m6moire portant 1'6pigraphe: 

"Nous devons l'unique sdence 

§3. S. M. le Roi ayant en suite ouvert les buUetins accompagnant les dit m6moires, il 

a 6t6 constat6 que le buUetin A 1'6pigraphe: "Nunquam prmscriptos transibunt sidera 
fines" portait le nom M. H. Poincar6, Paris", et celui a 1'6pigraphe: 

"Nous devons Yunique science.... " 

le nom de 'Taul Appell, Paris". 

Ainsi passd: Au Chäteau de Stockholm le 20 janvier 1889. 

Oscar 

Alb. Ehrensvärd G. Wennerberg 

P. 0. Schjött G. Mittag-Leffler 

Otto Printzsk6ld 

I Sully-Pruclhon-u-ne, Ie Bonheur. 
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