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Abstract 

This study is concerned with the reflection and transmission of spherical 

waves at a plane interface between two different media. The phenomenon of 

the reflection and transmission of spherical waves has been studied by means 

of analytical methods, numerical computation, and experimental tests. 

A new integral representation for a spherical wave is obtained by trans- 

forming Lamb/Sommerfeld's integral representation. The new integral has 

no singularity so it allows more accurate numerical integration. A new proof 

of Lamb/Sommerfeld's integral representation for a spherical wave is pre- 

sented based on the new integral. 
By using the new form of solutions for reflected waves and existing so- 

lutions for transmitted waves, numerical studies have been carried out to 

examine. the phenomenon of reflection and transmission. of spherical waves 

at plane surfaces of discontinuity in material properties. It is shown that the 

effective critical angle for the total reflection of a spherical wave is greater 
than that of a plane wave at a hard boundary, and that when the source 
height increases the effective critical angle for the total reflection of a spher- 
ical wave tends to that of a plane wave. It is shown that recent predictions 
of spherical wave reflection and transmission coefficients greater than 1 at 
normal incidence under certain condition are probably due to numerical in- 
tegration error. It also has been found that for spherical wave reflection and 
transmission, the time average energy flux, normal to a plane parallel to the 

plane of discontinuity, may locally be in the direction opposite to that of the 
direction of energy transmission over the plane as a whole. This so-called 
"backward wave" occurs in an interference between the direct and reflected 
waves, as well as in a transmitted wave. 

An indirect test on the theory has been performed to check the pres- 
sure field, above a rigid boundary, predicted by the spherical wave theory. 
Theoretical and experimental results were in good agreement. 
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Chapter 1 

Introduction 

1.1 The aim of the research 

The propagation of spherical waves is a fundamental form of motion. In 

general, when the extension of wave sources (except specially designed di- 

rectional sources) is smaller than the wave length, at a distance which is 

not close to the source the waves can be treated as spherical: i. e., as waves 

generated by a point source. 
Spherical wave propagation has been studied for many decades; however, 

we know less about spherical wave reflection or transmission than about the 

behaviour of plane waves at boundaries. We know that when a plane wave is 

incident at a plane interface between two different media, beyond a critical 

angle, the wave may be totally reflected; i. e., the time-space average energy 
transmission across the interface is zero in the direction perpendicular to 

the interface. In the case of . spherical waves at such a plane interface of 
infinite extent, the whole range of incidence angles is involved from normal 
incidence to grazing incidence. An effective angle of incidence for a spherical 

wave may be defined as, the angle of incidence of a ray which follows the 

specularly reflected path from source to receiver. Following this an effective 

critical angle for spherical wave reflection may be defined as the effective an- 

gle of incidence at which the time-space average energy transmission is zero 
in the direction perpendicular to the reflecting plane. It is not clear, from 

the literature, whether the effective critical angle for the total reflection of 
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a spherical wave is same as that for a plane wave. Theoretical treatments 

of spherical wave reflection and transmission have depended widely on clas- 

sical integral representations due to Lamb and Sommerfeld. However some 

numerical results using these formulations have suggested the possibility of 

spherical wave reflection coefficients greater than one [46]. 

The research reported in this thesis has provided answers to some particu- 
lar problems concerning spherical wave reflection at a plane interface between 

two different media. It is found numerically that when a spherical wave is 

incident on a boundary between an acoustically soft medium and a harder 

one (i. e., with a greater sound speed), the effective critical angle for total 

reflection for the spherical wave is greater than that for the corresponding 

plane wave. Beyond the effective critical angle there is some net time aver- 

age energy transmission into the harder medium at some angles but no net 
time average energy 'transmission at others. It is also found 'that ` when the 
distance between` -a point source and the boundary increases, the effective 
critical angle for a*spherical wave tends to that for a planewave` as expected. 
Further studies are carried out`to solve problems' where`spherical waves are 
transmitted through several different media whichxhäve plane interfaces. 

This studyýönly deals with ýacoustic waves but the` spherical wave theory 
'developed here can be easily ekten'ded to'other kind ofwavs, e. g., elýctro- 

magnetic ' waves. ' 
First we describe the differentialequationswhich govern the general be- 

haviour of waves in a'medium. These differential equations `are used widely 
in the theory of linear elasticity so sometimes the waves are älso called elas- 

tic waves. ' The governing differential ' equation mäy 1e called the ' elastic 

'wave equation. The waves in which`ewe are interested, are linear -'Rand non- 
- attenuated, -except through geometrical decay" caused by spherical spreading. 

The' transporting medium can be either fluid or` solid (a rigid'porous medium 
can'b`e treated as ̀special case ' of a' fluid), and "all-media are considered to 
be isotropic and `homogeneous and the' fluid is assumed to be inviscid: Sec- 
`ondly, boundary conditions at `an interface between two differentmedia will 
be' given: Generall y'the radiation condition that, at infinite ' distance from a 



source there are only waves outgoing from the source region, is applied. The 

boundary conditions' to be applied, at a surface of fluid-fluid contact, are the 

continuity of the pressure and the continuity of normal displacement in the 
direction perpendicular to the interface. At a fluid-solid interface, besides 

the continuity of the normal displacements, we have the conditions that the 

pressure in the fluid is equal to the normal stress in the solid, and that the 

shear stress parallel to the interface vanishes (as the fluid is considered to be 
inviscid). Thus we have a clear problem to solve. What we aim to do is to 
find solutions to the differential equations subject to the boundary condition 
for a given geometry, and to interpret the solutions in physical terms so that 

we can obtain some understanding of the physical phenomena we are study- 
ing. Although this problem has been studied for many decades and there 

are several integral solutions to it, these solutions are very complicated, and 
thus there are difficulties in obtaining clear physical interpretations of them. 

In this thesis, we are particularly interested in the classical type of integral 

solution which was first obtained by Sommerfeld for electromagnetic waves. 
A new form of solution is obtained which is shown to be equivalent to the 

classical Lamb/Sommerfeld type of solution. 
To validate and interpret the solution, we have taken advantage of modern 

computers to calculate results for some specific problems where the geometry, 
wave frequency and material constants are given. Some of the theoretical 

results will be tested by. experiment. 
It is not the intention of this thesis to explain all theoretical results we 

have obtained, because the results have been obtained from a simplified math- 
ematical model. Although this model is more complete than the widely-used 
impedance, boundary, model, several simplifications have been made. For. 

example, variation of density in a gas is assumed to be negligible, and in 

calculations the density of a gas is taken to be a constant in a'wave motion, 
although we know that air (say) is compressible. Also at an interface of 
a fluid-and another medium it is assumed that the relative movement be- 
tween two media parallel 'to the interface is free (i. e., "slip is permitted at 
the interface). In 'many cases, it is ̀  difficult' to judge how much these sim- 
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plifications have affected the results we have obtained unless we have some 

experimental verification. Convincing explanations would require consider- 

ably more theoretical studies and experimental verification than described 

here. Nevertheless attempts have been made to explain some results. 
Before carrying out our investigation, the history of the study of spherical 

wave reflection is briefly reviewed. 

1.2 Review 

The classical functional mathematical expression for a spherical wave in an 
infinite space is well known and has a very simple form; the amplitude of 
the wave decreases in inverse proportion to the distance from a source. In 

cylindrical coordinates, an outgoing spherical wave of simple harmonic time 
dependence can be expressed as the complex function 

exp(i(wt =k r2 + z2)) 
Vr-2 + z2 

Unfortunately, this expression by itself is not sufficient when we deal with 
spherical wave reflection, because' the reflected and transmitted 'waves in gen- 

eral do not have such a simple form. Based on this classical `expression sev- 

eral alternative forms of spherical wave representation have been developed, 

which are useful in" problems involving reflection and transmission. 
An integral expression for a spherical wave can be found in' :a 

paper by 

Lamb [1], published in' 1904, in which he was mainly concerned with surface 
waves. ' Lamb's formula for harmonic waves is expressed as " 

-f.., 
exp(-ik Vr- -+Z 2) exp(- 2- k2z)Jo(ýr)ý . _1 

TZ + z2 

% 
ý2 - k2 

dý, (1.1) 

where the time dependency, exp(iwt) is omitted. In his derivation of this 
formula he started with an integral of the form of that on the right side of 
(1.1), and then used several arguments to demonstrate that equation (1.1) is 
true. A brief description of Lamb's derivation will be given in Chapter, 5. 

An alternative derivation of the complex conjugate of this integral repre- 
sentation was given by Sommerfeld in 1909 [4] (exp(-iwt+ik r2 -{- 

T2)lVr2 -+z2, 
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represents an outgoing spherical wave when exp(-iwt) is used for the time 

factor rather than exp(iwt)). A detailed account of Sommerfeld's derivation 

was presented by Stratton in 1941 in his book "Electromagnetic theory" (see 

pp. 573-577 in [5]), he assumed that the integration variable ý (or A in [5]) can 
be any complex value. However, Sommerfeld in his book "Partial differential 

equations in Physics" (see pp. 240-242 in [3]) published in 1949 specified ý 

(or A in [3]) as a positive real variable. He first derived the basic form of 
the integral in a two dimensional polar coordinate system by using a Fourier- 

Bessel transform, which he extended to the basic integral in three dimensions 

simply replacing r2 by r2 -} z2, and then deduced the correct explicit form 

of the integrand. When Ewing, et al., discussed Sommerfeld's derivation in 

their book "Elastic waves in layered media" [11] published in 1957, they did 

not specify the nature of the integration variable, and used Lamb's formula 
(1.1) instead of its complex conjugate. So there is a lack of clarity in the var- 
ious derivations of Lamb/Sommerfeld's formula. In fact, many mathematical 
handbooks (e. g., [62], [63]) do not include the important integral formula 
(1.1). When numerical integration is to be used, a particular problem is that, 
the singularity in the integrand of equation (1.1) will present a problem for 
the convergence of the integral at this point. In this thesisit is shown that 
the integral is convergent at the singularity and a simple proof of equation 
(1.1) is offered. The proof also provides a clear understanding of the integral 

expression. 
Sommerfeld also gave an alternative form of integral for the complex 

conjugate of equation (1.1). The integrand contains a Hankel function instead 

of a Bessel function: 

exp(ik r2 -+Z2) 1 CO exp(- x)Hö(ýr 
_J 

)E 
de. (1.2) 

r+ Z zý 2 Nay= k2 
The integral representations make possible . the solution to the differential 

equations subject to the boundary conditions. The reflected. and transmit- 
ted. waves are characterised by different coefficients in the integrands which 
are functions of the, integration; variable only and independent of the space 
coordinates. The integrand: coefficients can be determined, from boundary 
conditions. 

,; 
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By using such integral expressions, many studies have been made of the 

problem of the reflection of electromagnetic spherical waves at a plane bound- 

ary between two semi-infinite homogeneous media. Sommerfeld [3], Van der 

Pol [6] and Norton [7] were among the early researchers. In 1947, Rudnick 

[8] extended the theory of spherical waves to the acoustic case for an inter- 

face between two semi-infinite media. His results are valid for a fluid-fluid 

interface as well as for a fluid-porous medium interface. The continuities 

of pressures and of normal particle velocities were applied at the boundary. 

Rudnick obtained the - solutions in forms similar to the solutions given by 

Van der Pol. This problem was also studied by Paul [9]. He used Sommer- 

feld's integral in the form of equation (1.2) with the integrand containing the 

Hankel function. 
An experiment was carried out by Lawhead and Rudnick [10] to check 

the adequacy of Rudnick's theoretical solution. The measurements were con- 
ducted in a large anechoic chamber =A spherical wave was generated from 

the open end of a brass tube which was coupled to a driver unit. The sound 

pressure generated by this approximate point source on a surface of fiberglass 

was measured with respect both to its amplitude and phase characteristics. 

''In' order'to compute theoretical curves, the acoustic constants of the porous 

medium were obtained in measurements by using an impedance tube. The 

comparison between the measurements and an appropriate approximation of 
Rudnick's solution showed good agreement at the boundary. The difference 

between measured and theoretical results increased with increasing height of 

the receiver.,, -, ' 

A book on elastic waves in layered media by Ewing, Jardetzky and Press 

[11] was published in 1957: In this book, the problems of waves from a point 

source in layered elastic media were discussed and the complete solutions to 
the elastic-wave equations subject to the boundary conditions were presented. 

Ewinj, `Jardetzky and Press used the Lamb/Sommerfeld expression (1.1) for 

the, waves , produced by 'the point " source. ''A numerical integration öf the 
integral representation for the wave field' was considered to- be' exceedingly 
difficult , by Ewing et al.. ' Thus one does not expect to find any detailed 
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numerical results for spherical'wave reflection in the pre-1957 literature. ' 

In 1951, Ingard [12] used a different integral expression for spherical waves 
in spherical polar coordinates to study the reflection of a spherical wave at a 

plane boundary. He assumed that the boundary has a constant impedance, 

and the reflected wave is assumed to originate from an image source, the plane 

wave reflection coefficient being in the integrand of an appropriate integral. 

The form of integral expression for a spherical wave used by Ingard, is due 

to Weyl [13] and is given by 

exp(ik x2 + y2 + z2) 
= 

ik 
p( ( bJ ) () o. f 

ex ik ax ++ cz sin B d9d 1.3 
x2 

'() +- y2 -+ - Z2 2a 

A further approximation was applied to the solution, and pressure contours 

were calculated from the approximation. At the same time Lawhead and 
Rudnick [14] carried out a similar study. They also assumed a constant 
impedance boundary condition, but 

. used Lamb's expression for spherical 

waves. They expressed the integrand coefficient that they obtained from 

the boundary condition as an infinite integral. After some simplification, 
Lawhead and Rudnick exchanged the order of integrations and obtained an 
approximation which is similar to Ingard's approximation. 

A derivation of the Weyl type of integral can be found in-the book [15] by 
Brekhovskikh. Brekhovskikh describes the reflected wave as a combination 

of the usual reflected wave and a lateral wave. The idea. is borrowed from 

the phenomenon of a wave beam displacement [16]. When a wave beam is 
incident on a plane boundary at an angle of total reflection, the reflected 
wave is spatially displaced with respect to the ray geometrically reflected at 
the interface. In a book [17] by Brekhovskikh and Lysanov published later, 

the Weyl type of integral was transformed into Sommerfeld's integral with a 
Hankel function. The Weyl type of integral was used by Doaky [18] in 1952 to 
investigate the reflexion of a spherical acoustic pulse by an absorbent infinite 

plane. He describes the reflection wave field including a locally reflected wave 
and 

"a 
scattered wave (or diffracted wave). 

Theories developed by Ingard, and by Rudnick were experimentally tested 
for porous media by Delany and Bazley [19] in 1969. The porous material 
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used was mineral wool. The experimental work is similar to that of Lawhead 

and Rudnick, but only the relative sound pressure level was measured. The 

agreement between their measurements and approximated theoretical results 
was found to be good. Their study was only concerned with highly atten- 
uating media as the reflecting medium; they made the comment that for a 
medium which has a very low attenuation constant and relatively high phase 
velocity it is necessary to employ the more exact solution for the case of two 

semi-infinite media. Delany and Batley also realised that numerical solution 
is probably the simplest procedure. 

Further investigations on spherical wave reflection at a plane boundary 

have been made ([20] to [39]) by using either Lamb's integral or Sommerfeld's 
or Weyl's integral. Some new solutions have been presented. Many efforts 
have been made to simplify ` the integral solution for the reflected wave to 

an analytic approximation by various methods of integral analysis. A com- 

prehensive review of studies on spherical wave reflection has been made by 

Chandler-Wilde' [40) as apart of his'Ph. D. thesis. - Comparisons have been 

made for various representations of spherical wave reflection., 
One of the reasons why efforts have been made to represent an integral 

solution by an analytic approximation is the difficulty in numerical integra- 
tion; but with the increasing power of computers available, this becomes less 

`` diffieült: '-`Also for" a' problem `of 'a multilayered' medium' a rigorous integral 
änalysis in general will not produce a simple solution, because the solution is 

`` inherently a complicated one. With the development of modern computers, 
`" ̀märe' and möge' use is being made of numerical methods to study spherical 

wave propagation: " To deal with more complicated problems` of waves in a 
plane' multilayered medium from a point source, DiNapoli and Davenport 
[41] für 1980-presented a numerical method which is' based on the Fast Field 
Program conceived by Marsh and Elam [42] . The' wave field is' expressed as 
a Fourier-Bessel transform with an unknown depth-dependent Green's func- 
tion. First'they replaced the Bessel function in the integral with the Hankel 
function associated with outward propagation, then they, used a far field ap- 
proximation; so 

, 
that the' wave field can be ̀ expressed : in a form' suitable for 

w, 
', 

.. ý ., 
to 

1'. <<_e 
., 

tFc.. 

f 
+ =f 
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numerical integration. The Green's function is constructed from fundamental 

solutions of the classical Sturm-Liouville differential equation with discontin- 

uous coefficients by use of the matrixant method. Results for the pressure 
field, plotted in terms of propagation loss verses range, were provided for 

three examples. Since approximation was used at a very early stage of their 

analysis, the method used by DiNapoli and Davenport cannot provide an 

exact answer for the problem of spherical wave reflection. Later, modifica- 
tions to the basic algorithm were made by Richards and Attenborough [43] 

to improve its accuracy. Numerical examples for waves above a plane porous 
boundary showed significant improvements in accuracy. 

In 1985, Schmidt and Glattetre [44] presented a numerical model of wave 

propagation in layered media based on the solution given in the book by Ew- 
ing et al.. Schmidt and Glattetre started from the solution in a form similar 
to Lamb's expression with unknown integrand coefficients representing the 

effect of reflection or of transmission and then used a matrix method devel- 

oped a year earlier by Schmidt and Jensen [45) to determine the unknown 
integrand coefficients in the case of multilayered media. The numerical in- 
tegration described in the paper by Schmidt and Jensen was performed in 

. 
the complex plane to avoid singularities in the integrands. The model's ca- 
pabilities were illustrated by two test cases. The first was the case where 
there is a point source in free space. They admitted that it was a challenge 
because of a singularity in the integrand. However no comparisons with the 

exact functional solutions were given. The model was also used to analyse 
the field radiated by a long horizontal 

; array. According to the numerical 
results, different modes. will propagate in slightly different directions. 

More recently an investigation of spherical wave reflection by Piquette 
[46) produced the surprising result that when a spherical wave in a fluid 
is incident on a solid plate of infinite lateral extent, the amplitude of the 

reflected pressure and/or the transmitted pressure could exceed the maxi- 
mum value. of the amplitude of the incident pressure on the plate surface. 
Firstly Piquette, obtained the solution of the elastic wave equations subject 
to the boundary conditions. The solution was of the form of Lamb's inte- 
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gral. The so called "overpressure" was obtained by numerical calculations 
for some special cases. The integration interval was split into a finite subin- 
terval in which the integrand varies most rapidly and an infinite subinterval. 
The numerical integration over the finite subinterval was evaluated by us- 
ing a Gauss-Legendre procedure and a 15-point Gauss-Laguerre numerical 
integration procedure was used over the infinite subinterval. To check these 

unexpected overpressures, Piquette calculated the power integral of the re- 
flected and transmitted waves over both the front and back surfaces of the 

plate and found that the sum of the reflected and the transmitted power 

never exceeds the total incident power but can be greater than the incident 

power over certain finite areas. In order to verify his numerical finding, Pi- 
quette carried out an experiment to acquire reflection and transmission data. 

'A square-shaped plate, 76 cm on aside, was immersed in water for measure- 
ment in' the frequency range 1-5 kHz. The plate was steel or PMM. However 

he did not find the overpressures. We shall see later that his overpressure 

predictions are probably due to a computing error. 
From the above narrative we can see that basically there are two theoreti- 

cal models for the study of spherical wave reflection at a plane boundary. One 
model is that of two semi-infinite media. ' Wave fields'must satisfy the wave 
equations in both media respectively and also satisfy appropriate boundary 
conditions. ' We shall use'this 'exact model. '- 

The other 'one is-a' simplified model. ' The assumption is -made that the 

conditions at the reflecting böundäry "may be expressed in terms"öf a normal 
impedance independent of the' angle of incidence so that the wave field in the 
medium that does not- contain a source can be neglected. Since" in geneial 
the' specific normal impedance at, a boundary between elastic ' media may 

depend strongly on the angle of incidence, this model is restricted ' and' can 

not provide complete information- on' the reflection of a spherical wave at a 
plane solid boundary. However, this model may be a'goad approximation 
fora outdoor sound "propagation over certain types of ground (which behave 

as rigid porous media), and for some other problems of practical interest. 
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1.3 Outline 

In the next two chapters, we shall describe the fundamental theories, the 

equations of linear elasticity and the computation methods, on which this 

research is based. Since we shall not make further approximations- of the 

theoretical results that we obtain, the validity of the predictions will, to a 

large extent, rely on these fundamental theories and methods. Therefore the 

theories and computation methods are presented in some detail. 

We start with simple plane wave cases in Chapter 4. To compare the 

results of spherical wave propagation, reflection and transmission with those 

of plane waves we need some plane wave results so the problems of plane 

wave reflection and transmission will be discussed first. Although the theory 

of plane wave propagation is well established, the results required are briefly 

re-derived for the sake of convenience of reference and completeness. Three 

cases will be examined. These are (i) plane wave incidence at an interface 

between two semi-infinite fluids, (ii) plane wave incidence from the fluid 

at a fluid-solid interface and (iii) plane wave incidence at the surface of a 

solid plate which is bounded by two semi-infinite fluid media. Since we are 

only interested in isotropic and homogeneous media, the waves can always be 

represented in two dimensional space introducing only two space coordinates. 
The conservation of energy flux in the direction normal to the interface will 

be discussed. 
From the review in the previous section, we have seen that essentially 

there are three forms of integral representation for spherical waves which 
have been relatively widely used in the past. We are particularly interested 

in Lamb's integral (equation (1.1)). In Chapter 5, Lamb's integral represen- 
tation for a spherical wave will be *examined closely. First, it is shown that 

the integral in (1.1) is convergent. , From the convergence, analysis, a new 
form of integral for a spherical. wave is obtained, given by 

-: 
exp(-ik r2 + z2) f°° J Jo(r k2 -f- x2)e-Ilx dx. (1.4) 

r2+z2 tik' f 

The path of integration- is taken from k to 0 on the imaginary axis and then 
from 0 to infinity on the real axis. Verification of the convergence of the 
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Lamb's integral enables us to examine the integral by using a power series 

expansion. Based on the new integral, a new proof of the validity of (1.1) is 

offered. 
From a table of integrals [62], we have found another formula for the 

complex conjugate of the formula (1.1), which is given by 

exp(ik rz + z2) Hol)(z k2i- x2)cos(rx) dx, (1.5) 
r2+z2 o 

where Hol)(x k2 - x2) is a Hankel function of the first kind. The integral 

(1.5) has asingularity at x=k. It is not a reduction of Sommerfeld's integral 

and has not been used by previous researchers. The integral representation 
(1.5) will be used as another form for comparison, although we have not found 

it possible to prove directly that some resulting solutions in the presence of 

an interface satisfy the equations of motion. Since however the left side of 
(1.5) satisfies the equations of motion and the' right side of (1.5) is equal 
to the left' side then we have an indirect proof that the right, side of (1.5) 

satisfies'the equations of motion: 
It is well known that the time average energy carried by a spherical wave 

crossing a plane surface of infinite extent per unit time is equal to half of 
the time average total output power"generated by the point source which is 

placed at some distance away from the plane: ' A mathematical derivation' of 
this result will be given in Chapter 5. This property of spherical waves will 

" be used, frequently. 

'With the help of a modern computer, one can solve almost any problem 
which! can' be defined ' properly in mathematical terms by. Using a numerical 
method. Although numerical methods are powerful, it is dangerous to rely 
purely on them without analytical guidance, or without experimental verifi- 
cation. ° Since most of our final results will be obtained by the NAG numerical 
routines, they are'introduced in, Chapter VY Numerical test cases are given 
for two examples. Comparison will be made between the numerical integra- 
tions of the integrals in equations (11), (1.4) and the complex conjugate of 
equation (1.5) with the classical functional expression on the left side, of equa- 
tion (1.1)., The comparisons show that the integral (1.4) gives more accurate 
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numerical integration results than the others, since the singularity is elimi- 
nated. However the accuracy of the numerical integration of (1.4) reduces _as 
coordinates r and z increase, because the integrand oscillates rapidly. The 
first test is performed at some particular coordinate points, however no nu- 
merical routine can be guaranteed to work in all cases [47]. A wider range 
coordinate test is included indirectly in the second test. The second test is 

the numerical integration of the energy flux of a spherical wave over a plane 
surface. We shall see that as the area of the integration increases, the time 

average power across the area converges to half of the total output power, as 
it should.. 

Spherical wave reflection and transmission is studied in Chapter 6. The 
first use of Lamb's integral is for the study of the reflection of a spherical 
wave at a rigid boundary since this result can be compared with the result 
calculated from the classical functional expression. A new form of integral 

solution for the reflected wave is given. Pressure contours obtained by two 

methods show good agreement. 
However it is found that in some regions a component of the time average 

energy flux is in a direction opposite to that of this component when it is 
integrated over the whole surface concerned. , 

This phenomenon is sometimes 
called a "backward wave". 

For the cases of spherical wave reflection at a fluid-fluid interface and at a 
fluid-solid interface, solutions' are obtained which satisfy the wave equations 
and the boundary conditions and the reflection term is transformed into a 
new form. Comparisons of these results with those for the corresponding 
problems but with plane wave incidence show some similarities and some 
differences. The solutions for the reflected and transmitted waves are checked 
for energy conservation. 

"Backward waves" are also predicted for reflection and transmission at a 
hard boundary. 

Predicted pressure contours for the reflection at a fluid-solid interface are 
similar to those obtained for reflection from a perfectly rigid boundary for 
several fluid-solid interfaces of practical interest. 
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As a further application of the new integral (1.4), the transmission of a 

spherical wave through a solid plate which is immersed in various fluids is 

studied. The analytical solution in the form of an exact integral is obtained 
first and then numerical integration is carried out. The numerical results 

show that the reflection and transmission process for a spherical wave is 

consistent with that for the case of a plane wave for normal incidence and 

that the "overpressure" predicted by Piquette [46] does not exist. 
In Chapter 6, the theoretical pressure contours above a model plate of 

infinite extent are presented and shown to be same as those computed from 

the functional result for rigid reflection. An experiment has been carried out 

to measure =the pressure distribution caused by an incident spherical wave 

and the reflected wave. The experiments obviously had to be done by using 

a finite plate, but it has been assumed that the experimental results should 

correspond" to the theoretical ones in regions not too close to the edges of 

a: sufficiently large but finite reflector. A circular "plate was used in this 

work. In order to speed up the measurement of the two dimensional pressure 

contours, a computer controlled measurement system was devised and built. 

The points of measurement correspond to those for theoretical calculation, 

and the same method of interpolation was used for both theoretical and 

experimental data. The experimental results show good agreement with' the 

theoretical results except at `the edge of the disc. --, 

Some useful results will"be discussed in the last chapter. We shall 'point 

out some further possible studies. ' The validity of applying Lamb's integral 

to porous media needs to be examined, and further research 'on "backward 

wave" propagation is recommended. 
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Chapter, 2 

Fundamental theory 

The fundamental theory, on which this investigation is based, is a linear 

theory of elastic wave propagation. The theory concerns the transmission 

of infinitesimal mechanical disturbances in a medium. When an external 
disturbance is applied to any part of a body, this disturbance is transmitted 

through the body in the form of propagating waves, which cause deformation 

of the body, and consequently changes in the internal elastic forces. 

Since the validity of results which we obtain later depends, to a large 

extent, on the theory of elastic wave propagation, a brief introduction of the 

theory is given here. 

2.1 Linear elasticity 
We start from the basic concepts. In elastic wave theory, the concept of 

stress is used to describe the internal elastic forces, and the deformation is 

described by displacement and strain. In the case of elastic waves in an 
inviscid fluid, we often use the term, pressure, for the isotropic stress. 

Stress. At an arbitrary point P within a body we consider a small 

element of area SA with associated unit normal n,. We define the material 

which contains the positive unit normal to be on the positive side of LA. The 

material on the positive side of SA is assumed to exert a resultant force on 
the material on the negative side. As the area element at P approaches zero, 
the limit of the ratio of the force to 'the area is called a stress vector and it 

15 



is in the direction of the force. A stress vector will be denoted by T with 

components Ti. At any point in a body, we can define a stress vector on each 

of three planes parallel to the coordinate planes of a rectangular Cartesian 

coordinate system. The nine stress components of the three stress vectors 

are the components of a tensor. This tensor is called the stress tensor and is 

expressed as 

tll t12 t13 

[tit} = t21 t22 t23 
' 

(2.1) 

t31 t32 t33 

where t;; represents the stress component acting in the x5-direction on the 

surface normal to the x; -direction. A stress component normal to the sur- 
face on which the force acts is called a normal stress and a stress component 
parallel to the surface is called a shear stress. Knowing the nine stress com- 

ponents at a point, we can determine the stress vector acting on any surface 

at the point. It is given by 

T=n t" (2.2) 

r' Here, 'and throughout" this chapter, the summation convention is used for a 
repeated subscript in a term and the subscripts take on the values 1,2,3, 

unless otherwise indicated. For example, equation (2.2) is equivalent to 

Ti nit,, t n2t12 + n3ti3', (2.3) 

T2 ° nit2i + nzt2i + nst23, . 
(2.4) 

T3 nitsi + nztss`-ý n3t33" (2.5) 

Displacement. When a body is' deformed, a particle in the body may 
, 'n h. x'. >. 1_'. 4 _ 'ice., 

. "f.. 
,. ý A+ 

move from its 'original location with coordinates (ai, a2, a3)to a new location 

with coordinates (ii, x2,2 ). The displacement vector of the particle can be 
defined by. those two points. Its components are given byY 

- If displacements are associated with all particles in the deformed position 
and they change with time, a, displacement field can be used to specify the 
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deformation of a body. The displacement field of a deformed body relative to 

that of the body in its undeformed state can be described in terms of strain. 
Strain. For infinitesimal deformation, Cauchy's definition of the strain 

tensor can be obtained as follows. Consider an infinitesimal line element da 

in an undeformed body. The square of the element's length in terms of the 

components da; is given by 

da 2=S; jda; da3, (2.7) 

where b; j is the Kronecker delta, defined by 

1 if i 

0 ifi0j 

After deformation, the square of the length element becomes 

dx2 = b;; dx; dx;, (2.9) 

and by using equation (2.6) we may express dal in terms of the deformed 

position:, 

8u; 
dal = bii(bck - äxk)(b; j - 

8ý' 
)dxkdxt. (2.10) 

From equations (2.9) and (2.10) the difference between the squares of the 
length elements may be written as 

dx2 - dal = 
äu; 2u3 

- 
Buk Buk)dxjdx; 

" 2) - äx + Ox i äx. Ox . 11 

If the first derivatives of the displacement components are each very small 
the product terms in the bracket are negligible and Cauchy's strain tensor is 
defined by the rest of terms in the brackets divided by 2: 

_1 
8u; 

+ 
8uj 

2(8x! 8xý. 
(2.12) 

t 

Hooke's law. For a linear elastic solid, stress is related to strain by 
Hooke's law, which states* that the stiess "tensor is linearly proportional to 
the strain tensor. For isotropic media there are' only two independent elastic 
constants and Hooke's law is expressed by 
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tij = Ackkbij + 2{LEij, 

where A and µ are known as Lame's constants. 
For an inviscid fluid, the shear stress vanishes and the normal stress in 

any direction is called the pressure: 

P= -tll = -t22 = -t33. 

(2.13) 

(2.14) 

When a deformation in an inviscid fluid is infinitesimal, the pressure and the 

strain are related by 

p= -KEkk, (2.15 

where K is called the bulk modulus. 

2.1.1 Dynamics 

Newton's second law of motion states that in an inertial frame of reference 
the rate of change of the linear momentum of a body is equal to the resultant 

of the applied forces. When elastic waves propagate through a medium, the 

motion of any part of the body must obey Newton's second law of motion. 
Let us consider` a region V, which does not contain a source, in a body. 

The region has a closed. surface S. In linear elastic wave' theory, the rate of 

change of the linear momentum of all the particles in V, in the xi-direction, 
is given by 

Pý 
_ ýpa_"' dv, (2.16) 

at 

where, p is the original density. We have assumed that the change in, the 
density is negligible If the, region, is subjected. to. surface traction T, and 
body force is neglected, the i th component of the resultant force is 

fs 
T; ds. (2.17) 

Expressing the surface traction in terms of the stress tensor by equation (2.2), 

transforming ' the surface integral into a volume integral by Gauss's theorem, 

and equating equations (2.16) and (2.17) we obtain 



f Pa2"i d=f atij av. (2.18) 
v 8t2 � 8x1 

Since this equation must hold for an arbitrary volume V, the integrands on 

the two sides must be equal. Thus we obtain the equations of motion of 
linear elastic wave theory in a form without body force 

ä2u; 
_ 

8t; j 
. 

(2.19) 
8t2 äxß 

The displacement field of a linear elastic wave in any region which contains 

no sources must satisfy equation (2.19). 

By use of Hooke's law for isotropic media, equation (2.13), and equa- 

tion (2.12), the equations of motion (2.19) can be expressed in terms of the 

displacement as 
a2us 

= 

a2ýý 82t 

P ate (+ U)ax; ax; + µax; ax; ' (2.20) 

For convenience, we can express the components of the displacement in terms 

of two potentials, a scalar potential 0 and the components of a vector poten- 
tial, as O;, 

e¢ &bk 
u: = ax + e;; k öx , (2.21) 

s 
where e;; k, the permutation symbol, is defined by 

1 if ijk represents an even permutation of 123 

eijk =0 if any two of the ijk indices are equal (2.22) 

-1 if ijk represents an odd permutation of 123 

On substituting equation (2.21) into equation (2.20) and rearranging terms 

we obtain 

a 
[(A + 2µ)V20 - pa20] + e; 1k 

8 
(µV Z, pk - P82 

0k) 
= 0, (2.23) 

ax; at ax; at, 
where 

s 
V2 =8 (2.24) 

ax, 8x3. 
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It can be seen that if the scalar potential and the vector potential satisfy the 

equations 

a2 V20 
A -I- 2µ 820 

(2.25) 

and 
VZOk=Paltk (2.26) 

respectively, the displacement composed of the two potentials satisfies the 

equations of motion (2.23). 

The scalar potential corresponds to a longitudinal wave which has a wave 

speed determined by 

c1 _ 
FL+:: 2: 1zý. (2.27) 

P 
A simple example of the longitudinal wave is 

0= Acos(klxl - wt), (2.28 

where A is the ý constant amplitude, ki is the one-component wavenumber 

vector, and w is the angular frequency. The wave represented by equation 
(2.28) has only one displacement component, ul, which is parallel to the 

wavenumber vector. The vector potential corresponds to a transverse wave. 
Its wave speed is given by 

, 
Ct 

P 
(2.29) 

An example of a transverse wave is 

A=0, %b2 = Acos(klx' -' wt), 'ý/i3 = 0. (2.30 

The only' displacement component u3 is normal to the'wavenumber vector 
and the other displacement components are zero. 

In an inviscid fluid, the assumptions for the derivation of equation (2.20) 
is also valid except " Ec =0 and A'= K, so the potential function for the 
displacement satisfies'- 

V2 ... 
q=1 020 

- (2.31) 
c! fitz 
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where cf= K/p. From equations (2.31) and (2.15) we can find that the 

pressure in terms of the potential is given by 

19 
20 

P= -° ate ' (2.32) 

2.1.2 Two-dimensional formulae 

We are interested in the reflection and transmission of plane or spherical 
incident waves at plane interfaces of infinite extent and hence the problems 

we consider can always be treated in a two dimensional space. In the case of 

plane waves, we use a rectangular Cartesian coordinate system x, y and Z. If 

we set the x-axis parallel to the component of the wavenumber vector of the 
incident wave on the interface and the z-axis perpendicular to the interface, 

there will be no movement in the y-direction and the motion is independent of 
the y coordinate so that we only need consider problems in the x-z coordinate 

plane. For a spherical wave, we can take the z-axis of a cylindrical coordinate 

system perpendicular to the interface and passing through the point source 
so the motion is independent of the angular coordinate. 

Let us consider plane waves first. Since the y-component of the displace- 

ment is zero the displacement can be expressed by 

u_00 _e 8x 8z' (2.33 

w az 
+a3b 

8x' (2.34 

where u and to are the displacement components in the x and z directions 
respectively, 0 is the potential function for the longitudinal waves and ?k is the 
single non-zero component of the vector potential function for the transverse 
waves. ?k is in the y-direction. 

The potential functions must' satisfy the equations of motion which are 

ci ät2' (2.35) 

OZ =l 
2'Y 

_C2 atz (2.36) 
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The stress components are 

txx 

tyy = 

izz = 

tzx 

48x + öz) + 211 
8i' 

8u 8w 
8x + 8z 

ß(8x + 8z + 2µ 
8z ' 

8w 8u 
ý(x + ez 

). 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

In an inviscid fluid, we have 

For spherical wave propagation, again we have two potential functions 

for the displacement, but. the governing equation for the vector potential 

transformed from the rectangular' coordinate system does not have the form 

of a wave equation. Fortunately' because of the axial symmetry, we can use 

txa = tyy = tzz = -P. (2.42) 

another potential which does satisfy the wave equation. 

:' The displacement is related to the potentials by 

ý, ASr_r yý 

ao a2.0t 
är. f 

äräx' 
(2.43) 

8 r8iPt (2.44) 
az P, rar Or 

where u and , 
iw are the displacement components, in the r and z directions 

respectively, 
,ý 

is a, potential function for. the longitudinal waves and Vt is 

the potential, function for the transverse waves. , 
The function . +/i= is not the 

transformation of i, by 
,a 

direct coordinate transform from a rectangular 
Cartesian coordinate system,. butit is not difficult to show, that if and ? Pt 

satisfy, the equations, 

V20 
zý 

(2.45) 
c, ät 

O2, ot =2 
02 ý (2.46) 

ct i912 
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then the equations of motion (2.20) are satisfied. The two-dimensional 

Laplace operator V2 is defined by 

2+r8r+8z2* 
V2 

8 
2.47 () 

r 
The stress is given by 

8u 1 
- A( 

Or +r+ 
8w 
8z 

8u 
)+ 2µ 8r' 

(2.48) 

too 
8u 1 

= 
A( + + 

8w u )+ 2/L-, (2.49) 
r Or Oz 

tss _ 
8u 1 

A( 
O + + 

8w 
8 

8w 
)+ 21t 

8 ' 
(2.50) 

r r z z 

ti. 
8w Ou 

= /I( + ) 
. 

(2.51) 
8z Or 

2.2 Energy of waves 
Travelling waves transport energy from one place to another. The amount 

of energy and the direction of energy transportation by a wave can be spec- 
ified as the wave energy flux, or intensity. Obviously, the wave energy flux 

is a vector. The energy flux component along the direction of a particular 

coordinate axis is defined as the amount of energy crossing a unit area per- 

pendicular to that axis per unit time. For a sound wave in a fluid, since 
the pressure has a constant value in any direction at one point, and by the 
definition of power, the energy flux component in the x; -direction is given by 

li = Pvi (2.52) 

where p is the pressure, and vi is the i-th component of the particle velocity. 
The instantaneous energy flux is'a function of both time and position: For a 
harmonic motion, the time average of the energy flux is defined by 

T 
< Ii >= JO 

pv; dt (2.53) 

where T is the period of the motion. If a 'complex, representation is employed 
and harmonic motion is. assumed, the time average energy flux over any 
period can be expressed as 

< Ii >= 
2Re(p`v; 

) = 
2Re(pv; 

) (2.54 
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where p* and v* are the complex conjugates of p and v respectively. Some- 

times the complex product also gives the space average in certain directions. 

Similarly in a solid, we can obtain the energy flux expression from the 
definition of the power, but we shall use a different approach by examining 
the energy balance equation. The law of energy conservation requires that 
the rate of change of energy in a volume V is equal to the energy crossing 
the surface S of the volume per unit time, which can be expressed as 

8fE 
dv =- 

fI di, (2.55) 

where E is the energy density and 
I is the energy flux vector. The energy 

density of waves is the sum of the kinetic and potential energy densities. 

As in the definitions used in the study of the mechanics of rigid bodies, the 
kinetic energy density is given by 

äu; 8u; 
ýk=2P6t 

at 
(2.56 

and the potential energy density is defined by 
.... 

-rp =2 tijejj. (2.57) 

We can replace the surface integral by the volume integralbn the right side of 
equation` (2.55), and exchange the order of the time derivative and the inte- 

gration on the left 'side of (2.55). Subsequently, after substituting equations 
(2.56) and'(2.57) into equation (2.55) we have" 

J0ii (P 
ate 8t + 8t 

(2 tijci j)) dv =- 
jid 

v. (2.58) 

Using the equation of motiönf in, the first term of the left side of equation 
(2.58, ` using equation (2.13) in the second term, rearranging the terms, and 
using equation (2.13) again, we obtain 

.. _. .. 

J(tii)dv=Jdv. 

8x; 
au, ah 

x=(2.59) 
. 

From- equation (2.59) we find that the component of the energy flux-along 
the x; -direction is given by ýý- 

±' 8uß. 
(2.60) 8t 
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Equation (2.60) gives the rate of work being done by the force acting on an 

element of area normal to the x; direction. For the complex representation 

and harmonic motion, the time average energy flux can be expressed as 

< I; >= -ýRe(vit!. ) _ -2Re(výtiýýý 
(2.61) 

where vv is the particle velocity, and * denotes the complex conjugate. It is 

not difficult to verify equation (2.61) since the integral of a sum is equal to 

the sum of the integrals. 

Since energy flux is a second order quantity, in general, the superposition 

principle for the composition of waves is not valid for energy flux. For exam- 

ple, if two waves are propagating in the same space and in the same direction, 

and the corresponding pressures are pi and P2, and particle velocities vl and 

V2 respectively, the instantaneous energy flux is defined by equation. (2.52) 

as 
I= (Pl + ps)(vi + v2)" 

For the individual waves, we have 

Ii = piVi, 12 = Psvz- 

In terms of the energy flux for the individual waves the instantaneous energy 

flux is expressed by 

I=Ii+I2+plv2+psv,. (2.62) 

In general the cross terms in (2.62) caused by the interference between the 

two waves do not vanish, unless some particular relationship between the two 

waves is satisfied. However when we deal with the total energy of a whole 

system, the law of energy conservation requires that space average over any 

surface enclosing the sources of the time average energy flux caused by the 

interference between different waves must be zero [66). A simple case is that 

of the interference between two spherical waves. Let us consider a surface 

which surrounds two point sources. The integral of the, time average energy 
flux of the wave from one of the sources over the whole surface must be 

equal to the time average output power from that source. The sum of the 

two integrals of the time average energy flux of the waves from both sources 
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excluding the interference terms is the time average output power from the 

two sources together. At any point on the surface the interference terms do 

not always vanish, but the spatial average over the surface of the interference 

terms must vanish if the law of energy conservation is satisfied. 

2.3 Boundary Conditions 

Since we are interested in the reflection and transmission of waves, there 

is always at least one boundary involved. A simple case is that of a rigid 
boundary. This is an idealized model for the interface between one medium 

and another medium which has a relatively large rigidity. We shall show 
later that it is a good model for the interface between air and a metal. When 

a medium has a rigid boundary we assume that there has never been a dis- 

placement between the medium and the boundary at any time and anywhere 

on the boundary. The rigid boundary condition requires no movement at the 

boundary., That is the displacement component normal to the boundary is 

zero or the particle velocity normal component is zero. For harmonic motion 
the displacement and velocity conditions are equivalent. Some people prefer 

-.., to use the velocity condition , but we shall adopt-the displacement condition 

since we use displacement potential functions and the number of differenti- 

, ations required to obtain _the 
displacement component is one less than that 

to obtain the velocity component. 
At an interface of two media, we assume that the two media are in close 

contact and that no medium penetrates into the other medium so we have 
a clearly defined and ' smooth , 

boundary. ' I When we consider . 
the boundary 

conditions we should remember the important assumption that the defor- 

mation caused by the waves is infinitesimal so that the boundary conditions 
can be imposed on the 'undisturbed boundary. From the above considera- 
tions we immediately have two conditions: the continuity of the displacement 

components normal to the interface and the continuity of the stress compo- 
nents normal to the interface. An equivalent condition to the continuity of 
displacement is the continuity of the corresponding velocity. ' 
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Until now we have assumed that the fluid which we are interested in is 

inviscid. This assumption implies that we allow a relative movement parallel 

to the interface at the interface between two fluids or between a fluid and a 

solid so that the tangential velocities can be discontinuous over the boundary, 

and also the shear stress vanishes at a fluid-solid interface. However, we shall 
bear in mind that this is another approximation. In fact, we know that all 

real fluids have some viscosity no matter how small. 
Thus we shall consider the following three types of boundary conditions: 
1) at a rigid boundary, the normal component of the particle displacement 

vanishes; 
2) at an interface between fluid and fluid, the normal component of the 

particle displacement is continuous and the pressure is continuous; 
3) at an interface between fluid and solid, the normal component of the 

particle displacement is continuous and the pressure in the fluid is equal to 

the normal stress component in the solid, and the shear stress component 
vanishes. t 

In this thesis, ' we are interested only in continuous, steady state wave 
fields so that no initial conditions are required. 

At infinity the geometrical spreading of a spherical wave implies that 
the wave field vanishes. A stronger condition was introduced by Sommer- 
feld. This condition is called the "radiation condition". It specified that no 
energy may be radiated from infinity into a region containing sources. This 
implies that there can be no waves propagating inwards from infinity into the 

region of finite extent under, consideration in free field problems; all waves 
hence must propagate "outwards" from the sources concerned. (see "Meth- 

ods of mathematical physics" by Courant and Hilbert [48], and "Acoustic 

and electromagnetic waves" by Jones [50]). 

Ultimately, the radiation condition is a consequence of the law of causality 
which can be stated fully as follows: (i) if there is no cause there is no effect; 
(ii) the cause must always precede the effect. Thus if there are no sources of 
waves there are no waves. A wave emitted by any source can be perceived 
by an observer elsewhere only when the wave reaches the observer: i. e., only 
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after the lapse of the appropriate finite travel time. Thus in the absence of 

any reflecting surfaces, the wave must always travel outwards from the source. 
Waves from sources at infinity can never reach an observer, as it would take 

them an infinite time to do so. When there is a reflecting surface at any finite 

distance from the source, the reflected wave must arrive at the observer at a 
time later than that of the original wave direct from the source., The wave 

energy density, however, does not satisfy the wave equation, in general, and 
hence its flux does not necessarily satisfy the "outwards travelling" radiation 

condition, and in particular may not when the wave field has both directly 

radiated and reflected components [66]. 

Instead of using the radiation condition in its basic form, we shall use 
the following conditions: (1) the sum of the integrals of the time average 

energy flux of individual waves over a surface which surrounds the sources 

must be equal to the total output power generated by the sources; (2) the 

energy flux must- decay to zero as the distance away from the sources tends 
infinity. These conditions are sufficient for the problems and solutions to 
be considered. For most of our solutions it is difficult to show analytically 

whether these conditions of energy radiation are satisfied; but the results of 
some numerical studies will be given. 

The boundary conditions which discussed above are very much idealized 
but have been widely used by many researchers (for example,, [11] by Ewing 

et al., and [51] by-Morse and Ingard)., Some times the boundary conditions 
have been expressed in terms of impedance (see [52] by Kinsler et al. ), but 

essentially these are the same as the pressure ands displacement conditions 

, for elastic wave propagation., :. '"T.. x. 
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Chapter 3 

Computational methods 

3.1 Methods of numerical integration 

Integral expressions have been used for studies of spherical wave propagation 
for many decades, but the complicated integral forms make analytical analy- 

sis very difficult. Many analytical studies have concentrated on the far field 

approximation for a single medium with an acoustic impedance boundary. 

If we consider a more complicated model, for example, two fluid half spaces, 

analytical analysis of the integral solution can become very difficult indeed. 

Even in cases where analytic integration is possible, the results may still be 

very complicated and require approximation before being evaluated numeri- 

cally. In such cases, direct numerical evaluation of the integrals may provide 

a better way to solve the problem. Numerical integration is also known as 
quadrature. The method of numerical integration involves expressing an' in- 

tegral as a linear or nonlinear combination of the values of the integrand. In 

recent years, with the development of computers, it has become more and 

more popular. As 
. 
the need for methods of numerical integration have grown, 

increasing numbers of commercial computer software packages have appeared 

" on the market., Such standard computer software makes research work eas- 
ier, because, one can concentrate on the essential problem, rather than on 
developing a. numerical technique. Furthermore the standard programs, are 

written by experts who specialise in. numerical methods, so these programs 
are 'usually more efficient than. those, which are 'homegrown'. Despite this, 
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we should understand the principle of the method. 
The NAG library is a collection of such standard computer programs and 

is widely used in the United Kingdom. The NAG library offers a number 

of routines for numerical evaluation of definite integrals in one or more di- 

mensions. We will consider only the one dimensional case. The routines' are 
designed to suit different forms of integrations; for example, the integrand 

many have algebraic singularities at certain points, the interval of integra- 

tion may extend to infinity, etc.. Basic assumptions are that integrands are 

composed of piecewise analytic functions and that Taylor series or other ex- 

pansions provide good approximations, at least over small enough intervals. 

In the numerical study, the NAG routines DO1ajf, DOlatf, D01amf, D01ahf, 

D01baf have been used. 

DO1ajf is a general purpose routine for numerical integration over a fi- 

nite interval. 
_ 
It is an adaptive extrapolation, routine, which uses the Gauss 

10-point, and Kronrod 21-point, rules. DO1ajf does not require particular 
information about the integrand and can be used when the integrand has 

singularities of some types. 
DO1atf is the same as DOlajf, 

=except 
that it requires a subroutine to 

evaluate the integrand at an array of abscissae. 

., 
D01amf calculates an approximation to the integral of a function over an 

, 
infinite or, semi-infinite interval. An adaptive procedure, based on the Gauss 

7-point and Kronrod 15-point rules is, employed on the transformed integral, 

in the form 
dt. 

0 

fo f (x)dx= f fýa-F 
t, 

) 
t2 

{ D01baf computes an ' estimate , of the definite integral of. a function of 
known analytical form', using a Gauss quadrature formula with a specified 

number of abscissae: ý Depending on the type of interval, a: subroutine is called. 
-We have used two subroutines. D01baz is foi Gauss-Legendre quadratirre on 

a finite interval.: ̀ D01bayis for Gauss-rational quadrature'on' a semi-infinite 
interval and it snits ýa rational type of decay integrand. " The reason: that `we 
have chosen'DOlbäy'instead of an exponential decay quadratirre is because 

,, 'the energy flux is, a' rational type of decay Ifunction as we shall shi w later. 
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DOlahf computes a definite integral over a finite range to a -specified 

relative accuracy using the method described by Patterson. This routine is 

used as a double check or as an alternative when there is a difficulty in using 
DOlajf or DOlatf. 

Next we shall describe the theoretical background for the NAG routines 
which we have chosen. For the methods used in NAG routines, an integral 
is generally expressed as an approximation in the form of a weighted sum of 
integrand values, 

bN J. 
w(x) f (x) dx E W; f (x; ). (3.1) 

a i=1 

The points x; within the interval [a, b] are called the abscissae and the W; are 
the weights. The quadrature rule is a particular method used to determine 

the abscissae and the weights. The integration rules which we have been 

using are of Gauss type. The theory of integration rules of the Gauss type 
is related to the theory of orthogonal polynomials. 

For a given weight function w(x) >0 it is possible to define a sequence of 
orthogonal polynomials po(x), p1(x), ..., of integer degree n, which satisfies 

jbw(x)p(x)p(x)dxo 
mn. (3.2) 

A relevant theorem is as follows: let w(x) >0 be a weight function 
defined on [a, b], and corresponding to orthogonal polynomials p�(x). If we 
let the zeros of p�(x) be the abscissae x1i x2, ..., x� , the weights W1, W2,..., W, 

ti 
can be determined such that formula (3.1) is of degree of precision 2n - 1. 
The degree of precision is maximal. 

In general the weights and abscissae are obtained for the weight function 
defined on the interval [-1,1], ' and are available in tabular form. 

An n-point Gauss rule is one with the weight function w(x) = 1, and is 

also called a Gauss-Legendre rule. This type of rule will be often used in the 
later calculations. 'Y `- ý "- ý, ý "ý-,. I 

Fora non-polynomial function there is an error involved. Usually, we 
wish to know not Only the value of än' integration, but also the possible error 
involved in its calculation. One of the methods used to estimate the'error is 
to compare the result obtained by using one rule with`that obtained by using 
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another rule of different degree. In this case it is not very economical to use 
Gauss rules alone since the abscissae of Gauss rules of any order are distinct 

from those of any other order (except for the mid-point, when the number 

of points is odd). In order to use all the abscissae in the previous low order 
formula in the rule of higher order, a new type of formula can be used, 

fbf (z) dz iE ak f (yk) +E bkf (xk), (3.3) 
k=1 k=1 

where the yk are the abscissae of a given m-point rule and where ak, bk and 

xk can be determined so that the rule is exact for polynomials of the highest 

possible degree. 
This type of rule is due to Kronrod and developed by Patterson. The 

Kronrod formula is obtained when yk is determined by a m-point Gauss 

rule and n=m+1 in formula (3.3). Again from the theory of orthogonal 

polynomials, it is possible to obtain such a rule which is exact for a degree of 

precision 3m + 1. The ak are different from those determined by the m-point 
Gauss rule. 

Patterson offered a method which allows us to obtain a rule with a large 

number of abscissae. He starts with the 3-point Gauss rule, and 4 abscissae 
are added to produce a 7-point formula of degree 11. Then 8 abscissae are 

added to this formula to produce a 15-point formula of degree 23. The process 

can be continued; for a large number of abscissae. In the program D01ahf, 

-A 
he largest number of abscissae is 255. The effective degree of these n-point 

formulae is (3n - 1)/2. 
For a simple numerical integration, like D01baf, a definite integral can be 

expressed explicitly by, its approximation, and a fixed number of abscissae is 

used. The algorithm proceeds in the same way for each problem and, only the 
number of abscissae is chosen, depending on the complexity of the problem. 

ý_. No estimate is made'of the accuracy of the result. 
An automatic numerical integration generally involves a complicated. logi- 

cal process aimed at reducing the error and the computation time. 
, 
The, num- 

ber . of abscissae is 'gradually increased. until the estimated error, is 
. 
reduced 

to a certain level as requested by the user. 
_ 
The basic input ' information re- 

quired by an automatic program comprises: (1) the limits of integration, (2) 
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a routine for computing the integrand, (3) a relative tolerance t� and (4) an 

absolute tolerance ta. 
A simple automatic program may be based on the Kronrod formula or 

the Patterson formula. A series of rules which uses increasing number of 

abscissae are successively applied over the whole interval. Complicated au- 

tomatic programs, like DOlajf, DOlatf and D01amf are adaptive routines. 

This means that the distribution of abscissae is adapted to the shape of the 

integrand. The interval of an integral is repeatedly divided into a number 

of sub-intervals and quadrature rules are applied separately to each sub- 

interval. The position of the integration points of the nth iteration depends 

on information gathered from iterations, 1,..., n-1, so the sub-division process 

is carried out in such a way that many points are located in the neighbour- 

hood of difficult spots of the integrand. An automatic integration program 

with use of some extrapolation technique even allows jump discontinuities 

and singularities of some types to be integrated. 

There are three main elements involved in the process of an adaptive 

numerical integration. They are as follows: 

1. quadrature rules for evaluating the integral over a sub-interval; 

2. a method for estimating the local error of the numerical integration 

over a sub-interval; this local error will provide the information for deciding 

on the subdivision process; 
3. criteria for deciding on the subdivision process and for deciding when 

to terminate. 

The first of these three elements has already been discussed. The second 
is concerned with the error. There are two types of errors, truncation error 
(formula error) and computer round-off error. The former arises from the 

fact that the sum from a quadrature formula is only an approximation to 

an integral of an arbitrary function. The formula errorp is the difference 

between the sum and the exact value of the integral. The computer round- 

off error is due to the limitation on the accuracy in the computer. For a 

simple calculation, the round-off error is usually negligible; however, for a 

complicated numerical integration, the round-off could seriously affect the 
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result of an integration since a large number of arithmetic operations are 
involved. 

Sometimes the analytical form of the formula error is available, but, prac- 
tically, different methods are used to determine the formula error. For ex- 
ample, in the NAG routine, D01ahf, the local error over a sub-interval is 
determined by the difference of the two values obtained from two successive 

rules. " In DOlajf, - DOlatf and D01amf, the local error on an interval J is 
determined by 

Ei = Dmeamin(1, (200DJ/Qab, )3/2), (3.4) 

where Dj is the modulus of the difference of a quadrature sum and some 
integral approximation of lower degree, and where 

Qab, _ EWWIf(x: )I, 
Dmea=EWilf(Xi)-MI, 

with 
M 

length of J> 
W'f (x`). 

The formula; (3.4) is' an empirical one. 
The third element in an adaptive routine is the criteria for deciding the 

subdivision process and when to terminate. - 
For the programs which we have used, the sub-division process is decided 

by the local error. The algorithm used by DOlajf, DOlatf, and DOlamf is de- 

scribed as follows. The first calculation is performed over the whole interval. 

If the error Eo calculated for this interval satisfies the equation' 

' _.. _, 
Eo, < max(ta, trjQoj), 

where Qo is'the first numerical integration, '- the value'of the numerical inte- 
gration' will be given by Qo"with'estimated error'Eo; otherwise the interval is 
bisected, ' the integral and error contributions over both halves are calculated, 
and the, total integral and error estimates are accordingly `adjusted. If the 

equation 
ýEj<max(ta, t, ýýQjýý _" '. (3.5) 
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is satisfied, computations are terminated with the value of integration Ej Qj 

and error F' E. Otherwise, the sub-interval which has a large local error is 

selected for a further bisection and the sums of the local integration and of 

the local error are used in criterion (3.5). The procedure is repeated until 

criterion (3.5) is satisfied. 
D01ahf uses an algorithm different from that used by D01ajf, D01atf, 

DOlamf. A series of rules is successively applied over the whole, interval. 

When the difference of two results obtained by two successive rules is less 

than t� the last result is taken as the value of the integral. If all rules have 

been applied without achieving the required accuracy, the interval is divided 

into two sub-intervals. The series of rules is then applied to the first sub- 
interval. If the required accuracy is not obtained, the interval is stored for 

future examination and the second sub-interval is examined. If the result on 

this second interval again fails to meet the required accuracy then the sub- 
interval is further subdivided and the whole process repeated. In contrast to 

the criterion used by DO1ajf, DOlatf and D01amf, routine DO1ahf requires 

only the local error satisfying the specified accuracy. 
Program DO1ahf uses two criteria for abnormal termination: 1. an upper 

bound for the number of function evaluations has been reached; 2. too many 

unsuccessful levels of subdivision have been invoked; but programs DO1ajf, 

DOlatf and D01amf use different five criteria: 
1. round-off error is detected; 

2. a too small interval must be subdivided; 
3. further calculations are not expected to yield any improvement; 
4. an upper bound for subdivisions has been reached; 
5. the integral is probably divergent or slowly convergent. 
Most of the above criteria are empirical. 
To speed up the process of calculation, some extrapolation technique 

may be used. The E-algorithm for extrapolation is an often used convergence 
acceleration technique. It attempts to replace the original sequence by faster 

converging sequences. 
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Assume that a sequence s, converges to the limit s, 
p 

s-3n+ ýaign 
i=1 

with a; independent of n and 

IgpI<... <Iqli<1. 
For a given sequence of real numbers so, sl,..., we can define a triangular 

table 

Cop 

Ci, o co, l 
C2,0 £1,1 £p, 2 

c1,0 cl-1,1 

c1+l, O 

by means of the relation's., 

E1, -1 = U, 

El, o = 31, .., I=0,1, 
...., 

1 
fl, j{ 1- ý`1+1, j-1 + 

This table has the property 

C1,2j = Sn + 0(lQj+l))- 

When the value of a numerical integration is considered: as a sequence 

as the number of sub-intervals is increased, a theorem guarantees that this 

sequence converges to the exact value of the integral as its limit when the 

number of equal sub-intervals tends to infinity. Therefore the c-algorithm 

can be applied to evaluate a numerical integration. It can be shown that E;,; 
converges to s more rapidly than the sequence s;. A study' [53] has shown 
that the c-algorithm may also be used even when the sub-intervals are not 

equal and when integrands have singularities. 
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3.2 Automatic symbolic manipulation"' 

With modern computers, not only have numerical methods been revived, but 

automatic symbolic manipulation has also become possible. REDUCE is an 

example of software that deal with automatic symbolic manipulation. The 

program utilises a specialised computer language, LISP; however it is not 

necessary for a user to have any knowledge of LISP. - 
The program follows the rules of algebraic manipulation and deals only 

with elementary functions. It does not make any mistakes, but it, cannot 

solve a problem which mathematicians cannot solve. 
A reason for using the REDUCE program is to save time and to obtain an 

accurate result when a large amount of simple manipulation is involved. For 

example when studying wave transmission, through a plate, there are three 

boundary conditions on the surface of each side of the plate, so there is a 
total of six conditions determining six equations with six unknowns for given 

material, geometry and wave parameters. The coefficients of the equations 

are functions of these parameters. Solving such a system of six equations is 

not difficult work in principle, but is very lengthy and tedious. With the help 

of REDUCE, the solution can be obtained accurately and quickly although 
its expression will take up many pages if printed out. 

Using REDUCE to do a manipulation is very similar to what we do by 

hand. This can be best illustrated by a simple REDUCE program. For a 
given potential function of a spherical wave, in order to obtain a component of 
the corresponding time average energy flux, we need to derive the appropriate 
velocity component of a particle and the pressure by differentiation, and take 

the complex conjugate of one of them. The component time average energy 
flux is given by' one half of 'the real part of the product of the complex 

conjugate of the pressurert(say)*and the velocity component. The example 
program is as follows: * 

factor i; 

on rat; 
let d=sqrt(r* *'2-ßz ** 2); 
let fl=exp-(i* (iw*'ti-k* d))/d; " ' 
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let f2=exp(-i* (w* ti-k* d))/d; 

let p=-rho* df(f2, t, 2); 
let vz=df(fl, t, z); 
let fluxz=p* vz/2; 

end;. 
This program will produce the z-component of the time average energy 

flux. Symbol '; ' is necessary for completing each statement. - In the program 

there are two potential functions 11' and 'f2'; one is the complex conjugate 

of the other. The space dependence 'd' is given as a function of the coordi- 

nates. When executing the program, the substitution will automatically take 

place. 'df' is a differentiation operator. It will give the derivatives of the first 

'argument in the brackets with-respect to the rest of the variables. If there 

is "a number in the brackets, it represents the number of differentiations with 

respect to the variable which it follows. 'rho' denotes a constant density. 

-- ' REDUCE can be used in an interactive mode or a batch mode. We use 

only an interactive mode since we do not have a very large job. We can write 

a file for a program, like the one given above. After getting into REDUCE, 

then upon using an 'in' command to load the file, typing 'fluxz; ' and finally 

typing the "return" key, the result will be displayed: 

i*w3*z*'rho SQRT(r2+z2)*k*w3*z*rho 

2(r4 -ý 2* r2 * r2 + r4) 2(r4 +2* r2 * r2 + r4) 

The real part of this expression is the, required result. 
REDUCE provides several switches for a user to display results in different 

forms. ' In the example, program, 'i' 
, was declared as a factor and the 'rat' 

- -; � ,. -: y k, "# ..,,, , ý. ., '" :: _. - s: ,. is _.: fý- -. < 
switch was on so that REDUCE separates the term involving 'i' from others. 

The method of displaying a result is important when using REDUCE. 

It involves choosing variables, declared factors s and, switches, etc.. --A good 

choice will enable us to express a result in a 'simple form or in an easily un- 
derstood form from the physical point of view-For example the coefficients 

of reflection and transmission are related to wave speeds, wavenumber com- 

ponents, ý angle of incidence, material constants,, etc.. If we are not careful 
in choosing `appropriate variables, the" expressions for the coefficients could 
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include all variables whereas a simple expression would include only some of 

them. 
Most of the analytical results in this thesis have been obtained with use 

of REDUCE. It has been used in the derivation of integrand coefficients, the 

series expansion in the proof of (1.1), and so on. To obtain the integration 

coefficients from boundary conditions, three operators also used are 'sub', 

'lcof' and 'det' . 
The 'sub' operator was used in the following way: 

let conO(i)=sub(z=O, conz(i));. 

It makes a substitution z=0 into conz(i) and gives a boundary condition 

conO(i) at z=0. Unlike 'let', the 'sub' operator is used for a local substitu- 

tion. 

The operator 'lcof' was expressed by 

let a(i, j)=lcof(conO(i), c(j));. 

It gives a(i, j) as the coefficient of an unknown c(j) in equation conO(i). This 

operator enables us to obtain the coefficients of the system equations deter- 

mined by the boundary conditions. 
The system of boundary condition equations can be solved directly by 

using a 'solve' operator, which is designed to solve simultaneous linear equa- 
tions. However with a large order system of equations, it will take a very 
long time. An alternative method has been used as we know that a solution 
of a system of equations can be expressed by the ratio of two determinants 

which are determined by the coefficients of the system equations. 
The 'det' operator was used together with the 'mat' operator which is in 

turn used to define a matrix: 

det mat( matrixl ); 

where 'matrixl' represents a matrix of coefficient elements. The operators 
return the determinant expansion of the matrix. 

A useful switch is 'fort'. When 'fort' is on, a result will be printed in the 
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FORTRAN format. The 'out' command allows a result to be directly written 
into a file. As mentioned earlier, the result for wave transmission in layered 

media could take up several pages, but with use of the 'out' command and 
with 'fort' on we can obtain the result written in a file in FORTRAN format 
for use in the next step of the numerical study. Some results obtained by 

using REDUCE can be found in Appendixes (B) to (D). 

=' 
ýý 

40 



f: 
y0. 

Chapter 4 

Plane wave reflection and 
transmission 

r' 

A plane wave and a spherical wave are two extreme mathematical models 
for realistic waves. At a long distance away from a point source, a spherical 

wave can be treated as a plane wave. Light waves from the sun 
, 
are a very 

good example of plane waves as seen by observers on the earth. A plane 

wave is relatively easy to deal with in mathematical terms and the theory of 

plane wave propagation is well established. The main object of this thesis 

is to study spherical wave propagation and one of the interesting features 

of spherical waves, which we would like to know more about, is how the 

reflection and transmission of a spherical wave differs from that of a plane 

wave. In order to make the comparison easy, we shall present the results for 

plane waves first. Some of the many well known solutions for problems of 

plane wave propagation can be found in the literature: e. g., the publications 
by Schoch [16], Ewing, et at. [11], Kinsler, et al. (52], but their results are not 

always presented in forms which are appropriate for, purposes of comparisons 

with spherical waves. In this chapter, we shall study systematically several 

cases of plane wave propagation and present the results in forms which can 
be directly used for- comparison with those for spherical waves. Some results 
for plane waves in ýmultilayered media are less well known. The problems of 
transmission to be considered are only those in fluids. The transmission of 
spherical waves in a solid is very complicated and the numerical study will 

require large computing CPU time. Since we are not particularly interested 

Al 



in the waves in a solid in this thesis, the transmission of waves in solids will 
be discussed briefly. 

The mathematical model used here is very much idealised and is applied 
to the continuous, steady state, wave field and the results in some respects 

may not apply for wave pulses or wave beams, since for'the cases of wave 

pulses or beams, there are some regions in which the medium is not disturbed 

at some time. Discussions of the reflection and transmission of pulses can be 

found in [49] and [18]. We shall see that the model for plane waves used in 

this thesis is not valid at grazing incidence. 

4.1 Rigid boundary 

The first case that we consider is that of plane waves propagating in a semi- 
infinite fluid which has a rigid plane boundary. At the boundary, as we have 

discussed in ' Chapter 2, the condition is that the component of displacement 

normal to the boundary is zero. Assuming that the origin is at the boundary, 

we have the-condition 

w=0 at z=0. (4.1) 

We seek a solution in, the form 

A e'x' p(i(wt = kx + qz)) +AR exp(i(wt - kx - qz)), (4.2) 

where represents the displacement potential and Snell's law that the angle 

of incidence is equal to the angle of reflection has been assumed. The first 

'term represents an incident wave, in which Ms an amplitude constant which 
is dependent on the strength of the source; the second. term corresponds to 

" `. =the reflected wave and R is the reflection coefficient. The reflection coefficient 
for the pressure is the same as that for the potential function. w is an angular 
frequency and k and q are- the x and z-components of the wavenumber vector. 
The -'angle -of : incidence can be determined. by the two components of the 

ri wavenumber as ,ý :' 

, _.. _. 7ý r., _ k ýrý .. 
B= tan'i(k). z. ý ._ 

(4.3) 
q 

Ls, 
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It is easy to verify that equation (4.2) is a solution of the equation of 

motion if the following relationship is satisfied 

K2 _ 
k2 + q2 (4.4) 

where k= w/c is the wavenumber, c being the wave speed. On substituting 

equation (4.2) into the boundary condition, we obtain 

exp(i(wt - kx))(-iq)(R - 1) = 0. (4.5) 

Equation (4.5) gives 
R=1. (4.6) 

For convenience, later we shall assume that the amplitude of the incident 

wave is unity. 
For a plane wave, the time-space average energy flux along the z-axis is 

defined by 

< I. >= 
2Re(P( 

8t 
)*) = 

2Re(p* 8t 
), (4.7) 

, where (et )* and p* are the complex conjugates of the z-component of the 

particle velocity and the pressure respectively. 
We use the second of equations (4.7) for the calculation. From equation 

(4.2), we have 

p* = pw2A(exp(-i(wt - kx + qz)) + exp(-i(wt - kx - qz))) (4.8) 

and 

L- 
_gwA(exp(i(wt - kx -} qz)) - exp(i(wt - kx - qz))). (4.9) 

t 

A little complex manipulation yields 

Is 0. '(4.10) 

This result means that no time-space average energy crosses any plane surface 

parallel to the boundary (the plane, wave source, strictly, must be assumed to 

be infinitely distant from the boundary if the boundary is of infinite extent). 
The average energy flow reflected by the rigid boundary must cancel out that 
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moving towards the boundary because of the nature of the rigid boundary. 

As it was pointed out earlier, this mathematical model is invalid at grazing 
incidence. At grazing incidence, q in (4.2) becomes zero, so the boundary 

condition (4.1) is no longer applicable. 

4.2 Fluid-fluid interface 

Let us consider the situation where two fluid media are in a close contact 
so that the z-components of the displacements and the pressures are equal 

at the interface. Assuming that the incident wave is in medium 1 and the 

transmitted wave in medium 2, we have the boundary conditions 

wl W2 
at z=0, (4.11) 

PI = Ps 

where the subscripts indicate the media concerned. 
A solution of the equation of motion can be expressed as 

01 = exp(i(wt - klx + qlz)) +R exp(i(wt - klx - qlz)), (4.12) 

02 -= T ex'p(i(wt - k2x + q2z)), (4.13) 

provided that 
2= ki + qi, r#. 2 = kz + q?, (4.14) 

where icl(='w/cl) and tc2(= w/c2) are the wavenumbers for waves in medium 
1 and medium 2 respectively. Again Snell's law of equality of the angles of 
incidence and reflection has been, assumed. R is, the reflection 'coefficient, 

T is the transmission coefficient and we assume that the amplitude, of the 

incident wave is unity. As in the case of the rigid boundary, -this solution is 

not valid at grazing incidence. 

The reflection coefficient for the pressure is the' same as that, for the po- 

-. -tential function and the transmission coefficient for the pressure is given by 

the product `of T: and the density ratio pZ/PI'-The reflection and transmission 

;4 coefficients are determined by the boundary conditions (4.11)., On substitut- 
ing equations (4.12) and : (4.13) into the conditions, . we have k1 = k2 =-k 
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(or sin(02)/sin(02) = c2/c2 relating the angle of incidence 61 to the anglerof 

refraction 02) and 
q1R + q2T = q1, (4.15) 

- P1R + P2T = pl. (4.16) 

For given material constants and angle of incidence, R and T are the un- 

knowns of this system of two equations. Solving this system we obtain 

R_ Pzgi - Pig2 (4.17) 
Pzgl -1- Pigz 

T_ 
ZPi9'i (4.18) 

Pzgl + pig2 
The coefficients R and T are independent of the frequency of the wave and 

are functions of the angle of incidence. This can be seen easily by rewriting 

the z-component wavenumbers in the forms 

ql = 
Cl 

osO, q2 =C2- sin29 (4.19) 
i2 

where 9 is the angle of incidence. On substituting equations (4.19) into equa- 

tions (4.17) and (4.18) we obtain the reflection and transmission coefficients 

in terms of the angle of incidence and the material constants as 

P2cosO - pl (cl/c22) - sin2O 
R= (4.20) 

PscosO + pi (ci/c2) 
- sin2o 

T= 
2plcose (4.21) 

p2cosO +'1 (Cl/C2) 
- sin29 

When the wave speed in medium 1 is less than the speed in medium 2, 

c1 < c2, and the angle of incidence is greater than the critical angle which is 

defined by 

=9c=sin-' 
C1-. 

C2 
(4.22) 

the incident x-component wavenumber k is greater than ßc2. In this case, qz 
becomes imaginary and the reflection and transmission coefficients become 

complex quantities. This means, that 
, 
the reflected and transmitted waves 

are no longer in phase with the incident wave. The reflected wave (in (4.12)) 
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would be still a travelling wave, ' but no body wave would be stimulated in 

medium 2. There would be only a surface wave propagating with a phase 

speed which is same as that of the incident wave or the reflected wave along 

the interface. The amplitude of this surface wave (4.13) decays exponentially 

in the z-direction. There may be also a corresponding surface wave in medium 

1. 

If the wave speed in medium 2 is less than the speed in medium 1, i. e. 

c1 > c2, then the reflection and transmission coefficients are always real 

quantities; in other words the reflected and transmitted wave are always in 

phase with the incident wave. 
Let us examine the energy transmission in these two cases. From the 

definition, we know that the energy flux in the z-direction is the product 

of the pressure and the z-component particle velocity. Since the boundary 

conditions require the continuity of pressure and the continuity of particle 

displacement in the z-direction, which gives the velocity continuity, the con- 

servation of energy flux in the z-direction is automatically satisfied. By using 

. equations (4.12) and (4.13), it is easy to obtain the time-space average energy 
flux components, which are 

< 1,,, >= -2Re((R -1)(R* + 1)Pigiw3) (4.23) 

in medium 1 and 

< 1z2 >= 
1 

Re(T'T p2gxw3 atz=O. J4.24) 

R` and T'_ are the conjugates of the reflection and transmission coefficients 

respectively. 
'--'; When ci >c2 or when, ci < ci -and` 0<0, there is always time-space 

average energy transmitted into the second medium. By using 'equations 

(4.17) and (4.18) we can obtain the transmitted energy flux which is 

... < hi 
. >=<hz > 

4(Pi9i)2 Ps9swý 
at z 0.. _ý.. (4.25) 

,1 (PI q2 -ýýPs4i) 

Complete transmission occurs ät the äugle öf incidence at which the reflection 

coefficient is zero. This angle for complete transmission can be determined 
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Figure 4.1 Amplitudes of the reflection and transmission coefficients for the 
pressure of a plane wave at a kerosene-water interface. The incident wave is 
in the kerosene. 

from the formula 
Pici - Pici 

singt =2. (4.26) 
Pscs s-s2 Pecs 

When cl < c2 and and the angle of incidence is greater than the critical 
angle, i. e., k> K2, then, by examining equation (4.24), we find that the prod. 
uct of the conjugates is purely real and q2 is purely imaginary so that < 1z2 > 
becomes zero. In this case, the phenomenon of total reflection takes place: 
i. e., no time-space average energy crosses the interface. In this case by using 
real variables, it is easy to find that the instantaneous energy flux associated 
with the interference between"the incident wave and the reflected wave is 

not zero throughout a time period, and that the instantaneous transmitted 

energy flux is attenuated exponentially in the negative z-direction. 
For a given angle of incidence' and material constants, we can calculate 

the modulus and the phase of the reflection and transmission coefficients. 
Numerical examples are shown for the kerosene-water combination in Figures 
(4.1) and (4.2), and for the water-kerosene combination in Figure (4.3). The 
incident wave is in the first medium of these combinations. 
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Figure 4.2 Phases of the reflection and transmission coefficients (relative 
to the phase of the incident wave) for the pressure of a plane wave at a 
kerosene-water interface. The incident wave is in the kerosene. 

to 
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'Figure 4.3 `'Amplitudes of the- reflection and , transmission coefficients' for 
the pressure of a plane wave for pressure at a water-kerosene interface: The 
incident wave is in the water.,: ' 
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The material constants used for the calculation are given in Table (4.1) 

[611. In Figures (4.1) and (4.2), the critical angle for this combination is 

given by 

6C = 59.8°. (4.27) 

'We can see that for angles of incidence less than the critical angle, the am- 

plitudes for both the reflected and transmitted waves are increasing with the 

angle of incidence and change rapidly when approaching 9,; beyond 9, the 

amplitude for the reflected wave becomes unity and the amplitude for the 

transmitted wave decreases to zero. Figure (4.2) shows that the phases of 

both the reflected and transmitted waves (relative to that of the incident 

wave) remain unchanged at zero degrees before the critical angle, and that 

, 
the phases of the reflected and transmitted waves change after the critical 

angle. The phases of the reflected and transmitted waves decrease mono- 

tonically as the angle of incidence increases beyond the critical angle. The 

negative phases would imply that the phases of the reflected and transmitted 

waves are behind that of the incident waves. 
Since for the water-kerosene combination cl > c2 and the phases of the 

reflection and transmission coefficients are zero, we show only the amplitudes. 
In Figure (4.3) it can be seen that the reflection coefficient is monotonically 
increasing and the transmission coefficient is monotonically decreasing. Both 

of the coefficients are less than one. 

medium density longitudinal wave speed transverse wave speed 
air 1 331 

kerosene 810 1324 

water 1000 1531 
aluminium 2700 6420 3040 

brass 8600 4700 2110 
steel 7800 5960 3235 
lead 11400 2160. 700 

Table 4.1, Material constants (SI units) 
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4.3 Fluid-solid interface 

When a wave impinges at an angle upon an interface between a fluid and a 

solid both longitudinal and transverse waves can be stimulated in the solid. 
At normal incidence only the longitudinal wave is stimulated. At an interface 

between an inviscid fluid and a solid, the boundary conditions require that 

the normal component of the displacement is continuous, the pressure in the 
fluid is equal to the normal stress in the solid and the shear stress in the 

solid vanishes since an inviscid fluid cannot sustain a shear stress. We call 
the fluid medium 1 and the solid medium 2. The boundary conditions for a 

plane interface are 
WI = W2 

-pl = tzz at z=0. (4.28) 

tzr =0 

We consider a solution in the following form, with Snell's laws being 

assumed: 

. ýj =- exp(i(wt - kx + qlz)) +R exp(i(wt - kx - q1z)), (4.29) 

T1' exp(i(wt -" kx + qtz)), (4.30) 

'G2 = Tt exp(i(wt - kx + qtz)). (4.31) 

Here 

qi = Ki k2 9t = K12 -. 7- k2, :' qt = ýcý k2. (4.32) 

R is the reflection coefficient and Tj and Tt are the transmission coefficients 
for the longitudinal and transverse waves respectively. They, are determined 

by.. a system of three equations obtained from the boundary condition, and 

are given by 

((2kß -. -Ki)2 
. -4gtqik2) - (tee Pa qi giPi) 

----(4.33) Pzgi((2k2 - Kt )2 - 4giqtk2) + (kiglpi) 

T# 
ý.. '2(2k 2 ýi)griPi 

I, 
P2 gi((2k2 - ký )2 - 4gtqtk2) - (ýigt)Pi' 

(4.34) 

. ,ý -4kgiq142 
). 

(4.35) tpi Tt 
P2q, ((2k2 -n )2 - 4gtqek2) - (KigzPI 
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As in the case of two fluid half spaces, the reflection and transmission co- 

efficients (4.33), (4.34) and (4.35) are independent of frequency. Solutions 

(4.29) to (4.31) are not valid at grazing incidence. At normal incidence, the 

x-component wavenumber k is zero, and from equation (4.35) we can see that 

the transverse wave cannot be stimulated. 
The time-space average energy flux in the z-direction in the fluid is given 

by the second of equations (4.7) as, 

< Isi >= 
1 Re(p' 

8ow 
-t (4.36) 

and the time-space average energy flux in the z-direction in the solid is defined 

by 

< Is2 >_ 
1 

Re(tw 
8w2 

+ t' 
au2 

). (4.37) 
2 `s 8t " 8t 

From the boundary conditions (4.28), it is easy to see that conservation of 
the energy flux in the z-direction across the boundary is satisfied, since the 
displacement condition is equivalent to the velocity condition for a harmonic 

wave. 
When the wavenumber rcl for a wave in the fluid is greater than rci and 

the angle of incidence is greater than the critical angle defined by 

8c = sinl - 
cl (4.38) 
Ct 

the phenomenon of total reflection may be expected to occur. In this case, 
both qi and qt are imaginary and the z-component of the time-space average 
energy flux in medium 1 is given by 

< Iii >= 
1 Re((R + 1)(R* - 1)9ipiw$). (4.39) 

The expression for R is not very simple, but we do not need to substitute 
the analytical expression for R into equation (4.39) to analyze the energy 
flux. Examining the reflection coefficient in equation (4.33), we find that 
when the angle of incidence is greater. than the critical angle, the numerator 
is the conjugate of the denominator, and a little complex analysis shows that 
(R + 1)(R* - 1) is purely imaginary, so for k> "rci, < 1,1 '5 is zero. 
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Figure 4.4 Amplitudes of the reflection coefficient for the pressure of a plane 
wave at a water"steel'interface. The incident wave is in the water. 
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Figure' 4: 5" Phases of 'the', reflection` coefficient for the pressure, ̀relative to 
that, of the incident wave, for a plane incident wave at a water-steel interface. 
The incident wave is in the water, 
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The reflection coefficient has calculated for the water-steel combination. 

The modulus and the phase are given in Figures (4.4) and (4.5). The critical 

angle for this combination is 

6c = 28.2°. (4.40) 

It can be seen that the amplitude is always less than one for the angles of 

incidence less than the critical angle, and that the amplitude becomes unity 
for angles of incidence grater than or equal to the critical angle. In contrast 

to the case of fluid-fluid combination, the phase remains at zero degrees until 

the angle of incidence is about 14°, but thereafter decreases until the critical 

angle is reached. 

4.4. Fluid-solid-fluid 

We consider a solid plate in a fluid. The solution to this problem can be 

extended to the situation where fluids on the two sides of the plate are differ- 

ent. The boundary conditions at an interface are the same as we described 

in the last section. We have two interfaces so there are six conditions. The 
boundary conditions are given by 

wl = W2 

-Pi = tss at z=0, (4.41) 

tzr =0 

w$ = 'ivs 

-p3 = tss at z= -l (4.42) 

tz* =0 

where 1 is the thickness of the plate. We consider a solution in the following 

form for the z-component wavenumber of the incident wave being greater 

than zero, again assuming Snell's laws: 

ý1 = exp(i(wt - kx + q1z)) +R exp(i(wt - kx - qjz)), (4.43) 

02 = Ca exp(i(wt - kx + q1z)) + Cb exp(i(wt - kx - qiz)), (4.44) 

Cc 'exp(i(wt - kx + qgz)) + Cd exp(i(wt kx - qgz)), (4.45) 

03 = `T exp(i(wt - kx -{- Q3z))" ... ,. (4.46) 
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Here q1, qi and qt are given by equations (4.32); R is the reflection coeffi- 

cient at the first fluid-solid interface and T is the transmission coefficients 

at the second solid-fluid interface; Ca, Cb, C, and Cd are complex amplitude 

coefficients for the waves in the solid. The coefficients are determined by 

the system of six equations from the boundary conditions. If written down 

explicitly, the expressions of those coefficients will take up several pages so 

we shall not give them here. The reflection and transmission coefficients are 

shown in Appendix (B). Since the solution satisfies the boundary conditions 

at the two interfaces this guarantees the continuity of the energy flux in the 

z-direction. 
The reflection and transmission coefficients are frequency dependent. This 

is due to the finite thickness of the plate. The frequency dependence of the 

reflection and transmission coefficients may be easily seen by considering a 
simple case of normal incidence. 

When medium 1 is the same as medium 3, and in the case of normal 
incidence where k=0, the reflection and transmission coefficients reduce to 

R- -(exp(2idici) - 1)(rci Pi - X2 IP2 (4.47) 
exp(2idicj)(icipi + iciP2)2 - (': pi - '1P2)2 

T- 
4exp(2idki)exp(2id41c2)K, P2KI 

exp(2idrj)(KtPi + K1P2)2- (. Kip, - K1P2)2 
(4.48) 

It is easy to verify that equation (4.47) is the same as the reflection coefficient 
given in the book by Kinsler et. al. [52]. When the thickness of the plate is 

very small compared with the wavelength of the longitudinal wave, we have 

the relation dre1 « 1. In this case from equation (4.47) we can see that the 

reflection coefficient is very small, and the transmission coefficient is close to 

one'. ' This result is independent of the material' combination. 
A simples transmission' situation also occurs when the' frequency "and the 

thickness of the plate satisfy the relation' 

k. -.. '.. dKz 
= n7r, n=1,2,3...; 4.49 

the thickness of the plate is an integer number of half-wavelengths for the 
longitudinal wave. The reflection and. transmission coefficients for different 
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material combinations have been calculated by using equations (4.47) and 

(4.48), and are shown in Table (4.2) since we intend to check the result 

obtained by Piquette [461. It can be seen that at low frequencies, i. e, for 

large wavelengths, the metal plates have very small reflection coefficients 

which increase as the frequency increases. 

medium aluminium brass steel lead 

reflection (modulus) 
1000 Hz 0.05840 0.1799 0.1653 0.2402 
5000 Hz 0.2806 0.6752 0.6430 0.7771 

transmission (modulus) 
1000 Hz 0.9981 0.9833 0.9864 0.9706 

5000 Hz 0.9594 0.7384 0.7662 0.6292 

Table 4.2 Reflection and transmission coefficients of a plane wave. In the 

case of a metal plate in water, the thickness of the plate 1=0.01m. 

We can calculate the reflection and transmission coefficients as a function 

of angle to obtain some idea how the waves behave with change in the angle of 

incidence. We are particularly interested in the reflection and transmission 

in the fluid so the calculated values for R and T have been obtained and 

are shown in Figures (4.6) to (4.9) for the cases of the water-steel-water 

combination and the water-aluminium-water combination at 5000 Hz. The 

incident wave is in the water in both cases. 
We find that two sets of curves for the water-aluminium-water combina- 

tion and for the water-steel-water combination have similar features, except 
for differences in values. It can be seen that the amplitude and the phase 

of the reflection coefficients (Figures (4.6) and (4.7)) change smoothly with 
increasing angle of incidence until certain angles near grazing incidence are 

reached, and then the gradients of the curves have 'sudden changes. The 

curves in Figures (4.6) and (4.7) have little bumps at 15-20 degrees which 

correspond to the critical angles for the longitudinal waves in the solids. (The 

data for the phase curve of the steel in (4.6) change very slightly so when 

,, plotting out, the curve does not appear to have the bump. ): 

It is interesting to see that in Figures (4.8) and (4.9) the amplitude and 
phase of the transmission coefficients oscillate around constant values with 
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Figure 4.6 Amplitude of the reflection coefficient for the pressure of a plane 
wave in the case of water-solid-water combination. 
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Figure 4.7 Phase of the reflection' coefficient for the pressure' of a plane 
;,,; wave in, the case of water-solid-water combination.. 
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Figure 4.8 Amplitude of the transmission coefficient for the pressure of a 
plane wave in the case of water-solid-water combination. 
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Figure 4.9 Phase of the transmission coefficient for the pressure of a plane 
wave in the case of water-solid-water combination. 
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variation of angle of incidence. At the interface between medium 2 and 

medium 3, there are two different types of incident waves (longitudinal and 
transverse waves) in the solid; the oscillation of the transmission coefficient 
is probably due to the interferencebetween the longitudinal and transverse 

waves. The curves for the reflection coefficient in Figures (4.6) and (4.7) 

are not oscillatory, this may be because when the reflection of the longitu- 

dinal and transverse waves at the interface between medium 2 and medium 
3 reaches the interface between medium 2 and medium 1, the interference 

effects, from the reflected longitudinal and transverse waves and the direct 

longitudinal and transverse waves generated by the wave incident in medium 
1, would be cancelled out at that interface. 

S, 

ý ýýy 
Sj i 3ý ý 

" 
ý 

i 

} 
i 

i 

` Par ,i 1 R 

58 



Chapter 5 

Spherical waves in infinite space 

5.1 Integral representations for spherical waves 

The investigation of spherical wave propagation is based on the integral re- 
lationship 

exp(-ik, fr2 -+Z2) 
_ 

Jo - k2)e (5.1) 
N/rr-2 + z2 

It is easy to show that these expressions, on both the left and right sides, are 

solutions of the wave equation. 
As we mentioned earlier, when the integral in formula (5.1) has been used 

recently for numerical studies of spherical wave propagation in elastic media 
(e. g., [44], [46]) some unexpected results have been reported. For exam- 
ple, Piquette [46] has predicted numerically the so-called 'overpressure phe- 
nomenon', whereby the reflected wave amplitude exceeds the incident wave 

amplitude under certain conditions, but his results have not been verified 

either by experiments or by other independent methods. In such a situation, 
it is natural for a researcher to check carefully the methods being used, not 

only the method used to produce the results but also the fundamental the- 

oretical method. Although the integral in formula (5.1) has been used for 

study of spherical waves for decades, it seems possible that as was mentioned 
in the introduction there may be some ambiguities in its mathematical foun- 
dations. Therefore before we carry out any further study, we shall examine 
the integral in (5.1) closely. ' t 
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5.1.1 A brief history of the classical integral 

The earliest derivation of the formula (5.1) was given by Lamb [1]. He started 

from a solution of wave equation in the form of integral in (5.1), and used 

three arguments to assert that equation (5.1) is true. The first argument was 

involved in the derivation of the equation 

exp(-ikz) 
- 

r°° exp(-z ) 
dý. (5.2) 

z 
Jo 

The second argument due to Weber [54] is that the mean value of a solution 

of the scalar Helmholtz equation, taken over the surface of a sphere of radius 

R= r2 -+z 2 not enclosing any singularities, is equal to 

sin(kR) 
kR 

0o1 

where ýo is the value at the centre. The third argument, due to Thomson 

and Tait [2], is that in any case of symmetry round an axis, if the potential is 

constant through a certain finite distance, however short, along the axis, it is 

constant throughout the whole space that can be reached from this portion 

of the axis,, without crossing any of the masses. 
Lamb's derivation is very simple, but it is not easy to understand the 

connections between these arguments and Lamb's derivation. An alternative 
derivation which. is often found in textbooks (see [4], [5] and [11]) is due 

to Sommerfeld [3]. It should be noticed that Sommerfeld's derivation was 
for the complex conjugate of equation (5.1) in the book "Electromagnetic 

-theory". 
[4] and this has been used also by Stratton [5], but later when Ewing, 

Jardetzky and Press quoted Sommerfeld's derivation in the book 'Elastic 

waves in layered media', [11] they used, a different sign in their,, expressions 

without accounting for the change., 

: By using a, cylindrical coordinate system, Sommerfeld derived the two- 

dimensional formula in the coordinate plane'z =03.. ; 
exp(ikr) , Jo(rE)E 

(5.3) 
r __ _ 

t" __ 
r" 

J. 

- 
ký dý 

(with (or: A in,,, [4]) being 
, 
defined as a real and, positive variable), so that, 

when the z dependence is added, the three-dimensional wave equation is satis- 
fied (i. e. the expression would become one for ezp(ik r2 -i- z2/ r2 + z2). He 
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pointed out that the fact that the integral in the three-dimensional formula 

(5.1) coincides with the integral in the two-dimensional formula (5.3) for z=0 

ensures that it also gives the correct representation of exp(ik r2 + z2)/ r2 + z2 

for z 0. The argument behind this statement would be the uniqueness the- 

orem for the solution, since the integral in the three-dimensional formula (5.1) 

satisfies the governing differential equation and the condition at z=0. 

Both of the studies by Lamb and Sommerfeld of formula (5.1) might have 

been inspired by the Sonine and Gegenbauer type integrals [57]. The Sonine 

and Gegenbauer type integrals involve infinite integrals of the products of two 

Bessel functions of forms similar to the integral in (5.1). A discussion of the 

Sonine and Gegenbauer type integrals can be found in the book 'Theory. of 

Bessel functions' by Watson [57]. In this book, formula (5.1) and its complex 

conjugate are given as a particular case of the discontinuous integrals of 
Sonine and Gegenbauer; formula (5.1) is not given in the original works by 

Sonine [58] or Gegenbauer [59]. Watson did not explain how formula (5.1) 

was derived. Following Sonine's method, an attempt has been made to derive 

formula (5.1) and it was found that the derivation was possible only if some 

conditions on integrals of exponential functions could be ignored. In other 

words we failed to obtain formula (5.1) by using a method similar to Sonine's 

on a rigorous and understandable basis, and regarding the integration to be 

strictly along the real axis. A detailed discussion of this attempt is given in 

Appendix (A). 

Another possible method for the proof of formula (5.1) is that of power 
series expansion, but we have not found any study using this method in the 
literature. The method of power series expansion can only be applied to 

a convergent integral. Since we are not able to find any discussion of the 

convergence of the integral in (5.1), ' before using the method of power series 
expansion to prove (5.1), we have 

-to', 
show that the integral is convergent. 

Watson in his book considered the integral in formula (5.1) as a contour 
integration to avoid the singularity at k, however he did not define the 
integration path clearly. Although Stratton also assumed that integration 

variable ý (or .\ in [5]) can be any complex value, Sommerfeld [4], as remarked 
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earlier, did not do so explicitly. In fact he specified the range of his integration 

variable "as 0<ý< oo. On the other hand Ewing, et al., [11] did not specify 

the nature of the integration variable. This suggests that there is lack of 

clarity in published derivations of Lamb/sommerfeld's formula. It is possible 
that the complex conjugate of (5.1), presented by Sommerfeld, Watson and 

others may be regarded as a contour integral over complex variables, but 

the path of integration must be specified because of the singularity in the 

integrand. It appears from the literature that so far no one has clearly defined 
the path of integration when interpreting the complex conjugate of (5.1) as 
a contour integral. 'We shall show that, when the coordinates r and z are 
real variables, the wavenumber k and the integration variable ý are real and 

positive, the integral is convergent at the singularity and formula (5.1) is 

valid only when the argument of the exponential on the right side of (5.1) is 
`negative. ' The condition on the wavenumber k meets the requirement for the 

-investigätion'of'spherical wave propagation in a medium which is not energy 

absorbing. 

5.1.2 Convergence of the integral and a new repre- 

sentation 

' Firstwe rewrite-the improper integral in (5.1) as 

e-ckd k-b Jo(rg)e-Izlgý a Jo(rg)e-Izlqý 
limäýClimb-. o(Jo .., 

dý + J+b dt)º (5.4) 
4l4 

where d= Jr 
;? -}- z? and ýq 

="ý- k2 
. 
'We can eliminate the singularity by 

substituting kx into equation (5.4). Then we have g? +2 

e-idk b3-2kb 
-I 

. ".. d, 4 
lim, a:, olimb, o (. 1: 

JikJo(r k2 + x2)e 7'1' dx 

dx). (5.5) 
J\f 

b-+2k6 
Jo(r k2 -1-x2 e 

It is` easy to seethat when' b tends to zero, the limit `/ b2 - 2kb and the limit 
b+ 2kb both become zero so wehave have,,.,,,,, 

' 
limaýoo (. o 

Jo(r k2 + x? 
)e=1=i dx 

.., d.: 
n. z.. 

ýk 
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a -k 

.ýl Jo(r k2 + x2)e-I=I= dx) (5.6) 
Jo 

The first integral is independent of the parameter a, and it is convergent 

over the finite range. Let us look at the second one. When a tends to 

infinity, a2 - k2 -º oo. By the Dirichlet test theorem, the second integral 

of equation (5.6) is convergent when the parameter a tends to infinity, because 

fob Jo(r ka -+x2) dx is a bounded function for all b>0, exp(-jz1x) vanishes 

as x tends to infinity, and the integral of the derivative of exp(-IzIx) with 

respect to z over an infinite range is absolutely convergent. Hence we have 

shown that the integral on the right side of equation (5.1) is convergent 

and we also obtain a new expression for a spherical wave which avoids the 

singularity in the classical representation. When written in a compact form, 

equation (5.6) becomes 

exp(-ikd) 
= 

jk Jo (r k2 -+x 2) exp(- I zIx) dx. (5.7) 
d 

The integration path is taken from x= ik to x= iO along an imaginary axis 

and from x=0 to x= oo along a real axis. 

5.1.3 A proof of the new integral 

The integral in (5.1) has been shown to be convergent, but it is difficult to 

prove formula (5.1) by direct expansion. Since we have also shown that the 
integral in (5.1) is equivalent to (5.7) we can use formula (5.7) instead. First 

we separate the real and imaginary parts which are written as 

cos (k r2 + z2) 
-k r2 + zz 

f 
-Jo(r kz - y2)sin(jzly) dy 

00 

_{- JO Jo (r kz + x2)exp(-Izlx) dx, (5.8) 

sink rZ + z2) 
-k Jo(r k2 - y2)cos(lzly) dy, (5.9) 

where we have converted the integrations on the imaginary axis to the real 
aids by the substitution x= iy. 
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Let us consider (5.9) first, expanding sink r2 + z2) in power series in 

its argument this gives 

sink r2 + z2) 
_ 

k3(r2 + z2) + 
ks(r2 + z2)2 

_ 
k7(r2 + z2)3 k- +..., 

r2 + z2) - 3! 5! 71 
(5.10) 

where -oo<kr2-}-z2<oo. 
By expanding Jo(r k2 - y2) and cos(lzly) in their arguments respec- 

tively, the integrand can be written as 

Jo(r k2 - yz)cos(lzly) =1- 
r2(k2 - y2) 

- 
(yz)2 

+ 
(rzy)2(k2 - y2) 

22 2t 22-21 

+ 
r4(k2 - y2)2 

+ 
(yz)4 

_ 
r6(k2 - y2)3 

_ 

(yz)6 

22 "42 4! 22-42 "62 6! 
r2z4y4(k2 - y2) r4z2y2(k2 - y2)2 

22.4! - 42.22.2 .. -/+. (5.11) 

for -oo <r k2. - y2 < oo and -oo < 1zly < oo, where we have assumed that 

the product of the two convergent series is also convergent [56]. Integrating 

the right side of equation (5.11) term by'term, and rearranging the terms 

gives the required result 

fk Jo(r k2 7 e)cos(I zI y) dy 

k3(r2 + z21 k5(r2 +z 2)2 
F k7(r2 , +, z2)3 k_ l /+ l 1- l +.... (5.12) 
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It is little more complicated to prove equation (5.8). First we rewrite the 

expression on theleft side of (5.8) as 

cos(k r2 + z2) (5.13) 1(r 
z 

.. Expanding the numerator in its argument and expanding 1/(z (r2/z2) + 1) 
in r2/z2 for z>r, we have the product 

-2 
z2) 00 00 ", , :: -` , 

2n 2m-1 2n+2m T1 7L cos (k -r 1)n m 

Z (r2/z2) -}- 1. n=0m=1 pe(2)2(2m - 1)! ) 2n + 2m 1 

_. 
1n 

-ý 2n+2m-2 2t ý(2n+2m-4) 3 
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00 00 r 2nZ-2rn-1k2(n-m) p0(2n - 1) 72 

-{- (-1)n 
(2n - 2m)! 

( 
Pe(2n) n=0 m=0 

po(2n - 3) n+ po(2n - 5) n-.. 
_)(5.14) pe(2n - 2) 2 pe(2n - 4) 3 

where 
p, (2n) = 2n " (2n - 2) " (2n - 4)..., 

po(2n - 1) = (2n - 1) " (2n - 3) " (2n - 5)... . 

Next we consider the integrand in the first integral on the right side 

of (5.8). Upon expanding Jo(r k2 - y2) and sin(Izly) in their arguments, 

respectively, the product, the integrand, becomes 

Jo(r k2 - y2)sin(IzI y) =E 
n =O m =O pe (2n)2 (2m + 1)! 

y 
- 

yzý. º. (5.15 

Performing integration term by term on the series in (5.15) gives 

jk 
-Jo(r k2 - y2)sin(I zI y) dy 

00 00 r 2nZ2m-1k2n+2m 1n 

-- 
m-1( 

) 
pe(2)2(2m - 1)! )(2n + 2m 1 

2n+2m-2 
ý2) 

+(2n+2m-4) 
3 -*")' (5.16) 

For the integrand of the second integral in (5.8), we expand only the Bessel 

function in a power series in its argument, so 

Jo(r k2 + x2)exp(-Izlx) 

= exp(-I=Iz)(1 - 
rZ( 

2 

I) 
+ 

r4(k2 

4 

2)2 

- ... 
). (5.17) 

po(2)2 PoOZ 
Integrating the series from 0 to b and then letting b tend to infinity, and 

rearranging terms, we obtain 

j°°Jo(r/k2+x2)exp(_lz)dx 

co co 2n 

(_1)nr, 
z_2m-1k2(n-m) (pc(2n - 1) n- po(2n - 3) n+ 

. L. .. 
). 

n=o m=o 
(2n - 2m)! p, (2n) 11,. p, (2n - 2) 

.2 (5.18) 
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Comparing the sum of the series in equations (5.16) and (5.18) with the series 

in (5.14) proves the formula (5.8) for z>r. 

The formula (5.8) is valid for any r and z, since the integrals in equation 
(5.8) satisfy the reduced wave equation (omitting the time dependence) and 

certain boundary conditions, for example at the surface z= 2r. From the 

above proof we can see that for a real positive k the formula (5.1) is valid 

only when the argument of the exponential function on the left side has a 

minus sign. 
We could avoid using the theory of differential equations if we could show 

that 

Jo(r k2 - yz)sin(I zl y) dy +f 
-Jo(r k ++ x2)exp(-Izlx) dx fk 0 

0 

10 Jo(z k2 - y2)sin(Irly) dy +JooJo(z k2 + x2)exp(-Irlx) dx. (5.19) 

We have attempted to prove equation (5.19), but have failed to do so. 

5.1.4 Numerical test of the integrals 

Numerical integration using the integral in (5.7) should give more accurate 

results than that using the integral in equation (5.1), since the singularity is 

eliminated. 
However, from a" table of integrals ' [62] we have found another formula 

for the conjugate of the functional expression. This is 

exp(ik r2 -}- x2) 
_'. 

i "r°°Hol)(z kz - x2)cos(rx) dx (5.20) 
ra+xa . 

Jo 

where Hol)(x k2 - x2) is a Hankel function of the first kind. The integral 

in (5.20) also h asp ä singulsrity at x k. ' The complex conjugate öf the 

representation in (5.20) may be used also for comparison with the" clissical 
integral. `" 

By use of the computer,,, software, NAG library, we can evaluate these 

integrals for given constants: The NAG library offers several integration rou- 
tines. `ý We can ̀ test , the routines. by using Lamb's representation (5.1), the 
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new representation (5.7) and representation (5.20). The results of compar- 

ison with the functional expression will also show us how good each of the 

representations are for the purposes of numerical integration. For the test we 

have used two recommended and reliable programs which will often be used 

later. DOlajf was used for the finite interval, from 0 to k and DOlamf for the 

infinite interval from k to infinity. Routine DOlahf will be used later for a 

particular case, so an example is also given. The calculation uses double pre- 

cision. The relative accuracy is specified as 10-4 and the absolute accuracy 

is 0.0. The calculations were obtained for given dimensionless kr and kz. - In 

a typical case of frequency 1000 Hz and wave speed c= 331m/s, kr = 3000 

and kz = 20 correspond to r- 150m and z- 1m respectively. 
Comparisons of the integrations with the functional expression for r<z 

and r>z are shown in Table (5.1). Note that the results are given for the 

modulus of the real and imaginary components; the sign of the calculations 
has been omitted, but, for example, the complex conjugate of the results 
from (5.20) has been calculated. The functional expression that has been 

used corresponds to the left side of equation (5.1). The calculations for 

the real component involve an infinite integration range so they are less 

accurate than the calculations for the imaginary component (see equation 
(5.6)). For the small values of kr and kz, comparison of results for the 

imaginary component (the second column) shows that the integrations for 

equations (5.7) and (5.20) have similar accuracy and give much better results 
than those for equation (5.1). For the small values of kr and kz, comparison 
of the real components shows that the result from the integral-in equation 
(5.20) is better than that from the integral in (5.1), and the result from 

the integral in equation (5.7) is better than those of both equations (5.1) and 
(5.20). As the value of kr increases, the accuracy of the numerical integration 

using (5.7), particularly for the real component, reduces. Indeed the accuracy 

of computations by (5.7) and (5.20) for. the real component is less than that 
from (5.1) at kr = 1000. This is because for large values of kr the Bessel 
function oscillates rapidly. Nevertheless, the imaginary components continue 
to be computed more accurately by (5.7) and (5.20). 
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kr = 1, kz =2 modulus of real part modulus of imaginary 

part 
functional 5.240153942228524 6.678872052315230 
integration (5.1) 5.240153325900175 6.678873336210182 
integration (5.7) 5.240153942092239 6.678872052315229 
integration (5.20) 5.240154235716217 6.678872052315230 
(5.20) with DOlahf 5.240121699482819 6.678871631622314 
kr = 2, kz =1 
functional 5.240153942228524 6.678872052315230 
integration (5.1) 5.240153725243341 6.678872384175797 
integration (5.7) 5.240153948170988 6.678872052315230 
integration (5.20) 5.240153067361828 6.678872052315230 
(5.20) with DO1ahf 5.240168762583650 6.678871631622314 
kr = 1000, 'kz = 20 
functional 0.007343092434411 0.017500518592507 
integration (5.1) 0.007343098284159 0.017500538149762 
integration 5.7 0.007343423361133 0.017500518592507 
integration (5.20) 0.007343027431859 0.017500518592508 
(5.20) with`D01ahf 0.007343027373487 0.017500517889857 
kr = 2000, kz = 20 x 
functional 

, a. 0.004351225772965 0.008434512931526 
integration (5.1) 0.004351233768200 0.008434512224196 
integration (5.7) 0.004351229113076 0.008434512931526 
integration (5.20) 0.004351217913059 0.008434512931526 
(5.20) with DOlahf 0.004351217400386 0.008434512624567 
kr = 3000, kz = 20 
functional 0.006252146147347 0.0009725527144254 
integration (5.1) 0.006252097091458 0.0009725535162503 
integration (5.7) 0.006252111504118 0.0009725527144257 
integration (5.20). '0.006252144476359 0.0009725527144244 
(5.20) 

. with DO1ahf 0.006252144467865 0.0009760584798641. 

1 

y 

"I `V. f. Vý. vvlYaa Lviu. aýa I v. vvvývýazzzvývvv I V. VVVJ I VV-JOY IV OU`tl. 

Table ' 5.1- Comparison of numerical integrations with the functional expres- 
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The results of (5.20) with DOlahf were obtained by using the integral 

in (5.20) and DO1ahf was used on the sub-interval, (0,1), and D01amf, on 
(k, oo). The results are less accurate than calculations using DOlajf for 

small values of kr and kz, but the accuracy of the results is stable for both 

large and small values of kr and kz, and meets the required accuracy. The 

integration with the Hankel function, (5.20), uses slightly more CPU time. 

The accuracy of the numerical integrations for any of the three expressions 

can be improved at the cost of more CPU time. 

The test in Table (5.1) is given for several values of kr and kz to see what 

accuracy of numerical integrations can be achieved by using NAG routines 

and how different they are for various forms of integrals; however it cannot 

guarantee that the programs will work for all values of kr and kz, since the 

quadrature rules are only approximations. (An example of such failure by 

using the Gauss-Kronrod program, is illustrated by Squire [47]. ) A test for 

wider range of r is included indirectly in the next test. 

5.2 Energy of a spherical wave 

Energy transport is an important feature of wave propagation. A good theory 

of wave propagation must, satisfy the law of energy conservation.. Spherical 

wave propagation in an infinite space is a simple case where we can study 
the energy aspect analytically. Later when checking solutions for energy 

conservation, we shall integrate the energy flux over an infinite range, with 
the energy flux being determined by a product of two integrals. To obtain 

an idea of the accuracy for such complicated numerical integrations we shall 

use the spherical wave in infinite space as a test case. 
The law of energy conservation requires that the time average total energy 

per unit time crossing a surface which surrounds a point source must be 

equal to the output power generated by the source., By using this law, the 
total output power generated by a point source can be evaluated easily in a 
spherical coordinate system. 

Let us consider a surface, of a sphere with the centre at a point source. 
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The energy flux is in the radial direction and of the same magnitude at all 
points on the' surface because of the spherical symmetry, so the time average 

power crossing the surface, t, is given by the product of the time average 
energy flux and the area of the surface. This result is expressed by 

E= 2IA12irpw3k, (5.21 

where A is the possibly complex amplitude constant and 1A12 = AA*. The 

above result will be often used later when we test solutions for energy con- 
servation. 

For most practical problems we'do not have such spherical symmetry, 
but axial symmetry is common. In a cylindrical coordinate system, for the 

problem of spherical wave propagation in an infinite space, a convenient way 
to examine the energy transport is to replace the spherical surface by two 

parallel infinite extended plane'surfaces normal to the z-axis with a` source 
located on this axis half way between the two surfaces. We are going to show 
that the time average of the energy carried by a spherical wave crossing a 
plane surface of infinite extent, per unit time, is equal to half of the total time 

average power generated from the point source. Let us consider a cylindrical 
coordinate system. 'Me plane surface is z= h(> 0) with the point source at 
the origin. The. time average power crossing the surface is given by 

.. E wEz - j°° 
--Re 

(p*(r, t)v, (r, t)) 21rrdr (5.22) 

where p*(r, t), is the complex conjugate of the pressure, and. vs(r, t) is the 

particle -velocity., i 
The spherical wave displacement potential is 

_'Aexp(i(wt -k2+ 
ia 

r2)) (5.23) 
Z 

V 
+r 

where`A is an amplitude constant: The time average energy flux crossing the 
surface can then be expressed as 

2 00 
)l: 

_h ardr , 
j 

Pw2Re( 8z8t .... a,..... <_ , 
r a#:. _ .: w d ö; 00 

rAZpW3krh " 
(h2 3ý2 

dr. (5.24) 
J (h-} r2)3/2 
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From the last expression in (5.24) it can be seen that when either h or r tends 

to infinity, the energy flux becomes zero. On using b for the upper limit, the 
integration with respect to r gives 

ýAI2pirw3k(h h2 + b2 - h2 - bz) 
EZ = limb-. ý - (h2 + b2) 

= IAIZirpw3k. (5.25) 

alAl2pw3k is half of the time average power generated by the point source. 

It is obvious that the time average power crossing a surface, at z= -h, say, 

on the other side of the point source will be another half of the total power. 
Using the algebraic expression of the energy flux, and from the law of 

energy conservation, we have shown that the power output of a point source 
is given by 21AI2irpw3k. From this result and formula (5.1), we can derive 

a rather surprisingly simple result. Using the integral expression (5.1) to 

express the potential (5.23) we have 

0_ Aý°° 
Jo(rf)eXF( 

re - ZIzI k2 
-k2)ß dZexp(iwt). (5.26) 

The z-component of the particle velocity is given by 

vs 
2 

azat = -Aiw 
Jo 00 Jo(rý)exp(-jzjq)ýexp(iwt) dý (5.27) 

By applying this result and the complex conjugate of (5.26) to equation 
(5.24), after transforming the complex conjugate of (5.26) into the form of 
(5.7), and using the result (5.25), we obtain, at z= h(> 0), 

Re(f 00 (1k Jo(rrl)exp(-h dý)`i j0* Jo(rý)exp(-hq)ý dý)rdr) =k (5.28) 

where q= ý2 - k2,77 _+k2 and the superscript * indicates the com- 

plex conjugate. ' Equation '(5.28) is-equivalent to (5.25). It is remarkable to 

see that such a complicated" integral results in a simple constant. 
Equation (5.28) includes an integral with' a new form of integrand, which 

corresponds to the particle -velocity. ' This type of integral will be involved 
in the calculations of the energy flux` later. The numerical integration for 
the particle velocity should not be very difficult since it does not have any 
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singularity; however as with the numerical integration of (5.7), the accuracy 

of the calculation may be reduced for large values of r and z because of the 

oscillatory feature of the integrand. We shall not test the accuracy of numer- 
ical integration of the particle velocity explicitly but it is checked indirectly 

by the next test. Since the exact analytical result of (5.28) is available it pro- 

vides a good way of testing the program for numerical calculation of the time 

average power crossing a surface. We shall test the formula (5.28) numeri- 

cOy for given h (or z) and k. The integrations corresponding to the energy 
flux use NAG routines DOlatf and DO1amf, and we choose other two NAG 

routines for the integration with respect to r, DOlajf for a finite interval and 
D01bay for a semi-infinite interval, since it is not permissible to call a routine 

within a calculation by the same routine. This test serves three purposes. 
The first one is to test the program for numerical calculation of the time 

average power crossing a surface and to check the new routines DOlatf and 
D01bay. The second purpose is to indirectly test the integral representation 

of, the particle velocity and the third is to indirectly check the integrals for 

the pressure and particle velocity for wider range of r at a given z. If the 

program for calculating' the' time average power gives a satisfactory result, 

we would expect that the calculations for the pressure and particle velocity 

should also give reasonable accurate results. 

0 ,, 'The routines, DOlatf and DOlajf, use the same algorithm, but DOlatf re- 
; Squires the integrand: to be calculated at an array of. points, and it is more 

efficient., Obviously : we wish to calculate the integrations corresponding to 
the energy flux more quickly since it is the integrand for another integration. 

``From equation'(5.24) we can see that the energy flux'is a rational type decay 

function with increasing r, so we choose D01baf for the semi-infinite integra- 

tion, with respect to r. The finite interval for, DOlajf is from 0 to 100, and 
is divided into 10 equal sub-intervals. D01bay is used from 100 to infinity. 

,,;, 
For, the integrations corresponding to the energy flux,, again the value k is 

the point separating the finite interval and the semi-infinite interval. For 

,, 
DOlajf, - D01atf, 

_and 
DO1amf, the, relative accuracy, is specified as 10-3 and 

the absolute accuracy is 0.0. p, 
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A comparison is given in Table (5.2) between the result of the integration 

for k using the suitably normalized algebraic expression (see (5.25) for the 

energy flux (5.24) and that obtained by using the integral expression (5.28). 

intervals (m) normalized integration 
(5.24) 

integration (5.28) 

0-10 4.273402363853575 4.273416042327881 
10-20 0.235222129103964 0.2352196574211121 
20-30 0.078885229764794 0.078885175287723541 
30-40 0.039495982646161 0.040215868502855301 
40-50 0.023709959096322 0.023710267618298531 
50-60 0.015810699543000 0.015810519456863403 
60-70 0.011295000511976 0.011294460855424404 
70-80 0.008472017120321 0.008472367189824581 
80-90 0.006589742970087 0.006589584983885288 
90-100 0.005272015841072 0.005272179841995239 
100- 00 0.0475370522141456 0.047788977622985840 

sum 4.745608007608375 4.746675101108849 

Table 5.2 Comparison of numerical integrations. Frequency f=1000 Hz, 

wave speed c=331 m/s, k= (27r f /c) = 4.745608009960716, source height 
h=1m. 

The value of r is obtained from a NAG routine X01aaf. Examining the 

results for the sub-intervals, we can see that the two integrations agree to 

about 4 or 5 digits. This accuracy is little less than that obtained by the 

single integration for the pressure for large values of r in Table (5.1). The 

sum in Table (5.2) shows that integration (5.28) can reach the accuracy to 3 
digits, and integration (5.24) can obtain accuracies to 9 digits, in comparison 
with the exact value of k given in the caption to Table (5.2). 

The calculation of the integrand in (5.28) had a few failures for val- 
ues of r> 100. The maximum number of subdivisions allowed with the 

given workspace in computer memory which was specified as 50000 has been 

reached without the accuracy requirements being achieved. This is because 
for large values of r the integrands in the integrals for the pressure 

(rt7)ep(-I zI ) dk 
J°° 

Jo 
k 
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or for the particle velocity 

1M JO(r)exp(-IzI9)f dý 

become rapidly oscillatory. If the workspace is further increased 
, the com- 

puter's internal round-off error specified by the software will limit the accu- 

racy; consequently there is no further improvement in accuracy. The failures 

of calculation at some particular points and some particular ranges do not se- 

riously affect the whole integration process. In fact a calculation failure does 

not always imply a large error. The relative error is about 0.0002, which is 

smaller than the specified relative accuracy for DOlajf, DOlatf and DO1amf. 

It is difficult to increase the accuracy further. 
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Chapter 6 

Spherical wave reflection and 

transmission 

In this chapter we shall start with using the classical integral representation 
(1.1) to study problems concerned with the reflection of spherical waves at 

a plane boundary; then we transform the reflected wave expressions to new 
forms which are subsequently used in numerical studies. The solutions based 

on the formula with the Hankel function (equation (1.5)) are also used. 
As in the case of plane waves, we consider only the continuous, steady 

state, wave field; hence the results obtained here may not be applicable wave 

pulses or wave beams. The problem of transmission is discussed only for 

waves in a fluid. There are solutions for the problems of reflection at a 

rigid boundary, and reflection and transmission at the interface between two 

media. They can be found, for example, in the book 'Elastic waves in layered 

media' by Ewing, et al. [111. Since the existing solutions, which are based 

on Lamb's integral, have singularities, numerical integrations are extremely 
difficult. This has been pointed out by Ewing, et al.. Transformation of the 

classical solution into a new form of solution has enabled us to overcome 

some' difficulties in the numerical integration and so we have obtained more 

accurate integration results-, and carried out a detailed numerical study-of 
spherical wave reflection and transmission. The results offered in this chapter 
are consistent with those obtained in the previous chapter for plane waves. 

It is not our intention to explain all of the new results obtained in this 

chapter, since convincing explanation would require further theoretical stud- 
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ies and experimental verifications. Nevertheless some attempt has been made 

and is given in Appendix (E). 

For spherical wave propagation, a cylindrical coordinate system is used. 
If we choose the z-axis to pass through the point source and normal to the 

reflection surface, the wave field is symmetrical about the z-axis and depends 

only on the coordinates z and r. 

6.1 Rigid boundary 

The exact algebraic solution is well known for spherical wave reflection at a 
plane rigid boundary, so it provides a benchmark for checking the integral 

solutions. Let us assume that the point source is at z= h(> 0) above the 
boundary which is at z=0. At a rigid boundary, the z-component of particle 
displacement is zero and this condition is expressed by 

.w=0 atz=0. , 
(6.1) 

Since we are interested only in a continuous steady state wave field, 
. 
initial 

conditions are ignored. We consider a solution of the equation of motion in 
the form 

exp(iwt - in r2 +, (h - z)2) 
+ Rexp(iwt - inc r2 + (h + Z)2), 

6. 
r2 -{- (h- z)2 r2. + (h . +. z)2 

(2) 

with. 

iiiKc, 

c being 
'the ; wave, speed and rc being the, wavenumber. The ! first term in 

equation (6.2) represents the incident wave and the second term is for the re- 

.: -flected wave. The geometrical decay is proportional to the distance travelled 

°;. along the, incident and reflected wave paths, respectively, and, R is the re- 
flection coefficient. The consideration of spherical spreading is-an important 
factor when we initially guess an integral form of solution. We have assumed 
unit amplitude=jor, the incident 

iwave.. Since 
. we only ; consider the case of 

time harmonic motion, we shall omit the time dependent term 
: 
exp(iwt) (or 
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exp(-iwt) depending on the sign of the space dependent term) whenever it 

is not relevant. 
From the boundary condition, following the same procedure as we did in 

the case of plane wave, it is easy to obtain that the reflection coefficient is 

given by 

R=1. (6.3) 

Let us examine the solution for energy conservation. Solution (6.2) is 

a sum of the incident wave and the reflected wave.. Consider now a plane 

surface, at z= 2h, say, in the incidence medium, above the point source, 

parallel to the reflecting surface. The sum of the time average powers from 

the direct and reflected waves crossing the plane surface must be equal to the 

total output power of the point source, which is 27rpw3k. The reflected wave 

can be regarded as a spherical wave generated from an imaginary source on 

the z-axis at z= -h. We have shown, in Chapter 5, that the time average 

power crossing a plane surface due to a single spherical wave is 7rpw3k and 

the result is independent of the distance between a source and the plane. It 

is obvious that the totally reflected spherical wave from the image source will 

also contribute this amount of power crossing the plane surface. Therefore 

the sum of the time average powers from the direct wave and reflected wave, 

respectively, meets the requirement of energy conservation. The energy flux 

may not be zero locally across an element of such a plane surface, due to the 
interference between the incident and reflected waves, although the spatial 
integration of the time average energy flux of the interference terms must be 

zero. An interesting result was obtained when calculating the time average 
local energy flux component 

< Is >= Re(P"aw), (6.4) 
=2 at 

where p' is the complex conjugate of the pressure. It was found that in 

some regions above the point source, although both the direct wave and the 

reflected wave are supposed to, be, travelling away. from the boundary, 
, 
the z- 

component of the time average total energy flux of the two waves'is locally in 
the negative z-direction. An example'of such'a calculation is given'in''rable 
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coordinate r (m) 1.16 1.18 1.20 1.22 1.24 

energy flux 0.042 0.012 -0.0028 -0.0091 0.018 

Table 6.1 An example of a negative time average energy flux component 
in the z-direction for spherical waves in air reflected at a rigid boundary. 
Frequency 1000Hz; source height 1m; height of plane z= 2m. 

(6.1). The results given in Table (6.1) were calculated from (6.4) and were 

normalized to 7rpkw3. Since it is a simple algebraic calculation, the negative 
sign of the time average energy flux cannot be caused by numerical error. A 
discussion of this so called "backward wave" will be given in the last chapter. 

An equivalent integral solution of the equation of motion can be written 

as 

provided that 

Jo e -ßc2 
d 

+ 
r°° 

RJO(Tý)e-1h+: 
1 

dt (6.5) 
JO t2 

- ýZ 
S, 

KC = W. 

Use of the boundary condition gives 

ý'-(1 R))dý =0 at z=0. - 
(6.6) (Jo(rg)eh "' 

A sufficient condition' for the integration to be zero is that the integrand 

vanishes for any and for an arbitrary r, so we have 
1l . 

R=A, (6.7) 

as required. Equation (6.5) is written in a form of two separate terms cor- 

responding to the incident wave and the reflected wave respectively. If we 
rz 

change the integration variable by a substitution = VP + k2, a new form 

of solution is obtained, which is, written in compact form, 

V 
j; J(r/x2 71 ; -i' rcý)(exp(-ýh = zlx2)`+ exp(-Ih + zIz2))dx', -'(6.8) 

., where the path of integration is defined as in equation (5.7). 
t 
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Following a similar procedure, but using the formula with the Hankel 

function instead, we can obtain an alternative, complex conjugate, form of 

the integral solution 

'p =i 
j°°[141)(Iz 

- hý ßs -- x2) + Ho(l) ((h + z) , c2 - x2)]cos(rx) dx, (6.9) 

with isc = w. It is not difficult to show that the four solutions, (6.2), (6.5), 

(6.8) and (6.9), are equivalent except that solution (6.9) has a phase differ- 

ent from the other three, (6.2), (6.5) and (6.8), due to its being the complex 

conjugate. Using NAG routines, we can calculate the data for pressure con- 

tours using equations (6.5), (6.8) and (6.9). The routine DO1ajf is used for 

the integration from 0 to ic, and DOlamf for that from rc to infinity. The 

three solutions give very similar results to that obtained from (6.2). The 

accuracy is similar to that obtained for the test case of Table (4.1). The 

pressure is proportional to the potential function, and in dB the pressure can 

be expressed as 

p= 20loglo(IcpI) + CONST, (6.10) 

where JcpJ is the modulus of cp, and CONST is a constant which depends on 
the amplitude of the incident wave, and on the reference pressure. The value 

of CONST is 74 dB for the calculations presented here. 

Pressure values were calculated at the crossover points of a mesh lying on 

a plane formed by taking r and z as a two-dimensional Cartesian coordinate 

pair. Since one of the results of the calculation here will be used later for 

the experimental comparison, the pressure contours were obtained in the real 

space, instead of the dimensionless space. The results can be easily converted 
to the dimensionless space. A frequency of 1000 Hz was used for waves in 

air or in water. The wavelength of the wave in the air is about 331mm, and 

that in the water is about 1531mm. Neighbouring points in each of the r 

and z-directions are 50mm apart. In the case of air, we have also considered 

separations of 100mm or 25mm. It is found that using 100mm intervals gives 
less detailed pressure contours, and that the results obtained by using 25mm 

intervals are similar to those when using 50mm intervals. Since a sparser 

network density uses less CPU time we chose the length of the interval to be 

50mm. 
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Figure 6.1 Three dimensional pressure contours for spherical waves in air 
reflected at a rigid boundary. The point source is located at 1m on the z-axis 
and the boundary is at z= Om; frequency 1000 Hz. 

The results are shown in Figures (6.1) and (6.2) for waves in air and in 

water respectively. The contours were produced by using the UNIMAP 

software package. The results are presented in the form of three dimensional 

contours. This allows us to easily identify the pressure level peaks or troughs. 

In Figure (6.1) there are four troughs but only one in Figure (6.2) which is for 

the longer wavelength. In the region between the source and the boundary, 

the number of peaks or troughs which may exist of course depends on the 

relation between the wavelength and the distance of the observation point to 

the boundary. 

We shall see that the rigid boundary is a good approximation to a fluid/solid 

metal interface, and in some cases for a gas-liquid interface, but the rigid 
boundary is not suitable for describing the interface condition where two 

fluid media which have similar acoustic properties are in contact. 
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Figure 6.2 Three dimensional pressure contours for spherical waves in water 

reflected at a rigid boundary. The point source is located at 1m on the z-axis 

and the boundary is at z= Om; frequency 1000 Hz. 

6.2 Interface between two fluid media 
Next let us consider the problems of spherical wave reflection and trans- 

mission at a plane interface of two semi-infinite fluid media. The boundary 

conditions at an interface of two fluids (at z= 0) are similar to the case of 

plane waves, and are given by 

wi = w2, Pi = P2, atz=0. (6.11) 

Again the point source is at z= h(> 0). The classical solutions in terms 

of Lamb's integral can be found in the book 'Elastic waves in layered media' 
by Ewing, et al. [11], and may be written as 

f°° Jo(rx )e-'z- 9t x foo o(rx e-(htz)9i ýJ dx + RJ x dx, (6.12) 
0 9i 91 

ý02 =I 
00 T dx, (6.13) 

q2 

81 



where ql = xz - isi and q2 = 02 - rs2i and the integrand coefficients 
determined by the boundary conditions are given by 

R= P2gi - Pigs T= 
2p, q2 (6.14) 

P2Q1 + Pigs l P2Qi + Pigz 

These integrand coefficients appear to have forms similar to those for the 

reflection and transmission coefficients for plane waves, but there are basic 

differences. First, the quantities ql and qz in equations (6.12) and (6.13) are 
defined differently from those of the plane waves. Secondly, the interval of 
definition of the integrand coefficients (6.14) for the integration variable z 
is from 0 to infinity, but the component wavenumber k in the coefficients 
for a plane wave is defined from 0 to isl, since for k>r. l the incident wave 

cannot exist in a form of a travelling harmonic wave. Again the solution 
for the reflected wave can be transformed into a new form. The solution 
for the transmitted wave will keep its present form since the singularity has 

been eliminated by the form of the transmission coefficient. The transformed 

solution for the reflected wave is 

2ss °° P2X -Px+ rc1 - 
-- Jo(r x2 + nl)ezp(-(h + z)x) dx, (6.15) 

J; KI Pxx-f=pl x2-+4-kZ 

where cp,, denotes the second term on the right side of (6.12). 

By, using the the integral representation with the Hankel function for a 
spherical wave, one can obtain the complex conjugate solution in the form 

W, =j 
j°°[H 1)(Iz 

- hlr7i)cos(rx) + R'Höl)((h + z)7)i)cos(rx)] dx, (6.16) 

ýz =i 
j° T'HO")((h - z)r7z)cos(rx) dz, (6.17) 

where 77i = rci - x2 and rý2 = ;. ý'2 x2. Although the first term 'of the 
integrand in equation (6.16) is a solution of the equation of motion, it is 
difficult to show whether . 

the integral of the second term in equation (6.16) 

and the integral' (6.17) satisfy the equation of motion. ' Using the boundary 

conditions we obtain 

Rý _ Ho' (h7li)Höi)(hý]z)ýl1 H(')(hý, )Höz)(h7lz)7lzPI 
ö2) (1) (1) (z) (6.18) 

H (h? li)Ho (h772)77IP2 + Ho (h? l1)Ho (hl72)712Pl 
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Figure 6.3 Pressure contours when a spherical wave is incident on an 

air-water interface. The point source is located at 1m on the z-axis, in the 

air, and the interface is at z= Om. Frequency 1000 Hz. 

T, _ 
2HöZ)(h? ]i)Höil (hni)77IPz (6.19) 

Hö2)(hrjl)Höl)(hrj2)7l1Ps -I- Hull (h7li)Höýý(hýls)ýlzPi 

The coefficients (6.18) and (6.19) appear very different from those given in 

equation (6.14), and numerical calculations also show differences. However, 

numerical integrations of solutions (6.12) (with the transformed second term 

(6.15)) and (6.13) give very similar results to those obtained from integrations 

of (6.16) and (6.17). The values of the pressures in terms of dB agree within 

1 dB. However numerical integration of (6.12) or (6.13) uses much less CPU 

time than that of (6.16) or (6.17). Pressure contours obtained by using 

equations (6.12) (with (6.15)) and (6.13) are shown in Figures (6.3) and 
(6.4). 

The contours are presented , 
in a two-dimensional form, so that-we can 

clearly see the distortion of the spherical wave pattern caused by the re- 
flected wave. Figure. (6.3) is for an air-water interface and Figure (6.4) is for 

a kerosene-water interface. Air and water are less, well acoustically matched 
than the kerosene and water. For the larger impedance 

. change (Figure (6.3)), 

the spherical wave pattern is strongly distorted because the hard boundary 
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Figure 6.4 Pressure contours when a spherical wave is incident on a 
kerosene-water interface: The point source is located at 1m on the z-axis, in 
the kerosene, and the interface* is at z= Om. Frequency 1000 Hz. 

produces a stronger reflected wave as expected. In Figure (6.3) it is interest- 

ing to see that there'is a'point of minimum pressure in the transmission area 

where z<0, in the neighbourhood of r`- 1000 mm and z " -250 mm. 
By. ý analogy with the case for plane " wive incidence, given an incident 

spherical wave at an interface between'two fluid half spaces, one can define 
the_specular'reflection and transmission coefficients for the pressure by 

Rp (6.20) 

Tp _ W2P2, (6.21) 
(Pipi 

where cp* is the reflected wave, Vi is for the incident wave, and the subscript 
numbers indicate the' media concerned as before. 

The spherical wave integral solutions for the reflection and transmission 

coefficients should tend towards those for plane wave incidence when the ob- 
server is a very long distance away from the point source. We have calculated 
the reflection and 'transmission 'coefficients for ' spherical wave incidence for 
different source heights, for comparison with the coefficients for plane waves. 
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Figure 6.5 The angle of incidence for a spherical wave is defined by a. 

The angle of incidence for a spherical wave is defined as the angle between 

the normal to the boundary and the normal to the wave front at the joint 

point of the front and the boundary as shown in Figure (6.5) 

The results are shown in Figures (6.6) to (6.9). They show that in the 

case of a kerosene-water interface, the coefficients (6.20) and (6.21) depend 

on the height of the source, and that as the height of the source increases 

they tend towards those for a plane wave. Examining Figures (6.7) and 
(6.9), we find that the reflected wave or the transmitted wave has a phase 
different from that of the incident wave; in other words, the reflection and 
transmission coefficients for the spherical wave are always complex quantities. 
This situation is different from that for the plane wave. In Figures (6.7) and 
(6.9) the phase curves for a plane wave are plotted with a positive sign, which 

allows us to make an easy comparison.. The positive phase for spherical waves 

would imply that the phases of the reflected and transmitted waves are ahead 

of that of the incident wave, or'the'phases of the reflected and transmitted 

waves are behind that of the incident wave at degrees of 360° - a, where a 
indicates the phases value at "a given angle of incidence in Figures' (6.7) and 
(6.9).,. The reason for this positive phase is, not very clear;. 

OmaY be related ' i. t 
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Figure 6.6 Amplitudes of the reflection coefficients of spherical waves for 
pressure incident in kerosene on a kerosene-water interface for different source 
heights, h, compared with those for 'plane wave incidence. Frequency 1000 
Hz. 
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Figure 6.7 Phases of the reflection coefficients of spherical waves for pressure 
incident in kerosene ' on` a' kerosene-water interface for different source heights, 
h, compared with- those for plane" wave incidence. Frequency-1000 Hz. '. '" 
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Figure 6.8 Amplitudes of the transmission coefficients of spherical waves 
for pressure incident in kerosene on a kerosene-water interface for different 

source heights, h compared with those for plane wave incidence. Frequency 

1000 Hz. 
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Figure 6.9 Thases of A he transmission `coefficients of spherical waves for 
pressure incident in kerosene on a kerosene-water interface for different source 

1 heights, h, compared with those for, plane wave incidence. Frequency 1000 
Hz. 
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, 
Figure 6.10 Amplitudes of the reflection coefficients of spherical waves for 

pressure incident in water on a water-kerosene interface for different source 
heights, h, compared with those for plane wave incidence. The curves for 
h=5 and h= 10 coincide with that for plane wave. Frequency 1000 Hz. 
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Figure 6.11. Phases of the, reflection coefficients, of spherical : waves for 
pressure incident in -, water on a water-kerosene interface for, different, source 
heights, `h compared'. with those for plane wave incidence-, Frequency,,, 1000 
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Figure 6.12 Amplitudes of the transmission coefficients of spherical waves 
for pressure incident in water on a water-kerosene interface for different source 
heights, h compared with those for plane wave incidence. The curves for 
h=5 and h= 10 coincide with that for plane wave. Frequency 1000 Hz. 
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Figure 6.13 Phases of the transmission coefficients of spherical waves for 
pressure incident in water on a water-kerosene interface for different source 
heights, h compared with those for plane wave incidence. Frequency"1000 
Hz.. 
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to the following discussion. 
An interesting feature is shown in Figures (6.6) and (6.7), i. e., for large 

angles of incidence the reflection coefficient becomes oscillatory. An explana- 
tion of the oscillation may be obtained from the description of spherical wave 
incidence at a plane interface suggested by Doak [66] (also see [49]). Doak 

points out that when a spherical wave is incident at a plane interface with a 

medium having a higher sound speed than the medium containing the source, 
there is a diffracted wavefront ahead of the totally reflected portion of the re- 
flected wavefront; there is a diffracted wave everywhere behind this diffracted 

wavefront which is composed of contributions from the initially transmitted 

wave, ' and therefore the field in the source medium has three components: 
the incident wave, the reflected wave (including its totally reflected portion), 

and the diffracted wave (see Fig. 4.8 in [49] for incidence of a spherical pulse). 
The oscillation of the reflection coefficient may be due to the interference be- 

tween the reflected and' diffracted waves. It should be mentioned that we 
have attempted to study the possibility of such interference by decomposing 

the reflected wave term (6.15) and some results are given in Appendix (E). 

The positive phases of the reflection and transmission coefficients may also 
be the effect of the diffracted wave. 

In the case of a water-kerosene interface, (Figures (6.10) to (6.13)), the 

coefficients for spherical waves reduce to that for a plane wave rapidly and 
apparently very nearly monotonically with increasing source height. 

As in the case of plane waves, it can be seen from the definition (6.4), 
that if the solution satisfies the boundary conditions the continuity of the 

energy flux in the z-direction is automatically guaranteed. We have seen 
earlier that 

, 
the direct wave satisfies the law of energy conservation. With 

the reflecting/transmitting surface being z=0 and the point source at some 
point z h(> 0), -, the reflected wave satisfies the wave equätion with no 
sources in the region z>0 and accordingly its time average energy flux is 

'solenoidal in this' region, so that its time'average energy is' conserved there. 
Similarly. the transmitted wave satisfies the wave equation with no sources 
in the region z<0 and accordingly its time average energy flux is solenoidal 
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in this region, so that its time average energy is conserved there [66]. 

To test the numerical integration procedures against those ; conclusions, 

consider the point source to be at z= lm, and suppose that there are two 

planes parallel to z=0: in the source medium at z=0.5m (between the 

source and the reflecting/transmitting plane), and at z=1.2m (above the 

source plane). In the transmission medium, consider a plane at z=0, (just 

below the reflecting/transmitting plane) and one at z= -lm. The time 

average powers of the reflected wave crossing the plane at z=0.5m and the 

plane z=1.2m should be the same for a solenoidal energy flux, as should 

those of the transmitted wave crossing the planes z=0 and z -im. The 

sum of the reflected and transmitted powers should be equal to half of the 

total time'average output power generated by the point source. 
The time average power crossing an area of radius r on each such plane 

is given by the integration of the time average energy flux over the area: 

E=fr< Is > 2irxdx (6.22) 
0 

The z-component of the energy flux, < Is >, is defined by (6.4). 

In integrations with respect to x, the NAG routine D01baz was used for 

the finite ranges 0<x<r. It is very difficult to evaluate the integral on a 

semi-infinite interval since for large values of r, the integral for the pressure, or 
that for the velocity, becomes very unreliable (due to the oscillatory natures of 
the integrands), the situation being worse than that we have found in Chapter 

5 for a spherical wave in infinite space, perhaps, as a result of the integrand 

coefficients being involved. For the calculations of pressure and velocity we 
used the'routines D01äjf, DOlatf, DOlamf. The results for the reflected and 
transmitted waves separately are shown in Table (6.2). The calculated powers 
in Table (6.2) are normalized to half of the total time average output power 

generated by the point source. By examining the reflected wave powers, it 

can be seen that with increasing radius, the difference between the two values 
for the areas of the same radius decreases. The values for the transmitted 

wave start from small values and increase as the integration area becomes 
larger. The transmitted power at the interface has' one peak and the power 

crossing the surface at z= -ln has two'peaks; after the' peak` values, the 

91 



reflection 
radius r(m) 20 100 200 300 500 1000 

z=0.5 0.4261 0.5311 0.5438 0.5480 0.5514 0.5539 

z=1.2 0.3926 0.5240 0.5403 0.5457 0.5500 0.5532 
transmission 

radius r(m) 2 6 8 12 20 1000 

z=0.0 0.4946 0.5372 0.4834 0.4460 0.4451 0.4435 
z= -1 0.2337 0.3986 0.4456 0.4429 0.4438 0.4435 

sum of the reflected and transmitted powers for r= 1000 
(z = 0.5) + (z = 0.0= 0.9974 
(z = 0.5) + (z = -1) = 0.9974 
(z = 1.2) + (z = 0.0= 0.9967 
z=1.2+z=-1 =0.9967 

Table 6.2 Calculation of time average powers crossing plane surfaces for the 

reflected wave and the transmitted wave. The kerosene-water interface is at 
z=0, frequency 1000 Hz, source height lm 

power values for both surfaces approach the same constant. Comparing the 

reflected and transmitted wave powers, we can see that the reflected powers 

converge more slowly than the transmitted powers. For the reflected powers 
the values at r= 500m have, two digits in agreement with the last values 
(at 

,r= 
1000m) 

, 
but for the transmitted powers at r= 12m for z=0 

or at r= 8m for z=- lm, the values already converge to the two digit 

accuracy.. The energy integration for the transmitted wave power on the 

surface at z=,, -lm is shown in Figure (6.14). The sum of the reflected 

wave power and the transmitted wave power at r= 1000m is about' 0.997. 

Since the accuracy of the' integrations is reducedv at large values of r because 

of the oscillation of the integrands, - and in view of the accuracy that we 

could achieve in Chapter 5 fora spherical wave in infinite space, Nye can see 
that our numerical solutions are in good agreement with the law of energy 

conservation. - 
The fact that the values for the transmitted wave decrease after the peak 

value implies the existence of "backward waves", i. e., there is energy prop- 
agating in the direction opposite to that of the transmission of ; the total 

} integrated power, which is along the negative z-axis. For spherical wave re- 
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Figure 6.14 The time average power of the transmitted spherical. wave 
crossing an area of radius r of the surface at z= -1 in the water, the 
kerosene-water interface is at z=0, and the source is at a height of 1m in 
the kerosene. 

flection at an acoustically hard boundary (air-water or kerosene-water), the 

calculation of the local time average energy flux component above the point 

source also shows such a "backward wave" feature in some regions. The 

"backward 'waves"- occur near the source as well as at some-distance away 
from the source. For example, in the case of air-water boundary, on the 

plane, z= 2m above the point source which is in the air, at h= lm, the 

negative time average energy flux occurs at r=2.7m and r= 23.3m. 

The reflection and transmission of energy at the interface has been ex- 
amined further numerically. Similar to the case of plane waves, the critical 
angle of the total reflection for a spherical wave is defined as the angle at 
which the energy total reflection just takes place when the angle of incidence 
is increased from zero degrees, and it can be determined by calculating the 
transmitted time"average`energy flux in the z-direction against the angle of 
incidence, and the angle at which the sign of the' energy flux first changes 
gives the critical angle. It is found that the total energy reflection for a spher- 
ical wave does not take place at the critical angle for a corresponding plane 
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wave. In other words, the critical angle for a spherical wave is different from 

that of the corresponding plane wave. There is a displacement and it de- 

pends not only on the combination of the materials but also on the height of 
the source. The calculation of the critical angle for spherical waves incident 

on a kerosene-water interface from different source heights is shown in Table 
(6.3). From Table (6.3) we can see that as the height of source increases, the 

Source height (m) 1 21 41 61 81 oo(plane wave) 
Critical angle (deg) 69.8 64.6 63.2 62.6 62.2 59.8 

Table 6.3 Critical angles 

critical angle decreases. The critical angle for the total reflection of a plane 

wave is 59.8 degrees and thee calculated critical angles for spherical waves 
'decrease monotonically to this angle with increasing source height. It should 
be mentioned that, beyond the critical angle, at some angles of incidence 

there is some net time average transmitted energy but no net transmission 

at other angles. This may be caused by the interference between the incident 

and "diffracted waves. 

6.3, 
., 
`.. Interfaces ; between fluid. and. solid. . 

The 'boundary conditions at an interface between a fluid and a solid are 

`WI =. 'W2^ ý. ;. 

-'PI` at z. = 0.. (6.23) 
tz,. 0- 

We consider the case where the incident"wave is in-the fluid ." The' Sommerfeld 
type solution can be found again in the book by Ewing, 'et al, '[11] and is" 

' 
kaý ¢ 

+rJ .. ýä, 
.... 

ýä aý1... 
:, 

x. ,,,. 
}i" Ezýu Aiý a't äý x Mý a 

J Jo(r )e=hq 
R 

JoýT)e+z)d 
6 00 dý (. 24) 

Qi, Qi 

inýthe fluid, and 
00 Jo(r )e-hq, 

'Z't 
. 
(6.25) 

qý 
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:- 
r00 Tt 

Jo(rg)e-'91-=v2ý 
d ý, J (6.26) 

o qt 

in the solid, where h is the source height, qi =f- Ki ' qt = ýZ - jKCi , 
qt =V-n 2t, and the integrand coefficients are given by 

R Pxgi((2Cx - rcý )x - 4gtqtf x) - (. t gtPi) (6.27) 
P2g1((2C2 - ý, t )x - 4gtqt 2) + (i4gzPi)' 

ý, - 
2(22 - ice )gisipiP2 

(6.28) 
Pzgi((2ýx - k=)2 - 4gtqtC2) - (sigjP1), 

4ýgi, i P1P2 (6.29) Tt 
P2gi((2ý2 - ýsi)x - 4giqt 2) - ('igipi). 

An incident spherical wave at the surface of a solid always generates two 

types of waves in the solid. 01 is a longitudinal wave and ? /it a transverse 

wave. The integrand coefficients R, Ti and Tt are determined by the three 

boundary condition equations. The new form solution for the reflected wave 
is 

cp* =f RJo(r x2 + ki)exp(-(h + z)x) dx, (6.30) 
LKW 

where the integrand coefficient R is defined by (6.27) with = x2 + tci, 

qi = x, 4t = x2 Fn- rc2 and qt = x2 + tci - tci . 
Again we hypothesize a form of complex conjugate solution based on the 

integral representation with the Hankel function (1.5), which is 

cpl =i 
f"OHol)(Iz 

- hI r- x2)cos(rx) dx 

+if RHHI)((h + z) ici 
--x 2) cos (rx) dx 

0 

in a fluid, and 

ýý =if 00 TTHH')((h - z) nf - x2)cos(rx) dx, 

00 
hic =if TiHöl)((h z KV i- t2)cos(rx) dx 

in a solid, where 1j1 = Ki - XZ, 77, = 
ýK2 

xZ, ? ]c = 
ý, 

Kt x2, 

R- 
A, A2' 

(6.31) 

(6.32) 

(6.33) 

, 
(6.34) 
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2Hi1)(h77l)Höl_(h771)hi7ik_Pi(2Hi1_(h_Ie)_c + Hol)(hTJc)h(2x2 - Ki )) T, _- (Al - A2)P2 
(6.35) 

- -. 
4Hi1)(hrli)Hö )(h? 

li)Hil)(hriz)h2x? 7lmKi T pi (6.36) 
c- (Al - A2)Pa 

Here 

Ai = 4Hi1)(hýi)Hii)(/i, 7t)Hil)(hi, )7? , 7,77t(h2x2 + 1) 

- 2Hi1)(h77, )Hil)(hgl)Höi)(h77t)h77,77, ri 

- 2Hi1)(icýl)Höl)(hr7l)Hil)(h'le)h7line(2x2 ßc2) 
+ 4Hi1)(h77, )Höl)(h7lt)Höl)(h7it)h27li(2x2 - ici)Z, (6.37) 

A2 =ý Höl)(h77i)Hii)(h77, )Höl)(h? Jc)h21ltICci 
pl 

. 
(6.38) 

P2 
I Ar 

We have calculated pressure contours in the fluid. The graphical repre- 

sentation of the wave field in the solid is more complicated, since the stress 
is a tensor. The calculation of the stress field or displacement is still possible 
but it will require a large; CPU time, and hence we shall not present any 
discussion of the wave field in the solid. 

We found that' numerical integrations using integrals (6.30) and (6.31) 

give very similar 
'results 

if there is, a-large, difference in the properties of 

,J he two, media;, otherwise there is, a significant difference between the two 

numerical integrations. , An example of calculations obtained from (6.30) and 
(6.31) is given in Table (6.4). It can be seen that for an air-steel interface, the 
difference between the two solütions'is less than 0.01 dB, and the difference 

for a water-steel interface'is"about 0.5 dB . In a small range, pressure contours 
calculated from solutions (6.30) and (6.31) for an air-water interface give 
almost an identical picture. 

Figure (6.15) shows calculated pressure contours above the air-steel in- 
terface, and Figure (6.16) shows those above the water-steel interface. The 

contours are presented in two-dimensional form. We have also calculated the 

pressure contours in air above a rigid boundary and in water' above a rigid 
boundary. We find that the contours in air above steel and in air above a rigid 
boundary are almost, identical. Similarly, the contours in water above steel 
land" in water above a rigid boundary,, cases are indistinguishable. We have 
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Figure 6.15 Two-dimensional pressure level contours (dB) for a spherical 
wave in air incident on a rigid boundary, or at an air-steel interface. A point 
source is located at 1m on the z-axis and the interface is at Om. Frequency 
1000 Hz. 
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Figure 6.16 Two-dimensional pressure level contours (dB) for a spherical 
wave in water incident - on a-rigid boundary, or at, a water-steel interface. 
A point source is located at lm on the z-axis and the interface is at Om. 
Frequency 1000 Hz. 

97 



Air-Steel, source height h= 1m 
coordinates (m) (0,0) (0,. 05) (0,. 1) (. 05,0) (. 05,. 05) (. 05,. 1) 

(6.30) 57.520 57.509 57.479 52.877 52.880 52.889 
(6.31) 57.521 57.510 57.479 52.867 52.871 52.884 

Water-Steel, source height h= 2m 
coordinates (m (0,0) (0,. 05) (0,. 1 . 05,0 . 05,. 05 . 05,. 1 

(6.30) 45.903 45.901 45.893 46.487 46.484 46.476 
(6.31) 46.411 46.407 46.396 47.049 47.045 47.034 

Table 6.4 Comparison between calculations for the pressure using (6.30) 

and (6.31). The direct wave was calculated from the non-integral expression 
for the both cases, frequency 1000 Hz. 

calculated the pressure contours above other fluid-solid (metal) interfaces, 

and have found similar results. Therefore the theoretical model of spherical 

wave propagation in a fluid above a rigid boundary can be used as a very 
: good approximation for propagation above a fluid-metal interface in many 

circumstances. 
If we concentrate on the top left quarter of Figure (6.3) (noting that only 

the, upper half is above the boundary in Figure (6.3)), and compare it with 
Figure (6.15), we find that, they are very similar. This means that even for 
an air-water interface, considering the water as a rigid boundary for waves in 

air can be a goad' approximation. "'It is obvious from Figure (6.4) that water 
cannot be treated as a rigid boundary- for_ waves in- kerosene. 

The reflection coefficient defined by 

(6.39) 

has been calculated 46'r-, 'a' or, a water-steel interface. Solution (6.30) was used 
for the calculation -, but we found difficulty in the integration, at - some large 

values of r. ' The difficulty is caused by a singularity in the integrand between 
(0) 

, rci). -Although, , 
the routine, D01ajf is designed to, handle singularities 

it is impossible to " obtain an adequate . result. The integrand changes too 
sharply, around, the singularity. This singularity is caused by a zero in the 
denominator of theintegrand coefficient for the reflection; (6.27): ° In'order 
to overcome this, difficulty, the location of the zero was_'determined by`using 
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Figure 6.17 Comparison between amplitudes of the reflection coefficients 
of spherical pressure waves in water incident on a water-steel plane interface 
for different source heights, and, for a plane wave. Frequency 1000 Hz. 

routine C05agf and then the interval was split up at this point. Another 

routine DO1ahf was used for the sub-ranges. 
The amplitudes and phases of the coefficient against the angles of inci- 

dence are shown in Figures (6.17) and (6.18) for various heights of the source 

and are compared with the case of a plane wave. In Figure (6.17), for small 

angles of incidence, all three curves for spherical waves are very close to the 

curve for a plane wave; the small oscillations may be due to the stimulation of 
the transverse wave in the solid. At large angles of incidence, the amplitudes 
of the spherical waves oscillate rapidly about the value of one. If we examine 
the curves carefully, we notice that the first main peak for a spherical wave 

occurs close to the point where the amplitude for a plane wave becomes one, 

when the height of source increases. Figure (6.18) has similar features. In 

Figure (6.18) the phase for the plane waves is plotted with, a positive sign 
to make comparison easier. As in the case of the fluid-fluid interface, the 

oscillation of the reflection coefficient for a spherical wave and the phase of 
the reflection coefficient for a spherical wave having a different sign from 
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Figure 6.18 "Comparison between phases of the reflection coefficients of 
spherical pressure waves in water incident on a water-steel plane interface 
for different source heights, and, for a plane wave. Frequency 1000 Hz. 

that of a plane wave are probably due to the diffracted wave in the medium 

containing the source. 
From the results described above (particularly Figures (6.6) and (6.17)) 

we find that when the boundary is acoustically harder than the propagation 

medium supporting an incident wave, the amplitude of the reflected wave is 

predicted to' be greater than that of the incident wave at some large angles 
of incidence, but the -amplitude for plane waves is always less than one, and 
again the spherical wave reflection coefficient'is oscillatory -about that for a 
plane wave. "Also' in the case ý of a" hard `'boundary, the phases of reflected 
spherical waves and reflected plane waves have an opposite sign. These are 
the`main differences between spherical waves and plane waves and they 'are 

probably due to'the presence of the diffracted wave in the source medium`in 

the case of spherical wave propagation. '-"' 
.'' 

100 



6.4 Spherical waves in layered media 

From an experimental point of view, the study of spherical wave propagation 
is especially important, since it is more easy to simulate a spherical wave 

source than a plane wave. Previously, we have considered spherical wave 

propagation in the cases of a two-medium system. The study of waves in a 

two-medium system has theoretical importance but it has a limited practical 

application. In this section, we shall study a more realistic case: that is, 

sound transmission through an infinite solid plate in a fluid with a point 

source located in the fluid. 

The method for solving this problem is similar to that we have used in 

previous chapters, but the manipulation is little more complicated. A so- 

lution of the problem of spherical wave propagation in the fluid-solid-fluid 

system can be found in a paper by Piquette [46]. As we mentioned earlier 
he obtained some strange results from the numerical integration of the solu- 

tion. He calculated the reflection coefficient of a spherical wave at the normal 

'incidence angle on the interface between a fluid and a solid, and the trans- 

mission coefficient of a spherical wave on the solid-fluid interface also at the 

normal incidence angle. His numerical results show that, for some material 

combinations, the reflection coefficient or the transmission coefficient can be 

greater than one. He called this phenomenon "overpressure". It can be seen 
from Chapter 5 that this so called "overpressure" does not happen Ifor a plane 

wave. Piquette carried out an experiment intended to verify his numerical 

results; however he could not find 'the 'overpressure' experimentally. In this 

chapter we are going to show numerically that the reflection and transmis- 

sion'coefficients for a spherical wive at normal incidence are very similar to 

those for a normally-incident plane'wave. 
The boundary conditions at an interface between a fluid and a solid were 

given in" the 'preceding section. - Those conditions must be satisfied at both 

surfaces of the-solid plate. We choose the z-axis to be'normal to the plate. 
The origin is on one surface of the plate and the'other surface is at z= -1. 

:. 
t `ra 
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A point source is located at (0, h). The boundary conditions are 

wi = w2i Pi = t: z, 
tz: = 0, at z=0, 

2D2 = w3, p3 = ts=, ts: = 0, atz = -l. 

The solution obtained by using Lamb's integral can be found in the paper 
by Piquette [46], and is in a slightly different form, 

f00 Jo(7"1)e-Ih-=IalF , 
0(e(h+: 

)al 

ýo = d. +Rd, (6.40) 
Qi 

J°° 

4i 

ýt =f 
°° L. 

Jo(T4)e- at4 
dý + Jo Lb 

Jd, 
(6.41) 

0 qt 
f 

T, O(rS)e-=at de 
+ 

Jo 
Tb 

_o(r)e1dG(6.42) 

o 4't 
°° 

= 
JTJO(T)3 dý, (6.43) 

where R, La, Lb, Ta, Tb, and T are the integrand coefficients. ýz and i, b rep- 
resent the longitudinal and transverse wave potentials in the plate, respec- 
tively. The first term in both ý1 and t corresponds to a wave with a phase 

moving in the positive z-direction and . 
the second term corresponds to one 

moving, in the. negative z-direction... The integrand 
, coefficients are deter- 

mined''by the -boundary conditions. -- Firstly from the boundary 
ä conditions 

we obtain six - integral equations; the, sufficient condition; for the existence 

of solutions of, the integral equations gives a system of six algebraic equa- 
tions with, R, L., `Lb, Ta, Tb, and T as , unknowns. , After solving this system 

of, equations'- we obtain the integrand coefficients. Basically solutions ý (6.40) 

to (6.43) are the same as those given by Piquette, except that the integrand 

coefficients differ by exponential factors. The integrand coefficients are . very 

complicated. Piquette did not present them in his paper. Our, version of 
them is given in 

; 
Appendices (B) and (D). The new form of solution obtained 

, 
by transformation for the reflected wave is similar, to the solution (6.30) in 

the case of. a fluid-solid interface except for a different integrand coefficient 
for reflection. 

As in (6.19) and (6.20), the reflection coefficient in the fluid is defined by 

the pressure ratio of the reflected wave to the incident wave cpr/cp;, where 
., a 
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ip, represents the second term in (6.40), Vi the first term in (6.40), and the 

transmission coefficient in the fluid is defined by the pressure ratio of the 

transmitted wave and the incident wave, (P3(P3)/(P1'P+)" 

One can also investigate the alternative form for the complex conjugate 

solution of the problem using the integral representation (1.5) which has the 

Hankel function in the integrand, resulting in the following potential forms: 

cpl = i4 i f'Hol)(Iz 
- hl - )cos(rx) dx 

+i 
jRHHI)((h + z) rci - x2)cos(rx) dx, (6.44) 

¢i =if LaHol)((h - z) cf - x2)cos(rx) dx 

00 
+if LbHöl)((h +d+ z) r. - x2)cos(rx) dx, (6.45) 

0 

if °° TQHHI)((h +d- z) psi - x2)cos(rx) dx 
0 

+if TbHöl)((h -I- d -}- z) Ki - x2) cos(rx) dx, (6.46) 
0 

00 Ho(l) V3 =ifT 
öl)((h 

- z) ýc 
i- x2)cos (rx) dx. (6.47) Jo 

Again the integrand coefficients may be determined by the boundary con- 
ditions. The coefficient elements for 

, the boundary equations are given in 

Appendix (C). 

By use of NAG integration routines, the data for plotting pressure con- 
tours near the, origin has been calculated from both equations (6.40) and 
(6.44). The numerical integrations from equations (6.40) and (6.44) give 

very similar results, the difference being normally less than 1 dB for media 
having different acoustical properties. However, if the media are acoustically 

similar, the difference in the predicted values of the pressure increases. An 

example of the calculations based on (6.40) and based on (6.44) is given in 

Table (6.5). -'Comparing Tables (6.5) and (6.4) shows that the calculations for 

air-steel-air. and air-steel are very similar, and in fact, they both are similar 
to the results for the rigid reflection., -t r 
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Air-Steel-Air, source height h=1m, plate thickness 1=0.008m 

coordinates (0,0) (0,. 05) (0,. 1) (. 05,0) . 05,. 05) (. 05,. 1) 
(6.40) 57.519 57.509 57.477 52.865 52.869 52.879 
(6.44) 57.520 57.509 57.477 52.867 52.870 52.880 

Water-Steel-Water, source height h= 2m, plate thickness 1=0.01m 
coordinates (0,0) 0,. 05 0,. 1 (. 05,0) . 05,. 05 (. 05,. 1 

(6.40) 45.048 45.143 45.417 44.659 44.758 45.045 
6.44) 51.265 51.262 51.253 51.079 51.076 51.068 

Table 6.5 Comparison between calculations of total pressures using trans- 
formed equation (6.40) and (6.44) at various coordinates. The direct wave 
was calculated from the functional expression for both cases, frequency 1000 
Hz. 

The integration of (6.40) uses less CPU time than that of (6.44), but 

sometimes the integration of (6.40) had convergence difficulties. As was the 

case with a fluid-solid interface, the difficulties are caused by a singularity in 

the integrand coefficient and the poor behaviour of the integrand around the 

singularity. For the reflection, the singularity is located between (0, ßs1). and 
', it is between`(iij, "oo) for the`transmission.. In order to overcome the difficul- 

ties the first thing is to pinpoint the location of the singularity. We have used 
routine C05agf to locate the zero in'the denominator of the integrand coeffi- 

cients for the reflection and the transmission respectively. For the reflection 
the interval was split at the singularity k; into two sub-intervals (0, k; ) and 

(k;, k; -}-10-3); and two sub-intervals (isi, k. ") and (k, ", k, ". + 10-3) for the 

transmission. t .... 
The integrand changes sign in these two sub-intervals; for example, if 

in, the interval (rcl, k, ". ) the, integrand is negative, it must be positive in 
(k, 71, k, " ; -}-, 10'3): However, the calculations with the routine DO1ajf over 
the two sub-intervals were still very difficult to converge near the singularities, 

so we used the routine D01ahf instead.: '. : .° 
DOlahf 'is more flexible, but less reliable in the sense that' it, uses few 

criteria for abnormal termination'- as described in Chapter 3. The calculated 
results were carefully-- checked, by changing the relative'. tolerance' tr. The 
calculations for the reflected wave were very stable. 

'-, For the transmission, when choosing a large relative tolerance (e. g., t, _ 
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10-4) it was found that the modulus of the transmission coefficient could be 

greater than 1 (in fact even greater than 2 or 3) for some materials at high 

frequencies (e. g., aluminum at 5000Hz). If the specified accuracy is increased 

by using a smaller tolerance, the modulus reduces. However increasing the 

specified accuracy further (e. g., t, = 10-12) led to deviation from unity again. 

In other words, the calculation was very unstable: When monitoring the pro- 

cess of the calculation it was found that in the interval (rci, k, ") the integrand 

was occasionally negative when it should be positive. This may be because 

the value of k, " can only be obtained within the computer precision, and the 

adaptive routine required abscissae beyond the computer precision. For this 

reason, we have to avoid using a smaller interval around the singularity when 

a difficulty occurs. Since the integrand is a monotonic function, the method 

of "ignoring the singularity" can be convergent to the proper answer [75]. 

) The calculation was actually performed on the intervals (r. 1, k, " - 10-15 

and (k, " + 10'lb, k, " +10-3 ). The tolerance for DOlahf was chosen to be as 

small as possible for different materials, and the largest tolerance was 10-9. 

As in the cases in previous sections, the pressure contours were calculated 
for plotting on the r-z coordinate plane with the interval between calculation 

points being 50mm in both the r and z-directions. The pressure contours 

obtained by using solution (6.40) are almost identical to those obtained by 

using the solution for spherical wave reflection at a rigid boundary and the 

solution for spherical wave reflection at an interface between a fluid and a 

solid. Figure (6.19) is for 500 Hz. The calculation for 1000 Hz gives the 

contour curves which are the same as those in Figure (6.1). 

The reflection coefficients at the centre point of the plate on the source 

side and the transmission coefficients at the centre point of the opposite 

side were calculated for various Material combinations and they are shown in 

Table (6.6). The value of the transmission coefficient for the water-steel-water 

at 5000 Hz was obtained over the whole integration interval, and if we ignore 

the small interval around the singularity the result is 0.8389. By comparing 
Table (6.6) with Table (4.2) for plane waves, it can be seen that the reflection 
and transmission coefficients for spherical waves are quite similar to those 
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Figure 6.19 Pressure contours for spherical wave reflection at the source 
side boundary of an air-steel-air combination. frequency: 500 Hz, source 
height: lm, thickness of plate: 0.008m. 

for plane waves. In general the moduli of the reflection and transmission 

coefficients for spherical waves are less than those for plane waves except 

that the moduli of the transmission coefficients at 5000 Hz are greater. It is 

thought that, from the physical point of view, the results for the reflection and 

for the transmission at 1000 Hz are reasonable because of spherical spreading, 

and the results for transmission at 5000Hz may be less reliable: i. e., the 

values could be too large. To check the results at 5000 Hz, a higher precision 

program than that being used is needed. Nevertheless, we do not find the 

so called "overpressures". The pressures of reflection and transmission are 

always less than the incident pressure. It is likely that the "overpressures" 

predicted by Piquette were the results of computing error caused by the 

numerical integration around the singularity in the integrand coefficient. 
As before, the boundary conditions guarantee energy conservation at the 

two interfaces. Piquette has calculated the time average power crossing the 

two interfaces within a circular area of radius r and has obtained the sur- 

prising result that the power crossing the fluid-solid interface is much less 
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aluminium brass steel lead 

reflection (modulus) 

1000 Hz 0.0455 0.1513 0.1672 0.2222 

5000 Hz 0.2325 0.5816 0.6156 0.7491 
transmission (modulus) 

1000 Hz 0.9771 0.9570 0.9673 0.9480 

5000 Hz 0.9860 0.8997 0.8386 0.6448 

Table 6.6 Calculations of the reflection and transmission coefficients for 

spherical wave propagation at a metal plate in water, the point source height 

h= 2m, the thickness of the plate 1=O. Olm. 

than that crossing an area in the second solid-fluid interface with the same 

radius. This extra energy is too large to be explained by the "backward 

wave" phenomenon. We have done a similar calculation and found that the 

energy transmitted into the solid is very similar to that transmitted out over 

the same area. A result for water-steel-water at 1000 Hz is shown in Table 

(6.7). It is likely that the extra energy obtained by Piquette was caused by 

radius (m): 2 4 6 8 10 

energy into solid 0.2662 0.3705 0.4108 0.4316 0.4443 

energy out of solid 0.2668 0.3706 0.4109 0.4317 0.4444 

Table 6.7 Calculations of the time average power crossing a circle area. 
Point source height h=2m, the thickness of the plate 0.01m. 

the numerical error for the transmission term. We found that the calculation 

for the transmission was very difficult for large values of r so we were not 

able to give a reliable result for a large area. 
The behaviours of the reflection and transmission coefficients were ex- 

amined numerically for the water-steel-water combination and for the water- 

aluminum-water combination at 5000 Hz and the results are shown in Figures 

(6.20) to (6.27). The corresponding curves for plane waves were also plotted 
for comparison. It can be seen that the curves for spherical waves are quite 

similar to those for plane waves. In particular, the phase changes of the 

reflection coefficients (Figures (6.21) and (6.25)) give an interesting result. 
When the results for plane waves were obtained it was considered doubtful 

whether the curves for spherical waves would also have that sudden phase 
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Figure 6.20 Comparison, between the predicted amplitudes of reflection 

,, coefficients fork spherical waves and plane waves. in the presence. of a wa. 
ter-steel-water combination. Frequency 5000 Hz, thickness of plate 0.01m. 
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Figure 6.21, Comparison between the predicted phases of reflection, co- 
efficients for spherical waves and plane waves in the presence of a wa- 
ter-steel-water combination. Frequency 5000 Hz, thickness of plate Ö. Olm: ' 
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Figure 6.22 Comparison between the predicted amplitudes of transmission 
coefficients for spherical waves and plane waves in the presence of a wa- 
ter-steel-water combination. Frequency 5000 Hz, thickness of plate 0.01m. 
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Figure 6.23, Comparison between the -predicted, phases of transmission 
coefficients for spherical waves and plane waves, in the presence of a' wa- 
ter-steel-water combination. Frequency 5000 Hz, thickness of plate 0.01m. 
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'Figure - 6.24 Comparison between the predicted amplitudes of reflection 
coefficients' for 'spherical waves and plane waves in the presence of a wa- 
ter. aluminum-water combination. Frequency 5000 Hz, thickness of plate 
0.01m. 
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Figure' 6.25' Comparison between' the predicted 'phases' of 'reflection co- 
efficients for'. "spherical waves` and `plane waves in the presence' of a wa- 
ter-aluminum-water' combination. Frequency 5000 Hz, thickness of plate 
0.01m. 
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Figure 6.26 Comparison between the predicted amplitudes of transmis- 
sion coefficients for spherical waves and plane waves in the presence of a 
water-aluminum-water combination. Frequency 5000 Hz, thickness of plate 
0.01m. 
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Figure 6.27 Comparison between the predicted phases of transmission 
coefficients for spherical waves and plane waves in the presence of a wa- 
ter-aluminum-water combination. Frequency 5000 Hz, thickness of plate 
0.01m. 
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jump from positive to negative at near-grazing incidence. However, the re- 

sults of the calculations for spherical waves also show this feature. It also can 
be seen that in general, the amplitudes of the coefficients are smaller than 

unity except at some large angles of incidence. 

There are differences between the curves for the transmission coefficients. 
The amplitudes and phases of the transmission coefficients for spherical waves 

slightly increase with increasing angle of incidence, however, they are as 

oscillatory as those for plane waves. If we examine the curves carefully, we 
find that the oscillatory features of the curves for h= 5m are closer to those 

for the corresponding curves for plane waves than those for h= 2m, in 

general. ' An interesting fact is that for the three medium system, the phase 

of the reflection coefficient for a spherical wave has the same sign as that of 

a plane wave. 

- -, A complete explanation of the features of the reflection and transmission 

coefficients for spherical 'wave propagation in the case of a solid plate in a 
fluid is difficult and it may require detailed knowledge of the wave field in 

the solid plate. 
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Chapter 7 

Experiment 

7.1 Choice and design of experiment 

In general, the purpose of scientific research is to predict or to explain a natu- 

ral phenomenon. Evaluation of a theory depends on the comparison between 

a theoretical result obtained from the theory and a natural phenomenon. 

In the case of explaining a known natural phenomenon the comparison is 

straightforward, but for predicting a natural phenomenon, in order to make 

a comparison, the best way is to simulate the realistic situation and mea- 

sure the quantity with which the theory is concerned: i. e., to perform an 

experiment, and then make a comparison between the measured data and 

the theoretical prediction. 
From the viewpoint of physical science, the best verification of a theory is 

through experiments. Sometimes when a direct experimental test is difficult, 

the theoretical result may, be tested indirectly. 
, However, it is obvious that the 

most convincing verification will be obtained by directly comparing theoreti- 

cal results and experimental data. A complete scientific investigation should 

always include both theoretical predictions and experimental verification. 
In earlier chapters, based on. a theory of linear wave propagation and an 

integral representation fora, spherical wave, we have obtained some theoret- 
ical results for spherical wave propagation. It has been found that spherical 
wave reflection at a plane boundary has some interesting features. 

For example, the prediction of "backward waves", i. e., for a spherical 
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wave reflection at a hard boundary, the time average energy flux component 

could be in the direction opposite to that in which the wave is supposed to 

travel, in some small regions above a point source, and in some transmission 

regions; the critical angle of total reflection for a spherical wave is larger, than 

that of a plane wave; and at normal incidence the reflection and transmission 

coefficients for a spherical wave are smaller than those of a plane wave. 
Among those theoretical results, the most interesting result is the pre- 

diction of localized "backward waves". The measurement of energy flux is 

possible by measuring pressure and pressure gradient or pressure and particle 

velocity, using sound intensity measurement techniques, but equipment for 

doing this was not readily available. However, we have obtained pressure 

contours for several cases of spherical wave reflection and transmission at a 

plane interface. We can make an indirect test by checking the pressure field 

obtained by using the spherical wave reflection theory which also predicts 
the "backward waves". The simplest experimental test is the measurement 

of pressure in a-two- dimensional space. 

. =; -'In, Chapter 6; the pressure contours were calculated for' spherical wave 
`incidence at 'a plane interface between air and water. The theoretical result 
shows a'minimu m pressure-area in'the'transmitted wave field in Figure (6.3). 

"A simple 'experimental test'of this`-predictidn would be to measure sound 

pressure on either side of an air-water interface in ' an anechoic environment. 
Unfortunately, " such'an arrangement again was not feasible with the equip- 

ment available; ' so, we "have' considered' instead a different experiment that 

could be performed in; aý conventional anechoic chamber. ' 

In Chapter 6, we have obtained artheoretical result for an infinite extended 
plate in a spherical wave field: ̀  The theoretical results predict `that at 500Hz 
in the reflectionarea'there-are'two'troughs'and ate 1000Hz'three troughs. 
These 'are' shown! in"Figüres (6.1) ' and (6: 19). "The figures also, show the 

spherical features nearthe`üpper left corners' and that the peaks are bending 

over ' towards' the _source. ' Calculations show that these results . are the same 
as those for the reflection'at a' rigid' boundary: 

The solution for "spherical-wave reflection at', a rigid boundary is well 
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known, but as an absolutely rigid boundary cannot be realized so an ex- 

periment was carried out to measure the pressure field for spherical wave 

reflection by a suitable plate. 
We expect that the results from the theoretical studies of reflection at 

an infinite interface should show some resemblance to data obtained near 

finite interfaces, so we have carried out experiments using a plate of finite 

area and compared the experimental data with calculations for infinitely 

extended plates or rigid planes. A simple experimental model corresponding 

to the theoretical problem studied in Chapter 6 is to place a finite size plate 

in a spherical wave field. At least we would expect that the theoretical result 

for the reflection of the spherical wave from an infinite rigid plane should be 

very similar to the data obtained from this finite plate near the central area 

of the plate. 
The details of the measurement methods and the equipment are described 

in this section. The detailed experimental procedure is given so that anyone 

can easily check the experimental method and the reproducibility of the 

results. A list of equipment is given in Appendix (F) 

We have adopted a method similar to that used by Lawhead and Rudnick 

[10]. A spherical wave is generated from an open end of a brass tube which is 

coupled to a driver unit. The amplitude of the, sound pressure is measured. 
The receiver is a condenser microphone (details are given later). 

In the experiment adigital FFT analyzer and a computer controlled sys- 
tem have been used. The output signal from a FFT analyzer. is amplified by 

a power supply and then sent to the driver unit. The received signal is first 

preamplified and then is sent to the FFT analyzer. 
A computer controlled system was made to enable us to speed up the mea- 

surement and to facilitate the production of pressure contours in a vertical 

plane. 
In general measurements in three dimensions provide more detailed infor- 

mation about a wave field. Here, however we need to measure the pressure 
field only in two dimensions, since the ideal wave field should be symmetrical 
about the centre axis, which passes through the, point. source and is normal 
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Figure 7.1 Schematic diagram of the equipment connection. 

to the reflecting plate' In reality, the wave we generated was not completely 

spherical-because` of external disturbances. We have made measurements in 
less disturbed iegiöris. 

=`A " personal 'computer was "used to control thewhöle measurement system. 
The compnterýcontrols the pösition'of the single- microphone in the 'direction 

pär`all el to the sample, and controls a FFT analyzer which is used to process 
and ° störe data. "" ý The location«of the microphone' is adjusted' by a" device 

consisting of a track with a'pulley system, a stepping motor and a stepping 

motor controller. `A schematic diagram' of the* equipment is'shown in Figure 
' (7.1). " Onee the microphone" is moved into' position the FFT analyzer starts 
to process and store 'data. ' After if is finished, the- microphone is moved'to 

the next point: This -procedure- is repeated until the last designated point 
has been measured. 

_ ýx. _ .:.. ,... .. _. 1_ � .. _. ,e 
Along the ' normal to the sample, the microphone tracking device is moved 

ta, ._. _ý manually. " 

`_°Thecomputer con trolled ' system- and theFFT analyzer `enabled a large 
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number of closely spaced measurements to be made in a convenient manner. 
The experiment was conducted in the OU/Silsoe anechoic chamber at 

the Silsoe Research Institute, about 20 miles from the Open' University. The 

working space in the chamber is about 2m x 2m x 2m. An expanded metal 

grille is used as a working floor at about 10cm above the top of the floor 

wedges. 
Circular discs about 1.2 m in diameter and 8 mm thick made from steel 

or aluminium have been used. The discs were suspended vertically in the 

centre of the chamber. A cylindrical coordinate system similar to that of 
the theoretical model was used. The origin was at the centre of the disc on 
the reflecting surface, with the z-axis perpendicular to the disc and passing 
through the source point in the region z>0. We have measured at selected 
(r, z) points, with the axis for r (regarded here as a Cartesian coordinate 
because of the circular symmetry in any z-plane) pointing vertically upwards, 
in both the regions z>0 and r>0. The points lie within an area of 0.7m x 
0.7m in the r-z Cartesian coordinate system. The measurement points closest 
to the disc were at a distance of 0.05m from it and the distance between two 
consecutive measurement points was 0.05m in both the r- and z-directions. 

The microphone used in the experiments was a Brüel & Kjaer (B & K) 
1/2" (24 mm) type 4165. This type of microphone is suitable for free field 

measurement. The open circuit frequency response is from 2.6Hz to 20 kHz. 
The microphone was preamplified by aB&K type 2639 preamplifier 

with an adapter JE0002. The linear lower limit of the preamplifier with use 
of microphone type 4165 is 17 dB in the frequency range 2OHz-200 kHz. The 

upper limit with the type 4165' microphone is 146 dB for distortion less than 
3%. 

The preamplifier is operated by a 'B &K type 2807 two channel power 
supply. Since the 'cable connected between the anechoic chamber and the 
control room is not suitable forsending a signal from the preamplifier to the 
power supply over a long distance, it was found necessary to keep the power 
supply in the anechoic` chamber: 

The received signal was processed finally in an' Ono' Sokki CF 910 two 

117 



channel mini FFT analysis system. The CF 910 provides a spectrum ana- 
lyzer covering the frequency range of 0Hz - 40kHz, and data can be stored 
in a 3.5-inch micro-floppy disk by using the built-in disk drive. The am- 

plitude frequency response is flat to within 0.3 dB (max). The Ono Sokki 

FFT, analyzer has an important feature. It can average a number of read- 
ings automatically. The choice of the number of averages depends on two 

factors, time and error. Choosing a large number of averages will give small 

error, but-require a longer experiment. Given the practical constraint on the 

experimental work and its relative importance to this research, an error test 

has been carried out to check the measuring system. 
The, Ono Sokki FFT analyzer also provided the source drive signal. Two 

types of signals have been used. Initially a white random noise signal was 
used since this allowed convenient examination of 

, 
the frequency dependence 

of the pressure field. Subsequently 
, 

however a single, frequency sine wave 
signal was used to obtain more accurate results at particular frequencies. 

The output signal was amplified first by aB&K type 2706 power am- 
plifier, which has a frequency response range of 10Hz - 20 kHz and then sent 
to a 45 watt Tannoy drive unit. A brass tube was coupled to the drive unit 
so that a spherical wave, was generated at the end of the tube. The tube 
is about 30cm. long and has a circular open end with about 2cm internal 
diameter., 

- A test of the sphericity of the wave produced is described in the 

,, -, next section.,, 
The initial version of the microphone tracking device had a trolley. which 

rolled along a track 1.8m long. The. track consists of two rods, of 1cm and 
0.5cm diameters respectively., The small rod serves as a guide to prevent the 
trolley rotating. The trolley carries the microphone. The track was fixed 

vertically to a . 
T, shaped platform. , 

The, stepping motor, was also fixed to the 
platform. ; The microphone seat was driven. by the stepping motor 

. 
through 

pulley- systems located at the two ends of the track. Initially, there were two 
problems with, this device. r One problem-was that it 

. was difficult to keep 
the guide rod straight and the other problem was that there. was too large 

a clearance ; between the trolley and the rod. Because-of these. problems, 
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Figure 7.2 Flowchart of computer control program. 

this device could not guarantee the position of microphone. Subsequently it 

was modified. In the improved tracking device, the microphone "was fitted 

to a seat which was able to slide along a guide. This track has a jI shaped 

cross section, with outside dimensions, 1.5cmx1.5cm. This microphone, track 
device was portable, and was supported on two bars. The purpose of the two 
bars was to make the level adjustment easy. 

The stepping motor was controlled by a NIP 6.1122.01 controller. 
The centre of the measurement system was a Zenith Z-150 personal com- 

puter desktop system.. The computer has 128K RAM- memory and has one 
built-in RS-232 serial input/output port. - The 

. communication between the 
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computer and the stepping motor controller was through the RS-232 inter- 

face. An IEEE 488 interface was installed for parallel communication with a 

FFT analyzer. The control program was written in Basic. The flow chart is 

given in Figure (7.2). 

The data stored in the Ono Sokki analyzer was transferred to the Zenith 

computer first and than sent to a VAX mainframe from the Zenith computer. 
The program for data transfer had been written by a previous researcher. 

The procedure for carrying out the measurements was as follows. 

Step 1: set up the system in the control room. Switch on all equipment 
for warm up while the next two steps are carried out. 

Step 2: set up the equipment in the chamber. 
Step 3: position the microphone track device. Fix the two platform bars 

to the floor at a suitable distance from the centre line and adjust the bars 

so that the track is vertical. Adjust the zero point vertically 5cm below the 

centre z-axis and horizontally 5cm apart from the plate. 
Step 4: calibrate. 
Step 5: take a measurement with the tracking device at one position. 

Start the program., Take 15 measurement points at interval of 5cm each over 

a 70cm distance. Note the reference pressure, value and the position of the 

track etc. 
Step 6:, make the next measurement. Repeat. Step 3 but adjust the 

zero point horizontally 5cm away from the last position, (make a further 

calibration occasionally), and repeat Step 5: Repeat this procedure 14 times 

and finish. 
Step 7: final calibration. 
The measuring system introduces a 'random error when using a white 

noise signal; two measurements with the same set-up could provide different 

readings. An experiment has been carried out to test the equipment system. 
The equipment was set up in the'anechoic chamber as described above but 

" without the plate'and, with a microphone fixed at 1m from the source. 30 
measurements were taken`and 30 readings obtained which are denoted by x;. 
The sample average £ is given--by 
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(E xi)IN, 
where N is the total number of readings. The Bessel formula-was used for 

the calculation of the standard error, 

n 
E(x; - i)2/(N - i). 

The standard error changes with variation of the number of averages. A 

previous researcher has suggested that 128 averages is a suitable choice [69]. 

We took the next highest number 256 for the upper limit of the error test. 

The result is shown in Table (7.1). 

Number of averages 32 64 128 256 
f =500Hz 

mean value 55.07 55.01 54.94 54.88 

standard error 0.75 0.52 0.31 0.31 
f =1000Hz 

mean value 54.37 54.28 54.30 54.20 
standard error 0.71 0.51 0.36 0.37 

Table 7.1 Standard error 

From Table (7.1), it can be seen that in general the errors decrease with 
an increase in the number of averages. The errors obtained for the 128 and 
256 averages are rather similar. At a frequency of 1000Hz the error for 256 

averages is, slightly greater than that for 128 averages. This is because that 
the specification of the accuracy of, the Ono Sokki analyzer is 0.3 dB ( for 

sound pressure against frequency); hence the the second place of decimals in 
the measurements has no significant meaning. 

For the experiment using the single frequency, sine wave signal, the equip- 
ment. error is, negligible.. When the microphone is stationary, good repro- 
ducibility was possible even when' using only 16 averages. In fact using 8 
averages seemed to be adequate, but we chose the next highest number of 
averages, 16, since it did not have a large influence on the length of time of 
the experiment. , r,. 
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7.2 Validation of point source and chamber 

The use of a tube attached to a loudspeaker driver to produce a spherical 

wave has been widespread [10]. However a point source test has been carried 

out for the source used here. This test also serves as a check on the anechoic 

chamber and our experimental technique. The disc was removed for this test, 

of course. The procedure is the same as that described for the experiment 

with the disc in place, but with a smaller density of measurement points. 
Initially, a random white noise signal was used for experiments. One 

measurement can give the frequency response of the pressure field from 0Hz to 

40 kHz. When'the wavelength is similar to the dimensions of the instruments 

inside the chamber, the effects of the instruments on the pressure field will 

not be negligible, so we chose a smaller frequency range from 0Hz to 10 

kHz for the point source test. In order to save time we used 64 averages, 

since the accuracy was not crucially. important for this measurement. From 

the results of the measurements we found-that the spherical wave is badly 

distorted above 1000Hz at a distance of 1m away from the source. 
The results are shown in Figures (7.3) to (7.5)_ as two-dimensional con- 

tours for the frequencies 500Hz,, 1000Hz. and ; 
2000Hz. The small dots on 

the figures indicate the measurement locations. The contour curves were 
produced by using the UNIMAP software with` the' defaultmethod of inter- 

polation. 
Figures (7.3) to (7.5) show that'in the area'-close to'the source the wave 

pattern had a good spherical shape but "as the distance from'the source 
increases, ̀  the spherical wave pattern disappeärs. '" 

The 'main" cause of the distortion was the grille. which provided a work- 

ing solid floor for, accurate positioning of the microphone:: Removal of the 

grille 'each, time ' would have required 'considerable 
, extra' working time and 

" additional assistance. Consequently, the presence of ' the grille during the 

measurements had 'to be'tolerated, ' and' minimized insofar' as' possible. - We 
may explain thisdistortion in the following way. ' At any observation point we 
mainly received two signäls if we ignore the reflections'froin the'ceiling, floor 

and walls. One was directly from the source and the other was the reflection 
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Figure 7.3 Measured pressure contours around the point source. The source 
is located at (1000,0). Random white noise; output signal, at 500Hz. 
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Figure 7.4 Measured pressure contours around the point source., The source 
is located at (1000,0)., Random white noise; output signal,, at 1000Hz.. 
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Figure 7.5 Measured pressure contours around the point source. The source 
is located at (1000,0). Random white noise; output signal, at 2000Hz. 

from the grille. At an observation point near the source, the distance from 

the point to the source along the path of the direct wave is much less than 

that along the path of the wave reflected by the grille, so the amplitude of 
the reflected wave from the grille is much smaller than that of the direct 

wave even if we 'could assume a large reflection coefficient for the grille. The 

wave field is dominated by the direct wave near the source. However, as the 
distance between, the point of 

, 
observation and the source increases, the dif- 

ference between the two path lengths, becomes smaller so the influence of the 

wave reflected from the grille is, not negligible. The consequence is distortion 

of the direct spherical wave bythe wave reflected from the grille. 
It is obvious that, the reflections from the side walls tend to be cancelled 

out, insofar as the walls themselves have the same shapes, since the' mea- 
surement is taken'on the central vertical plane. One may argue on the other 
hand that the reflection from the ceiling, the floor and the wall facing the 

source may have contributed to the distortion.. First of all the surfaces of 
the anechoic room -which 

is constructed from absorbent wedges in a conven- 
tional way, 

-have$a very'siriall reflection coefficient, so they should not, produce 
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significant reflections near the centre of the room. Another argument for ne- 

glecting the reflection from the surfaces of the chamber is supplied by the 

result shown in Figure (7.3). 

For spherical waves we should have symmetry about a central axis coin- 

ciding with the z-axis; however from Figure (7.3) we see that the central line 

of symmetry seems to shift upwards with increasing distance from the source. 
This suggests the influence of the wave reflected by the grille rather than the 

effects of the reflections from the ceiling, the floor and the wall facing the 

source. Reflections from the ceiling and the floor should have been cancelled 

out on the z-axis, since it is near the central line of the chamber. When an 

observation point is moved away from the source, it is getting closer to the 

wall which is facing the source. In this case, the effect of the wave reflected 
by the wall facing the source could become larger. However it cannot make 
any contribution to 'the central symmetrical line shifting' since this reflected 
wave is symmetrical about the z-axis. 

The results of the subsequent experiment showed this 'central symmetri- 

cal line shifting' more clearly for both 500Hz and 1000Hz. 
From Figures (7.3) to (7.5) we can also see that the curves are not very 

smooth. As well as the system error, such erratic results may have been 

caused by errors in the assumed microphone location. 

There were mainly two problems while doing the initial tests with a- ran- 
dom white noise signal. One of the problems was that the microphone track 
device was not very accurate, and the microphone did not move vertically. 
In compensating for this, the guide rod had to be set at a slight angle to the 
vertical, but nevertheless the accuracy could not be guaranteed. Another 

problem arose from the technique of setting up the initial position of the 

microphone track device., We used the grille floor as the level gauge. In fact 

when a person stands on the grille it bends so the initial position ; could not 
possibly be very accurate. =. .. w 

-: z ._.; 
The wave field at 500Hz conforms better to spherical wave propagation 

than that at 1000Hz. This is because of the well-known result that if it a 
wave has a larger. wavelength relative to the size of an object the wave'shape 
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Figure 7.6 Measured pressure contours around the point source. The source 
is located at (1000,0). ' Sine wave signal, at 500Hz. 

will have less distortion 
. when passing through the object, and so the grille 

provides less reflection at 500Hz. 

The point source. test was repeated using single frequency sine . waves at 
500Hz 

-and at 1000Hz. 
, 
This signal was very stable. This time we used the 

modified microphone track device described in a earlier section, and we also 
improved the technique of setting up the initial position, of the device. The 

level gauge was set by a wire crossing the anechoic room parallel to the z-axis, 

and the ends of the wire were tied to posts at opposite sides of the room. A 

linear scale was marked on, the wire for the z-coordinate. -The vertical gauge 
line-, was set . 

by a wire freely suspended-from, the top of the track with a 

weight at the end of the wire. When the level of the device was adjusted the 

vertical line had to pass the end, of the microphone and through a mark on 

,., 
the level gauge line.. =This ensured that the track was vertical and fixed the 
distance between the microphone and the reflector disc. The experimenter 

stood near a support point for the floor to reduce unnecessary floor curvature 

,, during the setting up. 
The results show, that the contour surfaces were much smoother than 
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those obtained when using the random white noise signal. This suggests that 

the new results were more accurate since we would expect smooth continuous 

changes in a realistic pressure field. 

From Figures (7.6) and (7.7) again we can see clearly that the line of 
central symmetry shifts upwards with increasing distance from the source. 
Figure (7.7) shows that about 1m from the source the reflected wave becomes 

more important; as with the random white noise, the reflected wave has less 

effect at 500Hz than 1000Hz. 
From the point source test, we conclude that 1) we can have a reasonably 

good spherical wave below the frequency of 1000Hz and within 1m of the 

source, and 2) the measurement technique is reliable. 

7.3 Comparison between measurements and 
theory 

In this section, we examine the the results from two sets of experiments. In 

the first experiments a steel reflector and random white noise were used. In 
the second series an aluminium reflector, single frequency sine wave signals 
at 500Hz and 1000Hz respectively, and a modified microphone track device 

were used. 

7.3.1 Steel disc 

Using the random white noise we carried out reflection measurements in front 

of the steel disc. 128, averages of the field were taken in each measurement 
position. The experimental procedure and the equipment were as described 
in section 7.1. The first version of the microphone track device was used. 

The results are presented as three-dimensional surface contours at 500Hz 

and 1000Hz in Figures (7.8) and (7.9) respectively. The reflecting surface 
of the disc is at z=0, normal to the z-axis, and the source is located at (0, 
1000). The (r, `z) measurement` points are now in the regions 0<r<0.7m 

and 0<z<0.7m Comparing Figures (6.1)-and (6.19) from the theoretical 
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Figure 7.7 Measured pressure contours around the point source. The source 
is located at (1000,0). Sine wave signal, at 1000Hz. 

Figure 7.8 Measured pressure contours in front of a steel disc. Frequency 
500Hz; source location (0,1000); the reflecting surface is normal to the z-axis 
and at z=0; thickness of the plate 0.008m 
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Figure 7.9 Measured pressure contours in front of a steel disc. Frequency 

1000Hz; source location (0,1000); the reflecting surface is normal to the 

z-axis and at z=0; thickness of the plate 0.008m 

results with Figures (7.8) and (7.9) we find that the wave patterns are in 

good agreement. At 500Hz, there are two troughs in both theoretical and 

experimental results, and three troughs at 1000Hz. Small local peaks in 

Figure (7.9) may be the results of the reflected wave from the grille and of 

the error in the microphone position. From Figures (7.8) and (7.9) we can 

see the effect of the disc edge near the point (700,0). 

More detailed comparisons are given in Figures (7.10) to (7.15). We select 

three typical sections: on the central axis r=0 in, at r=0.3 m, and near 

the edge of the disc r=0.7 in. 

The curves in Figures (7.10) to (7.15) are plotted without interpolation 

so the comparisons are made between the values of the pressure from the 

calculation and from the experiment for the points at z= 50mm to 700mm 

with interval of 50mm. The peak amplitudes tend to decrease with increasing 

distance between the source and the observation point in all of Figures (7.10) 

to (7.15). This result is a feature of spherical wave propagation. 
In Figures (7.12) and (7.15) the experimental results do not show the 

value at z=0.7 in because the Zenith computer crashed while doing the 
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Figure 7.10 Comparison, between the experimental and theoretical results 
for air-steel-air combination at r= Om; frequency 1000Hz. 

60- 

I 
50- 

45- 

o= too "- 200 300 400 500 Soo 700 

Figure 7.11' Comparison, between the experimental and theoretical results 
for air-steel-air combination at r=0.3m; frequency 1000Hz. 
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Figure 7.13 Comparison between the experimental and theoretical results 
for air-steel-air combination at r= Om; frequency 500Hz. 
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Figure 7.14 Comparison between the experimental and, theoretical results 
for air-steel-air combination at r=0.3m; frequency 500Hz. 
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Figure 7.15 Comparison, between the experimental and theoretical results 
for air-steel-air combination at r=0.7m, frequency 500Hz. 
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last measurement at the last three points and there was no time to repeat 
the measurement. Since we decided to modify the experiment later, the last 

three points were not measured again. 
At 1000Hz, (Figures (7.10) and (7.11)) there is general agreement between 

the theory and the test, but in Figure (7.12) for a small value of z there is 

a large discrepancy. The curve for the measurement in Figure (7.12) was 

obtained at r=0.7 m, and this position is beyond the edge of the disc so 

we could not have had a strong reflection to create a deep trough as shown 
by the theoretical model. However the complete disappearance of the first 

trough for the test curve could also have been the result of a measurement 

error, as we shall see later from studying the results of the next experiments. 
The differences in the positions of the peaks and troughs may be due to the 

influence of the reflection from the grille. 
At 500Hz, the curves in Figure (7.14) for r=0.3m are in a good agree- 

ment; at the centre of the disc (r = Om in Figure (7.13)), although the curves 

agree in shape, there is a large difference in the value at the first trough. From 

the point source test, we have found that the wave at 500Hz has a better 

spherical pattern than that at 1000Hz, but the curves in Figure (7.13) show 

a worse discrepancy than those in Figure (7.10) for the reflection test at the 

centre of the disc. A possible reason'for this is the scattering effect. A wave 

at 500Hz has-a wavelength about 0.6m7 which is twice as large as the wave- 

length for a wave of of 1000Hz, and we should remember that the radius of 
the disc is 0.6 m. When a wavelength is close to the size of an obstacle the 

scattering effect becomes more important. Near the edge of the disc again 
we can see the edge effect. The value of the pressure for the experiment at 
z= 200mm could be the result of a measurement error as we shall see later 
from the next experiments. 

In this section we have described the results of the measurement obtained 
by using random; white noise and a steel disc. We have seen that the experi- 
mental results"are broadly in agreement with the theoretical results. However 

we felt that, the experimental results could be improved if we could modify 
the technique and the device for positioning the microphone, and use'a-sta- 
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ble signal. In the next section, we shall present results from the improved 

experiment. 

7.3.2 Aluminium disc 

The theoretical calculation in Chapter 6 showed that a metal plate could 

be considered as a very good rigid boundary for a point source in air. The 

material of the metal does not make much difference. For the second set 

of experiments, an aluminium disc was used. We did not expect to find 

any large difference between measured data obtained with a steel and that 

with an aluminium disc according to the theoretical result, but it was felt 

to be interesting to see if we could find any meaningful difference beyond 

that attributable to improved experimentation. It should be noted that as a 

result of the improved procedures the ratio of the signal to the background 

noise was increased. The background noise was about 5dB. In the test with 

a steel disc, the signal was generally greater than 40dB and in the test with 

an aluminium disc the signal was generally greater than 70dB. 

The results shown in Figures (7.16) and (7.17) for a aluminium disc are 

very similar to those for a steel disc of the same radius and thickness. 

However the curves are smoother. This improvement is particularly notice- 

able for the 1000Hz curves. There is no significant difference in the patterns. 

The detailed comparison at several cross sections are given in Figures (7.18) 

to (7.23). From the detailed comparisons, again we find the decay feature 

expected for spherical spreading. The, effects for both the frequency of 
500Hz and the frequency of 1000Hz are shown in Figures (7.23) and (7.20) 

respectively, but the first trough occurs at z=` 100mm in Figure (7.18), in 

contrast to Figure (7.10).. In the centre of the disc at 500Hz (in Figure (7.16)) 

the large difference occurs again at the first` trough, which we believe to be 

a scattering effect. 

The main discrepancy between the theoretical results and the experimen- 
tal results is caused by the difference between the infinite plate mathematical 
model and the finite plate of the experimental model. ̀  The differences in the 

positions of maxima and minimamay be caused by the reflections from the 
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Figure 7.16 Measured pressure contours in front of an aluminium disc. 

Frequency 500Hz; source location (0,1000); the reflecting surface is normal 
to the z-axis and at z=0; thickness of the plate 0.008m. 

Figure 7.17 Measured pressure contours in front of an aluminium disc. 
Frequency 1000I1z; source location (0,1000); the reflecting surface is normal 
to the z-axis and at z=0; thickness of the plate 0.008m. 
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Figure 7.18 Comparison between the experimental and theoretical results 
for air-aluminium-air combination at r= Om; frequency 1000Hz. 
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Figure 7.19 Comparison between the experimental and theoretical results 
for air-aluminium-air combination at r=0.3m; frequency 1000Hz. 
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Figure 7.20 Comparison between the experimental and theoretical results 
for air-aluminium-air combination at r=0.7m; frequency 1000Hz. 
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Figure 7.21 Comparison between the experimental and theoretical results 
for air-aluminium-air combination at r=0m; frequency 500Hz. 
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grille. 
The pressure field on the transmission side has also been measured for 

the frequency at 500Hz. The measured area is-from -0.008 m to -0.408 m 

in the z-direction and from 0m to 0.7 m in the r-direction. The result is 

shown in Figure (7.24). It is very different from the result of the numerical 

calculation for the transmission field of the infinite model, in Figure (7.25), 

because at 500Hz the scattering effect takes on a dominant role. A possible 

explanation for the minimum in Figure (7.24) can be obtained by considering 

plane waves. Let us consider the area behind the disc and assume that two 

plane waves are propagating towards the centre from the edges of the disc 

at each side of a diameter. When the waves have a frequency of 50011z, and 

the diameter of the disc is about 1.2m; a peak will be obtained at about the 

centre and two minima will occur on each side of the centre as we obtained 
in Figure (7.24). 

The theoretical result in Figure (7.25) shows that the contour lines are 

almost parallel to the surface of the disc. The whole surface of the disc in 

this area acts like a source to generate a plane wave with amplitude decay. In 

the experimental result of Figure (7.24), the contour lines are almost normal 
to the plate surface near the z-axis. There is an interesting minimum line. It 

will be interesting to see if these results are consistent with existing diffraction 

theory, but this matter has not been, pursued in this theses. 
For the experiments with the single frequency sine wave signal, the errors 

are mainly caused by the reflection from the grille. Although the microphone 
track device has been modified, setting up the initial microphone position still 
consumed a lot of time since there were no devices for micro-adjustment. If 

the experimenter was not careful, it was possible to make an error in the 

microphone position. It is felt that the experimental result may be improved 
by moving the source closer to the disc or ' by building a two-dimensional 

microphone track device, which would allow us to remove the grille, ensure 
the accurate positioning of a microphone, and considerably reduce the length 

of the 
, 
time for experiments. A:, possible: design will, be discussed in the last 

-1 1 chapter. . --° ., 
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Figure 7.24 Transmission pressure contours from the theory for 

air-aluminium-air combination. Frequency 500Hz; source height 1m; thick- 

ness of the plate 0.008m. 
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From the above we can see that the theoretical and experimental results 

are in fairly good agreement. The two results support one another. There- 

fore we can reasonably believe that the theoretical results for pressure fields 

which we have obtained in the earlier chapters could describe spherical wave 

reflection at a plane interface in reality very well if the reflection area is large 

compared with the wavelength, and compared with the source height. If the 

source height is large and the reflection area is small, the incident wave at 

the reflection surface would behave more like a plane wave rather than a 

spherical wave regardless of the wavelength. However, when the reflection 

area is finite, for small wavelengths the correspondence between the wave 
field in the medium containing the source and the wave field predicted above 

a reflection area of infinite extent is closer than that for large wavelengths. 
In the case that the source height and the reflection area are similar, the 

ratio of the wavelength to the smallest dimension of the reflection area is an 
important criterion when we consider using the theoretical result of infinite 

surface model to predict a realistic wave field with a finite reflection area. 
The experimental method which we have used in this study can produce 

good results and is reliable. The technique is particularly suitable for acous- 
tical scattering experiments. 

The experimental results only confirm the validity of the predicted pres- 

sure distribution. The prediction of the "backward wave" phenomenon would 
have to be tested by different means involving, perhaps, the measurement of 

sound intensity. 
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Chapter 8 

Conclusion 

8.1 Review of the results 
The subject of this thesis is the study of the reflection and transmission of 

spherical waves at plane boundaries. The research has been based on a the- 

ory of linear elastic wave propagation, -combined with Lamb/Sommerfeld's 

integral representation for spherical waves, A new integral representation for 

spherical waves has been obtained by transforming Lamb's integral repre- 

sentation. New forms of integral expressions for the incident, reflected, and 
transmitted waves have been obtained through transformations of some ex- 
isting solutions for the reflection of spherical waves at plane boundaries. The 

new solutions together with existing solutions have been checked numerically 
in some cases to see if they satisfy the law of energy conservation and the 

results are satisfactory. The theoretical result for spherical wave reflection 
at a rigid boundary has been tested by experiment. Theoretical and exper- 
imental results show a good agreement within the constraints of the model 
differences and, external interference on the measurements. We believe that 

the resulting theory of linear spherical waves should give a good, description 

of the phenomenon "of spherical wave reflection and transmission at infinite 

plane boundaries. In practice, the theoretical result can' provide a good ap- 
proximation when. the dimension ý of a boundary surface-is large compared 
with the distance between a point source and the' boundary, ' and . with the 

wavelength. ... 
-.;.. 
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One contribution made in the study is to the understanding of the widely- 

used Lamb's formula 

exp(-ik, ýFr2 
-+, 2) 

- 
r°° J(rý)exp(-I zh )E 

dý. (8.1) 
r2-f-z2 

J° F -k 

In this thesis, this integral representation for spherical waves has been studied 

analytically and numerically. The analytical study has shown (in Chapter 5) 

that the integral in formula (8.1) is convergent and a new proof of formula 

(8.1) has been offered when the variables r, z, k and ý are real quantities. 

The proof also indicates that the argument of the exponential function on 

the left side of equation (8.1) must have a minus sign for positive real k and 

A new form of formula (8.1), obtained from the convergence analysis, is 

exp(-ik r2 -f-. z? ) yý00 J(r k2 + x2)exp(-I zýx) dx (8.2) 
t. 

ik. 

where the integration path is from ik to iO on the imaginary axis and from 0 

to oo on the real axis. ' Since the integral in formula (8.2) has no singularity, 
it allows*more accurate numerical integration than does the integral in (8.1). 

One' of the features of this- research is that- we have used up-to-date re- 
search�tools. '', REDUCE software for symbolic manipulation has been used 
'in the analytical `study; and the numerical investigation has been carried out 

with - the help of the software from the NAG " library. For the experimen- 
tal study, we have used ä` computer controlled measurement system with a 
digital FFT- analyzer. 

The numerical results An- Chapter 6, have shown that when- a spherical 
, -, Wave impinges on 'a plane interface between two semi-infinite fluids from an 

acoustically soft medium to a harder one (an example was given for the case 

of a kerosene-water interface), ' with increasing angle 'of incidence, the energy 

reflected from the interface decreases until a critical angle is reached, at which 
time no average energy penetrates into the harder medium.; Beyond the crit- 
ical angle; at some angles` there is some net time average transmitted energy 
but at other angles there is no net time average transmitted energy. This 

may be associated with the interference between the incident and diffracted 
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waves. The critical angle for a spherical wave is dependent not only on the 

material constants of the two media, but also on the frequency and the dis- 

tance between the source and the interface. The critical angle for a spherical 

wave is greater than that for a corresponding plane wave. However as the 

distance between the source and the interface increases, the critical angle for 

a spherical wave tends to that for a plane wave. This is what we expect since 

a plane wave can be considered as a far field approximation of a spherical 

wave. 
At a plane interface between two media, the variations, with angle of 

incidence, of the reflection and transmission coefficients for spherical waves 

are very similar to those of plane waves, but they are both frequency and 

source height dependent. As the source height increases, the curves for the 

reflection and transmission coefficients as functions of incidence angle for 

spherical waves tend to those of plane waves. 

Predictions we have obtained for spherical wave incidence on a fluid- 

solid-fluid system suggest that the moduli of the reflection coefficient at the 

interface between the fluid and the solid, and of the transmission coefficient 

at the interface between the solid and the fluid at normal incidence are con- 

sistent with those of a corresponding plane wave. The values of the moduli 
for a spherical wave are generally smaller than those for a plane wave because 

of the energy spreading except for the transmission coefficients at 5000 Hz. 

Nevertheless, all values are less than unity. We believe that the numerical pre- 
dictions of "overpressures" at normal incidence obtained by Piquette [46] in 

the corresponding case are most likely due to numerical errors. Nevertheless, 

some of the numerical results we have obtained indicate that "overpressures" 

are possible for angles of incidence near grazing. One possible explanation is 

the constructive interference between the reflected and the diffracted waves 

at the interface (see Section 6.2). 

An interesting numerical, result from studies of energy flux is the pos- 

sibility of "backward waves" associated with* spherical wave reflection and 
transmission at an acoustically hard boundary. It was found that in some re- 
gions above a point source, both the direct and reflected waves should travel 

.: 
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upwards away from the boundary; however the normal component of the 
local time average energy flux of the superposition of the two waves may be 

in the direction downwards to the boundary. A similar situation happens 
for the transmitted waves; the normal components of the local time average 
energy flux may be in the direction upwards towards the boundary although 
the transmitted wave should travel away from the boundary. This so called 
"backward wave" phenomenon will be discussed in the next section. 

Some hypothesized solutions for spherical wave reflection and transmis- 

sion based on the integral representation 

exp(ik r2 -} z2) 
_i Hö'1(z k2 - x2)cos(rx) dx (8.3) 

r2 + z2 �o 

were also obtained and studied numerically, (Expression (8.3) of course gives 
the complex conjugate of expression (8.1) or (8.2)). We were not able to prove 

, whether these solutions satisfy . 
the equations of motion but have suggested 

and shown that the representation (8.3) and the corresponding hypothesized 

solutions - might have potential applications because of their numerical sta- 
bility.; 

8.2 , Discussions and" suggestions for further 

8.2.1 On Lamb's integral for spherical waves 

-We' 
have shown the validity , of formula (8.1) for real variables in Chapter 

5. The proof uses the-method of power series, expansion . and the theory, of 
.,, differential equations- i As. was pointed out in Chapter 5, if we could have 

proved equation '(5.19), we could have avoided having to' use the theory of 
differential equations .' 

Unfortunatelyr we could not. It is felt that it might be 

possible to prove equation (5.19) by. dividing it into two parts; and proving 
results for each part viz.. 

jk 
Jo(rv k2 + x2)sin(zx) dx Jk Jo(z kl -+X2 )sirirx) dx (8.4) 
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and 

f 00 Jo (r k2 + x2)exp(-zx) dz =f Jo(z k2 + x2)exp(-rx) dx. (8.5) 

In fact we know that the equation 

f 00 00 
exp(-at)Jo(bt) dz =f exp(-bt)Jo(at) dx (8.6) 

is valid. 
The formula for real variables can be applied only to the situation where 

energy absorption can be neglected. This is the case that we have been 

studying. For waves propagating in a medium of energy absorption, the 

wavenumbers becomes complex. Our analysis in Chapter 5 is invalid for 

complex wavenumbers. There is a difficulty in using the method of power 

series expansion for a complex wavenumber because it is not easy to find 

suitable expansions which will give a simple series expression of the integrand 

for the integration. A possible method to deal with a complex wavenumber is 

borrowed from the ideas of Sonine and Gegenbauer. One of the mathematical 

. problems which we need to solve is the convergence of an improper double 

integration. A discussion of improper double integration is given in Appendix 
(A). 

Extension of the new integral formulations to complex wavenumbers will 

. 
have-many practical applications. For example, acoustic-seismic coupling 
have been of interest to geophysicists and others for over fifty years. An 

analysis of acoustic-seismic coupling based on plane continuous harmonic 

waves and. a simple structural model of a poroelastic surface layer above 
an elastic sub-strata has been published ([86] to, [88]) and has been shown 

;. to give tolerable agreement with measured data. A theoretical problem of 
general interest is that, of acoustic-to-seismic coupling from a point source. 
Many 

-existing, studies are based ton, the', Lamb/Sommerfeld; integral, [89], 
[90].. " It. is felt, that if., we could derive a sinew. integral in the form, of (8.2) 

., with: a complex _wavenumber 
and ; use , 

this new integral, to study spherical 
wave reflection. and' transmission at porous boundaries we should be able 
to improve our understanding of acoustic-seismic' coupling. Applications, of 
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this theoretical work could include the interpretation and predication of air- 
coupling in seismic surveys, and interpretation of bottom interacting sonar 
data near grazing angles to obtain the properties of seabed sediments [91]. 

8.2.2 On the experiment 
It is felt that one of the important factors that would ensure a better pres- 

sure contour measurement is more accurate positioning of the microphone. 
To achieve this'using the existing equipment, we have to carefully set up the 

initial microphone position at each z coordinate, 'which increases the experi- 

mental time. Even' so, the accuracy is not absolutely guaranteed because of 
human error. " 

The best way to obtain an accurate microphone position is to design a 

completely automatic measurement system. In order to ensure the accuracy 
of the microphone position, a possible 'design is to use an optoelectronic 
device, and control the two-dimensional movement of the microphone by a 
gear box through a pulley system. This is ' not difficult to achieve since we 

-have been using a computer controlled system. With use of an optoelectronic 
device; we only need to carefully set up a microphone position gauge once for 

the, whole- measurement. 
,. 
The only requirement for the microphone moving 

system is that the microphone moves'in a straight'line and parallel-to the 
microphone' 

position gauge. " Two' small step motors, could be. used. - One 

would control the gear box and the other "would control the position of the 

microphone., The 'step motor that 'we have been using is too large for the 
job. Use Of a single step motor would be possible but it would require a good 
design of the gear box system. 

Apart from increasing the iccuracy "of microphone position, -another ad- 
vantage of using an optoelectronic device is that 'we'can have a flexible com- 
pact micropho'ne` moving system; therefore 'we can reduce , the interference 
caused by the presence of the structure of the microphone moving system: 

The use of finite plates in experiments means that we have a' system for 

studying diffraction. 'effects: Theories of diffraction' around! plates ̀  could be 
'tested by such a system. r 
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8.2.3 On backward waves 

Among the results we have obtained is the interesting prediction of circum- 

stances in which the time average energy of a wave propagates in the direc- 

tion opposite to that in which the wave is supposed to be travelling. Very 

probably these instances of "backward waves" are related to the well known 

locally closed loop time average sound intensity trajectories [92]. Simple ex- 

amples associated with interference effects are shown in Figures. 4.8(a) and 

4.12(a) and (c) of [92]. Complicated cases may be obtained from a Helmholtz 

resonator (Fig. 4.20 in [92]) and a point-force excited, water-loaded plate 
(Fig. 4.21 in [92]). It should be noted that closed intensity loops do not oc- 

cur in the interference between two orthogonally plane travelling waves (see 

e. g. Fig. 4.8(b) in [92]). 

The explanation of spherical wave reflection and transmission mentioned 

earlier [66], [49], suggests that the closed intensity loop may occur for trans- 

mitted waves as a result of the wave re-entering into the source medium 
[66]. 

A feature of the backward wave is that the time average energy flux 

and the corresponding wavenumber (or its components) is (are) of oppo- 

site sign(s). Another known example where where the energy flux and the 

wavenumber along the waveguide axis may have opposite signs at certain 

modes may be found in the elastic waveguide [94], [95]. In this case, coupled 
longitudinal and transverse waves travel along an elastic solid plate of infinite 

extent. An experiment [96] has confirmed the existence of such modes by 

measuring wave speed against frequency, but the experiment could not verify 
the opposite sign of the energy flux and the wavenumber. 

The backward waves we have predicted are simpler than other cases. We 
have found the phenomenon either in a transmitted wave or in the inter- 
ference of two travelling waves. If we can determine the conditions under 
which the backward spherical waves occur or the closed intensity loops oc- 
cur, and test those conditions by experiments (e. g., intensity measurement), 
it will help us to understand more about the backward wave and may provide 
guidance for the understanding of the other instances of backward waves. 
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Appendix A 

A formula similar to Lamb's formula 

This is a failed attempt to prove formula (1.1) by using'a method of integra- 

tion analysis. Instead of considering formula (1.1), we start from an integral 

in the following form 

1 °° Jo(r)exp(-IzI f+k )ý 
Jo N/V +k 

We consider the case where the integral is defined on the real axis, and 

variables z, r, and k are real. 
One of important formulae used in the investigation of Sonine's discon- 

tinuous integrals is given by 

2 
-p2t2 (A. 2) J Jo(at) exp( )t dt = exp(-4) 

ý2 

pz 

Equation (A. 2) was first obtained by Weber [65] in 1868 from a double 
integral formula but it can be proved directly by expanding Jo(at) in powers 
oft and integrating term by term, since the integral is convergent. In order to 

prove formula (1.1), additional to formula (A. 2) we need two more formulae, 

which are given by 

exp(-2/) Joy exp(-4t - pt)t-'I' dt (A. 3) 

-where Re(a) >0 and. Re(p) > 0., ,.,., 

°° a 
exp( 4t pt)t-3 ,2 

dt =, 2ý 
ý! 

exp(-2 p) :`. 
9 

(A. 4) 
Va 
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where Re(a) >0 and Re(p) > 0. They can be obtained by using the method 

of differentiating with respect to a parameter. 
Considering Tk=p and IzI = a, and applying formula (A. 3) to the 

exponential term in (A. 1) we have 

1Jo(r)exp(-I zf + k2)ß 
dý 

Jo Vz + k2 

s 00 1z 
Jo(rý) exp(-- - (ý2 + k2)t)t-1"2 dý dt (A. 5) 

where we have exchanged the order of integrals with respect to ý and t, since 

they are independent variables. 
Next, considering r=a, and t= p2, and performing the integration with 

respect to by formula (A. 2) the right hand side of (A. 5) becomes 

ss 

Jo 2ft exP( 4t)exp(- 4t - k2t)t-1/2 d« dt (A. 6) 

Using formula (Ä. 4) to (A. 6) gives 

Jo(r)exp(2IzI Z Z. + k2)E 
dý _ 

exp(-T2 
+ z2 

z2) (A. 7) 

Jo +k ,ý Thus on substituting k= in into (A. 7) we could obtain Lamb's formula, 

but the condition on formula (A. 4) requires Re(p) > 0, and this forbids the 

required substitution. 
Although formula` (A: 4) requires Re(p) > 0, it is possible that if using 

(A. 4) under another infinite integration, the double infinite integral would be 

convergent for Re(p)'< 0,1e. s'the substitution k ='ir. into'(A. 7) would be 

valid In other words, the integration of anotherf divergent' integration may 
be-convergent. This idea maybeýunderstood by'the`followingexample 

Jo' 1 -x2 .2 
The integrand in equation (A. 8) becomes infinite at x=1, but the integration 

is convergent. It is possible that when considering a divergent integral as 

an integrand of another integral, the double 'integral may, be "convergent. 
Nevertheless it needs a rigorous mathematical analysis to prove the validity 

of applying (A: 4) with: Re(p) <0 io'(A. 7).: Fy 
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Appendix B 

The reflection and transmission 

coefficients 

When a reflected plane wave is, expressed by the second term in equation 
(4.43), the reflection coefficient is calculated by the following FORTRAN 

program 

pas ... ratio of densities (fluid/solid) 

d ... thickness of plate 
kl ... wavenumber of the longitudinal wave 

kt ... vavenumber of the transverse wave 

ka ... vavenumber of the wave in fluid 

xk ... the r component of vavenumber 
k=dcmplx(xk, 0. dO) 

im=(O. d0,1. dO) 

qa=cdsgrt(ka**2-k**2) 

qt=cdsgrt(kt**2-k**2) 

ql=cdsgrt(kl**2-k**2) 

eda=cdexp(im*qa) 

edt=cdexp(im*qt) 

edl=cdexp(im*ql) ý, . .. ý. 

ANS2=EDT**2*(-32. *K**8*QA**2+32. *K**6*QT*QL*QA**2+ 
48. *K**6*KT**2*QA**2+16: *K**6*KL**2*QÄ**2-32. *K**4* 
QT*KT**2*QL*QA**2-24. ý*K**4*KT**4*QA**2-16. 

*K**4*KT 
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" **2*KL**2*QA**2+8. *K**2*QT*KT**4*QL*QA**2-K**2*KT** 

" 8*PAS**2+8. *K**2*KT**6*QA**2+KT**8*KL**2*PAS**2-KT 

" **8*QA**2)+32. *K**8*QA**2+32. *K**6*QT*QL*QA**2-48. * 

" K**6*KT**2*QA**2-16. *K**6*KL**2*QA**2-32. *K**4*QT* 

" KT**2*QL*QA**2+24. *K**4*KT**4*QA**2+16. *K**4*KT**2* 

" KL**2*QA**2+8. *K**2*QT*KT**4*QL*QA**2+K**2*KT**8* 

" PAS**2-8. *K**2*KT**6*QA**2-KT**8*KL**2*PAS**2+KT**8 

" *QA**2 
ANSI=EDL**2*EDT**2*(32. *K**8*QA**2+32. *K**6*QT*QL*QA 

" **2-48. *K**6*KT**2*QA**2-16. *K**6*KL**2*QA**2-32. *K 

. **4*QT*KT**2*QL*QA**2+24. *K**4*KT**4*QA**2+16. *K**4 

*KT**2*KL**2*QA**2+8. *K**2*QT*KT**4*QL*QA**2+K**2* 

. KT**8*PAS**2-8. *K**2*KT**6*QA**2-KT**8*KL**2*PAS**2 

. +KT**8*QA**2)+EDL**2*(-32. *K**8*QA**2+32. *K**6*QT* 

. QL*QA**2+48. *K**6*KT**2*QA**2+16. *K**6*KL**2*QA**2- 
32. *K**4*QT*KT**2*QL*QA**2-24. *K**4*KT**4*QA**2-16. * 

. K**4*KT**2*KL**2*QA**2+8. *K**2*QT*KT**4*QL*QA**2-K 

. **2*KT**8*PAS**2+8. *K**2*KT**6*QA**2+KT**8*KL**2* 

. PAS**2-KT**8*QA**2)±32. *EDL*EDT*K**2*QT*QL*QA**2*(- 
4. *K**4+4. *K**2*KT**2-KT**4)+ANS2 

ANS6=-8. *K**2*KT**6*QA**2+KT**8*KL**2*PAS**2-2. *KT** 
8*PAS*QL*QA+KT**8*QA**2 

ANSS=EDT**2*(-32. *K**8*QA**2+32. *K**6*QT*QL*QA**2+ 

. 48. *K**6*KT**2*QA**2+16. *K**6*KL**2*QA**2+8. *K**4*QT 

., *KT**4*PAS*QA-32. *K**4*QT*KT**2*QL*QA**2+8. *K**4*KT 

**4*PAS*QL*QA-24. *K**4*KT**4*QA**2-16. *K**4*KT**2* 

. KL**2*QA**2-8. *K**2*QT*KT**4*KL**2*PAS*QA+8. *K**2* 

. 'QT*KT**4*QL*QA**2+K**2* '**8*PAS**2-8. *K**2*KT**6* 
PAS*QL*QA+8. *K**2*KT**6*QA**2-KT**8*KL**2*PAS**2+2. 

*KT**8*PAS*QL*QA-KT**8*QA*, *2)+32: *K**8*QA**2+32. *K 
**6*QT*QL*QA**2-48. *K**6*KT**2*QA**2-16. *K**6*KL**2 
*QA**2+8. *K**4*QT*KT**4*PAS*QA-32: *K**4*QT*KT**2*QL 
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" *QA**2-8. *K**4*KT**4*PAS*QL*QA+24. *K**4*KT**4*QA**2 

" +16. *K**4*KT**2*KL**2*QA**2-8. *K**2*QT*KT**4*KL**2* 

" PAS*QA+8. *K**2*QT*KT**4*QL*QA**2-K**2*KT**8*PAS**2+ 

" 8. *K**2*KT**6*PAS*QL*QA+ANS6 

ANS4=EDL**2*(-32. *K**8*QA**2+32. *K**6*QT*QL*QA**2+ 

" 48. *K**6*KT**2*QA**2+16. *K**6*KL**2*QA**2-8. *K**4*QT 

. *KT**4*PAS*QA-32. *K**4*QT*KT**2*QL*QA**2-8. *K**4*KT 

" **4*PAS*QL*QA-24. *K**4*KT**4*QA**2-16. *K**4*KT**2* 

" KL**2*QA**2+8. *K**2*QT*KT**4*KL**2*PAS*QA+8. *K**2* 

" QT*KT**4*QL*QA**2+K**2*KT**8*PAS**2+8. *K**2*KT**6* 

" PAS*QL*QA+8. *K**2*KT**6*QA**2-KT**8*KL**2*PAS**2-2. 

" *KT**8*PAS*QL*QA-KT**8*QA**2)+32. *EDL*EDT*K**2*QT* 

. QL*QA**2*(-4. *K**4+4. *K**2*KT**2-KT**4)+ANSS_ 
ANS3=EDL**2*EDT**2*(32. *K**8*QA**2+32. *K**6*QT*QL*QA 

" **2-48. *K**6*KT**2*QA**2-16. *K**6*KL**2*QA**2-8. *K 

" **4*QT*KT**4*PAS*QA-32. *K**4*QT*KT**2*QL*QA**2+8. *K 

" **4*KT**4*PAS*QL*QA+124. *K**4*KT**4*QA**2+16. *K**4* 

. KT**2*KL**2*QA**2+8. *K**2*QT*KT**4*KL**2*PAS*QA+8. * 

. K**2*QT*KT**4*qL*QA**2-K**2*KT**8*PAS**2-8. *K**2*KT 

. **6*PAS*QL*QA-8. *K**2*KT**6*QA**2+KT**8*KL**2*PAS** 

. 2+2. *KT**8*PAS*QL*QA+KT**8*QA**2)+ANS4 

R=ANSI/ANS3 

For the transmitted wave (4.46), the transmission coefficient is calculated by 

pas ... ratio of densitiesL (fluid/solid) 

d ... thickness of'plate, 
kl ... navenumber of the longitudinal-wave 

kt ... vavenumber of the transverse nave 
ka ... vavenumber of the wave in' fluid' 

xk ... the r component of'wavenumber 
k=dcmplx(xk, 0. dO) 

im-- (O. -do", 1'. dO) 
qa-cdsgrt(ka**2-k**2) 
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qt-cdsqrt(kt**2-k**2) 

ql=cdsgrt(kl**2-k**2) 

eda=cdexp(im*qa) 

edt=cdexp(im*qt) 

edl-cdexp(im*ql) 
ANS2=16. *EDL**2*EDT*EDA*K**2*QT*KT**4*PAS*QA*(K**2- 

. KL**2)+4. *EDL*EDT**2*EDA*KT**4*PAS*QL*QA*(-4. *K**4+ 

" 4. *K**2*KT**2-KT**4)+4. *EDL*EDA*KT**4*PAS*QL*QA*(4. * 

" K**4-4. *K**2*KT**2+KT**4)+16. *EDT*EDA*K**2*QT*KT**4 

" *PAS*QA*(-K**2+KL**2) 

ANS6=-8. *K**2*KT**6*QA**2+KT**8*KL**2*PAS**2-2. *KT** 

. 8*PAS*QL*QA+KT**8*QA**2} 

ANSS=EDT**2*(-32. *K**8*QA**2+32. *K**6*QT*QL*QA**2+ 

48. *K**6*KT**2*QA**2+16. *K**6*KL**2*QA**2+8. *K**4*QT 
*KT**4*PAS*QA-32. *K**4*QT*KT**2*QL*QA**2+8. *K**4*KT 

. 
**4*PAS*QL*QA-24. *K**4*KT**4*QA**2-16. *K**4*KT**2* 

. KL**2*QA**2-8. *K**2*QT*KT**4*KL**2*PAS*QA+B. *K**2* 

QT*KT**4*QL*QA**2+K**2*KT**8*PAS**2-8. *K**2*KT**6* 

. PAS*QL*QA+8. *K**2*KT**6*QA**2-KT**8*KL**2*PAS**2+2. 

*KT**8*PAS*QL*QA-KT**8*QA**2)+32. *K**8*QA**2+32. *K 

. ̀ **6*QT*QL*QA**2-48. *K**6*KT**2*QA**2-16. *K**6*KL**2 
t .r *QA**2+8. *K**4*QT*KT**4*PAS*qA-32. *K**4*QT*KT**2*QL 

*QA**2-8. *K**4*KT**4*PAS*QL*QA+24. *K**4*KT**4*QA**2 

+16. *K**4*KT**2*KL**2*QA**2-8. *K**2*QT*KT**4*KL**2* 

PAS*QA+8. *K**2*QT*KT**4*QL*QA**2-K**2*KT**8*PAS**2+ 

8. *K**2*KT**6*PAS*QL*QA+ANS6 

ANS4=EDL**2*(-32. *K**8*QA**2+32. *K**6*QT*QL*QA**2+ 

. 48. *K**6*KT**2*QA**2+16. *K**6*KL**2*QA**2-8. *K**4*QT 
*KT**4*PAS*QA-32. *K**4*QT*KT**2*QL*QA**2-8. *K**4*KT 

**4*PAS*QL*QA-24. *K**4*KT**4*QA**2-16. *K**4*KT**2* 
KL**2*QA**2+8. *K**2*QT*KT**4*KL**2*PAS*QA+8. *K**2*'. 
QT*KT**4*QL*qA**2+K**2*KT**8*PAS**2+8. *K**2*KT**6*' 
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" PAS*QL*QA+8. *K**2*KT**6*qA**2-KT**8*KL**2*PAS**2-2.. 

" *KT**8*PAS*QL*QA-KT**8*QA**2)+32. *EDL*EDT*K**2*QT* 

" QL*QA**2*(-4. *K**4+4. *K**2*KT**2-KT**4)+ANS5 

ANS3=EDL**2*EDT**2*(32. *K**8*QA**2+32. *K**6*QT*QL*QA 

. **2-48. *K**6*KT**2*QA**2-16. *K**6*KL**2*QA**2-8. *K 

. **4*QT*KT**4*PAS*QA-32. *K**4*QT*KT**2*QL*QA**2+8. *K 

. **4*KT**4*PAS*QL*QA+24. *K**4*KT**4*QA**2+16. *K**4* 

. KT**2*KL**2*QA**2+8. *K**2*qT*KT**4*KL**2*PAS*QA+B. * 

. K**2*QT*KT**4*QL*QA**2-K**2*KT**8*PAS**2-8. *K**2*KT 

. **6*PAS*QL*QA-8. *K**2*KT**6*QA**2+KT**8*KL**2*PAS** 

. 2+2. *KT**8*PAS*QL*QA+KT**8*QA**2)+ANS4 
ANSI=ANS2/ANS3 

T=-ANSI 

For a spherical wave propagation, the integration coefficient T defined 

in equation (6.43) for the transmission can be obtained by the following 

program: 

pasc=pas ... ratio of densities (fluid/solid) 

h ... source height 

dc=d ... thickness of plate 
klc=kl ... wavenumber. of the longitudinal wave 
ktc=kt .. wavenumber of the transverse wave 
kac=kl ... wavenumber of the wave in fluid 

xk ... the r component of wavenumber 
k=dcmplx(xk, 0. dO) 

im=(0. dO, 1. dO) 

qt=cdsgrt(k**2-ktc**2) 
IQ, 

ql=cdsgrt(k**2-klc**2) 

qa=cdsgrt(k**2-kac**2) 

eda=cdexp(-d*qa) 

edt=cdexp(-d*qt) 
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edl=cdexp(-d*ql) 

eha=cdexp(-h*qa) 

ANS2=4. *K*PASC*KTC**4*(4. *K**4*QL*EDL*EDT**2-4. *K**4 

" *QL*EDL-4. *K**4*QT*EDL**2*EDT+4. *K**4*QT*EDT-4. *K** 

" 2*QL*EDL*EDT**2*KTC**2+4. *K**2*QL*EDL*KTC**2+4. *K** 

" 2*QT*EDL**2*EDT*KLC**2-4. *K**2*QT*EDT*KLC**2+QL*EDL 

*EDT**2*KTC**4-QL*EDL*KTC**4)*DHA 

ANSI=-EDL**2*EDT**2*PASC**2*KTC**8*KLC**2+EDL**2* 

. 'PASC**2*KTC**8*KLC**2+EDT**2*PASC**2*KTC**8*KLC**2- 

. PASC**2*KTC**8*KLC**2 

ANS6=8. *K**2*QA**2*EDL**2*KTC**6+8. *K**2*QA**2*EDT** 

. 2*KTC**6-8. *K**2*QA**2*KTC**6+8. *K**2*QA*QL*EDL**2* 

EDT**2*PASC*KTC**6-8. *K**2*QA*QL*EDL**2*PASC*KTC**6 

+8. *K**2*QA*QL*EDT**2*PASC*KTC**6-8. *K**2*QA*QL* 

" PASC*KTC**6-8. *K**2*QA*qT*EDL**2*EDT**2*PASC*KTC**4 

" *KLC**2-8. *K**2*QA*QT*EDL**2*PASC*KTC**4*KLC**2+8. * 

" K**2*QA*QT*EDT*. *2*PASC*KTC**4*KLC**2+8. *K**2*QA*QT* 

. PASC*KTC**4*KLC**2+K**2*EDL**2*EDT**2*PASC**2*KTC** 

. 8-K**2*EDL**2*PASC**2*KTC**8-K**2*EDT**2*PASC**2* 

. KTC**8+K**2*PASC**2*KTC**8+QA**2*EDL**2*EDT**2*KTC 

. **8-QA**2*EDL**2*KTC**8-QA**2*EDT**2*KTC**8+QA**2* 

" KTC**8-2. *QA*QL*EDL**2*EDT**2*PASC*KTC**8+2. *QA*QL* 

. EDL**2*PASC*KTC**8-2. *QA*QL*EDT**2*PASC*KTC**8+2. * 

. QA*QL*PASC*KTC**8+ANS7ý" 

ANS5=16. *K**4*QA**2*EDL**2*EDT**2*KTC**2*KLC**2-24. * 

. K**4*QA**2*EDL**2*KTC**4-16. *K**4*QA**2*EDL**2*KTC" 

. **2*KLC**2-24. *K**4*QA**2*EDT**2*KTC**4-16'; *K**4*QA' 

**2*EDT**2*KTC**2*KLC**2+24. *K**4*QA**2*KTC**4+16. "* 

K**4*QA**2*KTC**2*KLC**2-8. *K**4*QA*QL*EDL**2*EDT**" 
2*PASC*KTC**4+8. *K**4*QA*QL*EDL**2*PASC*KTC**4-8. *K' 

.. **4*QA*QL*EDT*, *2*PASC*KTC**4+8. *K**4*QA*QL*PASC*KTC 

rr 
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" **4+8. *K**4*QA*QT*EDL**2*EDT**2*PASC*KTC**4+8. *K**4 

" *QA*QT*EDL**2*PASC*KTC**4-8. *K**4*qA*QT*EDT**2*PASC 

" *KTC**4-8. *K**4*QA*QT*PASC*KTC**4-8. *K**2*QA**2*QL* 

" QT*EDL**2*EDT**2*KTC**4-8. *K**2*QA**2*QL*QT*EDL**2* 

" KTC**4+32. *K**2*QA**2*QL*QT*EDL*EDT*KTC**4-8. *K**2* 

" QA**2*QL*QT*EDT**2*KTC**4-8. *K**2*QA**2*QL*QT*KTC** 

" 4-8. *K**2*QA**2*EDL**2*EDT**2*KTC**6+ANS6 

ANS4=32. *K**8*QA**2*EDL**2*EDT**2-32. *K**8*QA**2*EDL 

" **2-32. *K**8*QA**2*EDT**2+32. *K**8*QA**2-32. *K**6* 

" QA**2*QL*QT*EDL**2*EDT**2-32. *K**6*QA**2*QL*QT*EDL 

" **2+128. *K**6*QA**2*QL*QT*EDL*EDT-32. *K**6*QA**2*QL 

" *QT*EDT**2-32. *K**6*QA**2*QL*QT-48. *K**6*QA**2*EDL 

. **2*EDT**2*KTC**2-16. *K**6*QA**2*EDL**2*EDT**2*KLC 

" **2+48. *K**6*QA**2*EDL**2*KTC**2+16. *K**6*QA**2*EDL 

. **2*KLC**2+48. *K**6*QA**2*EDT**2*KTC**2+16. *K**6*QA 

" **2*EDT**2*KLC**2-48. *K**6*QA**2*KTC**2-16. *K**6*QA 

. **2*KLC**2+32. *K**4*QA**2*QL*QT*EDL**2*EDT**2*KTC** 

" 2+32. *K**4*QA**2*QL*QT*EDL**2*KTC**2-128. *K**4*QA** 

" 2*QL*QT*EDL*EDT*KTC**2+32. *K**4*QA**2*QL*QT*EDT**2* 

" KTC**2+32. *K**4*QA**2*QL*QT*KTC**2+24. *K**4*QA**2* 

" EDL**2*EDT**2*KTC**4+ANS5 

ANS3=EDA*ANS4 

ANSI=ANS2/ANS3 

T=-ANS1 

The above formulae were produced by REDUCE. 
The integration coefficient for the reflection is given in appendix (D). 
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Appendix C 

The element coefficients of system 

equations 

We have tried a form of solution to the problem with using the integral which 
has the Hankel function in the integrand in the following forms 

cpl =if- Hol)(jz - hj k; - k2)cos(rk) dk 
0 

-}- if° RHoi»((h + z) ki - k2)cos(rk) dk (C. 1) 
0 

°° LaHö1)(h - z) k,? - k2)cos(rk) dk if0 

+ il LbHol)(h +d+ z) k! - k2)cos(rk) dk (C. 2) 

ýe =i 
f°°TaHH1)((h 

- z) kt - k2)cos(rk) dk 

+if TbHH'»((h +d+ z) ký - k2)cos(rk) A (C. 3) 

00 
V3 =if THo1. ) ((h - z) k- k2)cos(rk) dk (C. 4) 

0 
The integration coefficients may be determened by the boundary condi- 

tions. Applying the boundary conditions we can obtain a system equations: 

a(1,1)R + a(1,2) ' La +a(1,3)Lb + a(1,4)Ta + a(1,5)Tb + b(1,1) =0 

a(2,2) , L. . +a(2,3)Lb'. + a(2; 4)TQ + a(2,5)Tb .=0 
a(3,1)R + a(3,2) " ~LQ +a(3,3)Lb + a(3,4)Ta + a(3,5)Tb + b(3, -1) =0 
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a(4,2) La +a(4,3)Lb + a(4,4)T0 + a(4,5)Tb + a(5,6)T =0 

a(5,2) La +a(5,3)Lb + a(5,4)Ta + a(5,5)Tb =0 

a(6,2) La +a(6,3)Lb + a(6,4)Ta + a(6,5)Tb + a(6,6)T =0 
(C. 5) 

The coefficient elments of the above system equations are given in the 
Fortran format by 

a(1,1)=HA(1. )*H**2*K*KT**2*PAS*(D**2+2. *D*H+H**2) 

a(1,2)=H*K*(2. *HL(2. )*D**2*QL+4. *HL(2. )*D*H*QL+2. * 

HL(2. )*H**2*QL+2. *HL(1. )*D**2*H*K**2-HL(1. )*D**2*H* 

. KT**2+4. *HL(1. )*D*H**2*K**2-2. *HL(1. )*D*H**2*KT**2+ 

2. *HL(1. )*H**3*K**2-HL(1. )*H**3*KT**2) 

a(1,3)=H**2*K*(2. *HLP(2. )*D*QL+2. *HLP(2. )*H*QL+2. * 

. HLP(1. )*D**2*K**2-HLP(1. )*D**2*KT**2+4. *HLP(1. )*D*H 

*K**2-2. *HLP(1. )*D*H*KT**2+2. *HLP(1. )*H**2*K**2-HLP 

(1. )*H**2*KT**2) 

a(1,4)=2. *(HT(2. )*D**2*H**2*K**2*QT+2. *HT(2. )*D**2* 

. QT+2. *HT(2. )*D*H**3*K**2*QT+4. *HT(2. )*D*H*QT+HT(2. ) 

*H**4*K**2*QT+2. *HT(2. )*H**2*QT+HT(1. )*D**2*H*K**2- 

HT(1. )*D**2*H*KT**2+2. *HT(1. )*D*H**2*K**2-2. *HT(1. ) 

. *D*H**2*KT**2+HT(1. )*H**3*K**2-HT(1. )*H**3*KT**2) 

a(1,5)=-2. *H**2*(HTP(2. )*D**2*K**2*QT+2. *HTP(2. )*D* 

" H*K**2*QT+HTP(2. )*H**2*K**2*QT+2. *HTP(2. )*QT+HTP(1. 

. 
)*D*K**2-HTP(1. )*D*KT**2+HTP(1. )*H*K**2-HTP(1. )*H* 

. KT**2) 

a(2,2)=2. *HL(2: )*H*K*QL*(D+H); '-` 

a(2,3)=72. *HLP(2. )*H*K*QL*(D+H).. 

.:, ý_., a(2,4)=2. *HT(2. )*D*QT+2. *HT(2. )*H*QT+2. *HT(1. )*D*H* 

. K**2-HT(1. )*D*H*KT**2+2. *HT(1. )*H**2*K**2-HT(1. )*H 

**2*KT**2 

a(2,5)=H*(2. *HTP(2)*QT+2. *HTP(1. )*D*K**2-HTP(1. )*D 

;; - .: -. i, *KT**2+2. *HTP(1. )*H*K**2-HTP(1. )*H*KT**2) 
.:, 

;# 
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a(3,1)=-HA(2. )*H*K*QA*(D+H) 

a(3,2)=-HL(2. )*H*K*QL*(D+H) 

a(3,3)-HLP(2. )*H*K*QL*(D+H) 

a(3,4)=-(HT(2. )*D*QT+HT(2. )*H*QT+HT(1. )*D*H*K**2+HT 

(1. )*H**2*K**2) 

a(9,5)=-H*(HTP(2. )*QT+HTP(1. )*D*K**2+HTP(1. )*H*K**2 

.)' 
a(4,2)=H**2*K*(2. *HLP(2. )*D*QL+2. *HLP(2. )*H*QL+2. * 

HLP(1. )*D**2*K**2-HLP(1. )*D**2*KT**2+4. *HLP(1. )*D*H 

. *K**2-2. *HLP(1. )*D*H*KT**2+2. *HLP(1. )*H**2*K**2-HLP 

. (1. )*H**2*KT**2) 

a(4,3)=H*K*(2. *HL(2. )*D**2*QL+4. *HL(2. )*D*H*QL+2. * 

HL(2. )*H**2*QL+2. *HL(1. )*D**2*H*K**2-HL(1. )*D**2*H* 

. KT**2+4. *HL(1. )*D*H**2*K**2-2. *HL(1. )*D*H**2*KT**2+ 

. 2. *HL(1. )*H**3*K**2-HL(1. )*H**3*KT**2) 

a(4,4)=2. *H**2*(HTP(2. )*D**2*K**2*QT+2. *HTP(2. )*D*H 

. *K**2*QT+HTP(2. )*H**2*K**2*QT+2. *HTP(2. )*QT+HTP(1. ) 

. *D*K**2-HTP(1. )*D*KT**2+HTP(1. )*H*K**2-HTP(1. )*H*KT 

**2) 
a(4,5)=-2. *(HT(2. )*D**2*H**2*K**2*QT+2. *HT(2. )*D**2 

. *QT+2. *HT(2. )*D*H**3*K**2*QT+4. *HT(2. )*D*H*QT+HT(2. 

. )*H**4*K**2*QT+2. *HT(2. )*H**2*QT+HT(1. )*D**2*H*K**2 

. -HT(1. )*D**2*H*KT**2+2. *HT(1. )*D*H**2*K**2-2. *HT(1. 

. 
)*D*H**2*KT**2+HT(1. )*H**3*K**2-HT(1. )*H**3*KT**2) 

a(4,6)=HAP(1. )*ii**2*K*KT**2*PAS*(D**2+2. *D*H+H**2) 

a(5,2)=2. *HLP(2. )*H*K*QL*(D+H) 

a(5,3)=-2. *HL(2. )*H*K*QL*(D+H)a 

a(5,4)=H*(2. *HTP(2. )*QT+2. *HTP(1. )*D*K**2-HTP(1. )*D 

. *KT**2+2. *HTP(1. )*H*K**2-HTP(1. )*H*KT**2) 

a(5,5)=2. *HT(2. )*D*QT+2. *HT(2. )*H*QT+2. *HT(1. )*D*H* 

. K**2-HT(1. )*D*H*KT**2+2. *HT(1. )*H**2*K**2-HT(1. )*H 

. **2*KT**2' 
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a(6,2)=HLP(2. )*H*K*QL*(D+H) 

a(6,3)=-HL(2. )*H*K*QL*(D+H) 

a(6,4)-H*(HTP(2. )*QT+HTP(1. )*D*K**2+HTP(1. )*H*K**2) 

a(6,5)=HT(2. )*D*QT+HT(2. )*H*QT+HT(1. )*D*H*K**2+HT( 

. 1. )*H**2*K**2 

a(6,6)=-HAP, (2. )*H*K*QA*(D+H) ", 
b(1,1)=-HA(1. )*H**2*K*KT**2*PAS*(D**2+2. *D*H+H**2) 

b(3,1)=-HA(2. )*H*K*QA*(D+H) 

where 'H is the source height, D is the thickness of the plate, PAS is the 

density ratio, pl/p, , 
KA = kQ, KT = ka, KL = k1i 

HA(1. ) Hölý(QA * H), 

HA(2. ) I..: H(2)(QÄ *. H), 

HT(1. )..... HH')(QT *'H), 
HT(2. ) H(2)(QT * H), 

HL(1. ) ... R40(1) (QL H), 
HL(2) "H" 

Ot2)(QL 
-*'H) 

HAP(1. ) ... Hölý(QA (D + H)), 

HAP(2. ) Hö ý(QA * (D, + H)) 

HTP(1. ) HO (QT * (D, + H)), 

HTP(2. ) .. Hoý)(QT (D+ H)), 
;. ý HLP(1. ) H1 )(QT * (D + H)), 

HLP(2. ) H2 (QL * (D + H)), 

. 
QT 

, 
-, k2, 

`QL1 
= kl k2. ,., with QÄ = kä - 

: 7k2 2 

The reflection and transmission coefficients are determined by the coeffi- 

cient elments of the system equations. 
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Appendix D 

An example FORTRAN program 

This program calculates the energy crossing a circle area on a surface for 

reflected wave in the case of fluid-solid-fluid combination. It is the most 
typical program. The data for pressure contours or the energy flux can 
be calculated by using the subroutine in it. The program can be used for 

different problem by changing the expression for the reflected wave. 

program asafxre 

C 

integer*4 if, i, np, l, m, loop(2), n, ni, ip, mr 

real*8 z, r, ka , kt, kl, h, d, f, pas 

real*8 a, b, tofx, fac, tofxal, para(10) 

real*8 sing, al, bi, xO , xx, dOlahf, x, dOlatf 

external fpv, sing, dOlbaf, d0latf, dOlbaz, dOlbay 

common z, r, ka, kt, kl, pas, h, d, xx 

c input data 

open(unit=7, file='nem95. dat', status='new') 

open(unit=8, file='para95. dat', status='old') 
do 500 1=1,10 

500 read(8, *) para(l) 

write(6, *) para 

read(8, *) loop(1) 

close(unit=8, status='keep') 

c initialize ". : ý. ° 

, 
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z=0. dO 

pas=para(t)/para(2) 
f=para (3) 

ka=2. dO*3.1415926d0*f/para(4) 

kt=2. dO*3.1415926d0*f/para(5) 

kl=2. dO*3.1415926d0*f/para(6) 

write(6, *) ka, kt, kl 
h=para(7) 

d=0.01dO 

if=0 

b=para(9) 

fac=para(10) 

n=loop(1) 

write (7, *") " "' as"a ̀ ref' 

c determining the singularity 

al-ka 

bl=ka+0.5d0 

xO=ka+1. d-4 

xx=sing(al, bl', xO) 

c ý-integration of the energy flux over finite interval 

do 1004=1, n 

a=b" 
b=a+f ac 
tofx=dOlbaf (dOibaz, a, b, 20, fpv, if ) 

tofxal=tofxal+tofx 
ti . 

vrite(6, *) b; ' tofx, tofxal/ka: 6 1 
vrite(7, *) b, tofx, tofxal/ka 

100 continue 

c integration, of the energy flux over semi-infinite interval 

c a=b 

C b=1. dO 

c tofx=-dOlbaf(dOlbay, a, b, 20, fpv, if) 
.,. 
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c tofxal-tofxal+tofx 

c write(6, *) b, tofx, tofxal/ka 

c write(7, *) b, tofx, tofxal/ka 

stop 

end 

c calculation of the. energy flux 

function fpv(xr) 

integer*4 nlm, lw, if, liw i, np, l, m, loop(2), n, ni, ip, mr 

parameter (1w=50000, liw=lw/4) 

integer*4 iw(liw) 

real*8 f, wo(lw), z, r, ka , kt, kl, h, pas, d, xr 

real*8 dOlamf, dOlahf, dOlajf, fc, xx 

real*8 vrr, vir, frj, fij, frm, fim, abac, reac, err, acc 

real*8 v3r, v3i, v2r, v2i, vlr, ili, ilr, i2r, i3r, i4r, i4i 

real*8 int, intrp, intip, intrv, intiv, intr, inti, al, aO 

complex*16 dir, im, ref, fp, fv, ans 

external dOlajf, dOlahf, dOlamf, dOlatf 

external vrr, vir, frm, fim, frj, fij 

common z, r, ka, kt, kl, pas, h, d, xx 

if=0 

im=dcmplx(O. dO, 1. dO) 

nlm=-1 

abac=l. d-14 

reac=l. d-3 

acc=l. d-6 

a0=0. dO 

al=ka+2. dO 

r=xr 
if=0 

c particle velocity for the reflected wave 

vir-dOlahf(aO, xx, acc, np, err, vrr, nlm, if) 
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if(if ne. 0) write(6, *) 1 

v2r=dOlahf(xx, al, acc, np, err, vrr, nlm, if) 

if(if ne. 0) write(6, *) 2 

call dOlamf(vrr, al, 1, abac, reac, v3r, err, vo, lv, iw, liw, if) 

if(ii ne. 0) write(6, *) 3 

call d0lamf(vir, aO, l, abac, reac, v3i, err, vo, lv, iv, liv, if) 

if(if ne. 0) write(6, *) 4 

intrv=v3r+v2r+vir 

intiv=v3i+v2i 

fv=dcmplx(intrv, -intiv) 

c particle' velocity for the direct wave 

ANS=(dSQRT(H**2-2. *H*Z+R**2+Z**2)*Im*KA*(H-Z)+H-Z)/(cdExp 

., `(dSQRT(H**2-2. *H*Z+R**2+Z**2)*Im*KA)*dSQRT(H**2-2. *H 

. *Z+R**2+Z**2)*(H**2-2. *H*Z+R**2+Z**2)) 

c,, pressure for the reflected wave 
if=-1., 

call dOlatf(frj, aO, ka, abac; reac, ilr, err, wo, lv, iw, liv, if) 

if(if. gt. 0.0) write(6, *) 1, err 
if=-1 

call dOlatf(fij, aO, ka, abac, reac, ili, err, wo, lw, iw, liw, if) 

if(if., gt. 0.0) write(6, *) 2, err 

if=-1 

call dOlamf(frm, al, l, abac, reac, i4r, err, wo, lw, iw, liw, if) 

if(if. gt. 0.0) write(6, *) 3, err 
if=-1 

call: d0lamf(fim, aO, 1, abac, reac, i4i, err, vo, lw, iw, liw, if) 

if(if. gt. 0.0) write(6, *) 4, err 
94 
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i2r=d01ahf(aO, xx, acc, np, err, frm, nlm, if) 

if(if. gt. 0.0) write(6, *) 5, err 
if=-1 

i3r=d01ahf(xx, al, acc, np, err, frm, nlm, if) 

if(if. gt. 0.0) write(6, *) 6, err 

intr=-iir+i2r+i3r+i4r 

inti=-iii+i2i+i3i+i4i 

fp=dcmplx(intr, inti) 

c pressure for the direct wave 

dir=cdexp(-im*ka*dsgrt((h-z)**2+r**2))/dsgrt((h-z)**2+r**2) 

c the energy flux of the reflected wave 

fpv=dimag(fp*fv*r) 

c the energy flux of the sum of the direct and reflected wave 

c fpv=dimag(fp*fv*r)+dimag(dir*dconjg(ans)*r) 

return 
END 

c calculation of real part-of the particle velocity 
function vrr(x) 

real*8 x, vrr 

complex*16 vxr 

external vxr 

vrr=dreal(vxr(x)) 

return 

end 

c calculation of imaginary part of the particle velocity 
function vir(x) 

real*8 x, vir 

complex*16 vxr 

external vxr": 

vir=dimag(vxr(x)) 
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return 

end 

c calculation of the particle velocity 
FUNCTION vxr(xk) 
integer if 

real*8 besl, xk, sl7aef, ka, kt, z, r, pas, h, d, zh, x2, kl, xx 

complex*16 k, im, ql, co, vxr 

external sl7aef, co 

common z, r, ka, kt, kl, pas, h, d, xx 

if=0 

zh=(h+z) 

im=(O. dO, 1. d0) 

k=dcmplx(xk, 0. dO) 

qi=cdsgrt(k**2-ka**2) 

x2=r*dreal(k) 

besl= s17aef(x2, if) 

vxr=co(k)*(besl*cdexp(-ql*zh))*k 

RETURN 

'end ',.,.. 

c calculation of real part of pressure contribution 
c on imaginary axis 

function frj(x, frjv, n) 
integer*4 j, n 
real*8 x(n), frjv. (n) 

complex*16 fx 

external fx 

do 100 j=1, n 
100 frjv(j)=dreal(fx(2, x(j))) 

return'. 

end 
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c calculation of imaginary part of pressure contribution-, 

c on imaginary axis . 
function fij (x, fijv, n) . 
real*8 x(n), fijv(n) 

complex*16 fx 

external fx V 
do 100 j=1, n V 
100 fijv(j)=dimag(fx(2, x(j))) 

return 

end 

c calculation of real part of pressure contribution 

c on real axis 

function frm(x) 

real*8 x, frm V. 

complex*16 fx 

external fx 

frm=dreal(fx(1, x)) 

return 

end 

c calculation of imaginary part of pressure contribution 

c on real axis 

function fim(x) 

real*8 x, fim 

complex*16 fx' 

external fx 

fim=dimag(fx(1, x)) 'V 

return 

end V. 

c calculation of pressure for'reflected. wave 
FUNCTION fx(i, xk)', ;, , °. 

integer"if , "i-;. ,.:, . .:.: 
real*8 besl, xk, sl7aef, ka, kt, z, r, pas, h; d,, zh, -kl; 'x2, xx, V 
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ýýýýýýýýý ýý, ýýýrmý, a 

complex*16 k, x1, im, ql, q2, co, fx, xxk 

external sl7aef, co 

common z, r, ka, kt, kl, pas, h, d, xx 

if=0 

zh= (h+z) 

im=(O. dO, 1. dO) 

if(i. eq. 1) goto 100 

xxk=dcmplx(0. dO, xk) 

k=cdsgrt(ka**2+xxk**2) 

ql-cdsgrt(k**2-ka**2) 

x2=r*dreal(k)ý 

best= s17aef (x2, if) 

fx=-co(k)*(besl*cdexp(-ql*zh))/im 

goto 200 

100 continue 

xxk=dcmplx(xk, 0. dO) 

k=cdsgrt(ka**2+xxk**2) 

ql=cdsgrt(k**2-ka**2) 

x2-r*dreal(k) 

besl= 'sl7aef (x2, if 

fx-co(k)*(besl*cdexp(-q1*zh)) 

200 continue -. '. 

RETURN 

end 

c _, the integration coefficient for reflection 
function co(k). :.: ý. 
real*8, h, w,, ct, pas, ca, kt, kl, ka, x, d, z, r, pa, ps, pasc 

real*8 klc, ktc; kac, dc, xk, xx 

complex*16 eda, edt, edl, - qt, ` gl, qa ,t.... r: 
complex*16-xa, xt, xl, k, -. co, nm, dn, im 

complex*16 ansl, ans2, ans3, ans4, ans5, ans6, ans7, ans8, twý x;.,.. 
common z, r,. ka,: kt, kl, pas, h, d, xx 
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pasc=pas 
dc=d 

klc=kl 

ktc=kt 

kac=ka 

im--(O. dO, 1. dO) 

qt=cdsgrt(k**2-ktc**2) 

ql=cdsgrt(k**2-klc**2) 

qa=cdsgrt(k**2-kac**2) 

eda=cdexp(-d*qa) 

edt=cdexp(-d*qt) 

edl=cdexp(-d*ql) 

ANS1=K**(-1. )*KTC**4*(-8. *QA**2*EDL**2*EDT**2*QL*QT- 

. 8. *QA**2*EDL**2*EDT**2*KTC**2-8. *QA**2*EDL**2*QL*QT+ 

. 8. *QA**2*EDL**2*KTC**2+32. *QA**2*EDL*EDT*QL*QT-8. *QA 

. **2*EDT**2*QL*QT+8. *QA**2*EDT**2*KTC**2-8. *QA**2*QL 

. *QT-8. *QA**2*KTC**2-EDL**2*EDT**2*KTC**4*PASC**2+ 

. EDL**2*KTC**4*PASC**2+EDT**2*KTC**4*PASC**2-KTC**4* 

. PASC**2)+K**(-3. )*KTC**8*(QA**2*EDL**2*EDT**2-QA**2 

. *EDL**2-QA**2*EDT**2+QA**2+EDL**2*EDT**2*KLC**2* 

. PASC**2-EDL**2*KLC**2*PASC**2-EDT**2*KLC**2*PASC**2 

+KLC**2*PASC**2) 

nm=32. *K**5*QA**2*(EDL**2*EDT**2-EDL**2-EDT**2+1'. )+ 

" 16. *K**3*QA**2*(-2. *EDL**2*EDT**2*QL*QT-3. *EDL**2* 

" EDT**2*KTC**2-EDL**2*EDT**2*KLC**2-2. *EDL**2*QL*QT+ 

3. *EDL**2*KTC***2+EDL**2*KLC**2+8. *EDL*EDT*QL*QT-2. * 

., EDT**2*QL*QT+3. *EDT**2*KTC**2+EDT**2*KLC**2-2. *QL* 

. 'QT-3. *KTC**2-KLC**2)+8. *K*QA**2*KTC**2*(4. *EDL**2* 
'. 'EDT**2*QL*QT+3. *EDL**2*EDT**2*KTC**2+2, *EDL**2*EDT 

. **2*KLC**2+4. *EDL**2*QL*QT-3. *EDL**2*KTC*2-2. *EDL 

. **2*KLC**2-16. *EDL*EDT*QL*QT+4. *EDT**2*QL*QT-3. *EDT 
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" **2*KTC**2-2. *EDT**2*KLC**2+4. *QL*QT+3. *KTC**2+2. * 

" KLC**2)+ANS1 

ANS3=K**(-3. )*KTC**8*(QA**2*EDL**2*EDT**2-QA**2*EDL 

" **2-QA**2*EDT**2+QA**2-2. *QA*EDL**2*EDT**2*QL*PASC+ 

" 2. *QA*EDL**2*QL*PASC-2. *QA*EDT**2*QL*PASC+2. *QA*QL* 

" PASC-EDL**2*EDT**2*KLC**2*PASC**2+EDL**2*KLC**2* 

PASC**2+EDT**2*KLC**2*PASC**2-KLC**2*PASC**2) 

ANS2=K**(-1. )*KTC**4*(-8. *QA**2*EDL**2*EDT**2*QL*QT- 

. 8. *QA**2*EDL**2*EDT**2*KTC**2-8. *QA**2*EDL**2*QL*QT+ 

. 8. *QA**2*EDL**2*KTC**2+32. *QA**2*EDL*EDT*QL*QT-8. *QA 

" **2*EDT**2*QL*QT+8. *QA**2*EDT**2*KTC**2-8. *QA**2*QL 

" *QT-8. *QA**2*KTC**2+8. *QA*EDL**2*EDT**2*QL*KTC**2* 

" PASC-8. *QA*EDL**2*EDT**2*QT*KLC**2*PASC-8. *QA*EDL** 

w.. 
2*QL*KTC**2*PASC-8. *QA*EDL**2*QT*KLC**2*PASC+8. *QA* 

. EDT**2*QL*KTC**2*PASC+8. *QA*EDT**2*QT*KLC**2*PASC- 

8. *QA*QL*KTC**2*PASC+8. *QA*QT*KLC**2*PASC+EDL**2*EDT 

. **2*KTC**4*PASC**2-EDL**2*KTC**4*PASC**2-EDT**2*KTC 

**4*PASC**2+KTC**4*PASC**2)+ANS3 

ANSI=8. *K*QA*KTC**2*(4. *QA*EDL**2*EDT**2*QL*QT+3. *QA 

� r. 
*EDL**2*EDT**2*KTC**2+2, *QA*EDL**2*EDT**2*KLC**2+4. 

., *QA*EDL**2*QL*QT-3. *QA*EDL**2*KTC**2-2. *QA*EDL**2* 

. KLC**2-16. *QA*EDL*EDT*QL*QT+4. *QA*EDT**2*QL*QT-3. * 

. QA*EDT**2*KTC**2-2. *QA*EDT**2*KLC**2+4. *QA*QL*QT+3ti 

. *QA*KTC**2+2. *QA*KLC**2-EDL**2*EDT**2*QL*KTC**2* 

, _. PASC+EDL**2*EDT**2*QT*KTC**2*PASC+EDL**2*QL*KTC**2* 

PASC+EDL**2*QT*KTC**2*PASC-EDT**2*QL*KTC**2*PASC- 

,.: 
EDT**2*QT*KTC**2*PASC+QL*KTC**2*PASC-QT*KTC**2*PASC 

)+ANS2 

dn=32. *K**5*QA**2*(EDL**2*EDT**2-EDL**2-EDT**2+1. )+ 

:. 16. *K**3*QA**2*(-2. *EDL**2*EDT**2*QL*QT-3. *EDL**2* 

., EDT**2*KTC**2-EDL**2*EDT**2*KLC**2-2. *EDL**2*QL*QT+ 

3. *EDL**2*KTC**2+EDL**2*KLC**2+8. *EDL*EDT*QL*QT-2. * 

177 



" EDT**2*QL*QT+3. *EDT**2*KTC**2+EDT**2*KLC**2-2. *QL* 

" QT-3. *KTC**2-KLC**2)+ANS1 

co=nm/dn 

return 

end 

c the dinominator of the integration coefficient 

function dn(xk) 

real*8 h, v, ct, pas, ca, kt, kl, ka, x, d, z, r, pa, ps, pasc 

real*8 klc, ktc, kac, dc, xk, dn, xx 

complex*16 eda, edt, edl, qt, gl, qa 

complex*16 xa, xt, xl, k, im, dnc 

complex*16 ansl, ans2, ans3, ans4, ans5, ans6, ans7, ans8 

common z, r, ka, kt, kl, pas, h, d, xx 

pasc=pas 
dc=d 

k=dcmplx(xk, 0. dO) 

klc-kl 

ktc=kt 

kac=ka 

im=(O. dO, 1. dO) 

qt=cdsgrt(k**2-ktc**2) 

ql=cdsgrt(k**2-klc**2) 

qa=cdsgrt(k**2-kac**2) 

eda=cdexp(-d*qa) 

edt=cdexp(-d*qt) 

edl=cdexp(-d*ql) 

ANS3=K**(-3. )*KTC**8*(QA**2*EDL**2*EDT**2-QA**2*EDI: '- 

**2-QA**2*EDT**2+QA**2-2. *QA*EDL**2*EDT**2*QL*PASC+"y'- 

. 2. *QA*EDL**2*QL*PASC-2. *QA*EDT**2*QL*PASC+2. *QA*QL*° "' 

. PASC-EDL**2*EDT**2*KLC**2*PASC**2+EDL**2*KLC**2*w 

. PASC**2+EDT**2*KLC**2*PASC**2-KLC**2*PASC**2)' = 
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ANS2=K**(-1. )*KTC**4*(-8. *QA**2*EDL**2*EDT**2*QL*QT- 

. 8. *QA**2*EDL**2*EDT**2*KTC**2-8. *QA**2*EDL**2*QL*QT+ 

" 8. *QA**2*EDL**2*KTC**2+32. *QA**2*EDL*EDT*QL*QT-8. *QA 

" **2*EDT**2*QL*QT+8. *QA**2*EDT**2*KTC**2-8. *QA**2*QL 

" *QT-8. *QA**2*KTC**2+8. *QA*EDL**2*EDT**2*QL*KTC**2* 

" PASC-, 8. *QA*EDL**2*EDT**2*QT*KLC**2*PASC-8. *QA*EDL** 

" 2*QL*KTC**2*PASC-8. *QA*EDL**2*QT*KLC**2*PASC+8. *QA*_. 

. EDT**2*QL*KTC**2*PASC+8. *QA*EDT**2*QT*KLC**2*PASC- 

. 8. *QA*QL*KTC**2*PASC+8. *QA*QT*KLC**2*PASC+EDL**2*EDT 

. **2*KTC**4*PASC**2-EDL**2*KTC**4*PASC**2-EDT**2*KTC 

" **4*PASC**2+KTC**4*PASC**2)+ANS3 
ANSI=8. *K*QA*KTC**2*(4. *QA*EDL**2*EDT**2*QL*QT+3. *QA 

" *EDL**2*EDT**2*KTC**2+2. *QA*EDL**2*EDT**2*KLC**2+4. 

" *QA*EDL**2*QL*QT-3. *QA*EDL**2*KTC**2-2. *QA*EDL**2* 

" KLC**2-16. *QA*EDL*EDT*QL*QT+4. *QA*EDT**2*QL*QT-3. * 

" QA*EDT**2*KTC**2-2. *QA*EDT**2*KLC**2+4. *QA*QL*QT+3. 

. *QA*KTC**2+2. *QA*KLC**2-EDL**2*EDT**2*QL*KTC**2* 

" PASC+EDL**2*EDT**2*QT*KTC**2*PASC+EDL**2*QL*KTC**2* 

" PASC+EDL**2*QT*KTC**2*PASC-EDT**2*QL*KTC**2*PASC- 

" EDT**2*QT*KTC**2*PASC+QL*KTC**2*PASC-QT*KTC**2*PASC 

" 
)+ANS2 

dnc=32. *K**5*QA**2*(EDL**2*EDT**2-EDL**2-EDT**2+1. )+ 

" 16. *K**3*QA**2*(-2. *EDL**2*EDT**2*QL*QT-3. *EDL**2* 

" EDT**2*KTC**2-EDL**2*EDT**2*KLC**2-2. *EDL**2*QL*QT+ 

" 3. *EDL**2*KTC**2+EDL**2*KLC**2+8. *EDL*EDT*QL*QT-2. * 

. EDT**2*QL*QT+3. *EDT**2*KTC**2+EDT**2*KLC**2-2. *QL* 

QT-3. *KTC**2-KLC**2)+ANS1 

dn' dreal (dnc), 
u,,. --. A,, 

return = 

end y, 
c calculation of-, the point for singularity, 
function sing (a, b, x0),.,... 

_. >'.. .;. 
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integer if 

real*8 a, b, xx, dn, eps, zero, c05agf, sing, xO 

external c05agf, dn 

if=-1 

xx=x0 
h=1. d-6 

zero=0. dO 

eps=l. d-16 

call cO5agf(xx, h, eps, zero, dn, a, b, if) 

sing=xx 

write(6, *) xx 

return 

end 
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Appendix E 

Decompostion of the reflected wave 

term 

According to the description of spherical wave reflection above a boundary 

with a refractive index less than unity [66], a reflection wave term, e. g., 

00 ,ýsz pZx - pl Vx -1- rsl - ýý Jo(r x2 +f XI)exp(-hx) dx at z=0, (E. 1) Ii. 1 2 Psx-F Pi x-{-r -. 14 

for the reflection at a kerosene-water interface, can be considered as a com- 
bination of a reflected wave and a diffracted wave. It would be interesting 

to know some features of these two waves so we have tried to decompose the 

two waves. We assume that the reflected wave'and the diffracted wave, at 

the interface z=0, have the forms 

exp(i, s rz + h2) 

r2 + h2 
(E. 2) 

and Vz 2_ 2 Pxx - Pi ý+ ýz 

_ 

ýz Jo(r 2+ Ksi)exp(=hx) dx, 
Pzx -f- Pi2 + K1 iz 

_exp(irci r2 + h2) 

T ++ h2 
(E. 3) 

respectively. It is not difficult to see that the sum of (E. 2) and (E. 3) gives the 

reflection term' (E. 1). The calculations of the 'reflected wave' (E. 2) and the 
'diffracted wave' (E. 3), and the reflection term (E. 1) are shown in Figures 
(E. 1) to (E. 4). 
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Figure (6.6) in Section 6.2 shows that beyond the critical angle the am- 

plitude of the reflection coefficient for spherical waves oscillates about that 

for a plane wave. The amplitude of the incident wave is a linear monotonic 
decreasing function when r (or angle of incidence) increases. If we plot the 

amplitude of the reflection term (E. 1) against the angle of incidence, we can 

see that it does not behave in this way (see the curves labelled by "reflection" 

in Figures (E. 1) and (E. 3)). Therefore, the ratio of the amplitudes of the in- 

cident wave and the reflection term appears to oscillate. An explanation is 

that the interference between a reflected wave and a diffracted wave may 
determine the feature of the reflection term (E. 1) and caused the oscillation. 

. 
In Figures (E. 2) and (E. 4). the curves labelled "difference" give the phase 

difference between the 'reflected wave' (E. 2) and the 'diffracted wave' (E. 3). 

The curves of phase difference for source heights at h= 5m and h= 10m 

are quite different, there' is Only one trough in (E. 4) but there are three in 

(E. 2). From the curves for the phase difference it can be seen that the peaks 

of amplitude of the reflection term in Figures (E. 1) and (E. 3), obtained from 

(E. 1), cannot be caused by a constructive interference between the 'reflected 

wave' (E. 2) and the 'diffracted wave' (E. 3), therefore the oscillation of the 

reflection coefficients in Figure'(6.6) cannot be the result of the interference 

between the 'reflected wave' (E. 2) and the 'diffracted wave' (E. 3). 
It is difficult to judge from the information provided in Figures (E. 1) to 

(E. 4) whether the decomposition of (E. 1) by (E. 2) and (E. 3) is appropriate to 

represent the reflected and diffracted waves: An experiment may be needed 
to test the reflected wave' (E. 2) and the 'diffractedwave' (E. 3). If we could 
identify two independent waves and if these two waves have the features 

shown1n Figures (E. 1) to (E. 4) we can believe that the decomposition of 
(E. 1)by`(E. 2) and (E. 3) gives a good description of spherical wave reflection 

above 'a hard boundary: 

.. 
'. ,_-, 
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Appendix F 

A list of equipment 

1. Microphone: Bruel & Kjaer 1/2" (24 mm), type 4165. 

2. Microphone preamplifier: Bruel & Kjaer type 2639, with an adapter 
JE0002. 

3. Power supply: Bruel & Kjaer type 2807. 

4. FFT anlyser: Ono Sokki CF 910 two channel mini FFT analysis system. 

5. Power amplifier: Bruel & Kjaer type 2706. 

6. Source: 45 watt Tannoy drive unit. 

7. Step motor: Berger Lahr, RDM59/50. 

8. Motor controllor: Berger Lahr, NIP 6.1122.01. 

9. Personal computer: Zenith z-150 desktop system. 
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