
Open Research Online
The Open University’s repository of research publications
and other research outputs

System architecture metrics: an evaluation
Thesis
How to cite:

Shepperd, Martin John (1991). System architecture metrics: an evaluation. PhD thesis The Open University.

For guidance on citations see FAQs.

c© 1991 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

U i'

System Architecture Metrics:
An Evaluation

Martin John Shepperd BA, MSc

In part fufilment of the degree of Doctor of Philosophy

QP)1	 -1	 /

Computer Science

March 1991.

t1)	 : A4
L74

Hcj

To Linda

Abstract

The research described in this dissertation is a study of the application of
measurement, or metrics for software engineering. This is not in itself a new idea; the
concept of measuring software was first mooted close on twenty years ago. However,
examination of what is a considerable body of metrics work, reveals that incorporating
measurement into software engineering is rather less straightforward than one might
pre-suppose and despite the advancing years, there is still a lack of maturity.

The thesis commences with a dissection of three of the most popular metrics, namely
Haistead's software science, McCabe's cyclomatic complexity and Henry and Kafura's
information flow - all of which might be regarded as having achieved classic status.
Despite their popularity these metrics are all flawed in at least three respects. First
and foremost, in each case it is unclear exactly what is being measured: instead there
being a preponderance of such metaphysical terms as complexIty and qualIty. Second,
each metric is theoretically doubtful in that it exhibits anomalous behaviour. Third,
much of the claimed empirical support for each metric is spurious arising from poor
experimental design, and inappropriate statistical analysis. It is argued that these
problems are not misfortune but the inevitable consequence of the ad hoc and
unstructured approach of much metrics research: in particular the scant regard paid to
the role of underlying models.

This research seeks to address these problems by proposing a systematic method for
the development and evaluation of software metrics. The method is a goal directed,
combination of formal modelling techniques, and empirical ealiat%or. The met\io s
applied to the problem of developing metrics to evaluate software designs - from the
perspective of a software engineer wishing to minimise implementation difficulties,
faults and future maintenance problems. It highlights a number of weaknesses within
the original model. These are tackled in a second, more sophisticated model which is

multidimensional, that is it combines, in this case, two metrics. Both the theoretical
and empirical analysis show this model to have utility in its ability to identify hard-
to-implement and unreliable aspects of software designs. It is concluded that this
method goes some way towards the problem of introducing a little more rigour into the

development, evaluation and evolution of metrics for the software engineer.

Acknowledgments

First and foremost I would like to thank my supervisor, Professor Dane! Ince, for all his

help and guidance. He has not only been my mentor but also a good friend. I would

also like to thank Wolverhampton Polytechnic for a sabbatical year during which the

bulk of research described by this thesis was conducted. My colleagues have also

offered encouragement, useful criticisms and insightful comments. These have all

contributed to the completion of what has often appeared - to me at least - a

monumental task! Finally, I owe a deep debt of gratitude to my wife, Linda and

children Polly and Adam, who have had to put up with my all too frequent absences.
Thankyou.

111

Published Work

The following is a list of work contained within the thesis that has been published

elsewhere.

[Ince88b] Ince, D.C. Shepperd, M.J. 'System design metrics: a review and perspective.'

Proc. lEE / BCS Conf. Software Engineering '88 July 12- 15, Liverpool University, pp23-27.

1988.

[Ince89a] Ince, D.C. Shepperd, M.J. 'An empirical and theoretical analysis of an

information flow based design metric'. Proc. European Software Eng. Conf., Warwick,

England. Sept. 12-15, 1989.

[Ince89b] Ince, D.C. Shepperd, M.J. 'Quality control of software designs using duster

analysis'. Proc. EOQC/SQA Conf. Management of quality: key to the nineti. Vienna,

[Ince9Oa] Ince, D.C. Shepperd, M.J. 'The use of duster techniques and system design

metrics in software maintenance'. Proc. IEE/DTI LIKJT'90 Conf., Southampton, UK,

March 1990.

[Shep88a] Shepperd, M.J. 'A critique of cyclomatic complexity as a software metric'

Softw. Eng. 1. 3(2) pp3O-36. 1988.

[Shep88b] Shepperd, M.J. 'An evaluation of software product metrics.' Information &

Softw. Tech. 30(3) pp177-188. 1988.

[Shep89a] Shepperd, M.J. Ince, D.C. 'Metrics, outlier analysis and the software design

process'. Information & Softw. Tech. 31(2) pp91-98.1989.

[Shep89c] Shepperd, M.J. 'A metrics based tool for software design' Proc. 2nd mt. Conf.

on Softw. Eng. for Real Time Systems, The Royal Agriculture College, Cirencester, UK.

Sept. 18-20, 1989.

[Shep89d] Shepperd, M.J. 'Specification: a new perspective on design metrics'. The

Polytechnic: Wolverhampton, School of Computing and Information Technology, Technical

Report 89/01. (Also accepted for publication The Computer I.)..

EShep9Oa] Shepperd, M.J. 'An empirical study of design measurement'. The Softw. Eng.

1. Jan. 1990.

iv

[Shep9Ob] Shepperd, M.J. Ince, D.C. 'The multi-dimensional modelling and
measurement of software designs'. Proc. Annu. ACM Comp. Sci. Conf., Washington DC,
Feb.20-22, 1990.

EShep9Oc] Shepperd, M.J. 'Early life cycle metrics and software quality models',
Information & Softw. Tech. 32(4) pp3ll-3l6, 1989.

[Shep9oe] Shepperd, M.J. Ince, D.C. 'Controlling software maintainability', Proc. 2nd
European Conf. on Softw. Quality Assurance, Oslo, Norway, 1990.

[Shep9Of] Shepperd, M.J. Ince, D.C. 'The use of metrics for the early detection of
software design errors'. Proc. BCS/IEE Software Engineering 1990, Brighton, July 24-27,
1990.

V

Contents

Abstract	 1

Acknowledgments	 111

Published work
	

iv

I .INTRODUCFION
	

1
1.1 Background to the problem area	 1
1.2 Aims of the research
	

3
1.3 Some definitions	 4
1.4 Organisation of research

	
5

2. SOFTWARE METRICS REVIEWED
	

7
2.1 Metrics: a brief history	 7
2.2 Code metrics 	 9
2.3 Design metrics 	 24
2.4 Specification metrics 	 36
2.5 Summary	 40

3. PROMISES AND PROBLEMS
	

42
3.1 Why Software Science, Cycloniatic Complexity

and Information Flow?
	

42
3.2 Software science and the magical number eighteen 	 44
3.3 Decision count plus one - alias the cyclomatic number 	 49
3.4 Henry and Kafura's information flow measure 	 54
3.5 Unfulfilled promises	 64

4. A THEORETICAL FRAMEWORK FOR DESIGN MEASUREMENT
	

67
4.1 Introduction	 68
4.2 The Theory of Measurement

	
70

4.3 Modelling and Measurement
	

76
4.4 Model Evaluation	 82
4.5 A Methodology for the Development of Software Metrics	 93
4.6 Summary	 103

5. UNI-DIMENSIONAL MODEL OF SOFTWARE DESIGN
	

105
5.1 Restatement of the Problem 	 105
5.2 A Formal Model
	

108
5.3 Theoretical Model Behaviour	 124
5.4 An Empirical Analysis	 133
5.5 Evaluation of the Uni-dimensional Model

	
138

6.A MULTIDIMENSIONAL MODEL OF SOFFW A ZE DESIGN
	

141
6.1 Why multidimensional models?

	
142

6.2 Measuring module size 	 142
6.3 Validation of the "work" metric	 147

vi

6.4 The Multidimensional Model	 162
65 Summary	 166

7. CONCLUSIONS
	

167
7.1 Research Coverage	 167
7.2 Summary of Findings	 168
7.3 Suggestions for Further Work

	
174

7.4 Postscript	 175

References	 176

vii

"In truth, a good case could be made that if your knowledge is meagre and

unsatisfactory, the last thing in the world you should do is make measurements.

The chance is neglible that you will measure the right things accidentally."

George Miller

viii

Chapter One

1. INTRODUCTION

Synopsis of chapter

This chapter defines the problem area for the research described within

this doctoral thesis, namely the application of quantitative methods to
software engineering and the design of system architectures or structures,
in particular. It is argued that this is of considerable significance because
of the potential impact of poor design decisions upon a wide range of

quality factors of the system when it is finally implemented. The
software engineering background to this research is then described. This
is followed by a more detailed appraisal of the research objectives, and
the chapter concludes with some discussion of the research strategy that

will be adopted in attempting to carry out the research programme that
has been outlined.

1.1 Background to the problem area

This thesis is concerned with quantitative approaches for software engineering,
otherwise known as software metrics. Within this rather broad domain we have a
particular concern with the design of software system architectures. To cfate the main
thrust of research has been towards the measurement of code, yet it is our belief that
by the time the code is available for measurement the majority of a software prolect's
resources have been committed, so that any strategic changes ux direction become
prohibitively expensive. Therefore the emphasis of this research will be upon metrics

that be extracted, and acted upon, at earlier stages of a software project.

Since the software engineering was first proposed as a discipline in its own right in
1968 [Rand68] the primary focus of attention has moved progressively earlier and
earlier in the so-called project life cycle. For much of the 1960's and 1970's the major
debates concerned code and how to structure the control flow, for example the work of

Dijkstra [Dijk68l, Dahi et al [Dah172] and Wirth EWirt76]. More recently, interest

began to focus upon the design aspects of software, such as the work of Parnas [Parn72,

791 upon criteria for the modularisation of software and its impact upon the
maintenance characteristics of the software. Likewise, Jackson's well known boating

lake example EJack75] demonstrated the impact of design decisions upon the
maintainability of the resultant code. The conclusion was that although structured

programming techniques were important, they could not compensate for deficiencies in
the design. More recently still, attention has turned to those stages of a project before

design. These are often termed requirements igineering: the aim of which is to
transform the informal system requirements of the user or customer into a more

structured specification document to be used by the project developers. Clearly, if this

1

Chapter One

document does not accurately and unambiguously describe the required system then no
design methodology or amount of structured programming will prevent the system
being developed from failing to satisfy the user and consequently entailing costly
rewrites. These rewrites are especially costly since they imply the maximum amount
of backtracking because specification, design and coding must re-done.

Acknowledgment of the significance of these potential problems has led to the
proliferation of structured systems analysis methods [deMa79, NCC86, Ashw9O] and
also an upsurge of interest in the application of mathematics to the creation and
validation of specifications [Hoar78, Jone86, Mi1n89].

It is evident, then, that the early stages of the software development process, such as
requirements analysis and design, are critical to the successful implementation of
software systems. It is now widely recognised that errors committed and poor decisions
made, during these early stages result in the most costly and intractable problems
[Boeh8l]. Unfortunately feedback concerning such problems is usually not available

until late on in the development process, often during integration testing or later.

As has already been stated the major concern of this research is with design.
Requirements engineering is not normally regarded as a design activity because its

purpose is to ascertain and describe the users requirements, because it is aimed at what

the system should do rather than how it should be accomplished. It is the choices
concerning the how that have the most impact upon such system quality factors as
maintainability and implementation effort. In other words for a given specification -

namely the one that the user or customer wants - there are a variety of designs or
outline solutions. These various solutions cannot be considered to be equivalent in terms

of their impact upon system quality factors, despite the fact that they all implement
the same set of requirements.

Decisions during design concerning system architecture, have a special significance
upon the maintainability, reliability and ease of implementation of the resultant
software. Given the absence of immediate feedback, the designer is forced to make

decisions concerning alternative architectures with little understanding of their
consequences in terms of impact upon the characteristics of the system being developed.

Design methodologies such as Structured Design [Stev74J, Jackson Structured

Progran-uning [Jack75l and Object Oriented Design [Booc86I attempt to address the
problem of very late feedback, by the provision of guide-lines for the generation of

system structures and design evaluation criteria. The benefits of such methodologies
are considerable; however, they are not mechanistic and the evaluation criteria tend
to be qualitative and subjective, for instance module coupling and cohesion [Myer75].

Although the bulk of metrics research has been in the code arena, various design based

metrics have been proposed to address the shortcomings of current approaches to

2

Chapter One

software design. In particular there has been a search for measures that can predict
quality factors such as maintainability, whilst the software development is still at
the design stage. Another objective has been to provide objective, quantitative
evaluation criteria with which to compare competing system architectures. Though,
design metrics are potentially very important for the software engineer, there has

been limited work on the validation of design metrics and many of the findings have
been contradictory 1 . Consequently, there has been almost no take up by the software
industry.

The dichotomy between the importance of applying quantitative methods to the
design of system architecture and the absence of consistent results or widely accepted
metrics typifies the area of software measurement at present. One feels that if
software engineering is to truly become an engineering discipline, then quantitative

models and the use of measurement are imperatives. Yet at present there appears to be
little progress in this direction. This is a theme that the thesis will return to on more
than one occasion.

1.2 Aims of the research

And so to the aims of this research. As has already been stated, we wish to develop

metrics that provide useful quantitative feedback for the designer of software system
architectures. This feedback will enable the designer to better understand the
consequences of a particular design decision, to compare candidate structures, to be able
to identify critical parts of an architecture, predict potential maintenance "hot spots"

and guide design inspections to focus on potentially most troublesome areas2.
Furthermore, we recognise the importance of these design decisions upon a whole range
of quality factors, most notably ease of implementation, reliability and
maintainability.

However, this first aim leads to a number of further aims. The adjective useful has
been emphasised in foregoing discussion. This introduces the need for validation.
There is no shortage of metrics [Curt79bl; what are less in evidence though, are metrics
that have been satisfactorily evaluated and are consequently widely accepted. The
problem of conflicting empirical evidence has already been highlighted. This

suggests that although the first concern of this research is with system architecture
metrics, it will be necessary to evolve a general framework for the development of

1An example of contradictory findings concerns the design metric of Henry and Kafura [Henr8la]
known as information flow. Although Henry and Kafura report strong empirical support from their study of
the UNIX operating system, other studies have been far more r' uivocal, for instance the study of the VME
operating system by Kitchenham [Kitc88l. Unfortunately, present there does not exist an adequate
framework for comparing these studies or reconciling differing claims.

2These ideas are further developed in (Shep89al. In particular it is shown how design metrics may be
employed to successively refine a system architecture.

3

Chapter One

software metrics, evaluation and application. In a sense, it is must be a research
objective to bridge the gap that Belady identifies between the "speculators" and the
"doers" [Be1a79].

It is also important to identify from the outset areas that will not be addressed by this
research. Frequently metrics are characterised as either product or process metrics
[Shep88b]. As their name implies, the former are measurements derived from software
engineering products, for example software designs, test suites and code. These will be
the primary concern of this research. However, there is another class of measurement

that are extracted from software engineering processes, such as the number of faults
uncovered in a design inspection. Although these two classes of metrics are related,
this research will not explicitly deal with the process measurements. This is for three
reasons. First, the focus of the research is upon a product viz, a system architecture and
not upon the methods or processes that have been employed to generate that system
architecture. Second, to begin to adequately model and measure processes requires a

considerable background in cognitive psychology, and sociology. Last, for entirely
pragmatic reasons it is necessary to somewhat limit the scope of this research.

1.3 Some definitions

Before we proceed further it is probably appropriate to consider some definitions.
First, metrics. Unfortunately there is no generally agreed definition. Some workers
use the term interchangeably with measurement. Others distinguish between
measurement and metric, where metric indicates a measurement and an under'ying
model or theory. The latter is intended to emphasise the need for measurements to be
placed into a context of a theory. Although laudable in its aim there is such a
divergence between it and reality - as will be shown in subsequent chapters - that we
do not believe such a definition to be very helpful. Accordingly, within this thesis a
metric merely conveys a measurement of a software engineering product or process: no
more and no less.

It might also be useful to consider what is meant by design. In a very abstract sense
design encompasses any activity where there is an element of choice or decision
making. Without choice the activity is entirely deterministic and therefore, at least
potentially, may be fully automated. Evidently, this encompasses transforming a
requirements specification into an outline solution. It is customary, within software
engineering, to distinguish between high level and detailed design. The former is
concerned with architecture - for example the choice of modules, their interfaces and

data structures - whilst the latter is concerned with algorithms. This research is
concerned with the former because it is availal earlier in the software life cycle,
and because it is believed to have a greater impact upon implementation effort,
reliability and maintainability [Your79, Stev8Ol. One major restriction is imposed.

4

Chapter One

This research will focus upon the design of "function strong" systems (for instance a
reactor control system), as opposed to 'data strong" systems (for instance a library
catalogue system) [deMa82]. Again the reason for this is primarily a pragmatic one so
as to restrict the area of research3.

1.4 Organisation of research

The research falls into three stages. First, existing software metrics and metrics
research will be reviewed. Although, we have a particular interest in design metrics
all metrics derived from any software engineering product will be scrutinised in a
search for any underlying trends or general patterns. Second, the research will need to
devise a general framework for the development or selection of software metrics,
followed by evaluation and application. In the devising of such a framework it may
be necessary to borrow from other disciplines such as classical measurement theory,
experimental design and statistics. Third and last, will be the development and
evaluation of a measure, or set of measures, using the framework described above in
order to meet the original goal of aiding the software designer choose between
alternative system architectures in order to improve the ease of implementation; the
reliability of implementation, and the ease of maintenance. It is expected that
applying the method to an actual measurement problem - that of developing design

metrics - will yield information concerning the utility of the method itself. It is also
anticpated that the method will facilitate the process of developing design metrics,

especially the problem of metric evaluation.

This research will be of little value if all that emerges is yet more untested and
unvalidated metrics. There is evidence that there is no shortage, at present, of such
metrics [Curt79a, Shep88b]. Instead the themes of method and evaluation will recur
throughout this dissertation.

The next chapter, chapter two, reviews the current state of metrics research with
respect to specification, design and code metrics. Particular attention will be given to
the evaluation of the various metrics described. Chapter three offers a detailed

dissection of three of the most popular and influential metrics, where it is argued that
all suffer from a similar malaise, of weak underlying models and unconvincing

empirical validations. From this are drawn lessons that then form the basis of a
method for the development and evaluation of software metrics, which will be
outlined in chapter four. Chapter five will illustrate the method by the development
and evaluation of a design metric. However, the evaluation highlights various

3Subsequent to the research described within this d joral dissertation, we have commenced an
investigation into the possibility of providing data designers with quantitative feedback. Early results,
described in [lnce9Ob, ci suggest that at least some of principles for functional design are appropriate for data
modelling.

5

Chapter One

deficiencies which will be remedied in a more sophisticated model given in chapter
six. The research findings are summarised in chapter seven.

2. SOFTWARE METRICS REVIEWED

Synopsis of chapter

This chapter reviews developments in the field of software metrics from its
inception in the early seventies to the present time. Metrics can be
categorised according to the stage of software development they associated
with. Thus we have code metrics, design metrics and specification metrics.

Although our primary interest is with software designs, code measures will
also be examined and in particular the question will be asked - can any
techniques be extended back through the software development process?
Similarly with specification metrics, the question will be asked - can
measures extracted from specifications provide insights into the software
design process?

It is shown that the most substantial work is still being performed in the
code metric arena, despite increasing interest in earlier life cycle measures.
The latter probably reflects a more general trend within software
engineering, namely the relatively recent discovery of, and emphasis upon,
non-coding aspects of software systems. A number of design metrics have
been proposed but few validated. Specification metrics are at an even more
speculative stage, particularly given the absence of any standard approach
by the software industry to the issue of requirements specification1,
particularly in terms of notation. Moreover, they would seem to be
restricted to addressing size related issues since specifications deal only
with, (or ought to), the nature of the problem, not its solution. Thus this
chapter summarises the current state of the art for software metrics. This
then provides the necessary groundwork for an in depth ana'ysis of three
of the most prominent metrics in the following chapter.

2.1 Metrics: a brief history

In the early days of fifties and sixties problems of computer hardware resources tended
to be the most pressing. As a result measurement was almost universally targeted at the
issues of computational time and the memory requirements of algorithms. However, as
has often been remarked, this is no longer the case. From the seventies onwards,
developments in computer hardware have outstripped progress in software technology.
Most costs and bottle-necks are now associated" th the software parts of a computer

'For example, even such well publicised techniques as data flow diagraming and entity-relationship

analysis remain minority practises.

7

chapter Two

system [Boeh8l]. There has been a parallel movement in software metrics so that most
effort is now directed at measuring properties of the software that lead to the
consumption of human resources (e.g. programming effort, reliability etc.) rather than
the hardware resources, since these tend to be less costly.

This interest in human resources expended on the development and operation of
software systems has manifested itself as an attempt to quantify software complexity.
complexity is perceived as the "root of all evil" 2 and if only it could be reduced this
would bring about attendant reductions in all manner of software evils such as excessive
development and testing effort, unreliability, and unmaintainability. Despite the
obvious appeal of such a proposition, software complexity has proved to be a rather
intractable proposition notwithstanding the large amount of attention focused in its
direction.

From the early seventies onwards software engineers have attempted to measure
software complexity, chiefly by concentrating upon a few syntactical properties of
program code; for instance the number of tokens or the number of program decisions.
Towards the end of the seventies a growing realisation began to emerge that many of
the most costly and least desirable software attributes were the consequence of problems
during the design stage [Parn72, Jack75, deMa78, Stev8O]. It was thus a natural
progression to consider measuring properties of designs in order to identify complexity
earlier in the software life cycle. This has proved less straightforward than one might
imagine due to the lack of standardisation in either the practice of design or even use of
notation. Nevertheless a number of design metrics have been proposed.

Given the trend of increasing concern for the early stages of the software life cycle, it is
hardly surprising that in the eighties there have been some attempts to measure
specifications, although these have been targeted at project size and effort estimation
rather than complexity as such. Specifications ought only describe the problem and
therefore it is not possible to obtain insights into its solution (i.e. design and
implementation) or solution complexity. Specifications tend also to be less standardised
or structured than designs, leading to problems of comparability of measurements.
Even so, the management benefits of obtaining early predictions of system development
are such that there have been a number of metrics developed in this area.

The remainder of this chapter, surveys what may then loosely be called software
complexity metrics3, commencing with code metrics and then progressing back through

2i paraphrase St. Paul more accurately, "love of con ,lexity is the root of all evil" (1 Timothy ch. 6 v

10)!

3We will return to the matter of software complexity at a later stage, and argue that It Is nebulous to

the extent that It defies measurement, and is the source of the fruitlessness of much current work and should

8

Gtapter Two

the software life cycle. It condudes with a summary of the current state of affairs and
future prospects for software metrics.

2.2 Code metrics

2.2.1 Lines of code

The simplest software complexity metric is lines of code (LOC). The basis for LOC is
that program length can be used as a predictor of program characteristics such as
reliability and ease of maintenance. Despite, or possibly even because of, the simplicity
of this metric, it has been almost universally reviled [McCa76, deMa82, Ejio85l.
Certainly there are serious difficulties with defining what actually constitutes a line of
code, consequently modifications such as the number of source statements or machine
code instructions generated, have been advanced. None of these modifications could
exactly be described as being in vogue.

The suggestion of Bash and Hutchens [BasH83] that the LOC metric be regarded as a
baseline metric to which all other metrics be compared is appropriate. It would be
reasonable to expect an effective code metric to perform better than LOC, and so as a
minimum, LOC offers a "null hypothesis" for empirical evaluations of software metrics4.

2.2.2 Software science metrics

One of the earliest attempts to provide a code metric based on a coherent model of
software complexity was provided by the late Maurice Halstead. His influences appear
to have been extraordinarily diverse ranging from thermodynamics, Shannon's
Information Theory, cognitive psychology to reverse compilation LHals72]. This led to
the postulating of a set of general laws that Halstead saw as being analogous to natural
laws [Ha1s72,Hals77]. Initially software algorithms were the object of interest but this
rapidly burgeoned to "linguistics, psychology, or any field dealing with 'Man the
Symbol Manipulator" [Hals72]. Indeed, it was suggested that software science might
usefully be employed for such diverse fields as semantic partitioning, child
development psychology and Shakespearean analysis IHals79bll Not to be outdone, a

be dropped as a measurement objective forthwith. Neverthele ye will stick with conventional nomenclature

for the meantime so as to minimise confusion.

41n passing it is also worth noting that much empirical work [KitcSl, Henr8la, BasP84] has shown the

metric to correlate strongly with other metrios, most notably McCabe's cydomatic complexity [McCa76l as

demonstrated by Shepperd LShep88al.

9

chapter Two

recent study has even attempted to apply software science to the problem of modelling
compiler performance [Shaw89].

Halstead originally described the work as software physics [Ha1s72, Funa76, Love76,
Knif78] but this was subsequently discarded in favour of the soubriquet, software
science [Ha1s77, Fitz78b, Hals79a]. The underlying concept was that software
comprehension is a process of mental manipulation of program tokens. These tokens
can be characterised as either operators (executable program verbs such as IF, DiV and
READ) or operands (variables and constants). Thus a program can be thought of as a
continuous sequence of operators and their associated operands.

To derive the various software science metrics the following counts are required.

n1 = count of unique operators

= count of unique operands

N1 = total no. of operators

N2 = total no. of operands

The program vocabulary, n is given by:

n = n1 +
	

(1)

and the program length, N in tokens, by:

N = N1 + N2	 (2)

Halstead suggested that manipulation of each token requires its retrieval from a sort of
mental dictionary comprising the entire program vocabulary n, and that this was by
means of a binary search mechanism. Therefore, the number of mental comparisons, or
dictionary accesses, required to understand the piece of software can easily be
calculated from the size of the vocabulary and ti' total number tokens that are used.
Halstead referred to this as the program volume, V which is:

10

OLapter Two

V = N * log2 .n	 (3)

Since the same program may be implemented in a number of different ways, it is useful
to have a measure of a particular implementation's volume relative to some theoretical
optimum solution with the minimum possible volume, V. Halstead termed this the
program level L:

L=V*/V	 (4)

Since an increasing difficulty metric, D seems to be intuitively more satisfying than a
diminishing level metric, many investigators have added a difficulty metric D which is
the inverse of program level:

D =]./L	 (5)

In practice it is virtually impossible to derive the potential volume V", so an estimate of
the program level, AL is used:

'L(2/n1)	 *	 (n2/N2)
	

(6)

Similarly, the estimated difficulty metric, AD is:

'D=(n1/2)	 * (N2/n2)
	

(7)

The rationale for equation 7 is as follows. The term (n1 /2) will increase with the use of
additional operators thereby adding to the complexity of the code. The divisor is 2 on
the basis that this is the minimum possible number of operators to implement a
particular algorithm (i.e. a function call and a function argument grouping operator)5.

5This justification for estimated difficulty, 'D Is restricted to those programming languages which

support procedure invocation and parameter passing. As consequence software science has a more limited

domain than some of Its proponents claim (e.g. [Knij78]).

11

Oapter Two

The other term (N2/n2) represents the average use of an operand. The more frequently
an operand is referenced the greater the complexity.

Since the program difficulty gives the number of elementary mental discriminations
(EMD) per comparison, and the volume gives the total number of comparisons, it is
possible to derive the effort, E which is required to manipulate the program in terms of
EMD's

E=D*V	 (8)

Halsteads model assumes that programmers make a constant number of these EMD's
per second. By adapting work by the psychologist Stroud [Stroó6I he suggested that the
time, T required to generate the program could be calculated by using the Stroud
number, S which is the number of EMD's the brain is able to make per second 6. Stroud
estimated S to lie within the range 5 to 20. Halstead by using a value of S=18 was able
to predict T in seconds as:

TE/18	 (9)

The model also provides an equation for estimating program length, N" using only the
counts n1 and n2 which might be available prior to completion of coding. Thus we
have:

= n1 .log2 .n1 + n2 .log2 .n2	(10)

Halstead further hypothesised that for a given programming language, that as the
potential volume V increases, the program level L will decrease in such a way that V*.L
remains invariant. Using this invariant, which he termed or the language level, values
were obtained of 1.53 for PL/1, 1.21 for ALGOL, 1.14 for Fortran and 0.88 for CDC
assembly language [Ha1s77]. Subsequent attempts to establish language levels for other
programming languages have been wide ranging: for instance ESS [Bail8ll, Cobol
[Shen8l, Zweb79], PL/S and BAL [Smit8O], RPG [Hart8O] and APL [Zweb79, Laur82]. A

6Unfortunately, Haistead took Stroud's work rather out of context and In addition adopted a value

that lies very much at the top of the range of values suggested by Stroud. This theme will be further

developed In the critique of Halstead's work In the next chapter.

12

chapter Two

feature apparent in all the above investigations is that, with the exception of A1'L which
produced a surprisingly low lambda value, the results are approximately in accord with
one's intuitive expectations. However, more careful analysis reveals large variances and
a strong inverse dependence on length [Hame82, Shen83]. Christensen et a! [Chris8l]
suggest that what is being captured is not the language level so much as the use of the
language by the program. These doubts have not discouraged continuing efforts as
exemplified by Kokol on spreadsheet software [Koko89l, Konstam and Wood for APL
[Kons85] and Wang [Wang84b] for Pascal and Ada.

Early empirical validations of software science produced seemingly 7 very high
correlations between predicted and actual results. Studies related software science
measures to development time [Gord76, Ha1s77], incidence of software bugs [Funa76],
program recall [Love77l and program quality [Love76, Elsh76, Fitz78a]. Ottenstein
[Otte76l even reported the successful application of software science counts to the
problem of detecting student plagiarism. Extending the educational application
possibilities still further Shen investigated the relationship between software science and
student grades [Shen79]. Gordon [Gord79] suggested that the effort metric, E could be
used as an indicator of good programming practice, on the basis that E was reduced 40
times out of 46 examples of 'improved' programs culled from Kernighan and Plauger's
classic work on programming style [Kern78]. Elshoff [Elsh76] analysed some
commercial PL/1 programs, and although encountered some difficulties with the
counting rules, particularly with regard to constants, again reported positive results.

Unfortunately, subsequent work has been rather more equivocal. The first intimation of
problems with the software science came in the late 1970's when researchers [Fitz78b]
attempted to apply the metrics to two sets of independently published experimental
data due to Gould of program debugging [Gou175] and Weissman of program
comprehension [Weis74]. In both cases correlations were weaker than previously
reported or not statistically significant. Another study by Bowen [Bowe78] found only a
modest correlation between the level metric (the inverse of difficulty) and number of
errors detected in 75 modules. Particularly disconcerting was the fact that it was out
performed by the much scorned LOC metric.

A pattern of confusion began to emerge as it became apparent that some researchers had
been correlating errors with effort [Funa76, Fitz78b] and others with difficulty or level
[Bowe78, Feue79, Smit8Ol. It was also suggested that the cause of the less than
stratospheric correlations between E and bugs reported for three large software systems

7careful review of the methods and analytical techniques employed, for example by [HameS2J,

suggest that these correlations are less significant than was first believed - a point that will be returned to in

the next chapter.

13

chapter Two

[Fitz78b] were the consequence of poor data collection 8, in that the researchers did not
have access to data on faults detected during development. It is not clear why this
should have such a large bearing upon the application of the software science model.

Three large controlled experiments carried out by Curtis et a! [Curt79a, Curt79c] and
Sylvia Shepherd et a! [Shep79l attempted to relate the software science E measure to the
time taken to carry out a simple maintenance task. Initial results were extremely
discouraging in two ways. First correlations were low or not statistically significant.
Second LOC out performed the E measure in almost all cases. Variations in subject
ability was held to be a factor for the poor performance of the software science model
coupled with an insufficient range of metric values 9. These were rectified in the third
experiment and more significant relationships observed between E and maintenance
effort. However, it was also clear that E was more strongly correlated with LOC and
than with maintenance time. Again LOC out performed E when the analysis was
carried out at the module rather than the program level. Thus Curtis et a! concluded

that software science performs better as program size increases. They also snested
that the relationship was probably curvilinear. This was in marked contrast to both
earlier work which ignored modulansation and Halstead's model which is based upon
linear relationships.

Much of the experimental difficulty that Curtis et a! [Curt79a,c] experienced was due to
their awareness that many other factors significantly affected the maintenance process.
In their discussion they mention programmer ability, type of maintenance change and
explicitly adopt Thayer's classification of software bugs [Thay78], the context of the bug
and the control structure of the program. It would not be difficult to considerably
extend this list. Unfortunately none of these factors are incorporated into the software
science model. At the very least, one is drawn to the conclusion that the analogy that
Halstead draws between his work and the laws of thermodynamics [Ha1s72] is an
inexact one.

In contradiction to the findings of Curtis et a!, Woodfield [Wood8O] found that the E
metric had a marked tendency to over-predict for large software systems. These
findings were corroborated by a study of 197 PL/1 programs where in 80% of the cases
the length equation over-estimated size [Feue8O]. However, Woodfield found that
decomposing larger programs into small "logical chunks" improved the performance of
E, although still only marginally better than LOC [Wood8la]. Another large study of
over 400 modules by Basili and Phillips [BasP8l] found that E did not predict
development time significantly better than LOC. Yet another study of program

8NJ1s to add, data collection problems do not significantly effect high correlations!

9one might argue that a metric that fails to adequately discriminate between programs with dearly

distinct charact&istica is of reduced utility.

14

Giapter Two

comprehension [Wood8lbl found that for small scale software, there was a correlation
between E and program recall. A more recent study still [BasS83l, reports that LOC out
performs E for effort and error prediction.

However, to add to this already confused situation many of the early studies have been
questioned, both on statistical and experimental grounds IListS2, Hame82J. Card and
Agresti [Card87] also indicate that correlations based on the length equation (10) cannot
be accepted because this equation is mathematically dependent upon actual length10.

What may be conduded from the above empirical work? Disarray seems to be the most
predominant feature. Nevertheless, certain patterns emerge: researchers have
attempted to apply the software science model to a very large range of software
products and processes; there seems to be little standardisation even in such
fundamental areas as counting n 1 and n2 and this alone must account for some of the
variations in results [E1sh78, Fits8O, Chri8l, Sa1t82, Cont82]. The measure that has
attracted most attention is the effort metric, E (equation 8). This is often used as a

predictor of such product characteristics as maintainability and reliability. The curious
feature concerning E is its consistently high correlation with the more traditional metrics
such as ELOC and LOC.

Software science has attracted much interest because it was the first attempt to provide a
coherent framework within which software could be measured. It has the advantage
that since it deals with tokens it is fairly language independent. Moreover, the basic
inputs n1, n2, N1 and N2 may all be easily extracted automatically".

Serious criticisms that have been levelled at software science, which will be examined in
more detail in the next chapter, however, its role would at present appear to be very
limited, especially as a universal model of program complexity. Despite these
difficulties there remains widespread and uncritical reference to it, even in the recent
literature and text books (e.g. [Arth85 ,Prat88, Schn88J. Nevertheless, given the absence
of a clear pattern in the empirical analyses described above, one must have misgivings
concerning the model and or its application. Possibly the most important legacy of
software science is in the way that it attempts to provide a coherent and explicit model
of program complexity, as a framework within which to measure and make
interpretations. Conte et al [Cont86] provide a fitting epitaph for Halstead's work:

I'he way that Halstead defines estimated length 1" ensures that there must exist a positive

correlation between size and NA.

Vide the 200 line Pascal program given by deMarco [deMa82] to obtain the basic software science

counts. The cynic might suggest that this might be a major contributor to the extraordinary level of interest In

empirical investigations of software sdence.

15

chapter Two

"Haistead's work was instrumental in making metric studies an issue with

computer scientists. Although the model of the programming process he proposed

has limited empirical support, his work suggested that it was possible to apply a

rigourous scientific approach to the programming process which for years had been

considered an art."

2.2.3 Graph theoretic measures

An alternative but equally influential code metric is McCabe's cyclomatic complexity
[McCa76]. His objectives were twofold: first to predict the effort of testing the software
and thereby identify appropriate decompositions of the software into modules; second
to predict complexity related characteristics of the resultant software.

Given the increasing costs of software development, McCabe stated that was required
was a:

"mathematical technique that will provide a quantitative basis for rtwdcdarisation

and allow us to identify software modules that will be difficult to test or maintain".

fMcCa76J

Use of a lines of code (LOC) metric was deemed to be an inadequate approach, since
McCabe could see no obvious relationship between length and module complexity.
Instead, he suggested that the number of control paths, through a module, would be a
better indicator, particularly as he perceived a strong relationship with testing effort.
Furthermore, much of the work on "structured programming" in early 1970's
emphasised program control flow structures [Dijk72, Dahl72].

The model that McCabe adopted was to view software as a directed graph with edges
representing the flow of control and nodes as statements. In effect this is a simplified
flow chart. complexity was hypothesised as being related to control flow complexity,
that is the more loops, jumps and selections the program contains the more complex it is
to understand.

The control flow of any procedural piece of software can be depicted as a directed
graph, by treating each node as an executable statement (or group of statements where
the flow of control is sequential) and the edges as flow of control between them. The
cyclomatic complexity of a graph indicates the number of basic paths within a graph,

16

chapter Two

which when taken in combination can be used to generate all possible paths12 through
the graph or module.

BEGIN
REPEAT

Wrjtelrt ('Enter a number or zero to stop');
readln (num);

IF num 0>THEN
Writelrt (num.'is positive')

ELSE
Ifnum O<THEN
writein (num,'is negative);

UNTIL num 0 END
END

T

tread In

>0

write In

= 12-9.1

Figure 2.1: Derivation of v(G) from a program flow graph

The cyclomatic complexity of a strongly connected graph is equivalent to the number of
its basic paths (i.e. linearly independent circuits). These in combination can be used to
generate all possible paths through the graph or module. Thus McCabe decided to use
cyclomatic complexity as a complexity metric.

The cydomatic complexity, v of a graph C is:

v(G)	 e - n + 1	 (11)

where e is the number of edges and n is the number of nodes.

The graph is strongly connected if any node can be reached from any other node. Figure
2.1 shows an example derivation of cyclomatic complexity from a simple program and
its related control graph. In this example, an additional edge (linking the END to the
BEGIN node) has been added in order to make each node reachable. Where a program
is made up of a number of modules this is modelled by a graph comprising a set of
components, one for each module. For such a gnh, S the cyclomatic complexity is:

12The cydomatic number of a program flow graph is utilised instead of a simple count of unique

paths because the latter Is non-denumerable whenever the flowgraph contains a backwards branch.

17

chapter Two

v(S) = e - n + 2p	 (12)

where: p = number of connected components.

As McCabe observed the calculation reduces to a simple count of Boolean conditions
plus one. He argued that since a compound condition, for example:

IF X < 1 AND Y < 2 THEN

was a thinly disguised nested IF, each condition should contribute to module
complexity, rather than merely counting predicates. Likewise, a case statement is
viewed as a multiple if statement (i.e. it contributes n-I to v(G) where n is the number of
cases).

McCabe saw a practical application of the metric in using it to provide an upper limit to
module complexity, beyond which a module should be sub-divided into simpler
components. A value of v(G) = 10 was suggested although it was accepted that in
certain situations, notably large case structures, the limit might be relaxed.

As per the software science metrics, McCabes ideas attracted a great deal of interest, and
again due to the comparative simplicity of calculating the metric many empirical
validations have been performed. His original validation [McCa76l was based upon
conformance of the metric to intuitive judgments of program complexity, and in fact this
approach was continued by many of the other early vaIidatiots and extensions (e.g.
EMyer77, Hans78]). Others adopted a more objective approach to empirical validation.

Results ranged widely13. Henry and Kafura, who whilst studying the UND(operating
system, found a correlation in excess of 0.95 between v(G) and reported changes' 5 . This
is in complete contrast to other studies that report correlations as low as -0.09 between
the metric and bug location EBowe78II. Studies adopted varying interpretations as to
exactly what v(G) was measuring or predicting. Basili and Perricone [BasP83l dealt with
error density whereas Kitchenham [Kitc8I] and Shen et al [Shen85] examined absolute
error counts. Basili [BasS83l, in yet another study, attempted to relate v(G) to
programming effort, as did Gaffney [Gaff79]. Sylvia Sheppard EShep79] correlated v(G)

t3Table 3.2 summarises these empirical results in the next chapter.

'kJNIX is a trademark of somebody somewhere or other!

t5This result must be treated with some caution as Henry and Kafura appear to have ignored all error

free, and the four largest, modules.

18

ELSE

IF X= O AND Y>1 THEN

ELSE...;

IF X=O THEN

IF Y>1 THEN

ELSE...;

v(G) = 3

Myers = (2:3)

v(G) = 3

Myers = (3:3)

Chapter Two

to the ability to recall a program and Sunohara et al [Suno8l] observed the relationship
with design effort. Curiously, there do not seem to have been any attempts to
investigate the links with testing effort or number of test cases used.

The counting rules for different control statements have been the subject of some
controversy. Myers [Myer77], by using certain examples, argued that complexity ought
to be viewed as an interval using the number of predicates as a lower bound and the
number of conditions as an upper bound. The basis of his argument seems to be that
compound decision statements potentially allow fewer ELSE branches to be introduced
than the equivalent predicate implemented as nested individual statements. For
example:

Myers suggests that it is "intuitively obvious" that the second example is more complex
than the first, a distinction not made by cyclomatic complexity. However, one could
present a counter example:

IF X= O AND Y>1 THEN	 v(G) = 3

ELSE...;
	 Myers = (2:3)

IF X=O THEN

IF Y>1 THEN
	

v(G) = 3
ELSE...;
	 Myers = 3:3)

Here it is not all clear that the second example is more complex than the first despite the
higher lower bound of the Myers interval. It would seem that counting ELSE branches
would be a more effective alternative. More serious, and indicative of much of the
confusion surrounding cyclomatic complexity, is the dilemma concerning what we
actually wish to measure. From the point of view of number of branches and testing
difficulty we may not wish to disagree with McCabe. Psychological complexity might
be another matter.

The treatment of case statements has also been subject to disagreement. Hansen
[Hans78] suggested that since they were easier to understand than the equivalent nested

19

chapter Two

ifs they should only contribute one to the module complexity. Other researchers
[BasR79] have suggested a log2(n) relationship where n is the number of cases.

Assuming that psychological or cognitive complexity is the target of our measurement
process, several developments have been proposed that take into account the
structuredness of the software. It is argued that to consider each decision in isolation is
an inadequate model of program complexity and that the "cognitive load" is a product of
the way in which decisions are combined. In other words a contextual view is required.
Thus one development of McCabe's metric has been to incorporate a notion of nesting
depth (e.g. [Duns8O, Harr8l, Mage8l, Piow82, Prat84]).

Other researchers have modified the cyclomatic complexity metric in order to capture
the degree to which the control flow of a piece of software is structured 16. Woodward et

al [Wood79l present their knot metric which uses the number of arc intersections of a
program flow graph as an index of structuredness. A fully structured program will
have zero knots. The authors report that in a library of Fortran subroutines,
approximately one third had zero knots, one third less than 10 knots and less than one

sixth over 20 knots. Brown and Fisher [Brow78] describe a software tool to automate the
analysis of program flow graphs in order to identify non-structured control flow
constructs. These ideas tend, however, to make the implicit assumption that the target
program is at least Fortran-esque and so they have limited applicability.

Control flow complexity has continued to exercise the minds and imaginations of many
metrics researchers. Zolnowski [Zoln8ll reports that in his study of software complexity
factors, software developers indicated that 8 out of 9 control flow measures were rated
as very important. It is therefore hardly surprising that suggestions for control flow
measures, most derived from McCabe's original work, continued apace. Schniedewind
and Hoffman [Schn79] have defined control flow metrics based on the minimum
number of paths and node reachability17. They reported significant correlations
between these measures and number of errors and time to find errors. They also noted
that these metrics out-performed both McCabe's metric and LOC. Subsequent
variations on a theme include [Iyen82, Negr83, Stet84, Sinh86]. No empirical validations
are offered. More novel is the attempt by Hall and Preiser [Hall84l to apply cyclomatic
complexity to software designs. Again no empirical support is provided. Possibly the
most imaginative of all, is the suggestion of Samson et a! [Sams87] that the number of
axioms in an algebraic specification will be equivalent to the v(G) of the resulting

16Structured is intended in the sense desaibed by Dikstra [Dijk68l and Dahi et al [DahI72] amongst

others.

17These metrics only feasible with the restriction that paths traversing a backward branch more than

on are excluded.

20

Chapter Two

imnplementation. We will return to this last suggestion when reviewing specification
metrics.

A contrasting approach to program control complexity is due to Chen [Chen78]. An

information theoretic viewpoint 18 is adopted whereby the source comprises only two

distinct characters, a sequence and a selection, but may be infinitely long, thus most19

program structures may be described. The entropy of a source is used to capture the

relationship between control flow complexity and programmer productivity. Chen

presents results that are suggestive of some empirical relationship, although he

hypothesizes that it may be quantised rather than continuous. Davis and LeBlanc

describe similar work [Davi88].

To summarise, there has been - and still is - much interest in capturing software

complexity in terms of the complexity of control flow. There have been various

approaches to measuring control flow complexity. These range from McCabe's simple

model [McCa76] which can be characterised by the number of simple decisions plus one,

to more sophisticated models that account for nesting depth (e.g. [Piow82]) or are based

upon considerations of entropy [Chen78]. Of these metrics cyclomatic complexity is the

most thoroughly validated with studies to correlate the metric with error-proneness,

maintainability, understandability and development effort have produced erratic

results. The most startling observations are the consistently high correlations with LOC

and the out-performing of v(G) by LOC in a significant number of cases [BasH83,

Curt79, Kitc82, Paig8O, Wang84a). Few of the other metrics descnbed have been

subjected to anything other than the most cursory empirical scrutiny, a point

emphasised by the review of graph theoretic metrics in [Shep88a].

More serious still is the confusion concerning what is being measured. McCabe in hi.s

original paper [McCa76] seemed to commute between the idea of measuring testing

difficulty, providing guide-lines for the modularisation of software and capturing

cognitive or psychological complexity of the software. A subsequent report [McCa82]

concentrated developing "programs that are not inherently untestable". However, by

this time the seeds of confusion had already been sown. McCabe's underlying model is

examined in more detail in the following chapter.

18Entropy is regarded as the degree of uncertainty or poteitial variety of the information source that
the channel, in this case the programmer, must handle (Shan49].

We say most advisedly since one might anticipate certain difficulties with exception handling in a
language such as Ada.

21

chapter Two

2.2.4 Hybrid metrics

As a consequence of the shortcomings of the more straightforward code based product
metrics attention has been given to combining the best aspects of existing metrics. Such
metrics are frequently termed hybrid metrics.

Harrison and Magel [Harr8l] attempt to combine Haistead's metric with a development
of McCabe's metric based on nesting level. They argue that neither metric is
individually sufficient. However, when used in combination a metric results that is
"more intuitively satisfying". No further validation is offered.

A similar approach was adopted by Oviedo [Ovie8O] who combined control flow and
data flow into a single program complexity metric. The metric was validated by
applying it to a number of 'good' and 'bad' programs published in the literature.
Although, a start, this hardly represents a serious effort at empirical validation.

Hansen [Hans78] proposed a 2-tuple of cyclomatic complexity and operand count,
(defined to be arithmetical operators, function and subroutine calls, assignments, input
and output statements and array subscription). However, the value of 2-tuples as useful
metrics, has been questioned [Bake8O,Cont86]. This is because comparisons are difficult
to make between differing measurements, for example <a,b> and <c,d> where a <c and
b > d20.

Potier et al [Poti8l] describe an intriguing method of by-passing the problem of n-tuples
by constructing a decision tree. In their study of error data, both software science and
cyclomatic measures are combined, in order to identify error prone modules. Using
non-parametric discriminant analysis they identified various threshold values for the
different metrics that were then entered into a decision tree. Curiously, program
vocabulary, n, was found to be the metric most effective at discriminating between
reliable and error prone modules and was thus placed at the top of the tree 21 . Even
when using decision trees to combine metrics into a composite approach one metric
tends to predominate, namely the one applied at the root node of the decision tree.
Consequently the approach may not always be applicable.

20More formally we do not have closure of> relation and thus we cannot generate even a weak order.

These problems are addressed in the section describing classical measurement theory in Chapter Four.

is not reported whether LOC was as examined as a potential discriminant although given the

widely discovered association between LOC and the software science measures one might suspect that it

would perform well. This also highlights a problem of using statistically driven metrics in that extremely

bizarre models may emerge - as in this case where it Is difficult to see the Impact of n upon the number of

errors other than as a proxy for module size.

22

Otapter Two

Arguably, the most extreme variant of the hybrid approach is the one put forward by
Munson and Koshgoftaar [Muns9O] in the form of their relative complexity metric. They
state that:

"unlike other metrics, the relative complexity metric combines, simultaneously, all

attribute dimensions of all complexity metrics "

The approach is entirely statistical in that it is based upon the factor analysis of an
arbitrary set of code metrics, without regard for the meaning of the base set metrics.
Consequently as they state there is no limit to the number of metrics that might be
combined. What the resultant relative complexity metric means, is a quite a different
proposition.

Despite the very real difficulties of integrating metrics, Kafura and Canning FKafC851
argue that:

"The interplay between and among the resources and factors is too subtle and fluid

to be observed accurately by a single metric or a single resource."

Basifi and Rombach make a similar argument [BasR88l in that a single metric is seldom
adequate to capture software properties of interest. This creates something of a
dilemma. The vector approach to software measurement teads, at best, to sevt-rders.
On the other hand single metrics in isolation are too simplistic to provide adequate
explanations for software engineering phenomena. This would seem to suggest that
either metrics and models should be restricted to simpler areas and facets of software
engineering. Alternatively we must start to regard software more as a system, by which
many factors and resources are integrated. Should the latter be accomplished this
would provide the basis for at least weak ordering23.

2.2.5 Code metrics summary

In short, despite attracting a considerable level of attention in the research community,
none of the code metrics described above can be regarded as particularly promising.
The recurring pattern is either one of researchers correlating metrics (applying different
counting rules) to differing software quality factors and obtaining divergent results.
Strong associations with program size measures appear to be the only invariant results.

The emphasis is mine.

ThThe reason why measurement vectors do not permit the generation of at least weak orders Is that

there is no underlying model with which to link the individual vector elements. The relationship between

measurement and metric Is explored In chapter four.

23

chapter Two

Some metrics might be useful when tailored to specific environments and problems, but
as a general means of obtaining insights into, and as a means of combating software
complexity, they have little to commend them. An important reason for this state of
affairs, is the highly simplistic urn-dimensional models of single resources that underlie
the metrics so far described. This, coupled with their late availability suggests that
attention is better directed towards design and specification metrics.

2.3 Design metrics

Unlike code metrics, design metrics can be obtained at a much earlier stage in the
software development process. If necessary, the design can be reworked in order to
avoid anticipated problems with the final product, such as high maintenance costs,
without the need to abandon code and thus waste a great deal of development effort.
Early feedback has been the main motivation for work in the field of design metrics.

Most interest has centred around structural or architectural aspects of a design, what is
sometimes termed high level design. The architecture describes the way in which the

system is divided into components, and how the components are interrelated. Some
measures also require information extracted from low level design (i.e. the internal logic
of design components, often expressed as a program design language). It is perhaps
surprising that there has been little consideration of database systems where there is
little functionality and most of the design effort is directed towards the data model. An
exception is deMarco's Bang metric [deMa82l that is derived from an entity relationship
diagram. This is described more fully in a later section.

There are two general problems that all design metrics erto'rnter: rame\ the %acs. o
sufficiently formal notations and validation difficulties. Ideally a metric should be

extracted automatically; certainly all the relevant information must be available.
However, software engineers tend to use a wide variety of notations, many of them
informal, for instance by placing excessive reliance upon natural language descriptions.
This makes it very difficult to extract meaningful measurements. To counter this, a
number of special purpose notations have been proposed [Bow183, Bean84, Ince84] or
conformance to suitable existing ones such as module hierarchy charts [Yin78, Beny79,
Chap79]. Another alternative has been to infer design or structural properties from the
resultant code [Henr8la]. Such an approach must be considered a last resort since the
advantages of early feedback are squandered.

Validation difficulties, in particular separating characteristics arising from the design
from characteristics induced at a later stage, such as coding errors and poor testing, are
in part responsible for paucity of empirical validations of design metrics. It is perhaps

24

chapter Two

unfortunate, as Belady [Be1a79] remarks that there exist two sub-cultures within the
software engineering community: the "speculators" and the "doers". As far as design
metrics are concerned the "speculators" are in a substantial majority.

Initial work [Hane72, Chan74, Myer75, Soon77] although of undoubted value, suffered
from the disadvantage that they were not fully objective. Estimates of one kind or
another are required. A crucial aspect of a metric is that the measurement is objective,
quantifiable, decidable and repeatable. Since software systems are frequently very large
it is desirable that the metric can be obtained automatically by a software tool. None of
the above are candidates for objective, automatable product metrics and will not be
considered further by this thesis.

Other more recent approaches are potentially automatable. The almost universal model
adopted is based upon the idea of system complexity formulated by the architect
Alexander [A1ex64]. This was adapted for software development in the functional
design methodology of Stevens et al [Stev74l, in particular their design evaluation
criteria of maximising module cohesion and minimising module coupling. Cohesion
may be regarded as the singleness of purpose or function of a module. A module that
plays the national anthem and solves crosswords has a low cohesion because it performs
two functions that are completely unrelated. This is generally considered to be an
undesirable property of a module, since, it will result in it being harder to understand
and more difficult to modify. In an informal sense we can predict that if a design
comprises of modules with low cohesion this will result in various undesirable
properties in the final product. Coupling is in many ways the corollary of cohesion. It is
the degree of independence of one module form another. MinImising connections
between modules makes them easier to understand and update.

Within this general framework, a number of different design metrics have been
proposed. They differ mainly in the detail of how best to capture coupling and cohesion
and from what notation they are best measured from. Metrics either capture aspects of a
design that are internal to individual modules and these we term intra-modular design
metrics, or they deal with the relationships between modules, termed inter-modular
design metrics or they deal with both. The following discussion deals with each family
of design metrics in turn.

2.3.1 Intra-modular design metrics

The first family of metrics are those that purely deal with aspects of intra modular
complexity and contain two exceptions to the general model described in that they are
both extensions to Haistead's software science ESzul8l, Reyn84]. These allow the

25

Chapter Two

designer to estimate the various measures such as n 1 and n2 prior to the completion of
code in order to calculate the software science metrics. Neither have been extensively
tested and both suffer from inherent weaknesses of Halstead's model discussed earlier
in this chapter.

Another metric in the intra modular measurement family is Emerson's cohesion metric
[Emer84]. This is based on module flow graphs and variable reference sets. The aim is
to discriminate between the different types of module cohesion that Stevens et al

[Stev74] describe. However, the metric is unvalidated apart from the author's
observation that for 25 published modules [Kern78] the metric indicates high levels of
cohesion. This is justified on the basis that the modules are intended as examples of
"good design" and therefore could reasonably be expected to be highly cohesive.

All the metrics in this family are severely disadvantaged by requiring knowledge of the
internal details of each module in question. Unfortunately, this is unlikely to be
available before coding is well under way, if not complete. Although such metrics may
have a role, they cannot be considered true design metrics.

2.3.2 Inter and intra modular design metrics

The second family of design metrics are those based upon a combination of inter and
intra modular measurements. The general rationale for this approach is that the total
complexity of a design is a function of the sum of the individual complexities of each
design component and the manner in which these components interrelate.

Probably the most widely known design metric in this family is the information flow
measure [Henr79, Henr8la, Henr8lb, KafH8l, Henr84J which attempts to capture the
structural complexity of a system and to provide a specific, quantitative basis for design
decision making. Henry and Kafura considered that the prime factor determining
structural complexity was the connectivity of a module 24 to its environment.
Connections are defined as channels or information flows whereby one module can
influence another.

The following types of information flows are defined, where in each case there is a flow
from module A to B:

24Strictly speaking we should use the term procedure since In Henry and Kafura's terminology

"module" Is applied to the set of all procedures that reference a particular data structure. We will not do so in

order to avoid suggestions of specific programming language dependence and to keep to generally accepted

nomenclature.

26

chapter Two

i) local flows which may either be direct when module A passes parameters to B
(see Fig. 2.2); or indirect when A returns a value to B (see Fig. 2.3); or module C
calls A and B and passes the result value from A to B (see Fig. 2.4);

ii) global flows where module A writes to a data structure DS and B reads from DS
(see Fig. 25).

A module's connections to its environment are a function of its fan-in and fan-out. The
fan-rn of a procedure is the number of local flows that terminate at that procedure plus
the number of data structures from which information is retrieved. The fan-out is the
number of local flows that originate from a procedure plus the number of data
structures updated. The total number of input to output path combinations per
procedure is given by:

(fan-in * fan-out)	 (13)

Figure 2.2 Local information flow from module A to B

27

clapter Two

Figure 2.3: Local information flow from module A to B

Figure 2.4: Indirect local information flow from module A to 13, via C

28

Qapter Two

Figure 2.5: Global information flow from module A to B via data structure D

This is given a weighting of raising by the power of two in order to reflect their belief
that connective complexity is a non-linear function.

fan-in * fan-out)2	 (14)

This complexity is combined with the internal complexity, measured by LOC, of the
procedure to give a measure of procedure complexity as:

length * (FAN-IN * FAN-OUT) 2	(15)

A multiplicative relationship in Equation 15 was adopted between internal and
connective complexity as the two were considered to be orthogonal and because it
indicated the number of potential information flow paths through the module.

A number of applications are suggested for the information flow metric. It may be used
to identify potential problem modules by concentrating upon outliers (i.e. those with
abnormally high complexities). This technique has been used with some success in a
recent case study type validation EKafR87]. Another application described by the
authors in their original study of the UNIX operating system [Henr84] is the analysis of
metric trends between levels in a calling hierarchy of procedures. A sharp increase in

29

Oapter Two

complexity between levels indicates design problems, possibly a missing level of

abstraction.

The type of problem that a designer might hope to identify include:

i) lack of cohesion (i.e. more than one function);

ii) stress points where there is a high level of "through traffic";

iii) inadequate refinement (e.g. a missing level of abstraction);

iv) overloaded data structures where there is a need to segment.

Henry and Kafura have applied their metric to the UND(operating system and have had

some success in identifying problem areas. They also found a high correlation (r=O.95)

between information flow and number of errors - measured as the number of program

changes [Henr8lbl. Interestingly, they found that the procedure length component of

the metric actually detracted from its performance and that Spearman correlation of

r=O.98 was obtained without the indusion of length in the metric. Encouragingly,

Rombach [Romb87a] was also able to report high correlations between information flow

and various aspects of maintenance work. Kafura and Reddy [KafR87] also report the

metric to be a useful predictor of effort to implement a software change. Unfortunately

two more recent studies were unable to confirm the efficacy of the metric. Kitchenham

[Kitc88] found that both LOC and decision counts were better predictors of errors and

program changes than information flow. Ince and Shepperd [Ince89a] did not find

statistically meaningful correlations between information flow and development effort

without making changes to many of Henry and Kafura's original definitions.

Relative to other design metrics information flow is well tested. The empirical results

are somewhat mixed although the work of Ince and Shepperd suggests that refinements

to the basic model produce considerably improved results in terms of the ability to

predict software quality factors of interest. A more detailed analysis of the underlying

model is presented in the next chapter.

A similar metric is proposed by Card and Agresti [Card88] which explicitly identifies

total design complexity as comprising of inter-modular or structural complexity plus the

sum of all the intra-modular or local complexity. The structural complexity is given as

the sum of the squares of individual module fan-outs. The fan-in is disregarded as

previous empirical work [Card86l showed it to be insignificant, coupled with the

problem that counting it penalises module re-use. Local complexity for a module is the

number of imported and exported variables, divided by the fan-out plus one. The

rationale for this, is that the greater the number of arguments, the greater the module

25The Kitchenham study did not use exactly the same definitions as Henry and Kafura nor were

indirect local flows of information induded.

30

Otapter Two

workload. On the other hand, the greater the module fan-out the greater the proportion
of this workload that is distributed to other modules. Local complexities are then
summed across the system.

An empirical analysis by the authors of this design metric found a correspon4ence
between their measure and a subjective design quality rating [Card88]. In addition, they
also obtained a significant correlation between the metric and error density. An attempt
to employ the local complexity metric as a means of measuring module size (in terms of
ELOC, decision count and variable count) found the metric to be almost orthogonal to
module size [Shep89d, 90b]. This is a rather disturbing discovery. Plainly much more
empirical work is required before confidence can be placed in these metrics.

Carma McClure [McCl78] argued that complexity accrued from the number of modules
that modified control variables (i.e. those program variables that make up predicates for
branching decisions). Ideally control variables would be local to the module that utilises
them. Unfortunately little evidence is proffered to support this hypothesis, other than a
case study analysis, of a smalL database management system, where some relationship
was found between the metric to subjective maintenance complexity [KafR87]. From a
design metric perspective there is the additional disadvantage that one would be
unlikely to have an accurate picture of all the control variable required, or their usage
until coding was underway thus making the metric difficult to obtain at design time.

Another widely cited metric in this family is Yau and Collofello's stability metric
[Yau78,Yau8Ol. This metric considers a design from the point of view of its resistance to
change. In a poor design a simple maintenance change will ripple through a large
number of modules. Conversely, a good design will contain the change within a single

module. Clearly, a design that is made of decoupled cohesive modules will have low
resistance to change.

Since maintenance tasks are so variable it is difficult to select a representative task with
which to measure system stability. Yau and Collofello use a fundamental task which
they argue is common to all maintenance changes; that of a modifying a single variable.
Module interface and global data structure information is required to calculate the inter-
modular propagation of change. Additionally, detailed knowledge of the internal
structure of each module is needed to calculate the intra module change propagation.
As they observe, the metric cannot be used as the sole arbiter of good design since a
single module of 20,000 LOC will contain most maintenance changes, however it may
lead to many very undesirable side effects! Although an attempt has been made to infer
the metric from purely design information [KafR87] the results were considered
unreliable. So, it would appear that to calculate the worst case ripple effect, code is
required. This is a major drawback with an otherwise novel and promising approach.

31

Otapter Two

A more recent contribution, is McCabe's family of design metrics LMcCa89l which is
derived from the module calling hierarchy (inter-modular input) and psuedo-code
(intra-modular input) to describe the control flow of the module invocations. The
approach is graph theoretic in an analogous fashion to their better known code metric
counterpart, viz. cyclomatic complexity [McCa76]. The metrics are module design
complexity, design26 complexity and integration complexity. Each of these will be
briefly reviewed.

Module design complexity, iv is based upon the internal logic of a module as might be
captured by pseudo-code. This can be depicted as a flow graph in the usual manner
[McCa76, Fent85] and then reduced in order to arrive at a graph of only those paths that
contain module invocations. Module design complexity is deemed to be the cyclomatic
number of such a reduced graph. Consequently, all leaf modules will have an iv value
of one.

Design complexity, S0 is the sum of the module design complexities for a module and all
descendants, excepting modules that are called from more than one point within the
design in which case the module is only counted once.

Integration complexity is the basis set of module invocation subtrees. McCabe uses the
basis set, rather than the actual number of distinct subtrees, since unbounded iterative
module invocations lead to the latter being uncountable. His argument is - as per the
code metric - that the basis set when taken in linear combination, can yield all possible
subtrees and therefore is a good indicator of testing effort, or in this case integration
testing effort.

It would seem that McCabe's main concern is that of testing and to that end he offers a
"structured integration testing methodology" [McCa89]. Unfortunately this leaves one a
little unclear as to the meaning of the design metric, S. The approach is interesting in
that it recognises that software testing effort is strongly dependent on structural features
but is possibly handicapped by the need for intra-modular information, thus delaying its
availability. The absence of any published empirical support for the metrics must also
regarded as disappointing.

2.33 Inter-modular design metrics

The third and final family of design metrics are those based purely upon inter-modular
considerations. The simplest of these is a metric based on graph impurity of Yin and
Winchester [Yin78]. Their complexity metric is based upon the design notation of a

refers to the complexity of the overall design.

32

L0

L1

L2

Gapter Two

module hierarchy chart extended to include global data structure access information.
This is treated as a graph (or network). Design complexity is deemed to be a function of
how far the network deparls from a pure tree (i.e. its graph impurity). Essentially this is
measuring the complexity of connections within the design and giving a crude
indication of module coupling. Figure 2.6 illustrates a simple example.

C t 1	A'1 -	 (16)

where: N'1 = no. of modules and data structures from Lj to Lj
T = no. of module and data structure tree arcs from L j to Lj (i.e. N'1 -1)
A' = no. of module and data structure network arcs from Lj to Lj

= 9

T; = 8

= 10

= 10 - 8 = 2

Figure 2.6: An example of a graph impurity measurement

Although the designer should seek to minimise C'1 where a choice exists, this should not
override the re-use of components where possible. The other application of this metric
is to examine trends between levels within a hierarchy, as with the Henry and Kafura
information flow metric previously described.

A validation of C' against two projects at the Hughes Corporation produced a high
positive correlation between the metric and the error count. As Yin and Winchester
note, this was in part due to the effect of a small number of outlier modules on the
correlation. Once these were removed a correlation coefficient of r=O.52 was obtained

33

Chapter Two

indicating that the metric has some statistical significance but cannot fully "explain"
the error count. In many ways this is not surprising since the metric is based on a very
naive model that departure from a pure tree structure is the major determinant of
complexity. In the author's opinion it is more likely that the graph impurity is a proxy
for size (i.e. strongly dependent) particularly since the metric is not normalised for size,
and therefore what is being observed is an example of cross correlation.

Another graph based metric was proposed by Benyon-Tiriker [Beny79l after his study of
a large commercial software system written in Algol. Again modules are represented
by nodes and calls by edges. In this case the assumption is made that if a module is
invoked more than once this need not be reflected by the metric because the module, or
sub-graph representing it, has already been analysed and presumably understood.
Thus the graph of what Benyon-Tiriker called distinct nodes will in fact be a pure tree
since whenever a module is invoked for a second or nth time this will not be
incorporated into the graph.

Complexity, C for a whole program is given by;

m	 m

Ca = C	 /	 rr)	 (17)

1	 1

where:	 = no. of distinct nodes at level r

m = maximum depth of the tree

a = power law index

Complexity is a function of the depth and breadth of the tree. Benyon-Tinker's study

lead him to suggest that values for a, the power law index, of in the range 2-3.

The empirical evidence to support this metric is based upon subjective evaluation.
Benyon-Tinker used the metric to identify potentially problematic modules which he
then found corresponded well with the user's subjective, but well informed judgement.
Although this constitutes a basis for validation, it cannot be considered sufficient in its

own right.

Adopting, a slightly different approach, though still based upon inter-modular
measurements, is Chapin's Q metric EChap79]. In this case he not only identifies the
inputs and outputs to each module (i.e. the module interface) but also attempts to give a
weighting factor dependent on the purpose of the data since this influences the

complexity of the module interface. The following types of data are identified:

34

OLapter Two

'P data - inputs required for processing;
'M' data - inputs that are modified by the execution of the module;
'C data - inputs that control decisions or selections;
'T data - through data that is transmitted unchanged.

Module complexity is calculated as:

= (3Cm + 2Mm +	 + O.5Tm) . (1 + (E/3) 2)	 (18)

where E is a term that represents the additional complexity that accrues when a module
communicates with another and is invoked iteratively. E is zero except where a module
contains the exit test for an iteratively invoked module. For each 'C data item that is
imported that is used in the iteration exit test E is incremented by one if it originates
from a subordinate module and two if it is from a non-subordinate module.

Although the different weights are rather arbitrary they could be refined by careful
empirical analysis. The main problem is the usual one of a complete lack of empirical
validation, coupled with the difficulty of automation since the interface data has to be
categonsed manually.

Beane et al [Bean84] also propose a metric based upon module connections and
additionally suggest a design notation from which the necessaiy measurements may be
culled.. This is a special purpose design language called Component Interaction
Language (CIL) which can be used to describe the structural aspects of a design in a
hierarchical manner.

From this information a number of metrics can be generated at an early stage of the
software life cycle in order to alert the designer of possible problem areas, to make
comparisons between alternative designs and to predict development effort. Beane et al

suggest two metrics that are of particular interest:

i) stress point metric - the no. of direct connections to a part divided by the
mean no. of connections per part, the direction of the connection being
ignored;

ii) path metric - sum of all path lengths through the system or area of
interest including indirect connections.

35

Chapter Two

A small, subjective case study type validation suggested that these two metrics can be
applied in conjunction with a variety of design methodologies, due to the design
independent notation CIL. The most convincing use was found to be as an evaluation
tool, comparing alternative design solutions.

An approach rather different from the previous metrics is based upon an exploratory
data analysis technique known as cluster analysis. The technique attempts to group
objects together on the basis of similarity so that most similar objects will grouped
together first. The output is usually a dendogram or cluster tree which reveals the order
of clustering. A number of researchers [Bela8l, Hutc85, SelbS8, Ince89b, Ince9Oa] have
tried to harness this method towards the generation of some idealised module hierarchy
based upon the principle of grouping the most similar modules closest together, within
the module hierarchy. The usual indicator of similarity has been taken to be module
couplings or shared information flows. Although, this is an intriguing idea there is a
long way to go before this class of metric reaches maturity. Possibly the greatest
stumbling block is that the shape of the dendogram is highly dependant upon the choice
of clustering algorithm.

The validity of concentrating upon inter modular measures and connections in
particular has been considerably strengthened by the empirical work of Troy and
Zweben [Troy8l]. Their study of 73 designs and associated implementations indicated
that those measures related to module coupling were most effective at predicting the
incidence of errors. These measures included the number and type of module
interconnection and the number of global data structure references, and in fact form the
basis of the majority of design metrics reviewed above.

2.4 Specification metrics

The benefits of design metrics, in that they provide early feedback about the developing
software product, are even more evident for metrics derived from the product
specifications. Correspondingly, the difficulties are greater and research in this field is
still scarce.

Albrecht [A1br83] suggests a simple metric based upon a count of "function points". A
specification is analysed to identify the different functions described, and these are
given weightings according to the relative complexity of the function type. For example,
interfacing with external systems is considered to be more complex than processing
queries. The total number of function points for a specification is given by:

(4*1) + (5*0) + (4*E) + (7*) + (10*F) 	 (19)

36

Otapter Two

where: I = no. of external input types
0= no. of external output types
E = no. of enquiries
P no. of external files (program interfaces)
F = no. of internal ifies (i.e. those generated, used and maintained by the
program).

Document

Document name.
dictionary name

How may words
processed?

Spelling
checker

Dictionary

Misspelt word
report -

2 input types	 =(4*2)+(5*1)+(q*1)+(7*2)
output type

1 enquiry	 = 31 function points
2 external files (DOC. ,DICT.)

Figure 2.7: Function point analysis of a simple spelling checker

Consider the example of a simple spelling checker in Figure 2.7. From the following
simple specification the function point metric can be extracted. The checker accepts a
document file as input and lists all the words that are not contained in a dictionary ifie.
The user is able to query the number of words processed whilst the checking is in
progress, a feature which is useful when long documents are being examined. It is
important to avoid counting items twice, thus in this example DICT is not treated as an
input type because it is accounted for as an external file.

Albrecht suggests that an adjustment of up to plus or minus 5% can be made according
to complexity. Such "fudge factors" can be something of a two edged sword if not
carefully controlled. This is because they can permit excessive subjectivity and post hoc

adjustments or rationalisation to creep into the metric.

The function point metric is usually used as a predictor of development effort, although
there seems no reason in principle why it could not be used to predict characteristics of

37

Otapter Two

the final software. For useful predictions to be made, function points require calibration
so that function points are converted into units of interest (e.g. person days). Since
organisations and software development environments differ so widely this may well be
best done at a local level [Keme87]. Syrnons describes some modifications to the basic
approach [Sym881.

Function points have been used very successful at a number of different sites [Behr83J,
and once calibrated found to be able to "explain" 75% of the variation in program size in
a study of 15 commercial software systems [Keme87]. There are, however, drawbacks.
The weightings in the formula are fairly arbitrary and may need considerable
modification according to the type of application, experience and ability of the software
developers, the development environment and the programming language. Identifying
functions from the specification can be a rather subjective process, particularly if
working from an informal and unstructured specification (e.g. where excessive reliance
is placed upon natural language). Low and Jeffery [Low9O] report up to 30% variation
from the mean for counting points in an experiment based upon 22 analysts working
from the same specification. Notwithstanding these difficulties the metric has been an
adopted by a considerable number of commercial organisations, although this has
tended to be most successful when structured specification techniques, such as data flow
diagraming, are employed27.

A more sophisticated approach to specification metrics is provided by DeMarco's Bang
metric [deMa82]. The metric is derived from more formal specification notations (data
flow diagrams, data dictionaries, entity relationship diagrams and state transition
diagrams) thereby simplifying the measuring process. DeMarco attempts to classify
software as either "function-strong" (e.g. a robotics system) or "data-strong" (e.g. an
information retrieval system). In order to make this distinction more objective,
deMarco suggests that it be based upon a ratio between two counts. First, the number of
relationships (R) identified in the data model, usually depicted as a an entity-
relationship diagram where the relationships are arrows linking entities or objects such
as customer or invoice. Second, the count of primitive functions (F) identified in the
data flow diagrams.

RIF < 0.7 = function-strong system
R/F ^ 15= hybrid system
R/F> 1.5 = data-strong system

The "function-strong" system metric is derived from a count of primitive functions
extracted from data flow diagrams. On its own this is unlikely to be satisfactory since

270ne of the most successful sites to use function points has been the Inland Revenue's Teiford

Development Centre, where Yourdon type systems analysis methods are enforced.

38

Oapter Two

individual functions vary markedly in size and complexity depending upon their task.
This can be compensated for by a table of weightings that allow for variations in size
and type of function. This might range from 0.3 for a function that channels data
according to some selection criteria, through 1.0 for a data management function to 2.5
for a device management function. In addition the size of a function will be dependent
upon the number of data flows into, and out of a function. Thus the size for function i, is
given by:

SIZE1 = complexity1(flows 1 * log2 (flows1))	 (20)

and system size by:

SIZE =	 SIZEj	 (21)

where F = no. of functions.

The "data-strong" system metric is calculated from the count of relationships per entity
(RE). This count is modified by the number of relationships each entity has with other
entities. This modification is non-linear so that an entity with four relationships is more
than twice that of an entity with only 2 relationships. System size is given by:

SIZE =	 modification * RE 1	 (22)

where E = no. of entities.

Hybrid systems present more of a problem. The obvious approach of combining the
"function-strong" and "data-strong" calculations is flawed due to the intrinsic difficulty
of mixing two dissimilar measures. DeMarco argues that the most satisfactory solution
is to calculate both measures but keep them separate, and partition the project into
those activities that relate to system function and to those that relate to the system
database.

Despite the intuitive appeal of deMarco's Bang metric there is no published empirical
support for this metric. This may in part be because of the need for considerable
tailoring of the metric for particular environments for which large bases of historical

39

Giapter Two

development data are required. It is also based upon specific notations for system
requirements in absence of which the Bang metric cannot be applied. Not unnaturally
the metric is also dependent upon the quality of the inputs. Unsatisfactory and
inaccurate data flow or entity-relationship diagrams inevitably lead to poor results.
Nevertheless for some software development environments, the Bang metric could offer
useful assistance.

Samson et al [Sams87l take the logical step of attempting to derive useful measurements
from OBJ, a formal specification notation, thus avoiding any of the ambiguities and
problems of less formal techniques. Studying a small set of modules they found
significant relationships between the number of equations required to define an operator
on a abstract data type and the cyclomatic complexity and length of the final
implementation. Unfortunately the very small size of the empirical validation renders it
rather unconvincing, especially when coupled to the observation that a given
specification may be expressed in a variety of ways in OBJ, although they could all be

implemented by an identical piece of software. Although the idea of measuring
formal specifications may have potential, particularly if it can be used to predict other
more useful product characteristics than the cyclomatic number, it will be limited by the
infrequent use of formal specification techniques within the software industry.

2.5 Summary

In some ways this review of current developments in software metrics has presented a
rather bleak view of what is a potentially promising and important field of software
engineering. There are several recurring themes.

First, the majority of metrics are presented in such a fashion that it is unclear exactly
what is being measured. Terms such as "complexity" and "quality" proliferate. As a
direct result, empirical evaluations have interpreted metrics in widely differing ways.
Divergent results have ensued for every metric evaluated above. Almost the only
unifying feature has been the strong statistical associations with size metrics such as
LOC.

Second the metrics presented appear to be based upon very ambitious models of
software, in that their proponents anticipated that one or two (at the most) measures

28A point vividly brought home to the author when trying to develop OBJ spedficetions in an MSDOS

environment making It necessary to "shoe horn" the specification Into a minimal set of equations. An Initial

specification comprising 65 equations was eventually reduced to 33 without making behavioural changes to
the system.

40

chapter Two

would be able to predict a wide range of software quality factors in an equally wide
range of applications and environments.

Third, the majority of early life cycle metrics have been subjected to minimal levels of
empirical analysis. The most notable exception is the information flow metric
[Henr8la], however, even in this instance the results have an ambivalence about them.

Fourth, though useful applications exist for code metrics there is little doubt that design
and specification metrics are the way to proceed. This is for three reasons. First, these
metrics provide much earlier feedback about the nature of the software product.
Second, the metric is measuring aspects of the software that are more abstract, namely
function and structure. The difficulty with code metrics is that they tend to be oriented
towards specific languages or types of applications. Third, most of the design metrics,
especially those based on measures that include inter modular aspects of complexity are
founded on much more convincing models of software complexity. certainly these
models are more in line with current thinking in software engineering.

If the present is not that all that auspicious, what of the future? There are three

emerging principles that may combine together to result in measurement becoming an
integral part of the software engineering process.

. The realisation that we should be concerned with contexts as well as the metrIcs

in order to have meaningful measurement.

• Measurable software products are not restricted to code and that there many

important benefits to be realised from metrics derived early on in the software life

cycle.

• It is insufficient to propose metrics, without supporting empirical investigation,

prefera bly from a variety of environments.

41

Chapter Three

3. PROMISES AND PROBLEMS

Geuying them faire wordes, and makyng large promises"
Anon. 1548

"MENE, MENE, TEKEL, PARSIN'

Daniel ch. 5 v. 25

Synopsis of chapter

This chapter examines in more detail the metrics of the software science

model [Ha1s77], cyclomatic complexity [McCa76] and information flow

[Henr8la]. These are selected on the basis of their popularity within the

software engineering literature, and the significance of the claims made by

their progenitors. Claimed benefits are summarised. Each metric is then

made the subject of an in-depth critique and each metric found wanting. The

chapter then goes on to argue that this not mischance, but indicative of

deeper problems of methodology employed in the field of software metrics.

It concludes by outlining the difficulties that exist for the software

metrologist, particularly with respect to design measurement. This position

is then adopted as the starting out point for the research described in this

thesis.

3.1 Why Software Science, Cyclomatic Complexity and
Information Flow?

The need for some objective measurement of software has been long acknowledged. Two

early contributions to this field are Haistead's "software science" [Hals77] and the

cyclomatic complexity approach of McCabe [McCa76]. Both metrics are based upon the

premise that software complexity is strongly related to various measurable properties of

program code. Software complexity, is in turn interpreted as being an indicator, and often

a predictor, of a variety of quality factors that might be useful to the software engineer.

Both the above measures can be regarded, with little fear of contradiction, as the

cornerstones of the work of the last fifteen years in software metrics. Even a brief survey

of the field of metrics reveals copious empirical studies of different aspects of Halstead's

42

Chapter Three

software science model, ingenious applications, inventive permutations, its integration

into more sophisticated models and more recently a growing number of critiques. It is

widely cited in texts of software engineering and to many people software science and

software metrics are synonymous.

One could make similar observations for McCabe's cyclomatic complexity measure.
Stemming from his pioneering work, and in particular application of graph theory to
software modelling, has arisen a veritable "blizzard of refinements" [Curt83J. As per the
work of Halstead the application of the cyclomatic complexity metric, and its related
offshoots, has been far ranging. It is hard to under-estimate the impact of McCabe's work
and today the creation, investigation and promulgation of graph theoretic software

measures is a major industry. Yet, surprisingly, in the view of the author, the usefulness
of cyclomatic complexity as a software metric has been allowed to pass relatively
unquestioned. Indeed it is still widely cited in textbooks [Wein84, Arth85, I'res87,
Somm89], subjected to many minor "tinkerings" [Myer77, Hans78, Wood79, lyen82, Stet84,
Sinh86] and applied as a design metric EHall84]. Yet its empirical basis would at present
appear to remarkably sparse and theoretical underpining extremely suspect.

A more recent contender is the information flow metric due to Sallie Henry and Denis
Kafura [Henr8la, Henr8lb]. This metric has achieved a great deal of prominence. The
measure may be extracted from a system design, and is thus available far earlier than
the code metrics. The authors claim it may be used for prediction and also to pin-point
weaknesses in the system architecture, thereby providing much needed feedback during
the design process. Furthermore, it is virtually the only early life cycle metric to have
received any serious empirical validation. Consequently, it is almost inevitably cited in

current papers on system design measurement1.

The three metrics viz, software science, cyclomatic complexity and information flow,
have therefore been selected as being representative of a great deal of current work in the
software metrics domain. Moreover, much additional work treats these metrics and their
underlying models as fundamental. In addition these metrics are the most widely
applied, generating a considerable amount of empirical evidence. The approach has
been adopted that since these metrics may reasonably be regarded as typical, it is
appropriate to subject them to more detailed scrutiny; and, that findings relating to these
metrics may be treated as representative of the field.

1 Even Navlakha's woefully inadequate survey of design metrics [Nav187] managed to include

reference to the work of Henry and Kafura!

43

Chapter Three

3.2 Software science and the magical number eighteen

1-lalstead's so called software science EHals77] was one of the earliest attempts to
provide a code metric based on a coherent model of software complexity. The underlying
concept was that software comprehension is a process of mental manipulation of program
tokens. These tokens can be either operators (executable program verbs such as IF, DW
and READ) or operands (variables and constants). Thus a program can be thought of as a
continuous sequence of operators and their associated operands2.

Software science attracted considerable interest because of the then novelty of measuring
software. Also, the basic inputs measurements for the metric are all easily extracted
automatically. A Pascal program to extract the software science metrics provided by
deMarco's well known text book [deMa82I is scarcely 200 lines of code in length.

Despite the initial enthusiastic reception for software science, a number of serious
problems have emerged more recently. Since Halstead published his work software
engineers have carried out a multifarious attempts at empirical validation of these
metrics, however, careful analysis of the results reveal a number of disturbing problems.
These are summarised in Table 3.1.

more detailed account of the individual software science metrics is provided in the previous

chapter.

44

Chapter Three

Corr.	 Better	 tJseful3
Study	 with LOC	 than LOC?	 Resource	 predictor?

[BasP8l]	 n.a.

[BasS83]	 n.a.

n.a.

[Bowe78]	 n.a.

n.a.

[Curt79a]	 YES

[Curt7 9c]
	

YE S

[E1sh76]	 n.a.

[Evan84]	 n.a.

[Funa76]	 n.a.

[Fitz78b]	 n.a.

[Gord76]	 n.a.

[Ha1s77]	 n.a.

[Henr8lb]
	

YE S

[Lind89]
	

YE S

[Otte7 9]
	

n.a.

(Shep7 9]
	

YES

[Wood8O]	 n.a.

=	 effort	 WEAK

NO	 bug location	 WEAK

NO	 effort	 WEAK

NO	 errors	 NO

NO	 bug location	 NO

NO	 program recall NO

YES	 bug location	 YES

n.a.	 length	 YES4

n.a.	 program style	 NO

fl.a.	 errors	 NO5

n.a.	 debugging effort NO6

n.a.	 effort	 YES

n.a.	 effort	 NO7

n.a.	 changes	 YES8

NO	 effort	 WEAK

n.a.	 debugging effort NO9

NO	 effort	 NO

n.a.	 effort	 WEAK

Table 3.1. Empirical validations of software science

First, different researchers have applied the metric to a large number of different
software attributes, ranging through ease of maintenance, number of errors, program
recall, development time, to documentation effort. This results in difficulties in

3This is rather a sub3ecdve judgment on the part of the author. A thresho'd at r2=l.4, modified b
considerations of experimental quality has been adopted. The WEAK classification is applied where the

correlation is statistically significant but does not meet the above criterion.

These findings have subsequently been criticised by Card and Agresti [Card87].

Hamer and Frewin [Hame82] reveal statistical and experimental errors in this work.

Hamer and Frewin [Hame82] reveal statistical and experimental errors in this work.

Halstead's results although superficially supportive, have been demonstrated to be flawed

[Hame82J.

8The experimental and statistical techniques employed are somewhat suspect for this study. The

section reviewing Henry and Kafura's information flow metric provides more details upon this matter.

Ottenstein was only able to obtain significant correlations by multiplying her results by the fraction

of bugs in the project reaching validation.

45

Chapter Three

comparison of work, and evaluation of the metric since it is unclear precisely what the

metric is addressing, or if it is intended as a General Model of Software which is capable

of predicting almost any aspect of software on the basis of program operand and operator

counts. Kearney et al [Kear86] outline some of the difficulties inherent in such an

approach. Factors that reduce development effort may not result in more reliable and

maintainable software.

Second, even where there is agreement as to which aspect of software engineering
Halstead's metrics are addressing, they and many of their associated empirical
validations, encounter problems of what exactly to include within the ambit of their
studies. For example, what is meant by development time? Does this include time spent
analysing requirements or time spent upon design work? Should effort expended on

documentation be included? What about the scenario where the developer lies awake at
night pondering some particularly intractable problem? These issues are not addressed

by software science because the underlying model is couched in terms too nebulous to
admit more precise definition.

Third, a seemingly simple task as counting operands and operators is fraught with
difficulties. This is because Halstead relied upon our intuitive understanding of these
concepts. Clearly this is not adequate, particularly for what is the primary input to the.

metric. This alone should cause us to treat empirical results with a certain degree of
caution. A more formal definition is required of these counts and the mapping process
from code to the metric.

Fourth, there is considerable disquiet concerning the quality of many empirical
validations and their associated statistical analyses. Hamer and Frewin [Hame82l re-
examine the experimental data from two studies [Hals77, Come79] that claim high
correlations between E and actual programming time. They report that coding time is not
proportional to E, rather that it is proportional to the square root of E. Even applying
this relationship, however, still yielded an unacceptable level of inaccuracy. They also
revealed flaws in Halstead's approach to larger systems, as on certain occasions the E
metric was obtained by calculating the metric for individual modules and summing across
the system10. On other occasions the metric was obtained by treating a system as a single

module11 . As Hamer and Frewin note that this "minor" error results in a 20-fold over-
estimate of effort required and thus casts a rather substantial shadow over the claimed
confirmation. Parenthetically, we note this type of error is unsurprising given the
extremely restricted view of software that Halstead's model embodies, being originally
concerned only with trivial FORTRAN algorithms. It is also unfortunate that the

10This Is the approach advised In what may be taken as Haistead's definitive work [Ha1s77,pp47-

48].

This is the approach adopted to analyse the Waiston and Felix data taken from 60 IBM projects,

and also presented in [Ha1s77] as a major confirmation of software science.

46

Chapter Three

majority of studies deal with very small scale programs and use non-professional
programmers and in one case a single student [Gord76].

Discrepancies have also been identified by Hamer and Frewin between the analyses of
Funami and Halstead [Funa76J and Ottenstein [Otte79J derived from the same source, viz.
Akiyama's debugging data. The Funami study used mis-reported data and incorrectly
estimated n1 and n2 but nevertheless obtained a high correlation with the actual

debugging data. By contrast, Ottenstein correctly applied the software science model and
obtained results that did not agree with the actual data, and as a consequence multiplied
her estimates by a project dependent constant in a manner entirely inconsistent with the
software science model12.

Card and Agresti [Card87] also argue that many of the impressive empirical results
supporting software science are a more apparent than real. More specifically, they show

that the high correlations found between estimated and actual program length are the
consequence of the fact that N and N" are dependent by definition, thus a positive
correlation must exist.

In addition to questionable empirical support are a number ol theoretical obecticms.
Firstly, there are serious problems with the definitions of operators (ni) and operands

(n2). Many of Haistead's counting rules appear rather arbitrary; it is not obvious why
all I/O and declarative statements should be ignored, particularly as in many languages
this can be a significant part of the total development effort. A COBOL programmer
may not be in full agreement with the view that all non PROCEDURE DWIS'ION
statements are mere "syntactic sugar" [Otte76]! The treatment of GO TO <label> as a
unique operator for each unique label, is quite inconsistent with the treatment of IF
<condition> as a single operator irrespective of the number of unique conditions ELass82].
Overloaded operators cause further problems, for example in a language like Ada. These

counting problems are significant because software science metrics are sensitive to rule
changes [BeseS2, Shen83] which is rather disturbing since it implies that results are
dependent on arbitrary decisions rather than the underlying model13.

A second area of objection are the psychological assumptions that the model makes. The
volume metric is thought suspect given the lack of empirical evidence for a binary search
mechanism, within the context of programming [Cou183]. Just as serious, given its

t2Hamer and Frewin [Hame82) present a table comparing the differing results which seem to have

excited no comment other than that both studies lent support to the Haistead's work. Clearly such support is

entirely illusory.

The dangers inherent in such a situation are well ifiustra ted by the decision of Balut et al [Ba1u74]

to treat each GO TO as a unique operator was done without justification other than it improved the

correspondence between N and Ne%. The consequence of this ad hoc decision was the introduction of new

anomalies into software science.

47

Chapter Three

potential use for software engineers, are the problems with time equation T=E/S where S
is the so called Stroud number, after the psychologist Stroud [Stro67]. Stroud stated that:

"there are approximately ten moments of psychological time for every

second of physical time, though there may be more; as many as twenty, or
less, or few as five".14

The adoption of a value of 18 for S, despite the fact that it improves correlation
coefficients [Hals77], must be regarded as arbitrary. Furthermore, Stroud's studies were
confined to sensory memory and there is no good reason to suppose that computer
programming can be treated in the same way. Indeed, there are a number of more recent
models that would suggest otherwise. Apart, from Halstead's work [Hals77I and a study
by Ottenstein [Otte79l there has been little other validation of the conjecture S=18.
Zweben and Fung [Zweb79] report difficulties with S and questioned the assumption of its
being constant.

Thirdly, the view of software as a sequence of tokens is very simplistic as it ignores
control structure, program structure and data structure. Lassez et at [Lass8l] point out that
for many programming languages operators and operands cannot be considered to be
mutually exclusive (e.g. the use of procedure calls as parameters). They dispute that

such a simple characterisation of software is an appropriate model, and argue that a
distinction should be made between operators that control flow and those that are more
functional in nature (e.g. +, Dlv, etc.). The Johnston and Lister [John8lJ study of Pascal
software and a subsequent critique [List82] of Haistead indicate that the lack of
distinction causes problems, at least in some domains.

Finally, there are difficulties that relate to the scale of the software. The original work
was concerned with small scale algorithms, for example the experiments of Gordon and
Haistead [Gord76l deal with programs of between 7 and 59 statements, as opposed to
large scale software systems, and therein lies the problem. One of the main tenets of
software engineering is that large scale software does not exhibit similar properties to
its small scale counterpart.

Although to Haistead's credit he did attempt to postulate an underlying model for
software science, many of the psychological and software engineering assumptions have
been challenged and shown to be without foundation. Moreover, what upon first sight
appears to have been an impregnable empirical position, has also been found wanting. In
particular, many experiments have been shown to be unrepresentative, produced few
data points, generated results based upon inappropriate statistical techniques and been
incapable of refuting the hypothesis under examination. It is also noteworthy that for a
significant number of studies, software science measures have performed no better than

14Stroud is quoted by Coulter ECoul83l; the emphasis is mine.

48

Chapter Three

LOC metrics. Given the serious criticisms that have been levelled at software science, its
role within software engineering would appear to be at best marginal. This is despite
widespread and uncritical reference to it in much of the literature.

3.3 Decision count plus one - alias the cyclomatic number

At about the same time as Haistead, an alternative measure of software complexity was
proposed by McCabe, in the form of cyclomatic complexity [McCa76l. McCabe was
particularly interested in the number of control flow paths through a piece of software,
since this appeared to be related to testing difficulty and to the most effective way of
dividing software into modules. Even at this juncture the dual, and not necessarily
complementary, aims of McCabe's metric should be underlined.

Programs can be represented as directed graphs to show the control flow. From such a
graph the cyclomatic complexity can be extracted which is the number of basic paths
within the graph (i.e. the minimum set of paths which can be used to construct all other
paths through the graph). The cyclornatic complexity is also eq i'ja%ert to tle mbex o
decisions plus one within a program15.

Like Halstead's software science, McCabe's metric was well received by the software
engineering community; made the subject of innumerable minor variations and empirical
studies. Also like software science, the metric has been widely interpreted as a general
measure of software complexity, able to predict any facet of software or software
development that is even remotely linked to complexity.

Unfortunately, we are confronted with an underlying model which is almost completely
vacuous. In essence, it is that almost all software properties are in some way linked to
the number of decisions contained within the program code. Careful analysis of the
model behaviour reveals anomalous behaviour, particularly with respect to
modularisation EShep88a] and widely accepted principles of good programming practice
[Evan83, Evan84l. Again, the metric relies upon our intuitive understanding of what
constitutes a decision. In practice a number of significant counting issues have been
thrown up. These illustrate the deficiency of the metric and the need for a more formal
mapping from a program to its flow graph. Furthermore, even if the empirical evidence
is accepted at face value, though it is arguable that it should not, the case for cyclomatic
complexity is remarkably unconvincing. In many cases it is out-performed by the
straightforward lines of code (LOC) metric (e.g. [Kitc8l, Wang84aD.

The extremely simplistic view of software complexity that McCabe adopted can be

challenged from a number of quarters.

15A more detailed account of how to calculate the metric is given in the previous chapter.

49

Chapter Three

Firstly, he was chiefly concerned with Fortran programs where the mapping from code to
program flow graph is well defined. This is not the case for other languages such as Ada.
For example, it is unclear how implicit exception event handling construct can be
adequately represented by flow graphs.

A second type of objection is that v = I will remain true for a linear sequence of code of any
length. Consequently the metric is insensitive to complexity contributed from linear
sequences of statements. Some workers suggest that software can be categorised as either
decision or function bound [Henr8lb]. The function bound software represents a major class
of systems for which the metric is a poor predictor.

A third difficulty is the insensitivity of cyclomatic complexity to the structuring of
software. A number of researchers [Bake8O, 0u1s79, Prat84, Sinh86J have demonstrated
that cyclomatic complexity can increase when applying generally accepted techniques to
improve program structure. Evangelist [Evan83, EvanS4] reports that the application of
only 2 out of 26 of Kernighan and Plauge?s rules of good programming style LKern78l,
invariably result in a decrease in cyclomatic complexity.

It could be argued that this argument is a specific case of a more general point that the
metric ignores the context or environment of each decision. All decisions have a uniform
weight regardless of depth of nesting or relationship with other decisions. In other
words, McCabe takes a lexical rather than structural view. Modifications have been
proposed that allow for nesting depth [Mage8l, Piow82, Prat84].

A fourth objection to cyclomatic complexity is the inconsistent behaviour when measuring
modularised software. It has been demonstrated that cyclomatic complexity increases
with the addition of extra modules but decreases with the factoring out of duplicate code
EShep88a]. All other aspects of modularity are disregarded. This is contrary to current
ideas of proper modularisation and causes problems with respect to McCabes objective of
helping the designer to select an effective software architecture.

The difficulties described so far could be termed theoretical, but the empirical evidence
is no more encouraging.

Many of the early metric validations were based merely upon intuitive notions of
complexity, for example McCabe stated that "the complexity measure v is designed to
conform to our intuitive notion of complexity". Hansen stated that a good measure of
program complexity should satisfy several criteria including that of relating
"intuitively to the psychological complexity of programs". He does not suggest that
there is a need for any objective validation. Likewise Myers [Myer77] treated intuition
as sufficient grounds for employing the metric.

50

Chapter Three

This strikes one as a rather curious approach in that if intuition is a reliable arbiter of
complexity this eliminates the need for a quantitative measure. On the other hand if
intuition cannot be relied upon, it hardly provides a reasonable basis for validation.
Clearly a more objective approach to validation is required.

The metric is vulnerable to the criticism that it ignores other aspects of software such as
data and functional complexity. It is easy to construct certain pathological examples,
however, this need not invalidate the metric if it was possible to demonstrate in practice

that the metric was a strong predictor with factors that are associated with complexity.
McCabe suggested this should include effort required to test and maintain modules.

51

Chapter Three

Corr.	 Better	 Useful16
Study	 with LOC	 than LOC?	 Resource	 predictor?

[Ba s S 83]

[BasP84]

[Bowe78)

[Curt7 9a]

[Curt79c]

[Feur79]

[Gaff79]

[Henr8 lb]'7

[Kitc8l]

[Lind89]

[Paig8O]

[Schn79]

[Shen85]

[Shep79]

[Suno8l)

[Wang84a]

[Wood8l]

[Wood79]

n.a.

n.a.

YES

n.a.

n.a.

YE S

YES

YE S

n.a.

YES

YE S

YES

YES

YES

n.a.

YES

n.a.

n.a.

YES

n.a.

YES

n.a.	 bug location

n.a.	 effort

n.a.	 error density

n.a.	 errors

n.a.	 bug location

NO	 program recall

n.a.	 bug location

n.a.	 effort

n.a.	 changes

NO	 errors

NO	 effort

NO	 testing effort

n.a.	 errors

n.a.	 errors

n.a.	 effort

n.a.	 effort

n.a.	 design effort

NO	 effort

n.a.	 effort

NO

NO

NO

WEAK

NO

NO

WEAK

YES

YES

WEAK

WEAK

WEAK

NO

NO

WEAK

YES18

YES

NO

Table 3.2. Empirical validations of cyclomatic complexity

As Table 3.2 indicates the results of various empirical validation studies do not lend
much credence to the metric. A more detailed account is given in EShep88a]. The clearest
result is the strong relationship between cyclomatic complexity and LOC. Ironically, it
was the "inadequacy' of LOC as a module complexity metric that led to McCabe
proposing cyclomatic complexity as an alternative to the more traditional LOC.

is rather a subjective judgment on the part of the author. A threshold of r 2=O.4, modified by

considerations of experimental quality has been adopted. The WEAK classification is applied where the

correlation is statistically significant but does not meet the above criterion. This is justified on the grounds that

such a coefficient of variation accounts for 40%, or less of the variation in the dependent variable.

The experimental and statistical techniques employed are somewhat suspect for this study. The

section reviewing Henry and Kafura's information flow metric provides more details upon this matter.

180n1y confirmation, rather than prediction, is possible for the reason that a code metric cannot be

made available until after the design has been completed!

52

Chapter Three

The correlation with programming effort, although erratic, is not as damning as it
appears upon first sight. Testing is only a component of programming effort, and
McCabe's original paper did not suggest that the metric be used as a predictor of software
development effort. Instead, the objective was to create a measurement to provide an
upper limit to module complexity. Thus, counting cyclomatic complexity across entire
programs, rather than individual modules, as some researchers have [Wood8la], is not
entirely appropriate. By contrast, the study of Basili and Perricone [BasP84l deals with
individual modules in which they looked for possible associations between the error rate
and module v(G). One would expect the former to increase with the latter, presumably
with a distinct step around the point of v(G) = 10. Their results suggested the complete
reverse of this proposition, and although the result is counter-intuitive 19, it throws
considerable doubt upon v(G) as a predictor of error proneness. A more meaningful study
would be to demonstrate that v(G) is strongly correlated to testing effort, in particular
unit testing, although clearly the actual testing strategy employed would have a
considerable bearing upon the outcome of the investigation.

The small size of tasks being undertaken is another problem area. Both Woodward et at

[Wood79] and Woodfield [Wood8la,bl use programs of <300 LOC which by software
engineering standards are trivial. In such situations the onus is upon the researcher to
demonstrate that results at a small scale are equally applicable for large systems. Such
a finding would be counter to current directions in software engineering.

As equation 2 indicates, v(G) is sensitive to the number of subroutines within a program,
because McCabe suggests that these should be treated as unconnected components within
the control graph. This has the bizarre result of increasing overall complexity as a
program is divided into more, presumably simpler, modules.

19A possible explanation for this finding Is that It is an artifact of using LOC for size normalisation.

A short module containing a single error will have a high error rate per unit length which can distort results if

the overall number of errors relative to modules Is not great.

53

Chapter Three

Furthermore the limited work that has already been carried out is not very encouraging.
The only possible role for cyclomatic complexity is as an intra-modular complexity
metric. Even this is made to look rather suspect by the work of Basili and Perricone. In
any case, many researchers (e.g. [Stev74]) would argue that the problem of how to
modularise a program is better resolved by considerations of inter-modular complexity.

It may well be that some find McCabe's metric "intellectually very appealing"
EWood79], but there are few grounds for its widespread adoption. Careful study of the
empirical evidence shows erratic support for the measure, but a rather more consistent
relationship with LOC. The likely explanation is that of cross correlation. Decisions
have a fairly constant incidence (for a given application domain and development

environment) and therefore the cyclomatic number is a proxy for size and so correlates
with such metrics as LOC. The theoretical basis is equally insubstantial. The
underlying model was not targeted by McCabe at any particular facet of software
engineering. Nor does it embody any notion of software structure, either at the intra-
modular or inter-modular level.

One can only conclude that the utility of cyclomatic complexity as software metric is
extremely restricted20.

3.4 Henry and Kafura's information flow measure

More recently attention has focused on metrics derived from early on in the software
lifecycle. The metric that has excited the most attention is the design measure proposed
by Sallie Henry and Denis Kafura [Henr79, 81a, 84 etc.] known as the information flow
metric21 . It is widely considered to be the classic design metric, being more widely cited
and investigated than any other design metric.

Information flow is based upon the concept that the complexity of a software module -
that is a functional design unit - is a related to the number flows or channels of

information between it and its environment. In addition, a module has an internal
complexity which they suggested might be based on module size and measured as LOC.
Thus, the model incorporates the concept of internal and external module complexity,
although in practice most attention has been given to external complexity. Such ideas

2O
could be argued that the metric might be useful where one was interested in testing effort and

intended to apply some sort of path coverage strategy. Even, this siniple application has been disputed by

Humphreys [HumpS7] due to the trade-off between decision complexity and data structure complexity, as

exemplified by the use of decision tables.

For a more detailed description of Henry and Kafura's metric refer to the previous chapter.

54

Chapter Three

are loosely derived from the design evaluation criteria of module coupling and cohesion
described by Stevens ef al [Stev74].

As has already been remarked, the information flow metric is unusual in that it has been
made subject to a number of empirical investigations. These are summarised in Table 3.3
below.

Better than	 Sig. corr. with	 Better with

Study	 Resource	 LOC?	 LOC	 Resource	 length?

(Henr8la] No. of changes	 YES

[KafC85] Coding tine + errors NO

22
[KafR87)	 Maintainability	 EQUAL

[Romb87) Modifiability	 NO

Maintainability	 YES

Comprehensibility	 YES

Locality	 YES
23

[Xitc88]	 Errors	 NO

[Shep88c] Development effort 	 YES

[Shep9Oc] Maintainability 	 NO

NO

n.a.

YES

n.a.

n.a.

n.a.

n.a.
24

WEAK

WEAK

YES

YES
	

NO

YES
	

YES

YES	 n.a.

NO
	

YES

YES
	

YES

YES
	

YES

YES
	

NO

WEAK
	

n.a.

NO
	

NO

YES
	

YES

Table 3.3. Empirical validations of information flow

It is immediately apparent that the studies are varied in nature and have produced
results that are very mixed. This is in part due to the approach of Henry and Kafura.

Just as for the other metrics previously discussed, their basic model does not indicate

what aspects of software or the software process that are being addressed, leaving as a

22The Kafura and Reddy empirical study tends to be a rather anecdotal case-study based upon

subjective assessments of maintenance complexity. Nevertheless, they report that they find strong evidence to

justify the use of structural metrics to identify potential maintenance problems.

Barbara Kitchenham's study uses a slightly modified definition of the information flow metric

which disregards indirect flows. Our empirical work suggests that this is likely to be of little consequence as

regards the final results.

In a private communication (March 1989) Barbara Kitchenham writes of her finding of a

correlation coefficient of r=O.58 between Information flow and LOC.

55

Chapter Three

default a degree of universalism that may not be fully warranted. In their original work
[Henr79, 81a1 the metric is used to predict the number of changes per procedure within the

uNIxTM operating system. These are treated as a proxy for error data 25. However, the
motivation for the work is variously reported as the high cost of software maintenartce
[Henr8laJ, the high cost of software development [Henr79,pl], improving software
reliability [Henr84J, providing quantitative guide-lines for the software designer
[Henr8lb] and controlling software complexity [Henr79,plJ. Nowhere is this confusion
more evident than in the statement of the problem in Sallie Henry's doctoral
dissertation:

"The thesis of this research is that a set of measurements based on the flow of
information connecting system components can be used to evaluate software
design and implementation"

[Henr79,p14].

The 64,000 dollar question - evaluate with respect to what - apparently has been

overlooked. Such oversights are all too typical of the "software complexity syndrome".
It is not, thus, surprising to report the varied interpretations given by differing
researchers to the model. We will now review the empirical evidence in more detail.

The empirical work, cited by Henry and Kafura to support the metric, is based upon a

change analysis of parts of the urs.11xTM operating system. Very high correlations are
reported (e.g. Spearman r=0.94, p=O.O214 [Henr8laI and Pearson's product moment26
r=0.95 [Henr8lb] between the metric and module changes 27'). A matter of slight concern is
their discovery that information flow is out-performed by McCabe's cyclomatic
complexity metric [Henr8lb]28. Given our previous discussion linking McCabe's measure
to LOC, this is highly suggestive that a simple size measure is as good or better predictor
of software changes. Closer inspection, however, raises a number of question marks over
the entire empirical study.

25Henry and Kafura argue that this is a legitimate assumption citing the work of Dunsmore and
Cannon [Duns77] and Basili and Reiter [BasR79] as precedents, although in her doctoral dissertation Henry does
concede that the "suggested changes to UNIX consist of both actual errors and some necessary performance
enhancements" [Henr79,p92].

This is in actual fact an inappropriate test given the assumption of normally distributed data
points is scarcely credible for change or error data.

Henry and Kafura rather misleadingly refer to change data as error data on a number of occasions
(e.g. [Henr8lb]). A model of maintenance work is unlikely to be isomorphic to a reliability model.

To complete a picture of confusion, Kafura gives different correlation coefficients for the same study

(KafH8l]. Reference back to the Sallie Henry's original thesis [Henr79l suggests that the Kafura paper
contains typographical errors.

56

Chapter Three

Table 3.4 is taken from Henry's doctoral thesis [Henr79,p941. This reveals that of the 165
UNIX procedures examined, 80 were modified or, as Henry would have it, contained
errors. Elsewhere [Henr79,p921 Henry states that a total of 80 changes were analysed.
Presumably the explanation for there being exactly one change per changed procedure
lies in the counting method, so that no account is given for the size of a change and the
analysis covers only one UND(update. If this is not the case, one can only comment that
it is remarkable that no procedure is subject to more than one change.

Order of	 No. of	 No. of "error"
complexity	 procedures	 procedures	 %

0	 17	 2	 12

1	 38	 12	 32

2	 41	 19	 46

3	 27	 19	 70

4	 26	 15	 58

5	 12	 1].	 92

6	 3	 2	 67

7	 1	 0	 0

Totals	 165	 80

Table 3.4 Data from the UNIX study

The technique of logarithmic class interval analysis is a surprising statistic to employ.
First, because one loses a lot of data, particularly from the higher order classes, resulting
in what is at best a weak ordering. Second, it decreases the number of data points from
165 to 8 making statistical significance harder to obtain and trends less reliable.
Unfortunately, insufficient data is provided to perform an alternative analysis, though
we feel compelled to point out that on the basis of the above data we obtain a Spearman
correlation coefficient of 0.21 and not 0.94. Figure 3.1 shows the distribution of data
points as a scatter diagram. The difference is presumably due to Henry and Kafura
eliminating the upper two class intervals from their analysis, the justification being
that there are insufficient procedures within these classes [Henr8la] and that the
procedures are too complex to be changed [Henr79, Henr8la] and thus their major result
rests on a correlation of just 6 data points in rank ordering.

The other major result that Henry and Kafura present is that the length, or the internal
module complexity component of their metric actually detracts from its overall

57

Chapter Three

performance [Henr8la]. Without length and using class intervals based on IO'2), a
Spearman correlation of r=O.98 was obtained. No justification is proffered for what
appear to be rather arbitrary class intervals, which is rather disappointing given their

material bearing upon this style of analysis.

% CHG

100. +

-	 *

67. +
-	 *

-	 *

33.	 *

-*

0.+
+---------+---------+---------+---------+---------+IETRIC

0.0	 1.4	 2.8	 4.2	 5.6

Figure 3.1: Percentage of procedures changed vs. information flow metric

These results, suggest that the information flow metric has identified some relationship
between design or system architecture and software reliability, but that it is less

compelling than it might appear at first sight. If one were to summarise the remainder
of the results given in Table 3.3 it would be to support this view that underlying the
metric is a powerful idea, but considerably more work in verification and refinement is
required. Three out of the six remaining investigations find useful - from a software
engineering perspective - relationships between the metric and a variety of software
quality factors. A fourth study, [Romb87] indicates that for 3 out of 4 maintenance factors
the metric proved to be an effective indicator. Kitchenham [Kitc88J found only weak
relationships and superior performance by more traditional code based metrics. A sixth

study [Shep88cl found no statistically valid relationship with either information flow
or ELOC and development effort, although the design metric performed marginally

better. The table is weakly suggestive of some association with LOC [KafR87, Kitc88,

58

Chapter Three

Shep88c, Shep9OcJ and ambiguous as to the efficacy of including LOC into the
formulation of the metric. Two studies [Henr8la, Shep88c] suggest that this detracts
from performance, but Rombach [Romb87] finds in most cases it enhances performance, as
does the Kafura and Redddy case study [KafR87J. It is fortunate that the module length
component of their metric is of marginal significance, as otherwise this would diminish
the ability to use information flow at design time.

One of the difficulties confronting those wishing to empirically validate the
information flow metric stems from the inadequate and conflicting definitions that
Henry and Kafura give, particularly concerning indirect flows. Again, as with the other
two metrics, informality predominates. For example, what is a global data structure?
What is a procedure? The definitions of information flows are ambiguous and capricious.

A major source of anomaly are the many local indirect flows that may only be detected by
internal analysis of a module. This is shown in Figure 3.2.

Figure 3.2 Indirect local flows "hidden" at design time

Unfortunately such information is unlikely to be available during the system design
stage of software development. Even if one obtained the necessary data, a static analysis
would be inadequate, as the existence of the flow is entirely dependent upon the
execution order of the code. Dynamic analysis, apart from being a difficult enterprise,
generates results that reflect the input chosen to exercise the code. There are no obvious
guide-lines to steer the would-be-software-metrologist as to the choice of input.
However, to fail to capture indirect flows-by-assignment leaves the measure vulnerable
to the whimsy of the software designer in his or her choice of data object name.

59

Chapter Three

The definition of local indirect flows as given by Henry and Kafura, for example
[KafH8l], would appear to encompass flow only over two levels of a system structure. If
such flows are to be counted, there is no good reason why the number of levels should be
restricted to two. For instance, Figure 33 shows an indirect local flow which has a scope
of three levels.

Figure 33: Indirect local across more than two levels

However, simply extending the number of levels included is unsatisfactory since the
outcome is potential over counting particularly if the problems over indirect flow-by-
assignment, described above, are addressed. The consequence would be that all modules
are linked to all other modules except where a system comprises entirely, independent
modules that could run in a completely unconstrained fashion, in an arbitrary order.
Naturally, such systems are rare and it might be conjectured: more amenable to an
entirely separate family of metrics and models. Therefore, one must have grave
reservations concerning the validity of indirect flows 29. These reservations are
reinforced by the fact that indirect flows do not seem to correspond to any obvious "real
world" design process or entity [Ince89b].

The equation for the metric is poorly formulated in that a single zero term is propagated
through to result in an overall measure of zero. l'his is possible even if the module has,
say, a large fan-out and comprises many LOC. It would seem that Henry and Kafura
circumvented this problem in their original analysis by ignoring what they termed
memoryless procedures on the basis that to do otherwise, "connections between procedures
would be generated that do not functionally exist" [Henr79,p63]. In fact the problem that

29Barbara Kitchenham takes a similar view in her decision to omit such flows from her empirical

investigation of design metrics [Kitc88l.

60

Chapter Three

Henry and Kafura are trying to avoid is the problem of module re-use. In other words,
the separate instantiations of a re-used module should not be a vehicle for information
flow transmission. Unfortunately, they seem to have adopted a solution leading to three
problems. First, the fact that a module is memoryless does not ordinarily mean that
there is no interest in its behaviour. Second, potentially complex components but, with
either a zero fan-in or out, are invariably identified as having the minimum level of
errors (presumably zero), or whatever quality is being analysed. Third, the serious
problem of module re-use leads to specious information flows being counted. As the model
stands it penalises the re-use of any module that exports or imports any information, due
to its quadratic nature. Such an example is given in Figure 3.4 and Table 3.5.

Figure 3.4: Information flows and module re-use

61

Chapter Three

With re-use	 With duplication
Module Fan-in Fan-out Complexity 	 Fan-in	 Fan-out Complexity

A	 1	 1
	

1
	

1
	

1
	

1

B	 1	 1
	

1
	

1
	

1
	

1

C	 1	 1
	

1
	

1
	

1
	

1

D	 3	 3
	

81
	

1
	

1
	

2.

E
	

1
	

1
	

1

F
	

1
	

1
	

1

Total
	

84
	

6

Table 3.5 Comparison of module re-use and duplication

Such problems are disconcerting in that they lead to the metric being difficult to apply
and analyse [Ince88b] and must in part explain the extent to which empirical results
differ, as clearly, module re-use levels will vary between different environments.

A more rigourous analysis of the metric equations reveals anomalies in the treatment of
parameterised communication as compared with communication via global data
structures. Despite defining global information flows (i.e. those via global data
structures) Henry and Kafura fail to incorporate them into their definition of fan-in and
fan-out. Instead they merely use a count of data structure accesses. This potentially has
a considerable impact upon their measure as illustrated in Figure 3.5 and Table 3.6

Figure 3.5: Information flow mechanisms

62

Chapter Three

Accesses counted	 Global flows counted
Module	 Fan-in Fan-out	 Fan-in Fan-out

A	 0	 1.	 0	 2

B	 1	 1	 1	 1

C	 1	 0	 2	 0

Table 3.6 Comparison of the treatment of global flows

Counting reads and writes as opposed to global flows becomes significant when more than

two modules communicate via a global data structure [Jnce89bl.

Another ground for criticism of information flow as a metric, is that the model makes

extremely simplistic assumptions concerning the nature of the information. All flows are

considered to have uniform complexity, but, the information might be a simple boolean

or a complex structure containing many record variants. The metric is not sensitive to the

difference. Thus, complex connections between modules could be disguised and not

captured as information flows.

Moreover, as discussed with respect to the empirical evidence, the use of length as a

measure of intra-modular complexity is debatable. Its late availability is also a

problem if information flow is to be used as a true design metric. Henry and Kafura raise

the possibility of refining this measure by replacing it with either Haistead's E measure

or McCabe's cyclomatic complexity [Henr84J. However, given the problems that are

inherent within both of these metrics it is doubtful whether this would represent much of

an improvement. Further, their use would also delay availability of the metric.

The would-be-investigator is also confounded by the absence of definitions. In particular,

global data structures and parameters remain undefined. Certainly, in many

environments there would seem to be good grounds for treating devices as global data

structures. Whether this should be extended to include screen output - and even keyboard

input - are moot points. What is clear though, is the absolute paucity of Henry and

Kafura's underlying model in these regards.

Kitchenham also criticises the metric as an example of a "synthetic" [Kitc88], in that

combines disparate primitive counts, thus leading to potential confusion and difficulty in

application. There is no doubt that it has confused and obscured notions of information

63

Chapter Three

and procedural flow. It is arguable that these are best kept distinct, so as to facilitate

the diagnosis of the underlying causes of any symptoms detected by the information flow

metric.

A final, though lesser difficulty is the problem of obtaining the metric. Due to the

difficulty of calculating the metric for a large system a software tool is the only

practical possibility. Although the metric can be extracted from the code, a computer

processable design notation would be preferable. Such notations are not currently in

widespread use30.

In conclusion, there are two main problems with Henry and Kafura's information flow

metric. They have no clear idea what they are modelling and seem to commute between

a variety of problem domains, almost as if they are interchangeable. Until goals for the

metric are clearly stated it will be severely hampered in its application. The other

problem is one of approach. In having adopted what appears to be a plausible idea, and

one consistent with current thinking in software engineering, they have proceeded to

obscure it under a facade of informality and arbitraryness. Many of the inconsistencies

and anomalies contained within their model could have been avoided had a more formal

approach been adopted.

3.5 Unfulfilled promises

What can we conclude from the dissection of the three most influential software metrics

of the past 15 years? Is the fact that none of them appear satisfactory ill chance? If only

the metrologists had chosen different numbers would all have been different? In the

author's opinion to be so seriously in error three times is not mere bad luck but

carelessness; it suggests that current approaches adopted towards software metrics are

inappropriate.

It should be stressed, however, that it is not the individual factors being measured that

are being criticised, but rather the approach to the application and interpretation of

software measurement. First, our investigations have revealed a recurring pattern of ill

conceived and poorly articulated models that underlie the metrics presented above. This

in turn has led to models that are anomalous and out of step with current developments in

software engineering. Despite the fundamental nature of these problems, they have all

too often been obscured due to the lowly role ascribed the model. Directly stemming from

modelling weaknesses are the problems of empirical validation. Empirical validation

30An alternative approach for data collection is described in [Shep89d] where the software tool

creates a dialogue type interface between the designer and the tool.

64

Chapter Three

of a software metric is quite difficult enough, without being uncertain as to what is being

validated!

In short, the problems of software metrics are those of foundation and methodology. And
this is the starting point for the research described in this thesis. It is evident from the
survey of metrics research described in the last two chapters that the general tenor of the
work has been a preoccupation with detail, arguably at the expense of higher level
issues such as what does the metric mean, how might it be evaluated and finally how
might it be integrated into the software engineering process? Each of these questions will
be briefly reviewed.

First, what does a metric mean? The reader will have noticed copious references to
models and underlying models, in the preceding chapters because it is only within the
context of a model or a theory that a measurement has a meaning [Kybe84]. Consider the
measurement observation that a piece of code has a luminosity of x. This cannot be
interpreted because there is no theory or model to link the measurement with any other
software engineering property of code - at least as far as the author is aware, apart from
a slight suspicion that day-gb code might be injurious to one's eyesight We cant say
whether a luminosity of x is good or bad. Nor can it be stated whether it will lead to
problems of reliability and so on, and so forth. Evidently, this is an extreme example,
but, equally it should be clear, that the metrics that have been reviewed have all relied

upon implicit ideas, unspoken assumptions and partial definitions in terms of their

underlying models. Consequently, the first item upon the research agenda is the
development of a more formal framework for software metric models.

The second research agenda item is model evaluation. Since in many respects a model

may be thought of as a theory, then it is natural that 'we shoult 'wish to a'nxa' 'rt
theory; this might be accomplished by means of empirical methods - for example
through experimentation - or by more formal techniques, such as the application of
axioms and proofs. It has been a major theme of this and the previous chapter, that

there has been scant regard paid to model evaluation. To some extant this has been
inevitable given the informal approach to modelling, but, it is also the consequence of ad
hoc ideas and the absence of any systematic method for tackling the problem of model
evaluation. The importance of validation cannot be over-stressed since metrics based
upon flawed models are worse than valueless: they are potentially misleading. This
research seeks to remedy this deficiency, by the development of a coherent infrastructure
for the validation of software models.

The third and final area on our research agenda is the clear need for some method to
guide software engineers in the selection and tailoring of software metrics to be suitable
for their particular measurement goals. A major criticism of much past work has been the
unfounded belief in "General Complexity Metrics" of form or another, which are suitable

for close to all problems in almost any environment. This has led to the view that metric

65

Chapter Three

selection is something akin to an "off the shelf" process. The search for some alternative
approach yields two benefits. Firstly it raises the level of concern above the current
obsession with metric minutiae that bedevils so much current work. And secondly, it
forces more careful definition of measurement goals, with the attendant reduction in
evaluation difficulties. If it is unclear what is being measured it is not easy to know if it
is being done effectivelyd

These • three issues then, form the research aims for this thesis and will be addressed in

the subsequent chapters.

66

Chapter Four

4. A THEORETICAL FRAMEWORK FOR DESIGN
MEASUREMENT

"As far as the laws of mathematics refer to reality, they are not
certain; and as far as they are certain, they do not refer to reality."

Albert Einstein

"The first thing that we should observe is that theory and measurement
are more intimately related than is often thought ... The lesson to be
learned from this, particularly in the mental and social sciences, is

that, however cleverly we measure something, however reliable the
test or reproducible the measurement, without a theoretical framework
into which that quantity enters, it is useless."

Henry Kyberg EKybe84J

Synopsis of chapter

Now we commence addressing the research agenda outlined at the end of
the previous chapter, that is the need for a method to articulate models
behind software metrics, a mechanism to evaluate models more rigourously
and lastly a means whereby metrics appropriate to a given software
engineering problem or opportunity may be tailored and selected. First,
however, the chapter examines the various types of measurement, direct
and indirect, and the different measurement scales that are identified in
the theoretical metrology literature. The necessary axioms for each type
of scale are described in conjunction with the bearing this has upon
software metrics. The relationship between metric and model is then
explored. It is suggested that a measurement without contextual model is
meaningless. The following components of a well formed model are

identified: input variables, output variables, parameters, relationships
between the above, mappings between the model variables and the "real
world", assumptions, accuracy.

The lack of such a framework coupled with endemic informality and
intuition are the prime contributory factors to the difficulties that are
being encountered with the majority of current metrics, as described in the
previous chapter.

67

Chapter Four

The topic of metric evaluation is addressed and divided into theoretical,
or axiomatic validation and empirical validation. Specific
axiomatisations for software measurement due to Prather [Prat84], Fenton

[Fent86] and Weyuker [Weyu88l are reviewed. Prather's and Fenton's
approaches are found to be insufficiently discriminative, whilst
Weyuker's axioms are too restrictive. A new flexible approach is
proposed. A list of desirable and mandatory characteristics for convincing
empirical validations is presented. It is observed that few empirical
validations fulfill these criteria, partly as a consequence to the poor
regard paid to modelling by the majority of software metrologists.

In the light of this theoretical background, a methodology for the
development and evaluation of software models and their related metrics
is advanced. This is contrasted with, and in many aspects found to be
complementary to the Goal/Question/Metric (GQM) paradigm of Basili et
al [BasR88l. A simple example is presented based upon the development
methodology.

4.1 Introduction

The preceding analysis of developments in software metrics suggests Yriat measurement
is understood and applied on a very informal basis. In particular, the previous chapter

demonstrates that software metrologists have a very weak notion of modelling, which
as a consequence, has profound implications upon progress within the whole subject

area. The justification for the use of metrics as an adjunct to software development has
tended to run along the following lines.

"You can t control what you can't measure. In most disciplines, the strong

linkage between measurement and control is taken for granted."

Tom deMarco [deMa82]

Other engineering disciplines are able to take and utilise measurements in order to
provide quality control and even more alluringly, accurate predictions. Software
engineering does not compare favourably with the construction of other artifacts. Ergo

we should make greater use of software measurements, which will result in cheaper,
more reliable and useful software products.

Thus far it would be difficult to disagree, but the corollary that many infer from this
position could characterised as being representative of the "Kelvin syndrome",

68

Chapter Four

whereby the possession of almost any measurement renders the software engineer better
off. That the measurement, even if it is not directly useful, will cause the software
engineer to regard the software product in a more analytical fashion and by some
mysterious inductive process, yield great insights. Such an analysis fails to understand
the type and use of measurements in other more mature disciplines. It is perhaps
instructive to examine the measurement of temperature which is a well understood and
tolerably reliable process, prior to the development of a more explicit technique for
presenting the models behind metrics, a method for the more rigourous evaluation of
these models, and a means for selecting metrics tailored to the measurement goals and
environments.

One of the interesting features about temperature measurement is that it is not, in
general, measured directly. The most common approach is to measure length; length of
a column of mercury contained in a thermometer. This is an example of indirect
measurement. It is not that temperature cannot be measured directly EKybe84l but that
it is more convenient and accurate to do so indirectly.

How is it that we can satisfy ourselves that there exists a reliable relationship
between the length of a column of mercury and temperature? ft is possibJe that we
might start with the supposition of some theoretical relationship (e.g. a linear
function) between the indirect measurement and actual temperature. Empirical
observation and experimentation is then required to confirm or refute the relationship.
Alternatively, our starting point may be drawn from the observation that mercury
expands with increases in temperature and this may then be formalised into a set of
equations.

Careful observation of our thermometer in a wide range of environments reveals that

what appeared to be a simple linear relationship between length of mercury and
temperature is in fact rather more complex. For instance, it is particularly evident that

the thermometer fails to perform accurately on the top of Mount Everest. Also mercury
thermometers are restricted by the fact that mercury will vaporise at high
temperatures and are therefore cannot measure temperatures much over 350°C. Thus the
measurement of temperature, by thermometer, is dependent upon a number of factors and

subject to certain limitations.

In practice one can compensate for temperature readings at different altitudes since we
can make the model more sophisticated as we begin to better understand the problem

domain. So, we model the way in which temperature, altitude and pressure are related
in a systematic way. Thus, more than one measurement is required. The perception of
temperature as part of a system is an example of a major development in our ability to
measure accurately.

69

Chapter Four

The final point to draw from this brief peroration into thermometry is the problem of

error. The quantitative/qualitative or objective/subjective dichotomy is, in at least
once sense, misleading because in practice one is confronted by a continuum. Some
measurement practices, such as thermometer measurement of temperature, are more
reliable than others, for example measures of aesthetics. Reliable is meant in the sense
of a low frequency of errors, small error size and a normally distributed set of errors (i.e.
the absence of systematic errors or bias).

Let us now return to software engineering. The remainder of this chapter examines in

more depth the issues raised by the forgoing discussion, namely: the different types of
measurement and their characteristics; the conditions that must hold true for each type
of measurement; the relationship between model and metric and the issue of
measurement reliability. From this are developed some requirements for an ideal
metric and a methodology is proposed for the development and evaluation of metrics
appropriate for a particular measurement objective and environment. A simple example

of a module based metric is presented which illustrates many of the difficulties that
exist with software metrics and some of the benefits of a more rigourous approach.

4.2 The Theory of Measurement

At this rather belated stage it is appropriate to consider more exactly what is meant by
measurement. Using Pfanzagl's definition [Pfan68], measurement is taken to be the
process of assigning numbers 1 to describe some empirical attribute of a product or event
by rule. The rules that govern the number assignment are fundamental since they
introduce varying degrees of objectivity into the process. Nonetheless the boundary
between measurement and non-measurement is a fuzzy one.

In this section we briefly review classical measurement theory and discuss the extent to
which it does, and ought to, impinge upon current practice in the software metrics field.

4.2.1 Types of measurement

As the example of temperature has revealed, measurement may be one of two types,
direct or indirect. Indirect measurement occurs whenever one, or more, other quantities

occasions one might assign other mathematical entities instead of numbers [Kran7fl, for instance

vectors as in the case of the Myers' [Myer77l extension to the cyclomatic number metric. To do so, is however,

rarely judicious as this leads to deep methodological problems, given the absence of any generally plausible

greater-than or less-than relations and as a sequitur little theoretical basis for anything other than a

nominal scale, Another example of non-numeric measurement, is the case of nominal scales where the numbers

merely serve as labels and can therefore be legitimately substituted by letters or any other unique identifier.

70

Chapter Four

are measured in order to provide a measure of the actual object or event of interest.
Direct measurement occurs if no other measurements are required. Within the domain of
software metrics, indirect measurements are the most commonplace. Indirect
measurement is usually employed for the reason that temporal considerations prevent
direct measurement because the measurement is being used in a predictive capacity.
This has an important implication, in that theory is required to link the indirect
measure, or measures to the object of the measurement process. For instance, it might be
considered desirable to measure implementation effort indirectly so as to be able to
obtain it in advance (i.e. predict). If implementation effort were measured directly it

would not be available until after the implementation has been completed. In order to
measure indirectly it might be hypothesized that there is a relation between the total
number of data structure references and implementation time. So, we have a basis for
measuring indirectly by counting data structure references. A theory is being developed
that posits a relationship between the two measures and therefore must be incorporated
into any underlying model. The relationship between measure and model is re-

examined in a subsequent section, but, in passing we note the obligation to validate any
model particularly to justify the use of indirect measurement.

4.2.2 Scales for measurement

Classical measurement literature identifies the following four types of measurement
scale2.

Nominal scale, for example the numbering of football players.

Ordinal scale, for example the hardness of minerals.
Interval scale3, for example temperature in degrees Centigrade.
Ratio scale, for example temperature on the Kelvin scale or length.

Naturally each scale has different properties or empirical operations associated with
it, and is required to satisfy different axioms. These are given in Table 4.1 adapted
from Stevens [Stev59].

2To be more exact, there are a non-denurnerable infinity of scales and indude such exotica as the

logarithmic Interval scale [Stev59] and the hyperordinal scale [Supp7l], however these have no, or marginal

empirical application!

3Strictly speaking we mean a linear interval scale and unless stated to the contrary all references to

the Interval scale should be read as such.

71

Chapter Four

Scale
	

Basic Empirical Operations
	

Mathematical Group Structure

Nominal	 permutation group - M=f(M)

Ordinal

Interval

=,<,>	 isotonic group - M=f(M)
where f(M) is any monotonic
increasing function

=,<,>,equality of 	 general linear group -
intervals	 M'=aM+ , a>O

Ratio	 =,<,>,equality of	 similarity group - M= aM , a>O
intervals and ratios

Table 4.1: Properties of measurement scales

Let us review each scale in turn. The nominal scale is the least restricted, and therefore
the simplest of all the measurement scales. The only empirical operation that is
required to enable this form of measurement is the determination of equality (by which
we mean empirical indistinguishability). This binary equivalence relation is
reflexive, symmetric and transitive. Examples of nominal measurement are the oft
cited case of football player numbers and, within the area of software engineering, the
classification of software systems by the basic COCOMO model [Boeh8l] as organic,
semi-detached or embedded. It is noteworthy that in the latter case no use is made of
numerals. However, the assignment process is still carried out according to rules, even if
these are only informally stated, hence it may be considered a process of measurement.

The ordinal scale introduces rank ordering, derived from the empirical weak ordering
relations, less-than and greater-than. These relations are reflexive and transitive.

Again, COCOMO can be used to provide examples, this time from the intermediate
model, where cost drivers (e.g. DATA, the size of the database) are placed on a scale
ranging from very-low to extra-high. Although, we may empirically determine that a
very-low sized database is less than an extra-high database, it is not possible to assert
anything concerning the size of the difference. Whilst this is fairly self evident for the
above example, were we to substitute numerals for the names of the classes (e.g. rate
database size from I to 5) it might be more tempting to succumb to such a temptation. For

72

Chapter Four

similar reasons, one must exercise caution concerning the application of statistics to
ordinal, or for that matter nominal scales [Stev46, Stev59].

The possibility of empirically comparing measurement intervals introduces the
interval scale, a scale that is quantitative in the normal meaning of the word, excepting

a defined absolute zero. The most commonplace example is temperature measurement
using degrees Centigrade. Since, zero degrees is arbitrarily placed, it is not possible to

0.	 .	 0	 ..
state that 10 C is twice as hot as 5 C, although it is empincally possible to determine

that the difference between 10°C and 5°C is the same as the difference between 20°C

and 15°C.

Ratio scales differ from interval scales in that absolute zero is always implied, as in
temperature measurement by the Kelvin scale. Consequently it is possible to determine

equality of ratios in addition to equality of intervals. Software metrics offer many such
examples, ranging from LOC to Halstead's E metric.

In many cases it is obvious from the empirical operations available to us, as to what
scale we are dealing with. More formal mechanisms for the determination scale type
do, however, exist. These are based upon transformations that are possible upon the

measurement group structure4 which still preserve empirical orderings EStev46, Stev59,
Supp7l, Fink84]. Nominal scales may undergo transformation by any one to one function,
due to the absence of even weak ordering. By contrast, the only permissable class of
transformation for a ratio scale is of the form M = aM for non-negative values of a.

Table 4.1 lists all permissible transformations for each scale type.

The final point to make whilst examining scale types, is the extent to which ratio
measurement is in some sense "bette?' than nominal or ordinal measurement. Adams
[Adam66] argues that by merely viewing measurement in terms of the axioms or
conditions necessary for a certain scales of measurement to be possible, one can lose sight
of purpose. He gives the example of mineral measurement using Mohs hardness scale
(ordinal) which is wholly adequate for the purpose of mineral identification in the
field; not an unfortunate necessity imposed due to the difficulty of establishing the
conditions necessary for interval or ratio measurement.

What significance does the foregoing discussion have for software metrology? The
answer is threefold. First, the type of scale may restrict meaningful statistical
manipulations and observations. A common problem is the use of statistical means on
ordinal type measurement, but to do so requires the assumption of constant intervals

4By structure we mean the relational structure <N,R> where N is the set of all numbers (or

observations for an empirical structure) and R is the set of all relations. For an ordinal scale the measurement

structure is therefore < N,^ >, for a ratio scale it would be <N,^,+>.

73

Chapter Four

between all the points on the scale. Should such a situation prevail the scale would be
interval or possibly a ratio.

The Henry and Kafura information flow metric EHenr8la] provides an interesting
application of empirical meaningfulness being restricted by scale. The metric is an

example of an indirect measure of software complexity (whatever that might be!)
based upon counts of information flows between modules. As a direct measure (i.e.
treated merely as simple counts), the information flows must be placed on a ratio scale5.
However, given the formulation of their model, or that part that relates the indirect
measure to the quantity of actual interest, in this case software complexity is:

2
(fan_in fan_out)

where fan_in and fan_out are modified information flow counts, the quadratic nature
causes it to behave as a monotonically increasing 6 function. This transformation is weak
order preserving, but no more. As a consequence the only meaningful remarks that may

be made concerning this metric are those that are based upon the relations of
equivalence and weak ordering. For example it would not be admissable to state that

module x with a value of 100 is twice as complex as module y with a value of 50.
Observations of interval size or ratio have no empirical meaning. Though in general
meaningless statements should be avoided, occasionally pragmatic considerations may
overrule. Finkelstein and Leaning [Fink84l give the example of using the arithmetic

mean, rather than the median, of a set of examination marks despite being measured in
an ordinal fashion.

Second, the distinction between direct and indirect measurement is an important one.
Indirect measurement, whilst being widely used within the field of software metrics,
places an additional burden upon the researcher - viz the need to justify the theory
linking the indirect to the direct measure.

Third, the identification of scale type introduces certain axioms that must be satisfied
by a theoretical analysis of the metric and its underlying model. In brief, it is necessary
to show that two theorems hold for the measurement; the Representation Theorem and
the Uniqueness Theorem [Supp7l, Kran7l].

The Representation Theorem requires that the numbers assigned by the measurement
process must properly represent observed empirical relations. In order for this to be the

case there must be a homomorphic (or isomorphic) mapping from the empirical to the

5This is for the reason that the only transformation that does not lead to loss of ordering information

Is of theform M=aM.

6The function is monotonically increasing because the information flow counts and the fan-in and fan-

out must be non-negative.

74

Chapter Four

chosen number system7. There are two aspects to this homomorphism, first the
measuring function that maps empirical observations onto numbers and second the
mapping between empirical and number system relations (e.g. the empirical relation
heavier-than may have a corresponding numeric relation >). Unfortunately, this
theorem is less useful in practice than one might suppose, since for any finite or
denumerable empirical system there can always be found some numeric system that is
isomorphic to it [Supp7l], though this may be by virtue of employing "unnatural or
pathological" relations. Worse still, there may be little agreement upon the empirical
relations, because, for instance, we may not all agree that program x is more complex
than y. Consequently, regard to this theorem, is only a minor aspect of metric
evaluation. By itself, it is insufficient. The effort of formal proof is therefore seldom
justified, rather informal reasoning is adequate to check for "gross" errors8.

The discussion of scales has already touched upon aspects of the Uniqueness Theorem.
Measurement is unique up to certain levels of transformation, so for example non-Kelvin
temperature measurement may multiplied by, or added to, a constant (or both), without
loss of uniqueness for the type of scale adopted. Satisfaction of this theorem therefore,
is concerned with the formal proof that all numerical relations are equivalent to all
empirical relations for all permissible mappings from the empirical system onto the
numerical or measurement system. This is a formalisation of our earlier discussion as to

suitable scales.

Although observance of these theorems is a necessary step in the theoretical validation
of a metric - a point that will be taken up again, later in this chapter - they are not a
panacea for software metrics. Fundamental difficulties remain. These are, errors in the
modelling and the measuring processes. In any case, as Zuse and Bollmann [Zuse89]
observe, we do not have an agreed view on the empirical relational system and
therefore are not in a position to comment upon the mappings between it and our chosen
measurement system with the certainty that discharge of the above proof obligations
would require. The corollorary is that there do not exist generally accepted scales for
software complexity metrics.

7As we have already noted measurement need not be limited to the assignment of numbers. In such

drcumstances the establishment of a homomorphism can be an involved process, although extremely

important since the properties of the measuring system will be less well understood than the familiar number

system.

8Th1s conclusion would be strongly disputed by other researchers such as Kaposi and Myers [Kapo9O]'

However, the problem in the end reduces down to one's views of the empirical world and the need to find

mappings between this world and the dosed system of classical measurement theory.

75

Chapter Four

Clearly there is no simple redress for erroneous modelling of software 9, because it is the
outcome of our current lack of understanding about software engineering processes and
their interaction with products. However, the theory described thus far is idealistic,
in that it incorporates no notion of uncertainty in obtaining measurements, the empirical
relations. Two possible solutions are, the application of a statistical theory of errors
coupled with a linguistic framework to describe reports (observations) and statements
from Kyberg [Kybe84l, and an extension of the formal machinery in order to axiomatise

uncertainty, for example semi-orders described by Luce [Luce56]. Kyberg's approach is
more promising in that it attempts to use statistical means to establish a link from the

uncertain empirical world into an ideal world of absolute certainty. Luce provides no
such mechanism. In a sense, formality and closure imply an inevitable retreat from the
"real world".

The conclusion must be, that software metrologists ought to be aware of classical
measurement theory and the restrictions that it imposes for meaningful measurement.
Yet it should be equally clear that the majority of deep problems remain unaddressed,
the chief of these being errors in modelling and measurement.

4.3 Modelling and Measurement

4.3.1 Measurement and purpose

One of the fundamental factors to consider within metrology is the relationship
between measurement and model. Although a model is not art imperative for

measurement, in any absolute sense, the model establishes the context and the meaning
of the measurement. A metric such as the number of source fines of code (SL(K'J has

little meaning and defies evaluation in the absence of a model. Even a rudimentary and
informal model is an important starting point. For example, the model might suggest
that programmer productivity is some function of SLOC, normalised for time and number

of staff. Another model could employ SLOC as a predictor of stationery requirements.
We may well have misgivings concerning the first model; possibly fewer concerning the
second, but at least contexts for the measurement and its evaluation are now provided.

Having introduced the idea that measurement requires a model to permit meaningful
application and evaluation, let us scrutinise the concept a little more carefully. A
model is an abstraction or simplification of reality so the first concern is that the model
must meet a purpose. Without a purpose we cannot know what aspects of the real world

9Obviously there is a blurred distinction between model and measurement error, to the extent that the

former will lead to the latter. Whether this is amenable to statistical remedy depends largely upon the size

of the scatter, and the nature of the distribution.

76

Chapter Four

to exclude and which to incorporate. Modelling in a vacuum is a rather curious
endeavour. It is, however, a potential pitfall for academics who may not be
immediately confronted by a problem and thus software metrics can degenerate into
rather an aimless activity. Vide Bache and Tinker [Bach88l for an example of an
mathematically rigorous model, but one which unfortunately happens to be almost
orthogonal to the objectives of the research which are variously stated as measuring
"cognitive complexity", "bugs", "number of changes". And whilst one would wish to

applaud their desire to introduce a little more formality into the world of software
metrics, one is drawn inescapably to the conclusion that the model, rather than the
problem has become pre-eminent in the minds of the researchers. Similar charges could
be levelled at the work of Fenton et al [Fent86, Fent87a, Fent87bl where the problem
domain appears to be of little importance relative to the development of a formal
model.

A model, preferably of the problem domain, will establish relationships between
various entities. In the above example of paper consumption we postulate a
relationship between SLOC and the quantity of paper required. It is often helpful to

express these relationships more precisely as equations. In doing so this encourages
rigorous thinking and a better understanding of the problem domain. It also facilitates
validation. Developing the stationery example, we might more formally specify the
model as:

consumption = (SLOC)

Immediately this raises issues of how we relate our abstract model to the real world.
What is consumption of paper? What units do we propose to use? Is there a time
dimension to consumption? To keep matters simple let us suppose the answer to the last
question is no. As for units, the page seems a reasonable candidate. This now gives some
clues for the function I which will the reciprocal of the number of lines per page giving:

consumption =1 / n (SLOC)

where n is the number of lines that may be printed per page.

To generalise, a model will have inputs and outputs, sometimes known as endogenous
and exogenous variables. These are linked by relationships, or a set of equalities;
which may use parameters, as in the example above where n allows the model to be
used for a variety of printers and stationery sizes. This is illustrated below.

77

Chapter Four

parameters

V

inputs-----------------> mode-----------------> outputs

V

"Real world"

Figure 4.1 The relationship between a model and "reality"

A model should also define the mapping from the real world onto the inputs and outputs
identified. This establishes the essential two-way link between abstract space and
reality. There is the measurement process, (effectively a mapping from the real world
onto the model) and the prediction process (a mapping from the model back onto the
real world. When no such connections exist the model is metaphysical.

It is immediately clear that this framework is not made explicit in any of the metrics
previously discussed. Difficulties with the unspecified or ambiguous mappings have
manifested themselves as counting problems and as the prediction of metaphysical
properties. Perhaps the latter is the most disturbing issue in that metrics being used to
predict metaphysical properties, most frequently complexity. When we are faced with
definitions, even if intended to be ironical, such as "a not-so-warm feeling in the

tummy" [Curt79b] this is must be treated as a warning sign, unless of course proponents of
complexity metrics intend to measure, or even predict the drop in stomach temperature

of a software engineer when confronted with the offending software!

Developing the notion of the metaphysical further, I will make a rather contentioUs
proposition.

Not all software properties are measurable or even directly observable, in
any useful engineering sense.

Recall that measurement implies the existence of rules for the assignment of numbers,
labels, vectors or whatever. Where the rules are unknown or non-existent I do not

78

Chapter Four

consider this to be measurement and the property is metaphysical. For example, "user-
friendliness" cannot be measured as such, unless the rules for this task are defined. This
does not preclude informal rule definition and it may also be necessary to accommodate
error in the measurement process. In practice, we attempt to measure some of the
possible consequences of "user-friendliness", or the lack of it (i.e. employ an indirect
measuring technique). We may choose to measure the time taken by a user to perform a
particular task and hypothesize that the results have a particular significance; that
we have indirectly measured "user-friendliness" in a manner analogous to the
measurement of temperature by the vertical height of a column of mercury. However, I
feel this analogy to be somewhat specious, as "user-friendliness" is sufficiently nebulous
as to make operational definition difficult. If it cannot be defined then the rules for
assigning numbers cannot be defined and no intelligible measurement is possible. Nor
can it be claimed to be measured indirectly, as there is no way of establishing the
validity of the hypothesis linking the indirect measurement to "user-friendliness"
because of the problems of establishing an empirical relationship between the indirect
and our undefinable measure 10. Instead we must conclude that "user-friendliness" has
something of a metaphysical flavour about it. Metaphysical properties can be of
immense importance and interest, however, to set out to measure something that is
fundamentally immeasurable is would seem to be an uneccessarily fraught enterprise, if

not wilfully perverse.

It is singularly ironic that computer scientists should choose software complexity as
their chief target for software metrics research. The consequence of claiming to measure
the metaphysical has been a plethora of supposition, intuition and instinct
masquerading as general models of software and software construction. Without doubt
something is being measured. But what, and what it means, is quite unclear.

To summarise, measurements must be made in the context of a model in order to have
meaning and to admit validation. Models must address some problem or purpose. To be

useful, it is necessary to be able to relate the model to the "real world" and this cannot

10This argument could be construed as a rather intoxicating concoction of Popperian empirical

refutation and Bridgmans doctrine of operationalism. Both ingredients are potentially troublesome.

Empirical refutation taken to its logical condusion argues that only the metaphysical may be regarded as

irrefutable, a position that could be somewhat inconvenient for the software metrologist as it may not be

desirable to call into question the fundamental axioms of measurement, derived from the dassical theory on

every occasion that empirical results do not satisfy our predictions. Imre Lakatos ELaka7O] offers one way out,

suggesting that within the framework of a research programme certain laws and assertions may be treated as

axiomatic. Operationalism suggests that the measure defines what is being measured. The danger that lurks

here Is that we may lose sight of how adequately a measure captures the property that Is of interest, since

measurement must satisfy the tautology that It measures what It measures! On the other hand it is difficult

to see how we may have any meaningful notion of measurement quality If we are unable to define what is of

interest (i.e. It is metaphysical).

79

Chapter Four

be accomplished if it contains metaphysical entities, consequently operational
definitions are required for all the endogenous and exogenous model variables.
Unfortunately, this framework is rarely applied to software metrics, and in particular,
we note the predominance of implicitly, informally and inadequately defined models
coupled with frequent reference to metaphysical variables such as complexity.

43.2 Models and theories

By now it should be clear that a model embodies a theory. This is expressed in the
relationship between the inputs and the outputs of the model, and is the basis for useful
models, enabling them to have predictive power. The most common form of theory,
within software metrics, is that which is required to link direct with indirect

measurement.

Referring back to our original illustration of the temperature measurement, it will be
recalled that mercury thermometers are affected by altitude, or atmospheric pressure
considerations. In order to compensate for this problem additional measurements are
required. It is a general principle that as models are generalised across larger domains,
so they require increasing numbers of inputs and grow in sophistication. Given our
limited understanding of the software development process, it is an ambitious objective

to continue to propose the type of all-encompassing, all-purpose, yet remarkably
simplistic, models that have abounded in the literature (e.g. [Ha1s77, McCa76,
Henr8la, Card88], without consideration of the limitations and applicability of the
model. By way of contrast, some of the cost estimation models, such as Barry Boehms

COCOMO [Boeh8l] are relatively complex because they explicitly take into account
the wide range of environments to which they may be directed. The detailed
COCOMO model has more than 50 inputs and parameters or cost drivers as Boehm terms
them.

This suggests an additional component to any useful model - that of its limitations.
These are best expressed in terms of the assumptions that are made, thereby allowing
the would-be-user to determine its applicability to a particular problem domain.
Where assumptions are deeply embedded, or merely implicit, this leads to difficulties
in the validation and application of the model. Nowhere is this better illustrated
than by some of the empirical work based on the Software Science model [Ha1s771. It i
clear that this model assumes a small scale programming 11 environment and a
FORTRAN like language. Arising from this assumption, is the fact that the meaning of
"effort is self evident - it is the time, usually no more than a few minutes to develop

Thndeed Haistead initially was only concerned with algorithms as indicated by [Ha1s72].

80

Chapter Four

the software12. Subsequent work, for instance by Basili and Phillips [BasP8l] of very
larger scale, team based, software development highlights the ambiguities lurking
behind the term "effort". Should requirements analysis be included, or for that matter
changes in requirements during the development? Is time expended upon communication
between team members to be included? How are library routines handled? What about
fixing faults once the system has been released? It is thus not surprising that Basili
reports a much weaker relationship between predicted and actual "effort" than that
found by earlier studies of very small scale programs (e.g. [Gord76]).

The majority of criticisms of the Software Science model, outlined by the previous
chapter are a direct consequence of violations of many implicit assumptions that
Haistead made. Within a much smaller domain, as originally intended, of small
algorithms, FORTRAN and single programmer environments, the Software Science
model might have had more chance of succes, although other theoretical difficulties

remain [Coul83].

There is one outstanding ingredient, for at least the ideal model, and that is

reliability. How much confidence can one have in the model and the measuring process
that it supports? This may be expressed in a variety of ways, the most suitable being
determined by the nature of the problem. Alternatives include identification of the
worst case and more commonly the probability of obtaining a certain degree of accuracy
as in the COCOMO model where it is suggested that there is a 70% probability of the
model being accurate to within plus or minus 20% EBoeh8l]. Accuracy of design metrics

are also on occasions given [Kitc88, Shep88c]. Although confidence in our confidence is
an intriguing philosophical (and recursive) problem it does not justify the widespread
omission of this constituent of a model by software metrologists. Obviously, much
empirical work is required to generate this data, but it is of great practical value,
especially in a field such as software engineering where uncertainty is the order of the
day.

Despite the widespread reference to software modelling within the software metrics
literature, there has been little discussion of the structure of a well formed model. I
have argued that a model comprises: input and output variables, mappings between the
"real world" and the model thereby allowing "real world" use, relationships linking
inputs to outputs, assumptions that the are made and thus delineation of the domains to
be modelled and some indication of accuracy of model outputs (i.e. the extent to which•
the predicted value deviates from the actual value). In addition a model may contain

'2Halstead and his colleagues were typically working with programs ranging from 7 to 59 lines of

Fortran [Gord76], and averaging 24 LOC.

81

Chapter Four

arameters in order to enhance generalisation capabilities. It is rare that all these
components be even implicitly defined within a software model.

4.4 Model Evaluation

Having scrutinised some of the deficiencies of existing software metrics and their
underlying models, it is now appropriate to consider what are the desirable features of
a metric. Although it is usual to speak of metric evaluation, strictly it is the model,
into which the metric enters, that is validated. As has already been shown, the model
establishes the meaning of a metric. Without a model no evaluation is possible. It has
also been demonstrated that a well formed model has seven components, some of which
are frequently omitted or are at the very least deeply disguised. Evaluation is
unquestionably more difficult, of partial or poorly articulated models.

There are two complementary approaches to model evaluation. The model may be
analysed on a theoretical basis. In particular, one might search for the fo))ow)ng
characteristics:

1. The model must conform to widely accepted theories of software development and
cognitive science. Admittedly this is a rather subjective criterion. However,

consider the following example. A metric which predicts that monolithic piece of
software will have a lower incidence of errors than one divided into a nurrber of
modules must be viewed with suspicion. In such circumstances the onus would
certainly be on the proponent to demonstrate the adequacy of the underlying theory.

2. The model must be formal as possible. In other words, the relationship between
the input measurements and the output predictions must be precise in all situations.
Further, the mapping from the real world onto the model must be made as formal as

possible.

3. The model must use measurable inputs rather than estimates or subjective
judgments. Failure to do so leads to inconsistencies between different users of the
metric and potentially anomalous results 13 . Automation is not possible without
satisfaction of this criterion.

These rather general model attributes can be refined in order to provide a good deal

more precision by means of the axiomatic approach. Existing work in this area is
reviewed and a new, more powerful approach described.

13This seems to be a potential shortcommg of function points, vide Low and Jeffery [Low9Oa].

82

Chapter Four

A model should also be subjected to empirical evaluation. A model may have all the
attributes listed above, might satisfy a large set of axioms, and yet completely fail to
describe the "real world" that it purports to capture. Empirical validations are an
equally necessary and complementary validation technique. In order that these may be
meaningful, they also require certain attributes. In brief the desiderata 14 are: large
scale empirical validations, in a variety of different environments, particularly
industrial ones, adequate controls so that it is possible for a null hypothesis to stand,
and different teams of workers. These characteristics are described in more detail later
in this chapter.

The ordering of model evaluations is intentional, since meaningful empirical work is of
questionable significance when based upon meaningless models of software. Therefore,
theoretical analysis of the properties of a model ought to precede empirical
validation. Furthermore, theoretical evaluation is often much quicker, and is
consequently a cheaper and easier method of exposing some of the potential weaknesses
in a model than a full blown empirical study.

4.4.1 Theoretical criteria

(a) Prat her's axioms

In an early attempt to provide some unifying framework for the evaluation of the
extraordinarily divergent collection of software metrics, Prather [PratS4l proposed a set
of axioms which a "proper complexity metric" must satisfy. These are:

Axiom 1: The complexity of the whole must not be less than the sum of the complexities
of the parts.

Axiom 2: The complexity of a selection must be greater than the sum of all the branches
(i.e. the selection predicate must contribute complexity).

Axiom 3: The complexity of an iteration must be greater than the iterated part (for the
same reason as Axiom 2).

Although this is an interesting idea, a number of problems remain. First, the axioms are
restricted to structured programs, since they do not address non-structured forms of
control flow such as branching out of the middle of iterations. Second, the axioms are
clearly aimed at a specific family of metrics, viz those that have underlying models

based upon program control flow; for instance cyclomatic complexity [McCa76] and the

140f course In an ideal world one would give full regard to all these factors. Unfortunately in the

world of limited resources that we happen to inhabit compromises must often be made.

83

Chapter Four

knot metric [Wood79]. As a consequence they lack general applicability. Third, the
axioms provide very little constraint upon the imaginations of the inventors of software
metrics. It is true that Prather suggested upper bounds for Axioms 2 and 3 of twice the

lower bound, but these seem to be more conjectures than axioms. No justification is
offered to support these values.

Prather's approach can be characterised as a set of weak axioms for the family of
control flow based metrics. Nowhere is this better demonstrated than by the impasse
that he finds himself when having explicitly shown weaknesses in McCabes metric he
is unable to evince any violation of his axiom set. Nevertheless, it represents an
important new approach which has been subsequently further developed by others. It
is important in that it provides a foundation for the comparison of essentially similar
metrics. Also, it allows for the proscription of unacceptable model behaviours in a
rather more formal fashion than has been current practice.

The first development of this work was by Fenton et al [Fent86l in order to extend the
axiomatisation to any procedural program, structured or otherwise. Program flow
graphs are reduced to a hierarchy of irreducible graphs (prime trees) which permit any
program structure to be uniquely defined. The axioms were redefined in terms of prime

trees and thus made applicable to any procedural software. Subsequently, Prather
[Prat87] further developed this work, noting a distinction between hierarchically and

recursively defined metrics and marginally extending the scope of axioms defined over
prime trees [Whit85].

Clearly these are significant contributions to the problem of metric evaluation. The use
of formalisms such as graph theoretic approaches for modelling and metric definition
facilitate reasoning about, and making comparisons between, models. Unfortunately
the substance of the problem remains; the axiom sets are weak and the modelling
incomplete. This is because the mappings from model to "real world" are generally un-
or ill-defined. The latter is the price paid for formality, a retreat into metaphysics.
There is also an additional problem concerning closure of the concatenation operation
which will be returned to, in due course.

(b) Weyuker's axiomatisation

A contrasting perspective is due to Weyuker [Weyu88] who presents a set of nine axioms
or properties that a well formed "complexity measure" and its underlying model should
satisfy. These axioms might be regarded as strong, in the sense that they impose
considerable restrictions upon the scope of permissible metrics. This is borne out by the
observation that none of the metrics evaluated by Weyuker satisfy more than seven out

84

Chapter Four

of nine axioms. For programs p. q and r 15, where I I denotes a hypothetical measuring
function yielding a non-negative number, the axioms are:

Axiom 1: The measure must' not assign the same number to all programs (i.e. it must

discriminate).

p,q:program• ' pI <> Iqi

Axiom 2: There exist only a finite number of programs for a given measurement value. To
judge this one needs to make certain assumptions concerning the programming language
and the target machine. The stated purpose of this axiom is to "strengthen" Axiom I as
violation suggests that the measure is comparatively insensitive.

Axiom 3: There are programs drawn from the same equivalence class (i.e. the measure is

not too sensitive).

2p,qprogram . Ipi = Iqi

Axiom 4: There must exist programs that compute the same function but have different
numbers attached to then-i (as a consequence of internal or syntactic differences). As
Weyuker notes, for all practical purposes Axioms 1 and 4 are equivalent.

Axiom 5: The measure must be monotonic.

V p,q:program . Ipi ^ (p o q) A I q I ^ (p o q)

This axiom centres around the meaning ascribed to the concatenation operation for the
object or process being measured. For many software metrics it is not self evident how to
define this operation, a point that will be returned to later.

Axiom 6: Concatenation of a program p to another program must not always yield a
constant increment to the total program measure (i.e. the impact of the concatenation
depends upon the program to which p is being added).

2p,q,r.program • (IpI = Iqi) A(I(por)I <> l(qor)l)

Also:

2p,q,r:program • (IpI = Iqi) A(I(rop)I <> l(roq)l)

15Whilst Weyuker talks in terms of programs, plainly, one could substitute any measurement object.

85

Chapter Four

This not a universal desideratum of software measurement; consider the measurement of
LOC! The issue depends upon the choice of measurement scale type, as described earlier
in this chapter.

Axiom 7: The measure must be sensitive to the ordering of the program components. If q
is some permutation of p then:

B p,q:program . IpI <>1 q I

Our comments concerning Axiom 6 are also applicable here.

Axiom 8: The measure must be insensitive to renaming changes of program components.
Thus, if p is a renaming of q, then

Vp,q.program Ipi = Iqi

As Weyuker herself observes, this is only appropriate for syntactic measures. If we
were concerned with cognitive complexity or programming style naming might be
thought to be highly significant.

Axiom 9: The measure must permit synergistic concatenations.

Vp,q:program Ipi + Iqi < I(poq)I

This is a generalised form of Prathers second and third axioms since the type of
component remains unspecified, but also more stringent as the axiom demands, rather
than accepts, synergy.

Weyuker's axiom set is considerably more restrictive than Prathers, but this in turn

creates complications. The properties that are required of a measure depend, to a large
degree upon the its purpose and the type of scale adopted. In developing a general
axiom set, one is confronted with a dilemma. The axiom set is either generalised but
weak, as in the Prather approach or more restrictive, but rejects measures on grounds
that are not believed to be undesirable, as in the case of Weyuker's axioms. The latter
point can be demonstrated with regard to her second axiom. Suppose there is a design
metric which assigns a value to a particular design. From this design we are able to
generate an infinite number of possible programs that implement it, and thus the metric

violates the axiom, since it demands that there be at most a finite number of programs
for a given measurement value. No design measure is therefore able to fully satisfy her
axiom set; manifestly an unacceptable position to adopt.

86

Chapter Four

Consider, also, Axiom 5 concerning the property of monotonicity. Whether this is
desirable depends upon the measurement scale adopted, for nominal scales it would be
inappropriate. It is also dependent upon the meaning of concatenation, as has already
been remarked, and in particular whether we admit closure or not (i.e. whether any two
objects may be concatenated) [Luce69, Kran7l]. This is important for data flow [Ovie8O]
and information flow metrics [Henr8la, Card88, Shep88dI where by adding extra
program components, one might decrease the measure because the measures are based on
inter-modular or block flows. Weyuker presents such an example [Weyu88l. The
problem is: do we allow the concatenation of any group of program components to any
other group components? The answer must be no for two reasons. First, measures of
syntactically incorrect programs are meaningless. Second, for non-code metrics, such as
design, the components of interest are not program statements. Consequently there is no
closure of concatenation and therefore Axiom 5 is not universally applicable to software
measures.

The concept of axiomatisation of measurement is powerful. It allows a formal
description of desired and undesired model behaviours, which is invaluable for the
theoretical evaluation of metrics and their associated models. Unfortunately, neither
the weak nor the strong axiom sets are sufficient for even a significant subset of software

metrics. It is therefore necessary to consider a new approach of tailored
axiomatisations.

(c) Tailored axioms

In order to steer a course between the Scylla of weak, undiscriminative axiom sets, and
the Charbydis of strong, restrictive axiom sets, for acceptable software metrics and
their underlying models, it is necessary to tailor axioms to specific measures and
models16.

Measures must satisfy three classes of axioms:

- those axioms that are fundamental to all measurement;
- axioms necessary for the type of scale adopted;
- axioms specific to the model underlying the measure.

It will be noted that the axiom classes decrease in scope of application from universal to
specific for a single, or small family of metrics. Each class will be reviewed in turn.

16 alternative flexible approach has been presented by Zuse and Boilmann [Zuse89] in the form of

viewpoints which allow for the specification of varying sets of fundamental requirements for different

metrics, or even the same metric. The method described in this thesis differs in that it employs an equational

rewrite system to define and reason with the axioms.

87

Chapter Four

The following are axioms that must hold for all measurement for it to be meaningful.

Axiom 1: It must be possible to describe, even if not formally, the rules governing the
measurement [Pfan6S]17. This axiom is somewhat difficult to apply in practice, but in
essence, once the error-proneness of the measuring process has been accounted for, all
measurements of the same object or process must assign it to the same equivalence class.

Axiom 2: The measure must generate at least two equivalence classes in order that, as

Weyuker [Weyu88] points out the measure be capable of discrimination.

Axiom 3: An equality relation is required18. Without an empirical equality operation
each measurement, if it could be called that, would generate a new equivalence class
with exactly one member.

Axiom 4: The previous axiom is further strengthened such that if an infinite number of
objects or events are measured, eventually two or more must be assigned to the same
equivalence class. This is a restatement of Weyukers third axiom [Weyu88]. We note
that some forms of measurement using a nominal scale, for example car number plates, do
not satisfy this axiom - a hardly surprising observation when one considers that such a
process must lie at the limits of what could reasonably be called measurement.

Axiom 5: The metric must not produce anomalies (i.e. the metric must preserve
empirical orderings). In other words the Representation Theorem [Supp7l, Kran7lJ
must hold.

Vpq:object•PrQ* IPI r IQI

where re is any empirically observable relation and r is the equivalent relation

within the number or measurement system.

Axiom 6: The Uniqueness Theorem must hold [Supp7l] for all permissible

transformations for the particular scale type (i.e. there is a homomorphism between
the transformed and the measurement structures).

Regarding the second class of axioms, those that are sufficient for different
measurement scales are well documented in the classical measurement literature, (for
example Stevens [Stev59] and Krantz et a! EKran7l]) and have already been reviewed

7This does not imply that the rules must always be applied correctly, since there is the possibility of

error in the measurement process - a point eloquently made by Henry Kyberg [KybeS4l amongst others.

Is not dissimilar In Impact to Weyuker's third axiom EWeyu88l.

88

Chapter Four

earlier in this chapter. Clearly our axiom set must be tailored to take account of scale
and this is a fundamental decision for the software metrologist.

The third class of axioms are those that relate to the specific model underlying the
measure in question. Again, it is possible to provide categories under which axioms may

be selected. These are:

• resolution;

• empirically meaningless structures;

• model invariants.

Under resolution it may be desirable to include Weyukers second axiom that asserts
that there only exist a finite number of objects of a given measurement score. l'his would
.be important if metrics insensitive, in certain respects 19, are to be avoided. One has
certain reservations as to whether there is a practical thstinctiort bet'weert h'ftrte artcl
a very large number but there are, nevertheless, occasions when the axiom may
emphasise required metric behaviour.

Having chosen the axioms necessary for the type of measurement one must consider the
concatenation operations available for the objects or pro esses 'ml.er scr'*'iy.
importance of concatenation is that it is the constructor operator, and allows us to
describe different objects or processes, in a recursive [Fent86] or hierarchical [Prat87l
manner. What the existing approaches fail to embrace is the possibility of metrics
where there is no concatenation closure 20. This is an important aspect of any
axiomatisation, that we define meaningless structures where any measurement
operation remains undefined or is described using three-valued logic in a manner similar
to that outlined by Suppes [Supp59].

Model invariants are clearly going to be extremely diverse. Examples include Prather's
[Prat84] second and third axioms which relate to measures of control flow structure.

This is a difficult aspect of an axiomatic evaluation of a model, because in the end the
choice of axioms will be dependant upon intuition and insight. Where it cannot be
shown that a model satisfies such an axiom, two conclusions are possible. First, one
might infer that the model is deficient in some respect, or second, that the axiom itself

is inappropriate. Whatever, this axiomatic method at least draws the attention of the
metrologist to such potential problem areas. It does not provide necessarily an answer.

In concluding this section, there are three points of note. Axiomatisations of software

metrics are a vital tool for the theoretical validation of metrics and models, as they

' 9The classic example, is of course, McCabe's cyclomatic complexity [McCa76J where one may

infinitely vary the number of procedure nodes for a fixed number of predicate nodes, for a program flow graph.

201'his will be the case for any syntactic software metric.

89

Chapter Four

allow exploration of the model behaviour in a more rigorous fashion. Without doubt,
they represent a step forward from merely using one's intuition. They may also permit a
more thorough coverage of the model behaviour than the intuitive approach, or for
that matter, than many empirical evaluations, particularly where cost or availability
of data is a factor;

Second, they provide a mechanism to establish certain foundational properties of the
model. These are:

• consistency, so that there exists one and only one outcome for any set of inputs;

• completeness, that the axiom set is sufficiently rich that there is no set of inputs

for which no outcome is prescribed;

• the model is not rejected for violation of axioms for empirically meaningless

structures.

Consistency is established by showing that the axiom set exhibits the Church-Rosser
property. This is unfortunately an undecidable question. There are various notions of
completeness, including the Liskov-Guttag concept of sufficiently complete [Lisk86]
which is weaker than the more usual mathematical definitions of completeness 21 , but

these are still undecidable.

Third, theoretical evaluation provides early feedback for the design and development
of metrics and models. Given that empirical validation is a costly and time-consuming
enterprise, any technique that helps identify models that are manifestly inadequate
must be lauded.

4.4.2 Empirical criteria

A recurring theme in the history of software metrics (and of the previous chapter) has
been, the presentation of empirical "evidence" supporting a metric, only for a rebuttal to
be published a few years subsequently. This is well exemplified by Hamer and Frewiri's
critique [Hame82] of much of the empirical work claiming to support the Software
Science model. The question therefore arises, are there any general criteria by which
empirical validations may be judged?

In a review of empirical validations of design metrics, Ince and Shepperd [Ince88bl
isolate three general factors which are pertinent for assessment of empirical
validations. They are:

axiom set is usually said to be complete if it is impossible to add an independent axiom because

all well formed formulae either follow from, or are inconsistent with, the existing axiom set.

90

Chapter Four

• the hypothesis under investigation;

• the artificiality of the data used;

• the validity of the statistics employed.

These criteria will now be examined in more detail. Probably the most serious, and
commonplace charge that can be levelled at empirical work, is that it is seldom clear

what is being validated. This arises from imprecise, incomplete or metaphysical
models In such situations effort would be better directed at the model and the
development of an unambiguous hypothesis rather than launching into an empirical
validation. The efficacy of this is confirmed by the empirical study by Ince and
Shepperd [Ince89a] of the information flow metric [Henr8lal where initial work
removing anomalies and inconsistencies from the underlying model was rewarded by
greatly improved empirical results, and statistically meaningful results obtained from
the "cleaned up" model. It must be stressed again, that statistically meaningful

empirical results derived from a meaningless model are in themselves meaningless.

The second criterion of an empirical validation, has in turn three dimensions. These are
the number of data points (ideally a large number), the type of environment (ideally an
industrial environment producing large scale software systems) and the type of staff
(ideally professional software engineers as opposed to students). Applying this
criterion to generate a five point classification of design metric validations, Ince and
Shepperd [Ince88bl found less than 10% to be fully satisfactory, and more than 50% of

studies investigated received the lowest classification of the scale. Subsequently the
situation has improved slightly, but there still remains much to be desired.

Statistical validity is the third criterion by which to evaluate an empirical
validation. First, and foremost, is the need for any evaluation to be capable of refuting
the hypothesis under investigation. Randomly searching for statistically significant
correlations, is almost certain to unearth some relationship. However, in absence of a
clearly defined hypothesis derived from the model under study, claims of causality
must be viewed as extremely tenuous. Careful controls and "null" hypotheses are
methods for making it possible to refute a hypothesis. Use of LOC as a benchmark for
comparison with other metrics [Bas84] is another possibility. It also introduces the
possibility of statistical alternatives to correlation coefficients, for instance tests to see
if data points are drawn from the same population.

Tests of correlation are also vulnerable to problems of dependence between the
dependent variable and external variables as in the case of McCab&s cyclomatic
complexity measure EShep88a] and Yin and Winchesters graph impurity measure
[Yin78, Ince88b]. In both instances the measures correlate more strongly with program

22Examples are the Student t test for parametric data and the Mann-Whitney U test for non-

parametric data.

91

Chapter Four

length than with the program attributes they purport to measure. Program length in
turn correlates with program attributes. What is almost certainly occurring is that
cyclomatic complexity, graph impurity and the program attributes are all dependent on
program length. There is a causal association from length to attribute but not, or only
very weakly, from cyclomatic complexity or graph impurity to attribute. The

celebrated example, is of the course, the correlation between the spatial distribution of
prostitutes and ministers of religion where there is no causality, (or at least one hopes
not!) but rather the independent influence of demographic factors (i.e. they both cluster
around urban areas).

Inappropriateness of statistical technique is another source of difficulty. Most
frequently this reveals itself as using statistics that require normal data distributions,
when such assumptions cannot be justified. The empirical validation by Henry and

Kafura [Henr8la, KafH8l] applies the parametric Pearson correlation test to the
information flow metric that contains a quadratic term and is consequently highly
skewed. A non-parametric test would of been more suitable. Yin and Winchester fall
foul of a similar problem. Removal of four outlier data points reduces their correlation
coefficient from 0.98 to 0.52 [Yin78, Shep8Sbj. Statistics that are meaningless for the

type of measurement scale can also lead to confusion.

Selectivity of data points can be another problem area for empirical validations.
Henry and Kafura eliminate four data points from their study where their model fails

to predict adequately, on the basis that the modules were too complex to be changed
[Henr8lb]. However, this appears to be a deficiency of their model and therefore is
unwarranted. A more common practice is the elimination of zero scoring data points,
typically modules that do not contain errors. Again this is a statistically dubious
practice as there is no way which these data points may be identified a priori.

This review of empirical practices may have painted a rather pessimistic picture. The
criteria outlined describe an ideal empirical evaluation. In reality there exist
constraints of cost, time and availability of data. It is therefore appropriate to

distinguish between those features that one might regard as mandatory and those
which are merely desirable. Any empirical validation must address an unambiguous
hypothesis, be capable of refuting it and use statistically sound techniques.
Representative data points are clearly advantageous, but this criterion must sometimes,
of necessity be relaxed. In doing so the onus remains upon the researchers to demonstrate
that any results obtained translate to other less artificial environments.

This section on model evaluation has described what must be construed as almost a

"wish" list. It is concluded that evaluating software models is altogether more difficult
than might be supposed. Consequently, it is more appropriate to address smaller and
more manageable problems. The search for "Holy Grail" type metrics would not seem
either productive or feasible at the present time.

92

Chapter Four

4.5 A Method for the Development of Software Metrics

There has been little effort directed at the development methods for software metrics,
in part due to the belated realisation of the problems involved in the field. One of the
few contributions of significance is the Goal/Question/Metric (GQM) paradigm of
Victor Basili et al [BasR87, BasR88, Romb8ThJ. However, given the importance of the
model for software measurement, the GQM is only a partial methodology. We then
extend this metric development methodology so that it explicitly recognises the central
role of a model, and this is illustrated by a simple example. A fuller example is
presented in the next chapter.

4.5.1 The GoallQuestioniMetric paradigm

The GQM paradigm for software metrics [BasR88, Romb89J is based on the fact that
measurement is carried out for a purpose, and that it is only within the context of a
purpose or goal can it be determined which metrics might be useful. The approach can
be characterised as top-down, and is marked contrast to current practice of obtaining a
metric and then hunting around for some meaning.

The primary question to ask is "What is the measurement goal?". Each goal has the
following attributes:

- an object of interest which may be either a product or process;
- a purpose such as understanding, characterising or improving;
- a perspective that identifies who is interested in the results, for instance

management, software developers or the customer;
- a description of the environment to give a proper context to any results.

The next step is to refine a goal (or goals) into one or more questions. This is a process of
substituting metaphysical concepts such as "complexity" and "quality" by more concrete
and measurable definitions. The danger inherent in a top-down approach is that goals
may be set that cannot be easily satisfied; some concepts may defy translation into more
specific and quantifiable questions [RombS9]. In these circumstances omissions should be

noted as they have considerable bearing upon subsequent interpretation of results. It
may also be appropriate to review the original goals. Having identified a set of

23The constructive quality model (COQUAMO) methodology [Kitc87a] employs a similar hierarchic

approach based around software quality factors, criterion and metrim.

93

Chapter Four

questions, metrics are derived to determine what must be measured in order to answer
each question.

The outcome is a hierarchy of goals, questions and metrics, where there is a many to
many mapping from goal to question, and from question to metric. The strength of this
paradigm is that every metric is placed into a context of answering a question in order to
meet a measurement goal. Furthermore, metrics are only identified to satisfy particular
goals or objectives. Rombach [Romb87b, Romb89] describes the successful application of
GQM to an investigation of maintenance problems for the Burroughs Corporation.

The establishment of measurement goals by the GQM paradigm is then the first step of
the Basili ef al methodology. The next stage is to plan the measurement process by
explicitly stating any hypotheses and to design data collection techniques, building in
validation checks, as far as is possible. The third step is collecting the measurements,
and the final step is interpretation.

Despite the seeming simplicity of the GQM paradigm, it must be viewed as a major
advance for software metrics. In particular it forces problem definition followed by the
identification of those metrics necessary to provide answers. Further, GQM provides a
context both to understand the meaning, and with which to evaluate metrics, something
that is all too often lacking from work in this field. It is also an extremely flexible
approach and one which may easily applied to almost any aspect of software
engineering measurement.

Modelling, or rather the lack of, is the only reservation that one has concerning the
methodology. Although the identification of hypotheses suggests that there must be
some underlying model, this is insufficient considering the central role of the model
within metrology. As a consequence, we have modified the GQM approach, so as to
provide for explicit modelling and evaluation.

94

problem identification

informal model

1
formal mod:

axiomatisation

theoretical evaluation

empirical evaluation

application

Figure 4.2: Stages of the model based metric development method

Chapter Four

4.5.2 A model based methodology for mefric development

Since a model is at the heart of our comprehension of a problem, and provides the means
whereby we exclude irrelevant and unimportant factors as noise in order to concentrate
upon those factors that are believed to be significant, the construction of a model ought

to be at the core of our methodology. Moreover, the methodology must incorporate
model evaluation and iteration where required. Software engineering processes and
products are comparatively ill-understood so review and refinement must be
anticipated.

Figure 4.2 presents the various stages of the methodology. This diagram suggests that
there is a one-to-one mapping between a problem and a model. Obviously, this need not
be the case. Some problems may be best addressed by several models, and one model
may be useful for a multiplicity of problems. The latter is suggestive of the need for the
re-use of models or parts of models. In the past this has been hindered by poorly and
incompletely articulated models. As more structure is introduced into the modelling
process, so the prospect of model and measurement re-use becomes more of a realistic

possibility.

The six stages of metric development, identified by the method will be discussed in
turn. These are also presented in [Shep9oc].

In the same way as the GQM paradigm EBasR88l, our method recognises that the first
and fundamental stage is problem identification. The problems associated with
modelling in a vacuum have already been rehearsed. Without a sense of purpose there

is no means for determining what should and should not be incorporated within a model.
Any description of the problem should include information concerning the problem
domain. There is a considerable difference between predicting error prone modules at
the design stage for a one person software house only producing simple computer games,
and for the much wider domain of all software engineering activity. Problems in the
latter category are unlikely to be easily solved. The problem description also needs to
make clear whose problem is being solved. A company director may have a different
view of productivity to the humble software engineer.

The next stage is to construct an informal model. Intuitions and existing software
engineering knowledge is brought to bear upon the problem, in order to identify those
factors that are perceived as being important. At this stage many of the factors will be
metaphysical because they lack operational definitions (e.g. maintainability, ease of
comprehension etc.).

A crucial part of transforming an informal into formal model, is fixing it into "real

world" by defining the mappings between the model variables and the reality they
purport to capture. The definitions must be consistent with the original problem

95

Chapter Four

definition, otherwise there is a danger of "watering down" the problem into something
else merely because it is easier to define or understand. At the hub of a model are the
relationships that it expresses between the input and output variables. In defining
these, it is often appropriate to axiomatise the model so as to unambiguously describe
the desired model behaviour. An axiom set will also simplify the subsequent
theoretical evaluation of the model. Depending upon problem domain it may be
desirable to introduce parameters into the model so as to increase the its scope. The
remaining two components of a well formed model are a list of assumptions that are
made, and which will characterise our understanding of the problem domain, and

desired level of accuracy. The latter may be obtained from the problem description.
Comparison with actual levels of accuracy will help in the empirical evaluation of a
model and provide a valuable basis for the comparison of competing models.

The stages of theoretical and empirical model evaluation have already been fully
described in the previous section of this chapter. However, it should be stressed that
model building is an iterative exercise, and provision ought to be made for backtracking.
This method particularly emphasises theoretical evaluation as it is usually much

quicker and less costly than empirical analysis of a model. It is entirely reasonable to
suggest that the cheaper "testing" be performed first. It is not suggested that
theoretical evaluation should be a substitute for empirical work as both are likely to
uncover different types of problems. For example, theoretical analysis using axioms
might detect "pathological" structures for which the model produces inappropriate
behaviours. On the other hand an empirical analysis might detect significant factors
which are not included within the model.

The last stage identified is application. This suggests that the model has satisfied
certain theoretical and empirical criteria and therefore, depending upon the type of
problem, is suitable for wider and less critical use. Evaluation of the model ought not
cease once this stage is achieved, but it is regarded in a different light to the
evaluation stages in order to draw attention to the distinction between nascent and
therefore rather tentative models and those that have acquired rather more maturity

and therefore reliability. It is not easy to think of many models that could currently be
placed in the latter category - possibly some of the function point approaches that have
been tuned for particular organisational environments [A1br83, Symo88L

As with the vast majority of software engineering methods, this approach is not
prescriptive. Its contribution is to focus attention upon important issues; in this case
modelling, and identify a set of smaller steps that lead towards the construction of an
adequately evaluated model.

96

Chapter Four

4.5.3 An example

It must be stressed at the outset of this example, that it is intended purely to illustrate
the metric development methodology; not to provide deep insights into the problems of
software maintenance. Consequently, the example is a gross simplification and is not
offered as a useful model. The next two chapters provide more realistic examples of a
software design model.

The starting point for the development of a software metric is the identification of a
problem. Let us assume that we are interested in maintenance and wish to be able to
identify hard-to-maintain systems whilst still at the design stage of developing

software. This ability is only required in the restricted domain of a small software
house producing very homogeneous, interactive information retrieval systems. The
required level of accuracy for prediction is the identification of 75% of the systems that
fall into the upper quartile of systems ranked by maintainability. Although we note
even at this early stage that software maintainability has no operational definition,
we postpone addressing this issue - other than by observing that our perspective will
be that of the software engineer - until after we have begun to construct a prototype
or informal model.

Now to develop the informal model. What factors do we think have a significant
bearing upon maintainability within the problem domain? Remembering that this is a
simplified example, it might be posited that there is a relationship between the

number of database references a system makes, normalised for system size and the ease
of its maintenance. In other words we are concerned with the density of references. The
informal model has identified two input variables, a database reference count and
system size that are related to the output variable maintainability. We have:

M=f(r/s)

where M is maintainability, r the count of database references and s is system size. As
is frequently the case, f(r/s) is an indirect measure of M since temporal considerations
preclude it from being measured directly.

The next stage is the development of a formal model and an axiomatisation of desired
behaviour. At the risk of being repetitive, it must be emphasised that software
maintainability currently has no operational definition. We are not, therefore, in a
position to measure maintainability, and it is arguable then that it is a metaphysical
attribute and must, as a result be refined into terms that are directly observable. If we

are unable to do so, the model cannot be anchored into reality. For simplicity's sake we
will reduce our concept of maintainability to that of the percentage of modules

modified per unit time per defect removed, where the most obvious unit of time is a
software release. The implication is that a low percentage suggests that the

97

Chapter Four

maintenance changes have been easily accommodated (i.e. high maintainability),
whilst a high percentage suggests a software structure highly resistant to modification
(i.e. low maintainability). Three areas require further refinement. First, what
constitutes a system release, second what is a change to a module, and third when are
the measurements made? Possible definitions are, any alteration that requires any
part of the text of the entire software system source code to be altered in any way
leading to the generation of a new version. A module change can be viewed as any
change to the text within the module bounds. As regards timing of measurements, the
measure of version n of the system is intended to be an indirect measure of the cost of
transforming the system into version n+1. The consequence of this transformation or
maintenance action, is to potentially modify the future maintainability so that the
transformation from version n+1 to n+2 may be more or less difficult, since the database
reference density may have been modified. Whether our measure is acceptable as an
indicator of maintainability is open to question. However, at least we are making plain
what is, and is not, being measured by the model.

The mapping from "real world" onto the model, in the form of database reference counts,
r and system size, s must also be defined. A database is defined as any system
modifiable data (i.e. not constants, type definitions etc.) that is shared by two or more

modules. A reference is either the retrieval from, or the updating of a database. It
might be appropriate at this stage to enquire as to whether as such information is
available at the design stage. If it is not, our emerging model will not be able to solve
the problem it is being developed for. System size, s will be the count of modules
comprising the system. Parenthetically we note the implicit assumption that modules
are relatively homogeneous, otherwise module count may be a poor choice for system
size.

Finally, we require some definitions. The code realisation of a module will have the
following properties:

(i) have components lexically together and visible to the software engineer
either within the program text or in a library which he or she is able to update
(this excludes compiler defined modules such as the Pascal readin);

(ii) have identifiable bounds (e.g. begin/end);

(iii) be referenced by name, from other parts of the program/system;

(iv) return execution to the calling software after elaboration.

The precise details of a module are obviously language dependent, as for example, a
COBOL module (paragraph or section) will be very different from an Ada module
(package). From this definition, it is evident that the model is not in its present form

98

Chapter Four

applicable to non-procedural languages (e.g. PROLOG). Again, it is being assumed that
a design or system architecture will identify all the modules and that there is at least
a close approximation between the designed architecture and the realised architecture.

A database reference is defined as either a read or write access to a data object that is

not private to a single module, in other words it is accessed by at least two separate
modules. Furthermore at least one access must be a write access. This, therefore,
excludes constants.

Although some of the above definitions may be contentious, or capable of refinement,
they are at least made explicit. It is apparent that even a simple concept such as
module in practice requires careful thought and definition. For this reason software
metrologists might be better advised to concentrate upon simpler and more manageable
metrics than software complexity metrics.

The model may now be expressed more formally as:

ir/m = f(r/m)

where mc is the number of modules changed per system release, and m is the total

number of modules. The next step is to try to define f, which is a calibration function
linking the indirect measures to the rnclm. Before we do this it is helpful to delineate

acceptable model behaviours by means of axioms. A three layered approach to flexible

axiomatisation has already been outlined where the first set of axioms are those that
are common to all measurement, the second those necessary for the chosen measurement
scale (as yet undecided because f is undefined) and third those specific to the model. It
is the last category that we wish to address.

Understanding the model behaviour focuses upon what empirical meaning we attach to
the concatenation of systems. Indeed, what is the fundamental constructor operation?
The primitive or indivisible components of a system that concern us are modules and
database references. These can be formally described using grammar rules which define
all syntactically valid concatenations. Module calling is also introduced into the
grammar, because it is part of a complete system architecture, even if it does not enter
explicitly into our model of software maintenance.

The rammar for our abstract system architecture notation, using an extended form of
BNF'4, is as follows:

24Terminals are In upper case and non-terminals in lower case. Braces indicate zero or more iterations

and square brackets optional elements.

99

Chapter Four

system : := { module } { DATABASE_NAME I
module : := MOD_NAME [{ MODULE_CALL I] [{ DATABASE REF

Technically, the grammar is ambiguous, but since we have no intention of parsing it,
this is of little concern. A concatenation is now defined as:

CONCAT: system x token - system u (error)

where a token can be any terminal from the above grammar. An error condition or
undefined state results from any syntactically incorrect concatenation operation. The
advantage of this approach as compared to that of Prather [Prat84, Prat87] or Fenton et
al [Fent86J, is that the non-closure of concatenation is explicitly catered for. However,
there remains the problem of context dependent grammar (e.g. a database reference to
an undefined database). This is unimportant for our model, but there exist a number of
formalisms suitable for the specification of semantics of a grammar, such as the
algebraic or axiomatic methods [Gutt77, LiskS6I. These represent the behaviour of the
model, or what mathematicians would call a theory, as an algebra where the axioms of
such a system are rewrite rules. The next chapter employs these methods for the model
of system architecture.

Having established the groundwork, the desired model behaviour can now be dealt
with in more detail where p and q are systems.

Axiom 31 The addition of database references must always increase the measurement
value of m

C

V p:system; d:database_reference I (p o d) I > I pI

This implies that multiple references by a module to the same database will be counted
more than once.

Axiom 3.2 The addition of non-database reference components (modules or database
declarations) will have no impact upon m.

V p:system; m:module_name• I (p o m) I = Ipi

or

V p:system; d:database_name• I (p a d) I = I p1

This has the interesting implication, that a system may be infinitely large but make no
database references and therefore minimise maintenance problems. As this is a

100

Chapter Four

simplified model this need not concern us except in one respect, that of the minimum
maintenance change.

Axiom 3.3 Since a system release has been defined as a change, this must be contained in
at least one module, hence the next axiom

Vp:system Ipi ^1

Axiom 3.4 Similarly, the worst case for the maintenance measure is when all modules
are modified. This gives

Vp:system- Ipi < m

Even without formal proofs of consistency of the axiom set the conflict between Axiom
3.1 and 3.4 can be seen. There exist situations, for instance architectures containing a

single module, where the addition of database references will not increase the metric.
Thus the first axiom must be relaxed somewhat or the model reformulated. A more
minor point is that the metric must yield integers because there is no empirical
counterpart to a partial module! The strength of this rather theoretical approach is
that problems of model behaviours are identified early on, and explicit decisions made.
The fundamental point is not what is the best decision but the fact that the decision
must be incorporated within the model. It is unsatisfactory to omit this information,
allowing different individuals to make different interpretations.

A final axiom is required before I can be fully identified.

Axiom 3.5 The addition of a database reference will always have the same impact upon
the metric, irrespective of the number references made, subject only to the limitations to
m described above.

c

Vp,q:system;d:database_refs . (I(pod)I - IpI)=(I(qod)I - Iqi)

Subject to I ^ m ^ m

From this we may deduce that function f will be linear25 within the range I ... m

25The axiom of linearity has profound implications upon the model and causes potential

complications concerning the satisfaction of I ^ mc ^ m. A curvilinear relationship would both seem more

plausible and convenient.

101

Chapter Four

and so will have the general form:

a+f3.(r)

The axioms give little clue to the values for the coefficients a and , other than must
be greater than zero. In practice there exists a greater interplay between the different
stages of the methodology than first might be apparent. Almost inevitably recourse to
empirical analysis is required in order to provide specific values for the coefficients.
Were the model to be extended to differing domains it is likely that differing values
would be required.

At this stage we can consider what type of scale and unit we are dealing with. Clearly,
a+.(r) leads to an interval scale. This can be demonstrated by the fact that the

following empirical operations are available:

determination of equality;
determination of greater or less;
determination of equality of intervals;

but not:

determination of equality of ratios.

The transformations that do not result in the loss of ordering are similarity and linear
transformations. Such observations may appear trivial in this instance, however, this
is not necessarily so for some of the other metrics that have been proposed, and indeed
the absence of any obvious empirical additive operation makes the determination of
scale and unit an area of difficulty.

The assumptions that the model makes are that modules are of roughly equal size. It is
also assumed that database references are generally homogeneous, and that all module
maintenance changes are comparable. Furthermore, we must assume that implemented
systems do reflect their designs and we have not considered the possibility that
maintenance changes may involve the addition of new, or the removal of existing

modules.

Having established the necessary theoretical foundations it is now appropriate to
empirically investigate our model of software maintenance. For this to take place,
suitable hypotheses need to be established and the necessary data collection carried
out. We must also establish how error prone this measurement process is, and what are
its limitations. Empirical work will also enable us to see what sort of restrictions our

assumptions place upon the model - the worst case being that they render the model
unworkable. As has been suggested, model building is an iterative process so as our

102

Chapter Four

understanding matures additional factors are incorporated into the model and the
estimates for the coefficients refined. In this way we are slowly able to proceed to the
perception of software engineering as a system that consumes multiple resources and
engineers software systems that have multiple facets to be characterised LKafC85l.
This then necessitates the collection of more than two metrics in order to indirectly
measure maintainability.

Even 'the simplified example of a maintainability model has demonstrated that
software modelling is not a trivial process and has many ramifications. This in itself is
a compelling reason for the adoption of a little more rigour and an attempt to eliminate
at least some undesirable model properties early on in the development of software
metrics. The attendant reduction in heartache and wasted effort by those attempting to
validate metrics might be regarded as a bonus.

4.6 Summary

This chapter has attempted to establish some foundations for software metrics. The
development of a model is fundamental to meaningful measurement. Therefore, the
model must be defined in an unambiguous and complete a fashion as possible. To that
end it has been suggested that a well formed model should specify seven different
aspects of the problem being modelled. These are inputs, outputs, parameters,
relationships linking inputs to outputs, mappings between the "real world" and the
model, assumptions made and reliability of predictions. These components are seldom
brought into the open by existing models of software. This state of affairs is the
primary contributor for the difficulties encountered with software models described in
the previous two chapters.

Modelling is not a simple enterprise and therefore development methods are of value.
The GQM paradigm of Basili et a! [BasR88] is such a method, but unfortunately it does
not sufficiently emphasise the construction of a model. An alternative model-based
metric development method has been presented, which outlines the steps whereby a
measurement goal may be evolved from a high level statement of a problem or
opportunity into an informal model, to a formal model and then evaluated both
theoretically and empirically. The theoretical evaluation has been stressed since it

has not been given great attention in the past. Its particular value is, of course, that
such techniques are almost invariably a good deal less resource consuming, than
empirical studies. This is not to decry empirical work, but merely to observe that if we
are expend considerable effort in an empirical validation of a model it should at least

be internally consistent and satisfy certain criteria. Furthermore, theoretical analysis
may uncover different problems with a model to those found by empirical investigation.

Where it is possible to articulate a required model behaviour a mathematical proof
may afford a higher degree of confidence than an empirical study, which in some ways

103

Chapter Four

is akin to sampling from a large and probably heterogenous population, with no

certaintity that the sample is representative. On the other hand there are many
situations where it is not possible to state a priori what model behaviour is required. In
such circumstances empirical investigation is likely to be more effective. Empirical
evaluation is also likely to be more effective at highlighting models that are
insufficiently broad in scope or that make unrealistic assumptions. To repeat then, both
forms of model evaluation are complementary and necessary.

Axiomatic approaches, have been developed by Prather [Prat84] and Weyuker
[Weyu88], for the theoretical validation of models. Unfortunately no universal set of
axioms exists for all software engineering models, and so a flexible or tailored approach
must be embraced. Recourse to classical measurement theory does show that certain
axioms are basic to all measurement, and some to particular measurement scales.
Consequently the three layered hierarchy of axioms that we propose is an effective
approach to model axiomatisation.

Although the tenor of this chapter has been theoretical, as Einstein's aphorism (quoted
at the beginning of the chapter) reminds us, formality alone is not sufficient. Indeed the
essence of measurement is the mapping of empirical relations, drawn from an inherently
informal world, into a formal model [Stev59]. However, the application of a little
more rigour will make the development, refinement, validation and application of

metrics a considerably less fraught process than is the present case.

104

Chapter Five

5. A UNI-DIMENSIONAL MODEL OF SOFTWARE DESIGN

"When we meane to build, We first suruey the Plot, then draw the Modell"

William Shakespeare

Synopsis of chapter

It has already been demonstrated that in absence of a clearly articulated

model, software measurement is an fruitless exercise. In the previous

chapter we sought to remedy this situation by proposing a method to aid

the development and evaluation of software metrics and their underlying

models. This was illustrated by an extremely simple example. We now

turn to a much larger software engineering problem for which we develop a

model to relate software design and the quality factors of

implementability, reliability and maintainability. A formal model is

developed and evaluated using the apparatus of the method described

earlier. Each step in the development of the model is outlined, namely

problem identification, construction of an informal model, statement of the

formal model, and axiomatisation of the model. This is followed by

theoretical and empirical validations.

The worth of the method is highlighted by its ability to detect both

theoretical problems - for example inability to handle software re-use -

and the empirical findings indicating problems related to large variations

in module size. Lastly, it is concluded that more than one model input or

multidimensional modelling is necessary to improve the model

performance and provide useful support for the software engineer carrying

out design tasks.

5.1 Restatement of the Problem

The aim of this chapter is to develop a quantitative model of software design or

architecture using the method and ideas outlined earlier in this thesis. Two benefits

are anticipated. First, it is a realistic example with which to assess the method.

Second, a validated model of design and associated metrics will be of considerable

value to practicing software engineers.

105

Chapter Five

In this section the first two stages of the development of a model are given

consideration. Fundamental is the identification of the problem, if only because

modelling the universe, or even just that subset related to software engineering is a

moderately ambitious undertaking! The problem statement is then refined into an

informal model establishing the major inputs and outputs. As the chapter titles makes

clear, our model is characterised as a uni-dimensional model based upon a single input.

This somewhat simplistic approach is intentionally adopted for two reasons. First, the

empirical validation of multidimensional models is an extremely complex process1.

And, second, it seemed conceptually more straightforward to start from a simple

foundation and introduce complications only as they become necessary. Hence, this

chapter deals with the simple uni-dimensional model and the next chapter introduces

additional factors leading to the construction of a more sophisticated multidimensional

model.

5.1.1 Problem identification

The problem is one of controlling the software design process in order to produce

software systems exhibiting the following quality factors:

implementability;

reliability;

maintainability.

Such problems have been exercising researchers for a number of years (e.g. [Stev74,

Jack75, Parn79, Jack82, Booc86l to name but a few). Design may be conceived of as a

process of selecting between alternatives with the objective of providing an abstract

solution2 for a given specification or problem. Indeed, if no alternatives exist then the

process is a mechanical one offering no prospect of improvement. In order to avoid being

an entirely stochastic process, selection must be made on the basis of evaluation

criteria. Our objective then, is to seek to provide software engineers with a means of

discriminating between alternative designs in order to improve the software quality

factors listed above. Furthermore, we wish the design evaluation criteria to be

quantitative.

Although being able to contrast designs is fundamental, this pre-supposes that one has

1 The work by Kafura and Canning on multiple resources is alnost the only foray into this area, other

than the cost estimation models such as COCOMO FBoeh8l] and SOFFCOST LTaus8ll. Unfortunately, some of

the latter seem to perform poorly other than upon their own databases [Moha8l, Cont86].

The solution is abstract In the sense that It is not executable. Were there to exist a suitable target

machine upon which it could run, then of course, the design would be an implementation.

106

Chapter Five

a repertoire to draw from. In many cases the starting point may well be a single design

in which case we wish, not only to be able to contrast designs, but also to pin-point

weaknesses within a design This facilitates the generation of new - and hopefully

improved - designs.

Such objectives raise the question as to the relationship between this research and the

various design methodologies that are emerging, such as object oriented design [Booc86l.

It is our view that the use of metrics as quantitative criteria with which to evaluate

software designs is complementary to methodology because although a methodology

may greatly restrict the search space for candidate designs, no methodology which we

are aware of restricts the space to a single design3 - certainly not for non-trivial

problems. The other key difference in approaches is that even when a methodology

provides explicit evaluation criteria, as in the case of Structured Design [Myer75,

Stev8O], these tend to be qualitative and therefore, not amenable to automation. For

designing large software systems, automated tools are invaluable.

Finally, it must be stressed that our goal is emphatically not to be able to accurately

predict any of the above quality factors from a given design. Accurate prediction

requires a far deeper understanding of software engineering processes than we currently

possess [Shep89a]. Nor is it a likely outcome from a comparatively simple uni -

dimensional model.

5.1.2 An informal model

The first issue to address is, what aspects of a design should be included in our

embryonic model? Work by other researchers (e.g. [Henr8l, Kafu87, Romb8Thl) suggests

that structural, or architectural, aspects of a design are an important determinant of

the software quality factors we are interested in. System architecture also yields the

benefit of being available early on in the design phase, thus allowing the more scope

for strategic decision making, since few resources are yet committed. For the same

reason, backtracking and re-working of designs is comparatively cheap.

Our goal imposes the constraint that the metrics must be available at design time4.

3The author's experience of teaching even the highly prescriptive methods such as JSP [Jack 75] still

supports this proposition. Students were still able to generate surprisingly diverse solutions, particularly

with respect to logical input data structures and whether to employ a backtracking strategy or not.

This Is an important restriction - where metrologists allow themselves the luxury of near perfect

foresight, the resulting metrics cannot be integrated into software engineering processes without extreme

difficulty. Henry and Kafura's Information Flow metric [Henr8la] provides the dassic example where their

design metric requires LOC as one of its inputs. COCOMO [Boeh8l] similarly requires an estimate of LOC

107

Chapter Five

Thus, we restrict ourselves to the following information:

• modules;

• the calling structure;

• the module interfaces (i.e. the data objects that each module imports and

exports);

• global data structure references.

The next problem is to decide what aspects of system architecture to capture. All three

quality factors have a software engineering perspective, in that they involve the

software engineer in work - either to develop, repair or modify the software.

Informally our model is that these tasks are easier to perform the more localised they

are. Taking a module as the fundamental unit, flows of information between modules

are the means whereby one module may impact another module. If there is the

possibility of an information flow, the software engineer must examine additional

modules and the task becomes increasingly global in nature. Thus, the fewer connections

that exist between a module and other modules, the easier it is to implement and

maintain, and the fewer errors it contains. This gives a justification for treating three

software quality factors in one model - that there is a unifying process of comprehension

by the software engineer5. Such a model is in line with current developments in design

methodology and preferred system architectures (e.g. [Alex, Parn72, Myer75, Your79,

Booc86]).

As already stated our intention is the development of uni-dimensional model.

However, we did not feel it entirely appropriate to ignore application domain. There

is, therefore, also the background problem of establishing the extent to which this

model is applicable. Consequently, specific application domairs are S'te. The

empirical validation applies the model to interactive systems and realtime embedded

systems.

very early on in the software life cyde.

Hindsight would suggest that combining several quality factors into a single model leads to

problems, particularly where tradeoffs exist (e.g. development effort could be reduced at the expense of

reliability). These problems are enlarged upon, at the end of this chapter.

108

Chapter Five

5.2 A Formal Model

5.2.1 Definitions

In order to achieve the goal of aiding software engineers select suitable designs the
extremely informal model described above must be crystalised into something more
specific. The following definitions are therefore introduced.

A module is an executable unit of software that may be called by name, returns execution
to the caller after elaboration and is identified by the system architecture6.
Information flows between modules either by means of parameters (see Figures 5.1 and
5.2) or via global data structures (see Figure 5.3).

Figure 5.1: Example information flow between module A and B

B

A

Figure 5.2 Example information flow between module A and B

more precise definition for Pascal was found to be necessary once the empirica' analysis had

commenced, due to the unforeseen need to "reverse engineer" designs from code, for parts of the study. The

principle, however, remains unchanged.

109

Chapter Five

Figure 5.3: Example information flow between module A and B via a global data
structure

A global data structure is any variable that is shared between more than one module
and may be permanent such as a file or temporary such as an array.

From these basic definitions, the fan_in and fan_out of a module may be derived, where
the fan_in is the number of information flows terminating at a module and the fan_out

is the number of flows emanating from a module. Since, our model is concerned only with
the number of connected modules, duplicate flows are ignored. These counts are then
combined to give an information flow metric 1F4 (so called due to it being the fourth
version - versions one to three having been discarded!), which for the module m, is
calculated as follows:

IF4m = (fan_in . fan_out)2

The fan_in is multiplied by the fan_out to give the number of unique information paths
through a module. This is then raised to the power of two, in order to differentiate
between architectures where information flows are evenly distributed amongst the
modules and those architectures that exhibit a clustering of flows around a small
number of modules7. Despite the seeming arbitrary nature of a power law of two, the
approach is in line with Belady and Evangelisti's [Bela8l] method for partitioning
systems. It is also similar in formulation to the Henry and Kafura metric [Henr8lal. In
order to contrast complete systems we use a system metric:

7The value of the quadratic term has been questioned, since most empirical woñc deals only with

weak orderings. It is significant, however, when working at the system level, since the metric sums across

modules.

110

Chapter Five

1F4 = ± IF4m

where there are n modules.

Although this work is indebted to the pioneering research of Sallie Henry and Denis
Kafura [Henr8lal, our definitions of information flow are substantially modified,
thereby eliminating many of anomalies contained in their original metric and
underlying model. These anomalies are described both in Chapter Three and elsewhere
(e.g. [Kitc88, Shep89b, Ince89]).

The model is now described on a component by component basis as suggested in the
previous chapter.

In puts

Design notations, such as module hierarchy charts, clearly identify the following
required inputs defined as empirical relations:

imports(module, parent_module, parameter_list)
exports(module, parent_module, parameter_list)
reads(module, global_data_structure)
writes(module, global_data_structure)

From these relations the information flow measure 1F4 of system structure may be
derived.

This then leaves us with the question, are there any circumstances when it is ambiguous
as to how to define modules, parents, parameters or global data structures? Some of
these issues are tackled by the algebraic model specification, such as the meaning of
parent and recursion. In other situations the problem derives from the type of design
notation from which this information must be extracted, in which case it is difficult to
offer much general guidance.

III

Chapter Five

Outputs

The model output, in this case the software quality factors, are more dependant upon

experimental and practical limitations. Again by reference to our objective it is
apparent that ranking is sufficient for comparison purposes, hence the outputs are:

Development effort rank
Reliability rank
Maintainability rank

Relationships

From reference to the model goals, it is apparent that we need to be able to rank system
architectures in terms of the three software quality factors of interest. This gives the
following relationships:

Development effort rank = 1F4 rank
Reliability rank = (1 / 1F4) rank
Maintainability rank = 1F4 rank

Parameters

The model is not parameterised.

Accuracy

Using the ranks the model should correctly identify components belonging to the
highest quartile 80% of the time or to use the terminology of Kafura and Canning
[KafC85] have a yield in excess of 80%. Although a somewhat arbitrary threshold
80% was selected for two reasons. First a yield of 80% implies an error rate of 20%. The
model will wrongly identify 20% of structures as belonging to the most problematic
quartile resulting in mis-allocation of resources and possibly inappropriate decisions.
For the model to be of any practical utility this cannot be a frequent occurrence. Second,

an accuracy level of plus or minus a quarter 80% of the time was the stated objective of
the COCOMO model [Boeh8l, Boeh84]. Since COCOMO is intended as a serious model
for industry use the level of accuracy would seem appropriate for our model.

112

Chapter Five

Assumptions8:

(i) the implementation architecture accurately reflects the architecture specified in

the design;

(ii) that variations in information flow size, data structure complexity and module size
will not have a material bearing upon the model.

5.2.2 An algebraic model specification

The above model description is still not fully formal, particularly if we wish to
evaluate its characteristics from a theoretical stand-point. First the exact behaviour
of the model must be defined, so that for any given set of model inputs the outputs may
be calculated. One approach to a more precise description is the use algebras,
sometimes known as axiomatic specifications [Gutt77, Lisk86l. Second, we must
formally state the desired characteristics of our measure as a set of model invariants.
To do this the tailored axiomatic approach outlined in the previous chapter will be
employed. Once this has been accomplished we can set about the task of investigating
whether there exist inputs which result in violations of the model invariants.

In order to develop an algebra to formally specify a model it is first necessary to
consider the constructor operations [Geha83J, bearing in mind that not all feasible
concatenations will yield meaningful system architectures. For example, a flow
between two data structures has no meaning in our model - a data structure must be
accessed by a module. Thus we commence with a grammar for our representation
language of system architectures. Since the central issue of our model is information
flow connections between modules, a directed graph is a convenient tool. We
distinguish between two types of node, modules and global data structures. The edges
show flows of information, either from one module to another as parameters or between
a module and a data structure indicating update or retrieval from the data structure by
the module.

Figure 5.4 presents an example of a system architecture which can represented as the
graph in Figure 5.5. From Figure 5.4 we observe that there is no flow of informatioti,
either via parameters or via data structures between the module INIT and the rest of
the system hence the graph in Figure 5.5 is not connected. Similarly the modules OUT -

SCREEN and MAKE-HAND are an isolated subsystem represented as another

subgraph.

8We wifi return to the validity of these assumptions at the end of the chapter-at present we merely

record the fact that they are being made.

113

flMH
SCREEN

I-' R S

Chapter Five

Figure 5.4: Example system architecture

M

CARDIN

o = module
• = global data structure

Figure 53: Graph representation of the system architecture

There is, however, a link from OUT-SCREEN to MAKE-HAND because MAKE-HAND
imports the parameter "suit". In reality one might have doubts concerning the utility
of system comprising three entirely independent subsystems but that is an issue beyond
the scope of the present discussion. It is also noteworthy that there are no module to
module links via CARD1N or SCREEN, the two global data structures because no
module writes to CARDIN and no module reads from SCREEN. Again, a rather
improbable state of affairs. The edges are not identified as our concern is only whether
a flow exists or not. Since it is a directed graph, the existence of a flow from one module

114

Chapter Five

to another does not imply a reverse flow unless explicitly identified as in the case of
MAIN and SUITVAL.

There are certain restrictions upon the building of a graph to describe system
architecture. First, to avoid any possibility of ambiguity, nodes (either modules or

global data structures) must have unique names. Second, an edge must link two nodes.
We avoid, at least at this stage, the issue of recursion and further stipulate that an
edge cannot link a node to itself. Finally, an edge may not link two data structure nodes.

This approach yields the advantage of simplicity since we only have two types of
object to deal with: nodes and edges. Consequently there will be two constructor

9operations

add_node
add_edge

These will have signatures as follows:

add_node: graph x node_type x name —* graph U [error)

add_edge: graph x name x name 	 —* graph U (error)

Note that since the graph is directed, the flow will be from the first node (i.e. the
second argument) to the second node (i.e. the third argument) of the ADD_EDGE
operation. Unfortunately, these operations have one undesirable property for
constructors, namely they are not deterministic because we cannot predict a priori

whether the constructor operation will succeed, or whether it will yield an illegal

structure and therefore result in an error being returned). To resolve this problem, two
further constructor operations are required which will be deterministic; these we will
call CONCAT_N and CONCAT_E. They are referred to as internal operations -
instead of external operations - because they are only present to facilitate the formal
specification process.

We now algebraically specify the construction of meaningful system structures in terms
of graphs as:

types
graph
node_type = (module , global_data_structure)
name = string

vars

9The full spedfication is given in Appendix A.

115

add_edge(S1,n1,n2)

Chapter Five

S11 S2 :graph

t1 , t2 : node_type

n1 , n2 , n3 fl4 name

external operations

add_node: graph x node_type x name

add_edge: graph x name x name

internal operations

concat_n: graph x node_type x name
concat_e: graph x name x name

new:
exists: graph x name
linked: graph x name x name
is_a_module: graph x name

is_a_ds: graph x name

- graph U (error)

- graph U (error)

_* graph

-* graph
-* graph
-3 boolean
-3 boolean
-3 boolean
-3 boolean

Apart from CONCAT_N and CONCAT_E, five other internal operations are
introduced. NEW is required to enable an initial state to be defined for the graph (i.e.
an empty system architecture) and to detect a boundary condition for the recursive
application of other operations. EXISTS, LINKED, IS_A_MODULE and IS_A_DS
facilitate the checking for error conditions when building system architectures. More
specifically, EXISTS tests whether a named node exists in the graph, and LINKED
whether there is an edge leading from the first to the second node. IS_A_MODULE and
IS_A_DS check the type of a named node.

Meaningful, and therefore allowable, concatenations are now defined by the following

equations:

add_node(S1,t1,n1) =	 if exists(S,n)

then (error)
else concat_n(S1,t1,n1)

if exists(S,n) A exists(S1,n2)

A linked(S1,n1,n2)

A fl1<>fl

A is_a_module(S1 ,n1) v is_a_module(S1,n2))

then concat_e(S1,t1,n1)

else terror)

exists (new,n1)	 =	 FALSE

116

Chapter Five

exists(concat_n(S11t1,ri2),n3)

exists(concat_e(S1,n21rt),n1)

linked(new,n11n2)

linked(concat_e(S1,n3,n4),n1,n2)

linked(concat_n(S11t1,n3),n1,n2)

=

else exists(S1,n1)

ifflfl2Vfl1=fl3thenThIJE

else exists(S1,n1)

=	 FALSE

=	 If flfl1Afl4.-.fl

then TRUE
else linked(S1,n1,n2)

=	 linked(S1,nj,n2)

is_a_module(new,n 1)	 =

is_a_module(concat_n(S1,t1,n2),n1)

is_a_module(concat_e(S1,n2,n3),n1)

FALSE
A t1=module

then TRUE
else is_a._module(S1 ,n1)

isa_module(S1 ,n1)

is_a_ds(new,n1)
is_a_ds(concat_n(S 1 ,t1,n2),n1)

is_a_ds(concat_e(S1,n2,n3),n1)

=	 FALSE
=	 if fl1 fl2 A t1=global_data_structure

then TRUE
else is_a_ds(S11n1)

=	 is_ads(S1,n1)

N.B. The fact that IS_A_DS is false does not imply IS_A_MODULE is true, or vice
versa, since both will return FALSE if the node ni does not exist. Therefore both these
internal operations are required.

The above is a formal specification of which graphs may be constructed to represent
valid system architectures. So, part of the architecture given in Figures 5.4 and 5.5 (the
subsystem incorporating OUTPUT-SCREEN, MAKE-HAND and the data structure

SCREEN) may be described as the following sequence of concatenation 10 operations:

new

add_node(new,module,output-screen)

add_node(add_node(new,module,output_screen),module,make-hand)

add_node(add_node(add_node(new,module,output-screen),module,make-

100ne of the properties of our model is that the order of concatenations is immaterial other than

nodes must precede the Introduction of connecting edges. A proof will be given later in the chapter.

117

Chapter Five

hand),global_data_structure,screen)

add_edge(add_node(add_node(add_node(new,module,output-
screen),module,make-hand),global_data_structure,screen),output-screen,screen)

add-edge(add_node(add_node(add_node(new,module,output-
screen),module,make-hand),global_data_structure,screen),output-
screen,screen),output-screen,n-iake-hand)

Although this may appear rather arcane, it is merely the successive application of
three ADD_NODE and two ADD_EDGE operations to a NEW graph. Using this
technique any legal system architecture can be unambiguously described.

Using the same algebraic approach the 1F4 measures can be formally defined. Two
additional external operations are introduced:

1F4: graph	 - nat

IF4m: graph x name	 - nat U (error)

The 1F4 operation returns the information flow measure for the entire system and is
deterministic. The IF4m operation returns the information flow measure for the module
named, and is not deterministic because the name may refer to a node that is either not

a module or that is not present within the system.

1F4 is defined as being the sum of applying IF4m to every node in the graph that is of
the type module. In order to specify this algebraically, we destructively search
through the graph processing every node that is a module until the graph is empty.
This creates one problem (if we are to preserve the strictly functional style of the

algebra), in that the complete graph is needed to determine all information flows for
each module because each module may be linked to any other, or indeed every other
node in the system. Hence we introduce yet another internal operation, 1F4_INT that
has two arguments, the complete system and the system remaining to be searched.

118

Chapter Five

if4Jnt: graph x graph -) flat

This gives:

jf4(S 1)

jf4jnt(S1 ,new)

if4_int(S11concat_n(S21t1,n1))

if4_int(S1 ,concat-e(S2,n1,n2))

=	 if4_int(S1,S1)

=	 0

=	 if t1=module

then if4m(S1 ,n1) + if4_int(S1,S2)

else if4(S11S2)

=	 if4(S1,S2)

Now we address the problem of defining lF4m, the information flow measure for a
specific module. By now it will come as little surprise to the reader that the following
internal operations must be added to the specification!

fan_inJ: graph x name	 -4 nat
fan_outJ: graph x name -* nat
fan_in_g: graph x graph x name -* nat
fan_out_g: graph x graph x name -* nat

Each of these operations determines the number of local or global information flows
into, or out of, the specified module. Local flows are information flows via parameters,
whilst global flows are flows via shared data structures. The operations that count
global flows have two graph arguments to deal with the problem of destructive
searching, for exactly the same reasons as the previously defined ff4 operation. These
may be combined to define IF4m as:

if4m(S1 ,n 1)	 =	 if is_a_module(S1,n1)

then sqr(((fan_in_l(S1 ,n1) + fan_in..g(S1,S1,n1)) *

((fan_out_1(S 1 ,n1) + fan_out...g(S1,S1,n1)))

else (error)

fan_inj(new,n1) =	 0

fan_inj(concat_e(S 1 ,n2,n3),n1) =	 f	 A is_a_module(n2)

then I + fan_in_l(S1,n1)

else fan_in_l(S1,n1)

fan_in_l(concat_n(S1 ,t1 ,n2),n1) = fan_in_1(S1 ,n1)

fan_out_1(new,n1)
	 =	 0

119

Chapter Five

fan_out_l(concat_e(S 1 ,n2,n3),n1) =

fan_out_l(concat_n(S 1 ,t1 ,n2),n1) =

fan_in_g(S 1,new,n1)	 =

fan_in..g(S1,concat_e(S2,n2,n3),n1)

if	 A is_a_module(n3)

then I + fan_out_l(S1,n1)

else fanout_l(S1,n1)

fan_out_1(S1 ,n1)

0

=	 if	 A is_a_ds(n2)

then ct_.globals_in(S1 ,S2,n1 ,n2) +

fan_in_g(S1,S2,n1)

else fan_in.g(S1,S2,n1)

fan_in_g(S1 ,concat_n(S2,t11n2),n1) = fan_in_.g(S1,S2,n1)

fan_out .g(S1 ,new,n1)	 =	 0

fan_out_.g(S 1 ,concat_e(S2,n21n3),n1)	 =	 If n3=n1 A is_a_ds(n2)

then ct...globals_out(S1,S2,n1,n2)

+ fan_out_.g(S1,S2,n1)

else fan_out_.g(S1,S2,n1)

fan_outg(S 1 ,concat_n(S2,t1 ,n2),n1)	 =	 fan_out.g(S1 ,S2,n1)

In order to determine the number of global flows into module n 1 via global data structure

the entire graph S1 must be searched using CT_GLOBALS_IN.

ctglobals_in: graph x graph x name x name - nat

To count global flows out of module n1 via global data structure n2 we have:

ctglobals_out: graph x graph x name x name —* nat

These are defined as:

ct...globals_in(S1 ,new,n1 ,n2)	 =	 0

ct...globals_in(S1 ,concat_e(S2,n31n4),n 1 ,n2) =	 ff

A is_a_module(n3) A n3<>n1

then I + ctglobals_in(S1,S2,n1,n2)

else ctglobalsin(S1,S2,n1,n2)

ct...globals_in(S1 ,concat_n(S2,t1 ,n3),n1 ,n2) =	 ct..globals_in(S1 ,S2,n 1 ,n2)

ctglobals_out(S1 ,new,n11n2)	 =	 0

ct.. globals_out(S 1 ,concat_e(S2,n3,n4),n1 ,n2)
	

=	 ifn3=n2A

120

Chapter Five

A is_a_module(n4) A fl4<>fl1

then I + ct...globals_out(S1,S2,n1,n2)

else ct...globals_out(S1,S2,n1,n2)

ct_globals_out(S1,concat_n(S2,t1n3),n1 ,n2) =	 ct_.globals_out(S1,S2,n1,n2)

This then completes the algebraic definition of the model and the information flow
metrics. It yields the advantages of being unambiguous, particularly with respect to
the validity of structures, and provides the apparatus for reasoning about, and
evaluating the model. Formal evaluation is made easier when combined with the next
step, which is to state the properties that we desire of our model as a set of model
invariants or axioms. To do this the tailored, three layer approach set out in the
previous chapter will be adopted.

5.2.3 Axioms of desired model behaviour

The first set of axioms for the model are those that are fundamental to all
measurement, as described in the previous chapter. Since these do not vary with model

we will postpone re-rehearsing them until the next section on theoretical evaluation.

Regarding the second class of axioms, these are dependent upon our choice of
measurement scale. In this instance the relationships identified within the model are
concerned with input and output variable ranks which in turn suggests that weak
ordering will be sufficient for our purposes. This implies ordinal measurement. The
axioms are those of transitivity of the < and > relations and symmetry, reflexitivity
and transitivity of the equivalence relation. Further discussion is given in [Kran7l,

KybeS4, Melt9O].

The third class of axioms are those that relate to the specific model underlying the
measure in question. Again, it is possible to provide categories under which axioms may
be selected. These are:

i) resolution;
ii) empirically meaningless structures;

iii) model invariants.

No further axioms concerning measurement resolution are required beyond Axiom 2,
which states that the measure must be capable of discrimination, and Axiom 4 that
states that there must exist at least two system architectures that will be assigned to
the same equivalence class.

As regards the second category; the axiomatisation of the concatenation operations
CONCAT_N and CONCAT_E formally define all legal or meaningful system

121

Chapter Five

architectures. Thus, no further axioms are required.

The third category of axioms are those properties specific to this model which we
believe are important properties, and therefore must remain invariant.

Axiom 7: Concatenating an additional module to the system architecture cannot
decrease the 1F4 11 measure.

V S1 :graph; m1 :node is_a_module(m1) A I S1 I I concat_n(S1,module,m1) I

Axiom 8: Concatenating an additional data structure to the system architecture will not
change the 1F4 measure.

V S1 :graph; ds 1 :node• is_a_ds(ds 1) A IS1 I = I concat_n(S 1 ,global_data_structure,ds 1) I

Axiom 9: Concatenating an additional local information flow to the system architecture
must increase the 1F4 measure.

V S 1 :graph; m1 ,m2:node is_a_module(m1) A is_a_module(m2) A m1<>m2 A

I S1 I I concat_e(S1 ,m1 ,m2) I A I S1 I	 I concat_e(S1 ,m2,m1) I

Axiom 10: Concatenating an additional global information flow to the system

architecture must increase the 1F4 measure. There is a slight difficulty in formally
stating this invariant because not all edges leading to or from data structures create
global flows; a structure remains a sink or source (e.g. no flow exists if ten modules
update a global data structure but no module retrieves from it - admittedly a rather
bizarre situation!).

V S:graph; m1 ,ds1 :node 2 m2:node is_a_module(m 1) A is_a_module(m2)

A m1 <>m.2 A is_ads(ds 1) A linked(S 1 ,ds1,m2) A I S1 I I concat_e(S1 ,m1 ,ds1) I

V S1 :graph; m1 ,ds 1 :node 2 m2:node . is_a_module(m1) A is_a_module(m2)

A m1<>m2 A is_a_ds(ds 1) A linked(S1 ,m2,ds1) A I S 1< I concat e(S 1 ,ds1,m1) I

Another important set of properties of the model are that the 1F4 measures are not a
monotonic function of counts of system components (i.e. modules, global data structures

and flows).

11 1F4 is being used as short hand for development effort, maintainability and unreliability.

122

Chapter Five

Axiom 11:

3 S,S:graph . #modules(S 1)>#modules(S2) A I S1 I < I S2 I

where #MODULES is a function that returns the number of modules contained in a
system architecture (for a formal definition refer to Appendix A).

Axiom 12:

S S,S:graph . #ds(S1)>#ds(S2) A I S 1 I I S2 I

where #DS is a function that returns the number of global data structures contained in a
system architecture (for a formal definition refer to Appendix A).

Axiom 13:

S S,S2:graph• 4tflows(S1)>#flows(S2) A I S1 I I S2 I

where #DS is a function that returns the number of local and global information flows
contained within a system architecture (for a formal definition refer to Appendix A).

Axiom 14: One problem we noted in our critique of Henry and Kafuras metric [Henr8la]
was the way in which their model behaved with respect to component re-use. This
leads to the requirement that a system re-using components must not have a greater fF4
measure than a similar system duplicating the component. Figure 5.5 depicts two
contrasting, but functionally similar, structures that can be defined as:

S = concat..e(concatn(concat_n(concat_n(R,module,A),module,B),module,C),A,C)

V R:graph; A,B,C,D:node

is_a_module(A) A is_a_module(B) A is_a_module(C) A is_a_module(D) A C=D A

I concat_e(S,B,C) I I concat_e(concat_n(S,module,D),C,D) I

Similarly, we have the inverse:

S = concat_e(concat_n(concat_n(concat_n(R,module,A),module,B),module,C),C,A)

V R:graph; A,B,C,D:node
is_amodule(A) A is_a_module(B) A is_a_module(C) A is_a_module(D) A C=D A
I concat_e(S,C,B) I I concat_e(concat_n(S,module,D),D,C) I

123

Chapter Five

In the next section we will assess the extent to which our model conforms to these
axioms.

5.3 Theoretical Model Behaviour

The necessary groundwork has now been laid to commence a theoretical evaluation of
the model of software design. Theoretical evaluation precedes empirical evaluation
because convincing empirical investigations are usually lengthy and energy consuming
enterprises. It is therefore appropriate to satisfy oneself that the model is internally
consistent and satisfies the various criteria that are set as axioms. There is no
suggestion, though, that theoretical analysis should replace empirical evaluation.

First, we will consider those properties that are fundamental to all measurement, as
described in the previous chapter.

Axiom 1: It must be possible to describe, even if not formally, the rules governing the
measurement. This is satisfied by the algebraic definition of ff412.

Axiom 2: The measure must generate at least two equivalence classes.

Here it is necessary to demonstrate that two system architectures exist, such that when
the operation 1F4 is applied they yield different results. The simplest structure is of
course the null, or empty structure.

if4(new) = if4_int(new,new)
	

(Eqn. 15)13
if4_int(new,new) = 0
	

(Eqn. 16)

It now only remains to show that an architecture exists for which 1F4 does not return
zero. To do this we will build a system with two modules, A and B, and information
flows between them (see Figure 5.6).

12Furthermore this definition has been shown to be fully operational by transforming the algebra into

OBJ and executing the program.

The numbers refer to the rewrite equation numbers given in the complete model specification in

Appendix A.

124

Chapter 5

A

xLY

B

Figure 5.6: Example system design

The necessary constructors are:

concat_e(concate(concat_n(concat_n(new,module,A),module,B),A,B),B,A)

so the expression to evaluate is:

if4(concatconcat..e(concat.n(concat_n(new,module,A),module,B),A,B)),B,A)

= i14_int(concat_e(concat_e(concatn(concatn(new,module,A),module,B),A,B),B,A),

(concat_e(concaLe(concaLn(concat_n(new,module,A),module,B),A,B),B,A))

(Eqn. 15)

By applying Eqn. 18 twice:

= if4jnt(concat_e(concat...e(concat_n(concat...n(new,module,A),module,B),A,B),B,A),
(concat_n(concat_n(new,module,A),module,B)) 	 (Eqn. 18)

Instantiating into Eqn. 17 t 1 = 'module' gives:

= 1f4_int(concat_e(concat_e(concatn(concat..n(new,module,A),module,B)4,B),B,A),

if4m (sqr (concate(concate(concaLn(concat_n(new,module,A),module,B),A,B),B,A),B)) +

(concat_n(new,module,A)))
	

(Eqn. 17)

125

Chapter Five

Instantiating into Eqn. 19 IS_A_MODULE will return true for B yielding:

= if4_int(concat_e(concat_e(concat_n(concat_n(new,module,A),module,B),A,B),B,A),

sqr(
((fan_in_l(concat_e(concat_e(concat_n(concat_n(new,module,A),module,B),A,B),B,A),B) +
(fan_in...g(concat_e(concat_e(concat_n(concat_n(new,module,A),module,B),A,B),B,A),B)) *

((fan_out_1(concat_e(concat_e(concat_n(concat_n(new,module,A),module,B),A,B),B,A),B) +
(fan_out...g(concat_e(concat_e(concat_n(concat_n(new,module,A),module,B),A,B),B,A),B)) +

(concat_n(new,module,A))))
	

(Eqn. 19)

Evaluating the FAN_IN_C and FAN_OUT_C terms by applying Eqns. 26-31 we obtain
zero in each case, since there is no node for which IS_A_DS returns true and therefore
the THEN part of Eqns. 27 and 30 are never used when rewriting. Consequently the
argument S2 must reduce to the empty structure and by Eqns. 26 and 29 yield zero.

FAN_IN_L and FAN_OUT_L are a little more complex so we show each stage in the
rewriting process.

fan_in_l(concat_e(concat_e(concat_n(concat_n(new,module,A),module,B),A,B),B,A),B)

By instantiating into Eqn. 21 n3 <>n1:

= fan_in_l(concat_e(concat_n(concat_n(new,module,A),module,B),A,B),B)

(Eqn. 21)

Again we apply Eqn. 21 but this time n 3 = n1, thus:

= I + fan_in_l(concat_n(concat_n(new,module,A),module,B),B)
(Eqn.21)

= I + fan_in_l(concat_n(new,module,A),B)
(Eqn. 22)

= I + fan_in_1(new),B)
(Eqn.22)

=1+0
(Eqn. 20)

126

Chapter Five

Similarly, with FAN_OUT_L and Eqns. 23-25 we obtain:

fan_outj(concat_e(concat_e(concat_n(concat_n(new,module,A),module,B),A,B),B

,A),B)

=1

Substituting back into the previous expression we now have:

sqr(((1+0)*(1+0))) +

if4_int(concat_e(concat_e(concat_n(concat_n(new,module,A),module,B),A,B),B,A

),
(concat_n(new,module,A)))

(Eqn. 17)

=1+
if4m(concat_e(concat_e(concat_n(concat_n(new,module,A),module,B),A,B),B,A),

A)+
if4_int(concat_e(concat_e(concat_n(concat_n(new,module,A),module,B),A,B),B,A

),new)
(Eqn. 17)

IF4m for module A will behave as for module B yielding

sqr(((1+0) * (1+0)))

=1

Our overall expression for 1F4 now becomes:

=1+1+
if4_int(concat_e(concat_e(concat_n(concat_n(new,module,A),module,B),A,B),B,A

),new)

=1+1+0
(Eqn. 16)

As the rewrite sequence now terminates we have a result to applying the 1F4 operation
to the system of two, which is clearly distinct from zero so we are able to satisfy the

second axiom.

127

A

xLY

B

Chapter Five

As will be all too evident to the reader constructing this style of proof is both lengthy
and tedious. For subsequent axioms only the outline of a proof is given and the reader
referred to Appendix B.

Axiom 3: An equality relation is required. No proof is presented as the relation is
axiomatic to our algebraic system, along with propositional logic and natural numbers.

Axiom 4: There must exist two or more structures that will be assigned to the same
equivalence class. To satisfy this axiom, all that is required is to find two different
design structures that yield the same measurement. Two such structures are shown in
Figure 5.7. Because the proofs are both intuitively obvious and somewhat tedious they
are omitted14.

Figure 5.7: Two designs with equivalent 1F4 values

Axiom 5: The metric must not produce anomalies (i.e. the metric must preserve
empirical orderings). There are two aspects to this axiom. The first is the mapping of

14For the benefit of the reader who Is both of a masochistic and sceptical disposition the proof Is

based upon the observation that the FAN_IN and FAN_OUT terms only potentially increment for

CONCAT_E operations. Thus, no number of CONCAT_N operations (i.e. addition of modules or global data

structures) will Impact the FAN_IN or FAN_OUT terms and hence IF4m and hence 1F4. Extending this

argument It can be shown by induction that there in fact exist an infinite number of structures for each

equivalence class.

128

Chapter Five

the measurement function and the second is the definition of relations upon the
measurement system. Unfortunately, as has been previously indicated, the first part of
the axiom is an open problem due to the absence of generally agreed empirical
relations. Hence the first part of the proof of this axiom cannot be discharged,
however, since the measurement system is based upon the number system of natural
numbers, the existence of equivalent relations in the empirical and measurement
systems can be demonstrated . For the proof refer to Krantz et a! [Kran7ll.

Axiom 6: The Uniqueness Theorem must hold ESupp7lI for all permissible
transformations for the particular type of scale (i.e. there is a homomorphism between
the transformed and the measurement structures). The underlying question is whether
the measurement system is adequate for the type of measurement scale selected. For an
ordinal scale the measurement structure must be order preserving for any monotonically
increasing transformation function. This is trivially true [Stev59, Supp7l, Kran7l].

Axiom 7: Concatenating an additional module to the design structure cannot decrease
the 1F4 measure. The proof is the corollary for that of Axiom 4, in that if by adding
nodes (modules or global data structures) additional members of the same equivalence
class are generated, the 1F4 measure cannot be decreased.

Axiom 8: Concatenating an additional global data structure to the design structure
cannot decrease the 1F4 measure. This holds for the same reason as Axiom 7.

Axiom 9: Concatenating an additional local information flow to the design structure
must increase the 1F4 measure. To show that the axiom holds for the model we argue
inductively that it is true for the following two structures where the outside
CONCAT_E represents the information flow being added to the design:

concat_e(concat_n(concat_n(new,module,a),module,b),a,b)
concat_e(concat_n(concat_n(N,module,a),module,b),a,b)

The first structure contains zero flows to which we add a local information flow. The
second structure is the case where the structure N already contains n+1 flows where n is
non-negative integer. A full discussion is given in Appendix B, however in brief, it is
found that the axiom does not hold for the first structure above as it has an fF4 value of
zero, both before and after an information flow is added. This is a significant result,
because it indicates that Axiom 9 does not hold over our model since, adding the edge to
the graph to represent the local information flow has not increased the 1F4 measure; it
remains at zero. The reason for this is not hard to find. The definition of ff4 involves
multiplying the fan-in by the fan-out of each module. Should one term be zero this will

15 practice this axiom only becomes non-trivial when the measurement system is based upon such

mathematical exotica as vectors, when it is not at all obvious that the Representation Theorem holds (e.g.

Hansen's modification to the cydomatic measure IHans78]).

129

a

XLY

b

Chapter Five

propagate through the metric definition giving zero overall 16. The significance of this
axiom violation will be discussed more fully at the end of the section.

Axiom 10: Concatenating an additional global information flow to the design structure
must increase the 1F4 measure. This axiom can be violated by presenting the same type
of example as for the previous axiom, where adding an additional flow to a module
where either the fan_in or fan_out remains zero will not increase the 1F4 measure.
Again the implications will be discussed more fully at the end of the section.

Axiom 11: Larger designs in terms of the number of modules may have lower 1F4
measures than smaller designs. This axiom can easily be supported by reference to the
two examples below and depicted in Figure 5.8:

concat_e(concat_e(concat_e(concat_n(concat_n(concat_n(concat_n(new,module,a),
module,b),module,c),module,d),a,b),c,d),b,d)

concat_e(concat_e(concat_n(concat_n(new,module,a),module,b),a,b),b,a)

Figure 5.8: An example of where number of modules is not related to 1F4 values

The first design has 4 modules whilst the second has only 2 modules yet it has an ff4 of
2 as opposed to zero.

Axiom 12: Larger designs in terms of the number of data structures may have lower ff4

16This difficulty Is also to be encountered with Henry and Kafuras original information flow metric

[KafH8lJ.

130

Chapter Five

measures than smaller designs. This axiom is demonstrated by reference to the two
examples below and depicted in Figure 5.9:

concat_n(new,global_data_structure,x)

concat_e(concat_e(concat_n(concat_n(new,module,a),module,b),a,b),b,a)

a	 LIXi

xt

b

Figure 5.9: An example of where number of data structures is not related to ff4 values

The first design contains one data structure but has no flows and therefore 1F4=O. The
second design is the same as for the previous axiom, has no data structures yet the
1F4=2.

Axiom 13: Larger designs in terms of the number of information flows (both local and
global) may have lower 1F4 measures than smaller designs. This axiom is
demonstrated by reference to the two examples used in the discussion relating to Axiom
11. The first design contains three flows, whilst the second design has two flows yet
the ff4 measure for the second example is the greater of the two. There are two reasons
why this can occur. First the impact of a zero term in a module fan_in or out, as already
illustrated with respect to Axiom 9. This is the factor at work in this case. Second the
quadratic term will penalise distributions of flows that exhibit clustering tendencies.

Axiom 14: Module re-use must not be penalised in comparison to component duplication.
Clearly, the issues at stake are the number of re-uses and the flows from
the module independent of the re-use interface (i.e. all global flows and local flows to,
or from sub-ordinate modules).

131

Chapter Five

Unfortunately, as with the original Henry and Kafura metric [Henr79l, this axiom does
not hold for all cases. This may be demonstrated by a simple example. Referring back
to Figure 5.5, the two architectures described differ only in that the first architecture
re-uses module C, that is both modules A and B invoke module B, however, the in the
second architecture module B uses a duplicate of module C, that is module D. The
following table shows the 1F4 values by module to arrive at an overall comparison of
the two architectures.

Architecture 1
Module	 Tan_in	 Fan out

Fan_out 1T4

A	 1	 1	 1	 A

B	 1	 1	 3.	 B

C	 2	 2	 16	 C

D

1F4 = 18

Architecture 2
Module Fan_in

1	 1	 1

1	 1	 1

1	 1	 1

1	 1	 1

1F4 = 4

1F4
m

Table 5.1: Comparison of re-use strategies between two architectures

From the above, it can be clearly seen that the architecture that re-uses a module has a
higher overall 1F4 value than the architecture that duplicates a module. Not only

does this violate generally accepted good software engineering practice but it also
violates our axiom. More serious still, is the implication that the model of system
architecture and information flow is inadequate because it does not properly capture
the concept of separate instantiations of the same module that occur whenever a module
is invoked from different parts of a system architecture. In particular, it suggests that
our definition of information flow is insufficiently broad in scope to deal with module
re-use. This is an important finding because it requires us to rethink certain aspects of
the model that underlies the metric.

Three potential problems have been identified from the theoretical analysis of the 1F4
metric. First, the introduction of an additional local information into a design does not
always result in an increase in the metric value. The reason for this being the effect of

zero flows into or out of a module. The second problem is likewise: that is the addition
of a global flow does not always lead to an increase in 1F4. The third problem, is
possibly more serious in that software re-use is pertalised as compared with module
duplication. The reason for this is that the metric does not distinguish between

memoryless or deterministic modules and those whose effect depends upon the previous

132

Chapter Five

calling history. Some suggested solutions to these problems, will be presented in the
conduding section of this chapter.

5.4 An Empirical Analysis

The next step was to validate the model of information flow against the stated goal
(i.e. to aid the designer select appropriate architectures to maximise the software
quality factors of implementability, reliability and maintainability). To do this, two
empirical studies were carried out.

The first study addressed the software quality factor of development effort. Data was
used from 13 software teams, where each team comprised three or four second year
students from the BSc Computer Science course at Wolverhampton Polytechnic. The
students were unaware that an experiment was being conducted. Each team
implemented the same problem, thus facilitating comparison between systems.

Students were allocated to teams in such a fashion as to minimise differences in ability
and background and this was accomplished by examining past grades in software
courses coupled with the judgment of tutors.

Each team was required to produce an adventure game shell which could be customised
by the players of the game to meet their own requirements. Despite implementing the

same specification, systems varied in size from 14 to 33 modules, and 313 to 983 of
executable lines of code (ELOC) in Pascal. Development effort was recorded by
monitoring computer connect time and by requesting students to submit a record of effort
expended on the software development. Unfortunately, cross checking revealed the

manual records to be extremely unreliable, for instance in several cases computer connect
time exceeded total development reported manually. They were therefore discarded.

Error data was also collected, but was found to be too sparse to permit meaningful
analysis. For the majority of systems, no errors were detected. This was probably the
result of relatively small scale systems; none exceeded 1000 lines of executable code.
Furthermore, the standard testing that each system was subjected to may have been less
demanding than if the software had been used in a "live" environment.

Although, not initially intended, it was necessary to treat the results as weak orders
(i.e. place in rank order only), due to the highly skewed distributions of the metrics. As
a consequence, all correlation coefficients given are non-parametric Spearman values.
Table 5.2 presents the cross correlations.

Design size, is defined as the number of modules, number of information flows and the
number of information flows normalised by the number of modules. In addition, we also
used ELOC, although to constitute a design metric this would have to be estimated.

133

Chapter Five

Since ELOC 17 was intended as a control the assumption of perfect estimating did not
seem unreasonable.

IF 4

FLOWS

MODS

ELOC

DEV	 1F4

0.797

	

—0.389	 —0.508

	

—0.190	 —0.229

	

—0.217	 —0.196

FLOWS	 MODS

0.268

0.287	 0.646

Table 5.2: Cross correlations for adventure game study

The Spearman correlation of r=0.797 between development time and 1F4 was
statistically significant, there being less than a 1% chance of such a correlation having
occurred by chance. This relationship is shown in Figure 5.10 as a scatter diagram.

15

10

>
w

	

0 1	 I	 I	 I

	

0	 3	 6	 9	 12	 15
I F4-R

Figure 5.lth Scatter plot of ff4 versus connect time
By contrast, the size measures have weak or no correlation with development time.
Parenthetically we note that the original Henry and Kafura measure had a correlation
of r=0.434 with development time, which is statistically insignificant (there being
more than 5% chance of this being a random occurrence). For a more detailed account of

17ELOC was used as it smoothed out size discrepandes due only to code layout. In general ELOC was

found to be approximately 50% of LOC

134

Chapter Five

the study and analysis of the results the reader is referred to [Shep88] or [Shep9Oa].

Size factors do not seem to be significant determinants of development effort but, in
contrast some structural factors are highly related, in particular ff4. Whether these
findings would translate to systems with larger variations in size is unclear. In this
study the largest system was three times greater than the smallest. However, if as
stated in our goal, the measures are to intended to help the designer select between
alternative architectures for the same problem it is unlikely that there will be a very
large variation in size, so this is not necessarily a great stumbling block.

Where size seems to be of more importance is at an individual component or intra-
system level. One system was discarded from the study because of an exceptionally
large component and another had to be re-examined due to a "super" data structure.
This is a disadvantage inherent in a uni-dimensional model, where trade-offs between
module size and inter-modular information flows are ignored 18. Indeed, taking this
point to an extreme, one could construct an "optimal" system architecture comprising of a
single module, where all the information flows and interface complexity would be
subsumed within the module boundary. However, our understanding of software
engineering principles suggests that this would not be good practice!

So far our discussion has centred on the information flow measure at a system wide
level, but it can be obtained on a module by module basis (IF4m)• This is a potentially

useful means of identifying problem areas within a design particularly when coupled
with outlier analysis [Shep89al. Thus, the software engineer is aided in the
generation of new designs.

A second empirical study was based upon a realtime, aerospace application developed
by Lucas Aerospace Ltd.. In this study we examined a system that comprised of 89

separate modules from a realtime control system, to consider the software quality factor
of maintainability.

The four members of staff most closely associated with maintenance work on this project
independently classified each module into one of four categories according to the
perceived complexity of carrying out a maintenance task on that module. A score of one
indicated a very simple module, whilst a score of four indicated a highly complex
module. This procedure was adopted, since it represented the fastest method of
obtaining a measure of maintenance problems, and because alternative documentary
evidence concerning maintenance costs and traceability to specific modules was
unavailable.

18A system architecture comprising a single module will always have zero information flows,

regardless of module size.

135

Chapter Five

Despite initial reservations about subjective evaluations, there was found to be a strong
correspondence between the four classifications. The judgment discrepancies are
sunirnarised as follows:

max. - mm.	 % of judgments

0	 10%

1	 63%

2	 27%

3	 0%

Table 5.3: An analysis of maintenance judgments

It is noteworthy that for almost 75% of the judgments there was either no difference or
only a difference of one between the highest and lowest scores. Also, in no case was a
module judged to be a very simple module to change by one member of the maintenance
team and highly complex by another member; such a situation would have lead to a
discrepancy of three. To obtain an overall picture of maintenance difficulty for each
module, the individual subjective judgments were summed to give a total possible score
ranging from 4 (i.e trivial) to 16 (i.e. highly complex). Actual scores ranged from 4 to 15
with a mean value of 8.7.

The IF4m metric varied from a minimum score of zero to a maximum of 2,924,100, but

with a median value of 196 thereby the highly skewed nature of the distribution. A
Spearman correlation test was carried out between perceived maintenance complexity
and the information flow metric. A correlation coefficient of r=0.70 was obtained
which was statistically significant (i.e. less than a 1% chance of occurring by chance).
The relationship between maintenance complexity and the information flow metric is
also depicted graphically in Figure 5.11. In order to provide some basis for comparison
a correlation coefficient of r=0.72 was obtained between the maintenance scores and
LOC, and the cross correlation between LOC and 1F4 was r=0.49 suggesting that ff4 is
more than a mere proxy for size as captured by LOC. Although the traditional LOC
measure slightly outperforms 1F4, one must remember that 1F4 is available much
earlier in the development and maintenance process. Lastly, this study suggests that
there is potential merit in combining an architectrure metric, such as ff4 and a size
metric such as LOC, in order to provide better coverage of troublesome modules from a
maintenance perspective.

136

Chapter Five

Maintainability

(ranked)

120 .+

80 .+

-	 *

40.+
-	 2 *
-	 *

*	 * *	 *
*	 *	 *****

*	 * **2*	 **
**	 **	 **	 *	 *

	

*	 *	 * **	 *	 **
*	 22	 **	 *

	

* * **	 *
**	 ***	 **** *	 2	 *
* *	 * **

	

-	 4 2 2*	 ** *

	

0.+	 * 3 *

+---------+---------+---------+---------+---------+

0.	 20.	 40.	 60.	 80.	 100.

1F4 (ranked)
m

Figure 5.11: Module maintainability vs. the design metric IF4m

The effectiveness of the design metric, as a means of identifying problem modules, can
be demonstrated as follows. If problem modules are defined to be those that fall into
the upper quartile of values for the complexity judgments, then these can be compared
with those modules that fall into the upper quartile of the design metric. This

indicates the predictive power of the design metric.

HI-METRIC	 LO-METRIC	 TOTAL

HI-MAINTENANCE	 14	 9	 23

LO-MAINTENANCE	 9	 57	 66

TOTAL	 23	 66	 89

Table 5.4: The predictive power of the IF4m metric

137

Chapter Five

In this instance the metric would of identified 14 out of 23 of the most troublesome
modules, a yield of about 64%. On the other hand, the metric highlights 9 modules as
being complex when in fact they have not proved to be so, an error rate of 36%. By
contrast, if one were selecting modules at random one would expect a yield of 25% and an
error rate of 75%.

There is an obvious weaknesses in this investigation. This is the reliance upon the
subjective judgment of a small number of individuals. Further work is required to
explore the relationship between perceived complexity from a maintenance change
point of view and actual historical data, such as mean effort per change per module and
probability of a module being impacted in any one maintenance change. This is
illustrative of the iterative nature of any software engineering application of software
metrics and modelling.

5.5 Evaluation of the Uni-dimensional Model

To summarise the position so far, three problems have been uncovered by the

theoretical analysis of the model - two of them minor and one more significant. In
addition the empirical studies have raised the problem of component size, and in
particular module size, within a system architecture. Each of these areas will be dealt
with in turn.

First, the comparatively minor issue of zero terms propagating through the expression

to compute ff4. This has the consequence that additional local or global flows do not
invariably increase the overall ff4 value. A simple solution to this 'pioblem is
addition of one to both the fan_in and fan_out terms as advocated in [Ince89aJ. Thus
the new definition of ff4 becomes:

m

2ff4m = (1+fan_in . 1+fan_out)

The solution to the re-use problem is a little more complex. As has already been
remarked upon, there is need to distinguish between module re-use when behaviour
cannot be influenced by previous invocation from other modules and when this is not the
case. The situations can be readily distinguished on the basis of classifying a module

either as having a memory or as being memoryless. A module is memoiyless if neither
it, nor any of its subordinates both write to and read from a global data structure 19. An
example of both types of module is given in Figure 5.12, the first architecture
illustrating a re-used module with memory.

9Strictly speaking even if these conditions pertain one can only state that there exists the

possibility for modules with memory. However, this may only be resolved by dynamic analysis which is

outside the arnbit of the model for reasons that have been previously discussed.

138

A

Chapter Five

B

DS

Figure 5.12: An example of a module with and without memoly

where re-used modules are deemed to be memoryless their interface should only be
counted once, rather than once per module invocation. The consequence of this is to be
either neutral or to favour module re-use as required by Axiom 14. Returning to the
example used to refute Axiom 14 in section 5.3 and applying the modified rules
described above, a new set of metric values are obtained.

Architecture 2.	 Architecture 2
Module Tan in Tan out 1T4
	

Module Tan in Tan out 1)4
m

A
	

1
	

1
	

1
	

A
	

1
	

1
	

1

B
	

1
	

1
	

1
	

B
	

1
	

1
	

1

C
	

1
	

1
	

1
	

C
	

1
	

1
	

1

D
	

1
	

1
	

1

1F4	 3
	

1F4 = 4

Table 5.5: Comparison of re-use strategies between two architectures counting interfaces

As may be seen from Table 5.5 the architecture that re-uses rather than duplicates a
module now has the lower metric value20.

20The concept of memory and memoryless modules may have a secondary application in that reused

modules with memory are likely to be lacking In cohesion [Stev74J. This is significant since module cohesion

139

Chapter Five

Turning to the issue of module size, raised by the empirical analysis, a solution is more
difficult. The fundamental problem is that software architecture is rather complex to
model using only a single dimension or measure. What is really required is a second
measure, in order to capture the notion of module size, in addition to module interface
complexity in terms of information flows. The next chapter goes onto explore
enhancements to the model by means of introducing a second dimension.

To conclude then, the single dimensional model has some utility as demonstrated by the
two empirical studies and has been shown to be significantly related to both the factors
of development effort and maintainability. This is despite three theoretical problems
that have been uncovered by the application of an axiomatic treatment of an algebraic
or formal definition of the model21.

has always proved more difficult to capture than module coupling, see for example the discussion in

[Shep9Ofl.

possible reason why the empirical analysis was broadly supportive despite the problems

highlighted by the theoretical analysis was that none of the architectures significantly re-used modules,

coupled with the fact that those designs that were bad were so bad that they tended to overwhelm more

marginal features like the degree of module redundancy!

140

6. A MULTIDIMENSIONAL MODEL OF SOFTWARE
DESIGN

"Curioser and curioser", said Alice, who was so surprised, she quite forgot to

speak good English.'

from 'Alice through the Looking Glass'

'In fact, the goal of the design process is never a "best" design. Instead it is an

"adequate" design that satisfies the requirements and design goals and has a

reasonably good structure.'

Barbara Liskov and Jon Guttag ELisk86l

Synopsis

This chapter argues that if software engineering models are to be useful,
then they will require more sophistication than can be achieved by a single
input or dimension. In particular it is shown that some of the weaknesses
in the model of system architecture described in the previous chapter may
be overcome by extending the model to incorporate a notion of module, or
design component size. This permits the exploration of trade-offs between
inter and intra modular information flows. Existing measures of module
size - available at design time - are briefly reviewed, but none found
altogether satisfactory. An alternative approach is proposed, based upon
the traceability of functional requirements from a specification onto a
module hierarchy. This validated, according to both the theoretical and
empirical criteria described earlier in this thesis, and found to yield useful
results. The chapter then describes how using simple statistical techniques
such as two-dimensional scatterplots and multi-variate outlier analysis an
improved model of software design can be developed. The conclusion is
drawn that, the techniques employed here enable more sophisticated and
useful software models to be developed. However, this must be built upon
the foundation of theoretically clean and empirically observed
relationships. Otherwise our sophistication is entirely in vain.

141

Chapter 6

6.1. Why multidimensional models?

This thesis has argued that there is considerable support - both theoretical and empirical

- for the proposition that the structural metric ff4 can identify potentially problematic

architectures and components, typically modules [Ince89, Shep9Oa, Shep9Ocl. Clearly it

is of great value to the designer to be able to obtain feedback on design decisions, prior

to ossifying them into code. There is a danger, however, that lurks behind concentration

upon structural measures; that is the possibility of reducing structural complexity

merely by adopting very large components.

Unfortunately a single measure of structure cannot be sensitive to this process. Basili

and Rombach [BasR88] make a similar point, when they argue that most aspects of

software development processes and products are too complex to be adequately

captured by a single metric. Consequently, useful models will normally incorporate

more than one dimension. Nevertheless, we still wish to remain subject to the restriction

imposed by the objective of providing guidance for the software designer, that all

measures must be available at design time.

The remainder of this chapter investigates the various existing metrics for system

component size: that is the full Henry and Kafura [Henr8la] information flow metric,

the Card and Agresti intra-modular metric [Card88], the work by Samson et al on formal

specification [Sams87], the deMarco 'Bang' metric LdeMa82l and finally Albrecht's

function points [A1br83]. All of the above are found wanting in at least one respect so,

an alternative metric, module "work" is proposed, based upon the traceability of

functional requirements from a specification to design. The behavioural properties of

the underlying model are analysed by means of the flexible axiomatic approach

developed in the chapter four. This measure is then applied to empirical data and found

to yield useful results and to perform more reliably than the other metrics evaluated. It

is suggested that the multidimensional model is more effective at identifying problem

modules than any single metric. We conclude with some remarks concerning the role

of multidimensional models in software engineering processes.

6.2 Measuring module size

6.2.1 Existing module size metrics

Structural complexity is merely one dimension, albeit an important one, of software

design. As we have already remarked it disregards component size, concentrating

142

Chapter 6

purely upon the manner in which components are linked. Such a view of design is
potentially flawed, as a designer can exploit the relationship between structure and
component size by exchanging one for the other. Some notion of component size is,
therefore, an important addition to a structure metric.

The previous chapter - and also [Ince89a, Shep9Oa, Shep9Obl - have highlighted some of
the problems of only measuring architectural complexity. In this empirical study of 13
different architectures that implement a single specification, we found two aberrant
systems that deviated from a generally well defined relationship between structural
complexity (measured as the information flows between system components) and
development effort. Closer examination revealed that both the two architectures
involved, exploited a trade-off between structural complexity and component size. In
one case a single module comprised 43% of the resultant software system size, measured
as executable lines of code (ELOC) and was more than 600% over the mean module size.
As a consequence, the structure metric under-estimated development time to a
significant degree. At a theoretical extreme one could minimise structural complexity
by adopting an architecture containing a single component!

The problem then becomes one of how can we measure system component size at this
early stage in the software development process? And having done so, how can this
measure be combined with the structure measure? The following sections attempt to
provide some answers.

Several existing design metrics have attempted to combine a measure of both system
structure and component size. The original information flow metric of Henry and
Kafura [Henr8la, Henr84] attempted to do this by multiplying the information flow or
structural complexity of a module by its size, measured as estimated length in lines of
code (LOC). This gives rise to two problems. First, LOC is not available at design time.
Second, empirical work has been very equivocal as to the merits of introducing the LOC
term to the equation [Henr8la, KafC85, RombS7]. One can draw two possible inferences
from this second problem. Either LOC is a poor measure of component size, or
multiplication is an inappropriate method of combining the two dimensions of design as
they are not completely orthogonal. We are inclined to the view that both inferences
contain a degree of truth.

Card and Agresti [CardS8] have attempted to tackle the problem by defining separate
metrics for inter-modular (structural) complexity and intra-modular complexity (design
component size). The inter-modular measure is based on the square of the count of
module calls made by each module. The intra-modular measure is the workload of a
module, which, from the classical module-as-a-function perspective can be interpreted
as the mapping from the set of inputs to the set of outputs. The amount of work to be

143

Chapter 6

performed can be characterised as the cardinality of the two sets, divided by the number
of subordinate modules plus one, as this indicates the extent to which work is shared
between modules. This leads to the size measure:

v / (f+1)
	

Eqn. 6.1

where v = no. of inputs + outputs
f = no. of subordinate modules

Unfortunately the metric is still vulnerable to the use of very large modules. Since
workload is defined as the movement of data across the module boundary, it will fail to
capture any work that is completely internal to a module. The metric also assumes that
data and modules are of uniform size. Another difficulty is that for many applications
workload includes device management. Evidently the definition of workload, or inputs
and outputs, must be broadened to include devices and global data structures. Even
with these changes it is disappointing to report that it performed poorly on our
empirical data. The measure failed to identify the two rogue modules and produced no
meaningful correlation with module size in terms of LOC, decision counts or the
number of variables used (see Table 6.1 in section 6.). There are two possible
explanations. First, increasing the number of subordinates may increase the workload of
a module as there is work involved in scheduling the module calls. Second, it is
vulnerable to the practice of splitting work across two or more levels of a module
hierarchy, thus a large number of subordinates might indicate a large number of partial
functions to be added to the calling module's workload.

Samson et al [Sams87] describe an attempt to obtain useful measures from an OBJ
specification. Unfortunately the use of algebraic specifications is hardly a commonplace
industrial activity, nor is the empirical support overwhelming. Furthermore, one has
doubts concerning the validity of the underlying model, which suggests that the number
of axioms within the specification will be equivalent to the cyclomatic number of the
code implementation.

Function points [Albr83] represent another approach to specification measurement,
where the aim is to try to quantify task size using inputs such as the number of queries,
system inputs and outputs. This measure is more flexible in the type of specification
document it may be derived from, but treats a system as a single entity, whereas our
interest is components and component size. By contrast, deMarco's, some what
curiously termed, Bang metric EdeMa82l can be applied at a component level but
requires data flow diagram and entity-relationship diagrams as input. Although these
notations are more widespread than formal specification, they still represent a minority

144

Chapter 6

practice, coupled with the fact that the author is unaware of any empirical support for
deMarco's ideas.

6.2.2 The "work" metric

None of these specification measures fully meet our requirements of relating functional
requirements to modules in the design, so as to give an indication of size. We have,
therefore, developed our own approach based upon the concept of module "work".
From any specification document it is possible to isolate the functional requirements for
a proposed system. Note that functional requirements (e.g. a report must be produced)
are distinct from constraints (e.g. the mean response time must be less than 5 seconds) as
the latter typically impact most, if not all of a system, whereas a functional requirement
may be mapped onto one, or a small number of components.

Functional requirements can be constructed into a hierarchy as exemplified by the
Automated Requirements Traceability System at Lockheed [Dorf84l. A requirement is
either primitive, in that it is not refined into sub-requirements, or is composite. For
example, HANDLE_INPUT could be a composite requirement comprising of
FETCH_INPUT and VALIDATE_INPUT. A composite requirement is regarded as
being satisfied when all its sub-requirements are satisfied, so HANDLE INPUT is
satisfied when both FETCH INPUT and VALIDATE INPUT are satisfied. In this
manner, requirement satisfaction is inherited up the hierarchy until the top level
SYSTEM when, by definition, all requirements are satisfied.

For each module we specify the set of primitive requirements satisfied by a module i, P1.

This set may have zero or more members, though the empty set for childless modules
should be regarded with some suspicion, as this suggests either that the module has no
purpose, (improbable) or that a functional requirement has not been identified or
allocated to that module (more probable). Another possibility is that a primitive
requirement maps to more than one module, indicating either a split function or
redundancy. Finally, a module may only partially satisfy a primitive requirement. In
such a circumstance the primitive is treated as a composite and new primitives
introduced. Where many primitive requirements map to many modules, this is
indicative of the requirements hierarchy being insufficiently detailed. Alternatively, the
design structure exhibits problems of module coupling [Stev74, Your79]. The converse
is, of course, that many primitive requirements mapping to a single module is
suggestive of the module hierarchy being insufficiently detailed. This is also the first
intimation that the designer may have traded structural complexity for component size.

145

Chapter 6

We must now consider the scheduling side of a module's workload. Scheduling work is

required if one or more of three conditions are true for a module:

• two or more primitive requirements are satisfied;

• one primitive requirement is satisfied combined with one delegated requirement;

• two or more delegated requirements are combined.

A requirement is delegated if it is satisfied by a subordinate module.

We define the workload for module i, work 1 as:

r1 + a (sj)
	

Eqn. 6.2

r1=#(P)
	

Eqn. 6.3

s = #(Rmax1) + #(Rmin)
	

Eqn. 6.4

where:

= Set cardinality;

0< a the coefficient indicating the relative contributions to workload of scheduling

and requirement satisfaction;

P1 = set of primitive requirements satisfied by module i;

= the set of all requirements satisfied or inherited by the ith module;

Rmin = the minimal set of requirements after all possible substitutions of more

primitive requirements from Rmax 1 by higher order or more composite

requirements (e.g. Rmax1 = (a,b,c) and D = (a,b) yields Rmin1 = (D,c)).

The steps involved in calculating the work for each module may be summarised as the

following steps (see LShep89d, Shep9ob] for a more detailed treatment).

1. Construct, from the system specification, a functional requirements hierarchy.

2. Construct from the design documentation a module calling hierarchy.

3. For each module, determine which primitive requirements are satisfied either

in full or in part, thereby establishing P1.

4. For each module calculate Rmax, that is plus any inherited requirements.

146

Chapter 6

5. For each module calculate Rmini, that is Rmax1 with all more primitive
requirement groupings replaced by higher level requirements wherever possible.
Thus:

#(Rmax1) ^ #(Rmin)

6.Calculate the scheduling work of each module s as:
#(Rmax1) + #(Rnin)

7.Calculate worlq for each module as:
r1 + a (s)

A judgment has to be made concerning the value of the coefficient a. This will depend
very much on the type of application and development environment. As an initial
approximation, and no more than that we took the view that the ratio of work involved
in scheduling in relation to carrying out a task was I : 3 and so assigned a value of 0.33
to the coefficient. This was derived as follows. First, we found that approximately 35-
40% of the code appeared to be devoted to scheduling work, as opposed to satisfying
primitive requirements. We also observed that ratio of primitive tasks to scheduling
tasks was in each case close to 1:2. This suggests:

(0.375/2) : (0.625/1)

1 :3

Therefore:

a 0.33

Further empirical work is required to substantiate this approach. Indeed it would be
surprising if a does not vary for different environments and applications, since the
proportion and type of scheduling work differs considerably between say, commercial
dp systems and time critical, embedded control systems.

6.3 Validation of the "work" Metric

So far we have a putative model for module size at design time. The next step is to
assess the validity of the model. This a accomplished by a combination of theoretical
techniques based upon an axiomatic statement of the desired model properties and
proofs that the axioms are satisfied. This is complemented by an empirical validation to

147

Chapter 6

increase our confidence that the model does indeed capture size aspects of modules
identified within a software design.

6.3.1 Theoretical validation

So far, our model of module size has been presented in a semi-formal manner.
However, in order to compare desired model characteristics with actual behaviour,
using the flexible axiomatic approach, a more rigourous set of definitions are required,
based upon an equational rewrite system [Gutt77l. This is similar to the treatment given
to the structural design metric 1F4 in the previous chapter.

6.3.1.1 An algebraic specification of the "work" metric model

As in all algebraic specifications, the starting point is identification of the constructor
operations [Geha82]. In this instance there are two groups of constructors: those
concerned with the functional requirements hierarchy derived from a specification; and
those concerned with the module calling hierarchy extracted from the system
architecture, or high level design. These operations have the following signatures:

newspec:	 —9 spec
addr: req x req x spec	 —* spec

newdes:	 -4 des
addm: mod x mod x des	 — des
sat: mod x req x des 	 -4 des

The newspec and newdes operations create new hierarchies and are necessary in order to
introduce determinism into the specification. Addr and Addm add requirements and
modules respectively to an existing hierarchy. Since a hierarchy is structure that
requires all its elements to be related, the second argument is the parent of the
requirement or module being added1 . The constructor sat is most important because it
represents the mapping or the linkage between the two hierarchies, whereby a module
from the design satisfies a functional requirement from the specification. There is no
reason, in principle, why one module may not satisfy zero, one or many requirements,
nor why one requirement should not be implemented by one or more modules 2. In the

1 This style of constructor presents one difficulty in the form of the root node, or top level element. It Is

resolved by the use of a special null parent value represented by the empty string. The justification for this

slight unpleasantness Is that It greatly simplifies the algebraic specification by reducing the number of

constructors from six to four.

148

Chapter 6

interests of brevity and clarity, it is assumed that we are only dealing with well formed
structures, that is a subset of all structures that it is possible to describe using the
constructor operations. Specifically, it is assumed that the design fully satisfies its
specification, that the hierarchies contain no recursive structures and that all
requirement and module names are unique. This avoids the need to introduce internal
operations and their attendant complications, although the algebraic technique can
handle such situations as evidenced by the specification of the ff4 metric given in the
previous chapter.

The description of the model, from the last section has the fundamental concept of a
requirement comprising of zero or more sub-requirements. This is captured by an
operation that yields the set of sub-requirements that are immediately subordinate to a
given requirement. Thus we have,

comprises: req x spec —+ reqset

where reqset is a type, set of requirements. Note, that as a form of shorthand, this model
specification assumes that the type set and its basic operations, such as membership,
urtion and subset are previously defined. Again, this is in the interests of brevity. The
equations to define the comprises operation are based upon the constructors operations
already described.

1.comprises(rl,newspec)
2.comprises(rladdr(r2,r3,S))

=	 0

=	 ffrl==r3THEN
comprises(rl,S) u (r2)

ELSE
comprises(rl,S)

Next we define the operator exists? which tests to see if a given requirement is contained
within the requirements hierarchy.

exists?: req x spec -., boolean

3. exists?(rl,newspec)
	

FALSE
4. exists?(rl,addr(r2,r3,S))
	

IF rl==r2 THEN TRUE
ELSE exists?(rl,S)

2The pathological case of a design failing to fully satisfy Its spedficafion - that Is a requirement being

Implemented by zero modules - Is excluded from the following discussion on the grounds that In such

drcumstances the model will not yield meaningful metrica

149

Chapter 6

It is also useful to define requirements as either primitive, that is without sub-
requirements or as composite. An operation prim? returns TRUE if a given requirement
is primitive.

prim?: req x spec - boolean u (ERROR)

5. prim?(rl,newspec)
	

(ERROR)
6.prim?(rl,addr(r2,r3,S))
	

IF-, exists?(rl,5) THEN (ERROR)
ELSE

IF comprises(rl,S)==[) THEN TRUE
ELSE FALSE

This definition merely states that for any non-empty specification structure, any
requirement that has no sub-requirements is deemed to be a primitive. The operation is
meaningless if the specification structure is empty or does not contain the requirement
ri, and this indicated by the special result (ERROR) which terminates the equation
rewriting.

Next we turn to the module calling hierarchy and define the operation which returns the
set of all modules directly called by a given module within a system architecture.

calls: mod x des - modset

7.calls(ml,newdes)
	

0

8.calls(ml,addm(m2,m3,D))
	

IF ml==m3 THEN calls(ml,D)u(m2)
ELSE calls(ml,D)

9.calls(ml,sat(m2,rl,D))
	 calls(ml,D)

Equation nine essentially states that the operation sat has no effect upon the module
calling structure. The specification has been slightly simplified by ignoring the
possibility of module that does not exist within a non-empty calling hierarchy. In such a
circumstance an empty set would be returned. Note that this algebraic specification
makes it dear that any subordinate module that is invoked more than once will only be
counted as one call - since a set may not have duplicate members. However, a module
may be called by more than one set, in which case it will be a member of more than
modset.

The next operation descend? is related to calls in that it tests whether module ml is a
descendant of module m2, where descendant means a calling path of arbitrary length3

150

Chapter 6

from the latter to the former module. An additional, internal operation is present in

order to create a second copy of the argument des which is passed down the recursion,

as a consequence of the stateless style of specification. In other words it is an internal

artifact of the algebraic specification and is not, therefore, a direct external characteristic

of the model.

descend?: mod x mod x des	 — boolean

desc?: mod x mod x des x des -, boolean

10. descend?(ml,m2,D)

11.desc?(ml,m2,newdes,D)

12.desc?(ml,m2,addm(m3,m4,D1),D)

13.desc?(ml,rn2,sat(rn3,rl,D1),D)

=	 desc?(ml,m2,D,D)

=	 FALSE

=	 IF ((ml==m3)A((m2==m4)) v

(desc?(m2,m4,D1,D))A(m4<>'))

THEN TRUE

ELSE desc?(ml,m2,D1,D)

=	 desc?(ml,m2,D1,D)

Now we define the set of primitive requirements directly satisfied by a given module, in

terms of the operation Pwork.

Pwork: mod x des x spec —* reqset

14.Pwork(ml,newdes,S) 	 =

15.Pwork(ml,D,newspec)	 =

16. Pwork(ml,sat(m2,rl,D),S)	 =

17.l'work(ml,addm(m2,m3,D),S) =

a

0
IF (ml==m2) A compnses(rl,S)={J

THEN Pwork(ml,D,S) u Cr1)

ELSE Pwork(ml,D,S)

Pwork(ml,D,S)

The next concept from the model that requires formalising is that of inheritance,

whereby a module inherits the requirement satisfactions of all its descendants, not

merely those modules that it directly calls. This is captured by the operation inherits and

the internal operation inherit.

inherits: mod x des	 —, reqset

inherit: mod x des x des — reqset

3Desc? is distinct from calls in that calls returns only those modules that are directly called by the

specified module, that is a calling path length of one.

151

Chapter 6

18. inherits(ml,D)

19.inherit(ml,newdes,D)
20.inherit(mladdm(m2,m3,D1),D)
21.inherit(ml,sat(m2,rl,D1),D)

=	 inherit(ml,D,D)

=	 0
=	 inherit(ml,D1,D)
=	 IF desc?(m2,ml,D)

THEN inherit(ml,D1,D) u (ri)
ELSE inherit(ml,D1,D)

Note that this definition means that a module does not inherit the requirements that it
directly satisfies, and consequently leaf modules - those without descendants, unlike the
meek - do not inhent4.

The next step is to define the process of factoring out groups of requirements and
substituting them by more abstract requirements.

abs: reqset x spec
abstract: reqset x spec x spec

22. abs(R,S)

23.abstractUj,S1,S)
24.abstract(R,newspec,S)
25.abstract(R,addr(rl,r2,S1),S)

- reqset
- reqset

=	 abstract(R,S,S)

=	 0
=	 R
=	 IF comprises(rl,S)<>Ø

A (comprises(rl,S) ç R)
THEN abstract(R,S1,S)uRu(rl)

- comprises(rl,S)
ELSE abstract(R,S1,S)

Note that the minus sign indicates set difference and a hash symbol should be read as
set cardinality.

Finally, we proceed to define the two outputs from the model, workj and work, where

workj is a measure of workload or size for the mth module and work is a measure for the
entire system.

4This is In fact a curious Inverse of the human process and doubtless the consequence of injudicious

choice of analogy during the Informal description of the model!

152

Chapter 6

worki: mod x spec x des -3 real

work: spec x des	 -4 real

wk: spec x des x des	 -4 real

26. work1(ml,newspec,D) =	 0

27. work1(ml,S,newdes) =	 0

28. work1(mI,S,D)	 =	 4t(Pwork(ml,D,S)) + a(#(abs(inherits(nil,D)

u Pwork(ml,D,S),S)) + 4t(inherits(ml,D) u Pwork(ml,D,S)))

29. work(S,D)
	

=	 wk(S,D,D)

30. wk(S,newdes,D)
	

0

31. wk(S,addm(ml,m2,D1),D)
	

wk(S,D1,D) + work1(ml,S,D)

32. wk(S,sat(ml ,rl,D1),D)
	

wk(S,D1,D)

This concludes the formal definition of the model, which is presented in its entirety in

Appendix C. The next step is to consider those properties that we wish to be true of the

model and state these as axioms. We will then attempt to demonstrate whether the

axioms hold for the model using a similar approach to that demonstrated for the

structural model of design in the previous chapter.

6.3.1.2 Desired model behavioui an axiomatic treatment

By applying the three tiered approach of the flexible axiomatic method we obtain those

axioms that are fundamental to all measurement as described in the chapter four.

Briefly these are:

Axiom 1: It must be possible to describe, even if not formally, the rules governing the

measurement.

Axiom 2: The measure must generate at least two equivalence classes so that the metric is

able to discriminate between software designs.

Axiom 3: An equality relation is required.

Axiom 4: There must exist two or more designs that will be assigned to the same

equivalence class. This is a stricter form of Axiom 3. If this cannot be shown to be true,

the metric will generate a unique value for each unique design - not a very useful

property for a software metric!

153

Chapter 6

Axiom 5: The metric must not produce anomalies (i.e. the metric must preserve

empirical orderings), so if module A can be shown to be empirically larger than module

B then this must be mirrored by the metric values for modules A and B 5. This is known

as the Representation Theorem LKran7l].

Axiom 6: The Uniqueness Theorem must hold LSupp7ll for all permissible

transformations for the particular scale type - in this instance ordinal - (i.e. there is a

homomorphism between the transformed and the measurement structures).

Next are those axioms that are dependent upon the choice of measurement scale. In this

instance the relationships identified within the model are concerned with input and

output variable ranks which in turn suggests that weak ordering will be sufficient for our

purposes. This implies ordinal measurement. The axioms are those of transitivity of the

<and > relations and symmetry, reflexitivity and transitivity of the equivalence relation.

Lastly, there are those axioms that relate to the specific model underlying the measure in

question. Again, it is possible to provide categories under which axioms may be

selected. These are:

- resolution;

- empirically meaningless structures;

- model invariants.

No further axioms concerning measurement resolution are required beyond Axioms I

and 2 which state that the measure must be capable of discrimination and Axiom 4 that

states that there must exist at least two system architectures that will be assigned to the

same equivalence class.

Concerning meaninglessness: this category of axioms will be avoided as a consequence

of the decision to simplify the model by not explicitly defining illegal or meaningless

structures (e.g. where the specification is not fully implemented by the design).

Consequently, no axioms are offered.

5The nub of this assertion is if it can be empirically shown. A major limitation to the usefulness of this

axiom Is the difficulty of obtaining agreement on the empirical relational system. Frequently it is not obvious

that A Is larger than B, and much depends upon our intuitive understanding of module size. Accuracy of

measurement is another problem area. The situation is even more ambiguous for such metaphysical

commodities as complexity; perhaps one should argue for a homomorphism between a metaphysical

relational system and the measurement system!

154

Chapter 6

The third category of axioms are those properties specific to this model which we
believe are of fundamental significance, and therefore must remain invariant. To
elaborate.

Axiom 7: Adding an additional requirement to the system specification must increase the
work metric.

V S:spec; D:des r:req; m:mod.
SAThPEC(D,S) = work(S,D) < work(addr(S),sat(m,r,D))

This axiom requires a further operation for the algebraic definition of the model of
software design size, which is required to test that a design satisfies a given
specification. Note that in order to define the SATSPEC operation two internal
operations are required, SATSPEC' and SATREQ.

Satspec: des x spec
satspec: des x spec x spec
satreq: des x req

33. satreq(newdes,rl)
34. satreq(addm(ml,m2,D),rl)
35. satreq(sat(ml,r2,D),rl)

-* boolean
-4 boolean
-, boolean

=	 FALSE
=	 satreq(D,rl)
=	 IF rl==r2 THEN TRUE

ELSE satreq(D,rl)

36. satspec(D,S)	 =
37. satspec'(D,newspec,S)
38. satspec'(newdes,addr(rl,r2,S1),S)
39. satspec'(D,addr(rl,r2,S1),S) =

satspec'(D,S,S)
=	 TRUE
=	 FALSE
IF prim?(rl,S) THEN

IF satreq(rl,D) THEN
satspec'(D,Sl,S)

ELSE
FALSE

ELSE satspec'(D,Sl,S)

Axiom 8: Related to this axiom is that the metric wor ki must increase when the th

module satisfies an additional requirement.

V i:mod; r1, r2:req; S:spec; D:des worki(i,S,D) <work(i,adds(r1,r2,S),sat(i,r1,D))

155

Chapter 6

Axiom 9: There must exist different designs that satisfy the same specification but which

have different work metric values. In other words design size is not only a function of

the specification but also the intrinsic organisation of the design. The consequence of

this axiom is that for a given specification choice of architecture can influence size.

3 D1,D:des; S:spec• satspec(D 11S) A satspec(D2,S) =

work(S,D1) <>work(S,D2)

It is noteworthy that the model of design size has fewer axioms associated, than the

model of design structure presented in the previous chapter. The likely explanation is

that size is a somewhat simpler concept than that of structure and flows of information

coupling modules together. Nevertheless, there remains the question of whether the

axioms listed above are sufficient. To some extent the question is unanswerable, since

the desired behaviour of the model is merely the collection of intuitions and hypotheses

floating around within the head of its progenitor! The method of metric development

outlined in this thesis does offer some safeguards, in the form of axioms that must be

true of all metrics and categories for the generation of axioms specific to the model. For

example, axioms may be required for the level of resolution of the metric.

Consequently, one can have a reasonable degree of confidence that the axioms presented

at least describe some minimal set of model behaviour characteristics.

6.3.1.3 Proofs of model axioms

The next step is to show that the nine axioms described in the previous section hold for

the model of design size.

Axiom 1: It must be possible to describe, even if not formally, the rules governing the

measurement. This is satisfied by the existence of an algebraic definition of the work

metric6.

Axiom 2: The measure must generate at least two equivalence classes. This axiom

demands an existence type proof, that is it is only necessary to postulate two structures

that yield different metrics in order to establish the validity of this proposition. This

obligation is satisfied by the a null or empty design that has a measurement value of

work equal to zero, whilst a design that satisfies a single functional requirement and

comprising of a single module will have a value of work approximately equal to 1.67.

The formal proof is given in Appendix D.

6Furthermore this definition has been shown to be fully operational by transforming the algebra into

OBJ and executing the program.

156

m,

Chapter 6

Axiom 3: An equality relation is required. No proof is offered as the relation is axiomatic
to our algebraic system, along with propositional logic and natural numbers.

Axiom 4: There must exist two or more structures that will be assigned to the same
equivalence class. To satisfy this all that is required is to find two different design
structures and specifications that they fulfil, which yield the same measurement. Two
such structures are shown in Figure 6.1. In this slightly contrived example, both designs
are based upon the same specification but the second design comprises an additional
module m2, but one which satisfies no functional requirement. Both designs have
identical work metric values, as is formally proved in Appendix D and consequently,
the axiom is shown to be true, because examples of different designs have been given
that are members of the same equivalence class - in this case the class with a value of
1.67- for the work metric.

Figure 6.1: An example of two designs that satisfy Axiom 4

Axiom 5: The metric must not produce anomalies (i.e. the metric must preserve
empirical orderings). Since the measurement system is based upon the number system
of natural numbers this is satisfied7. For the proof refer to Krantz et al [Kran7l].

71n practice this axiom only bea,mes non-trivial when the measurement system is based upon such

mathematical exotica as vectors, when It Is not at all obvious that the Representation Theorem holds (e.g.

Hansen's modification to the cyclomalic measure [l-IanslSl). This axiom assumes away the problem of errors

157

Chapter 6

Axiom 6: The Uniqueness Theorem must hold [Supp7l] for all permissible

transformations for the particular scale type (i.e. there is a homomorphism between the

transformed and the measurement structures). The underlying question is whether the

measurement system is adequate for the type of measurement scale selected. For an

ordinal scale the measurement structure must be order preserving for any

monotonically increasing transformation function. This is trivially true [Stev59, Supp7l,

Kran7l].

Axiom 7: Adding an additional requirement to the system specification must increase the

work metric.

V S:spec; D:des r:req; m:mod•

SATSPEC(D,S) = work(S,D) < work(addr(S),sat(m,r,D))

Essentially there are two parts to this proof. First, it must shown that if specification S is

implemented by design D, then adding a new requirement to S implies adding a

requirement satisfaction operation sat to D. The design may also be augmented by an

additional module, but this is incidental to our argument as will become apparent8.

Second, it must be shown that if the number of sat operations for design D is increased

then the work metric must also increase for D. Since the required proof is universal in

nature, induction will be employed. The base case is a null specification S and design D,

whilst the n+1 case is a requirement concatenated to S and a module to D. Again the full

proof is presented in Appendix D where it is shown that the axiom holds for the base

case and for the nth+i case, and therefore by inductive reasoning, for all cases.

Axiom 8: Related to this axiom is that the metric work must increase when the ith

module satisfies an additional requirement, in other words the module specification has

increased.

V i:mod; r1 , r2:req; S:spec; D:des . work(i,S,D) <work(i,adds(r1,r2,S),sat(i,r1,D))

Since this axiom is extremely similar to the previous axiom, the proof will be omitted.

The work metric for the system is the sum of the metric values for individual modules,

and this can be seen in the previous proof in that the work operation reduces to the sum

of the workj operations for each addm operation. Thus, we have already considered the

more general case and Axiom 8 may be conceived as a specific instance of Axiom 7.

in the measurement process, however, with the application of software measurement tools any errors will at

least be systematic!

8it Is the sat and not the addm operation that Increases the value of workj.

158

[mi

Chapter 6

Axiom 9: There must exist different designs that satisfy the same specification but which
have different work metric values. In other words design size is not only a function of
the specification but also the intrinsic organisation of the design. The consequence of
this axiom is that for a given specification choice of architecture can influence size.

3 D1,D:des; S:spec satspec(D11S) A satspec(D2,S) =
work(S,D1) <>work(S,D2)

Doubtless, by this stage the reader will be grateful to note that proof of the validity of
this axiom for the model is an existential one; we merely have to find two designs for
which the axiom holds in order to establish its validity. In order to further reduce the
length of the proof, the last example employed to establish axiom 7 will be re-utilised
along with a different design to implement the same specification (refer to Figure 6.2).
The specification common to both designs, S is:

addr(rl,",addr(r,",newspec))

Figure 6.2: An example of a differing design that satisfies the same specification

The first design, Dl, with a known work metric value of 3.33 is:

sat(ml,rl,addm(ml,",sat(m,r,addm(m7,newdes))))

159

Chapter 6

whilst the second design, D2, is formally described as:

sat(ml,rl,addm(ml,m,sat(m,r,addm(m,",newdes))))

The difference between the designs lies in the fact that in the second design D2, module
ml is a subordinate of module m and as a consequence m inherits the requirement
satisfaction of module m and therefore has to do scheduling work, the result of which is
a higher work metric value. This is shown more formally in Appendix D where it is
demonstrated that the two designs have values of 4.0 and 3.33 respectively.
Consequently, Axiom 9 stands.

To summarise the progress from our theoretical treatment of the model: it has been
formally defined by means of an algebra, the desired properties of the model have been
given as a set of nine axioms and then each axiom demonstrated to be true by means of a
formal proof. This suggests that there are some grounds for confidence in the model
and that it is appropriate to progress to an empirical evaluation. It must be emphasised
though, that a theoretical treatment is in no way seen as a substitute for - but rather as
complementary to - empirical validation. There are two reasons why this is so. First, the
proofs are in many cases lengthy and so the possibility that they may contain flaws
cannot be ignored. Second, the axiom set that describes the desired model behaviour
may not cover all significant model characteristics. Third, the model may not capture all
relevant factors, for example the 'work' metric does not incorporate any notion of
application area yet this might be highly influential in terms of accurately capturing
module size at design time. Unfortunately, since a formal system is by definition a
closed one, our theoretical evaluation has nothing to say concerning factors external to
the model. Hence the need for empirical evaluation.

6.3.2 Empirical validation

There are two areas of the model that need to be subject to empirical investigation. First,
there is the relationship between the "work" metric and size related factors, such as
traditional measures like LOC and also other factors such as the number of variables
referenced. Second, there is the question of the extent to which the "work" metric may
be used to improve the basic model of system architecture outlined in the previous
chapter. I will postpone dealing with the second area until after techniques for
combining dimensions have been discussed later in this chapter.

Since the need to be able to crudely measure module size during high level design, was
prompted by the discovery of a small number of "rogue" architectures, it is appropriate
to attempt to validate the "work" metric against this data. The data is derived from the

160

Chapter 6

experiment to relate information flow based metrics of design structure to development
effort and reliability. The reader will recall that it is based upon 13 adventure game
systems, that had been developed by teams of three or four BSc Computer Science
students. These ranged in size between 14 and 33 modules and approximately 350 to
1000 ELOC and were implemented in Pascal. Further details may be found in the
previous chapter and [Shep9oa]. Certain system architectures were observed to exploit
the trade-off between component size and structural complexity by embedding
structural complexity within components, but at the cost of having a small number of
abnormally large components.

work ELOC decs vars

ELOC	 0.927

decs	 0.895 0.963

vars	 0.694 0.692 0.679

C&A	 -0.14]. 0.067 0.018 0.205

decs = no. of decisions
vars = no. of variables referenced
C&A = Card and Agresti measure [Card88I

Table 6.1: Cross correlations of module size measures based on rank

Table 6.1 presents the cross correlations between the "work" metric and other indicators
of module size. We also used the upper tail of boxplots to identify abnormally large
modules. Where a module was classified as abnormal for at least two out of three size
indicators (ELOC, vars and decs) the module was deemed to be a "large" module. The
"work" metric identified eight out of nine such modules. Furthermore, only one "non-
large" module was incorrectly pin-pointed. This suggests that "work" is a good indicator
of design component size with the caveat that it has a low resolution, in other words it is
not an effective discriminator between modules of roughly equal size. This is hardly
surprising given the subjective nature of tracing functional requirements to module
hierarchies and the lack of homogeneity amongst the primitive requirements.

The above data suggests that there are good grounds for employing the "work" metric as
a crude indicator of module size at design time. The "work" metric shows significant
correlations with all three module size indicators at the 1% confidence level. In order to
provide a comparison, the empirical study also investigated the Card and Agresti intra-
modular metric [Card88]. Unlike the work metric, it revealed no significant correlations

161

Chapter 6

and does not appear to be a fruitful method of identifying abnormally large modules at
design time9. This can be partly explained by the fact the Card and Agresti approach
ignores the effect of scheduling work upon size. There model suggests that module size
decreases as the number of subordinate modules increases. Our study found that to the
contrary, module size increases because additional code is required to control, or
schedule these extra subordinate modules. Clearly, without further empirical
investigation - preferably industrially based - one has reservations about making
extravagant claims for the work metric. Nevertheless, the model appears to have some
merit, and in the absence of a better approach it will be adopted into the
multidimensional model of high level design or system architecture.

6.4 The Multidimensional Model

The next step is to integrate the models of module size and design structure, so as to
provide a more comprehensive picture of software design. Thus, we have two concerns.
First, to explore techniques for the integration of simple or uni-dimensional models, and
their associated metrics, into more complex or multidimensional models. Despite,
increasing recognition of the need for more sophisticated approaches, for example Basili
and Rombach [BasiS8J, there is limited work in this area. Second, a much more specific
concern, namely the development of a model based upon the dimensions of size and
structure to aid the software engineer at design time in the production of system
architectures that are easier to implement and more reliable.

The most typical approach to the integration of more than one model might be

characterised as an abrogative method. This is based on the recognition that a single
metric is an inadequate means to represent such a complex object as a software system
consequently the software engineer is presented with many metrics. However, the
responsibility to integrate the metrics into a model is abrogated. Instead, specious
analogies are drawn with car dashboards 10. Essentially the user of the metrics is being
asked to build implicit and informal models because the researchers are unable to do so.
It is arguable that this might sometimes unfortunately be a necessity, but it is hardly
meritorious or worthy of the epithet science. Examples of this method include the work
of Hansen [Hans78], Bache and Tinker [Bach88l and also that of Kaposi and Myers
[Kapo9Ol The overwhelming problem of this type of approach lies in the problem of

9This is does not necessarily mean that the Card and Agresti approach is without mit; merely that it

Is unsuitable for this particular application.

10For example, Whitty has argued that it is the role of the user to combine, possibly disregard, and

interpret the set of 18 metrics derived from their flow graph based metrics tool QUALMS.

162

Chapter 6

comparison. What, for example, is one to make of the two pairs <a,b> and <c4> where
a>c and d>b?11

The second approach might be regarded as the additive method. Again, the researchers
recognise that an adequate model cannot be devised based upon a single factor, but in
contrast to the previous approach, attempt to additively combine in a numeric fashion, n
factors, normally by means of weightings. This is legitimate only, where factors are
essentially measures of the same dimension but differ in unit 12 Additive combination is
unsound when the factors are not related to the same dimension, that is orthogonal,
because, this leads to the apples and oranges type of problem where a concatenation
operation cannot be defined. An example of this approach is the complexity metric of
Oviedo [Ovie8O] which attempts to add control and data flow complexity.

The third approach is to map n factors onto n-dimensional space. For example, two
factors can be modelled by the familiar scatter diagram. The space may then be

partitioned in order to generate a classification system. The simplest method is merely
to charactense values for each dimension, or factor, as outlier or non-outlier 13. These are
then combined with all other dimensions to yield a 2" classification scheme, where n is
the number of dimensions. This method offers two advantages. First, the model deals
with the product of the dimensions, which overcomes both problems of units and
orthogonality [Kran7l]. Second, it allows for a more sophisticated response by the user
of the metrics. By way of illustration, one might view an abnormally large module
differently if it is also known that it has a very simple interface with the remainder of the
system architecture, than if the interface were complex. In the first instance the module
might be considered as a strong candidate for partitioning. In the second instance a
complete re-design might be more appropriate! This approach has been successfully
exploited by Kitchenham et al [Kitc89, Kitc9O].

11 A further problem emerges from the absence of any well defined relational operator, other than

equality, In that the metric fails to satisfy the Uniqueness Theorem for any scale other than nominaL

Consequently, the metric would fail to satisfy the majority of axioms previously outlined in this thesis.

l2p example might be where length is in part measured I metres and part by Inches. The use of

weightings would allow one to arrive at an Integrated measure of length, in this case by multiplying inches by

approximately 39. A software engineering example is the different weightings assigned to the constituent

counts of Albrecht's function points [A1br83].

13i other words, abnormal or normal. Refer to [Kitc87b, K1tc89, Link9l) for a discussion of outlier

analysis techniques.

163

Chapter 6

Using this third approach, we combined both size (work) and structure (IF4m) metrics
using a two dimensional scatter plot diagram and simply used the upper quartile of

ranked values to identify outlier or abnormal modules (see Figure 6.3).

75.

50.

25.

0.

10.	 23.	 36.	 49.	 62.
work

Figure 63: Structure vs. Size (By Rank)

This gives a fourfold classification of modules:

low IF4mw work (43 modules)

low IF4-high work (4 modules)

high IF4m4Ow work (5 modules)

high IF4-high work (10 modules).

The low IF4m4OW work modules are not a cause for concern to the project manager. In

this study the 43 modules in this class had an average error rate of 0.07 known errors per

module. This contrasts with an average error rate of 0.58 for modules drawn from the

164

Chapter 6

other three categories. It is important to stress that a single metric would only have

identified two out of the three classes of problem module.

The problem modules vary in type according to their class. The high IF4m - high work

modules manifest the most serious design faults in that they are both have a high

workload and have a complex interface with the remainder of the system. Such metrics

would be identified as outliers by either metric in isolation. The low IF4m - high work

modules are those modules that initially motivated this work, since they exhibit the

trading of structural complexity for size, in other words much of the complexity is

embedded within the module. This suggests the need for further partitioning in order to

generate a maintainable and re-usable system architecture. The final class are those

modules that do not have a high workload yet have a complex interface with the

remainder of the system. Typically these modules arose when a single function was

split between several modules or as a consequence of a lack of data structure isolation.

The final issue that this empirical analysis raises is why do system architectures

potentially contain such abnormal components? The systems under study were

intended as serious pieces of software and not merely as intellectual curios. The

developers were unaware that a study was being conducted and we believe it unlikely

that they were consciously exploiting the size / structural complexity trade-off. Our

investigation indicates that there are three contributory causes.

First, in many instances functions were split across two levels of the module hierarchy.

Thus, the higher level, or calling module may contain many partial functions in addition

to any scheduling that it performs.

Second, all four architectures exhibited very broad hierarchies, in one case a module had

17 children. This adds greatly to the scheduling workload of the parent module.

Third, many functions are misplaced within the module hierarchy, thereby reducing the

scope for procedural abstractions. A higher level requirement cannot be satisfied until

all the sub-requirements are satisfied. This is delayed until higher up the module

hierarchy, if one or more sub-requirements are not within the scope of a module, and

therefore cannot be inherited. The scheduling workload of calling modules is increased

as the module must have knowledge concerning the details of the partial satisfaction of

the requirement. Where a higher level requirement is fully satisfied, then the calling

module may regard it in a more abstract vein without the need to know about the more

detailed functions that go to make up the requirement. This is potentially a most serious

design fault, as it will have a negative impact upon, ease of comprehension,

maintainability, and re-usability of the resultant software.

165

Chapter 6

6.5 Summary

In this chapter we have revised and extended the simple uni-dimensional model
presented in the previous chapter. In particular, we have addressed the problems
uncovered by the application of the validation techniques encompassed within our
metrics development method. The theoretical and empirical evaluation of the enhanced
multidimensional model indicates that this new model represents an improvement upon
the earlier model. It also illustrates the iterative nature of model building and highlights
the probability that there still remains scope for further improvement.

Module "work" has been shown to be a useful metric for the identification of abnormally
large design components during the design phase of the software life cycle. Taken on its
own, the "work" metric has a relatively low resolution. It does not effectively
distinguish between components of approximately the same size. On the other hand,
our empirical findings suggest that it is reliable in identifying the outlier or very large
system components. This is extremely valuable when combined with other measures,
such as the information flow metrics of structural complexity [Ince89a, Shep9Oa,b] as we
can now construct a multidimensional model of a software design.

The analysis of system structures using scatterplots of two design metrics illustrates that
a system architecture may contain more than one - in this case three - distinct classes of
outlier module. These classes of outliers can be used as profiles to facilitate the
comparison of software designs. Furthermore, the project manager may wish to adopt
different remedial actions for the different classes of outlier module. Perhaps most
significantly, however, no one metric could detect modules from all three outlier classes.
We conclude, therefore, that multidimensional modelling is a technique of some
significance for the software metrologist and the software engineer alike.

The empirical study is based upon relatively small scale software systems for one
particular domain, that of interactive computer games. It is not clear to what extent
these results may be translated to larger systems and other application domains. For the
study of larger systems, the development of an automated software tool is an
imperative, as the measuring process can become extremely onerous.

Finally, to summarise, the tracing of functional software requirements to design
components provides a new perspective for understanding and measuring system
architecture. Metrics derived from this mapping provide reliable insights into design
component size and when these are used in conjunction with other design metrics such
as the structure metrics of information flow, provide valuable help for the software
designer's decision maldng.

166

Chapter Seven

7. CONCLUSIONS

Non modo ... sed etiam

"Now hauing perorated (as he thinkes) sufficiently, he beginnes to growe

to a conclusion."

Attributed to Francis Bacon

Synopsis

In which we review the scope of the research described within this
thesis, and summarise its major findings. We go onto discuss some of the
weaknesses of this research, and highlight the areas of potential
significance that have been uncovered, but which have yet to be explored.

7.1 Research Coverage

To recap; this research has been concerned with the development and even more
importantly, the evaluation of a set of system architecture metrics that might provide
the software designer with feedback whilst making design decisions. This aim has in
turn generated a secondary aim, which has been the derivation of a method to support
the development and evaluation of software metrics in general.

The research has been restricted to product metrics only, and has concentrated upon

"function strong" as opposed to "data strong" systems 1 . Nevertheless, it is a contention
of this thesis that many of the principles have wider application - a point that will

be expanded in the next section.

The work has commences with a detailed review and critique of accomplishments, to
date, in the area of software engineering product metrics, with particular emphasis

upon three of the best known metrics, one of which might reasonably be regarded as the
classic design, or system architecture metric. Out of this analysis, recurring patterns

and behaviours are observed. These suggest a method that is generally applicable for

1"Function strong" and "data strong systems is a distinction suggested by deMarco [deMa82J in order

to distinguish between those systems characterised by procedural or functional complexity, and those

characterised by data complexity.

167

Chapter Seven

the development and evaluation of software metrics and their underlying models. The
method is then used to try to solve the primary objective of this research: that of
developing metrics for the designers of software architecture. It also offers a two
pronged approach of both theoretical and empirical evaluation of the metrics which
in turn has suggested further enhancements to the model.

The outcome of this work has been the evolution of a model to support the decision
making process of a system architect, that has been both formally verified and
empirically examined including against an industrial project. A second outcome, is a
method which has wider implications for the development, verification and
validation of software engineering metrics in general, and clearly could include both
process metrics and metrics related to data architectures 2 - areas that have been
excluded from this research.

7.2 Summary of Findings

What then has the above research established? First, that despite the
extraordinarily large number of different metrics and the inventiveness of workers in
the field, there has been little progress in terms of metrics achieving widespread
acceptance. This is the direct consequence of unsatisfactory validations.
Unfortunately it is rather easier to propose metrics than it is to validate them. Many
of the metrics in the literature remain completely unvalidated, other than by vague

conjectures and appeals by their creators, to our collective intuitions 3 . Plainly, this not
the result of some communal conspiracy amongst the computer science fraternity, but

due to the absence of any agreed framework for the validation of metrics, poorly
articulated underlying models, a lack of definitions - most notably of what exactly it is
that is being measured, questionable experimental design and the frequent
misapplication of statistics.

research indicates that many of the ideas derived from the modelling and measurement of

functionally oriented architectures are indeed relevant to data architecture [Ince9Ob,c]. For example,

connections between entities In the form of relationships appear to have a significant bearing upon

implementation difficulties of the resultant system.

3A few examples indude, the Myers' and the Hansen modification LHans78lto the McCabe metric

EMyer77]. Other variations on a theme include [lyen82, Negr83, Stet84, Sinh86] all without empirical

validations. Yet another example is Harrison and Magel's attempt to combine Halsteads metric with a

development of McCabe's metric based on nesting level [Harr8l]. They argue that their metric is "more

intuitively satisfying". No further validation is offered. A more recent design metric example is McCabe's

family of design metrics [McCa89], again proposed without any published empirical support. One could go

on, instead however, the unconvinced reader Is referred back to chapters two and three.

168

Chapter Seven

Careful analysis of Haistead's software science [Ha1s77], McCabe's cyclomatic
complexity measure [McCa76] and the information flow metric of Henry and Kafura
[Henr79, 81a1, has revealed a number of recurring patterns. In each case it is unclear
exactly what is being measured, and terms such as "complexity" and "quality"
predominate. Since these can hardly be regarded as operational definitions, empirical

validation becomes a rather more difficult undertaking. Thus, the same metric is
validated against a whole range of different quality factors by different investigators;
for instance the information flow metric has been applied to estimating
implementation effort [Ince89a], coding time and changes [KafC85l, maintainability

[KafR87, Romb87a, Shep9Oel, comprehensibility [Romb87al and error incidence
[Kitc88]. Although, these factors are doubtless related, one cannot help wondering

whether slightly more focus might expedite validation. Also, whether it is expecting
rather a lot from what are after all comparatively naive models that it should be able
to accurately predict such a range of software characteristics in an equally diverse
range of environments and applications.

Related to the problem of unclear measurement goals are poorly articulated models.
Again, using information flow as an example, it is unclear what is meant by a global
data structure, there are conflicting definitions of global flows [Henr8la p512
Definition 1] compared with the formula given by EHenr8la p514]. An outcome of the
scant regard paid to the model underlying a metric, is anomalous behaviour such as the
unintentional bias - of the Henry and Kafura metric - in the counting of the
parameterised or local information flows against the under-counting of global flows

[Ince89a, Shep9Oa].

Returning to the empirical validations of these metrics; closer inspection reveals much
of the claimed support to be illusory. This is well illustrated by examining the alleged

support for the information flow metric derived from an analysis of UNIX 'error' data
[Henr8la,bl. The first problem is that in actual fact the authors used change data from

a new release of the UNI)(operating system, not error data. There are many reasons
why code may be changed between versions of a system other than error correction.
Second, their analysis is based upon logarithmic class intervals and even then Henry
and Kafura still had to make the arbitrary decision of merging the highest three
classes in order to transform a correlation coefficient of r =0.21 into r =0.94. Thus

5	 5

important an empirical evaluation of the information flow metric rests upon a mixture
of arbitrary decisions and a mere six data points.

To summarise then, there are ill defined measurement goals, underlying models that

are, in the main, implicit, and questionable empirical validations of the software
metrics. These problems are common to all three metrics, despite the high degree of

attention that they all received, from the software engineering community over the
past few years. Why should this be so? The research described in this thesis suggests

two answers. The fundamental reason has been the concentration upon the minutiae of

169

Chapter Seven

measurement without an equal concern for the higher level factors, such as goals and
methods. The second explanation, which in many ways arises out of the first, is the
lowly role accorded the measurement model. A model captures a theory concerning the
measurement application and it is this model that provides a meaning and a context
for a measurement. And this is true as much for software metrics as for any other area
of measurement. Given this back drop it is hardly surprising that the majority of
metrics work has been ad hoc and poorly validated.

This then was the background for the research in thesis. Thus the agenda became one
of:

• finding a framework to describe models that underlie software metrics;

• devising more effective techniques for the evaluation of metrics;

• developing a method to guide the would-be software metrologist in the

creation, selection and validation of software metrics.

We will discuss our findings in each area in turn.

First, the framework for describing a model. As has already been noted, the vast
majority of measurement models are entirely implicit. Even when some attempt has
been made to present the model behind the metric these are usually incomplete in one,
or more respects. This research has suggested that models may be informally described

under seven headings, namely:

• inputs

• outputs

• parameters

• relationships

• mappings from and onto the "real world"

• model limitations

• model reliability

Probably the last three headings are the most widely ignored yet they are all vital if
the model is to have any real software engineering application and also to enable
meaningful evaluation. This thesis then shows how, this relatively informal
approach may be further refined and the behaviour of the model formally defined in
terms of inputs, outputs, parameters and relationships between these model
components. This can be accomplished by the algebraic approach of Guttag [Gutt77]
and Liskov [Usk86] where the model is defined as an equational rewrite system, each
equation representing an axiom or property of the model. Such formality would seem to
be indispensable if a model is to be adequately scrutinised. The precision that it offers
would also seem to be valuable for anybody proposing to build software tools to

170

Chapter Seven

automate the measurement process. Algebraic specifications offer another advantage,
in addition to unambiguity, which is that they can easily be animated using such
executable specification languages as OBJ4.

The second item on the research agenda has been that of metric evaluation. As the
thesis title implies, it has been argued that this lies at the heart of the research.
There is little point in defining measurement models, however formally, if there is no
prospect of being able to evaluate (and if appropriate refine) them. Given the
relatively new state of the whole subject area of software engineering, it would not be
surprising if our model building is a highly iterative process of postulating, evaluation
and refinement. Consequently, it would seem entirely appropriate that we consider
the tools and mechanisms at our disposal to carry out this evaluation. This thesis has
made three contributions in this direction.

First, evaluation is greatly facilitated if the metric is carefully defined, when it is
clear what is being measured, that any model limitations or assumptions are made
explicit and some indications are given of the required level accuracy.

Next, we have proposed an entirely novel approach to the problem of validation of

the theory or model behind the metric. This we term theoretical metric evaluation
which makes use of algebraic model specifications. A flexible framework has been
described which enables those carrying out the evaluation to evolve a set of model
invariants, or properties of the model that they wish always to be true. An example of
such an invariant would be that a metric should always increase if a further module is
added to an arbitrary system architecture. It is then possible, as this thesis has
demonstrated, to prove that the invariant holds, or that in certain circumstances it is

violated. It is then up to the validators to determine whether they wish to relax the
invariant or modify the model. This method has been successfully used to reveal a
number of problems with the unidimensional model of system architecture described

within this thesis.

One benefit of formal proofs, is an extremely pragmatic one, and that is that they are
normally far quicker and therefore cheaper to conduct than industrial scale empirical
validations. For this reason alone it is suggested that they be considered prior to
empirical analysis so that if model refinements are found to be necessary these may be
carried out prior to the potentially more costly empirical work. Another benefit is
that it is possible to reason about all possible measurement objects, whereas empirical

4The 1F4 metrics and their underlyrng model have been implemented by the author, using the OBJ EX

environment, thereby allowing "what If" style Investigation of the model. The main disadvantage of such

Implementations is that they require the user to be familiar with equational rewriting and are consequently

not very user friendly! Nevertheless, they are potentially useful given the very small amount of effort to

transform the style of notation used In this thesis Into OBJ.

171

Chapter Seven

analyses tend to adopt a sampling approach, where hopefully the sample is
representative of the larger population. This means that the theoretical approach
might uncover a problem with a rare but pathological object that an empirical

approach might not detecL We argue that this theoretical validation technique
offers several distinctive advantages over more conventional methods of model
evaluation. We do not argue that it should supplant empirical validation, but that it
should be regarded as complementary.

The usual approach to the problem of evaluating a measurement model is empirical.
Clearly, this is an equally important method of model evaluation as the theoretical
approach, but one which is likely to uncover different types of problems. A weakness
with formal systems is that they must necessarily describe closed systems. However,
it is often precisely that part of a system that is excluded from a model that can cause
most modelling difficulties. Thus, formal approaches are not effective and detecting
what might be thought of as "sins of omission". Fortunately, it is precisely these types
of problems that an empirical analysis can be successful at uncovering. This thesis has
made no special contribution in this area other than to suggest the characteristics
whereby an empirical analysis may be judged. These are:

• the hypothesis under investigation;

• the artificiality of the data used;

• the validity of the statistics employed.

It is recognised that in a world of finite resources and complex interacting systems and
processes the ideal cannot be attained, but at least it enables workers to decide how
much importance to attach to a particular empirical result. Even in this sub-optimal
world that we inhabit, one would still expect an empirical validation to be capable of
refuting its hypothesis and of employing meaningful statistics.

The third item on the research agenda was the evolution of a method to guide workers
attempting to develop and evaluate software metrics. The method proposed builds
upon the pioneering work of Basili and Rombach with their GQM method [Romb87b,

BasR88]. However, the method suggested within this thesis emphasises the need to
make the underlying model explicit, to evaluate and to refine. The method has six

stages:

• problem identification

• construction of an informal model

• transformation into a formal model

• derivation of the model axioms

• theoretical model evaluation

• empirical model evaluation

172

Chapter Seven

We have also emphasised the iterative nature of the method, and therefore the
likelihood of backtracking.

In order to consider the validity of this method, it has been applied to the problem of
developing design metrics for a system architect. Two models have been proposed. A
simple model based upon the ff4 metric EShep9Oa] was found to be wanting in a number
of respects, and a more complex model was evolved, based upon the combining of two
metrics: the multidimensional model EShep9Obl. The latter was found to satisfy all its
axioms of desired model behaviour (i.e. its invariants). Furthermore, two separate
empirical investigations (described earlier in the thesis) have shown the metrics to
yield useful engineering approximations, in relating the model to development effort

and maintenance problems. Statistically significant relationships have been found.
Consequently, it has been argued that the design metrics of 1F4 and "work" coupled

with their supporting model have utility in supporting the engineering of system
architectures. Practical applications include selecting architectures that will require

less development effort, identifying potential maintenance problem areas prior to
implementation, using the model to guide and focus restructuring and re-engineering
activities for "geriatric" software systems5 and to provide a suggested order of priority
for modules undergoing design inspection or review6.

In conclusion, the areas of progress from this doctoral research have been threefold. A

new framework for describing measurement models has been proposed. Second, a new
technique for model evaluation has been devised, based upon the application of
algebras and term rewriting. Last, a method has been given to guide future metrics
workers through the problematic tasks of metric development and its frequently over-

looked evaluation. Not only have these ideas been proposed, but also, they have tried
on the non-trivial task of developing system architecture metrics to guide the designer
in the task of selecting structures that easy to develop and maintain.

7.3 Suggestions for Further Work

5For example, the costs of completely restructuring a system causing maintenance difficulties may be

prohibitive, but use of the 1F4 and work" metrics can suggest those parts of an architecture from which most

restructuring benefit would be obtained. This capitalises upon the idea that very often much of the benefit

may be obtained from a small proportion of the work.

6 a fixed time has been allocated for a design Inspection then it Is appropriate to concentrate upon

the potentially most critical components first. The author has sat in a number of inspection meetings where

the ordering of the review has been driven by execution order, from working left to right and top to bottom

from a module hierarchy chart or even, on one occasion, In alphabetical order!

173

Chapter Seven

Although it has been argued that this research has made some small contribution in
the software metrics arena, there are clearly weaknesses and avenues that have yet to
be explored.

There are two weaknesses that need to be brought to light. One is that the model based

metric development method is relatively untested - other than by its progenitor - so its
worth for other types of measurement application has yet to be demonstrated. What
this research has revealed, and what is incontrovertible, is that there is a pressing
need for methods to guide the developers and users of software metrics. Doubtless the

method outlined in this thesis can, and hopefully will be in due course, modified,
adapted and improved upon. What is important, is to appreciate the need for method.
The second weakness concerns the model of system architecture evolved during the
course of this research. Adherence to the model based development method has lead
to one cycle of revision, however, it may be that other empirical evaluations
(particularly by evaluations that conform more closely to our desiderata for empirical

studies) might highlight other difficulties that call for further refinements. Again,
though this is likely to be the case, it has been argued that the model developed, has

been the subject of methodical evaluation and that there is at least some basis for
confidence in its utility. It is not the contention of this thesis that the model is in some
sense a definitive model of system architecture. Other work such as [BasR88] and
[Shep9Of] suggest that there are no definitive metrics or models but rather one needs a
whole multiplicity of metrics each suited to different measurement goals and
applications.

Avenues that have remained unexplored include the design of data architectures.
Plainly, this is an issue of some importance given the large number of database systems
in existence. May be even more significant is the lack of concern with the application
of metrics and models once they have been satisfactorily evaluated. In other words,
metrics researchers must also consider the issue of how are these metrics to be used by
software engineers. One reason why this may become important is that by focusing
solely upon a product, say a system architecture, one loses sight of the fact that the
same product may enter into a number of different processes, and therefore take on a
number of different meanings. For example, an engineer may be designing an
architecture from scratch, doing some maintenance work, optimising the architecture to
enhance performance, searching for reusable components or restructuring an ageing
software system. In each case the architecture takes on a different meaning, a point not
captured by our product oriented view of measurement and modelling. Again, it may be
more fruitful to look for a general framework rather than focus too strongly upon
individual metrics and applications. A possibility might be to apply some of the

concepts and formalisms from the area of software engineering research known as

174

Chapter Seven

process modelling7. The outcome might be quantitative process models that more
precisely describe how metrics are to be integrated into software engineering projects.

7.4 Postscript

To conclude on a slightly more personal note. Has this thesis over-emphasised the role
of methods? Is this really the manner in which progress is made? After all if one were
to be honest - and for a brief moment I shall try to be - this research has not be
conducted in an entirely systematic fashion, driven by a single goal since the first day
of its inception. Obviously not! On occasions I have acted in an opportunistic, even
spontaneous fashion, with little regard to master plans, methods or objectives. The
original goal of seeking to provide useful metrics for the software designer,

particularly with respect to the quality factors of ease of implementation, reliability
and maintainability, has been considerably enlarged in scope, so as to encompass
broader goals such as a framework for the development and evaluation of metrics and
their models in general. Also, the quality factor of reliability has not been pursued.

Is this hypocritical? Hopefully not. In the first instance progress in the absence of
methods has hardly been one uninterrupted success story. Second, methods as a means
of guidance, as opposed to some procedural strait-jacket, are valuable for other types of

human endeavour vide more conventional forms of architecture. Lastly, one can justify
and describe activities as if one had followed a method. This at least provides
structure and therefore a basis for comparison with other activities doubtless the
outcome of equally anarchic processes!

So, my case rests.

7For an example of the coverage of this type of work the reader is referred to the Proceedings of

ACM International Process Modelling Workshops, alternatively Humphrey gives a good review [Hump89].

175

References

References

[Adam66] Adams, E.W. 'On the nature and purpose of measurement'. Synthese 16

pp125-169. 1966.

[Adani8SJ Adam, M.F. LeGall, C. Moreau, B. Vallete, B. 'Towards an observatory
aiming at controlling the software quality'. Proc. IEE/BCS Conf. Software Eng. '88,
ppSO-54, Liverpool, England. 1988.

[Akiy7l] Akiyama, F. 'An example of system software debugging'. Proc. IFIP Congress,

pp353-358. 1971.

[A1br83] Albrecht, A.J. Gaffney, J.R. 'Software function, source lines of code, and
development effort prediction: a software science validation'. IEEE Trans. on Softw.

Eng. 9(6) pp639-648. 1983.

[A1ex64] Alexander, C. 'Notes on the synthesis of form' Harvard University Press,
Cambridge MA, 1964.

[Arth85] Arthur, L.J. 'Measuring programmer productivity and software quality'.

Wiley-Interscience. 1985.

[Ashw9Ol Ashworth, C Goodland, M SSADM, a practical approach McGraw-Hill,
1990.

[Bach8S] Bache, R. Tinker, R. 'A rigorous approach to metrication: a field trial using

KINDRA' Proc. BCS / lEE Software Engineering '88 July 12- 15, Liverpool University,

pp28-32. 1988.

[Bail8la] Bailey, C. Dingee, W. 'A software study using Halstead metrics'. ACM

SIGMETRICS P.E.R. 10, Spring, pp189-197. 1981.

[Bake79] Baker, A.L. 'The use of software science in evaluating modularity concepts'.
IEEE Trans. on Softw. Eng. 5(2) ppllo-120. 1979.

[Bake8O] Baker, A.L. Zweben, S.H. 'A comparison of measures of control flow

complexity'. IEEE Trans. on Sofiw. Eng. 6(6) pp506-51l. 1980.

[Ba1u74J Balut, N. Halstead, M.H. Bayer, R. 'Experimental validation of a
structural property of FORTRAN programs'. Proc. ACM Nat!. Conf., pp207-211. 1974.

176

References

[Basi8l] Basili, V.R. 'Evaluating software development characteristics: an assessment
of software measures in the Software Engineering Laboratory'. Proc. 6th Annu. Softw.
Eng. Workshop, NASA/GSFC. 1981.

[BasH83J Basili, V.R. Hutchens, D.H. 'An empirical study of a syntactic complexity

family'. IEEE Trans. on Softw. Eng. 9(6) pp664-672. 1983.

[B asP8l] Basili, V.R. Phillips, T. 'Evaluating and comparing the software metrics in
the Software Engineering Laboratory'. ACM SIGMETRICS P.E.R. 10 Spring pp95-l06.

1981.

[BasP84] Basili, V.R. Perricone, B.T. 'Software errors and complexity: an empirical
investigation' CACM 27(1) pp42-52. 1984.

[BasR79] Basili, V.R. Reiter, R.W. 'Evaluating automatable measures of software
development'. Proc. IEEE Workshop on Quant. Sofiw. Models, pp107-116. 1979.

[BasR87] Basili, V.R. Rombach, H.D. 'Tailoring the software process to project goals
and environments'. Proc. 9th mt. Softw. Eng. Conf. Monterey, CA.. pp345-357. 1987.

[BasR88] Basili, V.R. Rombach, H.D. 'The TAME Project: Towards Improvement-
Oriented Software Environments'. IEEE Trans. on Softw. Eng. 14(6) pp758-773. 1988.

[BasS83l Basili, V.R. Selby, R.W. Phillips, T. 'Metric analysis and data validation
across FORTRAN projects'. IEEE Trans. on Sofiw. Eng. 9(6) pp652-663. 1983.

[Bean84] Beane, J. Giddings, N. Silverman, J. 'Quantifying software designs'. Proc. 7th

mt Softw. Eng. Conf. pp314-322. 1984.

[BehrS3] Behrens, C.A. 'Measuring the Productivity of Computer Systems
Development Activities with Function Points'. IEEE Trans. on Softw. Eng. 9(6) pp649-
658. 1983.

[Be1a791 Belady, L.A. 'On software complexity'. IEEE Proc. Workshop on Quant.
Softw. Models for Reliability, Complexity and Cost, Oct. 1979 pp9O-94. 1979.

[Bela8l] Belady, L.A. Evangelisti, C.J. 'System partitioning and its measure'. I. of

Sys. & Softw. 1(2), pp23-29. 1981.

[Beny79] Benyon-Tinker, C. 'Complexity measures in an evolving large system'. Proc.
ACM Workshop on Quant. Software Models. pp117-127. 1979.

177

References

[Bese82] Beser, N. 'Foundations and experiments in Software Science'. ACM

SIGMETRICS PER 11(3) pp48-72. 1982.

[Boeh8l] Boehm, B. 'Software engineering economics' Prentice-Hall, Englewood
Cliffs, N.J.. 1981.

[Boeh84l Boehm, B.W. 'Software engineering economics'. IEEE Trans. on Softw. Eng.
10(1) pp4-21. 1984.

[Booc86] Booch, G. 'Object-oriented design' IEEE Trans.on Softw. Eng. 12(2) pp211-221.
1986.

[Bowe78] Bowen, J.B. 'Are current approaches sufficient for measuring Software

quality?'. Proc SIGMETRICS / SIGSOFT Software Qua!. Ass. Workshop. 1978.

[13owe84] Bowen, J.B. 'Module size: a standard or heuristic?' I. of Sys. & Softw. 4,

pp327-332. 1984.

[Bow183] Bowles, A.J. 'Effects of design complexity on software maintenance'. Doctoral

thesis Northwestern Uni. Evanston IL. 1983.

[Broo8O] Brooks, R.E. 'Studying programmer behaviour experimentally: the problems
of proper methodology'. CACM 23(4) pp207-213. 1980.

[Brow78] Brown, J.R. Fischer, K.F. 'A graph theoretic approach to the verification of
program structures". Proc. 3rd IEEE Intl. Conf. on Softw. Eng., ppl36-14l. 1978.

[Card86] Card, D.N. Ghurch, V.E. Agresti, W.W. 'An Empirical Study of Software
Design Practices'. IEEE Trans. on Softw. Eng. 12 pp264-27l. 1986.

[Card87] Card, D.N. Agresti, W.W. 'Resolving the software science anomaly' I. of

Sys. & Softw. 7, pp29-35. 1987.

[Card88] Card, D.N. Agresti, W.W. 'Measuring software design complexity' I . of Sys.
& Softw. 8, pp185-197. 1988.

[Chan74] Channon, R.N. 'On a Measure of Program Structure', Doctoral Dissertation,
Carnegie-Mellon Univ. 1974.

[Chap79] Chapin, N. 'A measure of software complexity' Proc. NCC '79 pp995-1002.
1979.

178

References

[Chen78l Chen, E.T. 'Programmer complexity and programmer productivity'. IEEE

Trans. on Softw. Eng. 4(3), pp187-l94. 1978.

[Chri8l] christensen, K. Fitsos, G.P. Smith, C. 'A perspective on software science'.
IBM Sys. 1. 20(4) pp372-387. 1981.

[Chur59] churchman, C.W. 'Why measure?' in Churchman, C.W. Ratoosh, P (eds.)
'Measurement: definitions and theories'. Wiley, N.Y.. 1959.

[Come79] Corner, D. Halstead, M.H. 'A simple experiment in top-down design'. IEEE
Trans. on Softw. Eng. 5(2) pplo5-l09. 1979.

[ContS2] Conte, S.D. Shen, V.Y. Dickey, K. 'On the effect of different counting rules
for control flow operators on software science metrics in FORTRAN'. ACM

SIGMETRICS P.E.R. 11(2) pp118-126. 1982.

[ContB6] Conte, S.D. Dunsmore, H.E. Shen, V.Y. 'Software engineering metrics and

models' Benjamin Cummings. 1986.

[CoulSl] Coulter, N.S. 'Applications of psychology in software science'. Proc.
COMPSAC '81 pp5O-5l. 1981.

[Cou183] Coulter, N.S. 'Software Science and cognitive pyschology'. IEEE Trans. on
Softw. Eng. 9(2) pp166-l71. 1983.

[Craw85] Crawford, S. McIntosh, A. Pregibon, D. 'An analysis of static metrics and
faults in C software'. I. of Syst.& Softw. 5(1). 1985.

ECurt79a] Curtis, B. Sheppard, S. Milliman, P. Borst, M. Love, T. 'Measuring the
psychological complexity of software maintenance tasks with the Halstead and
McCabe Metrics'. IEEE Trans. on Softw. Eng. 5(2) pp96-l04. 1979.

ECurt79b] Curtis, B. 'In search of software complexity'. Proc. of Workshop on Quant.
Softw. Complexity Models. pp95-l06. 1979.

[Curt79c] Curtis, B. Sheppard, S. Milliman, P. 'Third time charm; stronger prediction
of programmer performance by software complexity metrics'. Proc. 4th IEEE Intl. Conf.
on Softw. Eng. pp356-360. 1979.

[CurtSO] Curtis, B. 'Measurement and experimentation in software engineering'. Proc.
IEEE 68(9) ppll44-1157, 1980.

179

References

[Curt83l Curtis, B. 'Software metrics: guest editor's introduction". IEEE Trans. on
Softw. Eng. 9(6) pp637-638. 1983.

[Dah172] Dahi, O.J. Dijkstra, E.W. Hoare, C.A.R. Structured Programming, Academic

Press, 1972.

[DaviSS] Davis, J.S. LeBlanc, R.J. 'A study of the applicability of complexity

measures'. IEEE Trans. on Softw. Eng. 14(9) ppl366-1372. 1988.

[deMa78] deMarco, T. 'Structured analysis and system specification'. Yourdon Press.

NY. 1978.

[deMa82] deMarco, T. 'Controlling software projects. Management, measurement and

estimation'. Yourdon Press. NY. 1982.

[Dijk6B] Dijkstra, E.W. 'Goto statement considered harmful', CACM, 18(8) pp453-457,
1968.

[Dorf84] Dorfman, M. Flynn, R.F. 'ARTS - An automated requirements traceability
system'. J.of Syst. & Softw. 4(4) pp63-74. 1984.

[Duns77] Dunsmore, H.E. Gannon,J.D. 'Experimental investigation of programming
complexity'. Proc. ACM/NBS 16th Annu. Tech. Symp. on Syst. Softw.,
Washington,DC. ppll7-l25. 1977.

[Duns79l Dunsmore, H.E. Gannon,J.D. 'An analysis of the effects of programming
factors on programming effort'. 1. of Syst. & Softw. 1(2) pp141-153. 1980.

[E1sh761 Elshoff, J.L. 'Measuring commercial programs using Halstead's criteria'.
ACM SIGPLAN Notices 11(5). pp38-46. 1976.

[E1sh781 Elshoff, J.L. 'An investigation into the effects of the counting method used on
software science measurements'. ACM SIGPLAN Notices 13(2) pp3O-45. 1978.

[Emer84] Emerson, T.J. 'A discriminant metric for module cohesion'. Proc. 7th mt. Conf.

on Softw. Eng. ,pp294-303. 1984.

[Endr75] Endres, A. 'An analysis of errors and their causes in system programs'. IEEE
Trans.on Softw.Eng. 1(2). 1975.

[EvanS3l Evangelist, W.M. 'Software complexity metric sensitivity to program
structuring rules'. 1. Syst. & Softw. 3(3) pp231-243. 1983.

180

References

[Evan84l Evangelist, W.M. 'Program complexity and programming style'. Proc. IEEE

Intl. Conf. on Data Eng., L.A.,CA, pp534-541. 1984.

[Fent85] Fenton, N.E. Whitty, R.W. Kaposi, A.A. 'A generalised mathematical
theory of structured programming' Theor. Corn put. Sci. 36, ppl45-l7'l, 1985.

[Fent86] Fenton, N.E. Whitty, R.W. 'Axiomatic approach to Software metrification
through program decomposition'. Corn puter 1. 29(4) pp330-340. 1986.

[Fent87a] Fenton, N.E. Kaposi, A.A. 'An engineering theory of structure and
measurement'. Proc. Centre for Softw.Reliability, Conf. Bristol. England. Sept.1987.

[Fent87b] Fenton, N.E. Kaposi, A.A. 'Metrics and software structure'. Info. & Softw.

Technol. 29(6) pp3Ol-320, 1987.

[Fent9O] Fenton, N.E. 'Software measurement: theory, tools and validation' Softw.
Eng. J. 6(1), 1990.

[Feue79] Feuer, A.R. Fowlkes, E.B. 'Some results from an empirical study of computer
software'. Proc. 4th IEEE Intl. Conf on Softw. Eng.. pp35l-355. 1979.

[Fink84] Finkelstein, L. Leaning, M.S. 'A review of the fundamental concepts of
measurement'. Measurement, 2(1) pp25-34. 1984.

[FitsSO] Fitsos,G. 'Vocabulary effects in software science'. Proc. COMPSAC 80, pp75l-
756. 1980.

[Fitz78a] Fitzsimmons, A. 'Relating the presence of Software errors to the theory of
Software Science'. 11th Hawaii mt. Conf. on Systems Sd.. vol. 1 pp4O-46. 1978.

[Fitz78b] Fitzsimmons, A. Love, T. 'A review and evaluation of software sciences'
ACM Computing Surveys, 10, pp3-18. 1978.

[Funa76] Funami, Y. Halstead, M.H. 'A software physics analysis of Akiyama's
debugging data'. Proc. Symp. on Computer Softw. Eng. ppl33-l38. N.Y. Poly. Inst..

1976.

[Galf79] Gaffney, J.E. 'Program control, complexity and productivity'. Proc. IEEE
Workshop on Quant. Softw. Models for ReliabilUy, ppl4O-142. 1979.

[Ga1f84] Gaffney, J.E. 'Estimating the number of faults in code' IEEE Trans. on Softw.
Eng. 10(4) pp459-464, 1984.

181

References

[Gann86] Gannon, J.D. Katz, E.E. Basili, V.R. 'Metrics for Ada packages: an initial
study'. CACM 29(7), 1986.

[Geha82] Gehani, N.H. 'Specifications formal and informal - a case study',
Softw. Pract. & Experience, 12, pp433-444, 1982.

[Geri77] Geritsen, R. Morgan, H. Zisman, M. 'On some metrics for databases or what is
a very large database?' ACM SIGMOD Record pp5O-74, June 1977.

[Gibs89] Gibson, V.R. Senn, J.A. 'System structure and software maintenance
performance'. CACM 32(3), pp347-358, 1989.

[Gidd84l Giddings, N. Colburn, T. 'An automated software design evaluater(sic)'.
Proc. Annu. Conf. - ACM 84, San Francisco, CA. 1984.

[Gi1b88] GiIb, T. Principles of software engineering management, Addison-Wesley,
1988.

[Gord76] Gordon, R.D. Haistead, M.H. 'An experiment comparing Fortran
programming times with the Software Physics Hypothesis'. Proc. APIPS pp935-937.
1976.

[Gord79J Gordon, R.D. 'Measuring improvements in program clarity'. IEEE Trans.on

Softw. Eng. 5(2) pp79-90. 1979.

[Gou175] Gould, J.D. 'Some psychological evidence on how people debug computer
programs'. mt. 1. of Man-Machine Studies 7. 1975.

[Gutt77] Guttag, J.V. 'Abstract data types and the development of data structures'.
CACM 20(6) pp397-404. 1977.

[Ha1184] Hall, N.R. Preiser, S. 'Combined network complexity measures'. IBM I. of R.
& D. 23(1) pp15-27. 1984.

[Ha1s72] Haistead, M.H. Natural laws controlling algorithmic structure' ACM
SIGPLAN Notices 7(2) ppl9-26.l972.

[Ha1s77] Haistead, M.H. 'Elements of Software science'. Elsevier North-Holland
NY. 1977.

[Hals79a] Haistead, M.H. 'Advances in software science' in Advances in Computers,
Vol. 18. Ed. Yovits, M.. Academic Press. NY. 1979.

182

References

IHals79b] Haistead, M.H. 'Guest editorial on software science'. IEEE Trans.on Softw.

Eng. 5(2) PP74-75. 1979.

[Ilame82] Hamer, P.G. Frewirt, G.D. 'M.H. Haistead's Software Science - A Critical
Examination'. Proc. IEEE 6th mt. Conf on Softw. Eng. pp197-206. 1982.

EHane72i Haney, F.M. 'Module connection analysis - a tool for scheduling software
debugging activities'. Proc. AFIP Fall Joint Conf. pp173-179. 1972.

[Hans78] Hansen, W.J. 'Measurement of program complexity by the pair (Cylomatic
Number, Operator Count)'. ACM SIGPLAN Notices 13(3) pp29-33. 1978.

IHarr8l] Harrison, W. Magel, K. 'A complexity measure based on nesting level'. ACM
SIGPLAN Notices 16(3) pp63-74. 1981.

[Hart82] Hartman, S. 'A counting tool for RPG'. ACM SIGMETRICS P.E.R. 11,Fall,
pp86-100. 1982.

EHenr79l Henry, S. 'Information flow metrics for the evaluation of operating systems'

structure'. PhD thesis, Iowa State Univ.. 1979.

[Henr8la] Henry, S. Kafura, D. 'Software metrics based on information flow.' IEEE

Trans. on Softw. Eng. 7(5) pp5lO-518. 1981.

[Henr8lb] Henry, S. Kafura, D. Harris, K. 'On the relationship among three
software metrics' ACM SIGMETRICS Performance Evaluation Review 10, Spring

pp81-88. 1981.

[Henr84] Henry, S. Kafura, D. 'The evaluation of software systems' structure using

quantitative software metrics'. Softw. Pract & Expr. 14(6) pp561-573. 1984.

[Hoar78] Hoare, C.A.R. 'Communicating Sequential Processes', C.A.C.M., 1978.

IHump89l Humphrey, W.S. Managing the Software Process, Addison-Wesley, 1989.

[Hutc85] Hutchens, D.H. Basili, V.R. 'System structure analysis: clustering with data
bindings'. IEEE Trans. on Softw. Eng. 1198) pp749-757. 1985.

[InceS4J Ince, D.C. 'Module interconnection language and Prolog'. ACM SIGPLAN

Notices 19(8) pp89-93. 1984.

[Ince86] Ince, D.C. Hekmatpour, S. The peturbational analysis of software designs.'
Proc. Phoenix Conf. on Comp. & Comms. pp462-464. 1986.

183

References

[Ince88a] Ince, D.C. Hekinatpour, S. 'An approach to automated software design based
on product metrics'. Softzo. Eng. 1. 3(2) pp53-56. 1988.

[Ince88b] Ince, D.C. Shepperd, M.J . 'System design metrics: a review and perspective.'
Proc. lEE / BCS Conf. Software Engineering '88 July 12- 15, Liverpool University, pp23-
27. 1988.

[Ince89a] Ince, D.C. Shepperd, M.J. 'An empirical and theoretical analysis of an
information flow based design metric'. Proc. European Software Eng. Conf., Warwick,
England. Sept. 12-15, 1989.

[Ince89b] Ince, D.C. Shepperd, M.J. 'Quality control of software designs using cluster

analysis'. Proc. EOQCISQA Conf. Management of quality: key to the nineties.
Vienna,

[Ince9Oa] Ince, D.C. Shepperd, M.J. 'The use of cluster techniques and system design

metrics in software maintenance'. Proc. IEE/DTI UK JT'90 Conf., Southampton, UK,
March 1990.

EInce9Ob] Ince, D.C. Shepperd, M.J. 'Metricating data oriented notations'. Open

University Tech. Rep. May 1990.

[Ince9Oc] Ince, D.C. Shepperd, M.J. 'The measurement of data design', Tech. Rep.

90/05, School of Computing & IT, Wolverhampton Polytechnic, May 1990.

EIyen82l Iyengar, S.S. Parameswaran, N. Fuller, J . 'A measure of logical complexity of
programs'. Computer Langs. 7ppl47-l60. 1982.

[Jack75] Jackson, M.A. 'Principles of program design.' Academic Press, New York. 1975.

[Jack82] Jackson, M.A. 'System development'. Prentice-Hall, Englewood-Cliffs, NJ.
1982.

[John8l] Jobnston,D.B. Uster, A.M. 'A note on the software science length equation'.
Softw. Pract.& Experience, 11(8). 1981.

EJone86] Jones, C.B. Systematic Software Development using VDM, Prentice-Hall,
1986.

[Kafu84] Kafura, D. 'The independence of software metrics taken at different life-

cycle stages'. Proc. 9th Annu. Softw.Eng. Workshop NASA/GSFC. 1984.

184

References

[KafC84] Kafura, D. Canning, J.T. Reddy, G.R. The independence of software metrics
taken at different life-cycle stages'. Proc. 9th Ann. Sofiw. Eng. Workshop, Chicago,IL.

pp213-222. 1984.

[KafC85] Kafura, D. Canning, J.T. 'A validation of software metrics using many
metrics and two resources.' Proc. 8th mt. Conf. Sofiw. Eng. London, England pp378-385.
1985.

[KafH8l] Kafura, D. Henry, S. 'Software quality metrics based on interconnectivity',

J. of Sys. & Softw. 2 pp121-131. 1981.

[KafR87] Kafura, D. Reddy, G.R. 'The use of Software Complexity Metrics in Software

Maintenance'. IEEE Trans. on Softw. Eng. 13(3) pp335-343. 1987.

EKapo9O] Kaposi, A.A. Myers, M. 'Quality assuring specification and design'. Softw.

Eng. 1. 5(1) ppll-26, 1990.

[Kari8S] Karimi, J . Konsynski, B.R. 'An automated software design assistant'. IEEE

Trans. on Softw. Eng. 14(2) pp194-21O, 1988.

[Kear86] Kearney, J.K. Sedlmeyer, R.L. Thompson, W.B. Gray, M.A. Adler, M.A.
'Software complexity measurement'. CACM 29(11) pp1044-1050. 1986.

EKeme87] Kemerer, C.F. 'An empirical validation of software cost estimation models'.
CACM 30(5) pp416-429. 1987.

[Kern78] Kernighan, B. Plauger, P. The Elements of Programming Style'. 2nd ed.,
McGraw-Hill. 1978.

[Kitc8l] Kitchenham, B.A. 'Measures of programming complexity'. ICL Tech. I. May
'81 pp298-316. 1981.

[Kitc86] Kitchenham, B.A. McDermid, J.A. 'Software metrics and integrated project

support environments'. Sofiw. Eng. 1. 1(1) pp58-64. 1986.

[Kitc87a] Kitchenham, B.A. 'Towards a constructive quality model. Part I: Software
quality modelling, measurement and prediction'. Softw. Eng. 1. 2(4) pp105-113. 1987.

[Kitc87b] Kitchertham, B.A. Pickard, L 'Towards a constructive quality model. Part
II: Statistical techniques for modelling software quality in the ESPRIT REQUEST
project.'. Softw. Eng. 1. 2(4) pp114-126. 1987.

185

References

[Kitc88J Kitchenham, B.A. 'An evaluation of software structure metrics.' Proc.

COMPSAC '88, Chicago, IL. 1988.

[Kitc89] Kitchenham, B.A. Linkman, S.J. 'Design metrics in practice', Proc. NDISD '89,
ppI2-39 School of Computing & I.T. Wolverhampton Polytechnic, England (also to be
published Info. & Softw. Tech. May, 1990).

[Kitc9O:I Kitchenham, B.A. Pickard, L.M. Linkman, S.J. 'An evaluation of some design
metrics'. Softw. Eng. 1. 5(1) pp5O-58, 1990.

[Knij7S] van der Knijff, D.J.J. 'Software physics and program analysis'. Australian
Computer 1. 10 pp82-86. 1978.

[Kran7l] Krantz, D.H. Luce, R.D. Suppes, P. Tversky, A. 'Foundations of

measurement'. Academic Press, London. 1971.

[KokoS9] Kokol, P. 'Using spreadsheet software to support metric life cycle activities',
ACM SIGPLAN Notices. 24(5) pp27-37, 1989.

[Kons85] Konstam, A.H. Wood, D.E. 'Software science applied to APL'. IEEE Trans.on
Softw.Eng. 11(10) pp994-I000. 1985.

[Kott83] Kottemann, J.E. Konsynski, B.R. 'Complexity assessment: A design and
management tool for information system development'. Inform. Syst. 8(3) pp195-206.
1983.

[KybeS4] Kyburg, H.E. Theory and measurement'. Cambridge Univ. Press, Cambridge,

England. 1984.

[Laka7O] Lakatos, I. 'Falsification and the methodology of scientific research
programs', in Lakatos, I Musgrave, A. (eds.) 'Criticism and the growth of knowledge'.

C.U.P. Cambridge, England. 1970.

[Lass8l] Lassez, J-L. van der Knijff, D.J.J. Shepherd, J. Lassez, C. 'A critical
examination of software science'. 1. of Syst. & Softw. 2, pplO5-ll2. 1981.

[Laur82l Laurmaa, T. Syrjanen, M. 'APL and Halstead's theory: a measuring tool and
some experiments'. ACM SIGMETRICS P.E.R. 11, Fall, pp32-47. 1982.

[Lehm76] Lehman, M.M. Belady, L.A. 'A model of large system development' IBM
Sys. 1. 15(3) pp225-252. 1976.

186

References

[Lind89] Lind, R.K. Vairavan, K. 'An experimental investigation of software metrics
and their relationship to software development effort'. IEEE Trans.on Softw.Eng.
15(5) pp649-653. 1989.

[Link9l] Linkman, S. Walker, J . 'Maintenance Metrics (And how to avoid using them

by controlling development programmes through measurement)', Info & Soffw. Tech.

(To be published Jan/Feb 1991).

[Lisk86] Liskov, B. Guttag, J. 'Abstraction and specification in program development'.
MiT Press, MA.. 1986.

[List82] Lister, A.M. 'Software science - The emperor's new clothes?' Australian
Corn put. 1. 14(2) pp66-71. 1982.

[Lohs84 Lohse, J.B. Zweben, S.H. 'Experimental evaluation of software design

principles: an investigation into the effect of modular coupling on system and
modifiability'. J.of Sys. & Softw. 4(4) pp3Ol-308. 1984.

[Lond87] Londeix, B. 'Cost estimation for software development' Addison-Wesley.

1987.

[Love76] Love, L.T. Bowman, A.B. 'An independent test of the theory of Software
Physics'. ACM SIGPLAN Notices 12(11) pp42-49. 1976.

[Love77] Love, L.T. 'An experimental investigation of the effect of program structure on
program understanding'. ACM SIGPLAN Notices 12(3) pp105-113. 1977.

[Low9Oa] Low, G.C. Jeffery, D.R. 'Function points in the estimation and evaluation of
the software process'. IEEE Trans.on Softw.Eng. 16(1) pp64-7l. 1990.

[Low9Obl Low, G.C. Jeffery, D.R. 'Calibrating estimation tools for software
development'. Softw. Eng. 1. 5(14) pp2lS-22i, 1990.

[Luce56lI Luce, R.D. 'Semi-orders and a theory of utility discrimination' Econometrica

24, ppl78-l91. 1956.

[Luce69] Luce, R.D. Marley, A.A.J. 'Extensive measurement when concatenation is
restricted and maximal elements may exist'. In Morgenbeser, S. Suppes, P. White,

M.G. (eds.), Philosophy, science and method: essays in honour of Ernest Na gel.
St.Martin's Press, N.Y.. 1969.

IMage8l] Magel, K. 'Regular expressions in a program complexity metric'. ACM
SIGPLAN Notices 16(7) pp6l-65. 1981.

187

References

[McCa76] McCabe, T.J. 'A complexity measure' IEEE Trans. on Softw. Eng. 2(4) pp308-
320. 1976.

[McCa82] McCabe, T.J. 'Structured testing: a testing methodology using the McCabe
complexity metric', Nati. Bureau of Standards, NB82NAAK55I81, 1982.

[McCa89] McCabe, T.J. Butler, C.W. 'Design complexity Measurement and testing'
CACM 32(12) pp1415-1425. 1989.

[McC178I McClure, C.L. 'A model for program complexity analysis', Proc. 3rd Intl. Conf.

on Softw. Eng., pp149-157, 1978.

[Melt9O] Melton, A.C. Gustafson, D.A. Bieman, J.A. Baker, J.A. 'A mathematical
perspective for software measures research', Softw. Eng. 1. 5(4) pp246-254, 1990.

[Mi1n89] Mimer, R. Communication and Concurrency, Prentice-Hall, 1989.

[Moha8l] Mohanty, S.N. 'Software cost estimation: present and future'. Softw. Pract.

& Experience 11, pp103-121. 1981.

[Muns9O] Munson, J.C. Khoshgoftaar, T.M. The relative software complexity metric: a
validation study', Proc. BCS/IEE Software Engineering '90 Conf., Brighton, UK, 1990.

[Myer75] Myers, G.J. 'Reliable Software Through Composite Design'. Van Nostrand
Reinhold NY. 1975.

[Myer77] Myers, G.J. 'An extension to the the cyclomatic measure of program
complexity'. ACM SIGPLAN Notices 12(10) pp6l-64. 1977.

[Naur69] Naur, P. Randell, B. (Eds.) Software Engineering: A Report on a Conference

Sponsored by the NATO Science Committee, NATO, 1969.

[Nav187] Navlakha, J.K. 'A survey of system complexity metrics', The Comp. 1. 30(3),
pp233-238, 1987.

[NCC86] SSADM Manual, NCC, Manchester, England, 1986.

[Otte76l Ottenstein, K. J . 'An algorithmic approach to the detection and prevention of

plagiarism'. ACM SIGCSE Bull. 8(4) pp3O-4l. 1976.

[Otte79] Ottenstein, L.M. 'Quantitative estimates of debugging requirements'. IEEE
Trans. on Softw. Eng. 5(5) pp504-514. 1979.

188

References

[0u1s79] Oulsnam, G. 'Cyclomatic numbers do not measure complexity of unstructured
programs'. Info. Proc. Lefts. Dec. 1979 PP207-211. 1979.

IOvie8O] Oviedo, E. 'Control flow, data flow and program complexity'. Proc.
COMPSAC 80 ppl46-152. 1980.

[Ovie83] Oviedo, E. Ralston, A. 'An environment to develop and validate program
complexity measures'. Proc. IEEE Nati. Educational Computing Conf., ppll5-l2l,
Baltimore, June 6-8, 1983.

EFaig8O] Paige, M.R. 'A metric for software test planning'. Proc. COMPSAC '80 pp499-
504. 1980.

[Parn72] Parnas, D.L. 'On the criteria to be used in decomposing systems into modules'.

CACM 15(2) pp1053-1O58.

[Parn79] Parnas, D.L. 'Designing software for ease of extension and contraction'. IEEE

Trans. on Softw. Eng. 5(2) pp128-138. 1979.

[Pfan82] Pfanzagl, J . 'Theory of measurement'. Physica-Verlag, Wurzburg-Vienna.
1968.

IPiow82] Piowarski, P. 'A nesting level complexity measure'. ACM SIGPLAN Notices
17(9) pp4O-5O. 1982.

[PotiSl] Potier, D. Ferreol, A.R. Biodeau, A. 'Experiments with computer software
complexity and reliability'. Proc. 6th IEEE Intl. Conf.on Softw. Eng., pp94-lO3. 1981.

[Prat84] Prather, R.E. 'An axiomatic theory of software complexity metrics'. The
Corn p. 1 . 27(4) pp340-347. 1984.

[Prat87] Prather, R.E. 'On hierarchical software metrics'. Softw. Eng. J . 2(2) pp42-45.
1987.

[FratSS] Prather, R.E. 'Comparison and extension of theories of Zipf and Haistead'.
The Comp. 1. 31(3) pp248-252. 1988.

[Fres87] Pressman,R.S. 'Software engineering. A practitioner's approach'. McGraw-

Hill, 2nd. Edn.. 1987.

[ReynS4] Reynolds, R.G. 'Metrics to measure the complexity of partial programs'. J. of

Syst. & Softw 4(1) pp75-92. 1984.

189

References

[Rodr87] Rodriguez, V. Tsai, W.T. 'A tool for discriminant analysis and classification
of software metrics'. Info. & Sofiw. Tech. 29(3) ppl37-15O. 1987.

[Romb87aJ Rombach, H.D. 'A controlled experiment on the impact of software
structure on maintainability.' IEEE Trans. on Sof1w. Eng. 7(5) pp510-518. 1987.

[Romb8Th] Rombach, H.D. Basili, V.R. 'A quantitative assessment of software
maintenance'. Proc. Conf. on Softw. Maint., Austin,TX Sept.'87 ppl34-144. 1987.

[Romb89] Rombach, H.D. Ulexy, B.T. 'Improving software maintenance through

measurement', IEEE Proc, 1989.

ERoyc7Ol Royce, W.W. 'Managing the development of large software systems', Proc.
WESTCON, Calif., USA, 1970.

[Sa1t82] Salt, N. 'Defining software science counting strategies'. ACM SIGPLAN

Notices 17(3) pp58-67. 1982.

[SamsS7] Samson, W.B. Nevill, D.C. Dugard, P.1. 'Predictive software metrics based
on a formal specification'. Information & Software Technology 29(5) pp242-248. 1987.

[Schn88] Schneider, V. 'Approximations for the Halstead software science error rate
and project estimators'. ACM SIGPLAN Notices 23(1) pp40-47. 1988.

[Se1b881 Selby, R.W. Basili, V.R. 'Error localization during maintenance: generating
hierarchical system descriptions from source code alone', Proc. IEEE Conf. on Softw.
Maint., 1988.

[Shaw89] Shaw, W.H. Howatt, J.W. Maness,R.S. Miller, D.M. 'A software science
model of compile time'. IEEE Trans. on Softw. Eng. 15(5) pp543-55l. 1989.

[Shen79l Shen, V.Y. The relationship between student grades and software science
parameters'. Proc. COMPSAC '79. pp783-787. 1979.

[Shen83l Shen, V.Y. Conte, S.D. Dunsmore, H.E. 'Software science revisited: a critical
analysis of the theory and its empirical support'. IEEE Trans. on Softw. Eng. 9(2)

pp155-165. 1983.

[Shen85] Shen, V.Y. Yu, T.J. Thebaut, S.M. Paulsen, L.R. 'Identifying error-prone
software - an empirical study'. IEEE Trans. on Softw. Eng. 11(4) pp317-324. 1985.

190

References

[Shep88a] Shepperd, M.J. 'A critique of cyclomatic complexity as a software metric'
Softw. Eng. 1. 3(2) pp3O-36. 1988.

[Shep88b] Shepperd, M.J. 'An evaluation of software product metrics.' Information &
Softw. Tech. 30(3) pp177-188. 1988.

[Shep88c] Shepperd, M.J. 'A preliminary investigation into the relationship between
software maintainability and design metrics'. The Polytechnic: Wolverhampton,

School of Computing and Information Technology, Technical Report 88/09. 1988.

[Shep88d] Shepperd, M.J. 'An empirical study of design measurement: an interim

report'.The Polytechnic: Wolverhampton, School of Computing and Information
Technology, Technical Report 88/08. 1988 (To be published SEJ Jan. 1990).

[Shep89al Shepperd, M.J. Ince, D.C. 'Metrics, outlier analysis and the software design
process'. Information & Softw. Tech. 31(2) pp91-98.1989.

EShep89c] Shepperd, M.J. 'A metrics based tool for software design' Proc. 2nd mt. Conf.
on Softw. Eng. for Real Time Systems, The Royal Agriculture College, Cirencester, UK.
Sept. 18-20, 1989.

EShepS9d] Shepperd, M.J. 'Specification: a new perspective on design metrics'.The
Polytechnic: Wolverhampton, School of Computing and Information Technology,
Technical Report 89/01. (Also accepted for publication The Computer 1.). 1989.

[Shep9oa] Shepperd, M.J. 'An empirical study of design measurement'. The Softw.
Eng. 1. Jan. 1990.

[Shep9Ob] Shepperd, M.J. Ince, D.C. 'The multi-dimensional modelling and

measurement of software designs'. Proc. Annu. ACM Comp. Sci. Conf., Washington DC,
Feb.20-22, 1990.

[Shep9Oc] Shepperd, M.J. 'Early life cycle metrics and software quality models',

Information & Softw. Tech. 32(4) pp3ll-3l6, 1989.

[Shep9Od] Shepperd, M.J. 'Metrics for the software engineer: a review' In The

Software Life Cycle Eds. Ince, D.C. Andrews, D. Butterworth Scientific, 1990.

[Shep9Oel Shepperd, M.J. Ince, D.C. 'Controlling software maintainability', Proc. 2nd

European Conf. on Softw. Quality Assurance, Oslo, Norway, 1990.

EShep9Of] Shepperd, M.J. 'The use of metrics for the early detection of software design
errors'. Proc. BCS/IEE Software Engineering 1990, Brighton, July 24-27, 1990.

191

References

[Si1v83] Silverman, J. Giddings, N. Beane, J. 'An approach to design-for-
maintenance'. Proc. Softw. Maint. Workshop, Monterey,CA. 1983.

[Simo8O] Simon, H. 'Science of the artificial' MIT Press. 1980.

[Sinh86] Sirtha, P.K. Jayaprakash, S. Laksbmanan, K.B. 'A new look at the control
flow complexity of computer programs'. Proc. BCS/IEE Conf. SE '86 10-12 Sept. pp88-
102. 1986.

[Smit79] Smith, C.l'. 'Practical applications of software science'. IBM Santa Teresa

Lab., Tech. Rep. 03.067, June 1979.

[Smit8Ol Smith, C.P. 'A software science analysis of programming size'. Proc. ACM.
Nat. Corn put. Conf. ppl79-l85. October 1980.

[Somm89l Sommerville, I. 'Software engineering'. Addison-Wesley. 3rd Edn. 1989.

[Soon77] Soong, N.L. 'A program stability measure'. Proc. ACM Annual Conf. ppl63-
173. 1977.

[Stet84] Stetter,F. 'A measure of program complexity'. Computer Langs. 9(3) pp203-
210. 1984.

[Stev46] Stevens, S.S. 'On the theory of scales of measurement'. Scie,we)i)3, pp677-

680. 1946.

[Stev59] Stevens, S.S. 'Measurement, psycl-toph'ysks aM utMty' Ctct, CW.
Ratoosh, P (eds.) 'Measurement: definitions and theories'. Wiley, N.Y.. 1959.

[Stev74] Stevens, W.P. Myers, G.J. Constantine, L.L. 'Structured design' IBM Sys. J.

13(2) pp115-139. 1974.

[Stev8O] Stevens, W.P. 'Structured design'. Academic Press. 1980.

[Stro66] Stroud, J.M. 'The Fine Structure of Psychological Time'. Annals of the New
York Academy of Sciences, pp623-631. 1966

[Suno8l] Sunohara, T. Takano, A. Vehara, K. Ohkawa, T. Program complexity
measure for software development management'. Proc. 5th IEEE Intl. Conf. on Softw.

Eng., pplOO-106. 1981.

192

References

tSupp59] Suppes, P. 'Measurement,empirical meaningfulness and three-valued logic'.

in Churchman, C.W. Ratoosh, P (eds.) 'Measurement: definitions and theories'.

Wiley, N.Y.. 1959.

ISupp7l] Suppes, P. Zinnes, J.L. 'Basic measurement theory'. In Lieberman, B. (ed.)

'Contemporary problems in statistics' O.U.P. 1971.

ISymo88] Symons, C.R. 'Function point analysis: difficulties and improvements'. IEEE
Trans.on Softzv. Eng. 14(1) pp2-11. 1988.

[Szul8ll Szulewski, P.A. Whitworth, M.H. Buchan, P. DeWolf, J.B. 'The
measurement of software science parameters in software designs'. ACM SIGMETRICS
PER Spring '81, pp89-94. 1981.

[Taus8l] Tausworthe, R.C. 'Deep space network software cost estimation model'. Tech.
Rep. 81-7, Jet Propulsion Lab., Pasadena, CA. 1981.

[Thay78] Thayer, T.A. Lipow, M. Nelson, E.C. 'Software reliability'. North-
Holland, NY. 1978.

[Troy8l] Troy, D.A. Zweben, S.H. 'Measuring the quality of structured designs'. 1. of

Syst. & Softw. 2(2) pp113-120. 1981.

[Wa1s79] Walsh, T.A. 'A software reliability study using a complexity measure'.
Proc. National Computer Conf.,pp761-768. 1979.

EWang84al Wang, A.S. Dunsmore, H.E. 'Back-to-front programming effort prediction'.

Info Proc & Mngt 20(1-2) pp139-149. 1984.

[Wang84b] Wang, A.S. The estimation of software size and effort: an approach based

on the evolution of software metrics, PhD Thesis, Dept. of Comp. Sci., Purdue

University, 1984.

[Weis74] Weissman, L. 'Pyschological complexity of computer programs: an
experimental methodology'. ACM SIGPLAN Notices 9(6) pp25-36. 1974.

[Weyu88l Weyuker, E.J. 'Evaluating software complexity measures'. IEEE Trans. on
Softw. Eng. 14(9) pp1357-1365. 1988.

[Whit85l Whitty, R.W. Fenton, N.E. Kaposi, A.A. 'A rigorous approach to structural

analysis and metrication of software' lEE Softw. & Microsystems 4(1) pp2-l6. 1985.

193

References

[Wien84] Wiener,R. Sincovec,R. 'Software engineering with Modula-2 and Ada'.
Wiley. 1984.

[Wi1178] Willis, R.R. 'DAS - an automated system to support design analysis', Proc.

3rd mt. Conf. on Softw. Eng. Atlanta GA, pplO9-ll5. 1978.

[Wi1179] Willis, R.R. Jensen, E.P. 'Computer aided design of software systems'. Proc.
4th mt. Conf. on Softw. Eng. Munich. 1979.

[Wirt76] Wirth, N. Systematic Programming, An Introduction, Prentice-Hall, 1976.

[Wood79] Woodward, M.R. Hennell, Ma.A. Hedley, D.A. 'A measure of control flow
complexity in program text'. IEEE Trans. on Softw. Eng. 5(1) pp45-5O. 1979.

[Wood8O] Woodfield, S.N. 'Enhanced effort estimation by extending basic
programming models to include modularity factors'. PhD dissertation, Dept. Computer
Sci., Purdue Univ., IN.. 1980.

[Wood8la] Woodfield, S.N. Shen, V.Y. Dunsmore, H.E. 'A study of several metrics
for programming effort'. J. of Syst. & Softw. 2, ppl39-l49. 1981.

[Wood8lb] Woodfield, S.N. Dunsmore, H.E. Shen, V.Y. 'The effect of modularisation
and comments on program comprehension'. Proc. 5th IEEE Intl. Conf. on Softw. Eng.,

pp215-223. 1981.

[Yau78] Yau, S.S. Collofello, J.S. MacGregor, T.M. 'Ripple Effect Analysis of Software
Maintenance'. Proc. COMPSAC '78 pp6O-65. 1978.

[YauSOJ Yau, S.S. Collofello, J.S. 'Some stability measures for software maintenance'.

IEEE Trans. on Softw. Eng. 6(6) pp545-552. 1980.

[Y1n78] Yin, B.H. Winchester, J.W. 'The establishment and use of measures to
evaluate the quality of software designs' Proc. ACM Sof1w. Qual. Ass. Workshop
pp45-52. 1978.

[Your79l Yourdon, E. Constantine,L.L. 'Structured design: Fundamentals of a discipline
of computer program and systems design'. Prentice-Hall, Englewood Cliffs, N.J.. 1979.

[Zoln8l] Zolnowski, J.C. Simmons, D.B. 'Taking the measure of program complexity'.
Proc. National Computer Conf.,pp329-336. 1981.

[Zweb79] Zweben, S.H. Fung, K. 'Exploring software science relations in COBOL and
APL'. Proc. COMPSAC '79. pp7O2-709. 1979.

194

References

[Zuse89] Zuse, H. Bollmann, P. 'Software metrics: using measurement theory to
describe the properties and scales of static complexity metrics'. ACM SIGPLAN

Notices 24(8), pp23-33, 1989.

195

Appendices

Appendix A:

An Algebraic Specification of the Metrics 1F4 and IF4m

"Appendix is a euphism for a repository for write-only documentation."

Anon.

The following is the complete algebraic specification for the information flow metrics ff4

and IF4m that comprise part of the uni-dimensional model of system structure and the

software quality factors of implementability, reliability and maintainability, given in

Chapter Five.

TYPES

graph

node_type = (module, global_data_structure)

name = string

VARS

S1 ,S2 : graph

t1 : node_type

n1	, n4 : name

external operations

add_node: graph x node_type x name	 -* graph U (error)

add_edge: graph x name x name	 - graph U (error)

ff4: graph	 -*	 nat

IF4m: graph x name	 -p	 nat u (error)

#links: graph	 -	 nat

#modules:graph	 nat

#ds: graph	 -,	 nat

internal operations

concat_n: graph x node_type x name	 -	 graph

concate: graph x name x name 	 -*	 graph
new:	 -	 graph
exists: graph x name	 -	 boolean

A-I

Appendix A

linked: graph x name x name 	 -4
	

boolean
is_a_module: graph x name	 -4

	
boolean

is_a_ds: graph x name 	 -3
	

boolean

if4_int: graph x graph	 -3	 nat

fan_in_i: graph x name 	 -*	 nat
fan_out_i: graph x name 	 nat
fan_in_g: graph x graph x name	 nat
fan_out_g: graph x graph x name	 -9	 nat
ct_giobals_in: graph x graph x name x name --9 nat

SEMANTICS

1. add_node(S1,t1,n1)

2. add_edge(S1,n1,n2)

=	 if exists(S1,n)

then (error)

else concat_n(S1,t1,n1)

=	 if exists(S,n) A exists(S1,n2)

'i') ''2
A

A is_a_module(S1,n1) v is_a_module(S1,n2))
then concat_e(S11t1,n1)

else (error)

3. exists(new,n)

4. exists(concat_n(Si,ti,n2),ni)

5. exists(concat_e(Sl,n2,n3),nl)

=	 FALSE

=	 ifn1=n2thenTRTJE

else exists(S1,n1)

=	 ifn1=n2vn1=n3 then TRUE

else exists(S1,n1)

6. linked(new,n1,n2)

7. linked(concat_e(S1,n3,n4),n1,n2) =

8. linked(concat_n(S1,t1,n3),n 1,n2) =

= FALSE

if fl3=fl1 A n4=n2

then TRUE

else linked(S11n1,n2)

linked(S11n1 ,n2)

A-2

Appendix A

9. is_a_module(new,n 1)	 =

1O.is_a_module(concat_n(S1,t1,n2),n1)

11 .is_a_module(concat_e(S1,n2,n3),n1)

12.is_a_ds(new,n1)	 =

13.is_a_ds(concat_n(S 1,t1 ,n2),n1) =

14.is_a_ds(concat_e(S1,n2,n3),n1)

15.if4(S1)

FALSE
=	 A tpmodule

then TRUE

else js_a_module(9i,Itl)

= isa_module(Si,fli)

FALSE
A t1=g1obal.data_StrUCtUre

then TRUE

else j9_a_ds(S11n1)

is_ads(S1,n1)

if4_it(S1,S1)

16.if4_int(S1 ,new)

17.if4_int(S1,concat_n(S2,t1 'i))

18.if4_int(S1,concat-e(S2,n1,n2))

=	 0
=	 if tpinodule

then if4m(S1,n1) + if4_int(S1,S2)

else jf4(S1,S2)

=	 if4(S11S2)

19.if4m(S1 ,n1)	 =	 if is_a_module(S1,n1)

then sqr(((fan_in_l(S 11rL1) + fan_ing(S1,S1,n1)) *

((fan_outj(S1 ,n1) + fan_out..g(S1,S1,n1)))

else (error)

20.fan_in_1(new,n 1)	 =	 0
21.fan_in_l(concat_e(Spn2,n3),n1) =	 if n=n A is_a_module(n2)

then I + fan_in_1(S1,n1)

else fanjn_1(S1,rt1)
22.fan_in_1(concat_n(S 1 ,t1 ,n2),n1) = fan_in_l(S1 ,n1)

23.fan_out_l(new,n1)	 =	 0

24.fan_out_1(concat_e(S 1,n2,n3),n1) =	 if n2=n1 A is....a_module(n3)
then I + fan_outj(S1,n1)
else fan_out_l(S1,n1)

25.fan_out_l(concat_n(S11111n2),n1) =	 fan_out.j(S1,n1)

A-3

Appendix A

26.fan_in . g(S11new,n1)	 =	 0

27.fan_in.. g(S1,concat_e(S2,n2,n3),n1)	 =	 if n3=n1 A is_a_ds(n2)

then ct..gIoba1s_in(Si,S2,n1 fl2) +

fan_in...g(S1,S2,n)

else fan_in...g(S1,S21n1)

28.fan_in_g(S1,concat_n(S2,t1 ,n2),n1) = fan_in...,g(S11S2,n1)

29.fan_out...g(S1,new,n1)

30.fan_out....g(S1,concat_e(S2,n2,n3),n1)

31 .fan_outg(S1,concat_n(S2,t1,n2),n1)

=	 0

=	 if n3=n A is_a_ds(n2)

then ctg1oba1s_out(S1,Sn,n2)

+ fan_outg(S1,S2,n1)

else fan out...g(S1,S2,n1)

=	 fan_out...g(S1,S2,fl1)

32.ct... globals_in(S1,new,n1,n2)	 =

33.ct...globals_in(S1,concat_e(S2,n3,n4),n1,n2)

34.ct....globals_in(S1,concat_n(S2,t1,n3),n1,n2)

35.ct..globals_out(S1 ,new,n1,n2)	 =

36.ct..globals_out(S1,concat_e(S2,n3,n4),n1,n2)

37.ctglobals_out(S1,concat_n(S2,t1 ,n3),n1 ,n2) =

0

=	 if n4=n2

A is_a_module(n3) A n3<>n1

then I + ctglobalsjn(S1,S2,n1,n2)

else ct...globals_in(S11S2,n1,n2)

=	 ct...globals_in(S1,S2,n1,n2)

0

=	 if n3=flA

A is_a_module(n4) A fl4<>fl1

then I + ct...globalsout(S1,S2,n1,n2)

else ct.globals_out(S1,S2,n1,n2)

ct..,globals_out(S1,S2,n1,n2)

38.#ds(new)

39.#ds(concat_n(S1,t1,n1))

40.#ds(concat_e(S1,n1,n2))

=	 0

=	 if t1=global_data_structure

then 1 + #ds(S1)

else #ds(S1)

=	 #ds(S1)

41 .#module(new)

42.#module(concat_n(S1,t1,n1))

43.#module(concat_e(S1,n1,n2))

=	 0

=	 if t1=module

then 1+ #module(S1)

else #module(S1)

=	 #module(S1)

A-4

Appendix A

44.#liriks(new)

45.#links(concat_e(S 11n1,n2))	 =	 I + #links(S1)

46.#links(concat_n(S1,t1 ,n1))	 =	 #links(S1)

A-5

Appendix B

Proofs for the axioms of the 1F4 metric

The following is an attempted inductive style proof of Axiom 9 for the ff4 model given

in Chapter Five.

Concatenating an additional local information flow to the design structure must increase

the ff4 measure. To show that the axiom holds for the model we argue inductively that

it is true for the following two structures where the outside CONCAT ...E represents the

information flow being added to the design:

concat_e(concat_n(concat_n(new,module,a),module,b),a,b)

concat_e(concat_n(concat_n(N,module,a),module,b),a,b)

The first structure contains zero flows to which we add a local information flow. The

second structure is the case where the structure N already contains n+1 flows where n is

non-negative integer. Note that the minimal design structure to which a flow may

successfully concatenated is:

S = concat_n(concat_n(new,module,a),module,b)

Dealing with the first case we have:

if4(concat_e(concat_n(concat_n(new,module,a),module,b),a,b)

This gives by Eqn.15:

if4_int(S, concat_e(concat_n(concat_n(new,module,a),module,b),a,b))

B-i

Appendix B

By Eqns. 18, 17 and 16 we obtain:

IF4m(concat_e(concat_n(concat_n(new,module,a),module,b),a,b) , b) +

lF4m(concat_e(concat_n(concat_n(new,module,a),module,b),a,b) , a)

= sqr((fan_in_l(concat_e(concat_n(concat_n(new,module,a),module,b),a,b),b) +

fan_in_g(S,concat_e(concat_n(concat_n(new,module,a),module,b),a,b),b) *

(fan_out_l(concat_e(concat_n(concat_n(new,module,a),module,b),a,b),b) +

fan_out_g(S,concat_e(concat_n(concat_n(new,module,a),module,b),a,b),b)))

+

sqr((fan_in_l(concat_e(concat_n(concat_n(new,module,a),module,b),a,b),a) +

fan_in_g(S,concat_e(concat_n(concat_n(new,module,a),module,b),a,b),a) *

(fan_out_l(concat_e(concat_n(concatn(new,module,a),module,b),a,b),a) +

fan_out_g(S,concat_e(concat_n(concat_n(new,module,a),module,b),a,b),a)))

We evaluate each FAN_IN or OUT term individually.

fan_in_l(concat_e(concat_n(concat_n(new,module,a),module,b),a,b),b)

Instantiating into Eqn. 21 n 1 = n3 and n2 is a module:

= I + fan_in_l(concat_n(concat_n(new,module,a),module,b),b)

(Eqn.21)

= I + fan_in_I(concat_n(new,module,a),b)
(Eqn.22)

=1+ fan_in_l(new,b)

(Eqn.22)

=1+0

(Eqn.20)

Next the number of global flows into module b:

fan_in_g(S,concat_e(concat_n(concat_n(new,module,a),module,b),a,b),b)

This can be seen to be zero because IS_A_DS can never be true as the design contains no

global data structures. As a result the ELSE part of Eqn. 27 will selected until the

structure is empty and Eqn. 26 applied yielding zero. The local FAN_OUT is:

fan_out_l(concat_e(concat_n(concat_n(new,module,a),module,b),a,b),b)

B-2

Appendix B

Instantiating into Eqn. 24 n2 ^ n1 so:

fan_out_l(concat_n(concat_n(new,module,a),module,b),b) 	 (Eqn.24)

Applying Eqn. 25 twice gives:

fan_out_l(new,b)
	

(Eqn.25)

=0
	

(Eqn.23)

The global fan_out for module b:

fan_out_g(S,concat_e(concat_n(concat_n(new,module,a),module,b),a,b),b)

will be zero as has already been stated there are no global data structures.

The information flows for module a are:

fan_in_l(concat_e(concat_n(concat_n(new,module,a),niodule,b),a,b),a)

Instantiating into Eqn. 21 n 1 ^ n3 so:

= fan_in_I(concat_n(concat_n(new,module,a),module,b),a) 	 (Eqn.21)

Applying Eqn. 22 twice yields:

= fanjn_l(new,a)
	

(Eqn.20)

=0

The local fan_out for module a is:

fan_out_l(concat_e(concat_n(concat_n(new,module,a),module,b),a,b),a)

B-3

(Eqn.2

(Eqn.2

(Eqn.2

Appendix B

Instantiating into Eqn. 24 n2=n1 and n3 is a module, so:

= 1 + fan_out_l(concat_e(concat_n(concat_n(new,module,a),module,b),a,b),a)	 (Eqn.24)

= 1 + fanout_l(concat_n(concat_n(new,module,a),module,b),a) 	 (Eqn.25)

= 1 + fan_out_l(concat_n(new,module,a),a)

5)

= 1 + fan_out_l(new,a)

5)

=1+0

3)

The global flows are for module a must be zero, again due to the absence of any global

data structures. By substituting back into the equation we now have:

IF4m(S,b) = sqr((1+0)*(0+0))

IF4m(S,a) = sqr((0+0)*(1+0))

and

1F4(S)=0+0

This is an unfortunate result because it indicates that Axiom 9 does not hold over our

model since adding the edge to the graph to represent the local information flow has not

increased the 1F4 measure; it remains at zero.

B-4

-* spec
-4 spec

-* des
-* des
-* des

-* reqset
-4 boolean
-4 boolean u (ERROR)
-4 modset
-4 boolean

reqset
-* reqset
-4 reqset
-* real
-4 real

-3 boolean
-3 boolean

-3 boolean
-3 reqset
-3 reqset
-, real
- boolean

Appendix C

An Algebraic Specification of the "work" metric

The following is a complete specification of the formal model of the "work" metric
described in chapter six of this thesis.

SYNTAX

external operations
rtewspec:
addr: req x req x spec

newdes:
addm: mod x mod x des
sat: mod x req x des

comprises: req x spec
exists?: req x spec
prim?: req x spec
calls: mod x des
descend?: mod x mod x des

Pwork: mod x des x spec
inherits: mod x des
abs: reqset x spec
work1: mod x spec x des
work: spec x des

satspec: des x spec
satreq: des x req

internal operations
desc?: mod x mod x des x des
inherit: mod x des x des
abstract: reqset x spec x spec
wk: spec x des x des
satspec': des x spec x spec

c-I

Appendix C

SEMANTICS

vais
rl,r2r3,r4:req

ml,m2,m3: mod

S,S1: spec

D,.D1 :des

R:reqset

1. comprises(rl,newspec)	 =

2. comprises(rl,addr(r2,r3,S)) 	 =

3. exists?(rl,newspec)

4. exists?(rl,addr(r2,r3,S))

5. prim?(rl,newspec)

6. prim?(rl,addr(r2,r3,S))

0
IFrl==r3THEN

comprises(rl,S) u (r2)

ELSE

comprises(rl,S)

FALSE

IF rl==r2 THEN TRUE

ELSE exists?(rl,S)

(ERROR)

IF - exists?(rl,S) THEN (ERROR)
ELSE

IF comprises(rl,S)=={) THEN TRUE

ELSE FALSE

7. calls(ml,newdes)	 =

8. calls(ml,addm(m2,m3,D)) 	 =

9. calls(ml,sat(m2,rl,D))	 =

10.descend?(ml,m2,D)

11.desc?(ml,m2,newdes,D)

12.desc?(ml,m2,addm(m3,m4,D1),D)

13.desc?(ml,m2,sat(m3,rl,D1),D)

0
IF ml==m3 THEN calls(ml,D)u(m2)

ELSE calls(ml,D)

calls(ml,D)

=	 desc?(ml,ni2,D,D)

=	 FALSE

=	 IF ((ml==m3)A((m2==m4)) v

(desc?(m2,m4,D1,D))A(m4<>"))

THEN TRUE

ELSE desc?(ml,m2,D1,D)

=	 desc?(ml,m2,D1,D)

C-2

Appendix C

14.Pwork(ml,newdes,S)

15. l'work(ml,D,newspec)

16.Pwork(ml,sat(ni2,rl,D),S)

=	 0
=	 0
=	 IF (ml==m2) A compnses(rl,S)=Q

THEN Pwork(ml,D,S) u (rI)

ELSE Pwork(ml,D,S)

17.Pwork(ml,addm(m2,m3,D),S) =	 Pwork(ml,D,S)

18. inherits(ml,D)	 =	 inherit(ml,D,D)

19. inherit(ml,newdes,D)

20. inherit(ml,addm(m2,m3,D1),D)

21. inherit(ml,sat(m2,rl,D1),D)

=	 0
=	 inherit(mLD1,D)

=	 IF desc?(m2,ml,D)

THEN inherit(ml,D1,D) u tn)

ELSE inherit(ml,D1,D)

22. abs(R,S)
	

abstract(R,S,S)

23.abstractULSl ,S)	 =

24. abstract(R,newspec,S) 	 =

25. abstract(R,addr(rl,r2,S1),S)	 =

0
R

IF comprises(rl,S).cz>0

A (comprises(rl,S) ç R)

THEN abstract(R,S1,S)uRufri)

- comprises(rl,S)

ELSE abstract(R,S1,S)

26. work(m1,newspec,D) =	 0

27. work(m1,S,newdes) =	 0

28. work(m1,S,D)	 =	 #(Pwork(ml,D,S)) + cL(#(abs(inhenits(ml,D)

u Pwork(ml,D,S),S)) + #(inherits(ml,D) u Pwork(ml,D,S)))

29. work(S,D)
	

wk(S,D,D)

30. wk(S,newdes,D)	 =	 0

31. wk(S,addm(ml,m2,D1),D)	 =	 wk(S,D1,D) + work(m1,S,D)

32. wk(S,sat(ml,nl,D1),D)	 =	 wk(S,D1,D)

C-3

Appendix C

33. satreq(newdes,rl)

34. satreq(addm(ml,m2,D),rl)

35. satreq(sat(ml,r2,D),rl)

=	 FALSE

=	 satreq(D,rl)

=	 IFrl==r2 THEN TRUE

ELSE satreqOD,rl)

36. satspec(D,S)

37. satspec'(D,newspec,S)

38. satspec(newdes,addr(r1,r2,S1),S)

39. satspec'(D,addr(rl,r2,S1),S)

=	 satspec'(D,S,S)

TRUE

FALSE

IF prim?(rl,S) THEN

IF satreq(rl,D) TI-LEN

satspec'(D,Sl,S)

ELSE

FALSE

ELSE satspec(D,S1,S)

C.-4

Appendix D

Proofs for the "work" metric

This appendix presents the full proofs for the axioms describing the desired behaviours

of the model underlying the "work" metric described in chapter six of this thesis.

Axiom 2: The measure must generate at least two equivalence classes. This obligation is

satisified by the a null or empty design that has a measurement value of work equal to

zero, whilst a design that satisifies a single functional requirement will have a value of

work approximately equal to 1.67.

More formally, the two designs are given by:

newdes

and

sat(m,r,addm(m,",newdes))

The related specifications are respectively:

newspec

and

addr(r,",newspec)

The first design has a work metric value of zero.

work(S,newdes)

= wk(S,newdes,newdes)
	 —Eqn. 29

=0
	 —Eqn. 30

D-1

Appendix D

The second design has work metric value of about 1.67.

work(S,sat(m,r,addrn(m,",newdes)))

= wk(S,sat(m,r,addm(m,",newdes)),D) 	 —Eqn. 29

where D is sat(m,r,addm(m,",newdes))

= wk(S,addm(m,",newdes)),D) 	 —Eqn. 32

= wk(S,newdes,D) + work(m,S,D) 	 —Eqn. 31

=0+ work1(m,S,D)	 —Eqn. 30

= 0+ #(Pwork(m,D,S) + a(#(abs(inherits(ml,D) u Pwork(ml,D,S),S)) +

#(inherits(ml,D) u Pwork(ml,D,S))) 	 —Eqn. 28

Solving for the cardinality of the set of primitive requirements satisfied by module m,

we obtain:

#(Pwork(m,sat(m,r,addm(m7,newdes),S))

= #(Pwork(m,addm(m,",newdes),S) u (r))	 —Eqn. 16

= #(Pwork(m,newdes),S u (r)) 	 —Eqn. 17

=#(flu(r))
	 —Eqn. 14

=1

Instantiating back into our expression for the work metric for the second design we

have:

0.i-1+a(#(abs(inherits(m,D) u (rD,S) + #(abs(inherits(m,D) u [r))))

D-2

Appendix D

Next we solve:

iitherits(m,D)

= inherit(m,D,D)) u (r),S) 	 —Eqn. 18

= inherit(m,sat(m,r,addm(m,",newdes)),D)

Next we must evaluate whether module m is a descendant of m, from Equation 21.

descend?(m,m,D)

= desc?(m,m,sat(m,r,addm(m,",newdes)),D)	 —Eqn. 10

But since m4=':

= desc?(m,m,newdes,D) 	 —Eqn. 12

= FALSE	 —Ecjn. :ii

Since, m is not descendant of itself we have:

= inherit(m,addm(m,",newdes) 	 —Eqn. 21

= inherit(m,newdes,D) 	 —Eqn. 20

= 0	 —Eqn. 19

Returning to work1:

= 1+a(#(abs(0 u (r),S)) + # UJ u (r)))

= 1+a(#(abstract(0,S,S)) + #Ur))) 	 —Eqn. 22

= 1-s-cz(#(0) + #UrD)	 —Eqn. 23

= 1+a(1+1)

Assuming a value of 0.33 for the coefficient a, for reasons discussed earlier we obtain a

value of close to 1.67 for the work metric. Even if the precise value of the coefficient is

D-3

Appendix D

questioned, the model constrains it to a positive real number, consequently the metric

value for the second design must be greater than one and the axiom shown to hold.

Axiom 4: There must exist two or more structures that will be assigned to the same

equivalence class. To satisfy this all that is required is to find two different design

structures and specifications that they fulfil, which yield the same measurement.

More formally, the specification is:

addr(r,",newspec)

And the two designs are defined as:

sat(m1,r,addm(m1,",newdes))

and:

addm(m21m1 ,sat(m1,r,addm(m1,",newdes)))

Thus it is only by the operation addm(m2,mj,...) that the two designs differ. By

reference to Equation 31, it is apparent that this operation has no effect upon the result

of the work metric since:

wk(S,addm(m2,m11sat(m1,r,addm(m1,",newdes))),D)

= wk(S,sat(m 1,r,addm(m1 ,",newdes)),D) + work(m2,S,D)

It now only remains to show that work(m2,S,D) yields zero. Substituting for S and D

gives:

work1(m2,addr(r,',newspec),sat(m1,r,addm(mj,',newdes)))

= t(Pwork(m2,sat(m1,r,addm(m11,newdes)),

addr(r,",newspec))) + a(#(abs(inherits(m2,D) u

Pwork(m2,D,S),S)) + #(inherits(m2,D) u Pwork(m2,D,S)))	 —Eqn. 28

Solving Pwork:

Pwork(m2,sat(m1,r,addm(m1,",newdes)),addr(r,",newspec))

D-4

—Eqn. 16

—Eqn. 17

—Eqn. 14

—Eqn. 21

—Eqn. 20

—Eqn. 19

—Eqn. 22

—Eqn. 23

Appendix D

We note that since m1<>m2:

= Pwork(m2,addm(rn11",newdes),addr(r,",newspec))

= Pwork(m2,newdes,addr(r,",newspec))

=0

Next we turn to the inherits expression:

inherits(m2,D)

= inherits(m2,sat(m1,r,addm(m1,",flewdes)))

= inherit(m2,sat(m1,r,addm(m1,",newdes)),D)

Because m1 is not a descendant of itself, Equation 21 leads us to:

irtherit(m2,addm(m1,",newdes),D)

= inherit(m2,newdes,D)

=0

This leaves us with the following for work:

0+ a(#(absUj u 0,S))+#(0 u 0)))

= 0+ a(#(absULS)+#(0)))

= 0+ a(#(abstract(O,S,S)+0))

= 0+ a(#(Ø)+0))

=0+ a(O+O)

—Eqn. 18

=0

Since work1(m2,S,D) has been shown to yield zero the addm operation has been

demonstrated to have no effect upon the work metric. Consequently the axiom has been

shown to be true, as examples of different designs have been given that are members of

D-5

Appendix D

the same equivalence class - in this case the class with a value of 1.67 - for the work

metric.

Axiom 7: Adding an additional requirement to the system specification must increase the

work metric.

V S:spec; D:des r:req; m:mod•

SATSPEC(D,S) = work(S,D) < work(addr(S),sat(m,r,D))

Essentially there are two parts to this proof. First, it must shown that if specification S is

implemented by design D, then adding a new requirement to S implies adding a

requirement satisfaction operation sat to D. The design may also be augmented by an

additional module, but this is incidental to our argument as will become apparent1.

Second, it must be shown that if the number of sat operations for design D is increased

then the work metric must also increase for D.

Since the required proof is universal in nature, induction will be employed. The base

case is a null specification S and design D, whilst the n+1 case is a requirement

concatenated to S and a module to D.

We commence by showing that for the base case the design fails to implement the

specification S plus a new requirement unless it is augmented by the sat operation. The

base case specification and design are given by:

newspec

newdes

and the updated specification by:

addr(r,',newspec)

It is clear that the design does not implement the modified specification, that is satspec

returns false.	 -

satspec(newdes,addr(r,",newspec))

= satspec'(newdes,addr(r,",newspec),addr(r,",newspec)) 	 —Eqn. 36

= FALSE	 —Eqn. 38

1 1t is the sat and not the addm operation that increases the value of work1.

D-6

Appendix D

Next, we consider the case where the design is augmented by a requirement satisfaction.

Where S' is addr(r,",newspec).

satspec(sat(m,r,addm(m,",newdes)),addr(r,",newspec))

= satspec'(sat(m,r,addm(m,",newdes)),addr(r,',newspec),S')

To resolve Equation 39 one must establish that requirement r is primitive, hence:

prim?(r,addr(r,",newspec))

= IF comprises(r,addr(r,",newspec)) = 0	 —Eqn. 6

And sincer<> ":

= IF comprises(r,newspec) = 0
	 —Eqn. 2

= IF 0 = 0
	 —Eqn. I

= TRUE

To complete the evaluation of Equation 39 it must be determined whether the design

implements requirement r:

satreq(r,sat(m,r,addm(m,",newdes)))

= IF r=r	 —Eqn. 35

= TRUE

Returning to Equation 39 we now obtain:

satspec'(sat(m,r,addm(m,',newdes)),newspec,S) 	 —Eqn. 39

= TRUE	 —Eqn. 37

Thus, we have shown that the an additional requirement satisfaction is a necessary and

sufficient condition, in order for the design D to satisfy the specification S augmented by

another requirement. As it is our aim to establish that the above is true for all designs

and specifications we turn now to the th+i case. This gives the following specification

and design:

D-7

Appendix 0

addr(rl,r2,S)

where rl<> r2 but r2 may be equal to r, S is newspec and:

sat(m,rl,D)

or

sat(ml,rl,addm(ml,m2,D))

where ml <>m, but m2 may be equal to m and D is addm(m,",newdes). Note that there

are two possible cases for the design, since the satisifaction of a new requirement may be

implemented by an existing module - the first case - or by the introduction of a new

module - the second case.

Now we show that an additional requirement added to the specification creating S':

addr(r3,r2,addr(rl,r2,S))

causes:

satspec(sat(m,rl,D),addr(r3,r2,addr(rl,r2,S))) = FALSE

and

satspec(sat(m,rl,addm(ml,m2,D)),addr(r3,r2,addr(rl,r2,S))) = FALSE

In practise the first proposition is based upon a meaningless structure, because a design

without modules cannot implement any specification, so we only need evaluate:

satspec(sat(m,rl,addm(ml,m2,newdes)),addr(r3,r2,addr(rl,r2,newspec))) =

FALSE

= satsp'(sat(m,r1,addm(m1,m2,newdes)),addr(r3,r2,addr(r1,r2,newspec)),S)

—Eqn. 36

Since ri is primitive the following expression must be evaluated for Equation 39:

satreq(r3,sat(m,rl,addm(m,",newdes))) 	 —Eqn. 39

0-8

—Eqn. 35

—Eqn. 34

—Eqn. 33

Appendix D

Because r3<z>rl:

= satreq(r3,addm(m,",newdes))

= satreq(r3,newdes)

= FALSE

Returning to Equation 39 we have:

satspec'=FALSE

Therefore the nth+i design does not satsify the nth+i specification when an additional
requirement is introduced. We can now state that for all designs and specifications, the
intoduction of a further requirement ot the specification will cause the design to fail to
satisfy it. We now proceed to show that for all cases described above, if the design
presently meets its specification then it must be augmented by a sat operation in order to
continue to meet the specification.

Such a design, D' is defined:

sat(m,r3,D)

= sat(m,r3,sat(m,rl,addm(m,',newdes)))

The proposition to be found true is:

satspec'(sat(m,rl,sat(m,r,addm(m,",newdes))),
addr(r3,r2,addr(rl,r2,newspec)),S)	 —Eqn. 36

As has already been shown:

prim?(r3,S) = TRUE

So we must next determine:

satreq(r3,sat(m,r3,sat(m,rl,addm(m,",newdes)))) 	 —Eqn. 39

As r3=r3 this expression yields true from Equation 35. Returning to satspec' we obtain:

satspec'(sat(m,rl,sat(m,r,addm(m,",newdes))),addr(rl,r2,newspec),S')

D-9

Appendix D

—Eqn. 39

We know that requirement ri is primitive so we must solve:

satreq(rl,sat(m,r3,sat(m,rl,addm(m,",newdes))))

= satreq(rl,sat(m,rl,addm(m,",newdes)))	 —Eqn. 35

As rl=rl, satreq yields TRUE, consequently we now have:

satspec'(sat(m,rl,sat(m,r,addm(m,",newdes))),newspec,S') 	 —Eqn. 39

= TRUE	 —Eqn. 37

This means that for all designs, if their specification is extended by an extra requirement,
then the addition of a sat operation will mean that the design continues to meet its
specification.

Armed with this information, it must now demonstrated that the implementation of an
additional requirement in a design always increases the value of the work metric.
Again, the approach will be to employ an inductive proof, since the universal case is
being considered. The base design is:

newdes

and the nth+i design is:

sat(m,r,addm(m,",newdes))

The associated specifications are:

newspec

and:

addr(r,",newspec)

In both cases it will be shown that by implementing an additional requirement,
represented by the sat operation will increase the value of the work metric for the
design. Starting with the base case, it has already been shown that an empty design has

0-10

Appendix D

a work metric value of zero in the proof of Axiom 2. By implementing an additional
requirement we get:

sat(m,r,addm(m,",newdes))

which is, incidentally, the identical to the nth+l design. Again, it has been previously
demonstrated that this design has a value of 1.67. Thus, the addition of a sat operation

has increased the value of the work metric.

The final step is to show that the inclusion of an extra sat operation has the same effect

for the th1 design. This is already known to have a value of 1.67 so it merely remains
to evaluate this design, augmented by a further requirement implementation.

work(addr(rL,addr(r,",newspec)),
sat(ml,rl,addm(ml,",sat(m,r,addm(m,",newdes)))))

= wk(addr(rl,",addr(r,",newspec)),
sat(ml,rl,addm(ml,",sat(m,r,addm(m,",newdes)))),Dl)

—Eqn. 29

where Dl:

= sat(ml,rl,addm(ml,",sat(m,r,addm(m,",newdes))))

= wk(addr(rl,",addr(r,",newspec)),
addm(ml,',sat(m,r,addm(m,",newdes))),Dl) 	 —Eqn. 32

= wk(addr(rl,",addr(r,",)),sat(m,r,addm(m,",newdes))),Dl)
+ work1(ml,addr(rl,",addr(r,",newspec)),D) 	 Eqn. 31

= wk(addr(rl,",addr(r,",)),addm(m,",newdes),Dl)
+ work(m1,addr(r1,',addr(r,',newspec)),D) 	 —Eqn. 32

= wk(addr(r17,addr(r,",newspec)),newdes,Dl)

+ work(m1,addr(r1,",addr(r,",newspec)),D1)
+ work(m,addr(r1,",addr(r7,newspec)),D1) 	 —Eqn. 31

= 0 + work1(ml,addr(rl,",addr(r,",newspec)),Dl)
+ work(m,addr(r17,addr(r,",newspec)),D1) 	 —Eqn. 30

D11

Appendix D

= #(Pwork(ml,D1,addr(rl,",addr(r,",newspeC)))) + a(#(abs(inherits(ml,D1)

u Pwork(ml,D1,addr(rl,",addr(r,",newspec)))))

+ #(inherits(ml,D1) u
Pwork(ml,D1,addr(rl,",addr(r,",newspec))))))) 	 +

#(Pwork(m2,D1,addr(rl,",addr(r,',newspec)))) +

a(#(abs(iriherits(m2,D1)

u Pwork(m2,D1,addr(rl,",addr(r,',newspec)))))

+ #(inherits(m2,D1) u

Pwork(m2,D1,addr(rl,",addr(r,",newspec)))))))

—Eqn. 28

In order to shorten the solution of the above expression, the reader should note the

following. First, that neither module m nor ml have any descendants and therefore both

inherit an empty set of requirements with a cardinality of zero. Second, both modules

satisfy exactly one requirement, thus the cardinality of the result of Pwork is one in each

case. Third, the abstraction operation cannot reduce a set with only member,

consequently it may be disregarded. This allows us to subsitute into the above

expression to obtain:

I + aU+1) + I + a(1+1)

= 3.33

Clearly 3.33 is greater than 1.67 and therefore our axiom holds for the nth+i case, and

therefore by inductive reasoning, for all cases.

Axiom 9: There must exist different designs that satisfy the same spedfication but which

have different work metric values. In other words design size is not only a function of

the specification but also the intrinsic organisation of the design. The consequence of

this axiom is that for a given specification choice of architecture can influence size.

B D1,D:des; S:spec• satspec(D 1,S) A satspec(D2,S)

work(S,D1) <>work(S,D2)

The proof of the validity of this axiom for the model is an existential one; we merely

have to find two designs for which the axiom holds in order to establish its validity. In

order to further reduce the length of the proof, the last example employed to establish

axiom 7 will be re-utilised along with a different design to implement the same

specification (refer to Figure 6.2). The specification common to both designs, S is:

D-12

Appendix D

addr(rl,",addr(r,",newspec))

The first design, Dl, with a known work metric value of 3.33 is:

sat(ml,rl,addm(ml,",sat(m,r,addm(m,",newdes))))

whilst the second design, D2, is formally described as:

sat(ml,rl,addm(ml,m,sat(m,r,addm(m,",newdes))))

The difference between the designs lies in the fact that in the second design D2, module

ml is a subordinate of module m and as a consequence m inherits the requirement

satisfaction of module m and therefore has to do scheduling work, the result of which is

a higher work metric value. This is shown more formally below where we solve:

work(addr(rl,",addr(r,",newspec)),

sat(ml,rl,addm(ml,m,sat(m,r,addm(m,",newdes)))))

= wk(addr(rl,",addr(r,",newspec)),

sat(ml,rl,addm(ml,m,sat(m,r,addm(m,",newdes)))),D2)
—Eqn. 29

= 0+ work1(ml,S,D2) + work(m,S,D2)	 —Eqns.30,31,32

Solving for module ml yields:

work1(ml,S,D2)

= #(Pwork(ml,D2,S) + a(#(abs(inherits(mi,D2) u Pwork(ml,D2),S))

+ #(inherits(ml,D2) u Pwork(ml,D2,S))) 	 —Eqn. 28

Commencing with the Pwork expression:

Pwork(ml,D2,S)

= Pwork(ml,sat(ml,rl,addm(ml,m,sat(m,r,addm(m,",newdes)))),S)

We note that ml=ml so Equation 16 requires us to evaluate:

comprises(rl,S)

= comprises(rl,addr(rl,",addr(r,",newspec)))

D-13

Appendix D

From Equation 2 the predicate rl=" is false thus we obtain:

comprises(rl,addr(r,",newspec))	 —Eqn. 2

= comprises(rl,newspec) 	 —Eqn. 2

=0
	 —Eqn. I

Instantiating back into Equation 16 yields the following predicate which is clearly true:

ml=ml AND 0

Consequently our Pwork expression may be simplified to:

l'work(ml,addm(ml,m,sat(m,r,addrn(m,",newdes))),S) u (ri) —Eqn.16

= Pwork(ml,sat(m,r,addm(m,",newdes)),S) u tn) 	 —Eqn.17

ml<>m, therefore:

= Pwork(ml,addm(m,",newdes),S) u En)	 —Eqn.16

= Pwork(ml,newdes),S) u (nj 	 —Eqn.17

= 0 u (ru	 —Eqn.14

= (nj

Returning to the original worlq expression for module ml and substituting for

Pwork(ml,D2,S) gives:

#((rl)) + a(#(abs(inherits(ml,D2) u (ribS)

+ #(inherits(mi,D2) u (nj)))

Next we turn to inherits(mi,D2). From Figure 6.2 we observe that module ml is a leaf

module and therefore cannot inherit requirement satisfaction, and thus the inherits

expression evaluates to the empty set.

= #((rl)) + a(#(abs(0 u (rl),S) + #(0 u (rl))))

= #({ni)) + a(#(abs((rlLS) +

0-14

Appendix D

The abs((rl),S) expression yields (ri) because a single requirement cannot be made more

abstract, therefore we have:

#Url)) + a(#((rl)) + #((rl))))

= I + a(1 + I)

= 1.67

Now, we turn to the second module in the architecture D2 to solve work for m.

workj(m,S,D2)

= #(Pwork(m,D2,S) + cz(#(abs(inherits(m,D2) u Pwork(m,D2),S))

+ 4(inherits(m,D2) u Pwork(m,D2,S))) 	 —Eqn. 28

Starting with Pwork(m,D2,S):

= Pwork(m,sat(mI,rI,addm(ml,m,sat(m,r,addm(m,',newdes)))),S)

= Pwork(m,addm(mI,m,sat(m,r,addm(m,",newdes))),S) 	 —Eqn.16

= Pwork(m,sat(m,r,addm(m,",newdes)),S) 	 —Eqn.17

Since m=m and comprises(r,S)=O:

= Pwork(m,addm(m,",newdes),S) u (r)	 —Eqn.16

= Pwork(m,newdes,S) t.i (r)
	 —Eqn.17

= 0 u (r)
	 —Eqn.I4

= (r)

Returning to the original workj expression for module m and substituting for

Pwork(ml,D2,S) gives:

#((r)) + a(#(abs(inherits(m,D2) u (r),S)

+ #(inherits(m,D2) U (r))))

D-15

Appendix D

Next we turn to inherits(m,D2). Reference to Figure 6.1 reveals that unlike module ml it

is not a leaf module.

= inherit(m,D2,D2)	 —Eqn.18

= inherit(m,sat(ml,rl,addm(ml,m,sat(m,r,addm(m,",newdes)))),D2)

Since desc(ml,m) is true:

= inherit(m,addm(ml,m,sat(m,r,addm(m,",newdes))),D2) u (ri) —Eqn.21

= inherit(m,sat(m,r,addm(m, tt,newdes)),D2) u (ri) 	 —Eqn.20

Note that desc(m,m) is false because a module cannot be a descendent of itself, therefore:

= inherit(m,addm(m,",newdes),D2) u tn)	 —Eqn.21

= inherit(m,newdes,D2) u tn) 	 —Eqn.20

= 0 u (ru	 —Eqn.19

=0

Returning to work1 for module m:

+ a(#(abs((nl) u (r),S) + #((rl) u (r))))

= #Ur)) + a(#(abs((rl,rLS) +

Now we address abs((rl,r),S):

= abstractUrl,r),S,S) 	 —Eqn.22

= abstract({rl,r),addr(rl,",addr(r,',newspec)),S)

Requirement ri is primitive thus:

comprises(rl,S) = 0 so:

= abstract((rl,r),addr(r,",newspec),S)	 —Eqn.25

D-16

Appendix D

Again requirement r is primitive, therefore:

= abstract((rl,r),newspec),S)	 —Eqn.25

= (rl,r)	 —Eqn.24

Finally, and hopefully not in the Pauline sense, for worlq we have:

#(fr)) + a(#((rl,r) + #Url,r})))

=1 + a(2+2)

= 2.33

When this added to the worki value for module ml of 1.67 an overall value for design

D2 of 4.0 is obtained. Clearly this differs from the value of 3.33 for design Dl, despite

the fact that both designs implement the same specification S. Consequently, Axiom 9

stands.

D-17

	DX098111_1_0001.tif
	DX098111_1_0003.tif
	DX098111_1_0005.tif
	DX098111_1_0007.tif
	DX098111_1_0009.tif
	DX098111_1_0011.tif
	DX098111_1_0013.tif
	DX098111_1_0015.tif
	DX098111_1_0017.tif
	DX098111_1_0019.tif
	DX098111_1_0021.tif
	DX098111_1_0023.tif
	DX098111_1_0025.tif
	DX098111_1_0027.tif
	DX098111_1_0029.tif
	DX098111_1_0031.tif
	DX098111_1_0033.tif
	DX098111_1_0035.tif
	DX098111_1_0037.tif
	DX098111_1_0039.tif
	DX098111_1_0041.tif
	DX098111_1_0043.tif
	DX098111_1_0045.tif
	DX098111_1_0047.tif
	DX098111_1_0049.tif
	DX098111_1_0051.tif
	DX098111_1_0053.tif
	DX098111_1_0055.tif
	DX098111_1_0057.tif
	DX098111_1_0059.tif
	DX098111_1_0061.tif
	DX098111_1_0063.tif
	DX098111_1_0065.tif
	DX098111_1_0067.tif
	DX098111_1_0069.tif
	DX098111_1_0071.tif
	DX098111_1_0073.tif
	DX098111_1_0075.tif
	DX098111_1_0077.tif
	DX098111_1_0079.tif
	DX098111_1_0081.tif
	DX098111_1_0083.tif
	DX098111_1_0085.tif
	DX098111_1_0087.tif
	DX098111_1_0089.tif
	DX098111_1_0091.tif
	DX098111_1_0093.tif
	DX098111_1_0095.tif
	DX098111_1_0097.tif
	DX098111_1_0099.tif
	DX098111_1_0101.tif
	DX098111_1_0103.tif
	DX098111_1_0105.tif
	DX098111_1_0107.tif
	DX098111_1_0109.tif
	DX098111_1_0111.tif
	DX098111_1_0113.tif
	DX098111_1_0115.tif
	DX098111_1_0117.tif
	DX098111_1_0119.tif
	DX098111_1_0121.tif
	DX098111_1_0123.tif
	DX098111_1_0125.tif
	DX098111_1_0127.tif
	DX098111_1_0129.tif
	DX098111_1_0131.tif
	DX098111_1_0133.tif
	DX098111_1_0135.tif
	DX098111_1_0137.tif
	DX098111_1_0139.tif
	DX098111_1_0141.tif
	DX098111_1_0143.tif
	DX098111_1_0145.tif
	DX098111_1_0147.tif
	DX098111_1_0149.tif
	DX098111_1_0151.tif
	DX098111_1_0153.tif
	DX098111_1_0155.tif
	DX098111_1_0157.tif
	DX098111_1_0159.tif
	DX098111_1_0161.tif
	DX098111_1_0163.tif
	DX098111_1_0165.tif
	DX098111_1_0167.tif
	DX098111_1_0169.tif
	DX098111_1_0171.tif
	DX098111_1_0173.tif
	DX098111_1_0175.tif
	DX098111_1_0177.tif
	DX098111_1_0179.tif
	DX098111_1_0181.tif
	DX098111_1_0183.tif
	DX098111_1_0185.tif
	DX098111_1_0187.tif
	DX098111_1_0189.tif
	DX098111_1_0191.tif
	DX098111_1_0193.tif
	DX098111_1_0195.tif
	DX098111_1_0197.tif
	DX098111_1_0199.tif
	DX098111_1_0201.tif
	DX098111_1_0203.tif
	DX098111_1_0205.tif
	DX098111_1_0207.tif
	DX098111_1_0209.tif
	DX098111_1_0211.tif
	DX098111_1_0213.tif
	DX098111_1_0215.tif
	DX098111_1_0217.tif
	DX098111_1_0219.tif
	DX098111_1_0221.tif
	DX098111_1_0223.tif
	DX098111_1_0225.tif
	DX098111_1_0227.tif
	DX098111_1_0229.tif
	DX098111_1_0231.tif
	DX098111_1_0233.tif
	DX098111_1_0235.tif
	DX098111_1_0237.tif
	DX098111_1_0239.tif
	DX098111_1_0241.tif
	DX098111_1_0243.tif
	DX098111_1_0245.tif
	DX098111_1_0247.tif
	DX098111_1_0249.tif
	DX098111_1_0251.tif
	DX098111_1_0253.tif
	DX098111_1_0255.tif
	DX098111_1_0257.tif
	DX098111_1_0259.tif
	DX098111_1_0261.tif
	DX098111_1_0263.tif
	DX098111_1_0265.tif
	DX098111_1_0267.tif
	DX098111_1_0269.tif
	DX098111_1_0271.tif
	DX098111_1_0273.tif
	DX098111_1_0275.tif
	DX098111_1_0277.tif
	DX098111_1_0279.tif
	DX098111_1_0281.tif
	DX098111_1_0283.tif
	DX098111_1_0285.tif
	DX098111_1_0287.tif
	DX098111_1_0289.tif
	DX098111_1_0291.tif
	DX098111_1_0293.tif
	DX098111_1_0295.tif
	DX098111_1_0297.tif
	DX098111_1_0299.tif
	DX098111_1_0301.tif
	DX098111_1_0303.tif
	DX098111_1_0305.tif
	DX098111_1_0307.tif
	DX098111_1_0309.tif
	DX098111_1_0311.tif
	DX098111_1_0313.tif
	DX098111_1_0315.tif
	DX098111_1_0317.tif
	DX098111_1_0319.tif
	DX098111_1_0321.tif
	DX098111_1_0323.tif
	DX098111_1_0325.tif
	DX098111_1_0327.tif
	DX098111_1_0329.tif
	DX098111_1_0331.tif
	DX098111_1_0333.tif
	DX098111_1_0335.tif
	DX098111_1_0337.tif
	DX098111_1_0339.tif
	DX098111_1_0341.tif
	DX098111_1_0343.tif
	DX098111_1_0345.tif
	DX098111_1_0347.tif
	DX098111_1_0349.tif
	DX098111_1_0351.tif
	DX098111_1_0353.tif
	DX098111_1_0355.tif
	DX098111_1_0357.tif
	DX098111_1_0359.tif
	DX098111_1_0361.tif
	DX098111_1_0363.tif
	DX098111_1_0365.tif
	DX098111_1_0367.tif
	DX098111_1_0369.tif
	DX098111_1_0371.tif
	DX098111_1_0373.tif
	DX098111_1_0375.tif
	DX098111_1_0377.tif
	DX098111_1_0379.tif
	DX098111_1_0381.tif
	DX098111_1_0383.tif
	DX098111_1_0385.tif
	DX098111_1_0387.tif
	DX098111_1_0389.tif
	DX098111_1_0391.tif
	DX098111_1_0393.tif
	DX098111_1_0395.tif
	DX098111_1_0397.tif
	DX098111_1_0399.tif
	DX098111_1_0401.tif
	DX098111_1_0403.tif
	DX098111_1_0405.tif
	DX098111_1_0407.tif
	DX098111_1_0409.tif
	DX098111_1_0411.tif
	DX098111_1_0413.tif
	DX098111_1_0415.tif
	DX098111_1_0417.tif
	DX098111_1_0419.tif
	DX098111_1_0421.tif
	DX098111_1_0423.tif
	DX098111_1_0425.tif
	DX098111_1_0427.tif
	DX098111_1_0429.tif
	DX098111_1_0431.tif
	DX098111_1_0433.tif
	DX098111_1_0435.tif
	DX098111_1_0437.tif
	DX098111_1_0439.tif
	DX098111_1_0441.tif
	DX098111_1_0443.tif
	DX098111_1_0445.tif
	DX098111_1_0447.tif
	DX098111_1_0449.tif
	DX098111_1_0451.tif
	DX098111_1_0453.tif
	DX098111_1_0455.tif
	DX098111_1_0457.tif
	DX098111_1_0459.tif
	DX098111_1_0461.tif
	DX098111_1_0463.tif
	DX098111_1_0465.tif
	DX098111_1_0467.tif
	DX098111_1_0469.tif
	DX098111_1_0471.tif

