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Abstract of Thesis 

The V-type vertical axis wind turbine (V-VAWT) is of 

simple design and construction, has a low aerodynamic 

efficiency, yet its originators consider that it will be a 

cost effective configuration in electricity generation 

applications. However, the quality and reliability of its 

power output must be ensured; this necessarily requires 

continual control of rotor speed and power. 

The initial V-VAWT investigations of Sharpe and Taylor, 

and methods of wind turbine control are reviewed. 

Partial-span pitch angle variation is considered the most 

promising option, and the systematic investigation of this 

control method in V-VAWT applications is reported. This 

work includes the design, construction and performance 

testing of a small V-VAWT with pitching blade tips. The 

tests showed that rotor power can be regulated with small 

blade tip areas, however, correlation between the measured 

and theoretical results was not good. Wind tunnel test 

were undertaken to determine the characteristics of the 

NACA0025 aerofoil used for the model blades. Performance 

predictions using this data showed better correlation 

between experimental and- theoretical results. This has 

allowed the theoretical model to be used with confidence 

for predicting the performance of larger V-VAWTs with 

partial-span pitch control. A theoretical model of the 

dynamic behaviour of a V-VAWT generator integrated with an 

electricity supply network has been developed and embodied 

in the computer program DYNVAWT. This program has allowed 

the dynamic behaviour of a 5kW sized V-VAWT to be 

simulated, and an active control strategy developed. The 

simulation studies show that active partial-span pitch 

control ensures the quality and reliability of the 

electricity supply can be maintained even when the V-VAWT 

is operating in turbulent wind conditions. 
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Chapter One: Introduction 

1.1: Background 

In the °U. K. , the Department of Energy (DEn) considers wind 

energy technology to be "promising, but uncertain" Cl]. 

This does not mean to say that the DEn considers wind 

turbines to be unproven in their ability to achieve high 

levels, -. of energy capture and generate useful power from 

the' wind, but that present day machines have yet to prove 

, that such--energy can be generated reliably and cost 

effectively. 

The cost of energy from modern electricity generating wind 

turbines is evaluated, by distributing the capital and 

maintenance costs 'of the installation over the total 

energy-- predicted to be generated in its useful life. The 

British - Wind Energy Association (BWEA) /_ have recently 

predicted wind energy costs to be, as little as 2 pence/kWh 

[2] for. U. K. based machines. This figure has been derived 

from, costings experienced by two major British manu- 

facturers supplying large numbers of medium sized wind 

, turbines, -, to-, American market in 1985 and 1986, and 

amongst the many assumptions made, the design life of a 

wind turbine system is expected to be 30 years. Since 

none of the.. modern wind turbines have operated more than 

10 years (the AMW Tvind wind turbine celebrated 10 years 

of operation-in early' 1988 [ 3] ), the reality of the BWEA' s 

predicted wind energy costs is yet to be proven. For this 

reason the DEn is sceptical of such low energy costings, 

and hence their placement-of wind energy technology in the 

"promising, but'uncertain" category. 

In March 1988, despite this uncertainty, a £30 million 

wind power programme [4] was announced by the Chairman of 

the Central Electricity Generating Board (CEGB), Lord 



Marshall, and the Energy Minister, 'Michael Spicer. Of 

this sum, £28 million will be jointly funded byýthe DEn 

and the CEGB for the development of three demonstration 

wind parks, each with 25 wind turbines. The remaining 

£2 million will be funded by the DEn, the CEGB, and other 

collaborators for developing an offshore wind turbine. 

The success of this wind power programme is central to the 

future acceptance of wind energy by these two institutions 

as a reliable and cost effective energy source. These 

projects clearly show that the emphasis of current wind 

energy research, development and manufacturing effort in 

the U. K. is directed tows"ds the use of wind power in 

electricity generation systems. 

While the announcement of the wind parks programme has 

provided a welcome boost to the wind power industry in the 

U. K., abroad the rapid development of wind powered elec- 

tricity supply systems is far more advanced. The maturing 

of the wind energy industry worldwide can be identified in 

two ways: firstly, the progress made in the development 

and understanding of the technology itself, and secondly, 

the increasing reliability and cost effectiveness of wind 

energy systems. 

The progress made in the development and understanding of 

the technology is best illustrated by the increasing 

numbers of large sized wind turbines (rated at 500kW and 

above) erected worldwide. Large wind turbine development 

programmes are currently underway in Canada, Denmark, 

Germany, Italy, Netherlands, Spain, Sweden, U. K. and the 

U. S. A. [5]. The erection of these machines clearly 
demonstrates the increased knowledge, experience and 

confidence that has been gained in the design, manufacture 

and operation of wind turbine systems. In all cases, the 

wind turbine systems have been designed for electricty 

generation purposes. 
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The increasing reliability and cost effectiveness of wind 

energy systems is best illustrated by considering the 

continued expansion of wind powered electricity generating 

capacity in California, U. S. A. 16]. Initially, tax credit 
incentives were required to promote and develop wind parks 
in California, but by 1985 over 1000 MW of wind powered 

generating capacity had been installed in this area alone. 
In 1987 this figure had risen to over 1400 MW, despite the 

loss of the tax incentives after 1985, showing the 

willingness of investors to continue financial support of 
the wind parks scheme. During this period, annual wind 

energy production rose from 642 GWh to 1700 GWh. In the 

same period, the annual wind energy production per wind 
turbine increased from 75,000 kWh to 112,00 kWh. This was 
due, in part, to the increased capacity of each new wind 
turbine, but also to the increased reliability and avail- 

ability of the wind turbines installed. 

These figures present a rosy picture of the wind energy 
industry in California, but Lynette [7] observes that many 
wind power stations are in financial trouble because of a 

shortfall in energy production. Lynette considers that 

these shortfalls are due to technological reasons, and 

are: 

"a result of attempts to accelerate the commercial- 
ization of an emerging, but immature technology. " 

The early wind energy programmes of a number of countries 
have included the building of large wind turbines, some of 

which were of mega-watt capacity. Many of these larger 

projects have floundered. because of technical problems, 

and some wind turbines have even been dismantled after the 

repeated occurence of operating problems. Although a 

number of large wind turbines are currently operating 
satisfactorily, and as implied above the numbers of. such 
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machines is increasing, the average installed- capacity of 

the 16,000 wind turbines operating in California is only 

114 kW. The confidence and knowledge gained to develop 

and erect the large wind turbines is the direct result of 

successful development and operation of smaller scale 

machines. The BWEA's predicted cost of wind generated 

electricity is based upon the experience gained by 

manufacturing, installing and operating medium sized 

machines. ' -Therefore the significant contribution made by 

such machines should not be under estimated, especially in 

light " of the push towards larger sized machines. 
Lynette's assessment of the Californian experience is 

pertinent to wind energy programmes worldwide. The BWEA, 

similarly, `' state [23: 

"Small wind turbines can provide sensible stepping stones to the 
larger sizes. " 

The DEn acknowledges [8] that land-based wind turbines 

could by 2025, in theory, annually produce 45 TWh of elec- 

tricity in the U. K. This could be further increased with 

offshore wind turbines by as much as 140 TWh per annum. 

The development of wind power systems on such a scale, 

however, will only come about when the predicted low 

energy costs are proven to be accurate and reliable. 

The cost of wind generated electricity is sensitive to a 

number of controlling parameters. These include the mean 

speed of the wind at the turbine site, the availability of 

the machine, and the ratio of the capital cost of the 

turbine system to its rated power output capacity. Of 

these parameters, wind speed has the most influence on 

wind energy costs, indicating that windy sites are 

essential for a cost effective wind powered electricity 

supply system. Simplicity of machine design and planned 

maintenance schedules will ensure reliable operation and 

-4- 



high availability. Availabilities of 95% have already 
been reported, leaving little scope for improvement. The 

capital cost to rated power output ratio of a wind turbine 

system is crucially dependent upon the selection of an 

effective wind turbine configuration. In the competitive 
Californian market, horizontal axis wind turbines are 

currently being offered by manufacturers, ex-works, for 

between $800 and $900 per kilowatt output capacity. Oper- 

ational windfarms are being offered for between $1000 and 

$1200 per kilowatt. The "cost per kilowatt"' of a wind 
turbine system is used as an indicator to compare its 

commercial merits with other wind turbine systems. 

However, when comparing wind turbine systems on technical 

merits, it is more usual to consider the efficiency of the 

system as an aerodynamic device for extracting energy from 

the wind and converting it to useful energy. Whether the 

wind turbine rotor be of horizontal axis or vertical axis 

configuration, techniques for improving the efficiency of 

the system are continually being sought. 

While the selection of a particular wind turbine rotor 

configuration will immediately determine the likely con- 

version efficiences achievable, a complex design with a 

good conversion efficiency may be less cost effective than 

a simple design with a poorer conversion efficiency. The 

V-type vertical axis wind turbine (V-VAWT) is known to 

have a low aerodynamic efficiency 191, but it is claimed. 
that its simple construction will ensure a low capital 

cost, easy maintenance, and high reliability. It is, 

therefore, expected that this configuration will be 

commercially competitive with other wind turbine designs, 

despite its low aerodynamic efficiency. 

The current institutional interest in wind energy techno- 
logy in the U. K. is dominated by its application for 

-5- 



electricty generation. While research funds are being 

allocated for studies of stand-alone systems, the DEn and 
CEGB are primarily interested in the operation of wind 

turbine systems as an integral part of the national elec- 

tricty supply network. The grid connected application of 

a wind turbine poses many problems, so it was considered 

appropriate that any further investigation of the V-type 

vertical axis wind turbine concept should concentrate on 
the specific needs of this highly commercial application. 
Such an investigation is the focus of the study reported 

here, and while the cost effectiveness of this novel wind 
turbine design is still unproven, the work presented here 

does clearly demonstrate that electricity generation using 

this turbine concept is technically feasible, provided the 

turbine is suitably controlled. 

1.2: Wind Energy Technology 

The systematic development of the modern electricity 

generating wind turbine can be traced back to 1891 when 

the Danish government established a windmill experimental 

station at Askov. Professor P. La Cour was in charge of a 

research programme with the specific aim of improving 

windmill performance, and developing a type that could be 

economically constructed for the generation of electricity 

for agricultural applications. La Cour was the first to 

undertake a sydtematic investigation of electricty gener- 

ation using wind power, and his work led to guiding 

principles for the design and construction of the "ideal 

windmill". By 1908, several hundred windmills that 

embodied these design principles had been built and 

constructed in Denmark. 

-6- 



The development of the windmill as an electricity 

generating machine continued in both Europe and North 

America. A small number of large scale projects were 

undertaken by national governments and private companies 

are described by Golding 1101. During the 1950s, wind 

turbines rated at 100 kW or more were erected in Great 

Britain, France and Germany. All were experimental 

machines designed to allow systematic study of the 

technology. Research programmes continued in some 

countries into the 1960s, but it was the "energy crisis" 

of October 1973 that stimulated the current international 

interest shown in wind power, and its use for electricity 

generation. 

The government sponsored research, development and 

demonstration programmes of many countries show initial 

interest has been directed towards developing large, 

multi-megawatt machines, while privately funded 

development has centred on the small to medium sized wind 

turbines. The recent developments in wind energy 

technology are well documented, but reference in this 

report to particular projects will only be made as 

appropriate. 

Not suprisingly, the development of wind energy technology 

has been accompanied by the development of an associated 

technical- language and knowledge base. The terminology 

and technical definitions in common usage allow different 

wind turbine systems to be readily compared, and these are 

briefly discussed below. 

1.2.1: Wind Resource 

Wind turbines extract kinetic energy from the wind. The 

amount of electrical energy extracted from the wind by a 

wind turbine system depends upon: 

-7- 



(a) windspeed at the wind turbine site 

(b) the cross-sectional area of the wind swept by the 

blades of the wind turbine rotor 

(c) the height of the wind turbine rotor above the 

ground or sea level 

(d) the efficiency of the wind turbine system at 

converting wind energy to electrical energy 

The power available in the wind passing through a cross- 

sectional area A, is given by: 

power = %pAV3 (1.1) 

where 

p= air density, kg/m3 

V= windspeed, m/s 
A= cross-sectional area, m9 

As equation (1.1) shows, the power available in the wind 

is proportional to the cube of its speed, so the energy 

that a wind turbine generates is significantly affected by 

windspeed changes. A site with an average annual wind- 

speed of 6.3 m/s will have twice as much energy available 

as one with an average annual windspeed of 5.0 m/s. Even 

small differences in the average annual windspeed can 

clearly affect the energy available at a potential site. 

It has been shown [11] that the average annual power per 

unit cross-sectional area, known as the power density, is 

equal to 0.95pV. '°' W/m-, - where VM is the average annual 

windspeed of the site. This expression assumes a Rayleigh 

distribution (see below) of windspeeds throughout the 

year, but if p=1.225 kg/m=-: ', then for a site with an 

average annual windspeed V, r, = 5.0 m/s, the average power 

density will be 145 W/m=, corresponding to 1275 kWh/m: ý= per 

annum. 

-8- 



Wind is highly variable. Its speed varies with geographic 
location, local terrain, height, time of the day and the 

seasons. At a particular wind turbine site, the long term 

wind energy availability can be estimated from knowledge 

of the average annual windspeed. Its value is best 

determined by short term, on-site measurements made at the 

standard height of ten metres. Correlation of these 

measurements with those made over the same period of time 

at a local weather station, will allow the first estimate 

of the average annual windspeed to be validated with long 

term measurements. 

Although published data and computer based models [12] now 

enable potential wind turbine locations to be readily 
indentified, local variations of terrain and land form 

ensure that on-site windspeed measurement is still the 

most effective and reliable means of evaluating the wind 

resource of a particular site. 

It is usual to consider the windspeed "seen" by a wind 

turbine to be that blowing at the height of the rotor hub. 

Wind turbines operate in the planetary boundary layer, in 

which a variation of horizontal windspeed occurs with 

height. Therefore, the average annual windspeed seen by 

the wind turbine will differ with changes of hub height. 

The variation of windspeed with hub height can be 

estimated using the logarithmic relationship [13]: 

V(z)_ 
_ 

1n(z/z, ) (1.2) V(zr-d ln(z .) 

where 

V(z) = horizontal windspeed at height z, m/s 

zü = the surface roughness, m 

zrý = reference height, m 

-9- 



The reference height is usually z,, = 10 m, and the surface 

roughness Zr. varies with terrain. For open terrain with 

short grass zK, = 0.03 m, but for rough terrain with low 

woods Zr, = 0.25 m1 131. This relationship can be used to 

evaluate the average annual windspeed seen at the rotor 
hub from windspeed measurements made at the standard 
height. If z, _, = 0.03, it is readily demonstrated that the 

average power density at a hub height of 75 m is twice 

that at a hub height of only 15 in. 

The statistical variation of windspeed throughout the year 
can be described mathematically using a probability 
density function such as the Weibull function. The two 

shape parameters of this function can be evaluated by 

short term windspeed measurement on site. The Rayleigh 

distribution is a special case of the Weibull function, 

and is representative of windspeed distributions in the 

U. K. [14]. 

The Weibull probability density function allows the number 

of hours per year for which the windspeed equals or 

exceeds a specified value to be readily calculated. The 

characteristic windspeed frequency distribution of the 

site, where the windspeed domain is divided into "bins" of 

one metre per second width, gives for each bin the number 
of hours per year which the windspeed is within the 

interval of the bin width. The wind turbine system is 

unable to extract all the energy available in the wind, 

and each system will have a "power output versus 

windspeed" characteristic, allowing the power developed by 

the system for each windspeed bin to be evaluated. Inte- 

gration of the product of "number of hours" and "power 

output" for each bin for all windspeeds, will yield the 

total energy output of the system in one year at the site. 
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Musgrove [ 151 shows that the average power output, P, r� of 

a well designed wind turbine system is given by 

PM = 0.25pAVM3 (1.3) 

For V, r, = 5.0 m/s this gives an average power output 

density of P,., = 38 W/m: ', corresponding to 335 kWh/m-I per 

annum. The efficiency with which a wind turbine system 

converts wind energy to electricity energy is highly 

dependent on the design and operating characteristics of 

the system, so the expression (1.3) for evaluating average 

power output of a wind turbine system is unsuitable for 

all but the most general discussions of the wind energy 

resource. 

1.2.2: Wind Turbine Configurations 

The majority of commercial wind turbines are of a hori- 

zontal axis configuration (HAWT). In this design config- 

uration the wind turbine rotor revolves about an axis that 

is, essentially, parallel to the ground. The blades of 

the rotor sweep out a circular disc through which the wind 

passes. Rotor 'power is transmitted through a gearbox to 

the generator for conversion to -electrical energy. The 

speed of the wind turbine rotor is determined by its 

overall size, and the number and design of the blades. 

Large rotors will operate at low rotational speeds, and 

require large speed increasing gearboxes to drive the 

generator at its operating speed. The low speed trans- 

mission elements of the drive train system carry large 

torques, and require specialist components to be designed. 

The rotational speed of the rotor can be increased, for 

its size, by reducing the number of blades. Two and three 

bladed rotor configurations are popular, and provide a 

good compromise between aerodynamic performance and power 



transmission design, but single and multi-bladed options 

have their advocates. 

The rotor blades use the aerodynamic lift force character- 

istics of aerofoil sections to develop mechanical torque 

at the rotor hub. The choice of aerofoil type, the blade 

planform design, and the geometry of the blade across it 

span, are all crucial factors in determining the aero- 

dynamic performance of the blade. The structural design 

of the blade must consider the aerodynamic, gravitational 

and centrifugal forces that act across the whole blade. 

Of these forces, gravitational force varies cyclically, a 

complete reversal of its vector sign with respect to the 

blade once per revolution. The final blade design is the 

result of balancing good aerodynamic characteristics 

against good structural characteristics. A compromise is 

inevitable, but the use of well est abl i. shed, and proven, 

design procedures and analysis techniques, enables HAWT 

blade design to be completed with effective engineering 

solutions being generated. 

The HAWT rotor is supported by a tall tower, and it is 

usual to house all the mechanical and electrical power 

transmission elements in a nacelle at, or near, its top. 

The rotor and nacelle must rotate about the tower to 

ensure the disc of the rotor faces the wind. The rotor 

may be free to yaw, or driven by some drive mechanism. 

The tower has to be designed to support the weight of the 

rotor, the drive train system, electrical generator, and 

other ancillary equipment. The tower structure not only 

influences the response of the wind turbine to external 

forces acting on the rotor, but affects the aerodynamic 

efficiency of the rotor as each blade passes by. 

The characteristics of horizontal 'axis configurations have 

been comprehensively studied and reported for many machine 
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designs, rotor sizes and operating conditions. It is the 

configuration, that has been developed with most success by 

industrial organisations and national research programmes. 
The current interest in wind energy technology, as a cost- 

effective energy source, is based upon the successful 

commercial operation of many HAWTs in both North America 

and Europe. The development of the vertical axis wind 

turbine (VAWT), by contrast, is less well advanced 

commercially, in part due to the additional technical 

complexity of this configuration, and in part due to the 

diversity of VAWT configurations currently being 

developed.., 

Vertical axis wind turbine configurations have rotors that 

revolve about an axis that is perpendicular to the ground, 

and therefore are always facing the wind. The blades of 

the. rotor, sweep out a volume through which the wind must 

pass. Each blade cuts through a stream of air twice every 

revolution; once on the upwind pass, and once on the 

downwind pass. Like HAWTs, the rotor blades use aero- 
dynamic lift force to develop mechanical torque at the 

rotor hub. ' Again, the choice of aerofoil type, the blade 

planform design, and the geometry of the blade across its 

span,, are crucial factors in determining the aerodynamic 

performance of, the blade. The blade design, however, must 

achieve. a balance between its aerodynamic effectiveness on 

the upwind half of the cycle and that on the downwind 

half. The structural design must consider aerodynamic, 

gravitational and centrifugal forces, but, unlike HAWTs, 

it. is. the aerodynamic force that varies cyclically with 

VAWTs. In. the final blade design, a compromise must be 

struck, between. good, -aerodynamic performance character- 
istics and good structural performance characteristics. 
This has resulted in a diversity of VAWT configurations 
being evolved, some of which have been developed to 

commercial maturity. The various VAWT configurations can 
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be broadly categorised by blade type, e. g. curved or 

straight blade types. 

The Darrieus VAWT uses curved blades which are attached at 

both ends to a rotating torque tube. The torque tube 

transmits rotor torque to a gearbox and generator system 

that is placed at the base of the rotor in a short tower. 

The curve of the blade can take many forms, but the tropo- 

skein blade geometry has the most structural advantage. 

Its "skipping rope" shape ensures all centrifugal forces 

are reacted by tensile forces around the blade, and that 

the bending loads in the blade are due to aerodynamic and 

gravitational forces alone. The Darrieus machines can be 

designed to rotate at high rotational speeds, reducing the 

torque developed by the rotor for a given power rating. 

This type of VAWT has been extensively developed in North 

America, where power conversion efficiencies comparable to 

those of well designed HAWTs have been achieved. 

Straight blade designs have centred on variations of the 

H-VAWT configuration, in which the rotor blades are set 

parallel to the axis of rotation, sweeping a cylinderical 

path through the air. The blades are connected to the 

rotor hub by single or multiple crossarms, so giving the 

rotor its characteristic aitch shape. The rotor is 

supported by a tall tower, and like HAWTs, it is usual to 

house all mechanical and electrical equipment at, or near, 

its top. This design allows the whole span of the blade 

to operate at the largest moment arm about the axis of 

rotation, ensuring the maximum rotor torque is developed 

from the aerodynamic forces acting on the blades. Vari- 

able geometry versions of the H-VAWT have been developed 

for control purposes, but these variations will be 

discussed in Chapter Three. 
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The V-VAWT is a straight bladed configuration in which the 

rotor blades are set at an angle to the axis of rotation, 

sweeping out a conical path through the air. The blades 

are connected to the rotor hub at their root, so giving 

the rotor its characteristic vee shape. The rotor is 

supported by a short tower, allowing all the mechanical 

and electrical equipment to be close to the ground. 

Although the blades may be supported close to their tip by 

cables,, large bending loads occur in the blade at its 

root. ` `-The length of the moment arm about the axis of 

rotation varies 'across the span of the blades, so the 

aerodynamic forces are less effectively developed into 

rotor 'torque. Although this configuration has a 

relatively low power conversion efficiency, its simple 

construction is considered by its originators to make it a 

worthy VAWT configuration to develop further. 

The initial design and subsequent development of the 

V-VAWT configuration is discussed in Chapter Two. 

1.2.3: Wind Turbine` Characteristics 

The 'power, ' ' torque and speed characteristics of a wind 

turbine can be conveniently considered using the following 

non-dimensional terms: 

power coefficient CP =P (1.4) 
%pAV3 

torque coefficient CQ = (1.5> 
/pAV2R 

tip speed ratio = 
vD (1.6) 
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where 

P= power developed by rotor, W 

Q= torque developed by rotor, Nm 

A= swept area of wind turbine rotor, ml 
f2 = rotational speed of rotor, rad/s 
R= maximum radius of rotor, m 

The power-rotational speed and torque-rotational speed 

characteristics of a wind turbine rotor vary with 

windspeed, rotor size, and even the density of the air. 
Whilst it is possible to determine a series of power-speed 

and torque-speed curves for different windspeeds, rotor 

sizes, and air densities, the use of the above non- 
dimensional terms enables the wind turbine characteristics 
to be described by just two curves: Co-X and CQ-X. It 

should be noted that since P=Q. Q, then: 

Ce = CQ. X (1.7> 

The power coefficient, C,., of a wind turbine is a measure 

of its effectiveness at extracting the kinetic energy of 

the wind which'would normally pass through the area swept 

by the rotor if it was not there. In 1927, Betz used 

simple momentum theory to show that the maximum fraction 

of the available power in the wind that can be extracted 
by an ideal wind turbine was 16/271 or 59.3%. This 

theoretical maximum value of power coefficient is known as 
the Betz 'limit. Golding [10] discusses the many early 

studies of wind turbine theory that have suggested 

modifying the value of the Betz limit for maximum CP. 

There is, however, little proof that power outputs in 

excess of the Betz limit are achievable, and further 

discussion would be'of little value. 

Modern wind turbine designs are achieving power coeff- 
icients of C, = 0.40 to 0.45, but its actual value is a 
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function of the rotor configuration, its detailed design, 

and the tip speed ratio at which it is operating. 

Tip speed ratio, X, is the ratio of the peripheral speed 

of the rotor to the windspeed. The peripheral speed of 

the rotor is a function of its size and rotational speed. 

Since, however, power coefficient, torque coefficient, and 
tip speed ratio are dimensionless parameters, the Cf:. -% and 

Cß; 4-X characteristics of different wind turbine configur- 

ations can be readily compared. These characteristics 

should only be used to describe the behaviour of the 

rotor, and not the wind turbine system as a whole. The 

conversion of the power developed by the rotor into elec- 

tricity inevitably incurs additional mechanical and elec- 

trical losses, further reducing the overall efficiency of 

the whole system. 

Typical CF. -% characteristics of different wind turbine 

configurations are shown in Figure 1.1. In all cases the 

optimum value of CF. occurs at a single value of X. To 

ensure maximum energy capture is achieved, the wind 

turbine must operate at a constant tip speed ratio, so the 

rotational speed of the rotor must change if any windspeed 

change occurs. Variable speed operation is favoured by 

manufacturers of small and medium sized wind turbines, 

though large wind turbines connected to national elec- 

tricty supply- networks generally operate at a constant 

rotational speed, sacrificing maximum energy capture. 

efficiency. The merits of each mode of operation will be 

discussed at length later in this report, but suffice to 

say, in either situation the rotor must be carefully and 

accurately controlled to ensure the safe and reliable 

operation of the whole wind turbine system. 
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Figure 1.1: Typical. CP-X, characteristics of various wind 

turbine configurations 
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The performance of an electricty generating wind turbine 

system is, regardless of its configuration, characterised 
by-the following parameters: 

<a) Rated power output, P,, 

<b) Rated windspeed, VF: 

(c) Cut-in windspeed, VxN 

<d) Cut-out windspeed, V.,, -., - 
(e) Survival windspeed, Vrta 

The rated- power output is the maximum power that the wind 

turbine system will deliver in constant windspeed -con- 
ditions. The rated windspeed is the lowest windspeed at 

which the system will deliver its rated power output. 

Below this windspeed, the power output will be less than 

rated. The cut-in windspeed is the lowest windspeed at 

which the system is able to deliver any useful electrical 

power, ý typically V., =5 m/s. When the windspeed is 

greater than or equal to the cut-out windspeed, the wind 

turbine is- disconnected from the supply system and the 

rotor stopped. Wind turbine systems do not to operate in 

winds greater than the cut-out windspeed because large 

structural loads would' occur in this operating regime, 

typically V0tj7 = 25 m/s., - With the rotor stationary, the 

wind turbine is designed to. withstand the structural loads 

that would occur in very high windspeeds upto the survival 

windspeeds of V., = 60 m/s. 

The power output of the system below V=1 ,, is zero, not 

because the wind turbine rotor is unable to capture any 

wind energy at such low windspeeds, but because the system 

is unable. to run quickly enough for the electrical 

generator- to operate at the required frequency. Above 

Vxhj, the power output from the system will rise rapidly as 

the windspeed increases to VF,, at which windspeed the 

power output will equal P. If the windspeed increases. 
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further, the power that could be delivered would continue 

to rise, however, the electrical generator has a limited 

capacity, so restricting the power that may be delivered 

by the system. Consequently for windspeeds above VM:,, the 

mechanical power from the rotor is modulated to ensure 
that the electrical output of the system is no greater 
than rated. Various methods of controlling the mechanical 

power developed by a wind turbine rotor have been used, 

and these are briefly reviewed in Chapter Three. One such 

method is selected for use with the V-VAWT, and to test 

its suitability for this configuration a wind tunnel sized 

model wind turbine has been designed and tested. Chapter 

Four describes its design and construction. Chapter Five 

describes the test procedures, data analysis techniques, 

and presents the experimental results that were obtained. 

Analytical methods have been developed to predict the 

aerodynamic performance of both horizontal and vertical 

axis machines. These theoretical mathematical models of 

wind turbine behaviour are generally considered accurate 

and reliable, though their verification and improvement 

continue. These mathematical models enable the aero- 

dynamic performance of a wind turbine system to be 

predicted without a detailed knowledge of the specific 

application. They are used extensively in design to 

determine the likely power-windspeed characteristic of the 

system. Such a tool has , already been developed for 

predicting the behaviour of the V-VAWT. The basis of the 

prediction model is described in Chapter Two, but to 

ensure that good predictions were obtained for the wind 
tunnel V-VAWT model, it has been necessary to measure the 

aerodynamic 'characteristics of the aerofoil section used 
for the model blades. The experimental test procedure, 
data analysis and experimental results that were obtained 

are presented in Chapter Six. 
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The aerodynamic performance prediction model is used in 

Chapter Seven to determine the likely effects of using the 

selected power modulation method on free-air V-VAWTs. In 

the free-air fluctuations in the windspeed occur continu- 

ously. These fluctuations will affect the instantaneous 

power output of the wind turbine system, so the wind 

turbine must be either passively or actively controlled to 

ensure the system does not respond to the windspeed change 

in a manner that is detrimental to its output quality or 

safety. To predict the reponse of a system to continuous 

windspeed fluctuations, however, requires a more detailed 

approach' that is specific for each application. Any 

mathematical model of the system will require the' dynamic 

characteristics of both the mechanical and electrical 

components to be described and evaluated. Chapter Eight 

descibes the development of such a mathematical model 

specific to the V-VAWT. This model has allowed methods 

for controlling the wind turbine system during such 

disturbances to be simulated. 

The aerodynamic control of the V-VAWT rotor not only has 

to modulate the power output of the system in high speed 

and gusty winds, but must ensure that many other tasks can 

be completed satisfactorily. These tasks are described in 

detail later, but - this' study clearly shows that 

aerodynamic control of the V-VAWT rotor using a fast 

acting blade tip 'pitch control system, will enable 

electricity supply to 'a large supply network to be 

successfully and reliably acomplished. 

1.3: Scope of this Research Report 

The investigations into the aerodynamic control of the 

V-VAWT reported here were carried out by the author as a 

member of the 'Appropriate 'Technology Group of the Open 
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University between November 1983 and September 1986, and 

subsequently continued to the present in the Department of 
Mechanical Engineering of Portsmouth Polytechnic. All the 

wind tunnel based experimental work was carried out at the 

Department of Aeronautical Engineering of Queen Mary 

College, London. 

During this period the author attended a number of wind 

energy conferences, and prepared a small number of 
technical papers in which the intermediate results of the 

work were presented. Copies of these papers are included 

in the Appendix. In the programme of study described and 

reported here, the following tasks were undertaken by the 

author: 

(a) Technical review of wind technology and wind 

turbine control methods. 

(b> Appraisal of control method suitable for the 

V-VAWT configuration. 

(c) Design and analysis of wind tunnel V-VAWT model. 
(d) Performance testing of V-VAWT model and analysis 

of experimental results. 
(e> Further development of computer based aerodynamic 

performance prediction model, enhancing its speed 

of execution and ease of use. 
(f) Aerodynamic testing of -aerofoil section used for 

V-VAWT model blades, analysis of experimental 

results, and application of data to validate the 

modifications- to the aerodynamic performance 

prediction model, 
(g) Determine suitable control methods and strategies 

for larger V-VAWT designs. 

(h) Develop a mathematical model of- the dynamic 

behaviour of a V-VAWT system, simulate its 

response to typical disturbances, and so verify 
the suitability of the adopted control system. 
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Chapter Two: The V-Type Vertical Axis Wind Turbine 

2.1: The Initial Concept and Early Development Work of 

Sharpe and Taylor 

The first systematic appraisal of the V-type VAWT config- 

uration was reported by Sharpe and Taylor [9] in 1983. 

Earlier descriptions of this concept by Park [16] and 
Ljungstrom [171 are-acknowledged by Sharpe and Taylor, but 

neither of, these other, authors presented detailed studies 

of this VAWT configuration. A variety of designs had been 

conceived by Taylor, Figure 2.1, including an X-VAWT, but 

it was the multiple and single blade configurations with 
fixed or variable geometry that were considered to be most 

promising. Sharpe and Taylor considered the concept to 

have the following advantages: 

"(a) A very short tower requirement for any size of rotor. This 
can be as little as 3 or 4 metres tall, which helps to 
minimize capital costs and allows for easy access to 
generator, transmission and the rotor itself, so reducing 
installation , operation and maintenance costs. 

(b) The use of simple, straight blades attached directly to the 
shaft avoids the heavy rigid support arms or cumbersome 
curved blades that characterise other Darrieus-type VAWTs. 

(c) The greater portion of the swept area is located in the 
higher wind speed zone. - 

(d). --Proven self-starting capability, due to high starting torque 
- at least for the 2 blade version. This feature means that 
the turbine may be suitable for water pumping applications 
as well as electricity generation. 

(e) Simple, straight, untwisted blades that are relatively easy 
to manufacture and to transport can be used. 

(f) In the case of variable geometry versions, the swept area 
can be varied much like the Musgrove-type "H" Darrieus VAWT. 
The turbine is maintained at its optimum angle of inclin- 
ation 6o until the windspeed approaches the maximum normal 
operating value. When this is exceeded the blade tilts 
further so that the angle of inclination 8 increases until 
in very high winds the blades are horizontal and can be 
parked in that position. This feature is not shared by any 
other current VAWT. 

(g), In the case of the cantilevered single-blade, variable- 
geometry version, the blade of which can be a strong beam, 
tower shadow and tower induced turbulence effects on the 

-23- 



blade are non existent; in addition, the blade can be parked 
horizontally in high winds and allowed to "weather vane" 
downwind of the tower, so reducing considerably the loads on 
both blade and tower, 

(h) As with any other straight-bladed VAWT, the blades of this 
design are subject to high bending loads induced when 
rotating due to the centrifugal force acting on the blades. 
However, for this type of turbine these loads can be taken 
by cable bracing and/or the blades themselves, rather than 
the heavy crossarms - though the cables may have to be 
'faired to reduce drag. 

(i) in the constant speed mode, these loads can be kept under 
control by the use of spoilers, flaps or variable pitch tips 
of the type similar to those currently in use on HAWTs. 
Alternatively active or passive variable geometry control 

. systems can be employed. " 

Some of these statements require further qualification and 

justification of their validity, however, Sharpe and 

Taylor's reasoning will be borne out by the discussion 

below. 

Of the configurations conceived, the two-bladed fixed 

geometry V-VAWT was the subject of Sharpe and Taylor's 

preliminary investigations. In this configuration each 

blade is attached to the rotor hub at their root at a 

fixed angle to 'the vertical. The blade is braced using 

cables attached near to the blade tip, giving the rotor a 

greater rigidity. The study included both theoretical and 

experimental evaluations of the aerodynamic performance of 

this configuration, concentrating on the behaviour of the 

rotor itself. 

2.1.1: Theoretical Predictions of V-VAWT Aerodynamic 

Performance 

To determine the aerodynamic performance of the V-VAWT 

concept, a computer based prediction model known as 
VAWTTAY was developed by Sharpe based upon the his refined 
version of the multiple streamtube theory [18] suitable 
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for all vertical axis configurations. This theory, and 

its development as a computer based model is discussed in 

detail later, but suffice to say the validity of the 

results from the model had been proven with known data 

from experiments performed on other VAWT types, and is 

considered a reliable analysis tool. 

The computer model VAWTTAY allows the blade shape, 

aerofoil section and rotor geometry to be uniquely 

defined, enabling both small and large scale rotor 

configurations to be evaluated. However, to enable the 

performance of these configurations to be compared, the 

following non-dimensional terms are defined: 

aspect ratio- AR =L (2.1) 

tip radius R=L. sing (2.2) 

solidity Q= 
Rc (2.3) 

wind Reynolds Number WRe == (2.4) 
v 

where 

L= blade length, m 

c= mean blade chord, m 
A= angle of blade inclination to the vertical, deg 

N= number of blades 

V= undisturbed windspeed, m/s 

v= kinematic viscosity of air, mm/s 

A wind tunnel sized V-VAWT model with straight blades of 

length 750 mm and chord 63 mm, i. e. AR = 11.9, was used as 

the basis for initial parametric studies of the V-VAWT. 

Sharpe and Taylor presented the results of predicted Cr.. ->, 
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characteristics for' different angles of inclination, 

aspect ratio, and blade number, Figures 2.2 to 2.4. These 

results showed that a maximum power coefficient would be 

achieved using high-aspect ratio blades, and two-bladed 

rotor configurations. Although an angle of inclination of 

A= 50' yielded the best maximum CF., subsequent rotor 

designs have all used A= 45'. Although not explicitly 

shown, the high starting torque that is developed by the 

V-VAWT * is 'represented by the slope of the C1.. -% curve at 

"X = 0. In all cases this is clearly seen to be positive. 

Full-sized *wind turbine configurations can be studied by 

increasing the wind Reynolds Number. The effects of this 

change are shown in Figure 2.5, which clearly shows the 

improvement made by, increasing the size of the rotor. In 

all cases'the windspeed is constant, so the results for 

WRe = 500,000 are for a rotor of approximately 13 m 

diameter, and those at WRe = 1,000,000 are for a rotor of 

approximately 28 m diameter. 

Design schemes for practical, full-sized V-VAWTs were 

prepared; these are shown in Figures 2.6 and 2.7. 

Sharpe and Taylor continued their theoretical work of the 

fixed geometry V-VAWT with a parametric study of a 5kW 

configuration [197. Blade number, aspect ratio, and angle 

of inclination were considered once again, but the study 

was extended to consider blade taper, the attachment 

position of the blade to the rotor hub, and bracing cable 

drag losses, Figures 2.8 to 2.10. Earlier experiments by 

Sharpe [20] on small Darrieus VAWTs had showed the effects 

of blade thickness on aerodynamic performance. From these 

results an optimum 5kW design was specified: each blade 

has an aspect ratio of 16, a taper ratio of 2: 1, a blade 

length of 5.5 m, and a symmetrical 18% thickness to chord 

ratio aerofoil is used for its construction. The maximum 
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power coefficient for this design is predicted to be in 

excess of 0.3, which is lower than other VAWT configur- 

ations, but [19): 

"... the primary objective is to design a turbine which produces 
energy at a lower cost than existing designs: it is anticipated 
that this would be obtained from the simplicity of the 
structure. " 

The 5kW V-VAWT design is rated at a windspeed of 12 m/s, 

and has since been erected on the free-air test facility 

at the Open University [21]. The wind turbine has been 

designed so that. both two-bladed and three-bladed options 

can be evaluated. Initial test results have been encour- 

aging [22], but. a consistent dataset over a large range of 

operating conditions has, not, as yet, been generated. The 

validity of the predicted performance figures lies in both 

the known accuracy of the computer model VAWTTAY, and the 

results of small scale wind tunnel tests. 

2.1. '-2: Wind Tunnel Tests of Small V-VAWT Models 

Small' scale' models -of the V-VAWT were constructed by 

Sharpe and Taylor to verify the predicted performance 

results Of'VAWTTAY [9]. The first model was made using 
two straight' blades, each of length 750 mm and chord 
63 mm. The blades were of wood construction and had to be 

braced 'using faired' fibre packing tape for additional 

support. The'-blades were attached to a steel shaft that 

was free -to rotate in a rigid tubular steel framework. 

The rotor was placed at the outlet to a blowdown wind 
tunnel at` Quieen Mary College, London. A simple test 

technique devised by Sharpe [23], and fully described in 

Chapter Five, was used to determine the complete Cf.. -X 
characteristic of the model. 
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A maximum Cr. of 0.21 at aX of 7.2 was predicted for this 

model, but initial test results fell considerably short of 
these values. Inspection during operation showed that the 

blades were twisting due to the high centrifugal loading 

on the model. The blades were shortened to 560 mm in 

length, and the angle of inclination adjusted to A= 40'. 

Sharpe and Taylor note that some improvement in perform- 

ance was achieved with this modification, but the results 

were still considered poor. The angle of blade twisting 

was observed and assesed to be equivalent to 7.5' nose-in 

at the tip, for a tip speed ratio of h=3.2. The assump- 
tions of the aerodynamic predictions were modified to 

accomodate the twisting effect; these showed better corre- 
lation to the experimental results, Figure 2.11, however, 

it was concluded that the tests were 193: 

"... inconclusive in terms of indicating true aerodynamic 
performance. " 

Despite their poor overall performance, both the models 

were observed to develop a high starting torque and 

readily self-start. This capability is, amongst vertical 

axis configurations, unique to the V-VAWT. 

A third model V-VAWT was constructed and tested [ 19] with 

greater success. This model had two straight blades of 
length 550 mm, chord 60 mm, and angle of inclination 45'. 

Each blade was supported by two cables in tandem, fixed at 

a point 120 mm from the blade tip. The cables straddled 
the flexural centre of the 18% thick aerofoil, ensuring 
the blade did not twist at high rotational speed. The 

wind tunnel. test results showed a marked improvement of 
the CFa-X characteristic, Figure 2.12. The theoretical 

predictions could not be matched exactly, because the 

computer predictions considered the blades to have a 12% 
thick aerofoil, however, Sharpe and Taylor concluded [19]: 
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"The wind tunnel test results were regarded as encouraging, and 
confirmed the use of the theoretical model as a design tool. " 

A consequence of the improved wind tunnel test results was 

the confidence to use the aerodynamic prediction model for 

developing the 5kW design previously mentioned, and a 

100 kW design. The CF:, -ý characteristics of these two wind 

turbines are also shown in Figure 2.12. In both cases the 

cable drag losses are ignored, though their effect on the 

5kW version is clearly seen in Figure 2.10. 

2.1.3: Conclusions from the Preliminary Studies of Sharpe 

and Taylor 

Sharpe and Taylor's preliminary studies of the V-VAWT con- 

figuration have covered many aspects of this novel VAWT 

concept. They have demonstrated that the aerodynamic 

performance prediction model VAWTTAY can be used with some 

confidence for V-VAWT design studies, and that despite its. 

low overall aerodynamic efficiency, careful blade design 

can ensure optimum performance is achieved. The self- 

starting capability has been proven by experiment and 

predicted using VAWTTAY. 

Methods of power regulation, however, were not systematic- 

ally investigated, though possible control devices have 

been offered, nor has the use of the V-VAWT specifically 

for electricity generation been considered in detail. It 

is these aspects of the V-VAWT configuration that have 

been specifically considered in the study reported here. 

The principles of operation of the V-VAWT are embodied in 

the theoretical model used as the basis of VAWTTAY, and 
the author has used this computer model throughout the 

study period. It is, therefore, appropriate to consider 
this aerodynamic prediction model in greater depth. 
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2.2: The Aerodynamic Performance Prediction Model VAWTTAY 

The aerodynamic performance prediction model VAWTTAY is a 

computer based embodiment of Sharpe's refined multiple 

streamtube theory [18]. The multiple streamtube theory is 

applicable to all VAWT configurations, and has resulted 
from many years of development and refinement by Sharpe 

and other authors. The computer model VAWTTAY was written 
by Sharpe specifically for the V-VAWT, and first ran on a 
Commodore PET microcomputer. Later versions of VAWTTAY 

were adapted for the IBM-PC computer, but these were 
considered inadequate by the author for extensive use 
because of the long program execution times involved. 

A significant proportion of the author's time has been 

spent adapting Sharpe' s original BASIC computer code to a 
FORTRAN based computer code suitable for use on mini- 

computers such as the VAX 11/750 and 11/780 series. The 

subsequent development and verification of the FORTRAN 

program now allows the author to complete the theoretical 

analysis of a V-VAWT design. with greater accuracy and in 

more detail in minutes rather than hours. The significant 

saving in computational time made by transferring VAWTTAY 

to a minicomputer, has contributed significantly to the 

author's understanding and comprehension of both the 

theoretical model and the behaviour of the V-VAWT itself. 

2.2.1: Multiple Streamtube Theory 

The multiple streamtube theory is based upon equating the 

change in streamwise momentum through the wind turbine 

rotor to the aerodynamic forces acting on the rotor 
blades. It is strictly a two dimensional analysis, but 
the three dimensional geometry of the V-VAWT configuration 
can be accomodated by considering a number of horizontal 
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slices, analysed independently of each other. For each 

slice, the Bernoulli equation and momentum equation are 

applied to a number of streamtubes that are bounded by 

straight streamlines which flow through the turbine. The 

streamlines-are-characterised by the parameter ß, as shown 

in Figure 2.13, and + Sß. Each blade passes through the 

streamtube twice in every revolution, and by application 

of the continuity equation to the flow in the streamtube, 

the upwind and downwind passes cannot be treated independ- 

ently. Expansion of the streamtube is included and, by 

using suitable aerofoil data, the variation of blade 

forces with blade position can be predicted. The follow- 

ing summary of the fundamentals of the theory is based 

upon- refs. 1 18,24, -251. 

The theory considers a horizontal, two dimensional slice 

of the rotor of unit height. The rotor comprises of a 

large number N of blades, each of chord c, that sweep out 

an actuator circle of radius R. The solidity is o= Nc/R. 

The far upstream wind has a constant speed V,,,, and if the 

angular speed of the rotor is c, then the tip speed ratio 

is X= f2R/Vm. Its is assumed that atmospheric pressure p" 

occurs in the far upstream and far downstream parts of the 

streamtube, and that at some point inside the turbine pA 

is attained on each streamline. The streamtube velocity 

at that point V. is taken to be the "wake" velocity for 

the upstream blades, and the "freestream" velocity for the 

downstream blades. The velocity in the far wake is VW, 

and the flow is assumed to be incompressible. 

Applying Bernoulli's equation and the momentum equation to 

the streamtube, as if the velocities were parallel to the 

direction of V,,,, yields the following expressions for the 

forces in the streamtube: 
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SF� = 2Vt, pSA� (V., - Vu) (2.5a) 

SFo = 2VopSAo (V,, - V0) (2.5b) 

where 

Vu = (V. + VA)/2 (2.6a) 

Vo = (VA + V, )/2 (2.6b) 

Here SF, 
_, 

'and SF� are-respectively the incremental upstream 

and downstream streamwise forces exerted by the blades in 

the streamtube,, and SA, 
_, and SAO are the respective incre- 

mental cross sections. Note that subtracting (2.6b) from 

(2.6a) gives: 

VU-Vo=%(V--VW) (2.7) 

implying that half the retardation of the flow across the 

streamline occurs across the wind turbine rotor. The 

velocities Vu and V. are termed the "induced velocities". 

Figure-2.14 shows the relative velocity triangle acting on 
the blade element. The local resultant velocity W is 

dependent upon, -the local induced velocity V. the peri- 

pheral speed of the blade element OR, its angle of 

inclination 6 to the vertical, and the parameter ß. Blade 

element theory- yields the following streamwise blade 

element forces: 

SFu _ /pW�222SAj(CN - CTtanßsec8) (2.8a) 

SF0 = %pWD'2SAp(CN 
- CTtanßsec8) (2.8b) 

The resolved aerodynamic forces induced on the blade are 
given by the coefficients of normal and thrust force, Cr,, 

and C-, -, which can be evaluated at the appropriate angle of 
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attack a and local Reynold Number We/, v for the aerofoil 

section used to model the blade. The chord c is replaced 

by the effective chord length within the streamtube 

(a/2n)SA. secß. The sec6 term ensures the induced velocity 

components are resolved in a plane normal to the blade 

span. 

Using egns. (2.5) and (2.8) gives: 

V^., 
- 

Vu 
_vW,., 

ý 
Vo 1 Vm 8rz V (C^'u CT,, tanßsec9) (2.9a) 

and 

V" 
1 

V° He (CND - CTOtanßsec9) (2.9b) 
VA VA 8n V. 

These equations cannot. be' solved explicitly, so an 

iterative approach must be adopted. First both sides of 

eqn. (2.12) are balanced to determine V,,,, then eqn. (2.7) 

is used to determine V, and finally eqn. (2.1'3) is 

balanced to determine V0. This technique is highly suited 

to computer based solution, allowing the values of V, 
_, and 

VO to be'readily determined for specific rotor geometries. 

The torque contribution per streamtube is: 

w02 5Q ; 6p-2R2 Vu 4.9 C ru + Wo CTn VMsec8dßdh (2.10) 

where 

vm_ 2V�Vo 
"' (VU + VD ) 

and dh is the vertical depth of the streamtube. 

ca. 11 > 
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The normal and tangential forces per unit length of the 

blade are given by: 

FN = /PW2CCN (2.12a 

F-r = /pW= CCT (2.12b) 

The expression for torque can be numerically integrated 

around the actuator circle to give the torque for a 

complete revolution. Similarly, numerical integration 

across the blade span will yield the total torque for the 

rotor. Local variations of blade geometry can be 

accomodated by the theory, and by using tabulated data for 

CN and C, - over a variety of Reynolds Number, allowances 

for local Reynolds Number variations can be made. Angles 

of attack, windwise force and crosswind force, and their 

variation with rotational position can all be predicted 

using this theory. 

Sharpe's refined multiple streamtübe theory 118] includes 

corrections for flow curvature, dynamic stall and blade 

tip losses. The incorporation of these effects into the 

aerodynamic' performance theory is discussed at length by 

Sharpe, and 'to' assess the validity of the "composite" 

theory, he has compared its predictions to the experi- 

mental results of 'other authors. Good correlation has 

been demostrated, provided dynamic stall is included in 

the theory only for normal blade forces, and only on the 

upstream pass. While the mechanism of dynamic stall is 

not completely understood, Sharpe considers that the level 

of turbulence generated by the upstream blade pass 

accounts for there being no evidence of dynamic stall on 

the downstream blade 'pass. This refined theory is 

currently the most comprehensive multiple streamtube 
theory proposed for VAWTs, and therefore is considered a 
highly valuable analytical tool for V-VAWT development. 
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2.2.2: Aerodynamic Peformance Prediction Computer Programs 

The computer based aerodynamic performance prediction 

model consists of a suite of programs. The FORTRAN based 

programs developed by the author are a direct descendent 

of Sharpe's original BASIC programs. The current suite 

consists of three discrete programs: 

(a) WRITEBLADE 

(b> VAWTTAY 

(c) READVAWTTAY 

WRITEBLADE is used to numerically model the blade geometry 

of the V-VAWT rotor. The blade is split into a number of 

small elements, the local characteristics of each being 

determined from the overall planform dimensions and 

geometrical attributes of the blade, including its angle 

of inclination to the vertical. The program allows local 

chord length and pitch angle for each element, and the 

root positions of the attachment point, taper axis and 

pitch axis to be defined. In this way a unique numerical 
description of the blade can be generated. The program 

generates a blade geometry datafile that is used in the 

two other programs. 

VAWTTAY embodies the multiple streamtube theory described 

above and is, therefore, the core program of the suite. 

The program utilises the WRITEBLADE blade geometry file to 

retrieve specific blade descriptions. The rotor is fully 

described by the number of blades, the aerofoil section, 

and the type of operation (constant rotational speed or 

constant windspeed) to be analysed. The program executes 

a calculation sequence that analyses the aerodynamic 

performance characteristics of the V-VAWT over a range of 

operating conditions determined by tip speed ratio. The 

aerodynamic forces acting on the rotor are calculated for 
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each blade element at a number of azimuth positions around 

the actuator circle. The application of the multiple 

streamtube theory requires the normal and tangential force 

coefficients of the aerofoil to be repeatedly used in the 

iterative process required to determine the upstream and 
downstream induced velocities. The C,,, and CT values of 
the aerofoil are contained in a "look-up" table of coeff- 
icients held in the computer memory. The aerofoil data 

must represent a large range of Reynolds Number, and 

angles of attack upto 180'. Suitable data in a format 

taht can readily be transferred to the computer is scarce. 
Reliable datasets for the NACA series of symmetrical 

aerofoil sections have, however, been presented in 

(23,26,27). Of these datasets, that developed by Sharpe 

for the NACA0012 aerofoil [23] was used in the initial 

analysis of the V-VAWT concept. 

VAWTTAY generates the angle- of attack, local induced 

velocity, elemental blade forces, and elemental torque at 

each azimuth position and blade element. Integration of 

torque across the blade span and around the actutaor 

circle will generate the total torque developed by the 

rotor as a whole. The program prints out a performance 

summary once the analysis at each tip speed ratio is 

complete. The summary table includes the calculated power 

and torque coefficients of the rotor. All elemental data 

can be stored in a performance datafile for further 

analysis using READVAWTTAY. 

READVAWTTAY is a post-processor for VAWTTAY. It uses data 

from the blade geometry and performance datafiles to 

create additional information about the behaviour of the 

V-VAWT rotor. The program presents the elemental data in 

a tabular form, calculates the variation of torque with 

azimuth angle, and calculates the torque distribution 

across'the blade span. The aerodynamically induced forces 
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and bending loads on the blade are calculated, and the 

worst loading cases identified. All the information is 

presented in a numerical form, as routines for the 

graphical output of data have not yet been created. 

All three programs have been written in standard FORTRAN 

and have been validated by comparing predicted results 
with those generated by the proven BASIC versions. The 

author chose to develop minicomputer forms of the micro- 

computer programs because of the long program execution 
times required for determining rotor characteristics. The 

present suite of programs run on a VAX 11 /750 minicomputer 

at Portsmouth Polytechnic. To determine the Cam. -X char- 

acteristic for, say, ten tip speed ratio settings current- 
ly takes approximately two minutes, compared to the two 

and half hours required by the microcomputer. Time saving 

alone justified the effort, but the flexibility and size 

of the larger computer has many other benefits that has 

allowed the scope and application of the programs to be 

expanded. Some of the modifications and developments made 
by the author to the programs will be discussed later, 

however, the reliability and suitability of these programs 

now allows them to be quickly and effectively used in the 

design and development of the V-VAWT concept. 

2.3: Aerodynamic Characteristics and Power Control of 
the V-VAWT Rotor for Electricity Generation 

The fundamental. aerodynamic principles of operation of the 

V-VAWT are little different to other VAWT configurations, 
however, the behaviour specific to this turbine is the 

result of its characteristic rotor geometry. Consider a 
three-bladed V-VAWT, each blade having an aspect ratio of 
16 and a taper ratio of 2: 1. The C,.. -X characteristic of 
this rotor geometry, predicted with VAWTTAY using NACA0012 
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aerofoil data, is shown in Figure 2.15. The peak value of 

power coefficient occurs at X=5 and is CI. r, F, x = 0.33. 

As tip 'speed ratio increases, it can be seen that Cf.. 

diminishes to zero at X=B. B. This condition is known as 
"runaway" and, ignoring all parasitic losses, is the tip 

speed ratio. to which the rotor will accelerate if it is 

unloaded. 

If the rotor radius is R= 17.5 m, the rated windspeed is 

VF, = 12 m/s, and - the rotor was operating at C, ,. jAjx9 it 

would be rated at 100 kW and its rotational speed would be 

33 rpm; =its runaway rotational speed would be 56 rpm. 

Operating in a 12 m/s windspeed, an unloaded V-VAWT rotor 

would accelerate to a speed of 56 rpm, at which condition 

the aerodynamic power output of the rotor is zero. If, 

while the windspeed remains constant, a small external 
load was applied to the rotor, the rotor would slow until 

a new equilibrium state was achieved where the magnitude 

of the aerodynamic power developed by the rotor equalled 
that of the load. Such a state could exist at >=6, 

where CF = 0.29. Here a load of 88 kW could be supplied 

with the rotor . operating at 40 rpm. If the windspeed 

continues to remain constant, then the external load could 
be slowly increased further until an output of 100 kW was 
demanded' of the rotor. At the new equilibrium state, the 

rotational speed of the rotor would be 33 rpm, >. =5 and 

CF. - = 0.33. A further increase in the load on the rotor 

would cause the speed of the rotor to decrease even 
further, in which case C, would start to fall and the 

rotor power output would not be able to supply the demand. 
Increasing the load above 100 kW would cause the rotor to 

slow to 'a complete stop. 

Essentially, while the windspeed remains constant and 
whilst the operating condition on the C, -% curve continues 
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to be to the right of C,. h.,,., x, the V-VAWT rotor will 

respond in a stable manner to any small fluctuations of 

external load. Conversely, moving the operating point to 

the left of C, M,., X will result in an unstable response to 

any small load fluctuations. 

Now consider the situation where the load on the rotor 

remains constant, and it is the windspeed that fluctuates. 

If in the initial state the windspeed is 12 m/s and the 

load is 88 kW, then, as above, the rotor speed would be 

40 rpm, X=6 and C, = 0.29. If the windspeed gradually 
increases from 12 m/s, then the excess power available 
will cause the rotor to accelerate until a new equilibrium 

position is attained. If the windspeed were to increase 

to 13.5 m/s, then at X=7 where C,. = 0.20 equilibrium 

would be restored. At this condition the power output of 
the rotor would be 88 kW, as required, and the rotor speed 

would be 52 rpm. If the windspeed continues to increase 

gradually, the rotor speed would continue to increase 

whilst the rotor load remained constant. This is potent- 
ially very dangerous because the rotor speed may even- 
tually exceed its safe operating limit, and a catastrophic 
failure of a component part may be provoked by the over- 

speeding rotor. 

Conversely, if the windspeed falls gradually, the rotor 

speed will decrease as the available power diminishes. In 

this example, -- C,. will initially rise, but the rapid 

reduction of power in the wind with changing windspeed 
would soon overcome the small Cý gain. If the windspeed 
falls to only 11.5 m/s then equilibrium is attained at 
X=5, where CF. = 0.33. The new rotor speed would be 
32 rpm and its power output would be 88 kW, as required. 
Gradually decreasing the windspeed further would create an 
unstable situation in which the load would be in excess of 
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any power that might be developed by the rotor, resulting 

in the rotor slowing until its stops. 

Again operational stability is only achieved for small 

windspeed fluctuations whilst the rotor continues to 

operate to the right of C,,. nx, though overspeeding can be 

considered as a system instability, since it would be an 

undesirable event., Moving the operating point to the left 

of, C,. r, AX will provoke the rotor to stop, as before. 

In both these cases, the changes -in windspeed or load are 

small or gradual. Clearly gperating at X=5, where 

Cr. = Cp. m F4xº the system will be at the limit of stability 

to these external changes. Rapid changes, such as wind 

gusting or sudden load losses, will provoke different 

events and the, effect, of these larger perturbations on the 

system will be discussed later. 

If the rotor is to operate at maximum efficiency at all 

times, - then it must operate -at a constant tip speed ratio 

i. e. X=5. The speed of the rotor must, therefore, vary 

as changes in windspeed occur. For instance, if the 

windspeed rises. from 12 m/s to 14 m/s, then the rotational 

speed of the rotor must increase from 33 rpm to 38.5 rpm 

to ensure this condition is met. At the new operating 

condition, the power developed by the rotor would have 

increased from 100 kW to 160 kW. A 17% increase in 

windspeed has led to a 60% increase in available power due 

to the cubic wind power law, however, penalities for this 

gain must be tolerated. The 17% windspeed increase will 

induce a 37% increase in the aerodynamic forces acting on 

the rotor, and the necessary 17% increase in rotational 

speed, to maintain a constant tip speed ratio, results in 

the centrifugal forces acting on the rotor increasing by 

37%. The 60% increase in power and 17% increase in 
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rotational speed will result in a 37% increase of torque 

developed by the rotor. 

Alternatively, if the windspeed gradually falls from 

12 m/s to 10 m/s, then the speed of the rotor must 

decrease to 27.5 r. p. m. to ensure constant tip speed ratio 

operation is maintained. At the new operating condition, 

the power developed would only be 60 kW. Although there 

has been a fall in output power, the V-VAWT is still 

operating at its optimum tip speed ratio, so that the 

maximum power is being developed by the rotor. 

Operating at a constant tip speed ratio clearly presents 

major design problems to accomodate even small windspeed 

increases above rated. Power output would be maximised, 

but large variations would occur as the windspeed changed. 

Also, it is uneconomic to design the wind turbine to 

sustain the' structural' loads on the rotor and to select 

suitable torque' transmission elements for operation at 

windspeeds significantly larger than rated. 

Alternatively, if the rotor operates at constant 

rotational speed, then it is tip speed ratio that will 

change with changes in-windspeed. Changes in X result in 

changes of C,., so the rotor will no longer operate at 

maximum efficiency at all times. If the windspeed rises 

from 12 m/s to 14'm/s, the tip speed ratio drops from 

X=5 to X 3, the power coefficient would drop from 

0.33 to 0.32, ' and the power developed by the rotor would 
be '155 W. Increases in power, torque and aerodynamic 
forces will still be significant, but the amount of change 

will be dependent upon the characteristics of the wind 
turbine itself. Centrifugal forces acting on the rotor 

will not change, 'as the speed of rotation is constant. 
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If the windspeed drops to 10 m/s, then the tip speed ratio 

needs to rise to 'X=6, the power coefficient would drop 

to 0.29, and the power developed by the rotor would only 

be 53 kW. 

Clearly operating at constant rotational speed is less 

effective in terms of energy capture than operating at a 

constant tip speed ratio, however, the structural loading 

on the rotor and mechanical transmission elements is less 

demanding with this option. In both cases there is a 

clear need to regulate energy capture efficiency to ensure 

that the power, torque and forces developed by or acting 

on the rotor do not exceed acceptable design limits. 

Using wind turbines for electricity generation purposes 

poses a number of other problems. The prime movers of 

conventional electricity generating systems operate at 

constant speed to ensure the frequency of the supply is 

fixed. Large electricity supply utilities use high speed 

steam turbines, gas turbines or diesel engines to drive 

synchronous generators at a fixed synchronous speed. In 

all cases the speed of the system is regulated by control- 

ling the flow of fuel to the prime mover. If wind turbine 

generators are to make significant contributions to the 

supply networks of. large utilities, then electricity from 

these sources must be supplied at a fixed frequency. The 

wind turbine system must be designed to ensure that the 

frequency of the electricity output is controlled to meet 

this requirement, and that the power demanded of the 

system can be met. 

Cooper and Law 128] are amongst many authors who have 

reviewed the various options for the control of wind 

turbine generators used specifically with the public 

supply network. Whilst mention is made of some methods of 

rotor speed and power control, -their review concentrates 
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on the choice of electrical generator, and the problems of 

maintaining the quality of the electrical power output of 
the system. 

Firstly,. though, they identify the two major differences 

between wind turbines and other, prime movers: 

"(a) The variability of the 'fuel'. Whereas in a conventional 
generating set the available input energy flow is fixed and may 
be varied by a simple valve or throttle to set the output power, 
with an aerogenerator this input is variable. Thus to deliver a 
sensibly constant power output requires either some form of short 
term energy storage or the rejection of a large proportion of the 
available input energy ... 

(b) The aerodynamic characteristics of the machine require that, 
for maximum efficiency, it operates at a constant tip speed 
ratio ... thus for maximum efficiency the rotor speed must vary 
with wind velocity and since the machine is normally generating 
into a constant frequency supply network some form of frequency 
or speed conversion equipment is necessary. " 

These two statements succinctly summarise the problems 

associated with designing a wind turbine generator system, 

especially in light of the operating characteristics 
discussed above. Cooper and Law identified the need for 

the power and speed of a wind turbine generator to be 

controlled, since they considered that as wind turbine 

size increases (an* "undoubted trend" of the future) and 

penetration of wind turbine generated capacity increases, 

then: 

"... aerogenerators must be capable of operation in the same manner 
as conventional generating plant having automatic load sharing to 
follow load variations and scheduled on an economic basis. This 
implies local controls on the machine on a basis of speed with 
the power control as a system input. " 

The power developed by the wind turbine must be regulated, 
whether the wind turbine operates as a constant speed or 
variable speed generating system, to ensure the output 
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power does not rise, above rated power, and that the speed 

of the rotor. remains within it operating limits. In 

addition to the needs of normal running, the control needs 
for system start-up, synchronisation and shutdown must be 

considered if autonomous operation is to be achieved. 

Power and speed control is again required during these 

particular phases of wind turbine generator operation. 

In summary, the control of wind turbine power and speed is 

a need inherent in all configurations used in electricity 

generating applications; the V-VAWT is no different. Con- 

sequently, the power developed by a V-VAWT rotor must be 

regulated,. and its speed maintained within safe operating 

limits. Control methods that ensure that both rotor power 

and rotor speed can be controlled are sought for use with 

V-VAWT applications. The options that have been consider- 

ed are briefly. reviewed in the following chapter. 
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Chapter Three: Review of Control Options for V-VAWT 

3.1: Introduction 

In this chapter control options for the V-VAWT will be 

briefly reviewed and suitable methods identified. Before, 

however, considering available options in any detail, the 

scope of the control need must be clarified. This is best 

achieved by specification of the control needs. Such a 

specification will identify both the primary and secondary 
functional' requirements of a control method; primary 
functional requirements must be satisfied to ensure the 

desired performance needs are fulfilled, whereas secondary 

requirements do not have to be necessarily satisfied to 

ensure the success of the adopted control method. 

3.1.1: Specification V-VAWT Control Needs 

In striving to identify suitable control methods for the 

V-VAWT, its application for the generation of electricity 

as part of a large utility network is considered most 
important, as argued in Chapter One. Such an application 

will require individual machines to operate autonomously, 

requiring speed and power control of the rotor during 

start-up, synchronisation, ' normal running and shutdown 

phases of the operation cycle, whilst ensuring the quality 

of ' the ' el`ectrical' output is satisfactorily maintained. 
Thus, as -identified in Chapter Two, the control of both 

rotor power-and speed during these operational phases is a 

primary requirement of any control method. 

Bossanyi and Anderson [29] estimate that a wind turbine 

will undergo' several thousand low windspeed starts, and a 
number of high windspeed shutdowns per annum. A wind 
turbine will, therefore, experience many more start-up and 
synchronisation cycles during its lifetime than any 

- 53 - 



conventional electricity generating system. With the 

continual, and often rapid, variation of windspeed, the 

control requirements for this phase of wind turbine 

operation alone are far, more onerous than for other prime 

movers, In designing a wind turbine, the good use of 

materials and well established technologies can go a long 

way to prolonging service life; increasing wind turbine 

availability; decreasing the probability of component 
failure; and minimising service and maintenance, yet the 

structural loading; wind turbine performance; energy 

output; and economic viability of a wind turbine system 

can be crucially dependent upon the form of the control 

method. Mets and Hermansson [30] state, for example, that 

the essential design objectives of Swedish wind turbine 

design includes: 

(a) 30, year service life 

(b) one in 10qß 000 probability of failure for primary 
structural components 

(c) 90% availability 

(d) proven technology to be used when possible 
(e) minimum service and maintenance 

The consideration of these design objectives here will 

ensure-that the control method adopted for the V-VAWT will 
fulfil the broader design aims and objectives of the whole 

system as stated -above. Features of a particular control 

method that assist or detract from the overall achievement 

of these design objectives, must be considered on merit. 

With, these basic design requirements in mind, it is now 

possible to. 'objectively review the control options 
considered most suitable for adaptation to the V-VAWT 

configuration. 

- 54 - 



3.2: Review of control options 

In discussing wind turbine control options, it is usual to 

define the system boundary as encompassing the whole 

machine, as shown for a typical horizontal axis machine in 

Figure 3.1. Such a system will include within its 

boundary the folowing major components: 

<a) rotor blades 

(b) rotor hub 

(c) low speed shaft 
<d) brake 

<e) transmission elements, 

speed shaft 

<f) electrical generator 

<g) yaw drive (HAWT only> 

(h) tower 

The system inputs are: 

including gearbox and high 

<a> windspeed 
<b) wind direction 

(c) electrical frequency and power demand 

and the system outputs are: 

(a) electrical frequency and power 
(b) vibration 
(c) noise 

Within the system boundary, the autonomous control system 

will utilise the signals measuring windspeed; wind 
direction; shaft speed; shaft torque; generator voltage, 
current, frequency and synchronisation to control any 

aerodynamic control surfaces; the yaw drive (HAWT only); 
generator field current and synchronisation; and the rotor 
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Figure '3.1: Elements of a wind turbine system 
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brake. Other 'out-of-limits' signals, would be used to 

maintain fail-safe operation of the system. 

Cooper and Law, in their review of wind turbine control 

options (28], concentrate on the choice of electrical 

generator, and the problems of maintaining the quality of 

the electrical power output. The electrical control 

options they considered were: 

(a) constant rotor speed operation 

synchronous generator 
induction generator 

(b) variable rotor speed operation 

rectifier-invertor 

double-fed induction generator 
hydraulic transmission 

<c) mulitple rotor speed operation 

. dual generators 
P. A. M. wound generator 

Electrical generators and alternative approaches to wind 

energy, electricity generation are also succinctly reviewed 
by Freris 1313. The salient " points of both these reviews 

are summarised below. 

A wind turbine must operate at constant speed to drive a 

synchronous generator. Since a wind turbine needs to 

operate at a constant tip speed ratio to achieve optimum 

power output, a constant speed rotor will generally per- 
form below. optimum. Synchronous generators must operate 

at the frequency of the electricity supply network, so 
that synchronisation of the generator with the network, 
and ensuring the stability of the connection in gusty wind 

conditions are significant control problems. At wind- 
speeds below rated, low efficiency means that energy 
capture losses- will be incurred. Above rated windspeed, 
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energy capture-must be reduced to ensure the wind turbine 

operates within its rated design limits. Induction gener- 

ators accomodate small changes in speed, but with only 

0.5% - 5.0% full speed slip allowable, the range of 

operating speeds is limited. 

Variable speed operation enables the rotor to operate at 

its optimum tip speed ratio, ensuring maximum energy will 

be extracted in the low windspeed regimes. For variable 

speed operation, there are two commonly used generator 

systems that allow the constant frequency electrical 

output of the system to be maintained. The ac-dc-ac 

rectifier inverter system rectifies the variable frequency 

output from a variable speed synchronous generator to give 

dc output which in turn is fed to a synchronous converter 

to give a fixed frequency output. Alternatively, a double 

fed induction generator that has' a variable frequency 

excitation supply, will output a fixed frequency supply 

over a large range of operating speeds. A hydraulic 

transmission system using a fixed displacement pump and 

variable displacement motor would allow the equivalent 

gear ratio of" the transmission between the rotor and the 

generator to the constantly changed. 

Multi-speed operation is a compromise between fixed and 

fully variable speed operation, allowing the wind turbine 

to operate at a finite number of fixed speeds. Two gener- 

ators allow operation at two different rotational speeds; 

an excellent method for increasing low windspeed energy 

capture. Aý single P. A. M. generator allows operation at 
two speeds, but the operating range is limited by the 

dependency of one speed on the other. 

The reviews of electrical generator choice 128,31] show 
that provided rotor speed and power can be controlled, any 

of these generator schemes can be adopted. Therefore, 
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while the interaction of the wind turbine and the gener- 

ator is crucial to the dynamic response of the wind 

turbine system to input changes, for the purposes of the 

control option review, the choice of generator can be 

ignored, and the wind turbine rotor regarded as any other 

conventional prime mover. Simplifying the system reduces 

the number of elements within the system boundary, Fig- 

ure 3.2. The modified system now only includes: 

(a) rotor blades 

(b) rotor hub 

(c) low speed shaft 
(d) brake 

(e) yaw drive (HAWT only) 
(h) tower 

The system inputs are: 

(a) windspeed 

(b) wind direction 

(c) rotor speed and mechanical power demand 

(d) transmission and generator reaction torque 

and the system outputs are: 

(a) rotor speed and power 
(b) vibration 
<c) noise 

In this way, the wind turbine generator system has been 

simplified to include only those elements directly 

influencing the behaviour of the wind turbine rotor 
itself. A consequence of this approach is that electrical 

control options are ignored, so that only aerodynamic or 

mechanical options need be considered. 
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Control methods for both HAWTs and VAWTs were considered 

in a literature search that included many technical papers 

and journal publications. When considering vertical-axis 

configurations specifically, it is noted that the angle of 

attack of the relative flow incidence on the blade varies 

cyclically. Even when the upstream windspeed and rotor 

speed remain constant, the angle of attack of the relative 
flow will oscillate about the blade chord as it rotates 
from the upstream pass of its cycle to the downstream 

pass, and vice versa. For an H-VAWT, where the blades are 

set" parallel to the axis of rotation, the magnitude of the 

peak-to-peak variation of angle of attack decreases as tip 

speed ratio increases. This variation is essentially 

similar across the whole span of the blade (ignoring tip 

effects and . spanwise flows). As the rotor speed 

decreases, the magnitude of the variation will increase, 

until complete reversal will be experienced in some parts 

of the cycle when the tip speed ratio is less than unity. 

The blades of the V-VAWT are inclined to the axis of 

rotation, and as such the local speed ratio varies across 

the span of the blade. Consequently, the magnitude of the 

cyclic variation of angle of attack varies across the 

blade span. In contrast, there is no such cyclic vari- 

ation of angle of attack with HAWTs. Fluctuations that do 

occur result from local variations of windspeed within the 

swept area of the wind turbine. However, this difference 

does not prevent the aerodynamaic. control methods. utilised 

on HAWTs to, be considered for use with the V-VAWT. The 

upstream pass of a VAWT. rotor has more energy available 
for, capture than the downstream pass, and during each half 

of the rotation the sign of the angle of attack remains 

constant. , Essentially, provided a greater control effect 

can be achieved on the upstream pass than on the down- 

stream. pass, a net effect can be gained using HAWT control 

methods for VAWT applications. The straight blade 
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configuration of the V-VAWT lends itself to HAWT type 

control surfaces and actuators being fitted. These can be 

operated in much the same manner as they would be on a 
HAWT, but the detail design would obviously differ because 

of the different rotor configurations. 

With this in mind, it was convenient to commence the 

literature search by initially considering current HAWT 

control methods. The search was then broadened to 

consider VAWT control options, and to assess the possi- 
bility of sucessfully adapting any of these control 

methods to V-VAWT applications. In the review presented 
here, each control method will be considered in turn. A 

more detailed review can be found in the author's interim 

report [32], which was the basis of a seminar prepared and 

presented by the author at the Open University. 

3.2.1: Full-span Pitch Control 

Full-span pitch control is being used on HAWTs of all 

sizes for both speed and power regulation. The pitch of 

the blade of the blade is the angle between the chord line 

of the aerofoil and the plane of the rotor disc. To 

achieve good aerodynamic efficiencies, the blade of a HAWT 

is designed with preset pitch (twist) that varies acros 
the blade span. However, if the rotational speed of the 

rotor and the upstream windspeed remain constant, then 

changing the pitch of the blade during operation will 

change the angle of attack of the wind at all points along 
the span of the blade. In this way, the induced 

aerodynamic lift and drag forces acting on the blade can 
be modified, and a resultant change in rotor power can be 

effected. The change in blade pitch may be actively or 

passively controlled, and can be towards either the 
feather or stall directions. 
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In the feather option, the blade is rotated into wind, 

reducing the angle of attack of the resultant wind vector 

on the blade. Aerodynamic lift force will be reduced and 

a net reduction in the aerodynamic loads on the blade will 

result. The torque developed by the rotor will be reduced 

as the loss of lift across the whole blade is effected. 

In the stall option, the blade is rotated away from the 

wind and aerodynamic stalling of the blade invoked. Small 

variations in lift force will occur, but the drag forces 

induced by moving towards and beyond the stall condition 

of the aerofoil are significantly greater than for the 

feather option. The rapid increase in drag force results 

in an overall increase in. the aerodynamic load on the 

blade. The large increase in drag serves to counteract 

the lift forces still being induced, resulting in a rapid 

reduction in the torque developed by the rotor. 

Since the aerodynamic forces are varied across the whole 

blade span, the torque developed by the rotor is sensitive 

to small blade pitch changes, allowing a rapid response to 

any control need. This feature ensures that full-span 

variable pitch is suitable for power and speed control 

purposes. The advantages and disadvantages of the 

approach are summarised by Ketley and Quarton [33], and 

illustrated in Figure 3.3. 

Full-span pitch control requires the whole blade to be 

free to rotate about its spanwise axis. The blade must, 

therefore, be fully supported at its root by the hub 

bearing. The blades are effectively cantilevered, with no 

additional support or bracing attached. The design of 

these blades requires careful attention to detail at the 

blade root and hub fixings, but have un-interrupted 
surfaces that will give good aerodynamic performance. 
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Pitching mechanisms for medium and large sized machines 

are incorporated into the hub- itself, allowing simplified 
blade root fixings to be used. The nature of the pitch 

mechanism and actuator are, however, dependent on the size 

of machine and the accuracy of control required. Local- 

ised pitch mechanisms act on one blade only, enabling each 
blade to be independently controlled and its pitch adjust- 

ed to suit local variations of windspeed. There is a 

possibility that each blade will change its pitch at a 
different time or different rate to the others, which 

could result in the rotor becoming unbalanced. Central- 

isation of the pitch mechanism requires each blade to be 

linked to a common actuator, but ensures that each blade 

is operating in the same manner as the others. Failure of 
the link may result in complete loss of pitch control, so 
it is good practice to include other 'fail-safe' features. 

The actuation of the pitch mechanism may be passive or 

active. Passive actuation utilises the forces that 

normally act on the, wind turbine to activate the pitch 

mechanism, whereas active control requires some evaluation 

of the state of the rotor to be made, usually by measure- 

ment, and the control action determined accordingly by, 

say, a computer controller; The pitch mechanism is then 

activated by some auxiliary force. 

Centrifugal and aerodynamic moment forces can be used on 

small machines to passively control blade pitch. The 

famous Jacobs wind turbine, first patented in 1929 [347, 

used a flyball governor placed in the rotor hub to control 
blade pitch using centrifugal force. Internal linkages 

and gears ensured actuation of each blade was centralised. 
The Flexbeam concept developed by United Technologies for 

a8 kW HAWT [351 utilises a flexible spar to connect each 
blade to the rotor hub. This allows the blade to be 

structurally stiff, and the root/hub connection to be 
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rigid. Each blade is allowed to pitch by twisting about 

the flexible spar. Flyball governors control the pitching 

movement. This technique was adopted by Windtech for an 
80 kW HAWT, which suggests the device is suitable for 

small and medium sized machines. Similarly, the natural 

tendency of a blade to twist due the offset between the 

aerodynamic pressure centre and the flexural centre of the 

aerofoil can be used to invoke blade pitching. The Bergey 

Powerflex wind turbine range [36] is designed with 

torsionally elastic blades that are designed to twist 

about the root fixing, thereby modifying the blade pitch. 
Finally an FDO/Holec/Fokker HAWT design proposal [37] uses 

aerodynamic forces to twist in pitch the blades of a large 

2.5 MW wind turbine. 

The utilisation of these passive actuators is limited by 

the ability of the designer to ensure the. behaviour of the 

pitch mechanism can be guaranteed. Once the actuator and 

pitch mechanism have been designed, there is little scope 

for modification of the, control effect that is now 

embodied in the rotor. Where the power and speed control 

characteristics are required to be modified, and control 

of the. speed and accuracy of the pitch response is 

required,, active control is necessary. The use of pneu- 

matic, hydraulic or electrical devices to apply the 

required actuating forces to the pitch mechanism, offers 
the designer great scope. for controlling the blade pitch 

angle and the response of the system to external changes. 
This is especially true where computer controllers are 

used., Active, control, however, requires some evaluation 

of the, state of. the wind turbine to be made. Monitoring 

the performance of the machine and the state of the 

environment will enable the optimum pitch angle of the 

blades to be specified by the controller. The response of 
the control system can, therefore, be accurately and 

reliably, controlled, ensuring good power and speed 
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characteristics. The majority of current medium and large 

sized HAWTs using full-span pitch control, such as the WEG 

MS-2 250 kW and KaMeWa 2 MW HAWTs, utilise active control 

to ensure the desired control effect is guaranteed. 

In assessing the suitability of full-span pitch control 

for VAWTs, only those machines with straight blades, such 

as the H-VAWT and V-VAWT, can be seriously considered. 

The curved blades of the troposkein Darrieus VAWTs are 

generally fixed at the blade ends and cannot be twisted or 

rotated in pitch during operation. Klimas has, however, 

reported upto 25% changes in peak efficiency and peak 

power output for a Darrieus VAWT with preset pitch 1383. 

The range of pitch angle settings was only ±5' and full 

power control cannot be achieved within this range. 

The principles of the control method are the same for VAWT 

applications as for 'HAWTs, however, the cyclic variation 

of angle of attack on the blades results in a different 

overall' effect. The angle of attack of the resultant 

velocity vector varies cyclically as the blade moves 

around its axis and makes upwind and downwind passes. In 

conventional VAWT configurations, the blade extracts more 

energy from the upwind pass than from the downwind pass, 

therefore, a power regulation effect can be gained using 

full-span pitching 'if the pitch angle change is suited to 

upwind blade passes. For instance, the feather option 

would require a 'nose-out' rotation of the blade. Small 

pitch angle changes 'in this direction, would generally 

reduce the angle of attack on the upwind pass but increase 

it on the downwind pass. Alternatively, the stall option 

would require a 'nose-in' rotation of the blade which, for 

small pitch angle changes, would generally increase the 

angle of attack on the upwind pass and reduce it on the 

downwind pass of the cycle. To ensure an overall power 

regulation effect is achieved, any energy gains made 
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around the cycle must be coy 

losses elsewhere. Since the 

upwind pass is greater than on 

ing the blade pitch to ensure 

the upwind pass will generally 

in energy capture. 

. xntered by greater energy 

energy available on the 

the downwind pass, modify- 

reduced energy capture on 

give an overall reduction 

Small 'nose-out' pitch changes can actually increase the 

energy capture of the rotor. Since the resultant wind 

vector acting on the VAWT blade continually moves from one 

side of the blade to the other, the blade is positioned 

with its chord set tangentially to its circular path of 

movement. This position ensures a good compromise is 

achieved between upwind and downwind passes. However, 

Stacey and Musgrove [39], have observed that small full- 

span pitch offsets in the 'nose-out' direction increased 

the overall power output of an H-VAWT. The pitch offset 

was fixed and a maximum offset of 3/' gave best results. 

Clearly, this small change increased the effectiveness of 

the upwind pass without significantly reducing that of the 

downwind pass. ' It must bee noted, though, that the pitch 

offset was preset, and that no variation of blade pitch 

was possible during operation. 

The author is aware of only a few instances of H-VAWTs 

being constructed with variable pitch blades, most notably 

the VAWTs constructed by Evans at St. Andrews University 

and by Grylls and-Dale at Exeter University, Figure 3.4a. 

At low rotational speeds, the Evans VAWT allowed the the 

blades to pitch passively under the influence of aero- 
dynamic forces. However, as rotational speed increased, 

the pitch of the blade became effectively fixed as 

centrifugal forces overcame the aerodynamic forces and 
"locked" the blade in its normal operating position. The 

Exeter University machine was used for the cyclic pitch 

studies reported by Grylls and Dale [40]. 
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Figure 3.4a: Exeter University's Variable Pitch VAWT 14,01 

Reynolds N'=360000 

0.4 Solidity=0.3625 % % 

Q31 '"", 

Q2 . 

00 
.: 

r '". 

Op' 

0 
12345 

Tipspeed Ratio 

Pitch 
variation 

--- 0° 
-t3' 
..... ±10" 
-. -. ±20° 

67 

Figure 3.4b: Cr. versus X for a variety of pitch half 

amplitudes of Exeter University's VAWT [401 

- 70 - 



The Exeter VAWT did not use blade pitch to regulate power 

output or provide overspeed control, but instead varied 

the pitch of the VAWT continuously to optimise the angle 

of attack of the relative flow to the blades through the 

rotation cycle. The aim was to minimise the variation of 

both the torque and aerodynamic loads of the rotor, and so 

maximise the efficiency of the VAWT by extracting as much 

energy as possible throughout its cycle. Torque smoothing 
is highly desirable, especially with two-bladed VAWTs that 

are used for electricity generation. Unless damped, the 

variation of torque from a VAWT results in an undesirable 

ripple in electrical output. 

The Exeter H-VAWT used a wind vane to sense the direction 

of the wind and a cam to control the pitch of each blade 

through the rotation cycle. The wind vane would ensure 

that- optimum cyclic pitch variation was achieved even if 

the wind direction changed. The variation of pitch angle 

was sinusoidal, and wind tunnel tests showed that power 

output could be significantly enhanced with only small 

pitch angle changes, Figure 3.4b. A sinusoidal variation 

with an amplitude of ±3' gave best results. A 9% improve- 

ment of peak C. was observed, and a general improvement of 

torque at low tip speed ratios noted. Larger pitch ampli- 
tudes gave even better results at low tip speed ratios, 
but were detrimental to performance at the higher rotat- 

ional speeds. The amplitude of the cyclic pitch variation 

could not be altered during operation, so it was not 

possible to optimise the machine performance for each tip 

speed ratio. 

It should be noted that the mid-span blade fixing to the 

crossarm bearing posed particular technical difficulties, 

and that such difficulties will be manifest in any H-VAWT 

configuration that uses full-span pitch control. To allow 
the blades freedom to rotate in pitch, does not enable 
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additional support or bracing devices to be attached, 

requiring all loads to be supported at the blade bearing. 

Full-span pitch control offers both power regulation and 

speed control for VAWTs, but its application is limited to 

straight bladed machines. Activation can be active or 

passive, though aerodynamic moment actuation would not be 

suitable because of the cyclic variation of aerodynamic 

forces on the blade. The response of the rotor to any 

control action" can be rapid, as the torque developed by 

the rotor results from aerodynamic force changes along the 

whole blade. 

To conclude, full-span pitch control has the following 

advantages: 

(a) suitable for all machine sizes 
(b) suitable for power regulation during normal 

running 
(c) suitable for overspeed protection 
(d) active or passive actuation 
(e) rapid-power changes for any given pitch change 
(f) possible to optimise rotor efficiency including 

cyclic pitch control 

and disadvantages: 

(a) highly'loaded blade bearings ' 
(b) large actuating' forces required to move 

accurately and quickly 

(c) pitch mechanism potential source of failure 

<d) 'additional cost of pitch mechanism and 

system 
(e) unsuitable for curve bladed Darrieus VAWTs 

blades 

control 
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3.2.2:, -Partial-span Pitch Control 

Partial-span pitch control utilises the same principles of 

operation as full-span pitch control, in that changing the 

pitch of-the blade alters the aerodynamic force character- 

istics of the blade. However, rather than change the 

pitch of the whole blade, only a small portion of the 

blade is moved. If the blade tip section is used as the 

control surface, then the inner portion of the blade can 
be rigidly fixed at the blade root/hub bearing, simplify- 
ing, this aspect of rotor design. 

The significance of the power and speed regulation effect 

will depend upon the relative size of the moveable tip 

portion to the fixed pitch portion of the blade, but 

utilising the outer, 207. to 30% of the blade seems to give 

acceptable control performance in most cases. Feather or 

stall options. are used on HAWTs, for example the 2.5 MW 

MOD-2 HAWT moves the tip towards the feather position, 
while the Howden HWP 300 HAWT moves the tips to the stall 
position.. However, since the inner portion of the blade 

is fixed: in --pitch, this area will continue to produce 

useful, lift -even when the tips have been deployed. The 

reduction in-power 
, at the tips must overcome any increase 

in power developed by the fixed blade portion. This 

necessarily requires larger pitch angle changes than for 
full-span pitch control, but the smaller inertial mass of 
the tip section allows pitch changes to be far quicker and 
pitch mechanisms to be smaller. 

A structural advantage gained is that the blade may be 
rigidly fixed to the hub at its root and supported near to 
the --tip by some bracing structure. The tip section 
bearing and pitching mechanism, however, must now be 
placed at some outboard position. The pitching mechanism 
may be carried either in the fixed inner portion of the 
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blade or in the tip section itself. In either case the 

mass of the blade is increased and larger structural loads 

will be imposed at the blade root by placing the mechanism 

away from the it. Moving the pitching mechanism inboard 

will reduce such loads, but cables or linkages must be 

used to control the tip section. 

The actuator may be centrally of locally placed, and in 

essence the same devices considered for full-span pitch 

control can be used. Centralised operation of the tips 

requires some linkage or connection to be made to local 

pitch mechanisms, and in general local actuation is 

preferred. Active control is a weakness of any wind 

turbine system because if they fail, the safety of the 

rotor is Jeopardised. The first of the MOD 2 wind 

turbines experienced such a failure during a routine 

overspeed test. A hydraulic tip pitch actuator failed to 

feather one of the tips during this test, consequently 

when the electrical load was disconnected, the rotor 

accelerated from 17.5 rpm, to 29.5 rpm before the tip was 

eventually feathered. Extensive damage to the low speed 

shaft and generator was caused by this failure. 

Modifications to the control circuit and controller logic 

had to be made before operation of the wind turbine 

resumed. Good design demands 'fail-safe' operation of the 

control system. 

The use of partial-span pitch control to regulate VAWTs 

has received little or no interest. To date, only one 

H-VAWT, the Westwind 75 kW VAWT, is known to have operated 

with this control option, Figure 3.5a. Little is known by 

the author of this machine, but Sharpe has recently 

estimated the effect of variable pitch on its performance 
1411, Figure 3.5b. -Sharpe observes that the tip pitch 

control allows the Westwind VAWT to operate in windspeeds 

upto 36 m/s while maintaining a constant power output of 
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Figure'-, 3.5a: Westwind 75 kW VAWT 
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75 kW at a rotor speed of 40 rpm. However, since the 

total area of the tip section is only 6% of the total 

blade area, the power output of the rotor cannot be 

reduced to less than zero in high windspeeds, so the tip 

pitch control is unsuitable for high windspeed shutdown. 

Considering that some studies of VAWT performance have 

been made using full-span pitch control, the author is 

surprised that the partial-span pitch control option has 

not been considered further. In their original descript- 

ion of the V-VAWT [9], Sharpe and Taylor suggest variable 
tip pitch as a possible control option, and the design 

proposals shown in the previous chapter illustrate their 

use. 

Structurally the advantages and disadvantages of the 

approach are the same for VAWTs as for HAWTs, and provided 
the aerodynamic effectiveness of partial-span pitch 

control for the V-VAWT can be demonstrated, it seems a 

highly suitable control option. 

To conclude, partial span pitch control has the following 

advantages: 

(a) suitable for all machine sizes 
(b) suitable for power regulation during normal 

running 

(c) suitable for overspeed protection 
(d) active or passive actuation 
(e) rapid power changes for any given pitch change 
(f) possible to optimise rotor efficiency 
<g) simple blade/hub connection 
(h) small activation forces required 

and disadvantages: 
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(a) reduces power only at tip section 

<b) complicated blade construction with pitching 

mechanism located near blade tip 

(c) pitch mechanism potential source of failure 

(d) additional cost of pitch mechanism and control 

system 

<e) unsuitable for curve-bladed Darrieus VAWTs 

3.2.3: Shaft Brakes 

Shaft brakes for all but the smallest HAWTs, can only be 

considered suitable for the prevention of overspeed when 

other control devices have failed, and for stopping the 

rotor from low rotational speeds during. a controlled shut- 

down. All commercial HAWTs have shaft brakes fitted for 

this purpose, and use other means to regulate rotor power 

and speed. 

Friction brakes are wholly unsuitable for rotor speed 

regulation during normal operation, because prolonged 

activation while highly loaded would lead to `overheating 

and eventual failure. Shaft brakes are used only for low 

rotational speed activation, but are designed with a 

capacity to stop the rotor overspeeding when all other 

control means have failed. Emergency action may render 
the brake unservicable, but if its prevents the rotor from 

being damaged, then it is a cost-effective solution. 

Good design practice is to place a high torque brake on 
the low speed shaft where its braking torque can be 

applied directly to the rotor. Disc brakes are commonly 
used, but need to be overly large to achieve the high 

torque capacity required in this application. Placing the 
brake on the high speed shaft allows smaller, low torque 
brakes to be used. In this case, the braking torque must 
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be applied to the rotor via the transmission system. This 

layout may damage the coupling and gearbox elements of the 

transmission, especially during emergency shutdowns. 

The author is unaware of any HAWT currently using shaft 

brakes as a power and speed control device. Similarly, 

the use of shaft brakes for VAWTs has the same limitations 

as discussed above, and again the author is unaware of any 

VAWT currently using shaft brakes for control. 

As a fail-safe device, stationary disc pad brakes have 

been used by DAF-Indal for curve-bladed VAWTs in an 

elegant and effective way, Figure 3.6. The approach is 

described fully by Templin and Rangi [42], but briefly, 

the system utilises the weight of the rotor and the 

tension in the guy cables supporting the rotor to engage 

the bull gear at the base of the rotor with four 

stationary brake pads. During normal operation, the rotor 

is raised off the pads by the hydraulic pressure of the 

externally pressurised rotor bearing. When the pressure 

in the system is released, the rotor will descend and 

contact is made between the gear and the pads. 

To conclude, shaft brakes have the following advantages: 

(a) existing element of wind turbine systems 

(b) active or passive actuation 

(c) prevents self-starting 
(d) acts directly onto low-speed shaft 

and disadvantages: 

(a) unsuitable for accurate power regulation 
<b) limited to low speed use, except in emergencies 
(c) aerodynamic loads on blades are not reduced 
(d) no power augmentation 
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3-2.4: Rotor Yaw 

The yaw angle is the angle of mis-alignment between the 

rotor axis of rotation and the direction of the oncoming 

wind. To ensure maximum energy capture, a HAWT rotor must 

face directly into wind so that the yaw angle is zero. As 

the rotor is turned away from the wind, the component of 
the windspeed vector perpendicular to the rotor disc will 

vary with the cosine of the yaw angle. Consequently, 

varying the yaw angle would enable the power and speed of 
the rotor to be regulated. 

All HAWTs are equipped with yaw drives of somekind, 
however, these devices are primarily used to turn the 

rotor into wind should the wind direction change. The 

fantail of the Traditional Windmill has been adopted by 

many European manufacturers as a passive yaw drive for 

medium sized machines, This device is, however, unsuit- 

able- as an actuator for power and speed control. Larger 

machines require active yaw control systems but, for power 

or speed control, these systems are unsuitable because of 

their slow response to change. Only the tailvanes fitted 

to small machines provide suitable power control charact- 

eristics, because these devices respond directly to the 

strength of the-wind. 

Moving the rotor in yaw while it is operating will invoke 

gyroscopic forces that are proportional to both the rate 

of change of yaw angle and the inertia of the rotor 
itself. Rapid yaw angle changes in response to, say, 

gusting, could invoke large gyroscopic forces with 

potentially dangerous results if utilised on anything but 

the smallest of rotor sizes. It is more common on medium 
and large scale HAWTs to use the yaw drive to park the 

rotor obliquely to the wind during shutdown; this ensures 
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minimal aerodynamic forces act on the rotor during these 

periods. 

When considering VAWTs, the equivalent of HAWT yaw may, at 

first, be considered as a movement of the rotor about its 

axis of rotation. This movement is more commonly termed 

azimuthal movement, since the axis of rotation is vertical 
to the ground. Clearly, controlling azimuth angle during 

normal operation is not feasible, but, like HAWTs, the 

aerodynamic forces on the VAWT rotor can be significantly 

reduced during shutdown by parking the rotor at some 

oblique azimuth angle to the wind. 

A better analogy to HAWT yaw in the VAWT case, would be 

that of tilting the rotor about the root of the tower. 

However, this is impracticable during normal operation and 

need not be considered further. 

To conclude, yaw control for VAWTs i. e. azimuth angle 

control, has the following advantages: 

(a) minimise aerodynamic forces on whole rotor during 

shutdown periods 

and disadvantages: 

(a) unsuitable for power and speed control during 

normal operation since azimuthal angle continually 

changes 

3.2.5: Rotor Tilt 

Tilting the rotor, usually upwards, has the same effect as 

rotor yaw, and the characteristics of this control method 
are the same. Little advantage, if any, is gained in the 
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control characteristic, but a major disadvantage is that 

the HAWT must now be allowed an additional degree of free- 

dom to the movement of the rotor. As with yaw control, 

the rotor can be parked during shutdown in a position of 

minimum aerodynamic load. 

Tilting the rotor of a VAWT is only possible on small 

machines where the rotor would be mounted off the ground, 

and the blades would not foul the ground when tilted. To 

ensure effective power regulation during tilting, the tilt 

axis must be set perpendicular to the wind direction. To 

achieve this, the tilt axis itself must be able to yaw, 

consequently VAWT tilt requires two additional degrees of 

freedom of movement of the rotor. Clearly, the complexity 

of this approach makes this control option impracticable, 

even for the smallest VAWTs. 

To conclude, rotor tilt is considered highly unsuitable 
for VAWT applications. 

3.2.6: Blade Coning 

Blade coning requires each blade to be hinged at its root 

to allow spanwise rotation into or out of wind. The power 
developed by the rotor is reduced it three ways. Firstly, 

the swept area of the rotor.. - 
is reduced, secondly the 

magnitude of the windspeed component normal to blades is 

reduced, and finally the moment arm, of the aerodynamic 

chordwise forces on the blade about the axis of rotation 
is reduced. The combined effect of these actions is that 

significant power output changes can be quickly made with 

only small coning angle displacements, which is highly 

suitable for the alleviation of gust loads. Flexible 

blade root mountings allow small coning movements to occur 
passively as increasing wind forces act on the rotor. 
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Small coning movements would not allow complete power 

control at high windspeeds, because large coning angles 

are required to give the necessary power reductions in 

these conditions. The blades must, therefore, be hinged 

to give freedom of movement through larger cone angles. 
Complete rolling of the blades to a horizontal position 

cannot be practically achieved, so rotor power cannot be 

reduced completely to zero. The addition of a centrifugal 

actuator would ensure that rotor overspeeding is prevented 

using the coning action, however, the forces from the 

actuator must overcome the centrifugal forces on the blade 

resisting such movement. In this way, both power and 

speed control can be passively controlled. 

In reality, full blade coning is only viable on small 

machines where the large blade movements can more easily 
be tolerated. However, many large HAWTs include some 
flexibility in either the blade/hub or hub/low-speed shaft 

connection. Teetering of the large blades significantly 

reduces the structural loads experienced at the blade root 
during a gust, extending the life in service of the rotor. 

The principles of blade coning can be applied to straight 
bladed VAWTs. The early versions of the Variable Geometry 

VAWT (VG-VAWT) first described'by Musgrove [43], and then 

by Stacey [44], allowed full blade rolling about the 

blade/crossarm connection in the flapwise direction for 

this particular H-VAWT design, Figure 3.7. This movement 

of the blade can be considered as a VAWT equivalent of 
HAWT coning. The blade angle to the vertical was changed 
by the action of centrifugal force, allowing the speed and 
power of the rotor to be regulated, This control method 
was adopted by P. I. Specialists for a commercial 6m VAWT 
in which the blade rolling was restrained by spring loaded 

cables, Figure 3.8 
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Figure 3.7: Musgrove 4.5 m diameter prototype VG-VAWT 

Figure 3.8: P. I. Specialists 6m diameter VG-VAWT 
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The further development of the variable geometry concept 

is well documented and currently ongoing, as Mays et al 

recently described [45]. The construction of the 125 kW 

Carmarthen Bay machine by VAWT, Figure 3.9a, demonstrates 

the suitability of this method for power and speed regu- 

lation for medium and large sized applications. However, 

the simplicity of the original blade rolling scheme, has 

in the opinion of the author been lost in the larger VG- 

VAWT. The Carmarthen Bay machine has each blade split in 

two, with each half being supported by a main strut and an 

actuator strut., A centrally controlled hydraulic actuator 

controls the "reefing" angle of all blade sections. This 

design was primarily developed as a research prototype, 

but the subsequent commercial derivatives once again show 

a greater simplicity in construction and design. 

As with HAWT coning, the power of the VG-VAWT can never be 

completely, reduced to zero,, because of the limitations of 

the reefing movement (maximum reefing angle is 60' to the 

vertical). However, the method does satisfy most power 

and speed control requirements, Figure 3.9b. 

The variable geometry concept was originally considered by 

Sharpe and Taylor, [9] for V-VAWT applications, though 

primarily stowage and shutdown safety options were being 

considered. Essentially, there is no reason why reefing 

of the V-VAWT blades cannot provide a suitable means of 

controlling the power and speed of the rotor. Since the 

blades would be hinged at their root, the blades could be 

moved to lie a the horizontal plane, a position in which 

no power could be developed. In this way, the reefing 
blades would ensure complete power and speed regulation in 

all operating conditions. Alternatively, the blades could 
be reefed to a vertical position, however, the reduction 
in rotor inertia as the blades fold inward, will make it 

very responsive to. any windspeed fluctuations. 
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To conclude, blade coning offers the following advantages: 

(a) suitable for power regulation 

(b> suitable for speed control 
(c) alleviates gust loads 

(d) passive or active actuation 
<e) reduces aerodynamic forces across the whole blade 

and disadvantages: 

(a) unsuitable for curve-bladed VAWTs 

(b) blade/hub bearing is additional to basic needs 
(c) blade/hub bearing is a structural weakness 
(d) additional blade supports required where full 

reefing required 
(e) large reefing angles required to greatly reduce 

power output 

(f) : large-actuating forces' on both blades and support 
structures 

3.2.7: Aerodynamic, St al l 

The-lift force on an aerofoil is dependent upon the state 

of the boundary layer that surrounds its surface. If the 

angle of attack of the aerofoil to the oncoming air 
increases, the circulation around the aerofoil will also 
increase. The resulting lift force induced by the section 

will- be -increased too. The pressure difference between 
the upper surface close to the -leading edge, where large 

suction pressures develop (see Chapter Six), and the 
trailing edge will also, increase. The pressure gradient 
on the rear part of-the aerofoil will continue to increase 

as- . the angle of attack, increases, - until such time as the 
difference is so great that 

- 
it causes separation of the 

boundary layer from the upper surface, and a turbulent 
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wake will form. The separation point of the boundary 

layer-will move towards the leading edge as the angle of 

attack continues to increase, until complete separation 

across the upper surface is achieved. With the boundary 

layer completely separated, the lift force will have 

decreased, but more significantly the drag force will have 

risen-rapidly. The aerofoil is said to be in a condition 

of aerodynamic stall. The angle of attack at which lift 

force is at its maximum is known as the stall angle. The 

lift and drag force coefficient characteristics of an 

aerofoil are dependent upon the shape of the section and 
the Reynolds Number describing its operating condition. 

Reducing the angle of attack will allow the boundary layer 

to=re-attach itself to the upper surface of the aerofoil 
to restore the induced lift and drag forces. 

Aerodynamic stall is a convenient method of controlling 

wind turbines of all sizes. Full and partial span pitch 

control methods rely upon either the feather or stall 

characteristics of the blade to regulate power output. By 

increasing the angle of attack of the wind onto the 

blades, aerodynamic stall can be actively encouraged. The 

subsequent reduction in lift force and increase in drag 

force result in a reduced power output from the rotor. 

If the pitch of the blades is fixed, aerodynamic stall can 

occur naturally as windspeed increases occur. Sudden 

windspeed increases due to, say, gusting will cause the 

angle of attack of the relative flow to increase. The 

operating point of the blade on the characteristic lift 

and drag coefficient curves of the aerofoil section will 

climb to new values. Despite more wind energy being 

available, the angle of attack increase may be so great 
that the blade stalls and no significant change in power 
output occurs. 
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The characteristic behaviour of a wind turbine operating 

in stall conditions can be seen on the low tip speed ratio 

part of the Cr. A-X curve. If the curve to the left of 

Cr. me x falls rapidly, the rotor can be stall regulated. 

If this part of the curve falls gently, the rotor will be 

unsuitable for stall regulation. Better still, a stall 

regulated rotor will display a distinct peak power output 

on the power versus windspeed characteristic curve. 

Many Danish manufacturers have adopted this simple and 

reliable approach to power control, but it does present 

the designer with a number of ddditional problems. Fixed 

pitch blades are structurally advantageous, and since 

stall occurs passively, no control actuator mechanism is 

required. However, the stall regulated wind turbine 

requires an additional brake, to prevent rotor overspeed. 

It must also be designed so that its peak power output is 

within the limits of the, machine rating, which means at 

low windspeeds it has a low energy capture efficiency. 

Also, little is known about operating in the stalled 

regime of an aerofoil, and there is a distinct lack of 

good characteristic post stall aerofoil data to assist 

designing such wind turbines. Ketley and Quarton [33] 

have summarised the advantages and disadvantages of this 

approach for HAWTs, as illustrated in Figure 3.10. 

The cyclic variation of the angle of attack of the rela- 

tive flow to a VAWT blade, means that aerodynamic stall is 

a feature of VAWT operation. Figure 3.11 shows the angle 

of attack time histories of a typical VAWT at two differ- 

ent speed ratios. At low speed ratios the angle of attack 

often exceeds the stall angle of the aerofoil, whereas at 

high speed ratios this is not the case. Since the angle 

of attack is continually changing, dynamic stall is known 

to occur on the upwind blade pass. During dynamic stall, 
the oscillation of the aerofoil causes a delay in the 
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separation of the boundary layer. The delay enables lift 

forces to be induced at higher angles of attack than 

normal before stall occurs at the dynamic stall angle. 

Dynamic stall accounts for small increases in power output 

from the rotor, but in essence does not affect the overall 

stall regulation characteristics of the VAWT. 

Most of the curved-bladed Darrieus VAWTs operate as stall 

regulated machines, but require additional means of 

overspeed control. Very recently it was reported that the 

125 kW Carmarthen Bay VG-VAWT was displaying good stall 

regulation characteristics [457, and that fixed geometry 
designs were being considered. Again, the simplicity of 

construction and the lack of any control actuator mech- 

anism' is highly attractive, and leads to simple elegant 

designs. However, the difficulty arises in developing 

suitable power versus windspeed characteristics that are 

within the limits of the machine rating. 

Sharpe' and Taylor's studies of the V-VAWT have demo- 

nstrated, the good starting torque characteristics of this 

VAWT configuration, and it appear that it does not have a 
suitable -Cp. ->, performance characteristic to operate as a 

stall regulated-wind turbine. ` The high torque developed 

at low tip speed ratios indicate that operating in this 

regime in high windspeeds would not produce significant 

power reductions. The high` solidity of the rotor, esp- 

ecially near the blade roots, seems to enhance the low tip 

speed ratio performance of the V-VAWT and give it superior 

power output than its "rival" VAWTs. Unfortunately, this 

does not allow it to operate as a stall regulated machine, 
because significant power would be produced even when 

operating`. at very low tip speed ratios'. 

To conclude, aerodynamic stall offers the following 

advant ages: 

- 92 - 



(a) suitable for all wind turbine types 

<(b) simplicity of rotor construction 
<c) no control actuator mechanism 

(d) passive operation 

and di'sadvant ages: 

(a) additional overspeed control required 
(b) low energy capture in low windspeeds 

(c) peak power to be within limits of machine rating 
(d) post-stall behaviour difficult to predict 
(e) poor self-starting characteristic required 

3.2.8: Boundary Layer Control 

The performance of an aerofoil is greatly affected by the 

state of the boundary layer surrounding the aerofoil 

surface. Aircraft utilise a number of devices to control 
the state of the boundary layer, some which will be 

considered for wind turbine use. 

The state of the flow within the boundary layer is laminar 

near the leading edge, but as the flow moves towards the 

trailing edge, the boundary layer becomes thicker and the 

flow becomes turbulent. Boundary layer thickness affects 

skin friction, so the larger the boundary layer thickness 

the greater the form drag of the aerofoil section. Air- 

craft are designed to ensure that the boundary layer 

remains laminar as long as possible, thereby minimising 
the drag of the body. However, a turbulent boundary layer 

delays separation, allowing the aerofoil to operate at 
higher angles of attack before stall occurs. 
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Boundary layer control techniques seek to control the 

state of the boundary layer, either to delay separation or 

to promote it. 

Separation may be delayed by injecting kinetic energy into 

the laminar flow to excite it to a turbulent state, or 

else by extracting slow moving air from the boundary layer 

to give it greater resistance to the separating pressure 

gradient on the upper aerofoil surface. Roughening the 

aerofoil surface will increase turbulence to some degree, 

but using slots to inject air into or remove it from the 

boundary layer is-more effective. The movement of air may 

be assisted by a blower or pump, or else the pressure 

differences around the aerofoil may be utilised to move it 

un-aided. Delaying separation will improve the lift char- 

acteristics of the aerofoil, which will be beneficial to 

the wind turbine designer in increasing power output. 

Alternatively, separation may be promoted by reversing the 

principles considered above. Power regulation might be 

achieved if stall can be encouraged by controlling the 

state of the boundary layer. 

Consideration has been given to boundary layer control for 

use with VAWTs by only a few authors. These studies were 

recently discussed by Bannister [46], who concludes from 

his own investigations that it is possible to control the 

boundary layer by "blowing` through perforations on the 

upper surface of the aerofoil, and that boundary layer 

control could be used for governing wind turbines. The 

most notable of recent studies is that of Klimas and 
Sladky [47], who have used the natural centrifugal pumping 

action of a rotating wind turbine to inject air into the 

boundary layer close to leading edge of the rotor blades. 

Figure 3.12 shows the measured reduction in power, output 
of a5m Sandia National Laboratories (SNL) Darrieus VAWT. 
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While-this method does not provide shutdown and speed 

control,. the moderation of the peak power output can be 

clearly seen. The preferred operation is indicated, 

showing that blowing can be used at windspeeds greater 

than rated to maintain the power within the limits of the 

machine rating.. 

Klimas has also investigated the use of "tailored" aero- 
foils for VAWTs [27]. The tailored aerofoil sections were 
designed to have laminar boundary layers, with subsequent 
lower profile drag characteristics than the conventional 

aerofoil sections used on Sandia VAWTs. Wind tunnel 

measurements of the aerofoils proved that lower drag 

coefficients were achieved, however, Sharpe [41] has 

recently observed that, when fitted to a 17 m Darrieus 

VAWT, these aerofoils showed larger drag force character- 
istics than the standard aerofoil. This suggests that in 

the turbulent working environment of the free-air VAWT, 

boundary layer control is limited with these aerofoils. 

The blowing of air into the boundary layer requires small 

perforations or holes to be made in the blade. Not only 
do these holes create a weakness in the blade, but that in 

the "harsh" environment in which wind turbine operate, 
these holes may be easily blocked by debris in the air. 
The natural "pumping" action of hollow blades can be used 
to assist with the boundary layer control process. 

Similarly, it is unrealistic to conceive that the good 

surface finish required for a laminar boundary layer flow 

can be maintained when the tailored aerofoils are operated 
in a free-air environment. The superior performance of 
the tailored aerofoils has been proven in the clean 

, 
environment of a wind tunnel, but its successful 
application in the real world has yet to be demonstrated. 
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To conclude, boundary layer control has the following 

advantages: 

(a) suitable for all wind turbine sizes 

<b> aerodynamic forces controlled across whole blade 

<c) passive or active control 
(d) little or no actuator mechanisms 
(e) fixed blade rotor 

and disadvantages: 

" (a> difficult to predict state of boundary layer 

(b) small holes create structural weakness 

<c> debris'and dirt affect boundary layer performance 

(d) not proven in free-air wind turbine environment 

3.2.9: Flaps, Slats-and Slots 

Flaps, slats and slots are all devices currently in 

extensive use on aircraft as"a means of enhancing the lift 

force characteristics of an aerofoil. Some of these 

devices may assist the wind turbine designer to increase 

the power output ofa wind turbine, but their use as power 

and speed regulation devices is somewhat limited. 

The major disadvantages with all these devices are that 

structurally the blade section is less stiff, hinges and 

internal attachment points are highly loaded, and signi- 

ficant drag losses will be created by the discontinuites 

on the surface of the blade. 

Detailed lift-and drag characteristics of various flaps, 

slats- and slots were obtained from McCormick [48] and 
Abbott and Von Doenhoff [49], but only the following 

devices are considered here: 
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(a) Plain flaps (ailerons) 

(b) Split flaps 

(C) Slotted flaps 

(d) Slats 

(e) Slots 

(f) Leading edge flaps 

Trailing edge plain. flaps are formed by hinging the rear- 

most part of the aerofoil section about a point within the 

section' itself. Downward deflections of the trailing edge 

are termed positive, while upward deflectj. ons are termed 

negative. Where there is no gap between the flap and the 

main body of the aerofoil, the deflections effectively 

changes the camber of the aerofoil, and changes in its 

aerodynamic characteristics occur. Large flap deflections 

almost certainly trigger separation. 

Negative flap deflection decreases the lift created by the 

aerofoil, but increases the static stall angle of the 

section. Conversely, positive flap deflections increase 

lift forces, but decrease the static stall angle. Since 

plain flaps are able to actively increase or decrease 

lift, they are extensively used on aircraft where they are 

more commonly referred to as ailerons. 

Clearly, plain flaps offer the wind turbine designer the 
ability to both enhance and regulate the power output of a 

rotor. Active or passive actuating control mechanisms 

could be used, but large pitching forces are generally 

required to activate such devices. 

To date the author is only aware of the NASA/DOE sponsored 

studies of aileron control for the MOD wind turbines. The 
initial feasibility study by Wentz et al [50] concluded 
that ailerons would provide control of both rotor speed 
and power output. Additionally, the starting torque of 
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the machine could be increased with full positive deflect- 

ion, and deploying the aileron 5' when the windspeed was 

lower than rated would lead to a 1.8% increase in annual 

energy capture. 

More recently, Miller and Sirocky [511 reported the 

results of full-scale rotor tests for various aileron 
types. The test programme included both power regulation 

and loss-of-load overspeed tests, from which the authors 

concluded: , 

"... aileron control is a viable rotor control method for an inter- 
mediate size wind turbine like the MOD-0. The 38 percent chord 
aileron control rotor provided loss-of-load overspeed protection; 
as well as effective power regulation on the MOD-0 wind turbine. " 

The authors went on to recommend further development work 

and. consideration of aileron control for large HAWTs, such 

as the MOD-2 wind turbine. 

The split flap is a simple device, formed by deflecting 

the rearward portion of the lower surface about a hinge 

point on the forward edge of the flap itself. A variation 

of the simple flap has the hinge located slightly forward 

of the flap, thereby leaving a 
. 
gap between the deflected 

flap and the aerofoil. The leading edge of the flap 

sometimes moves rearward as it is deployed, either with or 

without the gap. 

The effectiveness of the split flap is derived from the 

large increase in camber of the aerofoil, and in some 

cases an increase in blade area. Their effectiveness is 

greatest, for thicker rather than thinner aerofoil sect- 
ions. While large increases in drag will occur when they 

are deployed, the change in lift characteristics results 

, 
in a net increase of the lift to drag ratio of the aero- 
foil. With the hinge forward, the split offers no lift 
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reducing capability and is unsuitable for wind turbine 

overspeed control. Power augmentation is clearly a possi- 

bility, but since lift characteristics are generally 

enhanced, regulating power in high windspeeds does not 

seem feasible. The usefulness of such a device is clearly 

limited for wind turbine applications. 

If the flap hinge is mounted on the trailing edge, the 

flap is deployed by moving downward and backward, creating 

a large bluff body. Such a device is often termed a "dive 

brake" and will be considered in greater length in the 

next section. 

Slotted flaps provide one or more slots between the main 

portion of the aerofoil section and the deflected flap. 

The subsequent increase of lift is due to increasing the 

effective camber and, in some cases, increasing the 

effective chord length of the section. The slots duct 

high energy air from the lower surface to the upper 

surface and provide a degree of boundary layer control 

that delays separation. 

There are many variations of the slotted flap with classi- 
fication by the' number of slots. Typical geometries 
include: 

(a) single-slotted flap 

(b) double-slotted flap 

(c) venetian blind flap 

(d) external aerofoil flap 

The slotted flap is primarily designed to enhance the lift 

characteristics of an aerofoil, and in some cases delay 

separation to achieve higher angles of attack. However, 

these devices do not offer the wind turbine designer much 
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scope for power or speed control, and generally increase 

the complexity of blade construction. 

Slats are leading edge aerofoils that are mounted forward 

of the leading edge of the main aerofoil, and may be fixed 

or retractable,. Slats are positioned to allow fluid to 

pass from the. lower to upper surface of the aerofoil to 

provide some degree of boundary layer control. Slats are 

used to delay, leading edge stall at high angles of attack, 

and -significant increases in both lift and stall angles 
have been observed. 

Slate provide the wind turbine ' designer with a simple 

method of increasing low windspeed performance of the 

blade,,, and ,: if used with, say, ailerons would enhance the 

performance of these devices too. Used on their own, how- 

ever, slats do not appear to be suitable for, either power 

regulation or speed control. 

Leading., edge slots allow control of the boundary layer to 

delay separation. The most common form of slot is the 

slotted flap, which, when located near to the leading edge, 
is not much different from a slat. The effectiveness of a 

slot on an aerofoil has been shown to decrease as it is 

moved -away from the, leading =edge. Multiple slots (three 

being optimum)'are only effective if all are located close 
to the leading. edge. T ,' 

Slots increase profile drag, and for wind turbines such 
losses would be detrimental to output efficiency unless 
the. -gains are-significant. There is little scope for the 

use of slots in wind turbines unless enhancement of start- 
ing characteristics is a real need. Slots alone would not 
provide adequate power or speed control characteristics. 
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A leading edge flap is formed either by moving a forward 

portion of the aerofoil or by extending a surface forward 

or downward from the leading edge. The flap may be 

extended from the upper surface or hinged from the lower 

surface. - They are-used to delay separation at high angle 

of attack, so extending the useful operating range of the 

aerofoil. The effectiveness of a leading edge flap in- 

creases with smaller leading edge radii. Therefore these 

flaps are most effective when used with thin aerofoil 

sections. The performance of the flap is unaffected by 

trailing- edge devices, and may provide a means of 

enhancing the-low windspeed output of a wind turbine. 

When considering the use of flaps, slats or slots for VAWT 

applications, only, ailerons can be seriously considered 

with the information presently available. The information 

available for the other devices that have been considered 

here, does not include any data on their performance with 

negative angles of attack. It is, therefore, not possible 

to assess their behaviour in such conditions. It is only 

the aileron that can be deployed in two directions and 

performance data is available for both cases. 

The cyclic variation of angle of attack experienced by a 
VAWT blade means that an aileron deployed with its trail- 

ing edge moved outward, would be acting with a positive 
deflection, augmenting lift, on the upwind pass and a 

negative deflection, - reducing lift, on the downwind pass. 
Since, a, greater proportion of the total energy capture of 

the cycle is achieved on the upwind pass, it is reasonable 
to assume that, in 

. this particular case, an overall net 

gain in lift will be achieved over the complete cycle when 

using . an aileron. -, 

As yet no VAWT known to the author has been built using 

ailerons, so a great deal more work is required before it 
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is possible to determine the effectiveness of this device 

for VAWT power and speed control. The aileron does allow 

a 'rigid blade construction across the whole span, with 

only a small proportion of the trailing edge section being 

free to move. But the pitching forces required to deploy 

the aileron are large, -creating significant structural 
difficulties at bearing and support features. 

To conclude, ailerons have the following advantages: 

`(a) relatively simple devices 

(b) active or passive actuation 
(c) suitable for power and speed regulation 

(d) suitable for overspeed control 

(e) low windspeed power enhancement 

and disadvantages: 

(a) large actuator forces required 
(b) highly loaded bearings and supports 
<c) aerodynamic loads controlled only at position of 

- aileron 

3.2.10: Airbrakes 

Airbrakes may be defined as any device that reduce the 

aerodynamic performance of a rotor by increasing the drag 

of the aerofoil. A consequence of its deployment may also 
be the reduction of lift if separation is invoked. Air- 

brake devices include: 

(a) ailerons and flaps 

<b> spoilers 
(c) -drag flaps and parachutes, 

- 103 - 



Ailerons and flaps have been considered previously, but in 

this context it is their ability to reduce performance by 

aerodynamic braking that is of interest. 

Spoilers can be defined as airbrakes that operate within 

the swept area of the blade and, when not deployed, either 

form part of the blade surface or are retained within the 

blade section. Plug or plate types are described by Wentz 

et al [50]. 

Spoilers primarily interfere with the boundary layer flow 

over the aerofoil surface, and when fully deployed destroy 

the lift forces induced by the section, provided they pro- 

tude beyond the depth of the boundary layer. The spoiler 

is also a bluff body that increases the projected frontal 

area-of the blade. Drag forces increase proportionally to 

the area of the spoiler, and it is this effect that domin- 

ates the torque change experienced by a blade. 

The effectiveness of spoilers to control a HAWT has been 

successfully demonstrated by Wentz et al [50], amongst 

others [52,53] .- Wentz et al compared the performance of 

spoilers to ailerons for use on the MOD-0 wind turbine. 

The study concluded that spoilers were suitable for 

providing overspeed protection, and they could be used for 

power regulation et higher than rated windspeeds. However 

Wilmshurst 1523 observes: 

"... that for use as brakes, spoilers must be fully retractable. 
The, least protuberance remaining when they are not in use is 
likely to have a severe impact on the performance (of the HAW). " 

Drag flaps can be considered as any surface that when 
deployed operate outside the swept area of the rotor, so 

not directly affecting the blades themselves. The drag 

developed by such an airbrake is proportional to its 
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frontal area, and like spoilers, relatively small devices 

can be used to control a wind turbine rotor. 

Drag ý flaps are most effective if placed at the blade tips. 

This allows the blade. to be of simple construction without 

any discontinuities in the surface, but most importantly, 

the, drag flap will operate in the region where the rela- 

tive windspeed to the blade is greatest. Since drag flaps 

do not directly interfere with the lift characteristics of 

the blade, the flap must be sized to overcome the torque 

of the whole rotor. 

Drag. flaps can be fitted to any part of the rotor, and 

fitting them to-the low speed shaft connection does have 

benefits. The retardation forces are transmitted directly 

to the rotor hub, alleviating the blade of the drag forces 

and bending loads that would be applied if fitted at the 

tip. However, the flap operates in a low relative 

windspeed region and the flap size must be enlarged to 

give the same braking effect. The Windco Windcharger is a 

small HAWT that uses drag flaps in this way, and the 

centrifugally activated brake offers complete overspeed 

control. 

Drag flaps- are in common use on small HAWTs because of 

their simple construction. Unlike spoilers, they do not 

interfere directly with the performance of the rotor and 

offer good overspeed protection where the rotor is normal- 

ly stall regulated, a combination greatly favoured by 

Dutch wind turbine manufacturers. 

Parachutes can only be realistically considered for over- 

speed protection in the event of all other control devices 

failing, because once, -deployed they require repacking 
before use again. Pedersen [53] used data from experi- 
mental- tests to- predict the performance of HAWTs fitted 
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with parachutes. He concluded that suitably sized para- 

chutes could bring a rotor to near rest, at which point 

the parachute is likely to collapse and become 

ineffective. Only the Tvind 1 MW wind turbine is known to 

the author to be fitted with parachutes. These are folded 

and packed inside each blade tip and are deployed for 

emergency overspeed control. 

Airbrakes are the most commonly used control devices on 

the curve-bladed Darrieus VAWTs, as they offer overspeed 

protection and some degree of power regulation. Their 

usage on VAWTs can be as effective as with HAWTs, espec- 

ially where the circulation around the aerofoil is greatly 

interrupted. Drag flaps and parachutes can operate during 

the whole cycle of operation and show little sensitivity 

to variations in angle of attack. Pedersen's experimental 

work with parachutes was carried out using a small 

Darrieus VAWT. 

The Canadian VAWT development. programme has relied heavily 

on the use of spoilers to complement the stall regulated 

power control that is characteristic to these low solidity 

machines. Templin and South [54] have demonstrated the 

effectiveness of spoilers from tests on 1.83 m and 2.29 m 

diameter wind tunnel sized VAWTs. The results of these 

tests are reproduced in Figure 3.13, from which Templin 

and South were able to show that the effective drag 

coefficient of the spoilers was Ccg: = 1.5. They identi- 

fied the design condition for which spoilers must be sized 
to prevent positive shaft power being developed by the 

rotor, and derived a non-dimensional relationship for 

determining the effective spoiler area to swept area ratio 
to satisfy this requirement. Confidence in airbrake 

control was somewhat reduced, however, when the 230 kW 

Magdalen Islands VAWT suffered a severe overspeed accident 
when the airbrake failed to deploy [42]. 
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To conclude, airbrakes have the following advantages: 

(a) suitable for all wind turbine sizes 

(b) suitable for overspeed control 

(c) suitable for power regulation, if controlled 

(d) active or passive actuation 

(e) large drag forces developed by relatively small 

devices 

(f) simple blade-construction achievable 

and disadvantages: 

(a) does not reduce lift of blades 

(b) large additional aerodynamic forces applied to 

rotor 

(c) variable deployment difficult to achieve 

(d) co-ordination of-deployment difficult to achieve 

3.3: Evaluation and Selection of a suitable Control Method 

for the V-VAWT. 

When -the review of control options was complete, the 

author, had gained a- much' better understanding of the 

control problem itself and a greater insight of what might 

be achieved with the devices available. A re-evaluation 

of the requirements of a control system was made, and a 

revision of the broad specification of section 3.1.1 

considered. In light of the information retrieved by the 

review, the-specific requirements that must be satisfied 
by the V-VAWT control system for electricity generation 

can be re-defined as follows: 

(a) Regulate power output of rotor to specified limit 

during normal operation in all operational wind- 

speeds 
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opinion of the author, considered worthy of further 

investigation: 

(a) Aerodynamic stall regulation with airbrakes 

(b) Partial-span pitch control 

(c) Ailerons 

The most promising control option, and the simplest, is 

the combination of stall regulation for power control and 
airbrakes for overspeed protection. This option is suit- 

able for all machine sizes, and the blades can be of a 

simple construction, rigidly mounted at the root to the 

hub. The airbrakes can be assembled onto the blades after 

manufacture, and if mounted at the blade tips, small drag 

flaps will provide adequate speed control and overspeed 

protection. Stall regulation is passive, and centrifugal 

actuation of the airbrakes will ensure the control is both 

simple and reliable. Stall regulation of both HAWTs and 
VAWTs is tried and tested and considered to be highly 

reliable. The low windspeed energy capture of stall 

regulated wind turbines is less than the that of variable 

pitch wind turbines of equivalent rating, but the stall 

regulated machines are smaller, maximising their cost 

effectiveness at higher windspeeds. 

Further consideration of this control option with respect 
to the V-VAWT revealed that stall regulation is unlikely 
to be manifest in this VAWT configuration. The high 

starting torque that is characteristic of the V-VAWTs 

considered to date give the V-VAWT a useful self-starting 
capability. However, the large positive torques developed 

at low tip speed ratios by this configuration suggest that 

the rotor will not automatically stall as the windspeed 
increases above rated. The predicted performance curves 
of Chapter Seven confirm this notion, and therefore stall 
regulation is not considered further. 
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(b) Regulate speed of rotor to specified limit during 

normal operation in all operational windspeeds 

(c) Ensure unloaded rotor, can be shutdown and brought 

to rest, or near rest, in all operational wind- 

speeds 

(d) Regulate unloaded rotor speed during synchron- 

isation of 'generator with supply network in all 

operational winaspeeds 

In addition to these primary requirements, some secondary 

needs can- be defined. These will include increasing low 

windspeed energy capture; enhancing starting torque; 

reduce structural loads on rotor; minimise cyclic torque 

variation; simplify blade construction; minimal actuation 

and,: --deployment equipment; established or proven tech- 

riology; passive actuation; fail-safe operation. 

Without 'repeating the description of the control methods 

reviewed, or the summary of advantages and disadvantages 

given"in each section, the author was able to eliminate a 

number-of options simply by their inability to satisfy the 

primary requirements stated above. The criteria that is 

most difficult to satisfy is (c), since this demands that 

the C, -% characteristic curve is less than or equal to 

zero for all tip speed ratios. Satisfying this char- 

acteristic demonstrates that positive retardation of the 

rotor can be ensured, regardless of windspeed, rotor speed 

or rotor` loading. This elimination procedure left the 

author, with four options that included variable geometry. 

However, the initial development programme for the V-VAWT 

was-concentrating on fixed geometry configurations, and it 

is for these V-VAWTs that control methods were being 

sought here. Variable geometry options (including full- 

span pitching). were, therefore, inappropriate and dis- 

missed,, leaving the following options that were, in the 
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The electricity generation application of the V-VAWT 

provides a. number of challenges, and if constant speed 

operation is required active control of the wind turbine 

must be seriously considered. HAWTs currently generating 

electricity that is supplied directly to the grid use 

active microprocessor control to maintain a reliable, good 

quality power output. The use of a centrally controlled 

partial-span pitch control satisfies all the primary needs 

as stated above. This technique is well proven in HAWT 

applications, and is used for all power and speed regul- 

ation requirements. The partial-span variable pitch 

option is ideally suited for fixed geometry V-VAWT config- 

urations where the blade is rigidly fixed at its root, 

supported by cables near to the blade tips, and only the 

outer portion of the blades are free to move in pitch. 

Variable pitch tips will also regulate the aerodynamic 

performance of the part of the rotor, that does the most 

work. The high local speed ratios and swept area means 

that the blade tips are the 'most effective part of the 

V-VAWT rotor, and capture more energy than the blade root 

portions. 

This control option allows the main blades to be relative- 
ly simple in construction, with the tip and actuator 

mechanism fixed to the blade end as a "bolt-on" module 
(see Howden HWP 330 HAWT). Power and speed regulation can 

be achieved by ensuring the positive control effect on the 

upwind pass of the VAWT overcomes any negative control 

effects on the downwind pass to give a net regulation 

effect over the complete cycle. Preliminary performance 

prediction suggest either nose-in or nose-out pitch 
deflections will provide the power regulation required, 

and that some power augmentation is achievable. 

The added complexity and cost of actuator mechanisms, and 
the need to ensure greater structural strength around a 
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highly load tip bearing, detract from the simplicity of 

the' original 'V-VAWT concept., However, by mounting the 

equipment inboard, the structural penalties of the 

additional equipment can be reduced. The active control 

of the blade tips means that tried and tested actuator 

mechanisms can be. used, but since the tip will be used for 

all control tasks, it must be designed for fail-safe 

operation, so in the event of a failure of the controller 

or actuating mechanism, the blade tips will deploy auto- 

matically to the shutdown position. 

The justification and limitations of using partial-span 

pitch control- apply equally well to the use of ailerons. 

Ailerons 'offer, at first sight, some structural advantage 

over tip control, in that the leading edge and forward 

portion of the whole blade can be manufactured as one. 

Only a small chordwise section of the blade need be free 

to move to control the aerodynamic characteristics of the 

section. However, the aileron bearings are highly loaded 

and the blade will need additional support structures in 

the trailing edge section. Wind turbine blades are 

manufactured with the minimum of material in the trailing 

edge. The composite construction of most blades uses only 
foam, or its equivalent, to give shape to the outer skin 

of 'the blade. Additional structures are required, there- 

fore, in this application. 

The partial-span pitch control option is an established 

method of HAWT control, and its application to VAWTs has 

been limited, whereas comparatively little work has been 

directed towards ailerons. The choice of control method 
for a novel VAWT in its early development stages needed to 

be conservative to ensure its application to the V-VAWT 

configuration would be successful. For this reason 

partial-span pitch control was chosen as the control 
method to which further work would be devoted. 
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When the author first made this decision, it was consider- 

ed that utilising partial-span pitch control on the V-VAWT 

would be the first instance of this control method being 

adapted for VAWT use. The Westwind VAWT was not known 

about at the time, and its existence only came to light 

after Derek Taylor's trip to the Windpower '85 wind energy 

conference at San Francisco in August 1985. At this time 

the results of the wind tunnel tests reported in Chapter 

Five had already been presented by the author at the ISES 

Intersol solar energy conference at Montreal in June 1985. 

In March 1985 at the British Wind Energy Conference, 

Sharpe and Taylor proposed controlling the free-air 5 kW 

V-VAWT that has been subsequently erected at the Open 

University with a device they called the ' T' brake' [193. 

The. T-brake is a'control surface set across the tip, of the 

blade for which they claim: 

"This control device is capable of acting as an overspeed brake 
and as a power regulator in both the passive and active modes of 
operation. " 

The effectiveness of this device was not demonstrated by 

measurement 'nor prediction, and it was this author' s own 

experimental work on partial-span pitch control that has 

been subsequently utilised to predict the performance of 

this device. 

The 'T' 'brake has a number 'advantages over the actively 

controlled tip pitch option, however, ' the research and 

development work reported here concentrates on the 

author's original control choice that was made in the 

early months of 1984. The theoretical and experimental 

work that is the subject of the following chapters centres 

around the measurement and prediction of the effectiveness 
of partial-span pitch control in V-VAWT applications. 
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Chapter Four: The Design and Construction of a V-VAWT Wind 

Tunnel Model with Pitching Blade Tips 

4.1: Introduction 

In the previous chapter the use of partial-span blade 

pitching was identified as a suitable method for control- 

ling the aerodynamic performance of the V-VAWT, and as 

such warrants further investigation. The initial perform- 

ance predictions using the author's modified version of 

the computer program VAWTTAY showed that power regulation 

and overspeed control may be adequately achieved using 

this control method. However, there is no suitable 

experimental evidence available that either confirms the 

suitability of the control method for use with a V-type 

wind turbine, or verifies the validity of the modified 

version of VAWTTAY. The adoption of tip pitch control for 

the V-VAWT has been made on technical merits and in anti- 

cipation of a control effect being observed in reality. 

Clearly, though, at this stage of the project, the need 

had arisen for experimental evidence to confirm the 

suitability of this V-VAWT control concept, and validate 

the accuracy and reliability of the modified version of 

VAWTTAY. 

The development of the V-type wind turbine by Taylor and 

Sharpe, had included experimental work using small wind 

tunnel sized models. However, since all these models were 

of a simple construction and built using straight, fixed 

pitch 'blades, a specialist model of the V-VAWT was needed 
for this project. This chapter describes the design and 

construction of 'such a V-VAWT model. The model was 
designed to allow the effects of blade tip pitching to be 

experimentally observed in the blowdown wind tunnel at 
Queen Mary College, London. This test facility has 
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subsequently enabled the aerodynamic performance of' the 

"controlled" V-VAWT model to be measured with good 

accuracy and high reliability. 

Testing of the control concept alone is not satisfactory. 

The results of the experimental work using the specialist 

V-VAWT model must be used to validate the modifications 

made to the computer program VAWTTAY. As discussed 

previously, VAWTTAY is used as a design tool, so its 

accuracy and reliability must be verified if it is to be 

used for designing larger V-VAWTs. Similarly, validation 

of VAWTTAY will allow the suitability of tip pitch control 

to be assessed for these larger configurations, without 

necessarily building and testing full-size prototypes. 

However, these issues will be discussed in more detail in 

Chapter Seven. 

The development of the specialist model of the V-VAWT 

underwent many repetitive phases of design, analysis and 

modification before a final solution was evolved that was 

suitable for manufacture and test. A computer based 

static structural analysis of the blades was developed by 

the author to assist the iterative design and analysis 

process followed. And while no formal product design 

specification was ever prepared, the initial functional 

requirements of the model had to often be modified in 

response to the changing constraints imposed upon the 

designer. 

The V-VAWT model that was eventually developed, and that 

is described fully in this chapter, has two constant chord 
blades, each with three equi-sized, tip sections that are 

moveable in pitch. This configuration allows the effect 

on aerodynamic performance of three different sizes of 
blade tip area to be studied over a ±30' range of pitch 
angle deflection. The pitch angle of each tip section is 
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fixed during operation, and can only be changed when the 

model is not running. The blades are generally construct- 

ed from English Ash that is bonded to an aluminium alloy 

spar, Each blade is rigidly attached at its root to the 

lower hub, and simply supported close to its tip by two 

wire cables connected to the upper hub. Both hubs are 

assembled onto the freely rotating, central shaft of the 

Queen Mary College test facility space frame. 

The mechanical components of the final design solution 
were all manufactured and assembled into their final form 

in the workshop facilities of the Open University by Scott 

Forrest, with assistance from the author as appropriate. 

The author prepared detailed drawings of all components 

and photographically' recorded the various stages of 

manufacture. 

4.2: Initial Design Objectives and Technical Constraints 

The primary objective of designing a specialist V-VAWT 

model for wind tunnel testing, was to develop a small wind 

turbine that would allow the effect of blade tip pitch 

control on the performance of the machine to be empirical- 
ly evaluated. The specialist model must, therefore, allow 

the effect of both blade t. ip pitch and blade tip size to 

be studied. 

si The range of pitch angle displacements or blade tip zes, 

over which measurements are required to be made, cannot be 

specified explicitly. However, initially it was consider- 

ed that blade tip areas upto 20% of total blade area and 

pitch angles upto ±90' would provide suitable design 

objectives. 
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The initial dimensions of the V-VAWT model . were 

constrained by the,, size of the wind tunnel itself. The 

exit of the wind tunnel is rectangular, and its dimensions 

are 1.26 x 1.00 in. If the blades are inclined at 45° to 

the axis of rotation, the blade length must be limited to 

a maximum of 0.7 m. The rotor diameter is therefore 

. limited to a maximum of about one metre. This limit 

ensures that there would be adequate clearance between the 

rotor and the support frame, and that the rotor would 

operate in the middle of the airstream coming from the 

wind tunnel exit. A blade aspect ratio of ten would. 

provide geometric similarity with previous V-VAWT models, 

and implies that the chordlength of the blades would be 

only 70mm. 

With these initial dimensions, VAWTTAY was used to predict 

the aerodynamic performance of a two-bladed version of the 

V-VAWT model.. A runaway tip speed ratio in excess of six 

was initially. predicted, which, for wind tunnel speeds of 

14, m/s, would be equivalent. to a rotational speed of* 

1600 rpm. Even though the predictions did not include 

parasitic drag losses, a maximum operational speed of 

1800 rpm was considered appropriate. This would allow the 

rotor to be safely "driven" to speeds in excess of its 

predicted runaway speed, so allowing measurements to made 

at. speeds where drag losses are larger than aerodynamic 

lift gains. p 
The survival design speed of the model rotor 

was subsequently specified to be 2500 rpm. This design 

constraint was imposed on the author to ensure that access 

to the wind tunnel facilities at Queen Mary College would 

be granted. 

The, need to design a wind tunnel model to "operate" at 

such a high rotational speed proved to be a challenge, 

especially since the blade tips were to be moveable in 

pitch and of variable size. However, the a final solution 
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was eventually determined that met the survival speed 

requirements, though the range of blade tip sizes and 

pitch' displacements at which the model could operate was 

somewhat restricted. 

4.3: Blade Design and Structural Analysis 

All the V-VAWT models developed by Taylor and Sharpe were 

of a simple construction and adapted for use with the 

space frame structure that was available at Queen Mary 

College test facility. The blades for these models were 

straight, untwisted, and were of constant chord across 

their span. This allowed the blades to made from solid 

wood, which was accurately crafted into shape using hand- 

tools. The simplicity of the blade design, and the 

adoption of the NACA0018 aerofoil section, enabled 

lightweight blades to be manufactured for these models. 

The choice aerofoil section enabled a good compromise 

between aerodynamic and structural performance to be 

successfully achieved, especially since all the blades 

were small in size. Each blade was supported by two 

cables attached near to the blade tip. Two cables are 

used to prevent the blade twisting under the passive 

influence of aerodynamic and centrifugal forces, a problem 

initially encountered with the first V-VAWT model [9]. 

The blades were connected to the rotating shaft by sheet 

aluminium that was wrapped around the root area of the 

blade, clamped securely together to sandwich the wood of 

the blade, and screwed directly to a small hub on the 

shaft. This provided a robust fitting, provided the 

thickness of the blade was not so large that the aluminium 
became overly distorted. The angle of blade inclination 

was fixed at 45' in all cases. 
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The design and construction methodb of these simple blades 

cannot be readily adapted to the case of the specialist 

V-VAWT model, where each blade must be fitted with pitch- 

ing tips. A new approach was required. The need for 

pitching tips significantly complicates the design of the 

blades. The blade tips must be secured to the root sect- 

ion of the blade and locked at the required pitch angle, 

yet be free to rotate about their pitch axis for adjust- 

ment of this angle. The size of the blade tip must also 

be variable, to allow the effect of blade tip size to be 

compared. 

The problem of adjusting the size of the blade tip area 

was crucial to the design and construction of the blade. 

The solution . concept chosen requires the blade to be 

constructed with a small number of tip sections, each tip 

section being moveable in pitch, and a fixed root section. 

The tip sections are all similar in size, and can be fixed 

either. in-line with the root section or in-line with each 

other. In this way, a large tip area can be created by 

moving all tip sections together as one. Alternatively a 

small tip area can be created by moving the outermost tip 

section-by itself, leaving all the other tip sections in- 

line with the root section. This concept ensures that the 

geometric properties of the wind turbine model, such as 

blade aspect ratio, rotor radius, rotor inertia, blade 

shape, etc..., remain constant throughout the test period. 

The only variable between tests will be the size and-pitch 

angle of the blade - tip. The test results can then be 

directly compared with each other. Differences between 

experimental results will be due to either changes of 

blade tip size or pitch angle, and not differences in the 

rotor configuration. . 

The discontinuity between the root section and adjacent 

tip section is a structural weakness inherent of wind 
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turbine blades constructed with pitchable blade tips. 

Here the problem is much worse, since a number of tip 

sections are proposed. Adopting an internal blade spar 

becomes very attractive, because continuity of material is 

created throughout the blade. The blade spar becomes the 

backbone of the blade, and all other blade material is 

merely used to create the cross-sectional profile of the 

aerofoil. This material will add rigidity to the root 

section, but at the tips all the loads on the tip sections 

must be supported by the spar alone. 

The design of a composite blade, using an internal spar 

and outer skin material, requires a subtle compromise 

between material selection and component dimensions to 

ensure that an effective solution is determined, and that 

the blade is structurally sound at the survival rotational 

speed of 2500 rpm. To assist in the process of evaluating 

proposed design solutions, a structural analysis of the 

composite blade was developed. The analysis, which is 

detailed in Appendix 1, assumes the blade to be a stiff, 

rigid beam. The blade root is modelled either as a simple 

support or as a built-in support, and the cable support 

close to the blade tip as a simple support. The blade is 

straight, and is considered to have a constant chordlength 

with uniform mass distribution across its span. 

The blade is acted upon by three forces: 

<a) Aerodynamic 

(b) Gravitational 

<c) Centrifugal 

Aerodynamic forces cannot be explicitly determined and are 

excluded from the analysis. In the general case, gravi- 
tational and centrifugal forces are included. Super- 

position of forces is assumed, and expressions developed 
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for shear force, bending moment, axial force, displacement 

and material stress have distinct centrifugal and gravi- 

tational force terms. Here, however, the centrifugal 

forces are very much larger than the gravitational forces, 

due the high rotational speed used for design purposes, so 

the gravitational terms may be ignored. 

The structural analysis equations developed in Appendix 1 

have been embodied into two computer programs written and 

developed by the author on a BBC-B microcomputer. The 

first program, TAYVAWT, is used to initialise all the 

blade dimensions and material properties. The second 

program, STAVAWT, performs the static analysis of the 

blade by evaluating the expressions of Appendix 1 for 

shear force, bending moment, axial force, displacement and 

material stresses. This process is repeated at various 

spanwise ordinates so that results across the whole blade 

are determined, The numerical results are tabulated on 

the screen, printed on an attached printer, or graphically 
displayed on the terminal screen using the graphics 
facilities of the computer. A summary of forces and 

bending moments at the root and cable support is supplied, 

and the position of maximum material stresses is 

identified. 

The details of the programs or their structure are not 

considered further, since the programs only embody the 

equations developed in Appendix 1. In their present form, 

the two programs only provide a general overview of the 

, structural behaviour of a given blade design. They 

provide sufficient information to assess the likely 

success of a design and its ability to satisfy the 

survival speed criterion. 

The initial dimensions were, as discussed above, deter- 

mined by the size . of the wind tunnel. The angle of 
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inclination to the rotation axis was set at 45', so the 

blade -length was restricted to 700mm. A blade aspect 

ratio' of ten; gives an initial chordlength of 70mm. The 

cable attachment was set to be in proximity to the 80% 

spanwise position, and for superior strength the NACA0025 

aerofoil section was selected for the blade profile. Thus 

the maximum 'thickness of { the blade was 17.5mm at the 30% 

chordwise position. ' Since the tip sections must be able 
t'o' rotate about the, pitch axis, the spar was initially 

conceived as being of circular cross section. For bench- 

mark purposes, the spar material was originally chosen as 

mild steel, and the skin material as spruce wood. 

The maximum stresses calculated for the initial blade 

design at a rotational speed of 2500 rpm were far greater 

than the ultimate tensile strength of the materials 

selected. The repeated use of the analysis programs 

enabled the design of the V-VAWT model blades to progress 

quickly to satisfactory overall solution. 

Aluminium alloy replaced steel as the spar material 

because` of its superior- strength to weight qualities, 

especially the B. S. 1471 HT30TF grade which immediately 

gave more promising results. ' However, initial designs 

were, -',, still too highly stressed and a number of more 
fundamental changes were made. 

The overall blade 'length was 'reduced to 665mm, but the 

cable-'attachment position was unchanged. This reduced the 

maximum°'possible size of the blade tip to 15% of the total 

blade area. - However, " the bending moment at the cable 

attachment 'point 'was reduced by approximately 45% by this 

change. 

The blade chord length was increased to 80mm, with the 

consequential increase -in'section thickness to 20mm. This 
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allowed the major dimension of the internal spar to be 

increased, increasing the stiffness of this member. 

Typically, the outer diameter of a circular tube spar 

could be increased from 15.5mm to 18mm, so reducing the 

maximum stresses in the blade by 35%. 

Spar stiffness could also be changed by using different 

cross-sectional geometries. Hollow sections reduce the 

overall weight of the blade and so reduce the body forces 

acting on it, yet the stiffness of the spar need not be 

greatly affected. Rectangular box sections are stiffer in 

the direction, of the major dimension than a circular sect- 

ion having the same major dimensions, but the availability 

of small extruded aluminium alloy box sections was some- 

what limiting. However, circular tube section was readily 

available in a number sizes with various wall thicknesses. 

In order to achieve a good compromise, the blade spar was 

constructed from circular tube, machined to size to give a 

rectangular outer geometry. Thus the spar was rectangular 
in, profile, but had a circular bore. This proved to be an 

effective solution, giving the author the flexibility to 

accurately control the dimensions of the spar, yet allow- 

ing. 
_ 

the raw material to be ordered directly from the 

suppliers in a stock bar form. The tubular section 

allowed the spindles, on which the tip sections would be 

positioned, tobe readily machined. 

The blade skin material was always considered to be solid 

and, made of wood. This would enable the profile of the 

blades to be hand-crafted to the shape of the NACA0025 

aerofoil. Initially spruce was considered suitable, and 
though a number of, different woods. were considered, their 

different structural properties did not significantly 
affect the stress levels in the blade. Finally, English 

Ash was selected as the skin material because on 
inspection of the raw material itself at the suppliers, a 
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sample of this wood was found to be closely grained, dry 

and inherently stable. It proved to be more than adequate 

for this V-VAWT model. 

The results of the computer based analysis of the final 

design concept are summarised in Table 4.1, and the 

spanwise distributions of shear force, bending moment and 

flapwise displacement at 2500 rpm for this blade are 

graphically displayed in Figure 4.1. Having finally 

determined overall dimensions of the blade and selected 

suitable materials, the detail design of the blade and 

other rotor components could begin. 

In the final design, the available blade tip area was 

approximately 15% of the total blade area. Three tip 

sections, each with an area equivalent to 5% of the total 

blade area, was considered to give sufficient scope for 

changing of, the, total blade tip area during tests. Each 

section would be positioned on circular spindles machined 

from the blade spar. The diameter of the spindles reduces 

from 18mm°to 15mm to 12mm for each section, minimising the 

bending moment acting on the spar at the cable attachment 

point. The fillet radius between sections is 5mm to 

ensure low stress levels in these areas. Grubscrews in 

each tip section secure the pitch angle of the tip, while 

dowel pins restrain axial movement. The dowel pins 

require holes to be drilled through the neutral axis of 

the spar. Although these holes act as stress raisers, 

this solution was the best of those considered, and the 

levels of stress were found to be acceptable. 

The cable attachment position and method of attachment 

requires careful consideration. As discussed above, a 

single cable cannot prevent the blade twisting under the 

influence of aerodynamic and body forces, primarily 

centrifugal force here. Using two cables alleviates the 
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T. ALUM16 

M-5.976E-1 kg L- 6.650E-1 m 
N"2.500E3 rpn T- 4.50OE1 deg 
pw - 6.890E2 kg/m'3 Iw - 2.208E-8 m"4 
Ps - 2.705E3 kg/m"3 Is " 2.344E-9 m"4 
d"1.400E-2 m b- 1.200E-2 m 
W you wish to continue (Y or N) 
Rotational Speed -2500.00 rpm 

Z SF 
mm N 

0.00 0.00 1750.06 
1.00 35.00 1730.98 
2.00 70.00 1674.17 
3.00 105.00 1579.64 
4.00 140.00 1447.39 
5.00 175.00 1277.40 
6.00 210.00 1069.69 
7.00 244.00 824.26 
8.00 280.00 541.10 
9.00 315.00 220.22 

10.00 350.00 -138.39 
11.00 385.00 -534.73 
12.00 420.00 -968.79 
13.00 455.00 -1440.57 
14.00 489.00 -1950.09 
15.00 525.00 -2497.32 

550.00 -2911.30 
550.00 2152.22 

16.00 560.00 1981.24 
17.00 595.00 1358.55 
18.00 630.00 698.14 
19.00 665.00 0.00 

BM PF 
Nm N 

-235.29 -6805.30 
-174.26 -6786.65 
-114.56 -6730.28 

-57.51 -6636.19 
-4.43 -6504.36 
43.37 -6334.82 
84.55 -6127.55 

117.80 -5882.55 
141.81 -5599.83 
155.24 -5279.38 
156.78 -4921.21 
145.11 -4525.31 
118.91 -4091.68 

76.86 -3620.33 
17.63 -3111.26 

-60.09 -2564.46 
-127.66 -2150.79 
-127.66 -2150.79 
-106.99 -1979.93 
-48.43 -1357.68 
-12.33 -697.70 

0.00 0.00 

BS1471 HT30TF Ash 

A05.500E-1 m 
EI - 4.269E2 Nm'2 
Ew - 1.190E10 N/m'2 
Es - 7.000E10 N/m'2 
Di - 9.500E-3 m 

V SIGwcm SlGstm 
mm Nmm'2 Nmi'2 
0.00 61.03 296.86 
0.31 44.03 226.74 
1.12 27.43 157.99 
2.26 11.59 92.14 
3.56 -3.12 30.69 
4.88 7.85 74.71 
6.07 19.47 121.17 
7.03 28.90 158.37 
7.65 35.78 184.81 
7.86 39.74 198.97 
7.63 40.41 199.33 
6.96 37.42 184.37 
5.87 30.41 152.59 
4.44 19.00 102.47 
2.80 2.83 32.49 
1.11 15.03 79.06 

-0.00 34.14 154.99 
-0.00 34.14 154.99 
-0.40 28.50 130.59 

-1.63 12.59 60.93 
-2.72 2.97 16.90 
-3.77 0.00 0.00 

IRa - 1750.06 Ma - '-235.29 Pa - -6805.30 

Rb - 5063.52 Mb - -127.66 Pb - -2150.79 
Shear Force at Z- 336.00 em is Zero 
Bending Moment at this point - 157.68 Nm 
Displacement at this point - 7.77 am 
Compressive Stress in Ash is - 40.57 N/mn'2 
Tensile Stress in BS1471 HT30TF is - 200.90 N/m ^2 
Do you wish to continue (Y or N) 

Table 4.1: Summarised output of computer based structural 
analysis of the finalised model V-VAWT design 

operating at 2500 rpm 
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Figure, 4.1: Spanwise distributions of shear force, bending 

moment and displacement for the finalised 

model V-VAWT design operating at 2500 rpm 
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problem of blade twist -due to centrifugal force, provided 

the chordwise positions of the blade mass and flexure 

centres fall between the two cables. The spar is placed 

at the 30% chordwise position because this is the position 

of maximum blade thickness. In this design, the centres 

of mass and flexure very close to each other. The cable 

attachments were chosen to be at 20% and 40% chordwise 

positions, thus ensuring no blade twisting would occur. 

A number of methods for attaching the cables to the blades 

were considered, and. most were rejected because they 

involved drilling holes through the blade spar, thus 

weakening this member at a highly stressed position. the 

final solution involves using a single, continuous cable 
that is looped around the spar at the attachment point. 
The cable rests in a. small". groove machined into the spar. 

The groove distributes the cable loading over a large area 

of"the spar, while ensuring a maximum material condition 

is maintained at this location. The groove is a stress 

raiser, so-its fillet radius is made as large as possible. 

The cable forces were-. calculated to be in excess of 2000N, 

therefore 2mm diameter, 7x7 round strand steel wire had 

to. be- selected to support this design load. The wire 
diameter is much larger than the piano wire used on 

previous --V-VAWT models, therefore the parasitic drag 

losses----will-be significantly larger. However, these 

losses are measured in the wind tunnel and corrections to 

the test -results applied as appropriate. It was not 

possible to obtain smaller diameter wire that would have 

its strength guaranteed to the limits required here. 

The length of each cable had-to be adjustable to ensure 
that each is'. -equally tensioned. The cable adjusting 

screws are assembled--onto the wire rope before the cable 

- 127 - 



endings are attached at the rope suppliers. The screws 

are fitted directly into the aluminium alloy cable hub. 

The blades were much thicker than previous V-VAWT models, 

so that the usual blade root attachment method was unsuit- 

able,. here. The method devised requires the blade spar to 

be-, rigidly attached to a U-shaped root component. This 

allows the blades to be screwed directly to the aluminium 

alloy root hub. The blade spar root is effectively wider 

across its chord, allowing space for six high tensile, hub 

fixing screws. that are sized appropriately. The modifi- 

cation to 
.. 
the, blade spar is completely contained within 

the.. blade section, and so provides a neat, unobtrusive 
blade attachment. 

The forces and bending moments calculated using STAVAWT 

were . used.;, as the basis, of detailed analysis of all the 

features of .. the design that were of special interest. 

However the use of standard data sheets and simple hand 

calculations gave the author an unrivalled appreciation of 

the problems involved in designing a reliable and struct- 

urally .. sound. wind turbine model. The detailed analysis 

was required, to ensure, the correct sizing and selection of 

components was maintained throughout the design. 

Detailed. stress analysis was carried out for the following 

features of the design: 

(a) tip section dowel-holes 

-(b) tip section dowel pins, 
(c). spindle fillet radii 
(d) cable attachment groove 
(e) . -sizing of cable adjustment screws 
<f) cable hub-dimensions 

(g). blade root-component dimensions 

? -<h) blade spar, 
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(i) root/spar attachment 

(J) root/hub attachment 

(k) sizing of`root/hub securing screws 
<1) root hub dimensions 

The results of the analysis are not presented here, but 

the extensive analysis of the design led to a final 

solution that was complete in every detail as reported by 

the author in an interim report [551. 

The author prepared detail drawings of all components and 

was responsible for overseeing the procurement of all raw 

materials and manufacture of all specialist parts. A 

computer based three dimensional solid model was also 

prepared using GEOMOD, a commercial quality CAD appli- 

cations package. The solid model enabled the complete 

assembly of parts to be simulated, and has allowed the 

author to visualise the final solution before authorising 

manufacture, Figure 4.2. By specifying the mechanical 

properties of the component parts, it was possible to 

estimate the moment of inertia of the wind turbine model. 
The computer estimate compared favourably with that 

actually, measured (Chapter Five). 

4.4: Manufacture and Assembly of the Model V-VAWT 

The manufacture--of the model V-VAWT was carried out in the 

workshop facilities of The Open University by Mr Scott 

Forrest. The aluminium alloy was specially bought in with 
its mechanical properties certified by the suppliers. It 

is easily machinable and the manufacture of the blade 

spars and support hubs was carried out using conventional 
machine tools. The blade spar and root components were 
completely manufactured in accordance with the detail 
drawings as prepared, before being assembled as one. 
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Figure 4.2: Computer based 3D solid model of model V-VAWT 

with pitching tips 
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The root section of the blade was made from leading edge 

and trailing edge sections. A slot was routed out in each 

section to provide a cavity for the blade spar; Figure 4.3 

shows the blade spars and skin material before. joining. 

The blade spar and root were then enclosed between the 

leading edge and trailing edge sections, which were firmly 

joined together with glue resin. With the composite blade 

complete, the skin material was rough planed before hand 

finishing to a NACA0025 aerofoil section profile. A brass 

template was used to check the accuracy of the blade to 

this profile. Where the root of the spar was widened, a 
large amount of wood had to be removed to ensure a good 
fit between the skin and spar was achieved. The material 
lost was made good using epoxy filler. Once hard set, the 

filler was easy to work. The blade profile could be 

restored without creating any discontinuities between the 

wood and the filler, Figure 4.4. 

The cables came from a specialist wire rope supplier with 
the adjusting screws ready fitted. The rope supplier was 

able to guarantee the reliability of the cable fittings 

and ensure the specified mechanical properties of the 

rope. A small slot at the end of the root section of the 

blade allowed the cables to be looped around blade spar, 
before being secured in position with epoxy filler. The 
filler allowed the blade profile around the cable attach- 
ment to be made good as shown in Figure 4.5. 

The blade tips were made, from solid wood and hand-crafted 
to the aerofoil profile using the template as a guide. 
Each tip section was drilled through, and brass plates 
inserted into a small slot. The dowel pins bear against 
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Figure 4.3: Blade spars and skin material before joining 
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1% 

Figure 4', 4: Blade root showing hub attachment 

Figure 4.5: Blade tip showing cable support and spindles 

for tip sections 
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the brass,. plates to restrain the tip sections axially. 

The pitch locking grubscrews are supported by a small 

brass tube inserted into the leading edge. The grubscrews 

are adjusted from holes drilled in the leading edge of the 

tip section, and act directly onto the spindle supporting 

the tip. During testing, the holes are filled with soft 

wax which allows the leading edge profile to be restored 

for the duration of the test. Figures 4.6 and 4.7 show the 

finished tip sections as described. 

Once. the blades and tip sections were fully assembled and 

the profile finished, numerous coats of paint primer and 

topcoat were applied to the wood. Each coat of paint was 

allowed to harden, before being cut back with fine emery 

cloth and another coat of paint applied. This process was 

repeated many times, until a smooth, glossy surface finish 

was achieved. . 

The tip. sections were then sequentially assembled onto the 

blade. spar spindles. Each section is secured by the dowel 

pin which is inserted into the dowel hole through a small 

hole in the leading edge of the tip. Once secured, the 

hole in the tip was made good with wax and the leading 

edge profile restored. 

The two blades were now complete and could be assembled in 

the workshop with the root hub and cable hub. The success 

of the variable tip area concept could now be judged and 

Figures 4.8 to 4.11 show the blade tip with 5%, 10% and 

15% tip areas locked in pitch. Once complete, only the 

size of the locking grubscrews needed modification, since 
it was not possible to "feel" the locking torque being 

applied. 

In general, few problems were encountered in the manu- 
facture of the wind turbine and the components assembled 
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easily together in the workshop. Once satisfied all was 

complete, the components were transported to Queen Mary 

College where they were assembled into the spaceframe, see 

the Colour Plate on page (vii). 

4.5: Conclusions 

The design of a specialist V-VAWT model with pitching tips 

proved to be an interesting and stimulating exercise in 

engineering design. The constraints imposed upon the 

author has led to a robust design that has a potential 

survival speed of 2500 rpm. A consequence of this has 

been that the wind turbine model is significantly larger 

than any previous V-VAWT model, and is much more compli- 

cated in its construction. Extensive structural analysis 

was required to ensure that the final design solution 

would satisfy the survival speed criterion. However, the 

author is satisfied that an effective design solution has 

been prepared, and that a worthy wind tunnel V-VAWT model 

has been constructed. 
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Figure 4.6: Frontal view of tip sections showing leading 
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Figure 4.7: End view of tip sections showing variation of 

bearing diameter and brass plate inserts 
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Figure 4.8: Blade tip area showing normal running 

condition with zero tip pitch offset 

Figure 4.9: Blade tip area showing 5% tip area and small 

nose-out pitch offset 

- 137 - 



Figure 4.10: Blade tip area showing 10% tip area and small 

nose-out pitch offset 

Figure 4.11: Blade tip area showing 15% tip area and small 

nose-out pitch offset 
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Chapter Five: Performance Testing of the Model V-VAWI' 

5.1: Performance Test Objectives 

The objectives of the performance testing of the model 

V-VAWT described in the previous chapter were twofold: 

. (a) to measure the effect of the variation of blade 

tip pitch and blade tip area on the performance of 

the model V-VAWT, and so determine whether pitch 

tip control is a suitable aerodynamic control 

method for the V-VAWT. 

(b) to provide further wind turbine performance data 

for the verification of the performance prediction 

program VAWTTAY. 

These were considered to be only'modest objectives for the 

test program, but--the wind tunnel was only available for a 

short period of time and all experimentation had to be 

completed within two weeks. During the course of the work 

a' number' , of interesting effects were observed, but it was 

not possible'to-examine these effects in any detail in the 

time available. However, these passing observations will 
be discussed later., 

The blowdown wind tunnel in the Department of Aeronautical 

Engineering, Queen Mary College, London was used for this 

experimental work . This facility had been previously 

used' by Sharpe to-conduct the first performance measure- 

ments of model V-VAWTs. For convenience the equipment and 

experimental techniques developed for those tests were 

used for the experimental work presented here. 

The wind : turbine model was rigidly attached to a vertical 
steel- shaft which- was. simply supported by two bearings 
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mounted in a tubular steel space frame. The space frame 

was free-standing, allowing it to be moved around the 

laboratory. 

During the performance evaluation tests, the space frame 

was positioned so that the axis of rotation of the model 

V-VAWT was approximately one metre downstream of the wind 

tunnel diffuser. In this position the wind turbine was 

able to rotate freely, airflow around the turbine 

was unimpeded and measurement of the upstream windspeed 

could be made with some confidence. A coarse wire mesh 

was hung between the space frame and the wind tunnel 

diffuser for safety purposes. It is believed that the 

mesh did not restrict the air movement around the turbine. 

The acceleration method developed by Sharpe [231, and 

subsequently used by other experimentors, was adopted for 

the measurement of the model V-VAWT performance. This 

technique is a simple and quick method for determining the 

complete C, -% characteristic of a wind turbine operating 

in constant windspeed conditions. However, it is not 

sufficiently sensitive to allow for the measurement of 

cyclic torque variation. 

The acceleration method requires that the wind turbine 

model 'be allowed to accelerate from near rest until it 

reaches a constant rotational speed. The rate of 

acceleration is dependent upon the net torque being 

developed by turbine at any instant and the moment of 

inertia of all rotating' parts. When the wind turbine 

reaches a constant rotational speed, the net torque acting 

on the turbine is zero. At this rotational speed the 

magnitude of aerodynamic torque being developed by the 

blades is equal to sum of parasitic losses due to friction 

in the bearings and aerodynamic drag on the blade support 

cables and other rotating components. Since the 
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aerodynamic performance predictions of VAWTTAY do not 

account for parasitic losses, these losses had to measured 

separately and the test results corrected as appropriate. 

The rotational speed at which 'the aerodynamic torque and 

parasitic- losses were in equilibrium, was the maximum 

speed at which the -wind turbine would operate without 

assistance. In order to obtain performance data for 

higher rotational speeds, itý was necessary to drive the 

wind' turbine via a friction contact with a small electric 

motor. At the higher rotational speeds the parasitic 

losses are greater than the aerodynamic torque being 

developed by the blades, so that when the motive power was 

released, '- the"wind turbine would deccelerate until it 

reached the equilibrium speed once more. 

Whenever the 'wind turbine-was accelerating or retarding 

unaided; the rotational "speed of the turbine was measured 

and recorded by a microcomputer at regular time intervals. 

From these measurements it is possible to calculate the 

instantaneous acceleration of the turbine at a particular 

rotational 'speed, and given the moment of inertia of all 

the rotating parts, the net torque can be calculated. 

The acceleration 'tests were carried out with the wind 

tunnel exit speed constant. Generally the exit speed was 

4 m/s which, for this- particular wind turbine model, was 

equivalent to a ! wind Reynold' s Number WRe - 70,000. The 

implications of operating at a low WRe will be discussed 

below. 

From the'-measurements-'of torque and windspeed it is 

possible to calculate the non-dimensional coefficients of 

torque C, =, ' and power C,,. for various Tip Speed Ratios X. 

The results of the all measurements will be presented in 

both these forms. 
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Since the wind tunnel model was designed with three move- 

able tip portions on each blade, the C,., -X and C,... -X char- 

acteristics were determined for tip areas of 5%, 10% and 

15% of the blade. area, with pitch angles of ±30'. The 

pitch angle of the tip portion of each blade was preset 

before each test and could not be altered dynamically 

during the test period. In all some forty pitch angle/tip 

area -combinations were evaluated, and the results from 

these tests are presented below. Before, however, con- 

sidering the experimental, results, the experimental 

methods and procedures are discussed in greater detail. 

5.2: Description of. q 
Test Facilities and Equipment 

All previous wind tunnel testing of model V-VAWTs had been 

at_ Queen Mary College, London where Mr David Sharpe has 

established a suitable test facility in the Department of 

Aeronautical Engineering. This facility was used for the 

wind tunnel investigationscas described here. 

The model V-VAWT was placed near the exit of a blowdown 

wind tunnel capable, of producing exit windspeeds in excess 

of 14 m/s. _ 
The exit of the. wind tunnel is rectangular, 

1.26 m, wide by 1.00 m high, and the model was positioned 

approximately one, metre downwind of the exit. The dia- 

meter of the rotor was measured as D=0.96 m, and its 

height H, = O. 47_ m. 

The windspeed at the wind tunnel exit is calculated from 

the,. measurement of . the dynamic head of the air passing 
through an. upstrean 

, 
contraction in the wind tunnel. The 

pressure difference is measured using a Betz Manometer. 

This manometer uses water as the working fluid and had a 

vernier scale with a resolution of . t0.05 mm with which to 

measure the water column height. Typically a measured 
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water height of 23.5 -mm would be equivalent to a tunnel 

exit windspeed of-V = 14 m/s. 

The contraction is immediately upstream of the enclosed 

working section of the wind tunnel, and the Betz Manometer 

measurement is usually used to calculate the windspeed in 

the working section. -To use the same measurement for 

calculating the windspeed at the tunnel exit, a correction 

is applied to account for, the difference in the cross- 

sectional areas of. the working section and the rectangular 

exit. This correction factor is automatically included in 

the microcomputer calculation of exit windspeed. 

The validity of the windspeed measurement was not checked 

since the wind tunnel is frequently used by staff and 

students of-Queen Mary College for experimental work, and 

the calibration factor given was accepted as accurate. 

The model V-VAWT was held in a free-standing tubular steel 

frame with the vertical shaft supported in two bearings 

allowing free and easy rotation. The steel frame was 

positioned approximately one metre downstream of the wind 

tunnel exit, and for safety purposes a coarse wire gauze 

was suspended between the frame and the tunnel walls. The 

area of the laboratory immediately behind the model V-VAWT 

was clear, and the rear wall of the room was some 5 to 6m 

downstream-of the turbine. A cloth backdrop was suspended 

from the ceiling of the laboratory to absorb wind energy 

and reduce the turbulence around the test environment. 

Essentially, the model V-VAWT operated in an open jet 

tunnel. = In these operating conditions, corrections for 

wind tunnel blockage, which in this case would be solid- 
blockage, need not be applied. Sharpe has applied, on 

previous occasions, wind tunnel blockage corrections to 

V-VAWT power measurements [19]. The validity of using 
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blockage corrections in open jet testing is in doubt, so 

none have been applied to the measurements made here. 

The acceleration method is a simple technique for deter- 

mining the torque being developed by the model V-VAWT. It 

requires only the variation of the angular velocity of the 

wind turbine to be measured with respect to time as the 

rotor accelerates-against its own inertia. The angular 

velocity of the wind turbine was measured with a d. c. 

tachometer that was coupled directly to the wind turbine 

shaft. The analogue output voltage from the tachometer 

was converted by an analogue-to-digital converter into a 

12-bit digital signal which could be recorded by a PET 

microcomputer. The digital signal was used to calulate 

the angular velocity of the wind turbine. The accuracy of 

this measurement had been previously verified by observing 

the frequency of rotation of the rotor using a variable 

frequency stroboscope, In this way, a suitable angular 

velocity calibration factor was determined. The internal 

clock of the microcomputer was used to record time. The 

microcomputer enabled rapid and accurate measurements of 

the wind turbine angular velocity to be recorded. 

The ambient conditions of air pressure and air temperature 

were measured with 
. 

a-mercury barometer and mercury thermo- 

meter respectively., These measurements were used to calc- 

ulate the air density. 

Since all the angular velocity measurements were recorded 

by the microcomputer, the analysis of the measurements was 

carried out using the PET microcomputer. The computer 

programs used throughout the wind tunnel testing period 

were all written by Sharpe, and modifications were only 

made for convenience. Since the computer programs, test 

facilities and test techniques were all well developed, 
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only a short amount of time was needed to set-up the 

equipment before the initial measurements could be made. 

5.3: The Acceleration Method 

The acceleration method for determining the torque char- 

acteristics of model wind turbines was devised by Sharpe 

for his wind tunnel investigations of model Darrieus wind 

turbines 120,231. Subsequently, many other experimentors 

have adopted this simple technique for determining the 

power characteristics of other wind turbines operating 

both in wind tunnel and the free-air environments. 

The acceleration method is a simple and quick method for 

determining the power characteristics of a wind turbine 

since it only requires that the wind turbine accelerates 

against its own inertia, and that during this acceleration 

period the angular velocity of the rotor be recorded with 

respect to time. The wind tunnel air speed during the 

acceleration period is not altered. From the measurements 

of angular velocity to and time, at any instance during the 

acceleration period, the instantaneous angular acceler- 

ation eo is determined by numerical differentiation using 

the Taylor Series. Given the moment of inertia J of the 

rotor, the instantaneous net shaft torque Q. being 

developed is calculated. 

The instantaneous torque developed by the rotor is: 

Q$=J6 (5.1) 

The use of. numerical differentiation to calculate instant- 

aneous angular acceleration is not ideal, since it is 

possible to introduce large calculation errors especially 

when the rate of change of angular velocity is small. 
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However, it was not possible to measure angular acceler- 

ation directly, so the sensitivity of this calculation 

using the Taylor Series numerical differentiation tech- 

nique was thoroughly investigated to ensure the method 

could be used with confidence. This investigation is 

discussed in Appendix 2. 

The acceleration method is used throughout this 

experimental test programme to measure the torque being 

developed by any rotating body, not Just that developed by 

the wind turbine. 

5.4: The Measurement of Moment of Inertia 

The measurement of the moment of inertia of the rotating 

system is essential for the calculation of instantaneous 

shaft torque, as shown above, and is carried out before 

any other tests are made. The method adopted for deter- 

mining the moment of inertia J of a rotating system is as 

follows: 

A chord, of diameter d, is wrapped around the shaft, of 

diameter D, a number of times and tensioned at each end by 

two springs, of stiffness k. The shaft is given a small 
initial angular displacement and released. As the shaft 

gently oscillates, the angular velocity of the shaft co is 

recorded with respect to time using the PET microcomputer, 

and from these measurements the period of motion 'c is 

calculated. The procedure is repeated a number of times 

for accuracy. 

The calculation of the moment of inertia considers the 

free body motion of the rotating parts. If the instant- 

aneous angular position of the body is A, then the torque, 

q, imparted on the body by the springs is given by: 
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q= 2r2-k6 , (5.2 ) 

where the moment arm, r, is: 

r= 
(D 

2 
d) (5.3) 

The free body motion by D'Alembert's Rule gives: 

qJe (5.4) 

substituting for q and rearranging gives: 

2r "6 +. j=0- 
(5.5 ) 

compare this' with the general equation , of motion of an 

undamped rotating , free body: 

.0 +, (0r, 2e =0 (5.6) 

where the 'natural frequency, c.,, of oscillation of the 

body is: 

fin 
2n (5.7) 
T4 

Hence the moment. ofýinertia of the free body is: 

r= (5.8) 

The method described above is used to measure the moment 

of inertia of all rotating bodies as required. The 

constants of equation (5.8) were measured as r= 12.77 mm 
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and k= 192.8 N/m. These values were used in all 

subsequent calculations of moment of inertia. 

5.5: The Measurement of Bearing Friction 

The bearing friction is 

attached to the rotor, 11 

cable hub attached to the 

the measurement of bearing 

of the windage losses that 

were attached. 

measured without the blades 

caving only the blade hub and 

vertical shaft. This allowed 

friction to be made independent 

would be induced if the blades 

Firstly the moment of inertia of this system was measured 

using the technique described above. With the air still, 

the shaft was driven to the highest possible rotational 

speed using the friction drive, released, and the retard- 

ation of the rotor monitored using the PET microcomputer. 

This was repeated a number of times so that the range of 

measurements of angular velocity included all likely 

operating speeds of the model V-VAWT. The measurements 

were recorded in the datafile "DRAGTESTSHAFT2". 

The retardation of the rotor was due entirely to friction 

torque generated by losses in the shaft bearings and 

still-air rotor windage losses. The acceleration method 

was used to analyse the angular velocity measurements to 

determine the variation of friction torque, Q,:, with 

angular velocity, o. For speed of friction loss correct- 

ion in subsequent calculations, the relationship between 

Q,.. and 4) is fitted to a second-order polynomial such that: 

QF = a3o2 + a2c + al (5.9) 

The coefficients al, a2 and a3 were determined by anal- 

ysing the measurements using a 'Least Squares Fit. 
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Since the maximum rotational speed, at which retardation 

measurements were made, was in excess of 150 rad/s, torque 

corrections for bearing friction losses using equation 

(5.9) and the measured coefficients ei, a2 and a3 can be 

applied with confidence over the entire range of angular 

velocities at which the model V-VAWT operated. 

5.6: The Measurement of Cable Drag 

Cable drag losses are by far the most significant of all 

the losses experienced by the model V-VAWT. Each blade of 

the model wind turbine is supported by two 2 mm diameter 

cables attached 115 mm from the blade tip. It was not 

possible to design the wind turbine using cantilevered 

blades for operation at the high rotational speeds of the 

experiments; each blade had to be simply supported at some 

spanwise position by cables . Two cables are required for 

each blade to prevent the blade dynamically twisting 

during operation. Twisting was observed by Sharpe and 

Taylor during the testing of the first model V-VAWT C9], 

the blades of which were supported by only one cable. 

Using two cables prevents the blade twisting during per- 

formance testing. Unfortunately, the use of cables incurs 

a high drag penalty which in practice is difficult to 

reduce on the 'model-sized V-VAWTs. Experience from 

previous-model V-VAWT tests suggested that it was better 

experimental practice to leave the cables uncovered, 

measure the cable- drag in isolation, and include correct- 

ions in the performance test results in the same manner as 

the corrections for bearing friction are applied. 

Unlike the bearing friction measurements, the measurement 

of cable drag had to be made after the performance testing 

of the model V-VAWT had been completed and the wind tunnel 

was free for use again. During performance testing the 
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cable drag was 'estimated from the corrections applied to 

previous model V-VAWTs. However, the estimated value of 

cable drag was significantly smaller than that actually 

measured. This demonstrates the clear need to determine 

corrections for the parasitic losses of each experimental 

configuration; it is not satisfactory to rely upon 

measurements from previous experiments for determining 

these corrections. 

Cable drag corrections are determined from two sets of 

experimental data. The first test configuration consists 

of a spacer bar attached ät r the mid-point of the vertical 

shaft. In a diamond geometry around the spacer bar are 

stretched four cables similar to those fitted to the model 

V-VAWT. These cables are attached to the shaft using two 

cable support hubs such that the angle to the vertical, 

the maximum diameter and the spacing between pairs . 
is 

similar to the cables on the model. The diamond config- 

uration provides twice the cable area as used for the 

model V-VAWT, so allowing cable drag to be measured 

accurately using the acceleration. 

The` moment of inertia of this test configuration was 

determined as described above. With the wind speed 

constant, the shaft was driven to as high a rotational 

speed asýpossible using the friction drive, released and 

the decceleration of 'the rotor monitored using the PET 

microcomputer. This 'method is identical to that used to 

measure bearing friction. However, since cable drag losses 

are due to the aerodynamic forces acting on the wires, 

unlike bearing friction'these losses are windspeed depend- 

ent so the test procedure was repeated a number of times 

for various windspeed settings. 

For 'each windspeed setting, the acceleration method was 

used to determine the variation of drag torque with 
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respect to angular velocity. Using these calculated 

values of torque, the coefficients of equation (5.10) were 

determined using a Least Squares Fit algorithm. Equation 

(5.10) is a two-dimensional, second-order relationship 

between drag torque angular velocity ca, and wind peed 

V: 

Qc = c36) + c6ci2 +V (c 1+c4ra+c7ca2) + V= (c2+c5(z+c8co=) (5.10) 

This is a convenient form in which to summarise all the 

cable drag measurements, and subsequently allows drag 

torque corrections to be easily calculated. 

The coefficients cl, c2, c3 etc.. determined from the 

measurements made using the above test configuration 

included the drag 'penalaties incurred by fitting the 

cross-arm to the shaft. ' Consequently the drag losses due 

to the cross-arm alone had' tobe determined. The cables 

and cable support_ hubs were removed leaving only the 

cross-arm attached to, the shaft. The moment of inertia of 

this test configuration was determined and the test proc- 

edure described above" repeated. A*second set of coeff- 

icients cl, c2, c3 etc.. -were determined from these measure- 

ments. ' 

The measurements made using both test configurations 

resulted in two sets of coefficients for equation (6.4). 

The drag of the cables alone could be calculated using a 

third set of' coefficients, these being the difference 

between those derived by measurement. However, since the 

cable area was twice that of the cables used for the model 
V-VAWT, the final set of coefficients were halved so that 

cable losses on the model V-VAWT could be simply calc- 

ulated using equation (5.10), where Q,; is the cable drag 

torque. ' 
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The cable drag coefficients were determined from measure- 

ments made in windspeeds upto 15.8 m/s. However, when the 

windspeed was greater than 10 m/s, the friction drive 

motor was not powerful enough to drive the cable diamond 

configuration at angular velocities much in excess of 

75 rad/s. Thus for windspeeds greater than 10 m/s, the 

measured values of Q,,, should be treated with caution at 

angular velocities greater than 75 rad/s, because only a 

small number of measurements were made. Equation (5.10), 

therefore, can only be used with confidence for calc- 

ulating cable drag losses when the model V-VAWT operates 

within the range of windspeeds and angular velocities 

given above. 

All the performance tests were carried out at a windspeed 

of V= 14 m/s, where V< 15.8 m/s. For most tests, how- 

ever, the rotational speed of the model V-VAWT exceeded 75 

rad/s (approximately equivalent to X =. 2.5), and therefore 

the model V-VAWT operated outside the range of conditions 

for which cable drag measurements were made. Despite 

this, equation (5.10) was initially used to calculate 

cable drag corrections for all the performance tests. To 

calculate Q, y often required extrapolation beyond the range 

of angular velocities for which the cable drag coeff- 

icients were valid. 

The initial analysis of the model V-VAWT performance tests 

included corrections for cable drag using equation (6.4) 

and the cable drag coefficients as measured. However, 

since present V-VAWT designs all include cable supports 
for the blades, there is a real need for cable drag losses 

to be accurately predicted in order to assess the true net 

torque that the wind turbine would develop. A mathe- 

matical model of cable drag loss is required. The 

measurements made here would allow such a model to 'be 

validatedd, and enable cable drag corrections for the 
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model V-VAWT performance tests to be made with greater 

confidence for angular velocities exceeding 75 rad/s. 

5.7-. The Prediction of Cable Drag 

The accurate prediction of cable drag is essential for 

future V-VAWT designs which include-cable supports for the 

blades. Cable drag losses are the most significant para- 

sitic loss with small scale wind tunnel V-VAWTs, and while 

these losses may be proportionally smaller for larger, 

free-air sized V-VAWTs it is essential that they be 

accurately assessed to enable the overall performance of 

the-wind turbine to be predicted with confidence. 

The prediction model below has been developed using simple 

two-di, mensi onal, steady state flow theory and ignores any 

dynamic effects. At any instant, the local velocity 

vector on a small element of the cable is only dependent 

upon the cable geometry, upstream windspeed and the 

angular velocity of the cable. Streamwise momentum losses 

are ignored. Local elemental forces are calculated using 

coefficients of lift and drag force taken from Hoerner who 

has summarised the results of many experimentors £56]. 

Predicting cable drag is best achieved by considerationg 

of a small elemental length of one cable. The geometrical 
features of the element are shown in Figure 5.1a using the 

following nomenclature: 

z= spanwise ordinate of element, m 

e= chordwise offset of the cable from the axis of 

rotation, m 

r= radial distance between the axis of rotation and 
the element, m 
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Figure 5,1a: Cable geometry for prediction pur"poaea 

Figure 5.1b: Localised flow velocity and angle of attack 
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8= angle of cable inclination to horizon, 

cp =-azimuthal angle of cable, 

d= , cable diameter, m 

V= upstream windspeed, m/s 

43 = angular velocity, rad/s 

The radial distance between the element and the axis of 

rotation is: 

r= (zcos8) 2 -+ e2 (5.11) 

and the modified azimuthal angle of the element cp' is 

given by: 

(+ tan`' e 
zcos8 

(5.12) 

The local velocity U that acts on the element which is 

rotating at a constant angular velocity c, Figure 5.1b, is 

given by: 

U= fr)2 + V2 + 2Vwrcosg' (5.13) 

The angle of attack a of the velocity vector to the span- 

wise axis of the cable is: 

a=1- (cp' -(p) + tan-1 (_Vsin' -n 4a(n (5.14) 
2 cr + Vcosc' 

The local Reynold's Number Re is: 

Re = PUd (5.15 ) 
µ 

where p is the density of air and µ its viscocity. 
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The forces on a circular cylinder inclined to the flow are 

considered by Hoerner. C561, who presents expressions for 

the coefficient of lift C, 
_, and coefficient of drag Cr,,,, 

acting on a cylinder inclined at an angle, a, to the fluid 

flow. These two force coefficients are both dependent 

upon the coefficient of chordwise force C,, whose value 

was determined by Hoerner from the results of a number of 

tests on wires, cables and circular cylinders. The 

expressions derived by Hoerner for the coefficients of 

lift and drag are: 

CL. = C,, sin2acosa 

Cc, = CCsin3a + 0.02 

The coefficients of tangential 

C,,, can be derived by resolving 

a, such that: 

CT = C, sina = Cocosa 

CN = CLCOSa + Cosina 

Substituting for C,: and C., gives 

CT = -0.02COSa 

CN = CCsin2a + 0.02sina 

(5.16a) 

(5.16b) 

force C., and normal force 

CL, and C. with respect to 

The value of the coefficient of chord 
known to be Reynold's Number dependent. 

the values for Cam. that Hoerner had 

experimental results he considered. 

cables were made from2mm diameter wire 
Reynold's Number even' at the highest 

would not have greatly exceeded 10,000. 

(5.17a) 

(5.17b) 

(5.18a) 

(5.18b) 

wise force C, is 

Table 5.1 shows 

derived from the 

The model V-VAWT 

so that the local 

rotational speeds 
Even the blade 
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Reynold' s No. Cc 

< 2x10'5 1.1 - 1.2 

2x10r, - 4x101° 0.7 

> 4x101- 0.3 

Table 5.1: Coefficients of chordwise force for a range of 

Reynolds Number [56] 

support cables of free-air machines using wires of larger 

diameters would operate at Reynold's Numbers well below 

the critical number of 200,000 Initially a value of 

C(-_ = 1.2 was used, but this was later modified when the 

predicted cable drag was found to be different to that 

actually measured. 

The local force coefficients C-, - and C,,, are calculated with 

respect to the local cable geometry, and they can be 

further resolved into coefficients of radial force 

and tangential force C-, -,,,, � which act repectively radially 

and tangentially to the axis between the vertical axis of 

rotation and the local cable element. These coefficients 

are given by: 

CRAD 
= CNsin (cp' - p) + CTCOS (q' - p) (5.19a) 

CTAN = CNcos(cp'-cp) - CTsin ((p'-(p) (5.19b) 

If the spanwise length of the cable element being 

considered is Sze then the elemental drag torque SQ, is 

given by 
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SQ =S pU= dC-rf>�, Sz (5.20) 

For any given windspeed, 'angular velocity and azimuthal 

position, the total drag acting on the cable is 

Zý 

QC = ý/PV`dCTANSZ 

Z-Zi 

(5.21) 

where z,, is the innermost spanwise ordinate of the cable 

and zr, the outermost spanwise ordinate. Since it is not 

possible to measure the azimuthal variation of cable drag 

torque on the test equipment described above, the mean 

torque must be calculated over one rotation so that values 

of Q,. can be derived only in terms of windspeed and 

angular -. velocity, i. e. : 

QC =f (V, c) (5.22) 

In order to calculate the variation of cable drag torque 

with windspeed and angular velocity, these equations have 

been embodied in the computer program CABLEDRAG, which was 

written and developed in FORTRAN by the author. The 

program essentially considers each cable as a series of 

small elements for which the elemental drag torque SQ. is 

calculated at a finite number of azimuthal positions. The 

mean elemental drag torque for one full rotation is calc- 

ulated from the values of SQ. The total drag torque for 

each cable is then calculated by numerical integration of 

all the elemental torque values. This calculation is made 

for each blade cable with the overall drag torque being 

the sum of all the cable drag torque values. The program 
CABLEDRAG repeats these calculations over a range of 

angular velocities for a constant upstream windspeed. 
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Initially the chordwise force coefficient Ce.. was set to 

Hoerner's value of C, = 1.2 for local Reynold' s Number 

below 200,000. However, when the predicted cable drag 

torque for the model V-VAWT support cables was compared to 

the measured drag torque, as calculated using equation 

(5.10), it is found that the correlation of torque values 

was not good. Since most performance tests of the model 

V-VAWT werd conducted at windspeeds of V= 14 m/s, a value 

of Cc was best established by comparison of predicted drag 

torque with the actual values of cable drag measured at 

V= 14 m/s. This comparison yielded a 'value of C(7, = 1.3, 

which gives good correlation for angular velocities upto 

75 rad/s, as is shown in Figure 5.2. This value of Cr is 

higher than that given by Hoerner and may be due to the 

cable having'-'a rough surface due to its stranded wire 

construction, and/or may be due to a high level of turb- 

ulence around the cables on the downstream pass caused by 

operating in the wake of cables on the upstream pass. 

While it may be possible to establish a value of C,::: that 

may better fit the measured drag torque values, it must be 

remembered that the variation of Cc with Reynold' s number 

maybe significantly more complex that assumed here. The 

variation- of-"Co for, circular cylinders with respect to 

Reynold's Number is well documented, and is by no means 

constant for Reynolds Numbers less than 200,000 as it is 

assumed in this simple prediction model. 

However, since a good correlation between measured and 

predicted values of cable drag torque can be established 

for 'angular velocities upto 75 rad/s using a constant 

value of Cri it is believed that this prediction model can 

be used with confidence at the higher angular velocities 

where equation (5.10) is being extrapolated well beyond 

the range of valid cable drag measurements. At the higher 

rotational velocities the predicted drag torque is sign 
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Figure 5.2: Comparison of measured and predicted cable 
drag losses at a windspeed of V= 14 m/s 
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ificantly greater than that calculated using equation 

(5.10), and therefore the corrections for cable drag 

losses will be much greater if the prediction model 

results are used. 

5.8: The Measurement of the Coefficients of Torque and 

Power 

The ultimate aim of the performance tests was to determine 

the torque and power characteristics of the model V-VAWT, 

and the effect that both tip pitch and tip area has on 

these' characteristics. The variation of wind turbine 

power 'and torque with respect to angular velocity is best 

expressed' 'in terms of the non-dimensional quantities 

coefficient of power CF., coefficient of torque C,: 4, 'and tip 

speed ratio X. These non-dimensional units allow the wind 

turbine'engineer some means of comparing the performances 

of different 'wind turbines or wind turbine geometries. 

However, when making such comparisons, the effect of 

Reynold' s Number must always be considered as CF} and C.:;, 

are both Reynold's Number dependent. 

The torque and power characteristcs of the model V-VAWT 

are determined by. use of the acceleration method. The 

moment of inertia of the model'V-VAWT is determined with 

the blades fixed and all'-tip sections positioned at zero 

pitch. ` With `the moment of inertia determined it is 

possible to commence performance testing of the wind 

turbine. 

The wind tunnel -speed is set' constant, usually at about 

14 m/s, and remains unchanged throughout the test period. 

The ambient' air' temperature and pressure are recorded to 

ensure accurate calculation of the upstream windspeed. 

The model wind turbine is then allowed to accelerate from 
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near rest, during which period its changing angular 

velocity is monitored and recorded with respect to time by 

the PET microcomputer. This procedure is repeated a 

number of times to ensure consistency and reliability in 

the recorded dataset. 

As -previously discussed, the model V-VAWT will accelerate 

to an angular velocity at which the net torque acting on 

the wind turbine is zero. At this operating condition, 

the aerodynamic torque being developed by the wind turbine 

is equal in magnitude to the parasitic drag losses due to 

bearing friction and cable drag. The model wind turbine 

cannot accelerate beyond or operate above this "equil- 

ibrium speed" without assistance, - and therefore to obtain 

torque- characteristics for the model V-VAWT above this 

angular velocity, the turbine had to be driven to higher 

speeds, using the friction drive. At these higher speeds 

the- aerodynamic torque that is developed by the wind 

turbine is smaller in magnitude than the losses due to 

friction and aerodynamic drag; if the turbine was running 

freely, it would tend to retard. So. once the turbine is 

spinning at- as high a rotational-speed as possible, the 

friction drive is released and the retardation of the 

rotor monitored, remembering that it is only during the 

period of free-running that the changing wind turbine 

angular velocity' should be monitored. This high speed 

testing is repeated to-ensure confidence in the dataset 

recorded by the microcomputer. , 

Whether. the wind turbine is accelerating from low speed or 

deccelerating from high speed, the analysis of the angular 

velocity- with respect to time measurements, in order to 

determine the C,:.. -X and C. -% characteristics of the wind 

turbine, is identical. The data-capture and analysis 

program CP--LAMDA, written by David Sharpe, was used to 

perform- this analysis based upon the principles of the 
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acceleration method as previously discussed. This program 

has three major sections each of which can be considered 

in isolation. 

The initialisation sequence, amongst other activities, is 

used to record experimental constants, some of these 

being: .1 

(a) Test Name 

(b) Ambient air temperature 

(c) Ambient air pressure 

<d) Betz manometer water head 

The test name is an alphanumeric string of characters that 

uniquely identifies the filename in which all measured 

data is to be recorded on magnetic floppy disk. A typical 

test name is "T2+153"--which would be the third datafile of 

measurements for two tip sections Q. e. 10% tip area) set 

at a -pitch angle of +15 degrees. . The sign of the pitch 

angle is dependent upon the pitch direction and, for 

consistency, the same- sign convention of VAWTTAY, which 

uses a positive sign for nose-in tip pitch, was used for 

these experiments. 

The ambient air temperature and pressure were measured and 

recorded and used to calculate the air density, p. The 

Betz manometer water head was recorded and used to calc- 

ulate the wind tunnel exit windspeed, V. As previously 

discussed, no blockage corrections have been included in 

the analysis of the measurements since the model V-VAWT 

operates in an open-jet tunnel, consequently the upstream 

windspeed is taken as being equal to V. It was not poss- 

ible to monitor the Betz manometer during testing, so the 

water head measurement was checked at the end of each test 

to ensure that it had not changed; if it had the test 

would be repeated. 
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The datafile is opened on floppy disk, all the test con- 

stants are recorded, and the data capture routine entered. 
When the wind turbine model is running freely, either 

accelerating from rest or deccelerating from high speed, 

the data capture sequence is activated by the experi- 

mentor. The PET microcomputer immediately enters a loop 

in which measurements of angular velocity c, and time t, 

are continuously made and stored in the memory of the 

computer. This sequence can be either terminated by the 

experimentor, or else is automatically terminated by the 

computer if 500 angular velocity and time measurements 
have been made. The program CP-LAMDA then immediately 

enters the analysis sequence. 

Using equations (A2.3) and <A2.4), the angular accel- 

eration co, and the angular velocity co, of the rotor is 

systematically calculated at nearly all the time incre- 

ments at which a measurement was made. Using an index 

number stepwidth of 30, from a dataset of 500 measurements 

a total of 470 instantaneous values of w and co can be 

calculated. The instantaneous net shaft torque is 

calculated using equation (5.1), and by addition of corr- 

ections for cable drag torque and bearing friction 

torque Q, w, the magnitude of each being calculated using 

equations (5.21) and (5.9) respectively, the instantaneous 

aerodynamic torque Qmm, is determined: 

QA = Q. + QC + QP. (5.23) 

The instantaneous tip speed ratio X,,,, is given by: 

ýi .= 
oR (5.24) 

and the instantaneous torque coefficient C,:;,: L , is given by: 
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_. CQi - QQ'I YipV2AR 
(5.25) 

Since upto 470 instantaneous values of C,. 4,. and X., may be 

determined from one dataset, the C,:, -X characteristic of 

the wind turbine is summarised by binning all instantenous 

measurements with respect to discrete values of X. The 

value of C,:; for each tip speed ratio bin being the mean of 

the instantaneous C,:, values calculated for all X,. within 

the width of the bin. The results presented here have 

been summarised into tip speed ratio bins of width 0.125, 

consequently the value of C,: 4 is the mean of often in 

excess of fifty instantaneous C,,. values. 

The analysis sequence includes the recording of all 

measured values of CA and t to floppy disk and the plotting 

of the Cp-X characteristic on the screen of the computer 

monitor, where the power coefficient C1. is given by: 

Cý = C�ý (5.26) 

The visual plot of C, -X enables the progress with which 

the complete Cps-X characteristic is being established to 

be monitored, and allows the validity of the measurements 

to be continuously checked. 

Once the analysis of the dataset is complete, the option 

to terminate testing is given. However, if testing is to 

be continued, the data capture and analysis sequences are 

repeated. The binned values of C,: a are further modified by 

the addition of more instantaneous measurements and the 

number of measurements for each bin increases. When the 

Cf. -% characteristic is considered to be complete, the 

testing program can be terminated. At this time, all the 

binned values of C,., are recorded to floppy diskette and 

the datafile closed. 
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The final screen plot of C,,. -> can be recorded on paper 

using a screen dump facility which transmits a pixel-image 

of the screen to a dot matrix printer. A tabulated 

summary of the results is also produced and recorded on 

paper by the printer. 

The test sequence would generally take half an hour to 

complete, most of this time being used to record on floppy 

diskette the measurements of cc and t, and to complete the 

Cr. -X analysis. In retrospect, the analysis need not be 

undertaken at the time of experimentation, since valuable 

wind tunnel time is being lost while the computer under- 

takes the numerous calculations involved. However, the 

validity of all the measurements was constantly being 

assessed by observation of the C,. -X screen plot, and 

therefore it was usually easy to identify when experi- 

mental errors had occurred. Typical errors included: 

(a) Shutdown of the wind tunnel during Data Capture 

(b) Starting Data Capture while the rotor was still 

being accelerated using the friction drive 

<c) Movement of the tips in pitch because of 

inadequate securing of the grubscrews 

All these errors were easily identified by observation of 

the C, -X screen plot, and while one dateset of measure- 

ments may be invalid, it was often possible to continue 

using the previously recorded datasets with confidence. 

With the C1.. -X characteristic completely determined, the 

geometry of the'rotor was altered and the test sequence 

repeated for the new tip area/tip pitch setting. Some 

forty tip pitch angle/tip pitch area combinations were 
investigated during the two week period of wind tunnel 

testing of the model V-VAWT. The data for some of these 

rotor geometries is incomplete, as a number of minor 
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experimental problems were encountered during the first 

few days of the 'test programme, the most significant being 

the degradation until eventual failure of the friction 

drive' 'mechanism, which initially was not designed for the 

continuous usage required here. The consequence of this 

failure was that during early tests, the model V-VAWT 

could not be driven to high speed when tip pitch angles 

were significantly large. When the friction drive mech- 

anism was eventually upgraded and replaced, the rotor 

could be driven to high rotational speeds even with large 

tip pitch angles and tip areas. Unfortunately, there was 

little time at the end of the test program to repeat' the 

measurements for the tip pitch/tip area combinations 

affected by the, failure of the friction drive. 

For some tip pitch angle/tip area combinations the 

aerodynamic torque was so low that the rotor acceleration 

was very small and that in the short time available it was 

not possible to ensure that measurements had been made at 

all possible tip speed ratios. " The CP-LAMDA computer 

program was modified slightly to help overcome this 

problem, but there are still some gaps in the dataset 

where measurements were not made. 

In a two-week period during'January to February 1985, some 

forty performance tests of the model V-VAWT were completed 

at Queen Mary College, London. Little` or no time was 

available to repeat tests or verify results, but to ensure 

that the model. V-VAWT performance was not degraded during 

the experimental period, the measurement of its C. -X char- 

acteristic for.. a zero-pitch angle geometry was performed 
both at the start and repeated at the end of the two-week 

test programme. 
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Table 5.2a: Measured Variation of Power Coefficient for 

Model V-VAWT with 5% Blade Tip Area 
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Table 5.3a: Measured Variation of Power Coefficient for 
Model V-VAWT with 10% Blade Tip Area 0 
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Table 5.3b: Measured Variation of Torque Coefficient for 

Model V-VAWT with 10% Blade Tip Area 
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Table 5.4a: Measured Variation of Power Coefficient for 
Model V-VAWT with 15% Blade Tip Area 
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Table 5.4b: Measured Variation of Torque Coefficient for 

Model V-VAWT with 15% Blade Tip Area 
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Figure 5.3a: Measured C, x-X characteristic for model V-VAWT 

with 5% tip area and positive pitch angles 
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Figure 5.3b: Measured C,., -X characteristic for model V-VAWT 

with 5% tip area and positive pitch angles 
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Figure 5.3c: Measured CF. -X characteristic for model V-VAWT 

with 5% tip area and negative pitch angles 
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Figure 5.3d: Measured C,. a-X characteristic for model V-VAWT 

with 5% tip. area and negative pitch angles 
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Figure 5,4a: Measured CF,. -X characteristic for model V-VAWT 

with 10% tip area and positive pitch angles 
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Figure 5.4b: Measured C, ", -X characteristic for model V-VAWT 

with 10% tip area and positive pitch angles 
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Figure 5.4c: Measured C, -? characteristic for model V-VAWT 

with 10% tip area and negative pitch angles 
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Figure 5+ 4d: Measured C,., -X characteristic for model V-VAWT 

with 10% tip area and negative pitch angles 
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Figure 5.5a: Measured CF::. -X characteristic for model V-VAWT 

with 15% tip area and positive pitch angles 
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Figure 5.5b: Measured C,:, -X characteristic for model V-VAWT 

with 15% tip area and positive pitch angles 

- 183 - 



o co o a) O Lo 
N .M c0 

O4 

Q) b %4 
Q ., 

<1 o 
d0 

d 9D O 
a CD O 

<EMO 

o 
O(E) o 

Can o0 ®C 
®O. 

RD OO 
®Op 

®O 
® 

®O 
®Op 

ED Op 
®Op 

®o 
®Op 

®O O 
SDD O 

[$D O 
®O® 

a, Q 
19 

z4 pp9off 
23 

JA1 

0 
0 

0 
0 

0 
0 

N0 
U61) 

0-4 
0Ö In 

"0 
Op000ý 

.. L! (_r. ic zrýnoa 

0 

0 

0 

0 

0 
N 

0 

O 

0 

0 H h 

A 
W 
ºý 

y 
H 

Figure 5.5c: Measured C,:.. -% characteristic for model V-VAWT 

with 157. tip area and negative pitch angles 
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Figure 5.5d: Measured C,., -X characteristic for model V-VAWT 

with 15% tip area and negative pitch angles 
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5.9: Presentation and Discussion of the Performance Test 

Results 

The initial analysis of the experimental results used the 

measured cable drag corrections to determine the aero- 

dynamic performance of the V-VAWT rotor. The experimental 

results were promising and so a sample were presented in 

technical papers at a number of wind and solar energy 

conferences C 57,53,59] . These papers are included for 

reference in Appendix 3. 

Subsequently, the mathematical model of cable drag was 
developed and validated by the author. The cable drag 

model indicated that cable drag losses were larger than 

would be calculated using equation (5.10) at high rotat- 

ional speeds. Consequently, all the measured values of C,::.. 

and C, were modified to include cable drag losses calc- 

ulated using the computer program CABLEDRAG. It is these 

modified results that are presented in full in Tables 5.2, 

5.3 and 5.4, and plotted in Figures 5.3,5.4 and 5.5. 

All performance measurements were made with the wind 

tunnel speed constant. It was not possible to ensure that 

each test was carried out at exactly the same windspeed as 

previous tests, however, the speed of the tunnel fan was 

varied to try and maintain a similarity of windspeeds 
between tests. The tunnel exit velocity was generally 

measured as V= 14 m/s. At this windspeed, the wind 

Reynolds Number of the model V-VAWT is WRe = 73,000. 

Since the results are presented in a non-dimensional form, 

they can be compared with each other without consideration 

of Reynold's Number changes. However, the influence of 
Reynolds Number must be considered when these performance 

results are compared with those of larger configurations. 
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The results of the tests made with zero blade tip pitch 

offset ° are-shown- in all figures. These results allow 

comparison of the, effects of variable pitch and tip area 

on the performance of the model, V-VAWT to be made. The 

results of measurements made with zero blade tip pitch 

offset. also, allow the performance of the model V-VAWT to 

be - compared , with the characteristics of previous V-VAWT 

models and other VAWT configurations. Therefore, the 

performance characteristics with zero blade tip pitch 

offset require detailed consideration before continuing 

with the discussion of the other test results. 

5.9.1: Discussion of the Performance Test Results with 

., Zero Blade. Tip Pitch Offset 

The. performance. characteristics for the model V-VAWT with 

zero blade tip pitch offset are recorded in Tables 5.2, 

5.3 and 5.4, and illustrated in Figures 5.3,5.4 and 5.5. 

These results show the power and torque curves steadily 

rising to and falling from respective peak values, with 

the torque curve showing, a small, but distinct, plateau in 

the range . 
X-. =t. 2.50, to X _, 3.125. In this tip speed ratio 

range,, the maximum. power and torque coefficients are 

observed to be: 

ýP 
MAX = ; 

0,173 
.@ 

X= 3.125 (5.27a) 

Cq MAX =. 0.057 0 X_ . 2.875 (5.27b) 

The test,, measurements do not extend beyond a tip speed 

ratio of %, = 4.5, at which speed ratio the model V-VAWT is 

still. developing a . positive torque. The runaway tip speed 

ratio must be estimated by extrapolation of the torque 

coefficient results beyond X=4.5 until Cf, = 0, and its 

value is determined to be Xr;,,,,, = 4.7. 
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At low tip speed ratios the high torque developed by the 

model V-VAWT is clearly seen. The validity of the high 

torque measurement at >=0.125 is in doubt because its 

value is derived from only twelve measurements that fell 

into this tip speed ratio bin. However, all the other low 

tip speed ratio measurements are considered valid, and 

show a rising torque characteristic that remains positive. 

The value of the torque coefficient at zero tip speed 

ratio is estimated by extrapolation to be: 

Cri = 0.080 @X=0 (55.2t8) 

The high torque characteristic of the V-VAWT configuration 

gives the turbine its excellent self-starting capability. 

This was observed throughout the testing of the V-VAWT 

model, as mechanical assistance was not required to 

accelerate it from rest to its-normal operating speed. 

When these results are compared with those presented by 

Sharpe and Taylor [191 for a previous model V-VAWT tested 

in the same wind tunnel, the maximum power coefficient, 

torque coefficient and runaway tip speed ratio measured 

here are observed to be significantly smaller in magni- 

tude. The considerable difference between the performance 

of the two model V-VAWTs is clearly seen in Figure 5.6. 

Conversely, the performance of the model tested here shows 

the torque developed in the low tip speed ratio operating 

regime to be larger in magnitude. It is unfair to compare 

the results -of �°-these two V-VAWT models directly because 

their geometries differ in many ways. The variation in 

performance characteristics are due to the different 

aerofoil sections used for. the turbine blades, and the 

difference in both turbine solidity and blade aspect 

ratio. 
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1 

The"-NACA0025 section used-here generally incurs a -larger 

aerodynamic drag penalty than the NACA0018 used by Sharpe 

and Taylor, thus the torque developed in the higher tip 

speed ratio range is considerably smaller for the thicker 

blade section. A similar observation can be made from the 

experimental results öf tests performed on small curve 

bladed Darrieus. VAWTs by Sharpe [20], Figure 5.7. Four 

model VAWTs, each geometrically similar, but with blades 

of different "thicknesses were tested. These tests showed 

the peak "power coefficient for the NACA0018 section to be 

larger than that for the thicker NACA0021 section, so the 

similar 'difference between the two model V-VAWT test 

results is "not' suprising. 

The larger solidity of' a. = 0.34 for the model V-VAWT 

tested here contributes to both its superior starting 

torque performance and to the peak power coefficient 

occuring at a lower tip speed ratio when compared to 

Sharpe and Taylor's model V-VAWT, which has a solidity of 

only o=0.28. The superior starting torque character- 

istics of high solidity VAWTs has been adequately demon- 

strated by both Sharpe [23] and Sarre [60], though the 

effect of blade thickness on starting torque is incon- 

clusive. 

Small, aspect ratio blades severely affect the peak power 

coefficient achievable for a particular configuration and 

reduces the- -runaway- tip speed ratio, again clearly demon- 

strated for- H-VAWTs by Sarre* [601. Sharpe and Taylor's 

study of the V-VAWT concept shows that both blade aspect 

ratio to a larger, and blade tangential offset to a lesser 

degree affect the overall performance of the V-VAWT. The 

model used here has blades of aspect ratio AR = 7.7 which 

are attached to the hub at the 30% chord position at their 

root. Sharpe and Taylor' s model had blades with AR = 9.2 

attached at the 50% chord position. 
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Since the model V-VAWTs differ in many ways, further 

comparison of the test results for these two models is 

meaningless unless the effects of each describing para- 

meter can be isolated. The above comparison merely 

attempts to show that the performance test results of the 

model V-VAWT tested here are not unreasonable, especially 

in light of the previous V-VAWT test results and generally 

observed VAWT operating characteristics. 

Notwithstanding the differences in performance discussed 

above, the values of peak power and torque coefficient are 

considerably lower than would be expected of larger, free- 

air machines. The greater efficiency of larger V-VAWTs is 

due essentially to Reynolds Number effects which cannot be 

accounted for in the non-dimensional power coefficient and 

tip speed" ratio terms. 

All the tests 'reported here were conducted at a wind 

Reynolds Number of WRe =, 73,000. The free-air 5kW V-VAWT 

operating' in a similar windspeed of V= 14 m/s would be 

running with a wind Reynolds Number of WRe = 315,000, and 

a 100kW V-VAWT of WRe c 1,250,000. Sharpe and Taylor 

demonstrated the effect of Reynolds Number by comparing 

predictions of their model test results (WRe = 60,000) 

with 5kW and 100kW V-VAWT configurations (WRe = 250,000 

and WRe = 1,000,000 respectively), reproduced in Figure 

2.12. The rotor geometries" of the latter two configur- 

ations are exactly the same, therefore it is only the 

influence of WRe that determines the differences in the 

prediction results. Consequently, the low aerodynamic 

efficiency of the model tested here should not prevent the 

test results being "extrapolated" to larger sized machines 

provided the differences in WRe are considered. 
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5.9.2: Discussion of the Performance Test Results with 

Variable Blade Tip Pitch Offset 

The experimental test results plotted in Figures 5.3.5.4 

and 5.5 clearly show the effects of positive pitch, nega- 

tive pitch, and blade tip size on the overall perfomance 

of the model V-VAWT. It is worth remarking that the 

author considers the results to be of excellent quality 

both in reliability and accuracy. This is due to each 

"measurement" being averaged from many instantaneous 

measurements falling into the appropriate tip speed ratio 

bin, and the careful use of numerical methods in the 

angular acceleration calculations. All CF. -X and C,, -X 

curves are smooth and show few invalid measurements. 

Considering the positive pitch angle results first, it is 

clear to see that progressive increases of nose-in pitch 

reduces the power and torque output of the rotor across 
the whole tip speed ratio range. The effectiveness of the 

tip increases with tip area, as seen by the larger power 

reductions evident for the large tip area results. The 

power output of model V-VAWT is highly sensitive to vari- 

ations of pitch angle, even for the smallest tip area. 
More importantly, the torque developed by the rotor can be 

completely killed, off across the whole tip speed ratio 

range with pitch angles of 25', 20' and 15' for the 5%, 

10% and 15% tip areas respectively. This condition holds 

true for starting torque, where negative torque coeff- 

icents are observed for the low tip speed ratio results. 

This characteristic ensures that overspeeding of the rotor 

can be controlled and aerodynamic braking to a standstill 

can be effected at any windspeed. Positive pitch angle 

variations, clearly offer the V-VAWT designer complete 

power and speed control capability with relatively small 
tip areas. 
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The negative pitch angle results show some interesting 

effects, notably that nose-out pitch offsets can actually 

increase power output. The increase in power output is 

most notable at the high speed end of the tip speed ratio 

range where the runaway tip speed ratio is much higher for 

small nose-out pitch offsets of -3', - -5' and -10'. Power 

output increases of approximately 18% are observed at 
X=4.0 for pitch offsets of -5', though the best increase 

in peak power output observed is only 2%. If the nose-out 

pitch is increased beyond -10', a. decrease in power and 

torque output becomes apparent. Unlike the nose-in pitch 

results, the reduction in power output only occurs at high 

tip speed ratios. As tip speed ratio decreases, the power 

regulation effect diminishes such that the starting torque 

of the rotor is actually enhanced by large negative pitch 

offsets. Unfortunately, the experimental data is sporadic 

at the very low tip speed ratios and it is difficult to 

determine which pitch angle offsets maximise starting 

torque. These experimental results indicate that energy 

capture gains con be made by operating the blade tips with 

small nose-out offsets. Aerodynamic braking is, however, 

limited, and considering the evidence, complete braking to 

a standstill cannot be achieved. Enhancement of starting 

torque is clearly possible, though it is difficult to 

assess the gains made at the very lowest tip speed ratios. 

The-variable pitch experimental results have clearly 

demonstrated the suitability of partial-span pitch control 

for both power and speed control of the V-VAWT. For the 

model tested here, it has been demonstrated that complete 

control can be achieved ý with a tip area of only 5% of the 

total blade area. Positive, nose-in pitch angles provide 

complete power regulation at all rotor speeds, while small 

nose-out pitch angles can be used to enhance power output 

at high rotor speeds; low speed power enhancement has also 
been demonstrated. While the overall power regulation 
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effect is not suprising, the author had not considered 

that the rotor power output would be so sensitive to small 

tip pitch angle changes as has been observed. Increases 

of power with small nose-out pitch offsets had already 

been observed by Stacey, and Musgrove [39], so it was not 

unexpected to. see this effect here, but the enhancement of 

starting torque with larger nose-out pitch offsets had not 

been previously observed. 

The effectiveness of variable pitch tip control for larger 

V-VAWT. configurations requires the influence of Reynolds 

Number to be considered. As with the zero pitch perform- 

ance, there will be a general increase in the power output 

of the V-VAWT rotor as wind Reynolds Number increases. In 

this event, it is unlikely that 5% tip areas will be able 

to provide complete power and speed regulation as achieved 

here. The Westwind VAWT has been shown to have inadequate 

control. capability with small tip areas C41], so for 

V-VAWT applications . 
larger tip areas will be required. 

The range of tip pitch angles evaluated was limited to a 

maximum of ±309; the effect of pitching the tips beyond 

this range, has not, been demonstrated, but it is assumed 

that the reductions. in power output at high tip speed 

ratios would continue. The speculation about the effect- 

iveness of variable tip pitch control on larger V-VAWTs 

can only be continued with any worth if evidence of its 

control effect can be presented. One approach is to use 

VAWTTAY for predicting the effect of variable tip pitch 

control on. full . scale V-VAWTs. However, before proceeding 

to the analysis of larger V-VAWTs, the validity of VAWTTAY 

predictions of,, tip 
, 
pitch control effects must be verified. 

Therefore a theoretical. analysis of the model V-VAWT is 

required, , and a comparison between the theoretical results 

and the experimental results presented here to be made. 

Only when satisfactory correlation is achieved may VAWTTAY 

be used for design studies of full scale V-VAWTs. 
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5.10: Theoretical Predictions of Model V-VAWT Performance 

The aerodynamic performance prediction model VAWTTAY 

enables theoretical CF.. ->. and C, -X characteristics of 

V-VAWT configurations to be determined. Whilst the blade 

geometry program WRITEBLADE allows preset blade pitch to 

be defined i". e. twist, in the original version of the 

program, variation of blade pitch was not accomodated in 

any way. To predict the effect of tip pitch variation on 

the performance of a V-VAWT rotor, a tedious but effective 

approach to the analysis was adopted. 

To predict tippitch effects for each tip area, each pitch 

angle variant had to be defined in a separate blade tip 

geometry file. The' fixed pitch portion of the blade was 

also modelled, but in a separate file. The prediction 

program`VAWTTAY was run for each blade geometry file, and 

the theoretical C,. ->, and C, --X results for each geometry 

stored in separate results files. The results for the 

fixed pitch portion of the blade and the results for a 

particular tip area and pitch angle were numerically 

combined to give an overall C,:.. -X and C,:, ->, performance 

characteristic for that particular tip variant. This 

process was repeated for all pitch areas and pitch angles 

considered. This required numerous executions of the 

programs which -was-tedious and repetitive to undertake. 
Subsequent to this initial analysis, the author has made 

some significant changes to the modus operandi of the 

computer programs WRITEBLADE 'and VAWTTAY. A considerable 

improvement in both time and resources has been achieved, 

allowing theoretical studies of tip pitch variation to be 

completed with greater effectiveness. These changes will 
be considered further in Chapter Seven. 

The results of"the initial theoretical study of the model 
V-VAWT are shown in Figures 5.8,5.9,5. 10 and 5. 11. 
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Figure 5.8: Theoretical C, --X characteristic for model 
V-VAWT with 5% tip area 
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Figure 5.9: Theoretical Cam. -> characteristic for model 
V-VAWT with 10% tip area 
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Figure 5.10: Theoretical C.. -X characteristic for model 

V-VAWT with 15% tip area 
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The CF. -X characteristics have been determined for constant 

windspeed operation, with a wind Reynolds Number corres- 

ponding to the test conditions of WRe == 73.000. The blade 

tip geometries for 5%, 10% and 157. tip areas with pitch 

angle variations in increments of 5' have been considered. 

The theoretical results are encouraging at first sight, 
because the moderation of power output with nose-in pitch 
is clearly observed, as is the enhancement of power output 

at high tip speed ratios with small nose-out pitch. The 

enhancement of power at lower tip speed ratios, however, 

is not demonstrated. These results, when considered in 

isolation, indicate that the prediction program VAWTTAY is 

capable of predicting the effect of tip pitch variation on 
V-VAWT performance. However, the accuracy and validity of 

the predictions are in doubt when the theoretical results 

for zero pitch are compared to the corresponding experi- 

mental results, Figure 5.12. 

The large discrepancy that can be seen between the theo- 

retical and experimental results at high tip speed ratios 

was considered unacceptable. It is due to the differences 

in aerofoil section used for the theoretical analysis and 

that used in the construction of the model V-VAWT. The 

only aerofoil data suitable for use with VAWTTAY at his 

stage of the project was that for the NACA0012 aerofoil 

section, whereas the blades of the model V-VAWT were made 

with the thicker NACA0025 section. 

To ensure that the prediction model VAWTTAY could be used 

with confidence for predicting the performance of larger 

V-VAWT configurations, it was vital to prove that the 

discrepancy between the theoretical and experimental 

results is due to the aerofoil data alone, and not to some 

error in the analysis program itself. 
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The theoretical results for the 5%, 10% and 15% tip areas 

show trends that are consistent with the experimental 

evidence. The discrepancy between the two sets of results 

is largely due to differences in the numerical values of 

the C,:.. -% curves. This suggested that the prediction 

program VAWTTAY itself is reliable, and that the discre- 

pancy is due to the inappropriate use of NACA0012 aerofoil 

data. 

,.., Fax At high tip speed ratios, the reduction in C,:.. from C. 

as h increases is due to the drag losses incurred at low 

angles of attack on the blade. The inferior performance 

of the model V-VAWT to that predicted is due to the larger 

drag penalties incurred by using the thicker NACA0025 

section in preference to the NACA0012 section. The influ- 

ence of blade thickness on VAWT performance can be seen in 

Figure 5.7. If the predictions are to show better corre- 

lation to the measured results, then there is a clear need 

for NACA0025 aerofoil data in a format suitable for use 

with VAWTTAY. However, the availability of good aerofoil 

data for use with VAWT performance prediction programs is 

limited, and is a problem familiar to VAWT experimentors 

and designers. 

The most popular source of aerofoil data suitable for VAWT 

applications is that compiled by Sheldahl and Klimas 126] 

at Sandia National Laboratories. This data includes aero- 

foil characteristics of seven NACAOOXX sections for angles 

of attack upto 180' over a wide range of Reynolds Number; 

the set includes data for the NACA0025 section. This data 

was used to generate a NACA0025 look-up table of aero- 

dynamic force coeeficients that was suitable for use with 

VAWTTAY. The predictions using the Sandia NACA0025 are 

also shown in Figure 5.12. Again the discrepancy between 

theoretical predictions and experimental results is clear 

to see at. the higher tip speed ratios. 
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The disappointment of being unable to validate the pre- 

diction model by correlating the theoretical results to 

the experimental results was somewhat alleviated when it 

was realised that the NACA0025 data compiled by Sheldahi 

and Klimas had been theoretically generated.. The aerofoil 

characteristics for this thick section had not been veri- 

fied by experiment, though some of the sections considered 
in [26] had been wind tunnel tested. Since no other 
NACA0025 data could be found to verify the Sandia data 

across the broad range of Reynolds Number that it covers, 

the author had no means of evaluating its validity. Since 

VAWTTAY overpredicts the power output of the model V. VAWT 

at high tip speed ratios when using the Sandia data, the 

aerodynamic characteristics of this dataset are clearly 

unrepresentative of the characteristics of the model 

V-VAWT blades themselves. If the theoretical predictions 

using VAWTTAY are to be matched with the experimental 

results presented here, the aerodynamic characteristics of 

the blade section must be determined, and a dataset suit- 

able for use with VAWTTAY derived. This task was duly 

undertaken by the author and is reported in the following 

chapter. 

5.11: Conclusions 

The experimental results presented here have clearly 

demonstrated the suitability of partial-span pitch control 

as a means of regulating the power output the V-VAWT. The 

results show that full aerodynamic braking can be achieved 

with only small tip areas; a 5% tip area being adequate 
for the model V-VAWT. Whether such small tip areas will 

provide similar results will depend upon the sensitivity 

of the V-VAWT to Reynolds Number effects. The experi- 

mental results also indicate that small nose-out tip pitch 

offsets mhy increase the power output of the rotor. 
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The aerodynamic performance prediction model VAWTTAY has 

been shown to be, in principle, suitable for predicting 
the effects of partial span pitch control. However, a 
discrepancy between measured and theoretical results is 

observed at high tip speed ratios; this was considered 

unacceptable by author. A possible cause of the differ- 

ence is the shortage of good aerofoil characteristic data 

for use with VAWTTAY. It has, therefore, been identified 

that additional characteristic aerofoil data is required. 
Only when the correlation between measured and theoretical 

results is better, can VAWTTAY be considered seriously for 

tip pitch design studies of larger V-VAWT configurations. 
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Chapter Six: Determination of the Aerodynamic Character- 

istics of a NACA0025 Aerofoil Section 

6.1: Introduction 

The aerodynamic prediction model VAWTTAY uses two- 

dimensional static aerofoil data to calculate the local 

aerodynamic forces acting on a blade element. The local 

angle of attack of the relative flow to the blade element 

and the local Reynolds Number are. crucial in determining 

the magnitude of the local aerodynamic forces from a look- 

up table of coefficients of chordwise force C-, -. and normal 

force CN. While 'a number of dynamic effects must be. 

accounted for in predicting the behaviour of a vertical- 

axis wind turbine, the use of two-dimensional 'aerofoil 

data for-such predictions has been reasonably successf. ul 

as Sharpe 'has- demonstrated, [18]. The prediction model 

VAWTTAY has been developed using two-dimensional data for 

the NACA0012 aerofoil section which Sharpe compiled from 

various sources for his initial studies of Darrieus type 

vertical-axis wind turbines 123]. This data is relevant 

for angles of attack of ±180" for a range of Reynolds) 

Numbers. 'from-- 40,000 to 2,760,000. This broad range of 

characteristics is suitable for the operating conditions 

of most, vertical-axis wind turbines. 

Until recently, -the NACA0012 data continued to be used for 

all aerodynamic performance predictions of the V-VAWT 

using, VAWTTAY, even though the wind tunnel models have all 

been made with thicker aerofoil sections. Consequently, 

it has never been possible to exactly match experimental 

results to predicted results derived using VAWTTAY. The 

continued use of the NACA0012 data, despite the discre- 

pancy between predicted and measured results, is due to 

the short supply of two-dimensional aerofoil data for the 

other blade sections. The most commonly used aerofoil 
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sections for vertical axis wind turbine blades are those 

of the symmetric four-digit NACA series, with special 
interest being directed towards the NACA0015 and NACA0018 

sections. These two sections combine good aerodynamic 

characteristics with good structural properties, which is 

necessary in wind turbine design. 

Major studies of the symmetric four-digit NACA series 

aerofoil sections were restricted, until more recently, to 

those made at the Langley Memorial Aeronautical Laboratory 

in 1937 by Jacobs, and Sherman [61]. The lift and drag 

characteristics for a number of symmetric sections was 
derived by experiment,, by these authors. The range of 

results is restricted to small angles of attack, with few 

measurements being made beyond stall, but the data does 

cover a wide range of Reynolds Number. In deriving his 

NACA0012 data for use with his early versions of VAWTTAY, 

Sharpe encountered a number of difficulties when using the 

Jacobs and Sherman, data, [233. In order to derive the a 

consistent look-up table of coefficients of normal force 

and thrust force for the NACA0012 section, Sharpe had to 

cross-correlate more recentlt derived aerofoil data with 
that Jacobs and. Sherman' s ,, original data., 

The more recent studies of the symmetrical four-digit NACA 

have concentrated on the NACA0012, NACA0015 and NACA0018 

sections, though Sheldahl and Klimas 126] also present 

performance data for the thicker NACA0021 and NACA0025 

sections. Other than data presented by Bullivant 162], 

this is the only source known to the author of aerofoil 
data for the NACA0025 section. Bullivant's experimental 
data is restricted to small angles of incidence at high 

Reynolds Number, whereas the Sheldahl and Klimas data is 

tabulated for angles of incidence upto 30' over a wide 

range of Reynolds Number. It also includes a single set 

of data for the post stall characteristics of the section 
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upto angles of attack of a= 180'. Only one such set of 
data is provided since it is generally accepted that the 

post stall behaviour of an aerofoil is independent of 
Reynolds Number. 

The NACA0025 data presented by Sheldahl and Klimas, 

however, is synthesize using the Sandia National 

Laboratories computer code based upon the Eppler model. 
This computer code is used for the linear and early non- 
linear portions of the CL. -a curves but none of the data 

for the NACA0025 section has been verified by experimental 

measurement. The computer code has been used to generate 
data for the, finer sections reported, but in most cases 
the data includes experimental results from wind tunnel 

tests of the aerofoil sections. Since the NACA0025 

dataset covers a wide range of Reynolds Number and angles 

of attack upto 180' it is highly suitable for use with 
VAWTTAY, though the performance predictions using this 

data should be treated with caution until. such time as the 

aerofoil characteristics have been verified by experi- 

mentation. 

Since no experimental data could be found for the NACA0025 

section for low Reynolds Numbers experienced by the model 

V-VAWT, nor for angles of attack upto a= 180' , the theo- 

retical performance predictions of the model V-VAWT using 
this data has not been considered particularly valid. The 

discrepancies between theoretical and experimental results 

were. illustrated in the previous chapter. The consider- 

able difference between results observed at high tip speed 

ratios identified the need for the aerodynamic character- 
istics of the NACA0025 section to be determined by experi- 

mentation. This chapter describes the implementation of 

such an experimental programme including the presentation 

of the, test results and the discussion of their validity. 
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6.2: Construction of a NACA0025 Aerofoil Section 

The primary objective of the experimental programme was to 

determine the static aerodynamic characteristics of a 

NACA0025 aerofoil for a range of operating conditions 

similar to those experienced by the blades of the model V- 

VAWT. The blades were of 80mm chord and operated over a 

range of tip speed ratios upto a maximum of X=4.5 in 

windspeeds of V= 14 m/s. Consequently the local angle of 

attack could vary to a= ±180' but the local Reynolds 

number would not exceed Re = 300,000. 

The blades of the model V-VAWT were made from English Ash 

and encapsulated a high tensile strength aluminium alloy 

spar. This construction was essential for the dynamic 

operating conditions in which the blades were designed to 

perform. However, for the determination of the aero- 

dynamic characteristics of a NACA0025 section, the blade 

need only be designed to withstand the aerodynamic forces 

that would act upon it in the wind tunnel. So the blade 

was simply constructed from mature English Ash that had 

been in storage for some years. The wood was closely 

grained and dry which meant the blade was dimensionally 

stable even-after the NACA0025 profile had been formed. 

The wind tunnel used for these tests was the NQ 2 closed- 

return wind tunnel in the Department of Aeronautical 

Engineering, Queen Mary, College, London. The working 

section has dimensions 1016 mm by 762 mm (40 inches by 30 

inches), and the maximum -windspeed in this section that 

can be achieved is V= 40 m/s. Ideally at least two 

blades of different chordlengths were needed to ensure 

that the measurements would cover the range of Reynolds 

Number experienced by the model V-VAWT. However, the 

limited availability of wind tunnel time for these tests 

would only allow measurements to be made on one aerofoil 
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section. The choice of chordlength was crucial in 

determining the range of Reynolds number that could be 

investigated. The choice of an 80 mm chordlength allowed 

measurements to be made for Reynolds numbers between 

80,000 and 250,000, and since this is the same chordlength 

as the blades of the model V-VAWT, the same profile 

template could be used during blade manufacture. Since 

all the blades have been made by hand, using the same 

template, the blade for these tests will be of similar 

quality in profile shape and surface finish to the model 

V-VAWT blades. The aerodynamic data derived from these 

tests will therefore be particularly appropriate for the 

prediction of the model V-VAWT performance using VAWTTAY. 

Two methods of measuring the aerodynamic characteristics 

of an aerofoil section were considered, these being: 

(a) two-dimensional, pressure measurements 

(b) three-dimensional, balance measurements 

The first method involves measuring the pressure distri- 

bution around the blade surface and, by integration of the 

pressure with respect to chord and thickness, the coeff- 

icients of normal and tangential force can be determined. 

This method is highly suitable for all angles of attack, 

including those beyond stall. However, since it is not a 

direct measurement of the aerodynamic forces acting on the 

aerofoil, profile drag has to be measured separately and 

all tangential forces modified as appropriate. The 

accuracy of the CN and CT results is highly dependent upon 

the number of pressure measurements made around the blade 

surface, the accuracy of each measurement, the accuracy of 

the pressure integration method, and the accuracy of the 

profile drag corrections. This method is considered to be 

two-dimensional since the blade extends across the working 

section and intersects the section walls. 
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The second method involves supporting the blade on a force 

balance--from which direct measurements of lift and drag 

forces can -be made. ' The measured forces are those acting 

on the whole blade-and therefore are considered as three- 

dimensional measurements. Since the blade must be free 

from support, other than that of the balance, three- 

dimensional flow is experienced as air passes between the 

lower and upper blade surfaces around the blade tips. 

Corrections for this effect must be considered when deter- 

mining values of Cam,. and Co. These measurements can be 

resolved with-respect to the angle of incidence to deter- 

mine values of CN and CT, however, since direct measure- 

ments have, been made of the forces acting on the blade, 

the value of C-, - will include both pressure force and 

profile drag. The range of angles of attack which the 

balance can operate is usually restricted to approximately 

a= 40'. If measurements were to be made for angles of 

attack upto a= 1800, the blade would have to fixed to the 

balance with preset pitch to enable measurements to be 

made-for-the high angles of incidence. 

The two-dimensional, pressure measurement method was 

considered most suitable because it is more reliable for 

measurements at- high 'angles of attack where the correct- 
ions 'for blade tip' effects on three-dimensional testing 

become more difficult to evaluate as flow separation and 

stall occur. It was, however, intended that three- 

dimensional, balance measurements would be made to confirm 

the pre-stall characteristics of the blade as determined 

by the two-dimensional method. 

The pressure measurement method requires as large a number 

as possible, of static pressure tappings be located on the 

blade surface. Since the blade was relatively small and 

constructed with' a solid cross-section, the simplest 

method-of incorporating surface pressure tappings into the 
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blade was by laying many small-bore brass tubes into 

spanwise slots cut into the blade surface. The tubes were 

retained in the slots with epoxy filler and the NACA0025 

profile restored to its original dimensions and finish. 

Into each tube was drilled a small pressure tapping, and 

in all twenty such tappings were able to be made in the 

blade surface. The distribution of these tappings was 

severely restricted by the size of the brass tubes with 

most of the tubes being placed closely around the leading 

edge and mid-chord positions; it was extremely difficult 

to place a tapping any closer to the trailing edge than at 

the 80% chord position. Each tube ran from an approximate 

mid-span position in a spanwise direction to extend 100mm 

beyond the blade edge. The open tubes at the blade 

endings could be conveniently connected to the pressure 

measurement device using small-bore rubber tubes. 

Once the blade had been constructed in the manner 
described, the aerofoil profile was checked and a wax 
finish applied to the blade surface. All the pressure 
tappings were cleaned and the the brass tubes blown clear 

of debris from the drilling operation. A steel dowel was 

inserted at one blade end at the 50% chord position. This 

pin was for the location and support of the blade in the 

working section of the wind tunnel. 

6.3: The Wind Tunnel and Pressure Measurement Equipment 

The wind tunnel tests to determine the characteristics of 

the NACA0025 blade were all performed in a closed-return 

wind tunnel at Queen Mary College, London. The maximum 

windspeed in the working section is approximately 40 m/s. 

The turbulence factor was not determined but is considered 
to be low since the wind tunnel is specifically designed 

for aerofoil testing and research. 
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The NACA0025 blade was placed in the working section with 

its spanwise axis vertical. The blade passed through a 

supportive collar which was located to a rotating floor 

panel. The dowel pin in the end of the blade was used to 

position the blade on the rotation axis of the turntable. 

The blade was firmly secured to the collar with epoxy 

filler so that the blade end was flush with the ceiling 

panel, thereby ensuring that tip effects were negligble 

and that only two-dimensional flow occurred. The twenty 

brass tubes all protuded from the support collar and were 

all connected to a water manometer bank with small-bore 

rubber tubing. The turntable was rotated by a worm gear 

that was driven by a hand crank. The angle of rotation 

was measured by a trip counter which was incremented for 

every tenth of a, degree of rotation. To check the accur- 

acy of the counter the turntable was rotated through one 

complete revolution until two bench-marks were aligned 

once more. It was noted that the counter accurately 

recorded this rotation as being 360.0'. 

At first, the measurement of static pressure was to be 

carried out automatically using a system controlled by a 

BBC-B microcomputer. This equipment included a pressure 

selecting device to which all twenty static pressure 

tappings were connected using the rubber tubes. The 

selector switch allowed a single pressure measurement to 

be made with an electronic pressure transducer. The 

analogue output from this transducer was transmitted to 

the microcomputer via an A/D converter. The pressure 

measurement was recorded by the computer from fifty 

samples of the output from the pressure transducer. Once 

the measurement was complete, the pressure selector switch 

was turned by a stepper motor to the next pressure outlet 

and the measurement cycle repeated. The complete action 

was controlled by the microcomputer so that measurement 
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and recording of static pressure around the blade section 

could be performed automatically. 

This system initially appeared to be highly suitable for 

the programme of tests that were planned, however, during 

preliminary tests, the equipment proved unreliable. The 

stepper motor drive system had no positional feedback from 

the pressure selector, consequently the computer control 

system was not able to detect whether the desired rotation 

of the selector had been completed when the power to the 

motor was switched off. The control system relied upon 
the time that power was being supplied to the motor as its 

means of controlling the angle of rotation of the pressure 

selector. Whilst this was adequate for only a small 

number of movements, the culmulative error following a few 

complete revolutions was such that the static pressure 

measurement could not be relied upon. Occasionally the 

pressure selector could not be moved by the motor so that 

the synchronisation of the actual static pressure being 

measured and, the-static -pressure which the computer 

considered---to 'be measuring would -break down and the 

recorded -dataset would be in error. After such an occur- 

rence, the 
. equipment would have to be reset and the 

measurement sequence repeated. A trouble-free data 

capture, sequence. -took approximately five minutes to 

complete and- required no human intervention, however, if 

an error. occurredha significantly longer time was required 
to complete the measurement sequence with satisfaction. 

After using this method of data capture for a short period 

with various degrees "of. -sucess, the pressure selector 

switch. and sundry, equipment was discarded in favour of 

more traditional measurement devices. All the static 

pressure tubes were connected to a water manometr bank. 

The manometer columns were* each over one metre in length 

and covered by a glass panel that had a graduated scale 
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etched on its surface. The graduation scale was marked in 

tenths of an inch over its complete length. The angle of 

the manometer bank to the horizon could be altered and the 

angle was measured using a graduated scale close to the 

pivot axis. The angle of the manometr bank could be 

measured to ±0.5' = and, with experience, the height of a 

water column could be measured by eye to an accuracy of 

±0.02 inches. By suitable adjustment of the angle of 

inclination. of the manometer-bank, the height of the water 

columns could be maximised to ensure the accuracy of the 

pressure measurements was as high as possible. 

The measurements of- water column height were recorded 

using, the BBC-B microcomputer with the computer program 

"NACATST" which was written and developed specially for 

this experimental programme by the author. The program is 

described more fully later, but measurement data was 

entered via the keyboard, stored in memory and when 

validated, recorded on floppy disk in a datafile uniquely 

named", for, the operating conditions being observed. This 

method required the observer to make some twenty-two 

measurements for each operating condition tested and for 

the appropriate measurements to typed into the computer, 

therefore, it could be considered that human errors were 

highly likely to.. occur during the "manual" transfer of 

pressure measurements to the computer. However, the 

program was devised to give a visual check of all recorded 

data before the-it was stored permanently on floppy disk, 

consequently, significant human errors could be observed 

immediately and corrected before proceeding to the next 

test condition. The program NACATST included many other 

features to reduce the likelihood of human error during 

data capture, and- its success is reflected in the quality 

of the measurements, made throughout the experimental 

programme. 
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It was found that the manual method required approximately 

five minutes for a complete dataset to be measured, 

recorded and stored to disk. This time was similar to 

that, of the automatic method, but it was repeatable and 

rarely varied during, the course of the experimental 

programme. The reliabilty with which this data capture 

cycle time could be maintained enabled-the allocated time 

in the wind tunnel to be used to good advantage. However, 

a useful-feature that the manual system afforded, was that 

the water columns in the manometer bank presented a visual 

representation ý of the pressure distribution around the 

aerofoil. -Consequently the author was able to gain a 

valuable insight- into the behaviour of the aerofoil as 

operating conditions changed merely by observation of the 

manometer- bank alone. , The onset of stall could be 

indentified, allowing the, stall angle to be recorded 

before analysis of the measurements had been completed. 

6.4: The Measurement of Wind Speed in the Working Section 

The wind tunnel air speed was controlled by the fan speed 

which could only operate at ten finite speed settings. 

The fan motor was operated from a control console sited 

near - to'the working. section and among the controls were 

ten speed- selection switches which were nominated 0-9. 

Since it was. not possible to control the wind speed in the 

tunnel by any-other means, the ten speed settings effect- 

ively dictated-, the range of windspeeds at which measure- 

ments could 'be -made. 

The working section windspeed was measured by recording 

the static pressure difference over the upstream contract- 
ion section. The static pressure difference was measured 

using the water manometer and verified with measurements 
taken from-a Betz. manometer. This ensured that even the 
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smallest pressure -difference could be measured with a high 

degree of confidence. The ratio of cross-sectional areas 

at inlet and outlet of the contraction section was 5.2: 1. 

By application of the Bernoulli and continuity equations, 

the static pressure difference can be used to determine 

the working section windspeed. However, such a method 

relies upon ideal fluid flow conditions and does not 

anticipate energy losses due to the construction of the 

wind tunnel itself, If accurate analysis of the measured 
data was to be achieved, it was essential that the true 

velocity of the air entering the working section be known. 

This required that the calculated value of windspeed be 

verified by measurement of the true windspeed in the 

working section. A set calibration factors were deter- 

mined that ensured the calculation of windspeed from the 

pressure difference across the contraction yielded 

accurate values. 

The calibration of the tunnel was simple and quick, but 

required the test blade to be removed and the wind tunnel 

empty. Using a pitot-static -tube, the total head was 

measured at a number positions across the width of the 

working section for a given fan speed setting. The static 

pressures at each traverse position and at the inlet and 

outlet of the contraction section were also measured. All 

the measurements were recorded using the BBC-B micro- 

computer and stored on floppy disk in datafiles named 
"VTi", where i was the fan speed index number. Twenty- 

eight total head measurements were made at equally spaced 

positions across the tunnel at the working section mid- 
height. These measurements were repeated for all fan 

speed settings and appropriate calibration factors deter- 

mined for each tunnel speed. The angle of inclination of 
the manometer bank was not changed for these measurements, 

so that the water column levels were directly proportional 
to the pressure heads for each measurement. 
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The theoretical relationships between the working section 

windspeed and pressure difference across the contraction 

section can be determined by application of the Bernoulli 

and Continuity equations using the following nomeclature: 

H= Total head, m H2O 

p= Static pressure, N/m'&w 

V= Windspeed, m/s 

A= Cross-sectional area of the tunnel, m=° 

z= Piezometric height, m 

and the following suffices: 

A Outlet of contraction/inlet of working section 

B Inlet of contraction l,. 
3 Pitot-static tube position 

co Working section 

Figure 6.1 is a schematic view of the wind tunnel 

contraction and working section, and shows the pitot- 

static tube and static pressure measurement positions. 

If the flow in the wind tunnel is in a state of static 

equilibrium, then Bernoulli's equation gives: 

PA + %PVA2 + PSzA = P@ + 4pV, 2 + Pgze c6.1) 

and Continuity gives 

pAAVA = pABVA = pA3V.. (6.2) 

Since the piezometric height can be considered to be 

invarient at all positions in the contraction and working 

section, then equation (6.1) can be rearranged to give 

p, - pA = /p(VA2-V@2) (6.3) 
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Figure 6.1: Schematic diagram of working section of the 

wind tunnel, showing pitot-static tube and 

static pressure measurement positions 
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and equation (6.2) can be rearranged such that 

Ve rÄ, VA (6.4) 

and substituting for V. in (6.3) gives 

i-A (6.5) pe - P. = /PVA2 A 

However, the cross-sectional area of the outlet of the 

contraction is the same as the working section, so A, =A:; -� 
implying V, =V-. Substituting for V" in (6.5) and 

rearranging gives, 

/ v. 2 _P,, 
) 

1_ _f 
ta. ) )I` (6.6) 

The ratio of areas at inlet to outlet of the contraction 

section was known to be 5.2: 1. This ratio is used with 

measurements of-static pressure across the contraction to 

calculate. -V.. However, small friction losses cause the 

static pressure at the contraction outlet to be smaller 

than would be measured for an ideal fluid. Therefore the 

pressure difference across the contraction would be 

slightly larger, and the use of equation (6.6) would yield 

high values of windspeed in the working section. The 

efficiency of the contraction must be determined to ensure 

accurate evaluations of V. can made using-the two static 

pressure measurements. It is common practice to evaluate 

the oefficient of discharge C,:, of the contraction. This 

coefficient can be used to modify equation (6.6) such 

that: 

Po 
l -. 

P A) Cd2 V 

AA 1 -ýÄý1 
Cam, < 1.0 (6.7) 
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To 'determine CK., for each fan speed setting, average 

measurements of total head and static pressure in the 

working section were made using a pitot-static tube 

traverse. The static pressures p,., and pt, were also 

measured. The quantity thpV,.. is known as the "dynamic 

head" and can be determined from the pitot-static tube 

measurements, such that: 

16pVv2=H., -p3 (6.8) 

Rearranging equations (6.7) and (6.8) gives: 

cd- (H, -P, ') 
(2) 

(6.9) (po P. Ae 

Table 6.1 shows the values of Cj that were calculated from 

the pitot-static tube traverse measurements. 

Fan speed 
index number 

Coefficient of 
Discharge C,, 

0 0.995 
0.966 

2 0.942 
3 0.934 
4 0.921 
5 0.920 
6 0.918 
7. 0.918 
8 0.929 
9 0.938 

Table 5.1: Coefficient of discharge C.,, at each fan speed 
setting 
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Equation (6.7). is used to calculate the freestream wind- 

speed in the working section. When the aerofoil is 

positioned in the working section the presence of the 

tunnel walls interferes with the flow around the aerofoil, 

creating a small increase in the actual windspeed in the 

working section. Tunnel interference is considered at 

length by Pankhurst and Holder [63], and of the effects 

discussed, those due to solid blockage, wake blockage and 

lift effect are the most significant here. Pankhurst and 

Holder make the observation that at low windspeed, 

blockage effects are usually small and it is lift effect 

that is usually the most significant. In all cases, 

corrections for these tunnel interference effects can be 

applied to the force coefficients after they have been 

calculated using the uncorrected freestream speed, V.... 

Consequently, the results will be initially presented 

without any interference corrections applied. The 

estimation of interference effects will be discussed in 

detail later, and only then will corrections be applied to 

the measured results. 

6.5: The Measurement of Blade Surface Pressure at Various 

Angles of Attack and Reynolds Number 

The major part of the test programme was the measurement 

of static pressure variation on the surface of the test 

blade when inclined at various angles of attackand wind- 

speeds. The test procedure adopted for this experimental 

work was straightforward and requires little explanation, 

however, the analysis of the measurements to determine the 

various components of aerodynamic force acting upon the 

blade is complex and time consuming. Since the wind 

tunnel was only available for a short period of time, the 

analysis of the measurements was not undertaken until the 

test programme had been completed. Only a handful of 
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measured datasets were analysed during the test period. 
To ensure that the measurements would yield meaningful and 

reliable results, it, was imperitive to ensure that all 

measurements were verified by some means at the time of 
testing before the recorded data was stored on floppy disk 

and-the test conditions altered. If, during analysis, the 

measured data was found to be in error or yielding unusual 

results, there would be no opportunity to verify or repeat 
the static pressure measurements around the blade. 

The test programme required that the pressure distribution 

around the NACA0025 test blade be measured for angles of 
attack-upto 180' over a range of Reynolds Number between 
40,000 and 400,000, however it was only possible to make 

measurements for Reynolds Numbers between 80,000 and 
250,000 with the single test blade used. At all but the 

lower fan speed settings the pressure distribution around 
the aerofoil was, -measured for angles of attack upto and 
including 20' at 1' intervals. The post-stall behaviour 

of an- aerofoil section is generally regarded as being 

independent of Reynolds Number, so it was not necessary to 

make measurements much beyond the stall angle for each fan 

speed setting. Measurements of the aerofoil behaviour for 

angles of 'attack greater than 20' were made at only one 
fan speed setting,, with the angle of attack being changed 
in 5' increments to a maximum of 180'. At this angle of 
attack, the trailing edge of the aerofoil is directly 

incident with the wind. The angle of attack was nominally 
based upon the geometric postion of the chordwise axis of 
the blade to the longitudinal axis of the working section. 
As will be discussed later the actual angle of attack was 
determined from the calculations of C,,, and the geometric 
angle of attack modified as appropriate. 

As discussed above all pressure measurements were manually 
transferred to a BBC-B microcomputer using the program 
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NACATST. This program was used to record, display for 

verification and store the pressure measurements and 

provided. the experimentor with the appropriate prompts at 

each stage of the test procedure which was as follows: 

<a) Activate computer program NACATST, 

<b> Set test blade at zero angle of attack 
<c> Start wind tunnel fan motor 
<d) Select required fan speed and allow time for 

working conditions to settle 

(e) Input initial data as requested 
(f) Measure and record static pressures 
<g> Verify static pressure measurements 
<h) Store static pressure measurements 
(i) Change angle' of attack or fan speed 

<j> Repeat measurement sequence. 

For each series of measurements where either the angle of 

attack or the fan speed had been changed, the following 

initial data was recorded: 

(a) Test date 

(b) Ambient air temperature, 'C 

(c) Ambient 'air pressure, mm Hg 

(d) Angle of inclination of the manometer bank, 

(e)'Nominal angle of attack of the test blade, 

(f) Data filename 

(g) Betz manometer-measurement, mm H=O 

The ambient air temperature and pressure were measured 

using a mercury thermometer and mercury barometer sited in 

the laboratory. These measurements were used to calculate 
the ambient air density to enable the operational Reynolds 

Number Re to be calculated: 

4 
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Re = 
PV-C (6.10) 

}u 

where c is the blade chord, µ the static viscosity of air 

and V.. the frestream windspeed of the working section, 

calculated using equation (6.7). 

The angle of inclination of the manometer bank and the 

nominal angle of attack are recorded for reference only; 

the true angle of attack was determined following the 

analysis of the measurements and the calculation of Ch,. 

The data filename was a unique seven character string that 

identified the test measurements with respect to both the 

fan speed setting and the nominal angle of attack. " A 

typical data filename was "RE4+007" indicating the 

measurements were taken with fan speed set at index 4 and 

the nominal angle of attack being +7'. If measurements 

were repeated for similar operating conditions, the "RE" 

prefix to the data filename would be changed. In this 

manner each dataset could be stored with a unique filename 

that indicated the operating conditions of the test. 

The Betz manometer measurement was recorded for complete- 

ness to ensure that the freestream windspeed was correctly 

measured. As will be demonstrated later, the calculation 

of windspeed is not specifically required for the calc- 

ulation of the aerodynamic force coefficients, CN and C-r", 

the manomter bank measurements of p,, a and pE, a were used for 

this calculation. Windspeed values were only required for 

the calculation of Reynolds-Number. 

Once the initial data had been recorded, the program 

NACATST would prompt for the static pressure measurements 

to be recorded. A total of, twenty-two measurements were 

recorded; twenty static pressure measurements from the 
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surface of the - test blade and the static pressures at the 

inlet and outlet of the contraction section. Since the 

microcomputer did not have a numeric keypad, these 

measurements were measured and recorded in units of 

1/100ths of an inch, though it was only possible to 

measure the water column heights with an accuracy of 

±2/100ths of an inch. In this way the recorded pressure 

measurement did not include a decimal point and therefore 

the keystrokes were restricted to the top row of the 

microcomputer keyboard. This proved to be a simple but 

effective means of decreasing the likelihood of keyboard 

error. 

Immediately all twenty-two pressure measurements had been 

recorded, ` the computer displayed all the recorded data in 

the form of a 'bar chart. This display was used to mimic 

the visual appearance of the water columns in the rnano- 

meterybank so that a visual comparison could be made to 

check' the validity of the recorded data. If any of the 

recorded pressure measurements" was seen to be in error 

then that single pressure value could be corrected without 

changing the others. The bar chart would be redisplayed 

and further ammendments' to the data could be made until 

all' measurements were correctly recorded to the satis- 

faction of the observer. 'Once the data had been success- 

fully -validated, the initial input data and all the 

pressure measurements in their raw form would be stored on 

floppy disk. " The program would proceed to display the 

distribution of pressure coefficient, c,,., with respect to 

the chordwise position of the pressure tappings. If at 

this -stage' the recorded dataset was found to be in error, 
then the test procedure and recording of pressure measure- 

ments would have'to be repeated from the start. 

Once 'the test procedure 'was completed, the dat of ile would 

be' 'LOCKED'; a software device for ensuring that a file 
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cannot accidently be erased from a floppy disk. The angle 

of attack of the test blade would be increased by 1' (5' 

for deep-stall measurements) and the data capture sequence 

repeated. It should be noted that all tests were carried 

out with the angle of attack Increasing to ensure that the 

maximum aerodynamic forces were observed before the onset 

of stall. If the test procedure started with the blade at 

a high angle of attack and in a stalled condition, then if 

the angle of attack was gradually decreased, the maximum 

aerodynamic forces would not be observed since the air 

flow would not fully reattach until the angle of attack 

was well below the static stall angle. This phenomenon 

was observed during the test programme when the angle of 

attack of the blade was being reset to zero, however, no 

record of the angle of reattachment was made because it is 

dependent upon the rate of change of angle of attack, 

which can be observed from tests of oscillating aerofoils, 
For 'similar reasons, when the tests for a particular 

windspeed- were complete, the angle of attack of the blade 

was reset to zero before the fan speed was changed. 

A feature of the computer program NACATST was that on 

repeating the test procedure, the values of the initial 

variables became the default values for the subsequent 
test. Consequently it was usual to only modify the angle 

of attack and the Betz manometer measurement from the data 

of the previous test. This feature was included in the 

program to decrease the likelihood of input error. 

The cycle time for completing a series of measurements was 

approximately five minutes. This ensured that a compre- 
hensive range of operating conditions could be studied in 

short time that the wind tunnel was available. The 

analysis of the pressure measurements is discussed in 

length later, but as noted, all analysis was formally 

undertaken after the completion of all experiments. 
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6.6: The Measurement of Wind Speed in the Wake of the 

Blade using a Pitot-Static Traverse 

The analysis of the static pressure measurements yield 

values of C, and C-, - which can be used to calculate the 

more familar aerodynamic coefficients of lift force, CL..., 

and drag force, CD: 

CL = CNCOS(a) + CTsin(a) 

C. = CNsin(a) - CTCOS(a) 
- 

(6.11a) 

(6.11b) 

The drag of a body moving through a fluid is dependent 

upon the shape. and position of that body. The total drag 

force, is- due to both pressure forces and friction forces 

acting on- the body. The calculation of CE, for the test 

blade using., the values of CN and C-r derived from the 

pressure measurements will not include any friction drag 

components At high angles of attack, where the aerofoil 

is fully stalled, the pressure'drag force will be signifi- 

cantly greater than the friction drag force, so that the 

calculation of CO using equation (6.11b) will be suitably 

accurate-using the measured values ofý C, and C, - alone. At 

low angles of attack this is not the case and a method of 

measuring both pressure and friction drag forces is 

required. The momentum traverse method is favoured for 

two-dimensional tests and is discussed at length below. 

This- technique requires that the velocity in the wake 

downstream of the aerofoil be measured so that the rate of 

loss of momentum of the fluid can be determined. This 

loss is equal in magnitude to ý the total drag force acting 

on the aerofoil, so that Cr) may be determined directly 

using this method. 

The momentum traverse method was used here to determine 

values of Cn for the various operating conditons to which 

the-test aerofoil was exposed. The pitot-static tube was 
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used to measure total head and local static pressures at 

regular intervals across the wake of the aerofoil. The 

pitot-static tube should, ideally, be placed as close to 

the trailing edge ' of the aerofoil as possible. Unfort- 

unately the pitot-static tube could be placed no nearer 

than nine- chord lengths downstream of the aerofoil. In 

this position the velocity profile across the wake is not 

as pronounced as if observations were made close to the 

aerofoil because the wake dissipates into the downstream 

flow. 

The BBC-B microcomputer was again used to record the 

measurements made during the momentum traverse using the 

program "MOMTRAV" which is similar to NACATST except that 

twenty-eight measurements of the total head across the 

wake were made and recorded for each traverse. The 

momentum method also requires that the static pressure be 

recorded in the" wake for all measurement positions in 

practice, however, the variation of static pressure across 

the wake was found to be less than the resolution of the 

manometer bank grating so that only one measurement of 

local static pressure was made. The static pressures at 

inlet and outlet- to the contraction were measured and 

recorded -for 'determining the upstream flow conditions. 

The pitot-static tube was mounted on traverse equipment 

which allowed the distance' between measurement positions 

to be measured with a' vernier scale. The program MOMTRAV 

prompted the -input' of, the - total head measurements by 

displaying the position that the pitot-static tube should 

be placed with respect'to the measuring scale. 

In the short time available to complete the experimental 

programme, it was only possible to perform wake velocity 

measurements for low angles of attack for all but the 

highest fan speed setting. Measurements across the wake 
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were made for angles of attack of 0', 2', V. 6', 8' and 10' 

with the, recorded data being stored in datafiles named 

with the prefix "MT". The analysis of the wake traverse 

measurements is detailed later, but involves taking the 

difference 
. 
between, - measurements of similar pressures. 

Consequently the values of Cc:, determined using this method 

were subject to relatively large errors and required much 

manipulation before reliable values were obtained. This 

is discussed later. 

6.7: ' The Calculation of the -Coefficient of Normal Force 

The primary objective of the experimental programme 

described here was to determine the variation of the 

aerodynamic force coefficients C,, and CY with respect to 

angle of attack and Reynolds 'Number. The method used to 

determine C, - from'the measurements of static pressure over 

the aerofoil surface is' similar in principal to that used 

to' determine C,., � however, it is more convenient to discuss 

the, calculation of C,,, first. 

Since all pressure measurements were recorded on floppy 

disk, the procedure adopted'to determine CN was devised so 

that all "calculations were performed using the BBC-B 

microcomputer. As will be demonstrated, the determination 

of CN requires-'many calculations including the integration 

of surface pressure with respect to the chord of the aero- 

foil. The- integration of pressure with respect to the 

chord cannot be successfully completed based upon twenty 

surface pressure measurements alone, consequently these 

measurements must be used to determine the static pressure 

at many more surface positions using interpolation tech- 

niques. . 
Only then can the integration process be 

completed with confidence. These tasks are highly suited 

to the microcomputer provided the numerical methods used 
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for the interpolation and integration processes are sound 

and well founded. `"` 

All local static pressure measurements p can be described 

in terms of the far upstream static pressure p,.,, and the 

dynamic head /pV. , to give the pressure coefficient C,..: 

C. = 
(pP (6.12) 

The pressure coefficient is a non-dimensional quantity,. 

and for comparative purposes the local chordwise position 

of the pressure tapping x, is described in terms of the 

aerofoil chord c. 

Figure 6.2 shows the typical distribution of C,... with 

respect to x/c for an aerofoil at a low angle of attack. 

Note that the scale of the vertical axis is inverted so 

that negative (i. e. suction) pressure coefficients are 

plotted above the horizontal axis. The flow in this 

example is still fully attached with a high suction 

pressure apparent close to the leading edge on the upper 

aerofoil surface. At all chordwise positions the pressure 

on the upper surface is seen to be less than that on the 

lower surface except at the trailing edge where the press- 

ure on both surfaces is the same. The value of C,, can be 

directly determined from calculating the area between the 

curves describing the pressure distribution on each 

surface. This. is demonstrated�below. 

The coefficient of normal force acting on an aerofoil is 

given by: 

CN = /pVN2S (6.13) 
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where N is the total aerodynamic force acting normal to 

the aerofoil chord which is of area S, and V,,. is the 

freestream windspeed. Figure 6.3 shows the shape 

parameters used to describe a blade section. If it is 

assumed that all flow is two-dimensional, that is there is 

np spanwise variation of the static pressure across the 

blade surface, then the blade section can be considered as 
being similar to the test aerofoil used for all 

experimental measurements. 

Consider the chordwise element of area b.. Sx on the upper 

surface of the blade. If the local static pressure acting 
on this element is p and the static pressure in the 
freestream is p,.,, then the elemental pressure force SN, 

acting normal to the chordwise axis is given by: 

SN = -ApbSx (6.14) 

where 

AP =p Ps. (6.15 ) 

The force Nom� acting on the upper surface of the aerofoil 
in the normal direction, is given by: 

N� =f -6pbdx 
x=0 UPPER 

(6.16) 

whereas-the -force N, 
_, acting on the lower surface of the 

aerofoil in the normal direction, is given by: 

[C] 

N, = Apbdx 
., 

X-0 LOWER 

(6.17) 
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The total force N, acting on the whole blade in the normal 

direction, is given by the sum of the forces N, 
_, and N,..., 

which can be expanded using equations (6.16> and (6.17) to 

give: 

CC 

N= 1tPbdx] -f Apbdx (6.18) 

x-Q LOWER x=0 UFPE_IR. 

The blade area S is equal to the product of the chord 

length c, and the blade width b, so substituting for S in 

equation (6.13) gives: 

_N CN %pV_2bc 
(6.19) 

Substituting for N using equation (6.18), and considering 

the blade width b to be unity, gives: 

CN ý IJ½pd (x/C) 

Lo i 
LOWER 

(x/c) J½PV 

Lo UPPER 

The Ap terms can be eliminated by condidering: 

CP = /p 
ýP 
ß. 2 

which simiplifies equation (6.20) to give: 

(6.20) 

(6.21) 

CN =J CP d (x/c) - 
fCF. 

d (x/c) (6.22) 
0 

1. OWEFi 
0 

UPPER 

In this way the coefficient of normal force can be calc- 

ulated by integration of the pressure coefficient with 
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respect to chordwise position. Its value is equal to the 

shaded 'area of Figure 6.2. 

The computer program "CALCCN2", written and developed by 

the author, uses this integration technique to calculate 

CN from the ', measurements of static pressure. For 

integration calculations to be performed using a computer, 

a suitable numerical' technique' needs to be adopted that 

will ensure accurate calculation of C,, from only twenty 

surface -pressure measurements. Popular numerical 

integration' methods, involve the use of either Simpson' s 

Rule or the- Trapezoidal Rule. In each case the 

integration calculation involves a finite number of data 

points' which are-'equally distributed along the axis of 

integration. ' With the NACA0025 test aerofoil, the 

chordwise distance ' between pressure tappings is not 

constant " 'so that neither '' , Simpson' s Rule nor the 

Trapezoidal Rule' could - use the raw pressure measurements 

alone. ' ' 

In'order that an accurate integration calculation could be 

performed, it was necessary to describe the pressure 

distribution°(the pressure envelope) around the aerofoil 

in greater detail than twenty measurements could do alone. 

If the static pressure 'measurements were plotted on graph 

paper 'some' form of manual curve fittng would be used to 

fully describe the pressure envelope. Such a technique 

would not be repeatable, especially with the large number 

of pressure' plots that would be required for analysis of 

all the data. If the computer was to be used for analysis 
then some means of automatically generating the pressure 

envelope from`the twenty measurements was required. The 

Least-Squares method' of curve fitting was considered for 

generating the pressure envelope, however, the polynomial 
form of the fitted curve has to be assumed beforehand, and 
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the calculated pressure envelope would not necessarily 

pass through actual measured data points. 

The method adopted to calculate the pressure distribution 

around' the "aerofoil was an interpolation technique known 

as Neville's Method [64]; interpolation being considered 

more' appropriate. This particular technique is more 

sophisticated-than simple linear interpolation, since the 

Neville's Method uses a higher order polynomial to calc- 

ulate the value of 'the function at a particular position 

from, a finite number of known function values. The order 

of the interpolating polynomial is dependent upon the 

number of data points used for the calculation. Inter- 

polation techniques do not create best-fit curves, since 
the interpolating polynomial will pass through each of the 

measured values used , for, the calculation, nor do they 

require the raw data 'to be equally distributed along the 

axis of the independent variable. These features were 

considered worthy, because the pressure envelope would be 

generated using actual., measured pressures, and unusual 

characteristics of the envelope would not be lost as would 

occur if a best-fit curve. was used. Using this particular 
interpolation method 'the' static pressure around the 

aerofoil can be calculated for many surface positions all 

equally- distributed 'along the chordwise axis. The 

integration- of° the pressurei envelope with respect to the 

chord can; now be successfully, completed using one of the 

numerical methods mentioned' above. The program CALCCN2 

embodies these principles to calculate Cam,. 

Once initiated, the program CALCCN2 requests the name of 
theL datafile which is to be -analysed. The data that is 

stored on floppy diskette-is retrieved and stored in the 

computer, memory. This-data includes all the initial- 
isation data and the twenty-two static pressure measure- 
ment s. " The-program. -identifies the wind tunnel fan speed, 
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and utilises the appropriate value of the coefficient of 

discharge C. _,. This is used to calculate the dynamic head 

of the working section using equation <6.7) during the 

test. The twenty surface pressure measurements are 

converted into non-dimensional values of C,... Since C,.. is 

a ratio of pressure differences, the water column height 

measurements do not need to be converted directly into 

units of pressure before being used to calculate C, _,. Also 

note that the freestream pressure p,., in equation (6.12), 

is taken to be the static pressure at inlet to the working 

section p,. The twenty static pressure tappings are dis- 

tributed around the aerofoil surface as shown schematic- 

ally in Figure 6.4. The (x. Y) co-ordinates of each 

pressure tapping were carefully measured, allowing the 

measured distribution of C, with respect to <x/c> to be 

plotted. The chord of the 
raerofoil 

c= 80.6 mm, and the 

maximum thickness t= 19.8 mm. The static pressure was 

not measured at the trailing edge of the aerofoil. 

When all the static pressure measurements had been con- 

verted into non-dimensional values, the pressure envelope 

around the aerofoil surface was calculated. The variation 

of pressure coefficient with respect to chordwise posi- 

tion, Figure 6.2, is not a, single valued function, because 

pressure coefficient is also dependent upon which of the 

surfaces the measurements are being made. So that the 

pressure distribution around the aerofoil surface can be 

calculated using _Neville's Method, the pressure measure- 

ments had to be organised so that a single valued rela- 
tionship between C, and (x/c) could be calculated. 

This was achieved by assigning the lower surface chordwise 

positions a negative value of (x/c). Thus the chordwise 

positions of the pressure tappings would all lie within 
the range -1 (x/c) 1 under such a mapping. It should 
be noted that if a pressure tapping had been made at the 
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Figure 6.4: Positions of static pressure tappings around 
surface of NACA0025 aerofoil 
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trailing edge of the aerofoil, it would be mapped to both 

extremes of the (x/c) range, i. e. (x/c) = ±1. 

If the mapping is extended outside the range of (x/c) _ 

±1, it can soon be shown that the leading edge pressure 

coefficient would be mapped to (x/c) _ ±2n, and the 

trailing edge pressure coefficient to (x/c) = ±<2n+1>, 

where n=0,1,2,... This is shown in Figure 6.5. 

The value of (x/c) can now be considered as the total 

distance travelled along the chordwise axis in travelling 

around the aerofoil surface. So, before any calculation 
is undertaken, the program CALCCN2 maps the twenty surface 

pressure measurements to forty pressure values as a 

function of (x/c) in the range -2 ( (x/c) < +2. This was 

done to allow the interpolation calculation to be easily 

performed, and with accuracy at its range limits. 

However, the integration of CF. with respect to <x/c) is 

only carried out over the interval -1 (x/c) < +1, this 

being equivalent to the integration of pressure over the 

complete surface area of the aerofoil. 

With the pressure measurements mapped into an ordered 

manner, the variation of pressure with repsect to chord- 

wise position could be calculated using interpolation. 

Neville's Method is best explained if the general case 

shown in Figure 6.6 is considered. Here the value of the 

function f (x) is to be estimated from four data points 

(x0, fey), (x� f1 ), (x, -,, f=) and (x: 3, fe). The Neville' s 

Method involves successive levels of interpolation to 

calculate the value of f(x) using a high order poly- 

nomial, each interpolation being an estimate of f(x) 

itself. The order of the polynomial that describes the 

function is dependent upon the number of data points used. 
Using only four points to estimate f (x), the first level 

interpolation gives the linear interpolating polynomials: 
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Figure 6.6: Interpolation using -Neville' s Method 
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_ 
(x-x, )f, - (x-x, )f� (6.23a) PC, i - X, - Xf, 

P1- _ 
(x-x, )f2 - (x-X, )f, (6.23b) 

x_ _ x, 

(6,23c) 
x3 x, 

The second level interpolation gives the quadratic inter- 

polating polynomials: 

_'(x-x,, 
)p, 2 - (x-x2)p0, (6.24a) P°` X_- - XC 

P 
(x-x, )p2: ß - (x-x3)p, 2 (6.24b) 

x3-x, 

and the third level -gives the cubic interpolating poly- 

nomial: 

P03 - 
(x-x0)p, 3 - (x-x, )p42 

x, 3 
- x,. >. 

(6,25 ) 

The value of pr,;, is the best estimate of f Cx> from the 

four known function values. Neville'-s Method is stable 

while the value of x lies within the bounds of x. -, and x,,.. 

If the interpolation is extended beyond this range, then 

the estimated values of f(x) become unstable and highly 

inaccurate. Thus when CALCCN2 uses this technique to 

calculate Cr-. as a continuous function of (x/c), then the 

four measurements used for the estimation are selected 

such that <x/c) lies between the chordwise positions of 

the second and third measurements. 

To calculate the pressure around the aerofoil and the 

coefficient of normal force, initially the value of (x/c) 

is set to that of the trailing edge, i. e. (x/c) = -1. The 

Neville's Method is used with four measured values to 

estimate the pressure coefficient at this position. The 

value of (x/c) is then incremented by a constant step 
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width, h=0.005, and the new value of C,:. is calculated. 

The CF:. versus (x/c) characteristic is thus determined at a 

total of 400 chordwise positions using this method, these 

values all being used to calculate C,,,. Since the chord- 

wise stepwidth h is constant, either of the numerical 

integration techniques already mentioned can be used to 

calculate C,,,. However, as with all numerical methods, 

both integration techniques incur a truncation error in 

calculating a finite integral. The magnitude of the 

truncation error for Simpsons Rule is proportional to hr' 

whereas for the Trapezoidal Rule it is proportional to h'-', 

but the Trapezoidal Rule technique was adopted since it 

was the easier method to incorporate into the computer 

program. By calculating C,.. at a large number of chord- 

wise positions, thereby keeping h small, the truncation 

error is minimised, and a high degree of accuracy is 

maintained for the calculation of CN,. 

The Trapezoidal Rule-states: 

b 
Jf(x)dx 

= h[%f0 + f, + fz + ... + fn_, + f�] (6.26) 

a 

where the stepwidth h is given by: 

h= b-a (6.27) 
n 

If the variation of pressure coefficient with respect to 

(x/c) is considered as a continuous function f <x/c), then 

equation (5.31) can be considered to be: 

01 
CN = 

Jfx/c)dx/c) 
- 

ff 
(x/c) d (x/c) 

-1 0 
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where f(x/c) is calculated using the Neville's Method as 

described above. 

Equation (6,28) is further simplified by defining, within 
the integration interval, the step function 9 such that: 

I1 -1 (x/c) <0 

_ (6.29) 

-1 0 (x/c) <1 

so that equation (6.28) becomes: 

I 

CN = Jf(x/c) d (x/c) (6.30) 

-1 

In applying the Trapezoidal Rule to equation (6.30), it 

should be noted that the values of fr) and fry are, in both 

cases, the calculated values of pressure coefficient at 

the trailing edge, and are equal. If each of the calc- 

ulated values of pressure coefficient, f,.. is calculated 

in turn and one of the-end values ignored then: 

400 

CN = hcpf 

i=1 - 

where: 

h=1 
4---ý--ý = 0.005 (6.32) 

For simplicity, CALCCN2 summates the calculated values of 

pressure coefficient immediately it has been calculated, 

obviating the need to store all 400 values. When the 

summation is complete, the total is multiplied by the 
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stepwidth h to determine the final value of C,. The value 

of C,,, is displayed on the computer monitor but is not 

stored or recorded in any manner by the program CALCCN2. 

The program CALCCN2 also : takes advantage of the graphics 

facility of the microcomputer to display a plot of the 

pressure envelope as it is calculated using the Neville' s 

Method algorithm. The plotting facility was a significant 

aid in developing the program CALCCN2, since it provided 

an immediate insight into the accuracy of the interpol- 

ation method. Initially more than four measured pressure 

values were being used to calculate the pressure at any 

chordwise position. However, the interpolating polynomial 

would greatly overshoot between ordinates were large 

pressure differences would occur, notably around the 

leading edge of the aeroföil. This effect was attenuated 

by using a cubic interpolating polynomial calculated from 

only four data points. The pressure envelope derived by 

this method is considered to be good. Moreover, the 

visualisation of pressure distribution has been invaluable 

in the subsequent intepretation of the measurements. The 

pressure plots were recorded by photographing the screen. 

6.8: The Calculation of the Coefficient of Thrust Force 

The calculation of the coefficient of thrust force, C-,., is 

essentially identical to the calculation of CN except that 

the integration of static pressure is made with respect to 

the flapwise ordinates of the surface y. For simplicity 

all terms are converted to their appropriate non-dimen- 

sional units C. and (y/c>. Figure 6.7 shows the typical 

distribution of Cr... with respect to (y/c) for an aerofoil 

at a low angle of attack. Again note that the scale of 

the vertical axis has been inverted so that negative 

pressure coefficients are plotted above the horizontal 

" axis. The flow in this example is still fully attached 
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with a high suction pressure apparent close to the'leading 

edge on the upper aerofoil surface. The C,.... against (y/c) 

curve is characterised by two loops, the enclosed areas of 

these loops being proportional to chordwise, thrust force 

acting on the aerofoil. However, the areas of these loops 

have opposite signs so that the thrust force is propor- 

tional to the difference between the areas of the two 

loops. 

The coefficient of thrust force acting on the aerofoil is 

given by: 

C7 T 
/PV-2S (6.33) 

where T is the net aerodynamic force acting on the 

aerofoil in the chordwise direction. For the NACA0025 

aerofoil' section it can be shown that: 

0.125 
CT CF. d (y/C 

-0.125 REARWARD 

ro. 125 

- Cý. d (y/c ) 

-0.125 FORWARD 

(6.34) 

This expression is similar to equation (6.22), except that 

the limits of the finite integral are the surface ordin- 

ates of the position of maximum thickness, and the terms 

"Forward" and "Rearward" refer to the aerofoil surfaces 

either side of this position. 

The computer program "CALCCT2", written and developed by 

the author, uses the same techniques as CALCCN2 to calc- 

ulate C, - from the static pressure measurements. The 

Neville's Method is used to calculate a singled valued 

interpolating function of C,:. against (y/c>. Here (y/c> 

can be considered as the total distance travelled in the y 

direction when travelling around the aerofoil surface such 
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Figure 6.7: Plot of Cam. vs (y/c) for aerofoil at a low 

angle of attack 
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that the trailing edge ordinate becomes (y/c) _ ±0.25. If 

the mapping is extended outside the range of (y/c) = ±0.25 

then the leading edge pressure coefficient would be mapped 

to (y/c) = ±0.5n and the trailing edge pressure coeff- 

icient would be mapped to (y/c) = ±0.25 (2n+1), where 

n=0,1,2,.. -. - This is illustrated in Figure 6.8. 

A cubic interpolating polynomial was used to calculate the 

pressure distribution around the aerofoil surface at 400 

surface. positions. The value of (y/c) is incremented by a 

constant st epwi dt h, h=0.00125, and the new value of C. 

calculated. 

The Trapezoidal Rule was adopted as the most suitable 

integration technique and if the variation of pressure 

coefficient with respect to (y/c) is considered as a 

continuous, cyclically varying, single-valued function 

f(y/c), then eqn. '(6.34) can be considered to be: 

0.375 

CT = f(y/c) d(y/c) 

0.125 

0.125 

f(y/c) d(y/c) 

-0.125 

(6.35) 

where f(y/c) is calculated using Neville's Method. 

Equation (6.35) is further simplified by defining, within 
the integration interval, the step function 9 given by: 

110.125 (y/c) < 0.375 

0 -1 -0.125 ( (y/c) < 0.125 

such that: 

0 
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0. ̀ 375 

Cr = (Pf (y/c) d (y/c ) 

-0.125 

(6.37) 

When 'applying the Trapezoidal Rule to equation (6.37), 

note that the values of f(y/c) at the extremes of the 

integration interval are, the same, so that f, w, and f,.., of 

eqn. (6.26) are equal. If each of the calculated values 

of pressure coefficient f,. is calculated in turn, and one 

of the end values ignored, -then: 

400 

CT = hZ(pf (6.38) 

where: 

h=0.375400(_0.125) _ 0.00125 (6.39) 

For simplicity, CALCCT2 summates the calculated values of 

pressure coefficient immediately it has been calculated, 

obviating the need to store all 400 values. When the 

summation is complete, the total is multiplied by the 

stepwidth, h, to determine the final value of C-, -. This 

value is displayed on the computer monitor, but is not 

recorded in anyway by this program. 

As with + "CALCCN2, the graphics facility of the 

microcomputer is used to display a plot of the calculated 

pressure envelope as it is calculated. 
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6.9: The Calculation of the Coefficient of Drag Force 

The wake traverse measurements described earlier are used 

to determine the true coefficient of drag force of the 

aerofoil at low angles of attack. Profile drag includes 

both friction force and pressure force components and 
therefore cannot be calculated from the measured values of 
C,, and CT alone. The wake traverse method, initially 

developed by Jones, has been summarised by Petty [65]. 

With this technique the measurements of static pressure 

and total head across the wake of the aerofoil are used to 

determine the rate of loss of momentum of the fluid as it 

passes over the aerofoil, so allowing CC, to be determined. 

The analysis presented by Petty assumes that the measuring 

equipment is placed close to the trailing edge of 

aerofoil. Here the static pressure across the wake is 

considered to vary from the undisturbed freestream static 

pressure, p,.. If: 

H, = Total head in the wake, m H, -,.. O 

p, = Static pressure in the wake, N/m' 
H, = Total head in flow outside the wake, m H,, O 

and defining: 

-1 _ 
(H. -H, ) 

g (H (6.40) 

then for two-dimensional tests Petty shows that Co can be 

calculated as follows: 

+d 
u, s 

Co =C 

J2[1 

- SO, r-] g+ 
(P= dy (6.41a) 

-d 
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where the wake thickness is: 

-d y4 td (6.41b) 

The computer program "CALCCD2", written and developed by 

the author, embodies the above calculation of C� and uses 

the twenty-eight total head measurements across the wake 
to determine its value. It was noted that the wake tra- 

verse was not carried out close to the trailing edge of 

the aerofoil as assummed in the theory. The consequence 

was that the static pressure, p,, was not observed to vary 

across the wake. For this particular condition equation 
(6.41) could be simplified, but since the program CALCCD2 

can be considered for more general wind tunnel experiment- 

ation, the analysis detailed above was still used. 

The measurements recorded using the computer program 
MOMTRAV are retrieved from the datafiles, and for each of 

the twenty-eight total head measurements the value of g is 

calculated using equation (6.40). This involves 

calculating the difference between similar values of total 

head H. and H,,, therefore, the error in g will be 

relatively large. For simplicity, numerical integration 

using the Trapezoidal Rule was used to calculate the value 

of CD using equation (6.41). However, the accuracy of 
this coefficient will not be as good as the calculated 

values of CT or CN. 

6.10: Wind Tunnel Interference Effects 

The ultimate purpose of these tests was to produce a data- 

set of C-, - and C,,, values for variations of angle of attack 

and Reynolds Number which might be used with VAWTTAY to 

predict the behaviour of the model V-VAWT. In order that 

the test results might be used with confidence, it was 
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essential that the operating conditions experienced by the 

model aerofoil in the wind tunnel were dynamically similar 
to those that an aerofoil of similar shape. would experi- 

ence in, the free-air. If the wind tunnel model is oper- 

ating at the same Reynolds Number as its free-air counter- 

part, then the non-dimensional experimental, results can be 

directlty applied,, to the free-air aerofoil. However, even 
though the wind tunnel tests are carried out at a Reynolds 

Number equal to the free-air conditions, the air flow 

around the model aerofoil will be disturbed by the limited 

cross-section of the tunnel itself. If these interference 

effects are not considered then it is not possible to 

ensure dynamic similarity has been maintained. 

The evaluation of wind tunnel interference is approached 

by considering a number of independent interference 

effects. The overall interference effect Imposed by the 

tunnel on the aerofoil is evaluated by the summation of 

the net effects of each of these interference types. Pank 

hurst and Holder [63] have considered wind tunnel 

interference at length, and of the effects discussed, the 

following are considered appropriate here: 

(a) Solid blockage 

(b) Wake blockage 

(c) Lift effect 

The corrections for interference are applied to the aero- 

dynamic force coefficients calculated using uncorrected 

windspeed values. Consequently, the initial analysis of 

the measured data took no account of interference effects. 
The programs CALCCT2, CALCCN2 and CALCCT2 calculated 

uncorrected values of C, -, C, and C,, respectively. The 

intereference corrections are calculated in terms of these 

uncorrected force coefficients and are applied directly to 

obtain the corrected coefficients. 
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6.10.1: Solid Blockage 

Solid blockage is an inteference effect caused by the 

presence of the aerofoil itself in the closed working 

section of the wind tunnel. The continuity of mass flow 

throughout the tunnel causes the axial velocity in the 

locality of the aerofoil to be greater in magnitude than 

that measured at the entry to the working section. Solid 

blockage does not alter the transverse component of tunnel 

velocity and therefore only a change in axial velocity 

need be considered. This change requires corrections to 

be made to the measured tunnel speed, Reynolds Number, the 

dynamic head and all aerodynamic force coefficients. 

To calculate the effect of solid blockage, Pankhurst and 

Holder considered a solid blockage correction ev., which is 

used to calculate the true freestream velocity VFB, in 

terms of the measured upstream velocity V-,, such that: 

iýF- = VT (1 (6.42) 

The solid blockage correction is dependent upon the geo- 

metry of the wind tunnel, its height h, and the shape of 

the test aerofoil defined in terms of its cross-sectional 

area A, its chord c, and its maximum thickness t. The 

expression . 
for er, for two-dimensional flow in a wind 

tunnel. with.. a rectangular working section is given as: 

es = 
2h2<xo 

+ x, (t/C» (6.43) 

where the values of xr, and x, are generally considered for 

the two-dimensional case to be x,, = 1.0, and x., = 1.2. 

For a closed tunnel, c is given by: 

- 256 - 



T=i2=0.822 (6.44) 

When, the aerofoil is inclined to the flow, the solid 

blockage correction has to be increased by the amount 

K", a'-, where a is the angle of attack (in radians) and K, 

is a function of the thickness-chord ratio of the aero- 

foil. The value of K, was derived from Pankhurst and 
Holder's Fig. 

, 
240 and, for the NACA0025 aerofoil, 

determined to be K, = 6.9. 

While the application of this angle of attack correction 

was not explicitly demonstrated, the calculation of solid 
blockage correction using equation (6.43) has been 

modified such that: 

Eý = 
2nhädx4 

+ x, (t /c)) (1 + K, a=) (6.45) 

Vsing the measured dimensions of both the wind tunnel and 

aerof oil. sect ion with the values of the constants given 

above, equation, (6.45) maybe used to determine a value of 

e;: in terms. of a, alone: 

es=0.00073(l + 6.9a2) (6.46) 

The solid blockage correction at low angles of attack is 

considered neglible and even at large angles of attack the 

difference between. V, and V, r is less than 1%. 

6.10.2: Wake Blockage 

The axial velocity of the fluid in the wake, downstream of 

the aerofoil trailing edge, is smaller than that of the 

fluid outside the wake; a phenomenon used to determine the 
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profile drag of the aerofoil as described in Section 6.9. 

In a closed wind tunnel, the continuity of mass flow must 

be satisfied, therefore the axial velocity of the fluid 

outside the wake must exceed that measured upstream of the 

aerofoil. In free-air these velocities would be equal. 

This interference effect is known as Wake Blockage. 

As with solid blockage, 

calculated in terms of 

wake blockage correction, 

VF =VT(i +eu). (6.47) 

The wake blockage correction is dependent upon tunnel 

height, the aerofoil chord and the measured drag coeff- 

icient, C, calculated using the uncorrected tunnel speed 

V", ", such that: 

eW = 
4(c/h)C., (6.48) 

Using the known values of c and h, the wake blockage 

correction can be defined in terms of Cr, -r" alone: 

eW = 0.0197Co-r (6.49) 

At low angles of attack where Ce, -, - is small, the wake 

blockage correction will be of similar magnitude to the 

solid blockage correction and could be ignored. At higher 

angles of attack, when the aerofoil is stalled, the rapid 

increase of CD-, - with increasing angle of attack will 

ensure that wake blockage corrections cannot be ignored. 

the freestream velocity can be 

the measured fluid velocity and a 

e w, such that: 
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6.10.3: Lift Effect 

In two-dimensional flow, the constraint imposed by the 

walls of the working section around the aerofoil induces a 

transverse velocity component to the fluid flow. This 

interference phenomenon introduces curvature to the flow 

around the aerofoil which effectively increases its camber 

and decreases the angle of attack of the flow to the aero- 
foil. This type of interference is termed "lift effect" 

and is considered here because C63]: 

"... lift effect is usually the most important correction at low 
speeds.... " 

Corrections for lift effect must in general be applied to 

both angle of attack and aerofoil camber. Such correct- 

ions have been throughly considered by Pankhurst and 

Holder, who subsequently developed a method of applying 

the camber correction directly to the measured lift force. 

It is these corrections that will be considered here. 

In a closed wind tunnel the lift effect increases both the 

angle of attack of the flow and the aerofoil camber. The 

incremental changes are defined in terms of the uncorr- 

ected lift force CLT, and pitching moment Cr, -r coeff- 

icients. However; the change in camber can be directly 

considered as a change in the lift coefficient. This 

change is given by: 

z CLF CL-TO 
48(c/h)2) (6.50) 

The change in angle of attack is given by: 

as - ar = 96 (C/h)2 (CLr + 2C,, ) (6.51) 
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Using the known values of c and h, lift effect corrections 

can be defined in terms of CL 
. -,.. and Crvr alone: 

Ct-F = 0.9987 CLT 

aw - a-r = 0.0002 (CLT + 2CIhT> 

(6.52a) 

(6.52b) 

As equation (6.52) clearly shows, the corrections for lift 

effect are not significant, and can be ignored for all 

angles of attack. 

6.10.4: The Application of Wind Tunnel Interference 

Corrections 

The discussion of tunnel interference corrections has 

shown that only solid blockage and wake blockage are 

worthy of further consideration, and then only at high 

angles of attack. The corrections that have been deter- 

mined for these two interference effects can be used to 

calculate the freestream velocity Vp., in terms of the 

measured wind tunnel velocity VT. The overall inter- 

ference correction e, can be calculated as the sum of the 

net corrections due to both blockage effects such that: 

VF = VT(1 + e) (6.53) 

where: 

e= es + ew (6.54) 

Since a measured value of force coefficient CF, ",:: is calc- 

ulated using the uncorrected wind tunnel velocity, its 

corrected value CF_"- can be determined by: 

(6.55 ) CFFw 'ý CFrT 
Vi) 

CFT 

(I + 02 

(TF 
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which is simplied by'ignoring eý terms to give: 

` CF., at C,, (1 - 2e) (6.56) 

In this way, all force coefficients can be corrected after 

they have been calculated using the uncorrected tunnel 

velocity. The computer programs CALCCN2, CALCCT2 and 

CALCCD2 did not include any interference correction 

algorithms, so that all the force coefficients derived 

from the experimental-measurements are uncorrected. 

6.11: The Presentation and Discussion of Measured Results 

In this section the results of the experimental measure- 

ments are presented and discussed. The results will be 

presented in a number of ways, but in general they will 

show the variation of the force cofficients with respect 

to angle of attack at each Reynolds Number for which 

measurements were made. Since in all but the momentum 

traverse 'experiment the variation of static pressure 

around the aerofoil was observed, the force coefficients 

CN and C,. as calculated using the programs CALCCN2 and 

CALCCT2 will form` the major proportion of the results 

presented" and' considered here. The static pressure 

distribution 'around the aerofoil calculated by these 

programs is plotted on the computer monitor. These 

pressure` plots are of great value when discussing the 

validity of the results and enable the behaviour of the 

aerofoil to be considered at all angles of attack and 

Reynolds'Number for which observations were made. 

When considering the results in detail, however, the 

author was always conscious of the need to produce a 

dataset of aerodynamic force coefficients suitable for use 

with the. aerodynamic performance prediction program 
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VAWTTAY. Consequently, the overall behaviour of the 

NACA0025 aerofoil was constantly being compared to that of 

other four-digit NACA series aerofoils, especially those 

of smaller fineness ratios whose behaviour is well 

documented. It was considered that the characteristic 

behaviour of the test aerofoil should not be significantly 

different from those of the other aerofoils in this NACA 

aerofoil family. In developing the final force coeff- 

icient dataset for use with VAWTTAY, this has meant that 

many of the actual measured values of C,,, and C-, - have not 

been explicitly used, but they are recorded here for 

completeness. 

In all, over 250 static pressure tests were conducted 

involving the observation and recording of some 5,500 

static pressure measurements. Inevitably human error has 

meant that some of these measurements have been recorded 

incorrectly, despite' the error checking routines incorp- 

orated into the data capture programs. In the short time 

the wind-tunnel was available, it was not possible to 

validate measurements where they are considered to be in 

error, though the occurrences of bogus measurements were 

minimised by-" the checks in the data capture programs. 

During the tests, the stall angle at each Reynolds Number 

was observed and recorded. It is these observations alone 

that determined the range of angle of attack for which 

pressure tests were conducted at each fan speed. For 

presentation and discussion purposes, it is convenient to 

consider the pre-stall and early stall results for angles 

of attack , less than 20' separately from those for the 

higher angles of attack where the aerofoil is generally in 

deep stall. 

The momentum traverse observations are considered in iso- 

lation, since the C,:, values determined using the computer 

program CALCCD2 are only of relevance when considering 
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tunnel interference effects and for the compilation of the 

final table of aerodynamic force coefficients. 

Finally, the interference corrections are not applied 

until all uncorrected force coefficients have been satis- 

factorily determined. The corrected values will be used 

to form the NACA0025 dataset for use with VAWTTAY and to 

calculate the more familiar force coefficients C1... and C. 

6.11.1: Results of Static Pressure Tests at Low Angles of 

Attack, 

The range of static pressure tests" undertaken at each fan 

speed setting is shown in Table 6.2. This table also 

shows the static stall angle that was observed during the 

testing at each fan speed. At this angle the sudden 

collapse of suction pressure on the upper surface of the 

Fan Speed 

Index NQ 

Range of Angles 

of Attack 

Observed 

Stall Angle 

Reynolds 

Number 

1 0' - 15', 20' 8.9* 869000 

2 0*. - 20' 9.9* 103,000 

3 0' - 20' 11.8' 122,000 

4 
r 

0' - 20' 12.4' 138,000 

5 0' - 20' 12.9' 156,000 

6 0' - 20' 13.9' 177,000 

7 0' - 20' 14.7' 194,000 

8 0' - 20' 15.6' 214,000 

9 0' - 16' 16.9' 240,000 

Table 6.2: Range of tests, observed stall angle and 
Reynolds Number for each fan speed setting 
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aerofoil could be detected by observation of the manometer 

bank. This change was observed as the angle of attack of 

the aerofoil was changed. All tests were conducted with 

the angle of attack increasing from the nominal zero- 

attack position, consequently all angles of attack are 

nominal and are as displayed by the trip counter. The 

average Reynolds Number of the tests conducted at each fan 

speed setting are also recorded in Table 6.2. The 

uncorrected values of CN, and C-, - for low angles of attack, 

calculated using CALCCN2 and CALCCT2, are recorded in 

Tables 6.3a'and 6.3b respectively. These results are also 

plotted in Figures 6.9 to 6.18, where each graph 

represents measurements taken at a single Reynolds Number. 

Consider the results shown in Figure 6.17, which were 

observed at Re = 240,000. These results are the most 

reliable because the'rel'ative error of the pressure coeff- 
icients is at its smallest. The pressure distribution 

plots for this Reynolds Number setting are shown in 

Figure 6.18 for each, of the seventeen angles of attack 

observed. ' Each plot has been photographed from the 

computer monitor and shows the output from the programs 
CALCCN2 and CALCCT2. 

At angles of attack of 4' and less, the values of C, are 

large in magnitude, and deviate from the solid curve as 

shown (the significant of the solid curves in all these 

graphs is discussed below). The low-a values of C-, - must 

be held in doubt, since correction to fair profile drag 

values would require the addition of very large form drag 

values. A. similar occurence was also noted by Pope [66] 

when pressure testing the NACA0018 aerofoil section at a 

Reynolds Number of 1,230,000. Pope considered that the 

accuracy of the pressure integration at low-a for calc- 

ulating 
"chordwise 

forces to be poor, because it repre- 

sented a small difference between large areas. This 
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a 86000 103000 122000 
Reynolds Number 

138000 156000 177000 194000 214000 240000 

0' -0,286 -0,018 -0,001 0,007 -0,027 -0,019 -0,016 -0,026 -0,066 
1' -0,227 0,053 0,091 0,677 0,081 0,104 0,107 0,101 0,057 
2' 0,036 0,138 0,145 0,189 0,190 0,227 0,229 0,216 0,169 
3' 0,205 0,247 0,226 0,283 0,282 0,316 0,323 0,321 0,277 
4' 0,314 0,354 0,341 0,393 0,365 0,404 0,411 0,404 0,371 
5' 0,457 0,464 0,448 0,495 0,452 0,495 0,496 0,483 0,444 
6' 0,661 0,592 0,553 0,583 0,570 0,587 0,586 0,571 0.525 
7' 0,815 0,788 0,685 0,715 0,677 0,668 0,691 0,670 0,619 
8' 0,927 0,930 0,849 0,871 0,801 0,824 0,808 0,780 0,720 
9' 0,307 0,980 0,973 1,015 0,960 0,974 0,935 0,898 0,830 

106- 0,065 0,088 0,988 1,023 1,040 1,022 1,014 0,981 0,947 
11' 088 0 112 0 0 982 1,004 031 1 0,980 0,965 0,928 0,918 
12' , 0,115 , 0,136 , 0,152 1,049 , 1,012 0,972 0,951 0,927 0,900 
13' 0,156 0,183 0,178 0,222 0,998 0,974 0,955 0,931 0,905 
14' 0,240 0,277 0,224 0,266 0,240 0,267 0,964 0,938 0,893 
15' 0,337 0,391 0,411 0,406 0,359 0,367 0,353 0,953 0,932 
16' - 0,464 0,479 0,495 0,476 0,487 0,484 0,464 0.938 
17' - 0,504 0,515 0,539 0,528 0,538 0.533 0,513 - 
18' - 0,524 0,545 0,582 0,566 0,575 0,566 0.555 - 
19' - 0,569 0,578 0,632 0,594 0,602 0,597 0,582 - 
20' 0,551 0,596 0,605 0,634 0,622 0,632 0,632 0,616 - 

Table 6.3a: Uncorrected values of CN 

a 86000 103000 122000 
Reynolds Number 

138000 156000 177000 194000 214000 240000 

0' -0,015 -0,015 0,036 0,033 0,026 0,030 0,018 0,017 0,017 
1' -0,030 -0,003 0,025 0,269 0,029 0,027 0,025 0,021 0,017 
2' -0,022 -0,008 0,006 0,016 0,024 0,026 0,027 0,028 0,022 
3' -0,003 -0,002 -0,002 0,004 0,012 0,021 0,026 0,031 0,030 
4' 0,004 0,007 0,006 0,016 0,014 0,023 0,026 0,031 0,035 
5' 0,014 0,024 0,023 0,032 0,058 0,037 0,039 0,040 0,038 
6' 0,043 0,043 

. 
0,041 0,050 0,049 0,056 0,057 0,057 0,051 

7' 0,069 0,075 0,064 0,075 0,071 0,106 0,079 0,079 0,071 
8' 0,092 0,099 0,097 0,106 0,097 0,105 0,104 0,104 0,094 
9' -0,103 0,128 0,126 0,139 0,129 0,138 0,136 0,134 0,121 

10' -0,110 -0,111 0,145 0,160 0,157 0,164 0,164 0,162 0,154 
11' -0,120 -0,120 0 157 171 0 0,175 0,170 0,174 0,168 0,166 
12' -0,127 -0,132 

, 
-0,128 

, 0,171 0,182 0,178 0,183 0,180 0,175 
13' -0,132 -0,137 -0,144 -0,151 0,187 0,190 0,194 0,191 0,186 
14' -0,147 -0,161 -0,159 -0,168 -0,160 -0,160 0,206 0,202 0,232 
15' -0,160 -0,167 -0,175 -0,180 -0,181 -0,176 -0,174 0,216 0,213 
16' - -0,176 -0,181 -0,187 -0,185 -0,187 -0,187 -0,182 0,223 
17' - -0,171 -0,181 -0,187 -0,188 -0,189 -0,188 -0,183 - 
18' - -0,170 -0,181 -0,188 -0,188 -0,188 -0,189 -0,185 - 
19' - -0,176 -0,180 -0,188 -0,188 -0,187 -0,189 -0,183 - 
20' -0,166 -0,175 -0,179 -0,185 -0,185 -0,186 -0,187 -0,183 - 

Table 6.3b: Uncorrected values of C-r 
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Figure 6.9: Uncorrected values of C,,, and Cr ""at low angles 
of incidence for Re = 86,000 
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Figure 6.10: Uncorrected values of C,, and Cr. "at low angles 

of attack at Re = 103,000 
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Figure 6.11: Uncorrected values of C,,, and C, r at low angles 
of attack at Re = 122,000 
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Figure 6.12: Uncorrected values of C, and C-r at low angles 

of attack at Re = 138,000 
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Figure 6.13: Uncorrected values of C,,, and C"r at low angles 

of attack at Re = 156,000 
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Figure 6.15: Uncorrected values of C,,, and C-, - at low angles 

of attack at Re = 194,000 
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Figure 6.16: Uncorrected values of Cr,, and C"r at low angles 
of attack at Re = 214,000 
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Figure 6.17: Uncorrected values of C,,, and C", at low angles 

of attack at Re = 240,000 
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Figure 6.18a: C, a plots at cx = 0" for Re = 240,000 

Figure 6.18b: Cr. plots at a= 1* for Re = 240,000 

Figure 6.18c: Cam. plots at a= 2' for Re = 240,000 
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Figure 6.18d: C, plots at a= 3' for Re = 240,000 

Figure 6.18e: CF. plots at a= 4' for Re = 240,000 

Figure 6.18f: Cps plots at a= 5' for Re = 240,000 
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Figure 6.18g: CF- plots at a= 6' for Re = 240,000 

Figure 6.18h: C, plots at a= 7' for Re = 240,000 

Figure 6.181: CF. plots at a= 8' for Re = 240,000 
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Figure 6.18j: C,. plots at a= 9' for Re = 240,000 

Figure 6.18k: CF. plots at cc = 10' for Re = 240,000 

Figure 6.181: Cam. plots at a= 11' for Re = 240,000 
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Figure 6.18m- C. plots at a= 12' 'for Re = 240,000 

Figure 6.18n: Cf. plots at a= 13" for Re = 240,000 

Figure 6.18o: * C... plots at a= 14 ' for Re = 240,000 
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Figure 6.18p: C. plots at a= 15' for Re = 240,000 

Figure 6.18q: C plots at a= 16' for Re = 240,000 

y 
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explanation is not unreasonable, here, especially since the 

pressure, tappings are poorly distributed with respest to 

the normal, 'of, the chord. This enevitably means that the 

accuracy of the pressure envelope calculated by numerical 

interpolation around the leading edge is highly sensitive 

to the static pressures measured at the forward tappings. 

It is not possible to improve this calculation with the 

measurements made, but this does illustrate the need for a 

greater- number of pressure tappings around the leading 

edge for chordwise force integrations. Pope did not rely 

upon his chordwise force measurements for angles of attack 

less. than a =,. 13'. Fortunately here the Reynolds Number 

is low and the measured thrust forces seem reasonable for 

a: >. 4*., - Only thoseclose to a= 0' need be ignored. 

The pressure integration at low-a for calculating normal 

forces is much better and the data here is considered 

good. 

However, in order to determine the thrust forces at low-a 

it was°. necessary to-consider ideal-fluid theory for thin 

aerofoils. , If stalling is ignored, then the aerodynamic 

force coefficients can be expressed as follows: 

CN = a,, sinacosa - (6.57a) 

CT = a0sin2a (6.57b) 

where as is slope of the lift force curve at a=O. 

At low-a, .- Cam, " CL_ so that a, w, maybe determined from the 

normal force curve. - By observation of the C,.., curve of 

Figure 6.170- this -value was determined to be a, -;, = 5.7. 

Using 'this value of a,.,, a curve that represents the normal 

force behaviour-of the aerofoil can be drawn. At low-a 

the curve will generally satisfy equation (6.57a) and will 

fit the--measured data. However, as a increases and the 
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aerofoil approaches stall, ideal-fluid theory breaks down. 

Here only measured values of C. will truly represent the 

aerofoil behaviour-at these angles of attack. The curve 

must, pass through. the measured values as stall approaches. 

The solid C,.. curve shown in Figure 6.17 is just such a 

curve. At low-a it satifies equation (6.57a) but as stall 

approaches it is faired through the measured values of C,.,. 

Notice that the nominal,, values *of angle of attack have 

been ignored since it was not possible to accurately set 

the zero-attack condition in the wind tunnel. 

A, similar procedure can be adopted for representing the 

thrust force behaviour of the aerofoil. Here the low-a 

curve generally satifies equation (6.57b), and as stall 

approaches the curve is faired through the actual measured 

values of CT. The solid C", - curve shown in Figure 6.17 is 

just such a curve. Notice here that not only does the 

curve include an angle of attack offset, which is 

determined from the CN, graph, but that it includes a 

pressure drag component which the ideal-fluid theory 

ignores. Consequently, C, - will be negative at the true 

zero-attack condition. 

The solid curves--in both graphs of Figure 6.17 show the 

observed stall condition at the nominal angle of attack 

for this particular-Reynolds Number. 

In order to compare the aerofoil behaviour at different 

Reynolds Number, the solid curves of Figure 6.17 were used 

to make templates from which the solid curves in Figures 

6.9 to 6.16 were constructed. At each Reynolds Number, 

the solid curve represents what is considered to be the 

best-fit through the measurements. The angle of attack 

offset is determined from the normal force graph and used 

on the thrust force graph to determine the pressure drag 

at zero-attack. -. 
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Looking at all the graphs, the measured values of C,,, and 

Cr -compare well at low-a to the solid curves if the 

measurements of C", - are ignored for at 4'. However as the 

aerofoil nears stall the measurements deviate away from 

the solid curves and the difference seems to progressively 

increases as, the Reynolds Number decreases. Where devi- 

ation occurs, the measured values of CN are seen to be 

larger than those followed by the solid line. This 

behaviour is curious since it suggests that the maximum 

value of C, does not increase with increasing Reynolds 

Number as is usually observed of the four-digit NACA 

series of aerofoils. The author offers the following 

explanation for this behaviour. 

Inspection of the pressure envelope calculated using 

CALCCN2, typically Figure 6.19, shows that for low 

Reynolds Number a suction "bubble" appears on the upper 

surface of the aerofoil. As Reynolds Number decreases the 

angle of attack at which the bubble first appears becomes 

smaller. The effect of the bubble is to increase the area 

bounded by the pressure envelope, so the measured values 

of CN, are larger than if the bubble did not exist. As the 

angle of attack increases, the bubble size increases so C., 

continues to be larger'than if the bubble did not exist. 

The large values of CN at angles of attack near to stall 

result from the presence of the bubble. The influence of 

the bubble diminishes as Reynolds Number increases, and 

its presence is difficult to discern in the plots of 

Figure 6.18. 

The bubble also affects the calculation of CT, but its 

influence is less well defined. The bubble appears 
forward of the position of maximum thickness, so the 

forward suction pressures are slightly larger then if it 

did not exist. Consequently, C-r is calculated to be " 

larger. However, the overall difference is small. 
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Figure 6.19a: C, plots at a= 2' & 3' . for Re = 177,000 

Figure 6.19b: Cr. plots at a= 4' & 5' for Re = 177,000 

Figure 6.19c: CF. plots at a= 6' & 7' for Re = 177,000 
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Figure 6.19d: C. - plots at a= 8' &'9' for Re = 177,000 

Figure 6.19e: CF,. plots at a ='10* & 11' for Re = 177,000 

Figure 6.19f: Cr... plots at a= 12' & 13' for Re = 177,000 
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Whether the bubble is a feature of the NACA0025 aerofoil 

in general or whether it is peculiar to this particular 

test section is not known; the author considers the latter 

to be the more likely, since the sensitivity of the aero- 

foil behaviour to imperfections of manufacture will 

increase as Reynolds Number decreases. Since the influ- 

ence of the bubble appears to decrease with increasing 

Reynolds Number, the author considers the behaviour of the 

aerofoil is more reliably described by the measurements 

made at the highest Reynolds Number of 240,000. Therefore 

the C,,, -a and C-r-a curves are, based upon the aerofoil char- 

acteristics observed at this Reynolds Number. These char- 

acteristics-are represented by the solid curves. 

Observation of Figures 6.9 to 6.17 shows that the author 

has chosen to ignore the large C,, results where the bubble 

effect is considered, unreasonable. At the time of the 

analysis this seemed reasonable in order that a consistent 

set of-results could be generated. 

The early post-stall behaviour of the aerofoil is detailed 

in Figure 6.20. - Here all post-stall measurements have 

been plotted on-. thee same graph, though the nominal angle 

of attack has-been corrected at each Reynolds Number using 

the offsets determined from Figures 6.9 to 6.17. 

The normal, force graph; - confirms the common held belief 

that post-stall behaviour of the aerofoil is independent 

of Reynolds Number. The solid curve indicates the best- 

fit considered- by the, author to be acceptble. The thrust 

force graph, generally confirms the above observation, 
though the magnitude of the force does vary with Reynolds 

Number for angles of attack a> 14'. Although no indi- 

cation is made of the Reynolds Number of each measurement, 
the solid C, - curve of Figure 6.20 is faired through the 

higher Reynolds Number measurements. 
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The solid curves on both graphs have been faired into the 

deep-stall measurements to ensure continuity between 

datasets, 

6.11.2: Results of Static Pressure Tests at High Angles of 

Incidence 

The static pressure tests performed at high angles of 

attack were all conducted at a single Reynolds Number of 

Re - 130,000. The early post-stall measurements conducted 

at different Reynolds Numbers confirmed the validty of 

assuming the post-stall behaviour of the aerofoil to be Re 

ynolds Number independent. Measurements were made at 

five-degree intervals of angle of attack upto a=180', when 

the aerofoil operates in reversed flow with the trailing- 

edge upwind of the leading-edge. The uncorrected measure- 

ments of normal and thrust force calculated using CALCCN2 

and CALCCT2 are tabulated in Table 6.4. 

The uncorrected measurements of normal and thrust force 

are shown in Figure 6.21; these are faired into the low-a 

results for the tests conducted at a similar Reynolds 

Number. The results are considered to be highly reliable 

and the solid curve represents the best-fit as considered 

by the author. There appears to be little need for 

correction except those required for interference effects. 

6.11.3: Results of momentum traverse tests at low angles 

of attack 

The primary objective of the momentum traverse tests was 
to determine the profile drag of the aerofoil section at 
low angles of attack. The measurements made here include 

both the friction drag and pressure drag components of the 
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total drag force acting on the test section. The results 

of these tests would be used to modify the values of C-,.. to 

include friction drag. 

A total of 48 momentum traverse tests were conducted at 

low angles of attack. The values of C,, determined using 

CALCCD2 are 'tabulated ' in Table 6.5. It should be noted 

that in practice the value of C,, was found to be highly 

sensitive --to the value of the total head in the flow 

outside the wake, As discussed previously, the calc- 

ulation of C,., is subject to large relative errors, since 

the measurements of the total head inside and outside the 

wake are similar. This is reflected in the the scatter of 
the measured values of Co at each Reynolds Number. From 

the measurements alone it is difficult to determine the 

influence of Reynolds Number or angle of attack on C,,. In 

order to gain a greater insight into the behaviour of the 

drag force, it was necessary to fit the measurements to 

the second order' polynomial: ' 

Co =a+ ba2 (6.56 ) 

using a least-squared fitting routine. Of the two 

constants-in equation (6.58), a is the most significant 

since it' is' equivalent to the profile drag at zero-attack 
CD, =,. �Determining�CC�, ,,. alone would still enable the values 

of CT to be modified to include friction drag. 

Using the results of Table 6.5 and ignoring those measured 

when., the aerofoil had stalled, the values of CD, -, at each 
Reynolds was determined. -These "synthesised" values of 
CC:,,, are given in Table 6.6, and plotted with respect to 

log(Re) in Figure 6.22. The- 'variation of CC:,,::, can be 

linearised over--the. range of the test Reynolds Numbers and 

a value of C,:, C,, Re = 240,000 determined. It is, however, 

k 
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a CN a CN a CN a CN a CN 

21' 0,644 25' 0,789 30' 1,059. 35' 1,294 40' 1,503 
45' 1,689 50' 1,835 55' 1,943 60' 2,044 65' 2,032 
70' -2,120 75' 2,169 . 

80' 2,188 85' 2,166 90' 2,191 
95' 2.136 100' 2,086 105' 2,041 110' 1.980 115' 1,901 

120' 1,874 125' 1,777 130' 1,695 135' 1,551 140' 1,462 
145' 1,275 150' 1,064 155' 0,758 160' 0,625 165' 0,804 
170' 0,853 175' 0,597 180' 0,058 

Table 6.4a: Uncorrected post-stall values of Cam, 

a CT CT x CT a CT a CT 

21' -0,183 25' -0,169 30' -0,140 35' -0,106 40' -0,068 
45' -0,035 50' -0.010 55' 0,012 60' 0,040 65' 0,071 
70' 0,108 75' 0,139 80' 0,176 85' 0,209 90' 0,234 
95' 0,256 100' 0,270 105' 0,279 110' 0,292 115' 0,294 

120' 0,297 125' 0,292 130' 0,284 135' 0,267 140' 0.256 
145' 0,242 150' 0,216 155' 0,164 160' 0.135 165' 0,095 
170' -0,072 175' 0,047 180' 0,085 

Table 6.4b: Uncorrected post-stall values of C-1. 

86000 103000 122000 
Reynolds Number 

138000 156000 177000 194000 214000 

0' 0,051 0,040 0,035 0,036 0,033 0,031 0,027 0,025 
2' 0,043 0,040 0,034 0,032 0,030 0,027 0.028 0,025 
4' 0,050 0,042 0,024 0,033 0,028 0,030 0,027 0,024 
6' 0,039 0,032 0,021 0,032 0,026 0,025 0,025 0,022 
8' 0,040 0,047 0,039 0,041 0,035 0,054 0,032 0,034 

10' 0,101 0,084 0,060 0,039 0,036 0,041 0,041 0,035 

Table 6.5: Uncorrected values of Co 

Reynolds Number 
86000 103000 122000 138000 156000 177000 194000 214000 240000 

IC00 10,048 0,038 0,026 0,033 0,029 0,028 0,025 0,023 

Table 6.6: Values of zero-attack profile drag CC,,::, deter 
mined by least-squared fit 

Reynolds Number 
86000 103000 122000 138000 156000 177000 194000 214000 240000 

Coo 0,043 0,039 0,035 0,033 0,030 0,027 0,025 0,023 0,021 

Table 6.7: Variation of C(:,,, with Reynolds Number 
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unreasonable to extrapolate much further beyond the 

synthesised values. The, lineärisation can be used to 

modify the values of C,..,,:, at each Reynolds Number as 

appropriate; these-new values are shown in Table 6.7. 

These values can be-used to modifiy the measured values of 

C-, "" to include a friction drag,, component. The results of 

such a modification are not included here since the C, 

values, of the final dataset will include drag force 

components derived from another source. 

Hoerner presents, data for the section-drag coefficient, 

i. e. C00, of a number of 25% thick symmetrical sections 

over a range of Reynolds Number [67]. The results given 

extend well beyond the, range of Reynolds Number for the 

tests conducted here. This data includes values of C,:,,::, 

for a NACA0025 section, which have been superimposed onto 

Figure,. 6.22 for comparison. The sythesised values of Coo 

show good correlation to those presented by Hoerner, and 

whilst they are larger in magnitude, this is, not unreason- 

able considering the size and manner in which the test 

aerofoil has been manufactured. If values of C,, are 

required, at Reynolds Numbers higher than 240,000 for the 

purposes of generating a dataset for use with VAWTTAY, 

then the synthesised values show that the data presented 

by Hoerner should be used. 

Since the overall drag force at zero-attack has been 

determined with some degree of confidence for each 

Reynolds Number, it is now possible to estimate the tunnel 

interference effects. 

6.11.4: Applying the Tunnel Interference Corrections 

As discussed previously, corrections for tunnel blockage 

effects must be considered, but the corrections for lift 
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effect will be neglible. At low angles of attack C,, r 
Cthis implies that the wake blockage correction, E,,,, 

is of the same order of magnitude as the solid blockage 

correction, c,,,, so that the overall blockage correction, 

e, is approximately one-fifth of one per-cent. It was 

therefore considered unecessary to modify the pre-stall 

measurements of Cam, or C-, - to account for interference 

effects. 

When the aerofoil "stalls, '- the drag force increases signi- 

ficantly, so wake blockage corrections cannot be ignored. 

The 'drag force is calculated using equation (6.11b). 

However, beyond stall, friction drag is less significant 
than pressure drag, so' for simplicity all calculated 

values of C,:, -r were determined from the pressure test 

measurements of CN-r" and C"y""r alone. The wake blockage 

correction is calculated using equation (6.49). 

Also, as the angle of attack rises, the solid blockage 

correction `increases to a maximum value at a= 90'. 

Beyond this angle, the solid blockage correction decreases 

as"the aerofoil moves towards the reversed flow condition. 

While solid blockage corrections are not as large as those 

for wake blockage, they cannot be ignored. The solid 

blöckage correction is calculated using equation (6.46). 

It was convenient to modify all post-stall measurements to 

include wake blockage and solid blockage corrections using 
equation (6.56). These modified force coefficents are 

used to create the single post-stall dataset tabulated in 

Table 6.9. All ' post-stall forces are considered to be 

independent of Reynolds Number. 
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6.12: The Creation of a NACA0025 dataset for use with 

VAWTTAY 

In developing a normal force and thrust force dateset for 

use with VAWTTAY, the modified measurements have been used 

where considered appropriate. However. since the model 
V-VAWT operates at Reynolds Numbers in excess of 240,000, 

it has been necessary to extrapolate the pre-stall test 

data beyond this Reynolds Number. Linear extrapolation 
has been used to determine both the force coefficients and 

static stall angles at Reynolds Numbers upto 400,000. 

Such techniques have to be used with caution but are 

considered appropriate here. The modified post-stall data 

is considered Reynolds Number independent and therefore 

can be used without further modification, consequently the 

following discussion considers the pre-stall data alone. 

As discussed previously, the solid curves shown in 

Figures 6.9 to 6.17 are considered to be representative of 
the true behaviour of the aerofoil given that the thrust 

force values are modified to include friction drag. The 

templates developed from these curves have been used to 

generate pre-stall forces over the range of Reynolds 

Number Re = 65,000 to 400,000. The thrust force has been 

modified to include a friction drag component of such 

magnitude that the zero-attack profile drag C,, r, is that 

given by Hoerner. While this effectively ignores the 

synthesised values of Cr0, the final dataset is probably 

more representative of the NACA0025 section in general. 

It is worth noting that it is considered that the NACA0025 

section would only be used for a free-air V-VAWT at the 

root of the blade where its superior structural properties 
would be more advantageous than those of a thinner aero- 
foil sections. While the chord would be significantly 
larger than the test aerofoil, close to the blade root the 
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local Reynolds Number would be similar to the higher 

Reynolds Number of this dataset. The blade profile drag 

would be that value given by Hoerner, since the quality of 

surface finish and profile shape would be much better than 

that of the test aerofoil. Consequently by developing a 

thrust force dataset based upon the Cc;,,;, values presented 

by' Hoerner, predictions of the free-air section could be 

made with confidence provided the local Reynolds Number 

did not extend beyond the limits of the dataset. 

The values of the normal force and thrust force coeff- 

icients are presented in Tables 6.8 and 6.9. This dataset 

is in a format suitable for use with VAWTTAY, and was 

transferred immediately to a suitable datafile by the 

author. The Ch, -a and CT. -a characteristic curves are plot- 

ted in Figures 6.23 and 6.24. 

6.13: Summary of Observations and Conclusions 

The wind tunnel testing of a small NACA0025 aerofoil has 

enabled a'dataset of normal and thrust force coefficients, 

suitable for use with the aerodynamic performance predict- 

ion program VAWTTAY, to be created. The C,, and C, - values 

calculated from the computer based integration of static 

pressure measurements have been comprehensively refined to 

ensure that a consistent dataset has been created. This 

dataset consists of pre-stall C,., and CT values for a range 

of Reynolds Number, upto Re = 400,000, and post-stall C,,, 

and C, -'values which are considered to be Reynolds Number 

independent. 

In creating the pre-stall data, ideal-fluid theory was 

used to develop low-a C,. 1 and CT values for each Reynolds 

Number.. setting. These values were modified to include the 

friction drag effects noted. by Hoerner for this aerofoil 
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" 
65000 80000 100000 

Reynolds Number 
120000 145000 180000 220000 265000 325000 400000 

0' 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 
1' 0,099 0,099 0,099 0,099 0,099 0,099 0,099 0,099 0,099 0,099 
2' 0,199 0,199 0,199 0,199 0,199 0,199 0,199 0,199 0,199 0,199 
3' 0,297 0,297 0,297 0,297 0.297 0.297 0.297 0,297 0,297 0,297 
4' 0,396 0,396 0,396 0,396 0,396 0,396 0,396 0,396 0,396 0,396 
5' 0,494 0,494 0,494 0,494 0,494 0,494 0,494 0,494 0,494 0,494 
6' 0,592 0,592 0,592 0,592 0,592 0,592 0,592 0,592 0,592 0,592 
7' 0,059 0,689 0,689 0,689 0,689 0,689 0,689 0,689 0,689 0,689 
8' 0,059 0,059 0.78S 0,78S 0,785 0,785 0,785 0,785 0.785 0,785 
9' 0,064 0,064 0,870 0,870 0,870 0,870 0,870 0,870 0,870 0,870 

10' 0,089 0,089 0,089 0,895 0,895 0,895 0,895 0,895 0,895 0,895 
11' 0,119 0,119 0,119 0,119 0,900 0,900 0,900 0,900 0,900 0,900 
12' 0,158 0,158 0,158 0,158 0,905 0,905 0,905 0,905 0,905 0,905 
13' 0,217 0,217 0.217 0,217 0.217 0,910 0.910. 0.910 0.910 0.910 
14' 0,276 0,276 0.276 0,276 0,276 0,920 0,920 0,920 0,920 0,920 
. 15' 0,365 0,365 0,365 0,365 0,365 0,365 0,930 0,930 0,930 0,930 
16' 0,448 0,448 0,448 0,448 0,448 0,448 0,448 0,940 0,940 0,940 
17' 0,507 0,507 0,507 0,507 0,507 0,507 0.507 0,950 0,950 0,950 
18' 0,545 0,545 0,545 0,545 0,545 0,545 0,545 0,545 0,960 0,960 
19' 0,579 0,579 0,579 0,579 0,579 0,579 0,579 0,579 0,579 0,970 
20' 0,613 0,613 0,613 0,613 0,613 0,613 0,613 0,613 0,613 0,980 

Table 6.8a: C,,, at low angles of attack 

a 65000 80000 100000 
Reynolds Number 

120000 145000 180000 220000 265000 325000 400000 

0' -0,036 -0,031 -0,026 -0,024 -0,022 -0,021 -0,020 -0,019 -0,018 -0,017 
1' -0,035 -0,030 -0,025 -0,023 -0,021 -0,020 -0,019 -0,018 -0,017 -0,016 
2' -0,029 -0,024 -0,019 -0,017 -0,015 -0,014 -0,013 -0,012 -0,011 -0,010 
3' -0,021 -0,016 -0,011 -0,009 -0,007 -0,006 -0,005 -0,004 -0,003 -0,002 
4' -0,009 -0,004 0,001 0,003 0,005 0,006 0,007 0,008 0,009 0,010 
5' 0,007 0,012 0.017 0.019 0.021 0.022 0,023 0,024 0,025 0,026 
6' 0,026 0,031 0,036 0,038 0,040 0,041 0,042 0,043 0,044 0,045 
7' -0,094 0,053 0,058 0,060 0,062 0,063 0,064 0,065 0,066 0,067 
8' -0,101 -0,101 0,084 0,086 0,088 0,089 0,090 0,091 0,092 0,093 
9' -0,108 -0,108 0,113 0,115 0,117 0,118 0.119 0,120 0,121 0,122 

10' -0,116 -0,116 -0.116 0.137 0,139 0,140 0,141 0,142 0,143 0,144 
11' -0,125 -0,125 -0,125 -0,125 0,150 0,151 0,152 0,153 0,154 0,155 
12' -0,134 -0,134 -0,134 -0,134 0,161 0,162 0,163 0,164 0,165 0,166 
13' -0,146 -0,146 -0,146 -0,146 -0,146 0,174 0,175 0,176 0,177 0,178 
14' -0,165 -0,165 -0,165 -0,165 -0,165 0,186 0,187 0,188 0,189 0,190 
15' -0,178 -0,178 -0,178 -0,178 -0,178 -0,178 0,197 0,198 0,199 0,200 
16' -0,183 -0,183 -0,183 -0,183 -0,183 -0,183 -0,183 0,209 0,210 0,211 
17' -0,185 -0,185 -0,185 -0,185 -0,185 -0,185 -0,185 0,221 0.222 0,223 
18' -0,185 -0,185 -0,185 -0,185 -0,185 -0,185 -0,185 -0,185 0,234 0,235 
19' -0,184 -0,184 -0,184 -0,184 -0,184 -0,184 -0,184 -0,184 -0,184 0,247 
20' -0,182 -0,182 -0,182 -0,182 -0,182 -0,182 -0,182 -0,182 -0,182 0,269 

Table 6.8b: CT at low angles of attack 
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a.. _ 
CN a CM CN 

. .a CN CN 

21 0,613 22' 0,676 23' 0,706 24' 0,737 25' 0,771 
26' 0,819 27' 0,869 28' 0,922 29' 0,974 30' 1,027 
31' 1,073 32' 1,118 33' 1,162 34' 1,204 3S' 1,245 
36' 1,284 37' 1,323 38' 1,361 39' 1,397 40' 1,433 

41' 1,468 42' 1,501 43' 1,534 44' 1,565 45' 1,595 
46' 1,622 47' 1,648 48' 1,672 49' 1,695 50' 1,716 
51' 1.735 52' 1,752 53' 1,769 54' 1,785 55' 1,800 
56' 1,819 57' 1,837 58' 1,853 59' 1,867 60' 1,877 

61" 1,875 62' 1,871 63' 1,865 64' 1,860 65' 1,857 
66' 1,867 67' 1,880 68' 1,893 69' 1,908 70' 1,921 
71' 1,930 72' 1,937 73' 1,943 74' 1,948 75' 1,952 
76' 1,956 77' 1,958 78' 1,959 79' 1,960 80' 1,959 

81' 1,954 82' 1,948 83' 1,942 84' 1,937 85' 1,932 
86' 1,935 87' 1,938 88' 1,941 89' 1,944 90' 1,944 
91' 1,939 92' 1,932 93' 1,924 94' 1,914 95' 1,904 
96' 1,897 97' 1,890 98' 1,883 99' 1,876 100' 1,869 

101' 1,863 102' 1,857 103' 1,851 104' 1,845 105' 1,838 
106' 1,831 107' 1,822 108' 1,813 109' 1,804 110' 1,794 
111' 1,782 112' 1,769 113' 1,757 114' 1,745 115' 1,735 
116' 1,732 117' 1,729 118' 1,727 119' 1,724 120' 1,719 

121' 1,707 122' 1,693 123' 1,677 124' 1,660 125' 1,707 
126' 1,632 127' 1,621 128' 1,609 129' 1,595 130' 1,580 
131' 1,558 132' 1,533 133' 1,508 134' 1,484 135' 1,460 
136' 1,446 137' 1,433 138' 1,419 139' 1,404 140' 1,387 

141' 1,359 142' 1,328 143' 1,294 144' 1,259 145' 1,221 
146' 1,187 147' 1,151 148' 1,113 149' 1,073 150' 1,029 
151' 0,971 152' 0,911 153' 0,852 154' 0,794 155' 0,741 
156' 0,698 157' 0,663 158' 0,636 159' 0,620 160' 0,614 

161' 0,639 162' 0,673 163' 0,712 164' 0,753 165' 0,792 
166' 0,819 167' 0,840 168' 0,852 169' 0.856 170' 0,848 
171' 0,822 172' 0,783 173' 0,731 174' 0,669 175' 0,594 
1=76, ', 0.. S09 177' 0,412, 178' - 0,304 - 179' 0,186 180' 0,057 

Table 6.9a: C11 at high angles of attack 
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C 

a CT a CT a CT a CT a C? 

21' -0,180 22' -0,178 23' -0,174 24' -0,170 25' -0,166 
26' -0,161 27' -0,155 28' -0,149 29' -0,143 30' -0,136 
31' -0,130 32' -0,123 33' -0,116 34' -0,110 35' -0,102 
36' -0,095 37' -0,088 38' -0,080 39' -0,073 40' -0,065 

41' -0,058 42' -0,052 43' -0,045 44' -0,039 45' -0,034 
46' -0,023 47' -0,023 48' -0,019 49' -0,014 50' -0,010 
51' -0,006 52' -0,002 53' 0,002 54' 0,006 55' 0,011 
56' 0,015 57' 0,020 58' 0,026 59' 0,031 60' 0,036 

61' 0,042 62' 0,047 63' 0.053 64' 0,058 65' 0,064 
66' 0,071 67' 0,078 68' 0,084 69' 0,091 70' 0,097 
71' 0,103 72' 0,108 73' 0,114 74' 0,119 75' 0,125 
76' 0,131 77' 0,137 78' 0,144 79' 0,151 80' 0,157 

81' 0,163 82' 0,169 83' 0,175 84' 0,181 85" 0,186 
86' 0,191 87' 0,195 88' 0,199 89' 0,203 90' 0.207 
91' 0,212 92' 0,216 93' 0,220 94' 0,224 95' 0,228 
96' 0,231 97' 0,234 98' 0,237 99' 0,239 100' 0,241 

101' 0,243 102' 0,245 103' 0,247 104' 0,249 105' 0,251 
106' 0,254 107' 0,256 108' 0,259 109' 0,262 110' 0,264 
111' 0,265 112' 0,266 113' 0,267 114' 0,267 115' 0,263 
116' 0,269 117' 0,269 118' 0,270 119' 0,271 120' 0,271 

121' , 0,271 122' 0,271 123' 0,271 124' 0,270 125' 0,270 
126' 0,269 127' 0,268 128' 0,267 129' 0,266 130' 0, ̀264 
131' 0,262 132' 0,259 133' 0,256 134' 0,254 135' 0,251 
136' 0,249 137' 0,247 138' 0,246 139' 0,244 140' 0,242 

141' 0,241 142' 0,239 143' 0,237 144' 0,234 145' 0,231 
146' 0,228 147' 0,224 148' 0,220 149' 0,215 150' 0,208 
151' 0,199 152' 0,190 153' 0,180 154' 0,169 155' 0,160 
156' 0,154 157' 0,148 158' 0,143 159' 0,138 160' 0,132 

161' 0,129 162' 0,124 163' 0,117 164' 0,107 165' 0,093 
166' 0,059 167' 0,022 168' -0,014 169' -0,046 170' -0,072 
171' -0,069 172' -0,057 173' -0,040 174' -0,019 175' 0,004 
176' 0,028 177' 0,049 178' 0,067 179' 0,079 180' 0,084 

Table 6.9b: C, - at high angles of attack 
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Figure 6.25: CL,,, -a and C,:, -cc at low angles of attack 
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section. Wind tunnel corrections were not applied to 

these coefficients. The Reynolds Number range of the 

dataset. was extended using interpolation techniques. 

The early post-stall data demonstrated that the behaviour 

of the aerofoil is Reynolds Number independent, allowing 

deep stall, measurements to made at only one Reynolds 

Number setting. Measurements were made at 5' intervals of 

angle of incidence. The C,, and C",. values at intermediate 

angles were. calculated using interpolation techniques. 

The coefficients were not modified for friction drag, but 

corrections for tunnel blockage were applied. 

The characteristics of the aerofoil were continuously 

assessed and compared with the results of other NACA0025 

tests or sections of, the NACA four-digit family, to ensure 

the validity of the final dataset. To assist with the 

assessment, the normal and thrust force coefficients were 

used to calculate lift and drag force coefficients. These 

are plotted in Figures 6.25 and 6.26. 

It. is known that variations in lift curve slope caused by 

Reynolds Number increases are very small [66]. This slope 

provides. a convenient method of comparing aerofoils, even 

if the data corresponds to different Reynolds Number 

measurements. Suprisingly, as Figure 6.27 shows, the 

behaviour of the test NACA0025 section is similar to that 

of sections - with smaller fineness ratios. The slope of 

the lift curve at small angles of incidence from 0' to 6' 

is 0.099 per degree which compares favourably with that 

for the NACA0012., NACA0015 and NACA0018 sections [68], but 

it is significantly steeper than that of the NACA0025 data 

presented by Sheldahl and Klimas [26], or Bulllivant [62]. 

The lift- curve slope. comparison demonstrates that the test 

aerofoil was as effective at generating lift as any other 
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four-digit NACA aerofoil, and that the low-a C,, data is 

reliable. Note that the C,., measurements required little 

modification, and since a is small C,.... = CM, the measure- 

ments are therefore considered valid in this region. 

At low-a, Cr) = C., -. Since ideal-fluid theory, using coeff- 

icients derived from the Cr, data, and Hoerner' s Cr,,,;., values 

were used to modify the C", "" measurements, the values of C-,.. 

and C,, can be considered reliable at low-a. 

However, as a increases the similarity of the test 

aerofoil data with data from other sources diminishes. 

Figure 6.28 shows the low-a lift and draS curves for a 
NACA0025 section over the same Reynolds Number range as 
the data presented here. These curves use data presented 
by Sheldahl and Klimas 1263 that have be numerically 

generated at Sandia National Laboratories (SNL). This 

data does not show the sudden loss of lift observed in the 

tests reported here, though the shape of the pre-stall 
lift curves are similar. The onset of stall can only be 

judged from the drag curves, where a distinct rise in drag 

can be observed. The C,. n values are smaller in magnitude, 

so that overall the drag is smaller; the stall angles are 

also much larger. The SNL data demonstrates that stall 

gradually occurs as the angle of incidence increases. 
Only small decreases in lift occur, and that increases in 

drag are the most notable change observed. The "gentle" 

stall characteristic of the Sandia data is more typical of 
the thicker symmetrical NACA four-digit symmetrical 
sections. 

The post-stall characteristics observed here compare 
favourably with all other data sources, Figure 6.29, and 
therefore are considered to be a reliable and valid. The 

lift curve reaches a maximum CL. = 1.11 at a= 45', and 
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CL,,, =0 at a 97'. The drag curve continues to rise to a 

maximum C� = 1.94 at a- go*. These lift and drag 

characteristics are entirely consistent with the post- 

stall relationships given by Hoerner [67]: 

Ct_ = (1.8 to 2.0)sin(a)cos(a) (6,59a) 

CD = (1.8 to 2.0)sin2(a) (6,59b) 

The most significant difference between the test data and 

the SNL data is the abrupt loss of lift at the observed 

stall angle. It is considered that the static pressure 
bubble observed from the pressure envelope plots, while 
increasing lift at low-a, eventually degrades the perform- 

ance of the test aerofoil by prematurely invoking separa- 

tion. The bubble has little effect on drag, but when the 

aerofoil is stalled the drag noticeably increases. The 

larger magnitude of the profile drag is apparent at low-a. 

When using this data with VAWTTAY for aerodynamic 

performance predictions predictions of the model V-VAWT, 

it is anticipated that the predictions using the dataset 

developed here will be different from those using the 

Sandia data in two ways. 

Firstly, since stall occurs at lower angles of incidence, 

and the test aerofoil exhibits a poor lift performance in 

its early-stall condition, performance predictions will be 

poor where the wind turbine operates in the early-stall 

condition, i. e. at low tip speed ratios. However, the 

very low tip speed ratio performance predictions should be 

similar because the deep-stall charcteristics of the two 

datasets are similar. 

Secondly, since the profile drag of the test aerofoil is 

larger than that anticipated by the Sandia data, the 
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predicted runaway tip speed ratio will be smaller using 

the test data. At this condition, the V-VAWT blades are 

generally operating at small angles of incidence where the 

profile drag force dominates the driving force vector. 

Predictions using the test data are presented and 

discussed in the next Chapter. 

N. B. Note on bubble effect 

Subsequent - to the- analysis of., the NACA0025 measurements 

reported here, the observations of Willmer [69] came to 

the author'-s attention. During low Reynolds Number tests 

on the NACA0015 section, Willmer observed the presence of 

"bubble separation" at, low angles of attack, and includes 

all the, high lift results in his data, This suggests that 

the high CN, results observed here are valid and could . be 

accepted as seen. 

I 
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Chapter Seven: The Prediction of the Aerodynamic Char- 

acteristis of V-VAWT Configurations with 

Partial-span Pitch Control. 

7.1: Introduction 

In Section 2.2 the computer based aerodynamic prediction 

model VAWTTAY was briefly described. This computer model 

embodies the extended multiple streamtube theory that has 

been gradually developed by Sharpe C 181 over a period of 

some ten years. VAWTTAY, and its associated computer 

programs WRITEBLADE and READVAWTTAY were adapted by Sharpe 

for the V-type wind turbine configuration and were init- 

ially written in BASIC for the Commodore series of micro- 

computers. The predictions for the model V-VAWTs tested 

by Sharpe and Taylor <see Section 2.1) were made using the 

BASIC versions of these programs, The comparison between 

the theoretical results and the experimental results was 

considered good, so much so that Sharpe and Taylor are 

confident about using the prediction model for design 

studies of larger V-VAWT configurations. 

In the work reported here, no attempt has been made to 

advance the theoret'ical development of the prediction 

model. The author has merely utilised Sharpe's BASIC 

programs for predicting the performance of the model 
V-VAWT, the design and testing of which is reported in 

previous chapters. The success c; f the prediction results 

was limited by the lack of suitable aerofoil data as 

discussed *in Section 5.10, and the author has had to 

determine a suitable set of aerofoil characteristics for 

the NACA0025 section used for the wind tunnel model 
blades. Chapter Six discussed the experimental and 

analytical methods used to generate a suitable NACA0025 
dataset for use with VAWTTAY. The performance predictions 
using this data are presented later in this chapter. 
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Notwithstanding the limitations of suitable aerofoil data, 

the author found using the VAWTTAY suite of programs in 

their original form both time consuming and inconvenient. 

The original WRITEBLADE and VAWTTAY programs had been 

developed by Sharpe to fully describe the shape and geo- 

metry of V-VAWT blade. The blade geometry can be defined 

to include the effects of taper, twist, root attachment 

axis offset, taper axis offset and twist axis offset. The 

describing parameters available allow almost any blade 

size or shape to be modelled and analysed. Linear vari- 

ations of taper and twist are assumed between the blade 

root and-tip, but the option to specify more precisely the 

spanwise variation of these describing parameters is 

available. 

Unfortunately, the modelling of a blade with partial-span 

variable pitch could not be satisfactorily achieved using 

the computer programs in their original form. To generate 

the initial predictions for the model V-VAWT, the author 

had to resort to modelling the wind turbine blade as two 

discrete blades. The fixed pitch inboard portion and the 

variable pitch tip portion were described separately in 

different blade geometry files. The performance of each 

"blade" was analysed separately, and the results had to be 

numerically combined to give the overall performance of 

the V-VAWT rotor. 

To investigate the effect of varying tip pitch required 

additional tip geometry files to be generated, each file 

describing a different pitch (twist) setting. Each file 

was analysed using VAWTTAY and the results numerically 
combined with the inboard blade results to give the over- 
all performance characteristics of the rotor. This method 
yeilded the performance results reported in [57,58,591 and 
those discussed in Section 5.10. 

. 
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Aside from the limitations of available aerofoil data, the 

method of generating the performance results was consider- 

ed most inadequate by the author. Essentially two prob- 

lems were identified: 

(a) Speed of program execution 

(b) Inconvenience of modelling approach for variable 

tip pitch 

The modifications made by the author ýo the VAWTTAY suite 

of programs to overcome these problems are described in 

Section 7.2. The remainder of this chapter investigates 

the use of VAWTTAY for predicting the effect of partial- 

span pitch control on the performance of large, free-air 

V-VAWTs. Firstly, though, the NACA0025 dataset developed 

from the author' s experimental measurements is used with 

the modified computer programs to evaluate the validity of 

the prediction model for predicting the effect of tip 

pitch. The theoretical predictions of performance for the 

model V-VAWT are co. mpared with the results measured during 

the wind tunnel tests, and the significance of the discre- 

pancies assessed. The suitability of the performance pre- 

d iction model for determining the aerodynamic character- 

istics of a larger, free-air V-VAWT with variable tip 

pitch control is considered, rotor configurations eval- 

uated, and possible control strategies defined. 

7.2: Modifications to the VAWTTAY Suite of Computer 

Programs 

The BASIC version of VAWTTAY was slow to execute, despite 

the structure of the program being optimised by Sharpe to 

ensure effective run-time operation. While some improve- 

ment in speed was seen by transferring the program from a 
Commodore PET to a Commodore 64, the calculation time was 
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still of, the order of ten to twenty minutes for evaluating 
the rotor performance at a single tip speed ratio setting. 
To generate a complete C,.. ->, characteristic with reasonable 

accuracy would take approximately two to three hours. 

This was not acceptable for parametric studies where opti- 

misation of performance was being sought, and blade geo- 

metry modifications needed to be evaluated quickly. 

To overcome the speed deficiency, the author decided that 
FORTRAN versions of the VAWTTAY suite of programs needed 
to, be developed. The-author undertook this task almost 
immediately the experimental measurements of the model 

, 
V-VAWT had been completed. The programs were initially 
developed on a VAX 11/780 computer in standard FORTRAN 77 

merely as copies ofl, Sharpe'r. original BASIC programs. A 
limitation of Sharpe's BASIC programs was that variable 

names can only be identified uniquely by two characters. 
This did not, allow Sharpe much scope to assign meaningful 
names to the program variables, so the author had great 
difficulty identifying the significance of some parts of 
the programs and how they related to the original stream- 
tube theory. 

_ 
However, 

, 
the translation of the programs 

from BASIC, to 
-FORTRAN was successfully completed after 

many months effort and frustration! The author has 

continued to 
-develop 

the programs further, and has opti- 
mised many, of the routines used in the three programs. 
The structure of each program has been modified and the 

program listings contain many notes for user guidance. 
Error, checking-routin, es have been developed to ensure data 

entry is accurate, and within the limits of the program. 
The_ author'-s, FORTRAN version of the VAWTTAY suite 
currently, runs on the VAX 11/750 computer in the 
Department 

, of Mechanical Engineering at Portsmouth 
Polytechnic. Since it is written in standard FORTRAN 77, 
it is1transportable., 
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The validation of the programs took a significant time. 

but comparison of the results of the BA. 13IC and FORTRAN 

programs showed good correlation. The greater accuracy of 
the minicomputer ultimately means that the results of the 

latter program are more reliable, but most importantly 

they are generated much more quickly. Typically, the 

complete C,.. -% characteristic of the model V-VAWT takes 

approximately one minute (c. f. 2-3 hours> to analyse using 
the FORTRAN version of VAWTTAY. There is little or no 
time saving for the initialisation sequence, because it is 

the response and speed of the operator that determines the 

time taken to set up the operating conditions to be anal- 

ysed. Similarly, the execution time of the WRITEBLADE and 
READVAWTTAY programs is little different, because these 

programs require more interaction with the operator. Data 

storage and retrieval is, however, quicker, and the size 

of the files and their management is easier to control on 
the-minicomputer. 

A great deal of time was spent writing and developing the 

FORTRAN versions of the VAWTTAY suite of programs. The 

author considers the time well spent because a faster and 

more flexible analytical tool has been developed. 

Having developed a version of VAWTTAY that was both fast 

and reliable in its execution, the approach used to 

analyse the variation of tip pitch was reviewed. While 

considering the rotor as two separate blades and analysing 
the performance of each section separately was a suitable 

approach to initially adopt, it was clearly not appro- 
priate for more extensive studies. Since the blade was 
modelled by two separate blade geometry files for each tip 

pitch variant, the overall rotor performance had to be 
determined by numerically combining the results of the 

separate VAWTTAY analyses of each blade file. Only the 

summary data generated by VAWTTAY could be combined in 
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this way, i. e. Cp and C,:;, values. The post-processor 

program READVAWTTAY- which utilises all the blade force 

data to generate other useful performance data such as 

azimuth torque variation, spanwise torque variation, blade 

loadings etc. -.., could not-be used here. The results of 

the VAWTTAY analysis had to be combined without the aid of 

this, program., - This is 'clearly not suitable for more 

extensive design studies, where the detailed results 

output: is vital for, development purposes. 

On a more practical note, the use of separate blade geo- 

metry files -for each tip pitch variant not only requires 

good database management of the many files created, but a 
high proportion -of computing time is spent generating the 

separate blade geometry files themselves. Repeated use of 

WRITEBLADE, will require basic shape and size data to be 

entered time and time again as each tip pitch variant is 

created. ,, The only- difference between files being the 

pitch -angle- itself. . Similarly, the VAWTTAY analysis will 

use the same range of-operating conditions as each blade 

file As, analysed. - -The initialisation of VAWTTAY often 
took longer than the analysis itself. Clearly a better 

approach was-required. ý' 

The approach eventually adopted was in essence no differ- 

ent, -to-that already used, in that the blade is considered 

as two, separate parts that can be analysed independently 

of each other and the results combined. However, in the 

new-approach all-the blade data describing the tip pitch 

veriants, is generated automatically from within the WRITE- 

BLADE, -program. -The modified version of this program 

requires only the overall blade geometry to be defined as 

previously, but by defining the position of the spanwise 
transition point-between the inner and outer blade sect- 
ions, WRITEBLADE- automatically generates the describing 

datal for -both blade ý sections. An additional data inPUt 
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requires the operator to specify the range of tip pitch 

angles to be studied. From this input, WRITEBLADE auto- 

matically generates the tip data for all pitch angle 

variants. All the describing blade geometry data is 

stored in a single datafile. 

The modus ope_randi of VAWTTAY had to be adapted to auto- 

matically analyse each tip variant and combine the results 

with the inner blade section to give overall performance 

characteristics. The modification did not affect the 

theoretical basis of VAWTTAY, but merely automated the 

analysis process to accommodate the modified structure of 

the new blade geometry files. Once initialised, VAWTTAY 

now analyses each tip pitch variant before proceeding to 

the next tip speed ratio. Table 7.1 shows a typical 

results summary generated by VAWTTAY at each tip speed 

ratio. In this way, the complete C, -X-0 characteristic 

of a, rotor can be generated by a single execution of the 

VAWTTAY program. The time taken to initialise the program 

is now only a small proportion - of that time required to 

complete the full analysis. 

The post-processor READVAWTTAY has been similarly modi- 

fied, though little effort was directed to improving the 

presentation of the results, which now have a further 

"degree of 'freedom" to consider. However, since the 

various tip configurations have been analysed during the 

same,, VAWTTAY execution, all blade forces are saved in 

terms of the same base units. The detailed performance 

statistics, therefore, can now be generated by READVAWTTAY 

without-, modification', using the original analysis algor- 
ithms. I 

As Table 7.1 shows, - the results summary generated at each 
tip speed ratio not only reports the variation of the non- 
dimensional quantities C, and C,:,, but for convenience 
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----------------------------------------- 
Tip speed ratio = 6.19 
Windspeed (m/s) = 12.00 
Rotational speed (rpm) = 161.50 

Pitch Torque Power CQ CP CD 

----- -(k: Nm)- -(EkW)- -- -- -- 

-5.0 0.366 6.186 0.0500 0.3095 
cl. 0 0.397 6.548 O. (D529. 0.3277 
5.0 0.354 5.992 0.0484 0.2999 

10.0 0.200 3.375 - 0.0273 --. 0.1699 
15. O., 7nLI. 719 -12.143 ---0.0992 -0.6076 
20.0-- -e-1-614 -2.7.293- -0.2207- -1.3657 
25.0 

. -2: 51E3 -. 42.592 
. -0.3.444 -2.1313 

--ý-56i'941-. -0.4596: -"2.9443 
---------- ----------------------------- 

Tip speed ratio = 5.30 
Windspeed (m/s) = 14.00 
Rotational. speed (rpm) = 161.50 

0.6283 
0.5962 
0.5285 
0.6019 
0.4721 
0.3963 
0.3661 
0.3679 

Pitch Torque Power CQ CF' CD 
----- -. (kNm)- -(kW)- -- -- -- 

--9.578 0.0569 0.3019 0.5423 
0.0 

-0.596 
10.073 0.0598 0. -3174 o. sz. -15 _ --0.553 9.356 0.0556 0.2949 0.4S71 

10.0 
.. 

0.227 3.832 0.0228 0.120E3 0.429E3 
15.0 --e-0. -575 -9.720 -ýO. 0577 3063 0.3S87 
20.0 -1.465 -24.780 -0.1472 -0.7009 0.3512 

�. 
25.0 . --2.388 -40.387 --0.2399 --1.2727 0.: 3363 
30.0 -3.209 -54.278 -0.3224 -1.7104 0.3427 

Table 7.1: Typical results summary from author's modified 
version of VAWTTAY 

- 318 - 



calculates the real power and torque values for the part- 
icular rotor configuration being studied. The author 
finds this results format much more convenient for design 

studies. It is especially useful for the analysis of 

variable windspeed operation where the base units of the 

non-dimensional units change with windspeed. 

The 
'author 

again spent 'much time incorporating these 

changes into the FORTRAN versions of the VAWTTAY suite of 

programs. However, the resulting package is a highly 

developed and flexible suite of programs that allows the 

complete ý- characteristics of a particular rotor and tip 

pitch .., control configuration to be easily described and 

quickly analysed. ", The author considers that only the 

post-processor program READVAWTTAY requires further devel- 

opment, The ýdevelopments would include extending the 

range of information presented and, more importantly, 

creating plotting routines fI or the graphical display of 

results. The latter would greatly ease the interpretation 

of the vast quantity of data generated by the prediction 

model and serve to assist in the assessment of suitable 

design solutions. 

7.3: Prediction of Performance of Model V-VAWT using 
Measured NACA0025 Dataset 

To verify the accuracy and reliability of the performance 
prediction model 'VAWTTAý, - the performance of the model 
V-VAWT was theoretically evaluated. Initial results were 
discussed in Section 5 . 10, where it was demonstrated that 
it was inappropriate" to-- use the NACA0012 or SNL NACA0025 
data for predicting the performance of the model V-VAWT. 
The wind tunnel testing of a NACA0025 section similar to 
that used on the model V-VAWT blades was described in the 

previous chapter, where the aerodynamic characteristics of 

- 319 - 



C 
cý 

0 

0 
o 

A 
W 

o W 
a N 

a N 
o 
N 

0 

LOO 0 0 
. L1ýI3 S 5.3.33'0 ýI3M Od 

Figure 7.1*. Comparison of predicted and measured perform- 

ance of model V-VAWT 

- 320 - 

N 
-+ 0 O 

OOOOO 



this section were developed into a format suitable for use 

with VAWTTAY. Using the force coefficients from the 

author's own, NACA00251 dataset, the performance of the 

model V-VAWT has been predicted using VAWTTAY. The 

results of . 
this evaluation are shown in Figure 7.1, which 

compares the measured results with the predicted results 

using all three aerofoil datasets. available. 

Figure 7.1 shows that there is still a discrepancy between 

the measured and theoretical predictions of the model 
V-VAWT even using the author's own NACA0025 dataset. 

However, the difference between the theoretical and 

experimental results no longer occurs at high tip speed 

ratios, where correlation is good, but rather at the lower 

tip speed ratios where the theory clearly under-predicts 
the rotor performance. 

The, theoretical predictions using the measured NACA0025 

data rather. than the SNL NACA0025 data, almost exactly 

correspond to the measurements made on the model V-VAWT at 
high tip speed ratios. This indicates that , the profile 
drag of the model blades is more accurately represented by 

the author, ', s- own data than-either of the other aerofoil 

sections. The runaway tip-speed ratio is also clearly 

smal, ler, and more representative of that of the model. 

At, the lower tip speed ratios the author's NACA0025 data 

clearly under, -predicts the performance of the model. The 

predictions . made using,. the other datasete provides good 

correspondence 
*to 

the measured results at low tip speed 

ratios, though, the peak, C,, values are significantly larger 

than observed and occur at higher tip speed ratios. The 

author-,, is , su spicious of the good correspondence with the 

SNL-NACA0025 and NACA0012 results and considers the corre- 
lation may be 

, 
Just co-incidence rather than accuracy of 

representation. 
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The authorl, s -suspicions -about the apparent correlation of 
SNL NACA0025ý and NACA0012 predictions at low tip speed 

ratios are aroused because at these speed ratios the rotor 

experiences the unsteady effects of dynamic stall. The 

author considers -that- his own NACA0025 data is valid over 
this operating range, and it is the prediction model 
VAWTTAY that- is -not , sensitive enough to the effects of 
dynamic'stall on this particular aerofoil section. 

The phenomenon of dynamic stall is described in detail by 

McCroskey [701, but in simple terms an aerofoil operating 
in a,, flow regime where the, angle of attack is increasing 

will experience a delay in the onset of stall, so extend- 
inS its useful operating range beyond the static stall 

angle.,, -The extent of I. 
the delay and the increase in lift 

force experienced durinS dynamic stall is the focus of 

attent'iOn 'of many investiSato I rs in the wind energy f ield. 

It is-generally understood that predicting its effects in 

wind t, urbine applications is difficult, but mathematical 

models describing the effect have been developed but with 
limited', success. 

The aerodynamic- performance prediction , model VAWTTAY 

includes a number ýof features for predicting unsteady 

aerodynamic Sharpe has devised suitable mathe- 

matical-models, to,. describe the effects of flow curvature, 
tip losses and dynamic stall C 183. All these models have 

been embodied-into VAWTTAY,, so the influence of these 

unsteady aerodynamic' effects - is - already included in the 

theoretical -results presented here. Sharpe's model of 
dynamic-stall is-based upon that of-Gormont [711. In this 

model, - the modified angle of attack at which the aerofoil 
operates, -in its dynamic condition is a function of the 

pitch rate i. e. the rate of change of angle of attack. 
The lift and drag characteristics for this condition are 
determined from the static aerofoil characteristics. 
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The Gormont model was derived from empirical observations, 

and was adopted by Sharpe because it was simple to incorp- 

orate into the aerodynamic performance prediction model. 
When using this dynamic stall model with the multiple 

streamtube theory, Sharpe concluded 1181: 

"dynamic stalling should be applied only to blade normal force and 
only for the upwind blade pass. " 

Amongst others, Hales et al [723 have more recently 

summarised the evidence of dynamic stall effects on VAWT 

performance. They also discuss the problem of developing 

dynamic stall-models suitable for predicting its effect' 

and note that: 

"the laminar separation bubble described in the static case by 
Willmer, , for Reynolds Numbers below about one million, plays an 
important role in the dynamic stall behaviour of these aero- 
foils'.. -Ahe dynamic stal; behaviour of these sections cannot be 
defined solely in terms of a more precise experimental deter- 
mination of static aerofoil characteristics versus Reynolds 
Number. " 

The laminar -separation bubble observed by Willmer 1693, 

was -observed by the author in the tests of the NACA0025 

section. - It -can be assumed, therefore, that the laminar 

bubble influences the dynamic stall characteristics of 
this section -at low Reynolds, Number in much the same way 

as-it-does the characteristics of the NACA0015 section. 

Whiler -Hales et al- -acknowledge the common usage of the 

Gormont dynamic -stall model in VAWT aerodynamic 
theories, the use of ,, 

the Westland time delay model is 

discussed. Both models utilise constants that have been 
determined empirically from tests on a limited number of 

aerofoils, and notwithstanding the advantages of each 
approach, it was concluded, that: 

-ý 
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"the empirical constants should be determined on the appropriate 
aerofoil sections, rather than using the 'mean values' offered by 
the originators (of the models). " 

The author is unaware of any dynamic stall investigations 

of the NACA0025 section, and therefore is unable to valid- 

ate the results of applying the Gormont dynamic stall 

model to this section. It is the opinion of the author 

that the present dynamic stall model used in VAWTTAY is 

not suitable for predictinS the dynamic stall effects of 

this thick aerofoil at the low Reynolds Numbers at which 

this phenomenon occurs. The theoretical predictions of 

the model V-VAWT are smaller in magnitude than actually 

measured in the low tip speed ratio region, and it is 

considered this to be entirely due to the uncertainty of 

the dynamic stall behaviour of this aerofoil. The author 

has been unable to Justify this argument with any evidence 

other than that already presented. 

An alternative reason for the poor correlation between the 

low tip speed ratio results may be due to the poor 

characteristics of the aerofoil section observed in the 

early-stall region, and that these observations are 

unrepresentative of the model V-VAWT blade. It was noted 

in Section 6.13 that the test aerofoil exhibits poor lift 

performance in the early-stall condition, and that the 

thrust force drops to large negative values immediately 

following separation. Stall is also observed to occur at 

low angles of attack in these low Reynolds Number 

conditions. The validity of these observations is, 

however, not doubted by the author because the 

repeatability of the measurements is demonstrated at all 
Reynolds Numbers. These characteristics will yield poorer 

aerodynamic performance predictions then the SNL NACA0025 

data when the V-VAWT operates at low tip speed ratiOSt 
however, the overall characteristics of the aerofoil as 

measured is considered to be more representative of those 
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of the model V-VAWT blades. This is borne out by the 

higher tip speed ratio results, where correlation of 

results is good. 
, 

Consequently, the author is confident 
that the early-stall aerofoil data is valid, and that it 

is the weakness of the dynamic stall model that accounts 
for the differences in the low tip speed ratio results. 

I 

Despite the speculation about the validity of the theo- 

retical results generated using VAWTTAY, it is only for 

this particular . model that such large discrepancies 

between theoretical and measured results have occured. 
From the discussion above, it is clear that it is the 
limitations of our knowledge of the behaviour of the 
NACA0025 section both statically and dynamically that 
limits the accuracy and reliability of the theoretical 

performance predictions. While the author considers that 

'the 
dynamic stall model is unsuitable for predicting the 

behaviour of 
', 

this 25% thick section, its use with the 

finer 12%, 
ý 

15% and 18% sections is known to be more 

reliable. 
, 

Therefore, when using these sections there is 

no reason to doubt the validity of the aerodynamic 

prediction theory or its embodiment into VAWTTAY. 

The initial performance predictions using NAC0012 aerofoil 
data, Figures 5.8 to S. 11, show that VAWTTAY can be used 
to predict the effect of tip pitch. The modified versions 
of VAWTTAY were used to repeat these results to ensure 
thatl the new., yer. sions of the programs were valid theo- 

retical tools. Repeatability was good, and therefore the 

author has no doubts about the suitability of VAWTTAY for 

predicting', the effect of tip pitch control on larger 
V-VAWTs. It is this aspect of the work that will be 
discussed next. 

0 
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7.4: Prediction of Performance of Large V-VAWTs with 

Variable Pitch Tips for Control 

Sat isf ied that VAWTTAY was suitable for predicting tip 

pitch effects on the performance of V-VAWT rotors, it was 

now' possible ' to' undertake theoretical design studies of 

larger configurations. 

The 5kW V-VAWT that will be considered here was first 

describýa by- Sharpe and Taylor 1191; more recently the 

initial 'results of field trials at the Open University 

have been presented 1223. This machine was designed for 

research and development purposes, and since funds were 

limited, ' was adapted for use with equipment already in use 

on the Open University test facility [213. 

The design of the rotor was completed by Sharpe and Taylor 

using the original version of VAWTTAY. The aerofoil used 

for'the blades is the NACA0018. Their design studies with. 

VAWTTAY were completed using characteristic aerofoil data 

for''. this section taken from reference 1261. The f inal 

r- otor design, following the parametric studies described 

in-reference 1191, has blades that are 5.5 m in length and 

are tapered from the root (c = 460 mm) to the tip 

(c 230 ram) with an aspect ratio of AR = 16. The tip 

radius is R 4.39 m and the swept area is A= 19.03 M- 

Two-: and three-bladed versions have been consideredl but 

it is the two-bladed vI ersion that was first constructed 

and evaluated. For this version, the performance predict- 

ions using VAWTTAY showed Cr. m,, x = 0.32 at X=6.2, which 
implied that at the rated windspeed of V,,,, = 12 m/s the 

maximum 'electrical power output of the system would be 

Pme-%X 5. 
,0 

kW, 
_ 

assuming an 80% transmission and conversion 

efficiency. The aerodynamic power output of the rotor is 

P,,, ý,. 6.25 kW at a rotor speed of N= 161.5 rpm. 
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The initial field trials of the 5kW V-VAWT have included 

the evaluation of the C,.. -X characteristic of this larger 

machine. The method adopted for these tests was a free- 

air variation of the acceleration method described in 

Section 5,3., The problems of using this method in the 

free-air environment has been demonstrated by Sharpe et 

al- C221, but -the initial performance results can be 

considered encouraging. The 5kW V-VAWT is not, at 

present, fitted with any aerodynamic control device, nor 
is it connected to an electrical generator of any kind. 

Thus evaluation of its performance as a controlled, grid- 
linked-wind turbine generator has not been possible. 

The author's own studies of the 5 kW V-VAWT configuration 
were presented in reference [591. These initial studies 

considered the use of tip pitch and IT' brake options for 

control of, this free-air machine. Based upon the findings 

of the experimental results presented in Chapter Five, the 

use of variable pitch tips and IT' brakes with surface 

areas of only 5% of the total blade area was analysed 

using VAWTTAY. The, results of this analysis showed that 

such smallý-control surfaces would provide suitable power 

and speed regulation of this configuration. However, 

these theoretical studies of the 5kW V-VAWT were all 

carried out for constant windspeed operation, the wind- 

speed being-V =, 12 m/s. The effect of Reynolds Number is, 

therefore, _ not completely considered. Consequentlyo 

consideration of the C, -% characteristic for this type Of 

operation alone, ý yields results that are misleading. 

In, developing aerodynamic control methods for the V-VAWT 

concept, the needs of electricity generation applications 
have always been considered to be the highest priority- 
If the V-VAWT is to succeed as a wind turbine generator, 
operating as part of a electricity distribution network, 
thenýpower and speed control are necessary requirements. 
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Constant rotational speed operation poses the most diffi- 

cult and challenging problems for the control of a wind 

turbine. Therefore, it is appropriate that this mode of 

operation be considered here for evaluation purposes. To 

maximise the effectiveness of the 5kW V-VAWT for elec- 

tricity generation, the nominal operating speed of the 

two-bladed version should be N= 161.5 rpm. The speed 

step-up ratios of the transmission elements are chosen to 

ensure that when the rotor operates at its nominal speed, 

the electrical generator is operating at synchronous 

speed. In this way, the wind turbine will operate at its 

maximum efficiency when the windspeed is equal to the 

rated windspeed, VFý1717' = 12 m/s. 

When operating in windspeeds greater than rated, unless 
this particular. configuration displays a natural stall 

characteristic, the "on-line" power output of the V-VAWT 

wi 11 have 
, 

to-be regulated to ensure that the rotor speed 

remains at synchronous speed and that the power output 

remains constant. 
, 

Only by inspection of the constant 

rotor speed characteristic of the V-VAWT can the on-line 

power control effect of tip pitch be fully evaluated for 

this mode of operation., 

. While evaluation of constant speed operation will deter- 

mine the on-line power control characteristics of the 

, rotor, the evaluation of the rotor characteristics for 

constant windspeed operation is equally important. It is 

this mode of_ operation, that allows us to determine the 

, "off-line" -shutdown. characteristics of the wind turbine in 
high windspeeds. While not specifically stated, it has 
been assumed that a suitable. Cut-out windspeed for the 5kW 
V-VAWT would- be V,:,,, --r = 26 m/s. At this windspeed, a 
negative -torque characteristic has to be demonstrated at 
all rotor speeds to ensure that full aerodynamic brakinS 
could be achieved during off-line operation. 
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To determine a suitable tip configuration for power and 
speed control of the 5kW V-VAWT, the effect of variable 
pitch tips with 5%, 10%, 15% and 20% surface areas were 
considered. The author's version of VAWTTAY has been used 
to theoretically evaluate the performance of the V-VAWT 

for each of these tip configurations. Constant rotational 
speed (N = 161.5 rpm) and constant windspeed (V = 26 m/s) 
performance evaluations have been carried out. The theo- 

retical results of aerodynamic power versus windspeed and 
aerodynamic power versus rotational speed are presented in 
Figures 7.2 to 7.5. The results have been generated using 
NACA0018 data 1261, but parasitic drag losses have been 
ignored. The rated aerodynamic power of the 5kW V-VAWT 

rotor is = 6.25 kW at = 12 m/s; this is clearly 
shown in each constant rotational speed plot. Tip pitch 
angles larger than P= 30* are not shown. 

The effect of tip pitch for angles larger than 5= 30* 
have been ignored because at these high pitch angles, the 

aerodynamic power output of the V-VAWT has been predicted 
to Increase rather than reduce. The author has good 
reason to doubt the validity of these VAWTTAY results; 
clearly rotor power would continue to decrease with 
increasing tip pitch angle. Inspection of the VAWTTAY 

output does not show any computational errors, but the 

prediction model is clearly breaking down. After 
consulting David Sharpe, it is believed that the 

assumptions of the theory are being invalidated where the 

rotor operates in a region of high thrust; similar 
problems are known to occur when predicting HAWT 
performance. The author has been unable to modify VAWTTAY 
in the time available, since performnace tests at pitch 
angles greater than = 30* were not completed because Of 
the limitations of the model itself. For control 
prediction purposes, the author has had to, therefore, 
limit the variation of tip pitch angle to = 30*. 
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Figure 7.2a:, Aerodynamic power versus windspeed for the 

5kW V-VAWT with a 5ý- tip control surface 
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Figure 7.2b: Aerodynamic power versus rotor speed for the 
5kW V-VAWT with a 5% tip control surface 
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Figure 7.3a: Aerodynamic power versus windspeed for the 
5kW V-VAWT with a 10% tip control surface 
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Figure 7.3b: Aerodynamic power versus rotor speed for the 

5kW V-VAWT with a 10% tip control surface 
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Figure 7.4a: Aerodynamic power versus windspeed for the 
5kW V-VAWT with a 15% tip control surface 
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Figure 7.4b: Aerodynamic power versus rotor speed for the 

51,, W V-VAWT with a 15% tip control surface 
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Figure 7.5a: Aerodynamic power versus windspeed for the 
5kW V-VAWT with a 20% tip control surface 
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5kW V-VAWT with a 20% tip control surface 
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Figure 7.2a shows that a 5% tip area would provide suit- 

able power control for the 5kW V-VAWT for windspeeds upto 
Vcst. #-r = 26 m/s. The power of the rotor can be regulated to 

remain within the rated power limit of 6.25 kW for 

all windspeeds using pitch angles upto = 30*. As 

this plot shows,. the rotor power achieves its rated output 

at the rated windspeed of = 12 m/s. The change in 

power output is small for pitch angles upto = 10* and 
little control effect is observed. However, the sensi- 
tivity of the rotor to pi tch angle changes for P> 10' is 

apparent. The rate of change of power with respect to 

pitch angle change is reasonably constant for the larger 

pitch angles; a power gain of -1.0 kW per degree of pitch 

angle change is shown for a> 10*. 

Figure 7.2b shows that a 5% tip is unable to develop 

negative power/torque when the windspeed is at the allow- 

able operational maximum of V,.:,,., -r = 26 m/s. Even with the 

tip pitch angle at its maximum of = 30% positive 

power is developed for all rotational speeds. If or when 
the generator is disconnected from the electricity supply 

network, the unloaded rotor could not brought to a halt by 

aerodynamic means alone using a 5% tip area. As the mode 

of operation of the wind turbine changed from on-line to 

off-line, the rotor would tend to accelerate to a higher 

speed considerably in excess of N= 161.5 rpm. 

While on-line power regulation can be achieved using only 

a 5% tip area, the author concludes that such a small 

control surface would not provide sufficient protection in 

high windspeeds during off-line operation. 

Figures 7.3,7.4 and 7.5 can be considered in the same 
way. The 10%, 15% and 20% tip areas are all capable Of 

providing adequate on-line power regulation with observed 
power gains of -1.5, -2.3 and -2.8 kW per degree respect- 
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ively for pitch angles 0-, > 10*. However, consideration of 
theý constant windspedd results shows that better off-line 

speed -regulation can be achieved using the tip areas 
larger than 5%. While the 10% and 15% tip areas are able 
to provide some aerodynamic braking at high windspeeds, 
the rotor still cannot be brought to a complete halt using 

aerodynami c, means ý al one; of f -11 ne runaway rot or speeds of 
62. rpm and -34 rpm can be observed for these two tip areas 

respectively. Only the 20% tip area provides complete 

aerodynamic braking at all rotational speeds. 

The VAWTTAY predictions showed that of the four tip areas 

considered only the 20% tip had a negative "starting" 
torque with a pitch angle of 5= 30*. Therefore, the 5kW 

V-VAWT rotor can be stopped completely only by using the 

largest of the control surfaces considered. 

In reality, the 5kW V-VAWT is fitted wiih a shaft brake 

that - -is capable of providing over 1900 Nm of braking, 

torque directly to the low speed rotor shaft. The rated 
torque of the 5kW V-VAWT rotor is only 370 Nm, but an 

uncontrolled rotor would develop 1570 Nm of torque at 
V, = 26'm/s. The brake- alone is, therefore, capable of 

retarding- the' rotor from its nominal speed to a Stop 

without any assistance from an aerodynamic control 
surf ace. - ' Here, ''though it is control by aerodynamic means 
that. is considered most important. 

The results--, of the- theoretical performance evaluation of 
tip pitch control for the 5kW. V-VAWT show that both power 
and speed-, regulation, * is clearly achievable using this 

control method. -- Whether full' a erodynamic braking during 

shutdown is required or not is dependent entirely upon the 

needs of the wind turbine designer. It is the author's 
considered 'opinion t hat full aerodynamic braking is 
desirable. However, the larger control surfaces needed to 
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achieve this effect . require more sensitive pitch angle 

control during on-line operation because the power gainss 

characteristic of these control surfaces are much bigger. 

Inevitably, a compromise must be struck between these 

options, and provided the speed of the rotor and the power 
being, transmitted through the system is maintained within 
the safe, design. limits of the machine, then the size of 
the tip area does not have to be closely controlled. it 

may be that a small control surface is required for on- 
line power regulation$ while a larger control surface is 

required for shutdown procedures. 

The analysis, of the VAWTTAY predictions has so far only 

considered steady state, operation. While it has been 

demonstrated that during on-line operation, the power 

output of the 5kW V-VAWT can be regulated using tip pitch 

control, the assumption has,, always been, that windspeed 

changes are small or slow-to occur. In reality, gusting 

creates. large and , rapid fluctuations of windspeed that 

must be accommodated by any wind turbine control system. 
The slopes. of, the power- versus windspeed curves show that 

power gains of - 
1.5,,, kW per m/s change in windspeed are 

typical of the, this-V-VAWT. Clearly, even small windspeed 
fluctuations will cause significant power output changes 

unless the control, system is able to respond quickly and 

modify the pitch angle of the tip to an appropriate new 

setting. The transient response of the V-VAWT generator 

system,. to windspeed- fluctuations, or any other external 
disturbances on the system, cannot be evaluated by con- 

sideration, of 
Ith, 

e VAWTTAY predictions alone. Little more 
information can -, be gained by studying the aerodynamic 

performance datal and, therefore a different approach ie. 

requir, ed., _The 
dynamic behaviour of the 5kW V-VAWT is 

considered in. the--next, chapter, and the suitability of tip 

pitch - control for dynamic power and speed control 

considered. 
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7.5: Conclusions of Theoretical Studies 

In this chapter, the modifications to VAWTTAY made by the 

author have been described. The modifications allow the 

evaluation of the theoretical performance of V-VAWT 

configurations with tip pitch control to be completed 

quickly and easily. 

The VAWTTAY predictions using the author's own NACA0025 

dataset correlate better to the measured high tip speed 

ratio results for the model V-VAWT than those predictions 

obtained using other datasets. However, the discrepancies 

that occur at low tip speed ratios demonstrate the need 
for the dynamic stall characteristics of the NACA0025 

section to be more fully described. 

The prediction model NAWTTAY is, however, considered a 

suitable tool for design studies of larger V-VAWT config- 

urations, though the maximum pitch angle for which the 

predictions are valid must be restricted to OmAx = 300. 

The theoretical performance characteristics of the 5kW 

V-VAWT have been presented, and these results show that 

the power output of this wind turbine can be regulated 

with only a 5% tip area; if full aerodynamic braking 

during high windspeed shutdowns is required, then a 20% 

tip area must be used. 

The theoretical results also show how sensitive the power 

output of the rotor is to both windspeed and pitch angle 

changes. For electricity generation purposes the dynamic 

response of the V-VAWT and its control system to external 
disturbances will determine the success of this wind 
turbine concept in this application. The response of the 

system cannot be evaluated by steady state analysis alone, 
so another approach is required. 

- 341 - 



Chapter Eight: The Dynamic Behaviour of a V-VAWT using 
Active Partial-span Tip Pitch Control 

8.1: Introduction 

Large electricity supply systems consist of a network 'of 
inter-connected synchronous generators. Each generator is 
driven at a constant speed by an independently controlled 
prime mover. The electrical power supplied by the network 
is distributed to various domestic and industrial users 

via a system of high voltage transmission lines. The 

"load" on the network fluctuates as the electrical power 
demanded by the users changes. The mechanýfcal power 
developed by each prime mover, whether it be a diesel 

engine, steam turbine, gas turbine or water turbine, is 
(actively controlled to ensure that the network is able to 

supply the power demanded. The control system is designed 

to ensure that the response of the prime mover to such 

, changes does not adversely affect the quality of 
I 

the 

electricity supply nor jeopardise the stability of the 

connection of the generator to the network. 

The response of a generator system to small changes of 

mechanical power input can be anticipated by using power 
system stability analysis. Using this technique, the 

static power stability limit of a given generator system 
can be determined. Provided the power supplied to the 

synchronous generator does not exceed this limit, the 

steady state operation of the generator system will remain 
stable; the generator will continue to be synchronised 
with the network and provide useful electrical power. Yet 
if the power from the prime mover exceeds thijý static power 
stability limit, the generator system becomes unstable; 
the rotational speed of the generator will increase; 

synchronisation with the network will be lost and useful 
power cannot then be supplied to the network. The 

/ 
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generator system must be shut-down and a re- 

, synchronisation procedure invoked, before it can supply 
electrical power to the network again. The static power 
stability limit indicates the maximum power, ignoring all 
losses, that the prime mover can constantly supply to the 

synchronous generator before the system becomes unstable 
and has to-be disconnected from the network. 

The static power stability limit of a generator system is 

solely dependent upon the electrical characteristics of 
the system. The characteristics of the prime mover and 
the coupling between it and the synchronous generator play 

no part in determining - the value of this limit. Static 

stability analysis of the system only considers steady 

state operating conditions; the response of the generator 

system immediately following a disturbance cannot be 

anticipated using this technique alone. 

In conventional generator systems, a large disturbance is 

considered to, be either a large/sudden change in the 

mechanical power from the prime mover or a transitory loss 

of electrical load on the system due to a fault in the 

connection between the synchronous generator and the 

network. The transient response of the generator system 
to, such disturbances is highly dependent upon the dynamic 

characteristics of all the components of the system. Even 

if the -steady state ýresponse was statically stable, the 

transient response- of the generator system may become 

unstable and loss of synchronisation of the generator with 
the network -would occur. Alternatively, during the 

transient response, of the system, if the static power 
stability limit is temporarily exceeded the steady state 
response might still remain stable. The stability of a 

generator system is most likely to be jeopardised when a 
fault occurs in the connection between the generator and 
the network. However, the critical time allowed for 

- 343 - 



clearing the fault can only be determined by transient 
stability analysis of the system. 

The analysis of the transient stability of generator 
systems is not straightforward and a generalised solution 
cannot be formulated. The time response of the generator 
system to a large disturbance can be calculated using a 

step by step method. Such analysis requires a detailed 

knowledge of the dynamic characteristics Of all the system 

components and lends itself to computer based solution. 

The stability of a wind turbine generator that is 

connected to an electricity supply network can be assessed 
using the same static and transient stability analysis 
techniques. The response of the wind turbine driven 

system to the disturbances already described would be 

similar to that of a conventional generator system. 
However, an un-controlled wind turbine will provide a 
fluctuating mechanical power input to the generator system 
because of the continuous variation of the windspeed. 
Additionally, if 

'' 
a vertical-axis rotor is used, the 

aerodynamic power from the wind turbine will be cyclically 
varying even if the windspeed is constant. These power 
fluctuations will 

, 
be transmitted to the synchronous 

generator and affect the state of its operation with the 
electricity supply network. Whether the system continues 
to remain stable depends upon the dynamic characteristics 
of the wind turbine system as a whole. 

To ensure steady state stability when changes in the 
windspeed occur, the aerodynamic power developed by the 
wind turbine rotor must be regulated by its control system 
to ensure that the mechanical power delivered to the 
generator is within the static power stability limit. The 
experimental measurements presented in Section 5.3 
demonstrate that changing the blade tip pitch angle off'ers 
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a suitable means of regulating the aerodynamic power 
output of a small , V-VAWT rotor. The predictions of 
Section 7.4 also show, that this control technique offers a 
suitable means of regulating the aerodynamic power output 
of larger V-VAWT rotors, 

Clearly, , it is possible to specify, at any instant, the 

optimum blade tip pitch angle for a given V-VAWT 

configuration that will ensure the generator system 
operates within the steady state stability limits of the 

system. However, since the windspeed is continuously 
varying, the optimum pitch angle will also need to vary. 
The transient response of both the blade tip pitch 
actuating system and the V-VAWT generator system to the 

constant of windspeed may result in 
instability of the system. 

The cyclic nature. of the aerodynamic power output of the 

V-VAWT, rotor cannot easily be actively controlled and the 

author considers that to try and do so will unreasonably 
complicate the design and construction of the machine. 
However, the--magnitude of the power fluctuations can be 

damped by careful design and selection of the power 
transmitting components of , the generator system. The 

degree of damping and the response of the V-VAWT generator 
system to cyclic aerodynamic power variations can only be 

evaluated by dynamic analysis of the whole system. 

The response of a V-VAWT generator system to external 
disturbances such, asýwindspeed variations, load changes or 
transmission faults will be crucially dependent upon the 
dynamic characteristics of the system components and the 
control system used. To date, all V-VAWT research 
activityýhas concentrated on the performance of the rotor 
in isolation. Experimental measurements have been used 
for the verification and-the development of VAWTTAY. This 
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program has allowed various V-VAWT rotor configurations to 

be studied from which the 5kW free-air V-VAWT has been 

developed 1191. In all cases, the steady state operating 

characteristics of the wind turbine have been calculated 

and used to evaluate the performance of the rotor 

configuration. The experimental work and the analysis 

tools developed at The Open University and Queen Mary 

College do not provide any information about the dynamic 

behaviour of the V-VAWT; little or no consideration has 

been given to the interaction of the rotor with the other 

components of a whole wind turbine system. The V-VAWT 

rotor is only one part of a wind energy supply system, and 
if blade tip pitch control is to be rigourously evaluated, 
then it is essential that the dynamic behaviour of the 

whole system be considered here. Consequently, a 

necessary requirement for this project has been the 

development by the author of a mathematical model of a 

V-VAWT generator system for dynamic analysis and stability 

studies. 

This chapter will describe the development of the computer 

program "DYNVAWT", which has subsequently been used to 

study the dynamic behaviour of the 5kW V-VAWT. A computer 
based solution method has been adopted since this allows 

greater flexibility in adapting the model to simulate the 

various operating conditions typically encountered by a 

wind turbine system. The computer program allows the 

power transmitting elements of a V-VAWT system to be 

modelled and the dynamic behaviour of the system 
simulated. The operational conditions influencing the 
behaviour of the system can be varied so that the effects 
of such changes can be studied. The mathematical model 
used as the basis of DYNVAWT only considers the power 
transmitting components of the wind turbine system; the 

structural behaviour of the wind turbine system is not 
considered nor structural elements included. 
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The primary function of the program is to allow the 
dynamic action of a blade tip pitch actuator to be 

simulated so that suitable control strategies can be 

developed. However, a V-VAWT generator system connected 

to an electricity supply network will have four basic 

modes of operation for which the suitability of blade tip 

pitch control must be considered: 

(a) Off-line start-up and generator connection 
(b) On-line power regulation 
(c) Loss of load control 
(d) Generator disconnection and rotor braking 

The "on-line power regulation" and 11 loss of load" 

. operating modes have been briefly discussed already since 
they are the most significant modes that need to be 

considered. However, the behaviour of the V-VAWT 

generator system in any of these operating modes will be 

crucially dependent upon the dynamic characteristics of 
the whole system and the control strategy that is adopted. 
Therefore, the computer program DYNVAWT has been developed 

to allow simulation of all four of these operating modes. 

8.2: System Modelling and Methods of Analysis 

The mathematical model of the V-VAWT generator system that 

will be developed here is a representation of the 5kW 
free-air V-VAWT currently sited at The Open University, 
Figure S. 1. The synchronous generator driven by this 
V-VAWT is not at present connected to the local 
electricity supply network nor is an active blade tiP 
pitch control system fitted. However, the machine was 
designed to operate with the generator connected to the 
network, so all the power transmitting components have 
been suitably selected for this application. These 
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components can be accurately modelled since their dynamic 

characteristics can be readily evaluated. The 

mathematical models that will represent the synchronous 

generator and the blade tip pitch contr. ol system, will have 

to take a generalised form, since the characteristics of 

these components cannot be based on actual hardware. 

The overall system model could represent a generator 

system other thaýn that driven by the 5kW V-VAWT. But it 

is convenient here to initially concentrate on this 

machine, because the dynamic characteristics of the system 

can be readily evaluated. Also, it is anticipated that 

future designs of larger V-VAWT generator systems will be 

based upon this machine, although the sizing and selection 

of individual components will differ. 

Figure 8.2 is a schematic diagram of the drive train 

components of the 5kW V-VAWT generator system. The blades 

of the rotor are attached at their root to the stub tower 

which is free to rotate about the fixed internal tower. 

Each blade is supported- at the 70% spanwise position by 

two cables which are fixed to the top of the stub tower. 

The cables are unable to transmit aerodynamic torque, so 

all rotor torque is transmitted through the blade root 

connection to the stub tower. Tý'is acts as a low-speed 

shaft and transmits the rotor torque to a V-belt pulley at 
its base. The parking/emergency brake is an electro- 

mechanical disc brake system which is attached to the 

internal tower. The brake disc is attached directly to 

the V-belt pulley, so the braking torque is applied 
directly to the V-VAWT rotor. The pulley is the driving 

pulley of the first stage of a two-stage, speed increasing 
drive system. The first-stage driven pulley and the 

second-stage driving pulley are fixed to a medium-speed 
layshaft, and the second-stage driven pulley is attached 
directly to the synchronous generator input shaft; the 
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Figure 8.1: -Three-bladed free-air 5kW V-VAWT 

HIGH-SPEE 

GENEM 

HAFT 

ITS 

10 

Figure 8.2: Schematic layout of drive train components 
of the 5kW V-VAWT generator system 
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high-speed shaf t. The generator and layshaft are both 

supported by the internal tower. All the drive train 

components are rigidly attached to each other and only the 

V-belts provide any significant torsional flexibility in 

the system. 

The drive train can be mathematically modelled if the most 
important mechanical components are considered as 
discrete, lumped inertia elements that are linked by 

torsional spring and damping elements. All the low-speed 

and medium-speed elements will be considered as high-speed 

equivalents for ease of analysis. The electrical 

connection between the generator and the supply network 

can be modelled as a torsional spring and damping element 

as will be demonstrated below. The lumped inertia 

approach allows the state of the drive train to be 

described by a finite number of state variables and its 

dynamic behaviour by a finite number of ordinary 
differential equations. The state of any one of the drive 

train components is dependent upon the state of all the 

other components in the system. Therefore it is 

convenient to consider the drive train as a sub-system of 
the whole V-VAWT generator system. 

In addition to the drive train sub-system, the V-VAWT 

generator system has two other sub-systems which must be 

modelled. The blade tip pitch actuator and the disc brake 

system are both independent of the other, but each influ- 

ences the state of the drive train sub-system. The state 

of these sub-systems can also be described by a finite 

number of state variables and their dynamic behaviour by a 

finite number of ordinary differential equations. 

Since the state of the three sub-sys . tems can be described 

by a number of state yariables and ordinary differential 
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equations, -the dynamic behaviour of the whole V-VAWT 

generator system can be completely modelled. 

The-V-VAWT generator system has two inputs which directly 

a'ffect its state and which cannot be controlled: 

(a) Windspeed 

(b) Network voltage 

These-inputs must be modelled to represent typical forcing 

functions to which the V-VAWT generator system would have 

. to respond. It is convenient that the windspeed and 

network voltage models should therefore take the form of 
the input forcing functions commonly used in control 

system analysis: 

(a) step, ramp and impulse transient inputs 

<b) sinusoidal input 

(c) statistical input 

There are only two outputs from the V-VAWT generator 

system to be controlled: 

(a) Power (electrical) 

(b). Frequency (electrical) 

The control system can only use the inputs and the state 

variables of the V-VAWT generator system itself to deter- 

mine a control strategy and set the control inputs to the 

sub-systems within the whole. The control strategy to be 

adopted has yet to be determined and it is a requirement 
of this project to establish a suitable control system 
design. 

Having established the ordinary differential equations to 

describe the V-VAWT generator system, a method of solution 

- 351 - 



is required. The state space approach for system repre- 

sentation and analysis is considered to be the most 

suitable technique to use here. The ordinary differential 

equations that describe the system are replaced by differ- 

ence equations that are more readily solved than the high- 

order -equations 
that would be developed using classical 

system analysis techniques. ' The response of the system 

can be simulated in the time domain by a step-by-step 

solution of the difference equations. This technique is 

most suitable ýfor multi-variable systems with non-linear 

characteristics, and lends itself to digital computer 
based solution., 

The V-VAWT generator system is -essentially a continuous 
time system, since all the inputs, state variables and 

outputs can be defined over a continuous period of time. 

A 'digital- computer is a. discrete time system, since its 

state is determined at distinct instances of time. If a 

digital- computer is used to control the V-VAWT generator 

system--- then a hybrid' system is formed, since the system 

contains both discrete'and continuous time sub-systems. 

A digital computer based analysis of the V-VAWT generator 

system will require a discrete-time model and the response 

of the system can only be observed at discrete time 

intervals. The observed response will be an approximation 

of the t-rue response of the system and its accuracy will 
depend upon the interval of time between observations. In 

practice, - there is 
'a 

compromise to be made between the 

ac. curacy of the 'solution and the computing time required, 
but there are a number of numerical solution methods 

available that allow both fast and accurate solutions to 

be generated. - 

Simulating of the V-VAWT generator system in the time 

domain is not a convenient approach to adopt when 
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developing a control system design or evaluating its 

performance. The accuracy of the control system can be 

assessed visually by inspection of graphical traces of the 

output, or numerically by, say, evaluating the integral 

square error performance index. The steady state and 
transient stability of the system cannot be judged from 

the outcome of one simulation alone, since it is not 

possible to predict the degree of stability of the system; 
the simulated response will either be stable or unstable 
for a given set of conditions. However, the speed of the 

computer based solution allows a simulation study to be 

quickly repeated. Therefore, by adopting a trial and 
error approach, a satisfactory control system design will 
have to be developed by iteration. 

The following sections discuss and describe the 

development of the mathematical models of the V-VAWT 

generator system sub-sys tems and forcing functions. As 

mentioned. above, the behaviour of a synchronous generator 

can be satisfactorily modelled by torsional spring and 
damping elements. It is convenient that this model be 

developed first. 

8.2.1: The Synchronous Generator Model 

A synchronous generator may operate by itself supplying a 

single load or in parallel with other generators as part 

of a large electricity supply network. In a large system 

of generators each is connected to the network via the 

generator bus. Each generator will supply real and 

reactive power to the system and maintain the bus at a 

constant voltage. All the machines run at synchronous 
speed so, that electricity is supplied by the system at a 
fixed frequency. 
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The output of each generator is controlled by the current 

exciting its field windings and the mechanical shaft 
torque supplied by its prime mover. When either one or 
both of these inputs change then the real power, reactive 

power, bus voltage and system frequency will all generally 

change. There is some cross-coupling between the inputs 

and outputs but for control purposes it is more desirable 

to have a single output controlled by a single input. 

Where a synchronous generator acts in isolation, or with 

only a small number of other generators, the four outputs 

of the system will all vary in some respect when the gene- 

rator experiences fluctuations in the mechanical shaft 
torque provided by its prime mover or the current supplied 
to its field windings. The sensitivity of the system to 

such fluctuations reduces as the size of the network 
increases. Very large networks are termed "infinitely 

strong" because a change in the input torque or field 

current of one generator has little effect upon the system 
frequency or the magnitude of the bus voltage. The change 

only affects the real and reactive power developed by the 

machine. Strong networks are able to accommodate fluctu- 

ations in input power without adversely effecting the 

quality of its output. A wind turbine driving a synchro- 

nous generator can only be successfully connected to a 
large electricity supply network if the turbulent nature 

of the wind does not create shaft torque fluctuations of 

such magnitude that the generator loses synchronisation 

and is disconnected from the network. 

A synchronous generator that is connected to a large net- 

work behaves dynamically like a torsional spring- that i-S 

connected between its input shaft and an imaginary refer- 
ence that rotates at synchronous speed with the network. 

, 
The large inertia of the rotor and low equivalent torsion- 

al stiffness of the ýrive train and generator connection 
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to the network mean that wind turbine generators generally 
have low fundamental torsional frequencies. A large 

proportion of the total energy in wind speed fluctuations 

is observed to occur at similarly low frequencies. Such 

turbulence will excite fluctuations in the power developed 

by a wind turbine generator and may provoke instability in 

the synchronisation of the generator with the network. 
The wind turbine control system must be able to attenuate 
these fluctuation6 to ensure that the generator is stable 

and the connection to the network is maintained. To simu- 

late the dynamic behaviour of a grid-linked wind turbine 

generator, the operational characteristics of a synchro- 

nous generator connected to a large network must be mathe- 

matically modelled. The analogy of its behaviour to that 

of a torsional spring is a convenient one but an express- 
ion for the 'stiffness of the connection between the mech- 

anical input shaft and the rotating reference must be 

established. 

The - Park-Blondel equations are used by electrical engin- 

eers to describe the dynamic behaviour of the synchronous 

machine and its electrical circuits. Some authors have 

used these -equations for modelling generator behaviour in 

wind-turbine studies [73,74,75,761, however, these authors 

are simulating control strategies that rely upon control 

of the generator itself. The use of dynamic circuit 
theory is not- applicable here because the state of the 

generator during any transient response is of little value 
in assessing the- suitability of the tip pitch control. 
Like many''of the system models used here, only input- 

output relationships are required. The Park-Blondel 
. equations are the basi's for all the generator power rela- 
tionships presented in the texts considered for this 

exercise 177,78,79,801. 
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A synchronous generator that is connected to a three-phase 

supply network is normally symmetrically loaded and the 

power delivered by each stator winding has three-phase 

symmetry. In such cases the behaviour of one winding need 

only be considered in detail. The power p developed by 

each winding pulsates around an average power value at the 

double radian frequency 2w,: 5. During certain periods the 

winding is absorbing power from the grid and p is actually 

negative. A convenient form of the power equation is: 

Pc3Q - cor-2cot) - 

where 

P, ý = Real power, W per phase 
Q<3 = Reactive power, VAr per phase 

synchronous frequency, rad/s 

The real power Pc-j is the average power of p and is the 

useful power transmitted by each winding to the network. 
The reactive power Q,.., is the peak value of a power compo- 

nent that is considered to travel back and forth between 

the generator and the network. This component has an 

average value of zero and therefore is capable of no use- 

f ul work. While both P,., and Q. have dimensions of Watts# 

it is usual to measure in Volt-amperes reactive, VAr, 

to emphasise that it is non active. 

The phasor. diagram, Figure- 8.3, represents the st eady 

state operating condition of a salient pole generator 

connected to a large network with a fixed bus voltage and 

constant field excitation voltage. The real power output 

equation is derived from Crary [791 as follows: 

ei., cosO (8.2a) 
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or 

P(3 = i,, e, + i. e. 
(S. 2b) 

where 

e. = eTsinS (8.3a) 

eq = eTCOS5 (8.3b) 

but the phasor diagram shows that: 

= (8.4a) 
Xr 

(8.4b) 

thus the steady state real power equation is given by: 

p(3 = 
F"'2'sin5 

+ e, - (XD XQ) sin28 XD ? 
-XDXQ 

where 

0= angle by which terminal current lags terminal 

voltage, electrical radians 

cos8 power factor 

i, = terminal current, A per phase 
icý = direct-axis current, A per phase 

iq = quadrature-exis current, A per phase 

e, = terminal voltage, V per phase 

ec, = direct-axis voltage, V per phase 

e,:,, = quadrature-axis voltage, V per phase 
Er = field excitation voltage, V per phase 

xcý = direct-axis reactance, 0. per phase 

XC: 4 = quadrature-axis reacýance, C per phase 
5= power angle, electrical radians 

(8.5) 
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Figure 8.3: Phasor diagram for a salient pole generator 

connected directly to a large network. 
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Figure 8.4.: P, --S for a typical salient pole generator 

connected directly to a large network. 
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Of these parameters, the direct-axis and quadrature-axis 

reactances are fixed by design, and the terminal voltage 
is'governed by the electricity supply network. Only the 

field excitation voltage can be controlled. 

In order to evaluate the coefficients of the steady state 

power equation all parameters must be evaluated. A syn- 

chronous generator will be specified by its rated power 

output, the nominal power factor and the terminal volt- 

age. If the direct-axis and quadrature-axis reactances 

are known, consideration of the nominal operating condi- 
tion of the generator allows the magnitude of the nominal 
field excitation voltage to be determined. 

The terminal current is found by rearranSinS (8.2a): 

P, 

; Tcose 
(8.6) 

Inspection of Fig. 8.3 shows the following relationships 
to be true:: ' 

EQ = 
J((e, 

+ i, x,, sin9 )2 + (J., XQCOSO)'-] (8.7) 

arctan - 
iTxqcoso (8-8) 

eT + iTXQSinG, 

i. sin(0 + a) (8-9) 

Ex = Eq + ic, (mc2 - x�) (8.10) 

Sequential solution of these equations will yield the 

value of the field excitation voltage at the rated 
operating condition of the generator. Provided the field 

excitation voltage remains co*nstant, the coefficients Of 

equation (8-5) will also remain constant. The variation 
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of P,:, with respect to S for a typical salient pole gene- 

rator connected directly to a large network is shown in 

Figure 8.4. 

The steady state reactive power equation can be similarly 
determined from: 

Q, ý = e-riTsine 

and is: 

(8.11) 

QG = 
F-TeTc,. 

S 
_ 

eT2 (XD +L,, ) 
+ 

eT: 2 (XCI - X1.0 

cos2S (8.12) 
Xr) 2xoxQ 2x,, x, 

Reactive power Q,,, is 'of little interest when studying 
large networks since it is assumed that the system can 

adequately supply and absorb this component of the 

instantaneous 'power output of the generator. No further 

reference to reactive power will made here. 

Per Unit analysis allows each value of power, voltage, 

current, ' reactance, frequency etc... to be expressed as a 

multiple of some base unit. The rated values of the 

actual synchronous generator are usually designated as the 

base units and all others quantities are expressed in per 

unit (p. u. of these base values. When using per unit 

analysis, all the single phase- power equations used above 
become- representative of the machine as a whole. This 

technique is most convenient since it allows typical per 

unit values of E:,, e.,. X,.,. X,:,,, etc... to be used when 

actual values are not specifically known. The power 

equations can be used for any size of generator if the per 

unit form is used. Where real values are required, the 

per unit form can be multiplied by the base value to give 
the actual quantity in S. I. units.. 
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The reactances x,, and x,, j depend upon the design of the 

machine and its operating state; they cannot be actively 

controlled. Typically xr: ) 1.0 p. u. and x,, = 0.6 p. u. 

[Crary] but for a round rotor generator the reactances of 

both axes are equal, so the final terms (known as the 

saliency or reluctance terms) of the equations for real 

and reactive power are zero. 

If the network is infinitely strong then the terminal 

voltage e-, and the synchronous frequency co: iii. will both be 

f ixed i. e. e-r = 1.0 p. u. and o, -, = 1.0 p. u. 

The power aI ngle 8 has dimensions of electrical radians and 

is the angle between the rotating magnetic axes of the 

rotor and stator windings. If E. and e-, are constant then 

the' real power output of the generator is a function of 5 

and, since'the machine operates at a constant speed, it is 

directly proportional to the torque input to the generator 

from its prime mover. 

If losses are neglected, then the mechanical driving 

torque" must equal the electrodynamic torque of the 

generator. If the driving torque is increased then the 

electrodynamic torque and electrical power output will 

also increase. The power angle will increase to a new 

steady-state value that corresponds to the new power 

required to balance the increase in shaft torque. 

The steady State synchronising power coefficient bP(:. I/bB 
indicates the rate at which steady state power changes 

with changes in the power angle, 

bPc, E, e«rC0S5 + eT=-(x. - x, ) 
cos25 3-5 x, > xoxt2 
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The maximum real. power P,,,,..., x that a salient pole machine 

can generate is delivered when 8 and bPc!, /bS = 0. 

At maximum power: 

SmAx arccos Vla2 
+ 0.5] - a) 

where 

a= 4e-(x0 - XQ) 

(%EI. 14a) 

(8.14b) 

The power angle 5 will exceed Sme-., x if the prime mover 
tries to deliver more power than Increasing S 

beyond SMAX results in less electrical power being 

generated. The generator will be operating beyond its 

steady-state stability limit and is statically unstable. 
The difference between mechanical input power and elec- 
trical' output power wil 1 cause ihe speed of the rotor to 

increase, synchronisa'tion will be lost and the generator 

will be disconnected from the network. The power P,,., x is 

often referred to as the "pull-out" power because it is 

the power at which synchronisation is lost. 

The transient response of a synchronous generator to a 

sudden change in operating conditions may cause 5 to 

temporarily exceed even if the new operating point 
is within the static stability limit. Oscillations of the 

rotor will cause 5 to fluctuate and the static stability 
limit may be exceeded, but if the oscillations diminish 

then the generator is stable and synchronisation with the 

network is maintained. 

The field excitation voltage E,: does not affect the power 
being delivered to the generator by its prime mover and 
therefore cannot be used to control the power output Of 
the generator. The reiuctance terms are independePt Of 
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E:,, so a salient pole machine will generate power even if 

the field windings are not excited. However, if Pc, is 

constant then increasing E, will result in the steady 

state power angle being reduced. The value of Pmo%x will 

be increased thereby increasing the steady-state stability 

limit. Increasing E: r also increases the magnitude of the 

synchronising power coefficient 

Automatic Voltage Regulators (AVRs) are usually fitted to 

synchronous machines to control the output voltage by 

regulating the field excitation voltage. A very fast 

acting AVR could be used to increase E: r when a generator 
begins to operate beyond its steady-state stability limit. 

IfE., is increased so that bP,, /Z>S remains positive, the 

machine will remain stable and synchronisation will be 

maintained. However, 
_ active field exciter control has 

been found to be unsuitable for, wind turbine applications 
because the exciter response was slow 1741. For these 

studies, the field excitation voltage, E.,, will remain 

constant throughout the simulation period. 

The synchronous generator may in reality be connected to 

the network via long transmission lines. In such cases 

the generator model must be modified to include the 

effects of an external reactance. The phasor diagram, 

Fig. 8.5, represents the state of a salient pole generator 

connected via an* external' 'reactance to a large network 

with a fixed bus voltage and constant field excitation 

voltage. 

The real power output equation is derived by Crary in much 
the same way as before. The power delivered at the 

generator terminals is given by equation (8.2): 

P, 2, = e, i., cos8 
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Figure 8.5: Phasor diagram representing a salient pole 

generator connected to a large network via 

an. external reactance. 

2.0 E, e-r sinS + 
er2 (X,, 

sin23 (X0 + XE) 2(x, + xF)(xQ + x. F>. ca. 

1.5 

E, e-r 
NO + xoslnS 

1.0 1- 

e, 2 (xc, -* ye) 
_ sin25 2 (x. + xEr) (Y. Q + %) 

0.0- '4% 

09 9 45* 00 135 1800 

-0.5- 

Figure 8-6: P(-, -S for a typical salient pole generator 

connected to a large network via an external 

reactance 

IN 

/ 
eý 

ly-al 4 
(lw 

ýka 

- 364 - 



but here the terminal volt*age components are: 

ec) = e, sinS, (S. 15a) 

e.., = eTCOS8 12 (8.15b) 

The power delivered to the network via the external 

reactance is given by: 

p, a = 
e, e-- 

sin28 (8.16) 

Therefore, as, Crary shows, the ' steady state real power 

output equation becomes: 

pa =- 
Erýeý;! 

-din5 +' e22 (XD - xn) (8.17) 
. )sin25 (X, 2 +2 (xo +, x, ) (x,: z- + x. 

where 

exte, r_na_l reactance, 0 per phase 
e- infinite bus voltage, V per phase 

The 
-termiInal current is calculated by first rearranging 

equation (8.16), so that: 

rcsin 
P(BXF- 

ere2, 

and then substituting 9 in equation (8.6) gives 

J. 
T. 

P, 
3 

eTC080 

Inspection of Fig - ure 8.5 shows, that provided the gene- 

rator remains stable, the following relationships hold 

true: 

- 365 - 



\ 

(eT 

arctan i"rxocose 
T+ 

iTXQsine 

5,: 
-, + 20 

i-TSin(O + 51, 
_) 

EI 
ý= 

10 (x, ) - x, 

(8.19) 

(8.20) 

(8.21) 

Sequential solution of these equations will yield the 

value of the field excitation voltage at the rated operat- 
ing condition of the generator. The field excitation 

voltage-,, will remain constant, so the coefficients of, 

equation (8.17) will also be constant. The relat onship 
between P. and 8 for a typical salient pole generator 

connected to a large network via an external reactance is 

shown"in Figure 8.6. 

As - before, the- steady state synchronising power 

coefficient bPc3/65 indicates the rate at which steady 

state power changes with changes in the power angle. 

. 
LP Ee- 

Coss +-e, ---(x,, - x,: a) cos2S bs (xD + ýxa) (XD + Xr--)(Xq + X0 
(8.22) 

The maximum real power Pr, 04x that a salient pole machine 
can generate is delivered when 6 and bP,,. /bS -ý 0. 

At maximum power: 

SmAx = arccos (i[w-' + 0.51 - a) 

where 
E "(x"> + x") 

4e�. (x� - x, 2) 

23a) 

23b) 
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The external reactance tends to weaken the link with the 

network and the power angle is much greater for a given 

power output than when it is directly linked. The 

generator therefore operates much closer to its steady 

state stability limit and is therefore more likely to 

become unstable if the operating conditions fluctuate. 

Generally, it is these final equations that are used in 

the computer program DYNVAWT so that the influence of an 

external reactance on the behaviour of the system can be 

simulated if required. Clearly by setting x, E = 0, the 

above equations simplify to the form initially presented 
for case of a synchronous generator connected directly to 

the network. 

The steady state torque (N. B. not reactive power> is 

simply: 

QG = 
pa (8.24) 
Cos 

If the nominal synchronous speed cas = 1.0 p. u. , then the 

per -unit equations for 'steady state power become per unit 

equations for steady state torque: 

=, 
E, e,., 

- 
e12,2 (XO - XQ) - (8.25) Q(3 

(XO + xr= sin8 +2 (xc2, + xlz) (xrl + xc-: sin2,5 

Similarly, the steady state synchronising torque 

coefficient b%k3/bS indicates the rate at which steady 

state torque changes with changes in the power angle. Let 

T, m = so that 

E, e �� e., 2 (x, - x, ) T, s coss + cos25 (8.26) (xr) + 
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The behaviour of a synchronous generator 
that of a -torsional spring with negligible 
the spring stiffness is and both ends 
G, _.. and 8,::, radians respectively, then the 

transmitted by the spring is: 

QEG = K", (er= - o', ) 

where 

ýRMQ 

be 

is similar to 

inertia. if 

are displaced 

torque Nm 

(8.27) 

(8.28) 

The spring stiffness is directly analogous to the steady 

state synchronising torque coefficient, however, the units 

need to be modified if the per unit expression for T!., -.. is 

to be expressed in S. I. units for use with other drive 

train elements. 

The power angle, S' -has real dimensions of electrical 

radians, but if G.,.. is the angular displacement of the 

generator shaft and e, -.. is the angular displacement of the 

rotating reference frame both wrt a datum on the generator 
frame, then: 

3- 

where 

N, number of generator poles 

(8.29) 

The nominal torque Q, of a synchronous generator that has 

a rated power output of P,, and rated speed N,, is given by: 

QR = 
30P,, 
nN,, 

"I . 00) 
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This is the base unit for all per unit values of torque. 

Therefore the torque transmitted by the spring is: 

(8.31) 

Substituting for and Q,:, gives: 

Kr, m(er - 8, ) nN" 
(8.32) 

Rearranging (8.29) and (8.32) and substituting for 

(O, r - e, 5, ) gives 

QG = KF. 
2 -n N,, 

30P,, N, 
(8.33) 

The steady state synchronising torque coefficient T.... is 

simply: 

W, (8.34) T-m 
bQc' 

KEG 
H 30P,, N, 

therefore 

30PFýN PTs (8.35) 
2nN, 

which further simplifies to: 

K, -775 
P,, N 

Tý (8.36) 4. N,, 

This expression for KE..:,,, is similar to that presented with- 

out proof by Kos CB13 except that his generator stiffness 

term isa slow-speed shaft equivalent. Note that while 

Pf;! p Np. and N.;:, are fixed, their values are determined by 

the rated characteristics of the machine, T,. varies with 
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the power angle, giving a non-linear characteristic. 
The stiffness, therefore, of the connection between the 

generator and the network varies with electrical power 

output. When P,:, = P1.1,,, x the steady state synchronising 
torque coefficient and the stiffness of the generator are 

zero. 

The steady stateý response of an on-line synchronous Sene- 

ratorý to input power changes results in like changes of 

output power as discussed above. The response may or ; nay 

not become unstable depending upon the c. haracteristics of 
the generator and the severity of the change. In all 

cases it, has been assumed that the deviation of the 

rotational speed of the rotor from synchronous speed 
(slip) is very small. However, when this deviation is 

larger, the acceleration of the rotor will be impeded by 

electrical damping forces. These forces are caused by 

currents that are induced in the amortisseur windings of 
the rotor due to its slip. 

The time between opening and reclosing of the transmission 

line between a wind driven synchronous generator and the 

electrical network can only be short if synchronisation is 

to be maintained [751. However, during such electrical 
disturbances the generator is temporarily unloaded, con- 

sequently the rotor will quickly accelerate in response to 

this condition. Electrically induced damping torque will 

act to oppose this acceleration and thereby needs to 

mathematically modelled if the effects of such disturb- 

ances are to be effectively simulated. 

Of the references considered, only Crary [821 developed 

equations specifically for damping torque, and it is his 

model that isIconsidered here. The equations describing 
damper action are only suitable for small changes of speed 

around synchronous speed and assume that some electrical 
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disturbance has occurred. Extensive knowledge of the 

transient behaviour of the generator is required and 

therefore the equations are of little value for general 

studies where much of the data required is unknown. How- 

ever, Crary defines the per unit damping torque coeff- 

icient TE) as the negative of the per unit change in torque 

for per unit change in speed. This is a more convenient 
form of the damping equations since it is analogous to the 

action of a torsional damper. For this study, it is this 

damping term that will utilised. 

The damping torque developed by a synchronous generator 

can be modelled by considering a torsional damper with 

negligible inertia. If the damping coefficient is C,. -,.., and 
both ends have velocities and co,:, respectively, then the 

damping torque is: 

QEG = (: EC3 ýOr- - 00) (8.37) 

where 

(8.38) CEG 

The per unit slip ds is equal to the per unit change in 

synchronous speed, i. e. ds = dcas/ca,,:,,, where: 

dws = 
I: 

WEP - ac3) 

2 

The torque transmitted by the damper is: 

QMG ` Q(! iQf; t 

Substituting for and Q, gives: 

(8.39) 

(8.40) 
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30P,,, (S. 41) 
TtNF, 

Rearranging and substituting for W, ý - gives 

c ri (3 
2nN� d os =Ca2nN, (8.42) 3OP, Nr, 30PrN,. 

The damping torque coefficient Tr. ý is simply: 

T. -LQc' ý cma 2nN,, 
(b. 3 (S. 43) bs 30P,, N, 

therefore 

CEG = 
30P,. N TO (8.44) 
2nNf,, co-s 

which further simplifies to: 

CE. = 4.775 
PRN ' TD (8.45) 
4)sNR 

Again, this expression for Cm,, is similar to that used by 

Kos 1811. Typical values of Tc, = 3.15 - 23.10 p, u. and 

To = 2.00 - 20.00 p. u. are presented by Crary and Kos 

respectively. As will be demonstrated later, the damping 

action of the generator plays a vital role in controlling 
the transient stability of the wind turbine generator. 

In summary, the torque Qao transmitted by a synchronous 

generator may -be represented by a non-linear torsional 

spring with a stiffness and a damping element with a 
damping coefficient Cl...,,, such that: 

QF-(3 l' Kt'-(3(GM - eCO + CEG(OK - 00 (8.46) 
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8.2.2: The Drive Train Model 

The drive train model developed here uses a lumped inertia 

representation; the dynamic behaviour of each inertia 

being described by an ordinary differential equation. 

Initially a representation that modelled the six major 

drive train components of the 5kW V-VAWT generator system 

was considered suitable for this project. These six 

inertia elements were: 

(a) V-VAWT rotor 

, 
(b) 1st stage driving pulley and brake disc 

(c) 1st stage driven pulley 
(d) 2nd stage driving pulley 
(e) 2nd stage driven pulley 
M Synchronous generator rotor 

The low-speed, medium-speed and high-speed shafts and the 

first and second stage V-belts can be represented by 

torsional spring and damping elements. These elements are 

considered to, have no inertia, so the inertial properties 

of the actual components must be included into the lumped 

inertia elements as appropriate. The speed changes at 

each stage of the V-belt transmission can be represented 

by i deal gear elements. Friction forces are applied 

directly to the inertia elements. 

Mechanical torque acts on the system through the rotor and 

the brake., Electrical torque reacts on the system through 

the, generator rotor., 

The behaviour of the synchronous generator can be modelled 
by torsional sprinS and damping elements as described in 

the previous section. The electrical torque reaction on 

the generator rotor can be represented if the spring and 

damping elements connect the inertia element representing 
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the generator rotor to a seventh inertia element that 

represents the rotating magnetic field of the electricity 
supply network. Since this magnetic field rotates at a 
constant frequency, the inertia of this seventh element is 

considered to be infinite. This is a useful model to 

adopt, since the electrical torque reaction on the drive 
train system is modelled by a mechanical analogy. 

The angular velocity and displacement of each inertia 

element must be measured with respect to a reference 

system. A suitable reference system is the rotating 

magnetic field of the electricity supply network. 
However, the author considers that a reference system 
external to the drive train system is more convenient to 

adopt, since all angular velocities and displacements 

would be those that could be observed on the actual 

machine. Adopting an external reference system allows the 

start-up and shut-down procedures, when the generator is 

disconnected from the network, to be readily simulated and 
the angular displacement of the rotor inertia would be 

directly equivalent to the azimuthal displacement of the 

V-VAWT rotor. 

The representation of the V-VAWT generator system 
discussed so far is shown in Figure 8.7, where: 

Q, = torque applied to ith inertia element, Nm 
It = ith inertia element, kg m: 2 
F:, = ith friction force, Nm/rads-I 
Kjj = torsional stiffness between ith and jth inertia 

elements, Nm/rad 
Cli = damping coefficient between ith and jth inertia 

elements, Nm/rads-I 
N, = ith gear ratio 
at = angular displacement of ith inertia elem ent, rad 
Ca: L = angular velocity of ith inertia element, rads-I 
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Figure 8.7: Lumped inertia model of V-VAWT drive train 

system 
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Where an ideal gear element of gear-up ratio N is included 

in the model, it is possible to modify the low-speed side 

parameters to high-speed side equivalents. The low-speed 

inertia, stiffness, damping and friction elements must be 

reduced by a factor N` to obtain their high-speed equi- 

valents; applied torques must be reduced by a factor N; 

but angular velocities and displacements must be Increased 

by a factor N. Using this approach here, requires the 

followinS modifications to be made to the model: 

Qlf = Q, / (N, Nu. ) (8.47a) 

QM Q2/ (N, N: 2) (8.47b) 

1,1 J, / (NI N: L. ): 2 (8.47c) 

j21 = Ju, / (N, Nm) (8.47d) 

1., , = J3/ (N;! )2 (8,47e) 

J�� = J� / (Ný, ) -2 (8.47f) 

ell 0, (N , Ný2, (8.47g) 

07,1 G_, (N, N2) (8.47h) 

031 = 0: 3 (N-_) (8.471) 

o', ', = 8� (N2) (8.47j ) 

011 ol (NIN:., ) (8.47k) 

0: 2 (8.471) 

0, .m 
(8.47m) 

(8.47n) 

K, (8.47o) 

x2-31 = K23/(N2)2 (8.47p) 

K, 
-� = K, 

-. 
(N2 (8.47q) 

ci-", = CI, 
-/(N, 

N, 
-)2 

(8.47r) 

C 2. -, = C, 
_, _/ 

(N: 2)2 
(8.47s) 

c341 
= (N2) 2 (8.47t) 

F, ' Fll(N, N, )-- (8.47c) 

F=, F-, 1(N, N: 
_, 

)-- (8.470 

F: z, , = FI, 1 (Nz! ): m (8.47w) 

F�, 1 = F.. �/ (Ný, )*m (8.47x) 
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Using the modified model paraTeters, the ordinary differ- 

ential equations that describe the motion of the drive 

train can be constructed by consideration of D'Alembertle 

Law at each inertia element. Thus: 

Qi ,= Ji, ý, ' + KI-21 (8,8 -e-, ' )+C, 7,1 (011 -0: ", )+ 

F, 'wi ' (8.48a) 

Q21 = J2: 1 ý2' + K2.,, 021 

F_, ' cä_, ' - K�_I (0, 1 -01, 1 - C, 
_, 

' W, 1 -wý I) (8.48b) 

0= j. 8 
ý48 

.3. 
+ KZ341 

-04 8 + C1-2140 (0-38 -04 0+ 

F: 91 o: 31 - K231 (0: 2 8 -03 8 c2, --18 (020 -03 1 (8.48c) 

0= j�, 
ý4, 

+ K', ', -e', ' + C, ', -ca. ')+ 
F�, ' o, ý, 1 - 

K34' (03 1 -04 8 CIA48 (07ý48 -04 @ (8.48d) 

0 K.. r , (e. - 86) + 
l F, 

ý, ca. - K�. ' (041- 0. v, ) - C�' tas) (8.48e) 

0 

F. SO.: s - Kss(es - 06) - ct46(0,9 - 0, j (8.48f ) 

0= ý, ' (8.43g) 

and since the rotating magnetic field of the supply 

network rotates at synchronous speed then: 

(Z7 = (0-3 (8.49) 

All, the parameters describing the mechanical -drive train 

components can be estimated from initial design data. The 

accuracy of these estimates is dependent upon the detail 

of the design data available at the time the dynamic 

modelling -is to performed. For instance, a method for 

estimating the moment of inertia of the blades was devel- 

oped on the assumption that only the overall controlling 
dimensions of the blade would be known. The dimensions of 
the blade are those used with the blade geometry prepar- 
ation program WRITEBLADE. The internal form of the blade 
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is assumed to. be solid and an equivalent material density 

is calculated from blades of similar construction and 
known mass. This method is considered to be appropriate 
here and the estimates of blade inertia to be sufficiently 

accurate for dynamic modelling purposes. 

In this model the rotor inertia J, is the sum of the 

inertias of all the rotating components. The low-speed 

shaft stiffness Kjjý and damping D, are representative of 

the torsional properties of the portion of the stub tower 

connecting the blade root attachments to the 1st stage 

driving pulley. This model, therefore, assumes that the 

blades are stiff in the edgewise plane and that the rotor 
is rigid. 

Often the HAWT rotor has been modelled by other authors to 

include blade inertia, hub inertia and blade edgewise 

stiffness. Using such a model, introduces more flexi- 

bility into the drive train at the low-speed side of the 

rotor. However, to estimate the edgewise stiffness of the 

blade requires a detailed knowledge of its construction 

and the use of finite element analysis [811. It is not 

possible to perform such analysis in the general case 

where the construction of the blade is unknown, therefore 

the refinement of the current rotor model to include 

edgewise stiffness effects is not considered appropriate. 
Where known and considered appropriate, the low-speed 

shaft stiffness term could be modified to include such 

effects. 

Typical of Darrieus rotor models, Dubd 1733 uses two 

lumped inertias connected via a torsional spring element. 
This model considers the upper and lower halves of the 

rotor blades to be separate and connected to each other by 

the central column. The column transmits the torque. from 

the upper blade mounting points to the lower mounting 
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noints at the rotor base. 

V-VAWT rotor 

their root, 

approach here. 

transmit torque 

o it would be 

However, the 

to the stub 
inappropriate 

blades of the 

tower only at 
to adopt this 

All the mechanical components are considered to behave in 

a linear manner and that all the describing parameters do 

not vary with time, The electrical stiffness and damping 

terms are non-linear since-their values are dependent upon 

the state of the connection with the supply network and 

state of drive train system itself; they must be evaluated 

at each step of the simulation' process. 

Thereare two applied torques acting on the system, Q., and 

each independent of the other. Qz. is the torque 

applied' by the brake system to disc on the low-speed 

shaft. The brake has only two states (on/off) and the so 

the steady ' state value is either the maximum rated 

va, lue of the brake system or zero. Q, is the aerodynamic 

torque developed by the V-VAWT rotor and is very non- 

li In- ear. For a given rotor configuration, Q, is a function 

of four parameters: 

<a) Windspeed, Vw 

(b) Angular velocity of rotort 63, 
<c) Azimuthal position of rot or, e, 

(d) Blade tip pitch angle, PA 

The blade tip pitch angle is dependent upon the state of 

the' actuator' system and is the only parameter that can be 

acti I vely controlled. Windspeed varies continually and the 

response of the rotor will be most sensitive to changes of 

this parameter. The angular velocity and azimuthal pOsi- 
tion of the rotor describe the state of the V-VAWT rotor 

and since their high-speed equivalents, 4)11 and 

respectively, effectively appear on both sides of equation 
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(S. 48a) this and the other dif f erent ial equat ions cannot 
be explicitly solved. Introducing torque variations due 

to azimuth angle is indicative of the cyclic variation of 
the aerodynamic torque developed by VAWT rotors. 

The V-VAWT performance predictions generated by VAWTTAY 

can be used as the basis of the aerodynamic torque model 
for calculat, ing Q.,. In small perturbation analysis of the 

V-VAWT generator system, a simple aerodynamic torque model 

could be developed from linearisation of the performance 

predictions about the operating point. However, such a 

model would not include cyclic torque variations nor would 
the non-l*inear characteristics of aerodynamic torque be 

accurately modelled where large perturbations about the 

operating point are excited. The aerodynamic torque model 
developed for this project calculates Q, from a look-up 

table of the performance predictions generated by VAWTTAY. 

This approach ensures that all the predi cted character- 
istics of the particular V-VAWT configuration being 

analysed are included in the simulation. This model is 

described in greater detail in Section 8.2.7. 

Both the applied torques depend upon the state of the 

V-VAWT generator system and its inputs, therefore they 

must be_evaluated at each step of the simulation process. 

The differential equations (8.48) cannot be solved 

explicitly nor are they in a form suitable for computer 
based solution. The state space approach allows an nth 

order differential equation to be replaced by n difference 

equations that are functions of the state variables 
describing the system. Each inertia element of the V-VAWT 

drive train system can be described by two state variables 
since a second order differential equation is used to 

describe the dynamic behaviour of the element. A total Of 
fo-urteen state variables are required to satisfactorily 
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describe the drive train system, and it is convenient to 

choose the angular velocities and displacements of the 

inertia elements as these variables. Equation (8.48P) can 

be rearranged in terms of the state variables and the 

fourteen state equations are defined as follows: 

ý1) =1 fQ. 
11 - K, 2' - Ci:. "' - i 

. 
TII FIIG), 1 

ý2 8 =1 Q=.! ' - K-, 3, (0 --, 1 - 0: -, 1 )- c:, ' , (oz! - ,- (a.:, ,) f 

-Om. ' ) + C�p' ) . (0, ' 

C, (0; ýf -0., 2, f)- 
i 

J31 F-, ' oý-, 1 + K-, 31 (82 1 -az, 1 ) + C:, , (ta, ' -w. - ) 

1 -, 
(Oll' _OS' ) - C4S0 (040 -0A 8)- i 

J41 F 
41 048 + K. 

1- 
' (02 - 04' ) +C z-, 11' 

(0-l' -0a, ) 

0, C, 

Z., F Sos + K'. s, (8�ý, - es) + c, 's, (0 �, ' -0ý, ) 

1 - KG, 
7 

(er:, - 077) - CC-. 
7 

(06 - 07) 

l's, er, ) + 

9 

ä28 
= 0-- 

b3 
8 = 

1 
rs =( ajs 

1 = 

(8. '50a) 

(8.50b) 

(8.50c) 

(S. 50d) 

(S. 50e) 

(a. 50f) 

(8.50s) 

(8.50h) 

(8.501) 

(8.50j) 

(8.50k) 

(8.501) 

(8.50m) 

(S. 50n) 

It is often convenient to express the state equations 

using vector-matrix notation 1831 

Sc. = A. x+B. u (8.51) 
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where 

x= state vector 

u= input vector 

coefficient matrix of the process 

§= driving matrix 

For this system, the coefficient matrix of the process 

would be a 14 x 14 square matrix and the driving matrix a 

14 x2 rectangular matrix. Both matrices would contain 

many zero entries and be considered sparse. Whilst the 

notation is convenient for computer based analysis of 
dynamic systems, the sparseness of the matrices suggests 
that it is not an efficient method for describing the 

state equations in this application. The f orm of the 

state equations presented in equation (8-50) can be 

readily ýadapted for computer based analysis and i ss 

considered to be more effective here. 

Cl earl y, if all the system parameters are evaluated and 

the Initial state of the drive train system is known then 

the initial state derivatives can be calculated using 

equation (8.50). If the time response of the system is to 

be simulated, the state derivatives and state variables 

must used to calculate the state of the system at the next 
discrete time step of the simulation. This calculation 

procedure is, repeated for the duration of the simulation 

period. 

The accuracy of the discrete time solution is dependent 

upon the numerical solution method adopted and the size of 
the ti me interval between calculation steps. Observation 

of the state equations shows that the state derivatives 

are sensitive to large stiffness values or small inertia 
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equivalent 
inertia 

2-blades 

kg m*-", - 

3-blades 

ko 9m1.2. 

j11 2.771 2.567 
J: j! 1 '0.083 0.051 

0.004 0,003 
0.048 0.029 
0.010 0.010 
0.060 0.060 

J-1:: R 2.854 2.618 
I., 

. 0.052 0.032 
1 0,070 0,070 

Table 8.1a: Estimated, values of equivalent inertia for 5kW 

V-VAWT two and three bladed configurations 

equivalent 

stiffness 

2-blades 

Nm/rad 

3-blades 

Nm/rad 

674 700 418 400 
K 456 283 
K: 340 8 Oil 4 968 

1 908 1 908 
269 500 269 500 

t K.....; 147 147 

K, 456 283 
K,.. x 1 908 1 908 

t 147 147 

t 105 92 

t Equivalent, stiffness of synchronous generator calculated 
at nominal operating condition 

Table 8.1, 
-b: 

Estimated values of equivalent stiffness for 

5kW V-VAWT two and three bladed configurations 
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elements. The instantaneous angular accelerations of a 

small inertia elements will be relatively large, and if 

the time between calculation steps is too large then 

numerical instability will occur and poor solutions will 
be generated. Reducing the size of the time step incurs a 

computational time penalty, so a compromise step size and 

solution accuracy must be achieved if a useful dynamic 

analysis tool is to be developed. Critical appraisal of 
the drive train model shows that the number of inertia 

elements modelled can be reduced without affecting the 

validity of the dynamic simulation solution. 

Table S. 1 lists the estimated values of the stiffness and 
inertia elements of the 5kW V-VAWT for both two-bladed and 
three-bladed configurations. The actual values of inertia 

and stiffness for each component have been estimated from 

design drawings, and modified to high-speed equivalents 
using equation (8.47). Clearly the equivalent inertia of 
the rotor is significantly larger than any other drive 

train component, thus making it the component of most 
interest. Also, note that the mechanical components of 
the V-VAWT drive train are very stiff compared to the V- 

belts and generator rotor. Usually, the low-speed shaft 
is the most compliant element of a wind turbine drive 

system, and it is the generator connection to the network 
that is considered to be stiff E81,841. 

The drive train model can be modified if the mechanical 
components are considered to be rigid and their equivalent 
stiffness elements excluded from the model. This allows 
the system to be modelled with only three lumped inertia 

elements that are coupled to the electricity supply net- 
work via a series of stiffness and damping elements, 
Figure 8.9a. In this new model the V-VAWT rotor, 1 st 

stage driving pulley and disc brake inertias are lumped 
together, as are the 1st stage driven and 2nd stage 

- 384 - 



driving pulley, and the generator rotor and the 2nd stage 
driven pulley. Thus: 

Ir, = ill +J.., 
-, 

(8.52a) 

I"=3.31 +j, 1 (8.52b) 
IL'. = 1.31 + S'31 (8,520 

The stiffness element K, qj, represents the 1st stage V- 

belts', K,,,.,,, the I 2nd stage V-belts, and K,,., 
-, the synchronous 

generator stiffness. Of these elements, K, -,. '-.: and K,.:,:.,. are 

fixed by design but K,,.,,. is dependent upon the state of the 

generator with respect to the electricity supply network. 
Thus: 

= 

= 

KEG = K! 7 

(S. 53a) 

(8.53b) 

(8.53c) 

The synchronous generator is the only drive train 

component that has significant damping qualities,. so it is 

convenient to exclude the damping effects of the mech- 

anical component's from the model. The response of the 

undamped mechanical system will more pessimistic then that 

of a lightly damped system, but this has the advantage 
that the control methods and strategies will be more 

severely tested. Thus: 

Cr-O = CIý71 (8.54) 

The friction' force coefficient F,:;, can be used to include 

mechanical -and electrical power losses into the drive 

train model-. Its value has been initially evaluated at' 
the nominal oI perating condition assuming the drive train 
has an overall power transmitting efficiency of 80%. 

Thus: 
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0.2 Qr1-122 (8.55) 
0141-1-pni 

where 

nominal torque of rotor, Nm 

nominal angular velocity of rotor, rad/s 

The torque Q, applied to the inertia element 3,:, is the sum 

of the equivalent aerodynamic and braking torques applied 

to the drive train system. Thus: 

QR 
=QI+Q: --. 1 (8.56) 

The state variables for the three inertia elements are the 

angular velocities o,,,, and and the angular displace- 

, and 0... The state of the rotating magnetic ments B., 0, 
field of the electricity supply network is described by 

and 0,,,. 

The transient response of the modified model is dominated 

by the large inertia of the V-VAWT rotor, as the lumped 

inertias representing -the intermediate drive train 

components and generator rotor are still significantly 

smaller than the rotor itself. The natural frequency of 

the smaller inertia-elements is much higher than that of 

the rotor, therefore the transient response of these 

nl ninent a will Aiminu 4n F% munh mhnr+ ar t imiý than the 

transient response of the rotor. If the transient 

response of these elements is to be accurately calculated, 
the time between the discrete steps of numerical solution 
must be chosen to be suitably small to avoid numerical 
instability of the solution. This necessarily increases 
the computation time for completing a simulation study. A 
further review and modification of the drive train model 
is required. 
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QF 9=; t 

Fig. 8.9a: Modified dynamic model of 5kW V-VAWT drive 

train system with three inertia elements 

I 

Q Fq 
Pt 

4 

Fig. 8.9b: Simplified dynamic model of 5kW V-VAWT drive 

train system 
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The drive train model can be further simplified if the 

inertia of the V-belt pulleys and generator rotor are 

assumed to be negligible and that the behaviour of these 

components is not explicitly modelled by state equations. 

The drive train system can then be modelled by only a 

single inertia element, representing the V-VAWT rotor, 

that is coupled to the electricity supply network by a 

single stiffness element that represents the three 

stiffness elements acting in series, Figure 8.9b. 

Using this simplified model, the state of the drive train 

sysiem is completely -described by only two ordinary 
differential equations: 

QR =I jR 
ýrv + Ka, 43c, + F, Cor, 

. a(ef; t - ea) + c,,, (cb, - (8.57a) 

0= (8.57b) 

where is the equivalent stiffness of the coupling 

elements: 

KRz. Ksr + KsF. Km. + K., 3. K,,. 

and C, ýQ is the equivalent damping coefficient of the 

coupling elements: 

CEQ ý CEO (8.59) 

Such a model does not allow the transient response of the V-belt 

pulleys or the generator rotor to be numerically simulated; only the 

transient response of the rotor itself can be explicitly modelled. 
However, the state of the V-belt pulleys is of little interest in 

these control studies, therefore excluding these components from the 

model is justified. The state of the generator rotor, though. must be 

evaluated so that the electrical power output and the generator stiff- 
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ness can be calculated. The state of the generator can only be 

evaluated if it is assumed that its transient response decays very 

rapidly and that its steady state response is in phase with that of 
the wind turbine rotor. Consequently, the angular velocity and 
displacement of the generator rotor with respect to the electricity 

supply network is assumed to be proportional to the velocity and 
displacement of the wind turbine rotor; the proportionality being 

dependent upon the stiffness of the interconnnecting elements. 

The intermediate states of the V-belt pulleys and gene- 

rator can be considered in terms of the stiffness elements 

and , the state variables of the rotor and network, such 
that: 

(GE - e', ') = Kns. Ks 
Kem 

+K 
(e" - ec, ) (8.60) 

E+ 
KS-E. KEG EO- KI: IS 

I 
K,, (eR - ea> K,, + Ks, 

(8.61) 

Pt"- 
x«e-Fý- 

(OFA: - OG) (8.62) 
KEG, K + FX! VI EG 

WR - Corr (8.63) 

This simplified drive train model allows a numerical 

solution to be more rapidly completed because a smaller 

number of, discrete time steps are 
, 
required to accurately 

evaluate the transient response of the 'system for a -iven 

simulation-time period. 

The state differential equations are simply: 

-L[Qre - KErj(OFe - OC: 3) - CIL-. C4(OF;: - Or: j) - F,., 0, *] CS. 64a) 
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; 
fq = On (S. 64b) 

ýG = (8.64c ) 

(B. 64d) 

The 
labove- 

state equations and state variables only 

describe the drive train system, which is one sub-system 

of the whole V-VAWT generator system. The state of the 

V--VAWT generator can, be described by a finite number of 

state variables which for convenience will be described by 

the variable x.,.. The state equations for four of these 

variables are: 

ýi 
«, 2 «I-[QR - K., ' (X. 2 - Mdt) - CEQ (Y, 

1 - X: 2, ) -1 (8.65a) 
in 
xi (8.65b) 

9 (8.65c X3 o 

k4- X3 (8.65d) 

where 

x, = (8,66a) 

x2 = em (8.66b) 

x= (8.66c) 

XA =ý (8.66d) 

Although, 
I 

the drivel train model has been considerably 

simplified, the representation of the coupling between the 

rotor, and the electricity supply network as a series of 

stiffness elements allows the influence of different 

transmission characteristics to be studied. The present 

5kW V-VAWT design, is mechanically stiff and offers little 

damping to the fluctuations of torque developed by an 
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uncontrolled rotcýr, The synchronous generator offers the 

most compliance and damping. This is not ideal, because 

the largest angular displacements will be excited in the 

generator rotor and its stiffness is highly non-linear. 
The drive train design could be modified to show more 

compliance and damping in the mechanical components, but 

the current stiff design presents a greater challenge for 

the designer of an active aerodynamic power control system 
to overcome- 

8.2.3: Tip Pitch Actuator Model 

The actuator mechanism for changing the pitch angle of the 
V-VAWT blade tips has yet to be discussed. At present, an 

actuator mechanism specifically for the V-VAWT has not 
been designed in detail. The free-air 5kW V-VAWT has no 

mechanism for tip pitch control nor one for actuating the 

IT' brake control device. The form that any such mech- 

anism will take has not been specified, but for elec- 
tricity generation applications of the wind turbine, it 

will be demonstrated that tip pitch must be actively 

controlled. In the simulation studies, it is the response 

of the actuator system to a pitch angle control command 
that is important. Therefore, only the input/output 

relationship,, of the actuator system is required; the 

detail design of the mechanism itself is of little 

significance. 

The state of the actuating mechanism itself during wind 
turbine operation, -like the states of the intermediate 
drive train components, bears little significance upon the 
behaviour of the wind turbine system as a whole. Oper- 

ating boundaries have yet to be specified for the actu- 

ating mechanism; for instance, the maximum number of pitch 

change cycles has not been defined, nor have the load 

- 391 - 



limits that the actuator mechanism may impose upon each 
blade been specified. These and other design limitations 

will have to be considered at the detail design stage of 
the V-VAWT development. If an appropriate actuator system 
design existed, then a detailed model of the actuating 

mechanism could be developed. But knowledge of the oper- 

ating states of each component of the mechanism would be 

of little value to this study, since it is not possible to 

test the acceptability of these states against any design 

criteria. Therefore, a simple mathematical model of the 

actuator mechanism that only describes the input/output 

relationship of the system is of greater value here. Such 

a model will be used to establish, and verify from simul- 

ation studies, the general performance requirements of any 
future V-VAWT tip pitch actuator design. 

The simulation studies are concerned with the stability of 
the V-VAWT while generating electricity and so, as stated 

above, tip pitch must be actively controlled for such an 

application. The control strategy adopted is discussed in 

detail later, however, the input signal from the control- 
ler to the actuator system will invoke a response from the 

system which will be assumed to be equal for all blade 

tips. In reality, the response of each blade tip to the 

single pitch angle command will be slightly different due 

to differences in individual components and the local 

external forces acting on each device. However, such 

differences. would add further complexity to the modelling 

process and are not considered to be relevant to the 

objectives of these simulation studies. Therefore# the 

assumption that each blade tip will respond in the same 

way and be in the same state as the other tips is con- 

sidered reasonable here. 

Cyclic variations of tip pitch are not considered because 

each blade tip would have to have its actuator system 
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described. The controller would also have to specify 
pitch angle commands to each actuator. Again this would 
lead to further complexity in modelling the wind turbine 

system- and also calculation of the aerodynamic torque 
developed by the rotor would be significantly more diffi- 

cult. Cyclic pitch control is considered too elaborate 
for power control purposes, alone, but may be considered 
where the structural response of the rotor is significant- 
ly affected by changes of azimuthal position (851. 

The tip pitch actuator is modelled as a second order 

system with unity proport. ional feedback, for position 
control. In reality compensation in the form of either 
integral and/or derivative feedback may have to be used to 

enhance the speed, accuracy or stability of the actuating 
system in controlling the pitch angle of the blade tip. 

However, that is a matter of detail design to ensure that 

the response of the real actuator system will meet the 

performance criteria developed during this study. For 

simulation purposes, the characteristics of a second-order 

actuator system can be easily determined to ensure that a 

suitably fast, accurate and stable response is modelled. 

The overall transfer function of a second-order system 

written, in standard Laplace form iss given by: 

C(S) 
=-0,2 (8.67) R (s) S'2 + 2ýw, s + ca, 

where 

undamped natural frequency, rad/s 
damping factor 
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The time response of a second-order positional control 

system to a step input is characterised by six performsnce 
indices [861: 

(a) Delay time, t,:., 

(b) Rise time, t,.. 

(C) Peak time, t,,. 

(d) Peak overshoot, M,.,:, 

(e) Settling time, t,,, ' 

M Steady-state error, 

These indices are mutually dependent and can be defined in 

terms of o, and ý alone. For modelling purposes valuess 

must be assigned to ca, and ý but it is more convenient to 

specify the desired behaviour of the. actuator in terms of 

onja or more of the performance indices. only two of the 

indices need be specified to ensure unique values of 0,.., 

and ý are defined. 

Accurate control of the wind turbine system as a whole 

will require the pitch angle control command to be con- 
tinuously modified in response to windspeed fluctuations. 

Therefore the speed of response of the actuator system to 

the input command changes will be more important than 

necessarily its steady state positional error or the 

settling time. The performance of the actuator mechanism 

can best be defined in terms of: 

(a) the maximum rate of change of pitch angle, deg/s 

(b) the peak overshoot in response to a step input 

since both of these performance indices can be quantified 
and are easily measured during dynamic testing. 

The maximum rate of change of pitch angle is a limitation 
imposed by the components of the actuator mechanism- and 
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it is considered that a value of 15 deg/s should provide a 

suitable actuator response. Where shutdown procedures are 
invoked, the tip pitch angle will need to be set to 30*. 

In the worst case, the actuator will take approximately 
two seconds for the pitch angle to first reach the 30* 

position. 

The peak overshoot of a system in response to a step input 

is an excellent measure of system damping since it is 

independent of A 10% over'shoot is considered to be 

acceptable, since this will ensure the actuator system is 

stable and yet underdamped to ensure a quick response to 

input changes. 

Nagrath and Gopal 1861 give the following expressions for 

rise time-t, and peak overshoot in terms of ca, and C: 

Tr - tan-' 

where for 0<ý<1 

tan-"[(' 

and 

(8.68) 

MP = 
-10 

However, it is more convenient to determine ý from the 

graph of M, versus ý provided by Nagrath and Gopal, than 

to use equation (3.69). From this graph a value of C' 

0.6 corresponds to a 10% peak, overshoot. This value of C 

is used below to determine a suitable value of (z,,. 
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The rise time t, is the time taken for the response of the 

underdamped system to a unit input to rise from 0% to 100% 

of the final output value. If it is assumed that the rate 

of change of pitch angle is constant during this initial 

period, then a value of t, maybe estimated and a value of 

4), calculated by rearrangement of equation (8-68). 

In determining a value of t, it was assumed that - the 

response of the tip pitch actuator system would be 

required for a 5* step inp. ut to the system and that the 

maximum pitch rate provided by' the actuator is 15 deg/s. 

Using these values t, has a value of 0.33 seconds and 

consequently w, = 8.3 rad/s. 

When using this actuator model, it should be noted that 

the rise time is constant, regardless of the magnitude of 

the input. If only a 2* step input to the system is 

invoked, then it will take 0.33 seconds for the output of 

the system to first attain a value of 2*. The pitch rate 
during this response would not exceed its maximum value at 

any time. However, if an 80 step input was invoked, the 

output of the system model would still attain a value of 

8* in 0.33 seconds, but in doing so the pitch rate would 

have to exceed its maximum value. This means that the 

current actuator model does not simulate the performance 
limitations that are considered to be typical of a real 

mechanism. This can be easily overcome with digital 

simulation by including a conditional statement An the 

computer program; this ensures the magnitude of the pitch 

rate does not exceed its maximum value at any time. In- 

this way the simple second order model is modified to 

ensure it accurately simulates the operating character- 
istics of a real actuator mechanism. 

The differential equation that represents the behaviour of 
the actuator system is: 
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= *ý,, 2cca, ý,, 
ca"20".. (8.70) 

where 

R,,, = tip pitch actuator output angle, deg 

Pe. jc = tip pitch actuator input angle, deg 

A convenient state variable form of the characteristic 

equation is: 

AV, =-o, 2x,, - 2ý63, x, ý 
(8,71a) 

kc; = XS (8.71b) 

where 

Xs = 
6"' tip pitch rate, deg/s 

xfs = ýA tip pitch angle, deg 

The state equations can be arranged into matrix form but, 

as discussed previously, this form has not been adopted 

here because of the sparse nature of the process and 

driving matrices. 

The values of to, and determined above will ensure the 

actuator response will be fast, yet stable. However, to 

ensure the mathematical model is representative of a real 

mechanism, the pitch rate will be limited to a maximun. 

value of 15 rad/s. The computer simulation program 

DYNVAWT checks and modifies as appropriate the magnitude 

of the state variable x,.., to ensure that this limiting 

condition is applied. 
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8.2.4: Disc Brake Model 

The disc brake system currently fitted to the 51,, W V-VAWT 

is a two-state device. The Twiflex AMR electric disc 

brake uses a spring-applied, electrically released 

actuator that is able to apply a maximum braking torque of 

1950 Nm to the brake disc. The manufacturer's specified 

release time is 0.1 - 0.2 seconds and the application time 

is 0.15 0.4 seconds depending upon the adjustment and 

set-up of the system. The state of the brake system is 

controlled simply by switching on/off the electrical 

supply to the brake controller. The brake is only 

released when its electrical supply is connected. This 

mode of operation can be used to ensure that the wind 

turbine only operates when there is continuity of elec- 

trical supply to all control systems. 

The magnitude of the braking torque cannot be controlled 

except by selecting different brake components. The wind 

turbine controller, therefore, need only specify the 

required state of the brake system i. e. whether the brake 

should be on or of f. This braking system can be mathe- 

matically modelled by considerinS it as a first order 

system. 

The overall transfer function of a first order system- 

written in standard Laplace form is given by: 

C (S) (8.72) 
R (s) 1+ rs 

where 

,r= time constant, sec 
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The transient response of such a system to a step input is 

characterised by an, exponential rise of the output from, 0% 

to 100% of the input value. The initial rate of change of 

the output is equal to the inverse of the time constant. 

Thus' the time constant is indicative of the speed of 

response of the system; a small time constant representing 

a fast response. The output of the system is within 2% of 
its final value when t>4, r. From the manufacturer's 

specification the time constant for the disc broke system 

would be c=0.025 - 0.100 seconds depending upon whether 

the brake was being applied or released. A value of 

,r=0.1 seconds is used here for simulation purposes. 

The differential equation that represents the behaviour of 

the disc brake system is: 

1 
QBC +Q2 

where 

Q2 = actual torque of disc brake system, Nm 

Qec = required torque of disc brake system, Nm 

(8.73) 

A convenient state variable form of the characteristic 

equation is 

*7 = 
! Q9C (8.74) 
Ir 

where 

X7 = Q-2 disc brake torque, Nm 

The disc brake has only two statess, so the command signal 

from the' wind turbine controller to the disc brake need 
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only be a digital equivalent of off or on i. e. 0 or 1- 

However, for convenience, the value assigned to in the 

simulation program DYNVAWT is either 0 Nm or 1950 Nm- 

Such -a form ensures that the state variable x-;, is always 

assigned a true value of disc brake torque. The magnitude 

of the actual torque developed by the brake system must be 

converted to a high-speed side equivalent, Qz'' using 

equation (8.47b) before if can be combined with the equi- 

valent aerodynamic torque, Q, I, to give the rotor torque 

Ql:, 4 (N. B. is a brakIn8- torque and must be assigned a 

negative sign in the summation). 

This simple mathematical model of the disc brake is easily 

implemented into the simulation program. The value of T 

used here ensures that the braking torque is applied as 

slowly as the brake me . chanism. allows. The disc brake 

system responds to only one in. put, that is set by the 

wind turbine control system. The disc brake is not used 

to control the wind turbine while it is connected to the 

grid, and is only applied during shutdown procedures or 

when the wind turbine is stationary. 

8.2.5: The Wind Model 

The time-domain simulation of the V-VAWT 

time varying model of the wind, otherw 

response of the wind turbine system to 

uations in windspeed can not be studied. 

must allow the V-VAWT generator system to 

the common forcing functions used in 

analysis: 

must include a 

ise the dynamic 

typical fluct- 

The wind model 

be disturbed by 

control system 

<a) step, ramp and impulse transient inputs 
(b) sinusoidal input 

(c) statistical input 

- 400 - 



The use of measured values of windspeed with respect to 

time would include all these forcing functions. The use 

of such date, however, is not convenient for simulation 

studies because the individual forcing components can not 
be readily separated from the overall wind characteristic. 

A mathematical based wind model was sought to allow the 

typical forcing function forms to be characterised 
individually or combined to give a realistic represent- 

ation of the stochastic nature of the wind. 

The wind model used is based upon those developed by 

Anderson and Bose 1761, and Sundar and Sullivan 1871, and 
the values assigned to the controlling parameters are 
typical of the values used by these authors. This 

mathematical wind model is ideally suited for computer 
based simulation studies, since the behaviour of the wind 

can be modelled to include gusting, rapid speed (ramp) 

changes and turbulent effec ts (noise). The wind model is 

only one-dimensional, since no variation of windspeed 

across the wind turbine rotor is considered. 

The wind model consists of four wind velocity components 

and the computer program DYNVAWT allows any combination of 

these components to be used for simulation purposes. The 

upstream windspeed Vw at any given time, t, is given by: 

VW ý- VWO + VWG + VWR + VWN 

where 

V,, j:, = base wind component, m/s 
V,,., = gust wind component, m/s 
VWN = ramp wind component, m/s 
VwN, = noise wind component, m/s 

(8.75) 
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The base wind component is given by: 

V,,,, = K, - (S. 76) 

where K,,,., is constant throughout the simulation period. 

The value of K,;,, can be varied between simulation runs and 

determines the initial operating conditions of the wind 

turbine system. Its value is not limited in any manner, 

though a positive, non-zero value is always assigned to 

K,: A. 

The gust wind component is given by: 

0 

VWC3 Vcos 

0 

t<T, ý 
T, .<t 
t>T: z . 

(8.77) 

where 

Vc,: Is 1- 
MAXG 1_ cos2n( 

t T, 
2 kTm.. T17)) 

and 

MAXG = gust peak, m/s 
T, ý = gust starting time, s 
T: -. 2,,, = gust finishing time, s 

(8.78) 

This is the NASA standard (1-cosine) gust that is gene- 

rally used for simulation studies. The gust wind comp- 

onent is zero in magnitude at all times except during the 

gust period. When the tire is greater than the gust start 

time, the magnitude of the gust wind component increases 

sinusoidally to its peak value at the mid-period time. It 

then decreases non-linearly to zero at a time equal to the 

gust finishing time. The severity of the gust is control- 
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led by the magnitude of its peak. and the period of the 

gust. 

The ramp wind component is given by: 

0 

w r( 
VRrAmp 

MAXR 

where 

t<T,,, 

Tl,!;, <t 

t>T: 2, 

tt TI, MAXR 
(I 

V2R TIR)) 

and 

MAXR =, ramp peak, m/s 
TIR = ramp starting time, s 
T2, = ramp-finishing time, s 

(8.79) 

(8.80) 

The ramp wind component allows the mean windspeed to 
increased or decreased about the base wind component 
during the simulation period. The ramp component is zero 
in magnitude when time is less than the ramp start time. 
When time is greater than the ramp start time, the magni- 
tude of the ramp component increases linearly to its peak 
value at the ramp finish time. The ramp component then 

remains. ýfixed at the peak value for the rest of the simul- 
ation period. . -A step change in windspeed can be simulated 
by making the ramp finish and start times all but equal. 

The noise wind component is given by: 

n 
V,, = 2: 1 2SWj. ), 6(A I". 1-ýcosW: tt + 0, ) 

i=l 

where 
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S(0, ) = 
2C, F21 0,1 

(Ftai/nV�1.., )*31] 

and 

(8.82) 

F turbulence scale factor, m 
C..,.. ground roughness coefficient 
Ao o,.., /n, rad/s 

o,.., upper cut-off frequency, rad/s 

n number of frequency components 

o, iA(z + So, red/s 
So random frequency shift, rad/s So < Lo/20 

0, random phase angle, rad 0< 01. < 271 

Vml,:, = mean windspeed at 10m height above ground, m/s 

The noise wind component is simulated by a series of 

cosine waves of various frequencies co, whose amplitudes 

are weighted according to the spectural density functign 

S(O'). At frequencies above the upper cut-off frequency 

ca, j the spectural energy density function is considered to 

be zero. Also, since a discrete-time simulation is being 

performed, frequencies above the simulation sampling 
frequency can be ignored because they will not contribute 

any variation to the noise wind component in the 

simulation studies. 

The wave amplitudes are, in general, controlled by the 

turbulence scale factor F and the ground roughness cOeff- 
icient C, - terms, while the overall form of the noise shape 
is controlled by the number of frequency components n and 
the upper cut-off frequency co, j. Each component frequency 

ca, is a multiple of 6ca, plus a random frequency shift Soi. 

which ensures that (zL is not periodically repeated. A 

random phase angle is, similarly, included in the 

cosine term of V,, to ensure that each component wave is 

out of phase with the others. 
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Values of F= 700m, C, = 0.005, n=1.90 and w,, = 100 rad/s 

have been assigned to these parameters based upon the 

values suggested by Anderson. There is little need to 

modify these values for the purposes of this study since 

no particular V-VAWT siting is being considered. The mean 

windspeed at the standard reference height of 10m above 

ground is I varied since V, -,,,.:, takes the value of the base 

wind component KJ::! j. Thus a generalised noise wind 

component model is adopted. 

The computer program DYNVAWT allows all the above 

parameters describing t he four wind components to be 

varied between simulation runs, but they remain fixed for 

the duration of 'the simulation period. At each time 

interval, the four components V, r.,, V,,:., V,,.., and V,,,. are 

calcula'te'd' and summated to give the windspeed Vw- Any 

combination of 'the four components can be used in 

calculating V,, 'so that simulation runs can be performed 

without -including, for example, the ramp or noise wind 

components. This flexibility was the major advantage in 

favour of' the 'mathematical wind model over the use of 

actual windspeed measur'ements for simulation studies. 
This wind model allows windspeed variations to be 

carefully controlled, yet the random fluctuations, 

associated with free-air operation can be included if 

required. 

8.2.6: Electricity Supply Network Connection Model 

The dynamic characteristics of the synchronous generator 
depend upon the state of its connection with the elec- 
tricity supply network. The infinite bus voltage, e.. -,., is 

constant for a large network, but whether the generator 
sees this vol tage or not depends upon the state of the 

connection. 
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A three-phase, symmetric fault in the transmission line 

will invoke the greatest disturbance to an on-line V-VAWT 

generator system. During a fault of this kind, the 

connection between the network, and the generator will be 

temporarily open. For the duration of the fault, the bus 

voltage is zero and no electrical current will be induced 

in the stator windings. Consequently, the generator will 

not develop any power and the stiffness of the generator 

connection with the network, K, -.,, :.,, will be zero. When the 

fault is cleared, the infinite bus voltage will be 

restored to that of the network and currents will once 

again be induced in the stator windings. 

During a fault, the wind turbine system will be unloaded 

and an uncontrolled rotor will rapidly accelerate away 

from synchronous speed. When the fault is cleared, the 

angular displacement of the generator may be so far in 

advance of the rotating magnetic field of the electricity 

supply network that synchronisation will be lost. The 

critical clearing time for a fault is the longest time 

that the connection may be suspended before instability 

occurs and synchronisation lost when the fault is cleared. 

A simple two state model of the electricity supply network 

connection to the generator is considered to be adequate 
for simulating these fault conditions. In this model, the 

variable JIBUS has a value of unity unless a fault is 

invokedt in which case JBUS has a value of zero. The 

value of SBUS is therefore given by: 

1 

SBUS =0 

1 

T, ,(t (T2m 

t>T:, - 

(8.83) 

where 
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SBUS = fault state 
T= fault starting time, s 

Tý2,: ý = fault clearing time, s 

During start-up and shut-down procedures the state of the 

generator connection to the network will be controlled by 

the wind turbine controller. As with the fault, the 

stiffness of the generator connection is zero until such 

time as the V-VAWT generator system is connected to the 

network. The off-line wind turbine system is unloaded so 

an uncontrolled rotor will rapidly accelerate. When the 

rotor is running at synchronous speed, the connection to 

the network--may be closed and the generator will be 

synchronised with the network. The success of the 

synchronisation will depend upon the control strategy 

adopted - for this 'procedure, If the connection is to 

remain stable the'rotor must be controlled to ensure that 

synchronous speed is maintained; this will be discussed in 

more detail in Section 8.3. 

The wind turbine-controller can prescribe the state of the 

generator connection to the network by setting the value 

of the variable IBUS. IBUS can have either a value of 

unity or zero depending upon whether the contactor is 

closed or open, i. e.: 

op 0 generator contactor OPEN 

IBUS (8.84) 

,, 
l generator contactor CLOSED 

The two variables ISUS and JBUS can be considered to act 

like two'switches acting in series; the connection between 

the g'en'erat'or and' the electricity supply network is only 

fully closed when both variables have the value of unity. 

Using this 
0 

analogy, the per unit value of the infinite bus 

voltage is'the product of these two variables, i. e.: 
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IBUS. JBUS (8185) 

This is a simple technique for controlling the value of 
the infinite bus voltage and easily implemented into the 

computer simulation program DYNVAWT. Note that of the two 

variables controlling the state of the infinite bus volt- 

age, one is controlled by the wind turbine controller 
itself and the other is externally controlled. The vari- 

able JBUS can be considered as an input from the environ- 

ment t. o the V-VAWT generator system as a whole. 

8.2.7: Aerodynamic Torque Model 

The -aerodynamic torque characteristics of a particular 
V-VAWT generator system depend upon blade design, rotor 

configuration and theý size of the control surfaces. 
However, these -rotor attributes are all fixed by design 

and, ,, when studying the dynamic behaviour of a V-VAWT 

generator -system, it is the variation of aerodynamic 
torque with windspeed and the state of the wind turbine 

itself that is of interest. An effective model of aero- 

dynamic torque must allow the dynamic behaviour of differ- 

ent V-VAWT designs to be compared as well as effectively 

characterising torque variation with windspeed and wind 

turbine state. 

Since the aerodyna!, nic. torque model must allow the dynamic 

behaviour of different V-VAWT designs to be compared, it 

was considered that this would be best achieved if the 

aerodynamic torque data used as the basis of the model was 

generated- by the aerodynamic performance prediction pro- 

gram VAWTTAY. This allows the dynamic studies to be per- 
formed at an early stage of the design process so that the 

program DYNVAWT becomes a concept design analysis too 
* 
1; 

this has always been one of the objectives of the exer- 

- 408 - 



cise. This approach has the advantage that accurate 
torque d4ta may be readily generated that characterised an 
individual rotor design, thus allowing the influence of 
design modifications to be quickly compared. The data is 

also generated at the same time as overall aerodynamic 

performance characteristics are being calculated using 
VAWTTAY, therefore avoiding duplicity of calculation 

effort. ý 

The aerodynamic torque model must also allow the -torque 

variations due to windspeed changes a. nd the state of the 

V-VAWT generator system to be accurptely evaluated for all 

operating conditions. If the rotor design is fixed then: 

Qj 'ý I ORO (bRI OAI VW) (8.86) 

In small - perturbation analysis of HAWTs the aerodynamic 
torque characteristics of a wind turbine rotor are usually 

normalised about its operating point to give torque gains 

with respect to small changes of rotor speed, windspeed 

and blade pitch CS13. Where larger perturbations are to 

be studied the torque is characterised by a series of non- 
linear expressions based upon the C,;, -% characteristic of 

the rotor for different pitch angles of the control 

surface. While these methods are suitable for represent- 
ing the general characteristics of HAWTs, the character- 
istic cyclicaL torque variation of VAWTs cannot be 

successfully incorporated into these models. 

Since DYNVAWT is a digital computer based program, it was 

considered that the aerodynamic torque characteristics Of 

a-V-VAWT generator system would best modelled by a look-up 
table of C., values that described the complete operating 
range of. the system. The values of the table would be 

drawn from ýdatafiles generated by VAWTTAY. In its most 

complete form the table would be four-dimensional, each 
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axis representing the range of operating conditions of the 

four independent variables 0,.,, to,,, ý,. N and V.. However, 

this would not only require a large number of C,, values to 

be calculated but also a large computer memory space to 

store the values for speedy retrieval during the execution 

of the program DYNVAWT. The size of the look-up table can 

be''reduced by one dimension if the torque characteristic 
is considered to be given by: 

Ql =f (ef" o", XR) , (S. 87> 

where 

X,:, = tip speed ratio of the rotor 

Note that the mean aerodynamic torque, Q-11.1, developed by 

the rotor over a complete revolution is merely a function 

of tip pitch angle and tip speed ratio. The values of Qim 

are those normally output by VAWTTAY and so are already 
included in the datafiles generated by this program. 

The manner in which the torque data for the table is 

generated -using VAWTTAY will depend upon the operating 

condition that needsýto be studied. For instance, for on- 

line'studies"the torque data should be generated at 

constant rotational speed for a range of windspeeds; the 

rotor 'speed being synchronous. Small changes of the 

rotational speed of the rotor will be equivalent to small 

tip speed ratio changes. Whereas for start-up and shut- 
down studies, ' 'the torque data should be generated at 

constant windspeed for a range of rotational speeds. In 

these studies small changes of windspeed would be equi- 

vblent ' to small tip speed ratio changes. Adapting the 

manner in which the data for the look-up table is gene- 

rated to the type of simulation study to be performed, 
ensures economy' 'of torque data calculation and prepar- 
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at i on. More importantly, it also ensures that the data 

embodies the predicted effects of Reynolds Nu, -, -iber on the 

performance of the V-VAWT rotor. Týis could not be 

satisfactorily achieved by using one set of data alone. 

Since the look-up table consists of values of C,, calc- 

ulated at discrete values of el:: 41 5 eI4 and XI-49 linear 

interpolation is used to calculate the value of C', at 

intermediate operating points. The true value of Ithe 

rotor torque is calculated in the usual way: 

; 6pARV2C, I, (a. 88a) 

where 

VW (S. 88b) 

This aerodynamic torque model uses data normally calc- 

ulated when using VAWTTAY for performance predictions of 

V-VAWT configurations. No further refinement of the data 

is required for use with DYNVAWT. Therefore, dynamic 

simulation studies of the V-VAWT generator system can be 

readily performed at an early stage of a system develop- 

ment. The results of such studies would contribute to the 

overall evaluation of a particular design proposal in a 

way that the study of steady state aerodynamic performance 

predictions alone cannot. 

8.2.8: A Summary of the V-VAWT System Model and 
Initialisation of the State Variables 

The mathematical models of the three sub-systems of the 

V-VAWT generator system developed above may be combined to 

form a model of the whole system. The control system has 

yet to be developed, but the response of the uncontrolled 
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wind turbine system may now be evaluated in the time 

domain using the seven state differential equations: 

41 (8.89a) X, [Q,:, - Kr;. Q(X X, 0 - CL2(xi - x::. 3) - Frxi] 

k--> =X1 (8.89b) 

0 (8.89c) 

)(3 (8.89d) 

(z, 25,, c -- 2t(zx,, (8.89e) 

kc. .2 Xs (8.89f ) 

-X7 (8.89s) 
,! 
QBC 

c 

where the state variables are: 

XI ý of" angular velocity of V-VAWT rotor, rad/s 

Xz. " e" angular displacement of V-VAWT rotor, -rad 

X3 400 angular velocity of generator rotor, rad/s 

XA E)'M angular displacement of generator rotor, rad 

xis tip pitching rate, deg/s 

X fr. PA tip pitch anSle, deg 

X7 QZ disc brake torque, Nm 

and 

(ZF2q = equivalent torque applied to rotor 

PAc = required tip pitch angle# deg 

QI: 3c = required disc brake torque, Nm 

Only 0,, c and %, 
_ can be directly controlled by the wind 

turbine controller. The torquet QFR I developed by the 

rotor is the sum of both aerodynamic torque and the 

applied brake torque. The coefficients of the difference 

equations are dependent upon the design of the V-VAWT 

generator system. The coefficients are all time invariant 
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with the exception of This coefficient is system 

state dependent and therefore its characteristics vary in 

time. The infinite bus voltage, e,,,, is an external input 

to the system and is dependent upon the connection between 

the generator and -the electricity supply network whose 

state is determined by the variables IBUS and TBUS. The 

state of IBUS is controlled by the wind turbine control- 

ler, but SBUS is externally controlled. 

The initial state of the system must be evaluated before 

numerical solution of the system equations can commence. 
Given that all the component characteristics have been 

determined, 'the. initial values of the state variables will 
depend upon the operating mode that is to be simulated. 
Equilibrium of the system is implicit during the initial- 

isation'procedure. 

If ýa start-up operation is to be simulated, the initial 

angular displacements and the rotor velocity will be set 

to zero. The angular velocity of the rotating magnetic 
field of the electricity supply network will be set at 

synchronous speed. The pitch angle and brake states will 

be determined by the V-VAWT controller. All state 

differentials will be zero. 

If a shutdown operation is to be simulated, the V-VAWT 

generator system will be considered to be initially 

operating on-line. The external disturbances must be 

designed to invoke a shut-down procedure during the 

simulation period. 

The initialisation of on-line operation is not straight- 
forward, however, the following approach has been success- 
fully" adopted. The initial angular displacement of the 

rotating magnetic field is set to ý zero, and both angular 
velocities of the system are set to synchronous speed. 
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The pitch angle and brake states will be determined by the 

V-VAWT controller. All state differentials. will be zero. 
The initial state of the rotor is not completely defined 

as its angular displacement must be determined. Since the 

system is considered to be in equilibrium, the initial 

rotor torque will be considered to be equal to the mean 

aerodynamic torque, Q,.,, calculated using the initial tip 

pitch angle and tip speed ratio values. Subtraction of 
the friction loss torque from the value of rotor torque 

will yield the value of mechanical torque transmitted to 

the generator. Thus the power input to the generator is 

determined. In order to determine the power angle at 

which the generator system is initially operating, the 

value of 5 is set to zero and its value gradually 
increased in discrete increments. At each increment the 

output power of the generator is calculated. The proc- 

edure is repeated, until the calculated po. wer output of 
the generator equals that trapsmitted from the wind 
turbine drive train. In this way the initial value of 5 

can be determined. The initial stiffness of the drive 

train system can now be evaluated and the angular dis- 

placement between the rotor and the network calculated. 
The initial value of all the state variables are now all 

determined. 

Since the mean torque, Q, ,, is used to determine the 

initial state of the on-line V-VAWT generator system, the 

system can only be considered to be in a state of quasi- 

equilibrium. The actual rotor torque developed by the 

rotor will differ from the mean value because of the 

cyclic nature of V-VAWT torque. The difference immedi- 

ately imposes -a disturbance on the system which will 
invoke a transient response, even when the system inputs 

remain constant. Once, however, a steady state operating 
condition has been achieved, then excitation of the system 

with external disturbances may be simulated as required. 

- 414 - 



8.2.9:, Numerical Solution of the State Differential 

Equations 

Equat i on (8.89) def i nee t he seven st at e di ff erent i al s of 
the V-VAWT generator system solely in terms of the system 
inputs, control outputs, component characteristics and the 

state variables themselves. These equations can be 

evaluated provided the initial state of the system has 

been defined and all the equation coefficients have been 

calculated. The numerical simulation of the V-VAWT 

generator system requires that these state differentials 

are used to evaluate the state of the system at the next 
discrete time step. Repetition of this process will yield 
the solution of the state equations for the complete 

simulation period. The numerical solution technique 

described below is one of many solution methods considered 
for use in the simulation program DYNVAWT. - The superior 

accuracy and self-starting attributes of the Fourth Order 

Runge-Kutta technique, however, weighed heavily in its 

favour over the other methods, and the author considers 
the choice of this solution technique to be most important 

factor in ensuring that the computer program DYNVAWT is a 

reliable and quick dynamic analysis tool. 

The basis of the Fourth Order Runge-Kutta numerical 

solution method comes from the consideration of a first- 

order system that has a single state variable x(t) and a 

single input u(t). It is assumed that the initial value 

of x(t) is known at time tc. and u(t) is known for all 
t) to. The discrete time based solution requires the 

state of the system to be evaluated at each discrete step. 
It is assumed that the time T between each step is con- 

stant for the duration of the simulation period. As will 
be demonstrated the accuracy of the solution is highly 
dependent upon the choice of step size. 
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The state differential equation is assumed to be of the 

f orm: 

k(t) = f(X, U, t] (8.90) 

If the initial state x(to) is known, then the next state 
to be evaluated is at t. = to + T. Taylor' s expansion 

about to gives: 

x(t. + T) = x(tc, ) + Tý(to) + 
L% 

(t 
1: 2) 2! 

The Taylor's expansion would allow an exact value of 

x(t,, -, + T) to be calculated if all the derivatives of x(to) 
could be evaluated and if the infinite series could be 

summated. However, in the general case this cannot be 

done and therefore only an approximate solution can be 

evaluated. 

Since the initial state of the system is known, the state 
differential equation (8.90) allows the first de. rivative 

of x(to) to be evaluated. If the step size is chosen to 

be suitably small, the higher order derivatives can be 

neglected and an approximate solution of equation (8-91) 

can be found, such that: 

x (to + T) =x (to) + Tf [x (to), u (to), to] (8.92) 

The state of the system at t=t,: ) + 2T can now be 

evaluated: 

x(to + 2T) = x(t. + T) + Tf (x(to + T), u(t. + T), to + TI (8.93) 

The process can b6 continued so that: 
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(t 0+ . 
(k+ I) T) x (t +M+ Tf (x (t + M, u (t +Mtt+ kTI 

(8.94) 

A simpler form-of equation (8.94) often used is: 

W-1 = x'-: + Tf [xk, ulc, k] (8.95) 

This solution method is known as Euler's Method and is the 

simplest numerical solution technique of those considered. 
The method is classed as a single-step technique, since 
the kth step of the simulation must be evaluated before 

the k+1th step can be evaluated. It is also self- 

starting, since only the initial state of the system need 
be known for the complete solution to be generated. 
However, the solution is not exact because the higher 

order derivatives are ignored. The truncation error, 

e(t), for Euler's Method is: 

e (t )=Z *x* (t c) + -c )0(r(T (8.96) 2 

In a higher order system with n state varimbles and m 
inputs the generalised state differential equation takes 

the form: 

k: 
i 

(t) =I X21" II Xnt Ul t U20 - -I Uml t] (8.97) 

so that: 

)C: L k '*" : -- x, " Tf ,[x, l< 9 %WO 649 
xn k9 Ul k9 u2 kb*0t Umw, (8.98) 

As with the first order system, all the state variables 
must be evaluated at each discrete step before proceeding 
to the next step of the simulation. 

- 417 - 



The Runge-Kutta solution methods are based upon Euler. ' s 

Method, but are, more refined to increase the accuracy of 

the solution. - The order of a Runge-Kutta method refers to 

the number of state derivative evaluations made for each 

state variable at each step of the simulation. The Fourth 

Order Runge-Kutte solution method requires four state 

derivatives to be calculated for each state at each time 

step. The form of the algorithm used is: 

X: L 
kI= x1l< +T [A, + 2A2 + 2A3 + A,, ] 

6 

where 

fi [x, k X"k 
, 

ul k k] (8.99b) 

A, 
- = fi [x, l< + %TAI t--, x�',: + IhTA, 9 ul""- 'o .#, u�, k-«1»0', r-, k + el (8- 99c) 

A3 f + %TA2, (8.99d) 
A4 fi TA3@ TA: 39 u, ""*" 9k+ 

(8. gge) 

This method involves evaluation of four state derivatives; 

one at the, start of the time interval, two at the mid- 

point of the time interval and one at the end of the time 

interval. All four 
, 
state derivatives are weighted and 

used, to 
'calculate 

an average value across the whole 

interval., Finally, the average value of the state 

derivative is used to calculate the state variable at the 

end, of. the interval. 

Although the Fourth Order Runge-Kutta method requires four 

deri_vati_ve evaluations at each step, the accuracy of the 

solution is, greatly improved since the truncation error is 

only of the order Ts. This allows the time step to be 

significantly larger than that required by Eulerl s Method 

to ma, intai, n, 
'the 

same accuracy of solution. Adopting a 

larger time step enables the numerical solutions to be 

generated more quickly for a given simulation time period. 
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Multistep numerical solution methods such as the Fourth 

Order Adams-Bashford method and the Adams-Moulton 

predictor-corrector method offer similar solution accuracy 

to the Fourth Order Runge-Kutta method, but only require 

one state derivative to be calculated at each step of the 

solution. --This 'obviously reduces the number of calc- 

ulations to be performed at each step, so numerical 

solutions can be generated more rapidly then with the 

single step method. However, these techniques use the 

state derivatives from the previous three steps to calc- 

ulate an average value of the state derivative at the 

current step. Multistep methods, therefore, are not self- 

starting since knowledge of the initial state of the 

system alone is not sufficient to commence a simulation 

study. Single step methods must be used to evaluate the 

first-few steps, after which the multistep method can be 

used to continue the calculation. 

All these -methods require the step time to be suitably 

chosen to ensure that the solution remains stable. It is 

not possible to explicitly determine the critical time 

interval for the dynamic - model of the V-VAWT generator 

system. However, the simplified drive train model that 

avoids stiff transmission elements and small inertia 

elements was- developed with numerical solution stability 

always in mind. - - These elements would typically have 8 

high frequency transient response that could only be 

satisfactorily evaluated if very small time steps were 

used. The simplified model allows relatively large time 

steps to be made and consequently numerical solutions can 

be generated. quickly. Graphical display of the simulation 
has been aý great aid in indentifying likely instabilities 

due to the, limitations of the numerical solution technique 

and for determining by trial-and-error suitable time steps 
for the systems'modelled. 
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. The Fourth Order Runge-Kutta solution method was adopted 

for use in DYNVAWT since it is accurate and self-starting. 

The additional complexity of using a Multistep solution 

method to decrease calculation time was considered to 

offer little benefit when solutions can be generated 

quickly using the Runge-Kutta method alone. 

8.3: The Computer Program DYNVAWT 

The dynamic model of the V-VAWT generator system is now 

complete and all mathematical models have been fully 

described and documented. The control strategy devised 

for this system is discussed in the next section, since it 

can be treated separately from the dynamic model of the 

wind turbine system. All the mathematical models and 

solution methods discussed have been developed specific- 

ally for numerical solution using a digital computer; this 

was considered the most convenient analysis tool available 
for simulating the dynamic behaviour of the V-VAWT gene- 

rator system in the time domain. The program must allow 

the various operating conditions to be simulated, and 

while the digital computer solutions are not exact, the 

response of the system to be quickly evaluated and easily 

observed; these needs necessarily outweigh the need for 

precise solutions of the general case. The use of the 

Fourth Order Runge-Kutta solution method allows numerical 

solutions to be quickly and accurately calculated# and 

computer graphics allows these solutions to be easily 

interpretated without having to resort to additional 

numerical analysis. Trial-and-error modifications to the 

system design can be easily implemented and their effect 

quickly observed, essential where new system designs are 
being evaluated. 
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8.3.1: Program Structure and Development 

The computer program DYNVAWT has been written and devel- 

oped by the author at Portsmouth Polytechnic. The program 

embodies all the mathematical models developed for simul- 

ating the dynamic behaviour -of the V-VAWT generator 

system. The program runs on a VAX 11/750 computer and is 

written in standard ANSI FORTRAN 77; this allows it to be 

run on other computer systems if required. Computer 

graphics have been included by using standard GINO-F 

graphics routines. The program has been written in a 

modular form, therefore allowing future modifications and 

or extensions to be easily included. Where alphanumeric 
data is required, DYNVAWT prompts the user with clear 

messages. Thorough error checks are made of all user 
defined data. The rigorous use of error checking rout- 
ines and facilities was considered essential to ensure 

reliability of both program execution and simulation 

results. Figure 8.10 shows -a program flowchart outlining 
the basic phases through which the program proceeds. The 

sequence of events is briefly discussed below. 

An initial welcome message is followed by a prompt for the 

name of the aerodynamic torque datafile from which the 

look-up table of Ca values is to be constructed. The 

program uses aerodynamic torque data generated by the 

prediction program VAWTTAY, which operates on the same 
computer facility. The datafile must be created before 

execution of DYNVAWT because the interaction with VAWTTAY 
is weak. The program neither activates VAWTTAY*nor checks 
that the aerodynamic data is representative of the system 
being modelled; only the format of the data is checked. 
The program user must ensure that the correct aerodynamic 
torque datafile is retrieved when using DYNVAWT. The 

author has adopted a simple notation that enabler- the 
datafiles to be easily ideAtified and correctly selected 
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RETRIEVE AERODYNAMIC DATA 
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NO 
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Figure 8.10: Flowchart showing basic phases of DYNVAWT 
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for the appropriate simulation study. As discussed in 

Section 8.2.7, the aerodynamic torque data must be gene- 

rated either at constant rotational speed or at constant 

windspeed to ensure the look-up table embodies Reynolds 

Number, effects for tip speed ratio changes. The geometric 

characteristics of the V-VAWT rotor are fixed and corres- 

pond to geometry, initiated when using VAWTTAY. 

The initialisation of the aerodynamic torque look-up table 

takes approximately five minute, since the datafile will 
typically hold 36,000 entries. It is the only phase of 
the program that cannot be returned to once complete. If 

another Aorque datafile is required, then the ustýr must 

exit from the program and start again. However, the large 

table size does allow the behaviour of the wind turbine 

system to simulated at the extremes of its specified 

operating range. For instance, with on-line operation, 
the look-up table will typically include CQ values 

covering the, range of windspeeds 10-36 m/s, tip pitch 

angles 0-30 degrees and 40 azimuthal positions of the 

rotor. Such 
, 

detail ensures that the aerodynamic torque 

developed- by each V-VAWT rotor configuration is as 

accurately modelled by DYNVAWT as the prediction program 
VAWTTAY allows. 

Once the aerodynamic torque look-up table has been 

created, the program enters an initialisation sequence in 

which all the independent system parameters are defined. 

In order to simplify this activity, all these parameters 
have been- assigned default values. The default values 

correspond to those of the two-bladed, 5kW V-VAWT rotor 
driving a salient pole synchronous generator at a speed of 
1500 rpm. For each aspect of the system model, whether it 

be the generator characteristics or the parameters 
describing the ramp component of windspeed, the default 

values are displayed in a tableA If a controlling 
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parameter is required to be changed, its index number is 

selected and a new value can be entered. The modified 
table is re-displayed and this process can be repeated 

until the user is happy that the controlling parameters 
have been assigned their correct values, When the escape 
index number is selected, the sequence moves into the next 
initialisation phase. The thirteen phases of this 

sequence are briefly described below: 

V-VAWT Generator System Characteristics: The rated 

characteristics of the system are set here. The 

parameters evaluated include power output; rated 

rotational speed of the V-VAWT rotor; cut-in, rated 
and cut-out windspeeds; minimum and maximum brake 

application speeds. All these parameters are either 

control set points or out-of-limits conditions. 
Although their values may be changed, they are not 
inputs to the system because their values remain fixed 

for a particular V-VAWT configuration or control 

strategy design. The parameters are used by the 

controller to evaluate the condition of the system and 
determine the control action required. 

2) Inertia Elements: The true values of the inertia 

elements are entered here. These values are later 

converted to high-speed equivalents when all the 

characteristics of the system have been defined. 

3) Stiffness Elements: The true values of the mechanical 
stiffness elements are entered here. These values are 

converted to high-speed equivalents as appropriate. 
The mechanical stiffnesses are subsequently combined 
with the electrical generator stiffness to define the 

equivalent stiffness of the system. 
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4) Friction Loss-. The friction loss coefficient is 

defined here and converted to a high-speed equivalent 

as appropriate. 

Gear Ratios: The ratios of the two-stage speed 
increasing V-belt system are defined here. Once these 

ratios have been defined, the conversion to high-speed 

equivalents. of ýall mechanical drive train parameters 
is possible. 

6) Generator Characteristics: The rated characteristics 

of. the synchronous generator defined here are rated 

power , output, number of poles, rated frequency, 

infinite bus and terminal voltages (pu); quadrature- 

axis, direct-axis and external reactances (pu); power 
factor (pu); and damping coefficient (pu>. These are 

used to- calculate the synchronous speed of the elec- 
tricity supply network and determine the coefficients 

of the equations for calculating electrical stiffness 

and damping. 

7) Tip Pitch- Actuator: The minimum and maximum pitch 

angle; maximum pitching rate; undamped natural 
frequency; damping factor; and initial pitch angle are 

defined here. 

85 Disc 
, 
Brake: The maximum brake torque; time constant; 

and initial brake state are defined here. 

9) Control -System: Although the control system has not 
been discussed, yet, the parameters used to determine 
the control action are defined here. 

10) Wind Parameters: Here all the parameters that the 

describe the characteristics of the four components of 
the wind model are defined. 
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11) Wind Conditions: Here the components of the wind 

model which are to be active during the simulation 

period are selected. The program DYNVAWT only 

calculates the values of the active wind components 

during the simulation period. 

12) Run-time attributes: The start time, finish time and 

size of the time step for the simulation period; and 

the network fault start and clearing times are defined 

here. The nature of the aerodynamic torque model, a 

choice between cyclic torque or mean torque values, 

can also be selected at this stage and an option for 

saving the numerical solution is given. 

13) Operating Modes: This simply selects the initial 

operating mode of the V-VAWT generator system. There 

are three modes available start-up and synchronis- 

ationt on-line operation; and on-line operation with 

network fault. As discussed previously, the shutdown 

sequence is simulated by invoking a large disturbance 

that ensures the system will be shutdown by the 

controller. 

Once all the user-defined data' has been correctly entered, 

the program enters a further initialisation sequence. 

During this sequence all the dependent system parameters 

are calculated. The initialisation procedure described in 

Section 8.2.8 is followed to determine the initial state 

of the system. A summary table that shows the initial 

values of the state variables is displayed before the 

simulation process is commenced. If the numerical 

solution is to be saved, all system parameters and state 

variables are written to an external datafile. 

At the start *of the simulation sequence, the program 

activates the computer graphics facility. The terminal 
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screen is cleared and the axes of six graphs are drawn on 
the screen. . Scales and appropriate labels are shown on 
all axes. The independent variable in each case is time. 
The dependent variables are windspeed, mean aerodynamic 
torque, 'tip pitch angle, network contactor state, brake 

state and generator output power. The program DYNVAWT 

only displays 'these six quantities, since these were 
considered to be the most useful for evaluating the 

suitability of the control device and strategy. Since it 
is possible to save the results of a simulation study into 

an external datafile, it is considered that a post- 
processing program'could be developed for further exam- 
ination'of a 'simulation solution. Such a program has yet 
to be developed by the author, but it is envisaged that 
the program, w6uld allow "replays" of a simulation study, 
using the'data -in the external datafile, to be carried 

out. This' would give the opportunity for the variation 
with time of other quantities to be graphically displayed. 
However,, the six graphs utilised in DYNVAWT give a 

sufficient insight into the behaviour of the V-VAWT 

generator system to enable an appraisal of the control 
system to be made. 

Immediately on entry to the calculation loops all system 
outputs are calculated. The system outputs and state 
variables-at this calculation stage represent the state of 
the system at the beginning of the time interval; it is 
these' quantities that would be observed at this point in 
time and measured by appropriate transducers, if fitted. 
It'is these quenti'ties'that'the control system will use to 
decide its next control action(s) at the end of the inter- 
val. The state of the system may be stored in an external 
datafile* at this phase of the calculation sequence, if 
required. '- The values, of windspeed, mean aerodynamic 
torque, 

. 
tip pitch angle, , network contactor state, brake 

11 -1 
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state and generator power are all plotted on the time 

history graphs. 

The program then proceeds into the Fourth Order Runge- 

Kutta -calculation loop. This involves four repeated 

calculations of the state differentials over the interval 

period. The state variable. notation of Section 8.2.9 is 

used to ensure that the state variables at the start of 
the interval are not over-written by the temporary state 

variables calculated in this phase. At the end of this 

sequence, an average value of each state differential is 

calculated and used to determine the value of the state 

variables at the end of the interval period. 

Before the calculation enters the next time interval, the 

system outputs calculated at the beginning of the interval 

are used by the control system routine to determine the 

next control action<s). The inputs to the tip pitch 

actuator, the disc brake and the generator to network 

connection are all set at this point in the calculation 

sequence. 

One cycle of the calculation sequence is now complete, and 
the procedure is repeated for the duration of the simul- 
ation period. Once the simulation has been completed, the 

screen will show six complete time history graphs. The 

program pauses at this point to allow the user time to 

evaluate the outcome of the simulation. A hard-cOpy Of 
the graphs can be simply obtained by invoking the screen 
dump facility of the graphics terminal. This will gene- 
rate a dot-matrix printer record of the screen image. 
Alternatively, photographing the graphics terminal will 
enable the detail of a high-resolution screen image to be 
fully recorded. Once a record of the graphs has. been 
made, the program user is given the option to exit. the 
program or to continue with another simulation study. 
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If another simulation study is required, the initial- 

isation sequence must be invoked once again. However, on 

the second and subsequent passes through this part of the 

program, -it is not necessary to initialise all the system 

parameters. A selection table is displayed in which each 

of the thirteen initialisat, ion phases described above are 

numbered. Selecting the phase number enables the user to 

modify the parameters of that phase. For instance, 

selecting phase NQ 11 allows the active components of the 

wind model to be changed. The parameters describing the 

characteristics of each wind component will not be 

changed, unless phase NQ 10 is subsequently selected. Any 

number of changes to the system parameters may be made 

before the simulation sequence is invoked again. Thus, 

many simulation", studies may be completed without having to 

re-7start', the program and, initialise the aerodynamic torque 

table again. 

The program DYNVAWT was written over a long period of time 

and required--far more planning and development than any 

other computer program written by the author for this 

project. " The modular programming approach has allowed 

each module: of the program-to be developed and tested in 

isolation before being used with the main program. The 

control system -described in the next section was the last 

moduleiof the program to be developed. However, the un- 

controlled behaviour-of the V-VAWT generator system could 
be modelled Without the control routines being included 

into'the program., This allowed the validity of the 

numerical solutions generated by DYNVAWT to be evaluated 
before the program was fully complete. The graphical 

output was a great aid in assessing and identifying 

programming errors or bugs in the solution routines. The 

VAX computer system also offers the computer programmer 
many runtime debugging facilities. These were extensively 
used by the author to check the validity of the whole 
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program in all its phases. The values of any program 

variable could be interrogated as it was calculated, or 
recalled from memory, and chec. ked with hand calculations. 
The exhaustive use of error trapping routines ensures that 

all user-defined data is valid and is within the limits of 
the system model. The author is satisfied that a reliable 
and accurate analysis tool has been created which correct- 
ly 'embodies all the mathematical models developed in the 

previous sections. The program allows a wide scope of 
simulation studies to be made of the V-VAWT generator 
system, and the graphical display of output time histories 

allows the results to be easily interpreted. 

8.3.2: Initial Results from DYNVAWT of an Uncontrolled 
5kW V-VAWT Generator System 

The program DYNVAWT can be used to simulate the behaviour 

of uncontrolled V-VAWTs. In its early development stage, 
this behaviour was used to verify the output generated by 

the program. Subsequent to the inclusion into the soft- 

ware of the control strategies discussed in the next 

section, the uncontrolled operating mode is an option in 

the present version of DYNVAWT. The results presented in 

Figures 8.11 and 8.12 show the simulated behaviour of a 
two-bladed 5kW V-VAWT operating without any on-line 
controller. The characteristics of the system are the 

same as those for the V-VAWT generator system considered 
in the case studies presented later in this chapter. 

In the first case, Figure 8.11, the windspeed V= 10 m/s 
and is below rated. It remains constant throughout the 

simulation period; the gust, ramp and noise effects are 
not included. The simulation clearly shows the power 
output of the syst. em is increasing towards the static 
stability limit of the generator, and the connection to 
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Figure 8.11: Response of uncontrolled 5kW V-VAWT when 
operating in windspeeds below rated. 
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the network would become unstable if the simulation had 

been continued. The cyclic nature of the electrical power 

output is caused by the uncontrolled wind turbine rotor 

oscillating with respect to the rotating reference frame 

of the electricity supply network. The oscillation is 

invoked by the inability of the initialisation sequence to 

accurately determine the initial values of the state vari- 

ables and their derivatives. The small errors involved in 

evaluating the initial state of the system has invoked an 

unstable steady state response, even though the windspeed 

remained below rated. 

In the second case, Figure 8.12, the windspeed is init- 

ially set to V= 10 m/s. But here, the windspeed is 

steadily increased to V 14 m/s over a period of twelve 

seconds starting from Tl,, = 4.0 s; the response of the 

system to. this change is clearly shown. The electrical 

power output of the uncontrolled wind turbine increases 

with increasing windspeed. However, once the static stab- 
ility limit of generator power is exceeded, the system 
becomes unstable, synchronisation is lost, and a shutdown 

procedure ý is invoked. The shutdown procedure is char- 

acteristic of the program DYNVAWT. If a wind turbine was 
truly uncontrolled during a period of rising windspeed, 
the rotor speed would tend to increase until a new equil- 
ibrium --operating condition was achieved. The program 
DYNVAWT only allows the on-line behaviour of the wind 
turbine- to be uncontrolled; once the V-VAWT operates off- 
line, the simulation program automatically invokes the 

shutdown procedure. 

The uncontrolled V-VAWT exhibits an unstable response 
during its on-line operation, even if the windspeed is 

below the rated windspeed of the system. The need f or 

active control 'of the V-VAWT generator system is apparent 
considering the poor response shown in these two cases. 
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8.4: V-VAWT Generator System Control Strategy 

In this section, the active control system developed for 

the on-line and off-line control of the V-VAWT generator 

system-is discussed. This control system has been devised 

merely to demonstrate the viability of tip pitch control 

as being a suitable means of actively controlling the 

aerodynamic power of the V-VAWT rotor in the following 

operating modes: 

<a) Start-up and generator synchronisation 
(b) On-line power regulation 
(c) Shutdown and rotor braking 

This control system-, is not, however, a complete wind 

turbine management, system. A management systems in 

addition to controlling the power output of the system, 

would utilise various monitoring devices to check for out- 

of-limits operation of any components of the machine. In 

this way, ý the onset of potentially dangerous or damaging 

working conditions would be detected. These condition 
indicators are used to ensure the wind turbine system 

operates within its specified safety limits, and detection 

of any Out7Of-limits operation would generally invoke the 

control system to shutdown the wind turbine. The monitor- 
ing- and checking of out-of-limits conditions, other than 

those specifically concerned with off-line or on-line 

power regulation, is not considered further, because they 

make no significant contribution to the aims of this par- 
ticular exercise. - Such checks are therefore not included 

in the control system devised here. 

The-control of the wind turbine during each operating mode 

can. be considered separately, and often it is convenient 
to consider and analyse the strategies for each mode in 

isolation.., Howev6r, the control system here has been 
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developed to allow the transition between operating modes 
to be successfully executed and simulated using DYNVAWT. 

The computer model of the control system can automatically 
identify' the appropriate mode of operation required, and 
the sequence of V-VAWT start-up, synchronisation, on-line 

power regulation and shutdown can be simulated during a 

single study. 

The use of a- computer to control the wind turbine is 

implicit in the strategy that has been devised. While it 

may- be possible to devise hardwire, analogue control 

systems to, say, , control the on-line power output of the 

wind turbine operating at rated windspeed, the author 
believes that these systems do not provide the flexibility 

required to control. -the wind turbine in all its operating 

modes. - -The overall management of the wind turbine system 

must, be computer based where precise control of the system 

output is -required. The non-linear behaviour of the wind 
turbine system will necessarily require adaptive control 
techniques to be used, as appropriate, to ensure that the 

wind 'turbine- system is operating effectively in all 

working conditions. 

Since the purpose of this exercise is to demonstrate the 

viability of blade. tip pitch control, the V-VAWT generator 
system 'is- considered to be, disturbed by only two external 
inputs:, 

(a) Windspeed 

(b) Fault In-network to-generator connection 

These- system inputs both directly influence the dynamic 
behaviourý of -the wind turbine drive train system. Wind- 

speed Bffects- , the. -aerodynamic torque developed by the 

rotor, and the state of the network to generator connect- 
ion affects the electrical load on the machine. Poth of 
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these inputs are modelled in DYNVAWT, thus allowing their 

effect on the V-VAWT generator system to be studied. 

The control system developed for the V-VAWT generator 

system uses open loop rotor power control with compensated 

rotor speed control to determine blade tip pitch angle. 

This strategy enables the rotor speed to be accurately 

controlled while the average power developed by the system 

does not grossly deviate from its rated performance. The 

pitch angle specified by these two control systems, how- 

ever, will be overidden if out-of-limits operation with 

respect to windspeed. or rotor speed is detected. The disc 

brake and generator contector are controlled independent- 

ly. The justification for this system is given below, but 

the control strategy has been designed to minimise the 

disturbance on the system caused by these two inputs, and 

where appropriate, strives to maintain continuity of elec- 

tricity power supply to the network. 

Tudging the success of any one particular strategy is not 

straightforward, and at this stage of the development of 

V-VAWT concept, it is only possible to compare the simul- 

ated performances of the different control strategies with 

each other. It has not been possible to test the control 

system or validate the simulation results using the free- 

air 5kW machine at The Open University. Therefore the 

results of the DYNVAWT simulation studies are the only 

means available to assess its suitability or success. 

The control system is a sub-system of the whole, and its 

outputs are dependent upon the its inputs and the control 

strategy which it embodies. The control system inputs 

must be observable, so that they can be measured directly 

by suitable transducers. They have been selected in the 

knowledge that they can be simply and accurately measured, 

and are quantities that would be normally monitored by a 
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commercial wind turbine management system. The control 

system has internally defined setpoints of power output 

and rotor speed. These setpoints act as reference inputs 

to the power control and speed control systems, and are 

used to determine their controlling outputs. The values 

assigned to the setpoints are characteristic of the V-VAWT 

generator system being modelled. In striving to maintain 
the safe and reliable operation of the system, the control 

system has only the blade tip pitch actuator, the disc 

brake' actuator and generator contactor to control. The 

strategy used to control these devices is described below. 

This strategy was deVeloped for the 5kW V-VAWT generator 

system after repeated use of DYNVAWT. 

Since the control system is computer based, the state of 

the system will 6e observed at discrete intervals of time. 

During the period between observations, the control system 

must seek and determine the most appropriate control 

action for the wind turbine system, and set the state of 

the control system outputs. The state of these outputs 

will be determined solely by the observations made at the 

beginning of each control cycle and the strategy embodied 

in the control system. 

The control strategy that has been developed for the 

V-VAWT generator, system, has three distinct phases: 
I 

(a) Identify'current operating mode 
(b) Identify-current state of V-VAWT generator system 
(c) Determine control system outputs 

The state of' the current operating mode is identified in 

the control system software by the variable IMOD. Thi s 

variable can take four values: 
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1 start-up and synchronisation 

IMOD 2 on-line power regulation 
13 

on-line power regulation with network fault 
4 shutdown and rotor braking 

(S. 100) 

The state of the current operating mode determines the 

initial path followed in the logic of the control strat- 

egy. - The state of V-VAWT generator system is used to 

determine subsequent step in the control strategy, which 

may include changing the current operating mode. 

The state of the V-VAWT generator system was initially 

determined using -just two control system inputs. A third 

input was,, -though. - considered necessary for identification 

of -a fault in, the connection to the electricity -supply 

network; infinite bus voltage was used as this input. The 

three control system inputs, selected are: 

(a) Windspeed 

- <b) Rotor speed 
(c) Infinite-bus voltage, 

These quantities can be measured directly and do not 

require modification of any standard system components. 
The windspeed would be measured by an anemometero rotor 

speed by a tachogenerator driven by the V-VAWT rotor, and 
infinite-bus voltage would be measured by suitable trans- 
ducers that , would -convert the bus voltage to a level 

suitable for use by-the low-voltage control system. 

Measurements of windspeed and rotor speed allow the actual 

state of- the-V-VAWT-generator system to be determined, and 
then compared- to the following rated operating character- 
istics of the system: 
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(a) Cut-in windspeed 

(b) Rated windspeed 
(c) Cut-out windspeed 
(d) Minimum rotational speed 
(e) Rated rotational speed 

(f) Maximum rotational speed 

The method used to determine the subsequent strategy is 

best ill'uStrated`b-ý 'Figure 8.13. Each diagram shows a 

"condition matrix" of control options for each operating 

mode. The limits of the condition matrix are defined by 

the six., system ., characteristics shown above. The state of 

the current operating mode determines which of the three 

condition matrices is initially used. The control strat- 

egy is th en determined by where the state of the V-VAWT 

generator system' is positioned in that condition matrix. 

Where the state of the system is positioned within the 

working, range of the condition matrix, the reference 

values_to the_,,,, open loop rotor power control and rotor 

speed control systems are set, and the disc brake, blade 

tip and the generator contactor states all defined. Where 

the state of the system is positioned outside the worlting 

range' 'of"'- thý' 'c'6n'dition' "matrix, " 'the operating mode is 

changed and the control strategy must be determined using 

the condition matrix of the new current operating mode. 

Note that -knowledge of the state of the V-VAWT generator 

system alone is -. not sufficient to determine the control 

strategy to be adopted. The state of the current oper- 

ating mode determines the initial range of control options 

available, though the operating mode may change once the 

state of the system is considered, and a new range of 

control options would become available. 
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Figure 8.13a: 5kW V-VAWT control condition matrix for 

start-up and synchronisation (IMOD = 1) 
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Figure 8.13b: 5kW V-VAWT control condition matrix for 

on-line, power regulation UMOD =2 or 3) 
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The, operating regime of particular interest here is bound 

by the cut-in and cut-out windspeed limits and the maximum 

allowableý rotor speed limit. Within these limits, the 

wind turbine system will be either in the start-up and 

synchronisation mode, or else in the on-line operation 

mode. Outside these limits, the shutdown and braking mode 
is invoked. The control strategies devised for each 
operating mode are described in detail below. 

The start-up and- synchronisation operating mode (IMOD = 1) 

considers the V-VAWT generator system to be disconnected 

from the -electricity supply network. the disc brake to be 

off, - and the rotor to. be at rest or rotating slowly. if 
the windspeed is above cut-in and below cut-out, the start 
sequence may commence. The blade tip is set to its minimum 
pitch angle, and since the system is unloaded, the rotor 

will quickly-accelerate. 

When the, speed of the rotor exceeds 80% of the rated rotor 
speed, the rotor power and speed control systems are 
invoked, -,, and reference values set. The reference speed is 
the rated rotor speed, and the reference power is 40% of 

rated system power. The reduced power reference ensures 
the rotor speed continues to increase towards synchronous 
speed, -but-the acceleration 

-of 
the rotor is reduced. The 

power and speed, control systems determine the appropriate 
blade tip, pitch angle. 

When the speed of the rotor is within ±2% of , the rated 
speed; the synchronisation of the generator with the 

electricity' supply commences. However, rather than close 
the contector, immediately the rotor speed reaches synchro- 
nous, speed, a delay has been included in the control 
algorithm. -The 'reference speed and power values remain 
unchanged; - and the rotor should maintain its speed at or 
very near to synchronous speed. If the rotor continues to 
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rotate at or near synchronous speed, the control system 
will eventually close the contactor and synchronous oper- 
ation with the network will begin. The delay allows the 

rotor speed to settle close to synchronous speed after the 
initial acceleration period. Once synchronisation is 

complete, the operating mode is changed to on-line 
operation (IMOD =2>. 

Immediately after synchronisation is complete, and the 

operating mode is changed, the reference value to the 

rotor power control system is slowly ramped from 40% to 

100% of rated power. Ramping the power control reference 
value to the maximum, ensures the synchronisation with the 

network is not lost during the initial period of connect- 
ion when the connection transients are still decaying. 

If the system is disturbed such that synchronisation with 
the grid is- lost, the unloaded wind turbine rotor will 
tend to accelerate, or decelerate, to a stable speed, the 

runaway speed, appropriate to the windspeed and blade tip 

pitch angle. If the rotor speed increases by 20% above 
the rated rotor speed, the shutdown and braking operation 
mode is invoked. If the rotor speed decreases by 20% 

below the rated rotor speed, the start-up and synchro- 
nisation operation mode is invoked. The 20% speed error 
has been arbitrally set at present, and could be reduced 
if required. 

If during on-line operationg a network to generator fault 
is detected (IMOD =3), the reference value to the rotor 
power control system is reduced to 40% of rated power. 
The reference value to rotor speed control remains as 
rated rotor speed. If when the network conne. ction is 

restoredo the V-VAWT generator system is still synchro- 
nised with the network, the reference value to the rotor 
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power control system is slowly ramped from 40% to 100% of 
rated power, and normal on-line operation continues. 

When the V-VAWT generator system operates in either the 

start-up and synchronisation mode, or the on-line oper- 
ating modes, if the windspeed should deviate outside the 

cut-in or cut-out limits, the shutdown and braking mode is 

automatically invoked. Similarly, if the rotor speed 
should rise more than 20% above the rated rotor speed, the 

shutdown, and braking mode is invoked once again. 

In the -shutilown and braking mode (IMOD = 4), 
1 
the power 

control and speed control systems are overidden, the gene- 
rator contactor is automatically opened, and the blade tip 

pitch angle set to -a maximum.. This control action will 
immediately retard the -rotor and avoid overspeeding above 
the specified maximum rotor speed. The disc brake is only 
applied when the rotor ., speed falls below the specified 
minimum rotor speed. If the windspeed is between cut-in 
and cut-out windspeeds and the rotor speed is less then 
20% below the rated, rotor speed, the start-up and synchro- 
nisation mode is once more invoked. In this way, the 

rotor need not be brought to a standstill before re- 
synchronisation is attempted, provided the windspeed 
remains'within the specified limits of the system. 

The -condition, matrices of Figure 8.13, best illustrate the 
limits of operation for each operating mode, and show the 

ci rcumstances required for control to pass between differ- 
ent modes. 

The open loop power control and compensated rotor speed 
control systems can be considered separately, since their 
sole function is to determine a suitable pitch angle for 
the blade tips. 
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The open loop power control system has the following 

inputs: 

(a) Windspeed 

(b) Reference rotor speed 
(c) Reference rotor power 

These inputs are used to determine the most suitable blade 

tip pitch angle from a look-up table of such values stored 

in the control system software. The look-up table is 

created, from the mean values of torque calculated for the 

V-VAWT generator system using VAWTTAY. Cyclic values of 

rotor power areýnot used. The power control system does 

not compare the actual and reference power outputs of the 

V-VAWT -generator system. Thus, no power error compen- 

sation is included in this system at present. 

In HAWT- control syst ems, the error signal of either 

electrical power output or rotor shaft torque measurements 
is often -used to modify the power control signal to the 

system. , However,; two characteristics of the 5kW V-VAWT 

generator system at present prevent power error feedback 

being adopted here. 

The stiff nature of the V-VAWT generator drive train 

system. - means, that the cyclical variation of aerodynamic 
torque is -transmitted through the drive traint and 

manifests itself as a cyclic variation of electrical 

output power. The magnitude of the variation depends upon 
the dynamic characteristics of the rotor and drive train 

system, and while its effects may be damped out to a large 

degree by component design and selection, the cyclic shaft 
torque effects are never completely vanquished; a small 
instantaneous power output error, therefore, will be 

observed at all-times. 
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When connected to the network, the relative angular 
displacement of the rotor with respect to the rotating 

reference frame of the electricity supply network. tends 

to oscillate. The frequency of oscillation corresponds to 

the approximate natural frequency of the system at its 

rated operating point. This oscillation may or may not 
become unstable. Since the oscillation causes the gene- 

rator power angle to exhibit a periodic variation, a 
periodic variation of power output error can be observed. 

The response of the uncontrolled V-VAWT generator systems 

shown in Figures 8.11 and 8.12, clearly demonstrate these 

effects. In both cases, the average power output of the 

system remains constant. If the power control system had 

error feedback, the system would be responding to power 
errors caused by problems, inherent in the dynamic char- 

acteristics of - the V-VAWT generator system, and not to 

deviations of the average power output from rated. 

The compensated rotor speed control system has the 
following system inputs: 

(a)-Rotor speed 
(b) Reference rotor speed 

From these two inputs, proportional and derivative speed 
error compensation is used to calculate a blade tip pitch 
angle correction. The -proportional error is computed by 
direct, comparison- of the two system inputs. The deri- 

vative error is computed by comparing the present value of 
rotor speed to that rotor speed measured in the previous 
control cycle. ' These two values are used to calculate an 
instantaneous rate of change of rotor speed. The values 
of the' proportional and derivative gains were established 
after repeated simulation trials using DYNVAWT. The rotor 
speed blade tip'pit6h angle correction is summated to the 
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the rotor is N= 161.5 rpm, which will drive the 4-pole 

generator at its synchronous speed of 1500 rpm. The rotor 

is controlled using 20% blade tips with a pitch angle 

range of 0* (P( 30*, and a maximum pitch rate of 15*/s. 

An el ectrically released, spring applied disc brake acts 

directlly onto the rotor; the maximum braking torque of 

1950 Nm can be applied in 0.1 seconds. 

The generator is a four-pole synchronous type rated at 

5.0 kVA. - It is considered to be connected directly to the 

supply network, operating with a 0.8 power factor at 50 Hz 

frequency. The direct and quadrature axis reactances are 

x,.:, = 1.0 and x,,, = 0.6 respectively. 

The values of the Independent parameters that describe the 

mechanical and electrical characteristics of this system 

are tabulated in Table 8.1. These values remained 

constant for all the case studies presented here; only the 

effect of changes to the external inputs to the system 

were considered. The describing parameters of the mech- 

anical and electrical components of the system can only be 

changed by-design, and therefore the values were chosen to 

be representative of the free-air machine itself. 

The aerodynamic performance of the 5kW V-VAWT, predicted 

using VAWTTAY, was discussed in Section 7.4. The rotor is 

controlled using a 20% blade tip area since this size of 

control surface, gives full aerodynamic braking during high 

windspeed shutdown. Where the case. study involves on-line 

operation, the performance data has been generated for 

constant rotational speed operation, but where start-UP or 

shutdown operation is simulated, the aerodynamic data has 

been, generated for constant windspeed operation. The 

detafiles a re "VAWT-5KW-20-2S" and "VAWT_5KW_2O_2W" 

respectively. 
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----------------- 
WIND TURBINE GEOMETRY 

I Rotor Radius 4.39 metres 
2 Swept Area 19.0 m2 

WIND TURBINE GENERATOR CHARACTERISTIC 
- - ----- 

S 
--- 
I- 

-------------------- - - --- 
Rated WTG power QW) 5.00 

- 

2 Rated windspeed (m/s) 12.00 
3 Cut-in windspeed (m/s) 4.00 
4 Cut-out windspeed (m1s) 26.00 
5 Rated rotor rpm 161.50 
6' Minimum brake-speed rpm 40.00 
7 Maximum overspeed rpm 180.00 

INERTIAL ELEMENTS 

I V-VAWT rotor, I. s. shaft 239.01 kg. m2 
2 disc brake, Ist stage l. s. pulley 7.15 kg. m2 
3 Ist stage m. s. pulley, m. s. shaft 0.04 kg. m2 
4 2nd stage m. s. pulley, in. s. shaft 0.42 kg. m2 
5, 2nd stage h. s. pulley, h. s. shaft 0.01 kg, m2 
6 

-- 
coupling, generator rotor 
---- - 

0.06 kg. m2 
- ---- 

MELT STIFFNESSES 

I Ist stage V-belts 4033.00 Nm/rad 
2 2nd stage Melts 1? 08.00 Nm/rad 

GEAR RATIOS 

I Ist stage ratio 3.125 
2 2nd stage ratio 2.972 

ROTOR FRICTION 

I Rotor friction 0.04 Nm. sec/rad 

----------------------- 
GENERATOR CHARACTERISTICS 

I Terminal voltage 1.00 Pout 
Direct-axis reactance 1.00) Pout 

3 Quadrature-axis reactance 0.0) pout 
4 Number of poles 4 
5 Grid frequency 56.000 H., 
6 Rated POWER 5.000 VA 
7 Connected DIRECTLY to bus 
a POWER factor 0. a (M) Pout 
9 Damping coefficient 2.620 p. u* 

DISC ERAKt CHARACTERISTICS 
-------- - -- ---- -- -- 
I Maximum brake torque 1950.00 Nm 
2 Time constant 0.10 
3 Brake is OFF 

----------- 
ACTUATOR CHARACTERISTICS 

I Minimum pitch angle 0.0 deg 
2 Maximum pitch angle 30.0 deg 
3 Maximum pitch rate 15.0 deg/sec 
4 Damping Factor 0.6 
5 Natural Frequency 8.3 rad/sec 
6 Initial pitch angle 0.0 deg 

--------- -- 
PID MNTROL GAINS 

I Proportional SFEED gain 0.40000 
2 Differential SPEED gain 0.80000 
3 Proportional TORQUE gain 0.00020 
4 Differential TORQUE gain 0.00020 

Table 8-1: Describing parameters of two-bladed 5kW V-VAWT 

generator system 
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Case Study NQ 1015 

VAWT configuration: two-bladed, 5kW V-VAWT with 20% blade tip 
pitch control, open-loop power and compen- 
sated rotor speed control strategy. 

VAWTTAY datafile: 

Operating mode: 

Base windspeed: 

Ramp component-C, 

Results plot: 

VAWT-5KW-20-2S 

On-line UMOD = 2) 

Vw,, = 10.0 M/S 

MAXR = 4.0 m/s 
Tl� = 4.0 s 
T_-, t = 16.0 s 

Figure 8.14 

Observations and Comments 

The 5kW V-VAWT is initially operating in a windspeed below 

rated, and the electrical power output is observed to be 

oscillatory. The period of oscillation corresponds-to the 

nominal natural frequency of the V-VAWT generator system, 

The power control is not sufficiently sensitive to damp 

out the'power variation stimulated at start-up. 

As windspeed increases to above rated, the pitch angle of 

the tips is quickly adjusted to ensure the power output Of 

the system remains constant. The transient fluctuations 

of power output are damped by the control system and a 

stable power output is achieved. Small fluctuations are 

observed, the frequency of which corresponds to the blade 

passing frequency of the rotor. The cycl . ic variation of 

rotor torque, though, has bee 
'n 

considerably damped at the 

electrical end of the drive train system. 
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Case Study NQ 1016 

VAWT configuration: two-bladed, SkW V-VAWT with 20% blade tip 
pitch control, open-loop power and compen- 
sated rotor speed control strategy. 

VAWTTAY datafile: 

Operating mode: 

Base windspeed: 

Results pl_ot: 

VAWT-5KW-20-2S 

On-line (IMOD = 2) 

I, '. V,,. = 14.0 m/s 

Figure 8.15 

Observations and Comments 

Here the 5kW V-VAWT is operating in a windspeed above 
rated. The initial transient response at the start of the 

simulation period is due to the small error in the 

initialisation of the state variables during this sequence 

of the program DYNVAWT. As can be seen, however, the 

control system damps out the transient response and a 

stable power output is achieved. The state variables at 
the end of this simulation sequence could be used to 

initialise other case studies where the base windspeed is 

V,, c., = 14.0 m/s. However, the author has not included this 

option in the computer program, therefore all the case 

studies presented here will show a similar transient 

response at the start of each simulation period. The 

transients decay quickly, and are negligible for 
t>3.0 a, so all disturbances to the system are invoked 

at t=4.0 sý to avoid -accumulation of the traýsient 

responses in the initial period of the simulation. 

Small cyclic va 
' 
riations of_ power output are observed in 

the steady state response, The frequency of the variation 
equals the blade passing frequency, showing that the 
c yclic variation of rotor torque has not been completely 
damped by the drive train elements or control system. 

- 453 - 



7.5 

5.0 oz 

CL 2.5 
LU 

0.0 
30.0 

20.0 
u 

LU 

0.0 

4wclo. o 

z E 
vi 
L 

LU 0 CL I-r- C3 

1.0 co 

CA: 
m 

In 20.0 AC - 

U- 10.0 - 
0-0 

0.0 
0.0 2.0 I. D 6.0 8.0 10.0 12.0 i-ý. o 16.0 is. 0 20.0 

Figure 8.15: Simulation case study NQ io16 

. 454 - 



Case Study NQ 1019 

VAWT configuration: two-bladed, 5kW V-VAWT with 20% blade tip 
pitch control, open-loop power and compen- 
sated rotor speed control strategy. 

VAWTTAY datafile: 

Operating mode: 

Base windspeed: 

Noise component: 

Results-plot: 

VAWT-5KW-20-2S 

On-line (IMOD = 

V,,, = 14.0 m/ s 

F= 700.0 m 
cy = 0.005 
ott = 100.0 rad/s 

Figure 8.16 

Observations and Comments. 

The gusty wind conditions simulated here provoke large 

fluctuations in the power output of the system. The tip 

pitch controller is continually adjusting the pitch angle 

to accommodate the rapid changes of windspeed seen by the 

rotor. The result, howe*ver, shows that the static 

stability limit of the generator is exceeded and synchro- 

nisation with network is lost at tu 19 s. The contactor 
is opened. and useful power is no longer being delivered 

by the V-VAWT generator. 

The tip pitch controller is unable to cope with the rapid 

windspeed changes simulated here. The "measured" wind- 

speed used 
, 
in 

, 
DYNVAWT. for control purposes is observed at 

the same time as it acts on the rotor; anticipation of the 

windspeed using feed-forward control has not been 

considered. Theý stiff nature of the drive train elements 

ensures that -- mean '-rotor torque f luctuat ions are 
transmitted to the 

, electrical generator, yet cyclic 

variations which are larger in magnitude are not. 
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Case Study NQ 1020 

VAWT configuration: two-bladed, 5kW V-VAWT with 20% blade tip 
pitch control, open-loop power and compen- 
sated rotor speed control strategy. 

VAWTTAY datafile: 

Operating mode- 

Base windspeed: 

Gust component: 

VAWT-5KW-20-2S 

On-line (IMOD = 2) 

Vw,;, = 14.0 m/s 

MAXG = 5.0 m/ s 
Tl(. 3 = 4.0 s 
T213 = 6.0 s 

Results plot: Figure 8.17 

Observations and Comments 

At the -peak of the gust, the wind energy available is two 

and half times greater than when the windspeed is at its 

base value. If all this energy is transmitted to the 

generator, the static stability limit would be exceeded, 

and an unstable response would be observed. The transient 

response of the system following a discrete gust iso 

however, seen to be stable, with the electrical power 

output being suitably attenuated by the controller. 
Although the power output fluctuates during the gusto 

power 
-output 

transients are seen to have decayed by 

t Cg 10.0 S. The rate of change of windspeed in this 

particular case is clearly not so fast that the control 

system is. unable to respond in a suitable manner. 
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Case Study NQ 1021 

VAWT configuration: two-bladed, 5kW V-VAWT with 20% blade tip 
pitch control, open-loop power and compen- 
sated rotor speed control strategy. 

VAWTTAY datafile: 

Operating mode- 

Base windspeed: 

Fault conditions: 

Results plot: 

VAWT-5KW-20-2S 

On-line with fault (IMOD = 3) 

14.0 m/ a 

T, I. = 4.0 s 
T21. = 4.2 s 

Figure 8.48 

Observations and Comments 

The fault clearing time is only 0.2 s, and during this 

period the power of the rotor is reduced to 40% of rated. 
When the fault clears, the V-VAWT generator system is 

still synchronised with the network, so the power output 
is slowly increased upto 100% of rated. In this 

particular case, the V-VAWT generator system has remained 

stable, and"useful power is produced immediately the fault 

is cleared. 
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Case Study NQ 1022 

VAWT configuration: two-bladed, 5kW V-VAWT with 20% blade tip 

pitch control, open-loop power and compen- 
sated rotor speed control strategy. 

VAWTTAY datefile: 

Operating mode: 

Base windspeed: 

Fault conditions: 

Results plot: 

VAWT-5KW-2O-2S 

On-line with fault (IMOD = 3) 

V.,. = 14.0 M/S 

TI, = 4.0 as 
T2p = 4.4 s 

Figure 8.19 

Observations and Comments 

The fault clearing ' time is now 0.4 s, and during this 

period the power of the rotor is reduced to 40% of rated. 

When the fault clears, the V-VAWT generator system is 

still synchronised with the network; useful power is 

produced immediately. The control system is, however, 

unable to stabilize the reconnection of the V-VAWT 

generator system to the network. Within a second of the 

fault clearing, the contactor is re-opened and the re- 

synchrgnisation procedure invoked. 
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Case Study NQ 1023 

VAWT configuration: two-bladed, 5kW V-VAWT with 20% blade tip 
pitch control, open-loop power and compen- 
sated rotor speed control strategy. 

VAWTTAY datafile: VAWT-5KW-2O-2S 

Operating mode- 

Base windspeed: 

Ramp component: 

On-line (IMOD = 2) 

V,,. = 14.0 m/s 

MAXR = 4.0 m/s 
TIn = 4.0 s 
T=. ,= 16.0 s 

Results plot: Figure 8.20 

Observations and Comments 

In this particular case, the windspeed slowly rises over 
the simulation period. The power output clearly remains 

stable as the windspeed at all times remains within the 

operating limits of the system. 
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Case Study NQ 1024 

VAWT configuration: two-bladed, 5kW V-VAWT with 20% blade tip 
pitch control, open-loop power and compen- 
sated rotor speed control strategy. 

VAWTTAY datafile: 

Operating mode: 

Base windspeed: 

Results plot: 

VAWT-5KW-2O-2S 

On-line (IMOD = 2) 

V,, E, = 24.0 m/s 

Figure S. 21 

Observations and Comments 

Here the 5kW V-VAWT is operating in a windspeed above 

rated. The initial transient response at the start of the 

simulation period is similar to that observed in Case 

Study NQ 1019. The control system, however, damps out the 

transient response and a stable power output is achieved. 

The transients decay quickly, and are neSligible for 

t>3.0 s. 

Small cyclic variations of power output are observed in 

the steady state response. The frequency of the variation 

equals the blade passing frequency, showing that the 

cyclic variation of rotor torque has not been completely 
damped by-the drive train elements or control system. 
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Case Study NQ 1025 

VAWT configuration: two-bladed, 5kW V-VAWT with 20% blade tip 
pitch control, open-loop power and compen- 
sated rotor speed control strategy. 

VAWTTAY datafile: 

Operating mode: 

Base windspeed: 

Noise component: 

Results plot: 

VAWT-5KW-2O-2S 

On-line (IMOD = 

V,,. = 24.0 m/s 

F= 700.0 m 
C, = 0.005 
ou = 100.0 rad/s 

Figure 8.22 

Observations and Comments 

The gusty wind conditions simulated here provoke large 

fluctuations in the power output of the system. The tip 

pitch controller is continually adjusting the pitch angle 

to accommodate the rapid changes of windspeed seen by the 

rotor. During the simulation period, the windspeed 

exceeds the upper operating windspeed limit. A high 

windspeed shutdown is, invoked, the contactor is openedo 

and useful power is no longer being delivered by the 

V-VAWT generator. Since the windspeed is continuously 

varying, the controller attempts to reconnect the V-VAWT 

generator to, the network. Once again the windspeed is 

seen to exceed the safe upper limit of the system and a 

shutdown procedure is invoked. This cycle repeats itself 

throughout the simulation period. 

A limitation of the control condition matrix approach is 

seen here where the short-term crossing of the upper 

windspeed limit has the effect of invoking a shutdown, 

even though the' mean windspeed is still within safe 

operating limits. 
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Case Study NQ 1026 

VAWT configuration: two-bladed, 5kW V-VAWT with 20% blade tip 
pitch control, open-loop power and compen- 
sated rotor speed control strategy. 

VAWTTAY datafile: 

Operating mode: 

Base windspeed: 

Gust component: 

Results plot: 

VAWT-5KW-20-2S 

On-line (IMOD = 2) 

Vw, =24.0 m/ s 

MAXG = 5.0 m/s 
Tic, = 4.0 s 
T2. = 6.0 s 

Figure 8.23 

Observations and Comments 

The discrete gust invokes a shutdown procedure because the 

windspeed exceeds the upper windspeed limit for about one 

second of its duration. However, the windspeed returns to 

a mean value within the operating limits of the system, so 
the start-up and synchronisation procedure is invoked. 

Within six seconds of the V-VAWT generator system being 

disconnected from the network, it is once again 

synchronised, connected, and delivering useful power. The 

power output is slowing increased from 40% of rated to 

100% of rated to allow the transients of reconnection to 

fully decay. 
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Case Study NQ 1027 

VAWT configuration: two-bladed, 5kW V-VAW7 with 20% blade tip 
pitch control, open-loop power and compen- 
sated rotor speed control strategy. 

VAWTTAY datafile: 

Operating mode: 

Base windspeed: 

Fault conditions: 

Results plot: 

VAWT-5KW-20-2S 

On-line with fault (IMOD = 3) 

V,,,, =24.0 m/ s 

T, r., = 4.0 s 
72, = 4.2 

Figure 8.24 

Observations and Comments 

The fault clearing time is only 0.2 s, and during this 

period the power of the rotor is reduced to 40% of rated. 
When the fault clears, the V-VAWT generator system is 

still synchronised with the network, so the power output 
is slowly 'increased to 100% of rated. In this particular 

case, the V-VAWT generator'system has remained stable, and 

useful power is produced immediately the fault is cleared. 
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Case Study NQ 1028 

VAWT configuration: two-bladed, 5kW V-VAWT with 20% blade tip 
pitch control, open-loop power and compen- 
sated rotor speed control strategy. 

VAWTTAY detafile: 

Operating mode: 

Base windspeed: 

Fault conditions: 

Results plot: 

VAWT-SKW-2O-2S 

On-line with fault (IMOD = 3) 

V,,. =24.0 m/ s 

TIF, 4.0 s 
T2Fx* 4.4 s 

Figure 8.25 

Observations and Comments 

The fault clearing time is now 0.4 s, and during this 

period the power of the rotor is reduced to 40% of rated. 
When the fault clears, the V-VAWT generator system is 

still synchronised with the network; useful power is 

produced immediately. The control system is, however, 

unable to stabilize t he reconnection of the V-VAWT 

generator system to the network. Within two seconds of 
the fault clearing, the contactor is re-opened and the 

synchronisation procedure invoked. 
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Case Study NQ 1029 

VAWT configuration: two-bladed, 5kW V-VAWT with 20% blade tip 
pitch control, open-loop power and compen- 
sated rotor speed control strategy. 

VAWTTAY detafile: 

OperatinS mode: 

Base windspeed: 

Ramp component: 

Results plot: 

VAWT-5KW-20-2S 

On-line (IMOD = 2) 

V,,., = 24.0 m/s 

MAXR = 4.0 m/s 
T, F, = 4.0 s 
T2,, = 16.0 s 

Figure 8.26 

Observations and Comments 

In this particular case, the windspeed slowly rises over 
the simulation period. At t= 10.0 s the windspeed 

exceeds the upper windspeed limit and a shutdown procedure 
is invoked. Since the windspeed remains above the upper 
limit for the rest of the simulation period, no attempt is 

made to reconnect the V-VAWT generator to the network. 

Although it is not visible here, the shutdown procedure is 

not fully simulated in this example. The constant 

rotational speed p erformance data used in this case study. 

does not allow variable speed operation to be accurately 

modelled, especially where the speed of the rotor is sig- 

nificantly different from its nominal speed. Reynolds 

Number effects are not completely satisfied by one set of 

data, so for start-up and shutdown simulations the 

constant windspeed performance data should be used to give 

a more accurate simulation of the behaviour of the V-VAWT 

generator system. , 

0 
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Figure 8.26: Simulation case study NQ 1029 
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Case Study NQ 1030 

VAWT configuration: two-bladed, 5kW V-VAWT with 20% blade tip 
pitch control, open-loop power and compen- 
sated rotor speed control strategy. 

VAWTTAY datafile: VAWT_5KW_20_2W 

Operating mode: Start-up and synchronisation (IMOD 

Base windspeed: V,,. = 4.0 m/r. 

Ramp component: MAXR = 10.0 m/s 
Tim = 1.0 s 
Tz:,, = 1.1 s 

Results plot: Figure 8.27 

Observations and Comments 

The start-up sequence is best simulated with the mean 

windspeed starting below cut-in windspeed, and then being 

increased rapidly to a suitable operating windspeed. The 

simulation shows the rotor self-starting and accelerating 
towards its nominal rotational speed. When the rotational 

speed of the rotor exceeds 80% of nominal, the 

synchronisation procedure commences. The rotor power is 

set to 40% of rated, allowing the rotor to continue 

accelerating to synchronous speed. The rotor speed is 

maintained within limits of t2% of synchronous speed 
before the contactor is closed, and the V-VAWT generator 
is connected to the network. Once connected, the power 

output of the system is slowly increased to 100% of rated 

over a period of twenty seconds; this ensures all the 

transients of synchronisation fully decay before full 

power is achieved. The whole procedure takes about fifty- 

five seconds in this example. 
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Case Study NQ 1034 

VAWT configuration: two-bladed, 5kW V-VAVr with 20% blade tip 
pitch controll open-loop power and compen- 
sated rotor speed control strategy. 

VAWTTAY datafile: 

Operating mode: 

Base windspeed: 

Ramp component: 

Results plot: 

VAWT-SKW-20-2W 

On-line (IMOD = 2) 

VwL, = 24.0 m/s 

MAXR = 4.0 m/ s 
Tjr, = 4.0 s 
Tý, = 16.0 s 

Figure 8.28 

Observations and Comments 

In this particular case, the windspeed slowly rises over 
the simulation period. At t= 10.0 s the windspeed 
exceeds the upper windspeed limit and a shutdown procedure 
is invoked. Since the windspeed remains above the upper 
limit for the rest of the simulation period, no attempt is 

made to reconnect the V-VAWT generator to the network. 
When the rotational speed of rotor falls below the brake 

cut-in speed, the brake is activated and the rotor is 

rapidly brought to a standstill. 

Unlike Case Study NQ 1029, the shutdown procedure is 

simulated correctly because constant windspeed performance 
data is used for the simulation. 

- 479 - 



12.5 - 
10.0 - 

JI! 7.5 - 
E5 5.0 0 "I 

CL 
22 .5 
0.0 

30.0, 

20.0 
Ll 

10.0 
Uj 
ca u 

a, 

2 

E 
1000.01- 

R, 
LU 0 IN, -C 

0.0 
0 

1.0 

!2 0.0 

c fu 
0.0 

tA )m 
*% 

;E 
70.0 - 

AC 

z 
r- 

U. 10.0 - 

0.0 - 
0.0 2.0 1.0 6.0 8.0 10.0 12.0 1-1.0 16.0 18.0 
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8.6: Conclusions from Dynamic Behaviour Case Studies 

The dynamic behaviour of the 5kW V-VAWT generator system 
has been mathematically modelled and a control strategy 
developed. The computer program DYNVAWT embodies the 

state variable descriptions that characterise this wind 
turbine configuration and, using this program, the dynamic 
behaviour of the wind turbine generator and control system 
have been evaluated. In the case studies presented here, 
the characteristics of the two-bladed V-VAWT generator 
system that are fixed by design remained fixed; only the 
external inputs to the system were varied. The results, 
therefore, do not show how the response of the system can 
be controlled by design, but merely serve to demonstrate 
the typical responses that can be expected of this wind 
turbine generator and control system. The practicality 
and cost of linking such a small machine to the network 
would be of little commercial value, however, for the 
purposes of assessing the performance of tip pitch control 
it was a canyenient scenario to consider. 

The case study results demonstrate that, in theory, an 
actively controlled partial-span pitch control system 
would enable the V-VAWT generator to operate as an 
integral part of, any electrical supply network with 
reasonable success. The computer results have yet to be 
verified by field tests, but the author is confident that, 
by variation of tip pitch, full control of the rotor can 
be achieved in all operating conditions. However, this 
overall impression needs to be qualified by consideration 
of the practicality of the system modelled. 

The two-bladed 5kW V-VAWT generator system was modelled 
with a 20% blade tip control surface. This tip area was 
chosen, because it was the minimum tip size for which full 

aerodynamic braking during a high windspeed shutdown was 
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predicted. Smaller tip areas were considered, but with a 

pitch angle limit of 0= 30*, full aerodynamic braking was 

not predicted using VAWTTAY. Predictions for larger pitch 

angles showed an increase in power output, but since the 

wind tunnel results of the model V-VAWT did not include 

any measurements for pitch angles of 0> 30*j the author 

has no means of verifying any modifications of the 

prediction model, required to correct the VAWTTAY results 
for the larger pitch'angles. It was, therefore, consider- 

ed necessary to, - 'restrict the maximum pitch angle to 

Oj"Ax = 30% because the reliability of the aerodynamic 

performance results predicted using VAWTTAY for pitch 

angles upto this limit is known to be good. 

Using a 20% tip area ensures that full aerodynamic braking 

is achieved during a high windspeed shutdown, but during 

on-line operation the power outppt of the V-VAWT generator 

system is highly -sensitive to small pitch angle changes. 
The 'author is sceptical of whether the fineness of pitch 

angle position control simulated using DYNVAWT can be 

achieved in reality. In the computer program, the pitch 

angle set point is defined by the control system with an 

accuracy of to. 059. The 20% tip area has a power gain of 

-2.8 kW per degree of -pitch i. e. -0.28 kW for each incre- 

mental pitch angle change that can be made using this 

pitch angle resolution. Small pitch angle changes are 

observed using this size of control surface, which if 

required in a real machine, would require a responsive tip 

pitch actuator mechanism to be designed to achieve this 

sensitivity of control. 

The need for sensitive on-line control and full aero- 
dynamic braking off-line enevitably requires a compromise 

solution to'be considered. The author considers that the 

on-line, control needs are-the most important and that the 

specification for the control system should be derived 
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from the needs for this operating condition. The 5% tip 

area may, prove to be dynamically suitable, though, high 

windspeed shutdown using this size tip would not be 

possible,, - unless a positive braking effect is actually 

observed for pitch angles 0> 30*. Clearly, there is a 

need to determine'' the reductions in power output that 

might be achieved when operating at large pitch angles, 

and modifications made to VAWTTAY to allo(Drformance 

predictions to be made of V-VAWTs with large pitch angle 

settings. The author is unwilling to speculate at this 

stage about the outcome of such investigations, and 

considers this to be the next step to take in developing a 

control system for the V-VAWT. 

The condition matrix control strategy in essence works 

very well, however, the boundaries that define the various 

operating modes and control actions are "hard". That is 

to say, crossing to a different operating mode is instant- 

aneous; ý the state of the system either invokes, say, an 

IMOD =2 response, or not; the windspeed and rotational 

speed boundaries ensure that the control state is exactly 

defined at any one time. In most cases this approach is 

satisfactory, but when a boundary is crossed, abrupt 

changesýin control action can occur. Case studies NQ 1025 

and NQ-1026 are good examples of this occurrence. In both 

cases, the cut-out windspeed in temporarily exceeded 

because of windspeed gusting. The base windspeed is only 

VEa = 24 m/s, ý yet because the windspeed temporarily rises 

above. the- cut-out windspeed, shutdown procedures are 

invoked. This is unsatisfactory because synchronisation 

with the network must be achieved once again before any 

useful power can be delivered by the system. 

If the condition matrix system is to be adopted, then the 

windspeed and rotational speed boundaries should be 

"softened" to accommodate short term excursions outside a 
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'Icontrolýareall without affecting the current control mode. 

This might be best achieved by introducing time delays on 

theýmore sensitive boundaries, or by defining the state of 

the system using long term average conditions of windspeed 

and rotational speed; instantaneous conditions would then 

be used to define the subsequent control action. 

The open-loop power and compensated rotor speed control 

strategy gives highly satisfactory results. Not only is 

it suitable for ensuring good on-line power control, but 

allows start-up and synchronisation to be successfully 

completed. The values of the control gains have been 

determined by trial-and-error, so it is not possible to 

comment upon whether the quality of the system output can 
be further improved. As said before, this dynamic 

modelling approach only demonstrates the behaviour that is 

typical of this V-VAWT generator system. In most cases, 
the control system was able to maintain a stable connect- 
ýon between the generator system and the electricity 

supply network. Where this was not possible, shutdown and 

synchronisation procedures have been successfully invoked. 

However, this approach does not allow any assessment to be 

made of how good the stability of the response is. Class- 

ical control system analysis allows such assessment# but 

the time domain approach only enables the stability of the 

system to observed as either "stable" or "unstable". 

In this particular wind turbine generator system, the 

generator connection to the network is seen to be the most 
flexible transmission element. Therefore the character- 
istics of the generator and the network connection 
crucially affect the behaviour of the system as a whole. 
One way of improvinS the stability of the system studied 
involves increasing the rating of the generator. The 

generator rating was 5 kVA, and although design character- 
istics were not changed, if this rating was increased, the 
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static power stability limit of the system would be 

similarly increased. The author notes that the generator 

rating of most commercial machines is often 25% larger 

then the rating of the wind turbine generator system 
itself. Excess generator capacity would allow larger 

fluctuations in rotor power to be tolerated before 

synchronisation with the network was lost. 

Similarly; using a round rotor generator rather than a 
salient -pole generator would increase the static power 
stability limit of the system. However, a generator that 
is connected to the network via long transmission cables 
will have a weaker link with the grid and therefore have a 
lower static power stability limit. These options have 

not been evaluated here bu+--, the program DYNVAWT has the 
flexibility for such case studies to be evaluated. 

An inherent quality of the V-VAWT design is the stiff 

nature of the mechanical drive train elements. Whilst the 

v-belt transmission allows some flexibility, it is the 

electrical connection to the network that is the most 

compliant transmission element. This characteristic is 

unlike any other wind turbine, where compliance is built 

into the mechanical transmission elements, and by 

comparison the electrical connection is considered stiff. 
The quality of the electrical output is improved in these 

systems because rotor torque fluctuations are dissipated 

by the flexibility and damping of the mechanical elements. 
Mechanical damping has not been simulated here. The 

author considers that attention should be directed to 

improving the compliance and damping properties of the 

mechanical elements of the V-VAWT drive train so that 

power output quality can be similarly improved. 

The validity of the computer program DYNVAWT has yet to be 

verified, and to do this simulation results will have to 
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be compared to actual performance results. However, the 

author considers both the theoretical model of the V-VAWT 

gen'erator system to be good, and its embodiment into the 

computer program DYNVAWT accurate. Consequently, the 

author considers that he has developed a useful and flex- 

ible tool for assessing the dynamic behaviour of V-VAWT 

generator systems. The control strategy and use of 

condit-ion matrices has been demonstrated as a simple means 

0f --providing adaptive control. However, the modular pro- 

gramming style allows the control system to be easily 

enhanced or replaced in DYNVAWT. The flexibility of the 

program allows countless case studý scenarios to be set-up 

and evaluated, and it is the intention of the author to 

use the program to assess possible alternative drive train 

and control system designs, and investigate how the 

quality of the power output may be improved. To date the 

program DYNVAWT has been used merely to demonstrate that 

partial-span pitch control is a viable method for actively 

controlling the dynamic behaviour of a network linked 

V-VAWT generator system. 
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Chapter Nine: Project Summary, Final Conclusions and 
Recommendations for Future Work 

9.1: Summary of Work Completed and Observations Made 

The project reported here has required the author to 

undertake many theoreticýl and laboratory based studies. 
The author has read widely around the subjects of concern, 
but only where specific observations or conclusions have 
been drawn from other authors have they been referenced 
here. During the period of study, the author attended a 
number of wind energy conferences and seminars, and 
prepared in collaboration with Messrs Taylor, Sharpe and 
Boyle technical papers that were presented at some of 
these events; three papers can be found in Appendix 3. A 
number of computer programs have been developed by the 
author to assist in the numerous data analysis tasks that 
have been completed. These programs have been written 
for use on a variety of machines, and all embody mathe- 
matical models developed solely by the author as reported 
here. Only the performance prediction model VAWTTAY has 
its origins elsewhere, the author's contribution being to 

extend the scope of its functions and shorten its exe- 
cution time. At all times the author was aware of the 
need to develop practical solutions and design aids for 
the development of- the V-VAWT concept. 

The project, brief required the author to investigate 
control methods for the V-type vertical axis wind-turbine. 
Initial theoretical and experimental work, carried out by 
Taylor and Sharpe had established the V-VAWT as a 
promising wind turbine configuration with many features 
that were considered would make it a cost-effective 
machine. The author reviewed this work and that reported 
by many other wind energy investigators. The literature 

search provided valuable background information and dat8, 
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allowing the necessary requirements of a suitable control 

method to be defined. It was concluded from this prelim- 

inary study that the control needs of electricity 

generating applications were the most demanding. For such 

applications, the V-VAWT requires good speed and power 

regulation over a wide range of operating windspeeds. 

When driving synchronous generators, start-up and synchro- 

nisation, on-line speed and power control, and high 

windspeed shutdown are modes of operation that must be 

considered when selecting suitable control methods to 
investigate. 

-The review of control methods considered many control 
alternatives, but it was partial-span pitch control that 
the author considered to be the most promising option for 

V-VAWT applications. The author was unaware of any 

research or development work on VAWTs that had systematic- 

ally investigated this control option. whilst some 

experimental and theoretical work on full-span pitch 

control had been carried out on H-VAWTs, no previous study 
had been made of the effectiveness of partial-span pitch 

as a control method for the H-VAWTs or, more specifically, 
for the V-VAWT concept. It was, therefore, necessary to 

systematically investigate this control option for V-VAWT 

applications; experimental and theoretical studies were 

planned and subsequently executed by the author. 

The experimental work required a small wind tunnel si=e. d 

model V-VAWT to be designed and manufactured, To assist 

with the structural design of this model, a computer 

program was developed to analyse the steady state loads 

acting on the wind turbine blade when operating at various 

rotational speeds. This program embodies a simple beam 

bending theory that accounts for centrifugal and gravi- 
tational loads; aerodynamic loads were ignored. Since the 

model was to be designed to operate in a laboratory 
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environment, a strict code of design was imposed upon the 

author. This code required the model to be designed to 

survive rotational speeds upto 2500 rpm, at which speed 

centrifugal loads are significantly larger than gravi- 

tational loads which, for simplicity, can be excluded from 

the analysis. Using this computer analysis tool. the 

author was able to derive a satisfactory blade design for 

the model V-VAWT. 

To test the effect of partial-span pitch control on the 

performance of the ' model V-VAWT, each blade was fitted 

with three moveable tip portions. These three separate 
tip portions allowed a variety of tip area and pitch angle 
combinations to be evaluated. The model V-VAWT was tested 
in a wind tunnel at Queen Mary College, London using 

equipment developed by Sharpe and used for previous tests 

on model V-VAWTs. The performance of the wind turbine was 

measured using the acceleration technique, a simple and 

quick method for determining the complete CF--% character- 
istic of a wind turbine. The blade tips could not be 

moved during testing, so the measurement procedure was 

repeated with the tips preset with known pitch angle 

offsets. In this way, the author was able to derive 

results for some 40 tip pitch angle and tip area 

combinations. 

The experimental measurements were analysed using 
numerical methods; these methods were considered in depth 
by the author to ensure the accuracy and quality of the 

results were good. Measurements of bearing friction and 
cable drag were made separately, and corrections applied 
to all results; the final results were effectively 
measurements of the aerodynamic power of the rotor. The 

results of these wind tunnel tests were published in the 

conference papers presented in Appendix 3. 

a 
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0 The limited range of rotational speeds over which the 

cable drag measurements had been made required the 

corrections for this effect at high rotational speeds to 

be interpolated from measurements made at low rotational 

speeds. This was considered unsatisfactory, so a mathe- 

matical model of cable drag was developed by the author. 

Good correlation of the low rotational speed cable drag 

measurements and predicted results enabled the author to 

use the prediction model with confidence at all rotational 

speeds. Predicted cable drag results were used to modify 

th e cable drag corrections previously used, so the wind 

tunnel result s presented here are considered to be more 

representative of the true aerodynamic performance of the 

model V-VAWT. 

The results clearly showed that the aerodynamic power of 

the model V-VAWT can be regulated using partial span tip 

control. The results for 5%, 10% and 15% tip areas all 

showed that the power of the model wind turbine could be 

completely "killed" using nose-in pitch angle offsets, and 

that small nose-out pitch angle offsets actually increased 

the power output of the rotor. The high starting torque 

that is characteristic of this wind turbine configuration 

was observed for all but the largest tip pitch angle 

offsets. Although the wind tunnel measurements were made 

at low Reynolds Number, the results were considered 

encouraging and it was concluded that partial-span pitch 

control would be suitable for larger V-VAWT applications. 

The computer program VAWTTAY allows the aerodynamic per- 

formance of the V-VAWT to be predicted and is based upon 

Sharpe's extended multiple streamtube theory. Original 

versions of this program were microcomputer based and had 

been validated by the Sharpe's earlier theoretical experi- 

mental work. The author, however, spent much time and 

effort translating the BASIC version of the program into a 
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FORTRAN version for use on minicomputers. The'new version 

of VAWT TAY allows a full aerodynamic appraisal of a V-VAWT 

configuration to be completed in significantly shorter 

times than previously achieved. The author has not made 

any significant changes to the prediction theory that the 

program embodies, but has derived a thorough understanding 

of its principles in the meantime. 

To test the validity of the FORTRAN version of VAWTTAY, 

prediction results were compared to those obtained before- 

hand using the BASIC version. Satisfied that the program 

was accurate and correct, the author use*d the program to 

predict the performance of the model V-VAWT and the effect 
of partial-span pitch control. While the characteristic 
shape of each C, ->, curve was predicted fairly well, the 

numerical correlation of the results was not good. The 

difference between measured and predicted results was 

considered due to the lack of accurate aerofoil data to 

adequately described the characteristics of the NACA0025 

aerofoil used to construct the blades of the model V-VAWT. 

If the predicted results were to sh*ow better correlation, 
then suitable NACA0025 data was required for use with 

VAWTTAY. Despite searching for such data, none could be 

found for the low Reynolds Number required which could be 

considered reliable or suitable for use with VAWTTAY. The 

author, therefore, decided to determine the aerofoil 

characteristics of the model blades by experimentation. 

A NACA0025 aerofoil section was constructed to the some 

dimensions as the model V-VAWT blades. and static pressure 
tappings 

-were made around its surface. The aerofoil was 

tested in a closed-return wind tunnel at Queen Mary 

College, London. Pressure measurements were made for 

angles of attack upto 20* in increments of 1* over a range 

of low Reynolds Number, and for angles of attack' UPtO to 

180* in increments of 5* for one Reynolds Number. 
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The static pressure measurements were read directly from a 

water manometer bank, and entered into a data capture 

program written and developed by the author on a 

microcomputer. Once the measurements were verified, they 

were stored on floppy diskette. Similar tests for profile 

drag were carried out, but verification of the results 

using force balance techniques could not be completed in 

the time available. 

To analyse the pressure measurements, the author developed 

two computer programs for calculating normal and thrust 

force coefficients. The fundamentals of each program are 

similar, requiring a pressure envelope around the serofoil 
to be calculated by interpolation of the twenty static 

pressure measurements. The generation of the pressure 

envelope allows the pressure distribution around the 

aerofoil to be integrated with respect to the chord and 

cross-chord axes, yielding the normal and thrust force 

coefficients respectively. Using these computer programs, 

the aerodynamic characteristics of the aerofoil was 

completely determined from the measurements made. The 

profile drag measurements were found to be inconsistent 

and were not considered reliable, but the author found 

suitable low Reynolds Number values of profile drag 

coefficient from another source# and it is these values 

that have been used here to modify the measured thrust 

coefficient results. 

The pre-stall aerodynamid characteristics of the NACA0025 

section were developed into a dataset suitable for use 

with VAWTTAY by smoothing the force coefficient versus 

angle of attack curves, and by extending the Reynolds 

Number range using extrapolation to Re = 400,000. The 

post-stall aerodynamic characteristics were developed into 

a single dataset that is Reynolds Number independent. 

- 492 - 



The author considers the NACA0025 dataset to be good, 

though the "bubble" effect observed at low angles of 

attack has been ignored, and immediately following stall, 

the thrust coefficient takes large negative values not 

observed in other four-digit NACA aerofoils. 

Using the author's NACA0025 dataset, the aerodynamic 

performance of the model V-VAWT was predicted using 
VAWTTAY. The results using this data show much better 

correlation between predicted and measured rotor power 

outputs atý large tip speed ratios, but the predictions 

clearly under-estimate the power developed by the rotor at 
low tip' speed ratios. Despite the large negative thrust 
force coefficients observed immediately following stall, 
the author considers the poor correlation of results at 
low tip speed ratios is due to a limitation of the dynamic 

stall model used in VAWTTAY. ' The dynamic stall character- 
istics of the NACA0025 section are unknown, therefore it 

is not possible to determine whether the Gormont dynamic 

stall model is accurate for this section. 

Although it has not been possible to accurately predict 

the performance of the model V-VAWT using a single 

aerofoil dataset, the author considers VAWTTAY to be an 

accurat'e and valid tool for determining the behaviour of 

larger' ' V-VAWT configurations 'with partial-span pitch 

control. 

The computer program has been used to determine the 

performance of the 5kW V-VAWT with 5%, 10%, 15% and 20% 

tip areas for various pitch angle offsets. One notable 
feature of the predictions for this machine which had not 
been previously observed, war. that for pitch angles in 

excess of 0= 30*, the power output of the rotor has been 

predicted to Increase. The maximum pitch angle offset of 
the tips on the model V-VAWT was limited to p= 30', 
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therefore, it war. not possible to confirm the validity of 

these predicted results. The author considers that the 

assumptions of the prediction model VAWTTAY are breaking 

down at these large pitch angles, and that such results 

are invalid. Therefore, it was necessary to limit the 

maximum tip pitch angle of the 5kW V-VAWT to = 30* if 

the rotor power was to be continually reduced as the tip 

pitch angle was increased. 

The electricity generation application of the SkW V-VAWT 

demands power and speed control during start-up and 

synchronisation, on-line operation, and high windspeed 

shutdown. While a 5% tip area would be suitable for 

regulating the power output of the rotor during on-line 

operation, the VAWTTAY predictions showed that a 207. tip 

area was required if full aerodynamic braking was to be 

achieved during a high windspeed shutdown. Using such a 

large tip area would ensure that the rotor could be 

brought to a standstill by aerodynamic means alone, but 

for on-line power and speed regulation, the control of the 

rotor would be highly sensitive to small pitch angle 

changes. Inevitably a compromise between the needs of 

full aerodynamic braking and sensitivity of on-line 

control must be made. If full aerodynamic braking cannot 

be achieved, an additional rotor braking device would be 

required to ensure the rotor can be brought to a stand- 

still during a high windspeed shutdown. 

The use of the V-VAWT for electricity generation is most 
demanding, especially since the energy source of a wind 
turbine cannot be regulated. Unlike other electrical 

generator prime movers, wind turbine generators have an 

energy source that is continually varying. The wind 
turbine control system must be capable of reacting to the 

variations of windspeed typically encountered by 8 free- 

air machine, while striving to maintain the stability of 
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the connection between the electricity network and the 

generator itself. To assess the success with which this 

can be achieved with a V-VAWT generator system using 

partial-span pitch control requires the dynamic behaviour 

of the wind turbine system to modelled and evaluated. 

The computer program DYNVAWT was written and developed by 

the author and embodies a state variable description of a 

V-VAWT-. Senerator system. This program allows time domain 

studies of the dynamic behaviour of such a system to be 

simulated, ýenabling the characteristic behaviour of the 

system -to be observed. The program allows the character- 
istics of the component parts of the system to be 

described, and the external forcing functions varied as 

required. In this way, start-up and synchronisation, on- 

line operation, and high windspeed shutdown modes of 

operation can all be simulated. The control strategy 

developed for simulation purposes uses a condition matrix 

approach, in which the control strategy is adapted to the 

current operating state of the wind turbine system. The 

only devices that can directly controlled are the tip 

pitch actuator mechanism, the rotor brake, and the 

electrical generator/network contactor. An open-loop 

power and compensated rotor speed control system has been 

built into the control system to ensure that a constant 

power and constant frequency power supply is maintained to 

the network. 

The computer program DYNVAWT was used for many case 

studies based upon the 5kW V-VAWT generator system, but 

none of the results have been validated by experimental 
observations., A variety of changes to the external inputs 
to -the V-VAWT generator system were studied and, in 

general, the partial-span pitch control was able to 

respond in a manner that maintained the stability Of the 

network connection. Where this was not the case, shutdown 
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or re-synchronisation procedures were invoked. The prin- 

ciples of the condition matrix control strategy were 

thoroughly tested and proved to be a successful control 

approach. The limitations of the approach were identi- 

fied, but the computer program has been developed on a 

modular basis, so modification or replacement of the 

control strategy. is simply done. 

The case studies evaluated using DYNVAWT were based upon 
the present 5kW V-VAWT design. Only the external forcing 

functions were varied in the case studies presented here; 

no attempt has been made to optimise the behaviour of the 

system by changing the design of the system itself. Using 

a 20% tip area for control, start-up, and synchronisation, 

on-line operation, and. high windspeed shutdown were all 

successfully simulated. The mechanical components of the 

5kW V-VAWT generator system are torsionally stiff, yet in 

each case, rotor power and speed was regulated using tip 

pitch. It is clear from these studies that a large tip 

area requires fine tip pitch positional control to ensure 

a good quality and stable power supply is maintained, but 

future system designs must include more compliance and 

damping in the mechanical drive train elements to assist 

in alleviating the large torque variations that must be 

accommodated by the system. 

The author considers that a valuable analysis tool has 

been developed for future evaluation work of V-VAWT 

generator systems. The flexibility of the programming 

approach will allow the design of the mechanical 

components of such systems to be modified to ensure the 

behaviour of the system as a whole is stable, reliable and 

provides a good quality power output to the electricity 

network. 
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It can be concluded from the work reported here that: 

(a) partial-span pitch control is highly suitable for 

controlling the on-line operation of the V-type 

wind turbine in electricity generation appli- 

cations. The size of the tip area crucially 

affects the sensitivity of the control that can be 

achieved, and it is unlikely that full aerodynamic 

braking can be achieved during high windspeed 

shutdowns if small tip areas are used. A compro- 

mise must be struck between these two needs. 

(b) the aerodynamic performance prediction program 
VAWTTAY_ is suitable for predicting the steady 

state behaviour of the V-VAWT using blade 

geometries with small partial-span pitch angle 

offsets. The accuracy of the predictions relies 

upon the accuracy of the static serofoil dataset 

used for the analysist and the validity of the 

dynamic stall model that is embodied in the 

, 
ýrogram. The theory appears to break down where 

the configuration includes large pitch angle 

offsets. 

(c) the dynamic behaviour of an actively controlled 

V-VAWT. generator system can be simulated using the 

author's own computer program, DYNVAWT. The time 

domain simulations provide valuable information 

about the effectiveness of the V-VAWT generator 

system and its control system in maintaining a 

stable and good quality power supply to the 

electricity supply network. DYNVAWT enables the 

dynamic behaviour of system designs to be be 

evaluated at an early stage of their development. 

Suitable modifications or alternatives can be 

tried before the design is finalised. 
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9.2: Recommendations for Future Work 

The author recommends that the following additional work 

should be undertaken as a result of the observations and 
findings of this work: 

(a) fielb trials of 5kW V-VAWT to be conducted using 

partial-span pitch control to determine validity 

of simulation program DYNVAWT. 

(b) performance evaluations of V-VAWT configurations 

with large tip pitch offsets (0 > 30*) required to 

validate the modifications that must be made to 
VAWTTAY for these large pitch angle predictions. 

(c) further investigation of NACA0025 aerofoil section 
required to confirm author's own characteristic 
aerodynamic data, and observe its dynamic stall 
behaviour at low Reynolds Number. 

(d) design studies to be made of large V-VAWT 

configurations with special attention being paid 
to increasing the compliance and damping attri- 
butes of the mechanical elements of the drive 

train, so reducing the torque variations that must 
be accommodated by the electrical generator. 

(e) development of adaptive control strategyo based 

upon condition matrix approach, with "softer" 

boundaries defined between control action changes. 

0 

9.3o. Closing Remarks 

The work reported here has stretched over many years, but 

the author has never doubted the validity of the approach 
taken, nor the need that each task be undertaken, nor even 
how the results of each compliment the conclusions of the 

whole. The experimental and analysis techniques adopted 

are not necessarily original or new, however, the author 
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has always considered that simplicity of approach is more 

worthy where the problems being considered and the 

solutions methods being developed are in fact new to the 

author himself. By its very nature, the V-VAWT is a wind 
turbine configuration of simple construction and design. 

The control methods used for this particular machine need 
to be similarly simple if this machine is to be cost 

effective in electricity generation applications. The 

work reported here shows, in theory, that partial-span 
pitch control satisfies all the control needs of this 
V-VAWT application. Further work is clearly required to 

verify some of the findings reported here, before larger 
V-VAWT configurations can be built using this control 
technique. On this basis, and using the Department of 
Energy's terminology, the author considers that partial- 
span pitch control should be classified as a "promising, 
but uncertain" V-VAWT control option. 
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Appendix One: Structural Analysis of Model V-VAWT 

A1.1: Glossary of' Symbols and Subscripts 

Symbol s 

m Total mass of blade <kg) 
L Total length of blade (m) 
a Spanwise distance of cable attachment point from blade 

root <m) 
(b Angular velocity of rotor (rad/s) 
w Mass of blade per unit length <kg/m) 
* Radial co-ordinate <m) 
* Spanwise co-ordinate (m) 

Angle of blade inclination to rotation axis 
9 Gravitational acceleration (m/s! 2) 
F Shear force (N) 
M Bending moment (Nm) 
P Axial force (N) 
R Shear force reaction (N) 
M Bending moment (N) 
P Axial force <N) 
(D Step function 
v . Flapwise displacement 
E Young's modulus (N/m: 24) 
I Second moment of area<mA) 
a Stress (NlrrP) 
y Maximum thickness of material from neutral axis (m) 
A Cross-sectional area (m2-) 
b width of spar (m) 
d height of spar (m) 
t thickness of spar <m) 
D,, Outer diameter of spar (m) 
Di Inner diameter of spar (m) 
P density of material <kg/m: 3) 

Subscripts 

A Root attachment 
B Cable attachment 
w Skin section 
S Spar section 
F Blade section 
C Compressive 
T Tensile 
z Spanwise direction 
V Flapwise direction 
c Centrifugal component 
g Gravitational component 
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AI. 2: Derivation of General Equations for Shear Force, 

Bending Moment, Axial Force and Flopwise Dinplace- 

ment 

The analysis of the V-VAWT blade developed here is only 

suitable for a straight, constant chord blade that 

attached to the rotating shaft at its root and by a cable 

near to the blade tip. The following assumptions are 

made: 

(a) Blade considered to act like a beam 

(b) Mass of blade is evenly distributed along its span 

(c) Blade root either simply supported or built-in 

(d) Cable attachment is a simple support 
(e) Cable acts perpendicular to plane of blade 

(f) Aerodynamic forces ignored 

Figure Al. 1 is a schematic diagram of the V-VAWT blade in 

its simplest form. If the total mass of the blade is M, 

and the total length of the blade is L, then the mass per 

unit length w is given by: 

(Al. 1) 

Consider a small element of the blade at a spanwise co- 

ordinate z of length dz. If the blade is inclined at an 

angle 0 to the vertical, the radial co-ordinate of the 

element r is given by: 

zeinO 

The elemental mass dm is given by: 

dm = wdz (Al. 3) 
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A 

Figure AI. 1-. Schematic diagram of V-VAWT blade showing 

structural loads 
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The per unit mass centrifugal F,, and gravitational Fw body 

forces are given by: 

Fc Or (Al. 4) 

F9 (Al. 5) 

Resolving these forces in the z and v directions giver: 

Fv = -Fcos8 - F,, sinO (AI-6) 

Fz = FcsinO - F,, cosO (Al. 7) 

and substitution of F, F,, and r leads to: 

Fv = -S6o2zsin20 - gsin0 
F� = a-zsin20 - scos0 (A1.9) 

It is convenient here to define the step function (D: 

04za 
(Al. 10) 

a<zL 

which can be used to define expressions for shear force F. 

bending moment M and axial force P as functions of the 

spanwise co-ordinate z: 

z 

F(z) = R,. ý + JwF., dz + (D[RB] 

0 

2z 

M(z) + R,, z +j JwFvdzdz + O(R. (z 

00 

z 

P(Z) = PA + fwF--dz 

0 

11) 

(Al. 12) 

(Al. 13) 
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Substituting for Fv and F,., and integrating with respect 

to z gives: 

Z2 
F(z) = RA - ww2sin2G-Z + wgsinOz + O[R, ] (Al. 14) 

22 M(z) = M, + Rnz + wo2sin2072 + wgsinOzi2 + (D[R. (z 

P(z) = pn + wco2sin 2817 - WgCoSeZ 2 
(Al. 16) 

The further solution of these expressions depends upon the 

boundary limits imposed at the blade rooto cable attach- 

ment point and blade tip. However, for the case of the 

model V-VAWT these expressions may be simplified if gravi- 
tational force terms are ignored. The gravitational force 

terms are very much smaller then the centrifugal force 

terms because, for design purposest the rotational speed 

of the rotor is set at 2500 rpm. The simplified 

expressions become: 

F(z) = RA - ww2sin2e2ýý 4 
(Al. 17) 

M(z) = K, + R,, z - WQ2Sin2O 
1+ (D [R,, (z (Al. 18) 

P (Z) = PA + WC42 S in2e e (Al. 19) 
2 

The flapwise deflection v(z) is given by: 

EId-V -M(z) (Al. 20) dz2 

which means: 
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-EIA'v K, + R,, z - wo2sinUE2- + 4)(R. (z - a)] (Al. 21) 
dz2 12 

Integrating with respect to z gives: 

-EILV K., z + R, -z2 _ W02Sin2eZA + (D R. 
(z - a)2 +A (Al. 22) 

dz 2 T8- 2 

Integrating with respect to z once again gives: 

-EIv(z) = MJLt + R,, Zý 
- Wta2sin2e-ll +0R, 

(z - B)3 + Az +B 26 240 6 

(Al. 23) 

where the A and B are constants of integration. 

The general 

axial force 

solutions 
Expressions 

each case 

conditions. 

expressions 

and flapwise 

or the two 

f or R., M,,, 

by the app] 

for shear force, bending moment, 
displacement are the basis of the 

loading cases considered below. 

P,,, Rr3, A and B are developed in 

Lication of appropriate boundary 

A1.3: Solution for a V-VAWT Blade Simply Supported at both 

its Root and Cable Attachment 

In this case, the V-VAWT blade is considered to be simply 

supported at its root and at its cable attachment. The 

following boundary conditions apply: 

M(O) = 0 (Al. 24a) 

V(O) =0 (Al. 24b) 

V(a) =0 (Al. 24c) 
F(L) =0 (Al. 24d) 
M(L) =0 (Al. 24e) 
P(L) =0 (Al. 24f) 
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Substitution' of these boundary, conditions into the general 

equations developed above yield the following solutions: 

R,, = mo2siTiH .6-I 
22ý (Al. 25) 

(4 
ta) 

M, 4 =0 (Al. 26) 

PA -mco2sin 20L (Al. 27) 
2 

R9 MQ2Sin2O L2 (AI-28) 

L21 a4 La2 

A= mca-"sin2O 
(36 

+ 240L - 'ý24q12 (Al. 29) 
I 

B=0 (Al. 30) 

A1.4: Solution for a V-VAWT Blade Simply Supported at its 

Cable Attachment and Built-In at its Root. 

In this case, the V-VAWT blade is considered to be simply 

supported at its cable attachment and built-in at its 

root. The following boundary conditions apply: 

dv(O) 0 (Al. 31a) 
dz 

V(O) 0 (Al. 31b) 

v(a) = 0 (Al. 31c) 

F(L) = 0 (Al. 31d) 

M(L) = 0 (Al. 31e) 

P(L) = 0 (Al. 31f) 
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Substitution of these boundary conditions into the general 

equations developed above yield the following solutions: 

RA = mo2sin28 
3L a2 1 

-2 
ý 

(Al. 32) 
(8 

80L ! 
a) 

MA = MC02S in2G 
L- aL + "I (Al. 33) 

(12 
8 90-1) 

P,, = -mca2sin2OL (Al. 34) 
2 

R. = mo2sin2e 
82 L L2 (Al. 35) 

(80-1. 

- -8 + 
L4 2a-) 

A=0 (Al. 36) 

B ='O (Al. 37) 

AI. 5: Tensile and Bending Stresses in Composite Blade 

In a composite blade, 

materials is given by: 

as (Z) =-P 
(Z) E.. 

Aa Er.. + A,, E 

P (Z) E" 
crw (Z) = AgEs + AwEw 

the tensile stress in the two 

(Al. 38a) 

(Al. 38b) 

Iný a composite blade, the maximum bending stress in the 
two materials is given byi 

M(z)y., E. 
IsEm + IwE, 

aw (Z) =- 
M(2)Y, EW 

IsEs + IwEw 

(Al. 39a) 

(Al. 39b) 
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The cumulative stress in the two materials is given by: 

a. (Z) =-P 
(Z) E., 

+- 
M(z)y�E. £ (A l. 40a) 

AgEg + A�E� IcE. + I�Ew 

crw (Z) P (z)Ew M (z) yý, Ew (A l. 40b) 
AgEs + AwEw IsEs + IwEw 

A1.6: Cross-Sectional Areas and Second Moments of Area 

The V-VAWT model blades are largely a composite of wood 

and aluminium alloy. A number of blade spar geometries 

were considered, but the skin of the blade was always 

considered solid. The basic dimensions of the spar and 

the cross-sectional area of blade profile provide 

sufficient information from which all geometrical 

properties of the blade section can be determined. 

Three cross-sectional geometries were considered for the 

blade spar: 

(a) Circular tube 

(b) Rectangular box 

(c) Rectangular tube 

The cross-sectional area and second moment 
two blade materials differs according to 

spar section. The rectangular tube 

selected for the V-VAWT model giving: 

As = bd - 
nDi2 

4 

Ir = 
bd: 2 

_ 
IID 

12,64 

of area of the 

the choice of 

; as eventually 

(Al. 41) 

(Al. 42) 
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I Aw = Ar, bd (Al. 43) 

1" = Ir. bV (Al. 44) 
12 

where the cross-sectional area A,.. and second moment of 

area I,.. of the aerofoil section have been determined 

beforehand. 

The mass of the blade is calculated as follows: 

m= ms + mw (Al. 45) 

where 

m,,, - psA.. - 
L (Al. 46a) 

Inw pwAwL (Al. 46b) 

AI. 7: The Computer Programs TAYVAWT and STAVAWT 

The computer programs TAYVAWT and STAVAWT were written and 
developed by the author as 0 aid for evaluation of the 

structural performance of any given V-VAWT model blade 

design. The programs were written in BASIC and are run on 

the BBC-B microcomputer. The programs have greatly 

assisted the author in evolving the final blade design. ýby 
allowing design modifications to be quickly evaluated and 

compared with other design solutions. 

TAYVAWT is a pre-processing program in which all the 

independent blade dimensions and material properties are 

entered by the program user. To assist this process, a 

number of default dimensions and material property values 
are written into the program software. The loading case 

-required, i. e. simply supported or built-in at blade root, 
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and the cross-sectional geometry of the blade spar are 

both specified in this program. The dependent dimensions 

and properties of the blade t-he=t; "de-are then calculated. 

All the dimensions and properties of the blade design are 

stored in a blade geometry datafile on a floppy diskette. 

This datafile contains all the pertinent information about 

the blade required.. Aye the analysis program STAVAWT. 
bý 

The analysis program STAVAWT is automatically invoked when 

the blade geometry datafile has been created. The values 

stored in the datafile are immediately retrieved from the 

diskette to initialise the blade dimensions and material 

properties of the analysis program. Before analysis 

commences, the method of presenting results is selected. 

Results may be displayed either in a numerical or graph- 

ical form. A hard copy of the results may also be created 

if a suitable printer is connected to the computer. With 

the program initialisation complete, the analysis of the 

blade commences. The program enters two repetitive 

calculation routines. 

The first routine is a rotational speed loop, in which the 

analysis of the blade is performed at different rotational 

speeds. Generally, only a couple of rotational speeds are 

considered, these being 2000 rpm and 2500 rpm. Comparing 

the results at these two speeds, has allowed the author to 

check the validity of the program, because all forces, 

moments, displacements and stresses should be 56% larger 

at 2500 rpm than those calculated at 2000 rpm. 

At each rotational speed, the values of R,, N. M,,, p, R,,, A 

and B are evaluated. These values are used in the algor- 
ithms to calculate the shear force, bending moment, axial 

force and flapwise displacement distribution of the blade. 

This is done in the second routine, in which týe values of 
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F(z), M(z), P(z) and v(z) are evaluated at various spon- 

wise ordinates, including the cable attachment point. The 

maximum material stresses are likewise evaluated. The 

results of these calculations are displayed or printed 

directly into a tabular form, if this option has been 

selected. When this routine is completed, the values of 

R,,,, M", P" R, -,, A and B are themselves displayed. if 

graphical output of the results Was selected, the screen 

is cleare d and the shear force, bending moment and flap- 

wise displacement distributions are plotted on the screen. 

A 'second display shows axial force and material stress 

distributions. 

When this routine is completed, the program repeats the 

analysis of the blade at the next required rotational 

speed. When the analysis of the blade design has been 

completed at all rotational speeds, the program user is 

given the option to exit from the program, or to repeat 

the analysis using an alternative blade geometry datafile. 
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Appendix Two: The Calculation of Angular Acceleration 

using Numerical Methods 

A2.1: The Calculation of Angular Acceleration using 
Numerical Differentiation 

The acceleration method is a simple method for determining 

the torque developed by a rotating body. If the net 
torque acting on. the body is positive, the rotational 

speed will increase; if it is negative the rotational 

speed will decrease. By measuring the rate of change of 

rotational speed of the body, the net torque acting on the 

body can be calculated using equation (5.1). 

The acce*leration method As used throughout the performance 
test programme to measure the shaft torque developed by 

the model V-VAWT, the friction torque of the bearings and 
the aerodynamic drag torque of the blade support cables. 
In all cases, measurements of angular velocity with 

respect, to time have been made. No direct measurement of 

angular acceleration, or retardation, was possible, so the 

instantaneous, angular acceleration must be calculated 

using numerical differentiation. 

The test facility at Queen Mary College uses a Commodore 
PET microcomputer to record measurements of angular 
velocity and time. The angular velocity of the shaft is 

measured by a low voltage d. c. tachogenerator that is 
directly coupled to the rotating shaft. The output volt- 
age, from the tachogenerator is continuously converted to a 
12-bit digital, signal by an analogue to digital converter. 
The A to D converter is directly coupled to the User Port 

of the microcomputer, enabling the rapid sampling Of the 
angular velocity measurements. A sampling frequency of 10 
Hertz is achievable with this, system. 
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The tachogenerator was calibrated during previous experi- 

mental work using a stroboscope, and a calibration factor 

was established to convert the digital output signal to a 

revolutions per minute value. The r. p. m. value is further 

converted to a radians per second value for the torque 

measurement tests. 

Measurements of time are made using the internal clock of 

the microcomputer. The internal clock measurements are in 

Igiffies', where one giffy is one sixtieth of a second. 

The measured value of time is converted into a value in 

units of one second. 

The data logging programs record measurements of angular 

velocity and time. These measurements are immediately 

converted into their respective units and stored in the 

internal memory of the computer. The measurements are 

made continuously during the test period until either 

recording is stopped manually or a maximum of 500 

measurements have been made. Once the recording sequence 

has stopped, the stored values of angular velocity and 

time are permanently stored on magnetic disk and the 

analysis sequence commences. 

It should be noted that the A to D converter output value 

of angular velocity and the value of time in giffies are 
both integer, binary values and are therefore discrete in 

range, yet the quantities being measured are continuous. 
The conversion of these measurements to their appropriate 
units creates real' values, but their range is still 
discrete. The values of angular velocity and time 

recorded during all tests are multiples of the following 

Base Units: 

Base Unit of angular velocity: 0.1277581 reds""" 
Base Unit of time: 0.0166667 sec 
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Index No. 

i 

Angular Velocity 

(rad/s) 

fj 

(P. U. 

Time 

(S) 
X, 

(P. U. 

0 60.9406143 477 0.866667 52 

1 61.4516467 481 0.966667 58 

2 61.5794048 482 1.050000 63 

3 61.8349210 484 1.150000 69 

4 62.2181953 487 1.250000 75 

5 62.4737115 489 1.316667 79 
6 62.7292277 491 1.416667 85 

7 62.9847439 493 1.500000 90 

8 63.2402601 495 1.600000 96 

9 63.6235345 498 1.700000 102 
10 63.8790506 500 1.783334 107 
11 64.1345668 502 1.883334 113 
12 64.5178411 505 1.966667 118 

13 64.7733574 507 2,066667 124 
14 65.4121478 512 2.150000 129 
15 65.4121478 512 2.250000 135 
16 65.9231802 516 2.350000 141 
17 65.9231802 516 2.400000 144 
18 66.1786964 518 2.500000 150 
19 66.4342127 520 2.583334 155 
20 66.6897288 522 2.683333 161 
21 66.9452451 524 2.766667 166 
22 67.2007612 526 2.866667 172 
23 67.5840356 529 2.966667 178 
24 67.8395518 531 3.050000 183 
25 68.0950679 533 3.150000 189 
26 68.3505842 535 3.233334 194 
27 68.7338585 538 3.333334 200 
28 69.2448908 542 3.433333 206 
29 69.3726489 543 3.500000 210 
30 69.6281653 545 3.600000 216 

Table A2.1: Typical Recorded Values of Angular Velocity and Time 
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The absolute error for any of these digital measurements 

is heavisided due to the manner in which analogue measure- 

ments are truncated during digital conversion. 

The figures in Table A2.1 are typical of the measurements 

made during the performance testing of the model V-VAWT, 

and will be used to illustrate the calculations that are 

made during the numerical differentiation process. 

The value of a function f (x,., +h) and f <x,, -h) can be esti- 

.. 
), fI, )IX, 

-, ) mated, given the values f (x, fII (X, _ fIII( 

etc.., using the Taylor's Series: 

f, =f (x., +h) =f (x0) + hf 1 (x. ) + h2f 11 (xý, ) + 
h3f 111 ft, ) (A2.1) 

21 31 

f -, =f (x. -h) =f (x. ) - hf 1 (%) + 
h2f 11 (xo) h31f 1', (C2) (A2.2) 

21 31 

Rearrangement of these two equations yields: 

fc1l =fI- 
f-, h2f III<c< 

xo+h W. 3) 
2h 6 

Thus the rate of change of f (x) with respect to x at x, -.,,, 

can be approximated by: 

f, (X. ) -f 
(xo+h) -f (x. -h) (A2.4) 

2h 

where the truncation error is: 

-h2f III (c) 
x. 5-h <c<x., +h W. 5) 

6 

From the, measurements of angular velocity and time, the 

rate of change of angular velocity with respect to time, 
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at a particular time, can be estimated using equation 
(A2.4). The equation is slightly modified for use with 
the measurements stored in the computer so that: 

ft - fl-ri 
(A2.6) 

X1 - XI-M 

where: 

0=f, W. 7) 

The calculation of ca and co using equations (A2.6) and 
(A2.7) respectively is easily performed using the micro- 
computer, however the accuracy of these calculated values 
is crucially dependent upon the Btepwidth h. The trun- 

cation error is given by (A2.5) where: 

2 
Xi-M W. 8) 

The smaller h is, the smaller the truncation error. 
However, when using the digitally stored measurements of 

angular velocity a nd time for the numerical calculation of 

angular acceleration, rounding error must be considered. 
If h is small, fj and fi-, are almost equal and the round- 
ing error in calculating (fj-ft_,, ) may be comparable with 
the size of (fj-fj_. ). Similarly, x. and x, -. are almost 
equal and the rounding error in calculating may 
be comparable with the size of Consequently a 
large relative error will result when calculating (a using 
equation (A2.6). 

Table A2.2 illustrate how the relative error changer- with 
stepwidth using the measurements given in Table A2.1. 
Note that the rounding error on all I per unit' values is 
+1, so the rounding error in and (x, -x, -.,, ) will 
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Let i= 30, let the index number stepwidth n be varied 

as shown, and let: 

61 a relative error in 

relative error in 

relative error in calculation of (z 

relative errors 

n fj Xj fl-, Xi-M ft -fl-" Xi-XI-" 6'r t 6'. S. 

1 545 216 543 210 2 6 t5O% i17% ! 67% 

5 545 216 533 189 12 27 ±8% ±4% t12% 

10 545 216 522 161 23 45 ±4% t2% ±6% 

20 545 216 500 107 45 109 ±2% ±1% ±3% 

30 545 216 477 52 68 164 ±1% 

Table A2.2:, The Variation of Relative Errors with 

Stepwidth Size 

be ±1.. Also note that in calculating (z the computer 

program uses a constant value of n, the index number 

stepwidth, and in reality the stepwidth h varies with each 

calculation. 

The data used for this analysis illustrates clearly the 

need to use a large index number stepwidth to ensure 

accurate calculation of the instantaneous angular accel- 

eration. The acceleration of the rotor is small at both 

low rotational speeds and where the rotor speed is nearing 
the equilibrium speed where the magnitude of the aero- 
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dynamic torque is equal to the magnitude of the parasitic 

torque losses. 'At small angular accelerations it is even 

more necessary to use a large index number stepwidth, to 

the ensure accuracy of calculation. The truncation error, 

however, using equation (A2.6) is proportional to hý` and 

fIII (C). While increasing the stepwidth n from 10 to 30 

units reduces the relative error in to by a factor of four, 

the truncation error in increased by a factor of nine!. 

However, f... (c) is the rate of change of the rate of 

change of angular acceleration with respect to time, with- 

in the time interval' (x,. -xj_,, ), and in real terms can be 

considered insignificant. Therefore the truncation error 

can be considered to be insignificant, even though its 

magnitude is increased with increasing stepwidth si-e. 

The angular velocity, ca, is calculated by simple linear 

interpolation using equation (A2.7), and is the velocity 

at which the angular acceleration of the rotor is 45. The 

relative error in calculating 4) is small, typically less 

then ±1%, however, with what confidence can linear inter- 

polation be used over large stepwidth intervals? 

The confidence with which linear interpolation can be 

applied to calculating ca is dependent upon the change in 

angular acceleration over the time interval (xt-xI-")- 

Where the angular acceleration of the rotor increases over 

the time interval, the calculated value of o will tend to 

be larger then actual, and where angular acceleration 
decreases over the time interval, ca will be smaller than 

actual. 

The difference between actual and calculated values of (z 
will increase with increasing stepwidth. However, with an 
index number ste'pwidth of n= 30 and letting i= 30, then 
f: L 545, and f: L-., = 477. Using equation (A2.7) gives 
ca 511 ±1, which compares favourably with the half- 
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interval measurement of angular velocity, f1 4-., =5 12. 

Therefore, there appears to be no need to use a more 

complex interpolating equation to calculate instantaneous 

angular velocity then that of equation (A2.7). 

A2.2: Conclusions and Recommendations 

Initially the index number stepwidth war. set at n= 10, 

but for the post -experimental analysis the stepwidth war, 

increased to n= 30, and all results presented in Chapter 

Five are calculated with this larger stepwidth. Each test 

run was limited to maximum of 500 measurements, but often 
this limit was not reached before the run was stopped. 
With a stepwidth of n= 10 the number of calculations of CO 

possible was 490, but this is reduced to 470 when the 

stepwidth is increased to n= 30. The calculation of 0 is 

therefore restricted to the midvalues of the recorded 

dataset. No cal-culations were possible at the extremes of 

the dataset without changing the index number stepwidth 

but, for simplicity, the stepwidth remained constant for 

all calculations. A future modification to the computer 

program might allow the stepwidth to be dynamically 

altered to ensure the range of calculations and the 

accuracy of each calculation is maximised. 

The sensitivity of the angular velocity measurements would 
be increased if the input speed of tachogenerator were 
increased. It is recommended that. for future experi- 

mentation, the Queen Mary College test facility be 

modified to include a step-up gearbox or belt drive 
between the rotor shaft and the tachogenerator shaft. A 
4: 1 step-up ratio would maintain an accuracy of ±1ý6% for to 
with a stepwidth of only n= 10, while ensuring gr 

' 
eat er 

confidence in the interpolated value of ca and increasing 
the number of possible calculations derived from the 
maximum dataset of 500 measurements for each test run. 
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Appendix Three: Published Papers Presented at Wind Energy 

Conferences 

The initial results of the experimental performance 

measurements of the model V-VAWT with pitching tips were 

presented at three wind energy conferences. The papers 

were subsequently published in the proceedings of these 

events, and are reproduced here for completeness. 

Each paper was jointly written with other members of the 

V-VAWT development team, but those for the Intersol 85 and 
BWEA 8 conferences were presented and read by the author 
himself. The Intersol 85 and Windpower 85 conferences 
also required poster presentations to be prepared. 

The three technical papers are reproduced in the chrono- 
logical order of presentation: 

ROBOTHAM, A. J. j SHARPEO D. J. TAYLORO D. A. and BOYLE, 
G. A. : "Further developments in the Taylor ' V' type 
VAWT concept". Proc. Intersol 85 World Solar Energy 
Congress, Montreal, Canada, June 1985. 

BOYLE, G. A. I ROBOTHAM, A. I. , SHARPE, D. J. and TAYLOR, 
D. A.: "The Taylor IV' type vertical axis wind turbine: 
current status". Proc. Windpower 85, San Francisco, 
U. S. A., August 1985. 

ROBOTHAM, A. 1. and SHARPE, D. I. : "The aerodynamic 
control of the IV' type vertical axis wind turbine by 
blade tip control". Proc. 8th British Wind Energy 
Association Conference, Cambridge, U. K.. March 1986. 

The author has also prepared two internal reports at The 
Open University in which the review of wind turbine 

control methods E323 and the design of the model V-VAWT 
E553 have been reported. 
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ABSTRACT 

This paper describes the development of the Taylor IV' Type Vertical Axis 
Wind Turbine (V-VAWT) which was first described at the 1983 ISES Solar 
Energy Congress in Perth, Australia. 

The aerodynamic performance prediction model VAWTrAY has been enhanced in 
VAWTrAY6, and further wind tunnel tests have been carried out using 
two-bladed models, two of which are described. 7hese tests have produced 
results which are close to the values predicted by VAWrrAY6, and which have 
demonstrated that power control of the V-VAWT can be achieved by varying the 
pitch of the blade tips. 

The design of a prototype 5kW machine, that utilises lightweight, composite 
blades, and the continued development of the V-VAWr concept is discussed. 

KEYWORDS 

IV' type Vertical Axis Wind Turbine; Double Actuator Disc Theory; Dynamic 
Stall; VAWTTAY6 Aerodynamic Performance Model; Tip Pitch Control; Wind 
Tunnel Tests; Wind Energy; Taylor V-VAWT. 

INTRODUCTION 

Wind energy promises to be one of the first renewable energy sources to be 
cost-competitive with conventional fuels, -but to fufill this promise wind 
turbines will need to be reliable and low in cost. 

The IV' type vertical axis wind turbine (V-VAWT) was conceived by Derek 
Taylor at The Open University, and first described by Sharpe and Taylor Ill. 
The turbine has an inherent simplicity which could lead to an inexpensive 
machine that is easy to maintain and highly reliable, Fig. 1. 

As well as the usual advantages of VAWrs over horizontal axis wind turbinest 
the V-VAWr has some additional favourable features. 7be rotor uses two, or 
three, straight blades mounted in the form of a IV' on a short tower (just 3 
or 4 metres high), and supported by bracing cables from a central pylon. 7he 
blades are 'straight, untwisted and the planform may be tapered or untapered. 
The turbine is self starting, which is unusual for vertical axis machines. 



Aerodynamic control devices such as spoilerst flaps or variable pitch tips 
can be used to regulate power. This simple arrangement avoids the use of 
heavy cross arms, a tall tower or curved bladest and allows easy access to 
the generator, transmission and the rotor itself. 

AERODYNAMIC PERFORMANCE 

The prediction of the aerodynamic performance of the V-VAWT uses the 
computer program VAW7rAY [1], which embodies Sharpe's extended multiple 
streamtube theory and dynamic stall effects [2]. This computer model has 
been enhanced with VAWTrAY6 to take account of blade inclination, blade 
shape, blade taper, blade pitch (and twist) and blade tangential offset. A 
study of the effects of these features on overall performance has been made 
by Sharpe and Taylor [3] to establish the optimum aerodynamic configuration. 

WIND TUNNEL TESTS 

A number of model V-VAWTs have been tested in the exit of a straight 
throught blowdown wind tunnel at Queen Mary College, London. one of these 
models has been used to check the aerodynamic performance predictions of 
VAMAY6, and one to investigate the variation of tip pitch on overall 
turbine performance. 

The well established acceleration method (4] was used to derive values of 
rotor torque and power from measurements of rotational velocity in constant 
wind speed conditions. The test results presented here have been corrected 
for cable drag, bearing friction and tunnel blockage. Cable drag was the 
most significant of these corrections and was measured separately. 

The first of these recent models (model-A) had two blades of uniform 60mm 
chord and were 500mm in length, giving an aspect ratio of nine. Each blade 
was held at an inclination of 45 degrees to the vertical by a pair of cables 
attached 120mm from the tip. The blades had a NACA0018 aerofoil cross 
section. 

The wind tunnel test results for model-A at a wind speed of 13.7 M/s are 
shown in Fig. 2. These are compared with theoretical predictions based on 
NACA0012 aerofoil data (data for the NACA0018 section has not yet been 
compiled for use with VAWTrAY6). The small difference between the 
theoretical and experimental results is due, in part, to the different 
aerofoil sections. The superior post-stall behaviour at the lower tip speed 
ratios and the higher profile drag at the higher tip speed ratios of the 18% 
section is clearly illustrated. A similar difference has been demonstrated 
by Sharpe and Taylor [3). 

These test results were regarded as encouraging and established the 
aerodynamic prediction model as a useful design tool. Predictions for 5kW 
and lOOkW V-VAWTs using VAW7TAY6, Fig. 2, show that Power Coefficients in 
excess of 0.3 can be achleved. The difference between the three theoretical 
predictions shown in Fig. 2 is due primarily to Reynold's Number effects. 

The second model (model-B) . Fig. 3, was constructed with two blades of 



uniform, 8(kTm chord and a length of 665mm. Each blade was held at an 
inclination of 45 degrees to the vertical by a pair of cables attached 1151rm 
from the tip. For strength the blades had a NACA0025 aerofoil cross section. 
Additionally, each blade had a moveable tip portion measuring either 5%, 10% 
or 15% of the blade area. 7be pitch angle of each tip portion was adjustable 
and could be pre-set with either positive# 'nose-in' pitch or negative, 
'nose-out' pitch. Using this model it was possible to study the effect of 
the variation of both tip pitch and tip area on overall performance. 

The results of the wind tunnel tests are plotted in Fig. 4, and show how tip 
pitch for tip to blade area ratios of 5%, 10% and 15% affects the 
performance of the turbine. 7he results clearly show that 'nose-in' pitch 
encourages the stail condition, thereby decreasing the developed power of 
the turbine. Figure 5 shows how the loss of developed power increases as the 
tip area increases, for a +5 degrees nose-in pitch position. 

It appears that developed power can be increased by small nose-out pitch 
settings, since in such positions the stall condition is delayed at low tip 
speed ratios, and drag decreased at high tip speed ratios. From the results 
for all three tip areas (though not all reproduced here), a nose-out pitch 
of -5 degrees seems maximise the developed power. 7bese nose-out results are 
compared to those for nose-in pitch settings in Fig. 4. 

Predictions of turbine performance for different tip pitch positions have 
been derived from the theoretical model using NACA0012 aerofoil data (data 
for the NACA0025 section has not yet been compiled for use with VAWTrAY6). 
Wbile it is not possible to match these predictions to the test results 
because of the different aerofoil sections, the effects of nose-in pitch, 
nose-out pitch and tip area are demonstrated, Fig. G. 

The high starting torque developed by the V-VAWT has been predicted by the 

-theory and confirmed by the results of the wind tunnel tests, Fig. 7. Also 
it seems an increase in starting torque is possible with small negative, 
nose-out pitch positions. 

FIVE KILOWNIT V-VAWT 

A SkW prototype,, Fig. 8, has been designed and is scheduled for erection in 
October 1985. The 5.5 metre blades for this machine are being manufactured 
by Gifford Technology Limited, at their own cost, from composite materials. 
The predicted performance of this machine is shown in Fig. 2. 

CONCLUSIONS 

Recent wind tunnel tests of the Taylor IV' type vertical axis wind turbine 
have shown the aerodynamic performance prediction model to be a useful and 
valid design tool, and that further tests have demonstrated that both 
overspeed control and power regulation can be achieved by variation of tip 
pitch. These results are being used for the further development of this VAWT 
concept, which includes the design and erection of a 5kW prototype V-VAWT. 
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Fig. 8 General view of three-bladed SkW prototype V-VAWr 
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ABSTRACr 

The paper describes the current status of the Taylor IV' Type Vertical Axis wind Turbine (VAW`r)O which 
was first described at the 1983 XSES Solar World Congress in Pertho Australia. The turbine which 
resembles the letter "V", has an inherent simplicity and a number of innovative features which Could lead 
to an in*xpensive machine, both in terms of capital and maintenance costs. 

An aerodynamic performance prediction model# VAWTTAY6. for this wind turbine has been developed and 
enhanced, and the effects of certain parameter changes on overall machine performance are compared. The 
results show that power coefficients In excess of 0.30 are achievable. The turbine Is also self-starting 
even at relatively low solidities. 

wind tunnel test results are presented for models with two blades, which match closely the values 
predicted by VA%=AY6. Experiments on a V-VAWT model with blades which have variable pitch tips have 
also been carried out and their effects on performance is discussed. An experimental 8.8 metro@ 
diameter prototype is beinq desiqned and is described. 

INTRODUCTION 

Wind energy promises to be one of the first of the 
renewable energy sources to be cost-q: ompotitive 
with conventional fuels, but to fulfill this 
promise, wind turbines will need to be reliable 
and low in cost. The turbine that forms the 
basis of this paper has been developed with these 
factors very much in mind. 

Figur* I shows a number of cross-flow vertical 
axis wind turbine CVAWT) configurations conceived 
by Derek Taylor at the Open University, and for 
which international patents are pending. The 
configurations are broadly similar and the common 
feature is that the rotor consists of straight 
blades, inclined at angle 0, from the vertical 
and attached by one end to the vertical shaft. 
Each of the configurations operates in the same 

vy 

' 
( 

' H 4 ". 

FIG. I VARIOUS "V" AND "X0 TYPE CONFIG- 
URATIONS UNDER CONSIDERATION- 

manner as a conventional Darrieus VAWr# and when 
rotating resemblo a cone, (or twin cones point 
to pointf in the case of *X* VAWW. 

However, whilst all those turbines are under 
consideration# research has so far c*ntred an the 
ov, type vAwr (rLqure lb) with two or three blades. 
The Innovative V-VAWr (rLq. 2) consists of a rotor 
comprising two or three blades in the form of a 
*V*, supported by bracing cables from a central 
pylon, is mounted on a short, stocky sub-tower 
which need be no more than about 3-4 metres in 
height whatever the size of the turbine. The 
blades are straight and untwistedo but they cin be 
tapered. Aerodynamic control devices such as 
spoilers and rotatable tips can be easily employed. 
This simple a-rrangement avoids the use of heavy 
cross arms or curved blades and a tall towere yet 
retaining all the advantages of vertical axis wind 

FIG. 2 V-VAWr WITH 2 BRACED BLADES. 
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turbines. such as ground mounted transmission and 
generator, and the lack of need for a yawing 
mechanism. Blades can be raised and lowered from 
hinges at the root making erection, inspection and 
maintenance relatively simple. The bulk of the 
rotor swept area is located in the higher wind 
speed zone and the turbine produces a high starting 
torque. 

For a giv*n-swept area the V-VAWT has longer blades 
than horizontal axis wind turbines (RAWrs) (though 
shorter than for a Darri*us)e but the blades of a 
horizontal axis wind turbine system account for 
only a small proportion of overall cost and it is 
expected that the cost of the longer blades in the 
V-VAWr will be more than offset by savings in the 
tower design. Blade weights on the other hand 
need be no heavier because of the method of support. 
Blade uwLnufacturing techniques axe similar to, but 
simpler than those employed on HAWTs because of the 
lack of twist. 

For small machines the ability to fold the blades 
like an Umbrella will allow the whole rotor to be 
assembled in the factory complete and later 
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unfolded on site. For the largest machines the 
blades may be constructed and transported In 
sections for assembly at the site. This Is 
feasible because the bracing cables put the blades 
into compression which greatly simplifies the form 
of the required Joint. 

AERODYNAMIC PERFORMANCE 

To determine the aerodynamic performance of the 
V-VAWr a theoretical computer model* VAWrrAY6111 
has been developed and enhanced. This model Is 
based an the author's extended multiple 
streaztube theory J21. 

The theory is a Double Actuator Disc model# which 
includes a dynamic stall analysis# flow curvature 
effects and flow expansion. it uses serofoil 
data for the NACA 0012 &*rofoLl profile spread 
over a range of Reynolds Numbers from 40000 to 
3 million. For each blade element the Reynolds 
Number is calculated and suitable aerofoil data 
is chosen. 
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FIG. 7 EFFECT OF BLADE TAPER RATIO ON 
PERFORMANCE OF SkW V-VAWT. 

The computer model allows for variations of blade 
inclination, blade taper, full and partial span 
blade pitch angle (and twist) and tangential 
offset. The program was used to predict the 
performance characteristics of a wind tunnel model 
V-VAWT (Model A). Model A had two 500mm long 
untapered blades of 60mm chord and an aspect ratio 
of nine. Each blade was hold at an inclination of 
45 degrees from the vertical by a pair of cables 
attached 120mm from the tip. The blades had a 
NACh 00113 aorofoLl cross section for both 
structural and aerodynamic reasons. Figure 3 
compares the theoretical and experimental power 
coefficient curves for Model A. 

The difference between the two curves is due 
primarily to the different thickness of the 
aerofoils used on the physical and theoretical 
models. The effect of aerofoLl thickness on the 
CP-X curve of VAWTs was previously observed 
during experiments with D&rrious VAWrs tl) and (3) 
and shown in Figure 4. KWA 0018 asrofoLl data is 
currently being compiled into the format suitable 
for MiTTAY6. 

The well established acceleration technique was 
used to measure rotation speed, torque &Ad power. 
The model V-VAWr was tested in a wind speed of 
13 m/s at the end of a blow-down wind tunnel at 
Queen Mary College and the test results were 
corrected for cable drag bearing friction and 
tunnel blockage. 

The wind tunnel test results were regarded as 
encouraging " confirmed the use of the model as 
a design tool. During these wind tunnel tests the 
V-VAWr demonstrated a high starting torque. This 
was predicted by VAWTTAY6 and represents a major 
advantage ever existing low solidity VAWTs, 
enabling stand-alone operation in remote sites. 

P)UtAMETRIC STVDY 

In order to obtain an idea of the optimum 
parameters for the V-VAwr, a study was undertaken 
with the VAWITAY6 model to establish the effects on 

fit. I tyricl of RAO( Aptcl &All* ed mrse"IC9 V ItIl f-varl 

FIG. 8 zrrEcr or BLADe ASPECT RATIO ON 
PERFORMANCE OF SkW V-VAWT. 

performance of changing the blade inclination 
angle, number of blades. blade taper, tangential 
offset and aspect ratio. rigures 5 to 6 show the 
effects of these parameter changes an the 
performance of a V-VAWr with S. 5 matte long blades. 

"=DYNWC co4mf* 

As with other wind turbines the V-VAWr requires 
some means of aerodynamic control for power CC 
overspeed regulation. The V-VAwr can however 

utilLso-existing aerodynamic control mechanisms 
currently employed an HAwTs, and one such device 
that is being examined for utilLsation an the 
V-VAWr Is that of partial span pitch control 14). 

A further wind tunnel model (model B), rigure 9, 
was constructed with two untapered, 665mm long 
blades of 80mm chard. Each blade was hold at an 
inclination angle of 4S degrees by a paLr of 
cables attached IlSmm from the tip. For strength* 
the blades had a NACA 0025 &erofoil cross section. 
Additionally, each blade had a moveable tip 
portion measuring either St, 10% or 15% of the 
blade are&. The Pitch angle of each portion was 
adjustable and could be pr*-set with either 
positive# 'nose-LA' Pitch at negative *nose-out' 
pitch. Using this model it was possible to study 
the effect of the variation of both tip pitch 
area on overall performance. 

The results of some of these wind tunnel tests are 
pl*tt*d in rigures 10 and lie and show the sann*r 
in which the performance is affected by tip pitch 
and blade area ratio* of the moveable tip portion. 

Predictions of turbine performance for different 

tip pitch positions have boon derived from 

VAWMAY6 using NACA 0012 aerofoil data (data for 

the NACA 0025 section has not yet been compiled 
for use with vh%=Ay6). Whilat it is not possible 
to in-Itch these predictions to the test results 
because of the different aorofoLl S*CtLonso 
VAWrrAY6 has demonstrated the effect of tip pitch 
and area on the performance of model 0. 
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TIG. 10 MEASURED EFFECT OF TIP PITCH ON THE 
PERFORMANCE OF MODEL-11 MR 5% TIP 
TO SLADE AREA RATIO. 

As can be seen, a moveable tip of just 5% blade 
area with a positive pitch of 25 degrees, seems 
to be suitable, for overspeed control. It is also 
possible to achieve a small increase in starting 
torque with small negative pitch of the tip 
portion. 

ýT-BRAKE 

In addition to the'partial span study, another 
somewhat simpler means of aerodynamic control* 
which avoids discontinuities in the structural 
integrity of the blades is being investigated. 
This consists of a control surface got across 
the tip of the blade like a letter *T'f and has 
been dubbed the 'T'-brake. This control device, 
shown in rigure 12, in capable of acting in both 
passive and active modes of operation and is the 
subject of patent applications. 

Under normal operation the control surface is 
maintained in line with the chord of the blade$ 
and in the control mode the surface rotates about 
an axis set at 90 degrees to the blade surface. 
in order to avoid the possibility of stall 
flutters the T-brake control surface has a slender 
body planform, allowing deployment angles 
approaching 40 degrees without stall occurring. 
A number of'planforms. including slender 
delta are being evaluated. 

The T-brake is to be employed on a free air 
prototype, initially as a passive ov*rsp"d 
control device activated by centrifugal force 
acting against a spring located at the hub, 
and connected to the T-brake via a cable linkage. 

FREE AIR PROTOTYPE V-VAWr 

An experimental prototype, with a swept area of 
19 squ&r* metres and S. 5 metr* long blades, has 
been designed initially in a two bladed 
configuration for variable speed operation (rigur* 
13). it is to be tested on the Alternative 
Technology Group's wind turbine field test 

facility later this year. These blades have been 
designed in collaboration with Gifford Technology 
Ltd and are being manufactured at their own cost. 

Each composite blad*, illustrated in rig. 14. has 
& taper ratio of 2 and an aspect ratio of 16 and 
utilises a novel $Par-less form of construction. 
This has resulted in a very lightweight type of 
blade, each with a mass of 18 kilogrammes. 

The toot end of each blade is attached via a pivot 
joint to the rotor hub, and the blade an§le is 
locked via a pLA joint between hub/blade struts 
and the blade root. This pin is remov&blet 
allowing the blade to be tilted down for 
inspection, removal or installation. it also 
allows the blade to be folded up like an 
umbrella tA) facilitate transportation. Zach 
rotor blade is supported at the 70% spanwLs* 
position by a pair of cables, which are attached 
to a central pylon. 

The design of this prototype is based around an 
existing guyed mast and Lncor; x)rates an internal 
tower spindle with an external shaft tube. A 
bearing is located at the top of the internal 

tower spindle and at the rotor hub. ýShaft power 
is trans&Lti*d by a2 ttage belt drive to aS 
kilowatt alternator. 

The predicted performance of the free Air 
prototype Is shown In rLgure 3 together with that 
for a 100kw sized V-VAWr, and as can b* seen# 
power coefficients in excess of 0.3 are 
anticipated for full scale machines. 

CONCLUSION 

Recent wind tunnel tests of the Taylor 'Y' type 
vertical axis wind turbine have shown the 
aerodynamic performance model-to bo a useful and 
valid design tool, and that further tests have 
demonstrated that both ovtrspe*d control and Power 
regulation can be achieved by variation of tip 
pLtch. 
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FIG. II MEASURED EFFECT Or TIP AREA IN THE 
PERFORMANCE OF MODEL-B FOR +5% 
NOSE-IN PITCH. 

The concept is continually being refined and the 
free air research prototype will be used an a test 
bed to develop the turbine further. 
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SYNOPSIS 

7his paper presents results of wind tunnel tests carried out on a 
small V-type Vertical Axis Wind Turbine (V-VAWT). Ibis model wind 
turbine was specifically designed to study the effect of tip area and 
tip pitch on the performance of this novel vawt. The results have 
demonstrated that tip pitch is highly suitable for overall control of 
the V-VAWr and that tip areas as little as 5% of the total blade area 
could provide both power regulation and overspeed control. While it 
has not been possible to match the predicted performance data directly 
to these tests results, the computer model VAWTrAY6 can be used with 
some confidence to predict the performance of larger sized V-VAWTs. 

1 INTRODUCTION 

The V-type Vertical Axis Wind Turbiner conceived by Derek Taylor at 
The Open University, has been described at a number of international 
wind energy and solar energy conferences [1-4]. 

The development of the V-VAWT concept has concentrated on the 
enhancement of Sharpe's aerodynamic performance prediction model 
VAWITAY6, the verification of this model with data from wind tunnel 
tests of small V-VAWTs and the design and construction of a 5kW 
free-air wind turbine. The 5kW V-VAWr has recently been erected on 
the Appropriate Technology Group's field test facility at The Open 
University, but only preliminary evaluation of the performance of this 
machine has been conducted. 

This paper will consider the aerodynamic control methods that have 
been perceived as suitable for rotor power control and overspeed 
protection of a medium sized V-VAWrj and will compare the predicted 
performance and measured performance of a small V-VAWT with pitchable 
blade tips, Fig 1. 

2 AERODYNAMIC PERFORMANCE PREDICTION 

The aerodynamic performance of the V-VAWr is modelled using the 
computer program VAWrrAY6, which embodies Sharpe's extended multiple 
streamtube theory [5]. The predictions using VAWTrAY6 have been 
verified by wind tunnel tests with model V-VAWTs undertaken at Queen 
Mary College, London [2]. 

POWER REGULNTION AND OVERSPEED CONTROL 

All wind turbines, whether they be of horizontal axis or vertical axis 
configuration, require some form of power regulation and overspeed 
protection, either actively or passively activated and the V-VAWr is 
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no exception. 

Blade tip control has 
turbines of all sizes 
overspeed control. R 
the authors employing 
75kW wind turbine; an 
with moveable tips at 

been extensively used on horizontal axis wind 
and has proven to provide power regulation and 

Dwever the only vertical axis machine known to 
such control is the recently developed Westwind 
'HI-type VAWT with two blades of fixed pitch but 
both ends of each blade. 

Blade tip control is also considered highly suitable for the V-VAWTI 
but the tip device known as the T-braýe [4] has a number of structural 
advantages and because of its simplicity is favoured for the 5kW 
free-air V-VAWT. However, in order to assess the potential of-tip 
pitch control, a wind tunnel sized V-VAWT with moveable tip portions 
was constructed and its performance evaluated at Queen Mary College. 

3.1 Wind tunnel, test model and testing technique 

A two-bladed model V-VAWr of tip diameter 940ran was constructed to 
assess the potential of tip pitch'control. Each blade was 615mm in 
length, with a uniform chord of 80mm. For strength the blades were of 
a NACA0025 aerofoil cross section and were made from English Ash 
encapuslating a high tensile aluminium spar for rigidity. Each blade 
was held to the hub at the 30% chord, inclined at 45 degrees to the 
vertical and supported by a pair of cables attached 115mm from the 
tip. 

Additionally, each blade had three moveable tip portionst the area of 
each measuring 5% of the total blade area. 7he pitch angle of each 
tip portion was adjustable and could be pre-set with either positive, 
'nose-in' pitch or negative, 'nose-out' pitch. 7he position of each 
tip portion was locked by two grubscrews that were accessible through 
the leading edge. During tests, the access holes were filled with 
plasticene and covered with vinyl tape to restore the leading edge 
profile. 

, 
Using this model, the effect of variation of tip pitch on 

overall performance for tip areas of 5%, 10% and 15% of the total 
blade area on overall turbine performance has been studied. 

The model V-VAWT was tested in the blowdown wind tunnel at Queen Mary 
College using the acceleration method [6], which is a simple and quick 
method for determining the complete Cp-lamda characteristic of the 
turbine. 

The test results have been corrected for cable drag and bearing 
friction, both of which were measured separately. Cable drag is the 
most significant of these parasitic losses and was measured in a 
manner previously described [2]. Corrections for wind tunnel blockage 
have not been included because the experiments were conducted in an 
open jet tunnel. 

The rotor would only accelerate to a rotational speed where the torque 
being developed by the turbine was equal in magnitude to the parasitic 
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drag losses from the cables and the bearings. In order to obtain 
performance data for rotational speeds greater than this equilibrium 
speed,. it was necessary to drive the turbine via a friction contact 
with an electric motor. When the motive power was released, the 
deceleration of the turbine was measured. 7bis technique allowed 
measurement of rotor torque over a greater range of tip speed ratios 
and tip pitch settings. 

All tests were conducted at an average Reynold's Number of 
approximately 2-300000 which is much lower than the operating 
Reynold's Numbers of larger-sized, free-air machines. 7be consequence 
of testing at such low Reynold's Numbers is discussed below. 

3.2 Wind tunnel test results 

Some of the results from this series of tests are presented in figures 
2-6. Figures 2-4 show how Power Coefficient is affected by changes in 
tip pitch angle for tip areas of 5%, 10% & 15% of the total blade 
area. Figure 5 compares the effect of tip area for a pitch setting of 
+5 degrees. 

These results illustrate the effectiveness of tip pitch control as a 
means of-power modulation and overspeed protection. Even a 5% tip 
arear at pitch angles in excess of +25 degrees, can effectively 'kill' 
all the power developed by this model wind turbine at all but the 
lowest tip speed ratios. 

Looking again at figures 2-41 it is seen that Power Coefficient is 
enhanced with small negative (nose-out) pitch angles. From the test 
results available, a pitch angle of -5 degrees appears to optimise 
this enhancement. Enhancement of power with small, full-span pitch 
offsets was noted by Stacey and Musgrove [7] for the 'HI-VAWT, so a 
similar effect was not unexpected with the V-VAWT. 

Figure 6 shows how Torque Coefficient varies with pitch angle for a 
5% tip area. It shows the high starting torque that is a feature of 

the V-VAWT, and illustrates how a small negative pitch offset enhances 
the turbine performance. Note that the enhancement of developed 
torque is apparent at all tip speed ratios for a -5 degree pitch angle 
even at starting. 

3.3 Predictions of tip pitch effects 

7he computer program VAWTrAY6 can be used to predict the effect of tip 
pitch on the performance of the model V-VAWr. However, it is not 
possible for these predictions to be matched directly with the wind 
tunnel results because at present VAWTrAY6 uses NACA0012 static 
aerofoil data, whereas the wind tunnel model was constructed using the 
thicker NACA0025 section. 
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Published aerofoil data for the NACA0025 aerofoil section is scarce, 
though Sandia Laboratories have published data for this section that 
has been generated using the Eppler computer code (8]. Despite the 

. 
fact that this data covers angles of incidence upto 180 degrees for a 
range of Reynold's Numbers, none of the data presented for this 
section has been verified by wind tunnel tests. Consequently the 
authors have not used this aerofoil data for predicting the 
performance of the model V-VAWr. Low Reynold's Number static aerofoil 
tests of a NACA0025 section are planned for later this year so that 
more accurate predictions of performance of can be made using 
VAWITAY6. 

However, the predictions of Power Coefficient 
aerofoil data show tip pitch effects that are 
demonstrated by the Wind tunnel tests, Fig 7. 
torque developed by the model V-VAWr and the 
with small negative, nose-out pitch positions 
theory, Fig 8. 

using the NACA0012 
similar to those 
The high starting 

enhancement of torque 
is also predicted by the 

As a result4of these tests, the performance of larger V-VAWTs using 
tip pitch control can be predicted with some confidence. Figure 9 
shows the predicted performance of the 5kW 3-bladed free-air V-VAWr, 
that has been described previously [2-4], and the predicted effect of 
tip pitch, for a 5% tip area. 

These predictions have been made for operational Reynold's Number of 
approximately 1500000, and show how the developed power can be 
destroyed for'pitch angles as little as +30 degrees. The 
effectiveness of a blade tip deployed at a large pitch angle is 
largely Reynold's Number independentr though the lift, and hence 
torque, generated by the fixed portion of the blade will generally increase with Reynold's Number. Consequently as the operating Reynold's Number increases, the tip must be deployed at a larger pitch 
angle to obtain the same net braking effect. The choice of tip size 
and the pitch angle range through which it is deployed will be 
crucially dependent upon the operating conditions and the control 
criterion specified for the machine. At this stage of the V-VAWT 
development however, blade tip areas of approximately 5% of the total 
blade area seem appropriate for both power regulation and overspeed 
control. 

3.4 The T-Brake as a control device 

The T-Brake offers a number of advantages over pitching tip control: 
it can be simply mounted at the blade tip without creating any 
discontinuity in the blade structure; actuation can be of a push-pull 
nature as opposed to pitching, and the swept area of the turbine is 
increased by the additional aerofoil surfaces. However, the effect on 
performance of the T-Brake control surface is very similar to that of 
the pitching the blade tip and can be predicted with some confidence 
using*VAWTrAY6, Fig 10. 
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These predictions should be treated with caution though, since they do 
not account for any flow interaction between the T-Brake and the fixed 
blade. In its pitched position the trailing edge of the T-Brake will 
spoil the flow over the outer portion of the fixed blade. It Is 
therefore likely that these predictions may underestimate the braking 
effect of the T-Brake, but at present it is not possible to quantify 
this underestimation. The T-Brake should also act as an end plate 
thus reducing the blade tip losses and so increasing the lift 
developed by the fixed blade. 

4. CONCLUSIONS 

Recent wind tunnel tests of a model V-VAWT have shown that the 
aerodynamic performance of this wind turbine can be modulated with tip 
pitch control. These tests have demonstrated that both overspeed 
control and power regulation can be achieved with tip areas as little 
as 5% of the total blade area. Some enhancement'of torque at all 
operating speeds has been demonstrated by small negative pitch 
settings. While it has not been possible to match the results exactly 
to predicted data, the use of the aerodynamic prediction model 
VAWTrAY6 for development of larger sized V-VAWTs with tip control 
seems reasonable. 
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