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ABSTRACT 

The structure of the Finney Random Close Packing (RCP) of equal spheres 
has been analysed, together with the influence which such structure 

exerts over the capillary pressure characteristics of geometrically 

similar sphere packings. 

The analysis is centred on the simplicial, or Delaunay cell, which is an 

irregular tetrahedron with apices defined by four immediate neighbour 

sphere-centres. In terms of using RCP as a model porous medium, an 

individual simplicial cell is equivalent to an individual pore. A number 

of measured pore-size distribution parameters are presented for the 

Finney packing, from which it is shown from first principles that 

drainage-imbibition hysteresis is not an intrinsic property of the 

individual pore. 

The nature and degree of randomness which characterises the Finney 

packing is evaluated on two levels. First, by classifying edgelengths as 

either short or long, seven mutually exclusive cell classes are defined. 

Using the binomial theorem it is shown that cells (pores) are not random 

on the level of the individual cell. There are less of the extreme cells 

(with 6 long edges, or with 6 short edges) and more of the bland cells 

(with 3 short and 3 long edges) in the Finney packing than predicted on 

the basis of simple random expectations. Second, the distribution of 

cell classes within the packing is shown to be essentially homogeneously 

random. Evidence for extremely slight cell class clustering is found. 

The drainage and imbibition processes within the packing are simulated 

using pore-level algorithms. The algorithms utilise both the Haines' 

insphere approximation and the MS-P approximation for critical drainage 

meniscus curvature, and the cell cavity insphere radius approximation for 

critical imbibition meniscus curvature. Good agreement with experimental 

data is obtained, and the results confirm that drainage-imbibition 

hysteresis is a direct consequence of the connectivity between cells 
(pores), and is not an intrinsic property of the individual pore. 
Finally, the drainage and imbibition algorithms are adapted to emulate 

percolation theory models. The results prove that the classical bond 

problem of percolation theory does not adequately describe the drainage 

process for RCP, and that the classical site problem does not adequately 
describe the imbibition process for RCP. 

i. 
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CHAPTER 1: INTRODUCTION TO RANDOM CLOSE PACKING (RCP) 

1.1 Context of the present work 

The work presented in this thesis combines two main strands - the 

structure of random close packing (RCP) of equal spheres, and the 

influence exerted by this structure over the capillary properties of 

RCP regarded as a model porous medium. There are extensive 

literatures directly relevant to both strands. The structure of 

RCP, for example, is an important subject in its own right in the 

theoretical physics of the solid state (see for example Finney 1981, 

1982, Ziman 1982 and Zallen 1983), and the now classical literature 

pertaining to the earlier Bernal model of the liquid state (Bernal 

1959,1960(1), 1960(11), 1962,1965,1967 and Finney 1968). 

Although certain geometrical aspects of real RCP structure are well 

known, the actual definition of RCP structure as a whole is still 

not well posed mathematically (Ziman 1982), and hitherto, no real 

RCP model has been analysed at a level of detail appropriate to 

understanding internal capillary processes. The problem of interest 

here is the displacement of one fluid within the interstitial spaces 

of the RCP structure by another, immiscible fluid. 

When two immiscible fluids are in contact within the pore space of a 

porous medium, a discontinuity in pressure exists between the two 

fluids. This pressure discontinuity is called the capillary 

pressure, and its magnitude depends upon the curvature of the 

interface, or meniscus, which separates the two fluids. By 
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convention, one fluid is deemed to wet the surface of the porous 

medium, whilst the other fluid does not. The pore-volume fraction 

occupied by an individual fluid phase is known as the saturation of 

that phase. Thus for a two phase system, the sum of the phase 

saturations must equal unity. A reduction in wetting phase 

saturation, corresponding to an increase in non-wetting phase 

saturation, is described as a drainage process. The converse 

situation, wherein the wetting phase saturation increases at the 

expense of the non-wetting phase is termed imbibition. In order to 

maintain a constant value of the two phase saturations, it is 

necessary to sustain a constant capillary pressure, such that the 

fluid pressure of the non-wetting phase is greater than that of the 

wetting phase. Progressively de-saturating an individual porous 

medium from 100% wetting phase saturation results in the drainage 

capillary-pressure curve for that medium, also shown in figure 1.1. 

It is generally not possible to achieve total desaturation, and a 

residual wetting phase saturation remains in the sample. 

Progressively increasing the wetting phase saturation from the 

residual saturation results in the imbibition capillary - pressure 

curve for the medium, also shown in figure 1.1. The difference 

between the drainage and imbibition curves is known as capillary 

pressure hysteresis. 

In general terms, the capillarity problem can be reduced to a 

consideration of changes in fluid saturations as a function of 

changing the pressure differential across the fluid-fluid interface. 

Increasing the curvature of the convex meniscus of a non-wetting, 

invading (i. e. displacing) phase, for example, results in a net 

increase in invading phase saturation provided the increase in 

pressure is sufficient to permit the increased meniscus curvature to 
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pass through the pore opening, as shown in figure 1.2. Given the 

complete description of pore volume elements and pore opening 

elements for a porous medium it is, in theory, possible to derive 

the capillary pressure curve for that material. This approach is 

well known in principle (Scheidegger 1957, Dullien 1979), however 

the limiting factor in any practical application is generally held 

to be that the structure, geometry and topology of the pore space of 

most disordered porous materials are so chaotic that a precise 

physical description, based on observation, is beyond reach (see for 

example review of porous media properties in Pathak 1981, Heiba 

1985, Sharma 1985, Jerauld 1985 and Ghabaee 1986). The purpose of 

the present work is to undertake just such a physical description 

for a specific random close packing of equal spheres, which embodies 

sufficient disorder to be representative of the general problem, 

whilst remaining a tractable proposition. 

1.2 Sphere Packings 

The study of sphere packings in general, and random close packing 

(RCP) in particular, is truly interdisciplinary. Studies involving 

packings of spherical particles span hundreds of years and many 

fields, from plant physiology (Hales 1727) to the design of novel 

nuclear reactors (Susskind et al 1970, Thadani and Peebles 1966). 

There are unifying themes running through all these works, however, 

which are those of three-dimensional space filling and irregularity. 

The purpose of this section of the introduction is to review the 
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main fields where sphere packings are of interest (section 1.2.1) 

and subsequently to outline the development of interpretations of 

the structure of random close packing (RCP) of equal spheres. 

1.2.1 The interdisciplinary nature of sphere packings 

1.2.1.1 Some definitions 

Some note regarding terminology is important here, because the term 

random close packing (RCP) is specifically taken to mean the local 

energy minimum configuration in space of an assembly of perfect, 

monodisperse spheres. Such a description of random close packing 

only emerged during the 1960's following the work of Bernal (see 

Bernal and Mason 1960 for example), Finney (1968) and Scott (1960, 

1962). One of the most characteristic and constant attributes of 

RCP is that volume fraction of the packing which is occupied by the 

solid phase (i. e. the spheres). This volume fraction is termed the 

packing density, and for RCP it is generally held to be consistent 

with a value of 0.636 ± 0.001 (Gotoh and Finney, 1974). Random 

Close Packing is very reproducible in terms of many of its overall 

physical properties. Such uniformity is, of course, attained in the 

statistical sense, since no two discrete packings can have component 

spheres with identical spatial co-ordinates. Just as no two 

physical RCP structures can be precisely identical, computer 

visualisation of RCP do not all converge on the same structure, 

since there exists no simple algorithm for computing sphere packing 

structure without producing long-range order (Ziman, 1982). 

Forms of sphere packings which do not represent RCP include all 
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regular packings in which some form of identifiable lattice or exact 

periodicity is a characteristic property. Such regular packings are 

well reviewed by Craton and Fraser (1935), Allen (1982,1985), 

Haughey and Beveridge (1969), Hrubiseck (1941) and Mason (1968). 

Other forms of packing embodying disorder, but not conforming to 

maximum packing density are also well known. Such packings are 

generally known as loose, and have been shown to be characterised by 

packing densities of around 0.60 to 0.61 (Haughey and Beveridge 

1969, Scott 1960). Variations on the theme of random, but 

relatively low density arrays of spheres include very loose random 

packings which may be encountered in fluidised beds typical of 

certain chemical engineering processes (Ergun and Orning, 1949), and 

poured random packings in which spheres are poured directly into a 

container (Haughey and Beveridge, 1969). 

1.2.1.2 Hydrology and Soil Science 

The earliest systematic use to which sphere packings have been put 

is attributable to hydrologists and soil scientists, as models for 

examining fluid flow and capillary properties of soils. Schlicter 

(1899) introduced the expression "ideal soil" to describe the use of 

regular sphere packings to represent particulate soil systems. 

Since its introduction, the term ideal soil has taken on a wider 

meaning and has been applied to any packing of equal sized spheres 

(Green and Ampt 1912, Waldron et al 1961, Smith 1933, Morrow and 

Craves 1969). The mathematics and physics of capillary processes 

within a variety of sphere configurations were developed extensively 

during the 1920's and 1930's, despite the absence of a detailed 

understanding of the overall structure of real, disordered packings 
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(Keen 1924, Haines 1925,1927, Fisher 1926, Hackett and Strettan 

1928, Wilsdon 1924, Smith 1933, Smith et al 1930,1931). 

1.2.1.3 Geology: Physical Sedimentology 

Packing of detrital particles in a rock produces sedimentary 

structures of considerable importance. The primary deposition of 

particles and their primary packing impacts directly on the 

subsequent porosity, permeability and capillary properties of the 

final rock. Not surprisingly, therefore, sphere packings have been 

occasionally used as analogues for sedimentary deposition (e. g. 

Pettijohn 1957). Dealing with the geometry of several ideal and 

near ideal assemblages of spheres, Craton and Fraser (1935) 

completed an extensive analysis of the interstitial- void spaces 

arising from a range of packings. Although not central to their 

arguments, they also identified the concept of "throat-planes", 

which are effective constricting regions of the pore space. Craton 

and Fraser concluded that their Case 6 configuration (a rhombohedral 

unit arrangement) is the most common form of packing, occurring as 

colonies within other configurations. Figure 1.3 shows the six unit 

cells considered by Craton and Fraser, and the associated unit voids 

are shown in figure 1.4. Fraser (1935) completed the Craton and 

Fraser (1935) treatise on the application of sphere packing studies 

to natural sediments. Allen (1985) makes reference to the 

significance of sphere packings as an analogue of sedimentary 

structure, and presents a very comprehensive review in his earlier 

work (Allen 1982). His review presents interesting summary diagrams 

showing the relationship between packing density (which Allen refers 

to as concentration) and co-ordination number, which is the mean 
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number of particle contacts per particle. These summary diagrams 

are reproduced in figures 1.5 and 1.6. It is not possible, however, 

to make any significant quantitative inferences regarding the 

capillary properties of any of the packing systems considered in 

Allen's work. 

The nature of the packing between grains in real sedimentary rocks 

plays a signficant part in controlling the storage and permeation of 

fluids within the pore space. Chemical processes including the 

introduction of, and removal of, material within the pore space are 

consequently influenced by packing. Fatt (1958), however, has 

pointed out that microscopic examination of thin sections from 

consolidated sandstones shows that the grains are generally not in 

point contact as they are in sphere packs. In order to investigate 

this aspect Fatt experimented with compressible (rubber) spheres, 

measuring the porosities, electrical resistance of interstitial 

brines and permeabilities as functions of degree of compaction. 

Fatt's work was an early precurser to the grain consolidation model 

of Roberts and Schwartz (1985) and Schwartz and Kimminau (1987) 

discussed in section 1.2.1.4. The problems of physical 

sedimentology for which sphere packings are useful analogues are 

essentially those of the single phase interstitial fluid, in 

contrast to the two phase interstitial fluids (i. e. air and water) 

problem encountered in hydrology and agriculture. 

1.2.1.4 Petroleum and Reservoir Engineering 

Two phase and three phase interstitial fluid distributions are of 

considerable interest to petroleum and reservoir engineers. 

Combinations of phases can include oil, water and gas, and there is 
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an extensive literature on this broad subject. Within that 

literature are numerous references to sphere packings. Morrow 

(1970), for example, makes reference to sphere packings in his 

review of basic principles relevant to the retention of connate 

water in hydrocarbon reservoirs, as do Melrose and Brandner (1974) 

in their review of the role of capillary forces in determining oil 

recovery efficiency during waterflooding of reservoirs. 

During production of oil from porous reservoir rocks, significant 

residual quantities of oil remain entrapped and unproduced. Some 

proportion of this residual oil may exist as snapped-off ganglia and 

blobs of oil, surrounded by water, within the pore space. Egbogah 

et al. (1981) used a cubic packing of steel spheres in order to 

investigate experimentally the movement of residual blobs, or 

ganglia, of oil. In their study on residual oil saturation, Chatzis 

et al. (1982) used bimodal sizes of glass sphere in random 

packings. Two pack structures were used: in one structure clusters of 

small spheres surrounded by larger spheres were investigated, whilst 

the other structure consisted of clusters of large spheres 

surrounded by smaller spheres. Residual oil saturation was shown to 

be independent of absolute pore size (and therefore permeability) 

but was influenced by packing structure. The work by Egbogah et al. 

(1981) and Chatzis et al. (1982) may be regarded as an improvement 

and logical extension of the earlier work of Chatenever and Calhoun 

(1951), who used thin packings of spheres sandwiched between glass 

plates in order to visualise two phase displacement mechanisms. 

Ng et al. (1978) presented a theory for the mobilisation of a blob 

in the pore space of a random packing of equal spheres. However, 
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because Ng et al. used average meniscus curvatures they were able to 

predict only average conditions for blob movement. Mason (1983) was 

able to use a model of the pore space of a random packing of equal 

spheres (Mason 1971) to estimate the specific theoretical 

probabilities of a particular oil blob advancing in single step 

jumps within the pore space. This theory was subsequently evaluated 

experimentally, using random sphere packs, by Yadav and Mason (1983) 

who found good agreement between theory and experiment. Mason and 

Yadav (1983) used the movement of a liquid blob within a packing of 

spheres to test the hypothesis that the capillary meniscus radius of 

a pore, when filling, is the same as the largest meniscus radius of 

the same pore when emptying. They found agreement between 

experiment and theory, confirming the hypothesis and lending 

considerable weight to the argument that multiple interconnections 

between the pores are largely responsible for capillary pressure 

hysteresis in RCP-like structures. Using the approximation for RCP 

radial distribution function proposed by Mason (1971), Mellor (1987) 

also demonstrated that the largest of the four tetrahedral pore 

throats is virtually identical to the tetrahedral pore cavity 

insphere radius for the same pore. This forces the result that an 

individual pore will drain and fill at the same pressure. An 

individual pore within RCP structure, therefore, cannot exhibit 

capillary pressure hysteresis, which must be considered to arise 

from interconnectivity between pores in the packing, as proposed 

earlier by Mason (1982). Mason and Morrow (1984) defined a 

procedure for calculating meniscus curvatures for the complex 

spatial configurations encountered in random sphere packings. 

Knowledge of the curvature of such menisci is central to any pore- 

level analysis of capillary-controlled processes within RCP 
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structures. 

Within the field of petroleum engineering, there is frequent need 

for a rapid and low cost assessment of the range of sizes of pores 

which characterise a particular sample of reservoir rock. Although 

optical and electron microscopy methods are occasionally used to 

measure or visualise pore space (Soeder and Randolph 1984, Ruzyla 

1984, Lin and Hamasaki 1983, Morgan and Gordon 1969, Wardlaw and 

Casson 1978), the most commonly used technique is that of mercury 

porosimetry. The basic method of mercury porosimetry is well known 

and will not be reviewed here (see Dullien 1979 and Scheidegger 1957 

for comprehensive reviews) save to state that the so-called "pore 

size distribution" of mercury injection is in fact not the frequency 

distribution of pore sizes which the name implies. For reservoir 

rocks it is essentially impossible to use mercury injection to 

derive unique relationships regarding the distribution of pore 

throats, pore bodies and interconnectivities between these elements. 

RCP structures, however, have been used frequently as a reference 

material in mercury injection research programmes, primarily because 

RCP is a somewhat less chaotic system than reservoir rocks, for 

which independent meaningful estimates of pore dimensions are very 

difficult to achieve (Iczkowski 1967, Frevel and Kressley 1963, Bell 

et al 1981, Smith and Stermer 1985, Smith and Schentrup 1987, Smith 

and Stermer 1987 and Smith et al 1987). 

Another area of interest within the field of reservoir engineering, 

in which sphere packs have been used, is the general problem of 

electrical conduction within porous media. This is of interest in 

terms of the static distribution of interstitial fluid phases which 
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can be deduced from direct electrical measurements, and forms the 

basis of several downhole (electric) logging techniques. Roberts 

and Schwartz (1985) introduced the idea of the grain consolidation 

model as a way of understanding the basic phenomenon of electrical 

conduction within granular materials. The model begins with a 

disordered, monodisperse sphere pack and proceeds by uniformly 

growing the spheres to progressively choke off the pore space, 

simulating compaction and diagenesis. This model is developed 

further by Schwartz and Kimminau (1987), and is a special case of 

the void percolation problem for spheres posed by Elam et al, 

(1984). Using simple models based on regular sphere packings, Yuan 

(1981) argued that the formation resistivity factor and Archie's 

lithological exponent are both sensitive to pore co-ordinaton, a 

packing controlled phenomenon. Arulanaden and Mehan (1977) extended 

work begun by Willie and Gregory (1953) using packings of spheres 

and other objects to show that particle shape, pore geometry and 

packing all have a significant influence on the formation 

resistivity factor. Sen et al (1981) conducted experiments on fused 

glass beads to evaluate a theoretical self-similar model of 

sedimentary rocks relevant to determining the dielectric constant of 

water saturated media. Perez-Rosales (1981) used packings and 

suspensions of spheres, amongst other shaped granules, in order to 

investigate experimentally the relationship between resistivity and 

formation factor. 

Petroleum engineering is essentially a pragmatic discipline which 

deals with multiphase fluids in porous media. Very often the 

problems encountered are either extremely ill-posed or intractable 

at the level of the individual pore. Sphere packings have been 
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consistently useful in elucidating some of the key physical 

processes central to the industry. 

1.2.1.5 Chemical Engineering 

Chemical engineers are mainly concerned with sphere packings within 

the context of the design and performance analysis of packed beds. 

Unless it is sufficient simply to estimate gross average properties, 

the chemical engineer needs some detailed understanding of 

hydrostatic, rheological, hydrodynamic and mass/energy transport 

coefficients for his particular system. In addition, information on 

acoustic, optical or electrical properties may be required. It is 

axiomatic that none of these properties can be predicted a priori 

unless an understanding of the bed structure is available. With 

this in mind, Haughey and Beveridge (1969) reviewed some 239 papers 

directly relevant to the structural properties of packed beds for 

chemical engineering processes. Within this review the concepts of 

disorder, packing densities and distributions of void space emerge 

as important, although the effects of polydispersity, sedimentation, 

pouring and departures from spherical shape are also significant for 

many engineering applications. The variation of local voidage is of 

particular interest in defining transport coefficients, and has been 

studied by Haughey and Beveridge (1966), Thadani and Peebles (1966), 

Lees (1969) and Franzen (1979). The problems associated with 

forming homogeneous and reproducible packings are addressed in the 

monograph of Cray (1968) and by Van Brakel and Heertzes (1974). 

Variations in flow properties of packings adjacent to confining 

walls have been examined by Cohen and Metzner (1981). Chemical 

engineering research continues to address the problem of sphere pack 
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structure (e. g. Le Goff et al 1985) which is regarded as extremely 

complex, and for which no complete description has yet been given 

(Dodds 1980). 

1.2.1.6 Solid State Physics 

The history and development of solid state physics has, for the most 

part, been consistent with the physics of the crystalline state. 

Within the last few years, the study of amorphous, non-crystalline 

materials has emerged as a large field in its own right, and useful 

reviews of the juxtaposition of studies of amorphous, disordered 

systems and the old, crystalline solid state physics are found in 

Ziman (1982) and Zallen (1983). The significance of RCP structure 

to solid state physics is that the Bernal model of liquid structure 

(e. g. Bernal 1959) represents the simplest possible structural model 

of the liquid state upon which thermodynamic calculations may be 

made. This feature of conceptual simplicity often forms the basis 

of the main objection to the Bernal model which is that the RCP 

system has a hard sphere potential by definition; this is 

unrepresentative of real liquids which are characterised by soft 

potentials (Pang et al, 1973, for example). Nevertheless, the 

notion of RCP structure as an analogue for the liquid state is still 

seen as the key to any quantitative or qualitative understanding of 

the physics of liquids (Ziman 1982, Rowlinson 1970). Because the 

Bernal model is equivalent to a liquid at its densest possible 

configuration (i. e. a disordered solid) it has become widely used as 

a model of the solid state appropriate to certain amorphous metallic 

glasses. Thus the largest and most detailed physical model of 

random close packing of equal spheres ever built is that of Bernal's 
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student, Finney (1968), which was originally conceived as a liquid 

structure model. Since that time, however, Finney's RCP model has 

been extensively used in understanding amorphous solid materials 

(Ichikawa 1975, Cargill 1975, Finney 1977, Finney 1981, Cargill 1981 

(i), Cargill 1981 (ii) , and Finney et al 1982). Despite the same 

sort of objection to the hard sphere potential which applies to the 

liquid structure analogue (see for example Koskenmaki 1976), RCP is 

currently viewed as the most satisfactory general model for the 

structure of amorphous metals (Zallen 1983). 

1.2.2 Interpretation of RCP structure 

Before reviewing briefly the development of interpretations of RCP 

structure, some definitions of relevant terminology are given. 

1.2.2.1 Packing density 

Packing density is defined as the fractional solids volume: 

v 
Ps 

v+V0 

where v- the volume of sphere solid, and v, - the volume of 

interstitial space. The average packing density is now widely 

recognised as one of the characteristic features of RCP structure. 

Whilst the definition of packing density is simple, measurement of 

packing density is far from simple. The main difficulty encountered 
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in measuring packing density lies in dealing with the container 

wall. In order to avoid introducing regular layers of spheres 

building up against the container wall, the surface of the container 

must be made irregular. This may be achieved by a variety of 

methods, including mechanically dimpling rigid containers, and using 

deformable bladders held in tension around the pack. Although the 

introduction of regular layers of spheres is eliminated by these 

procedures, the wall of the container becomes, in effect, an 

integral part of the packing itself. Measured densities of such 

packings have been shown to be dependent upon the size of the 

container. The most successful method of removing this size 

dependency is the so-called extrapolation to infinite volume method, 

devised by Scott and Kilgour (1969). The basis of this method is to 

make several discrete sphere packings in a number of dimpled 

cylinders of various radii. The resulting straight line graph of 

measured packing density against reciprocal cylinder radius is then 

extrapolated to zero reciprocal radius. The packing density at this 

value corresponds to that density which would be obtained with a 

container of infinitely large radius. 

Although a wide variety of methods and materials have been used in 

the past to determine average packing density for sphere packings 

(Hildebrand and Scott 1962, Rutgers 1962, Westman and Hughill 1930, 

Smith et al 1929, McGeary 1961, Ayers and Soppet 1965, Susskind and 

Becker 1966), there is only a small number of density determinations 

of direct relevance. In two separate experiments, Scott (1960, 

1962) achieved estimates of 0.637 for RCP packing density. Bernal 

and Finney (1967) derived an average figure of 0.6342 for 407 

Voronoi polyhedra constructed from co-ordinates from Scott's (1962) 

18. 



experiment, and succeeded in showing that the polyhedra represented 

quite a wide distribution of densities within the packing. The 

figure of 0.6342 obtained by Bernal and Finney agreed moderately 

well with the figure of 0.64 obtained by Bernal and Mason in their 

earlier estimate (1960). The two most definitive experimentally 

derived estimates of average RCP packing density are those of Scott 

and Kilgour (1969) and Finney (1968). Scott and Kilgour used the 

extrapolation to infinite volume method to derive an estimate of 

0.6366 ± 0.0005, based on a series of measurements of RCP structures 

with up to 80000 spheres in an individual pack. Finney (1968) 

obtained a value of 0.6366 ± 0.0004 for his packing, although his 

later work suggests that a little less precision may be appropriate. 

Gotoh and Finney (1974), for example, agree that the experimental 

evidence supports a value of 0.636 ± 0.001, and a- statistical- 

theoretical argument is presented which provides arguably the best 

theoretically based estimate of packing density as 0.6357. A 

curious feature of experimentally derived packing densities is that, 

within experimental error, they converge on 2/pi. 

The packing density of RCP is extremely useful, as it provides an 

"instant" check on the integrity of the pack. Values of packing 

density less than 0.636 ± 0.001 are indicative of loose, or poured 

packings. 

1.2.2.2 Co-ordination number 

This is defined as the number of other spheres in direct contact 

with a given, reference, sphere. For an individual sphere, this is 

not generally held to be particularly useful (Mason 1968), and it is 
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more customary to quote the average co-ordination number of the 

packing, or to present the co-ordination number frequency 

distribution function for the packing. 

The term is occasionally broadened to include all spheres within a 

certain distance, as for example in the case of Bernal's structural 

neighbours (Bernal 1965) which increases the co-ordination distance 

out from 1.0 sphere diameters to 1.05 sphere diameters. Bernal also 

proposed structural co-ordination distances of 1.5 and 2.0 sphere 

diameters, but these alternative definitions have largely fallen 

into disuse. 

1.2.2.3 Radial distribution function 

The definition of radial distribution function is the probability of 

finding a sphere within a certain distance of the centre of a 

reference sphere. Radial distribution functions are therefore 

probability distribution functions. In practical terms it is only 

possible to measure the frequency with which a sphere is found 

within a certain distance of the reference sphere. Experimentally 

determined radial distribution functions are therefore frequency 

distributions, presented as histograms. Theoretical radial 

distributions, in contrast, are often presented as continuous 

curves. 

Experimentally derived radial distribution functions are 

conventionally normalised by dividing the observed frequency in each 

interval by 4ar2. It is common practice to calculate an average 

radial distribution function for sphere packings. This is achieved 
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by averaging the observed frequencies within each interval for 

Ist coordination shell 
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Figure 1.7 

Neighbour distributions of 

the radial distribution 

function for an idealised 

two dimensional case. 

(after Ziman, 1982) 

several reference spheres in the packing. 

The terms Pair Correlation Function and Pair Distribution function 

are occasionally used instead of radial distribution function, 

particularly in statistical mechanics. The terms pair correlation 

function and pair distribution function have identical meaning, and 

are equivalent to the radial distribution function for all practical 

purposes. 

R -ý- 
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The physical signficance of the radial distribution function is that 

it can be measured for random close packings of equal spheres, and 

can also be calculated for simple liquids from neutron and X-ray 

diffraction data. Early studies on the physics of liquid structure 

and the solid state made much use of the radial distribution 

function. Since the mid 1970's the radial distribution function has 

been used largely for validating computer simulations of RCP, and 

for teaching the basic physics of amorphous solids at the 

undergraduate level. Figure 1.7 shows an idealised theoretical 

radial distribution function for a two dimensional array of discs. 

1.2.2.4 Geometric neighbours and Voronoi polyhedra 

There is, for any point in an array, a region containing all space 

which is nearer to that point than to any other point. In three 

dimensional arrays these regions are polyhedra, and are called 

Voronoi polyhedra or Dirichlet zones after the mathematicians who 

formalised them. The significance of these polyhedra is that they 

pack together to fill space completely, and can be uniquely defined 

for any random sphere packing for which co-ordinates are known. Any 

point around a central point which contributes a face to a Voronoi 

polyhedron is, by definition, identified as a geometric neighbour. 

The number of faces of a Voronoi polyhedron is therefore identical 

to the number of geometric neighbours for the sphere at the centre 

of that polyhedron. In two dimensions, the Voronoi cell is a 

polygon, and the principle of Voronoi division in two dimensions is 

illustrated in figure 1.8 (two Voronoi cells are shown shaded in 

that figure). The properties of Voronoi cells are central to the 

present work, and are discussed in much more detail in Chapter 2. 
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Figure 1.8 

Voronoi division of 

space in 2 dimensions. 

Heavy dots denote 

random (sphere) 

centres. 

1.2.2.5 Angular Distribution Function 

This function may be defined by considering a reference sphere and 

two adjacent spheres. One of the adjacent spheres defines a pole to 

the reference sphere, and the other adjacent sphere defines a plane 

containing the pole. The angular positions of the remaining spheres 

in the same co-ordination shell are then calculated relative to 

these polar co-ordinates, and the process is subsequently repeated 

for all other triple sets of reference and adjacent pairs to yield 

average values. The distribution is attributable to Scott (1964) 

and, although undeniably a valid description of RCP space, it is not 

commonly used. 
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1.2.3 Physical Realisations of RCP Structure 

>- u z 
w 

U.. 

1.2.3.1 Early attempts 

Hales' (1727) is probably the first account of the kind of space 

filling problem addressed here. He was interested in the swelling 

properties of peas, which he constrained in an iron pot with a heavy 

lid. Roughly describing the resulting compressed peas as "pretty 

regular dodecahedrons", he provides the basic clue to the structure 

of randomly packed spheres. Many years later, Bernal (1962) 

repeated Hales' experiment using chalk-dust covered plasticene 

spheres, and found a predominance of polyhedra with five edged 

nr 

Figure 1.9 

Histograms of (a) geometrical 

and (b) physical neighbours 

derived from plasticene 

spheres. 

(after Bernal, 1959) 
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faces. More importantly, the number of pentagonal faces varied over 

a wide range as shown in figure 1.9, confirming that there is not a 

simple polyhedron "unit cell" in random packings. This is 

consistent with the findings of Marvin (1939) and Matzke (1950) who 

had also repeated Hales' experiment using lead shot, finding a 

predominance of fourteen sided polyhedra, frequently with pentagonal 

faces. The distribution of co-ordination (i. e. the variation in 

numbers of neighbours) was recognised by Bernal (1959,1965) as a 

property of the packing. The problem of estimating co-ordination 

within a packing without first compressing it has been addressed by 

Smith et al. (1929). They packed lead shot into a container which 

was subsequently filled with acetic acid and then drained. Liquid 

bridges of acetic acid formed at contacts, which attacked the lead 

forming the base acetate as white marks on the lead shot surfaces. 

Packings at several different densities were achieved, and 

dismantled for contact counting, though none of these packings 

conforms exactly with RCP structure. The results of Smith et al are 

presented in figure 1.10. Bernal solved the problem of finding 

immediate co-ordination number distributions by pouring black japan 

paint into a packing of steel ball bearings contained in a balloon 

(Bernal and Mason, 1960). The balls had come straight from the 

manufacturer, and had a light coating of grease so that the paint 

ran off, except where liquid bridges formed at the contacts and 

near-contacts. After the paint had dried, the pack was stripped of 

several hundred outer balls, and dissected for contact counting. 

The results are shown in figure 1.11. 
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1.2.3.2 Bernal's and Scott's models 

Shortly following the paint and ball bearing experiment, Bernal 

began the task of randomly close packing 1000 steel balls, with the 

intention of dissecting the packing piece-by-piece to determine all 

the individual sphere co-ordinates. Unknown to Bernal, Scott was 

working on the identical task, and had forwarded to Bernal an 

advance copy of his publication (Scott 1962) at about the same time 

as Bernal's own work was ready for publication. At this point Scott 

and Bernal exchanged information and Bernal continued his analysis 

largely on the results of Scott's Model (Bernal 1965). Scott's was 

therefore the first detailed analysis of RCP structure, albeit by a 

very small margin. Scott determined the radial distribution 

function for his packing for intervals of 1/5 of a sphere diameter. 

His radial distribution function is reproduced in figure 1.12, and 

the Voronoi edge and face statistics for Scott's packing are shown 

in figure 1.13. 

The similarities between distribution functions for the Scott model 

and the Bernal model are very marked, as shown in figure 1.14 which 

compares both models with the structure of a simple liquid (argon) 

based on neutron diffraction data. Mason (1968) derived an elegant 

method for compensating for the boundary limitations of finite 

packings, enabling the resolution of the radial distribution 

function for the Scott packing (with one or two co-ordinate 

corrections by Bernal) to be enhanced, as shown in figure 1.15. The 

distribution of cumulative near neighbours within a radial distance 

of between 1.0 and 1.5 sphere diameters was also derived from the 

Scott model by Mason (1968), and is shown in figure 1.16. 
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1.2.3.3 Finney's model 

The limitations of the size of the packing and the measuring 

accuracy of Scott's model were 1006 spheres and approximately ± 1% 

in co-ordinate position respectively. This error in co-ordinate 

position corresponds to about ± 1.4% error in the distance between 

sphere centres (Finney, 1968). In order to improve on both these 

limitations, Finney (1968) constructed a large packing of about 

17000 spheres, with an estimated precision of around ± 0.6% in the 

distance between sphere centres for the central 8000 spheres. After 

setting the packing in wax, and stripping back approximately 9000 of 

the outer spheres Finney measured the co-ordinates of the remaining 

7934 spheres. The radial distribution function for the Finney 

packing is shown in figure 1.17 and comparisons between the Scott 

packing and the Finney packing for Voronoi polyhedral faces and 

edges are shown in figure 1.18 and 1.19 respectively. 
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Although larger RCP structures had been built both before Finney's 

(e. g. Susskind and Becker, 1966) and after (Scott and Kilgour, 

1969), no co-ordinate measurements were performed. Finney's packing 

thus remains as the largest, and most accurately measured RCP 

structure for which sphere centre co-ordinates exist. The task of 

constructing and measuring this packing took Finney several months. 

It seems unlikely that a larger physical model will ever be 

constructed and analysed. 

1.2.4 Computer realisations of RCP structure 

Computer programs which simulate packings of spheres find 

application in a wide variety of areas. However, there is one 

feature of interest common to virtually all computer models of 

sphere packings, namely that of validation. When a program has been 

developed and de-bugged, some standard or reference is helpful in 

checking that the code is satisfactory Despite the substantial 
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improvements in computer hardware and program development over the 

past twenty years, the basis for this point of comparison with the 

"right answer" remains broadly constant. Invariably some property 

of the Finney model (or occasionally the Scott model) is used. 

Typically, the property selected is either the radial distribution 

function, or the packing density. Frequently it is both. 

Early computational models produced packs with consistently low 

values of packing density. Tory et al (1968) produced a pack with 

an average density of 0.59 using a simulation of sedimentation of 

spheres from a dilute slurry. This value is more consistent with 

loose random packing than RCP, as is the value of 0.609 arrived at 

computationally by Levine and Chernick (1965). Bennett (1972) 

developed a method of computing aggregates of several thousand 

spheres by depositing successive spheres, one at a time, onto a 

small seed cluster. Each deposited sphere contacted three already 

present in the seed cluster, and was not permitted to be 

subsequently moved. The resulting aggregate is completely 

determined by two factors - the seed cluster and the criterion used 

to select the deposition site. Bennett used two different criteria, 

one global to the aggregate, and one satisfying only local 

conditions on the aggregate surface. Using the global criterion, 

Bennett obtained packing densities of between 0.62 and 0.63, whilst 

the local criterion yielded values of around 0.60. All packing 

densities obtained by Bennett were somewhat lower than the Finney 

model average value of 0.6366, although an improvement over earlier 

attempts had been achieved. In addition to deriving estimates of 

average packing density, Bennett also produced radial distribution 

functions (pair correlation functions) for comparison with the 
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Finney model, as shown in Figure 1.20. 

Visscher and Bolsterli (1972) developed a Monte Carlo approach to 

random sphere packing, by simulating the dropping of spheres into a 

container. Their method produces packings formed under a uni- 

directional (gravitational) force. This is a critical point, since 

RCP requires a radial force in order to produce an isotropic 

packing. Not surprisingly, therefore, Visscher and Bolsterli's 

estimates for packing density are between 0.58 and 0.60, 

fractionally lower than experimentally determined values of loose 

random packing. 

Figure 1.20 
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Adams and Matheson (1972) described a serial aggregation method, 

adding spheres to touch three other spheres, conforming to the rule 

that the next sphere added must be on the site nearest to the 

cluster origin. This is analogous to the global criterion of 

Bennett (1972). The best packing density achieved by the Adams and 

Matheson model is 0.628, which is moderately close to the 

experimentally determined value of 0.6366 (Finney, 1968, Scott and 

Kilgour, 1969), though still outside the accepted value of 0.636 ± 

0.001 (Gotoh and Finney, 1974). Adams and Matheson derived the 

radial distribution function for their model, comparing it directly 

with that of the Scott model, both models having first been 

corrected for finite sample size using Mason's (1968) correction, as 

shown in figure 1.21. 
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Tory et al. (1973) developed the concept of very slow settling of 

rigid spheres from a dilute slurry, to form a packed bed. Their 

simulation prohibits bumping, or bouncing of spheres into more 

stable locations, and consequently produces the rather low packing 

density of 0.58. Tory et al. also compared their radial 

distribution function with that of the Scott model, although they 

are careful to point out that their implicit uni-directional 

anisotropy effectively smooths out features in the distribution. 

Matheson (1974) reported a method, similar to that of Bennett (1972) 

and Adams and Matheson (1972), using serially deposited spheres on a 

cluster. Obtaining an average packing density of 0.606, Matheson 

also produced comparisons between the radial distribution function 

for his model, and those for both the Finney and the Scott model as 

shown in figures 1.22 and 1.23 respectively. 

Although Matheson is clearly reproducing the essential features of 

loose random packing, he makes the strong suggestion that RCP models 

characterised by packing densities of 0.6366 are not true random 

packings at all. Rather, Matheson proposes, RCP is a structure 

consisting largely of small ordered groups of spheres. In support 

of this somewhat desperate claim, Matheson points out that up to the 

date of his own work (1974), no algorithm had been found which could 

simulate observed RCP packing densities, despite intensive efforts 

by a considerable number of workers. This suggestion has 

subsequently been shown to be without foundation, though at that 

time, simulation of RCP structure must have seemed like an almost 

intractable problem. 
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Rahman et al (1976) used a molecular dynamics simulation of 500 

spheres characterised by a Lennard-Jones (soft) potential. They 

obtained a packing density of 0.64, and a radial distribution 

function similar to that of the Finney model, although the soft 

potential used smoothed out otherwise sharp features. 

Kincaid and Weiss (1977) presented a numerical list for the radial 

distribution functions for a system of 864 hard spheres. Their 

Monte Carlo calculations assumed as a starting point a close-packed 

face-centred cubic lattice (packing density - 0.74048). Although 

they give the radial distribution functions for four densities of 

interest between 0.73 and 0.52, Kincaid and Weiss's work represents 

one of the first published simulations in which no reference to any 

physical (i. e. experimentally measured) model is made. 

Powell (1980) extended the Matheson-Tory et al technique for 

monodisperse spheres to polydispersity for any given particle size 

distribution, although he gives no detailed comparison between his 

results for a monodisperse pack, and any physical model. 

Jodrey and Tory (1981) developed a method of simulating the 

vibration and radial force characteristic of an experimental RCP 

structure. Their algorithm produced an ultimate packing density of 

0.6366 (the "right" answer), and a radial distribution function 

which compares spectacularly well with that of the Finney model, as 

shown in figure 1.24. 

Clarke and Wiley (1987) produced a new algorithm designed to 

simulate binary mixtures of spheres. For a monodisperse packing, 

they achieved excellent agreement with the computational results of 
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Jodrey and Tory, and with the experimental Finney model. Clark and 

Wiley obtained (monodisperse) packing densities ranging between 

0.637 and 0.645 depending on sample size and duration of the 

computation. They took the unusual step of calculating the Voronoi 

cell statistics for their computational model. These statistics are 

shown in figures 1.25 to 1.27, from which it is clear that there is 

excellent agreement with the Voronoi cell statistics obtained by 

Finney (1968). 
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The approach adopted by Clark and Wiley towards validating their 

algorithm is particularly interesting, since theirs is the first 

attempt to use distributions of Voronoi cell properties. One of the 

conclusions of the next chapter in this thesis is that both the 

radial distribution function and the Voronoi cell are volume 

averaging measures of RCP structure. For physical processes 

dominated by the voids in the packing, and the network of 
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interconnections between voids, the level of detail available from 

the Voronoi cell is severely limited. The arguments developed in 

the next chapter are directly relevant to the general problem of 

validating computer simulations of RCP, and form the basis of 

structural description of RCP at a more fundamental, and less volume 

averaging, level than that afforded by Voronoi statistics. 

1 .3 Objectives, approach and s nonopsis 

The objectives of the present work are (i) to analyse the structure 

of random close packing (RCP) of equal spheres, and (ii) to 

determine the extent to which this structure influences the 

distributions of two immiscible fluids within the void space of the 

packing, under capillary forces. An additional objective is to 

investigate the extent to which the structure of RCP is random, and 

to formulate guidelines for pore-level modelling of RCP and RCP-like 

materials. 

To achieve these objectives, the procedures conventionally used to 

discretise RCP space are reviewed, and compared with the 

requirements of a pore-level model in Chapter 2. The main 

conclusion of Chapter 2 is that the conventional Voronoi cell sub- 

division is essentially volume averaging in respect of the important 

void regions between spheres, and is therefore of extremely limited 

value in developing a microscopic structure description appropriate 

to any physical properties of RCP which are likely to be dominated 

by the void regions of the packing. Chapter 2 is therefore 
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essential to the subsequent chapters of the thesis, since the other 

important conclusion to emerge from it is that the simplicial cell 

not only meets all the requirements of a pore level model, but also 

represents a much more fundamental description of RCP structure than 

has hitherto been attempted. Chapter 3 contains a comprehensive 

simplicial cell analysis of the Finney model. Chapter 4 is 

dedicated to the thorny problem of establishing the degree to which 

RCP structure is random at the simplicial cell level. Chapter 5 

extends some of the concepts raised in Chapter 4, and considers the 

degree to which the network connecting the simplicial cells is 

random. In Chapter 6, the capillary properties of the Finney model 

are investigated by simulating the drainage and imbibition processes 

within the packing. Finally, in Chapter 7, an aeolian sandstone is 

injected with mercury, and the resultant capillary pressure curve 

and pore size distributions are compared with those of the simulated 

RCP capillary pressure curve. 

Previous studies on the structure of random close packings of equal 

spheres have concentrated on the nature of the Voronoi cell, and 

have almost entirely neglected the nature of the simplicial (or 

Delaunay) cell. Additionally, previous studies on porous media 

have, in general, systematically failed to develop rigorous 

analytical descriptions of the entire porespace of any individual 

chaotic porous medium. Indeed such a comprehensive description is 

commonly accepted as impractical, if not actually impossible. 

However, by good fortune, the simplicial graph of a random close 

packing of equal spheres provides, by itself, a complete and perfect 

description of the entire porespace of the packing. This fact 

appears to have gone largely unnoticed in the literature and 

therefore unexploited until the present work was undertaken. One 
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consequence of this situation is that the present work probably 

represents the largest and most detailed description of a real, 

disordered porous material attempted to date. 

Trigonometry and geometry used in the present work are reproduced in 

Appendix A to this thesis. The relevant analytical subroutines are 

presented in Appendix B. These subroutines are written in BASIC 

(DEC compiled BASIC), and many are suitable for simple adaptation to 

desk top or personal computers. Some of the programs developed, 

however, may require relatively large data files, and several hours 

of CPU time, since optimisation of the code for run-time efficiency 

was not an objective of the present work. 
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CHAPTER 2: RCP SPACE DISCRETISATION 

2.1 General Considerations: Voronoi Tessellation 

The problem addressed here is that of dividing up the space of RCP 

structure such that fundamental spatial properties from two, or 

more, sphere packings may be directly compared. The essence of the 

problem lies in the need to compare properties of one structure with 

the properties of another. The dividing-up process is therefore a 

means to an end, and is not an end in itself. 

Although we are concerned here with the concept of dividing-up 

something, it is perhaps more instructive to begin by considering 

the concept of putting-together something. The ancient Romans had a 

passion for tiling floors and walls to form mosaics. The latin word 

for the small tiling pieces which they used is tessera, and the 

fully assembled mosaic is known as a tessellation. A simple 

definition of the art of tessellation might be that it is a process 

by which a plane surface is covered by polygonal shapes which fit 

together, and which do not overlap. This definition need not be 

restricted to two dimensions, in theory, space of any dimension may 

be tessellated. However, in order to proceed further with the 

geometry of tessellations, two features which exist in Roman mosaics 

must be excluded. Caps (termed "frustrations") between tessera are 

not permitted, and concave tessera are not permitted. Figure 2.1 

shows examples of both concave and convex tessera in two dimensions. 
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E 

-U 
(a) 

Concave tessera 

0 

0 
Figure 2.1 : Forbidden tessera forms (a) 

and permitted tessera forms (b). 

(b) 

Convex tesse 

It is now possible to consider a formal definition of a 

tessellation. Thus a tessellation comprises an aggregate of convex, 

N-dimensional polytopes (tessera) which perfectly fill N-dimensional 

space (after Winterfeld, 1981). It is relatively straightforward to 

apply this definition to identical, regular polygons in two 

dimensions. Thus if the problem of tessellating a plane with a set 

of perfect and identical polygons is considered, there are only 

three solutions possible (Coxeter, 1963). These are the triangular, 

the square and the hexagonal tessellation, shown in figures 2.2 to 

2.4 respectively. 

If the problem of tessellating three dimensional space with a set of 

perfectly regular and identical polyhedra is considered, there are 

at least two possible solutions. 

tetrakaidecahedral tessellations. 

These are the cubic and the 
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Figure 2.3 : The square plane tessellation 

47. 

Figure 2.2 : The triangular plane tessellation 

Figure 2.4 : The hexagonal plane tessellation 



The cubic tessellation may be visualised as a perfect stack of 

children's building blocks (cubes). The tetrakaidecahedral 

tessellation is somewhat more difficult to visualise. The 

tetrakaidecahedron was first described by Kelvin (1887), and is a 

fourteen faced polyhedron which may be formed by truncating the six 

vertices of an octahedron to produce eight hexagonal faces and six 

square faces as shown in figure 2.5. 

Figure 2.5 

The tetrakaidecahedron 

At first, the concept of tessellating three dimensional space with 

the tetrahaidecahedron might seem a somewhat bizarre and artificial 

exercise. This form of tessellation is, however, extremely common 

in nature, occurring as the fundamental repeat cell (also known as 

the Wigner-Seitz cell) in all body-centred cubic (BCC) lattices. All 

crystalline materials with their component atoms in a BCC lattice 

may therefore be considered to be "constructed", or tessellated, by 

sticking the basic tetrakaidecahedron tessera together ad infinitum. 

Figure 2.6 shows the BCC lattice, together with the Wigner-Seitz 
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cell (a tetrakaidecahedron) for the same lattice. 

Body centred 

cubic lattice 

Wigner-Seitz cell 

for the BCC lattice 

Figure 2.6 : Tessellation of the Body Centred 

Cubic (BCC) lattice 

Clearly the notion of building up an atomic lattice using tessera is 

entirely artificial. However, it is possible to use the concept of 

tessellation to subdivide the space occupied by the component atoms 

of the lattice into a number of simple, regular repeat cells. In 

general, crystalline materials may be subdivided into basic 

repeating geometric building blocks, or tessera. Some complex 

crystals may require several different kinds of tessera, but the 

subdivision of space is still (conceptually) relatively simple. 

The concept of subdividing a random array of atoms, or points, in 

space is, in principle, no more difficult than the concept of 
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subdividing a regular lattice of atoms, or points, in space. 

Careful examination of figure 2.6 will show that the 

tetrakaidecahedron repeat cell must contain, at its centre, the 

body-centred atom from which this particular cubic lattice derives 

its name. The eight hexagonal faces of the tetrakaidecahedron 

repeat cell all occur such that the eight imaginary lines connecting 

the body-centred atom to its nearest neighbour atoms all pass 

through the centre of the hexagon. Furthermore, these imaginary 

lines are normal to the hexagonal faces which perfectly bisect the 

imaginary lines. Figure 2.7 shows one of these imaginary lines 

bisected by one of the hexagonal faces of the tetrakaidecahedron. 

A 

A= non-body centred atom 

B= Body centred atom inside 

the tetrakaidecahedron 

B 

Length AX = XB 

Figure 2.7 : Hexagonal face of the tetrakaidecahedral 

Wigner-Seitz cell of the BCC lattice 
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The six square faces of the tetrakaidecahedral repeat cell occur 

such that the six imaginary lines connecting the body-centred atom 

to adjacent body centred atoms all pass through the centre of the 

square. These imaginary lines are also normal to the square faces, 

and are perfectly bisected by the square faces, as shown in figure 

2.8: 

8 

Y 
C 

Length BY = YC 

B Body centred atom inside 

the tetrakaidecahedron 

C= Adjacent body centred atom 

Figure 2.8 : Square face of the tetrakaidecahedral 

Wigner-Seitz cell of the BCC lattice 

The tetrakaidecahedral surface must therefore enclose all imaginary 

points in space which are nearer to its own body-centred atom than 

to any other atom in the lattice. All imaginary points on the 

outside of the tetrakaidecahedral surface are nearer to some other 

atom in the lattice then they are to the atom at the centre of that 
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tetrakaidecahedron. Any polytope which encloses all imaginary 

points in space closer to its own central reference point than to 

central reference points of other, adjacent polytopes is known as a 

Voronoi cell, after the mathematician who formalised this definition 

(Voronoi, 1908). The tetrakaidecahedral repeat cell of the BCC 

lattice is therefore also a legitimate Voronoi cell. 

The concept of the Voronoi cell is somewhat clumsy when applied to a 

perfect, regular and repeating lattice. It will, however, always 

correctly identify the repeat cell, or cells, of the crystalline 

lattice without requiring any assumptions regarding symmetry. The 

concept of the Voronoi cell is immensely powerful when it comes to 

subdividing a chaotic, or disordered array of points (or atoms) in 

space, and finds application in a wide variety of two and three 

dimensional space filling problems (e. g. Winterfeld, 1981; Lambert 

and Weaire, 1983; Hanson, 1983; Weaire and Rivier, 1984 and Weaire 

et al, 1986). 

The reference point at the centre of the Voronoi cell in the 

preceding example of the BCC lattice is an atom. In dividing up 

other arrays of points, the reference points of the Voronoi cells 

may be the measured co-ordinates of the centre of the spheres of a 

random packing. Alternatively, the reference points may be the co- 

ordinates of random points in space, generated arbitrarily by some 

convenient algorithm. In the latter case, the reference points are 

usually referred to as Poisson points. The construction of Voronoi 

cells from the co-ordinates of a set of Poisson points may proceed 

by several different methods. Computer algorithms for subdividing 
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two and three dimensional arrays of points are available (see for 

example Winterfeld, 1981). Whichever method for subdivision is 

adopted, certain formal rules must be obeyed. These rules have been 

adapted for N-dimensional space by Winterfeld (1981) from Green and 

Sibson (1977), and are as follows: 

Consider the set of Poisson points P1(ri), P2(r2)... Ps(r: ). 

The interior space of the Voronoi cell of point Pi is the set of 

points closer to Pi than to Pj: - 

i ;-I< Lý ýi I i"j -2.1- 

In two dimensions, an edge of a Voronoi cell is equidistant from two 

Poisson points P1 and Pk. In three dimensions the face of a Voronoi 

cell is equidistant from two Poisson points, Pi and Pk: - 

jr-rs) - (r-rkl < jr-rll 1'i. k 
NNNNNN -2.2- 

In two dimensions an edge of a Voronoi cell lies on the 

perpendicular bisector of the line connecting P1 to Pk, and vertices 

of the Voronoi cell are equidistant from three Poisson points, Pi, 

Pk and P1. In three dimensions a face of a Voronoi cell lies on the 

plane perpendicular bisector of the line connecting P1 to Pk, and an 

edge of such a Voronoi cell is equidistant from three Poisson 

points, Pi, Pk and P1: - 

jr-rd 

- 
I^-rkl 

-kN rd < fr-rml m"'i"k, 1 -2.3- 
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In three dimensions, the vertices of a Voronoi cell are equidistant 

from four Poisson points, Pi, Pk and P1 and Pm: - 

Ir-ril - Ir-rký - Ir-rLI - Ir-rml < ýr-rnI nýi, k, l, m -2.4- NN _- A/N A/N NN 

Finney (1968) conformed to these rules in dividing the sphere 

centres of his spheres packing into Voronoi cells. The method he 

used was to perpendicularly bisect the vectors between sphere centre 

co-ordinates, producing a large number of intersecting planes. It 

is therefore possible to select a number of these intersecting 

planes to form a range polyhedral candidates for the Voronoi cell 

about any individual sphere centre. The correct choice is simply 

the smallest polyhedron which can be formed about the reference 

point (sphere centre), whilst ensuring that no further planes can 

cut the chosen set. 

Winterfeld (1981) favours the expanding disc process for two 

dimensional problems. In this process, all the Poisson points are 

simultaneously considered to expand into circular discs at a 

constant, and equal, rate. No disc is permitted to impinge upon, or 

overlap, another. Consequently when two discs meet they must 

deform, producing a straight line common boundary. The discs thus 

ultimately evolve into polygons which are identical to the Voronoi 

cells for the Poisson points. This process is illustrated in 

figure 2.9. 
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The three dimensional Voronoi tessellation of Poisson points is a 

logical extension of the expanding disc process. Hence the array of 

points is simply allowed to expand into spheres which evolve into 

polyhedra. Each of these polyhedra is the Voronoi cell for the 

original reference (Poisson) point. 

(a) 

cc) 

(b) 

0 00 
(d) 

Figure 2.9 : Expanding disc process. Poisson points (a) expand 
into discs (b). No disc is permitted to impinge on another (c) 
resulting in space filling polygons (d) 

(after Winterfeld, 1981) 
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2.2 General Considerations: Simplicial Tessellation 

For any given N-dimensional array of Poisson points there is a 

unique Voronoi tessellation. The Voronoi tessellation, in turn has 

a unique topological property - that of duality. The topological 

dual, or inverse, of the Voronoi tessellation is known variously as 

the simplicial graph, the simplicial tessellation or the Delaunay 

tessellation. The term simplicial tessellation will be used 

throughout the present work. The adjective "simplicial" means 

simplest, or most fundamental. The simplicial cell has the absolute 

minimum number of faces or edges appropriate to the dimension of the 

parent array of Poisson points. Thus for two dimensional problems 

the simplicial cell is always a triangle. In three dimensional 

problems the simplicial cell is always a tetrahedron. Any Voronoi 

tessellation can be transformed into its simplicial counterpart 

without loss of information. Conversely, any simplicial 

tessellation can be transformed into its equivalent Voronoi 

tessellation without loss of information. The precise nature of 

this topological duality is easily appreciated from figure 2.10. 

The Voronoi cell has proved to be an extremely useful unit of space 

in studies of the structure of the liquid state (e. g. Finney 1968). 

However, the approach adopted in this chapter is to explore the 

suitability of the simplicial cell as a unit of space appropriate to 

understanding the behaviour of fluids within the porespace of a 

sphere packing. The main aim of this section of chapter two, 

therefore, is to introduce the concept of the simplicial 

tessellation. 
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(a) (b) 

Cd) 

Figure 2.10 : Poisson points (a) discretised into Voronoi 
tessellation (b) and simplicial tessellation (c). 
Voronoi and simplicial tessellations superimposed (d). 
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2.3 Mathematical theories of Voronoi statistics 

There exists no universal mathematical theory for the spatial 

relationships between Voronoi cells in three dimensions. 

Distributions of cell forms are therefore purely observational. 

Despite the absence of such a universal theorem, Coxeter (1958) 

obtained a value of 13.56 for the average number of faces for 

Voronoi polyhedra, based on a theoretical examination of four and 

five dimensional polytopes. Coxeter was not completely satisfied 

with his own derivation, however, and gave an equally valid 

derivation of 13.398 (Coxeter, 1958). Using Coxeter's estimate of 

13.56, Bernal (1965) used Euler's equation (see Coxeter 1960 for 

example) for three dimensional polytopes to derive an estimate for 

the average number of edges per face as 5.115: 

V-E+F -2 -2.5- 

Since there are 3 edges at each vertex, 

3V - 2E -2.6- 

So 3F-E -6 -2.7- 

Average number of edges per face is 2E/F. 

and 2E/F - 6(F-2)/F -2.8- 

i. e. 2E/F - 5.115 (for F- 13.56) -2.9- 

Where V- number of vertices, F- number of faces and E- number of 

edges. 

Meijering (1958) analysed a set of random co-ordinates and derived 

an estimate for the average numbers of faces, edges and vertices 
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per cell. In an earlier study, Johnson and Mehl (1939) had derived 

estimates for these parameters via a different theoretical route. 

More recently, Hanson (1983) reports a Voronoi analysis of random 

points and random spheres. The results of Coxeter's, Bernalls, 

Meijering's, Johnson and Mehl's and Hanson's theoretical estimates 

of mean Voronoi statistics for random arrays are summarised and 

compared with the strictly observational data for the Finney (1968) 

and the Scott (1962) RCP models in table 2.1. From this table, it 

is apparent that, although theoretical models can roughly predict 

the mean Voronoi statistics for RCP space, none to date has 

achieved satisfactory convergence with the observed statistics. 

Table 2.1 : Comparison of Voronoi cell statistics 
based on theory, and on observation. 

Study Type Mean 
Faces 

Mean 
Edges 

Mean 
Vertices 

Coxeter T 13.56 - - 

Bernal T - 5.115 - 

Meijering. T 15.54 5.226 27.07 

Johnson 
and Mehl T >13.28 - 22.56 

Hanson (points) T 15.63 5.23 27.18 
± 0.06 : 0.01 ± 0.12 

Hanson (spheres) T 14.96 5.20 25.92 
± 0.07 0.01 ± 0.13 

Finney 0 14.251 5.158 - 
± 0.015 ± 0.003 

Scott 0 14.28 5.160 - 
t 0.05 ± 0.013 

T= Theoretical work 
0= Observational data 
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2.4 Relationship between Voronoi and simplicial cells 

2.4.1 Two dimensional space 

The topological relationship between Voronoi and simplicial cells 

is shown in figure 2.11 for a small, two dimensional random array. 

In two dimensions, the simplicial polygon is always a triangle. 

Whilst the Voronoi polygon can have a range of forms (from three to 

eight or more sides), the average number of sides in a large array 

is exactly six. Both the simplicial cells and the Voronoi cells 

pack perfectly to fill two dimensional space. The Voronoi polygon 

can be regarded as unique to an individual point, whereas the 

simplicial cell is common to three points. The duality (inverse 

relationship) between Voronoi and simplicial networks, or graphs, 

is evident from figure 2.11 since the simplicial cell sides a-b to 

a-h are also the perpendicular bisectors a-b to a-h which define 

the sides of the Voronoi polygon. 

The ensemble of seven simplicial cells in figure 2. lla forms the 

seven sided polygon, bcdefgh. This polygon has no formal name, and 

so for the purposes of distinguishing it from other polygons, will 

be referred to here as the ensemble polygon. Clearly, the ensemble 

polygon has the same number of sides as the Voronoi polygon which 

it "contains". The significance of the ensemble polygon is that if 

the need arises to examine properties of simplicial cells 

associated with particular types of Voronoi cells, then individual 

ensemble polygons in the array have to be identified, and their 

component simplicial cells examined, or counted. In this event, 
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Figure 2.11 (a) 

Simplicial graph for random 
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Figure 2.11 (b) 

array of points a-h on a 

plane. 

Triangles abc, acd, ade, aef 

afg, agh & ahb are simplicial 

cells. 

Polygon bcdefgh is the 

ensemble polygon. 

Li 
Voronoi graph for random 

array of points a-h on a 

plane. 

Polygon around point 'a' 

is the Voronoi, or Dirichlet 

zone. 
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d 
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each simplicial cell must be counted three times, as it is common 

to three ensemble polygons. If no distinction regarding Voronoi 

cell type is made, then each simplicial cell is only counted once. 

Given either the Voronoi polygon, or the ensemble polygon, it is a 

trivial matter to transform from one to the other, since both 

represent precisely the same information in different geometrical 

form. However, it is clearly not possible to transform from one 

simplicial polygon to anything else, since that structure 

represents only a fraction (on average a sixth, in two dimensions) 

of the information represented by either the Voronoi cell or the 

ensemble polygon. The simplicial cell is therefore a much more 

fundamental unit than the Voronoi cell. This is clearly shown in 

table 2.2, which lists the key topological parameters for 

simplicial and Voronoi cells. 

Table 2.2 : Comparison of topological attributes for 
Voronoi and simplicial cells in 2-dimensions 

Topological Simpicial Voronoi 

parameter cell cell 
(triangle) ('n'-gon) 

Number of edges invariant variable 
per cell 3 3 to 9 

Coordination invariant variable 
from cell to cell 3 3 to 9 
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2.4.2 Three dimensional space 

In three dimensions, the simplicial cell is always a tetrahedron. 

The Voronoi polyhedron, however, is unconstrained by theory, and is 

observed to generally have between eleven and eighteen faces 

(Finney, 1968). Both the simplicial and the Voronoi polyhedra pack 

together perfectly to fill space. 

In three dimensions, an individual Voronoi polyhedron is unique to 

an individual point in the array, whilst the simplicial cell is 

common to four points in the array. The Voronoi cell "exists" 

entirely within the space formed by the ensemble of simplicial 

cells which have the same reference point at the centre of the 

ensemble as the Voronoi polyhedron. This ensemble of simplicial 

cells does not have a formal name, and is referred to in the 

present work as the ensemble polyhedron. As in the two dimensional 

case, the significance of the ensemble polyhedron is that in order 

to examine properties of all simplicial cells associated with 

particular types of Voronoi cells, the individual ensemble 

polyhedra in the array have to be identified, and their component 

simplicial cells examined, or counted. In so doing, each 

simplicial cell must be counted four times, since %5 common to four 

ensemble polyhedra. If no distinction regarding Voronoi cell type 

is made, then each simplicial'cell need be counted only once. 

As with the two dimensional case, in three dimensions the Voronoi 

polyhedron represents precisely the same spatial information as the 

ensemble polyhedron. It is a trivial step, conceptually, to 

transform from one to the other. The simplicial cell cannot be 
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transformed into anything else, as it represents a fraction of the 

information required to define either the Voronoi or the ensemble 

polyhedron. The numerical value of that fraction, based on 

observation, may be calculated using Euler's formula given by 

equation 2.5. For the ensemble polyhedron (this does not apply to 

the Voronoi polyhedron), each external face is also the face of a 

component simplicial cell, and is therefore a triangle. Each edge 

of an ensemble polyhedron face is shared with one other face, and 

so the relationship between faces and edges for the ensemble 

polyhedron is: 

3F-2E -2.10- 

substitution for E in 2.5 gives, 

2V-F-4 -2.11- 

or, 2N-T-4 -2.12- 

where N- the number of geometric neighbours to the central 

reference point (sphere), and T- the number of component tetrahedra 

(simplicial cells). 

Equation 2.12 represents a formal and original proof that the 

ensemble polyhedron cannot exist with an odd number of component 

simplicial cells. From Finney's (1968) observations, the closed 

interval of values for geometric neighbours for RCP is 11 5N5 18. 

This forces the result that there can only be eight classes of 

ensemble polyhedra, consisting of 18,20,22,24,26,28,30 and 32 

component simplicial cells. Since a Voronoi cell contains space 
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also defined by fractions of not less than 18, and up to 32 

simplicial cells, it is clear that the Voronoi cell may be regarded 

as a volume-averaging unit, and not a fundamental structural unit, 

of RCP space. This is not true for the simplicial cell, which is 

the most fundamental spatial unit possible. In principle, 

therefore, an analysis of the simplicial cell statistics for a 

packing provides the most cardinal description for RCP structure. 

There are profound differences in the topological properties for 

simplicial and Voronoi cells, as summarised in table 2.3. In 

essence, these differences amount to the simplicial cell having 

perfect regularity, and simplicity, of form. The signficance of 

this simplicity appears to have been largely overlooked in the 

literature, and the conventional description of RCP is-through the 

use of Voronoi statistics. Although some early suggestions were 

made to the effect that simplicial cell statistics might offer 

advantages over Voronoi statistics (Collins, 1967; Mason, 1967), no 

such analysis of RCP structure has been attempted prior to the 

present work. 

Bernal and Finney (1967) and Finney (1968) developed the idea of 

Voronoi cell "shapes" in terms of an array representing frequencies 

of occurrences of ni of "shape" types A. Finney further developed 

the concept of a "shape" type neighbour matrix, showing the 

frequency of occurrence of nij of "shape" type AA: 

Al 
A2 

Aj 

Al A2*******, 
*** .......... AL .... 

nil n2i................... nil... 
n12 n22. . ................. n12. . 

nij n2j .................... nij... 
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-a further extension adds a third dimension to the matrix, 

indicating the type of face Bk which is shared by Ai and Aj. 

Convenient "shape" types are the number of faces on the Voronoi 

cell with n edges. For example, Finney proposed that a cell may 

have n(3) trigonal, n(4) quadragonal, n(5) pentagonal faces and so 

forth. Its "shape" type would therefore be: 

n(3)n(4)n(5)n(6)n(7)....... 

This is, in principle, a powerful topological tool in analysing RCP 

structure. When he analysed his packing, however, out of a total 

of 5500 Voronoi cells, Finney found 478 different "shape" types 

(excluding sub-types), demonstrating the difficulty of using the 

concept as a model description by which RCP can be visualised. 

Finney (1968) concluded that the formulation of the shape-type 

matrix does not appear to be useful in the light of such 

topological complexity, and up to the present time, the approach 

has been abandoned. 

For the simplicial cell, Finney's proposed array collapses to a 

linear array of one element for Ai, a two dimensional array of one 

element for Aij, and a three dimensional array of one element for 

Ajjk when applied to simplicial cells. All simplicial cells are 

topologically identical, and can only share with triangular faces. 

This result has several particularly useful aspects, including the 

description of the network which links simplicial cells to form RCP 

structure, and the relative ease with which the degree of 

randomness in RCP structure can be quantified. 
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Table 2.3 : Comparison of topological attributes for 
Voronoi and simplicial cells in 3-dimensions 

Topological 
parameter 

Simplicial 
cell 
(tetrahedron) 

Voronoi 
cell 
('n'-hedron) 

Number of edges invariant variable 
per face 3 3 to 8 

Number of faces invariant variable 
per cell 4 11 to 18 

Number of edges invariant variable 
per cell 6 

Coordination invariant variable from cell to cell 4 11 to 18 

2.5 Pore level considerations 

In adopting any RCP structure as a model porous medium, it is 

essential to define the requirements of a pore level model and to 

satisfy these requirements from the structural description of RCP 

space. These requirements comprise a meaningful definition of an 

individual pore, together with a definition of the way in which an 

individual pore is connected to other pores in the medium. 
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2.5.1 Pore shape aspects: general 

In order to visualise pore shape aspects, some two or three 

dimensional conceptual model is required. In pore-level studies of 

porous media, the most frequently encountered two dimensional 

schematic pore is that shown in figure 2.12. Shape component 'A' 

in figure 2.12 is variously referred to as the pore, pore body, 

bulge or cavity. Shape component 'B' is termed the (pore) throat, 

neck, window, foramina or constriction. Further shape aspects have 

been suggested by de Boer (1958), who produced fifteen shape 

groups, and discussed the influence which these groups might have 

over capillary properties. Variations of some of de Boer's 

schemes, shown in figure 2.13, are sufficiently fundamental in 

conceptual terms to occur independently in many subsequent 

theoretical studies of pore structure (eg Wardlaw 1982; Mahers and 

Dawe, 1985; Olbricht and Leal, 1983; Koplik and Lasseter, 1982 and 

Lin and Slattery, 1981). It is clear that in the two dimensional 

models, only one dimension (ie a discontinuous curve) is needed to 

define boundaries between solid phases and void space. Real porous 

spa 

d pt 

Figure 2.12 : Schematic, two dimensional idealised pores 

showing common shape attributes 'A' and 'B'. 
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media are not adequately described by this scheme. Thus a pore 

body element in a real material is linked, or interconnected, to 

other pore body elements by throats. The simplest three 

dimensional representations which can be made are variations of 

those shown in figure 2.14. 

Shape-group IV 

Ink-bottle form 

(wide necked) 

/ 

Shape-group VII 

Open both ends 

with wide parts 

and narrow necks 

shape-group XV 

Tubular with wide 

parts of various 

widths 

Figure 2.13 Shape-groups of capillaries (pores), after de 

Boer, (1958). 
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Throat 

Body 

Q. 
Cr 

Figure 2.14: Schematic, three dimensional view of idealised 

single pores with fourfold coordination (a) and 

sixfold coordination (b). 

The co-ordination number (Z) is used to describe the number of 

throats entering (or leaving) the pore body. Manj disordered 

materials will not necessarily have an integer co-ordination number 

for the whole system. In this event, Dulien (1979) suggests the 

use of the average co-ordination number, (Z): 

R 
Z- =rfr 

r1 

and Zr - Ii(Em)r +1 

-2.13- 

-2.14- 

Where (Fah)r is the number of pores connected to a pore of type r, 

and fr is the relative frequency of such pores. Yuan (1981) 
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explores empirically the relationship between (Z) and porosity, 

finding that, for granular systems, as (Z) increases the porosity 

increases: 

49.5-(115.1/Z) -2.15- 

Equation 2.15 serves only to illustrate the functional form of the 

relationship between porosity and (Z), which is a complex (and 

generally unknown) function for many disordered particulate 

systems. 

Although the average co-ordination number may be an important 

aspect of describing pore geometry, the shape aspects of the 

throats in relation to those of each pore body may be critically 

important. This has been identified by Wardlaw (1976,1982) as a 

pore body to pore throat size ratio problem, and its effect on a 

single, constant (Z) two dimensional model is evident from figure 

2.15. 

(a) 

Z=4 
dV 

=10 

At 

7771' 
X 

(b) 

Z=4 

dt' 
To. 

00, 

'7 7ý 7 

(C) 
Z=4 

4. =1 TI. 

Figure 2.15 : Pore-throat ratios and coordination numbers of 

simple pore models (after Wardlaw, 1976,1982). 
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A satisfactory pore level model appropriate to RCP structure must 

embody the critical concepts of pore-body and pore-throat 

dimensions and co-ordination. It is equally important to define 

the network which connects pores. A fixed (Z) pore implies a 

regular network, though this is not necessarily the case for 

disordered systems. Table 2.4 summarises the possible 

relationships between co-ordination number (Z) and network. 

Coordination (Z) Network structure Examples 

FIXED REGULAR Simple 

simulations 

FIXED VARIABLE RCP 

VARIABLE VARIABLE Rocks 

Table 2.4 : Range of permissible combinations of pore 

coordination and network form. 

72. 



2.5.2 Pore shape aspects: RCP simplicial cell specific 

The three dimensional simplicial cell for RCP structure is a 

tetrahedron, and as shown in figure 2.16 embodies the shape aspects 

of a pore level model as suggested by Mason (1967,1971,1972, 

1981,1983) and Mason and Morrow (1984). 

Mason (1971) has shown theoretically that the four simplicial cell 

faces must be effective constricting elements, equivalent to pore 

throats, and that the internal void space of the simplicial cell is 

equivalent to the pore body. Thus the capillary properties of the 

simplicial cell may be approximated in terms of the meniscus 

curvatures most likely to fill and empty the cell. Mason (1971) 

uses the Haines (1927) insphere radius approximation to define the 

curvature of the sphere (meniscus) that would just pass through the 

Figure 2.16 

Three dimensional view 

of a simplicial cell 

for RCP structure. 
AL 
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hole in the simplicial cell face as representing the drainage 

pressure for that face. The approximate imbibition pressure for 

the simplicial cell has been defined by Mason (1971) as the 

meniscus curvature equivalent to the sphere which can just fit 

inside the cell, simultaneously contacting all four apex sphere 

surfaces. These two forms of in-sphere are illustrated in figure 

2.17, which shows the face inspheres relevant to cell drainage, and 

figure 2.18, which shows the cavity insphere relevant to cell 

imbibition. 

Figure 2.17 

The simplicial cell and 

three of the four face 

inspheres. 

Figure 2.18 

The simplicial cell and 

the cavity insphere. 
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2.6 RCP Dore network 

Having defined the individual simplicial cell as a pore, one of the 

objectives of the present work is to investigate the capillary 

properties of all such pores in a real packing of spheres. This 

step requires a complete description of the network which connects 

all pores in the system, in order to compute saturation changes in 

individual cells as a function of both neighbouring cell 

saturations and capillary pressure. Using the convention that the 

entire void region in an individual simplicial cell is represented 

by a site, and that the entry/exit condition into or out of the 

cell is represented by a bond, then that individual cell may be 

represented as a discrete portion of the network, as shown in 

figure 2.19. 

(a) (b) 

Figure 2.19 : Bond-site representation of 

simplicial cell in (a) two dimensions and 

dimensions. 

an individual 

(b) three 
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For capillary pressure-saturation relationships, one appropriate 

set of dimensions and magnitudes of the sites is void area (for a 

2-D cell) and void volume (for a 3-D cell). For the bonds, face 

incircle radius (for a 2-D cell) and face insphere radius (for a 

3-D cell) may be appropriate. In the complete network, each site 

is connected via Z bonds to Z immediately accessible sites. For a 

simplicial cell in two dimensions, Z is exactly equal to three, 

whilst in three dimensions, Z equals four. The form, or structure, 

of the network is identical to the Voronoi graph. In a real 

packing of discs or spheres, therefore, once the simplicial cells 

have been identified, the network connecting all the simplicial 

cells (in the form of the Voronoi graph) is automatically 

available. This relationship between simplicial cells and their 

connecting network is now examined in more detail for a 

hypothetical, two dimensional case. 

Imagine twelve loosely packed circles on a plane, as shown in 

figure 2.20. The simplicial tessellation defining all thirteen 

simplicial cells dictated by the pack is shown in figure 2.21. 

Close examination of figure 2.21 shows that there are three entire 

ensemble polygons -a five cell ensemble centred on circle 11, a 

six cell ensemble centred on circle 12 and a seven cell ensemble 

centred on circle 10. Figure 2.22 shows the corresponding Voronoi 

graph, defining three entire Voronoi cells centred on circles 10, 

11 and 12. The Voronoi cell centred on circle 10 has seven edges, 

but only just. A slight relative shift in the centre co-ordinates 

for circles 1 and 3 would result in circle 2 falling outside the 

current tessellation, eliminating one edge from the Voronoi cell. 

Whilst this clearly has a marked effect on the frequency 
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Figure 2.20 

Twelve loosely packed 

circles on a plane. 

Figure 2.21 : Simplicial 

graph, simplicial cells 

and ensemble polygons for 

the twelve circles. 

65 

Dý 

11 

12 4 

8 10 3 

O(D 

Figure 2.22 : Voronoi 

graph, and Voronoi 

cells for the twelve 

circles. 
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distribution of Voronoi cell types (i. e. changing from 5,6 and 7 

edges to 5,6 and 6 edges), there is no frequency distribution 

change to the basic simplicial cell types. It is intuitively 

reasonable to expect that such a small change in relative positions 

for circles 1 and 3 would have a minimal impact on the capillary 

properties of the pack. The following calculations show this 

expectation to be correct. 

Figure 2.23 shows the site identities adopted for the network 

connecting all thirteen simplicial cells. Figure 2.24 shows the 

corresponding bond identities adopted for the network. It should 

be noted that the network connecting all cells in figures 2.23 and 

2.24 is identical to the Voronoi graph shown in figure 2.22, and 

7 

89 

10 6 
13 

4 

11 
12 

23 

SITE IDENTITIES 

Figure 2.23 : Site identities 

for the network which 

connects the simplicial cells 

5j 

6 
17 16 1 

4 

18 23 14 

7 22 24 13 3 
19 -' 

20 12 
21 

8 10 2 

'9 
i1 11 

BOND IDENTITIES 

Figure 2.24 : Bond identities 

for the network which 

connects the simplicial cells 

78. 



that the sites correspond with the Voronoi cell vertices, and the 

bonds with the Voronoi cell edges. The capillary pressure curve 

for the twelve loosely packed circles is readily calculated by 

making the assumption that the critical two-dimensional meniscus 

curvature which describes the invading, non-wetting phase 

(simulating mercury injection) is simply: 

curvature - 2/r 

where r is the dimensionless radius (i. e. radius in circle- 

diameters) of the incircle which just fits in between two circles 

defining one edge of the simplicial cell. The dimensionless 

magnitude of the bonds shown in figure 2.24, therefore, is equal to 

the linear distance between the circle centres minus one (in 

circle-diameters). These bond magnitudes, and the relationship 

between bond numbers and circle numbers is shown in table 2.5. 

The dimensionless magnitude of the sites is conveniently defined as 

the void (pore) area. The pore area is the two dimensional 

analogue of pore volume in three dimensions. The pore area is used 

to calculate the two dimensional saturation changes resulting from 

invasion of the packing by a non-wetting fluid. Since the sum of 

the face angles of each simplicial cell is always 180 degrees, this 

is calculated using elementary trigonometry as follows: 

Void space (area) - [s(s-a)(s-b)(s-c)]%-pi/8 -2.16- 

where a, b, c are the lengths of the simplicial cell sides in 

circle-diameters, and s-/(a+b+c). The dimensionless site 
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Table 2.5 : Dimensionless bond magnitudes, and relationships 
between bond and circle identities. 

Circle 
Numbers 

Bond 
Number 

Bond 
Magnitude 
(circle 
diameters) 

1-2 1 0.0625 
2-3 2 0.0469 
3-4 3 0.0313 
4-5 4 0.6406 
5-6 5 0.6875 
6-7 6 0.3281 
7-8 7 0.5000 
8-9 8 0.2031 
1-9 9 c. 2188 
1-10 10 0.0938 
2-10 11 0.5313 
3-10 12 0.1250 
4-10 13 0.3438 
4-11 14 0.3438 
5-11 15 0.2344 
6-11 16 0.4844 
6-12 17 0.6875 
7-12 18 0.2188 
8-12 19 0.2344 
9-12 20 0.3750 
9-10 21 0.3125 
10-12 22 0.4688 
11-12 23 0.1875 
10-11 24 0.3906 
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magnitudes, and the relationship between site and circle numbers is 

shown in table 2.6. 

The capillary properties of the loose, two dimensional packing are 

described by finding the critical meniscus curvatures (critical 

bond values) which will permit a non-wetting, invading fluid phase 

to increase its own saturation in the thirteen simplicial cells 

from initially zero to unity. For the small numbers of bonds and 

sites involved here, this process can be carried out by inspection, 

and the results are listed in table 2.7 and presented graphically 

in figure 2.25. 

Table 2.6 : Dimensionless site magnitudes, and relationships 
between site and circle identities. 

Circle 
Numbers 

Site 
Number 

Site 
Magnitude 
(Pore area, 
dial) 

1,2,10 1 0.188 
1,9,10 2 0.229 
2,3,10 3 0.205 
3,4,10 4 0.192 
4,5,11 5 0.399 
4,10,11 6 0.412 
5,6,11 7 0.494 
6,7,12 8 0.419 
6,11,12 9 0.474 
7,8,12 10 0.328 
8,9,12 11 0.299 
9,10,12 12 0.443 
10,11,12 13 0.392 
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Table 2.7 : Capillary properties of the 12 circle loose pack. 

Invasion 
Step 

Critical 
Bond 
Value 

Critical 
Meniscus 
Radius 

(r) 

Critical 
Meniscus 
Curvature 

(2/r) 

Sites 
Filled 

Pore 
Area 
Filled 

1 0.6875 0.3438 5.82 7 0.1104 
2 0.6406 0.3203 6.24 5,7 0.2000 
3 0.5000 0.2500 8.0 5,7,10 0.2728 
4 0.4844 0.2422 8.26 5,7,8, 0.4725 

9,10 
5 0.3438 0.1719 11.63 4,5,6, 0.8609 

7,8,9, 
10,11,12, 
13 

6 0.3125 0.1563 12.8 2,4,5,6, 0.9121 
7,8,9,10, 
11,12913 

7 0.1250 0.0625 32.0 1,2,3,4, 1.000 
5,6,7,8, 
9,10,11, 
12,13 

The last two simplicial cells to be filled are (sites) 1 and 3, 

which are filled simultaneously via bond 12. As discussed earlier, 

moving circles 1 and 3 slightly would significantly alter the 

Voronoi and simplicial graphs, replacing sites 1 and 3 by two new 

sites. The net change in pore area, and the net change in critical 

bond dimensions caused by such a shift, however, is negligible. 

The overall effect on capillary properties of such a small spatial 

perturbation is therefore also negligible, and the capillary 

properties of the pack are seen not to be sensitive to the number 
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Figure 2.25 
1.0 

Capillary pressure curve 0. e 

(invading, non-wetting q 0.6 
v 

phase) for the loose 
ü 0.4 

circle packing shown 
0 

in figure 2.20 
a 0.2 

0.0-} 
0 

of edges in the component (2 dimensional) Voronoi cells. Although 

not demonstrated here, the same argument must apply equally well to 

three dimensions. In other words, minor shifts in sphere positions 

result in only minor changes in capillary properties, despite the 

fact that an individual Voronoi cell which is affected experiences 

a quantum change in the number of its faces. 
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2.7 Summary of RCP space discretisation 

The novel concept of ensemble polyhedra has been used to show that 

the Voronoi polyhedron is a comparatively large, volume averaging 

irregular unit of RCP space. The simplicial cell, on the other 

hand, is a completely fundamental structural unit of RCP space, 

with constant topological properties. These two aspects of the 

simplicial cell constitute an intrinsically more useful measure of 

RCP structure than the Voronoi cell. A novel proof based on 

Euler's formula is presented which shows that a Voronoi cell cannot 

exist with an odd number of component simplicial cells in the 

equivalent ensemble polyhedron. This proof is of practical value 

in validating any subdivision of RCP space, as an odd number of 

component cells in a fully closed ensemble polyhedron (i. e. one not 

partially complete at the pack outer surface) is direct evidence of 

a subdivision error. The range of the number of "fragments" of 

simplicial cells which a Voronoi polyhedron "contains" is 18 5N5 

32. 

With reference to the use of RCP structure as a model porous 

medium, the Voronoi cell is shown to be perfectly useless as a 

pore-level descriptor of space relevant to capillary processes 

within the pack. The simplicial cell, however, has been shown to 

fully embody all the essential geometrical and topological 

properties required of an individual pore, including pore body and 

pore throat attributes, as well as constant co-ordination (Mason, 

1971). The network fully linking all simplicial cells (pores) in 

the pack is the Voronoi graph. Any analysis which yields the 
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identity of all simplicial cells automatically also provides the 

identity of the network connecting those cells, as well as the 

identity of all the ensemble polyhedra. The co-ordination (z) of 

the network connecting all simplicial cells is constant. In two 

dimensional networks the co-ordination number is always three, 

whilst in three dimensional networks the co-ordination number is 

always four. 
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CHAPTER 3: SIMPLICIAL CELL ANALYSIS OF TUE FINNEY MODEL 

The Finney model is the largest and most accurate of all real sphere 

packings. The purpose of this Chapter, then, is to derive 

simplicial cell frequency distributions for the Finney packing. 

Such distributions shed considerable light on the structure of the 

Finney packing, particularly from the porous medium perspective. 

3.1 Size and shape of the RCP structure 

The method of construction of the packing is described by Finney 

(1968). In order to restrict the analysis to regions least likely 

to be affected by the outer boundary of the packing, only the 

central 2000 Voronoi polyhedra were used. In order to reconstruct 

the Voronoi cells for these 2000 central spheres, the co-ordinates 

of an additional 1367 spheres surrounding the central 2000 are 

required to define the ensemble polyhedra needed in the construction 

process, totalling 3367 spheres in all. Figures 3.1 and 3.2 show 

isometric and sectional views of the packing. 

The subdivision of this set of 3367 sphere centre co-ordinates into 

its component simplicial cells was not undertaken by me. Some years 

prior to the present work, Wright (1986) had already completed the 

subdivision for other purposes, as part of his work on the physics 

of amorphous solids. Accordingly, the sphere centre co-ordinates, 

together with the 14870 simplicial cell identities obtained by 

Wright (1986) were transferred to the BP Research Centre on magnetic 

tape from the Reading University Computer Department. 
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Figure 3.1 

Central portion of 

the Finney model 

(looking down the 

Z axis) 

87. 

Figure 3.2 

Section through the 

Finney model in the 

X-Y plane at Z=O 



Although the analysis of the 14870 simplicial cells of the Finney 

model is central to this, and to subsequent chapters of this thesis, 

the actual subdivision process itself is not. This is for three 

reasons: 

(i) Suitable subdivision routines are available in the open 

literature (e. g. Winterfeld, 1981). The development of 

another subdivision routine is therefore unnecessary, and 

would not necessarily constitute useful, original work. 

(ii) The specific subdivision of the Finney packing itself is not 

original work, having been performed originally by Finney 

(1968) in order to determine the identity of the spheres 

defining the component Voronoi cells of the packing. 

(iii) Writing a subdivision routine is time consuming, and would 

involve extremely heavy CPU usage. 

What is important is to establish that the subdivision performed by 

Wright is correct. The verification procedures developed in this 

chapter, and in chapter five, are important and represent original 

work which will be useful to other workers attempting a simplicial 

cell subdivision. The procedure used by Wright does produce a very 

small proportion of errors in the subdivision process. These errors 

appear to be associated with machine precision, and are not errors 

of logic. It seems to be a possibility that any subdivision routine 

may be subject to similar sorts of machine precision error, 

increasing the requirement for stringent validation procedures. 

It is worth recording here a brief outline of the subdivision 

process used by Wright (1986), since the process differs very 
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considerably from Winterfeld's (1981) expanding sphere process. 

Wright's (1986) procedure comprises essentially five stages. These 

stages are: - 

(i) Decide on the maximum simplicial cell edgelength. Test the 

decision by gradually increasing the maximum cell edgelength 

value on a trial section of the packing until no change in 

the subdivision is observed. The maximum value selected in 

practice was 1.65 sphere diameters. 

(ii) Take each sphere in turn as the reference sphere, i, and 

find the identity of all neighbouring spheres within the 

maximum simplicial edgelength distance (i. e. 1.65 sphere 

diameters). 

(iii) For all neighbours to sphere i, re-calculate their co- 

ordinates relative to i, and produce a table which lists 

neighbour identities, distances to i, and new co-ordinates 

of neighbours (co-ordinates of sphere i are now 0,0,0). 

(iv) Choose two spheres j and k. Check that j is a neighbour of 

k. Take sphere 1 so that 1 is a neighbour of i, j and k. 

The four spheres i, j, k and 1 form a possible simplicial 

cell. Now calculate the co-ordinates of the equidistant 

point, p, from spheres i, j, k and 1. 

(v) Suppose that i, j, k and 1 are all true geometric neighbours 

forming a true simplicial cell. The equidistant point, p, 

is then a supposed vertex of the Voronoi polyhedron. 
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Now, examine every other neighbour to i, and call each of these h in 

turn. Take the perpendicular distance of the supposed vertex to the 

plane which is a perpendicular bisector plane of the line joining i 

to h. The sign of that distance determines which side of the 

perpendicular bisector plane the supposed vertex is on. If the 

supposed vertex is on the same side as the reference sphere, i, it 

is a true vertex. Otherwise, the supposed vertex is not a true 

vertex. This stage completes the procedure used by Wright (1986). 

The final stage, (v), may be prone to a small but finite chance of 

machine error, since the decision to accept or reject a point as a 

true vertex hinges on the precision with which two numbers 

(distances) can be compared in order to derive the sign of the 

distance. 

3.2 Analytical Procedure 

It is clearly an important step in the analysis to verify that the 

simplicial cell division of the model is consistent with Finney's 

(1968) detailed analysis of Voronoi cells. However, in order to 

begin this verification, a basic analytical procedure must be 

defined and adhered to throughout. The first, and most essential, 

part of this procedure is to define a consistent reference 

tetrahedron geometry. This is shown in figure 3.3, and the 

convention is used throughout the present work. The sequence of 

edgelengths is critical to analytical accuracy since, although the 

four sphere centre co-ordinates alone uniquely define the 

tetrahedron, an unsequenced list of six edgelength values does not. 
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A pre-set sequence of edgelengths in relation to the sphere centre 

co-ordinates is required to define uniquely the tetrahedron by using 

edgelength values only. 

The relationship between angles, faces, edges and apices for the 

standard geometry adopted in the present work is summarised in table 

3.1. 

All relevant properties of the simplicial cell may be derived from 

the array L1 which contains the six edgelength values in the preset 
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TABLE 3.1 : Geometrical relationships of the 
standard tetrahedron. 

Face angles Edges Apices 

Face 1 A1, A2, A3 L1, L2, L3 1,2,3 

Face 2 A4, A5, A6 L2, L4, L5 1,3,4 

Face 3 A7, AB, A9 L3, L5, L6 1,2,4 

Face 4 A1O, A11, A12 L1, L4, L6 2,3,4 

sequence shown in table 3.1. The values of Li for the 14870 

tetrahedra used are obtained from the apex sphere centre co- 

ordinates. For two such apex sphere centres at P and Q: 

Point P at (XX, Yp, ZP) 

Point Q at (%Q, Yq, Z, ) 

Distance PQ - {(7, 
q-%p)2+(Yq-Yp)2+(Zq-ZP)2)/ 

The array Li is conveniently held in the two dimensional array 

(matrix) [F] in which the first of the seven columns is the 

simplicial cell number, or identity, The array [F) is therefore 

(14870,7) in size, and is held in the data file FINEDGE. DAT, written 

by program LENGTHS (see Appendix B). The dimensions of edgelengths 

are conventionally hard sphere diameter, not radius (Mason, 1971). 

This convention is adhered to for [F]. 

92. 



3.3 Verification of RCP space discretisation 

3.3.1 Packing density 

As packing density is one of the characteristic attributes of RCP 

structure, the calculated average simplicial cell packing density 

must conform with the average value obtained by Finney (1968). 

The average packing density for the 14870 simplicial cells was 

calculated by finding the cumulative total tetrahedron volume (Vt) 

and the cumulative solid (i. e. sphere segment) volume (Vs) as shown 

in Appendix A. The average simplicial cell packing density is the 

quantity Vs/VL. The result so obtained for the 14870 simplicial 

cells is a value of average cell packing density of 0.6380. This 

compares with Finney's result of 0.6366 ± 0.0004 for the Voronoi 

cells of entire packing. The reason that the two estimates do not 

match closely is that there are fluctuations in density in the 

Finney pack, as shown in table 3.2. It is evident from this table 

that the average Voronoi cell packing density obtained by Finney 

(1968) for the first 2000 spheres is higher than the average density 

for the whole pack. The figure of 0.6382 obtained by Finney for the 

first 2000 Voronoi cells agrees well with the figure of 0.6380 

obtained here for the first 14870 simplicial cells surrounding the 

first 2000 spheres. There cannot be identical correspondence 

between the component simplicial cells and the Voronoi cells, since 

the former protrude through the space defined by the latter, 

contacting the outer surface of the 1367 additional spheres of the 

ensemble polyhedra needed to define the central 2000 Voronoi cells. 

Despite this inexact geometric correspondence, the agreement (within 

0.03% of the expected value) between packing density obtained by 
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this work and Finney's work suggests that the subdivision performed 

by Wright (1986) and used in this work is correct in general. 

TABLE 3.2 : Packing density variations in the 
Finney model, as measured by Finney (1966). 

Centres Average density 

Central 327 0.6399 

1-2000 0.6382 

2001-4050 0.6368 

4051-6340 0.6353 

6341-7934 0.6365 

3.3.2 Simplicial and Voronoi cell relationships 

The formal proof derived in section 2.3.2 shows: 

2N-T -4 -2.8- 

where T- the number of component tetrahedra in the individual 

ensemble polygon which is required in order to define uniquely the 

Voronoi cell, and N- the number of geometric neighbours (- the 

number of faces on the Voronoi cell, - the total number of spheres 

in the construction minus one). Counting the numbers of simplicial 

cells which share a sphere at the centre of a Voronoi cell, 
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therefore, constitutes another form of verification test for the 

subdivision. In order to pass this verification test, all correctly 

subdivided Voronoi cells must be associated with an even number of 

component simplicial cells in the equivalent ensemble polyhedron. 

Analysis programs written to undertake this test (VORONOI and 

VORONHIST in Appendix B) reveal an error associated with the 

subdivision of space surrounding sphere number 2000, for which the 

Voronoi cell was found to be associated with 27 simplicial cells. 

This single error was rectified by-assigning the "rogue" simplicial 

cell to the 26 class of ensemble polyhedra. The error is not 

considered to be particularly significant, as it represents only one 

error in 14870 cell divisions detected by this test. This error 

assumes a slightly greater significance when the network connecting 

all cells is considered. This error is discussed in more detail in 

Chapter five. 

3.3.3 Voronoi cell statistics 

The distribution of the eight classes of Voronoi cells found by the 

present work is shown in table 3.3, and in figure 3.4, in which it 

is compared with the distribution of cells for the central 5500 

spheres of the original Finney pack. The correspondence is 

excellent. 

As a final check on the subdivision of space, the average number of 

Voronoi polyhedron faces is calculated. 

Since the number of Voronoi cell faces is identical with the number 

of ensemble polyhedron vertices, and also with the number of nearest 
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neighbour spheres, the expression for average number of faces for 

all Voronoi cells for the central 2000 spheres is: 

2000 2000 Zifi / Efi 
J-1 i-i -3.1- 

Evaluating equation 3.1 from the data in table 3.3 yields a value 

for the average number of faces for the central 2000 Voronoi cells 

of 14.252. This compares with a figure of 14.251 ± 0.015 obtained 

by Finney for the central 5500 Voronoi cells. This is the final 

verification test, and all four together (packing density, even 

frequencies of component simplicial cells, Voronoi cell statistics 

and average number of faces per cell) confirm that, despite the one 

identified error, the 14870 simplicial cells used in the present 

TABLE 3.3 : Relationship between Voronoi cells and 
simplicial cells for central 2000 spheres 
of the Finney model (this work). 

Number of component 
simplicial cells in 
ensemble polyhedron 

Frequency Number of nearest 
neighbours 

(Ti) (40 (NL) 

17 
18 4 11 
19 
20 86 12 
21 
22 418 13 
23 
24 683 14 
25 
26 566 15 
27 (1)" 
28 195 16 
29 
30 39 17 
31 
32 8 18 

Rogue cell 
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work represent an accurate, and valid description of the Finney RCP 

model. The identified error is not considered to be significant for 

the work reported in Chapter 3. 

40 

30 

20 

10 

FINNEY THIS WORK 

u 

ö 
c. J 

0 

\ 0 

18 20 22 24 26 28 30 32 18 20 22 24 26 28 30 32 

Number of simplicial cells in ensemble polyhedron 

Figure 3.4 : Comparison of Voronoi statistics (faces per 

cell) for this work (central 2000 spheres) and 

Finney's analysis (central 5500 spheres) for the 

Finney (1968) model. 
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3 .4 Exverimental error and precision 

The main emphasis of the work presented in this chapter is to derive 

frequency distributions for the Finney model, based on simplicial 

cell structure, which characterise RCP space. As all of these 

distributions are derived from the pre-sequenced edgelength file 

FINEDGE. DAT, it is important to derive an estimate of the precision 

with which an edgelength measurement is known. There are two main 

reasons for this importance, perhaps the most obvious of which is 

that it allows some overall statistical view of errors to be 

estimated for any particular cell property. Somewhat less apparent, 

but equally important, is the need to be able to estimate the 

confidence with which a sphere to sphere contact can be 

distinguished from a near contact. This aspect assumes particular 

significance in the next chapter. 

The basis of the method devised is to produce the histogram of 

edgelength frequency for that fraction of the 89220 cell edges which 

fall into the interval 0.992 to 1.013 sphere diameters (i. e. 

contacts and near-contacts). This histogram is shown in figure 3.5, 

and is hereafter referred to as the observed (numerical) series, S. 

Inspection of figure 3.5 shows that there is a likelihood of a 

normal distribution of errors associated with the determination of 

simplicial cell edgelengths. A reasonable expectation of Finney's 

measured RCP sample is that, in the absence of all errors from all 

sources, there should be no edgelength smaller than one sphere 

diameter. The spheres used by Finney were k inch steel ball 

98. 



on 

vo 

.W 

IN 

ZN 

oot Jwf NM o'AS oM owl on o, 10oe 1001 loot 1001 100, i IYVs in goo. . a. . uw ion ývu ý. " 

EDGE LENGTH, SPHERE DIAMETERS 

Figure 3.5 : Histogram of edgelength frequency for all 

edgelengths occuring in the interval 0.992 to 1.013 sphere 

diameters (for 14870 simplicial cells, 89220 edges). 

bearings, manufactured to a claimed tolerance of ± 0.25x10'6 sphere 

diameters. Thus the smallest edgelength expected from Finney"s pack 

is 0.9999975 diameters, neglecting measurement errors. Clearly, 

from inspection of figure 3.5, this total absence of experimental 

error is not realistic. In order to derive an estimate of the real 

experimental error, two assumptions are made here: 

Assumption A: The experimental error is normally 

distributed and well characterised by a 

Gaussian function. 
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Assumption B: It is reasonable to have an approximate 

expectation of what a large, perfectly 

error-free sample of simplicial cell 

edgelengths might look like. 

Assumption 'A' allows a second series, G, (for Gaussian) to be 

invoked, whilst assumption 'B' permits the third series, E, (for 

Expectation) to be fabricated. The assumed relationship between all 

three series is that the convolution of the two hypothetical series 

C and E should resemble the observed series, S: 

i. e. S- G*E 

where the star symbol represents the convolution: 

-3.2- 

mm 
Si - E1Go + EE (i+j)0J + ZE (i-j)Gj -3.3- 

. i-1 3-1 

where Go is the central (i. e. maximum) value of the series G which 

is (2xj)+l elements in length. 

The series E may be resolved into two components. In a perfect, 

error-free sample, there is expected to be an infinitesimally thin 

delta function or "spike" in the element in E carrying the unit 

sphere diameter edgelength, corresponding to the frequency of hard 

contacts. The series E contains null values for all elements less 

than the unit sphere diameter, and positive values for all elements 

greater than the spike position. These elements, excluding the 

spike element, are referred to here as the boxcar component of E. 
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Thus: 

EIES+EB -3.4- 

where ES is the spike expectation series, and EB is the boxcar 

expectation series. 

Since the series G describes a normally distributed error, it must 

apply equally well to the measurement of both contactS(i. e. ES) and 

near-contacts (i. e. EB) alike: 

i. e. S= G*Es + G*EB -3.5- 

Expression 3.5 cannot be solved analytically to give a unique 

solution for G, since there are three unknowns (G, ES and EB). 

However, it is possible to estimate iteratively all three unknowns, 

and measure the best fit between (G*ES + G*EB) and S. This process 

is described under the following separate headings: 

3.4.1 Estimation of EB 

3.4.2 Estimation of G 

3.4.3 Best fit of (G*Es + G*EB) with S 

3.4.4 Results 

3.4.1 Estimation of En 

Since we have only limited prior knowledge about EBB there is no 

unique way of estimating EB. The method adopted here is to use the 

observed series S as the starting point. Visual inspection of 
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figure 3.5 shows that there is a considerable amount of noise in the 

series S- values do not increase or decrease smoothly from one 

element position to the next. This noise may be brought under some 

degree of control by smoothing. Visual inspection of figure 3.5 

shows the standard deviation to be greater than 0.001 (by 

definition, 68.27% of a normal distribution is to be found 

within ±1 standard deviation). Using a nine point moving average 

filter, therefore, provides a new series, S', which is smoothed, but 

which has had no real structure removed from it by the smoothing 

process, since the width of the filter is (at 0.0009 diameters) less 

than a conservative estimate of the standard deviation for the 

distribution desribed by S. The data for S' is contained in data 

file VSMOOTHEDGE. DAT, and is written by program VSMOOTH (presented 

in Appendix 'B') which uses the operator: 

Si - (S1+Ss+i+Si-i+Ss+s+Si-2+Sit3+Si-3+Sit4+SL-4)/9 -3.6- 

The series S is shown in figure 3.6 and superimposed on the series S 

in figure 3.7. An initial estimate of EH is made by symmetrically 

subtracting out elements on the left hand side of the spike position 

(element 201) from those elements on the right hand side of the 

spike position in series S': 

ED! - SO (201+1) - So (201.1) -3.7- 

This procedure is completed by program FOLD (presented in Appendix 

'B') which writes the output to VMODELI. DAT, and the resultant 

trend is presumed to reflect the real, underlying trend of EH. 

Consistent with this presumed trend, five "eyeball" estimates of E$ 
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Figure 3.6 : Smoothed edgelength frequency histogram - the 

series So. 
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Figure 3.7 : Series S with the series St superimposed. 
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were drawn. These estimates, or models, are termed EBO, EB1, EB2, 

EB3 and EB4 and are held in data files EBO. DAT to EB4. DAT. These 

a 

2 

170 1 

. 0+ 

models are shown in figure 3.8, together with four variants of model 

EB3 termed EB3-1, EB3-2, EB3-3 and EB3-4. This gives a total of 

nine models, or estimates, of the boxcar expectation series EB. The 

mext step is to discover which of these nine arbitrary models best 

fits the observed series S, as part of the overall procedure to 

estimate the (assumed) normally distributed error, C. 
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Figure 3.8 : Boxcar models of Eß in the region 0.999 to 

1.014 sphere diameters. 
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3.4.2 Estimation of G 

The series G is readily calculated from the expression: 

ci -exr (-o. 5(xi-µo)2/02) -3.8- 

where Gi is the ith value of the series G, Xi is the ith edgelength 

position, µ, is the central edgelength position and a is the 

standard deviation. 

It is essential to normalise C in this application: 

n 
Gi - Gi1ZGi 

i-i -3.9- 

A value of 199 elements is used in the iterative calculations of the 

series G. Thus the central value, Go occurs at element 100. 

3.4.3 Best fit of (G*ES + G*E with S 

The definition of best fit between the modelled and the observed 

series is achieved here by minimising the absolute difference in 

area under the curves described by the two series. This is achieved 

by subroutine DIFF which is called by the main iterative program, 

VORWARD. The iterative procedure used in program VORWARD begins 

with the user selecting one of the (nine) available boxcar models. 

The user then specifies an estimate (a guess initially) of the 

amplitude of the spike in ES, and an estimate of the minimum value 

of sigma. The user then specifies an increment value for spike 

amplitude, and an increment value for sigma. The program then 
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computes (G*ES + G*EB) and calculates the absolute difference in 

area between (G*ES + G*EB) and S. This absolute difference in area 

is output as the diagnostic parameter, delta. The program continues 

by incrementing first sigma and then spike amplitude and calculates 

a value for delta at each step. This results in a5x5 matrix of 

delta values for various (selected) combinations of sigma and spike 

amplitude. By manual inspection of the matrix, and by re-running 

the program several times for different input values, the user is 

able to focus in on the best fit combination of spike amplitude and 

sigma for that particular boxcar model. This iterative process is 

summarised in figure 3.9. 

3.4.4 Results 

Program VORWARD was run using boxcar models EBO, EB1, EB2, EB3 and 

EB4 a total of twenty two times, amounting to some 550 iterative 

estimates for G. The overall minimum value of delta for all five 

boxcar models was associated with EB3, and so the variants of EB3 

(EB3-1, EB3-2, EB3-3 and EB3-4) were used in a further 11 runs of 

VORWARD, amounting to an additional 275 iterative estimates for G. 

In satisfying expression 3.5, therefore, the best parameters 

available from the analysis presented here are: 

SIGMA - 0.002168 

SPIKE AMPLITUDE - 32340 ± 10 

BEST MODEL OF EB - EB3-2 

Of all boxcar models tested in this way, the worst fit with S was 

with model EBO. Model EBl was somewhat more successful, and EB2 was 
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Select boxcar model 

Estimate sigma 

Calculate G 

Estimate spike (Es) 

Calculate G*Es+ G'Eb 
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NO 
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Stop 

Figure 3.9 : FLOW DIAGRAM FOR PROGRAM VORWARD 
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better still. EB3, and its variants were the best of the group, and 

EB4 proved to be marginally worse than EB2. Figure 3.10 summarises 

these findings, showing the graph of delta versus spike amplitude 

for all nine models and figure 3.11 shows the graph of delta versus 

sigma for all nine models. 

Figure 3.12 shows the series (G*Es + G*EB) obtained using the best 

fit EB3-2 values, superimposed on the series S. Qualitatively, the 

fit between these two series is seen to be excellent. Figure 3.13 

shows the series G*Es superimposed on the series S. From this graph 

it is clear the effect that the boxcar region (not represented by 

G*Es alone) must have on the series S. A perfectly symmetrical 
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Figure 3.10 : Relationship between parameters delta and spike 

amplitude for boxcar models. 
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Figure 3.12 : Convolution series (G*Ea + G*Ee) and the 

observed series S. 
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Figure 3.13 : Convolution series G*Ea and observed series S 
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Figure 3.14 : Convolution series G*E1, and observed series S 
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gaussian function alone centres exactly on the spike interval (the 

edgelength interval containing edgelengths - 1.00000) but cannot 

adequately match both the left hand (low edgelength values) and the 

right hand values of the series S. Figure 3.14 shows the series 

G*EB which, when added to G*ES forms the non-symmetrical, but 

gaussian controlled series which matches S so well in figure 3.12. 

In order to evaluate the significance of a standard deviation of 

0.002168 (o of equation 3.8) one thousand tetrahedra were randomly 

generated from a normal distribution of edgelengths with a mean of 

1.0 sphere diameters, and a standard deviation of 0.002168. These 

regular tetrahedra were analysed using subroutines presented in 

appendix 'B' to this thesis, and found to have a mean packing 

density of 0.779675 ± 0.002064 (one standard deviation), or ± 0.265% 

of the mean value. The mean total tetrahedron volume was 0.94276 ± 

0.0025 sphere radii cubed (one standard deviation) or ± 0.265% of 

the mean value. For comparison, the packing density of a perfect, 

regular tetrahedral cell is 0.779635, and the total volume of a 

tetrahedron defined by such a simplicial cell is 0.942809 sphere 

radii cubed. This volumetric error of ± 0.265% at one standard 

deviation is considered to be so small that, for all practical 

purposes in the rest of this chapter it can be neglected. 

One curious feature of the smoothed series S' is that the maximum 

value of this series does not occur at an edgelength value of 

precisely 1.000 sphere diameters. Rather, as is evident from figure 

3.6, it occurs at a value of 1.0004sphere diameters. The reasons 

for this are not understood, but it is possible to speculate that it 

is due to the absolute diameter of the steel ball bearings used by 
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Finney being slightly less than 0.25 of an inch. Although, as 

stated earlier, the manufacturer's claimed tolerance was 0.25 x 10-6 

sphere diameters, this tolerance may only apply to matched sets of 

ball bearings. One particular matched set may well conform to 

tolerance, but have a significantly different average ball diameter 

to that of another matched set of the same nominal diameter (Mason, 

1988). If this speculation were true, then it may be the case that 

the ball bearings used by Finney were slightly smaller (by about 

0.000j x 0.25" - 0.000I', )than the k inch value assumed by Finney. 

The likelihood of this speculation cannot be assessed. 

3.5 RCP Simplicial Cell Frequency Distributions 

There are four objectives to this section, and these are: 

(i) to present those simplicial cell frequency distributions which 

characterise the Finney model, 

(ii) to provide frequency distributions relevant to the 

characterisation of RCP space from the perspective of 

capillarity. This aspect is important, as the present work 

represents the most detailed analysis of any real, disordered 

porous medium attempted to date. 

(iii) to provide frequency distributions specific to the 

characterisation of RCP space from the perspective of single 

phase permeability. 
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(iv) to interpret frequency distributions generated from all three 

preceding items in order to improve the understanding of 

capillary and permeability processes within RCP structure. 

The first of these four objectives is important because, although 

Voronoi statistics for the Finney model have become widely accepted 

as characteristics of RCP structure, no definitive simplicial cell 

statistics have been derived for any real RCP model prior to the 

present work. The roles of the second and third objectives are 

self-evident in attempting to undertake the fourth objective. 

All of the simplicial cell properties presented in this section are 

derived on the basis that each simplicial cell is a discrete 

tetrahedral unit, entirely separate from any neighbours with which 

it may share edges or faces. The trigonometry used to derive the 

cell properties is presented in appendix "A", and the relevant 

analytical subroutines are listed in appendix "B" to this thesis. 

The full set of simplicial cell properties which are derived for the 

Finney model in the present work is summarised for reference in 

table 3.4. Table 3.5 provides a reference list of the simplicial 

cell properties of the perfectly regular unit tetrahedral cell. 

This last table is useful for interpreting some of the frequency 

distributions which follow. 

3.5.1 Edgelength Frequency 

The edgelength frequency distribution for all 89220 edges (14870 
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TABLE 3.4: SUMMARY OF FREQUENCY DISTRIBUTIONS PRESENTED IN SECTION 3.5 

FREQUENCY DISTRIBUTION PRIMARY RELEVANCE FIGURE NUMBER 

Edgelength RCP characterisation 3.15,3.16 

Cell mean edglength RCP characterisation 3.17 

Face angle RCP characterisation 3.18 

Apex solid angle RCP characterisation 3.19 

Cell solid angle RCP characterisation 3.20,3.21 

Cell total volume RCP characterisation 3.22 

Cell solid volume RCP characterisation 3.23 

Cell pore volume RCP characterisation 3.24 

Cell packing density RCP characterisation 3.25 

Cell porosity Capillary pressure 3.26 

Cavity insphere radius Capillary pressure 3.27 

All face insphere radii Capillary pressure 3.28 

Largest face insphere Capillary pressure 3.29 

2nd largest face insphere Capillary pressure 3.30 

3rd largest face insphere Capillary pressure 3.31 

Smallest face insphere Capillary pressure 3.32 

Equivalent chamber radius Permeability 3.33 

Radii of constriction Permeability 3.34 

Largest radii of const. Permeability 3.35 

2nd largest "" Permeability 3.36 

3rd largest "" Permeability 3.37 

Smallest radius of const. Permeability 3.38 

All hydraulic radii Permeability 3.39 

Largest hydraulic radius Permeability 3.40 

2nd largest " Permeability 3.41 

3rd largest " Permeability 3.42 

Smallest Permeability 3.43 
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TABLE 3.5: CELL PARAMETERS FOR UNIT REGULAR TETRAHEDRON 

Cell mean edgelength, sphere radii 

Face angle, degrees 

Individual solid angle, radian 

Total solid angle, radian 

Total tetrahedron volume, sphere radii 

Solid tetrahedron volume, sphere radii 

Tetrahedron pore volume, sphere radii 

2 

60 

. 551286 

2.20514 

cubed . 942809 

cubed . 735047 

tubed . 
207762 

Tetrahedron porosity . 220365 

Tetrahedron packing density . 779635 

Cavity insphere radius, sphere radii . 224745 

Individual face insphere radius, sphere radii . 
154701 

Equivalent pore chamber radius, sphere radii . 367417 

Individual face area, sphere radii squared 1.73205 

Constriction face area, sphere radii squared . 161254 

Areal porosity of constriction . 931003E-01 

Equiv. radius of constriction, sphere radii . 226559 

Individual hydraulic radius, sphere radii . 513289E-01 
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cells) is shown in figure 3.15. Details of the edgelength frequency 

distribution for edgelengths greater than 1.1 sphere diameters can 

be seen in figure 3.16, showing that the frequency of edgelengths 

greater than j2 falls off rapidly. 

3.5.2 Cell Mean Edgelength Frequency 

The cell mean edgelength is the average value of the six edges which 

form the simplicial cell. This parameter is particularly 

significant in terms of the structure of random close packing, and 

the frequency distribution is shown in figure 3.17. 

3.5.3 Face Angle Frequency 

The face angle frequency distribution for all 178440 discrete face 

angles is shown in figure 3.18. The distribution shows the 

relatively high frequency of face angles close to 60 degrees. The 

observed maximum frequency is in the interval 59.0 to 59.999 

degrees, and not in the interval 60.0 to 60.999 degrees. 

3.5.4 Apex Solid Angle Frequency 

The frequency distribution for the 59480 individual cell apex solid 

angles is rather wide, and is shown in figure 3.19. Most apex solid 

angles are between about 0.3 and 0.7 radian in magnitude. There is, 

however, a small number of apex solid angles close to zero, and 

several in excess of 1.0 radian. 
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3.5.5 Total Solid Angle Frequency 

The cell solid angle is the sum of the four individual apex solid 

angles. The frequency distribution for the 14870 cell solid angles 

is shown in figure 3.20. Most cells have a total solid angle of 

around 2.1 to 2.25 radian, a much tighter distribution than that of 

the individual solid angles of figure 3.19. There is a sharp upper 

limit to the total solid angle, and the frequency distribution falls 

away rapidly above 2.30 radian, with no occurrences above 2.5 

radian. The lower end of the distribution falls away less rapidly, 

however, as shown in figure 3.21, from which it is evident that a 

significant number of cells have a full solid angle of less than 1.5 

radian. Several cells have a full solid angle of less than 0.25 

radian. As will be discussed in more detail in chapter 4, this 

tendency to form cells with small total solid angles constitutes a 

trend towards cell-flattening, and is a hitherto undiscovered 

characteristic feature of RCP structure. 

3.5.6 Cell Total Volume Frequency 

The frequency distribution of the total volume of the 14870 cells is 

given in Figure 3.22. The average total cell volume is 1.072 sphere 

radii cubed, and the standard deviation of the distribution is 

0.161. The average RCP simplicial cell total volume therefore is 

only 13% greater than the total volume of the unit regular cell 

(0.9428 sphere radii cubed). Some cells greater than 1.8 sphere 

radii cubed are observed, though none are larger than 2.0 sphere 

radii cubed. 
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3.5.7 Cell Solid Volume Frequency 

The solid volume (i. e. sphere segment volume) frequency 

distribution, (figure 3.23) is of the same form as the cell solid 

angle frequency distribution. 

3.5.8 Cell Pore Volume Frequency 

The distribution of pore volumes is shown in figure 3.24, in which 

it can be seen that most cells have a pore volume in the range 0.25 

to 0.5 sphere radii cubed. A very small fraction of cells have pore 

volumes close to zero, whilst a significant fraction have pore 

volumes greater than 0.8 sphere radii cubed. The cells with small 

pore volumes are relatively "flat" tetrahedra. 

3.5.9 Cell Packing Density Fre uenc 

The distribution of cell packing densities is shown in Figure 3.25. 

No cell has a packing density higher than 0.779635, which is that of 

the unit regular tetrahedron. No cell has a packing density less 

than 0.3, most cells falling in the range 0.6 to 0.7. 

3.5.10 Cell Porosity Frequency 

Figure 3.26 shows the distribution of all cell porosities. This 

distribution is essentially a "mirror image" of Figure 3.25, since 

porosity is (1 - packing density). It is interesting to note that, 

of all the material properties of RCP systems, porosity is usually 

regarded as the most predictable and constant. Figure 3.26 shows 

that this overall packing consistency is achieved with considerable 

cell to cell variation, from just over 0.2 to around 0.65. 
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3.5.11 Cavity Insphere Radius Frequency 

The cavity insphere radius is an approximate measure of the 

imbibition meniscus radius for the individual cell, as proposed by 

Mason (1971). The frequency distribution for the 14870 cavity 

insphere radii is shown in Figure 3.27, from which it is evident 

that no cell can have a cavity insphere radius of less than 0.224745 

sphere radii (that of the unit regular tetrahedron). The observed 

frequency of cavity inspheres in the range 0.22 to 0.23 sphere radii 

is less than 0.005 of the total, confirming that the unit regular 

tetrahedron is almost completely absent from RCP structure. This is 

an important result and is discussed in more detail in Chapter 4. 

The relevance of the cavity insphere radius to imbibition is 

discussed in detail in Chapter 6. 

3.5.12 All Face Insphere Radius Frequency 

This distribution for all 59480 face inspheres is shown in Figure 

3.28. The face insphere radius provides an approximate estimate of 

the drainage pressure for that particular face as suggested by Mason 

(1971), and this is discussed in considerable detail in Chapter 6. 

For example, in mercury injection into sphere packings, the mercury 

enters the pore space defined by the simplicial cell once the 

mercury/mercury vapour meniscus curvature is approximately equal to 

that of the largest accessible face insphere. 

No cell can have a face insphere radius less than 0.1547 sphere 

radii (i. e. that of the unit regular tetrahedron). From Figure 3.28 

it is apparent that the approximately regular unit face (i. e. three 

edgelengths of 1.000 sphere diameters forming an equilateral 
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triangle) is extremely frequent, with face insphere radii in the 

interval 0.15 to 0.2 having a frequency of around 0.25. However, 

from the preceding discussion on the cavity insphere radius 

frequency distribution, it is clear that there is a very low 

probability that any individual cell is a unit regular tetrahedron. 

The dominance of small face insphere radii in Figure 3.28, 

therefore, is not due to a significant presence of the unit regular 

tetrahedron. This point becomes more obvious when the four face 

inspheres for an individual cell are ordered (ranked) according to 

size, and counted separately in four discrete distributions as 

described in section 3.5.13 to 3.5.16 following. 

3.5.13 Largest Face Insphere Frequency 

Figure 3.29 shows the distribution of the largest of the four 

individual cell face insphere radii for the 14870 cells. There are 

two important features of this distribution. Firstly, as discussed 

above, there is a very low frequency of the unit regular face, and 

therefore of the unit regular tetrahedron. Secondly, the overall 

form of the distribution is extremely close to that of the cavity 

insphere radius distribution shown in Figure 3.27. The implication 

of this finding is that an individual cell can drain and imbibe at 

the same, or very similar, pressures. Individual cells therefore 

exhibit little or no capillary pressure hysteresis. This very 

important finding is discussed in more detail in section 3.5.19 

following, and again in Chapter 6. 

3.5.14 2nd Largest Face Ins here Radius Frequency 

Figure 3.30 shows the distribution of the 2nd largest face insphere 
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radius. The form of this distribution is very similar to that of 

the largest face insphere radius shown in Figure 3.29. The 

significance of this is that the scope for capillary pressure 

hysteresis in the pack itself is surprisingly low, since half the 

cell entry/exit points are of roughly the same size as each other 

and roughly the same size as the cavity insphere. 

3.5.15 3rd Largest Face Insphere Radius Frequency 

This distribution is presented in Figure 3.31, and is quite 

different from the distributions of the two largest face insphere 

radii. Together with the distribution for the smallest face 

insphere radius, this distribution accounts for the prominent 

"spike" at low radii in figure 3.28. 

3.5.16 Smallest Face Insphere Radius Frequency 

Figure 3.32 shows the frequency distribution for the smallest face 

insphere radius per cell.. As with the third largest face insphere 

radius frequency distribution, Figure 3.32 is dominated by faces 

formed by three spheres in contact. 

3.5.17 Equivalent Radius of Pore Chamber Frequency 

The pore volume of a cell can be quantified uniquely in terms of an 

equivalent radius, for the purpose of defining a characteristic 

pore-length as proposed by Chan and Ng (1988). The parameter is 

defined for convenience, and does not reflect any real geometrical 

property of the pore body. It does, however, constitute a sort of 
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pore size distribution (PSD) parameter, and the distribution of 

equivalent pore chamber radii for the Finney model is shown in 

Figure 3.33 for the sake of completeness. The distribution for the 

Chan and Ng (1988) model is also shown in Figure 3.33 (as a dashed 

line) for comparison with the Finney model. It is evident that the 

Finney distribution is appreciably "tighter" than that of the Chan 

and Ng model. This difference between the two models is 

attributable primarily to the polydispersity inherent in the Chan 

and Ng (1988) model, and will not be discussed further here. 

3.5.18 Equivalent Radii of Constriction and Hydraulic Radii 

Figures 3.34 to 3.43 show distributions specific to the 

consideration of fluid flow within the void space of RCP structure. 

The essential feature of fluid flow through individual cells is that 

streamlines must alternately converge, to pass through face 

constrictions, and diverge within the (cell) pore bodies. One of 

the most important aspects of this process is, therefore, the nature 

of the constricting region. The cell face constricting area may be 

accounted for by either of two conventional methods. Perhaps the 

most common concept appropriate to this problem is that of hydraulic 

radius (see, for example, Scheidegger 1957 or Dullien 1979) which is 

defined as the ratio of flow cross-sectional area to wetted 

perimeter. Alternatively, the notion of equivalent radius of 

constriction as proposed by Chan and Ng (1988) may be used. There 

exists a simple, hitherto undiscovered relationship between these 

two parameters which is specific to a simplicial cell analysis of 

monodisperse sphere packings. Thus the wetted perimeter of a 

simplicial cell face is constant and equal to pi sphere radii: 
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Cell face wetted perimeter 

Cell constriction area 

Hydraulic Radius, rh 

- pi sphere radii 

-A sphere radii2 

- (A/pi) 

Equiv. Rad. of constriction, r, - (A/pi)o. s 

hence r, - rbo. s 

-3.10- 

-3.11- 

-3.12- 

The full distribution of all 59480 equivalent radii of constriction 

is shown in figure 3.34. This distribution is bimodal, with a 

primary peak at 0.22 to 0.24 sphere radii. The latter peak is 

predominantly due to the occurrence of regular, equilateral faces 

formed by three spheres in contact. As table 3.5 shows, no face can 

have an equivalent radius of constriction less than 0.226559 sphere 

radii, unless the component edgelengths are less than 1.0 sphere 

diameters. The small, but signficant, estimated error of ± 0.002168 

sphere diameters (one standard deviation) derived in section 3.4 of 

this chapter is sufficient to account for the small frequency of 

faces evident from figure 3.34 which have equivalent radii of 

constriction in the range 0.21 to 0.22 sphere radii. 

As with the analysis of the face insphere radii, the four equivalent 

radii of constriction of each individual cell can be subdivided, or 

ranked, according to size. Thus figures 3.35 to 3.38 show the 

frequency distributions for the largest, second largest, third 

largest and smallest equivalent radii of constriction respectively. 

As might be expected, the frequency distribution for the largest 

equivalent radius of constriction (figure 3.35) is monomodal. The 

frequency distribution for the second largest equivalent radius 

(figure 3.36) is very "tight" indeed, with a prominent modal value 
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in the interval 0.36 to 0.37 sphere radii. The third largest 

equivalent radius distribution (figure 3.37) is still monomodal at 

0.36 to 0.37 sphere radii, but shows considerable widening towards 

lower values. The frequency distribution for the smallest 

equivalent radius of constriction (figure 3.38) is dominated by 

faces at, and close to, equilateral triangular contact. 

Since the equivalent radius of constriction for simplicial cells of 

a monodisperse sphere packing is identical to the square root of the 

hydraulic radius (equations 3.10 to 3.12), there exists a simple 

relationship of form between the frequency distributions for these 

two parameters. The five relevant frequency distributions for 

hydraulic radii are presented in figures 3.39 to 3.43. 

This completes the set of individual simplicial cell parameter 

distributions considered in the present work. The implications for 

use of the Finney packing as a model porous medium arising from some 

of these distributions, and from joint frequency distributions are 

considered in the next section. Although certain conclusions 

regarding the capillary properties of the Finney packing are drawn 

in the following section, more rigorous conclusions are derived in 

Chapter 6. 
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Fig 3.43 : Smallest hydraulic radius frequency distribution 

3.5.19 Joint Frequency Distributions 

Some of the individual frequency distributions presented in section 

3.5 appear to be roughly similar in form, suggesting an approximate 

correlation may exist between some of the simplicial cell 

properties. It is possible to examine such apparent correlations 

using joint frequency distributions, and some of the most 

interesting and revealing of these are presented in figures 3.44 to 

3.56. 

The strong correlation between cavity insphere radius and the 

largest of the four face insphere radii is evident in figure 3.44. 

This is the most striking of all the joint frequency distributions 

considered in the present work, and is an important result. Making 
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the approximations that the imbibition meniscus curvature for an 

individual simplicial cell is identical to that of the cavity 

insphere, and that the four possible drainage meniscus curvatures 

for the cell are identical to those of the four face inspheres, 

figure 3.44 shows that an individual cell has a very high 

probability of having identical imbibition and drainage pressures. 

An individual simplicial cell, therefore, will not exhibit any 

significant capillary pressure hysteresis. Any such hysteresis 

exhibited by the packing as a whole can consequently be attributed 

to the phenomenon of connectivity as first postulated by Mason 

(1971). Thus if we consider a single simplicial cell, there is one 

face (insphere) which affords the same curvature as that of the 

cavity insphere. If we add further cells one at a time to the 

initial cell, each of the four additions represents a probability of 

0.25 of occluding the largest face insphere of the original cell. A 

small cluster of five cells, therefore, would probably exhibit some 

significant degree of hysteresis, whilst the five individual cells 

would be less likely to exhibit any significant hysteresis. 

There is a strong tendency for the second largest face insphere 

radius to be quite close in magnitude to that of the cavity insphere 

radius, as shown in figure 3.45. (This tendency is also evident 

from figure 3.50 which shows the joint frequency distribution for 

the largest and the second largest face insphere radii. ). The 

physical significance of this relatively strong tendency is that not 

one, but two of the four face insphere radii per cell will be close 

in magnitude to that of the cell cavity insphere radius. An 

individual cell in isolation, therefore, will not only exhibit 

little or no capillary pressure hysteresis, but there is also quite 

a high probability that two of the four faces will drain and imbibe 
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at roughly similar meniscus curvatures. 

Figure 3.46 and 3.47 show the joint frequency distributions for the 

third largest face insphere radius/cavity insphere radius and 

smallest face insphere radius/cavity insphere radius respectively. 

Below magnitudes of 0.4 neither of these two face inspheres can have 

magnitudes close to that of the cell cavity insphere radius. For 

face inspheres above 0.4, there exists only a low probability (of 

the order of 0.003) that either of the two smallest face inspheres 

can be close in magnitude to the cavity insphere radius. 

It is of some interest to compare the equivalent pore chamber radius 

with the cavity insphere radius, since the former is a convenient 

measure of the cell pore volume available to conduct fluid flow 

through the cell (Chan and Ng, 1988), whilst the latter is an 

approximate measure of imbibition meniscus curvature (Mason, 1971). 

Figure 3.48, then, gives some indication of the relationship between 

these permeability-linked and capillary pressure-linked variables on 

an individual cell basis. As is to be expected, the majority of 

cells have an equivalent pore chamber radius considerably larger 

than the cavity insphere radius. This must be so, since the cavity 

insphere does not occupy all of the available pore space in order to 

contact the four hard spheres defining the cell. The equivalent 

pore chamber radius, by definition, accounts for all of the cell 

pore volume. It is interesting to note, therefore, that a 

significant fraction of cells have cavity insphere radii larger than 

the equivalent pore volume radius. The explanation for this 

observation is that the cavity insphere is not necessarily contained 

entirely by the cell, some of the cavity insphere protrudes through 
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one or more of the cell faces (this may be visualised by referring 

to figure 2.18). Indeed, there is no requirement for the centre of 

the cavity insphere to be inside the reference cell; odd shaped 

cells may well have the centre externally located in order to 

satisfy the condition that the surface of the cavity insphere is in 

contact with the four hard spheres of the cell. Figure 3.48 shows 

that equivalent pore chamber radius and cavity insphere radius are 

not functionally related in a significant manner, and are not 

conceptually interchangeable. This implies that for random sphere 

packings there exists no simple structural relationship between 

imbibition capillary processs and permeability processes on the 

scale of the individual pore. The implication is perhaps weak, as 

we have not yet considered the role of the cell face constrictions, 

but this aspect is considered shortly. 

The cavity insphere radius will be a very poor estimator of cell 

pore volume. This is apparent from the discussion presented in the 

previous paragraph and is confirmed by figure 3.49 which shows the 

joint frequency distribution for cavity insphere radius and cell 

pore volume. 

Figure 3.50 shows the joint frequency distribution for the largest 

face insphere radius and the second largest face insphere radius. 

This figure confirms the reasonably close correspondence in 

magnitude between these two parameters, as discussed earlier. 

Figures 3.51 and 3.52 confirm that there is no such close 

correspondence between either the third largest face insphere radius 

and the largest face insphere radius or the smallest face insphere 

radius and the largest face insphere radius. 
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To conclude this section of Chapter 3.5, the relationship between 

capillary properties and fluid flow properties are further examined. 

Figures 3.53 to 3.56 show the joint frequency distributions for the 

hydraulic radii and face insphere radii for the four cell faces 

ranked according to size. The hydraulic radius is in all cases less 

than the magnitude of the corresponding face insphere radius. 

Perhaps the most significant factor here is that none of the four 

joint frequency distributions shows any useful correlation between 

hydraulic radius and face insphere radius, other than that, for face 

inspheres below 0.3, there is an approximately linear correlation 

with hydraulic radius. However this correlation is only good for a 

third, or less, of all cells considered. The implication here is 

that, for random sphere packings, there exists no simple structural 

relationship between drainage capillary processes and permeability 

processes on the scale of the individual pore. This implication 

matches that considered earlier for imbibition processes and 

permeability. Together these two implications appear to preclude 

any possibility of being able to predict permeability of an 

individual cell given only information about the structural 

parameters which influence capillary properties of that individual 

cell. Conversely, it seems equally improbable that, given only 

information about the structural parameters which influence 

permeability of the cell, nothing useful could be deduced regarding 

the capillary properties of that individual cell. 
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3.6 Summary and Discussion 

The overall objective of the work described in this thesis is to 

evaluate the structure of random close packings of equal spheres, in 

the hope that understanding the structure itself will be of value in 

understanding and modelling capillary processes within such 

packings. Any progress in developing methods or techniques, or any 

major conclusions from this work may be of value in the far more 

complex problem of determining the influence of pore-level structure 

on the capillary and fluid flow properties of clastic sedimentary 

rocks. One of the key reasons for choosing the RCP structure to 

work on is that the material, and the material properties in general 

are exceptionally well known. The best known of all RCP structures 

is Finney's which is cited in the majority of undergraduate text 

books (published after 1975) on solid state physics. Any results 

and conclusions drawn from the present work, therefore, apply to a 

very familiar material, albeit in an unfamiliar context (i. e. as a 

model porous medium). 

The major difficulty which has to be overcome in any pore-level 

structural analysis of a porous material is the definition of the 

pore itself. The simplicial cell embodies all of the essential 

requirements of a pore, as discussed in the preceding chapter, and 

is without doubt the most fundamental and cardinal spacial 

descriptor of RCP structure after the sphere centre co-ordinates 

themselves. It is perhaps somewhat surprising, therefore, that the 

extensive literature on the structure of sphere packings 

concentrates so heavily on the Voronoi discretisation of RCP space, 
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leaving the simplicial discretisation a largely unexplored area. 

This chapter of the present work, therefore, presents new results 

which have relevance both in the area of solid state physics 

(primarily an extension to the literature pertaining to the Finney 

model) and in the area of pore-level studies of porous media. 

One of the most important stages in the work presented in this 

chapter is the verification of the simplicial cell discretisation, 

and the thorough estimation of errors. Although one discretisation 

error was detected, its overall effect on the subsequent analysis is 

negligible, representing one error in 14870. The experimental error 

in Finney's original work is evaluated within the context of a 

normally distributed error associated with a simplicial cell 

edgelength value. This error is found to be very small (± 0.002168 

sphere diameters), and may be ignored for the most part in the 

subsequent simplicial cell analysis. The analytical results 

themselves are presented as a number of frequency distributions 

which show quite a wide variation in any given simplicial cell 

property. Individual cell edgelengths, for example, may be as low 

as 1.0 sphere diameters, or as high as 1.65 sphere diameters. Cell 

face angles may be slightly below 40 degrees through to just above 

100 degrees. The variation in pore volume on an individual cell 

basis is large, ranging from just above 0.01 sphere radii cubed to 

almost 1.0 sphere radii cubed. The packing density varies from 0.35 

to 0.78, and the cell porosity varies from 0.22 to 0.65, though 

there are long, thin tails to these distributions. 

From the porous medium perspective, the most significant results are 

that the frequency distributions for cavity insphere radius, largest 
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and second largest face insphere radii are all quite similar. 

Investigating this correspondence further by using joint frequency 

distributions shows that, in general, there is a very high 

probability that an individual cell will have one or more face 

insphere radii either the same value as, or very close to, that of 

the cavity insphere radius for that cell. By using approximations 

for meniscus curvatures this suggests that drainage and imbibition 

pressures for individual cells considered in isolation are the same, 

or very nearly the same. An individual cell, therefore, is not 

likely to exhibit capillary pressure hysteresis. As far as sphere 

packings are concerned, this appears to rebut the (now rather old) 

independent domain theory whereby porous materials could be regarded 

as analogues of magnetic materials. Since magnetic hysteresis could 

successfully be ascribed to an individual and independent domain, it 

was thought that capillary pressure hysteresis also might be 

ultimately a property of the pore itself. This appears not to be 

the case for RCP structure, and the more thorough analysis presented 

in Chapter 6 confirms this view. 

It is interesting to note that for the special case of a simplicial 

cell analysis of a monodisperse sphere packing, the hydraulic radius 

is simply the equivalent radius of constriction squared. For 

polydisperse systems, and for other analytical methods this simple 

relationship will not generally hold. 

No straightforward or simple relationships between simplicial cell 

parameters thought to influence capillarity, and those thought to 

influence permeability could be found at the level of the individual 

pore. This may suggest that the way in which each individual cell 
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is "connected" to its neighbour is 

understanding both bulk system capil 

permeability. Because this chapter is 

individual simplicial cell properties, it 

very much about such connectivity issues, 

in more detail in the subsequent chapters. 

a dominant factor in 

laxity and bulk system 

specifically focussed on 

is not possible to infer 

and these are dealt with 
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CHAPTER 4: RANDOMNESS AT THE SIMPLICIAL CELL LEVEL IN THE FINNEY MODEL 

4.1 Introduction to Chapters 4&5 

The term "random close packing" implies that randomness is an 

important feature of the packing itself. Randomness of what, 

however, is not altogether well defined in the literature, 

especially as there is no precise agreement or definition regarding 

the nature of random close packing itself (e. g. Gotoh and Finney 

1974, Dodds 1980). What is meant conventionally by the term random 

when used to describe sphere packings is the disorder which makes it 

impossible to predict the spatial location of any sphere in the 

packing given only the co-ordinates of another sphere in the same 

packing. Interestingly, the amount, or nature, of disorder seems 

not to have been studied previously. One forms the impression from 

the literature that the question is naive, because the problem is 

intractable. 

The subject of this thesis is the structure of random close packing. 

It therefore seems worthwhile to spend some effort examining 

randomness in the hope that some new insight or new information 

regarding RCP structure might emerge. More specifically, such a 

study of randomness has a direct bearing on two established 

problems: 

(i) Mason (1971) developed a method for simulating individual 

simplicial cells which he used to represent the porespace of 

random close packing of equal spheres. The method assumes 
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that each of the six simplicial cell edgelengths occurs 

independently of the others in the cell - in other words the 

edgelengths may be selected randomly from an appropriate 

edgelength distribution function to form a cell. Although 

Mason's (1971) pore-level model of RCP has been used 

subsequently by several workers (e. g. Yadav and Mason, 1983; 

Smith, Gallegos and Stermer, 1987) the assumption of random 

edge length selection has not been rigorously tested prior 

to the present work. 

(ii) The network which connects pores in a porous medium is 

important in theoretical studies of fluid transport within 

that network. Thus studies involving percolation theory and 

network modelling frequently involve the assumption that the 

distribution of size attributes of neighbouring pores is a 

random phenomenon. For example, in network modelling of 

porous media it is common to decorate randomly the chosen 

network with pore-size distribution parameters (see for 

instance Dullien, 1979; Lin and Slattery, 1981; 

Androutsopoulos and Mann, 1979; and reviews of the relevant 

literature in Ghabaee, 1986; Jerauld, 1985; and Heiba, 

1985). This random decoration process means that the 

magnitude of a particular pore-size parameter for each cell 

is independent of the magnitude of the same pore-size 

parameter in immediately neighbouring cells. This 

assumption of random cell proximity has not been rigorously 

examined for any real porous medium prior to the present 

work. 

In the present work the above two problems have been 

formalised as: 
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a. An analysis of randomness at the level of the 

individual simplicial cell. In this problem we are 

interested in attributes of randomness related to a 

dis-aggregated set of individual simplicial cells. 

These attributes yield information about the 

simplicial cells themselves, but tell us nothing 

directly about how they are connected together to fill 

space. This problem is addressed in this chapter. 

b. An analysis of randomness at the level of the network 

which connects all simplicial cells together. Here we 

are interested not in the cells themselves, but the 

way in which they interact with each other as they 

fill space. This problem is dealt with in the next 

chapter. 

4.2 Some terminology and notation 

There is little or no literature pertaining to the definition and 

measurement of randomness in RCP structure specific to simplicial 

cells. Some terminology and notation is therefore proposed in order 

to develop the ideas presented in this thesis. The extent of this 

terminology and notation is intentionally kept to a minimum, and 

includes the following elements: 

(i) Descriptive elements (which type of cells are we dealing 

with? ) 

(ii) Definition of randomness, 
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(iii) Predictive elements (how many cells of each type do we 

expect? ) 

4.2.1 Descriptive Elements 

The three dimensional simplicial cell is always a tetrahedron, and 

always has precisely six edges. The length of an individual edge is 

used in the present work to form the basis of a notation, or 

classification system. Suppose the edgelength values for an 

individual cell are X1, X2, X3 .... X6. The individual values tor att 

edges in the group of N individual cells are X1, X2, X3.... R6N. A 

threshold value, XT, is selected arbitrarily such that some 

edgelengths in the group are greater than XT, whilst others in the 

group are less than XT. The threshold value XT, therefore defines 

two mutually exclusive groups, or states, to which an edgelength can 

belong. These states are conveniently identified as L (for Long) 

and S (for Short): 

Condition for state 'S' is Xi 5 XT 

Condition for state 'L' is Xi > XT. 

For a group of N individual simplicial cells, the fraction of all 

edges occurring in state S is s, whilst the fraction of all edges 

occurring in state L is 1. 

i. e. (s + 1) - 1.0 -4.1- 

Total number of edges in group - 6N 

Number of state 'S' edges - 6sN 

Number of state 'L' edges - 61N 
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Because we have identified two mutually exclusive states for all 

edgelengths in the group, each simplicial cell can exist as one of 

only seven possible combinations of states. For example, a 

simplicial cell might have all six edges corresponding to state 'L', 

with no edges corresponding to state 'S'. At the other extreme, 

another cell might have all six edges in state 'S', with no state 

'L' edges. There are only five intermediate states, or cell 

classes, between these two extremes, as summarised in table 4.1. 

Simplicial cell class 
description 

Simplicial cell 
notation 

O long edges, 6 short edges OLS6 
1 long edge, 5 short edges 1LS5 
2 long edges, 4 short edges 2LS4 
3 long edges, 3 short edges 3LS3 
4 long edges, 2 short edges 4LS2 
5 long edges, 1 short edge 5LS1 
6 long edges, 0 short edges 6LSO 

Table 4.1 : Description of simplicial cell classes and 
notation adopted in the present work. 

4.2.2 Definition of Randomness 

Imagine a group of discrete three dimensional simplicial cells. Let 

there be a cell edgelength probability distribution function for 

this imaginary group. For each individual cell in the group there 

are six edgelengths, each of which has a discrete probability of 

occurrence. The definition of randomness adopted in the present 
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work is that these six discrete probabilities are independent of 

each other, and are determined only by the edgelength probability 

distribution function for the entire group. 

In practical terms, a real sphere packing does not have a known 

simplicial cell edgelength probability distribution function. It 

is, however, possible to measure the simplicial cell edgelength 

frequency distribution function, as shown in figures 3.15 and 3.16 

for the Finney RCP model. The theoretical definition of randomness 

based on an unknown probability distribution function may therefore 

be transformed into a practical definition based on an observed 

frequency distribution: - 

"For an individual simplicial cell, the lengths of the six component 

edges are determined solely by the edgelength frequency distribution 

for the group of cells to which the individual cell belongs". This 

definition can be tested rigorously using a statistical approach, by 

comparing expected frequencies of cell classes with observed 

frequencies of cell classes for the Finney model. This comparison 

is analogous to a simple statistical test for a fair die (i. e. a 

random die) based on a large number of throws, in which the expected 

frequencies of ones, twos, threes etc, are compared with observed 

frequencies. 

4.2.3 Predictive elements 

Using the definition of randomness given above, it is 

straightforward to predict the frequencies with which each of he 

seven simplicial cell classes is expected. A cell requires six 

edges, so: 
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(1+ s)6-1 

- expanding this polynomial gives the seven terms: 

Eo + E1 + E2 + ......... E6 -1 

-4.2- 

-4.3- 

where Ei is the expected frequency of occurrence of a simplicial 

cell with (6-i) edges in state 'S' for a given value of s. The 

numerical values of these probabilities may be calculated as shown 

in table 4.2. 

Class Expected fractional Polynomial 

notation frequency of occurrence term 
in random group (eqn. 4.3) 

OLS6 S6 Ea 
1 LS5 6s5 1 E, 
2LS4 15s4-12- Et 
3LS3 20s3 l? E3 
4LS2 15s2 1* Ed, 
5LS1 6s 1C E 
6LSO 16 E 

s fraction of edgelengths < threshold value xT 
1 1.0-s 

Table 4.2 : Expected random fractional frequencies of 

occurrence of simplicial cell classes. 
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The expected frequencies are calculated for a real group of N 

simplicial cells by establishing s, which is the fraction of all 

edgelengths X1, X2, X3...... X6N in the group which satisfy the 

condition XiSXT. The significance of XT will be considered shortly. 

4.2.4 Worked example 

In Chapter 2 the tetrakaidecahedron was used to illustrate the 

relationship of the Voronoi cell to the body cubic centred (BCC) 

lattice. In the following worked example, the tetrakaidecahedron is 

used again, this time to demonstrate the method of establishing 

whether or not an assemblage of simplicial cells is random, when the 

only information available is the edgelength values for the 

simplicial cells and the observed distribution of simplicial cell 

classes. Of course in this worked example we know the outcome - the 

idealised BCC lattice is perfectly non-random. The test for 

randomness in this worked example must therefore be failed. 

The body-centred atom of a cubic segment of the BCC lattice has, as 

its nearest neighbour atoms, eight "corner" atoms and six adjacent 

body centred atoms as shown in figure 4.1(a). Using the novel 

theorem given in Chapter 2, the number of component simplicial cells 

for the tetrakaidecahedron must be twenty four: 

2N-T -4 -2.7- 

Where N- number of geometric neighbour atoms to the body centred 

atom (N - 14 for the BCC lattice), and T- the number of component 

tetrahedral simplicial cells. 
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Figure 4.1 : Simplicial cells of the body centred cubic 
lattice. 

OF 

D 

(a) Showing the B corner atom 
nearest neighbours to atom 'A' 
together with one of 6 
adjacent body centred atoms, 

F. 

B 

(b) Showing one of the 4 
simplicial cells ABCF defined 
by the cube-face B-C-D-E. The 
remaining 3 simolicial cells 
defined by this face are 
A-C-D-F, A-D-E-F & A-B-E-F. 
Since there are 6 identical 
cube faces, the total number 
of simplicial cells specific 
to atom 'A' is 6x4= 24. 
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Figure 4.1(b) shows one of these twenty four simplicial cells, and 

from inspection of this figure it is clear that all twenty four 

cells are identical geometrically. If we let the cube edge equal 

one arbitrary length unit, then the six edgelength values in the 

simplicial cell must be as shown in table 4.3: 

Simplicial cell 
edge 

Edgelength 
value 

A-B 0.866 
A-C 0.866 
A-F 1.0 
B-C 1.0 
B-F 0.866 
C-F 0.866 

Table 4.3 : Edgelength values for the simplicial cell 
shown in figure 4.1(b). The cube edgelength 
is unity. 

From table 4.3 it is evident that the discrete simplicial cell 

edgelength frequency distribution for an infinite, perfect BCC 

lattice comprises edgelengths of 0.866 at a frequency of 0.6667, and 

edgelengths of 1.0 at a frequency of 0.3333. Such a perfectly 

bimodal distribution of simplicial cell edgelength values strongly 

suggests that the BCC lattice is not random - however, of itself the 

edgelength distribution function alone is not proof that the BCC 

lattice is non-random. If we select an arbitrary threshold value, 

XT, such that 0.866<XT<1.0, then we can compare the expected 

frequency (Ei) of occurrence of the seven simplicial cell types with 

the actual, or "observed" frequency (0i) of simplicial cell types, 

as shown in table 4.4: 
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Simplicial Expected Expected- Actual 
cell class frequency frequency frequency 

in random in 24 cells for BCC 
group (Et) (Of) 

OLS6 S 2 0 
1LS5 6s5 1 6 0 
2LS4 155412 8 24 
3LS3 20s313 5 0 
4LS2 15 st l4- 2 0 
5LS1 6s15 1 0 
6LSO 16 0 0 

s=0.6667 for 0.886<XT<1.0 

- rounded to nearest integer 

Table 4.4 : Expected frequencies (E, ) of simplicial cells 
in a random group compared with actual frequencies 
(Of) for the simplicial cells of the BCC lattice. 

From table 4.4 it is clear that the observed frequencies of 

simplicial cell types for the BCC lattice are not those expected 

from a group of random simplicial cells with the BCC simplicial cell 

edgelength frequency distribution. 

The chi-squared statistic may be used as a measure of how far 

observed (0i) and expected (Ei) frequencies differ: 

i. e. X2 -E iEi )2 

Ei 

1 
-4.4- 

For the example given in table 4.4, the value of chi-squared for the 
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24 simplicial cells of the tetrakaidecahedral Voronoi cell for the 

BCC lattice is 48. 

There is only one restriction in calculating the expected 

frequencies, which is that they must have the same total as the 

observed frequencies. The number of degrees of'freedom 'v' is 

therefore six: - 

v- Number of classes minus number of restrictions 

v-7-1-6. 

We are now in a position to address specific statistical questions. 

For example, at the 5% level of significance, do the results 

presented in table 4.4 indicate that the simplicial cells are random 

according to the definition presented in section 4.2.2? From 

published tables, the value of chi-squared corresponding to v-6 at 

the 5% level is X2.05 - 12.59. Since the calculated value of X2 in 

our worked example at 48 exceeds this, the result is significant and 

the hypothesis of random simplicial cells has to be rejected. For v 

- 6, a value of x2 - 48 corresponds with a probability of « 0.001 

that the results presented in table 4.4 could be obtained if the 

simplicial cells were random. Increasing the number of simplicial 

cells in the example from 24 results in a linear increase in chi- 

squared, as shown in figure 4.2, with a corresponding linear 

decrease from « 0.001 of the probability that the simplicial cells 

are random as defined in section 4.2.2. The test has worked - the 

simplicial cells of the BCC lattice are not random according to the 

definition given in section 4.2.2. 
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Figure 4.2 : Relationship between number of simplicial cells 
and chi-squared for simplicial cells of a perfect 
BCC lattice. 

4.3 The Control Set 

The concept of a control group, or set, is a well established 

experimental procedure in many scientific fields. The same concept 

may be used, with slight modification, in the present work. The 

control set, therefore, consists of a number of simplicial cells 

which have been simulated (as distinct from those observed by 

measurements of sphere centre co-ordinates) so that certain 

conditions have been fulfilled. These conditions are: 
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(i) The edgelength distribution function for the simplicial cell 

control set is identical, or virtually identical with the 

edgelength distribution function for the 14870 real 

simplicial cells of the Finney model. 

(ii) All simplicial cells in the control set are generated from 

the real edgelength distribution function for the 14870 real 

simplicial cells of the Finney model using a randomising 

procedure. The definition of randomness given in section 

4.2.2 is therefore adhered to. 

Superficially, the procedure for generating an individual random 

simplicial cell of the control set appears to be trivial, and 

comprises the following four key sequences: 

(i) All 89220 edgelength values of the 14870 simplicial cells of 

the Finney packing are read into an array, X(). 

(ii) A random number, Z, in the interval [1,89220] is generated. 

(iii) The random number, Z, gives one edgelength value to the 

random simplicial cell, identical to X(Z). 

(iv) Steps (ii) and (iii) are repeated a further 5 times to give 

a total of six edgelength values. 

Leaving aside for one moment the issue of random number generation 

(this is dealt with in section 4.3.3), there is a fundamental 

problem with the above procedure which is not immediately obvious, 
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but which sheds considerable light on the nature of RCP simplicial 

cell randomness. This fundamental problem is that the procedural 

steps (i) to (iv) above will always give six random edgelength 

values, but there is no guarantee that these six edgelength values 

can form a three dimensional tetrahedron. This problem is referred 

to in the present work as the problem of existence, and is now 

considered in more detail. 

4.3.1 Existence 

Consider a perfectly regular unit edgelength tetrahedron in which 

one of the six edges is allowed to increase in length whilst the 

other five edges remain fixed in length. At some point the 

tetrahedron will be pushed flat into two dimensions, and cease to 

exist as a three dimensional structure. The point of collapse is 

easily calculated from simple trigonometry, and as shown in figure 

4.3 this point is reached when the variable edgelength value reaches 

1.73205 (or j3). 

Since no edgelength value in the simplicial cell edgelength 

frequency distribution for the Finney model exceeds 1.7 sphere 

diameters, the exact point of collapse illustrated in figure 4.3 can 

never be reached by any simplicial cell in the control set. If, 

however, we now allow two of the six edges to increase in length 

whilst the other four remain constant, we reduce the edgelength 

threshold for collapse from 1.73205 (i. e. f3) to 1.4142 (or J2) as 

illustrated in figure 4.4. 

There are 3977 edges above . /2 in length in the 89220 edges of the 

14870 simplicial cells of the Finney packing. It follows, 
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Figure 4.3 : The'expanded' regular tetrahedron ABCD at the point of collapse 
as a 3-D structure when the following condition is met : 

Length AB = AD = BC = BD= DC= 1.0 
& Length AC is incremented >1.0 

AX -, ADZ - XD2 

AC=2AX=ý3- 

B 

1.0 1.0 
1.0 

A------------C 
X 

1 

D 

Figure 4.4 : The'expanded' regular tetrahedron ABCD at the point of collapse 
as a 3-D structure when the following condition is met: 

Length AB = AD = BC = DC = 1.0 
& Lengths AC and BD are incremented >1.0 
such that AC = BD 

B 

A 

1.0 

Since AC = BD, 
max. value of AC is... / 

ie. X2 + BX2 =1 

, /gXz- 1 
f. AX=1 

C AX = 1/f 
AC=BD=f 
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therefore, that in generating the control set by following steps (i) 

to (iv) discussed earlier, there is a positive finite probability 

that "impossible" simplicial cells will be generated in the control 

set. In generating the control set, therefore a test for existence 

is required in order to prevent the cell generation procedure from 

producing cells which cannot physically exist in three dimensions. 

Although the arguments developed here apply to the control set, we 

can begin to be a little suspicious of the real simplicial cells 

which go to make up the real Finney RCP model. Specifically, our 

suspicion is that, if we select a threshold value of XT - 1.0, then 

we will observe a certain number of 2LS4 simplicial cells in the 

Finney packing. Since there are 3977 edges greater than f2 

"available" to form the 'L' state edges, random chance demands that 

there is a finite positive probability that "impossible" simplicial 

cells ought to be formed - the RCP structure, however is forced to 

avoid forming these "impossible" cells, and so cannot, by 

definition, be considered to be perfectly random. This inferred 

departure from randomness is discused in further detail in section 

4.3.4. 

4.3.2 Test for existence 

The purpose of the test for existence is simply to screen out those 

"impossible" simplicial cell structures generated by random chance 

in the process of creating the control set. Although each 

individual cell in the control set is created by random chance, the 

edgelengths retain the fixed positional sequence given by the 

standard tetrahedron geometry shown in figure 3.3. Even though the 

edgelength values themselves are generated at random, this fixed 
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positional sequence must be preserved in the test for existence. 

The test begins by selecting one of the six edgelengths as the 

initial test criterion. The remaining five edges form two triangles 

which share one edge in common. This hinged-pair of triangles is 

then considered to be laid flat, so that both triangles are in the 

same plane. The distance between the two triangle apices not 

associated with the common edge must be greater than the edgelength 

selected as the test criterion. If the tetrahedron fails this test, 

it is rejected as "impossible". If it passes the test, it is not 

yet accepted as "possible", since any of the five remaining edges 

may exceed this inter-apex distance. The test is therefore repeated 

a total of six times per tetrahedron in order to test all six inter- 

apex distances. Only when all six tests have given a positive 

result is a tetrahedron accepted as possible. 

The subroutine which performs the test for existence is called EXIS. 

The listing for this routine is presented in Appendix 'B' of the 

present work. One of the functions of routine EXIS is to count the 

number of simplicial cells which were rejected on the basis of 

having no three dimensional validity. This rejection frequency is 

discussed in more detail in section 4.3.4. 

4.3.3 Random Number Generator: AS 183 

The VAX computer used for the present work supports a pseudo-random 

number generator. However, there is little in the way of 

documentation for the VAX generator, and no thorough tests of the 

code used in the generator have been reported in the literature. 

The possibility exists, therefore, that the VAX psuedo-random number 

generator is prone to some unknown statistical defect which may 

manifest itself in use. Furthermore, the same pseudo-random number 
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generator code may not be available to other researchers. 

Therefore, in order to avoid using a relatively unproven code, and 

to avoid using a code which may not be available to other research 

groups, the pseudo-random number generator known as AS 183 developed 

by the National Physical Laboratory was used. The algorithm for 

this code was written by Wichmann and Hill (1982 (i) and (ii)) and 

consists of three generators of the single multiplicative 

congruential type. 

Initially, it was claimed (Wichmann and Hill, 1982 (i) and (ii)) 

that the cycle length of the generator is 2.78 X 1013, so that 

continually calling the generator 1000 times per second results in 

no repeat sequences for over 880 years. However, subsequently this 

claim was revised downwards to a cycle length of 6.95 x 1012, 

(Wichmmann and Hill, 1984). Nevertheless the cycle length is still 

impressive, though Wichmann and Hill did acknowledge that this 

reduced cycle length is due to the three sub-generators not 

operating completely independently of each other as was first 

thought. A further minor problem with Wichmann and Hill's function 

was highlighted by McLeod (1985) who showed that, depending on the 

machine used, some zero values may be produced owing to machine 

rounding error. In tests conducted by McLeod a sequence of 109 

pseudorandom numbers was found to contain 364 values exactly equal 

to 0.0, whilst the remainder fell in the open interval (0,1) as 

required. McLeod provides an additional algorithm which can be 

"bolted-on" to the Wichmann and Hills' generator to eliminate 0.0 

numbers without otherwise altering the performance of the original 

generator. This McLeod modification has been included in the 

present work. 
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Perhaps somewhat of an aside, Zeisel (1986) was able to show that 

the Wichmann and Hill generator is little more than a method to 

implement a single multiplicative congruential generator with a 

cycle length greater than the maximal integer. Zeisel goes on the 

invoke the Chinese Remainder Theorem to prove that the same results 

can be achieved using only one multiplicative congruential 

generator. However, he does concede that Wichmann and Hill's 

original algorithm is still necessary to make a generator with such 

lengthy constants required by Zeisel's alternative. 

In terms of using a random number generator to simulate "random" 

simplicial cells for the control set, the cells themselves are 

produced by calling random numbers in sequences of six. Each of the 

six random numbers is then used to select edgelength values from a 

list. The geometrical properties of the cell are dictated not only 

by the values of the edgelengths, but also by the sequence in which 

the edges are put together. For any practical algorithm this 

sequence must remain constant; therefore any significant non- 

randomness in the generation of sequential doubles, triples or 

quadruples by the generator might result in statistical "defects" in 

the cells generated. Wichmann and Hill's algorithm, AS 183, has 

been very exhaustively tested for precisely these conditions (e. g. 

Wichmann and Hill, 1982 (ii)). In the years following publication 

of AS 183, the literature contains no criticisms of, or references 

to statistical defects pertaining to either sequencing or to 

rectilinear distribution (excluding McLeod's remarks about the open 

interval 0,1 occurrences of 0) for AS 183. Accordingly, algorithm 

AS 183 is coded up in FORTRAN in program WANDOM. This program is 

documented and listed in Appendix 'B'. 
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4.3.4 Construction of the Control Set 

The data file FINEDGE. DAT is, in effect, a list of 89220 sequenced 

edgelength values for 14870 simplicial cells of the Finney model. 

As such, it may be regarded as a sample (a frequency distribution) 

of a larger RCP model. In generating the control set we have to use 

this sample to fulfil the role of a population (a probability 

distribution). Therefore, in selecting edgelengths at random from 

the population it is important not to constrain the selection of 

edgelength values by using each edgelength value in the population 

only once. In practical computing terms this is an advantage, since 

it permits a very large control set to be created, whilst still 

preserving a control set edgelength frequency distribution which is 

virtually identical to that of the original Finney edgelength 

frequency distribution. 

The procedure used to generate the control set is shown in figure 

4.5 as a flow diagram, and is essentially that of steps (i) to (iv) 

outlined at the beginning of section 4.3. The procedure outlined in 

figure 4.5 is coded up into program CONTROL, which writes the 

control set as an output file called CONTROL. DAT. The listing for 

program CONTROL is presented in Appendix 'B' of this thesis. The 

size of the control set has been set at an arbitrary value of 105 

cells (6 x 105 edges). 

The control set, CONTROL. DAT, may be manipulated and interrogated by 

any of the analytical subroutines used to examine the real set of 

14870 simplicial cells from the Finney model, FINEDGE. DAT. The 

edgelength frequency distribution for CONTROL. DAT is virtually 
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Start Read 89220 edgelength values from 
FINEDGE. DAT into array F () 

Set counter B=11 -0 Set counter A=1 

Call function WANDOM 1 _j 
Convert random number Z[O, 1] 

to integer X[0,89221] 

Select edgelength value from 
Increment counter B element X in array F () 

NO 

Test if counter B=61 Ifi Store in array K () 

T YES 
Does set of 6 edgelength 

Call routine EXIS values have any validity 
in 3 dimensions? 

NO YES 

Count rejects Reject cell 

Increment counter A 

NO 

Test if counter A= 100,00 Write to output file 
0 CONTROL. DAT 

YES 

Report number of rejects Close file CONTROL. DAT 

Stop 

Figure 4.5 : FLOW DIAGRAM OF PROGRAM CONTROL 
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identical to that of FINEDGE. DAT, as is evident from comparisons of 

figure 4.6 with figure 3.15, and figure 4.7 with figure 3.16. 

The number of simplicial cells rejected by routine EXIS as having no 

three dimensional existence, or validity, during the construction of 

CONTROL. DAT was 269, or 0.268% (i. e. 100 x 269/100269). If this 

proportion is applied to the 14870 simplicial cells of the Finney 

model, then we should expect that random chance alone would be 

responsible for the generation of some 39 or 40 simplicial cells 

which could not physically exist. In order to compensate for this, 

real RCP structure is forced to avoid certain simplicial cell 

configurations dictated by random chance - this is the first 

indirect evidence that RCP structure cannot possibly be perfectly 

random according to the definition presented in section 4.2.2. 

Further departures from ideal randomness are presented in section 

4.4 following. 

4.4 Tests of Randomness 

4.4.1 The First Test 

The first test of randomness considered in the present work is 

essentially that of the worked example presented in section 4.2.4. 

For the Finney model we have 14870 simplicial cells which can be 

analysed to yield the observation series 00,01... 06i and we are 

able to use the polynomial terms of equation 4.3 to calculate the 

(random) expected series E0, E1.. E6. Thus it is possible to 

calculate values of chi-squared and test a hypothesis. There are 
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two essential questions to be answered before the test can be 

defined: 

(i) What hypothesis is being tested? 

and 

(ii) Since the frequencies E0, E1... E6 are functions of s (i. e. 

the fraction of edgelengths defined as short), what value of 

XT will be used? 

The answer to question (i) is that the hypothesis under test is the 

null hypothesis that there is no significant difference between the 

expected series E0, E1... E6 and the observed series 00,01... 06. 

Rejection of the null hypothesis using a chi-squared test means that 

the definition of randomness given in section 4.2.2 is not correct. 

The answer to question (ii) is a little more difficult, since a 

priori, we have no knowledge of how varying XT (and therefore s) may 

affect chi-squared. The solution is to find out, by finding chi- 

squared for a wide range of s values. 

The first test of randomness, therefore, consists of the sequence of 

events summarised in flow diagram form in figure 4.8. In addition 

to analysing FINEDGE. DAT for the observed series 00,01... 06, the 

first 14870 cells of the control file CONTROL. DAT were also analysed 

to yield the control-observed series 0;, 01... 06. The variation in 

chi-squared as a function of s is shown in figure 4.9. From this 

figure it is apparent that the value of chi-squared for the 14870 

simplicial cells of the Finney model rises from a value of 
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Start 

Select arbitrary value of X. 

Find current value of s 
from FINEDGE. DAT resulting 
from XT selection 

Solve polynomial expression for 
E01E,..... Es 
using current value of s 

Analyse FINEDGE. DAT for 
00901 ..... 06 
using current values of s 

Analyse CONTROL. DAT for 
O0', O1'.... O8' 
using current value of s 

Compute v12 = 
(01 - E, )2 

E, 

I 
Compute 'v22 =Z `O, 

' 
- 

E)2 I 

E, 

Increment XT until XT = 1.6 

Stop 

XT>1.6 

Figure 4.8 : FLOW DIAGRAM FOR FIRST TEST OF RANDOMNESS 

186. 



about x2 - 10 at s-0.2 to a maximum value of X2 - 1498 at s- 

0.477 (XT - 1.0085), before falling back to a value of Xz - 47 at s 

- 0.9. The control set (identified as a "plus" symbol and the term 

"randomised model" on figure 4.9), however shows a value of X2 which 

varies between limits of 2.3 and 9.8. 

There are six degrees of freedom (v) for X2, as discussed in the 

worked example in section 4.2.4. From published tables, at the 5% 

level of significance the value of X20. o5 for v-6 is 12.59. 

Between the limits 0.2<s<0.9, all values of x2 for the Finney 

simplicial cells exceed considerably 12.59. The null hypothesis is 

therefore rejected, and it is demonstrated that the simplicial cells 

of the Finney RCP model are distinctly non-random. The definition 

of randomness given in section 4.2.2 therefore does not apply to the 

Finney RCP model. As we might expect, however, the null hypothesis 

for the control set cannot be rejected, and we must conclude that 

the control set might be consistent with the definition of 

randomness given in section 4.2.2. 

An interesting feature of the relationship between X2 and s for the 

real Finney cells shown in figure 4.9 is that the curve is not quite 

symmetrical about the peak value of x2. The reason for this is not 

understood, neither is it understood why the peak value of X2 occurs 

at a value of s-0.477 and not 0.500. 

4.4.2 Second test of Randomness 

This is no more than a simple extension of the first test which 

showed that RCP simplicial cells from the Finney model exhibit 
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maximum departure from randomness at XT - 1.0085, equivalent to a 

value of s-0.477. The second test of randomness uses a fixed 

value of s-0.477, but a variable number of simplicial cells in the 

test, starting with the first 100 cells of FINEDGE. DAT, and 

increasing to 14870 cells. The relationship between number of 

simplicial cells and X2 is presented in figure 4.10 which shows that 

X2 is a smooth linear function of the number cells in the group. 

The value of X2 for the control set (identified in figure 4.10 as 

the "plus" symbol, and referred to as the randomised model) falls in 

the range 0.9 to 9.7 and is independent of the number of cells in 

the group. The tendency for X2 to increase indefinitely as the 

sample size is increased is a typical feature of a significant 

difference between the expected series and the observed series, 

confirming that the null hypothesis must be rejected for the Finney 

model. 

The first and second tests of randomness have shown that the values 

of the six edgelengths of a real simplicial cell are not independent 

of each other, and that they do not occur with random chance. 

Knowledge of the simplicial cell edgelength frequency distribution 

function alone, therefore, does not provide enough information to 

generate a group of simplicial cells which are exactly like those 

found in a real RCP structure. This confirms the suspicion raised 

earlier in section 4.3.4 that random chance selection of edgelengths 

from the edgelength distribution function is not a viable mechanism 

for forming RCP simplicial cells. Avoiding selecting such 

"impossible" cells is consistent with a small departure from random 

behaviour. So far the tests of randomness have concentrated on a 

statistically valid rejection of the null hypothesis. The tests 
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themselves have not yet revealed the exact nature of this non- 

randomness. The following tests are designed to achieve this goal. 

4.4.3 Third test of Randomness 

The first test established that the Finney simplicial cells give the 

highest chi-squared value (i. e. appear to be maximally non-random) 

for a value of s close to 0.5. For the exact condition S-0.5000, 

the expectation series E0, E1... E6 becomes symmetrical about E3: 

i. e. Eo - Er 

Ei - ES 

E2-Ef 

or E(3_i) - E(3+i) for s-I-0.5 

The frequencies of the expectation series for 14870 simplicial cells 

for s-0.5 are given in table 4.5: 

Expectation Frequency in Cell types 
series term 14870 cells 

Eo=Eb 232 OLS6,6LSO 
E, =Es 1394 1L55,5LS1 
E2=E4 3485 2LS4,4LS2 

E3 4648 3LS3 

Table 4.5 : Expected frequencies of random simplicial 
cells for s=1=0.5000 
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In order to attempt to visualise the nature of the non-randomness in 

the simplicial cells, we select a value of XT such that s-0.5, and 

compare the observed series 00,01... 06 for the Finney model with 

the expected series E0, El ... E6. Additionally, we can compare the 

observed series 0ä, 0i... 06 from the first 14870 cells of the control 

set with the real observed series. 

In practice it is not possible to find a value of XT for the 14870 

simplicial cells of the Finney model such that s is exactly equal to 

0.5. The nearest to s-0.5 it is possible to achieve for the 

Finney set is s-0.50012 for a value of XT - 1.01229. Although 

very close to the ideal value of s-0.5, the real value of 0.50012 

does introduce a very small degree of non-symmetry in the 

expectation series E0, E1... E6 since: 

(0.50012)6 (1 - 0.50012)6 

- this very slight departure from symmetry in the terms of the 

expectation series is so small that it may be ignored for all 

practical purposes. The comparison between the expectation series 

and the observation series is given in table 4.6. 

From table 4.6 two conclusions may be drawn regarding the simplicial 

cells of the Finney packing: 

(i) The observed frequencies of the least probable cell forms 

(OLS6,6LS0,1LS5 and 5LS1) are much lower than expected 

from a group of random cells. Correspondingly, the observed 

frequency of the most probable cell type (3LS3) is much 
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higher than expected from a group of random cells. 

(ii) The observed series 00,01.. . 06 is approximately symmetrical 

about 03: 

i. e. 00 - Os 

0- 05 

02 °` 04 

Simplicial Observed Expected Observed 
cell class frequency frequency frequency 

in 14870 in 14870 in 14870 
cells of cells of cells of 
CONTROL set RANDOM set FINNEY set 
Oe 90 

ý 
... OE E 9E ... E. 

01 $a 
0, ý... 01. 
C, 

OLS6 246 233 56 
1LS5 1383 1396 785 
2LS4 3466 3487 3496 
3LS3 4612 4647 6107 
4LS2 3484 3483 3653 
5LS1 1445 1393 719 
6LSO 234 232 54 

XT = 1.01229, s=0.50012 

Table 4.6 : Comparison of expected and observed frquencies 
of simplicial cell classes in 14870 cells of thi 
control set and the Finney model. 
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The consequences of this departure from random behaviour are that a 

straightforward random simulation of simplicial cells, such as that 

used to generate the control set, will not produce a good match with 

the real simplicial cells of the Finney model. In particular, all 

aspects concerning simplicial cell volume will be subject to 

significant statistical differences between the real simplicial 

cells of the Finney model and the simulated cells. These 

statistical differences are considered in some detail in the 

following section. 

4.4.4 Consequences of Non-randomness 

The main consequence of the non-random behaviour defined and 

isolated in this chapter concerns simulations of groups of 

tetrahedral simplicial cells. Mason (1971) for example used a 

pseudorandom number generator to select tetrahedron edgelength 

values from what is in effect an approximated simplicial cell 

edgelength frequency distribution. Gotoh and Finney (1974) used a 

statistical geometrical argument based on an estimate of the most 

likely form of tetrahedral cell to deduce the overall packing 

density of monodisperse random close packing. The present work has 

shown that any successful simulation must address the fact that the 

real simplicial cells of the Finney model have reduced frequencies 

of very small cells (OLS6 and 1LS5 forms), reduced frequencies of 

very large cells (6LSO and 5LS1 forms), and increased frequencies of 

"average" cell forms (i. e. 3L53) over those predicted from random 

chance. 

An unsuccessful simulation method relying entirely on random 

selection of edgelength from some edgelength distribution function 
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will overestimate the frequencies of small and large cell classes 

and will underestimate the frequencies of more "average" cell 

classes such as the 3LS3. This is readily illustrated by regarding 

the control set as an unsuccessful simulation, and comparing a few 

frequency distributions from the control set with those of the 

Finney simplicial cells presented in Chapter 3 of this thesis. 
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Figure 4.11 shows the cavity insphere radius frequency distribution 

for 105 cells of the control set. If this distribution is compared 

with the dashed line for the Finney model (taken from figure 3.27), 

it is very clear that the control set overestimates the frequencies 

of very small cavity inspheres (up to 0.28 sphere radii) and very 

large cavity inspheres (greater than 0.45 sphere radii). 

Correspondingly, the control set underestimates the frequencies of 
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Figure 4.11 : Cavity insphere radius frequency distribution 

function for the control set 
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the "average" cavity inspheres in the range 0.29 to 0.44 sphere 

radii. The smallest cavity insphere which can exist is that of the 

unit regular tetrahedron, which has a cavity insphere radius of 

0.224745 sphere radii (see table 3.5). The frequency of occurrence 

of this tetrahedron, which would be identified as a OLS6 cell for 

XT5 1.01229, is clearly overestimated by the control set. 

Figure 4.12 shows the frequency distribution of individual apex 

solid angles for the control set. When compared with the dashed 

line for the Finney model (taken from figure 3.19), it is clear that 

the control set is substantially overestimating apex solid angles in 

the range 0.55 to 0.56 radians. Table 3.5 shows the apex solid 

angle for the regular unit tetrahedron to be 0.5513 radian, again 

confirming that the control set overestimates the frequency of the 

unit regular tetrahedron. 
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Figure 4.12 : Individual apex solid angle frequency 

distribution for the control set 
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Figures 4.13 and 4.14 shows the full 'cell solid angle frequency 

distribution for the 105 cells of the control set. By comparison 

with the dashed line for the Finney model (taken from figure 3.21), 

it is apparent that the control set cells have an increased 

frequency of total solid angle in the range 2.20 to 2.21 radians. 

From table 3.5. the unit regular tetrahedron has a total solid angle 

of 2.205 radians. The real simplicial cells of the Finney packing 

have a continuously higher frequency than the control cells of all 

total solid angles below 1.9 radians. This is evident from figure 

4.14, which shows a detail of the full cell solid angle frequency 

distribution for the control set. 

4.4.5 Advantages conferred by non-randomness 

It seems reasonable to suppose that there is a reason, or a set of 

reasons, why the simplicial cells of the Finney monodisperse RCP 

model are distinctly non-random. This section of chapter 4 takes an 

anthropomorphic view of the issue of non-randomness, and assumes 

that some "advantage" is conferred on the packing by nonrandom 

simplicial cell formation. In this anthropomorphic approach for 

example, we can imagine that the whole packing is trying to achieve 

the maximum packing density possible - perhaps non-randomness 

assists in achieving this goal. We can test this hypothesis fairly 

easily, by calculating the average packing densities for the 14870 

cells of the Finney model, and comparing those results with those 

for the first 14870 cells of the control set. This comparison is 

shown in table 4.7, from which it is evident that the average 

packing densities of cells from both the Finney model and the 

control set are virtually identical. Whatever advantage non- 
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CELL FINNEY MODEL CONTROL SET 
CLASS 

Frequency Average Frequency Average 
packing packing 
density density 

OLS6 56 0.7761 243 0.7769 
1LS5 785 0.7332 1378 0.7389 
2LS4 3496 0.6897 3465 0.6949 
3LS3 6107 0.6432 4614 0.6459 
4LS2 3653 0.5910 3484 0.5952 
5LS1 719 0.5402 1450 0.5411 
6LSO 54 0.4847 236 0.4821 

OVERALL MEAN 0.6380 OVERALL MEAN 0.6375 

XT = 1.01229, s=0.50012 

"Note: OVERALL MEAN is calculated within the program 
as TOTAL VOID VOLUME/TOTAL CELL VOLUME 

Table 4.7 : Packing densities of the Finney model and control 
set (first 14870 cells). 

randomness (at the simplicial cell level) confers on the packing 

then, is not simply one of efficiency in packing density. Looked at 

another way, measurement of packing density alone offers no clue as 

to the reasons for non-randomness at the simplicial cell level. 

Perhaps the advantage we are looking for is simply that the real 

simplicial cells fit perfectly together to fill three dimensional 
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space - the control set are not required to undertake this exacting 

task. If we calculate the total volume of all 14870 cells in the 

Finney model, we find a value of 15,936 sphere-radii cubed. 

Remarkably, this is significantly less than the total volume (16,545 

sphere radii cubed) of the first 14870 cells of the control set. 

Not only do the real simplicial cells of the Finney model fit 

together, they occupy less volume in space than the same number of 

random cells of the control set. This is an important result, 

though at first sight paradoxical, as we have already established 

that the average packing densities of the control set and the Finney 

model cells are virtually identical. The Finney cells achieve this 

paradoxical result by putting significantly less solid-sphere volume 

into the simplicial cells than the control set cells do. Thus table 

4.8 shows the total cell volumes (i. e. volume of sphere-segment plus 

void space) and solids-only volumes (i. e. volume of sphere segments 

only) for both the Finney model and the control set cells. 

This minimisation of space occupied by real simplicial cells has 

already been touched upon indirectly in section 4.4.4. 

Specifically, figure 4.14 shows that the full simplicial cell solid 

angle distribution is systematically shifted towards lower values 

for the set of Finney cells compared with the set of control cells. 

For the moment, this is the nearest we can get to isolating the 

"advantage" conferred upon the packing by adopting a non-random 

simplicial cell "strategy". The real non-random simplicial cells 

occupy less space than purely randomly generated cells are able to. 

In chapter 5 we will see that the constraints of space filling 

introduce another interesting facet of non-randomness - that of 

isomerism. 
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CELL FINNEY MODEL CONTROL SET 
CLASS 

Frequency Total solids Frequency Total solids 
cell only cell only 
volume volume volume volume 

(r3) (r3) (r-3 ) (r-3) 

OLS6 56 53.0 41.2 243 229.9 178.6 
1LS5 785 767.1 562.4 1378 1340.1 990.2 
2LS4 3496 3500.4 2414.2 3465 3537.6 2458.4 
3LS3 6107 6465.4 4158.7 4614 5044.4 3258.3 
4LS2 3653 4184.2 2472.9 3484 4134.5 2461.0 
5LS1 719 892.6 482.2 1450 1908.1 1032.5 
6LSO 54 73.4 35.6 236 350.7 169.1 

TOTALS 15936.1 10167.0 TOTALS 16545.4 10548.2 

XT = 1.01229, s=0.50012 

Finney average packing density =10167.0/15936.1=0.6380 
Control average packing density =10548.2/16545.4=0.6375 

Table 4. B : Total cell volumes and solids-only cell volumes for 
the Finney model and Control set simplicial cells. 
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4.5 Mason's Method 

Mason (1971) developed a method for simulating tetrahedral pores of 

a sphere packing, based on the concept that the tetrahedron 

edgelength values may be selected at random from an appropriate 

edgelength distribution function. The present chapter therefore 

would not be complete without commenting in some detail on Mason's 

method, since it remains the only practical published technique for 

simulating the pores of a random sphere packing. 

First, Mason's tetrahedral pores are not rigorously defined as 

simplicial cells; they are not intended to be related precisely to 

either the Voronoi graph or the simplicial graph of a real packing, 

but rather they should be viewed as approximate simplicial cells. 

Second, Mason restricts the maximum cell edgelength to 1.4 sphere 

diameters. This expedient eliminates all possibilities of 

generating the "impossible" tetrahedra referred to in section 4.3.1. 

Third, he uses a linear approximation for the edgelength frequency 

distribution: 

N-7.5 + 15.62 (x- 1) -4.5- 

where N is the mumber of sphere centres within a distance x (in 

sphere diameters) of the reference sphere centre. Truncation of the 

edgelength frequency distribution at 1< x <1.4 therefore demands 7.5 

contacts per sphere and a total of 13.748 neighbours per sphere. It 
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is this truncated linear approximation which produces the most 

significant defect in the Mason model. Mason's earlier work (Mason, 

1968) for example, showed that the cumulative near neighbour 

distribution function (i. e. that which is approximated by equation 

4.5) can fall to around 5 or less for the Scott model - this is 

clearly shown in figure 1.16. The nature of the significant defect 

in the Mason model, then, is that it overestimates the number of 

sphere-sphere contacts. This in turn will produce far more state 

'S' cell edgelengths than can exist in a real set of simplicial 

cells. 

In order to evaluate the similarities between random tetrahedral 

cells produced by Mason's (1971) method, and the real simplicial 

cells of the Finney packing, a simulation using the Mason method was 

undertaken. This simulation has previously been reported by Mellor 

(1987), and entailed the generation of 106 tetrahedral pores. The 

simulation routine is summarised in figure 4.15 and the analysis 

routines are those used in chapter 3 and presented in Appendix 'B' 

to this thesis. 

Some of the results of the simulation using Mason's method are shown 

in figures 4.16 to 4.25. These figures include the various face 

insphere radius frequency distributions specific to the Mason model, 

and may be compared directly with their real, observed counterparts 

for the Finney model presented in Chapter 3. The most striking 

feature of such a comparison is that Mason's simulation results in a 

prominent "spike" in the frequency distributions associated with the 

unit-regular tetrahedron. This "spike" for example, is prominent in 

figure 4.17 which shows the cavity insphere radius frequency 
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Figure 4.15: FLOW DIAGRAM FOR MASON'S METHOD 
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distribution for the Mason simulation. Comparison with the same 

distribution for the Finney model (figure 3.27) shows that the 

frequency of the unit regular tetrahedron in a real assemblage of 

simplicial cells is about 0.005 of the total, as opposed to the 

0.035 predicted using Mason's method. Mason's method therefore 

systematically overestimates the frequency of unit-regular 

tetrahedral pores (the OLS6 cell class) by a factor of about 7. For 

many practical applications this may not be very important. 

However, for applications in which capillary properties of sphere 
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packings are being considered, overestimating the frequency of unit- 

regular tetrahedral pores may lead to significant errors. For 

example, table 3.5 shows that the unit regular tetrahedron has four 

identical face insphere radii of 0.154701 sphere radii. The cavity 

insphere radius for the unit regular tetrahedron is 0.224745 sphere 

radii. Making the approximation that face and cavity insphere radii 

control cell imbibition and drainage respectively, the unit regular 

tetrahedron will therefore exhibit some degree of capillary pressure 

hysteresis attributable to the difference in insphere radii. This 

cell-specific, as distinct from network-specific, hysteresis will 

therefore be overestimated in any calculations based on Mason's 

(1971) method. Furthermore, estimations of, say, mercury intrusion 

into a set of cells simulated using Mason's method will always 

overestimate the frequency of the unit regular tetrahedral face. 

This latter point may be a problem for workers attempting to 

reconcile experimental mercury injection of real sphere packings 

with theoretical models (e. g. Smith and Stermer, 1986). 

Having identified the key weaknesses of the Mason simulation, it 

must be said that the accuracy of the predicted cavity insphere 

radius frequency distribution is quite remarkable. Mason's (1971) 

method gives a reasonable estimation of many of the properties of 

interest in packed beds, and has the advantage of rapid and easy 

calculation. The joint frequency distributions derived from Mason's 

method, presented in figures 4.22 to 4.25, compare favourably with 

those observed for the Finney model presented in figures 3.44 to 

3.47. The main conclusions regarding capillary pressure hysteresis 

for the Finney model arrived at in chapter 3 can also be arrived at 

using Mason's method which also shows that, in the main, tetrahedral 

pores drain and fill at approximately the same capillary pressure 

(Mellor, 1987). 
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4.6 Discussion and Conclusions 

In this chapter the structure of random close packing has been 

examined from the point of view of a dis-aggregated assembly of 

simplicial cells. This has enabled progress to be made in measuring 

the extent to which simplicial cells may be regarded as random. The 

major conclusion to emerge from the work presented in this chapter 

is that the simplicial cells of the Finney model are not random, and 

that they have formed according to some systematic departure from 

expected random behaviour. This departure is consistent with 

reducing the frequencies of what might be termed "extreme" 

simplicial cell forms such as 6LSO and OLS6 in favour of more 

"average" 3LS3 cells, compared with our expectations. This result 

in itself is quite remarkable, yet it in turn leads to an even more 

remarkable result. This is that the often encountered view that 

random close packing merely converges on the maximum packing density 

is wrong. A random set of cells (i. e. the control set) also 

converges on the observed maximum packing density, and yet such a 

random set fails to'achieve two critically important results - they 

cannot be packed to fill space, and they occupy too large a total 

volume of space compared with a real set of cells (i. e. the Finney 

set). An important spin-off result from this work, therefore, is 

that using packing density as a check on structural validity for a 

simulation of RCP is not as useful or reliable as the existing 

literature suggests. Any check -involving packing density must 

therefore be used with caution -a simulation which fails to achieve 

its target packing density is probably wrong. A simulation which 

succeeds in achieving its target packing density is not necessarily 

correct. 
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The observed frequency distribution of simplicial cell classes 

presented and discussed in this chapter could form the basis of a 

new method for validating computer realisations of RCP structure. 

Since the Finney model has been shown to be non-random at the level 

of the simplicial cell, this raises the question of the extent to 

which individual simplicial cells of computer realised models are 

also non-random. This question is beyond the scope of the present 

work, but may be of passing interest to some computer simulation 

specialists in sphere packing. 

The work presented in this chapter shows that the individual 

simplicial cells of the Finney model are non-random. This is a very 

important result for any research group attempting to model or 

simulate the pore structure of sphere packings. However, there is a 

critically important aspect of the structure of the Finney packing 

which is not considered in the present chapter. This aspect 

concerns the way in which the simplicial cells of the Finney packing 

are distributed within the packing itself, and forms the subject of 

the next Chapter. 
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CHAPTER 5: RANDOMNESS AT THE NETWORK LEVEL IN THE FINNEY MODEL 

5.1 Introduction 

Chapter four showed that the individual simplicial cells of the 

Finney packing depart significantly from random behaviour. This 

individual non-random aspect of the Finney simplicial cells is 

wholly irrelevant to the present chapter, in which it is only 

necessary to distinguish between one cell type and another (e. g. 

between 4LS2 and 3LS3). The present chapter examines whether the 

Finney simp]icial cells are homogeneously, randomly distributed 

throughout the packing, or whether certain cell types cluster 

together in some non-random manner. In order to address this 

question, use is made of the concept of the network which connects 

together all the cells of the packing. The problem then reduces to 

that of forming an expectation of how the cells "ought" to be 

distributed on the network, and comparing this expected distribution 

with the observed distribution for the Finney packing. The present 

chapter, therefore, deals specifically with the simplicial cell 

network of the Finney model, and the extent to which the 

distribution of cell types on that network can be said to be random. 

There are two fundamental reasons for addressing the issue of 

network randomness characteristic of the Finney RCP model. The 

first is to do with percolation theory, and the second is to do with 

a classical solid state physics problem. Percolation theory was 
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devised by Broadbent and Hammersley in 1957 as a mathematical tool, 

aimed at quantifying the flow of fluids in disordered porous media. 

Within a few years of the original work, the mathematics and 

physical applications of this theory had expanded considerably (see 

for example review articles by Frisch and Hammersley, 1963; Shante 

and Kirkpatrick, 1971; Kirkpatrick, 1973) and are discussed in more 

detail in the next chapter. The basic concepts of percolation 

theory in relation to porous materials were reviewed briefly and 

succinctly in a paper by Mason (1988), in which one of the 

underlying assumptions of the theory was highlighted. This 

assumption is that the distribution of pores on the network is 

random. The assumption is absolutely central to any application of 

the theory, and yet owing to the complexity of the task no detailed 

analysis of the network of a real, disordered porous medium had been 

undertaken until the present work. 

The issue of network randomness in RCP structure represents one 

feature of an old problem in solid state physics, known variously as 

the crystallite hypothesis (Bartenev, 1970), the significant 

structure theory (Walter and Eyring, 1941 ; Eyring and Jhon, 1969) 

and the paracrystalline model (Hosemann and Bagchi, 1962). This 

problem is well reviewed in Ziman (1982), and is summarised briefly 

here. 

The various theories of the paracrystalline state differ in detail, 

but all require the existence of pseudo- or semi- crystalline 

regions of RCP space comprising localised clusters of ordered 

material (spheres). In terms of simplicial cell classes defined in 

chapter four such clusters must show up as localised groups of cells 
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of the same type. For example, suppose the clustering material were 

the perfect, regular unit-edgelength tetrahedron. This would be 

identified as a OLS6 cell, and clustering would be evident as higher 

than expected occurrences of OLS6 cells sharing faces in common with 

other OLS6 cells. Because chapter 4 has shown that both expected 

frequencies and observed frequencies of cell classes are symmetrical 

when S-0.5 (i. e. Eo - E6,00 - 06 etc), a clustering of OLS6 cells 

would also produce a requirement for 6LSO complementary cells to 

either cluster together, or to be in any event distinctly non- 

randomly allocated to the network. 

In its day, the paracrystalline theories of the solid state were 

considered to be powerful arguments for a particular view of 

amorphous solids. Today, however, the paracrystalline model of 

amorphous solids is not accepted as a valid model of disordered 

solids in general (Ziman, 1982). Until the present work, no 

rigorous attempt to establish whether the Finney RCP model consists 

of clusters (paracrystals) or homogeneously, randomly distributed 

cells had been undertaken. 

In order to begin to analyse the network of 14870 simplicial cells 

of the Finney model, some additional concepts are required. 

5.2 Fundamental Concepts 

The overall aim of this chapter is to examine the extent to which 

the simplicial cells (pores) of the Finney model are randomly 

distributed on the network which connects them. In order to do this 

it is essential to have a clear understanding of what the network 
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is. It is also essential to be able to make simple "measurements" 

of cell distribution on the network, and to compare the results of 

these "measurements" with predictions made from a theory. The 

theory, of course, should encapsulate the essence of the kind of 

randomness we believe to be important to consider, as well as being 

logical and defensible. In chapter four we saw that, because there 

is no established terminology or method for measuring randomness in 

RCP structure, some terminology had to be invented in order to 

progress. This terminology is developed further in sections 5.2.1 

to 5.2.7. 

5.2.1 The network 

The concept of representing a porous medium as a network has become 

extremely well established in the literature since the pioneering 

work of Fatt (1956). All networks have two fundamental components, 

namely structure and decoration. The structure of a network is its 

overall geometrical and topological configuration. For example the 

two dimensional network models used by Shante and Kirkpatrick (1971) 

consist of squares, triangles and other simple geometrical 

structures as shown in figure 5.1. The decoration of a network is 

the process of distributing dimensions of pores to the network 

structure. This decoration process is totally independent of the 

network structure itself, and is a two stage process. The network 

structure may be regarded as consisting of bonds and sites. A bond 

is no more than an individual straight line segment from figure 5.1, 

whilst a site is a point of intersection of bonds. Thus the sites 

in figure 5.1 (b) consist of intersections of 6 bonds, sites in 
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(a) Square (b) Triangular 

(c) Honeycomb (d) Kagome' 

Figure 5.1 : Two 
dimensional network 
models. 

(after Shante and 
Kirkpatrick, 1971). 

figure 5.1 (a) consist of intersections of 4 bonds and sites in 

figure 5.1 (c) consist of intersections of 3 bonds. The two stages 

of decoration, therefore are firstly to decide upon the physical 

meaning of the bonds and sites, and secondly to distribute 

dimensions to the bonds and sites. For example, it may be decided 

that sites represent pore bodies, whilst bonds represent the 

connecting links (throats) between these bodies. Distribution of 

dimensions might then proceed according to some particular 

preference or theory. 

For many (almost certainly the majority of) networks in the 

literature relevant to the study of porous media both the structure 

and the decoration are arbitrary processes. However the structure 

of the network of the Finney model considered in the present work is 

not arbitrary - it is an absolute and immutable property of the 

Finney RCP model. The Finney simplicial cell network is defined 
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absolutely by two factors. The first of these is the set of spatial 

co-ordinates of the sphere centres, and the second factor is the 

decision to analyse the packing in terms of its component simplicial 

cells. Once the packing has been divided up into its component 

simplicial cells, therefore, the network is automatically defined 

and available. In order to describe the structure of the entire 

network, a relatively large data file is required. The organisation 

and validation of this data file is described in detail in section 

5.4.1, but in general terms it is no more than a long list of cell 

identities. This list identifes which simplicial cells any given 

(reference) simplicial cell communicates directly with. Since all 

simplicial cells in the network are tetrahedra with four faces, each 

cell has four neighbours. A cell and one of its four neighbours 

occupy adjacent regions of space, and share one face in common as 

shown in figure 5.2. The faces of the cells, therefore, may be 

thought of as important features of the network itself. It will 

become apparent later on in this chapter just how critical the cell 

faces are to understanding the network structure of the Finney RCP 

model. 

5.2.2 Finite size limitations - surface cells 

The network we are dealing with in the present work connects 

together 14870 simplicial cells. The majority of these cells are 

likely to be entirely within the packing, and each of these cells 

will have four immediate neighbour cells. The external surface of 

the packing, however, will contain a number of cells which connect 

only with three neighbouring cells - the fourth face being "exposed" 

in the outer surface of the packing itself. The convention 
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adopted in the present work is that each simplicial cell is 

identified by an integer number in the range (1,14870). Cell 

identity zero is therefore not allocated to any real individual 

simplicial cell. This identity is instead reserved for what might 

be termed "undifferentiated space" which is deemed to surround the 

14870 cells we are concerned with. Any cell number with cell zero 

as a neighbour is therefore by convention on the outer surface of 

the packing and has only three (real) simplicial cell neighbours. 

There is a tangible benefit arising from this convention. Cell zero 

can be considered to be "filled" with a fluid which then effectively 

surrounds the entire packing and communicates immediately with all 

the surface cells. This concept facilitates fluid displacement 

calculations and is developed more fully in chapter 6. The 

frequency of surface occurring cells becomes important in the 

prediction of cell-cell distributions. This importance is discussed 

more fully in section 5.4.1. 

5.2.3 Face Forms 

Each simplicial cell in the network shares either three or four 

faces with other simplicial cells in the network. Given that the 

aim of this work is to establish whether or not the network 

structure is random, it is important to be able to differentiate 

between different types, or forms of face. The approach adopted 

here is compatible with that developed to describe the seven classes 

of simplicial cells (i. e. OLS6 to 6LSO). Since each face is a 

triangle, and each edge of the triangle can be in either state 'L' 

or 'S', there are four mutually exclusive face forms. These are 

OLS3,1LS2,2LS1 and 3LSO. Note that there is no confusion with 
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simplicial cell classes, since the total number of edges in a face 

form adds up to three, whilst the total number of edges for a cell 

is six. 

5.2.4 Cell-Face Distribution FP1 

The common terminology adopted for both cells and faces makes it 

immediately apparent that there are some combinations of cells and 

faces which cannot exist. A 6LSO cell, for example, can only exist 

with 3LSO faces. The full range of permitted and prohibited 

combinations for faces and cells is shown in table 5.1. 

FACE FORM 

OLS3 1LS2 2LS1 3LSO 

OLS6 � x x x 

v 1LS5 � � X x 

2LS4 � � � x 

w 
3LS3 � � � � 

4LS2 x 
� � � 

5LS1 x X � 

6LSO x X x 

�= Permitted 
ýC = Prohibited 

Table 5.1 : Relationship between simplicial cell class and face 

form. 
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Out of the total of 28 possible cell-face combinations, 12 are 

prohibited. Interestingly, the least frequently observed cells 

(i. e. OLS6 and 6LSO) are the most restricted in network structure 

scope; each have only one permitted face form for sharing. In 

contrast the most frequently observed cell class, the 3LS3, can have 

any of the four possible face forms. This' observation of permitted 

and prohibited combinations of cell class and face form suggests 

that the actual frequency with which a particular cell class occurs 

with a particular cell face may be useful in understanding the 

structure of the network. This distribution of frequencies is 

called the cell-face joint frequency distribution, [P], and is a7x 

4 element matrix. 

It is important to remember that [P] is an intrinsic property of a 

dis-assembled group of simplicial cells. The joint frequency 

distribution [P] therefore carries no information whatsoever 

regarding any actual or real organisation of network structure. Our 

hope is that we may be able to use [P] as the basis of a definition 

and prediction of what a random network structure might be like. 

This in turn should permit a comparison to be made between our 

prediction based on [P] and an observation of the real Finney model 

network structure. To prove the point that [P] does not "contain" 

information about network structure, consider the simulation of 106 

simplicial cells by Mason's method described in chapter 4. Each of 

those cells could easily be analysed to provide its cell class, and 

its four face forms. This procedure would undoubtedly lead to a 

perfectly valid cell-face joint frequency distribution, [P], for the 

Mason model. However, the group of 106 cells has no network, and 

the individual cells cannot be "fitted together" to fill space. 
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Numbering the elements of the matrix [P] from 0,0 instead of from 

1,1 affords a particular convenience in notation. The matrix 

element number then becomes identical to the number of state 'L' 

edges in the face or cell. For example, the numerical value of P2,0 

is the frequency with which 2LS4 simplicial cells are observed to 

have OLS3 faces. The form of the matrix [P] is illustrated in table 

5.2, note that the matrix is not symmetrical, values for j (face) 

and i (cell) are not interchangeable. 

FACE FORM 

j= 0 3= 1 3= 2 3= 3 

OLS3 1LS2 2LS1 3LSO 

i=0 OLS6 0,0 (0,1) (0,2) (0,3) 
N 
N 
a 
J i=1 1LS5 1,0 1,1 (1,2) (1,3) 
U 

J i=2 2LS4 2,0 2,1 2,2 (2,3) 

w 
v i=3 3LS3 3,0 3,1 3,2 3,3 

i=4 4LS2 (4,0) 4,1 4,2 4,3 
U 
J i=5 5LS1 (5,0) (5,1) 5,2 5,3 
CL 
r- 
N i=6 6LSO (6,0) (6,1) (6,2) 6,3 

Note : (> indicates zero value elements of prohibited 
combinations. 

Table 5.2 : The cell-face distribution matrix CP7 showing 
the relationship between element number and 
number of 'L' state edges. 
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5.2.5 Cell-Cell Distribution. rNl 

The cell-cell distribution is the joint frequency distribution for 

which a particular cell class occurs as an immediate neighbour to 

another particular cell class. This distribution might also be 

called the cell neighbour distribution. This distribution is an 

intrinsic Property of the network structure, and as such it 

represents a complete summary of the distribution of cells relative 

to each other within the network, and is a direct measure of any 

tendency towards cell clustering. Since there are seven classes of 

simplicial cell, [N] is a7x7 matrix. 

As with the cell-face distribution, there is an advantage of 

convenience in numbering the elements of the matrix [N] from 0,0 

instead of from 1,1. The matrix element numbers then become 

identical to the numbers of state 'L' edges in the reference cell 

and neighbouring cell. For example, the numerical value of N36 6 is 

the observed frequency with which 5LS1 simplicial cells are observed 

to have 6LSO simplicial cells as neighbours. The matrix [N] is 

illustrated in table 5.3. Clearly, [N] must be symmetrical about 

its diagonal elements, 

i. e. N35 5- N5 3 etc. 

Prohibited combinations (e. g. N1,6) occur in [N] as zero values. 

5.2.6 Isomerism 

Before beginning a detailed examination of the methods used to 

detect the presence or absence of cell clustering, one further 

concept is required - that of isomerism. The term isomer is used in 
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SIMPLICIAL CELL CLASS 

j= 0 j= 1 j= 2 j= 3 i= 4 j= 5 j= 6 

OLS6 1LS5 2LS4 3LS3 4LS2 5LS1 6LSO 

N i=0 OL56 0,0 O, 1 0,2 0,3 (0,4) (0,5) (0,6) 
N 

i=1 1LS5 1,0 1,1 1,2 1,3 1,4 (1,5) (1,6) 
U 

J i=2 2LS4 2,0 2,1 2,2 2,3 2,4 2,5 (2,6) 

w v i=3 3LS3 3,0 3,1 3,2 3,3 3,4 3,5 3,6 
J 
0.4 i=4 4LS2 (4,0) 4,1 4,2 4,3 4,4 4,5 4,6 
U 

i=5 5LS1 (5,0) (5,1) 5,2 5,3 5,4 5,5 5,6 
E 
N i=6 6LSO (6,0) (6,1) (6,2) 6,3 6,4 6,5 6,6 

Note : () indicates zero value elements of prohibited 
combinations. 

Table 5.3 : The cell-cell distribution matrix CN) showing the 
relationship between element number and number of 
'L' state edges. 

the present work to indicate a specific variant of simplicial cell 

form. An isomer of a simplicial cell is analagous to an isomer of a 

chemical species, in that there may be more than one way of putting 

together the same component parts (i. e. cell edgelengths). For 

example, if we are given six state 'S' edgelengths, we can make a 

OLS6 simplicial cell - however, any individual form we make is the 

same as any other. Now, supposing we are given four state 'S' 

edgelengths and two state 'L' edgelengths in order to make a 2LS4 

cell. This time, it is possible to construct two structurally 

discrete forms, or isomers, of the 2LS4 cell. One of these isomers 

is arranged such that the two long edges join at an apex, forming 

one of the twelve face angles of the cell as shown in figure 5.3(a). 

222. 



The other isomer is arranged such that the two long edges never join 

together at an apex, and never occur in the same face as shown in 

figure 5.3(b). The significance of this is that the four faces of 

each of the two isomeric forms are quite different. If the first 

isomer is identified as alpha (being, as we shall see, the most 

probable of the two), and the second as beta, the resulting face 

forms are as shown in table 5.4. 

The significance of isomeric forms in terms of the simplicial cell 

network is profound. For example, a 2LS4 alpha cell can have cell 

neighbours sharing on 2LS1,1LS2 and OLS3 faces. These faces make 

it possible to share with 5LS1,4LS2,3LS3,2LS4,1LS5 and OLS6 

simplicial cells - in other words with 6 of the 7 possible 

simplicial cells. In contrast to this, however, a 2LS4 beta form 

can only have simplicial cell neighbours sharing on 1LS2 faces as 

shown in table 5.4. These neighbours can include 4LS2,3LS3,2LS4 

and 1LS5 simplicial cells only -4 out of 7 possible simplicial 

cells. Thus the 5LS1 and OLS6 simplicial cells are permitted 

neighbours to the 2LS4 alpha isomer, but not to the 2LS4 beta 

isomer. 
_ 

The face forms for each isomer are constant and invariant. All 2LS4 

alpha isomers therefore always have precisely 1 2LS1 face, 2 1LS2 

faces and 1 OLS3 face per simplicial cell. All 2LS4 beta isomers 

have exactly 4 1LS2 faces. The full range of isomers, together with 

their invariant face frequencies is given in figure 5.4. 
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(a) 

(b) 

(Red edge = Long edge) 

Figure 5.3 : The 2LS4 simplicial cell showing, 
(a) the alpha isomer, (b) the beta isomer 

ISOMER FACE FORM 'FREQUENCY 

3LSO 2LS1 ILS2 OLS3 

2LS4 CX- 0 1 2 1 

2LS4 
( 

0 0 4 0 

Table 5.4 : Isomeric forms of the 2L54 simplicial cell. 

224. 



Figure 5.4 : Relationship between simplicial cell isomers 

and face forms. 

SIMPLICIAL ISOMER FIXED FACE 
CELL (red edge=long edge) FREQUENCY 

OLS6 OLS3 1.0 

ALPHA 

1LS5 0-1 1LS2 0.5 
0. 

r' OLS3 0.5 

ALPHA 

2LS1 0.25 
ILS2 0.5 
OLS3 0.25 

2LS4 ALPHA 

1LS2 1.0 

BETA 
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Figure 5.4 :( continued ) 

SIMPLICIAL ISOMER FIXED FACE 
CELL (red edge=long edge) FREQUENCY 

A 

2LS1 0.5 
1LS20.5 ý, r i 

ALPHA 

3LSO 0.25 
2LS1 0 
1LS2 0.75 

3LS3 BETA 

2LS1 0.75 
1LS2 0 

lop OLS3 0.25 
00 

00 

GAMMA 
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Figure 5.4 :( continued ) 

SIMPLICIAL ISOMER FIXED FACE 
CELL (red edge=long edge) FREQUENCY 

3LSO 0.25 
2LS1 0.5 

00 000 00000 
1LS2 0.25 

4LS2 ALPHA 

2LS1 1.0 

f op 

BETA 

5LSI 3LSO 0.5 
2LS1 0.5 

2 

000 fop 

ALPHA 

6LSO I 3LSO 1.0 

ALPHA 
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5.3 Network Data File 

This section describes the data file which contains, or represents, 

the network which connects the 14870 simplicial cells of the Finney 

RCP model. 

5.3.1 Construction and Format 

The most convenient form for the network is that of a simple look-up 

table. Each of the 14870 simplicial cells is uniquely defined in 

the present work by an integer number in the interval (1,14870). 

The network can therefore be represented as a list of cell numbers 

which can be accessed directly from each individual cell. For 

example, cell number one happens to be quite close to the centre of 

the packing, and its four immediate neighbouring cells are numbers, 

2,5,8 and 25. Similarly, the immediate neighbours of cell number 

two are cell numbers 1,7,10 and 26. The look-up table could 

therefore be organised to look like the following list: 

Reference Cell Neighbouring Cells 

1 2, 5, 8, 25 

2 1, 7, 10, 26 

3 4, 6, 11, 29 

4 3,5,12,27 

5 1,4,14,27 

6 3,7,15,33 
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This approach pre-supposes that each cell has four neighbouring 

cells. As discussed in section 5.2.2, some cells will occur on the 

outer surface of the packing. Such cells will have only three, and 

not four neighbouring cells. The format adopted in the present 

work, therefore, is to construct a network look-up table with the 

following format: 

Reference Number of Identity of 

Cell Neighbouring cells Neighbouring cells 

142,5,8,25 

241,7,10,26 

344,6,11,29 

443,5,12,27 

541,4,14,27 

643,7,15,33 

- where the number of neighbouring cells is found to be three, the 

undifferentiated space outside the packing is identified as cell 

zero, as discussed in section 5.2.2. 

Programe NET1 was written to output the network in the above look-up 

table format. The program uses the simplicial cell identity file, 

NEWFILE3. DAT, as primary input. This input file contains the 

identities of the four component spheres which define individual 

simplicial cells. The first five lines of NEWFILE3. DAT are: 
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1,2,3,5 

1,2,3,9 

1,2,4,6 

1,2,4,8 

1,2,5,8 

Thus simplicial cell number one is defined by sphere numbers, 1,2, 

3 and 5, simplicial cell number two is defined by sphere numbers, 1, 

2,3 and 9 and so on. Program NET1 determines the network look-up 

table by testing all possible neighbouring cells (i. e. the 14869 

other cells) for the presence of any one of the four faces of the 

reference cell. For example, simplicial cell number one has its 

four faces defined as follows: 

sphere numbers 1,2 and 3 define one face, 

sphere numbers 1,2 and 5 define another face, 

sphere numbers 1,3 and 5 define a third face, 

whilst 

sphere numbers 2,3 and 5 define the last face. 

By inspection of the first five lines of NEWFILE3. DAT above, it is 

clear that simplicial cell number two is a neighbour of cell number 

one since spheres 1,2 and 3 are common to both simplicial cells one 

and two. It is also clear that simplicial cells three and four are 

not neighbours to simplicial cell one, since neither cells three nor 

four have three defining spheres in common with cell one. 

Simplicial cell number five, however, is a neighbour to cell number 
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one because spheres 1,2 and 5 are common to both simplicial cells 

one and five. This logical procedure is employed until either four 

neighbouring cells have been identified, or until all 14869 possible 

neighbouring cells have been examined. Although this procedure is 

relatively simple, and is reduced to a few lines of code in program 

NET1, it is very heavy in computing time. Thus program NET1 took 

13.6 cpu hours of run time to execute. No attempt was made to 

optimise the code for computing efficiency, as this was not an 

objective of the work. The code was run only once, and was written 

so that all output data is preserved in the event of a fatal run- 

time error (crash). 

5.3.2 Error checking and validation 

Because the network is an absolute topological property of the 

packing, it is essential to ensure that there are no errors in the 

network produced by program NET1. From the subdivision verification 

work reported in section 3.3.2 of this thesis it is clear that there 

is an error in the original subdivision performed by Wright (1987). 

In section 3.3.2 this error was isolated as a malfunction in the 

subdivision of space surrouding sphere number 2000. It seems 

reasonable to suppose, that program NETZ may crash (i. e. suffer a 

fatal error leading to termination of run-time) when dealing with 

certain simplicial cells in which sphere number 2000 occurs. This 

crash indeed happened when NETZ attempted to identify neighbours to 

simplicial cell number 14865 which has sphere number 2000 as one of 

its four apices. In order to complete the network look-up table 

output by NETZ, the neighbours to the last six simplicial cells in 

the list (i. e. 14865 to 14870) were determined manually by 

inspection of datafile NEWFILE3. DAT. The manually completed network 
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look-up data file output by program NET1 is called NETI. DAT. 

In order to be validated, NETI. DAT must pass certain fundamental 

tests. The first of these is that each simplicial cell can only 

have either 3 or 4 neighbouring simplicial cells. Thus any cell in 

NET1. DAT which claims to have 0,1,2,5,6 or other numbers of 

neighbours represents a significant error in the network. No such 

errors were detected. The second, and final test of the network is 

that each of the neighbouring cells for any given reference cell 

must in turn cite that reference cell as one of its own neighbouring 

cells. In other words, each individual cell must point to its 

neighbours, and its neighbours must point back to that individual 

cell. When this test was executed on NET1. DAT, three cells were 

identified as violators of this rule. These cells were 4240,4241 

and 4779. Each of these three cells has four neighbouring cells, 

and program NET1 had correctly identified the first three of the 

four neighbours for each of them. Each of three cells however, 

showed "impossible" references back from the fourth declared 

neighbour. The repairs to the network were performed manually by 

inspection and editing of the datafile NET1. DAT, and were relatively 

straightforward to complete successfully. The repaired network was 

called WRINED. DAT in order to differentiate it from NET1. DAT (WRINED 

derived from WRIght Network EDitted). 

The data file WRINED. DAT is the network which connects all 14870 

simplicial cells of the Finney model and contains the identity of 

neighbouring simplicial cells in simple look-up table form. This 

data file is fully validated and error-checked, and contains no 
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logical errors. It is interesting to note that had the frequency of 

errors in the network been significantly greater, say more than 

twenty cells affected, then manual repairs to the network would have 

been very time consuming and difficult to complete. This suggests 

that the initial subdivision of RCP space calculations should be 

performed at the highest level of machine precision available, and 

in any event not less than double-precision, in order to reduce the 

frequency of subdivision errors. 

5.4 Network Analysis 

5.4.1 Surface occurrine cells 

Because the packing of 14870 simplicial cells is finite, a number of 

cells occur on the outer surface of the packing. These surface 

occurring cells have only 3, and not 4, neighbouring cells as 

discussed in section 5.2.2. By counting the number of cells with 

cell zero as a neighbour, the frequency of surface occurring cells 

shown in table 5.5 was observed for the Finney packing. 

The total number of triangular faces of simplicial cells available 

for sharing within the packing is 57,522: 

Total Faces shared - [(14870 - 1958) x 4] + (1958 x3) 

- 57,522. 

It is interesting to note from table 5.5 that the average fraction 
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of cells with a face exposed on the surface of the packing is 13.2%. 

All seven simplicial cell classes appear to be roughly homogeneously 

distributed within the surface of the packing. This result tends to 

suggest that there is no strong tendency for clustering, and that 

the network is homogeneously random. However, this should be 

regarded only as circumstantial evidence in favour of a 

homogeneously random network. More conclusive evidence is presented 

in section 5.5. 

SIMPLICIAL 
CELL TYPE 

TOTAL NUMBER OF 
CELLS OBSERVED 

NUMBER OF CELLS 
OCCURRING AT 
PACK SURFACE 

FRACTION OF 
SURFACE CELLS 

OLS6 56 8 0.143 

1LS5 785 106 0.135 

2LS4 3496 464 0.133 

3LS3 6107 794 0.130 

4LS2 3653 485 0.133 

5LS1 719 96 0.134 

6LSO 54 5 0.093 

TOTALS 14870 1958 0.132 

Table 5.5 : Observed frequencies of surface occurring simplicial 
cells in the Finney model. (XT = 1.01229, s=0.50012) 
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5.4.2 Cell-Face Distribution IP1 

In order to measure the real cell-face joint frequency distribution, 

[P], a threshold edgelength criterion (XT) must first be established 

as discussed in Chapter 4. The value of XT used was XT - 1.01229, 

consistent with the work presented in chapter 4. The procedure used 

to measure [P] is fairly straightforward, and is summarised in flow 

diagram form in figure 5.5. The logic summarised in figure 5.5 is 

encoded in program P, presented in Appendix 'B' to this thesis. 

This program interrogates four data files: 

WRINED. DAT - the network data file. 

NEWFILE3. DAT - the file which contains the identities of 

the four spheres defining each of the 14870 

simplicial cells. 

NEWFILE5. DAT - the file which contains the sphere-centre 

co-ordinates of the individual spheres, and 

TYPE. DAT -a file which lists each simplicial cell by 

number and cell class for the threshold 

conditions XT - 1.01229. 

All four data files are described in Appendix 'B' to this thesis. 

The resulting joint frequency distribution [P] is shown in table 

5.6. As already recorded, the observed matrix [P] sums to 57,522. 

In section 5.6 we shall see how we can use (P] to estimate [N] and 

determine how random is the distribution of cell types on the 

network of the Finney model. 

235. 



Start > IX=X+i 

Counter 1, Xa1 For reference cell number X 

Determine number of state 'L' edges in cell, M 

I Determine number of neighbouring cells, JI 
J=3orJ=4 ` 

Counter 2, Y=11 

NO 
YES 

Test if Y<J Determine number of 'L' edges in face Y=N 

Counter 2, P(M, N) = P(M, N) +1 Y=Y+1 

Counter 1. 
YES 

X=X+1 ý- ' Test if X<14870 

NO 

Print [P] I 

Figure 5.5 : FLOW DIAGRAM FOR MEASUREMENT OF [P] 
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j= 0 

OLS3 

j= 1 

1LS2 

j= 2 

2LS1 

j= 3 

3LSO 

i= O OLS6 216 0 0 0 

i=1 1LS5 1511 1523 0 0 

i=2 2LS4 2252 8982 2286 0 

i=3 3LS3 627 11356 10736 915 

i=4 4LS2 0 2379 9330 2418 

i=5 5LS1 0 0 1378 1402 

i= 6 6LSO 0 0 0 211 

Table 5.6 : Fully observed cell-face joint frequency 
distribution EP] for the Finney packing 
obtained using program P,,. 

G :S 
(Note : 

IPi, 
= 57522) 

(X. r = 1.01229, s=0.50012) 

5.4.3 Cell-Cell Distribution fN1 

The joint frequency distribution [N] for the Finney packing is 

readily obtained by interrogating the network data file WRINED. DAT 

and the cell class file TYPE. DAT. The distribution [N] was obtained 

using the seven programs NEIGH-0 to NEIGH-6 presented in Appendix 

'B' to this thesis. The results are presented in table 5.7 which 

constitutes a complete summary of the network structure which 

connects all 14870 simplicial cells of the Finney packing. 
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If there is evidence for clustering of any particular cell class, or 

if one cell class consistently neighbours preferentially with 

another specific cell class, then this information is entirely 

contained in matrix [N] in table 5.7. What we need to be able to do 

in order to extract this information is to make a statistically 

valid prediction of what (N] should look like if the network 

structure is perfectly and homogeneously random. A comparison of 

our predicted distribution, [N'], with the observed distribution, 

[N], will then reveal the degree to which the network structure of 

the Finney model may be regarded as random. This prediction and 

comparison procedure is discussed in the next section. 

J0 

OLS6 

i= 1 

1LS5 

i= 2 

2LS4 

,i=3 

3LS3 

,i=4 

4LS2 

i= 5 

5LS1 

,i=6 

6LSO 

i=O OLS6 12 69 107 28 - - - 

i=1 1LS5 69 612 1320 892 141 - - 

i=2 2LS4 107 1320 4730 5396 1822 145 - 

i=3 3LS3 28 892 5396 10501 5804 944 68 

1=4 4LS2 - 141 1822 5804 5059 1206 96 

1=5 5LS1 - - 145 944 1206 446 39 

i=6 6LSO - - - 68 96 39 8 

Table 5.7 : The fully observed cell-cell joint frequency 
distribution [N] for the Finney packing. 

Mr = 1.01229, s=0.50012) 
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5.5 Tests for Randomness of Network Structure 

5.5.1 Predicting IN1 from IP1 

We have now arrived at the point where we have two basic joint 

frequency distributions which characterise completely different 

aspects of the Finney packing. These are: 

(i) [P] which is a fully observed measure of the frequency with 

which each particular cell class is observed to be 

associated with each particular face class. This is an 

intrinsic property of the dis-aggregated set of cells. 

and 

(ii) (NJ - which is a complete summary of the frequency with 

which each cell class is observed to be an immediate 

neighbour of each particular cell class. This is an 

intrinsic property of the network structure. Any evidence 

for or against clustering of cell types is contained in [N]. 

The basis of any test for randomness in [NJ lies in the hypothesis 

that [N] is some homogeneous function of [P]. The simplest 

definition of randomness possible, therefore is: 

63 
NQj -EE ((PJJ/Sj). Pqj -5.1- 

i-o jro 

6 
where Si -E Pij 

i-o 
-5.2- 
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If [N'J is statistically similar to [N], then [N] is shown to be 

homogeneously random. The meaning and derivation of these two 

equations is best understood by means of a worked example: 

Worked Example: IN"1 as a function of FP1 

In this example we will predict the random chance distribution 

of neighbouring cells to the OLS6 cell (i. e. i- 0). To begin 

with. the observed frequency of all OLS6 neighbouring cells 

is, 

3 
E Po, j - Po. o (Since Po, i - Po, 2 - Po, 3 - 0) 
j. o 

From table 5.6, P0,0 - 216 

So, the task is to distribute, or "allocate", 216 suitable 

neighbours to the 01.56 reference cell. This allocation is performed 

according to an assumed, perfectly homogeneous and unbiased random 

distribution. The first stage of the task is to identify the 

permitted classes of neighbouring cells, and eliminate the 

prohibited classes (in the algorithm represented by equation 5.1 all 

prohibited neighbours are automatically eliminated by multiplication 

with zero values in the matrix [P], and permitted neighbours are 

"identified", or counted, by multiplication with non-zero values in 

the matrix [P]). 

Clearly from table 5.3, the permitted neighbours are OLS6,1LS5, 

2LS4 and 3LS3 cells. The second step, then, is to count the total 

number of all permitted neighbours to the OLS6 reference cell. In 

this instance, this quantity, S, is: 
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S PO. 0 + P1, o + P2. o + P3"0 

(noting that P4,0 - Ps. 0 - P6.0 = 0) 

The general definition of S is: 

6 
Sj -E Pi. J 

1-0 

in this example, So - 216 + 1511 + 2252 + 627 

- 4606. 

The final stage in the task is to allocate 216 neighbours to the 216 

OLS6 cells in direct proportion to the frequency of potential 

neighbours: 

i. e. number of 0IS6 neighbours to OLS6 (NO, 0) - 216 x 216/4606 

- 10.129 

to nearest integer, N60 - 10 

number of 1LS5 neighbours to OLS6 (N11,0) - 216 x 1511/4606 

- 70.859 

to nearest integer, Ni, 0 - 71 

number of 2LS4 neighbours to 0IS6 (N?. 0) - 216 x 2252/4606 

- 105.608 

to nearest integer, NI. o - 106 

number of 3LS3 neighbours to OLS6 (N3,0) - 216 x 627/4606 

- 29.403 

to nearest integer. N3,0 - 29 
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and 

N;, 0 - Ns. 0- Ns, 0 -0 

" Equation 5.1 and 5.2 are formalised representations of this worked 

example, suitable for implementation as a simple algorithm to test 

the hypothesis that it is possible to predict [N] given [P]. 

Implicit in these equations is the concept that the predicted matrix 

of [N'] is homogeneously random. 

5.5.2 Fundamental Test 

Equations 5.1 and 5.2 are extremely readily implemented as 

algorithms within a program, together with the observed cell-face 

matrix (P) shown in table 5.6. This program PMATRIX, presented in 

Appendix 'B' to this thesis, uses these equations and data in order 

to estimate a random network expectation of the cell-cell joint 

frequency distribution, (N']. The values thus obtained for [N'] are 

presented in table 5.8. 

I 
j- 0 

jOLS6 

j= 1 

ILS5 

j= 2 

2LS4 

j= 3 

3LS3 

j= 4 

4LS2 

j= 5 

5LS1 

j= 6 

6LSO 

1=0 OLS6 10 71 106 29 0 0 0 

i=1 1LS5 71 591 1303 919 149 0 0 

i=2 2LS4 106 1303 4650 5549 1780 133 0 

1=3 3LS3 29 919 5549 10432 5783 883 39 

1-4 4LS2 0 149 1780 5783 5084 1227 103 

1=5 5LS1 0 0 133 BB3 1227 477 60 

i=6 6LSO 0 0 0 39 103 60 9 

Table 5.8 : Prediction of EN'] using CP] with equation 5.1. 

242. 



Comparison of the predicted cell-cell matrix [N'] in table 5.8 with 

the observed cell-cell matrix [N] in table 5.7 shows that the two 

matrices are extremely similar. For example, selecting the OLS6 

cell which was used in the worked example in section 5.5.1, we find 

the following: 

Neighbour Predicted 

Class Neighbour Frequency [N"] 

0L56 10 

IISS 71 

2LS4 106 

3LS3 29 

4LS2 0 

5 S1 0 

6ISO 0 

Observed 

Neighbour Frequency [N] 

12 

69 

107 

28 

0 

0 

0 

It is evident, therefore, that the simplicial cells of the Finney 

packing are randomly distributed (by class) on the network. This 

assertion is consistent with the view that there is no clustering of 

cell tunes within the Finney model, and supports the case that the 

paracrystall ine model does not adequately describe the Finney 

packing. From the percolation theory perspective, the founding 

assumvtion of a random distribution of Dores on the network is 

supported by the assertion. 

Given the importance of this assertion to both percolation theory 

(supported) and paracrystalline theories (condemned) for the Finney 

model, it is instructive to examine the assertion in some detail. 
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The statistical significance of the assertion is assessed using the 

chi-square statistic: 

66 
X2 -EE (Ni3 - Ni. 1)Z/NiJ 

s-o "j-o 
-5.3- 

Use of equation 5.3 is not quite straightforward, since matrices [N] 

and (N') are both perfectly symmetrical about the diagonal elements. 

In order to obtain the correct number of degrees of freedom for chi- 

square, therefore, it is essential to count only one set of off- 

diagonal elements, together with the diagonal elements themselves. 

In other words, equation 5.3 is only meaningful when constrained 

such that: 

66 
x2 -EE (Ni3 - N13)2/Ni3 

1-0 i-o 

for i-j andij )Aji. 

-5.3- 

This constraint gives 7 diagonal elements and 21 off-diagonal 

elements. The appropriate number of degrees of freedom in chi- 

square is therefore 27 (i. e. 28 classes minus 1 restriction). 

Evaluating equation 5.3 using data for [N] and [N"] presented in 

tables 5.7 and 5.8 respectively gives a value for chi-square of 

47.1. Using standard chi-square significance tables, the 

probability of X2 - 47.1 occurring by chance is only about 1%. This 

is extremely surprising, since this result implies that [N] is not 

statistically similar to (N') after all. However, an examination of 

individual values of (Ni3 - Nij)2/Nij reveals the following: 
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(Ný. e - N3. a)Z/Ni. a - 21.6 

This is an astonishing result since it proves that the reason [N] is 

not statistically similar to [N'] is that there is some slight 

degree of clustering between 3LS3 and 6LSO cells. Although not 

strictly a statistically valid approach, if (N3,6 - N3.5)2/N3.6 is 

eliminated altogether from equation 5.3. a value of x2 - 25.5 is 

obtained. From standard tables, the probability of X2 - 25.5 

occurring by chance is roughly 60%. This approach is very 

important, since it demonstrates that the "commonsense" approach of 

comparing [NJ and [N'] by glancing at tables 5.7 and 5.8 gives the 

overall impression that [N] and [N'] are very similar; a more 

rigorous, statistical approach confirms that [N] and [N'] are not 

quite so similar. To put this view into perspective it is helpful 

to remember that, out of 57522 neighbour pairs represented by [NJ, 

there are only 136 observed occurrences (i. e. about 0.2% of all 

neighbour pairs) of 3LS3 cells neighbouring with 6LSO cells. 

Clearly, the chi-square test represented by equation 5.3 is 

extremely sensitive to slight clustering tendencies between cells. 

For the moment it is evident that there is no clear reason why 3LS3 

cells and 6LSO cells do not form neighbours with the frequency 

expected of a perfect, homogeneously random distribution of 

simplicial cell types given by equation 5.1. In fact a detailed 

explanation for this behaviour must wait until the discussion of 

isomers is presented in the next chapter. To complete the 

discussion on slight clustering tendencies, it is worth noting that: 

(N;, 8 Ns. 6)2/Ns. e - 7.4 
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The significance of this is that if (N;, 5 - N5 6)2/Ns. 6 is also 

eliminated from equation 5.3, the value of X2 falls to 18.1. From 

statistical tables. the probability of X2 - 18.1 (for 27 degrees of 

freedom) occurring by chance is about 90%, in line with our 

expectation of a random distribution. The very slight non-random 

characteristics of 5LS1 - 6LSO and 3LS3 - 6LSO neighbour-pairs are 

related, as we shall see in the next section. For the moment, it is 

worth summarising what has been learned so far before proceeding to 

that section. 

A novel theorem has been developed, in which the cell-face 

distribution (P) is used to predict an expectation, [N'], of the 

cell-cell distribution for the Finney packing. Comparison of [N'] 

with the observed cell-cell distribution, [N], shows that the 

component simplicial cells of the Finney model are essentially 

homogeneously randomly distributed throughout the packing. This 

important result confirms that paracrystalline theories do not 

adequately describe the structure of the Finney packing, as strong 

evidence of cell clustering has not been found. The result also 

confirms that the founding assumption of percolation theory, that 

the pores (simplicial cell types) are randomly distributed on the 

network, is apparently valid for sphere packings. (This last 

statement, however, must not be taken out of context as proof that 

percolation theory can be directly applied to sphere packings. Work 

presented in chapter 6 casts considerable doubt on the application 

of percolation theory to sphere packings). 
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Application of a simple statistical test to the novel theorem shows 

that whilst the distribution of component cells is essentially 

random, there is a very slight tendency for certain groups of cells 

to depart from random behaviour. In particular, 3LS3 cells form 

neighbours with 6I. S0 cells slightly more often than expected, whilst 

5IS1 cells form neighbours with 6LS0 cells slightly less often than 

expected. The magnitude of these departures from homogeneously 

random behaviour is extremely small - more than 99.5% of all the 

cells in the packing conform to random distribution within the 

overall structure. 

The present work has arrived at an extremely important view of the 

simolicial cell structure of the Finney packing which. when taken 

Into account with chapter 4. poses a severe paradox: 

0 the simplicial calls are non-random on an individual basis. 

Hence the relative frequencies of "extreme" cell types such as 

6LSO and OLS6 are less than predicted by random chance. The 

relative frequencies of the more "ordinary" cell types such as 

3LS3 are far higher than expected by random chance. 

" the spatial distribution of all cell types within the packing 

is almost perfectly homogeneously random. 

- the nature of the paradox is that there is a reduced requirement 

to connect "extreme" cells within the structure. Overall, 

therefore, the simplicial cells of the Finney packing must generate 

a small number of "extreme" faces (i. e. 3LSO and OLS3) in order to 

accommodate a small number of "extreme" cells. The paradox is 
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resolved by isomerism which permits different face forms to exist 

for identical simplicial cell types. 

5.6 Isomer Distribution of the Finney model 

The essential link between the concept of simplicial cells which are 

individually non-random, and the concept of simplicial cells which 

are spatially randomly distributed is that of isomerism. This 

essential link is now discussed in some-detail in the following 

sections. 

5.6.1 Theoretical Distribution 

If, for a moment, we relax all constraints on simplicial cells 

fitting together and filling space, it is possible to predict the 

distribution of isomers based solely on random chance. For example, 

in the case of the 2LS4 simplicial cell illustrated in figure 5.3, 

suppose that we are set the task of making, say, a wire-frame model 

of the cell. We are given two long edges (wires) and four short 

ones. We begin by selecting an edgelength position for one of the 

long edges. This fixes one of the six edgelength positions, and in 

order to place the second long edge we have to choose one of the 

five available positions. Inspection of figure 5.3 shows that 4 out 

of these 5 positions will result in the formation of the alpha 

isomer (refer to figure 5.4). The random chance probability that a 

2LS4 cell will be an alpha isomer is therefore 4/5 or 0.8. The 

random chance probability that a 2LS4 cell will be a beta isomer is 

0.2. 
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The random chance probabilities for all the other isomers are 

readily calculated, and are presented in table 5.9. The random 

chance probabilities of isomer distribution shown in table 5.9 are, 

of course, not necessarily representative or characteristic of the 

relative frequencies of real isomers in the Finney model. In fact 

the assertion made in the introduction to this section is that the 

network structure can only remain homogeneously random itself for an 

observed non-random distribution of simplicial cell classes if the 

isomer distribution is distorted significantly from that presented 

in table 5.9. We shall now examine this assertion. 

SIMPLICIAL CELL ISOMER RANDOM CHANCE 
RELATIVE PROBABILITY 

OLS6 N/A 1.0 

1LS5 N/A 1.0 

2LS4 ALPHA O. 8 

2LS4 BETA 0.2 

3LS3 ALPHA 0.6 

3LS3 BETA 0.2 

3LS3 GAMMA 0.2 

4LS2 ALPHA 0.8 

4LS2 BETA 0.2 

5LS1 N/A 1.0 

6LS0 N/A 1.0 

Table 5.9 : Theoretical random chance relative probabilities of 
occurrence of isomers of simplicial cells. 
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5.6.2 Observed Distribution 

The isomer frequency distribution for a real set of simplicial 

cells, such as those of the Finney packing, can only be determined 

for a fixed value of the edgelength threshold, X. The value of XT 

used in the analysis reported here is XT - 1.01229, which gives a 

value of S-0.50012 and follows from the analysis presented in 

Chapter 4. The first step in determining the isomer distribution is 

to produce a list (data file) describing which simplicial cell class 

each of the 14870 simplicial cells belongs to. This data file is 

called TYPE. DAT, and reference has already been made to its 

construction and format in section 5.4.2. Additional information on 

TYPE. DAT is given in Appendix 'B' to this thesis. The second step 

in determining the isomer distribution consists of examining each 

simplicial cell, together with its class description, in order to 

decide the isomer. This function was performed by program ISOMER, 

which is presented in Appendix 'B' to this thesis, and which writes 

an output datafile called ISOMER. DAT. Finally, the observed isomer 

frequency distribution for the Finney model was obtained using 

program ISOCOUNT, also presented in Appendix W. The distribution 

of observed isomer frequencies is presented in table 5.10. 

The observed frequencies presented in table 5.10 can be converted 

into relative frequencies for the purposes of direct comparison with 

the theoretical relative probabilities presented in table 5.9. This 

comparison is shown in table 5.11, from which two key facts emerge: 

(i) As asserted earlier, the observed frequency distribution 

does not match the theoretical prediction based on random 

chance, 
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(ii) There is a systematic pattern to the "distortion" of the 

real distribution relative to the theoretically predicted 

distribution. 

This latter point is now discussed in more detail. 

vG CELL TOTAL 

OLS6 56 0 0 56 

1LS5 785 0 0 785 

2LS4 2354 1142 0 3496 

3LS3 4521 927 659 6107 

4LS2 2479 1174 0 3653 

5LS1 719 0 0 719 

6LSO 54 0 0 54 

TOTAL 14870 

Table 5.10 : Observed distribution of isomer forms within 
the Finney packing. 

SIMPLICIAL 
CELL 

ISOMER RANDOM CHANCE 
PROBABILITY 

OBSERVED 
RELATIVE 
FREQUENCY 

OLS6 N/A 1.0 1.0 
1LS5 N/A 1.0 1.0 

2LS4 ALPHA 0.8 0.673 
2LS4 BETA 0.2 0.327 

3LS3 ALPHA 0.6 0.740 
3LS3 BETA 0.2 0.152 
3LS3 GAMMA 0.2 0.108 

4LS2 ALPHA 0.8 0.679 
4LS2 BETA 0.2 0.321 

5LS1 N/A 1.0 1.0 
6LSO N/A 1.0 1.0 

Table 5.11 : Comparison of predicted and observed isomer 
frequencies for 14870 simplicial cells of the 
Finney model. 
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5.6.3 Significance of the observed distributio 

Inspection of table 5.11 shows that the alpha isomers of both the 

2LS4 and the 4LS2 classes are less frequent than predicted, whilst 

the alpha isomer of the 3LS3 class is more frequent than predicted 

on the basis of random chance. These differences constitute a 

single trend, which is, simply to reduce the frequencies of the OLS3 

and 3LSO face forms below that predicted on the basis of random 

chance. This is easily confirmed by reference to figure 5.4 which 

shows that the 2LS4 a isomer has a 0LS3 face, whilst the 2LS4 ß 

isomer does not. Similarly, the 4LS2 a isomer has a 3LSO face, 

whilst the 4LS2 ß isomer does not. Finally, the 3LS3 6 and ry 

isomers have a 3LSO and a OLS3 face respectively, whilst the 3LS3 a 

isomer has neither 3LS0 nor OLS3 faces. 

The reason that the 3LSO and OLS3 faces are restricted by this 

distortion in the isomer distribution is simple - there are less 

OLS6 and 6LSO simplicial cells found in the Finney packing than 

expected on the basis of random probabilities. Therefore, there is 

a reduced requirement to connect these cells within the network. 

Because the network is (practically) homogeneously random, isomeric 

"distortion" of individual simplicial cells is essential in order to 

match the reduced number of "extreme" cells to the correct face 

forms of the "average" cells. 

Close inspection of tables 5.10 and 5.11 reveals a curious feature 

of the 3LS3 isomers. Theoretically, the 3LS3 P and 3LS3 y isomers 

occur with the same frequency (0.2). In the Finney model, these two 

isomers occur with different frequencies (3LS3 fi @ 0.152 and 3LS3 y 
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@ 0.108). The question arises as to whether or not this is a 

significant finding. In order to assess the question, it is useful 

to ask a different, more anthropomorphic question - is there any 

material advantage to be gained in selecting 3LS3 
.8 

isomers rather 

than 3LS3 -y isomers? The answer to this question turns out to be a 

resounding yes. 

Imagine constructing a 3LS3 cell given 3 edges of 1.0 sphere 

diameters in length and 3 edges of 1.4 sphere diameters in length, 

and making first a 3LS3 ß, and then a 3LS3 y isomer. It is 

possible, in our imaginary example, to measure the total volume of 

each cell, as well as the volume of sphere solid and packing density 

of each cell. These calculations for the imaginary example are 

easily executed using the subroutines developed for chapter 3 (and 

presented in Appendix 'B'). 

The results are: 

TOTAL CELL 

VOLUME (r3) 

3LS3 ß 1.33254 

3LS3 -y 1.47271 

SOLID PACKING 

VOLUME (r3) DENSITY 

0.852088 0.639444 

0.767092 0.520869 

- Clearly the .6 
isomer is much more space efficient than the ry 

isomer, since the ß isomer takes up less total space and consumes 

more solid (sphere) space, resulting in a higher packing density 

than the ry isomer. 
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So it is possible to see a plausible reason why RCP structure might 

produce significantly more 3LS3 ß isomers than 3LS3 ry isomers. 

However, the fact that the relative frequencies of 3LS3 P and 3LS3 7 

isomers are different raises another problem altogether - what is 

the effect on the network structure (i. e. [N])? The answer to this 

question is that enhancing the frequency of 3LS3 ß isomers relative 

to 3LS3 y isomers means that more 6LSO cells must occur as 

neighbours to the 3LS3 ß isomer than OLS6 cells to the 3LS3 -y 

isomer. This constitutes a small departure from the concept of 

homogeneously random network structure, and the departure must show 

up predominantly in the value of N6.3 and N3,6 in [N]. This is 

precisely the same region of [N] isolated as non-random in section 

5.5.2. In our imaginary example, we used edgelengths of 1.0 and 1.4 

sphere diameters. In the rest of the work presented in this thesis, 

however, the edgelength threshold condition used is XT - 1.01229. 

This means that the contrast in total cell volume and packing 

density between 3LS3 P and 3LS3 7 in the Finney packing will be less 

than that of the example. This in turn means that the non-random 

network aspect of N6,3 in [N] will be small. 

5.7 Discussion: Gotoh and Finney0s "Most Probable Tetrahedron" 

It was shown in chapter 4 that, for a value of XT - 1.01229 ( i. e. 

S- 0.5), by far the most frequent class of simplicial cell in the 

Finney packing is the 3LS3. In many ways, the 3LS3 cell can be 

thought of as the "backbone" or fundamental building block of the 

RCP network. In addition to its high frequency of occurrence, only 
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the 3LS3 cell can form faces such that any of the seven cell classes 

can be neighbouring cells to 3LS3. The fact that the 3LS3 

simplicial cell is one of the most characteristic features of RCP 

structure had been previously identified by Gotoh and Finney (1974), 

though they did not use either the concept of the simplicial 

subdivision or the notation developed in the present work. Instead, 

Gotoh and Finney (1974) postulated that, for any given sphere in a 

packing to be stable against displacement in a given direction, it 

must be supported by three spheres in that direction. Thus the 

given sphere, and its three supporting spheres comprise a group of 

four spheres forming a tetrahedron. This same stability to 

displacement criterion must also apply for displacement in the 

opposite direction. The given sphere, therefore, may be regarded as 

having a co-ordination number of exactly six. 

The tetrahedron so formed by the group of four spheres is called by 

Gotoh and Finney the most probable tetrahedron, and it looks like 

that shown in figure 5.6. In terms of simplicial cell classes, the 

stability against displacement criterion is consistent with three 

point contacts, equivalent to state 'S' edgelengths. From figure 

5.6 it is clear that the remaining three edgelengths are definitely 

appreciably longer than point contacts, and are equivalent to state 

'L' edgelengths (i. e. >1.01229 sphere diameters). Clearly then, the 

Gotoh and Finney most probable tetrahedron is identical to a 3LS3 

simplicial cell. To this extent the work of Gotoh and Finney (1974) 

and the present work are entirely in accord. 

If we consider the isomeric form represented by the most probable 

tetrahedron of Gotoh and Finney, we discover that the three state 
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Hemispherical envelope of R-1.0 
diameters forms locus of centres 
of supporting spheres (B, C and D) 

Figure 5.6 : THE MOST PROBABLE TETRAHEDRON OF GOTOH 
AND FINNEY (1974) 

'S' (i. e. point contact) edges all form a single common apex. This 

isomer is therefore identified in the present work as a 3LS3 beta, 

as shown in figure 5.4. At this point the present work, and the 

work of Gotoh and Finney (1974) begin to diverge. The reason they 

diverge is that the 3LS3 alpha, and not the 3LS3 beta is the most 

frequently observed isomer in the Finney packing, as shown in table 

5.12. The "most probable tetrahedron" described by Gotoh and Finney 

(1974) is therefore not. in fact. the most probable tetrahedron 

after all. The 3LS3 alpha isomer constitutes 30.4% of all cells in 

the Finney packing. The 3LS3 beta, in contrast, represents only 

6.2% of the packing. 
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Using the approach developed by Gotoh and Finney (1974), figure 5.7 

shows a 3LS3 alpha isomer formed at a given sphere (A). This figure 

implies a co-ordination for the given sphere (A) of 4, and not 6 as 

required by the Gotoh and Finney (1974) reasoning. This is an 

interesting point, particularly as Gotoh and Finney (1974) refer to 

Mason's (1968) work which clearly shows some evidence for co- 

ordinations of between 4 and 5 at point contact (as shown in figure 

1.16). So, whilst their "most probable tetrahedron" may have been 

useful to Gotoh and Finney in their theoretical calculations, it 

should have been somewhat of an embarrassment to them because it 

demands a minimum co-ordination of 6, which appears not to be a 

characteristic property of RCP structure. It is suggested here that 

the theoretical calculations of packing density defined by Gotoh and 

Finney be treated with some degree of caution in view of the fact 

that they incorrectly isolated the most common tetrahedral sub-unit 

of the Finney packing. 

5.8 DISCUSSION AND CONCLUSIONS OF CHAPTERS 4 AND 5 

Chapters 4 and 5 of this thesis represent an attempt to define and 

measure the most elusive feature of random close packing - that of 

randomness itself. Prior to the present work it has not been 

possible to address the question of measuring the amount of 

randomness present in random close packing. 

The issue of randomness has been divided into two separate aspects 

in the present work. The first of these aspects concerns the 
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Hemispherical envelope 
of R. 1.0 diameters forms 
locus of centres of 2 of 
the 3 supporting spheres 
(B and D). 

Hemisphotical envelope 
of R> 1.01229 diameters 
forms the locus of the 
centre of the remaining 
supporting sphere (C). 

(Red edge - Long edge) 

.S A-C -L 
-S B-C -L 
-S B-D "L 

I 
pporling spheres 
contact 

Figure 5.7 : THE MOST FREQUENTLY OBSERVED TETRAHEDRON 
IN FINNEY PACKING - THE 3LS3 ALPHA 
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characteristics of RCP simplicial cells regarded as a dis-aggregated 

group. Thus Chapter 4 deals with randomness at the level of the 

individual simplicial cells in the Finney packing. The second 

aspect is concerned with the way in which the cells are connected 

together to fill space. Thus chapter 5 deals with randomness in the 

network which connects simplicial cells within the Finney packing. 

These two aspects are entirely distinct and separate. It is very 

interesting to note. therefore that the Finney vacking is shown to 

be distinctly non-random at the level of the individual cell. and 

yet the cells themselves are almost perfectly homogeneously randomly 

distributed within the packing. 

The significance of non-randomness at the level of the individual 

simplicial cell is that the Finney RCP model produces far more of 

the "average" 3LS3 cells, and far less of the "extreme" (i. e. large 

and small) cells such as 6LSO and 0LS6 than expected on the basis of 

random chance. Any pore-size parameter of interest from the Finney 

model is therefore likely to fall into a much tighter distribution 

about the mean than could be predicted on the basis of random chance 

operating on an edgelength frequency distribution. This is evident 

from a comparison of figure 4.11 (from the random control set) and 

figure 3.27 (from the Finney set). Another rather surprising result 

is that the packing density of the dis-aggregated group is 

remarkably insensitive to simplicial cell "authenticity". Thus the 

average packing density of the 14870 real simplicial cells of the 

Finney packing is virtually identical to that of 14870 simplicial 

cells artificially created by random selection from the real 

edgelength distribution. This finding-casts considerable doubt upon 

the practice of validating compute simulations of monodisoerse 
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sphere packings by comparing the overall packing density with that 

of the Finney model. The best that can be said of this practice is 

that if the simulation does not achieve the density of the Finney 

model it is not correct. Simulations achieving the density of the 

Finney model are not necessarily correct. It is suggested that 

computer simulations of sphere packings are best described for the 

purpose of comparison with other sphere packings in terms of their 

simplicial cell attributes such as packing density frequency 

distribution, total cell volume frequency distribution and solid 

angle frequency distribution. Additionally the frequency 

distribution of simplicial cell classes (i. e. OLS6 to 6LSO) may also 

be utilised as a descriptor for the purpose of comparison between 

sphere packings. 

In Chapter 5 the issue of randomness of the network which connects 

the simplicial cells of the Finney packing was addressed by defining 

two joint frequency distributions. The first of these is the 

simplicial cell-face joint frequency distribution, [P], which is an 

intrinsic property of the dis-aggregated group of cells. This 

distribution was used to predict an estimate of the simplicial cell- 

cell joint frequency distribution, [N'], which is in effect a 

summary of the entire network. This predicted distribution is very 

similar indeed to the observed simplicial cell-cell joint frequency 

distribution, [N], confirming that the spatial distribution of cell 

types within the network is essentially random. This is a 

significant and useful result in terms of percolation theory, which 

can only model flow in porous media on the assumption that pore 

parameters (cell types) are randomly distributed throughout a 

network. The present work represents the first analysis of a real, 
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disordered porous medium for which this founding assumption has been 

tested, and indicates that the assumption is reasonable. Work 

presented in Chapter 6, however, casts considerable doubt about the 

application of percolation theory to sphere packings. 

The concept of isomers of simplicial cells was introduced in Chapter 

5. This concept is particularly useful in understanding how the 

network can be random, whilst the distribution of simplicial cell 

classes is distinctly non-random. Thus in order to reduce cell 

connectivity to the "extreme" simplicial cells (OLS6,6LSO) from 

that expected on the basis of random chance, the isomer distribution 

is distorted such that far less of the "extreme" face forms (OLS3, 

3LSO) are produced than expected on the basis of random chance. 

Correspondingly more of the "average" face forms (OLS2,2LS1) are 

produced in order to provide connections between the most frequent 

3LS3 simplicial cells. The concept of isomers was also used to 

demonstrate that the "most probable tetrahedron" of the Finney 

packing described by Gotoh and Finney (1974) is in fact not the most 

frequently observed tetrahedral sub-unit of the packing. Gotoh and 

Finney's sub-unit is equivalent to the 3LS3 beta isomer of the 

present work, which only represents 6.2% of the Finney packing. The 

present work identifies the 3LS3 alpha isomer as the most frequent 

discrete tetrahedral sub-unit of the Finney model, accounting for 

30.4% of all the cells in the packing. This is a particularly 

important distinction to make, because the Gotoh and Finney sub-unit 

is arguably the best and most detailed attempt to interpret the 

fundamental structure of the Finney model prior to the present work. 

The Gotoh and Finney sub-unit, unfortunately, demands a minimum 

sphere co-ordination of six, despite the fact that earlier 
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experimental evidence supports a co-ordination of around 4 to 5. 

The 3LS3 alpha isomer requires a minimum sphere (contact) co- 

ordination of 4. 

In terms of the old solid state physics issue of paracrystalline 

regions of RCP-like materials, the present work shows that such 

regions do not exist in the Finney model. A homogeneously random 

distribution of cell types on the network precludes the possibility 

of such regions. Although this result is not surprising, it has not 

previously been demonstrated for the Finney packing. 

In conclusion, Chapters 4 and 5 constitute a novel and original 

attempt to quantify one of the most important structural features of 

the Finney packing. The attempt is worthwhile just for the sake of 

increasing knowledge about RCP structure. Indeed, it demonstrates 

that one of the most detailed structural analysis published to data 

(Gotoh and Finney, 1974) is incorrect. In terms of understanding 

the capillary properties of the Finney model, however, the attempt 

may be regarded as crucial. 
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