Open Research Online

The Open University's repository of research publications and other research outputs

Development in the depiction of depth

Thesis

How to cite:
Lee, Monica Mary (1989). Development in the depiction of depth. PhD thesis The Open University.

For guidance on citations see FAQs.
(c) 1989 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page.

oro.open.ac.uk

DEVELOPMENT IN THE DEPICTION OF DEPTH

BY

MONICA MARY LEE
B.Sc.(Hons), Cert.Ed., M.I.T.D.

A thesis submitted for the degree of Ph. D. In Psychology. June 1989.

Human Cognition Research Laboratory, The Open University, Milton Keynes

Author's number: M 7020043
Date of submission: 30 June 1989
Date of award: 3 October 1989

PAGE

NUMBERING

AS ORIGINAL

PAGE

NUMBERS CUT OFF IN
ORIGINAL

BEST COPY

AVAILABLE

TEXT IN ORIGINAL IS CLOSE TO THE EDGE OF THE PAGE

CONTAINS PULLOUTS

HIGHT DEGREES OFFICE
LIBRARY AUTHORISATION FORM

STUDENT: \qquad Monica let SERIAL NO: HD O191 DEGREE: Ph.!.
title of thesis: Development in the depiction of depth.
\qquad
-

I confirm that I am willing that my thesis be made available to readers and maybe photocopied, subject to the discretion of the Librarian.
 dins: $22^{\text {d }}$ April 1989 .

This thesis contains an investigation of the way in which children and adults depict depth when drawing a table.

Research on development in depiction is reviewed Chapters 1 and 2), with particular reference to the use of pictorial depth cues and projection systems.

A series of studies on the use of projection systems in the drawing of a table is reported (Chapters 3 to 5) which shows that development in the depiction of depth is not directiy related to development in the use of projection systems. It is also shown that the use of projection systems is task dependent, and is not closely related to the subject's formal understanding of them.

A formal system of classification of table drawings is introduced (Chapter 6), which demonstrates clear developmental trends in the way in which depth is depicted in the drawing of a table, and connects these trends with development in the use of pictorial depth cues.

The roots of development in the depiction of depth are examined more closely by further experimental work (Chapters 7 to 9). It is shown that subjects have a very strong preference for oblique projection, and that inaccuracy in the copying of line drawings is largely dependent upon the knowledge of what these drawings represent.

It is concluded that the results give support to an information processing view of development, in which the majority of subjects appear
to work from a form of canonical model of a table which has implicit depth and is best depicted by oblique projection (Chapter 10). It is also suggested that development in the depiction of depth is linked to the increasing use of pictorial depth cues. These conclusions are presented more explicitly in the form of a possible process model of the way in which we depict depth (Chapter 11).

Acknowledgemente.

I would like to thank my supervisors, Gavin Bremner and Illona Roth, for their help and comments over the years. I would also like to thank Charles Lee, John Harrison, and Paul Prescott for helpful discussions about matters statistical, and Charles Lee and Charlotte Bates for proof reading.

I would like to thank all the Principals, Head Teachers and Staff who have allowed me into their establishments and helped me where they could. I would particularly like to thank Peter Corbett and Nicola Robertson for their active involvement in this. In addition I would like to thank all the many subjects, of all ages, who co-operated so willingly. A list of the organisations that participated in the studies described in this thesis is given overleaf. Subjects who were not contacted through these establishments (artists, some adults, and some very young children) were all contacted on an individual basis.

Lastly, I would like to thank Chas, without whose endless support, help and understanding this thesis would not have been possible. I must also acknowledge my debt to Graham and Michael, who were born in the midst of all this and accept it as a way of life.

Toddler, Playgroup, Nursery.
County Nursery, Leyland. Humpty Dumpty Playgroup, Leyland. Leyland Lane Methodist Playgroup, Leyland. Methodist Toddlers, Leyland. Old Civic Centre Mothers and Toddlers, Leyland. Prospect House Play Group, Leyland. St. Andrew's Toddler Group, Leyland. St. James' Toddler Group, Leyland. St. John's Playgroup, Leyland. The National Childbirth Trust. United Reform Playgroup, Leyland.

Infant, Junior, Prinary.
Adlington County Primary. All Saints Primary, Chorley. Anderton County Primary. Bretherton Endowed, Croston. Broadfield County Primary, Leyland. Croston Methodist Primary. Earnshaw Bridge, Leyland. Farington County Primary, Leyland. Gillibrand County Primary, Chorley. Leverhouse County Primary, Leyland. Leyland Methodist Infants. Leyland Methodist Juniors. Longton County Infants. Longton County Junior. Mawdesley C.E. Primary. Moss Side County Primary, Leyland. St. Andrew's Primary (Woodlea), Leyland. 5t. Andrew's Primary (Fox Lane), Leyland. St. Anne's Primary, Leyland. St. Catherine's Primary, Leyland. St. James' Primary, Leyland. St. Mary's Infants, Leyland. St. Mary's Juniors, Leyland. St. Michael's Primary, Croston. St. Peter's Primary, Salesbury. Seven Stars County Infants, Leyland. Seven Stars County Junior, Leyland. Strathmore Primary, Hitchin. Woodlea County Junior, Leyland. Secondary, Adult.

Balshaws High, Leyland. Bishop Rawstorne High, Croston. Bolton Institute of Higher Education. Chorley Adult Education Centre. Lancashire Polytechnic. Leyland Youth Centre. Open University Summer Schools. Prospect House Community Centre, Leyland. Runshaw Tertiary College, Chorley. Runshaw Tertiary College, Leyland. St. Mary's High, Leyland. St. Michael's High, Chorley. Wellfield High, Leyland. Worden High, Leyland.

Study 3 has been published in Lee, M. and Bremner, G. (1987) The representation of depth in children's drawings of a table, The Quarterly Journal of Experimental Psychology, 39A, 479-496.

Studies 9:1 to 9:5 have been published in Lee, M., (1989), When is an object not an object? The effect of 'meaning' upon the copying of line drawings. British Journal of Psychology, 80, 15-37.

Contents.
Contente.
Page.

CHAPTER 1.

Overview of Theories about Development in Drawing.
Introduction. 1. 1
A) THEORIES INVOLVING STAGES IN COGNITION. 1.4

* Stages of development in the understanding of space. 1. 5
* Stages in depiction. 1. 6
* The position of linear perspective. 1.7
* Conclusions. 1.8
B) THEORIES INVOLVING VISUAL RENLISM. 1.9
* Stages in the development of depiction. 1. 9
* The use of an internal description. 1.10
* Conclusions. 1.11
C) PRODUCTION ERROR THEORIES. 1.13
* Perpendicular bias. 1.14
* Internal frame of reference. 1.14
* Rule governed depiction. 1.16
* Graphic motor schemata. 1.18
* Conclusions. 1.19
D) CONCEPTUAL/PERCEPTUAL REALISM THEORIES. 1.21
* Perception. 1.21
* Picture perception. 1.23
* Conceptualisation. 1.25
* Mental representation. 1.26
* Conceptual/perceptual reallsm theories and the depiction of depth. 1.28
* Object centredness and depth cues. 1.28
* Task dependency and children as communicators. 1.30
* Explanations for development in depiction. 1.31
Contents.
Page.
* The child as an active participant. 1.34
- Conclusions. 1.35
E) BRIEF COMPARISON OF THEORIES. 1.37
CHAPTER 2.
Theoretical and Eupirical Aspects of Oevelopnent in the Depiction of Oepth,
Introduction. 2. 1
A) PROJECTION SYSTEMS. 2. 1
B) DEPTH CUES. 2. 4
* Occlusion. 2. 4
* Height in the Picture Plane. 2. 5
* Diminishing size with distance. 2. 7
* Texture Gradient and Pigmentation Gradient. 2. 8
C) DEVELOPMENT IN THE DEPICTION OF DEPTH WITHIN A SDNGLE OBJECT. 2. 9
* The depiction of regular solids. 2.10
- Denotation systems. 2.11
* Projection systems. 2.13
* Interpretation. 2.14
- Applicability. 2.17
- Why tables? 2.18
CHAPTER 3.
A Table Drawn from Observation.
Summary. 3. 1
Introduction. 3. 2
STUDY 3.
A table drawn from observation. 3. 7
- Method. 3. 7
Contents. Page.
* Results. 3. 7
* A) General Analysis. 3. 7
* B) Perspective Response. 3.10
* C) Non-perspective Responses. 3.18
DISCUSSION. 3.21
CHAPTER 4.
A Table Drawn from Imagination.
Summary. 4. 1
Introduction. 4. 2
STUDY 4.
A table drawn from imagination. 4. 8
* Method. 4. 8
- Results. 4.10
GENERAL DISCUSSION. 4.15
CHAPTER 5.Aspects of the Task Causing Task Dependency.
Summary. 5. 1
Introduction. 5. 2
STUDY 5:1.
A table drawn from lmagination by people trained in Art. 5. 5
* Introduction. 5. 5
* Method. 5. 5
* Results. 5. 5
- Discussion. 5. 6
STUDY 5:2Drawing a table from imagination after a lesson in perspective.5. 7

Contents.
Page.

* Introduction.

5. 7

- Method.

5. 7

- Results.

5. 8

- Discussion.
5.10

STUDY 5:3
Drawing a table from observation against a squared background. 5.11

* Introduction. 5.11
* Method. 5.12
* Results. 5.12
* Discussion. 5.13

STUDY 5:4.
A table drawn from imagination with differing amounts of background $\begin{array}{ll}\text { depth. } & 5.15\end{array}$

* Introduction. 5.15
- Method.
5.16
- Results.
5.16
* Discussion. 5.17

GENERAL DISCUSSION. 5.19

CHAPTER 6.

Classification of Table Drawings and the Use of Depth Cues.

Summary.

6. 1

Introduction.
6. 2
A) CLASSIFICATION OF TABLE DRAWINGS. 6. 3
B) COMPARISON OF AGE PROFILES.
6. 8

* Development that is independent of task. 6.13
C) DEVELOPMENT IN THE DEPICTION OF DEPTH. 6.16
* Figural Biases. 6.16
Contents. Page.
* Depth Cues. 6.18
D) THE RELATIONSHIP BETWEEN PROJECTION SYSTEMS AND DEPTH CUES. 6.25
E) CONCLUSIONS. 6.28
CHAPTER 7.
Freference in representation of tables.
Summary. 7. 1
Introduction. 7. 2
STUDY 7:1.
Preference for table type related to form of question. 7. 5
* Method. 7. 5
* Results. 7. 8
* Form of Question. 7.13
* Development in Preference. 7.16
* Discussion. 7.19
STUDY 7:2.
Preference for table type related to degree of shading. 7.23
* Introduction. 7.23
* Method. 7.24
* Results. 7.25
* Discussion. 7.28
STUDY 7:3.
Preference for table type in relation to a background in inear perspective. 7.30
* Method. 7.30
* Results. 7.31
- Discussion. 7.34
Contents. Page.
STUDY 7:4.
Preference for table type when comparing the stimulus with a real
table. 7.36
- Method. 7.36
- Results. 7.38
- Discussion. 7.42
GENERAL DISCUSSION. 7.45
CHAPTER 8.Completion of line drawings of tables.
Summary. 8. 1
Introduction. 8. 2
STUDY 8.
Completion of line drawings of tables. 8. 5
* Method. 8. 5
- Results. 8. 8
* A) PRELIMINARY ANALYSIS. 8. 8
B) SUMMARY OF INTRA-GROUP ANALYSES. 8.10
Group C. 8.10
Group D. 8.12
Group E. 8.14
Group F. 8.16
Group G. 8.18
Group H. 8.21
Group I. 8.21
* C) SUNOCARY OF INTER-GROUP AULYSES. 8.23
$*$ Ca) Sunmary of differences between Groups C to I. 8.23
Ca1) Differences in proportions of response, with age, between Groups H and I 8.23
Ca2) Differences in proportions of response, with age, between Groups H and F 8.25
Ca3) Differences in proportions of response, with age, between Groups I and G. 8.26
Ca4) Differences in proportions of response, with age, between Groups E, F, and G. 8.29Ca5) The effect that the number of lines given forcompletion in Groups E, F, and G has upon correctness ofresponse.8.32
Ca6) Differences in proportions of response, with age, between Groups C, and D. 8.33
Ca7) A comparison of the proportions of response with age between Stimulus Group C and D, and E, F, and G. 8.35
Ca8) The effect of the position of one table leg in StimuliD8, H4, and III.8.36
Cb) Summary of differences between all Groups and data from Chapters 4 and 7. 8.38
Cb1) Summary of differences between Groups A and B. 8.38
Cb2) Summary of differences between Groups A and B, and data presented in Chapters 4 and 7. 8.42Cb3) Summary of differences between Groups A and B, andGroups C to I .8.45
GENERAL DISCUSSION. 8.52

CHAPTER 9.

'Meaning', and the Copying of Line Drawings of Tables.
Summary. \quad 9. 1

Introduction.
9. 2

STUDY 9:1.
The Copying of Line Drawings. 9. 6

- Method.

9. 6

- Results.

9. 8

* Preliminary analysis. 9. 8
* Main analysis. 9.10
* A) Copying of the table tops. 9.10
* B) Copying of the table legs. 9.11
* Discussion. 9.13

STUDY 9:2.
The Copying of 'Table Tops'. 9.14

* Method. 9.15
* Results. 9.16
* Discussion. 9.17

STUDY 9:3.
The Copying of 'Table Legs in Perspective'. 9.19

* Method. 9.19
* Results. 9.20
- Discussion. 9.21

STUDY 9:4.

The Copying of 'Table Legs in Oblique Projection'. 9.23

* Method. 9.23
* Results. 9.24
* Discussion. 9.26
Contents. Page.
STUDY 9:5.
Copying and Knowledge of what the Lines Represent. 9.27
* Method. 9.27
* Results. 9.28
* Discussion. 9.30
general discussion. 9.32
CHAPTER 10.
General Discussion of Findings.
A) OVERVIEW OF FINDINGS. 10. 1
B) FINDINGS AND THEORIES: The relationship between the findings presentedIn this thesis and the theories of development in the depiction of depthdiscussed in Chapter 1.10. 5
* 1) Theories involving stages in cognition. 10. 6
* 2) Theories involving visual realism. 10. 7
* 3) Production error theories. 10. 8
* 4) Conceptual/perceptual realism theories. 10.10
C) CONCLUSIONS. 10.11
CHAPTER 11.Development in the Depiction of Depth.
A) THE PROCESS OF DEPICTION. 11. 2
* The formation of general goals. 11. 2
* Task demands. 11. 5
* Route ' a '. 11. 6
* Redefining the task, route ' b '. 11. 8
* Implicit depth. 11. 8
* The formation of sub-goals. 11.10
Contents. Page.
* Serialisation of drawing. 11.11
- Feedback loop ' c '. 11.12
* Feedback loop 'd'. 11.13
B) DEVEIOPMENT IN DEPICTION. 11.14
* Development related to conceptualisation of the task. 11.14
- Development related to mental representation of the task. 11.15
* Development related to serialisation of drawing. 11.20
C) CONCLUSIONS. 11.22
REFERENCES. R. 1
APPENDIX TO CHAPTER 1. Ap.1. 1Overview of Theories about Development in Drawing.*A) WHAT WE 'KNOW' OF THE OBJECT: PERCEPTION..Ap.1. 2
The intrinsic image. Ap.1. 3
Properties of the system. Ap.1. 5
Development in perception. Ap.1. 6
(B) WHAT WE 'KNOW' OF THE OBJECT: CONCEPTUALISATION Ap.1. 6
Canonical orientation. Ap.1. 7
* C) WHAT WE 'KNOW' OF THE OBJECT: MENTAL REPRESENTATION. Ap.1. 7
Gibson's account of perception and depiction. Ap.1. 8
Gibson's theory and mental representation. Ap. 1.10
Development in mental representation. Ap.1.11
* D) GENERAL CONCLUSIONS. Ap. 1.13
CHAPTER 2.Theoretical and Empirical Aspects of Development in the Depiction of Depth.No appendices.
APPENDIX TO CHAPTER 3.Ap.3. 1A Table Drawn from Observation.* Data are contained in Appendix Ap.6:A.Ap.3. Lee, M. and Bremner, G. (1987) The representation of depth inchildren's drawings of a table, The Quarterly Journal of ExperimentalPsychology, 39A, 479-496.Ap.3. 2

CHAPTER 4.

A Table Drawn from Imagination.
No appendices. Data are contained in Appendix Ap.6:B.

CHAPTER 5.

Aspects of the Task Causing Task Dependency.
No appendices. Data are contained in Chapter 5.

APPENDICES TO CHAPTER 6.
 Ap.6. 1

Classification of Table Drawings and the Use of Depth Cues.

* Introduction.

Ap.6. 2
TABLE 1. Classification system for table drawings.
Ap.6. 3
TABLE 2. Classification of data discussed in Chapter 6.
Ap.6. 7
Ap.6:A. Data for tables drawn from observation.
Ap.6.12
Ap.6:Aa. Subject totals for tables drawn from observation.
Ap. 6.13
Ap.6:Ab. Average ages for tables drawn from observation.
Ap. 6.13
Ap.6:Ac. Standard deviations of age for tables drawn from observation.

Ap. 6.14
Ap.6:Ad. Percentage of total response, summed over age, for tables drawn from observation.

Ap. 6.14
Ap.6:Ae. Percentage response for each age group for tables drawn from observation.

Ap. 6.15
Ap.6:B. Data for tables drawn from lmagination.
Ap. 6.21
Ap.6:Ba. Subject totals for tables drawn from imagination.
Ap. 6.22
Ap.6:Bb. Average ages for tables drawn from lmagination.
Ap. 6.22
Ap.6:BC. Standard deviations of age for tables drawn from imagination.

Ap. 6.23

Appendix.
Ap.6:Bd. Percentage of total response, summed over age, for tables drawn from imagination.

Ap. 6.23
Ap.6:Be. Percentage response for each age group for tables drawn from imagination.

Ap. 6.24
Ap.6:C. Amalgamated data for tables drawn from observation and imagination.

Ap.6.31
Ap.6:Ca. Subject totals for tables drawn from observation and imagination.

Ap. 6.32
Ap.6:Cb. Average ages for tables drawn from observation and imagination.

Ap.6:Cc. Standard deviations of age for tables drawn from observation and imagination.

Ap.6.33
Ap.6:Cd. Percentage of total response, summed over age, for tables drawn from observation and imagination.

Ap. 6.33
Ap.6:Ce. Percentage response for each age group for tables drawn from observation and imagination.

Ap.6:D. Venn diagrams and dendrograms for tables drawn from observation, and the information upon which they are based.

Ap. 6.41

1) Breakdown of data by cell type for cells accounting for more than 0.5 percent of all tables drawn from observation.

Ap.6:D,1a. Venn diagram of cells accounting for more than 0.5 percent of all tables drawn from observation.

Ap.6:D, 1 b. Reduced dendrogram of cells accounting for more than 0.5 percent of all tables drawn from observation.

Ap. 6.43
Ap.6:D,1 c. Dendrogram of cells accounting for more than 0.5 percent of all tables drawn from observation.

Ap. 6.44
Ap.6:D,1d. Age profiles for cells accounting for more than 0.5 percent of all tables drawn from observation.

Ap. 6.45

Appendix.
Ap.6:D,1e. Smallest maximum differences of age profiles for cells
accounting for more than 0.5 percent of all tables drawn from observation. Ap.6.46
2) Breakdown of data by cell type for cells of all tables drawn from observation.

Ap.6:D,2a. Venn diagram of cells of all tables drawn from observation. Ap.6.47

Ap.6:D,2b. Reduced dendrogram of cells of all tables drawn from observation. Ap.6.48

Ap.6:D,2c. Dendrogram of cells of all tables drawn from observation.

Ap.6:D,2d. Age proflles for cells of all tables drawn from observation. Ap.6.50 Ap.6:D,2e. Smallest maximum differences of age profiles for cells of all tables drawn from observation. Ap.6.52

Ap.6:E. Venn diagrams and dendrograms for tables drawn from imagination, and the information upon which they are based.

1) Breakdown of data by cell type for cells accounting for more than 0.5 percent of all tables dram from inagination.

Ap.6:E,1a. Venn diagram of cells accounting for more than 0.5 percent of all tables drawn from dmagination.

Ap. 6.54
Ap.6:E,1b. Reduced dendrogram of celle accounting for more than 0.5 percent of all tables drawn from imagination.

Ap. 6.55
Ap.6:E,1c. Dendrogram of cells accounting for more than 0.5 percent of all tables drawn from inagination.

Ap. 6.56
Ap.6:E,1d. Age profiles for cells accounting for more than 0.5 percent of all tables drawn from imagination.

Appendix.
Ap.6:E,le. Smallest maximum differences of age profiles for cells accounting for more than 0.5 percent of all tables drawn from imagination.

Ap. 6.59
2) Breakdown of data by cell type for cells of all tables drawn from imagination.

Ap.6:E,2a. Venn diagram of cells of all tables drawn from imagination.

Ap. 6.60
Ap.6:E,2b. Reduced dendrogram of cells of all tables drawn from imagination.

Ap. 6.61
Ap.6:E,2c. Dendrogram of cells of all tables drawn from
Imagination.
Ap.6.62
Ap.6:E,2d. Age profiles for cells of all tables drawn from imagination.

Ap.6.63
Ap.6:E,2e. Smallest maximum differences of age profiles for cells of all tables drawn from imagination.

Ap. 6.67
Ap.6:F. Venn diagrams and dendrograms for tables drawn from both observation and imagination, and the information upon which they are based.

Ap. 6.69

1) Breakdown of data by cell type for cells accounting for more than
0.5 percent of all tables drawn from observation and inagination.

Ap.6:F,1a. Venn diagram of cells accounting for more than 0.5 percent of
all tables drawn from observation and imagination.
Ap. 6.70
Ap. $6: 5,1 \mathrm{~b}$. Reduced dendrogram of cells accounting for more than 0.5
percent of all tables drawn from observation and imagination. Ap.6.71
Ap.6:F,lc. Dendrogram of cells accounting for more than 0.5 percent of
all tables drawn from observation and imagination.
Ap.6.72
Ap.6:F,1d. Age profiles for cells accounting for more than 0.5 percent of
all tables drawn from observation and imagination.
Ap.6.73

Appendix.
Ap.6:F,1e. Smallest maximum differences of age profiles for cells
accounting for more than 0.5 percent of all tables drawn from
observation and imagination.
2) Breakdown of data by cell type for cells of all tables drawn from
observation and imagination.
Ap.6:F,2a. Venn diagram of cells of all tables drawn from observation
and imagination.
Ap.6:F,2b. Reduced dendrogram of cells of all tables drawn from Ap.6.76
observation and imagination.
Ap.6:F,2c. Dendrogram of cells of all tables drawn from observation and
imagination.

Ap.6:F,2d. Age profiles for cells of all tables drawn from observation and imagination.

Ap.6.79
Ap.6:F,2e. Smallest maximum differences of age profiles for cells of all
tables drawn from observation and imagination.
Ap.6.83
Ap.6:G. Analysis of depth cue by projection system. Ap. 6.85

Ap.6:Ga. Form of projection (types 1 to 9) by combinations of depth cue
usage as classified in Table 2.
Ap. 6.86
Ap.6:Cb. Form of projection (types 1 to 9) by use of depth cue.
Ap. 6.87
Ap.6:Gc. Form of projection (types 1 to 4) by use of depth cue.
Ap. 6.88

APPENDICES TO CHAPTER 7.
Ap.7. 1
Preference in representation of tables.
Ap.7:A. Data for Study 7:1.
Ap.7. 2
Ap.7:B. Data for Study 7:2.
Ap.7. 3
Ap.7:C. Data for Study 7:3.
Ap.7. 4
Ap.7:D. Data for Study 7:4.
Ap.7. 5
Appendix.
APPENDICES TO CHAPTER B.
Completion of line drawings of tables.

- Introduction.

Page.
Ap.8. 1

Ap.8. 2
TABLE 3. The structure behind the stimuli used in Study 8.
Ap.8:A. Data for Study 8.
Ap.8. 3
Ap.8:Aa. The raw data obtained on Stimulus sheet A.
Ap.8. 4
Ap.8:Ab. The raw data obtained on Stimulus sheet B.
Ap.8. 8
Ap.8:Ac. The raw data obtained on Stimulus
sheets W, X, Y and Z.
Ap.8. 12
Ap.8:B. Statistical tests showing little difference between forms of stimuli.

Ap.8. 14
Ap.8:C. Amalgamated data giving proportions of response for each age group, for each individual stimulus.

Ap.8. 17
Ap.8:Ca. Analysis of amalgamated data, classified in detail by form of
response, stimulus and age.
Ap.8. 18
Ap.8:Cb. Analysis of amalgamated data, classified by projection system,
stimulus and age.
Ap.8. 43
Ap.8:Cc. Analysis of amalgamated data, classified by depth cue, stimulus
and age.
Ap.8. 56
Ap.8:D. Detailed analyses of proportions of response, with age, of stimuli in Groups C to I.

Ap.8. 81

* Group C.

Ap.8. 82

- Group D.

Ap.6. 85
Group E.
Ap.8. 88

* Group F.

Ap.8. 91

- Group G.

Ap.8. 93

* Group H.

Ap.8. 96

- Group I.

Ap.8. 99

Page.
Ap.8:E. Data amalgamated across each stimulus group, giving proportions of response, with age for each group. Ap.8. 102

Ap.8:Ea. Use of projection system, by stimulus group. Ap.8. 103

Ap.8.Eb. Use of depth cue, by stimulus group. Ap.8.107
Ap.8:F. Detalled analyses of proportions of response, with age, of
differences between Groups C to I .
Ap.B.111

- Comparison of groups H and I . Ap.8.112
- Comparison of groups H and F. Ap.8.114
- Comparison of groups I and G. Ap.B. 116
- Comparison of groups E, F and G. Ap.8.119
*The effect of the number of lines given for completion.. Ap.8.123
- Comparison of groups C and D. Ap.8.124
* Comparison of groups C and D, and E, F and G. Ap.8.126
* The effect of the position of a table leg. Ap.8. 128

Ap.8:G. Detalled analyses of proportions of response, with age, of differences between Groups A and B and C to I.

Ap.8.131.

- Comparison of groups A and B. Ap.8.132
- Comparison of groups A and B with data from Chapters 4 and 7.Ap.8.136
- Comparison of groups A and B, and groups C to I.

Ap. 8.139

APPENDIX TO CHAPTER 9.
Ap.9. 1
'Meaning', and the Copying of Line Drawings of Tables.

- Data are contained in Chapter 9.

Ap.9. Lee, M., (1989), When 15 an object not an object? The effect of 'meaning' upon the copying of line drawings. British Journal
of Psychology, 80, 15-37.

Appendix.
CHAPTER 10.
General Discussion of Findings.
No appendices.

CHAPTER 11.

Development in the Depiction of Depth.
No appendices.
Figure.

 Figures.
 CHAPTER 1.Overview of Theories about Development in Drawing.
1:1. Development in children's drawings from Kellogg (1970). 1. 2
1:2. The stimulus used by Freeman and Hayton (1980). 1.15
1:3. An example of the stimull used by Hagen and Elliot 1976. 1.24
CHAPTER 2.
Theoretical and Enpirical Aspects of Development in the Dapigtion of Depth.
2:1. Examples of different methods of projection. 2. 2
2:2. The stimulus used by Selfe (1983a). 2. 8
2:3. Development in the depiction of regular solids (Mitchelmore 1980b). 2.11
2:4. Classes of denotation proposed by Willats (1981b, 1983). 2.12
2:5. Classification of the depiction of a table top proposed by Willats(1977a)2.14
2:6. The sequence of drawings obtained by Keneddy (1980) from a blindadult.2.16
2:7. Responses made by blind adults to the completion of a table top(Keneddy 1980).2.17
CHAPTER 3.
A Table Drawn from Observation.
3:1. The effect of viewing position upon the ways in which a table can be
represented. 3. 3
3:2. The relationship between correct and false perspective. 3. 4
3:3. Data obtained by Willats 1977. 3. 5
3:4. The number of subjects in each age group. 3. 7

Figure.
Page.
3:5. The total number of subjects, average age, and standard deviation of age for each class of projection.
3. 8

3:6. The proportions, with age, of response of each class of projection when a table 15 drawn from observation. 3. 9

3:7. The distribution of the data according to the degree of convergence. 3.10

3:8. A one-way ANOVA using age (ln years) as a grouping factor and degrees of convergence in which the table tops were drawn as a dependant variable. 3.11

3:9. A one-way ANOVA using age (in years) as a grouping factor and degrees of convergence in which the table legs cof drawings with table tops in perspective) were drawn as a dependant variable. 3.12 3:10. The mean degree of convergence, by age, for the table tops (θ) and the table legs (φ). 3.12

3:11. A one-way ANOVA using age (in years) as a grouping factor and the difference between φ and θ as a dependant variable. 3.13

3:12. The distribution of θ and φ. 3.14
3:13. A trigonometric analysis of a table drawn in perspective. 3.14
3:14. A one-way ANOVA using age (in years) as a grouping factor and P value as a dependant variable. 3.16

3:15. The relationship between age and the ability to reproduce correctly perspective and the relative dimensions of the table. 3.17

3:16. The distribution of data according to the degree of obliquity. $\quad 3.19$ 3:17. A one-way ANOVA using age (In years) as a grouping factor and degrees of convergence used to deplet table tops drawn in oblique projection as a dependant variable. 3.20

Figure.
Page.
CHAPTER 4.
A Table Drawn from Imagination.
4:1. A comparison of methods of projection. 4. 2
4:2. The distribution of data according to index of roundness, in total and with age.

4:3. The proportions, with age, of responses in each class of projection when a table is drawn from imagination. 4.12

4:4. The proportions, with age, of responses indicating a central viewpoint when a table was drawn either from observation or imagination.
4.14

4:5. The proportions, with age, of orthogonal and non orthogonal responses when a table was drawn either from observation or imagination.
4.15

CHAPTER 5.

Aspects of the Task Causing Task Dependency.
5:1. The number of artists and non artists responding in each form of projection when asked to draw a table from imagination. 5. 6

5:2. The numbers of subjects, with age, who had been taught perspective, and those in the control group, responding in each form of projection when asked to draw a table from imagination.
5. 9

5:3. The numbers of subjects, with age, responding in each form of projection when asked to draw a table from observation, either with or without a squared background.
5.13

5:4. The numbers of subjects, with age, responding in each form of projection when asked to draw a table from imagination under near, medium, far and control conditions.

Figure.
Page.
CHAPTER 6.
Classification of Table Drawings and the Use of Depth Cues.
6:1. A classification system for table drawings. 6. 4
6:2. Classification of data discussed in Chapter 6.
6. 6

6:3. Detalls of dendrogram for cells accounting for more than 0.5% of all tables drawn from observation. 6.11
6:4. Details of dendrogram for all tables drawn from observation. 6.11
6:5. Detalls of dendrogram for cells accounting for more than 0.5% of all $\begin{array}{ll}\text { tables drawn from } \text { Imagination. } & 6.12\end{array}$

6:6. Details of dendrogram for all tables drawn from imagination. 6.12
6:7. Details of dendrogram for cells accounting for more than 0.5% of all tables drawn from observation and imagination. 6.14
6:8. Details of dendrogram for all tables drawn from observation and imagination.
6.14

6:9. The theoretical relationship between depth cues and projection systems. 6.18

6:10. The proportions, with age, of the use of depth cues. 6.22
6:11. An analysis of the no ground line response. 6.23
6:12. Cumulative proportions of the use of depth cues. 6.24
6:13. The relationship between the use of either partial occlusion or $\begin{array}{ll}\text { ground plane. } & 6.25\end{array}$ 6:14. The relationship between the use of depth cues and projection $\begin{array}{ll}\text { systems. } & \mathbf{6 . 2 6}\end{array}$ 6:15. A comparison of the degree of complexity involved in the use of either depth cues or projection systems.
6.27

Figure.
Page.
CHAPTER 7.
Preference in representation of tables.
7:1. An example of the stimuli used in Study 7:1.
7. 6

7:2. The proportions of preference, with age, for different table tops under the M.L. condition. 7.9

7:3. The proportions of preference, with age, for different depth cues under the M.L. condition.
7.10

7:4. The proportions of preference, with age, for different table tops under the B.P. condition. 7.11

7:5. The proportions of preference, with age, for different depth cues under the B.P. condition. 7.12 7:6. The proportions 3 j responses as a percentage of the oblique response for each age group, for M.L. and B.P. conditions. 7.15 7:7. Cumulative proportions of preference, with age, for different table tops, across M.L. and B.P. conditions, and for amalgamated data for tables drawn from observation and imagination. 7.17

7:9. Cumulative proportions of preference, with age, for different depth cues, across M.L. and B.P. conditions, and for amalgamated data for tables $\begin{array}{ll}\text { drawn from observation and imagination. } & 7.18\end{array}$ 7:10. An example of the shaded stimulus used in Study 7:2. $\mathbf{7 . 2 5}$ 7:11. The proportions of subjects, with age, choosing different types of table tops, and ground plane, when given the shaded stimulus. 7.26 7:12. The proportions of subjects, with age, choosing different types of table tops, and ground plane, when given the non-shaded stimulus. 7.26 7:13. Examples of the stimull used in Study 7:3. 7.30 7:14. Proportions of preference, with age, for table tops in oblique or perspective forms of projection, under perspective and non-perspective conditions in this study, and under M.L. condition in Study 7:1. 7.32

Figure.

Page.

7:15. An example of the stimulus sheet used in Study 7:4.
7.37

7:16. The proportions, with age, of preference for different types of table top when a line drawing is compared with a real table. Also showing the preference, with age, for 3 J as a percentage of the total oblique response for each age group.
7.39

7:17. The proportions, with age, of preference for oblique or perspective table tops shown in this study and in Study 7:1, M.L. condition.
7.40

7:18. The proportions with age, of preference for a central viewpoint shown in this study and in Study 7:1, M.L. condition, and, for a visually realistic line drawing shown in this study.
7.41

CHAPTER 8.
Completion of line drawings of tables.
8:1. Relationship between the parts of the stimulus used in
Study 8:1. 8. 6
8:2. An example of the full stimulus used in Study 8:1. 8. 7
8:3. The proportions of subjects using each type of table top on Stimulus Group C.
8.11

8:4. The proportions of subjects using each type of depth cue on Stimulus Group C. 8.11

8:5. The proportions of subjects using each type of table top on Stimulus Group D.
8.13

8:6. The proportions of subjects using each type of depth cue on Stimulus Group D. 8.13

8:7. The proportions of subjects using each type of table top on Stimulus Group E. 8.15

8:8. The proportions of subjects using each type of depth cue on Stimulus Group E.

Figure.
Page.

8:9. The proportions of subjects using each type of table top on Stimulus Group F. 8.17

8:10. The proportions of subjects using each type of depth cue on Stimulus Group E.

8:11. The proportions of subjects using each type of table top on Stimulus Group G.

8:12. The proportions of subjects using each type of depth cue on Stimulus Group G. 8.19

8:13. The proportions of subjects using each type of table top on Stimulus Group H.

8:14. The proportions of subjects using each type of depth cue on Stimulus Group H. $\quad 8.20$

8:15. The proportions of subjects using each type of table top on Stimulus Group I. 8.22

8:16. The proportions of subjects using each type of depth cue on Stimulus Group I.

8:17. Proportions of oblique and perspective responses to Stimuli Groups H and I. 8.24

8:18. Proportions of Ground plane and Partial occlusion for Stimulus Groups H and F. 8.25

8:19. Proportions of Ground line,Ground plane and Partial occlusion, with age, to Stimuli Groups G and I. 8.27

8:20. Proportions in the use of Ground plane, with age, on Stimulus Groups E, F, and G. 8.30

8:21. Proportions of correct response, with age, in relation to the number of lines required for completion on the table top. 8.33

8:22. Vertical Oblique and Perspective responses on Stimulus Groups C, and D.

Figure.
Page.
8:23. Proportions of Oblique response, with age, on Stimuli D8, H4, and III.

8:24. Proportions of Perspective response, with age, on Stimuli D8, H4, and I11.

8:25. The proportions of subjects using each type of table top on Stimulus A6. 8.39

8:26. The proportions of subjects using each type of depth cue on Stimulus 16.

8:27. The proportions of subjects using each type of table top on
Stimulus B25.
8:28. The proportions of subjects using each type of depth cue on
Stimulus B25.
8.40

8:29. The proportions of subjects, with age, choosing a table top in vertical oblique projection as the one that looks most like a table when presented with stimuli they have completed (B25) or when presented with ready prepared stimull (Chapter 7). 8.43

8:30. The proportions of subjects, with age, using orthographic projection and perspective on Stimulus A6 and when drawing a table from
imagination. 8.44
8:31. The proportions of subjects, with age, using no ground ine and ground ine on Stimulus $A 6$ and when drawing a table from imagination. 8.44 $\begin{array}{ll}\text { 8:32. The use of orthographic projection in each stimulus group. } & 8.47\end{array}$
$\begin{array}{ll}\text { 8:33. The use of vertical oblique projection in each stimulus group. } & 8.47\end{array}$
$\begin{array}{ll}\text { 8:34. The use of oblique projection in each stimulus group. } & 8.48\end{array}$
$\begin{array}{ll}\text { 8:35. The use of perspective in each stimulus group. } & 8.48\end{array}$
8:36. The use of no ground line in each stimulus group. 8.50
8:37. The use of ground line in each stimulus group. 8.50

Figure.
Page.
8:38. The use of ground plane in each stimulus group. 8.51
8:39. The use of partial occlusion in each stimulus group. 8.51
CHAPTER 9.
'Meaning', and the Copying of Line Drawings of Tables.
9:1. The nine stimuli used in Study 1. 9. 6
9:2. The number of line drawings in each age group. 9. 7
9:3. The number of children producing the same response on both line drawings. 9. 8
9:4. The proportions, with age, of correct responses on stimuly
4 and 5.9. 9
9:5. The mean degrees of convergence, with age, when copying a table ineither true or naive perspective.9. 9
9:6. The proportions of response, with age, for stimull with a table top in orthographic, vertical-oblique, oblique, or perspective projection. 9.10
9:7. The proportions of correct responses, with age, for each stimulus and for each stimulus group. 9.12
9:8. The proportions of response that showed depth on oblique depthstimuli, with age.9.12
9:9. The stimulus used in Study 2. 9.15
9:10. The number of errors, by subject, and with age, made on each stimulus element. 9.16
9:11. The stimulus used in Study 3. 9.20
9:12. The number of errors, by subject and with age, made on each stimulus element. 9.21
9:13. The stimulus used in Study 4. 9.24
9:14. The number of errors in copying the table legs, by subject and withage, made on each stimulus.9.25

Figure.
Page.
9:15. The stimulus used in Study 5 . 9.28
9:16. Types of error made in Study 5.
9.29

CHAPTER 10.
General Discussion of Findings.
No figures.

CHAPTER 11.

Development in the Depiction of Depth.
11:1. A model of the processes followed when drawing a table.
11. 3
Contents. Page.
CONTENTS OF CHAPTER 1.Overview of Theorles about Development in Drawing.
Introduction. 1. 1
A) THEORIES INVOLVING STAGES IN COGNITION. 1. 4

* Stages of development in the understanding of space. 1. 5
* Stages in depiction. 1. 6
* The position of linear perspective. 1. 7
- Conclusions.1. 8
B) THEORIES INVOLVING VISUAL REALISM. 1. 9
* Stages in the development of depiction. 1. 9
* The use of an internal description. 1.10
- Conclusions. 1.11
C) PRODUCTION ERROR THEORIES. 1.13
- Perpendicular bias. 1.14
* Internal frame of reference. 1.14
* Rule governed depiction. 1.16
* Graphic motor schemata. 1.18
* Conclusions. 1.19
D) CONCEPTUAL/PERCEPTUAL REALISM THEORIES. 1.21
- Perception. 1.21
* Pleture perception. 1.23
* Conceptualisation. 1.25
* Mental representation. 1.26
* Conceptual/perceptual realism theories and the depiction of depth. 1.28
* Object centredness and depth cues. 1.28
* Task dependency and children as communicators. 1.30
* Explanations for development in depiction. 1.31
* The child as an active participant. 1.34
- Conclusions. 1.35
E) BRIEF COMPARISON OF THEORIES. 1.37

Overview of Theories about Development in Drawing.

Introduction.
Development in the depiction of depth, that is, in a person's ability to represent the three dimensions of space on a two dimensional surface, appears to be inextricably. linked to general development in drawing. In order to study how the depiction of depth develops we first have to examine some of the difficulties associated with studying children's depictions and some of the theories that have been put forward to explain development in depiction. This chapter looks at general development in depiction and its relationship to the depiction of depth, whilst the following one focusses more closely on the latter.

There is a wide variety of theories that attempt to explain development in pictorial representation. These theories lack an underlying unifying structure, partly because they lack a common use of language and meaning, and partly because of the level of subjectivity in the research. For example, representation has been defined as 'the making present of an object intended to represent the real world' (Furth 1969, Deregowsk1 1969). Yet, as observers, if we wish to put some structure upon the development of pictorial representation it is necessary to account for both our own interpretation of what we see (Wollheim 1969) and also the stated and inferred or implied intentions of the representer. For example, Kellogg (1970) examined a wide variety of young children's drawings. As can be seen in Figure 1:1 she found that drawings near the inner circle, done by very young children, are usually similar in form despite the fact that they are intended to represent widely differing objects.

Figure lil. Developant in children's deavings froe kellogg (1970).

The classification of children's drawings is also complicated by children's difficulty in articulating the intended representation, and the instability of their intentions. Adult's can generally explain what it is they intend to depict and can introspect as to reasons why they did not necessarily succeed, whereas a young child alght begin to draw a house, but halfway through decide that a fire engine might be more appropriate and continue accordingly.

This form of investigation becomes even more subjective when development in the representation of depth is examined, as the investigator has to interpret the meaning of individual lines. Is that crooked line just a crooked line, possibly caused by an unfortunate wobble, or is it an early attempt at indicating three dimensionality?

The criteria by which people produced classification schemes of drawings also has a subjective element. Golomb (1974) found that the form of representation is a function of the specific task and medium employed. Yet, implicit in the construction of theories about how the representation of depth develops, there is the belief that these theories illuminate underlying developmental trends and thus describe behaviour that is not particularly task dependent. Historically there has been a desire to incorporate theories of drawing development within general theories of child development. In itself, the idea of a uniffed theory of development is obviously attractive. However, at times, the need for objectivity has been overlooked in order to incorporate empirical evidence of development In depiction into a general theory of development. These points are 1mportant ones, both for the structure of this thesis and the conclusions presented in it, and therefore it is worth exploring them more fully.

In this chapter theories relating to development in depiction are classified into four main groups according to the assumptions upon which they are based, and the implications which arise from them. This has been done in order to help to structure the discussion. It is possible to 1solate three reasonably well defined groups of theories: theories involving stages in cognition, theories involving visual realism and production error theories. The fourth group, entitled conceptual/perceptual realism theories, covers a more loosely defined area with a shared information processing approach.

A) THEORIES INVOVING STAGES IN COGHITION.

One group of theories has been dominated by a bellef in the atage-like development of intellectual structures. Drawing is seen to be a reflection of this, and the end point of development is assumed to be the stage of formal operations, which, in depiction, is characterised by the use of linear perspective. Piaget (1977) states that:
"Intellectual structures between birth and the period of twelve to fifteen years grow slowly, but according to stages in development. The order of succession of these stages has been shown to be extremely regular and comparable to the stages of an embryogenesis. The speed of development, however, can vary from one individual to another and also from one soctal environment to another; consequently, we may find some chlddren who advance quickly or others who are backward but this does not change the order of succession of the stages through which they pass."

Thus cognitive stages "describe the actual psychological organisation of the child's knowledge and predict the child's knowledge about a range of objects and events" (P. Miller, 1983). The importance of this for the present analysis is the assumption, highlighted in Inhelder (1965), that drawings give direct access to the child's 'Imaginal space' which in turn gives direct access to the child's 'representational space' and to his or her understanding of depth. For example, Inhelder and Chipman (1976) comment that:
"Developmental psychology now seems to have shown that the lmage as the figurative aspect of cognitive functians takes on the status of a symbol by which it is porsible to represent, to evoke, or to anticipate changes in reality ie . translations, rotatians, and transformations of figures in space. Through our approach it has been
shown that these figurative symbolisations develop along with, and closely depend on, the corresponding cognitive operations". The form taken by 'figurative symbolisations' is seen to be directly linked to the way in which the child draws, thus "The identification of stages in the development of drawing ... attest to a remarkable convergence with the evolution of the spontaneous geometry of the ch1ld" (Piaget and Inhelder 1969).

Stages of development in the understanding of space.
Because a close link has been postulated between the child's drawings and his or her understanding of space it is worth spending a little time examining how this understanding of space is seen to develop. Pufall and Shaw (1973) suggest that the very young child (sensori-motor, 0 to 2 years of age) has limited spatial ability, and that this is due to the lack of the symbolic function of intelligence, by which the child can imagine or mentally represent spatial relations among objects. The development of such 'representational space' is seen to coincide with the advent of the symbolic function, is developed through a long process of internalisation, and takes the form appropriate to the cognitive stage that the child is in.

At the pre-operational sub-level (2 to 7 years of age) representational space is seen as static, irreversible and egocentric. It is believed to be a topological space limited to the inherent properties of a particular object without locating the object relative to others in terms of a particular point of view or in a system of axes or co-ordinates (Piaget and Inhelder, 1956). Thus wRetaining certain physical features of the figure leads the child to what one might call pseudoconservations and to a certaln reluctance to exceed or crass the frontiers" (Inhelder, 1965).

In the concrete operational sub-period (7 to 11 years of age)
representational space is seen as mobile and reversible, whilst still dependent upon the presence of manipulable objects. Symbolic imagery develops, consisting of spatial figures and spatial relations which enable geometric operations to be performed (Inhelder 1965). The child is now belleved to use projective space and Euclidean space, and so can use referents to understand constraints upon relationships between objects, and can use an abstract system of axial co-ordinates with precise distances and relative positions coded within $1 t$. Thus the child develops the abllity to use an external frame of reference.

Finally, in the formal operational period (11 to 15 years of age) the child is belleved to develop hypotheses about logical relations and form operations upon relations. Thus operations are independent from external criteria, though not from external reality (P. Miller 1983).

Stages in depiction.
Because drawings are seen as a direct reflection of the form of the child's representational space, and this is held to develop in stages, the concept of a stage like development in drawing is particularly important. Willats' (1977a) work exemplifies this view and is discussed in detail in Chapter 3. He examined the way in which children draw tables from a fixed view point. He found that with increasing age children are able to use increasingly complex forms of projection when drawing the table top, the oldest subjects using ilnear perspective. From this he argued that "development appeared to take place in discrete stages. Each stage offers certain advantages over the preceding ones, but each stage is more complex than the previous one, and demands greater powers of abstraction.", and that "few children have the flexibility to change from one system (of projection) to another; having ance learnt to draw in perspective most chlldren would use this system for all their drawings".

He also argues that development (certainly in the earlier stages) occurs through a maturational process. "If a child, through maturation, is ready to handle a more complex system, and is actively seeking it, the sight of a single example of the system in use (perhaps by another child) might be sufficient to trigger off the next stage of development. Willats (1984) supports this view by pointing to the lack of cultural variation in the way in which young children use projection systems, and suggests that mechanisms of interaction between production and perception lead the child from one system to the next. Thus the idea of stages of cognition, very closely linked to stages in the use of projection systems, is central to this view.

The position of innear perspective.
Implicit within this is the assumption that the ability to use linear perspective is the end point of development. It is not suggested that all children develop the ability to use linear perspective. Piaget (1977) suggests that whilst drawing is a behaviour pattern that is originally subordinate to the general evolution in stages, it becomes diversified according to individual aptitudes. Thus all children progress through similar stages until approximately thirteen years of age, after which only some develop the ability to use perspective. Within this is the assumption that those who do not use perspective are less advanced than those who do. Similarly, it is assumed that if a child is capable of using perspective he or she will do so in all of their drawings.

Incidently, linear perspective is sometimes defended in the belief that it corresponds to our retinal image, however Finch (1977) has shown that our retinal image most closely matches hyperbolic perspective (similar to a 'goldfish bowl' view of the scene). Further, the retinal image is not a criterion for what we actually see. This idea, and the distinction
between seeing and perceiving, will be addressed later in this chapter and will be returned to throughout the thesis.

Conclusions.
The general implication of theories involving stages in cognition is that the child's drawings give direct access to the child's cognitions. Willats (1977a) differs slightly from Plaget in this respect. He states that "Less attention is given to the process by which the child 1s able to form an external representation of this imagined 'mental image' in the form of a drawing; and yet it is precisely the development of this process which allows drawing, as distinct from perception, to take placel. Thus he attributes development in the drawing process to the way in which the 'mental image' is interpreted, as opposed to the way in which 'representational space' is understood. However, the assumption behind this is that we can 'read off' from our mental image, and so drawings are still seen as windows onto the child's cognitions, and the ability to use a particular projection system is still seen to indicate that the child understands that form of projection in its formal sense.

B) THEORIES DNVOLVING VISUAL RENLISM.

A second group of theorles suggest that the endpoint of development in drawing is the ability to depict the world in a visually realistic way, as it is seen as opposed to how it is perceived. As with cognitive stage theories this is erroneously presumed to be linear, rather than hyperbolic, perspective. These theories suggest that the child moves from depicting what is known about the object to drawing the object as it is seen. Knowledge of the object can be thought of as taking two forms, knowledge of the object itself and knowledge of how to represent the object. Adults are believed to be less influenced by knowledge of the object because they have a greater repertoire of representational strategies. As with the first group of theories, development is seen to occur in cognitive stages, but they are linked to the understanding of representation rather than to the understanding of space.

Stages in the development of depiction.
The following stages are normally identified (after Luquet, 1927). The first is scribbling, in which no representation is apparent. The second is fortuitous realism, where some meaning is discovered in the act of scribbling and the scribbles are added to. The third is failed realism, in which there are representational intentions but because of synthetic incapacity the elements of drawing are juxtaposed or drawn all over the page. Fourthly comes intellectual realism, in which the child draws what he or she knows and not what is seen. In this stage the intuitive relations of proximity, separation, enclosure, and closedness are maintained with little or no perspective, and concealed objects are drawn as if visible. Crook (1983) suggests that "the intellectual source of the naive drawer's work is segregated elements and relations ... the fallure to
cultivate shared boundaries and the striving for effective distribution in space reflects dominance by 'intellectual' enumeration of discrete elements within a scene ... the idea of a shared boundary is incompatible with (the child's) monolithic cognitive representations. In general, spatial transformations performed upon objects that do not conserve their individuality are not easily accommodated to the child's account of the scene". The final stage is visual realism, in which the representation 16 an accurate copy of the object as seen, and an awareness of perspective and metric relations is shown.

Although this theory has been used to describe development in the drawing of a scene (Barnhart 1942) it is normally used to describe development in the drawing of a single object (Kaylan-Masth 1976). Mitchelmore (1980a) asked subjects to draw regular solids and identified a series of stages in the depiction of the solids that can be identified with the stages of intellectual realism. These are discussed further in the following chapter, but it is worth noting here that the depictions that he identifies as being in the final stage of development are in oblique projection. Oblique projection has an ambiguous status here, because whilst it is not visually realistic it is sometimes erroneously held to be the 'end point' of development in theorles that suggest development 16 towards visual realism. Whilst linear perspective 16 not visually realistic In the absolute sense it is much closer to visual realism than is oblique projection. The following chapter analyses the difference between them more fully.

The use of an internal description.
The thrust of theories involving intellectual realism is a belief that an internal model is used, but that if the object to be depicted 16 unfamiliar, or if the child is encouraged to make a visual analysis of the
object when drawing, then the child may not rely on an internal model and may be able to produce a more visually accurate depiction. These hypotheses were supported by work done by Phillips, Hobbs, and Pratt (1978). They obtained line drawings, either of a cube or a non object pattern, under two conditions. Either the child had to look at the model continuously or else was allowed to draw freely. Copies made in the first instance were found to be more accurate than those produced by free drawing. Further, line drawings of cubes were found to be copled less accurately than those of non familiar patterns. The two forms of stimull were not of equivalent complexity, but a replication of the study by Willats (1981a) in which this was remedied produced comparable results. Phillips et al suggested that when the model is looked at continuously fewer intellectually realistic responses are produced because less memory is involved. For the same reasons a familiar model produces more intellectually realistic responses. They comment that "When copying a drawing the internal description created by seeing the drawing as a solld object will presumably describe that object in three dimensional space (or at least in ways that go beyond two dimensional space)".

Conclusions.

This interpretation goes beyond the idea of intellectual realism as a 'stage' in children's drawing, with concommitant assumptions about how the child's cognitive style differs from that of the adult. The misidentification of visual realism with oblique projection causes considerable difficulties, as what is assumed to be visual realism is simply another aspect of how the object is 'known' rather than 'seen'. This implies that intellectual realism is not just a 'stage' in children's drawing, but is an aspect in any representation, both for adults and children. For example, Edwards (1979) suggests that it is a general
obstacle to drawing skill, whereby specific cognitive representations serve to guide, and thus distort, the representational act. The assumption that visual realism is the end point of development is the central difference between the theories in this group and those deseribed in the final section. If this assumption is relaxed then the only difference between the two groups is one of emphasis. In the present group the emphasis is upon a form of development that is to a certain extent inevitable, though modified by experience. In the following groups of theories the child is seen more as an active problem solver.

C) PRODUCTION ERROR THEORIES.

Production difficulties can be defined as those unrelated to the organisation and representation of space, and include both poor motor skill and spatial and temporal problems posed by the drawing task and internal blases (Reeves 1983). Varlous aspects of spatial organisation such as the use of a base line Cark et al 1967), reference to the sides of the page (Berman 1976), and more general organisational principles such as start and stop cues (Ninio and Liblich 1976), overcoming the aesthetic urge to radial symmetry (Kellogg 1979), developing symmetry within the scene (Golomb 1982) and the sequence of actual line placement (Bassett 1977. Ninio et al 1975) all form sets of decisions that could determine the final product.

Production error theories contain no assumptions about the end point of development and link development to the abllity to overcome production difficulties. Those who have discussed the role of production errors do not necessarlly suggest that all development in representation occurs becsuse of the gradual overcoming of production difficulties, but they argue that at times this provides the simplest explanation. For example, Freeman (1980) suggests that "production difficulties and performance biases are largely responsible for the curlous ways in which children draw, and that conceptual explanations should be invoked only as a last resort". He argues that development through the different forms of projection systems found by Willats (1977a) in the drawing of table tops may well be explained by decisions that are local to the pleture. For example, development might reflect the overcoming of an inability to produce linear inclination, irrespective of the symbolic content of the picture. A child unable to use obliques might draw a table in vertical oblique and progress to oblique projection when the appropriate skill is
acquired. Similarly the progression to true perspective may follow the acquisition of the ability to draw the opposite oblique instead of two parallel lines.

Perpendicular bias.
Perpendicular bias lies at the heart of the explanation given above. Children have been found to be more skilled at reproducing lines perpendicular to a base line than they are at reproducing lines that form acute or obtuse angles to a base line COlson 1970, Ibbotson and Bryant 1976), and it has been suggested that this is because they are blased towards drawing a line at right angles (Lark et al 1967, Eldred 1973). This bias might have a perceptual basis. Adults produce most error when estimating angles about oblique positions, and lines tend to be remembered as more vertical than they actually are (Fisher 1974, Byrne 1979). Four year olds have some difficulty in recognising obliques (Stein and Mandler 1975), although they can be taught to discriminate them (Strayer and Ames 1972). The drawing of oblique lines has been found to be more accurate when there are no conflicting frames of reference (Naell and Harris 1976, Berman et al 1974), and Bayrakter (1985) found that the shorter the baseline the more effect the shape of the frame had upon the perpendicular bias. Berman (1976) suggests that oblique lines are seen as nonorthogonal to the picture frame rather than oblique as such. Hence when a local frame of reference is available the lack of ability to use an oblique line independently of it results in the production of a right angle.

Internal frame of reference.
It has been argued that a child becomes more able to use an internal frame of reference as she grows older, and hence more able to produce oblique lines (Bryant 1974, Freeman 1976, 1980a, 1980b). Knowledge
of drawing rules may facilitate the ability both to anticipate and to keep reference points in mind (Rand 1973). Freeman and Hayton (1980) presented

Figure 1:2. The stimulus used by Freeman and Hayton (1980).
children with a scene Figure $1: 2$) and asked them to draw in the lampposts. They found that, until about eleven years of age, children represented the lampposts with a tilt and that these same children also drew tables in vertical oblique projection. They argued that this is evidence of the continuing use of an external frame of reference, with the implication that vertical oblique producers also used such a frame. Selfe (1983a) used a similar task, although the stimulus had greater symmetry around the vertical axis (it can be seen in Figure 2:2 in the next chapter). but did not obtain the same effect. It is possible that the differences found between the two experiments were due to the crosses with which Freeman and Hayton marked the bases of the lampposts, or the unsymmetrical nature of the stimulus. The different results do, however. cast an element of doubt upon the conclusion that the form of projection used is related to the frame of reference.

If development from vertical oblique to oblique projection results from local decisions or internal biases, then children who are unable to produce an oblique table top should also be unable to represent linear
inclination, irrespective of the symbolic content. However, Willats (1981a) found that children were able to use a literal oblique line before they used one to represent depth. Hence, whilst overcoming internal biases might have some part to play in the development of representation, further explanation is needed for the development that Willats found in the use of projection systems.

Rule governed depiction.
Before invoking a conceptual explanation for Willats' findings it is worth considering the alternative possibility that development in the use of projection systems has rule governed origins. It has been shown that children follow certain rules when copying (Goodnow and Rochelle 1973). Systematic departures from these rules have been interpreted as attempts to minimise information overload (Gombrich 1960). Rule governed behaviour has also been shown to occur in drawing (Goodnow 1977) and drawing skill increases when children are taught how to reduce information load and are given feedback (Rand 1973, Sovik 1980, 1982). Some aspects of children's drawing that have been given conceptual explanations can, then, be interpreted in terms of rule governed behaviour. For example, standard orlentation of an object can be seen as a form of rule-governed drawing. Similarly, Deregowski (1977) found that when children abandon vertical oblique projection in favour of oblique in the drawing of cubes they do so firstly in the upper portion of the cube. He argued that the child changed her drawing strategy for the bottom of the cube last because of her knowledge of the supportive function of the base, hence invoking a conceptual explanation. However, Willats (1981a) repeated this experiment, but also presented the child with a cube resting on perspex above his or her line of vision. He found that the top rather than the bottom of the cube was altered last, although the bottom still had a supportive function.

This appears to show an alternative, rule governed, explanation for Deregowski's findings, that the child draws the presenting face first, regardless of what the base of the cube is doing.

Drawing systems and drawing devices are used by Willats (1977b) and Freeman (1980b) to describe such rule governed behaviour. Thus, Freeman suggests that a drawing system is seen as "a set of rules for projecting a crucial aspect of the scene onto the pleture plane". The implication is that these systems are disjoint. For example, Thomas and Tasalimi (1988) suggest that the overestimation of head size in young children's figure drawing is not due to the way in which the child conceives of the figure as such, but is related to the way in which the whole depiction is planned. Their use is seen to reduce information load and temporarily solve planning problems (Phillips et al 1978). Haith (1971) argued that children find it difficult to impose sequential ordering onto simultaneously presented material. Goodnow (1978) suggests that children use a set pattern or formula for drawing familiar objects. This formula is strong enough to be used erroneously, although the child can be shown to be sensitive to other aspects of the task (Parisier 1976, Ives 1980a). For example, Taylor and Bacharach (1982) found that five year olds could be encouraged to produce more visually accurate depictions by designing the task to minimise interference caused by drawing conventions. Development is seen to occur by transition between progressively more effective drawing systems by modifications of old programmes Greeman 1972). Thus Freeman (1980b) suggests that movement from the use of one projection system to another might be attributable to movement from one drawing system to another, rather than development in the understanding of how to depict depth.

Drawing devices are discrete entities that deal with local points of difficulty within the picture, such as segregation, enclosure,
interposition, and hidden line elimination. Fenson (1985) reported a longitudinal study of one child's drawings. He found that, initially, the child used discrete drawing devices when copying, and suggested that copying was, in part, dependent upon the child's ability to analyse the model in terms of the components present in his drawing repertoire. However it is here that the line between production difficulty theories and conceptual/perceptual realism theories becomes particularly thin. For example, Allik and Laak (1985) argue that whilst drawing devices are not laid down by the child's structural description, the relative size of the head and trunk in the human figure is. Both in this case and in Fenson's the chlld's production was partly related to his or her ability to analyse and hence to have a concept of the model.

Graphic motor schemata.
There appears to be no clear distinction between the idea of drawing systems and that of graphic motor schemata. However, whilst the use of drawing systems is normally discussed in terms of the way in which the child overcomes planning problems related to non-symbolic aspects of the depiction, graphic motor schemata are normally applied to more general aspects of cognition.

Karmiloff-5mith (1979) argues that once a functionally adequate syotem 15 developed it is considered as a unit in its own right, resulting In the development of a more efficient system. For example, the stability of the system doee not appear to be in the motor sequence iteelf, but in the understanding of the completed graphic version. Thus for the repeated drawing of the same object strokes can be produced in different directions and different orders (Van Somers 1982). Similarly, children have been shown to change drawings of identical objects according to the context Gujlimoto 1981 , Roodin et al 1971a, Roodin et al 1971 b, Roodin at al 1973,

Kellogg 1970, Lindstrom 1967). In the same way development in the use of graphic motor schemata can be related to cognitive development. Davies (1980) argues that it is not the capacity of the working memory that develops, but that with increasing age there is firstly a growth in the range of memorizing strategies available to the child, secondly an increase in the child's own awareness of such strategies, and thirdly an increasing knowledge of the strategies that are appropriate for different learning contexts. Similarly, Jools (1982) suggested that older children produce more features in their drawings because they are able to make greater use of pre-planned organisation, rather than because they notice more features than do younger children.

Arnheim (1974) suggests that other processes are affected by such development, and this is supported by the work of Taylor and Bacharach (1981). They found that whilst scribblers and mature drawers chose a complete man as the best form of representation of a man, children who produced tadpole men preferred tadpole men. Similarly Reeves (1983) argues that it is impossible to explain the difference between the perception and production of pictorial devices by production problems alone. Whilst it is quite probable that conceptual explanations for aspects of drawing behaviour are offered too readily, it is difficult to explain development in drawing, as opposed to aspects of production, without resorting to them.

Conclusions.

Theories which concentrate on production difficulties stress the need for clarity when we attempt to look at what is causing development. If development occurs irrespective of the symbolic content of the object or scene being drawn then it is reasonable to suggest that such development is related to the developing ability to overcome production
difficulties. If development appears to be related to the symbolic content we have to look further, attempting to investigate what production difficulties there are, whilst also forming hypotheses about why content affects development in the way that it does.

D) CONCEPTUAL/PERCEPTUAL REALISM THEORIES.

These arguments lead us directly into the fourth major group of theories in which the emphasis is upon what we know of the object (its symbolic content) and what we wish to communicate about it, and in which depiction is seen as a problem solving task. These theories share a common information processing approach, and so both theoretical and experimental work in the area needs to be described briefly before common assumptions specific to depiction can be addressed. Three areas are of particular relevence to the discussion, namely the perception, conceptualisation, and mental representation of objects. An extensive review of these areas would be intrusive, therefore the essential structure of this work is sketched in Appendix 1 and only the main conclusions, as they relate to depiction, are given here. The initial discussion has been broken into these three parts for ease of accessibility, but in reality these parts are linked together very closely.

Perception.
Perception relates to the analysis we make of the sensory information we receive. The area is not limited to visual information, although it is only this aspect of perception that will be discussed here. Visual perception can be defined as the process of identifying an input, in the form of a retinal image, as signifying a three dimensional real world object. Perceptual theory, based on Marr's (1982) 1deas, suggests that perception occurs by a series of grouping processes. A central part of Marr's theory, and of some computer vision systems, is that of the intrinsic image (2% s sketch), which is an intermediate representation that makes explicit various aspects of visible surfaces. Thus "To recognise a visual object is to extract from the image a Chierarchically organised)
description of the orientation of its principal and component axes, their adjunct relationships and relative lengths. Then with the principal axis as the basis of the object centred co-ordinate system, the description is matched to a canonical model that is held in memory" (Marr and Nishihara 1978).

Recent research has relaxed the need for an a-priori knowledge of objects. In 1987 Fisher proposed S. M. S.. This is a suggestive modelling system for object recognition, in which integrated multiple alternative representations use symbolic primitives to suggestively characterise the object and its shape. Thus he suggests the use of an intermediate representation that falls between the $2 k D$ sketch and the model based object hypothesis. These views are in accordance with Roth and Frisby's (1986) discussion of Marr's theory. They suggest that whilst Marr's theory is essentially one involving 'bottom up' processing, it also involves knowledge. However, this is not knowledge of objects or things, or of the world as such, but is 'procedurally embedded knowledge' in which perception is guided by general rules about the way in which the world is organised. For example, Fisher 1982 showed that a computer could identify tables, even if the edge data and boundary connections were missing, by decomposing the table top and table legs into separate symbolic elements.

Marr suggests that the representation system for a three dimensional shape needs to be:- a) Object Centred. A viewer centred system would be more accessible for description but, when used for recognition, would be non-canonical and more costly in storage. b) Volumetric. A volumetric system can explicitly carry information about the spatial disposition of the parts of an object that are only implicit in a surface based representation. c) Modular and Hierarchically Organised. If all the primitives were at the same level the lower order descriptions would capture too fine a detall, whereas hierarchical descriptions are
intrinsically stable. These constraints hold strong implications for properties of the perceptual processes. In particular, the object centred nature of the system implies that our perception of an object has implicit depth, we construct it in terms of its symbolic elements, occlusion is a highly salient depth cue and oblique projection has more in common with the way in which we perceive objects than does perspective. Work on picture perception supports these findings.

Picture perception.
Jahoda et al (1977) suggest that the visual experience of objects In the real world is sufficient to lay the foundations of an ability for picture recognition, and Keneddy and Silver (1974) suggest that this is because lines are surrogates for features in the visual environment. For example, young children have little difficulty in recognising pictures of objects, and can do so with no indigenous art or explicit tutoring (Keneddy and Silver 1974, Keneddy and Ross 1975). Similarly the perception of pictures of isolated objects presents less of a problem than the perception of spatial relations within pictures (Hochberg and Brooks" 1962, Hagen and Jones 1980).

It is perhaps unwise to accept that percepts can be directly linked to a form of projection, but there is evidence to suggest that whilst the retinal image records something similar to hyperbolic projection the majority of older subjects prefer objects to be presented in oblique projection. Hagen and Elliott (1976) presented adults and children with a computer generated range of stimuli, differing in the degree of convergence of the orthogonals, an example of which can be seen in Figure 1:3. They found that objects in oblique projection were much preferred to those in linear perspective, and further that the pictorial station point was seen as independent of the correct centre of projection for the
picture. Hagen and Jones (1978) found that four year old children did not have a strong preference for oblique projection, choosing at chance level.

Figure 1:3. An exapple of the stinuli used by Hagen and Elliot 1976.

In order to make compensations for the pictorial station point it is necessary to make assumptions about the nature of the environment, as optical information alone cannot determine the correctness of viewing point (Rosinski 1976). Farber and Rosinski (1978) Identify two such assumptions. Firstly objects are assumed to be symmetrical, rectangular, and regular. Secondly the correct viewing point is assumed to be along a line normal to the centre of the picture, so the observer compensates for dislocation of the actual viewing point from this ideal. Hagen 1976b suggests that young children appear unable to compensate for perspective distortion involved in
a mismatch between pictorial station point and the correct centre of projection for the picture, and that the ability to do this develops gradually with age. This development supports the view that preference for an object in a particular form of projection does not give direct access to the cognitive representation of that object, unless we belfeve that that also changes with age. However, the very strong preference for oblique projection does suggest that it holds a special position in perception and Huffman (1971) suggests that this is because oblique projection offers a non-specific view point, and as such is a more effective method of representation.

Conceptualisation.

Conceptualisation can be defined as recognising that the three dimensional object belongs to a particular class. Rosch (1976) suggested that we use a system of natural categories when conceiving objects, and that these are internally structured into a prototype (best example) of the category with non-prototype members ordered from better to poorer examples. Prototypes have the advantage that they yield the most information for the least cognitive load. The form that these categories might take is unclear, but Rosch (1975) did suggest that "pictures may be closer to the underlying representation than are words.... the high agreement on canonical orfentation is itself of interest: one may speculate that the canonical imagined orientation represents the most informative perspective in which to view the object". The object centred nature of perception and conceptualisation and the ideas of prototype and canonical orientation suggest that oblique may be the form of projection that most closely approximates to a canonical representation of depth. It is the form of depiction preferred by most subjects, and appears to maintain the structural relationships between the symbolic elements of the object in
the most informative way. Let us assume that a subject has a canonical representation of an object in depth, and that if it were to be depicted it would be best represented by oblique projection, following Minsky and Papert's (1972) suggestion that drawings can be seen as approximations to canonical representations. It cannot be assumed that the child is able to scan his or her canonical representation and therefore draw the object in oblique projection. Even children possessing eidetic imagery only produce drawings normal for their age when attempting to copy their image (Metz 1929). The earlier discussion on production error theorles suggests that there might be many reasons for the child's inability to depict what he or she wants. The child, as a problem solver, tries to develop methods of overcoming these (Freeman 1980). The following discussion about mental representation addresses this aspect of depiction from an information processing approach.

Mental representation.
Both perception and conceptualisation can be seen as aspects of mental representation, so in order to avoid confusion quite a close definition will be applied here. Perception will be assumed to be the process of input, conceptualisation to be the process of storage and mental representation to be the process of preparation for output. Thus mental representation indicates the 'workbench' area of information processing. The term 'mental representation' rather than 'mental image' is used to reduce any unwarranted assumptions about its pictorial nature.

Slack (1984) suggests that mental representations have two components. The first is a surface representation, which corresponds to one's experience of the mental representation, and the second is that of knowledge structures. The surface representation is generated from knowledge structures and detail is built by activating literal encodings
associated with each of the object's parts. This division can be likened to that between perception and conceptualisation.

Meaning is modality free, and the information retrieval systems themselves have no modality. The construction of the mental representation is related to the expected form of output, not the input (Chase and Clark 1972, Pylyshyn 1973).

Mental representation and perception have been shown to utilise the same procedures, share the same generating mechanisms and interfere with each other. Mental representations are manipulable in size, colour and perspective, and can be rotated, reflected, and sheered. They have standard orientations and change to more canonical projections over time. The term 'image space' is used for an entity within which the surface representation is manifest. The properties of the image space have been determined empirically. It is finite, having definite shape and size, and subtends a particular visual angle. It functions as a co-ordinate space and has metric properties. Images have limited resolution; not only are subjectively smaller 1mages more difficult to see, but the resolution is clearest at the centre. Finally, images are known to be transient (Finke and Kosslyn 1980, Kosslyn 1975, 1976, 1978b).

Recent work by Farah (1988) suggests that there are close links between visual imagery and visual perception. She used electrophysiological and cerebral blood flow studies to show that brain activity during imagery was localised in the cortical visual areas. She also showed parallels between the selective effects of brain damage on visual perception and imagery, and she concluded that visual imagery does engage some of the same representations as used in visual perception. Thus visuallsation can be seen as a form of short term visual memory.

From this it follows that mental representations can be seen as working models which are generated to solve problems and define new
structures (Pylyshyn 1973). Tasks are arranged mentally as they would be physically and are constrained by the subject's understanding of the problem and the environment (Chase and Clark 1972, Pylyshyn 1973, Huttenlocher 1968, Simon and Barenfeld 1969, Cohen and Foley 1982).

Conceptual/perceptual realism theories and the depiction of depth.
Because conceptual/perceptual realism theories are based on an information processing approach they assume that developmental factors which influence information processing will also influence depiction. In order to limit the discussion the following section will concentrate on factors that are directly related to the depiction of depth, rather than general depiction. However, it is worth noting here that aspects of cognition such as attention and memory and problem solving abilities such as encoding knowledge, manipulating mental representations and ignoring non-salient aspects of the task will all differ with age and abllity and will have an effect upon development in depiction. A more detailed discussion of these is given in Appendix 1.

Object centredness and depth cues.
The above discussion has emphasised that, regardless of how 'knowledge' of the object is stored or operated upon, it appears to have an object centred nature. The object centred nature of perception means that features of the environment are assumed by subjects to be more rectangular than they actually are (Lynch 1960, Chase 1983), and that separation of objects is given a high priority (Pratt 1982). It also has implications for the way in which depth cues are perceived. Shape constancy means that young children are inattentive to the particular orientation of an object Braine 1978, McGurk 1972, Schaller and Harris 1974, Gibson et al 1962) and to the degree or direction of slant of
oblique lines (Quinn and Bomba 1988). Contours are seen more readily than elements, and lines that are structurally relevant to the figure are seen more easily than those that are not (Vurpillot 1969, McClelland and Miller 1979, Waltz 1975). The importance of occlusion as a depth cue is therefore accentuated, as it is directly related to the relationship between objects (Hagen 1976a, Ratoosh 1949, Gibson 1950, Mascelli 1966). Thus young children can understand overlapping line drawings with ease, regardless of whether realistic or geometric, but have great difficulty in analysing figures with shared boundaries (Ghent 1956).,

Size constancy means that young children are inattentive to the relative size of objects, perceiving all objects in a scene scaled in size relative to each other, irrespective of their relative distances (Gogel 1974, Wilcox and Teghtsoonian 1971). This has implications for the use of relative size as a depth cue. In perception the saliency of height in picture plane and relative size appear to develop with age (Olson 1975, McGurk and Jahoda 1974, Hagen 1976b). Height in the picture plane and relative size are, however, important elements of linear perspective, which has lead to linear perspective being called a depth cue in its own right (Bartly 1941, Fry 1952, Mascelli 1966, Plumb 1969). Arnheim (1974) argued that on artistic grounds it is the strongest depth cue, and oh (1968) suggested that it is the most salient. Unfortunately his study was flawed in several areas. He confounded height in picture plane with linear perspective, and clarity of detail with atmospheric haze. The conditions for different depth cues were not of equal difficulty, and he required verbal responses, which have been shown to be unsatisfactory (Donaldson and Balfour 1968).

The issue of linear perspective as being a depth cue in itself is discussed further in Chapter 2, where it is argued that it is better viewed as a powerful combination of depth cues.

Task dependency and children as communicators.
Another aspect of these theories is that they allow for a great deal of variation between individual children and between the drawings of a single child. Children are sensitive to the wording of questions (Barrett et al 1983, Barrett and Bridson 1985, Barrett et al 1985), to their context (Davis 1983, Cox 1981, 1985), and to the type of stimulus used (Chen 1985). Their performance is also influenced by the way in which they interpret stimuli (Ingram 1985). A child's drawings could be seen as passive reflections of the way in which they interpret the task demands, although Light (1985) argues that drawings are more than this. He suggests that they convey rather than contain information. He argues that drawings are sometimes used as messages in that the child will use a drawing to communicate according to what she perceives the task demands to be, that children differ more in what they are trying to do than in what they can do (Light 1984), and that children adopt a deliberate strategy to show features that they hold to be of significance (Light and McEwen 1987). This implies that development in the depiction of depth does not occur in the child's understanding of space, or in the abllity to produce a visually realistic depiction, as such, but in the ability to depict what the child wishes to communicate about her knowledge of the object. These points, and further work relating to them, will be returned to throughout this thesis, but are introduced here to indicate the active role adopted by the child in depiction.

These arguments highlight another point. Children may want to communicate many things about objects. When examining development in the depiction of depth we cannot assume that the child always intends to communicate the spatial relationships between objects. For example, in a study by Ingram (1985) very young children were asked to draw a scene which contained one block on top of another. If the top block had a face
on it the children tended to draw the stimulus as more doll like than it was in reality. When the face was absent the children attempted to depict the spatial relationship between the blocks. Thus from the child's point of view the communicative message of the depiction might not be to address the spatial structure of the object or scene. She might have the ability to depict spatial relationships, but only do so in a cursory way, concentrating on other aspects of the task. Even so, given the object centred nature of our cognitive processes, whenever a child draws an object, either from observation or imagination, she needs to develop ways In which she can cope with the depiction of the spatial relations of the structural elements of the object.

Explanations for development in depiction.
Pratt (1982) emphasises the perceptual origins of development in depiction. He investigated the copying of random straight lines, and found that children looked at the model significantly less than adults did. Further, he found that whilst there was no difference between adults and children in the accuracy of copying two lines, there was significant difference between them when four lines were copied, and he attributed this to a lack of planning and cross referencing on the part of the children, and not to a difference in the basic measuring capacities between the two groups. He concluded generally that knowledge of the appearance of the object is used in an attempt to reduce the information load on the working memory. He suggested that this load could be reduced by providing an external memory store, such as marking the paper with dots to indicate the end of each line, which has been found to be effective in improving performance (Rand 1973). He also studied the way in which a cube and lines of a cube formed into an abstract were copied by art students, psychology students, and children. He found that art students looked at
stimuli of both kinds more than did either of the other two groups. The art students copied the two kinds of stimuli with equal ability, having highly structured mental descriptions and better long term recall of the stimuli. Psychology students and children used equal amounts of looking, and were both worse at copying the cube abstract than the cube. Further, the children produced typically 'intellectually realistic' pictures. The small amount of looking used by the psychology students and children led Pratt to conclude that they were ignoring some information and drawing upon their stored knowledge of the object and how to depict it to make up this deficiency.

On the basis of these findings Pratt suggests that "If looking strategles are dependent upon schematic descriptions they must be 'selective' in what they look at. This implies a very important place in copying performance for 'overlooking' and its consequences. We conclude that 'overlooked' parts are filled in from pre-structured schematic descriptions relating to object or feature types". (Pratt 1982).

Pratt (1985) argues that the perceptual system functions in terms of higher order abstractions, and that potentially useful information is lost by the use of these abstractions. It seems more likely that perceptual information relevant to the drawing process is lost rather than information which is necessary for the person to function in the environment. In other words the 'person in the street' looses 'artistic' information rather than information that is needed to move about and avoid bumping into things. Skilled artists spend about half of their drawing time examining the scene, and use many different methods to limit visual information when making a two dimensional representation, precisely so as not to lose the information that is relevant to the drawing process. This is supported by Radkey and Enns (1987) who found that the use of Da Vinci's window significantly improved the amount of occlusion used by
young children. It is said that people with blurred vision tend to be better artists than those who can see well. The different methods used by skilled artists have the effect of limiting the intrusion of object-centred percepts, which may be based on features which are not of primary importance in drawing.

Phillips et al (1985) suggest that children become more skilled at depiction by learning to build and store new descriptions, and not by developing general strategies for looking at objects. Thus the explanation they propose has a conceptual emphasis. Crook (1985) suggests that "either the child comes actively to resist the intrusion of a mental model as drawing decisions are made or such models come to assimilate more view-specific information", and argues that the first position is more appropriate. This is supported by Bremner and Moore (1984) and Moore (1987) who both found that the drawings of an unfamiliar object produced after it had been inspected were less visually realistic than those produced without an Inspection. Bremner and Moore found the same effect occurred when the object was named, and suggested that object naming may lead to drawing from a canonical model.

It was suggested earlier that visualisation is a form of visual short term memory. Essentially the perceptual explanation for development in depiction concentrates on the visual short term memory, and the conceptual explanation concentrates on visualisation. Visual short term memory does seem to be an important factor in depiction. Phillips et al (1985) argue that young children might produce more stereotyped depictions than adults because they have poorer visual short term memory. Alternatively it could be that they do not use it in the same way, as Pratt would argue. However, there is evidence to show that artistically able children are better at remembering non-verbalisable shapes than their I. Q. matched controls (O'Connor and Hermelin 1983). They suggest that
visual short term memory for these shapes is unrelated to I. Q.. They also found (O^{\prime} Connor and Hermelin 1986) that artistically able children are better than the mathematically able on this measure, and were also better at identifying and naming drawings of objects or animals on the basis of minimal necessary information. They speculate that the artistically able have greater ability to generate and store pictorial representations/visual Images than do other subjects.

The child as an active participant.
Although there are differences between the above accounts, the emphasis in all of them is upon graphically oriented alterations to a mental description of the object. The child is seen as an active participant in development that occurs by 'learning' how to produce a 'better' picture. This could be done by examining other people's productions (Wilson and Wilson 1982) or by learning how to decrease the saliency of cues needed for object centred perception, as discussed earlier. It could also be a function of the drawing process itself. Drawing is a sequential act and those parts already drawn provide a visual input. For example, the young child typically draws a cube as a square. Initially this square is taken to represent the whole cube, and later is taken as a two dimensional pictorial image of a face of the cube (Moore 1986b). Horizontal or vertical lines are added to this face and are taken to represent the other faces in a similar manner to the first. If a straight line is added, by error, in a crooked manner, then the perceptual system will represent this as three dimensional (Willats 1981a). The child may or may not appreciate the source of three dimensionality in the drawing. But, either way, she has added to her repertoire of drawing skills, and will be able to use this new skill in the drawing of other objects. Such stereotyping of production processes means that the child
can work from memory. It might not be 'memory' or knowledge of the object as such, but knowledge of how best to represent one particular aspect of the object. Thus it can be argued that modifications to the schemata occur (for both familiar. and unfamiliar objects) as skill with the medium Increases, and as the relative salience of different aspects of the object in relation to its depiction alters.

Conclusions.
Conceptual/perceptual realism theories suggest that the representation system for a three dimensional shape needs to be object centred, volumetric, modular and hierarchically organised. This implies that occlusion is a highly salient depth cue, and that the use of height in the picture plane and relative size with distance will increase as shape and size constancies become less salient. It also implies that oblique projection has more in common with the way in which we perceive objects than does perspective, that oblique projection might be the most informative way in which to view an object and that oblique might be the form of projection that most closely approximates to a canonical representation of depth. This is supported by the argument that linear perspective is a culturally imposed phenomenon rather than a naturally occurring depth cue as its use presupposes a station point.

Conceptual/perceptual theories suggest that what develops is not necessarily the subject's knowledge of the object or of depth, but the subject's knowledge of how to represent objects in depth. The drawer starts with an object centred approach and learns to overcome this interpretation in order to present a two dimensional view centred or view specific scene in which objects have little meaning. The need for view specificity is seen as a byproduct of the task rather than a force driving development in the depiction of depth. The more drawing skills the person
has, including that of perceiving aspects of the object salient to the task, the less the person has to rely upon inappropriate knowledge. Such development is a function of general cognitive factors and experience.

E) BRIEF COMPARISON OF THEORIES.

The four approaches outlined above differ quite substantially in where they place the source of developmental change. This leads to differing assumptions about the importance of the child's understanding of space and the role of mental representation and production problems in the drawing process. It also bears upon whether development in drawing is believed to occur in stages or is driven by the development of a variety of factors that together produce 'stage-like' behaviour.

If we wish to establish which aspects of these theories most closely describe how development in the depiction of depth really does occur there are certain well defined areas which merit investigation. Theories invoking stages in cognition suggest that development occurs in stages linked to the understanding of depth, evidenced by development in the use of a series of projection systems in which linear perspective is the final stage. Theories invoking visual realism also suggest that development occurs in stages, but that these are linked to development away from the use of an object centred method of depiction. It is important for both these groups of theories that development is towards what is actually seen, in other words a view specific method of depiction. Production error theories suggest that development can appear to have a stage like quality because of development in the use of graphic motor schemata, but that this may be due to the child gradually overcoming a wide variety of production difficulties, unrelated to the symbolic content of the depiction. Theorists within this group do not believe that all development in depiction can be explained in this way, but suggest that development of the ability to overcome production difficulties should be accounted for before we adopt more conceptual explanations. Conceptual/perceptual realism theories suggest that development occurs in
the knowledge of how to represent the sallent aspects of a three dimensional stimulus (regardless of whether the third dimension is real or inferred) in a two dimensional depiction. The end point of development can be view centred rather than view specific depending upon the task constraints.

The purpose of this thesis is to investigate the extent to which these theories are applicable to development in the representation of depth. In order to do this it is first necessary to consider, in more detail, ways in which it is possible to represent depth and ways in which we do actually represent it.

CONTENTS OF CHAPTER 2.

Theoretical and Empirical Aspects of Development in the Depiction of Depth. Introduction. 2. 1
A) PROJECTION SYSTEMS. 2. 1
B) DEPTH CUES. 2. 4

* Occlusion. 2. 4
* Height in the Picture Plane. 2. 5
* Diminishing size with distance. 2. 7
* Texture Gradient and Pigmentation Gradient. 2. 8
C) DEVELOPMENT IN THE DEPICTION OF DEPTH WITHIN A SINGLE OBJECT. 2. 9
* The depiction of regular solids. 2.10
* Denotation systems. 2.11
* Projection systems. 2.13
* Interpretation. 2.14
* Applicability. 2.17
* Why tables? 2.18

CHAPTER 2.

Theoretical and Empirical Aspects of Development in the Depiction of Depth.

Introduction.
When we look at a picture of a scene there are aspects of it that enable us to perceive depth in it. These are commonly called pictorial depth cues, and it can be argued that they are similar to the depth cues we use when perceiving depth in the real world. Pictorial depth cues are normally held to be those of occlusion, height in the picture plane, diminishing size with distance, and texture and pigmentation gradients. Linear perspective is sometimes incorrectly referred to as a depth cue. As with other forms of projection which are all methods for displaying three dimensional information, it is not a depth cue in itself, but contains a particularly powerful combination of depth cues. I will look first at the common types of projection systems and then examine the depth cues listed above.

A) PROJECTION SYSTEMS.

The projection system in which a scene is represented can be determined by examining the lines in the picture which represent edges of the scene normal to the picture plane. In the real world they can be seen as the lines indicating the edges of objects that go away from us in depth. These are normally called orthogonal lines, and are illustrated in Figure 2:1. When the orthogonals are depicted as points the drawing is sald to be in orthographic projection. Oblique projection results from depleting the orthogonals as parallel lines. Three forms of oblique have been Identified by Duberry and Willats. (1983), namely horizontal oblique, vertical oblique, and oblique, the last two of which are shown below. If
the orthogonals are depicted as converging to a point then the scene is said to be drawn in linear perspective.

Figure 2:1. Exauples of diflerent sethoss of projection.

Linear perspective cannot be achieved without incorporating a single, specific, viewpoint into the picture. In linear perspective there is a different vanishing point for each family of parallel lines in the scene, and so the system of linear perspective is generally used for scenes in which there are several families of parallel lines of which none need to be orthogonal to the pleture plane. If the scene does contaln orthogonals they will converge upon a central vanishing point. The vanishing points are level with the observer's line of sight, and are thus often said to be on the horizon. Objects of equal size will always appear to diminish in size with increasing depth. . In most depletions of. scenes using linear perspective, objects also appear higher in the picture plane with
increasing depth, but this is merely a function of the height of the line of sight. Objects in the distance and above the line of sight are drawn lower in the picture plane than those nearby. This is particularly apparent where a low line of sight is used. The production of linear perspective is governed by a few clear rules which can be used without understanding the theory behind them.

Figure 2:1 also illustrates the difference between a view centred scene and a view specific scene. In this thesis view specific is taken to mean the specification of a single view point, as would occur if one were actually seeing the scene. View centred is taken to mean that aspects of the scene are represented in a way that implies some concern about how the scene is actually viewed in real life, but it does not necessarily imply that a single viewpoint is specified in the depiction. In the 1llustration of oblique projection in Figure 2:1 each object is drawn as an individual unit rather than as part of the scene. Height in the picture plane, diminishing size with distance (between objects, not within them), and occlusion are all present but are used independantly of each other. In other words objects drawn in oblique projection can be integrated in a pictorial scene, and this scene can show a 'pseudo' view, but it is not an accurate depiction of the visual scene.

This does not mean to say that linear perspective is an accurate depiction of the visual scene. Hyperbolic perspective is a more accurate description of the retinal image (Finch 1977), yet it takes a great deal of conscious effort to see the scene in this way. Therefore, for the purpose of this thesis it is accepted that, of the commonly used forms of projection, linear perspective is held to be the one that most closely approximates the way in which we view a scene because of the way in which it specifies a unique viewpoint.
B) DEPTH CUES.

Occlusion.
Occlusion occurs when one object is seen in front of another, thus hiding the second object from view. Partial occlusion occurs when the boundary line of one object cuts across the boundary line of another. There is often a problem of interpretation in children's drawings which indicate the use of partial occlusion. We cannot assume that because a young child produces a line it is intended to represent a contour of the object. There is evidence to suggest that very young children use lines to indicate paths, then boundaries of whole objects, and only when they are older do they use lines as a contours (Spielman 1976, Fenson 1985, Moore 1986b, Reith 1988). These problems are lessened if we study the use of occlusion between objects, rather than within them.

Figure-ground separation is an important aspect of the visual scene, yet it causes young children great problems when it needs to be incorporated into depiction (Pratt 1985). Young children often draw separately objects that are occluded in the visual scene, and Crooke (1983) found them to be intolerant of both overlapping and shared boundaries. Hagen (1976a), and Freeman, Eiser and Sayers (1977) both suggested that occlusion is not normally found before the ages of eight or nine. Cox (1981) found a steady rise in the proportions of use of partial occlusion between the ages of six and ten years old. The development from showing objects as segregated to using occlusion may be linked to a development from object centred to view centred representation. In other words, young children may draw objects separately because of the object centred nature
of their perception, conceptualisation and mental representation, and as they become aware of the need for view centred depictions, they start to use occlusion.

There is experimental evidence supporting the link between the use of occlusion and the perceived need for a view centred representation. When the salience of viewpoint is increased, more view centred behaviour results, both in drawing and copying (Light and Humphries 1981, Light and Simmons 1983, Light 1982). A specific example of this can be seen in the work by Light and MacIntosh (1980) who presented subjects with an object either contained in a glass or visible through one. In the first condition the glass was drawn as transparent, thus showing occlusion with no hidden line elimination. In the second condition the objects were drawn separately. Light and MacIntosh concluded that this was to emphasise that the object was not in the glass. There is also evidence to suggest that, in the right context (in this case that of drawing robbers hiding behind walls) children as young as four years of age will use occlusion if they believe there is a need for a view centred representation (Cox, 1981). Light and Foot (1986) extended these findings to show that a high level of partial occlusion can be elicited in six year old children by the use of dissimilar objects, or by the use of similar objects with an obvious 'front side'. They conclude that whether or not such children use occlusion might depend upon the way in which they interpret the experimenter's intentions.

To summarise, the use of occlusion may be linked to the perceived need for a view centred depiction. Its use appears to develop with age, but can be elicited from children as young as four years old under the right circumstances.

Height in the Picture Plane.
Adults generally draw objects which are near to them low in the picture plane and those which are further away higher in the picture plane. Hence height in the picture plane is to some extent taken to symbolise depth. When we look down upon objects, those further away are higher in our visual field. However, unless we have prior knowledge of the subject's eye level, we cannot make judgements about the view specific accuracy of the subject's depiction of a scene. Therefore, on its own, height in the picture plane carries few implications about the view specific nature of the depiction. All its use indicates is that the subject wishes to record the relative distances of the depicted objects from the viewer. If the definition is modified so that distance from the viewer is related to degree of closeness to a vanishing point (as in linear perspective), then 'height in the picture plane' does have implications for the specification of the viewpoint. This modified definition is not the one normally used and therefore will not be used here.

The use of height in picture plane does appear to develop with age. Very young children draw objects at different distances from them as separate items along the horizontal axis of the picture. Hargreaves et al (1981) suggest that the air-gap phenomenon, found in young children's drawings of scenes, persists in older children's drawings as a desire for a ground line. Freeman, Eiser and Sayers found that by about seven years of age the majority of children represented two objects, presented one in front of the other at eye level, as vertically separate. Bremner (1985a) found that children as young as six years of age will use verticality to indicate depth when the horizontal axis is already used to show a left/right relationship. Therefore, as with occlusion, the age at which a child will use height in picture plane appears to depend partly upon the
perceived need for it within the context of the particular task in hand.
Unlike occlusion, the interpretation of height in the picture plane is unclear. It is possible that some subjects do not use height in the picture plane as a depth cue as such, but use it to depict a plan view. In other words, they choose to change their viewpoint to one in which they look down on the scene. Thus for some children development in the use of this depth cue might actually indicate development in the chosen viewpoint.

Diminishing size with distance.
Objects that are further away project a smaller retinal image than those that are nearer, but because of the object centred nature of our perception we perceive objects to have a constant size. Size constancy is therefore seen to be one attribute of object centred depiction. The ability to overcome size constancy and to use diminishing size with distance when depicting a scene is part of view centred depiction, and is a necessary part of view specification. As with height in the picture plane, its use is extremely hard to isolate from the use of other depth cues. Jahoda and McGurk (1974a) found that young children could make size judgements with considerable accuracy, and this finding was stable across cultures (Jahoda and McGurk 1974b, c,d). However, Olson (1985) found that whilst the understanding of changes in the retinal size of objects, as a pictorial depth cue, was apparent in some five year old children, this was not the case for three year old children. This implies that the young child's ability to interpret size of the object as a pictorial depth cue develops with age.

The ability to use diminishing size with distance as a depth cue also develops with age. Silk and Thomas (1988) found that young children do attempt to produce visually correct size scaling, but only on a size dimension that was salient and relevant to topic differentiation.

Therefore young children do not appear to use it as a depth cue in a rigorous way. Selfe (1983a) asked children to complete a picture in linear perspective by drawing in a lamppost half way along the street. The stimulus she used can be seen in Figure 2:2. She found that it was not until children were about seven years of age that they could complete it with any accuracy. It is not, unfortunately, possible to separate out the effects of height in the pleture plane and diminishing size with distance in this study as the two covaried. It is very difficult to examine the use of these two depth cues independently, and the majority of work in this area has used them together when examining the child's increasing use of view centred depictions.

Figure 2: 2, The stiaulus used by Selle (1883d).

Texture Gradient and Pigmentation Gradient.
Both texture and pigmentation gradients are cues by which the appearance of depth can be enhanced, and can be seen as secondary depth
cues. Texture gradient occurs because the texture of the objects that are near to us is more visible than that of objects that are further away. Pigmentation gradient works in the same way. We see the colours of objects that are near to us as clearer and brighter than those of distant objects. Similarly we see objects that are near to us delineated with strong contrasts in colour and tone, whilst those in the distance show little contrast in their tonal values and appear to merge more with the background.

There is little experimental evidence on the perception and use of these depth cues. Rock, Schallo and Schwartz (1978) found that texture gradient was neither necessary nor sufficient for the perception of depth in pictures, suggesting that whilst the cue might enhance the perception of depth within the picture once the scene had been understood, the most important aspect of such perception was the interpretation of the scene. Nicholson and Seddon (1977) found that schoolboys' understanding of spatial relations in pictures was marginally increased by the inclusion of secondary depth cues, and Sinha and Misra (1975) found that some older children used these depth cues when painting.

From this we can conclude that secondary depth cues might enhance the perception of pictorial depth, but that they are rarely used, spontaneously, by younger children.

C) DEVELOPMENT OF THE DEPICTION OF DEPTH WITHIN A SINGLE OBJECT

One problem that keeps recurring is that of how we can interpret the child's intentions when all that we have to go on is the child's depiction. This concern is marginally reduced if we look at the way in which single objects are depicted rather than trying to interpret whole pictorial scenes where we have to make numerous inferences about the relationships between objects in these scenes. This tightens up the area
of investigation whilst not critically reducing the amount of information that we can gain. We can still study the use of projection systems and depth cues in the depiction of a single object, provided the object is chosen appropriately. We cannot, however, necessarily assume that findings about development in the depiction of depth found within a single object will also apply to whole scenes. This problem is discussed later. The choice of an appropriate object is important. If we were to study children's drawings of highly emotive objects, such as 'mothers', we would once again widen the problems of interpretation. Similarly, it is important to look at objects that are not commonly drawn to avoid the possibility that stereotyping might dampen out important effects. A commonly used solution to these problems is to examine children's drawings of regular solids or other well known objects that do not occur frequently in spontaneous depiction, and are relatively free from emotional overtones.

The depiction of regular solids.
Mitchelmore (1978, 1980a) classified development in the drawing of four regular solids (a cube, a cuboid, a cylinder, and a pyramid), as can be seen in Figure 2:3. He found the same developmental sequences for each solid when replicating the study cross-culturally (Mitchelmore 1980b). The cube and the cuboid are the 'purest' regular solids, in the sense that each edge is parallel to one of the three rectangular co-ordinate axes. Mitchelmore found that these two solids provided the coundest measure of the base rate of development, showing both the clearest pattern of development and similar rates of development. By comparison he found that In the drawing of the cylinder the children went through the stages at an earlier age than for the other solids. This also occurred for the first stages of drawing the pyramid, but development in the use of the later stages of depiction of this object lagged behind their use for the other
objects. The development in the drawing of cubes found by Mitchelmore has also been found by Deregowski (1977) and Willats (1981a,b, 1983).

Figure 2:3. Development in the depiction of regular solids (Mitchelaure 19800).

Denotation Systems.

This analysis of development already contains subjective elements. The drawings obtained from the children must have been grouped into stages, and the method of sorting that has been used is normally related to the sorter's idea of what is developing. For example, as explained in the first chapter, Mitchelmore used his findings as support for his ideas about intellectual realism. The lack of an independent, formal system of classification means that assumptions made in the sorting might have prejudiced the conclusions to a greater extent than would have occurred with such a system. Work done by Willats ($1981 \mathrm{~b}, 1983$) illustrates this. He asked subjects to draw the object placed in front of them, which was
either a cube or a cube with a smaller cube removed from one corner. He then attempted to classify the drawings by assigning dimensions to both the picture and the scene primitives.

Figure 2:4. Classes of denotation proposed or villats (19810, 1983).

The lines in the picture and edges in the scene are both classed as one dimensional, regions in the pleture and surfaces in the scene are
classed as two dimensional, whilst bodies in the scene are classed as three dimensional with no pictorial equivalent. The problem comes in the interpretation of what the lines in the picture stand for. Figure 2:4 shows that Willats' own interpretation varied from one presentation of the Idea to the next. The high degree of variability makes this a difficult system to implement and evaluate. Ignoring for the moment the subjective nature of the classification, its implementation becomes extremely complex when applied to the depiction of people rather than regular solids (Willats 1985). The difficulty in evaluating the system derives from the way in which Willats has linked it to development in the understanding and use of projection systems, without clearly showing how or why. If we assume that the lines in the picture do denote the aspects of the scene claimed by Willats, all we can reliably say about the development shown is that, with age, children appear no longer to use cross dimensional denotation. On this analysis we are not justified in reaching more general conclusions about the nature of a relationship between denotation systems and the understanding or the use of projection systems.

Projection Systems.
Willats' work in denotation systems highlights the need for a formal system of classification. He proposed (Willats 1977a) that projection systems could be used. in this way. In this study he asked subjects to draw a table and analysed the projection system by which they depicted the table top. Figure 2:5 illustrates the method of classification he used. The projection system being used by the subject is determined by examining the lines in the picture, the orthogonals, that represent the edges of the solid normal to the picture plane. If the orthogonals are depicted as points the drawing is said to be in orthographic projection. The use of parallel lines, normally oblique on the page, indicates oblique

Abstract

projection. If the orthogonals are depicted as vertical lines, whilst still parallel, the projection is seen as a special form of oblique and is called vertical-oblique. If the orthogonals appear to converge to a point the solid is sald to be drawn in perspective. Willats (1977a) divided perspective into two categories, nalve and true, depending upon the amount of convergence shown by the orthogonals.


```
Anyle of convergeme - 1200 - 750 : is`.
```


cuss	fensemay susis	exele	charceremerian	sentie
2	Ofthegraphle	-10 (t), 1- (0)	-	9.1
1	Verlias estique	(200 (C). 180 to 1100 (0)	\square	11.1
1	Otilave	($20^{\circ}(6)$.) $110^{\circ}(0)$	3	13.6
1	Malve Perspective	200 $6080 \cdot(6)$	∞	11.1
1	Perspective	60. $10100 \cdot(6)$	\Longrightarrow	13.1

Figure 2;5. Classification of the depiction of a table top proposed by Villats (ls77a)

Interpretation.

The assumption that the projection system in use can be derived from the table top alone is discussed in the following chapter. However, Willats' (1977a) work also highlights a problem that was touched upon in the first chapter. This is related to how we interpret the findings obtained from applying a classification system. The beauty of an account of the representation of depth directly related to the use of projection systems comes partly from the formality of the system. By ascertaining the form of projection that is used by the child the experimenter can

Identify the 'stage' of depth depiction the child has achieved. However, the fact that we have been able to classify the drawings within a particular system does not necessarily mean that our system is an accurate reflection of the way in which development occurs. Willats found that the way a table top is depicted appears to develop from the use of orthographic projection, through vertical-oblique, to oblique, and finally to the use of naive or true perspective. He used his findings to reach the conclusion that development occurs in a stage like way directly linked to the increasing understanding of more complex projection systems, and that linear perspective is the end point of development. The theory assumes that when children draw they attempt to depict exactly what they see, and that as perspective is normally considered the best method of achieving this, children are working towards drawing in perspective. Willats described what children do, but this does not give access to what they intend to draw, nor to rules governing the transition between systems. For example, Freeman (1980b) puts a different interpretation on the data. He suggests that what underlies transitions might be nothing more than the development of ability to produce firstly a pair of right angles, secondly a pair of oblique angles, and finally one oblique and one obtuse angle. In his view it is the use of these 'local decisions' that determine the way in which the table is drawn, not the degree of understanding of how to represent an object in depth.

Other studies cast doubt upon the generalisation that linear perspective is the end point of development. Jahoda (1981a) classified drawings of tables done by Ghanian students in terms of the projection systems used. He found that they rarely used any projection system more complicated than vertical oblique. Although the students he used were older than Willats' subjects they had little experience of depiction. The same point is emphasised by pictures of tables drawn by blind adults that

Kennedy (1980) collected. Typically the tables were drawn in the orthographic or vertical oblique form. Blind adults described other projection systems as unatural because the form of the picture was then constrained by the point of view. Kennedy found that when a subject produced several table drawings in sequence they appeared to proceed along the 'developmental' innes suggested by Willats, as can be seen in Figure 2:6. He also found that when the blind adults were given table tops drawn In oblique projection or perspective to complete they usually drew in the legs by following the line of the table top, as can be seen in Figure 2:7.

Figure 2:6. The sequance of dravings obtained by Kennady (1980) froe a blind adult,

Kennedy (1980) found that blind six to ten year olds were capable of understanding point of view, convergence, occlusion and shape transformation. He argues that haptic skill involves an intuitive sense of perspective (Kennedy 1983). 5. Millar (1975, 1977) suggested that lack of feedback in the blind shows mainly in the articulation of the drawing, and Deregowski (1978) found that without experience functionally realistic rather than visually realistic representations are produced. This would suggest that the view specific (or even view centred in the case of blind adults) depiction of objects may be dependent upon the perceived need for
such a form of depiction. If this is the case then it may be that development occurs in the perceived need for view specific depiction and not in the ability to produce it. This indicates the importance of clarity in the distinction between the developmental sequences we might find in the depictions in front of us and the assumptions we make about what is actually developing.

Figure 2:7, Responses ade by blind adults to the conplation of a table top (Kennedy 1980).

Applicability.
Ideally a formal system of classification should be able to account for the vast majority of examples of whatever is being classified. Unfortunately, as Willats (1985) discusses at length, one major problem with his 1977 account is that it does not apply to all forms of drawing. For example, Mitchelmore describes a stage in children's drawings (Stage 3, prerealistic) in which objects are drawn as if from one viewpoint. Within this stage there is a progression from the use of one base line, through the use of several, to the use of a base plane. Depth is depicted by overlapping and size differences. Drawings in this stage do not fit comfortably into any of Willats' classifications.' Similarly, Hagen (1985)
identifies some forms of projection, such as divergent perspective in which the orthogonals are represented as diverging rather than converging, which are used by children but which have no basis in reality. These points call into question whether analysis purely in terms of the projection system used uncovers all that is taking place in development and suggest the need for a more detalled form of classification.

Why Tables?

The experiments reported in this thesis investigate the way in which a table is depicted under a variety of different conditions. A table has been chosen for several reasons. A single object is used in order to clarify interpretation of the findings, as discussed above. Tables come high on the list of natural exemplars identified by Rosch (1975, 1976) and Rosch et al (1976), and hence it is reasonable to expect that most subjects have a clear idea of 'tableness'. Tables are not, however, normally highly emotive. They are also not often drawn on their own. This minimises the possibility of subjects responding with rigid, highly schematic drawing routines which they have previously developed for drawing them. Tables are essentially cuboid in appearance, and view centred depictions emphasise their cuboidal nature. Tables are, however, richer in appropriate detail than simple cuboids. Computer vision work on table identification (Fisher 1982) indicates that tables are most easily Identified by assuming that the table top and the table legs are separate symbolic elements. Rules are then applied to these elements to determine whether their positioning matches that of a table. Thus tables were Identified without the use of edge data and boundary connections. It should not be assumed that computational algorithms for the solution of a problem necessarily reflect the methods used in the brain, but Fisher's work does emphasise that the table legs can be seen as symbolic elements
separate from the top. Because of this the use of occlusion, height in the picture plane, and diminishing size with distance can all be identified within the depiction of a table more readily than they can within the depiction of a cube, where the symbolic nature of each face is directly related to that of the other faces. Deregowski and Strang (1987) presented children with decompositions of a cube in order to address this question empirically and conclude that the difficulty which young children experience may lie in the conflict between the desire to convey the overall appearance of an object and the attempt to depict correctly its elementary parts. The final reason for choosing a table is the pioneering work already done by Willats (1977a) in attempting to provide a formal means of classifying the depiction of table tops, and concern about the conclusions that he reached.

In the following chapters Willats' work on tables is examined more closely. A more extensive system of classification is proposed, and, using this, the threads of what is developing in the depiction of depth are examined.

CONTENTS OF CHAPTER 3. A Table Drawn from Observation.

Summary.
3. 1

Introduction. 3. 2

STUDY 3.
A table drawn from observation.
3. 7

- Method.

3. 7

* Results.

3. 7

* A) General Analysis.

3. 7

* B) Perspective Response. 3.10
* C) Non-perspective Responses. 3.18

DISCUSSION. 3.21

Chepter 3.

A Table Drawn from Observation.

The work reported here has been published in the Quarterly Journal of Experinental fsychology, August 1987, and is given in Appendix 3, A.

Summary.

As noted in Chapter 2, Willats (1977a) analysed developments in the drawing of a table in terms of the projection system in which the table top was represented, and concluded that representation of depth in drawing goes through a series of discrete stages, each of which can be identified with a projection system. This chapter contains a partial replication of Willats' study using a much larger sample. The relationship between age and use of projection system found by Willats is supported, in general terms. Not all of the 'stages' are found to be discrete, however, and an examination of the way in which the table legs were drawn shows that whilst the majority of older children appeared to use perspective they did not use it correctly. A method is given by which tables that are drawn as if from a central viewpoint can be formally classified. It is concluded that development in the understanding of the representation of depth is not very closely linked to development in the use of projection systems.

Introduction.

The way in which objects are drawn, and depth represented, differs with the subject's age, and appears to develop with age in a specified manner. Willats (1977a) examined this apparent development by looking at the way children used projection systems when they were drawing tables. A large part of this chapter is devoted to following up points made and questions raised in Willats' work. The way in which he classified the table drawings is illustrated in the previous chapter, and will now be analysed more closely.

The assumption that the projection system in use can be derived from a table top alone can be questioned. The formality of this type of classification comes from the supposition that the projection system can be identified by the application of two formulae upon the angles contained in the depiction of the table top. These formulae isolate the degrees of convergence and obliquity shown by the orthogonals in the drawing. However, as can be seen in Figure 3:1, convergence of orthogonals is directly related to the height of the subject's eye-level.

A subject looking edge-on at a table top will see it in orthographic projection. As the eye-level rises the table top will appear in true perspective, and then naive perspective, and finally as if in vertical-oblique projection. Hence the degree of convergence does not uniquely define the projection system in use. In order to minimise ambiguity it is necessary to examine the way in which the whole table is projected. Therefore when analysis of the drawing is confined to the way in which the table top is depicted the psychological relevance of the way in which the projection systems are classed becomes less clear. Orthographic or vertical-oblique projection, as inferred by the form of the table top, might in reality represent a table drawn in linear perspective from an extreme viewpoint. Similarly, a distinction between naive and true
perspective is not inherent in any formal method of classification. It is necessary to know something about the position of the child's eyes before one can with any valldity make a distinction based only on the drawing of the table top. In fact this can only be made if the drawing has been done from observation and with a fixed viewing angle, as was the case in Willats' study, and always with the assumption that the child intends to draw exactly what he or she can see from that angle.

	FRONT VIEW	SIDE VIEW
eye level with table top		$\because \because=1$
eye above table top		

Figure 3:1, ihe effect of vieving position upon the ways in which a table can be represented,

Notice that in this senario the table top is never seen in oblique projection. For this to happen the object would need to be viewed from the side, not the front. The implication of this point is that children
appear to go through a period during which they no longer represent the table as if from the position in which they see it, the front, something they have been quite capable of doing before. Instead they adopt an imaginary side view for a while, before reverting to their original practice of representing the table from the correct side. Alternatively, it could be argued that development is related to shifts in the viewpoint, firstly through a vertical rotation, then horizontal, and then back to vertical. If this were really the case the orthogonals should converge in the oblique drawings, producing oblique perspective. Unfortunately the method of classification used by Willats was not sufficiently delicate to plck up possible small convergences in the oblique drawings.

a. CORRECT PERSPECTIVE

b. FALSE PERSPECTIVE

Figure 3:2. The celationship between corract and false perspactive.

These points can be addressed by examining the manner in which the table legs as well as the table top are depicted. This is a major departure from earlier practice and makes it possible to identify the projection system that is being used. For example, an analysis of the table legs would show whether the table really is being drawn from end view or top view (orthographic or vertical oblique projection) Secondly, an analysis of the table legs also makes it possible for us to see whether
the subject uses a coherent unified projection system. For example, Figure 3:2a shows a table drawn correctly in perspective. The table top in Figure 3:2b is identical to that of Figure $3: 2 \mathrm{a}$ and classification based on the measurement of the top alone would place it as true perspective, yet it can be seen that a single, unifled, form of projection is not in use.

Figque 3:3. Oatd obtaines or wallats 1977.

There are three other areas in which Willats' experimental method mignt benefit from revision. Firstly, as Figure $3: 3$ shows, his conclusions were based on data drawn from a sample of only eight or ten subjects of eacn age, and for each age these drawings are placed into one of six classes. An elbow jogged at the wrong time would make a large difference to his results. When a Kolmogorov Smirnov 2-sample test is applied to the frequencies that Willats obtained for efther the use of true as opposed to naive perspective, or to the use of true perspective as opposed to the use of oblique. it can be seen that there are no significant differences between either pair. Naive versus true perspective: $D=0.24, n=28$, $p>0.05$; True perspective versus oblique: $D=0.26, n=20, p>0.05$).

Given the amount of variation found in children's drawings this subject population is too small to support, confidently, the conclusions that he reached.

The second difficulty is that Willats experimental task was designed to study both the use of projection systems and the use of partial occlusion simultaneously. This was achieved by requiring children to draw a complicated array of objects upon the table top whilst also drawing the table. The complexity of the task may have detracted from the representativeness of his results.

Thirdly, whilst Willats controlled the overall dimensions of the table, there was variety in the shape and position of the table legs presented to the subjects. The method Willats used for classifying the drawings according to the projection systems used was based wholly on the way in which the table tops were drawn. There was no apparent need for control over the legs of the stimulus table, but lack of control presupposes that any differences in the legs of the tables used as stimull would not affect the demands of the task. More importantly this assumes that development occurs in the understanding of the use of projection systems rather than, for instance, in the viewpoint from which the object is portrayed, as discussed earlier and illustrated in Figure 3:1. These assumptions were not verified.

Willats' study made a major contribution to the understanding of how depth is represented and also its formal classification. It has been replicated here in a modified form, because of the doubts outlined above. The stimulus table used in the present study was the same for all subjects, thus enabling direct comparison of the way in which the table legs were depicted. The sample size used here is also considerably larger. The results have been examined both in terms of the projection system used and in terms of the understanding shown in its use.

Method.
Subjects. Subjects consisted of 789 children, representing the total intake of one primary school and one secondary school in Leyland. Lancashire. The number of subjects in each age group can be seen in Figure 3:4.

Age	4	5	6	7	8	9	10	11	12	13	14
Subjects	30	30	30	30	30	30	30	147	178	164	90

Figupe 3:4. The nubber of subjects in asen age grown.

Task. Each child was seated at a table facing the long side of a second table measuring $112 \times 56 \mathrm{~cm}$. the child's eyes were approximately 32 cm above the table top and 300 cm away from the facing table. Once settled, the child was given paper and pencil and asked "Please look at the table carefully. Now draw it for me as well as you can." No time limit was Eiven. These conditions are very similar to those used by Willats. Figure 3:2a shows the view of the stimulus as seen by the subject. If a child drew more than one table, it was the first drawn that was measured.

Results.

The raw data obtained in this study can be found in Appendix 6:A. Detailed analyses of this data can be found in other appendices to Chapter 6.

A) General Analysis.

The drawings were assigned to classes according to the projection system in which the table top was depicted. As described earlier, the projection system is partially determined by the angle of convergence of the orthogonals. This value can be obtained by drawing straight lines on
the subject's picture along the line representing the front of the table and the lines representing the orthogonals of the table. The angles between these lines are measured and used to ascertain the degree of convergence by taking the smaller from the larger. For example, the table top in Figure 3:2a can be seen to have an angle of convergence of 147.5° $32.5^{\circ}=115^{\circ}$. This is the same method as that used by Willats (1977a). Figure 3:2a illustrates that what is being ascertained is the angle θ made by the orthogonals as they converge to the vanishing point. In accordance with Willats' classification, all responses with a convergence of less than 20 degrees were classified as non-perspective.

All non-perspective responses were classified according to the degree of obliquity shown, which is the mean of the two angles made by the orthogonals. and the line representing the front of the table. For example, in Figure 3:2a the degree of obliquity is:-

$$
\frac{32.5+147.5}{2}=90
$$

Drawings with zero degrees obliquity were classed as orthographic, those between 0 and 80 were classed as oblique, those between 80 and 100 vertical-oblique, and those over 100 oblique. The margins used by Willats for vertical-oblique were 70° and 110°. The reasons for departing from these margins are discussed later. Figure $3: 5$ gives the mean age and standard deviation for each class of projection.

Projection	Orthographic	Vertical-Oblique	Oblique	Perspective
No. subjects	89	196	119	385
Average 28e	7.26	9.08	11.82	12.43
Std. deviation	2.48	2.97	1.62	1.06

Figure 3:5, The total number of subjects, average age, and standard deviation of age for ach class of projection.

Figure 3:6 shows the distribution of different types of class according to age. The orthographic and vertical-oblique classes show similar patterns of distribution. These two types of response, with age, were significantly correlated $(r=0.67, \mathrm{df}=9, \mathrm{p}$ (0.05), whilst also showing significant differences $\left(\chi^{2}=53.15, \mathrm{df}=10, \mathrm{p}\right.$ (0.001). The precise implications are discussed later. The proportion of children that used orthographic projection declined at the age of seven, coinciding with a rise in the use of the oblique response, but the use of both orthographic and vertical-oblique projection remained similar, deciining steadily between the ages of ten and eleven. The number of subjects in a particular age group using perspective increased from 3\% at ten years old to 80% by the age of fourteen, whilst from 8 years old to adulthood the use of oblique remained at between 15% and 25%.

Figure 3:5. The propoptions, with age, of response of ath class of projection when a table ts dravn fros observation.
B) Perspective Response.

Willats arbitrarily divides the perspective response into naive and true perspective at 55 degrees convergence. A distinction between naive and true perspective can only be made if the drawing has been done from observation, with a fixed eye-level, as is the case both here and in Willats' study. For this special case such a division would need to be supported by bi-modality in the data, or a relationship between the amount of convergence and the age of the child.

Figure 3:7. The distribution of the data achording to the degres of convergence,

Figure 3:7, in which frequency scores of the data at intervals of 5 degrees convergence are given, shows no apparent bi-modality. Further, a one-way $A N O V A$ using age (in years) as a grouping factor and degrees of convergence as a dependent variable falled to show that the degree of convergence in which the table top was drawn was affected by age, as can be seen in Figure 3:8. The means upon which this test is based can be seen in Figure 3:10.

Willats (1977a) also found no significant correlation between the angle of convergence and age in his data. It can be concluded that there
is no evidence to support a clearcut distinction between naive and true perspective.

The view of the stimulus table that the subjects had was at 115 degrees convergence on the top. All except two of the subjects produced drawings with a convergence on the table top of less than this. None of the subjects used linear perspective that was correct for their viewing position.

SOURCE	$:$	SS	df	MS	F
AGE	$:$	2429	3	809.67	2.3
ERROR	$:$	115126	327	352.07	
TOTAL	$:$	177555	330		
				F.95 $(3) 200,)=2.6$	

Figura 3:8. A onevay anova using age (in rears) as a grouping factor and degrees of convergence in which the table tops vere dramn as a dependant variable.

As mentioned previously, although Willats imposed strict control over the position from which the subjects drew the table and the size of table top the legs of the tables he used varied. In this study each subject was presented with the same stimulus table, and so the depiction of the table legs can be compared across drawings. The degree of convergence shown by the legs in the drawing was measured by joining the drawn base of each front leg with a straight line, and by joining the base of each front leg to the base of the leg 'behind' it by a straight line. The degree of convergence for the legs could then be calculated in the same manner as for the top. Figure $3: 2 \mathrm{a}$ illustrates that what is being ascertained is the angle made by the inferred orthogonals as they converge to the vanishing point, 62.8 degrees in this case. When a table in this position is drawn correctly in perspective (Figure 3:2a) the convergence of the legs should be less than that of the top. A drawing of a table in which the convergence of the legs is the same as or larger than that of the top Figure 3:2b) is an obvious use of false perspective. In
other words, when the table is drawn in correct perspective the legs should be scaled according to the same size-distance rule.

Figure 3:7 shows that the convergence of the legs of those drawings whose tops were in perspective was significantly greater than the convergence shown by the tops. $\quad(t=-21.59, \mathrm{df}=331, \mathrm{p}$ (0.05). In three cases angle φ was 180 degrees, in other words the back legs were extended so far that the table gave the appearance of being on a single ground or base line. Young children do draw to a ground line; however a one-way ANOVA using age as the grouping factor, and degrees of convergence as a dependent variable, given in Figure 3:9, failed to show a significant difference, with age, in the degrees of convergence used. Figure 3:10 shows a comparison of the means obtained in the last two F tests. A perspective response was only produced by two subjects who were less than eleven years of age (eight and ten respectively).

SOURCE	$:$	SS	df	MS	F
AGE	$:$	2443	3	814.3	1.5
ERROR	$:$	177712	327	543.5	
TOTAL	$:$	180155	330		
				F.95	$(3,>200)=2.6$

Figure 3:9. A one-vay AnOVA using age (in yesrs) as a grouping factor and degress of convergente in which the table legs (of dravings with table tops in perspective) vere dravn as a dependant variable,

	11 Years	12 Years	13 Years	14 Years
0 degrees	47.08	47.36	48.48	54.26
degrees	84.86	87.19	81.16	80.65

Figure $3: 10$. The sean degree of convergence, by age, for the table tops (1) and the table legs (p).

The results for these two children are not included in this table. It is possible that whilst the degrees of convergence shown both on the tops and by the legs are not age related separately, there might be an age related trend in the difference between the two.

A significant difference, with age, is found between the scores for θ and φ when a one-way ANOVA is done with age as the grouping factor and the individual differences between θ and φ as the dependent variable, shown in Figure 3:11. The mean differences between φ and θ for each age group are :- 11 year old $=37.67,12$ year old $=39.89,13$ year old $=33.7$, 14 year old $=26.37$. A Tukey HSD post hoc test shows a significant difference between the means for the twelve year olds and the fourteen year olds ($p<0.05$). It would appear that older children have a significant tendency to use similar angles of convergence for both the table top and the table legs. At first sight this appears paradoxical, because Φ and θ are dissimilar when a table is drawn in correct perspective, but an examination of the means indicates that, with age, there is a reduction in disparity between the two angles.

SQURCE	$:$	SS	df	MS	F
ACE	$:$	7992	3	2664	2.97
ERROR	$:$	293561	327	897.7	
TOTAL	$:$	301553	330		
				F.9S (3.)200)	$=2.6$

Figure 3:ll, A one-vay AkOVA using age (in years) as a grouping factor and the difference betveen y and 1 as a dependant variable.

Figure $3: 12$ is a scattergram of φ against θ. It shows that as well as falling to draw the table in correct perspective, the form of table nearly all subjects drew fell in the area above the diagonal $A B$, an area in which the response is not correct under any circumstances. The problem is complicated by the fact that the relative dimensions of the table may not have been represented accurately. For instance, the form of perspective the child 16 using might be correct for the shape of the table drawn, even If that table is not an accurate representation of the 'real table' in front of the child. The picture might be internally consistent, but a bad
representation. The measures used so far rely upon the child's abllity to depict, correctly, the relative dimensions of the table.

Fifure 3:12. The districution of 1 and 8 .

Figure 3:13. A trigonondric analysis of a table dramn in perspactive,

Figure $3: 13$ shows a trigonometric analysis of half a table in correct perspective. It can be seen that two vertical parallel lines are crossed at right angles by three parallel horizontal lines. The real orthogonal of the table top, and the implied orthogonal of the table legs combine with these parallels to give two right angled triangles. A trigonometric comparison of these triangles gives a measure of the correctness of perspective used. The logic for this is as follows:- In a table in true perspective, where w is the width of the table, and $y-x$ is the length of the leg (both as measured on the drawing) then:

$$
\begin{aligned}
\cot \left(\frac{\varphi}{2}\right)-\cot \left(\frac{\theta}{2}\right) & =\frac{2 y}{20}-\frac{2 x}{20} \\
& =\frac{2}{2 v}(y-x) \\
& =\frac{2 \times(\operatorname{leg} \text { length })}{20}
\end{aligned}
$$

Therefore each drawing can be given two values. On the left hand Eide, a vaiue showing the relationship between the angle of convergence in which the table top and the table legs are represented, and on the right a vaiue for the relative dimensions of the table. In practice, the table :egs are rarely drawn the same length, therefore height of table is taken is $2 e$ the mean length of both front legs. Figures $3: 2 \mathrm{a}$ and $3: 2 \mathrm{~b}$ would be worked as follows:-

Figure 3:2a:-

$$
\begin{aligned}
\cot \left(\frac{62.8}{2}\right)-\cot \left(\frac{115}{2}\right) & =1.64-0.64 \\
& =1.00
\end{aligned}
$$

Figure 3:2b:- $\quad \cot \left(\frac{130}{2}\right)-\cot \left(\frac{115}{2}\right)=0.47-0.64$

For both Figures 3:2a and 3:2b:-

$$
\begin{gathered}
\frac{2}{w}(y-x)=\frac{2 \times 56}{112} \\
=1
\end{gathered}
$$

Finally, the value P can be obtained for each drawing. This represents the difference between what θ and φ should be, given the dimensions of the picture of the table, and what they actually are. Thus It is a direct measure of the internal consistency on the picture plane of the projection system used (perspective). This is a formal method of classifying tables that are represented as if from a central viewpoint. FFigures 3:2a and 3:2b would have P values of $1.00-1.00=0$, and -0.17 $-1=-1.17$, respectively.) A table drawn in correct perspective should have a P value as near to zero as possible, constrained by the limits of the measuring equipment. The greater the P value differs from this, the larger the perspective error. Variation of P value within the data was from 0.03 to -5.68 . A one-way ANOVA using age (in years) as the grouping factor and value of P as the dependent variable shows that the absolute correctness of perspective used is related to age, as can be seen in Figure 3:14.

SOURCE	:	SS	df	MS	F
AGE	\vdots	15.6	3	5.2	6.17
ERROR	\vdots	275.6	327	0.8	
TOTAL	$:$	291.2	330		
				$F .99$	$(3,7200)=$

Figure 3:14. A one-vay akova using age (in years) as a grouping factor and P value as a dependent variable,

The mean P for each age was :- 11 years old $=-1.8,12$ years old $=-1.9,13$ years old $=-1.7,14$ years old $=-1.5$. A Tukey HSD post hoc test showed significant differences between the means for the 14 year olds when compared with those of the 12 and 13 year olds ($p<0.05$). An examination of the mean value of P for each age group indicates that whilst all children fall to use perspective correctly, the perspective used by the older children is more in keeping with the dimensions of their own drawings than is that of the younger children.

Figure $3: 15$ shows the data plotted according to the two values used to obtain P. The diagonal C / D in this figure indicates all possible positions of drawings in correct perspective, given variations in the dimensions of the drawn tables. As long as it is the uppermost surface of the table that is being depicted, the only possible correct responses for any shape or size of rectangular table are those to the right of the vertical axis. (Those in which $\cot (\varphi / 2)$ is greater than $\cot (\theta / 2)$. Under the present experimental conditions point X is the only possible position of the correct response. No subjects achieved it. Allowance

Figupe 3:15. The relatjonshis betveen age and the ability to reproduce copractly perspactive and the ralative dinensions of the table.
needs to be given for graphical error, but note that the error is systematic rather than random, suggesting an incomplete application of the rules of perspective rather than simple error. It can be seen that subjects do not produce correct perspective, and that the degree of incorrect perspective produced is related to age. It is also evident in Figure $3: 7$ that these children, who all falled to draw perspective correctly, were reasonably good at depicting the relative dimensions of the table, as can be seen in the way most data cluster in a vertical band near
to 1.0. There is at most a mild tendency to underestimate the length of leg in relation to table width.

To summarise, those subjects producing a perspective response did not use correct perspective. In each age group there is no distinction between naive and true perspective. The table legs are drawn with a greater degree of convergence than are the tops. No subject produced a form of perspective that was correct for any shape of table, let alone one with the specific measurements discussed here, however the older children were more accurate than the younger ones in their use of perspective.
C) Non-perspective Responses.

Those drawings with less than 20 degrees of convergence on the :able top were termed non-perspective, and were classified according to the degree of obliquity shown, as described earlier. Figure $3: 7$ shows that in approximately five percent of the drawings the orthogonals diverged, rather than converged. Because of the small number of such responses they were not treated as a separate class of projection even though physically :mpossible in the absence of a model whose back is longer than its front (Hagen 1985), but were included with the other non-perspective responses.

The distribution of non-perspective responses can be seen in Figure 3:16. The margins used by Willats were 70° and 110°. However, as can be seen in Figure 3:16, the limits of 80° and 100° reflect more accurately the discontinuities in the distribution obtained here. This has the effect of marginally increasing the oblique response at the expense of the vertical-oblique. However, as Figure $3: 6$ shows, the vertical oblique response was found to be much larger than that of the oblique, and so such a narrowing of the class limits does not alter conclusions drawn from an examination of the response in these classes.

ilquie 3:16 Phe distriaution of data accoraing to the degres of obliquitr.
in Figure $3: 1$ it was demonstrated that it is possible to draw a :able in coilque-perspective. in which the table is shown as if viewed from the side, but with orthogonals that converge. An oblique-perspective drawing with less than 20 degrees convergence would be classed as nonperspective in this study, because correct convergence is considerably less in obilcue perspective. This means that some drawings, classed as nonperspective, may actually be in perspective, although drawn as if viewed from the side instead of the front. Theoretically there should be no convergence of the orthogonals in oblique projection. This was not the case for any age group. The mean convergence of the oblique response for each age group was:- 8 Years old $=4.6,9$ Years old $=3.57,10$ Years old $=2.33$, 11 Years old $=2.9,12$ Years old $=4.82,13$ Years old $=$ 1.46. 14 Years old $=$ 1.5. A one-way ANOVA using age (in years) as 3 grouping factor and degrees convergence as dependent variable reveals no
significant difference with age between these figures, as can be seen in Figure 3:17.

SOURCE		SS	df	MS	F
TREATMENT	$:$	219.2	6	36.5	0.65
ERROR	$:$	5915.8	106	55.8	
TOTAL	$:$	6135.0	112		
				F.95	$(6,106)=2.25$

Figure 3:17. A one-vay awova using age (in vears) as a grouping factor and degrees of convergente used to depict table tops dravn in obligue projection as a dependant variable,

These figures do not rule out the possibility that all children who produce oblique actually use oblique-perspective. However this would appear unlikely. In this study only two children under eleven used perspective, yet eighteen used oblique. This is not consistent with the view that perspective drawn from a central viewpoint is less complex to depict than oblique perspective.

It is possible that both forms of perspective are of equal complexity and that subjects can use either with equal ease. Whilst there was no significant difference found between the age related means for convergence either on the perspective or oblique table tops they are negatively correlated when compared with each other ($r=-0.5944$). It would appear that the older children produce less convergence when drawing in oblique, and more when drawing in perspective. This suggests that the processes involved in the deptction of the two systems are unlikely to be identical.

The negative correlation cannot easily be explained in terms of the use of obllque perspective, but may be addressed more plausibly by the suggestion that subjects are trying to draw the table top in oblique projection. To do so correctly they would need to produce no convergence. The positive means, even for the oldest children, suggest the existence of some form of figural bias, in which oblique parallel lines, extending from
a base line, are drawn as slightly converging. Mitchelmore (1985) argues that younger children are less able than older children at producing two oblique parallel lines. His work concentrates on a younger age range than that discussed here, but it is possible that the trends he identified are still evident, although to a lesser extent, in older age groups. Further research is necessary to clarify this point, but the evidence presented here suggests that subjects are attempting to draw a table top in oblique projection, rather than oblique perspective, and that convergence in the depiction of oblique parallel lines might be attributable to some form of figurai bias.

Discussion
This study partially replicated that of Wlllats (1977a) and found. as he did. that children depict a table top in a variety of ways that can be identified with the orthographic, verifal-oblique, oblique, and perseective projection systems. The mojor departure from techniques used earider has been the examination of the way in which the table legs have teen depicied as weil as, and in conjunction with. the way the table tops have been drawn. In this way it is possible to see if the subject uses a sonerent, unified projection system. This has enabled Willats' results to te Extended and some of his assumptions to be queried. Further, this study used sufficient subjects to obtain a reasonable distribution. This made it possible to discover in detall how the drawing of a table from observation changes with age and showed that some distinctions previously suggested are not valid.

The results presented here suggest two areas in which the class limits used by Willats require modification. The least important is the narrowing of the band in which a table top would be classed as verticaloblique. It was shown earller that such a narrowing of the class limits
does not alter conclusions drawn from an examination of the response in these classes.

The second revision, that of amalgamating naive and true perspective, has deeper implications. Theories of drawing that assume that the subject is trying to depict what is seen also assume that the best way of doing this is perspective, and that the subject is attempting to achieve a perspective result. Most importantly they assume that adults do draw in correct perspective. It has been shown here that a distinction between naive and true perspective cannot be supported theoretically or empirically. The representation of depth does not develop from naive to true perspective and thus it may be appropriate to abandon this division in general, and certainly in this specific case.

It has also been shown that the vast majority of subjects who drew a table in 'perspective' drew the legs with more, rather than less, convergence than they had used for the table tops. This is the exact opposite of the response that would be expected from a true understanding of the projection system. The form of perspective they used was verifiably incorrect perspective, not true perspective, according to the formal method of measuring perspective used here, the P value. The P value is a measure of the consistency of perspective used by the subject in relation to the subject's own drawing, not as inferred by the experimenter from the stimulus. When the data are examined in this light a developmental trend is seen, from incorrect to true perspective, according to criteria which are internal to the dimensions of the drawing. The oldest subjects in this study were less than fifteen years old, leaving open the possibility that adults do achieve true perspective. However, as is shown in the next chapter, when a table is drawn from imagination the perspective response peaks at fourteen, which is also the age after which most ehildren in England are no longer required to use it at school.

These findings strongly support the view that whilst most people would agree that perspective is the theoretically correct method by which to depict depth in two dimensions, it is not necessarily the most chosen way psychologically.

In this study the oblique form of projection appears to be qualitatively different from the others. In the oblique system the table is drawn as if seen from the side, rather than as the experimental condition, 'correctly' from the front. Yet in each age group from eight years old to adulthood between 15 and 25 percent of the subjects drew a table in this form. Subjects in this age range are not normally considered so insensitive to the scene as to be incapable of showing the side from winich they are in the process of viewing the table. Such a persistent use of oblique was also found by Duthie (1985) and Hagen (1985), and requires some form of explanation. The mean degrees of convergence for each age gre:p of the oblique response is positive. whereas theoretically it should have been zero. However it has been argued that this does not impiy that Eub!ects were using some form of oblique-perspective. Instead it has been suggested that this aspect of the oblique response might be a form of :Izural bias. This leads to a testable hypothesis in a predicted directicn anc iends itself to further research. lowever it does not solve the prejlem of why such a large percentage of older subjects choose to depict the table they can see in front of them from a viewpoint that is inconsistent with their own.

A large amount of overlap was found in the use of orthographic and vertical-oblique projection, and the patterns of response for these two classes correlated significantly. Serious doubt is cast upon the supposition that the use of these two classes indicates separate developmental stages. This doubt is supported here by the observation that those children who did draw more than one table frequently produced
tables in both orthographic and vertical-oblique projection side by side on the same page. The ambiguous status of these two forms of projection is emphasised in the next chapter where it is found that a sizable minority of subjects who drew a table in vertical-oblique depicted objects along its top edge. Duthie (1985) reported that there were considerable variations between drawings of the same object by the same child when a child was repeatedly tested. He rejects the view that a child attempts to represent a scene in one particular form of projection. This is supported by data presented in Chapter 6 which shows that when a table drawing that is classed as vertical-oblique on the basis of the way that its top is drawn is examined it is frequently found that the legs are depicted in a manner inconsistent with vertical-oblique projection. As both Phillips et al (1985) and Mitchelmore (1985) suggest, it would appear more likeiy that development is related to the finding and remembering of appropriate grapinic descriptions rather than some general and slowly evolving concepiion of space. Certainly the fact that an experimenter is able to classify a drawing in a particular projection system does not necessarily indicate that the artist intended to use that system, or would use it on all occasions.

To summarise briefly, this study has shown that no subjects drew in correct perspective, that there is no clearcut distinction between naive and true perspective, that the use of oblique projection is qualitively different from the use of the other systems. The study has also cast doubt upon the supposition that orthographic and vertical-oblique projection represent separate developmental stages. These findings suggest that Willats' conclusion that the representation of depth in drawing goes through a series of discrete stages, each of which can be identified with a projection system cannot be supported.

This study indicates the need for further investigation in several
areas. Firstly, although the width of the subject base used here is much greater than that used by Willats, there is also a need to extend the range of ages to accommodate the way in which adults depict tables. Secondly, it is possible that whilst the close identification between the understanding of projection systems and discrete stages in the depiction of depth cannot be supported, there is still a general link between the use of projection systems and stages in the depiction of depth. In other words, if subjects use the same sorts of projection systems across all tasks it might be that development can be identified with the use of projection systems, if not the theoretical understanding of them. Therefore there is a need to study the way in which a table is drawn under different conditions. The third point follows from the second. in this stucy sublects have been presented with a highly constrained task. in which they have been asked to draw from a specific, central, viewpoint. The task demands might thus have forced the covariance of view centred and view specific depiction. It is possible that without such view specific tasi demands different forms of depiction would have been produced.

In the study reported in the following chapter a wide range of subjects were asked to draw a table from imagination and the way in which projection systems are used under these conditions is compared with the findings given above. The task of drawing from imagination was chosen because it does not entall the need to see a stimulus from a specific view point. whilst allowing subjects utilise a specific viewpoint if they wish.

CONTENTS OF CHAPTER 4.
 A Table Drawn from Imagination.

Summary. 4. 1
Introduction. 4.2
STUDY 4.
A table drawn from lmagination. 4. 8

* Method. 4.8
$\begin{array}{lll}\text { * Results. } & 4.10\end{array}$
GENERAL. DISCUSSION. 4.15

Chepter 4.

A Table Dram from Imagination.

Sumary.

Drawings of a table executed from imagination are compared with those done from observation. Although the majority of older subjects use a form of naive perspective when drawing a table from observation almost all subjects use oblique projection when drawing a table from imagination. The form of projection used by older subjects is thus task dependent, which casts doubt upon the use of projection systems as a developmental measure. Development in the drawing of a table is shown to occur in a similar manner on both tasks when the data are grouped according to the form of natural (as cpposed to linear) perspective used. The implications of these findings for research into development of the representation of depth are discussed.

Introduction.
An ideal system for classifying the representation of depth in drawings is one which indicates the level of development reached by the artist. Development predicted theoretically needs to have a close relationship to that found empirically. A satisfactory classification therefore needs both psychological and theoretical validity. The previous chapter showed that there is not a clear link between development in the understanding of increasingly more complex projection systems and development in the depiction of depth. However, in that chapter it was suggested that the empirical evidence does not exclude the possibility of a link between the use of projection systems and development in the cepiction of depth, and that there is a need for further study of this area.

Figure A:1. A comparison of acthods of projaction. See text for a discussion about the position of vertical oolioue.

The previous chapter concentrated on replicating and analysing Willats' study. and so adopted his form of classification. Hagen (1985),
however, cast doubt on the theoretical jusilfication for the form of classification which Willats used. She showed that there are only a 11mited number of ways in which it is possible to project the surfaces of a three dimensional object in space onto a flat surface, based upon three variables:- whether the object is depicted as if viewed from a single or from multiple station points; the angle at which the object is viewed; the distance the object is from the observer. She argues that all possible conditions of realism are described by only four methods of natural (as opposed to innear) perspective:- orihogonal, similarity, affine, and projective. Figure $4: 1$ illustrates these and relates them to the stages wnich Willats proposed.

In orthogonal perspective multiple station points are used and the artist is frontal to the object. Right angles, parallel lines and relative三ize are preserved by the projection. Willats' definitions of both or::ograpric and vertical-oblique projection come into this category. The Eecend system. that of similarity, involves a single station point with the ar:ist still frontal to the object. Where the depiction of only one object : = incerned this system appears identical to orthogonal, because the depin s:e of diminishing size with distance is used only between complete :ejects. A separa:e oblect in the distance is thus shown as smaller than one nearby, but no difference in size is made within an object for distance. As the studies discussed here involve the depiction of only one obiect it is impossible to distinguish the use of similarity from the use of orthogonal, and so the term orthogonal will be taken to refer to either. The third system, afiine perspective, involves multiple station points with the object at an angle to the artist. Parallels are preserved by this projection, but right angles are not. Oblique projection falls into this ciass. In projective perspective there is one station point and the object is at an angle to the viewer. Parallel edges converge and right angles
are lost. This also describes linear perspective. Hagen discusses a further type of drawing, that of divergent perspective. In this the orthogonals are depicted by lines that diverge upwards in the picture plane. This is an 'impossible' form of projection, in that there is no station point, angle, or distance at which the artist could stand to view a regular object in this way, yet Hagen found it to be used quite frequently.

The empirical evidence presented in the last chapter suggests that dividing the forms of projection according to Hagen's systems of natural perspective might have more psychological significance than a division in accordance with Willats' stages of development. Firstly, the use of orthographic and vertical-oblique projection was found to be similar and their use appeared to indicate alternative methods of depiction rather than the discrete developmental stages that Willats suggests. Hagen's orthogonal system does not differentiate between these classes of projection. One difference between her work and that of Willats' is that she found that half her subjects used orthogonal when drawing a house. whereas only a very few of Willats' did. However, the results of both Willats' and Hagens studies, and those of the previous chapter, are compatible if orthographic and vertical-oblique are combined into one categcry.

Secondly, in the previous chapter oblique projection was seen to hold a unique position, in that it was used by older subjects, although dissimilar to their view of the table.

Thirdly, in the previous chapter no difference was found between the use of naive and true perspective as measured by the angle of convergence. Subjects used a form of naive perspective, in that perspective was not used correctly, but never progressed to true perspective. Here the two categories could be combined into a failed form of projective system of natural perspective.

From this it could be argued that development occurs in the progression from using orthogonal (orthographic/vertical-oblique), to affine (oblique), to projective (perspective). However, Hagen examined the possibility of such development and suggested that this was not the case. She examined the way in which houses were drawn, either from observing models or from imagination, and found that under all circumstances few adults used the projective system of natural perspective. In general she found that the majority of adults used orthogonal perspective. Therefore, from the assumption that if development does occur it will be in terms of increasing view specificity (orthogonal, to affine, to projective) she argues that "drawing, in terms of systems of spatial representation, does not develop across culture or with increasing age".

Hagen's position suffers from several drawbacks. Firstly, she bsses her arguments upon the drawing of a house. This is a stimulus that is :requently drawn by young children and so there is a high possibility :ha: :heir depictions have become stylised, and that the depictions of the jieer children and adults are still based upon the stylised versions that the: produced when younger. Thus the drawing of a house may well not be the jest stimuius to use when attempting to assess developmental trends.

Secondly. she gives no detalls about the shape of the roof on the moce: house. The implication is that the roof was pitched in some way, as she talks about the depiction of seemingly arbitrary roof shapes. These would be less likely to occur if the model were a simple cubold. The malority of illustrations she gives of houses drawn from imagination also contain pitched roofs. The increased complexity of having to depict a pitched roof may well have discouraged the subjects from attempting a view specific depiction.

Thirdly, as was shown in the last chapter, it is very hard to differentiate between the use of affine and the use of projective when a
house is depicted edge on. However, Hagen does not give details of the level of error she allowed when making such differentiations. Similarly she does not indicate the degree to which all aspects of the depiction have to accord with those of the class into which it is placed.

These three points all indicate that Hagen might have underestimated the subject's ability to depict an object in a view specific manner. However, her arguments directly challenge the view that systems of spatial representation are suitable in some way as a developmental guide, and present us with four hypothetical positions:-
a) That the representation of depth goes through a clear development sequence consisting of discrete stages linked to the use of projection systems.
b) That the representation of depth goes through a clear development sequence consisting of discrete stages linked to the use systems of natural perspective.
c) That the representation of depth goes througn some development, but not in the manner or for the reasons stated by Willats or Hagen.
d) That the representation of depth does not develop.

It is possible to disentangle these positions by examining the relationship between viewpoint and view specificity. The way in wnich a table is depicted in a particular projection system depends upon the viewpoint of the artist, as can be seen in Figure 4:1e.

In W1llats' 1977a paper development was seen to be independent of viewpoint. For example, he points out that in his terms oblique and vertical-oblique are not theoretically different systems, but differ in the viewpoint used. From this it follows that oblique projection is not out of place in the developmental sequence he proposed. When viewpoint is considered the high oblique response found in the previous chapter, between 15 and 25 percent of subjects in each age group from eight years
old to adulthood, appears anomalous. It can be argued that whilst oblique projection looks as if an oblique viewing point is assumed, it is actually a formal system which could be sald to assume a central viewing point or indeed a lack of viewpoint, in that lines in depth are represented by obliques. However, this does not alter the fact that Wlllats used a task with a central viewpoint to argue that development is indicated by the progressive use of projection systems. Hence, the prediction that a task involving a different viewpoint should elleat the same results is entirely consistent with his theory.

For the sake of argument let us assume that development does occur in the use of projection systems but relate this apparent development not directly to projection systems, but to an increasing ability to specify a unique viewpoint. Depiction will still be analysed in terms of the projection system used, but vertical oblique will be placed beside oblique in Figure 4:1c. In this case a task involving a central viewpoint can be expected to elicit development through orthographic and veritical-obliaue to perspective. whereas a non-central viewpoint would be expested to elicit development through orthographic and oblique to oblicue-perspective. If veritical-oblique and oblique are alternative methods of depiction. both at the same 'stage'. the choice between them being dependent upon the viewpoint, then their use should vary similarly with age.

Alternatively, we could argue that viewpoint is of paramount Importance and that there is very little development related directiy to the use of projection systems. This places the relationship between oblique and vertical oblique in an ambiguous position. Hagen (1985) sees vertical oblique as equivalent to orthographic projection, and so oblique stands on its own as a system of natural perspective. However, if we wish to trace development in the degree of view specificity that is used, whilst
relating it to viewing position, this means that the affine system is only applicable to non-central viewpoints, unless, as suggested above, we argue that affine projection is a special case of depicting a central viewpoint. If so we would expect progression from orthogonal, through affine, to projective, and also expect that a task involving a different viewpoint will elicit a different, view related response.

The above positions both take view specificity to be the end point of development. However, this is not necessarily the case. There might be no development, as Hagen suggests, or there might be development, but towards a different end point. One way of investigating this is to introduce a task in which the viewpoint is left unspecified, such as drawing from imagination. The object can be projected in any way that the artist wishes, and so the artist chooses both the viewpoint from which the object is to be depicted and the degree of specifity of that viewpoint. Hagen asked some of her subjects to draw from imagination, but did not present the findings in a way which enabled the reader to analyse the degree of stimulus view specificity as a separate variable.

In order to evaluate these positions data obtained when a table was drawn from imagination is presented in this chapter and compared directly with that presented in the previous chapter on tables drawn from observation. It was felt that this study would benefit from a larger age range than that used in the previous study. Data from children as young as 2 years 4 months were studied in the hope of identifying earlier systems, and data from adults were studied in order to discover what, if anything, is at the end of the developmental chain. Finally, in order. to obtain normative data it was felt important not to constrain the subject's imagination. The findings are discussed in relation to the predictions set out above.

METHOD. Subjects. Subjects were chosen in a way that would give a broad cross-section of the population of Leyland, both in age and ability. 4,056 subjects participated, with an age range of 2 years 5 months to 53 years. The youngest group of subjects, 195 with ages between 2 years 4 months and 4 years 6 months, contained all the children from one state nursery school and the children from three of the four playgroups in operation at the time of testing. 2,313 Infant and Junior school children were used, ranging from 4 Years 7 months to 10 years 6 months old. This represented about 90 percent of the population of Leyland in this age group. 1,443 Secondary school children participated, ranging from 10 years 8 months to 16 years old and drawn from five of the six state secondary schools in the area. 46 subjects, ranging from 16 to 18 years old, were drawn from Runshaw, Leyland's Sixth Form College. Finally, 59 subjects, ranging from 18 to 53 years old, were approached in the streets.

Task. Nursery and Infant school children were seen individually. After an introduction and a chat they were asked to draw a table on a plece of paper in front of them. If the child was reluctant, he/she was asked just to try and do his/her best. Three children refused to co-operate and have not been included in this study. 43 of the subjects were tested whilst there was a table, other than the one on which they were drawing, in the room. However, no child was seen to copy it and it was not indicated in the discussion.

Junior school, Secondary school, and Sixth Form College children were seen as a class. Tables were avallable in the room and could have been copled. However, it was ensured that all such tables had objects on and around them, and no child was seen to refer to a particular table in drawing. After introductions, pencils and paper were distributed and the children were asked to think of a table and draw it carefully.

Adults were approached individually and were asked to make a line
drawing of a table. On several occasions further explanation was needed before the adult would comply. In these cases it was emphasised that there was no 'correct' way of drawing a table, that it was not an intelligence test, and that the subjects' names would not be recorded.

In each case no time limit was given, but all subjects worked quickly, none taking longer than ten minutes.

Results.
The raw data obtained here can be found in Appendix 6:B. Detailed analyses of these data can be found in other appendices to Chapter 6. Before full reporting of the results it is first necessary to explain how the drawings were scored as several forms of drawing were found that have not been mentioned above.

The class of projection in which the table top was depicted was ascertained by the same method as that used in the previous chapter. Briefly, the angles measured were those between the lines in the picture representing the orthogonals of the table and the line representing the front of the table. This enabled the degrees of convergence and obliquity shown in the drawing to be calculated, which in turn enabled the drawing to be classified according to the form of projection shown.

Drawings that could not be classified in this way were produced by 369 subjects, who each drew a table top that was rounded in shape. Figure 4:2 shows the number of sublects in each age group who produced this form of table top. For these drawings the table top was measured across its horizontal and vertical axes. An index of roundness was obtained by dividing the larger number into the smaller. Figure $4: 2$ also shows these table tops grouped according to their index of roundness. Those tables with an index of roundness greater than or equal to 0.55 were classed as round, whereas those with an index of roundness of less
than 0.55 were termed oval. A significant age difference in the production of these two classes is found if the proportions of response, with age, of each class are compared. $\quad \chi^{2}=63.73, \mathrm{df}=9, \mathrm{p}<0.001$). These proportions of response can be seen in Figure 4:3. Five subjects (mean age 4 years 2 months) produced a table top in the form of a semi-circle. These were classified according to their index of roundness and included in the analysis.

Twenty two sublects. all less than 11 years old (mean age 8 years i moriths) produced a table top with less than -20 degrees of convergence. this $g^{1 v i n g}$ the table top the appearance of divergent perspective. These drawings could be accurate depictions of some tables found in Primary scnoois which are designed to fit together in groups of six to form a hexagonal island. Because of this and the very small number of sublects responding in this way the drawings were included in the analysis, classed as verifcal-oblique.

Fourteen subjects (mean age 5 years 2 months) drew a table top in
the vertical-oblique form, but placed objects along the top edge, as if the tables were intended to be orthographic. As this study is concerned with the representation of the table top, the drawings were classed according to the system in which the top itself was drawn.

Eigut t:3. The oroourtions, with age of resounses in each class of projaction when a table is sraun fag zoaganation.

Figure 4:3 shows the distribution of different types of class accorcing to age. The majority of very young children used a circle to represent the table top. whilst a small percentage of all age groups produced an oval table. A comparison between the proportion of children In each age group using either orthographic or vertical-oblique projection shows both that there was no significant difference with age in their use, and a high correlation between them. $\quad\left(x^{2}=21.86, d f=13 . p>0.05\right.$; $r=0.85, p$: 2.001). Both responses rose to approximately 45 percent at five years old and dropped again at about eight years of age. The perspective response was small, peaking at fourteen years of age when it
was produced by 19 percent of the population. The oblique response was used by 6 percent of eight years old, but climbed rapidly to 82 percent by the age of fifteen.

The angle of convergence on the table tops in oblique projection produced by eleven to flfteen year olds was measured in order to see if they were using oblique perspective. True oblique projection would produce zero convergence. The mean degrees of convergence were:- 0.04* at 11 years, 1.04° at 12 years, 1.28° at 13 years, 1.6° at 14 years and -0.06- at 15 years. It can be concluded that the older subjects were not using oblique perspective.

When a table is drawn from observation the predominant form of protection used by the older subjects is a form of perspective, as was sriswn in the previous chapter. When a table is drawn from imagination. however. the predominant form is oblique. A comparison of the way each istr. of projecition is usec. as measured by the proportion of subjects in eac:- age group using it (from four years of age, to fourteen), in this stisy and that reported in the previous chapter shows significant sifierences between the two studies. Corthographic:- $\chi^{2}=19.8$, df $=0, p$ < 2.02; Vertical-oblique:- $\quad x^{2}=17.61 . \quad$ df $=10, \quad p<0.1 ;$ Oblique:$\chi^{2}=52.75 . \mathrm{df}=8 . p<0.001:$ Perspective:- $\chi^{2}=36.71, \mathrm{df}=7, p<0.001$. The data used for this comparison can be found in Appendices 6:A and 6:B. From this it can be seen that the nature of the task, elther drawing from observation or from imagination, has a great effect upon the class of projection that is used.

Figure 4:4 illustrates a comparison between the two studies in the use of a central viewpoint. This measure was obtained by combining the responses for vertical oblique projection and perspective. As discussed above, orthographic can indicate several different view points, either central or to one side, and oblique indicates a non central
viewpoint. A comparison between the two studies shows that there was little difference in the proportion of younger children using either vertical-oblique or perspective responses on either task ($\chi^{2}=6.61$, $\mathrm{df}=5, \mathrm{p}>0.2 \mathrm{~s}$. It was not until about ten years of age that the children started to show a more central, and hence more accurate, viewpoint when drawing from observation.

Eifare d:4. The oroportions, with age, of responses indicating a ientral viavouint when a taole was arawn idftar froa observation or imagination.

Figure 4:5 illustrates strong similarities between the two studies If the responses obtained in them are grouped according to whether they are orthogonal (orthographic, vertical-oblique, and round) or non orthogonal (oval, oblique. and perspective). χ^{2} tests failed to find any significant differences between the two studies in the proportions of children in each age group using either orthogonal or non orthogonal systems of natural perspective (Orthogonal:- $\chi^{2}=13.31$, $\mathrm{df}=10, \mathrm{p}>0.02$; Non orthogonal:- $\chi^{2}=9.92, \mathrm{df}=6, \mathrm{p}>0.1$. Thus there would appear to be a strong developmental trend that is not reflected in the use of each
class of projection on its own, but is revealed by this division of the data.

 :-azn s:aner fron objaprazion or iesganation.

Discussion.
Both the wider age range and the task of drawing from imagination gronuced a more varied response than was found in the earlier study. It was recessary to add two further classes to the classification of the table tops, round and oval. One form of depiction, in which a table is drawn as vertical-oblique but with objects placed upon the top edge, mer:is further discussion. Willats (1977a), whose stimulus included objects on the table. found that some tables were drawn in this manner. Th.at it happens at all and in particular that it happens here, where the insiusion of objects was not rec̣uired, indicates that the distinction between the orthographic and the vertical-oblique classes might not be as
clear cut psychologically as Willats suggested. This is strongly supported by the closeness of correlation and lack of significant difference in the use of the two classes. Therefore the amalgamation of these two classes of projection into Hagen's one system of orthogonal is supported both theoretically and psychologically. Theoretically the classes of round and oval projection do not fit into this group as they do not have actual parallel lines or angles, only inferred ones. However, as described earlier, round can be seen as similar to vertical-oblique (a circular table top seen from above), and oval can be seen as similar to either oblique or perspective (a circular table top with some form of deformation). This classification breaks down if the subject was actually trying to depict an oval table top. However, the effect that this potential area of error might have on the findings is minimal because of the very small number of responses involved.

One of the principal results from this study and the one reported in Chapter 3 is that adults generally use a form of perspective when drawing from observation but use oblique projection when drawing from imagination. This does not fit comfortably with the theoretical work of either Willats or Hagen. Both are founded upon assumptions that development during childhood is towards an endpoint which is the manner of depiction adopted by adults. In Willats' case this is linear perspective. and in Hagen's case it is view specificity.

It is possible that older subjects would prefer to use linear perspective when drawing from imagination but use oblique projection instead because a table in perspective is 'harder' to draw, and so they do not achieve the view specificity that they are alming for. However, the majority of older subjects finished their Art education at fourteen, and had been taught perspective, yet very few subjects used perspective and none used oblique perspective. Indeed the peak in the perspective
response occurs at fourteen years of age. It would appear that once the subjects were no longer required by their schools to draw in this manner the number of perspective responses dropped rapidly. This point is examined in more detail in the following chapter, however, the data under discussion here indicate that development in depiction is not directiy related to an increasing ability to specify a unique viewpoint.

The lack of task dependency shown by the younger subjects in the use of projection systems suggests that such subjects are insensitive to viewpoint. The response indicating a ceniral viewpoint used by the younger sublects. that of vertical-oblique, did not follow the pattern snown by perspective. In Willats analysis vertical-oblique is a special form of oblic̣ue. differing from oblique only in the centrality of viewpoint reçuired. As such. it could be expected to occur at the same time as ȯ:ique. However the vertical-oblique response was found to be used ireajentiy by the younger children in this study. It could be argued that your. 3 children must therefore be highly sensitive to viewpolnt and show a Ereater desire than adults to depict a more central viewpoint. However, F:Eure $4: 4$ shows that this possible sensitivity to viewpoint is not task reiated. Until the age of ten the nature of the task makes little tifference to whether the child indicates a central viewpoint. The data incizate inat young children produce one form of oblique without simultaneously producing a more general form and are insensitive to viewpoint. Orihographic and vertical-oblique are used as alternative forms of projection. both when the child draws from observation and from imagination. Therefore it cannot be concluded that development oceurs in a way that is strictly related to the required viewpoint.

Figure $4: 5$ indicates that whilst the selection of a particular prolection system is partially task dependent there is also an underiying trend common to both drawing from imagination and observation. This form
of development only becomes apparent when the data are split into groups in a manner which, in the light of Willats' projection system theory, is entirely arbitrary. The data suggest that children first develop the ability to draw in an orthogonal manner, and later in an affine or projective way, depending upon the task.

To conclude, the finding that adults use different systems as alternative methods of depiction depending on the task, where these alternatives occupy different stages in the proposed developmental sequences, reduces the usefulness of these theories in explaining development.

A more helpful theory would be one which isolates aspects of development which are independent of the task. The following chapters are concerned with identifying task-independent factors.

Contents.

CONTENTS OF CHAPTER 5.

 Aspects of the Task Causing Task Dependency.Summary. 5. 1
Introduction. 5. 2
STUDY 5:1.
A table drawn from imagination by people trained in Art. 5. 5

- Introduction. 5. 5
- Method. 5. 5
- Results. 5. 5
- Discussion. 5. 6
STUDY 5:2
Drawing a table from imagination after a lesson in perspective. 5. 7
* Introduction. 5. 7
- Method. 5. 7
- Results. 5. 8
- Discussion. 5.10
STUDY 5:3
Drawing a table from observation against a squared background. 5.11
- Introduction. 5.11
- Method. 5.12
- Results. 5.12
- Discussion. 5.13
STUDY 5:4.
A table drawn from imagination with differing amounts of background depth. 5.15
* Introduction. 5.15
- Method. 5.16
* Results. 5.16
- Discussion. 5.17
GENERAL DISCUSSION. 5.19

Chapter 5.

Aspects of the Task Causing Task Dependency.

Summary.

The four studies reported in this chapter examine the hypotheses that the task dependency shown in the previous chapter is related to either knowledge of projection systems, artistic ability, salience of background, or specification or centrality of viewpoint. They show that task dependancy does not appear to be related to any of these.

Introduction.

The previous two chapters have shown that older subjects depict a table in a task dependent way. When they are asked to draw a table from observation the majority use perspective, but when drawing from imagination the majority use oblique projection. The present chapter examines possible causes of this task dependency.

The two tasks differ in a variety of respects, each of which might have contributed to the task dependency. It is possible that obilque projection is an easier system to use than perspective, and that drawing from imagination is a harder task than drawing from observation,leading to the subfects using the easier system. The flrst study reported here examines this hypothesis by asking artists to draw a tajole from imagination. The assumption is that artists are sufficiently skilled to be able to use either perspective or oblique projection with equal ease. Thereiore, even if drawing from imagination is more difiicuit than drawing from observation, they should have sufficient skill to be able to cope with the task without having to revert to an 'easier' form of proieciicn.

Another possible difference between the two tasks is that drawing from observation somehow calls to mind the subfect's knowledge of Derspective. The assumption here is that subjects have available to them the ability to use either form of projection, and so the task dependent behaviour is in some way related to the way in which the subiect interprets the task. This difference in interpretation could be related to several factors. One possibility is that the subject might have previously learnt that when drawing from observation one uses perspective, and so he or she thinks in terms of perspective when presented with an observation task. but is less likely to do so when asked to draw from imagination. This is examined in the second study.

A second possibility is that the difference in interpretation could
be related to external factors, in particular those of salience of background and position of the viewpoint. Drawing from observation is qualitively different to drawing from imagination. The object is seen as it stands in real life, on a real floor, with real walls and ceiling round 1t, and in real juxtaposition to other objects. When drawing an object from imagination it is only necessary to, in some way, form a cognitive map of that object as if it were floating in a void. In both cases the end result might well be a depiction of an object unconnected to anything else, but we cannot assume that the processes involved in reaching these two end states are similar. There are two variables involved here, salience of background and uniqueness of viewpoint.

Drawing from observation entails specification of a viewpoint which in turn dictates, to a large extent, specification of a background. It is, however, possible to alter the salience of the background. As Pratt (1985) explains, experienced artists have a long history of using aids to de-emphasise the three-dimensionality of a scene that they wish to draw, thus facilitating the correct use of perspective. He argues that figure/ground separation is a major factor in fallure to accurately reproduce a scene, and so methods that increase figure/ground integration aid analysis of scenes for depiction. The third study examines the effects of bringing the background to the attention of the subject, and of requesting that the observed scene, rather than just the object, is drawn. Similarly, the fourth study examines the effect of an imagined scene upon. a table drawn from imagination.

Uniqueness of viewpoint is the final variable identified here. When drawing from observation the subject sees the object from one particular viewpoint, but this constraint is not apparent when a table is drawn from imagination. In the previous chapter the tasks of drawing from imagination and observation varied both in specification of viewpoint and
in centrality of viewpoint. As it is difficult to think of an observation task in which the viewpoint is not specified, a more realistic alternative is to encourage subjects to attempt to specify a viewpoint in an imagination task. The fourth study was designed to assist with this investigation.

Study 5: 1.

A table drawn from inagination by people trained in Art.

Introduction.
In the introduction it was suggested that the task dependency might be caused by subjects finding it harder to draw from imagination, and so, if oblique projection were an easier system to use, they might use that instead of perspective when drawing from imagination. The present study examines this hypothesis by comparing the way that 'normal' subjects draw a table from imagination with the way in which adults who have been trained in art and who use art as part of their dally lives perform the same task. It is reasonable to assume that such artists do not find drawing a table in perspective so much harder than drawing one in oblique grofection.

Method.
Subjects. 90 adults participated in this experiment. The subjects in Ccrdition 1 (artists) consisted of 45 adults who either taught art in the North-West or were students at art college in the North-West, all of whom intended to become professional artists. The subjects in Condition 2 (non artists) consisted of 45 aduits with no artistic training, matched to sub.lects in condition 1 for age and sex.

Task. Each subject was given a pencil and paper and asked to make a line drawing of a table. This replicates the experimental method used in Study 4.

Results.

A breakdown of the data can be seen in Figure 5:1

Munbep of sis.	Opithograente	v/ Obllaue	Obliaue	Pepspresiye	Beund.
Aptists	0	0	38	2	5
Non aptists	1	0	39	3	2

Figure 5:1. The nuaber of aptists and non artists resoonding an asen fore of projestion when asked to orar a table fros iagindtion.

Drawings done by the artists were all noticeably neater and more professional than those from the non artists. For instance, nearly all included shading and texture cues. However a Kolmogorov Smirnov $\chi^{=}$ approximation test comparing the data obtained under the two conditions failed to find any significant differences in the number of subjects using
 comparing the data obtained under each condition with that obtained from aduits in drawing from imagination in the previous chapter falled io show any significant differences in the number of sublects using each form oi erciection. (Ar:ists vs. adults in Chapter 4: $\mathrm{Kx}^{-}=0.32$. $\mathrm{df}=2, \mathrm{p}$) 0.5 . Nor artists vs. adults in Chapter 4: Ky= $=0.32$. $\mathrm{df}=2 . \mathrm{p}: 0.5$.

Discussion.
The resilts show that artistic training has very litile effect : $:$ por the way in with people draw a table from imagination. The vast majority of aritstically trained subjects, to whom drawing objects and scenes in different forms of projection is an integral part of their livelihood. represented a table drawn from imagination in oblique:projection. The amount of detall most of these subjects provided implied that they were not choosing oblique projection because it offered the least amount of effort, and suggests that there might be other reasons for this choice.

Study 5:2

Drawing a table from inagination after a lesson in perspective.

Introduction.

The previous study has shown that the task dependency identified in Chapter 4 cannot be entirely attributed to possible differences in the degree of difficulty both in the task and in the form of projection used. The subjects did not choose to use an easier form of projection (oblique) because the task (drawing from imagination) was harder. However it might be that, whilst subjects have available to them the ability to use either form of projection, drawing from observation somehow calls to mind the suiject's knowledge of perspective. The present study looks at the zessibility that the subject might have previously learnt that when crawing from observation one uses perspective, and so he or she thinks in terms of perspective when presented with an observation task, but is less iikeiv to do so when asked to draw from imagination. This was done by tearning the subjects how to use perspective, ensuring that they could use perspective correctly when drawing a cuboid from imagination, and then immediately asking them to draw a table from imagination. The assumption was that the use of perspective when drawing from imagination would then be uppermost in their mind, thereby minimising any possible task dependency related to a cognitive set that mediated against using perspective whilst drawing from imagination, whilst also ensuring that all subjects were able to draw in perspective.

Method.

Subjects. 303 subjects, of 11,12 or 15 years of age, taken from a
secondary school in Leyland, Lancashire, were used in this study. These age groups were chosen because the topic of perspective was introduced in art lessons at thirteen years of age and reinforced at fourteen years of age, both in this school and in other schools in the area. Therefore eleven to twelve year old children were able to examine older children's work on display and a few might have tried to emulate it, and might even have received some tuition at home, but they had not received any formal tuition at school. Fifteen year old subjects were also used because by this age the majority no longer did any art. Although they had been taught perspective previously none claimed to use $1 t$. The subiects were assigned to one of two conditions (taught perspective or control), balanced across age, ability and sex.

Task. Dne of two qualified Art teachers, one of whom was the author, saw each chiid under the iaught condition for a two hour period. In this time the iunjamentals oi perspective were explained and eacn subject was taugnt now persces:ive could be used to represent a scene (involving roads or irain iracks going into the distance) and oblects within that scene. both from a central fronial viewpoint and from the side. The teacher ensured that an aperoximation of a cuboid was obtained frcm each child, drawn irom imagination and 85 a singie oblect not in a scene. in frontal and obliaue perspective. Immediately after this the subject was asked by the ieacher to make a line drawing of a table.

The control subjects were seen in the same room, with the occasional crawing in perspective on the walls. though none that had been done by the subjects in the taught condition. Each subject was given pencil and paper and asked to make a line drawing of a tabie.

Results.
A summary of the data can be found in Figure 5:2.

Kolmogorov Smirnov $\chi=$ approximation tests on the number of subjects using each form of projection on the table tops were used to compare the two conditions in each age group. Each test falled to show a significant difference across conditions. (11 Year olds; $K X=1.03$. df $=$ 2, $p>0.5 . \quad 12$ Year olds; $K x^{2}=1.21 . d f=2, p>0.5 . \quad 15$ Year olds; $K X^{2}=$ 0.88. $\mathrm{df}=2, \mathrm{p}>0.5$.

Number of s's.	Oethograbis	V/ obliaue	Qblique	Peespestive Round
Taught Perspectave				
15 Years	0	3	13	3
12 Years	3	12	37	11
11 Years	5	17	25	2
Control Group				
15 Yeaps	1	1	20	4
12 Years	10	12	31	12
11 Years	2	13	29	4

Figure 5:2. The nubbers of subjects, with age, wh had been taught parsoestive, and these in the control groud, responding in adih fora of projection when asked to urav a table from anaganation.

It is possible that because the two conditions were run in the same sciool information about the lesson in perspective was passed to Fuplls who were about to become control subjects. However k. - tests between either conaition and the data obtained for those age groups in Chapter 4 failed to show any significant differences. (Chapter 4 vs. drawing a table from imagination after a lesson in perspective: 11 Year olds: $K \chi=0.5, d f=2, p>0.5 .12$ Year olds: $K x^{2}=1.45, d f=2, p>0.5$ 15 Year olds: $K X^{=}=1.32, d f=2, p>0.5$. Chapter 4 vs. drawing a table from imagination without a lesson in perspective: 11 Year olds; $k==0.47$. $\mathrm{df}=2, \mathrm{p}>0.5 . \quad 12$ Year olds: $\mathrm{K} \chi^{=}=0.77, \mathrm{df}=2, \mathrm{p}>0.5 . \quad 15$ Year olds: $\left.K X^{=}=0.14 . d f=2 . p>0.5\right)$. Therefore it is unlikely that these subjects and this particular school provided a biased sample.

Discussion.

Subjects were shown to be moderately able to draw a cuboid in perspective from imagination, and the study was designed to increase the salience of this condition immediately prior to the task, yet this knowledge did not affect the form of projection that they used when drawing a table from imagination. These results, therefore, fail to give support to the idea that perspective is in some way less available to the subject when drawing from imagination, and suggest that even when perspective should be uppermost in the subject's mind the subject does not choose to use it when drawing from imagination.

These results also give further support to the suggestion that task dependency is not related to regression to an easier form of projection because of the difficulty of drawing from imagination.

Study 5: 3

Drawing a table from observation against a squared background.

Introduction.
The previous studies have shown that the task dependency identified in Chapter 4 cannot be accounted for, in its entirety, by differential ease in the use of oblique or perspective, or by the way in which subjects might fail to have mechanisms for drawing in perspective uppermost in their mind when drawing from imagination.

In the introduction to this chapter it was suggested that drawing from observation is qualitively different to drawing from imagination. Drawing from observation entails specification of a viewpoint which in turn dictates, to a large extent, specification of a background when drawing a scene. It was suggested that a greater proportion of responses might be in perspective if subiects were asked to draw a table within a scene. rather than as a single object. This study and the following one both examine the effects of bringing the background to the attention of the ミLiftect, in drawing from observation and imagination respectively.

The present study concentrates on an observation task. A simple squared background was chosen for this task, rather than a background of oblects in the room, for two reasons. A squared background gives a greater element of control over the task. If subjects had been asked to draw a more varied background they might easily have become side tracked into aspects of depiction that were irrelevant to the task. Secondly, a squared background gives help in emphasising the visual appearance of the table. Subjects could, if they wanted, draw the squares and then find the visually realistic shape of the table by noting which parts of the squares were occiuded. This process is similar to one used with art college
students, in which they are asked to draw the gaps between objects rather than the objects themselves in order to encourage them to perceive the scene in 'two dimensions'.

Method.
Subjects. Chapter 3 showed that development in the use of perspective is most rapid at about eleven or twelve years of age. For this reason the subjects chosen for this experiment were 100 children aged between 11 years six months and 12 years six months. The children were taken from a secondary senool in ieyiand and were divided into two groups. baianced acress sex, ability, and age.

Task. Subiects in the first group were given a task identical to that described in Chapter 3. Briefly, they were placed directly in front of a table and asked to draw it from observation. The instructions used were ":1ease look at the table carefully. Now draw it for me as weli as you can." The stimulus and procedure were different for the second group. Thev were placed in the same position in front of an idenical table, but direstly behind the table was a ten foot square backdrop with a bold suares patiern upon it. The backdrop was stretched out in such a manner tha: the sublect could work out the apparent dimensions or retinai image oi the rajle by ploting the pattern. The subject's attention was drawn to this by saying "Look at the squares. Can you see the shape the table makes against them?" and then the subject was asked to draw both the backdrop and the table together by saying aplease look at the table and the background carefully. Now draw them for me as well as you can."

Results.

An analysis of the data obtained in this study can be found in Figure 5:3.
A Kolmogorov Smirnov χ^{2} approximation test comparing the two
groups failed to find any significant difference in the numbers of subjects using each form of projection. $\quad\left(X^{2}=0.64, ~ d f=2, p>0.05.\right)$ Similarly $K X^{2}$ tests comparing these results with those obtained in Chapter 3 failed to find any significant difference in the number of subjects using each form of projection. (With Background vs. 12 year olds in Chapter 3: $\mathrm{KX}^{2}=$ 3.41. df = 2, $p>0.05$; Without Background vs. 12 year olds in Chapter 3: $\left.K x^{2}=2.61, d f=2, p>0.05\right)$.

Numbe of ses.	Ofthogratis $4 /$ oblioue	onlique	Pepsonstive
With Background.	13	9	21
Vithout B'ground.	13	12	25

Figure 5:3. The nusbers of subjects responding in each fore of projection when asked to drav a table fros observation, aither vith or without a squared backiground.

It is possible that whilst the introduction of a background did not affect the proporticnate use of the different classes of projection. it d1d cause the degree of perspectsve used to alter. However this was not iound to be the case. A two-sample χ^{2} comparing the degrees of con:ergence used on the table tops in the two groups failed to find a ミiきnificant difference. $\quad i==2.29, \mathrm{df}=6, \mathrm{p}$) 0.05). Similariy a twoEample χ^{-}comparing the degrees of convergence used on the table legs in the two groups failed to find a significant difference. $\quad\left(\chi^{2}=10.34\right.$. df $=$ 8. ? > 0.05). Finally a two-sample X^{2} comparing the degrees of convergence used on the table tops in the without background group with those used in Chapter 3 also falled to show a significant difference. ($\chi^{\text { }}$ $=7.23, \mathrm{df}=6, \mathrm{p}>0.05$.

All subjects who were requested to draw the background as well as a table drew the pattern on the background accurately.

Discussion.

This study has shown that making the relationship between a table
and its background more sallent does not effect the way in which eleven to twelve year olds represent the table when drawing it from observation. Tests failed to find any significant differences in the way the table was drawn, either between the groups in this study or between each of these groups and that reported in Chapter 3.

Although subjects examined the squared backdrop, as shown by their ability to draw it accurately, they did not relate its depiction to that of the table placed just in front of it. This dichotomy is an important one. It indicates that although the table is being drawn from observation as part of a scene it is still being drawn as a separate object. The training exercise described earlier, of drawing the gaps between the objects, is difficult to do but often works well because the objects themselves are not being drawn. An informal study of twelve year olds who were asked to draw the gaps but not the table indicated that under these conditions the outline of the table was in perspective. An interesting line of research would to be to explore the implications of this informal study. For the present it is concluded that the way in which a single well known object is drawn from observation is not significantly affected by the salience of the background.

Study 5: 4.

A table drawn from imagination with differing amounts of background depth.

Introduction.

It has been suggested that because, when drawing from observation, the object is viewed as part of a scene the subject relates the object to its surroundings and, even though the surroundings are not drawn, their proximity alters the way in which the subject depicts the object. Study 5:3 showed that increasing the sallence of the observed background had little effect upon the method of depiction. This study examines whether this is also the case when a table is drawn from imagination.

When drawing from observation the subject sees the object from one particular viewpoint, but this constraint is not apparent when a table is drawn from imagination. It is hypothesised that by encouraging subjects to create a detailed visual image, before asking them to draw it, the specification of a unique imaginal viewpoint might be enhanced. It is also hypothesised that the further away the table is, within this visual image, the less it might be imagined as a 'table' and the more it might be imagined as part of a scene. This study observes the effect that increasing the subject's concentration upon the background scene has upan the method of depiction.

Finally, in the previous chapter the tasks of drawing from imagination and observation varied both in specification of viewpoint and In centrality of viewpoint. This study also observes the effect of asking subjects to adopt a central viewpoint when imagining the table.

Method.
Subjects. The subjects used were 814 eleven to fourteen year olds, taken from a secondary school in Leyland, Lancashire. They were divided into four groups, balanced across age, abllity and sex.

Task. Each group was assigned to one of four conditions: 1) Control. in which subjects were asked to imagine a table facing them. 2) Far, in which subjects were asked to imagine a countryside scene in which there is a very large field in the distance. in the centre of which there is a table facing them. 3) Medium, in which subjects were asked to imagine that they are stanaing beside a field with a table facing them in the centre of it. 4) Near. in which subjects were asked to imagine themselves in a room in whicn there is a table facing them.

The age group within each condition was seen as a class. Eublec:s were given pens and paper. they were asked to sit ouletlv, wi:h ihear eyes ciosed and the senario was describea to them. They were then asked io osen their eves and draw what they were inagining.

Results.

An analysis oi the data obtained in this study can de found in Figure $5: 4$.
Aii subtec:E deplcted the scene expected of them. Sub.tecis under conatitions 2. 3, and 4 all used the deptin cues of diminishing size with depth. heisht in picture plane and occlusion and in an appropriate manner in their scene. Four sample x^{2} examinations of the table tops between conditions. for each age group, falled to show any signifgeant differences in the number of subjects using each class of projection. (1l Years old: $\chi^{2}=14.2, \mathrm{df}=9 . \mathrm{p}>0.1: 12$ Years old: $\chi^{2}=14.4, \mathrm{df}=9, p>0.1 \mathrm{l}$ 13 Years old: $X^{2}=8.5 . d f=9 . p>0.3: 14$ Years old: $X^{2}=5.5, d f=9 . p ;$ 0.7). Although subjects are quite capable of depieting different depins of
imaginary scene there is no apparent difference in the form of projection with which they depict a table within the scene.

Nunbere ols's.	Oethegrente Vl oblleque	Oblioue	Peperstive	Round.
1:Control.				
14 Years	$0 \quad 1$	14	12	
13 Yeaps	22	40	13	
12 Years	109	30	12	
11 Years	212	29	3	1
2:Far.				
11 Years	11	13	9	
13 Years	21	31	11	
12 Yeaps	67	29	6	
11 Years	35	36	1	
3:Hediun.				
11 Years	22	12	13	
13 Yeaps	27	29	13	
12 Years	214	33	11	
11 Years	18	26	15	
4:Near.				
is Years	13	11	15	
13 Years	19	32	19	1
12 Years	28	38	12	
11 Years	15	27	12	

Eigaure 5:4. Tha nuabars of subjacts, with sge, responding in each fora of projection vnen askeo to jrav a table fron inagination unter natr. nadiun, far and control ionditions.
kolmogorov Smirnov $x^{=}$approximations were used to compare, by aţe. the number of subjects using each projection system obtained irom the :en::-0l groups with the responses obtained from subjects of the same ages in Ghapter 4. Ail the tests failed to show any significant difference in the use of projection system across conditions, though it is worth noting that the older the group the nearer the test was to significance. ill Years old: $k x^{2}=0.46, d f=2, p \geqslant 0.05 . \quad 12$ Years old: $k x^{2}=0.74, d f=2$. p > 0.05. 13 Years old: $K \chi^{2}=4.2, d f=2, p>0.05$. 14 Years old: $k x^{2}=$ 5.3. $d f=2, p>0.05)$.

Discussion.
drawings significantly if the relationship between the table and the background is made more salient. The backgrounds used in this study were drawn accurately according to the conditions of the task, but the form of projection used for the drawing of the table was unaffected by this. This supports the findings of the previous study that increasing the salience of the background has no effect upon the form of projection used. It also extends these findings by showing that they hold even when the table is drawn in the far distance and the vast majority of the depiction is dedicated to drawing the scene around the table.

Encouraging subjects to spend some time visualising the scene before drawing it does not appear to increase the specification of view, as measured by the way in which the table is depicted. Although subjects produced detailed scenes, using the depth cues of height in the picture plane, diminishing size with distance and partial occlusion, they did $s 0$ in a view centred rather than a view specific way.

Finally this study showed that whilst the tasks of drawing from observation and imagination gave differing results in terms of the position of the subject's viewpoint, the position of viewpoint was not sufficient to account for the task dependency found earlier. Subjects used the same form of projection when drawing from imagination, whether using an unspecified viewpoint or when asked to use a central viewpoint.

General discussion.

The studies presented in this chapter investigate the task dependency found in the way in which in older children use projection systems. When subjects drew a table from imagination they used oblique projection, yet they used perspective when drawing from observation. It was hypothesised that the two tasks differ in a variety of respects, each of which might have contributed to the task dependency. It could be that oblique projection is an easier system to use than perspective, and that drawing from imagination is a harder task than drawing from observation, leading to the subjects using the 'easier' system. However both studies $5: 1$ and $5: 2$ suggest that this is not the case. These studies showed that the majority of both artists and subjects who were known to be able to draw in perspective still drew a table from imagination in oblique perspective.

Study 5:2 also investigated the possibility that drawing from observation somehow calls to mind the subject's knowledge of perspective. It was suggested that the subject might have previously learnt that when drawing from observation one uses perspective, and so he or she thinks in terms of perspective when presented with an observation task, but is less likely to do so when asked to draw from imagination. However it was found that the majority of subjects still used oblique projection when drawing a table from imagination, even after having just completed intensive training in using perspective when drawing from imagination.

It was suggested in the introduction that task dependency might be related to salience of background and position of the viewpoint. However both studies 5:3 and 5:4 indicated that increasing the salience of background, whether drawing from observation or imagination, has little effect upon the forms of projection used. Study 5:4 also showed that
position of viewpoint did not account for the task dependency found.
Studies 5:3 and 5:4 indicated that even when subjects were asked
to draw the object as part of a scene they still drew it as a separate object within the scene, rather than as a collection of lines that contributed to the scene as a whole. For example, in Study 5:3 there was no difference, as measured by the degrees of convergence used by subjects, between the way in which a table was drawn from observation 'normally' and the way in which it was drawn under conditions which emphasised the background. Similarly, in Study 5:4 the table was drawn in a view centred way regardless of the imagined distance from the viewer. These points suggest that there might be another factor underlying the task dependency found in the previous chapter that ties in with the points made about view centred as opposed to view specific representation in Chapters 1 and 2.

It is possible that because we perceive a table in an object centred way we also attempt to draw it in this way. We might be able to perceive and imagine detalled backgrounds, but the importance of figure/ground separation might limit the extent to which these backgrounds impinge upon the way in which we understand the task of drawing the object. We might be able to draw a table in either oblique projection or perspective but because we think of the table in an object centred way we normally use a view centred depiction (oblique) with which to represent it, and the need for a view specific depiction is low on our list of priorities. It may be drawing from observation emphasises the need for a view specific depiction sufficiently to encourage some of us to attempt to draw in perspective. It is, however, worth remembering here that no subjects produced an accurate view specific depiction under any of the experimental conditions. Possibly the perceived need for a view specific depiction might not be linked to aspects of the way in which the object itself is perceived when observing it (ie. sallence of background) but may
be linked to the perception of the task. In other words it is the task of having to draw the table as it is seen that emphasises the need for a visually realistic depiction.

These speculations are included here as one possible way in which the task dependency found earller and the findings reported in this chapter can be accounted for. They need to be examined in more detail. however, before they can be accepted or rejected. They assume that a table in oblique projection is the schematic description preferred by most subjects. Chapters 7 and 8 address this assumption directly. Before this, however, it is necessary to examine in detail the manner in which the representation of depth in table drawing develops. Without this knowledge it would be difficult to evaluate studies in the later chapters. The following chapter concentrates on ways in which the representation of depth in the depiction of a table develops independent of the task.

CONTENTS OF CHAPTER 6. Classification of Table Drawings and the Use of Depth Cues.

Summary. 6. 1
Introduction. 6. 2
A) CLASSIFICATION OF TABLE DRAWINGS. 6. 3
B) COMPARISON OF AGE PROFILES. 6. 8

- Development that is independent of task. 6.13
C) DEVELOPMENT IN THE DEPICTION OF DEPTH. 6.16
- Figural Blases. 6.16
* Depth Cues. 6.18
D) THE RELATIONSHIP BETWEEN PROJECTION SYSTEMS AND DEPTH CUES. 6.25
E) CONCLUSIONS. 6.28

Chepter 6.

Classification of Table Drawings and the Use of Depth Cues.

Sunmary.
This chapter presents an analysis of the data obtained when a table was drawn from imagination or from observation, classified both in terms of the projection system used and in terms of the way in which the table legs are depicted. It is argued that when these two methods of classification are used together they give an indication of the way in which depth cues are used and it is shown that an analysis of this gives a measure of development that is stable across both similar and dissimilar tasks. It is suggested that this method of classification has both psychological and theoretical validity, and is a better measure of development in the representation of depth than is one based directly upon the use of projection systems.

Enlarged versions of Figures 6:1 to $6: 8$ can be found in the appendices to this chapter.

Introduction.

Previous chapters have shown that there is task dependency in the use of projection systems, and that because of this they are not a particularly reliable measure to use in order to examine general development in the depiction of depth. For example, the studies reported earlier indicate that it is unwise to assume that when children and adults do not use a more advanced form of projection system it is because they are unable to use 1t, and, conversely, that when children and adults do use an advanced form of projection they fully understand it.

It was also found that there are aspects of development in the drawing of a table that are independent of task. This chapter examines these in more detail. but before that can be done it is necessary to cevelop a formal system of classification that removes, as far as possible. the subjective elements associated with the analvsis of drawings.

The need for a lack of subjectivity was discussed earifer. It was suggested that ascertaining exactly what the subject meant to depict is a general problem with most young children's drawings. It was also suggested that a system of classification needs to be developed prior to the formation of links between a theoretical stance and the empirical evidence.

This chapter presents such a system of classification for the drawing of tables. The classification system is then applied to the empirical evidence and developmental trends that are independent of task are identified. The problems of interpretation are addressed, but the effects of individual differences are minimised by the use of a large subject pool. Some aspects of this chapter are complex and a lot of material has been placed in appendices in order to avoid burying the main results in a mass of detail.

A) CLASSIFICATION OF TABLE DRAWINGS.

The following method of classification makes use of the way in which table legs are drawn. A drawing of a table top on its own cannot indicate the use of occlusion, and it was shown in Chapter 3 that when the use of diminishing size with distance is examined it is important to include an analysis of the way in which the legs are drawn. The proposed method of classification has no integral developmental implications, but will be used later to examine developmental trends.

The drawings are initially classified according to the form of prciection in which the table tops are represented. This has been fully expisined in Chapters 3 and 4. Each drawing is then classified according i: :ne number. lengin. and relative positions of the legs, and whether the sutiect failed to use hicden line elimination. In this way a grid of cells :s iorimed with pyet of table top along one axis and type of table legs 3:-: the other. This can be seen in Figure 6:1.

This methce at ciassiiteation has been used on ald the data =-esenied in this thests. It has only been found to be inapplicable to six =-3iings. Instiaily ali possible combinations of line were considered. but \therefore biss iound that manv ceils in the grid were not fllled. Emp:y rows in :-: grid have not been inciudes for simplicity.

Twe sajor sets of data are examined in this chapier. These were grovided by 789 subjects. with ages ranging from 4 to 15 years, who drew a table from observation. and 4056 subjects, from 2 to 53 years of age, who drew a table from imagination. These data were initially presented in Chapters 3 and 4 respect!vely, and are detalled in Appendices 6:A and E:B. Fizure $6: 2$ summarises the data according to the classification set out above. The numbers in each cell are divided into three columns. The first anc secend columns detall responses for the observation task and imaginaticn tasix respectively. The third column is the total response for
Figure 6：1．A classification systan for table óravinys．

妾 ．

 $\therefore A B A B A B A$

 ！A 居 A 回

 $\stackrel{1}{2}$

that cell formed by amalgamating the responses for both tasks. In each column the first row gives the responses in that cell as a percentage of total responses for the task (observation, imagination or amalgamated), the second gives the mean age of subjects giving that response and the last gives the standard deviation of these ages.

Deriving percentage, mean age and standard deviation figures for each cell is quite complex because of the differing number of subjects in each age group and for each task. It is for this reason that the data are presented in two ways: in Appendices $6: A, 6: B$, and $6: C$ they are presented as a percentage of the grand total for each task and in Appendices 6:D, 6:E, and 6:F as a percentage for each year, for each task. In order to give an overall view the numbers in Figure 6:2 use the proportions of responses accounted for by each cell, for each task over all age groups. The figures to the right hand side of each illustration refer to the depth cues used in each illustration and are discussed in detail later in the chapter.

Whilst summarising the data this figure does not show the age profiles for each cell. For example, subjects in both tasks might have responded in a particular cell, and the mean ages for both tasks might be similar, but the age profiles and standard deviations might vary widely. It is important to pick up on this because it might imply that the responses in that particular cell had been driven by different, task related, cognitive processes. For example, if we look at cell la we can see that 6.6% of subjects drew in this way from observation, and 13% from imagination. The mean ages were 6.5 and 7.5 respectively. However, we cannot, from these, fudge what the age profiles might be. It might be that a small percentage of all subjects at all ages use this form of depiction when drawing from observation, whereas when drawing from imagination only

Figure 6:2. Classification of data discussed in this chapter. Soe text for details,

indication of development. If the age profiles of $1 a$ and $1 b$ are very similar we can conclude that subjects use these two methods of depiction as alternatives. Using this we can examine the degree of similarity between each type of depiction, and so construct a dendrogram of the closeness of similarity of the age profiles of the cells. which in turn will provide information about development. Thus development in use of each form of depiction, on each task, will be analysed by comparing the age profiles. by task, for each cell. A series of Kolmogorov-Smirnov two sample analyses were used to construct a dendrogram for each task. in order to do ihis the age profile of every cell was compared with that of all the others. then the two cells with the swallest maximum difference thence the greatest similarity of profile) were amalgamated and the process was repeated until a hierarchicai smallest maximum difference had been ostadnec for ail the cells within the data. The resuitirg dendrograms are eomeiax and are given. alona with the information necessary for their cons:rustion. in Appendix 6:D (Observation datal anc 6:E (Imagination jata). Emaisises versions based only on ceils whicn account for 0.5% or more of the :c:0: response for each task are also given in these appendices.

The order in which the cells in a pair cor iriplet, etc.) first enter the dencrogran is random. This orcer was adfusted so that it was common over the two tasks. There are seventeen cells which each account for more than 0.5% of the task total and which are common to both tasks. The order in which these cells occur in the dendrogram. after the minor harmonisation of the dendrograms mentioned above, can be compared statistically. Each cell was ranked according to its constralned position in the dendrogram. The correlation between the rank orders is highly significant $(r=0.99, d f=15, p>0.001)$. The correlation is absoiute if ceils accounting for more than 1% of the task total are compared. This implies that wailst there are task related differences the overall pattern
of development in the types of tables produced varies little across the two tasks. This is perhaps best explained with a practical example. If we examine the 3 h response we can see that the percentage of the total for observation and imagination are 6% and 14% respectively, the mean ages are 12 and 14 respectively, and the standard deviations are 1.5 and 6 respectively. The difference between the age profiles for this form of depiction on the two tasks is significant at the 0.01 level. The position of this form of depiction is, however, very similar in both dendrograms. The task might affect the number of responses, and the age at which these responses occur, but it also affects all the other forms of response in a similar way. The relationship between one form of response and another is generally undisturbed.

The dendrograms do not make this point particularly clearly, as they are hard to comprehend without detailed examination. They suffer from a further drawback in that a cell accounting for only 0.5% of the data is given equal weighting to one accounting for 15% of the data. Such problems can be partially overcome by presenting the data in the form of a Venn diagram, containing only one axis, in which the degree of preference is roughly reflected by the size of the illustration for that cell. The information given in Appendices $6: B$ and $6: C$ is given in the form of Venn diagrams in Figures $6: 3$ to 6:6. Whilst this is more helpful conceptually, accurate references must be taken from the dendrograms.

A comparison of Figures $6: 3$ to $6: 6$ shows that whilst the range of responses obtained when a table is drawn from imagination is wider than that obtained when a table is drawn from observation the overall pattern of development in the two tasks appears similar. There appears to be little difference between Figures $6: 3$ and $6: 4$, the large and small Venn diagrams for the observation task. There is, however, interesting variation between Figures $6: 5$ and $6: 6$, the large and small Venn diagrams

Indication of development. If the age proflles of $1 a$ and $i b$ are very similar we can conclude that subjects use these two methods of depiction as alternatives. Using this we can examine the degree of similarity between each type of depiction, and so construct a dendrogram of the closeness of similarity of the age profiles of the cells. which in turn will provide information about development. Thus development in use of each form of deptetion, on each task, wlll be analysed by comparing the age profiles. by task, for each cell. A series of Kolmogorov-Smirnov two sample analyses were used to construct a dendrogram for each task. In order to do ihis the age profile of every cell was compared with that of all the others. then the two cells with the smallest maximum difference thence the greatest similarity of profile) were amalgamated and the process was repeated until a hierarchicai smallest maximum difference had been ojtainec for all the cells within the data. The resuiting dendrograms are comeiex ard are given. along with the information necessary for their construction. in Appendix 6:0 (Observaiton datar and 5:E Imagination data). Em=is:1きさ versions based only on ceils whicn account for 0.5% or more oi : he :c:a: response for each task are also given in these appendices.

The order in which the cells in a pair (or triplet. etc.i first enter the dencrogran is random. This orcer was adiusted so that it was common over the two tasks. There are seventeen cells which each account for more than 0.5% of the task total and which are common to both tasik. The order in winich these cells occur in the dendrogram. after the minor harmonisation of the dendrograms mentioned above, can be compared statistically. Each cell was ranked according to its consiralned position in the cendrogram. The correlation between the rank orders is highly significant $(r=0.99$. $d f=15, p$) 0.001). The correlation is absolute if ceils accounting for more than 1% of the task total are compared. This implies that wailst there are task related differences the overall pattern
of development in the types of tables produced varies little across the two tasks. This is perhaps best explained with a practical example. If we examine the 3 h response we can see that the percentage of the total for observation and imagination are 6% and 14% respectively, the mean ages are 12 and 14 respectively, and the standard deviations are 1.5 and 6 respectively. The difference between the age profiles for this form of depiction on the two tasks is significant at the 0.01 level. The position of this form of depiction is, however, very similar in both dendrograms. The task might affect the number of responses, and the age at which these responses occur, but it also affects all the other forms of response in a similar way. The relationship between one form of response and another is generally undisturbed.

The dendrograms do not make this point particularly clearly, as they are hard to comprehend without detailed examination. They suffer from a further drawback in that a cell accounting for only 0.5% of the data is given equal weighting to one accounting for 15% of the data. Such problems can be partially overcome by presenting the data in the form of a Venn diagram, containing only one axis, in which the degree of preference is roughly reflected by the size of the illustration for that cell. The information given in Appendices $6: B$ and $6: C$ is given in the form of Venn diagrams in Figures 6:3 to 6:6. Whilst this is more helpful conceptually, accurate references must be taken from the dendrograms.

A comparison of Figures $6: 3$ to $6: 6$ shows that whilst the range of responses obtained when a table is drawn from Imagination is wider than that obtained when a table is drawn from observation the overall pattern of development in the two tasks appears similar. There appears to be little difference between Figures 6:3 and 6:4, the large and small Venn diagrams for the observation task. There is, however, interesting variation between Figures 6:5 and 6:6, the large and small Venn diagrams

Figure 6:3. Details of densrogras for cells accountang for asere than 0.58 of all tables drawn frou observation.

Figure 6:6. Datails of dendrogran for all tables dravn from inagination,

Figure 6:5. Details of dendrogran for cells aciounting for more than 0.5\% of all tables dramn fron insginstion.
for the imagination task. Figure 6:6 is formed from all the tables drawn from imagination. The inclusion of the cells that account for less than 0.5% of the data is sufficient to alter the form of the dendrogram such that some changes occur in the groupings of the cells with mean ages of about six years old and nine years old. It is possible that the table types represented by these cells are marginal, indicating a transition in development from one major group of depictions to another.

Development that is independent of task.
Minor task related differences have already been pariaily addressed and will be returned to later, but the present analysis is best servec by an examination of common developmental trends. The great simiarisy between the dendrograms it the age profiles of asen :ell. whether crawn fre:. observation or imagination. shows that iths methed of
 depencency. whits: the overall combinations of suen responses de not. for this reasc: it was ielt that an amagamaticn of the two sets of data would sirengthen the argument. Development. as shown by the denerograms. wouit rot be affectec. whilst the task depencent aspects of the response would te iessened by such amalgamation. Therefore, the remainder of the chapter concentrates on analyses of the amalgamated data.

Figure 6:7 gives a redused version of a Venn diagram of the amalgamated data. in which are represented table types accounting for greater than or equal to 0.5% of the total. Figure $6: 8$ gives the full version. The corresponding dendrograms and information upon which these are based can be found in Appendix 6:F.

Chapter 4 showed that the way in which table tops were depicted developed. indepencently of task. from orthogonal to non-orthogonal systems of natural perspective. Figures 6:7 and 6:8 show that inis development is

also apparent when the table drawings are classified independently of the way in which the table tops are drawn, the groups having been identified by age proflles derived from each individual cell of the classification table.

The ways in which the tables were drawn fall into three clear groups. The majority of the tables in the first group, the group containing the youngest children. could be classed as volumetric. The majority of the middle group could be classed as orthogonal, and the majority of the group containing the oldest subjects could be classed as nen-orihogonal (Labelled A. B. and C. respectively in Figure 6:7). There appars to be no support for a theory suggesting development is adrectly related to the use of more complex projection systems. going through erthograpinic, verifal oblique. oblique. to perspective las discussed in :hapter 3).

In esc:- of the three major grocips there appear to be sub-groups \therefore witct 'anit-way' taole types are represented. It is possible that these are :inks in the deveiocmental chain. Althougn most closely associated with sine pariteuiar group because of similartites in the age profiles. thev echiatn ieatures from both groups. Group C:1 is a clear illustration of tris - here the :able tops appear to be in orthogonal prolectien. yet the iabie jegs are drawn in a non-orthogonal manner. This lack of consistency could indicate attempts 10 grasp a different form of depiction, and, as has already been suggested. the imagination data indicates a lack of clarity for some cells with mean ages of about sik and nine years of age.

There is clear empirical evidence of developmental trends. but what is developing is unclear. Development does not appear to be linked to an increase in understanding of, or abillty to produce, more complex grojection systems. It does appear to be linked to a progression ithrough voitzetric. orthozonai. to non-orthogonal sustems of natural perspective.

Such a descriptive account of what happens, however, takes us no nearer to the causes of this development.
C) DEVELOPMENT IN THE DEPICTION OF DEPTH.

In Chapter 1 it was suggested that there are four main types of theories that attempt to explain what the causes of development in the depiction of depth are. Theories involving stages in the understanding of space and theories involving visual realism both presuppose that view specific depiction is the end point of development. This has been shown in earifer chapters not to be the case, and so these theories will not be ciscussed further. The other two types of theory are related to conceptuai/perceptual realism and production errors. Both assume :hat the child knows what he or she wishes to represent, and that the desired representation includes information about the spatial relationships between par:s of the eblect and between the oblect and its surrounding space, but that the chid is unable to represent this information accurateiy for some reason. Those theories relating to figural biases, particularly the role of svmmetry, will only be discussed briefly here because they will be addressed more fuily in Chapter 9.

Figural Biases.
These theories relate the subject's inability to represent the objec: as he or she wishes, to biases that are not seen as an integral part of spatial representation, but are seen to come into play whenever pen is set to paper. Two main figural biases that are relevant to table drawing are those towards symmetry and towards the use of right angles. In its pure form the assumption 15 that children understand depth cues but are prevented from using them because of these biases. For example. Mitcheimore (1985) suggests that children have available two primitives for analysing direction, namely parallels and perpendiculars. The young
child's production is very largely based on the use of perpendiculars. Two possible reasons he gives for this are, firstly, the greater saliency of a proximal relation obtained when two lines meet over that of a distal relation when two lines are parallel. Secondly, he points out that the desire to create symmetry is an important force in a child's drawing (Bremner 1985b), and that perpendiculars imply a greater degree of symmetry than do parallel lines. He suggests that these effects diminish with age but are silll discernible in older children and adults, and ihat it is not until middle or late childhood that parallels are used efiectively.

Mitcnelmore's suggestion that a reliance upon perpenaicuiars grasuaily develops into a reliance upon parallels ties in with the data presented in Chapter 4 in three important ways. Firstly. this is similar :c deveicement away from the use of orthogonal corthographicivertisalsbiteve, to the use of efther affane coblioue) or proteritie ifalse sersjective), cepencing upon the nature of the task. Serondly the ceve:oment illustrated in these data occurs at the same age as tha: suagestec by Matcneimore. Finslly, the gradual nature of the develcpment foriot here is cioseif related to that suggested by Mitchelmore. Such a shif: away ircm a reliance upon the use oi rignt angles can be seen clearly here. Young children do use right angles, both when depicting table tops and table legs. whilst older children use more oblique angles. However. the data given here show more than this. The shlft away from the use of right angles is not uniform. The subject may use right angles when drawing the table top, yet use oblique angles to depict the relationship between the top and the legs. Examples of this can be found in Group C in Figure 6:7. Cells 2l, 2h. 2e, and 2 g . In these cases the subject appears capable of using oblique/acute angles. but for some reason does not wish to when representing the table top. The converse of this. in which
oblique/acute angles are used for the top and right angies for the legs. is shown in Cell $3 q$ and in Figure 6:8. These counter examples suggest that development in depiction is not entirely related to the ability to overcome these figural biases.

Depth Cues.

The other type of theory relates the inability to represent spatial information accurately to lack of understanding about how to use depth cues. The important depth cues under discussion here are those mentioned in Chapter 2. height in picture plane, occlusion, and diminishing size with distance. In its pure form the assumption is that once children understand the operation of depth cues they will use them, uninindered by Figurai biases. Reflection indicates that the child's ability to represent spatial relationships is probably partially described to a greater or lesser extent by a mixture of both types of theory,but this section of the chapier relates the data directly to the developing use of cepth eles.

Figure 6:9. The tharstical relationshio between depth cues and projection sustens.

Theoretically the use of a particular projection system and the use of various depth cues co-vary and it is difficult to disentangle the two. Figure 6:9 illustrates the only combinations that would be considered
correct if we were to assume that a subject was using a particular form of projection accurately. Even this simple analysis poses problems. Unseen hidden line elimination is consistent with the orthographic. veritical oblique and round forms of projection, althougn subjects who use these forms of depiction could also be using undetected occlusion. We can perhaps assume that this is not the case when subjects produce table top type 8 , in which the top is drawn in vertical oblique projection, but objects on the table are depicted as if on the top edge, as if in orthographic projection.

The use of dimirishing size with distance is also a grey area. Theoretically, a table drawn in linear perspective, whether drawn from centre front or from a corner, entalls the use of diminishing size with distance. Empirically, as shown in Chapter 3, no subject used diminishing size with distance with internal consistency.

The argument that the use of projection systems and depth cues canror be studied separately because of their co-variance is indead valid if one assumes that drawings are internaliv consistent. Pracisaily, as can be seen in Figure 6:2. subjects do not use a form of provection corsistently. Most combinations of table tops and table legs are possibie anc many are procuced. The possibility of a minor degree of co-variance is discussed later, but for the purposes of the present discussion the use of different depth cues is assumed to be independent of the use of projection systems.

Each Cell in Figure 6:2 contains a rating for height in picture plane (H), partial occlusion (O), and diminishing size with distance (D). These are based upon the way in which the table legs are drawn. The depin cue of height in picture plane was divided into four caiegories, namely:- no ground line (H1), plan view (H2), ground line (H3), and ground plane (H4). In the first category inl) the table legs are drawn as
radiating from the table top, with no apparent attempt made to depict the table's relationship to the ground. A subsection of this is the plan view (H2). In this type of drawing the table is shown as from above, with four legs, one extending from each corner. It is here that the classification system is at its weakest, because it is assumed that this form of drawing represents a coherent attempt to represent the table from above, and that the subject is not particularly concerned with showing the spatiai relationship between the top of the table and the legs. This assumption is partially justified by comments that adults have made when drawing a table in this way, and by the lack of drawings done in this manner with a vertical oblique table top and with objects along the top edge. indeed. any table with sbjects which was classified as showing a plan view depicted the oblects also in plan view. However, this category contains an element of interpretation of the subject's intentions, and probabiy this is an fnccrect interpretation in some cases.

Tables classed as having a ground ine (H3) were drawn with the table legs descending to a common line, as if all legs, whether from the front or the back of the table. met the ground on a single line. When the table legs appeared to meet the ground on a plane, mirroring that of the iable top. the drawing was classed as showing a ground plane (i4). Several types of table drawing cannot easily be categorised in this way. For example. $2 q$ and $2 y$ on Figure $6: 2$ show tables in which the legs are not drawn consistently. In such cases the drawing is ciassified according to the position of the majority of the table legs. or to the inferred use of height in picture plane. It is thus the figure in brackets that is the one used in this analysis (H4 and H 2 respectively). Similarly, it is possible that in those tables in which only the front two legs are drawn for example la or $2 a$ in Figure 6:2) the child actually intended to represent a ground plane. Unfortunately. the child's intentions cannot be accounted
for．and so the table must be classified as it appears，ie．With ground line only．

The depth cue of occlusion was divided into three categories，no occlusion（01），lack of hidden line elimination（O2），or partial occlusion （03）．The drawing was placed in the third category if any part of it was partially occluded．If part of the table was totally occluded it could not be seen，and，as above．the table had to be classified as it appeared．It is．therefore，possible that the intention of some subjects was to depict to：al occlusion．and that this has not been accounted for．As above．the idgure in the brackets indicates the classification used in this analysis．

Diminishing size with distance was identified as a depth cue دariser when a table was drawn in perspective．However，as discussed then． ． 5 subject used this depth cue when drawing the table legs，and no subiect －ie＝sblicue perspec：ive on the table top in either study．Hence，although －зここє ：cos were somettmes drawn in perspective．the system was never used ：\％：he wiole table．It is thus not possible to escertaln the use of ：5－：：nisiang siae with distance as a depth cue by examination of the way in $\because: .:=2$ the rabie legs are drawn．For the purpose of this analysis data on －：．e use of diminishing size with distance were derived from the use of E＝－ミミectave on the taole toes and thus do not represent full use of the $\because \in$

A full breakdown of percentage of total data，number of sublects． mear age and standard deviation for depth cue classification by form of prciection can be found in Appendix 6：G．along with progressively amalgamated summaries of this information．

Figure 6：10 shows the development，with age．of the way in which dep：h cues are used．It can be seen that the use of ground line peaks at sbout six years of age．whilst the use of ground plane and partial sesiosion rise steadily between six and twelve years of age．The use of
no ground line incorporates that of plan view. It appears to drop rapidly between three and five years of age and then be used by about four percent of subjects unt1l about nine years of age.

Eigure i : io. Proporitons, vith age, of the use of depoth iues.

Thare are :ask related differences in the no ground ine response. It oniy accounts for 0.61% of the observation data, yet accounts for 8.74% of the imagination data. Because of this it is difficult to compare its use across the two tasks. Figure 6:11 separates the response on the imagination task into the two groups of H 1 and H 2 . They appear to present two different profiles with age. The first profile given by Cells 50. 60. 90. 5r. 6r, and 2v) accounts for 5.34\% of the total imagination data and has a mean age of 3.4 years. It drops rapidly from 51% of the three year old responses to 1% at six years old. The second profile given by Cells $2 t$. 2 x .5 x and 20) accounts for 2.12% of the total imagination data and has a mean age of 6.0 years. This has two separate peaks at four and eight
years of age. It is suggested that the two profiles indicate different types of response. The first profile appears to show more of a volumetric response. Whist this might also hold for the peak at four years of age in the second profile it is possible that the second peak in the second profile indicates that subjects intended to depict a plan view of a table. rather than a visually realistic view. This is supported by the observation. recorded earlier, that some adults reported dellberately responding in this manner.

Figure 6:1: empiasises the task related differences in the no Er: fre inge response. The sublect sample of observation started at four rears old and. because the mafority of no ground line resDonses are mace 5: : ine very young enildren. it might be expected that observation would elic:s less of these responses than imagination. The responses that were P:: $:$:ied occurred ir Cell 20 . In the imagination task this cell has a two pati profile. The second (plan view) peak is missing when a table is $=$ =3wn from observation. It would be inappropriate to draw conclusions :com inis because of the very smail numbers involved, but it would appear
that drawing from observation restricted subjects sufficiently to prevent them producing plan views.

Eigu: : i2. Cunulathe prosortions, with age of the use of depth iuse.

Chapter 4 showed that there is very little task related difference \therefore :. :he use of projection systems until about ien years of age. An Enamination of the way in which the table legs are drawn might give evicence for task related differences in the no ground line response. Avwever, when the other depth cues are considered there does appear to be a strong overall similarity between the two studies (Ground.ine :- $\chi^{2}=$ 16.4, $\mathrm{df}=10 . \mathrm{p}>0.05: \mathrm{r}=0.93 . \mathrm{p}<0.001$. Ground plane :- $\chi^{2}=12.7$. df $=9 . p>0.1 ; r=0.96 . p<0.001$. Partial occlusion $:-\chi^{2}=6.4, d f=9, p$ > 0.5: $r=0.98, p<0.001 \%$ Diminishing size with distance cannot legitimately be compared for the reasons given earlier.

Figure 6.12 illustrates the cumulative totals of the depth cues under discussion. It can be seen that by six years of age 50% of the
subject population use ground line and by about twelve years of age 50% use a ground plane, partial occlusion and 'false' diminishing size with distance. The development of ground plane and partial occlusion are very highly correlated $\left(x^{2}=0.26, d f=11 . p>0.99 ; r=1, p<0.001\right)$ yet. as can be seen in Figure 6.13. If a subject only uses one of these depth eues they are more likely to use ground plane than partial occlusion. 6.72% of all responses involved ground plane with no partial occlusion. whereas the reverse only accounted for 0.85% of all responses. That 15 , in these s:ud!es. ground plane appears to be used alone more frequently than does gariisl ocsiusion. It is possible that this is because the use of ground ciarie deveiops marginally before the use of partial occlusion.

D) THE RELATIONSHIP BETWEEN PROSECTION SYSTEMS AND DEPTH CUES.

In Chapter 4 common developmental trends were identified between ine drawing of a tabie from observation or from imagination. The drawing of table teps appeared to progress from the system of orthogonal natural parseective iorthograpnic and vertical oblique proiection) to those of aitine anc projective systems of natural perspective coblique and perspective). What was actually developing was unclear, but it was
suggested that development might be related to a shift away from the use of right angles. Consideration of the way in which the table legs are drawn suggests that this is not the whole story. Figure 6:14 indicates that this shift in use of form of projection is very similar to the changing use of particular depth cues. Lack of ground plane correlates

A-z.ilv with the use of round. orthograpinic, and vertical oblique table tops ir $=1.99 . p(0.001)$, and the use of ground plane and occlusion correlates iignly with oval, oblic̣ue. and perspective table tops (ground plane:- $r=$ $0.93, \mathrm{D}<0.001 ;$ partial occlusion:-r$r=0.98, p<0.001$. This demonstrates a strong relationship between the use of depth cues and the class of profection used. Superficialiy this relationship could be seen as a byprocuct of experimental design, in which a 'higher' depth cue cannot be produced until a 'higher' class of projection is also used. Empirically. this coes not appear to be the case. Figure $6: 15$ illustrates that where
there is a mismatch between the complexity of the depth cues used and the class of projection it was almost universally the case that the depth cues used were more complex than the projection system. From this it can be seen that depth cues may lead to the use of projection systems, but not the reverse.

 greri:i:y sustass

The tasks Eiven here do ingit the use of particular depth cues in :3:": :ijar instances. For example, there appears to be ilttle incentive to $\therefore \equiv$:iminishtrg size with distance when drawing from imagination, or to :se $:=$ grcund in e with a zlan view when drawing a table from observation. Ect.: :hese examples were only produced by a few subjects. Given these :sm:iations. it is suggested that when the use of depth cues is analysed on iwo similar tasks development in the production of each depth cue appears to be independent of task constraints. Further, development in the use oi depth cues appears to occur before development in the use of more complex profection systems.

The general validity of these findings would be enhanced if they were founc to be appiscable to less similar tasks. In Willats (1977a) measured the use of paritai occlusion by counting the number of overlaps
used when objects were drawn upon a table top. The developing use of partial occlusion was thus ascertained in a way dissimilar to that used here. When the frequency with age profile for partial occlusion obtained by Willats is compared with that given here a $\chi^{=}$test falls to find any significant differences between them $\left(\chi^{2}=12.08, \mathrm{df}=8, \mathrm{p}\right) 0.1 ; \mathrm{r}=0.91$. p (0.001). Cox (1981) measured the developing use of partial occlusion by asking children to draw two objects, one behind the other. Although her subjects demonstrated the use of partial occlusion at an earlier age than that reported here there is still a significant correlation between the irequency with age proille that she obtained and that given here ir $=$ 0.91. $p: 0.01$. To conclude, these comparisons show that there is a common underlying development in the use oi partial occiusion. as measured between objects as well as within an object. An interesting line of furiner research would be to investigate whether there is a similar =ommorailty in the use of height in the picture piane.
E) CONCLUSIONS.

In this chapter it has been shown that there is clear deveiopment \therefore it the use of deptin cues. Further, it has been shown that the use ci depth cues is musi iess task depencent than the wse of a particular protection system. It has been suggested that this development is independent of the use of projection systems and orecedes it. This imples that a child does not normally use a particuiar protection system until it understands the necessary depth cues.

These findings are relevant to the teaching of profection systems. and perspective in particular. It is possible that subjects couid be taught to use a more complex form of projection without understanding it. For example. children can be tsught to draw a particuiar obiect in perspective by rote, but although the basic inoory behine ilnear
perspective is simple it is notoriously difficult to teach to young children, and they find it difficult to transfer this knowledge to the drawing of other objects or scenes. These findings suggest that those children who fail to grasp the principles of more complex forms of projection might lack an understanding of the underlying depth cues. This indicates that training should be aimed, initially, at the use of depth cues rather than the more formal use of projection systems. This would appear to be a fertile area for further investigation.

CONTENTS OF CHAPTER 7.

 Preference in representation of tables.Summary. 7. 1
Introduction. 7. 2
STUDY 7:1.
Preference for table type related to form of question. 7. 5

- Method. 7. 5
* Results. 7. 8
* Form of Question. 7.13
* Development in Preference. 7.16
- Discussion. 7.19
STUDY 7:2.
Preference for table type related to degree of shading. 7.23
- Introduction. 7.23
- Method. 7.24
* Results. 7.25
* Discussion. 7.28
STUDY 7:3.
Preference for table type in relation to a background in linear perspective. 7.30
* Method. 7.30
- Results. 7.31
- Discussion. 7.34
STUDY 7:4.
Preference for table type when comparing the stimulus with a real table. 7.36
- Method. 7.36
- Results. 7.38
- Discussion. 7.42
GENERAL DISCUSSION. 7.45

Chapter 7 .

Preference for different types of depiction.

Summary.

It has been shown that even adults frequently do not draw a table in perspective, and that the majority use visually unrealistic oblique profection when given a task with few constraints. Development in the depiction of a table appears to be closely related to development in the use of depth cues. It is unclear whether children draw in the way that they do because they are constrained by an inability to use more complex depin cues, or because they actually prefer tables drawn in this way.

This chapter examines the form of depiction that subjects orefer. The first study looks at the preferences shown by a full cross section of subiects and the effect that the way in winch the question is worded has upon this. It is found that the majority of subjects, of all ages. prefer a aioie in some form of oblique projection, and that the wording of the question has a small effect upon the responses made by younger cinidren. The preterence shown by some younger children for tables depictea in a less complex manner is ciscussed.

The following two studies examine the preferrea form of depiction when depth cues within the drawing are accentuated. The final study looks at the preferred form of representation of a given table, placed in front of a subject. It is found that some form of obliaue proiection is preierred in all cases, even when visual realism is highlighted. The preferred form of oblique projection is discussed in relation to the idea of a canonical table.

Introduction.
Linear perspective is a projection system that closely approximates to how we see objects and is easy to use once the rules are grasped. Some researchers have argued, to a greater or lesser extent, that this is the form of projection used by adults, and that children would also use it if they were 'mature' enough. This view holds many assumptions that merit closer examination. The first. that linear perspective is the form of projection commonly used by adults, is belied by empirical evidence. The previous chapters have shown that the use of Iinear perspective by adults is task dependent.

It could be argued that adults would actually prefer to draw in Itnear perspective, but are constrained from doing so for some reason. However. Hagen and Elliot (1976) presented adults and children with a :cmputer generated range of ine drawings of regular solids. illustrated in ihsater 1. Figure $1: 3$. The stimuli differed in the degree of convergence Eiown, and it was found that objects portrayed in oblique projection were Friterrec to those drawn in linear perspective. Hagen and Jones (1978) -Ef:ated this experiment, and found that four year old children performea a: enance levei. They suggested that this might be caused by the il:itsulty young cinildren have in interpreting pictorial depth.

The Hagen and Elliot (1976) study is repeated here, in a higniy modified form applicable to drawings of tables, in order to clarify whether the strong preference for oblique projection shown by older children and adults holds in the present experimental conditions.

Any discussion relating the form of depiction preferred by a subject to the way in which that person draws immediately becomes entangled in the assumption that subjects would prefer to produce that form of depiction when drawing. The relationship between a subject's preierence and their actual production is discussed more fully in the
following chapters. For the purposes of the present discussion it will be assumed that preference does indicate a desire to produce that particular form.

The second quesiion addressed in this seciion is whether the wording of the question does indeed affect the answer. and if so, how. This is because it is not very clear what is meant by 'preference'. Sublects may well think that the depiction of a table looks most artistic in one form. carrying with it personal value judgements about what 'aristic' 15 . but that another form of depiciion is a much betier reeresen:ation of the :able's 'tableness' Hence the way in which subiects an:eroret the question of which table they 'preier' may wei: affect the answer. if so. this has imolications for the assumption that the sublect's greiteres fors: of depiction is uncnanging.

Finaijy. the ast :opic addressec an inis section is wnether or no: :ie suz`e:'s preierense develops with age, and if so. how. "his has
 -:.:E-En' E Erswings. The first is that sii sutiects would prefer is draw \therefore-he same way that adui:s to, but that somethirg is preventing them. -its :ma:-iez :hat the trust of developmentai research is to find eut what :ris: 'somethtrig' is. The seconc 15 mere 'stage-:ake'. It suggests that the en:: A's ereierred form of depiction changes with age, and that the enild is radey with the accuracy of his or her depiciton. This implies that the thrust oi developmental research is to find out why the child's preferred form of depietion changes with age. There is support for both positions. and they are not necessarily mutually exclusive.

Freeman (1980b). Colomb (1973). Kosslyn at ad (1977), and Lewis (1953) all found that preference was in advance of produciion for young children. and Hart and Goldin-Meadow (1986) found that children of all ages preferrec the most advanced drawing. Taylor and Bacharach (198:)
obtained a combination of results. They found that scribblers and mature drawers chose a complete figure of a man, whilst children who drew a tadpole figure preferred a drawing similar to their own. However, Moore (1986a) criticised these studies on several grounds, in particular; a) whether the drawings used for ascertaining preference were similar in style to the children's own (Golomb 1973, Kosslyn et al 1977, and Lewis 1963): b) extent of choice allowed (Taylor and Bacharach 1981, Hart and Goldin-Meadow 1984); c) confounded variables in complexity of stimuli (Hart and Goldin-Meadow 1984); d) failure to vary the order of presentation of stimuil (Lewis 1963i; and e) use of between subject designs (Freeman 1980b). Moore's study was designed to overcome these problems and she found that children do prefer drawings of houses that have the most in common with their own drawings. Brooks et al (1988) extended these tincings to cover both younger children and the drawings of people, and gbsained the similar results.

It is interesting to note that both Brooks et al and Moore asked -neir subjects to choose the best picture, whilst both Kosslyn et al and Tiyise and Bacharach asked the majority of their younger subiects to :..jose the picture that jocked most like the object.

In each of the following studies subjects are presented with a range of line drawings and asked to choose one. The studies vary in the Tvpes of line drawing and the conditions under which they are presented. The :Irst study examines preference for type of table drawing, with age, ior borh forms of question (most like and best picture). This study controls for the problem areas highlighted by Moore, except for the fifth which is addressed in the next chapter. In the second study the degree of shading is varied, in the third the background is altered, and in the final study subjects are asked for their preference of line drawing whilst comparing the stimuli with a real table.

Preference for table type, with age, related to form of question.

Method.

Subjects. 832 subjects were used, ranging from 1 year 6 months old to middle age. All were experimentally naive. The subjects were all from Chorley, Lancashire, a small semi-industrial town. The majority were taken from primary and secondary schools. Those too young or old to be approached in this way were seen in toddler groups or in their homes. These subjects are less free from bias, although attempts were made to approach a cross section of the community.

Stimulus. The set of stimuli consisted of an array of sixteen line drawings of a table, an exampie of which can be seen in Figure 7:1. The r.incers which enable identification of the line drawings in this iigure were not shown on the actual stimuli. Two forms of the stimuli were used :- : :der to control for response blas. The majority of the line drawings in :he stimuli are those that have been shown to be most frequently drawn when a table is depicted from observation or imagination. A variety of combinations of table top and table leg were used to enable the choice of form of projection on the table top or implicit depth cue in the table legs to be assessed independently.

A discrepancy here is the omission of a table in orthographic projection. The reasons for this are twofold. Firstly, studies reported in earifer chapters showed that there was little difference between the use of orthographic and the use of vertical oblique projection. Similariy, a pilot study showed that there was little difference between these two forms of projection in proportions of preference, with age.

13
is 1516

Secendia. one of the areas of investigation in this study was :-opgritions of preference. with age, of depth cues implicit in the way the :atie jegs are drawn. To do this it was necessary to have roughly similar numbers of examples of each depth cue contained within the line drawing. ine drawings in orthographic projection cause particular problems here. because the depletion by the legs of height in pleture plane or parital occiusion is contradicted by the lack of these cues in the table top. It was also felt that a choice of more than sixteen line drawings, which would have been necessary if orthographic projection was included. would be tos taxing for the younger children. It was apprectated that this might cause problems in the interpretation of the response on line
drawings in vertical oblique projection, and this will be discussed later. However, it was felt that this would be outweighed by benefits gained by having more complete data on the choice of depth cue.

A pilot study was necessary because neither Study 3 nor Study 4 included subjects as young as those used here. It indicated that forms of line drawing numbered 6, 8. 9, and 11 in Figure 7:1 (table tops with separate legs) were similar in content, even if a lot neater than, the types of 'directed scribble' produced by such young children when asked to draw a table.

Procedure. The subjects were divided into two groups, balanced across sex and ability, designated B.P. (best picture) or M.L. (most like). Each subject was seen individually and was shown one of the two stimuli. Order of presentation of the two stimuli was balanced across sex and ability. The subject was told "These are all tables that people have drawn", and was then asked either "Which do you think is the best picture of a table?" (B.P. group) or "Which do you think is most like a table?" (M.L. group). Age, sex. group, form of stimulus, and choice of line drawing were then recorded. Many of the youngest subjects did not respond immediately. If this were the case the question was repeated twice more. Most of the very young subjects had responded by this time as had all those three years of age and older. Those that did not were excluded from the sample and alternative subjects were chosen. This exclusion policy may possibly have created bias in the sample towards the more able one and two year olds. Subjects were also excluded if they chose immediately, without looking at all the line drawings. This introduces a potential for sublectivity into the study. It was, however, immediately obvious when subfects were making such snap decisions, and so there was in practice a
clear division between the excluded group and the included group. The number of subjects excluded for this reason was very small.

Results.
The data obtained in this study are given in Appendix 7:A.
The line drawings can be grouped according to the form of projection used on the table top, or according to the depth cues implicit in the way in which the table legs are drawn. The rationale behind this form of classification is presented in the previous chapter. The line drawings are not evenly distributed over these systems. There are 5 with a round table top. 8 in vertical oblique. 2 in oblique, 1 in perspective, 4 with legs separated from the table top, 2 showing no ground line. 4 with a ground line. 6 with a ground plane. 7 showing no occlusion and 5 showing zar:tai occiusion. If sublects chose a line drawing at random they would $= \pm$ expected to reflec: these ratios in their preferences. This ratio. or anvintag similar. was not evident at any age, either for table tops or sezt:- cues. Therefore at was assumed that the majority of all subjects. :ns:jeing the voungest ones, were indeed trying to answer the question ascurately.

Figures $7: 2$ and $7: 3$ show the proportions. with age, of type of :ajie top and type of depth cue in the legs, respectively, when subjects were asked to choose the line drawing that looked most like a table. It can be seen that. with this form of question, the majority of subjects at ai: ages preferred the table top in oblique projection. Similarly, the majority of subjects at all ages preferred table legs showing a ground plane and partial ocelusion. One tailed Kolmogorov Smirnov x^{2} aب̣ r oximation for two independent sample tests f which will be termed $K \chi^{2}$ from henceforth falled to find any significant differences in the groportions of responses, with age, for these categories coblique vs.
partial occlusion, $K \chi^{2}=0.25, \mathrm{df}=2, \mathrm{P}>0.05$: oblique vs. ground plane, $K \chi^{2}=0.99, \mathrm{df}=2, \mathrm{p}>0.05$; partial occlusion vs. ground plane, $\mathrm{K} \chi^{2}=$ 0.25, $d f=2, p>0.05)$.

Ftg̣urz 7:2. Tha proportions of praterence, with age for different table toos under the A.L. : judstan.

The prefarence for a ground plane and partial occlusion is very clear. Very few cinldren prefer a table with no ground line. although 10 io 20 percent of children between 2 and 6 years old think that the ine trawing which is most like a table is one in which the table top has the legs separate and there is a ground line or no partial occlusion. $k x^{2}$ tests failed to find any significant differences between these in proportions of responses. with age. (top only vs. no partial occlusion, $\ddot{x} \chi^{2}$ $=4.77, d f=2, p>0.05:$ top only vs. ground line, $K \chi^{2}=0.59, d f=2, p>$ 0.05: ground ine vs. no partial occlusion, $K \chi^{2}=3.58, \mathrm{df}=2 . \mathrm{p}>0.05$). Emilarly, whilst the majority of chlldren at all ages preferred a table top in oblique profection this response was not unanimous. A substantial
number of the younger children thought that a table top in vertical oblique projection looked most like a table, and up to 20% of the older subjects at any one age preferred perspective.

Figure 7:3. The propurtions of praference, with aga, for dillepat depth cues under the h, L. cundition.

Very few subjects thought that a round table top looked most like a table. $K X^{2}$ tests failed to find any significant differences in proportions of responses, with age, between a round table top or one in vertical oblique projection $\left(K x^{2}=1.43, \mathrm{df}=2, p>0.05\right.$) even though the number of subjects choosing each one differed. K χ^{2} tests did, however, show a significant difference in proportions of responses, with age, for a table top in oblique projection as opposed to one in perspective $\left(k \chi^{*}=\right.$ 26.3. $d f=2, p<0.001)$.

Figures 7:4 and 7:5 show the proportions, with age, of type of table top and types of depth cues in the legs, respectively, when subjects were asked to choose the line drawing that was the best pleture of a
table. Under this condition the response is more varied. By elght years old the majority of children prefer a line drawing in oblique projection, with ground plane and partial occlusion. $K \chi^{2}$ tests failed to find any significant differences in proportions of response, with age, for these conditions coblique vs. partial occlusion, $K \chi=0.25 . d f=2, p>0.05 ;$ oblique vs. ground plane. $K_{y^{2}}=0.99$. $d f=2, p>0.05$; partial occlusion vs. ground plane. $\mathrm{K}_{\chi^{-}}=0.92$. $\mathrm{df}=2 . \mathrm{p}>0.05$. However, young children

:avie l:d. The orvoortans of preference. with age, for different table the anver the E.f. :anutlan.
aiso show a strong preference for a table top in either rouri or vertical oblloue projection, a table top separated from the legs. lack of partial occlusion, and lack of ground line. K χ^{2} tests fall tip show i:gnificant differences between the proportions, with age, for eiter vertical obliaue vs. round table tops $\left(k \chi^{2}=1.39 . d f=2, p\right) 0.05$) or ; partial occlusion vs. :ops separated irom the table legs $\left\langle K \chi^{2}=3.51\right.$. if $\left.=2, p\right\rangle 0.05$. Significant differences were found. however, between olique projection vs.
perspective $\left(K_{X}==13.7\right.$. $d f=2$, p (0.05), no partial occlusion vs. no ground line $(k x==6.25$. $d f=2, P(0.05)$ and no ground line vs. tops separated from legs (Kry ${ }^{2}=7.9, \mathrm{df}=2 . \mathrm{p}$ (0.05).

 cr-s:::

The one realit clear incing is that under boin cenditions older :r:-tren and adul:s strangiy praier a table that is represented in oblique grete:izon. and/or shows the use of ground plane and partial occlusion. Tite itisulus did nor allow sublects io choose a table top in obliaue gretection without aiso cocosing the other two, but very few sublects chcse either ground plane or partial occlusion without also choosing a rabie top in ojllaue projection. This can be illustrated by examining the number oi suen responsas as a percentage of total responses for that Par:seviar quastion. in the Best picture condition these were only 0.15%. an= 0.14% respec:ively, and in the Most Like condition they were 0.22% and 0.2% respectively.

Form of Question.
The second area of investigation in this study is whether the form of question affects the response. It is obvious that it does so in the expressed preference for a table top in oblique projection. The majority of children of all ages preferred a table top in oblique projection, and table legs showing ground plane and partial occlusion, when asked which picture they thought was most like a table. However, the younger children, when asked which was the best picture of a table, did not prefer these factors and the response, as noted above, was much more varied. When proportions of response (form of projection and type of depth cue), with age. are compared between the two conditions significant differences are found in the choice of oblique table top ($K \chi^{2}=37.96$, df $=$ 2. $p<0.001)$, ground plane $\left(K X^{2}=30.48\right.$. $\left.d f=2, p<0.001\right)$, partial occlusion ($K x^{2}=29.81$, df $=2, p<0.001$), table tops in perspective ($k x^{2}$ $=20.69 . \operatorname{di}=2, p<0.001$. and no ground line $\left(K \chi^{2}=6.85\right.$. df $=2, p<$ 0.05). The same test failed to find significant differences between the two conditions for a table top in vertical oblique projection ${ }^{(K} \chi^{2}=1.35$. $d f=2, p>0.05)$, a round table top $\left(K x^{2}=0.36 . d f=2, p>0.05\right.$, tabie tops separate from the legs $\left(k x^{2}=4.24, d f=2, p>0.05\right)$, ground line $\left.\alpha x^{2}=4.17 . ~ d f=2 . p>0.05\right)$, and no partial occiusion ($k x^{2}=3.99 . d f=$ 2. $p>0.05$.

The above findings lead to a complex picture and need further discussion before they can be interpreted. As can be seen in Figures 7:2 to $7: 5$, in all cases, excepting that of perspective, differences between the two tasks are restricted to sublects aged between two and seven years oid. In general, across all ages, there is a greater perspective response when subjects are asked to choose the best picture, although the difference between the total percentage of response in each condition is only 0.8%. This will be discussed later. More important for the present argument is
the observation that from seven years $u p, K X^{2}$ tests fall to find any significant differences between the two tasks in proportions, with age, of oblique $\left(K x^{=}=4.59, d f=2, p\right\rangle 0.05$), ground line $\left\langle K x^{2}=4.77, d f=2, p\right\rangle$ 0.05); ground plane ($k=1.75$, df $=2, p>0.05$), or partial occlusion $(K X==0.77, d f=2, p) 0.05)$. This implies that the vast majority of the main effect is conflned to the 2 to 7 age groups.

Both tasks elfcit the same types of response from 2 to 7 year olds. The quallty is therefore the same across tasks, although the quantity differs. The numbers of young subjects preferring a pleture with the top separate from the legs. with a round top, with a top in vertical obllaue projection, with no ground line, with a ground line, or with no parisal occiusion are much greater when children are asked which they thinik is the best picture. All these are aspects of pictures drawn by gnildren of these ages. The only exception to this is the no ground line resoonse, but this response is closely mirrored by that for line drawings with the tops separate from the legs. It can be argued that it is false : 0 Eeparate the two. indeed, when the two are amalgamated $K=$ tests fall $::$:ind any significant differences between the two tasks in proportions :i response, with age $\mathrm{K}_{\mathrm{X}} \mathrm{a}^{2}=0.52$, df $=2, \mathrm{p}>0.05$). The difference $=0:$ ween the two tasks in quantity rather than quality is interesting, and wii: be referred to later when developmental trends in the data are examined. For the moment it is worth noting that young children choose more non-visually realistic line drawings when asked which they think is the best pleture of a table.

An interesting aspect of these data is the comparative responses made to line drawings 7 and 14 (elassed as 3 h and 3 j respectively). These two drawings both have the table tops in oblique projection, but the inside back leg is longer in drawing 14 . Figure $7: 6$ shows the responses for these two line drawings across both conditions. In this figure the
proportion of responses obtained on 3 J , at each age. is presented as a percentage of the total preference for an oblique table top shown by that age group.

Figure 1:6. The trooortions of ij resounges as a oercentage of the volious resevnse for dath age grou. for M.L. and E.F. contitions.

There are significant differences between responses on all four conditions (3 h EP vs. $3 \mathrm{~h} \mathrm{ML}, \mathrm{K} \chi^{2}=8.12$, $\mathrm{df}=2, \mathrm{p}<0.05: 31 \mathrm{BP}$ vs. 31 ML . $K \chi^{2}=56.21, \mathrm{df}=2 . \mathrm{p}<0.001$; 3h BP vs. $3.1 \mathrm{BP}, \mathrm{K} \chi^{2}=33.66, \mathrm{df}=2, \mathrm{p}<$ 0.001: 3h ML vs. 3f ML, $K \chi^{2}=207.81$, $\mathrm{df}=2, \mathrm{p}\langle 0.001$. There is a general increase in proportions of response, with age, on line drawing 7 (3 h), with more subjects preferring it under the ML task. The response on line drawing 14 ($3 j$) is, however, more complex. It can be seen that subjects between 5 and 10 years of age prefer it to the more accurate 3 h response, however older subjects increasingly prefer table type 3h. This effect is accentuated when subjects are asked to choose the line drawing that is most like a table. Sublects frequently took some time to decide between the two, and some reported that line drawing 14 (3 j) 'felt' better,
but they appreciated that line drawing 7 (3h) was a more accurate representation, therefore they chose that one.

In conclusion it would appear that the form of question significantly affects the response. Younger subjects choose more nonvisually realistic table types when asked which they think is the best picture of a table, and whilst this effect is less obvious in the older subjects, it is still apparent.

Development in Preference.
The last section addressed in this analysis is whether the subjects preference changes with age, and if so how. The relationship between preference and production is examined directly in the next chapter where each subject is assessed on a variety of tasks. The prooiem with inat destgn is that subtecis are no longer experimentally naive. Here the Jais are examined for developmental trends. and are relateo to the amaigamated data presented in the preceding chapter, obtained when subtects drew a table irom observation or imagination.

Figures $7: 7$ and $7: 8$ show the cumulative proportions of response. with age. obiained under the three tasks (Most Like question. Best Picture ạuestion. anc amalgamated data from tables drawn from observation and imagination). These are complex figures. A cumulative analysis is used to give a picture of the general trends. For the same reason it is necessary to include information for each task in one figure. It is suggested that these figures are used as a reference, rather than a complex illustration. Figure $7: 7$ shows the responses classified according to the type of table top, namely, round, vertical oblique, oblique, and perspective. The other types of top obtained when a tabla was drawn from observation or imagination are not included in this analysis. Figure $7: 8$ shows the responses classified according to the use of depth cues in the table legs.

In the previous chapter the use of depth cue was shown to be hierarchical, and so to clarify the figure only the cumulative totals for ground line, ground plane and partial occlusion are given. In both figures the diagonal line, marked $A B$, indicates the profile that would be obtained if a positive response were obtained from an equal proportion of subjects in each age group.

The close similarity seen in Figure $7: 7$ between the cumulative totals for round and vertical oblique table tops with Most Like and Best Picture questions reflects the failure to find significant differences between them. Nearly all responses for these conditions occur before 7 years old. The corresponding profiles for the oblique and perspective

Figure 7:7. Curulative proportions of preference, with age, for different table tops, across M,L. and b, f. conditions, and for anslgaastad data for tables dravn from observation and iasigination, Sue text lor datails of AB.
table tops are more varied. The Most like task encourages an earlier oblique top response than does the Best Picture task. with approximately two years difference between the two. The amount of variation in responses for the perspective table top in both tasks prevents the drawing of clear conclusions. However, with minor variations. it can be seen that from about 7 years upwards the Best Picture task encourages an earlier

 ans E.f consitions. ans for amiganaise data for fables dravn frue obsapation and fagination. Sas taxt lor detalls of AB.
perspective choice than does the Most like task. All four responses cioseiy follow the path of diagonal axis AB. illustrating relative lack of seveiopmen:, but the response for the oblique table top. Most Like task, snows virtually no development.

Figure 7:7 shows that preference is well in advance of production
for vertical oblique, oblique, and perspective table tops. The reverse is true for the round table top, where production is in advance of preference. This seems counter intuitive, and whilst it shows up clearly here it might be a function of the stimulus. In each task the percentage of the total accounted for by the round response is very small $\mathrm{ML}=0.02 \%, \mathrm{BP}=0.13 \%$, Production $=0.1 \%$), but the difference between them is very definite. An examination of the age profiles given in Figures 7:2, 7:3, and 4:3 shows that whilst the majority of subjects drawing round table tops are three years old, with the response rapidly tailing off after that, the preference response obtained here stays steady until subjects are approximately eight years old. A table top frequently produced by younger children is one in orthographic projection, but this was not included here for the reasons given earlier. It is possible that if such a line drawing had been avallable subjects would have chosen that rather than the round table top.

The cumulative age profiles for ground line, ground plane, and partial occlusion shown in Figure $7: 8$ show very clearly that there is little development in the preference for ground plane and partial occlusion on the Most Like task, in that nearly all subjects at all ages choose these cues. It also shows that in each case the Most Like question elicits a response at an earlier age than does the Best Picture question, and that in all cases preference is well in advance of production.

Discussion.

It has been clearly shown that adults prefer a plcture of a table in oblique projection, using ground plane and partial occlusion. Not only is linear perspective not the form of projection commonly used by adults but it appears that adults do not think that it is the best way in which to represent a table. Indeed the response for a table top in perspective is higher when older subjects are asked which is the best picture of a
table than asked which drawing is most like a table. These findings support those of Hagen and Elliot (1976) and cast doubt upon the possibility that older subjects develop a preference for linear perspective.

Very young children do not show a strong preference for oblique projection. but this does not support the suggestion put forward by Hagen and Jones (1978) that such children have difficulty interpreting the pletorial station point. The stimuli Hagen and Jones used gave the children no alternative other than to choose between varying degrees of obllạue profection and perspective. Given other alternatives poung children do show a drop in preference for oblique. but do not show an equivalent increase in preference for perspective, as would be expected it preference for perspective was reflecting an inability to take account of the ofctorial siation point. This indicates that the very young enilidren maght nave been jasing their choice on different criteria to those used by the vider subtects.
it fas been shown that the wording of the question does affect the answer. Subiec:s at all ages make responses more similar to a :able in sol:c̣ue proferticn when asked which drawing :ney think looks most like a tajle. as epposed to which is the best plature of a table. In the latter case there is more vartation in response, particulariy for the younger subiects. There is also more variation in the response for the perspective taile :op and in the differential response for 3 h and 3 j . This suggests that the way in which a subject interprets the question does affect the answer and has mplecations for the assumption that the sublects preferred form of depiction is unchanging. This links with the last topic addressed which was whether or not the subject's preference develops with age, and if so. how.

In :he introcuction it was suggested inst there were, broady, two conilic:ing sets of indings about the relationship between preference and
production. The first found that preference was in advance of production for young children or that children of all ages preferred the most advanced drawing. The second was that children prefer drawings that have the most in common with their own drawings. Taylor and Bacharach (1981) obtained a combination of these results. The first set of findings reflects the data presented here more accurately. Here it has been shown that the majority of all children tested preferred a table in advance of the production of others of their age, and that subjects from seven years old upwards preferred the most advanced form of drawing (as measured by that produced and preferred by adults). However, this study also indicates a possible reason for the conflicting sets of findings. The form of question has a major effect upon the preferences shown by the younger children. The number of responses made on each condition appears to reilect children's own production more accurately when asked which line jrawing is the best picture of a table than when asked which is most like a table. As noted in the introduction, all the studies that found a close relationship between preference and production asked subjects which they :hought was the best picture. It is possible that the use of this suestion blased subjects towards their own form of production. 'Best' does not have to imply the most visually realistic, or the one adults use It couid mean the most symmetrical, or the easiest to draw!

This study indicates that whilst subjects of all ages have a clear Idea of what sort of representation looks most like a table to them. this is not necessarily reflected in the productions of children of their age.

The main questions left unanswered by this study are: why is there such a strong preference for visually (as opposed to perceptually) unrealistic oblique projection, and why do subjects not depict a table in the manner which they think looks most like a table? The remainder of this chapter is devoted to examining the first question in greater depth.

In particular the remaining three studies are designed to examine the strength of the preference for oblique projection is the face of cues that accentuate its lack of visual realism.

The second question forms the basis of the following chapters, but it is worth pointing out here that both views about the relationship between production and preference appear to be partially supported and so both assumptions mentioned in the introduction need to be examined. is there something preventing the subject from producing the drawing that he or she thinks would look most like a table, or are subjects generally happy with their production, feeling that it best represents what they want :0 depict? If that is the case. what is it that they are actually trying to depict?

STUDY 7: 2

Preference for table type, with age, related to degree of shading.

Introduction.
Oblique projection is visually unrealistic in that it is impossible ever to see a table in this projection, yet in the last section it was shown that the vast majority of subjects thought that the line drawings that looked most like a table were those in which the table top was depicted in oblique projection. This study and the following ones were designed to investigate whether this strong preference for oblique projection can be moderated by accentuating its lack of visual realism. This study investigates the degree of preference for oblique projection when depth in the line drawings is heightened by the use of a secondary depth cue, namely the degree of shading in the stimulus. The nearer we are to part of an object the darker it appears. Normally this goes unnoticed, but does become evident under some circumstances. For example. It can be seen out of doors in the early morning, before there is enough Iight for the colour to become fully evident, and especially if there is a mist. Under these circumstances the view appears to be composed of cardboard cutcuts, receding into the distance, the feeling of depth being given by the silhouettes becoming progressively lighter the further away that they are.

It was decided to use a secondary depth cue to emphasise visual realism, because, as described earlier, the primary depth cues of ground plane and partial occlusion are co-variates of a table in oblique projection and so could not be used. Another secondary depth cue is that of texture gradient, in which nearer objects are seen to have greater texture. Rock et al (1973) presented subjects with pictures representing a
scene in depth in which the texture gradient had elther been eliminated or inverted. It was found that illusory size perception based on the localisation of objects in depth did occur, but only if the scene was recognised. Without recognition no impression of depth was achieved. Therefore they concluded that texture gradients were neither a necessary nor sufficient cue for depth perception. It is probable that the use of shading is also not sufficient for the perception of depth. but it was felt that whilst the use of shading is not particularly obvious to the sublect it might subconsciously affect the degree of perceived visual realism.

Method.
Subjects. The subjects were 210 children, ranging in age from four to ien vears old. taken from a state primary school on the outskirts of Leyland. This age range was chosen because it was shown in the grevious study that sy ten vears of age there was ittile variance in the data, and so there was no real need to extend the sublect population upwards. Prescinooi enildren were axcluded because the large amount of :tme neeced to 00:ain meaningfui data from them was not balanced by trends in :he data s:irtbutajle only to children of these ages. Teachers were asked to thoose thir:y children from each of the age groups who were representative of the school population.

Stimull Eight line drawings were selected to coincide with the types of depleition chosen by children between four and ten years of age in the previous study. Table tops separated from the legs were therefore excluded. as were round table tops. A line drawing in orthographic prolection was included to investigate the response to this, and a varlety of table tops in obliạue projection were incluced for the same reason. Two groups of stimulf were used. In the first the ine drawings were presented unshaded and in the second they were partially shaaed. An
example can be seen in Figure 7:9. Within each group the drawings were arranged in two different ways to prevent positional bias.

=:afa 7:9. An examole of the shaded staulus used in study $7: 2$.

Procedure Each subject was seen separately. He or she was asked to sit down and was then shown the stimulus. The choice of which stimulus to use was balanced across age. sex, stimulus group and positional group. The subject was told that 'These are all tables drawn by children' and asked 'Which drawing do you think looks most like a table?' Once he or Ehe had left the room the choice made by the subject was noted along with age. sex, and type of stimulus used.

Results.
The data cbtained in this study can be found in Appendix 7:B.

Figures $7: 10$ and $7: 11$ show. under both shaded and non-shaded conditions, that more subjects at all ages preferred a line drawing that showed the use of ground plane and a table top in oblique projection. The response for ground plane was higher than that for oblique projection. but this might be an artifact of the stimulus because all line drawings showing oblique projection also showed ground plane and the opposite was not the case.

Eigdet ${ }^{9}$ io. The craportivas of subjeits.
asth dipe choossing difforene types of
fable taes and ground oland when
guren the shaseg stinulus.

Figure 9:11. The proportions of subjests. with age, choosing different typers of table tops and ground pland when given the non-shaded staaulus.

K x^{2} tes:s on the proportions of response, with age, falled to find anv sifnificant differences between the two conditions for the oblique or Erounc plane responses cobliaue Shaded vs. Non-shaded. $K^{2}{ }^{2}=3.96 . d f=2$. ?) 0.05: Ground plane. $K x^{2}=0.49$. $d f=2, p>0.05 \%$.

Because of the small numbers involved a similar comparison for the other responses was felt to be less valid. The $K \chi^{2}$ test can be used
for small samples (Siegal 1956), it identifies any differences in the data. When applied to the data given here it shows significant differences between all of the other groups Corthographic. $\mathrm{K}_{\chi^{\dot{2}}}=66.59, \mathrm{df}=2 . \mathrm{p}$ < 0.001; Vertical oblique, $K \chi^{2}=24.98$, df $=2, \mathrm{p}$ < 0.001 : Perspective, $k \chi^{2}=$ 10.67, $\mathrm{df}=2, \mathrm{p}(0.01)$ as might be expected when dealing with small numbers of subjects in a task which allows so much variation. The Fisher Exact Probability test is most sensitive to variation in central tendency, and was therefore felt to be most appropriate here. When this test was applied to responses obtained from subjects aged between 4 and 6 and between 7 and 10 years old it failed to find any significant differences between the two conditions. Orthograpinic, $A B=7: 0, C D=3: 0, p$, 0.05: Vertical oblique. $A B=12: 2, C D=10: 1, p>0.05 ;$ Perspective. $A B=2: 3 . C D=$ 3:2. $p>0.05$). It can be concluded that there is very little difference in response whether the stimulus is shaded or not. The difference that there is may well be partially generated by random fiuctuation due to such smali numbers.

Three forms of obllaue rable top were provided in the stimuli to enable the oblique response to be examined further. Two tables in irue oolique profeciion were included, one with the back extenced diagonaliv :o the right and the other with the back to the ieft. A $K \chi^{2}$ test failed :o find any difference in response between the two $k \chi \chi^{2}=2.37, \mathrm{df}=2, \mathrm{p}>$ $0.05)$. The other variation on oblique projection is that of $3 j$ mentioned in the previous study. A $K \chi^{2}$ test failed to find any differences in response between this and the 'true' oblique stimuil ($\mathrm{K} \chi^{2}=0.65, \mathrm{df}=2$, ? > 0.05).

Finally k χ^{2} tests snow few significant differences between the data obtained here and those obtained in the Most Like condition in the last study. Tests failed to find significant differences between either condition on the ground plane and the oblique top responses. Significant
differences were found between Non Shaded vs. Most Like on the vertical oblique tops, and between Shaded vs. Most like on the perspective top, but these last two are based on small subgroups, hence it is difficult to draw a conclusion from these results. (Shaded vs. Most Like:- vertical oblique, $K x^{2}=1.28, \mathrm{df}=2, \mathrm{p}>0.05$; obllque, $\mathrm{K} \mathrm{x}^{2}=0.96, \mathrm{df}=2, \mathrm{p}>0.05$; perspective, $K \chi^{2}=11.93, \mathrm{df}=2, \mathrm{p}<0.01$; ground plane, $\mathrm{K} \chi^{2}=1.9, \mathrm{df}=$ 2, $p>0.05$; Non Shaded vs. Most Like:- vertical oblique, $K \chi^{2}=17.93$, df $=2 . \mathrm{p}\left\langle 0.001\right.$; oblique, $\mathrm{K} \chi^{2}=2.65$, $\left.\mathrm{df}=2, \mathrm{p}\right\rangle 0.05$; perspective, $\mathrm{K} \chi^{2}=$ 3.14, $\mathrm{df}=2, \mathrm{p}>0.05$; ground plane, $K \chi^{2}=1.9, \mathrm{df}=2, \mathrm{p}>0.05$).

Discussion.
The main findings from this study are the strong preference for oblique projection and ground plane shown, regardless of whether the stimuli are shaded or not, and the lack of difference between this study and the previous one in preference for these aspects of line drawings. Differences which were found between the two conditions presented here, and between them and the previous study, are not reliable because of the small number of subjects.

In the introduction it was stressed that degree of shading was a secondary depth cue and hence was not necessary, and probably not sufficient, for the perception of depth, but it was felt that its use might encourage preference for a more visually realistic form of depiction. This has been shown not to be the case. However, the shading used in this study was not particularly realistic, with sharp breaks in the degree of the shade, hence it is possible that the shading provided a distraction rather than an indication of depth. Alternatively, the subject's preferance for an oblique form of table might be sufficiently strong to override cues for greater visual realism.

The following study investigates whether a stronger cue for
visual realism, presenting the line drawing against a background in linear perspective, can encourage a more visually realistic preference.

STUDY $7: 3$

Preference for table type related to a background in linear perspective.

Method.

Subjects. The subjects were 833 children, from 4 to 14 years of age. taken from one primary school and one secondary school, in Blackburn and Leyland, respectively. As sucin the subjects form a representative sample of the school population of the area. All subjects were experimentally naive. The 4 to 10 year olds form one subject group (A), and the 11 to 14 year olds form the other (B).

Stimull. Two forms of stimuli were used, one with line drawings of

Figure 7:12. Exanolas oi tha stimuld used in study 7:3.
tables eacn enclosed within a square border, and the other similar to the first, but including lines indicating the sides of a room in linear perspective. The position of the line drawings within each stimulus was
varied thus giving four main types of stimull. The main types of stimuli are shown in Figure 7:12. The line drawings used in this study represent a table drawn correctly in orthographic. vertical oblique and oblique projection, and in linear perspective (1a. 2a. 3 h , and 4 k respectively). Two common variations of the last two forms were included in the stimulus. A drawing in 'naive' perspective ($4 \mathrm{k}[\mathrm{n})$), in which the orthogonals converge but do not meet at one vanishing point, was included as was a drawing classed as 3 J , in which the inner back leg of a table drawn in obliaue projection is extended. In both cases studies described earlier have shown that a large number of subjects draw in these forms when trying io produce perspective or oblique projection. However, a line drawing of the type 3 i was not included on the stimuli given to subject group B. This omission is discussed later.

Procedure. Esc: subiect was seen indivicuaijy. The par:seuiar stimulus sneet used was baianced across sex, gee, and ability. The subtec: was shown a sneet and was told 'These are all sables drawn by chitdren' and then asked 'Which drawing co you think jooks most ilke a iable?'. Generaliv subiects examined the sheet and then pointed to their choice. A iew suj:ecis. particularlv in the younger age groups. took some ime in choosing. If this happened they were prompted by 'Poin: to the one you think looks most like a table'. The sublect's choice and age were then recorded.

Results.

The data obtained in this study can be found in Appendix 7:C.
Figure 7:13 shows the proportions of responses, with age. for the chosce of oblique ($3 \mathrm{~h} \& 3 \mathrm{j}$) and perspective ($4 \mathrm{k} \& 4 \mathrm{k}[\mathrm{n}$) table :ops. It
can be seen that the majority of subjects at all ages chose a table in oblique projection. The proportions of subjects choosing line drawings

Figurs 7;13. froportions of proference, with age, for table tops in volioue or persozetive foras of orosection, under perspectuve and non-persocitave conditions in this studv, and under m. b. condition in Etudy ?: 1 .
in orthographic or obllque projection have been excluded from this figure. because of the small numbers involved. From this figure it can also be seen that more subjects chose a line drawing in oblique projection when the background was blank, and more subjects chose a line drawing in perspective when the background was in perspective. However $K \chi^{2}$ tests comparing the two tasks by examining the number of subjects. with age. choosing each line drawing falled to find any significant differences between the two tasks (A background in linear perspective as opposed to a blank background: la, $\mathrm{K} \chi^{2}=0.96, \mathrm{df}=2, \mathrm{p}>0.05 ; 2 \mathrm{a}, \mathrm{K} \chi^{2}=2.64, \mathrm{df}=2$.
$p>0.05 ; 3 h, k x^{2}=0.19 . d f=2, p>0.05 ; 31, k x^{2}=0.36, d f=2, p>0.05:$ $4 \mathrm{k} . \mathrm{k}^{\prime} \chi^{=}=2.37, \mathrm{df}=2, \mathrm{p}>0.05 ; 4 \mathrm{k}[n], \mathrm{k}^{2}==1.62, \mathrm{df}=2, \mathrm{p}>0.05$.

A closer analysis of the oblique and perspective responses shows that approximately one third of the subjects who preferred an oblique table top chose a line drawing of the form 3j. rather than 3 h . However. tests falled to find any significant differences in the number of subjects. with age, who chose each of these types (Perspective background: 3 h vs. 3 j , $K X^{2}=1.88, \mathrm{df}=2, \mathrm{p}>0.05$; Blank background: 3 h vs. $3 \mathrm{f}, \mathrm{K} \mathrm{X}^{2}=0.5 . \mathrm{df}=2$. p , 0.05). An examination of the perspective responses (4 k and $4 \mathrm{k}(\mathrm{n})$) shows that nearly three quarters of the subjects preferred a table in naive perspective to one in irue linear perspective, but similarly tests fai:ed to show any significant differences between the two forms of Perspective response, with age (Perspective background: $4 k$ vs. $4 k[n] . k \chi^{2}=$ 3.38. $d f=2, p>0.05$: Blank cackground: $4 k$ vs. $4 k(n) . ~ K x^{2}=2.23 . d f=2$. p> 0.05).

The data for choice of oblique or perspective table tops were also ::-:I:ared with those obtalned in Study 7:1 when subjects were asked which :ree drawing they thought looked most like a table. The paucity in the -umear of subjecis enoosing tables in orthograpinic or vertical oblique :re"二ction means that a simslar comparison for these forms of protection is inappropriate. $K x^{2}$ iests failed to find any significant differences between Study 7:1 (Most Like condition) and the two conditions presented here in the proportions of response, with age, for oblique or perspective tabie tops $(S t u d y$ 7:1 iML] vs. line drawing with a background in perspective: oblique, $\mathrm{K} \chi^{2}=3.88, \mathrm{df}=2, \mathrm{p}>0.05$; perspective, $\mathrm{K} \chi^{=}=1.71$, df $=2 . P>0.05:$ Study 7:1 [ML] vs. Iine drawing with blank background: oblique, $K^{\prime} \chi^{2}=1.51, \mathrm{df}=2 . \mathrm{p}>0.05$; perspective. $k \chi^{2}=2.61, \mathrm{df}=2, \mathrm{p}>$ 0.05). Because the 3 f line drawing was only used with subject group A the responses obtained for it were also compared with those obtained in Study

7:1, however tests again failed to find any significant differences between the proportions, with age, in each condition (Study 7:1 [ML] vs. line drawing with a background in perspective: $K \chi^{2}=0.36$. df $=2, p>0.05$; Study 7:1 [ML] vs. line drawing with blank background: $k \chi^{2}=0.65, \mathrm{df}=2, \mathrm{p}$ > 0.05).

Discussion.

The most obvious aspect of these data is the fallure to find any significant differences between the two conditions. and between the responses obtained in this study and those obtained under the Most Like condition in Study 7:1. The majority of all subjects, of all ages, under all conditions, preferred a table presented in oblique projection even when this projection conflicted with the projection used on the surrounds. increasing the visual realism of the stimulus does not significantly increase the preference for a more visually reailstic line drawing. although there is some indication of a marginal increase.

It is interesting to note the lack of age trends in the data. Line drawings in the form of 3 j and $4 \mathrm{k}[\mathrm{n}]$ had been introduced because of the suspicion that the younger subjects might prefer an 'earlier' form of oblique drawing, in the case 3 j , and/or a line drawing more similar to the one that is normaliy produced. in the case of 4 kin$]$. Neither of these suspicions was supported. The number of subjects preferring 3 j was steady across all age groups, and was not significantly different to that obtained in Study 7:1. Similarly, the number of subjects preferring $4 \mathrm{k}[\mathrm{n}]$ was steady across all age groups, thus showing no age trends. The strong preference for $4 k[n]$ rather than $4 k$ is, however, interesting.
$4 \mathrm{k}[\mathrm{n}]$ is not visually realistic. Earlier it was suggested that a 4 k choice indicated a subject's preference for a more visually realistic table type, but, in earlier studies. $4 \mathrm{k}[\mathrm{n}]$ was not offered as one of the
alternatives to 4 k ．Chase（1983）found that subjects generally perceive that objects are more rectangular than they actually are，and the preference for $4 \mathrm{k}[n]$ rather than $4 k$ ，in the minority of subjects who choose a＇perspective＇line drawing，supports these findings．

It is unclear what preference for a line drawing in linear perspective indicates．As shown in Chapter 3，a table drawn in linear perspective only approaches visual realism if the coordinates of the table and its relationship to the eyes of the observer are known exactly．This is not the case here．Further，Chapter 4 showed that one of the most saitent differences between a table in oblique projection and one in linear perspective is the position of the view point．Chapter 5 showed that PE：E：tion of viewpoint was not a significant factor in the task dependency srown when a table is drawn from observation or imagination，but，this may ne：de the case for preference（as opposed to production）tasks．From ：hミミュ potntミ it zan je argued that by choosing $4 k$ subjects might be ：－a：iz：ing a preference for a cencral view point．rather than for a more ：isiuily realistif depiction．

The innai stucy in this chapter was chesen to examine ithts ¥：ZE：icn．as weli as pericrming a further function．It is pernaps ：2r：aisite ro expec：either a modicum of shading or a few lines indicaring 3 Eackground in perspective to stgnificantly affect a sublect＇s preference ：or visual realism．and the stimulus itself，as a line drawing，is inherentiy visually unrealistic．Therefore in the following study a real ：asle is included as part of the simulus to investigate whether this will aifect the degree of preference for a visually realistic depiction．

STUDY $7: 4$.

Preference for table type when comparing the stimulus with a real table.

Method.

Subjects. 384 subjects were used, 32 in each year from 4 to 14 years of age, and 32 adults. They were taken from one primary school and one secondary school on the outskirts of Blackburn and Leyland respectively, and from classes of Adult Returners in a Further Education College in Leyland. As such the children form a representative sample of the school population in the area. The adults are biased towards those interested in self improvement, and may be more able than the generai population. All sublects were experimentally naive.

Stimuli. One part of the stimulus consisted of twenty line drawings of a table, selected from common forms of production to give a variety of examples of types of table tops and table legs, as can be seen in Figure 7:14. Two forms of this were developed to prevent positional bias in the subjects' choice. The other part of the stimulus replicated the stimulus used in Chapter 3 when subjects drew a table from observation. A full description of the stimuius and the method by which it was used can be found in that chapter. Briefly, the stimulus consisted of a real rectangular table placed with the long side directly in front of the subject with the subject seated as closely as possible to the position from which they would see the orthogonals converging at 115 degrees. one of the line drawings was designed to replicate as closely as possible the view each subject had of the table.

Procedure. Each subject was seen individually. The particular stimulus sheet used was balanced across age, sex, and ability. Each subject was seated as accurately as possible without drawing their attention to the
table in front of them. Some subjects realised that the table was part of the experiment. Half the subjects in each age group were then told 'These are all tables that children have drawn. Look very carefully at them. Which do you thinik looks most like that table over there?'. The other half were told 'Look very carefully at the table over there. These are all tables that children have drawn. Which of these do you think that table looks most like?'. These two forms of wording will be referred to as the two conditions Sheet First and Table First. Once the subject had left the room the type of stimulus sheet, type of question, and the subject's age and choive were then recorded.

isegue 7:!?. An axanole of the stinulus sheet used in Stuar 7:4.

Results.

The data obtained in this study can be found in Appendix 7:D.
Under both conditions and both forms of stimulus the majority of subjects chose a line drawing with the table top in oblique projection. A $\mathrm{K} \chi^{2}$ test on the number of subjects in each age group choosing line drawings with an oblique table top failed to find any significant differences between the two forms of stimulus ($K \chi^{2}=0.42, d f=2, p$) 0.05). The small number of subjects responding on the other forms of table tops invalidated similar comparisons on these. It was, therefore. assumed that there was no significant positional bias and the results for both forms of stimulus were amalgamated.

A series of $K y^{-}$tests failed to find any significant differences between the two conditions (Comparison of the two conditions in the number of subfects in each age group choosing:- Orthographic table top, $K \chi^{2}=$ 2.73. $\mathrm{df}=2, \mathrm{p}>0.05$. Vertical obllque table top, $K \chi^{2}=0.77, \mathrm{df}=2, \mathrm{p}>$ 0.05. Oblique table top. $K \chi^{2}=0.24$. df $=2, p>0.05$. Perspective table t=0. $K x^{2}=2.22 . d f=2 . p>0.05$. Round table top, $K \chi^{2}=0.0, d f=2, p>$ 0.05. Ground line, $\mathrm{K} \chi^{2}=4.49 . \mathrm{df}=2, \mathrm{p}>0.05$. Ground plane, $\mathrm{K} \chi^{2}=0.78$. $d f=2, p>0.05$. Partial occlusion, $\left.K \chi^{2}=0.12, d f=2, p>0.05\right)$. The jata for the two conditions were, therefore, amalgamated.

Kolmogorov Smirnov χ^{2} approximation tests also failed to find significant differences between preference, with age, for line drawings in oblic̣ue projection that faced either to the left or to the right $\left(K \chi^{2}=\right.$ 4.27. $\mathrm{df}=2, \mathrm{p}>0.05$) or for line drawings in oblique projection with an extended back leg that faced either left or right $\left(K \chi^{2}=0.24, d f=2, p>\right.$ 0.05). However, significant differences, with age, were found when the responses for oblique projection and oblique projection with an extended back leg were compared ($\mathrm{K} \chi^{2}=7.57$, $\mathrm{df}=2, \mathrm{p}<0.05$).

Figure 7:15 shows that the maiority of younger subjects prefer a
table top in oblique profection. This preference declines with age, however, whilst the preference for a table top in perspective increases with age. At all ages the vast matority of subjects prefer a line drawing of a table that shows a ground plane and partial occlusion.

 cirientasa of the to:al oblawe resoonse for each age groupe.

Figure 7:15 also shows that whilst the proportions of subtects choosing the first type of line drawing remains moderately constant with age. choice on the latter form does vary with age. Until about nine years Af age approximateiy a thire of all children who prefer a table iop in oblicue profection slso prefer it with the extended back leg. This greference increases to almost fifty percent for children between ten and eieven years oid. and then drops away rapidly with increasing age.

It is interesting to compare these results with those reported earlier, obtained when subjects were fust asked to choose which line drawing they thought looked most like a table. Figure $7: 16$ shows a comparison of the proportions, with age, of the oblique and perspective responses obtained in the two studies. It can be seen that there are major differences between the two studies in these responses. In particular the high oblique and low perspective responses obtained in the

:boure $9: 16$. The proportions, with age of oreferente for obligue or perspective table toos shoun $: \bar{i}$:his stuor and in study $\bar{z}: 1, \mathrm{R}, \mathrm{L}$, condition,

Earlier study are modified with age when subjects are asked to compare the iane drawings to a real table. $K x^{2}$ tests show significant differences between the two studies in the proportions of subjects. with age, choosing each type of table top, but failed to find such differences in preferences for ground plane or partial occlusion (Proportions of responses when asked which ine drawing looks most like a table vs. those obtained when also asked to compare the line drawings to a real table; Oblique: $K \chi^{2}=39.7$. $d f=2 . p<0.001 ;$ Perspective: $K \chi^{2}=14.38, \mathrm{df}=2, \mathrm{p}<0.001$; Ground

Plane: $\mathrm{KX}^{2}=$ 3.34, $\mathrm{df}=2, \mathrm{p}$) 0.05; Partial Occlusion: $\mathrm{K} \chi^{2}=5.01, \mathrm{df}=2$. $p>0.05$.

Data from the present study also indicate, as can be seen in this figure, that from about ten years of age subjects appear to be increasingiy sensitive to the task constraints. This supports the findings presented in Chapter 5 which indicate that it is at about this age that subjects become sensitive to centrality of viewpoint when drawing a table. This study was also designed to investigate the extent to which centrality of viewpoint and/or visual realism were preferred. Several of the line drawings used in this study presented a central viewpoint. yet only one -episcated as accurately as possible the view of the table that the subtects actually possessed.

Bigura $9: 19$. The oroourtions vith age, of profarence for a central vieroosint shown in this stusu and in studu 7:1. M. 6. contition, and lor a visually reslistic Jine draving shoun in this stuay.

It can be seen in Figure $7: 17$ that there are differences. in both cegree and trend, between the proportions of subjects. with age, preferring Eentraisty of giewpoint rather than a visually realistic line drawing (K x^{2}
$=15.64, \mathrm{df}=2, \mathrm{p}<0.001)$. It can also be seen that whilst there is a minority of subjects of all ages who prefer a line drawing with a central viewpoint, the preference for visual realism increases steadily from about ten years of age. Figure $7: 17$ also relates these findings to those obtained in Study 7:1 when subjects were asked which line drawing they thought was most like a table. An investigation of preference for visual realism is not applicable here, but the proportions of subjects, with age, preferring centrality of viewpoint are significantly different to those obtained in the present study $\left(K \chi^{2}=99.74, \mathrm{df}=2, \mathrm{p}<0.001\right)$. When subjects are able to compare the line drawings with a real table. presented with a central viewpoint, fewer younger subjects choose a line drawing with a central viewpoint if they have no table for comparison. This effect is reversed in older subjects.

Discussion.
in this study subjects were asked to choose which line drawing they thougint looked most like a real table. A real table was introduced into the stimulus to enable an investigation to be made into the effects of increasing visual realism on subiects' preference ior particular line drawings. The effect upon the younger sublects was possibly contrary to expectations, in that under these conditions a greater proportion of younger subjects chose a line drawing with non central viewpoint and a table top in oblique projection than when the subjects had no table with which to match the line drawing. At about ten years of age this effect is reversed. An increasing proportion of older subjects chose a visually realistic description of the table they saw in front of them, although 47% of adults still displayed a preference for a line drawing in oblique projection. Tests failed to find any significant differences between the two studies in the strong preference, at all ages, for ground plane and
partial occlusion.
Earlier the oblique table top with the extended back leg (3j) was described as a possible indication of a developing preference for visual reaism, or at least an increasing ability to interpret a desire for visual realism within the task demands. It is interesting to note that the proportion of subjects showing a preference for this form of line drawing is at its highest between nine and eleven years of age, lending support to this suggestion.

The increased visual realism involved in relating line drawings to the perception of a real table appears to encourage subjects to choose the non visualiy realistic. but highly pervasive, oblique projection. A real 2etert produces higher ievels of conceptual awareness than do line arawngs or photograpns (Davies and Rushton 1980, Walker and Walker 1988). -is supporis argumen:s presented earlier that oblicue projection is the こ̇三: :wo dimensicnai representation of how we 'perceive' iableness. \therefore :iabugh subjects are presented with a real, and hence visually reaistic. stimjids, the data suzzes: that these subjects felt that obliaue orolection ias :he most conceptiaily reaistic description of the table. In Study $7: 1$; Ereater propertica of vounger subjects chose line drawings with a :En:-ai viewpoint, but the matority of these drawings were visuaily dareailstic and resemblej. or were slightly in advance of the forms of prosuction used by children of these ages. It is suggested that the matority of sujfects presented with line drawings to match against a reai table were less concerned with how they themselves would like to draw it than with what they felt was a good match. Their criteria for a good match was in terms of how well the line drawing accessed their idea of tableness. and for oniy a small percentage of subjects in every age group was this related to centrality of viewpoint. Parallels can be seen between :his inding and that of Light and Nix (1983) who found that. in a
perspective-taking task, young children chose the 'best' view, as opposed to their own view, if their own view did not represent the objects clearly and separately. Here subjects of all ages can be seen to be judging the stimuli according to criteria other than that of visual realism.

General Discussion.

There appear to be no strong developmental trends in preference for particular depth cues. In all the studies presented in this chapter subjects of all ages show a strong preference for ground plane and partial occlusion. However preference for forms of projection is more complex. Generally, the majority of subjects, across all conditions, prefer a line drawing in oblique projection. This is the case even when older subjects are asked to match the line drawing with a real table viewed from the cantre. However. there do appear to be task related developmental trends within this general rule. It would appear that the less salient the visual realism of the stimulus, the more the younger subjects show preierences for line drawings similar to the production of others of their own age going through Rest Picture task. to Most like task. to matching with a $r e a l$ table. . In each case the subjects were told that the ine drawings were ail drawings done by children, and it seems sensibie to assume that this would encourage the cinlldren to compare them with their own methods of depiction and to fudge them in the light of this comparison. It is therefore possible that this aspect of the task becomes less important to the subfect the more the task demands emphasise visual realism. within this argument is the assumption that it is the iast of the studies presented here that contains the least number of cues for comparison with the subject's own form of production and the most for accessing how the sublect actually 'perceives' a table. The findings of this study indicate a developing sensitivity to visual realism. Both this and earlier studies (Chapters 4 and 5) suggest that inis sensitivity develops from about ien years of age. Even so oniy 25% of adult subiects chose the visually realistic line drawing, and only 53% chose one with a central viewpoint. Taken together the studies in this shapter show that across all ages the
vast majority of subjects prefer a line drawing of a table in oblique projection. The quality of the stimull differec across studies, which might reduce the confidence we have in their comparability. For example. Itskowitz et al (1983) found that for children of all ages the inclusion of more features was the primary criterion in a preference task, but that younger children and artistically inclined thirteen year olds also attended to line quality. However, although the line quality of the stimull differed across the tasks presented here, within each study the guality of the stimuli were similar. Further. the strength of preference for ground line. par:ial occlusion, and oblicue projection across all studies suggests that subjects were indeed judging on form of deptction rather than quailiy of ine.

It would be unwise to assume that preference in viewed depiction nesessarily impiles that the subiec: would also prefer to drow in that wav \therefore zossibie. The studies presented in this enapter do indicate that tssik reiatec variacies, such as form of quesition, aifect choice. However, the iack of mator :ask related differences in the strong preierence for oblique profec:icr. ground piane, and partial occiusica suppor: the idea that these reitec: aibeit in a iwo dimensional wav. aspects of perception and :=gnitive representation.

The disparity in the findings of the two types of measurement strengthens the argument put forward in Chapter 6 that analysis by projec:ion system and analysis by depth cue cannot be directly equated. They appear to refiect two different clusters of cognitive mechanisms. both involved in the translation of three dimensions to two and at times co-jaried. but having cifferent effects on the final depiction.

In Chapter 6 it was shown that deveiopment in the use of depth cues preceded development in the use of forms of projecticn. The present situies suggest that preierence for more complex depin cues is invariant.
and, taking the argument further, indicate that all subjects would, if they could, use these depth cues. The preference for oblique projection appears to involve slightly different mechanisms. It could be argued that oblique projection is a default preference, one that the subject falls back on if the task constraints do not emphasise the need for visual realism. As discussed earlier, other researchers have also found a strong preference for oblique projection. It can be argued that oblique projection is the visual description that best preserves the most salient aspects of the table, and hence is the pictorial representation that comes closest to our canonical model of a table. It can be argued further that the matority of subjects would prefer to depict a table in this way, if there are no sontradictory task constraints. This is supported by the findings gresented in Chapter 4, that the vast majority of older subjects do use this form of projection when drawing a table from imagination. The fact that younger subjects do not use this form of projection, whilst showing no difference in preference for it relative to the older subjects, indicates thai, as with the use of depth cues. for some reason they are unable to sraw in the way in winch they would like to.

This chapter has looked at preference in table drawing, and has Cond that generaliy the vast majority of subjects of all ages prefer a :abie drawing which is in oblique projection and which shows the use of ground plane and partial occlusion. It has been suggested that. given no contrary task constraints, subjects would also prefer to draw in this way. The following two chapters explore further whether this is the case, and. if so, why subjects do not succeed in depicting a table as they would wish to.

CONTENTS OF CHAPTER B. Completion of line drawings of tables.

```
Summary.
Introduction. ..... 8. 2
STUDY 8.
Completion of line drawings of tables. ..... 8. 5
* Method. ..... 8. 5
- Results. ..... 8. 8
A) PRELIMINARY ANALYSIS. ..... 8. 8
B) SUMMARY OF INTRA-GROUP ANALYSES. ..... 8.10
Group C. ..... 8.10
Group D. ..... 8.12
Group E. ..... 8.14
Group F. ..... 8.16
Group \(G\). ..... 8.18
Group H . ..... 8.21
Group 1. ..... 8.21
C) SUMMARY OF INTER-GROUP ANALYSES. ..... 8.23
Ca) Summary of differences between Groups C to \(I\). ..... 8.23
Cal) Differences in proportions of response, with age,between Groups H and I .8.23
Ca2) Differences in proportions of response, with age, between Groups H and F . ..... 8.25Ca3) Differences in proportions of response, with age,between Groups I and G.8.26Ca4) Differences in proportions of response, with age,between Groups E, F, and G.8.29Ca5) The effect that the number of lines given for
completion in Groups E, F, and G has upon correctness of response. ..... 8.32
Ca6) Differences in proportions of response, with age, between Groups C, and D. ..... 8.33
Ca7) A comparison of the proportions of response with agebetween Stimulus Group C and D, and E, F, and G.8.35
Cas) The effect of the position of one table leg in Stimuly D8, H4, and III. ..... 8.36Cb) Summary of differences between all Groups and data from
Chapters 4 and 7.8.38
Cb1) Summary of differences between Groups \(A\) and \(B\). ..... 8.38
Cb2) Summary of differences between Groups A and B , and data presented in Chapters 4 and 7. ..... 8.42
Cb3) Summary of differences between Groups \(A\) and \(B\), and Groups C to I. ..... 8.45
GENERAL DISCUSSION. ..... 8.52

\section*{Chapter 8 .}

\section*{Completion of line drawings of tables.}

\section*{Summary.}

It is hypothesised that subject's inability to draw a table in the manner that they have judged looks most like a table, as demonstrated in the previous chapter, might be overcome by giving subjects substantial aid with the production of the line drawing. The study reported here was designed to investigate that hypothesis for various degrees of help and across a range of ages. Subjects were asked to complete a series of 23 line drawings of a table, draw a table of their own, and choose which of the drawings, including their own, was most like a table. Some of the line drawings to be completed were ambiguous, allowing a wide latitude of response, whilst others approximated closely to tables in vertical oblique, oblique or perspective forms of projection. The number of lines required to complete these forms of projection varied.

It was found that the majority of all subjects preferred a table in oblique projection, showing the use of ground plane and partial occlusion, but that subjects tended to complete tables in accordance with their own production despite the degree of help given. This effect was so strong that some subjects deliberately altered the stimulus, rather than adding the one line required to depict a table in oblique projection.

The appendices for this chapter contain an enlarged version of Figure 8:1.

Previous chapters have shown that young children rarely think that the way in which a table is drawn by others of their age actually looks most like a table. The majority of young children prefer a table drawn in oblique projection, but do not draw in this projection. In the previous chapter it was assumed that, when subjects are asked to draw a table, they try to produce the form of depiction that they think looks most like a table. This leads to the conclusion that, generally, young subjects would prefer to draw a table in oblique projection, but for some reason do not.

The situation is obviously more complex than this. As shown in the previous chapter, when young children are asked which depiction they think is the best picture of a table the majority tend to choose those that are slightly in advance of ones produced by others of their age. Even so, a large minority of such subjects still prefer a table in oblique projection. This emphasises the point that, in preference tasks, the nature of the question does have an effect upon the answer, and casts an element of uncertainty upon the assumption that subjects do wish to draw in the manner that they have judged looks most like a table. Many studies, including those presented earlier, have shown that subjects are not necessarily trying to depict visual reality. In order to further the discussion it is necessary to investigate what children are actually trying to depict at any age. Only once this has been assessed can we effectively start to investigate whether or not children do draw what they want to depict, and only then can we ask: if not, why not?

As indicated above, there is no way of guaranteeing that children who say they prefer a table in a particular form of depiction would actually prefer to draw it in this way if only they could. There is similarly no guarantee that children who draw in a particular way do so because they really want to. They might be constrained by a variety of
production problems, and might even claim that they want to draw in the way that they actually do because of some form of cognitive dissonance. This study aims to partially overcome these problems by presenting subjects with a series of line drawings to complete.

Firstly, the stimulus is structured to enable subjects to complete the line drawings in different forms of projection, and with varying degrees of constraint. Therefore the less constraint there is the more subjects will be able to use thelr own form of production. Because various different types of projection are included within the differing levels of constraint subjects preference for forms of projection can be identified. Secondly, because all the different forms of completion are presented on the one sheet subjects will not be experimentally naive, in that they may be able to use the other line drawings as guides, and the close proximity of other forms of projection may accentuate discrimination between the forms of line drawing. The stimull may therefore help subjects to overcome possible production problems.

The inbuilt lack of experimental naivety is an important aspect of the stimulus. It enables a direct comparison between each subject's production, preference, and completions under these particular conditions, and production and preference can be directly compared with those made by experimentally naive subjects of the same age. In the previous chapter preference was studied in isolation in order to maintain experimental naivety, and so avoid the 'I drew this because I chose it / I chose this because I drew it' syndrome. Here subjects are asked to draw a table of their own, and then to choose the depiction which they think is most like a table. When drawing a table of their own subjects have the opportunity to simply copy the form of projection they prefer from the completions beside it. Further, when subjects are asked to choose the depiction that they think is most like a table they have already partially drawn all 24
tables, with varying degrees of constraint and in different projections. Each of these 24 tables has elements of the subject's own production within 1t. This means that the tables they produce and choose should enable an accurate analysis to be made of their degree of satisfaction in their own production and, if they are not satisfied with it, the form of table that they would be more satisfied with.

The large number of different conditions means that analysis of the data is very complex. This degree of complexity makes appreciation of the main points somewhat difficult, and so the results are produced in a highly structured way with a brief introduction and conclusion to each section, and appendices are used to contain the more detailed analyses.

Method.
Subjects. Two groups of subjects were used. The first consisted of 210 children aged between 4 and 10 years old, taken from two Primary schools, one in Leyland, Lancashire, and the other on its outskirts. The second consisted of 348 older subjects, from 7 to 64 years of age, taken from a Middle school on the outskirts of Hitchin, Hertfordshire, a Secondary school in Chorley, Lancashire, a Sixth form and Further Education college in Leyland, and Youth clubs and adults' homes in Leyland. An attempt was made to balance abllity and sex across all age groups and to ensure that the subject population was roughly equivalent to the general population.

Stimuli. The stimuli were designed to cover a variety of conditions. To aid understanding of this it is necessary to examine the way in which they were organised. A schematic representation of this is given in Figure 8:1. Here it can be seen that the stimuli are grouped according to the type of task required. Stimulus Groups \(A, B, C\), and \(D\), to which a 'variable response is expected' consist of stimuli that, upon correct completion, can elicit a variety of responses. Correct completion of all the remaining stimuli entalls the use of the projection system indicated by the stimulus. Stimuli in Groups E, F, and G provide the subject with the table top, whilst stimuli in Groups \(H\) and I also provide the table legs.

Whilst the groups are presented in a hierarchical way in this figure, with those providing the least freedom of completion at the bottom, It can be seen that there are cross relationships between them. For example, D8, H4, and III only differ by one line. The full stimulus was prepared in two versions, one of which can be seen in Figure 8:2. To enable an examination of possible positional bias, a further check, within
stimulus, was introduced by including G21 twice on the second version of the full battery.

figuri 8:1. Relationstio detreen the parts of the sfioulus used in study 8:1, See text for details.

It was felt that the performance of the younger children would be adversely affected if they were given the full range of possible stimull, and so two different forms of stimull were constructed. Older subjects were given the full set of stimuli, whilst smaller versions were prepared for the others. A four year overlap in age group between the older and younger subject pools was designed into this study to enable a comparison of the efficacy of the two major groups of stimull.

Four different sets of stimull were designed for the younger subjects. Each contained F22 and G3 cto enable a comparison to be made between these sets of stimuli), and three from the rest of the battery, chosen to be balanced across table type and degree of freedom of
completion. Components of the four different sets are marked W to Z in Figure 8:1.


Figure 8:2, An exanple of the full stinulus used in study 8:1.

Procedure. The older subjects were given a sheet with one version of the full battery of completion tasks on 1t. Presentation of the sheets was balanced across age, sex, and ability. Each subject was either seen individually or, for secondary school subjects, within a class and was told 'All these drawings are of tables. Some are drawn in different ways. They all need finishing off. Could you finish them off for me now please?' They were allowed to work at their own pace, and when they had finished they were asked 'Please would you draw a table of your own in the space?' If they had not already done so. They were then asked 'Now, I'd like you put a circle around the drawing that you think looks most like a table? You can circle your own drawing if you want, ... which ever one you think looks most like a table'. The repetition was included to avoid possible bias against circling their own due to a misplaced belief that what an
adult gives you must be best. They were then asked to put their age and sex on the back of the sheet.

The younger subjects were given one of the four versions of the reduced battery. Presentation of each version was balanced across age, sex, and ability. Each subject was seen individually, and was given each completion to do on separate, previously prepared sheets. The order of presentation of each separate sheet was balanced across subjects. The task was explained as above. The completions, once done, were placed on the table beside the subject so that the subject was able to see his or her previous completions. Several subjects felt that nothing needed to be done to some of the completions. When this occurred the untouched sheet was left on the table with the others. Subjects were asked to draw a table of their own, using the wording given above, but on a separate sheet, which was also placed on the table. Each subject was then asked to choose, rather than circle, which of the drawings looked most like a table. The choice was recorded once the subject left the room, as was age, sex, and subject number.

Results.
A) PRELIMINARY ANALYSIS..

Raw data is given in Appendix 8:A.
All the drawings were classified according to the system given in Chapter 6, with one exception. In Chapter 6 table top type 9 indicated the use of a semi-circle. A table top of that form was never produced here, but it is used here to indicate drawings where, instead of completing the lines to produce a table top in perspective, subjects extended the oblique line and drew another crossing both ends of the two lines, thus producing an isosceles triangle to depict the table top. Very few subjects produced this form. In the analyses the data for the 'minor' forms of table top are
amalgamated with the major forms in accordance with the methods used in Chapter 6. Thus the few responses obtained that had parts of the stimuli completed in this way were amalgamated with the perspective response.

Where there was little freedom in the stimulus the expected form of table top has been indicated at the head of the column, but some subjects altered the stimulus to give alternative forms of table top and table legs. Similarly, some of the younger subjects added lines across the bottom of the legs of the stimuli, clearly defining a ground line or a ground plane. This has been indicated in the raw data by placing a line under the response (for a ground line), and enclosing the response in a box (for a ground plane).

The first concern was to evaluate the extent to which the different forms of stimuli produced equivalent results. A variety of comparisons were made, which are detailed in Appendix 8:B. All comparisons showed little difference in proportions of response, with age, for identical tasks, measured between the two main forms of stimuli given to older and younger subjects, the four groups of stimuli given to younger subjects, the two groups of stimuli given to older subjects, within one stimulus sheet given to older subjects, and across sex. For this reason the data across all these categories were amalgamated and are given in Appendix 8:C.

The next concern was to analyse the responses within each stimulus group. Full detalled analyses for groups \(C\) to \(I\) are given in Appendix 8:D. Appendix 8:E contains the amalgamated data for each group. In these analyses, and from henceforth in the discussion, each item in the stimulus is referred to as if it were a separate stimulus. This change in nomenclature has been done to streamline the language used in these analyses, and does not indicate that each part of the stimulus was presented separately. Brief summaries of the findings presented in

Appendix 8:D are given below. The analyses for each group are initially reported as individual units. Cross group comparisons will be made later.
B) SUMMARY OF INTRA-GROUP ANALYSES.

Group C.
Group C contains two table types, nos. 12 (—— J and 17 (「) In Figure 8:1. The main areas of difference between the two stimull are in the proportions, with age, of the vertical oblique and no ground ilne responses. Stimulus 17 elicited significantly more vertical oblique and no ground line responses from older children than did Stimulus 12, the straight line. In the same way Stimulus 12 elicited more orthographic and perspective responses in the same subjects than did Stimulus 17. Thus the inclusion of two lines at right angles to the top, which gives an essentially square shape to the stimulus, encourages subjects to draw a square table top and also discourages subjects from using a ground line or ground plane. This effect is evident in subjects between nine and fifteen years of age. It is interesting to speculate that some of the subjects in this age group, who spontaneously produce 'plan' type of tables as identified in Chapters 3 to 6, do so because of the way in which they place the first lines on the paper.

The only table top measure on which no significant differences are evident is that of oblique projection. This reinforces arguments put forward in earlier chapters about the uniqueness of the oblique response. Whilst there are significant differences in response to the two stimull there are also similarities. The majority of younger subjects use vertical oblique projection, whilst the majority of older subjects use oblique. A


Figure 8:3. The proportions of subjects using each type of table top on Stiaulus group C.



Figure 8:1. The proportions of subjects using eaih type of depth cue on stiaulus group C.
small. but relatively steady, proportion of subjects use perspective. Subjects show a steadily increasing preference, with age, for the production of ground plane and partial occlusion. Younger subjects prefer no ground line and ground line, and, whilst the strength of this preference declines with age, some subjects at all ages complete the stimuli in this way.

Whilst there are significant differences in response to the two stimuli there are also similarities. The differences will be addressed later when further cross-stimulus comparisons are made, but in order to compare the different stimulus groups it is necessary to examine the amalgamated data for Group C. Figure \(8: 3\) shows that few subjects leave the stimuli unaltered or use orthographic projection. The majority of younger subjects use verifal oblique projection, whilst the majority of older subjects use oblique. A small, but relatively steady, proportion of subjects use perspective.

Figure 8:4 illustrates the way in which depth cues are used in Group C. Subjects show a steadily increasing preference, with age, for the production of ground plane and partial ocelusion. Younger subjects prefer no ground line and ground line, and, whilst the strength of this preference declines with age, some subjects at all ages complete the stimuli in this way.

Group D.
Group D contains three table types, nos. \(23!<\mathrm{J}, 5 \mathrm{f} \mathrm{f}\), and 8 [f) in Figure 8:1. Stimulus 5 encourages a lower proportion of perspective response from older aubjects than do the other stimuli. This is counter-balanced by a higher oblique response, but the difference between the stimull for the oblique response does not reach significance. The amalgamated responses for stimuli in Group \(D\) are illustrated in


Flgute 8:5. The proportions of subjects using each trpe of table top on stioulus group 0 .



Figure 8:6. The proportions of subjects using each type of depth cue on stinulus group D.

Figures \(3: 5\) and \(8: 6\). They show that the majority of younger subjects complete the table tops in perspective, but, with age, an increasing number of subjects use oblique projection. The exceptions to this are the four year old subjects, the majority of whom alter the stimulus to provide a table top in vertical oblique projection. A small proportion of subjects between five and nine years of age, and a few fifteen year olds, also make this alteration. The majority of subjects between four and six years old complete the table legs to a ground line, but after this age ground plane and partial occlusion are used.

Group E.
Group E contalns four table types. Three of them, nos. 2. [ 1 , \(9!\square\), and \(14 \backslash \square\) ) in Figure \(8: 1\), form a subgroup, Ea. The fourth is stimulus 20 [ L \(]\). Tests found significant differences at the \(p<0.05\) level between the Ea subgroup on the no ground line response, attributable to stimulus 2. The cause of these differences is, however, unclear. Similarly, whilst there were significant differences between these three stimuli and stimulus 20 in the perspective response the psychological significance of this is unclear.

The amalgamated data show that the vast majority of all table tops completed in Group \(E\), for all ages of subjects,are in vertical oblique projection, as can be seen in Figure 8:7. Some older subjects altered the stimulus to depict the table top in oblique projection, but the number at each age group doing this was very small. Figure 8:8 shows the way in which the depth cues are drawn on the simmull in Group E. A steadily increasing proportion of younger children, with age, show a preference for using ground plane and partial occlusion. Correspondingly, a steadily decreasing proportion show a preference for no ground line and ground



Figure 8:7. The proportions of subjects using each type of table top on stimulus group \(E_{\text {. }}\)


Flgure 8:8. The proportions of subjects usting eath type of depth cue on stiaulus group \(E\),
line. There 1s, however, a reversal of these trends between ten and thirteen years of age. By adulthood the majority of subjects use no ground line and of the remainder equal numbers of subjects using ground line or ground plane. Decrease in the use of partial occlusion, with age, is even greater than that of ground plane. The no ground line response is further complicated in that it shows a secondary peak between eleven and twelve years of age, reaching approximately \(30 \%\) at this time. This complex response is elicited by all four stimuli, and indicates an area which might reward further investigation. This will be discussed later.

Group F.

Group \(F\) is contains three table types, nos. 7 [ \(], 16\{\subset\), and \(22\{\square\) j in Figure 8:1. The only significant differences found between the stimuli were on the oblique and perspective responses. The proportion of subjects responding in oblique projection on the table top is a function of the number of table top lines given in the stimulus. If there are less ines in the stimulus which encourage such a response then fewer of the younger subjects make that response. Stimulus 22 elicited no perspective response at all, whilst the other two stimuli both elicited a little. However, the main finding is that the najority of all table tops completed in Group \(F\), at all ages, are in oblique projection, as can be seen in Figure 8:9. A minority of subjects between 5 and 10 years old appear to be unhappy with the table top in oblique projection, and alter the stimulus accordingly. The majority of these subjects alter it to form a table top in vertical oblique projection, although between four and ten percent of subjects between six and nine years old alter it to form perspective. Figure \(8: 10\) shows that the proportion of subjects using ground plane and partial occlusion rises steadily from about ten percent


Figure 8;9. The proportions of subjects using each type of table top on stioulus group \(F\),


Figure 8:10. The propertions of subjacts wing each type of depth cue on Stioulus group \(F\).
at four years of age to one hundred percent at eleven. This rise corresponds to a steady decline, with age, in the use of no ground line and ground line, the first being less popular than the second.

Group G.
Group \(G\) contains three table types, nos. \(151-1,21[\square 1\), and 3 [ \(\int\) in Figure 8:1. The only significant differences between the responses to the stimuli was with respect to perspective. The proportion of subjects responding in perspective on the table top was a function of the number of table top lines given in the stimulus. If there are less ines in the stimulus which encourage such a response then fewer of the younger subjects make that response. It is interesting to note that when the same phenomenon occurs in stimulus group \(F\), on the oblique table tops, it results in significant differences in the perspective response, whilst the reverse is not the case here. This difference will be discussed later. Figure \(8: 11\) shows that the majority of all table tops completed in Group G, at all ages, are in perspective. A minority of subjects between 5 and 10 years old appear unhappy with the table top in perspective and alter the stimulus accordingly. The majority alter it to form a table top in vertical oblique projection, although between two and five percent of subjects between \(51 x\) and nine years old alter it to form oblique projection. Figure 8:12 illustrates that the proportion of subjects using ground plane and partial occlusion rises steadily from about four percent at five years of age to one hundred percent at eleven. This rise corresponds to a steady decline, with age, in the use of ground line. No ground line is used by between eight and fifteen percent of subjects between four and nine years of age.


Figure 8:13. The proportions of subjects using each type of table top on stinulus group 6 .


Flgure 8:12. The proportions of atbocts using with type of depth cue on Stiaulus group 6,


Figure 8:13. The proportions of subjects using each type of table top on stioulus group h.



Figure 8:11. The proporitions of subjects using asch trpe of dopth cue on Stioulus group \(h\),

Group H.
Group \(H\) contains four table types. Three of them, nos. 19 [ \(\cdot \beta\), 10 ( \(\mathcal{F}\) ), and 18 ( \(\mathfrak{T}^{\prime}\) ) in Figure 8:1, form a subgroup, Ha. The fourth is Stimulus \(4\left[f^{\prime}\right]\). A comparison of responses on these stimuli shows that a significantly greater proportion of the younger subjects are able to complete the stimulus correctly when it is the top back line that is missing. The amalgamated data can be seen illustrated in Figures 8:13 and 8:14. They show that the vast majority of all table tops, at all ages, are in oblique projection. However, between five and ten percent of subjects between the ages of four and nine alter the stimulus to depict the table top in vertical oblique projection, rather than adding the single line required to complete the stimulus. A smaller proportion of subjects 3 to 5 percent) aged between seven and nine alter the stimulus to give a table top in perspective. The stimuli in this group give the depth cues of ground plane and partial occlusion, but between four and thirty percent of subjects from four to nine years of age deliberately alter the stimuli, by extending the legs, to give a ground line rather than accept the use of ground plane.

Group I.
Group I contains four table types. Three of them, nos. 1 [ fry, 13 (fir) , and 24 ( 1 ) in Figure 8:1, form a subgroup Ia. The fourth is stimulus 11 ( fil . The amalgamated data are illustrated in Figures 8:15 and 8:16 and show that for this group the majority of all table tops are completed in perspective for all ages of subject. There are two main exceptions to this. Until subjects are ten years old a small proportion of them in each age group alter the stimulus to produce a table top in vertical oblique projection. Secondly, from about six years of age a small but steady proportion of subjects in each age group alter the stimulus to


Figure 8:15. The proportions of subjects using eash type of tatele top on stroulus group l.


Figuri 8:16. The proportions of subjects using asch trpe of depth cue on Stioulus Group I.
give a table top in oblique projection. The stimuli for completion in Group \(H\) use the depth cues of ground plane and partial occlusion, but, approximately twenty percent of subjects from five to nine years of age deliberately alter the stimuli, by extending the legs, to give a ground line rather than accept the use of ground plane.
C) SUMMARY OF INTER-GROUP ANALYSES.

This section looks at differences in the amalgamated proportions of response for each group. Firstly, the groups discussed above are examined. Secondly, responses on own production and choice of depiction most like a table (Groups \(A\) and B) are compared with each other, with data from Chapters 4 and 7, and with responses on the other groups. The detalled analyses are presented in Appendices \(8: F\) and \(8: 6\), with a summary of the findings presented below.

Ca) Summary of differences between Groups C to I.
This section summarises the findings presented in Appendix 8:F. Comparisons between the stimulus groups were structured by examining the relationships between those groups that offered the least variability first, and then extending this examination to include the other groups. Some of the individual stimuli had been designed to bring out further points, and these are compared where applicable.

Cal) Differences in proportions of response, with age, between Groups K and I .
The table tops and legs are given in both of these stimulus groups, and the expected response is the addition of one or two lines to complete the table top. All table legs should show ground plane and
partial occlusion, and so the only expected variation is in the compulsory completion of the oblique or perspective table top. Significant differences between the two stimulus groups were found in the perspective table top and of ground line responses, but no significant differences were found between the groups on the other responses.

It is worth noting here firstly that there was a wuch wider range of response than expected, and secondly that no differences were found in the oblique response. Subjects not only changed the stimuli, but did so in a particular way. As expected, very few subjects changed the oblique stimuli to perspective, but, whilst only a small number of subjects changed the perspective stimuli to oblique, the proportions of subjects doing so, at each ege, were not significantly different to those responding correctly to the oblique stimuli, as can be seen in Figure 8:17.


Figure 8:17. Proportions of oblique and perspective responses to Stiould broups \(H\) and \(l\).

The other significant difference found between the two groups is In the ground line response. Whilst some younger subjects in both groups
alter the stimulus to provide a ground line response, the majority of such alterations attributable to Stimulus Group \(H\) are elicited at an earlier age than are those attributable to Stimulus Group I.

Ca2) Differences in proportions of response, with age, between Groups \(H\) and \(F\).
In both of these groups the expected completion is that of a table top in oblique projection, with table legs showing ground plane and partial occlusion. All Group \(H\) requires is the addition of one or two lines to complete the table top, as the table legs are already given. The stimuli in Group \(F\) only provide the table tops, again requiring two, one, or no lines for correct completion (the stimulus requiring no lines is 22 in Group F). The only expected variation between the two groups is in the



Figure 8:18. Froportions of ground plane and partial occlusion for Stinulus groups \(H\) and \(F\).
way in which the legs are completed. Many more subjects used no ground Iine and Ground Line in Group F than in Group \(H\), but tests falled to find
any significant differences between the two groups in profiles of the proportions of subjects doing so at each age.

As expected there were major differences between the two groups In the use of ground plane and partial occlusion, and these are illustrated in Figure 8:18. The proportions of young children who dellberately alter the table legs away from ground plane and partial occlusion can olso be seen here.

Significant differences found between the two groups in the use of vertical oblique and oblique projection on the table tops is less expected. However, reference to the previous section shows that there were differences in the way in which the table tops were completed within Group F. Stimulus \(F 22\) requires no lines to be added for a correct completion, and the majority of the variation found within Group F appears to be attributable to this. The statistical comparisons applied here rely upon the amalgamsted responses for both groups, and thus could be affected by a lack of direct comparablitity between the two groups caused by the inclusion of a completed table top in Group \(F\) but not in Group \(H\). Two individual stimuli, one from each group, are directly comparable, namely F16 and H18. Tests found significant differences between these stimuli in the oblique response, but not in the vertical oblique response. From this we can conclude that the inclusion of the table legs results in a greater proportion of the younger children completing the table top in oblique projection.

Ca3) Differences in proportions of response, with age, between Groups \(\mathbb{I}\) and 6,
In both of these groups the expected completion is that of a table top in perspective, with table legs showing ground plane and partial occlusion. All Group I requires is the addition of one or two lines to complete the table top, as the table legs are already given. The stimull

In Group \(G\) only provide the table tops, again requiring two, one, or no lines for correct completion (the stimulus requiring no lines is 3 in Group G). The only expected variation between the two groups is in the way in which the legs are completed. Figure \(8: 19\) shows that, as in the previous section, stimuli with the table legs already given encourage many more responses that use ground plane and partial occlusion. Further, a greater



Figure 8:19. froportions of ground lint, ground plane and partial viclusjon, with age, to Stinuli Groups 6 and \(I\).
percentage of older children continue to extend the back legs of the stimulus to give a ground line when legs are included in the stimulus. Taken with the findings presented above about the comparison between stimulus groups \(H\) and \(I\), this indicates that not only are the table legs deliberately altered to provide a ground line, but that this effect is greater when the table top is in perspective and is elicited from older children than either when the table top is in oblique projection or when
no table legs are included in the stimulus.
It is worth noting here that both in this and earlier chapters the use of ground plane has been found to be in advance of the use of partial occlusion. However both Figures \(8: 18\) and \(8: 19\) show that the opposite appears to be the case for stimulus groups \(H\) and \(I\). Of the subjects who do decide to alter the legs of the stimuli in these groups, more are concerned with producing a ground line than are concerned with producing no partial occlusion.

The significant differences found between the two groups in the use of vertical oblique projection and perspective on the table tops is of interest. The wajority of variance in the perspective response appears to be attributable to the very small number of four and five year old children attempting to alter the table top away from perspective when presented with a table top on its own. The addition of legs appears to encourage alteration of the stimulus by very young children and so, if the statistical analysis is restricted to subjects from seven years of age and older, no significant differences are found between the stimulus groups on the table top responses.

As in the previous section, there were differences in the way in which the table tops were completed within Group G. Stimulus 63 requires no lines to be added for a correct completion, and the majority of the variation found within Group \(G\) appears to be attributable to this. The statistical comparisons applied here rely upon the amalgamated responses for both groups, and thus could be affected by a lack of direct. comparability between the two groups caused by the inclusion of a completed table top in Group \(G\) but not in Group I. Two individual stimuli, one from each group, are directly comparable, namely 621 and II. There are significant differences in the oblique response, but none in the vertical oblique and perspective responses. The inclusion of the table
legs results in a greater proportion of the younger children completing the table top in oblique projection, even though the table legs are presented in perspective. It is interesting that this effect occurs regardless of the way in which the table top should be completed, and regardless of the way in which the legs are presented. This suggests a link between the presence of the depth cues of ground plane and partial occlusion (regardless of the system of projection used) and the desire to depict a table top in oblique projection.

Cad) Differences in proportions of response, with age, betveen Groups \(E, F\), and 6 ,
The stimull in all three groups only provide the table tops, requiring two, one or no lines for correct completion. The groups vary in the form of table top expected. Group E expects a vertical oblique table top, \(F\) an oblique top, and \(G\) a top in perspective. Because no table legs are given it is expected that the table legs will be drawn in a similar manner across all groups. The comparison of responses for stimulus groups \(F\) and \(G\) produces the expected results. The only area of difference between the two is that of the forced response, oblique or perspective table tops respectively. This is attributable to the responses of a small proportion of older subjects who changed the perspective stimuli to form a table top in oblique projection. It is noticeable that no older subjects changed the oblique top to perspective. These findings suggest that older subjects prefer to complete a table top in oblique projection rather than perspective, and show that development in the way in which the table legs are depicted is not dependent upon whether the table top is presented in oblique projection or perspective.

The stimull in Group E force a vertical oblique response on the table top. This produces a complex effect upon all the measures of response. A small proportion of older subjects alter the stimuli in Group

E away from vertical oblique, thus providing substantially different age proflles to those obtained from groups \(F\) and \(G\). However, across these three stimulus groups the opposite effect occurs for oblique projection and perspective. In both groups \(F\) and \(G\) it is the younger subjects who alter the stimull away from the expected table top to provide a table top In vertical oblique. Thus, of the small proportion of subjects at any age who alter the stimulus, it is the younger ones who alter it to provide a table top in veritical oblique projection, and the older ones who have been presented with a table top in perspective who alter it to one in oblique projection. However, these effects fall, marginally, to reach statistical significance.


Figure 8:20. Proportions in the use of ground plane, vith age, on stiaulus groups \(E, F\), and 6 .

None of the stimull in groups \(E, F\), and \(G\) include table legs. Whilst tests falled to find significant differences between groups \(F\) and \(G\) In the way in which table legs were completed, Group \(E\) was found to be Eignificantly different from the other two groups on all table leg
measures, as can be seen in Figure 8:20. Unt1l about ten years of age an increasing proportion, with age, of subjects in all three groups produce ground plane. This increasing use of ground plane continues in both groups F and G, until 100\% of subjects are using ground plane and partial occlusion at eleven years of age. It is mirrored by an equivalent decrease in the use of ground line and, to a lesser extent, no ground line. This pattern does not hold in Group E. Here, as was shown in Figure 8:8, between ten and thirteen years of age there is a partial decrease, low plateau, and then slight increase in the use of ground plane, mirrored by an increase and then decrease in the use of no ground line. From thirteen onwards there is a steady decrease, with age, in the use of ground plane, \(m\) Irrored by an increase in the use of ground line, and no ground line. Furthermore, in Group \(E\) the age profile for the use of partial occlusion is significantly different from that of the use of ground plane.

Stimuli in groups E (vertical oblique top) and G (perspective top) all present the subject with a single line at the bottom of the table top from which to draw the legs. If subjects were not sensitive to the form of the table top one would expect similar development in the use of depth cues across all these stimuli, as appears to occur until ten years of age. Such development also occurs across the oblique stimull, where the line at the bottom of the table top is the one which is nearly always used in the production of ground line. It could be argued that until this age subjects are just reacting to this bottom line. However, the vast majority of older subjects use the bottom line of the perspective table top, but use the bottom and side lines of the oblique top when producing a ground plane. The similarity between the age profiles of the ground plane and partial occlusion responses shows that very few subjects produced ground plane by extending the table legs from the back corners of the table. Thus older subjects do not respond to the vertical oblique stimuli as they do to the
perspective stimuli. The significant difference between the age profiles of ground plane and partial occlusion show that many of the subjects produce ground plane by extending the legs from the back corners of the table top, whilst an increasing proporiton, with age, of other subjects produce either a plan view of a table (no ground line) or extend all the legs to a ground line. These subjects might be responding to figural biases caused by the square shape of the stimulus, but the lack of difference between the responses to the perspective and oblique stimuli suggests that older subjects respond in this manner because they are attempting to match the table legs to the way in which the top is drawn.

These findings reinforce earlier conclusions that development in the use of depth cues appears to be independent of the form of projection used in the depiction, and that subjects appear to become sensitive to the nature of their depiction at about ten years of age.
(a5) The effect that the numbe of lines given fop conpletion in Groups \(E, F\), and 6 has upon corfectness of response.

For this analysis the stimuli were grouped according to the number of lines required for completion of the table top. Stimuli E2, F7, and G15 all required two lines for completion, and 60 responses for these stimuli were amalgamated. Similarly, responses for stimuli E9, F16, and G21 were amalgamated to form the one line for completion group, and E14, F22, and G3 formed the no lines for completion group. Whilst the number of lines for completion has no statistically significant effect it would appear that, to a certain extent, the more ines that require completion the more errors the younger children make, as can be seen in Figure 8:21.


Key:- .......... No lines required --.-- One line required - Two lines required,
Figure 8:21. froportions of correct response, with age, in relation to the number of lines required for completion of the table tope.
(a6) Differences in proportions of response, with age, between Groups \(C\), and \(D\).
None of the stimuli in these groups were intended to elicit only one form of response. The stimuli in Group \(C\) allow any form of response on either the table top or the table legs, and the stimuli in Group D are designed to encourage either perspective or oblique responses on the table top and on the majority of table leg responses. Stimulus Group D does not allow an orthographic response and only a very few subjects deliberately altered the stimulus to produce this. Stimuli in group C encouraged 70\% of the four year olds to respond orthographically, and produced a low but steady response across the remaining age groups. The oblique responses in both stimulus groups increase steadily with age, and are significantly correlated, unlike the vertical oblique and perspective responses. Figure 8:22 shows that the majority of younger children respond in perspective to stimuli in Group \(D\) (where they are provided with an oblique line upon which to construct their drawing, but respond in vertical oblique to
stimuli in Group \(C\) (where only the front line of the table is provided). As with the oblique responses, the Group \(D\) perspective response and the Group \(C\) veritical oblique response are also significantly correlated.


Key:- Stieuius froup \(\subset\) ….... Veptical oblique ——Perspective.
Figure 8:22. Vertical oblique and perspective responses on stiaulus groups \(\mathfrak{C}\) and 0 .

The stimull in Group D provided subjects with complete freedom to complete them in either oblique projection or perspective. If the two were conceptually equivalent one would expect them to be used in equal proportions at each age group, but this did not occur. Whilst the younger subjects preferred to use perspective, the older subjects preferred to use oblique projection. It appears, to a certaln degree, that under these conditions the younger subjects use vertical oblique projection and perspective equivalently, and that the use of these two is task dependent, but that the use of oblique projection develops with age independently of the task.

There was very little difference between the two stimulus groups in the development of use of ground plane and partial occlusion. Relative
to the stimuli in group \(D\), the stimuli in Group \(C\) encourage a larger ground line response and a smaller no ground line response from the younger subjects. This effect does not appear to be related to the inclusion of the shortened table leg in stimulus D8. The only other difference between these stimulus groups is the inclusion of the oblique Ine indicating the side of a table top, and thus it must be presumed that it is the inclusion of this line that causes the difference. To summarise, development in the use of ground plane and partial occlusion appears not to be task dependent, but inclusion of a line that prevents the drawing of the table top in vertical oblique projection also significantly reduces the number of no ground line responses and increases the number of ground line responses.

Ca7) A comparison of the proportions of response with age between stimulus group \(C\) and groups \(D\), and \(E, F\), and \(E\),

The stimuli in Group \(C\) were designed to allow any form of response on the table top, those in Group \(D\) to allow either oblique or perspective responses on the table top, and Groups E, F, and \(G\) were designed to elicit vertical oblique, oblique, and perspective responses, respectively. All these groups allowed any form of response on the table legs. Earlier, a large difference was found between the way in which depth cues were used in response to stimuli in Group E as opposed to Groups \(F\) and \(G\). The results presented here extend this finding. Development in the use of depth cues, and in particular those of ground plane and partial occlusion, appears to be similar across all the stimuli in groups C, \(D, F\), and \(G\). This form of development is not related to whether or not there is an oblique line on the table top, nor to the inclusion of some table legs in the stimulus, either extended from the front or implicitly from the back of the table. The aspect of the stimuli

In Group \(E\) that appears to be the prime cause of eliciting an unusual use of depth cues (as shown in Figure 8:8) appears to be the forcing of older subjects into the use of vertical oblique projection on the table top.

To conclude, the main finding from these comparisons supports earlier findings that the stimull in Group E elicit unusual use of depth cues, and extends these findings to suggest that it is the presentation of the vertical oblique table top, rather than any other aspect of the stimuli, that causes this.
(a8) ine effect of the dosision of one table leg in stisuls \(08, \mathrm{HA}\), and 111 .
 only in the position of one table leg. Stimulus D8 could be completed correctly either in oblique projection or perspective, whereas the position of the additional table leg means that \(H 4\) should be completed in oblique projection and III should be completed in perspective.


Figure 8:23. Proportions of oblique response, with age, on stiould 08, \(M\), and III.

These findings support those presented earlier that development in the use of depth cues is generally stable across stimuli. The significant differences found on the oblique and perspective responses are illustrated in Figures 8:23 and 8:24 respectively. Figure 8:23 illustrates that oblique projection is the preferred response, not only in stimulus \(D 8\) where either oblique or perspective could be used, but also, for subjects between eleven and thirteen years of age, on stimulus Ill where a perspective response was expected.

Figure 8:24 1llustrates that not only is the perspective response comparatively lower than the oblique response for all three stimuli, but that very few subjects make erroneous perspective responses on stimulus H 4 , where an oblique response is expected.


Flgure 8:24, froportions of perspentive responst, vith age, on stiauli 08, k4, and lll.

Cb) Sumeary of differences between all Groups and data from Chapters 4 and 7.

This section summarises the findings presented in Appendix 8:G. Comparisons between the groups were structured by firstly examining the relationships between Groups A and B. Secondly, data for these groups were compared with some of those presented in Chapters 4 and 7, and finally this examination was extended to include the other groups.

Cb1) Sumary of differences between Groups \(A\) and B.
All subjects were asked to both draw a table of their own (Group A. stimulus 6) and to choose from all the representations of a table the one which they thought looked most like a table (Group B. stimulus 25). This design has several aspects worth re-emphasising.

Firstly, when drawing their own table subjects had many depictions of tables, represented in various forms of projection, directly in front of them. Thus, although they were asked to draw their own table they were at perfect liberty to make an accurate copy of any of those that were on the sheet in front of them.

Secondly, when subjects were asked to choose the representation that looked most like a table they were at perfect liberty to choose their own drawing. This design minimises the possibility that subjects might not wish to choose their own depiction because of feelings of inferiority about their own production in relation to the other neatly printed stimull. Subjects had added lines of their own to all the stimull, and so whichever they chose had some aspect of their own work in \(1 t\). This does create a further problem in that some of the younger subjects altered all of the stimull, thus limiting the amount of choice avallable to them.



Figure 8:25. The proportions of subjects using eath type of table top on stinulus ab.



Figure 8:26, The proportions of subjects using each type of depth cue on stioulus ab,


Fagure 8:27. The proportions of subjects using ath trpe of tade top on stroulus s25.


Figure 8:28. The proportions of subjects using esch type of depth cue on stioulus b25.

The design allows a direct comparison to be made between the manner in which each subject draws a table and the form of representation that the subject thinks actually looks most like a table.

Figures \(8: 25\) to \(8: 28\) show the proportions of responses, with age, on the two stimuli. Significant differences were found between the two stimuli groups for all measures, apart from orthographic projection. In the subjects' own drawings there is clear development in the use of oblique projection, ground plane, and partial occlusion, whereas this is not the case in the subjects' choices. These three attributes are preferred by the vast majority of subjects at all ages, and show no development. It could be argued that marginal development in preference for ground plane and partial occlusion is apparent in the responses of the very young subjects, but, as discussed above, many of these very young children altered the stimuli to show a ground line and no partial occlusion, thus constraining their choice.

A direct comparison between each subject's own production and their choice shows that very few subjects, at any age, chose what they themselves had drawn. A larger number of subjects chose depictions with. table tops that were similar to their own, without choosing their own drawing. Nearly all subjects who drew a table top in oblique projection also chose one in this projection. The majority of younger subjects drew table tops in orthographic or vertical oblique projection, yet few chose them as representations most like a table. However, of those who did choose them, the majority also drew a table top in that manner (approximately ten percent of subjects between the ages of four and six, and between nine and ten). This provides some support for the suggestion that some children do prefer their own form of depiction. The perspective response is more confused. It would appear, at first sight, that a small proportion of subjects at most ages both choose and prefer a table top in
perspective, but this is not the case. The majority of these subjects elther draw a table top in perspective but do not choose it or choose one in perspective but do not draw it.

Cb2) Sumary of differences between Groups \(A\) and \(B\), and data presented in Chapters 4 and 7.

Because of the design of this study it could be argued that these results have no real compatibility with those given in earlier chapters. This difficulty was examined by looking at the proportions of response, with age, both on type of table top and type of depth cue produced, across group \(A\), and group \(B\), the Imagination responses from Chapter 4 , and the Choice of depiction Most Like a table from the previous chapter. Significant differences were found in the vertical oblique and no ground line resporses for Cholce of depletion, and for the orthographic, perspective, no ground line, and ground line responses for drawing the table, but tests falled to find any other significant differences.

There are very small differences between the choice stimulus (B25) presented here and the choice of projection system other subjects made when they were asked which depiction they thought looked most like a table. There are two measures on which there were significant differences. The number of subjects using a no ground line response were very swall in both cases, hence severely limiting the psychological significance of the differences found. The number of responses on the vertical oblique measure were larger, and, as Figure 8:29 illustrates, a larger proportion of subjects between the ages of four and nine make this response when presented with fully completed stimuli (see previous chapter) than when asked to choose from stimuli which they have to complete. However, this effect is reversed for subjects between the ages of nine and eleven. These findings, taken in conjunction with those
discussed in the section above about the relationship in the vertical oblique responses between the subject's own production and the subject's choice, strengthens the point that the choice of vertical oblique as the depiction most like a table may well imply different, age related, reasons for this choice.


Key: - .......... Stinulus B25 (choica) -----host Like condition, Chaptep 7 ,
Figure 8:29. The proportions of subjects, with age, choosing a table top in vertical obligut projaction as the one which looks nost like a table when presented vith stinuli thay have completed (625) or when presented with ready prepared stiauli (Chapter 7).

A larger number of significant differences were found between the responses to Stimulus A6 (own production, done with examples of different ways of depicting tables in front of the subjects and avallable for copying, and the drawing of a table from imagination (Chapter 4, done with no outside ald). Figure \(8: 30\) shows that more of the older subjects use orthographic projection, and fewer of the younger subjects use perspective, on the table tops when they are drawing unaided. Figure \(8: 31\) shows that more of the younger subjects use no ground line, and more of the older subjects use ground line when they are drawing unaided. Therefore, having

\begin{tabular}{lcc} 
Key:- & Stimulus A6 (own) Imagination, Chapter 4. \\
Orthographic \\
Perspective & \(\ldots \ldots . . . .\).
\end{tabular}
\({ }^{5}\) gguee 8:30. The proportions of subjects, vith age, using of thographic projection and popspactive on Straulus as and when deaving a tatele froe jagination.


Key:-
No Ground Line
Ground Line

Stimulus A6 (own) Imagination, Chapter 4.


Figure 8:31. The proportions of subjects, with age, using as ground line and ground fine on Stiaulus ab and when draving a fable from lagination.
depictions of tables available for copying appears to encourage, partially, the production of the forms of response used by older subjects. This effect is not universal, because the development of oblique projection, ground plane and partial occlusion remains unaffected by the difference in the tasks.

Cb3) Summary of differences between Groups \(A\) and \(B\), and Groups \(C\) to I.
A comparison was made between the subject's choice of depiction (Stimulus B25, the depiction that they thought looked most like a table) and the responses made on stimulus groups \(C\) to \(I\). Tests found significant differences in the majority of the comparisons, only failing to find significant differences on the ground plane and partial occlusion measures when B25 was compared with groups \(H\) and \(I\).

A comparison was also made between the subject's depiction (Stimulus A6) and the responses made on stimulus groups \(C\) to \(I\). Tests found significant differences in the majority of the comparisons, only falling to find significant differences on the oblique, ground plane and partial occlusion measures when \(A 6\) was compared with stimulus group \(C\), and on the ground line and partial occlusion measures when \(A 6\) was compared with group G.

Figures 8:32 to 8:39 present these findings in a slightly more user friendly, if rather garish, manner. These figures are complicated and summarise most of the information given in Chapter 8 and the associated appendices. They are included here to give a clear overview of the developmental trends within the data. Each stimulus group is given a particular type of line, and these lines are used consistently in these figures:-
\begin{tabular}{|c|c|c|}
\hline Group A & Group B & Group C \\
\hline Group D & Group E & Group F - - \\
\hline Group G ---- & Group H & Group I - \\
\hline
\end{tabular}

Figure \(8: 32\) shows that there were very few orthographic responses to any of the stimuli, apart from Stimulus \(A 6\), when subjects were asked to draw their own table.

Figure \(8: 33\), looking at the vertical oblique response, shows that Group E stimuli encourage a high vertical oblique response at all ages, but that Group \(C\) stimuli elicit a higher vertical oblique response than is produced in Group A (subject's own drawing). None of the remaining groups encourage a high response, as subjects had to deliberately alter the stimuli to produce one, although Groups \(G\) and \(F\) show a peak in vertical oblique response between \(s i x\) and eight years of age.

Stimulus groups \(F\) and \(H\), as might be expected, elicit a high oblique response at all ages, as does Group \(B\), the subject's choice of depiction most like a table. This can be seen in Figure 8:34. Development in the subject's own production of oblique projection is closely correlated with development in the use of oblique on stimuli in Groups \(C\) and \(D\). These were classed as variable groups, and so subjects were equally able to use perspective but did not do so. A small number of subjects from six years of age upwards deliberately altered the other stimuli to provide an oblique response.

Stimulus Groups G and I elicit a high perspective response at all ages, as can be seen in Figure 8:35. Similarly, stimuli in Group D elicit a high perspective response, but only from the younger subjects. It would appear that as subjects develop the ability to use oblique projection they choose to use this form of depiction on the table top rather than perspective. Stimulus Groups \(A, B\), and \(C\) all elicit a low perspective


Figure 8:32. The use of orthographic projection in each stiaulus group.


Figure 8:33, The use of vertical oblique projection in each stiaulus group,


Figure 8:34. The ust of oblique projection in edich stiaulus group.


Figure 8:35. The use of perspective in each stiaulus group,
response from most age groups, but the remaining stimuli encourage hardly any perspective response at all.

Figure 8:36 shows that stimuli in Group E encourage the highest no ground line response, particularly from the older subjects. Stimuli in Group \(C\) encourage a small but steady no ground line response across all ages, whilst the remaining stimuli only encourage a no ground line response from the younger subjects. Very few subjects at any age show a preference for no ground line.

The picture is slightly different for the ground line response, as can be seen in Figure 8:37. Here the majority of the stimuli encourage a high ground line response from the younger subjects. The strength of this response declines steadily from about stix to \({ }^{\text {A }}\) twelve years of age. Stimuli in Groups \(H\) and \(I\) do not allow ard ground line response, yet between ten and thirty percent of subjects from five to nine years of age alter the stimulus to provide such a response. Some of the younger subjects drew ground lines or ground planes onto the stimuli, as can be seen in Appendix 8:A. The numbers involved are too small to carry much psychological significance, but the unexpected addition of these indicates that, for these subjects, an important aspect of the fitimulus is its perceived possession of a ground line or a ground plane. This indicates that extending the legs to produce a ground line, on stimuli that initially possessed a ground plane, is a deliberate action coinciding with the stated preference for ground line.

Figures 8:38, and 8:39, showing the groûnd plane and partial occlusion responses, are very-similar and will be discussed together. The majority of subjects at ail ages think that a depiction showing ground plane and partial occlusion looks most like a table, and subjects show a developing abllity to use these depth cues from about four to twelve years of age. The use of ground plane and partial occlusion on stimulus groups


Figure 8:36. The use of no ground line in each stioulus group.


Figure 8:37. The use of ground line in each stiaulus group.


Figure 8:38. The use of ground plane in each stiaulus group.


Figure 8:39. The use of partial occlusion in each stialus group.
\(H\) and \(I\), where these depth cues are already given, closely matches the subject's stated preference, although some younger subjects do alter the stimuli in both groups to provide a ground line, as discussed above. Responses on stimulus groups C, D. F, and G watch those produced on Stimulus A6, where each subject draws thelr own table. The only stimull which have a sizeable effect upon the table legs are those in Group \(C_{\text {, }}\) where subjects are forced into drawing a table top in vertical oblique projection. Here subjects appear to match this with the production of 'less advanced' depth cues.

GENERAL DISCUSSION.

To summarise, an analysis of the stimulus groups shows that the vast majority of subjects at all oges think that a table top in oblique projection and table legs showing the use of ground plane and partial occlusion makes the depiction look most like a table. Subjects show a developing ability to use oblique projection, ground plane and partial occlustion (from about four to twelve years of age). The proviston of stimuli that ald the production of these measures encourage a similar response showing developmental trends at an earlier age. The oblique response on variable stimull shows the same developmental trend. Subjects prefer to use oblique projection, rather than perspective, and do 50 as soon as they become able to. The strength of preference for an oblique response is illustrated by the fact that a swall proportion of subjects at most ages deliberately alter the stimull to provide obllque projection. Similarly, the strength of preference for ground plane and partial occlusion is shown by the fact that development in these measures is very similar across all stimull apart from those in stimulus group E.

The discussion at the beginning of this chapter pointed out that subjects had many depictions of tables to copy from, and that we might expect that presenting subjects with a completion task ought to help them overcome the majority of the production problems that they might experience which are related to the ordering of the drawing of the different elements and lines and the placing of these lines in position. However, this does not appear to have enabled them to complete the stimull in the way which they think looks most like a table. Similarly, subjects would not deliberately alter the stimuli to accord with their normal production, but at dissonance with their stated preference, if the mechanics of putting pencil to paper were the main problem. Hence the suggestion that subjects do not draw in their preferred manner because of production difficulties needs to be reviewed.

Any theory put forward about how the representation of depth develops must both be able to account for this behaviour and for the way in which the use of oblique projection, ground plane, and partial occlusion develops with age in a relatively non-task dependent way.
'Meaning', and the Copying of Line Drawings of Tables.
Summary. ..... 9. 1
Introduction. ..... 9. 2
STUDY 9:1.
The Copying of Line Drawings.9. 6
- Method.9. 6
- Results.
- Preliminary analysis.9. 8
* Mair analyeis.9. 8
- A) Copying of the table tops. ..... 9.10
* B) Copying of the table legs. ..... 9.11
- Discussion. ..... 9.13
STUDY 9:2.
The Copying of 'Table Tops'. ..... 9.14
- Method. ..... 9.15
- Results. ..... 9.16
- Discussion. ..... 9.17
STUDY 9:3.
The Copying of 'Table Legs in Perspective'. ..... 9.19
- Method. ..... 9.19
- Results. ..... 9.20
- Discussion. ..... 9.21
STUDY 9:4.
The Copying of 'Table Legs in Oblique Projection'. ..... 9.23
- Method. ..... 9.23
- Results. ..... 9.24
- Discussion. ..... 9.26
STUDY 9:5.
Copying and Knowledge of what the Lines Represent. ..... 9.27
- Method. ..... 9.27
- Results. ..... 9.28
- Discussion. ..... 9.30
general discussion. ..... 9.32

\section*{CHAPTER 9.}

\section*{'Meaning', and the Copying of Line Drawings of Tables.}

The vork reported here has been published in the Eritish Journal of Fsychology, February 1989, and is given in Appendix 9:A.

Summary.
A series of studies shows that errors in copying line drawings of a table are directly related to the knowledge that the lines represent a table, and not to difficulty in drawing the lines themselves. When children copy the component parts of line drawings of a table the pattern of error is very similar to that obtained when the whole line drawing is copied or when a table is drawn from imagination. When the same component parts are copled without the knowledge of what they represent very few errors are made. This is seen as support for the view that the subject draws what is known and not what is actually seen.

Introduction.

Chapter 7 showed that, under a variety of conditions, most adults prefer a table drawn in oblique projection. Similarly, Chapter 4 showed that most adults prefer to use this projection when drawing from imagination. Chapter 7 also showed that even very young children think that a line drawing in this form of projection looks most like a table, even though they do not use it when depicting a table. Lastly, in the previous chapter, it was shown that when young children were given a completion task in which it was necessary to add only one line to the stimulus some went to great trouble to alter the stimulus so that it accorded with their normal, rather than their preferred, form of depiction. This chapter investigates possible reasons for the difficulty that the child has in depicting the table in his or her preferred form.

There are several possible sources of difficulty, Firstly, the difficulty could be related to the child's conception of a table as a three dimensional object and his or her inability or lack of experience in coalescing three dimensions onto a two dimensional plane. Theoretically, when a child is asked to copy a line drawing the problems of translation from three dimensions to two dimensions are removed, as the subject is presented with the solution to copy. Chen (1985) has shown that copied drawings are usually more advanced than drawings made from a real life model.

Laszlo and Broderick (1985) state that five to six year old children "Lack the necessary developmental level in both perceptual and motor abilities accurately to copy simple figures". They examined perceptual-motor skills in copying diamond, square, and horseshoe shapes, and found that accuracy improved steadily with age, and partially with training. The performance of five and six year olds was poor, and children showed particular difficulty with the diamond and the horseshoe. Laszio
and Broderick argue that planning of action. error detection and error correction may be sources of difficulty. The specific problems shown by young children are identified as inability to copy angles accurately and failure of closure. These errors occur more on the diamond than the square (identical in shape, but rotated through 45 degrees) which indicates that it is not solely the physical shape of the object that causes problems.

Freeman (1980b) suggested that development in table drawing could be related to inability to overcome figural biases. Bremner (1985b) discusses the problem of figural biases and suggests that there are three classes of bias: local bias, figural effects (such as symmetry), and extrafigural effects (such es the edge of paper). These forms of bias might all be relevant here. The first is a local bias, called the perpendicular bias, in which the child shows bias towards drawing one line at right angles to another. The second, related to the first, is an extra-figural effect identified by Nail and Harris (1976) in which the child might align the vertical sides of the square with the veridical sides of the paper. The third is a bias towards symmetry around an axis. A combination of these might account for the greater difficulty experienced by the young child when copying a diamond rather than a square.

A further source of difficulty, which has been suggested by Phillips. Hobbs, and Pratt (1978), is that a line drawing is seen as a solid object and the internal description created by this will describe the form of that object in three dimensional space. Therefore, although the stimulus is two dimensional, the child may still experience the problem of translating three dimensions to two. Chen (1985) rejects this view. She found that children do not necessarily produce the same drawings when copying a line drawing or when drawing solid model. In particular she points out that older children tend to produce more advanced drawings when
\[
q-3
\]
copying a two-dimensional model than when copying a three dimensional model. She defines more advanced as 'towards perspective representation'. Her criticism assumes that the only difference between copying from a twodimensional or a three-dimensional model is that of the extra dimension. This ignores any extra figural effects that might occur, such as the relationship between the model, efther a piece of paper or a solid object, and the table upon which it is placed, or indeed the whole room. It leads to the assumption that children draw an object in a consistent manner, but this is not always the case (Golomb 1974). Nor is it the case that perspective is necessarily a more 'advanced' form of representation. for example, Chapter 5 shows that the form of projection used by subjects is partially a function of task demands, and that perspective is used as an alternative rather than as a more advanced system. It is quite feasible that extra figural effects might alter the task sufficiently to affect the form of projection used, independently of the dimensionality of the stimulus.

To summarise, the four possible areas of error investigated here are:-
a) The problem of translating three dimensions to two.
b) The problem of translating to two dimensions the three dimensions that are implicit in a two dimensional figure.
c) Problems caused by figural biases.
d) Perceptual-motor problems.

The rationale behind the experimental design is as follows. The manner in which a table is drawn from observation or imagination has been determined in detail in Chapters 3 to 6. These data are used as a base against which a subject's performance can be compared when copying line drawings of a table.

In the first study reported here subjects were asked to copy line
\[
9-4
\]
drawings of a table in various projections and the data were compared with those obtained previously. This comparison provides information about the difficulty of translating three dimensions to two, but suffers from the possibility of confounding extra-figural effects and the three dimensionality implicit in a two dimensional figure. It does, however. provide o baseline against which performance on the three following studies can be compared. In these studies the subjects were asked to copy 'meaningless' parts of the line drawing. Comparisons with the first study enable figural biases to be isolated, as any similarities to the first study can be attributed directly to the form of the figure. The second study also investigates directly the effect that symmetry might have on flgural reproducion. The fifth study enables the effect of implicit dimensionality to be evaluated by giving the 'meaningless' paris meaning, and hence implicit dimensionality, and then comparing the results with those in which the stimuli were meaningless (Studies 2, 3 and 4). Extrafigural effects will have no net influence here because the task of copying a colleciion of lines is the same in both cases. The only difference beiween the two tasks is the way in which subjects interpret the lines. A final comparison with Study 1 . In which the ines have meaning and the results can be used as a baseline of copying performance, enables the effect of 'meaning' to be invesiigated.

In order to ensure experimental naivety no subject was used for more than one study.

\section*{STUDY ONE.}

The Copying of Line Drawings.

In this study subjects were asked to copy line drawings of a table shown in different forms of projection and the data obtalned were compared with those discussed in Chspter 4.

Method.
Subjects. The sublects were 795 children from one secondary school and one primary school in Leyland, Lancashire.


Figure 9:1. The nime stinuli used in Study I. Sae text for details.

Task. The stimull used can be seen in Figure 9:1. Each child over the age of ten was given a sheet with either stimulus 1, 3, 4, 8, or 9 upon 1 . The sheets were distributed in a random manner balanced across age and sex, and each child was asked to copy their particular stimulus accurately. Care was taken to ensure that the child could not see what his or her neighbours were doing.

The remaining 210 children were seen individually. Each child was first asked to draw a table from fmagination. The stimuli used for the younger children were 1, 2, 3, 4, 5, 6, 7 and 8 . The four extro stimuli used were included to examine the way in which table legs were copled. Each child was asked to copy flrst one and then another of the eight possible stimull. The two particular stimuli each child was asked to copy were chosen randomly, balanced across age and sex. This task design enables a check to be made on whether the younger chlldren were actually responding to the stimuli or to some preconcelved graphic schema related to table drawing Stimulus 5, identical to stimulus 4 except that implicit depth was enhanced by shading, was introduced to investigate whether such enhancement affected depiction. Figure \(9: 2\) shows the total number of line drawing responses in each age group.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline A6F & & 5 & & 1 & 1 & 2 & 10:11 & 12 & 13 & 11 \\
\hline Stsestus 1 & 9 & 8 & 1 & 9 & 1 & 1 & 1: 32 & 33 & 30 & 22 \\
\hline Stioulus 2 & 7 & 5 & \(g\) & 1 & 6 & 1 & 1: & & & \\
\hline Stioulus 3 & 7 & 1 & 1 & 1 & 1 & 7 & 1: 21 & 31 & 31 & 20 \\
\hline Stheutus 4 & 7 & 11 & 6 & 1 & 1 & 1 & 5: 31 & 31 & \(\mu\) & 11 \\
\hline stioutus \({ }^{\text {s }}\) & \(g\) & 8 & 1 & ) & 1 & , & 1: & & & \\
\hline Sthaulus 6 & 1 & 6 & 1 & 1 & 1 & 1 & 1 : & & & \\
\hline Stioulus 9 & 1 & 5 & g & 6 & 6 & , & 1: & & & \\
\hline Sthatus 8 & 1 & 11 & 6 & 7 & 1 & 1 & 5: 21 & 37 & 37 & 11 \\
\hline Stinulus \({ }^{\text {a }}\) & & & & & & & : 22 & 32 & 12 & 16 \\
\hline rotal respo & & 60 & & 60 & 60 & 6 & 60: 117 & & & \\
\hline
\end{tabular}

Figure 9:2. Phe musder of line dravings in each age growe.
\[
9-7
\]

Results.
All drawings were analysed in accordance with the system described in Chapter 3.

PRELIMINARY ANALYSIS. A) Each of the children between 3 and 11 years old copied two line drawings. Forty children produced the same response on both drawings. 13 children also used that response when drawing a table from imagination. These data are shown in Figure 9:3.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AGE & 1 & 5 & 6 & 7 & 8 & 9 & \\
\hline RESPONSE Round & 2 & 0 & 0 & 0 & 0 & 0 & \\
\hline Orthographic & 0 & 3(1) & 0 & 1 & 0 & 0 & \\
\hline Vertical-oblique & 9(5) & 7(5) & 5 & 6 (1) & \(2(1)\) & 3 & \\
\hline Perspective & 1 & 1 & 0 & 2 & 0 & 0 & \\
\hline Percentage of year & 10 & 37 & 17 & 23 & 7 & 10: 19\% & cof total \\
\hline & (17) & (20) & (0) & (3) & (2) & (0) : 6\% & respunse). \\
\hline
\end{tabular}

Figure 9:3, The nuwber of chiluren prosucing the same response on both line oravings, the figure in bratkets indiates the number who also used the same respunse when draving a table frow inagination,

Children who use exactly the same form of depiction for both stimuli nearly all draw in the vertical-oblique form and, as might be expected, are in the lower age groups. The numbers here are low. Only 6\% of subjects respond in the same manner across all stimuli, and \(19 \%\) when copying a line drawing. These subjects were assumed to be making no attempt to follow the task as set, therefore it was deemed justified to exclude them.
B) Each child between four and eleven years of age copied two drawings, and so the responses are not all independent of each other. However, no significant differences were found when Kolmogorov-Smirnov comparisons were made on the proportions of correct responses, with age, between the first and second drawings copled Corthographic:- \(N=7, D=5\). \(p>0.05 ;\) Vertical Oblique:- \(N=7,[1=2, p>0.05 ;\) Oblique:- \(N=7, D=\)
```

4. P > 0.05; Perspective:- N = 7. D = 2, P > 0.05). Both sets of data were
amalgamated for the remaining analyses.
C) A $x^{\text {- comparison of the proportion of correct responses in each }}$ age group failed to show a significant difference between stimulus 4 and stimulus 5, as can be seen in Figure 9:4. Because of the small number of responses in this particular analysis a response was taken to be correct if either the top or the legs matched that of the stimulus, although normally both did. For this reason responses to the two stimull are amalgamated in later analyses.
```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 865 & 1 & 5 & 6 & 1 & , & 1 & 10 \\
\hline Sticulus 1 & 0 & 12.5 & 60 & 75 & 15 & 11 & 100 \\
\hline Sthulus 5 & 0 & 25 & 13 & 67 & 63 & 75 & 100 \\
\hline
\end{tabular}
\[
\left.x^{2}=8.0 .01=5.0\right) 0.1
\]

Figupe 9:1. The propurtions. vith aga, of currait rasponsas on sliauli 1 ans 5 .
D) The older children were given two different perspective tables to copy, one in true perspective (Stimulus 8: 115 degrees convergence) and one in naive perspective (Stimulus 9: 36 degrees convergence). The mean degrees of convergence for each age group on each type of stimulus is given in Figure 9:5.
\begin{tabular}{|c|c|c|c|c|}
\hline Asc... & 11 & 12 & 13 & 14 \\
\hline Nave priproive Number of Iubjectis & \[
\begin{aligned}
& 2(11.5)
\end{aligned}
\] & \[
\begin{aligned}
& 41(11.9) \\
& 38(11)
\end{aligned}
\] & \[
37(9.9)
\] & \[
{ }_{23}^{4(10.1)}
\] \\
\hline True penpenive Number of iubieces & \[
\begin{aligned}
& 30(18.7) \\
& 1611)^{2}
\end{aligned}
\] & \[
\underset{24(121)}{22(1)}
\] & \[
{ }_{4}^{2}(12.7)
\] & \[
\begin{aligned}
& 11110) \\
& 20 \mid 11
\end{aligned}
\] \\
\hline
\end{tabular}
 persoactive. ine stasdard deviation of the iean is given in round beactals deside each figure. The figure in square brackets represents the nuaber of subjects ohe falled to give a parspactive response (less than 20 degpeas converganiol).

It can be seen that more accuracy was achleved when copying a table in naive perspective than when copying a table in true perspective. Although only five subjects failed to use perspective, the degree of
\[
9-9
\]
convergence in the stimulus only appears to have a minor effect upon that shown in the response. Because of the lack of difference in response between the two stimull, responses to them are amalgamated for the remaining analyses.

MAIN ANALYSIS.
A) Copying of the table tops. Figure \(9: 6\) shows the responses analysed in relation to the type of table top given in the stimulus. This provided four classes of stimulus, orthographic (stimulus 1), vertical-oblique (Stimuli 2 and 3), oblique (Stimuli 4, 5, and 6), and perspective (Stimuli 7 , 8 , and 9).

A two sample \(\chi^{-}\)test failed to show a significant difference between the proportion of correct responses, with age, for orthographic and vertical-oblique stimuli \(\left(x^{2}=4.9, ~ d f=10, p>0.8\right)\). Similarly, a three sample \(\chi^{2}\) which included the correct responses for perspective stimuli failed to show a significant difference \(\left(\chi^{2}=20.7, \mathrm{df}=20, \mathrm{p}>0.3\right)\). However a four sample test including the responses on oblique stimuli showed significant differences \(\left(\chi^{2}=198.4, d f=30, p<0.001\right)\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Agc... No. responses & so & \[
\begin{gathered}
5 \\
41
\end{gathered}
\] & \[
\begin{gathered}
6 \\
60
\end{gathered}
\] & \[
\begin{gathered}
7 \\
\infty
\end{gathered}
\] & \[
3
\] & \[
\infty
\] & \[
\begin{aligned}
& 10 \\
& \infty \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
11 \\
147
\end{array}
\] & \[
\begin{array}{r}
12 \\
178 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 13 \\
& 269
\end{aligned}
\] & \[
\begin{aligned}
& 14 \\
& 50
\end{aligned}
\] \\
\hline Orbograpir diens. Rownd Onhographic Venticatol & \[
\begin{aligned}
& 12 \\
& 4 \\
& 22
\end{aligned}
\] & \[
\begin{gathered}
\boldsymbol{\infty} \\
\boldsymbol{\omega}
\end{gathered}
\] & \[
\begin{aligned}
& 86 \\
& 14
\end{aligned}
\] & 100 & \[
\begin{aligned}
& 81 \\
& 12
\end{aligned}
\] & 100 & \[
\begin{aligned}
& 48 \\
& 12
\end{aligned}
\] & 100 & 100 & 100 & 100 \\
\hline Voricatablyat mieds Onhogrophis Venicatolic Penperive & \[
\begin{aligned}
& 26 \\
& 74
\end{aligned}
\] & \[
\begin{aligned}
& 12 \\
& 35 \\
& 33
\end{aligned}
\] & 100 & \[
\begin{aligned}
& 60 \\
& 20
\end{aligned}
\] & 100 & 100 & \[
\begin{aligned}
& 48 \\
& 12
\end{aligned}
\] & 100 & 100 & 100 & 100 \\
\hline \begin{tabular}{l}
ObGqu mian \\
Rennd \\
Ortiogrophic \\
Vericat-oh \\
Oblique \\
Perpective \\
Failure
\end{tabular} & 17
11
48
3
18 & 19
75
4
2 & 13
63
22
2 & \[
\begin{aligned}
& 2 \\
& 76 \\
& 17 \\
& 3 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 54 \\
& 46
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 80
\end{aligned}
\] & \[
\begin{aligned}
& \text { is } \\
& \text { is }
\end{aligned}
\] & 100 & 100 & 100 & 100 \\
\hline Pripurim miad loved Oriographic Venicatork Oblipue Pemperaive & 20
28
85 & 7
31
86 & 97
4 & \[
\begin{aligned}
& 14 \\
& 21 \\
& 65
\end{aligned}
\] & 7
93 & 21 & 100 & 100 & 91 & 100 & 100 \\
\hline
\end{tabular}

Figure 9:6. The proportions of response, with age, for stiauli vith a table top in orthographic, vertical-oblique, oblique or perspactive projaction caeasured as a percentage of the total response for that age),

Figure 9:6 also shows that where errors do occur they rarely take the form of an oblique response. The majority of errors on orthographic, oblique and perspective stimuli are caused by vertical-oblique responses, and on vertical-oblique stimuli they are caused by orthographic responses.

Oblique stimuli elicit a form of response that is qualitatively different from responses on the other stimuli. The similarity in the proportions of errors from the other three forms of stimuli indicate that these errors might be related to developmental factors linked to skill in copying. The oblique stimuli appear to present further problems that can only be related to either figural biases unique to those stimuli (such as in the drawing of two oblique parallel lines), or to some form of 'gestaltian' perception of the figure itself.
B) Copying of the table legs.

Analysis of the stimuli related to the way in which the table legs are depicted provides three stimulus groups:- no implicit depth (stimuli 1. 2 and 7). implicit depth in a perspective manner (stimuli 3 and 9), and implicit depth in an oblique manner (stimuli 4,5 and 6). In this analysis a response was considered correct if the table legs were depicted correctly, regardless of how the table top was drawn. Figure 9:7 shows the proportions of correct responses with age for each stimulus.

A three sample \(X^{2}\) test failed to show a significant difference between stimuli 1, 2 and \(7\left(x^{2}=7.1, d f=12, p>0.8\right)\). All age groups showed little difficulty in copying table legs which involved no depth. Similarly, a Kolmogorov-Smirnov two sample test failed to show a significant difference between stimuli 3 and \(9(D=0.09, p>0.05)\). Both forms of stimulus elicit, with age, a steadily increasing ability to copy table legs in perspective. Responses for table legs in oblique depth show interesting variations. There are significant differences between stimuli

6 and \(4 / 5\), as shown by a two sample Kolmogorov-Smirnov test \((D=0.5, p\) < 0.05). However, \(43 \%\) of errors on stimuli \(4 / 5\) take the form of the table shown in stimulus 6, with the back leg which falls between the two front ones elongated, whereas \(20 \%\) of errors on stimulus 6 take the form of tables shown in stimuli 4 and 5 (true oblique). When this form of error is included in the analysis (i.e. when those drawings in which the subject is showing depth, but has not depicted the table legs with the same relative lengths as shown in the stimulus, are judged correct), a Kolmogorov-Smirnov two sample test fails to show any significant differences between the stimuli \((D=0.09, p>0.05\) ). Figure 9:8 shows the results obtained when responses are analysed in this way.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Age... \\
No. of responses ...
\end{tabular} & 4
50 & \[
\begin{array}{r}
5 \\
48
\end{array}
\] & 6 & 7
60 & 8
58 & ¢ \({ }^{9}\) & \[
\begin{aligned}
& 10 \\
& 60
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{No implicis deps} \\
\hline Suimulus 1 & 100 & 76 & 100 & 100 & 100 & 100 & 100 \\
\hline Stimulus 2 & 100 & 76 & 85 & 100 & 100 & 100 & 100 \\
\hline Simulus 7 & 100 & 50 & 84 & 100 & 100 & 100 & 100 \\
\hline Average & 100 & 67 & 0 & 99 & 100 & 100 & 100 \\
\hline \multicolumn{8}{|l|}{- Obligus' depsts [A]} \\
\hline Scimulus 4/5 & 0 & 0 & 41 & 18 & 25 & 33 & 0 \\
\hline Stimulus 6 & 0 & 0 & 0 & 0 & 63 & 67 & 36 \\
\hline Average & 0 & 4 & 20 & 9 & 4 & 50 & 28 \\
\hline \multicolumn{8}{|l|}{- Obligue depes [D]} \\
\hline Stimulus 4/5 & 6 & 32 & 59 & 70 & 82 & 87 & 100 \\
\hline Scimulus 6 & 0 & 33 & 14 & 60 & 76 & 100 & 88 \\
\hline Arenge & 3 & 33 & 37 & 65 & 79 & 94 & 25 \\
\hline \multicolumn{8}{|l|}{- Perspertiore' depels} \\
\hline Stimulus 3 & 0 & 34 & 43 & 60 & 63 & 84 & 89 \\
\hline Simulus 9 & 20 & 38 & 40 & 25 & 63 & 57 & 80 \\
\hline Average & 10 & 36 & 42 & 43 & 63 & 71 & 85 \\
\hline
\end{tabular}

Figure 9:7. The proportions of correct responses, with age, for each stiaulus and for each stimulus group. 'Oblique' depth [BJ includes arginal errors, see text for details,
\begin{tabular}{lccccccc} 
A6E & 1 & 5 & 6 & 7 & 8 & 9 & 10 \\
Stiaulus \(1 / 5\) & 6 & 32 & 59 & 70 & 82 & 87 & 100 \\
Stinulus 6 & 0 & 33 & 11 & 60 & 76 & 100 & 88 \\
Averaga & 3 & 33 & 37 & 65 & 79 & 94 & 95
\end{tabular}

Figure 9:8. The proportions of response that showed depth on obligue depth stiouli, with age,

Although even the youngest subjects made very few errors when copying a stimulus with no implicit depth these stimuli were less complex than those with either perspective or oblique depth, the copying of which produced clear developmental trends. A Kolmogorov-Smirnov two sample test falls to show any significant differences between these last two groups of stimuli ( \(D=0.07, \mathrm{p}>0.05\) ). These two groups of stimuli appear to elicit similar forms of error, however, it is unclear whether the errors can be attributed to the greater complexity of the stimuli, implicit depth in the stimuli, or a combination of the two.

Development in the copying of a table top in oblique projection or table legs in oblique projection or perspective is similar to development shown in drawing a table from imagination. The proportions of children responding correctly at each age are significantly correlated between the three groups (Table top and Imagination :- \(r=0.93\), \(\mathrm{df}=9, p<0.001\); Table top and Table legs:- \(r=0.93\), \(d f=5, p<0.01 ;\) Table legs and Imagination:- \(r=0.84, \mathrm{df}=5 . \mathrm{p}\) ( 0.05). Having a stimulus to copy elicits more correct responses than if the subject were drawing a table from imagination, but the form of development is similar whether the table is drawn from imagination, copied from stimuli with oblique table tops, or copied from stimuli with legs in implicit depth.

Discussion.
This study establishes base lines against which future copying behaviour can be evaluated. The first question raised by this study is whether the form of the oblique table top itself causes the difficulty children have in copying it accurately. This question is examined in the next study.
\[
9-13
\]

\section*{STUDY TWO.}

The Copying of 'Table Tops'.

The previous study showed that the majority of young children are able to copy a table top in perspective but not in oblique projection. This study is designed to discover whether the difference in rate of error, with age, between the two forms of stimuli is related to figural effects. The main figural differences between the stimuli are: a) symmetry around a vertical axis (in the perspective top), and b) parallel oblique lines (in the oblique top).

Symmetry is an important aspect of a figure (Bremner 1985b). For example, Bornstein et al (1981) showed that babies of four months habituate more quickly to symmetrical patterns, and that a preference for symmetry emerges between the ages of four and twelve months and increases with age. Pomerantz (1977) showed a response blas towards symmetry in adults. Five to nine year olds judge symmetrical patterns as simpler than asymmetrical ones (Chipman and Mendelson 1975), and reproduce symmetrical dot patterns more accurately than asymmetrical patterns (Boswell 1976). Bremner and Moore (1984) showed that children copled nonbisection figures as more symmetrical than they should have been, even though this meant shifting away from an existing perpendicular.

Mendleson and Lee (1981) showed that oblique plane symmetry is hardest to detect, and Mackay et al (1972) found that children were more able to place horizontal or vertical lines correctly within symmetrical shapes around the horizontal or vertical axes. Failure to copy an oblique table top may therefore be due to its perceived lack of symmetry or to its symmetry around the oblique axis..

Similarly it is known that young children show difficulty when
copying acute and obtuse angles (Bremner 1985b), but in this study both forms of table top contain acute angles and children are able to copy those found in perspective stimuli. The main difference between the two forms of stimuli is that the orthogonals in the oblique form are also parallel.

This study was designed to find out firstly whether the effect shown in Study 1 is still evident when only the table tops are drawn, and secondly whether this effect could be attributed either to the symmetry of form and/or to the parallel lines.

\section*{Method.}

Subjects. The sublects were 171 chlldren. between 4 and 11 years old, from a primary school on the outskirts of Preston, Lanceshire.

Task. The sublects were sean as a class, in their classroom. The stimuius. which consists of four components, is shown in Figure 9:9. The stimulus was drawn in large scale upon the blackboard before the class


Figure 9:9. The stiaulus used in study 2. Soe text for defalls.
entered. Each subject was given pencil and paper, and care was taken to ensure that the child could not see what his or her neighbours were doing.
\[
9-15
\]

The stimulus was revealed and the teacher asked the subjects to copy it as accurately as they could. When all the subjects had finished, name and age was put on the back of the paper, either by the experimenter, the teacher, or the ch1ld.

\section*{Results.}

The stimulus can be analysed in four separate parts, marked \(A, B, C\), and \(D\) in Figure 9:9. Stimuli \(C\) and \(D\) are identical to \(A\) and \(B\) but are rotated to give symmetry around a vertical axis in \(C\) and oblique parallel lines in \(D\), as can be seen in Figure 9:9. None of these annotations were included in the original stimulus. Responses were measured in accordance with the classification of projection systems described in Chapter 3. Further, the response to stimulus \(C\) was only considered correct if it was symmetrical around the vertical axis, and the response to \(D\) was only considered correct if the two oblique lines were parallel. Stimuli \(A\) and \(B\) were the target shapes. As they were identical to the oblique and perspective table tops in Study 1 , errors on \(C\) or \(D\) were not analysed if the subject copied \(A\) and \(B\) accurately.


Figure 9:10. The nuaber of erpors, by subject, and vith age, ade on alth stiaulus eleaent.

Only 11 of the 171 . subjects made errors on stimuli \(A\) and \(B\). Figure \(9: 10\) shows the errors made by these eleven subjects for each stimulus. Three 4 year olds made errors on each stimulus, and two 7 year olds made no other errors. The remaining six subjects, mostly five year
olds, made errors both on stimulus \(A\) and stimulus \(D\), but none on stimulus B or C.

Discussion.
The most striking aspect of the results presented here is the lack of error at all ages. Many studies have been done on the way in which children copy diamonds (see Mitchelmore 1985) and the general consensus appears to be that young children have great difficulty with this configuration. The subject population used here did not appear to be unusual, being the intake of a normal state primary school, although there are three aspects of the experimental method that may be relevant. Firstly, because of the focus of the study, errors on part \(C\) were only included in the analysis when subjects had falled to copy \(A\) or \(B\) correctly. In ali age groups there were a few children who falled to copy \(C\) correctly, but because of the above they did not fall within the scope of the analysis. Secondly, unlike most experiments the parts were presented as one unit. Several studies have shown that children alter their drawings in an attempt to differentiate between stimuli (see Light 1985). It is possible that the presentation of all four parts together increased general accuracy as the children tried to clarify the differences between them. Similarly. Freeman (1983) and Freeman et al (1983) suggest that the problem in copying such figures might be related to picture plane bias, which implies that obliquity would have the same effect whether it is in the frame or in the array. It is possible that the presence of all four stimuli in one block lessened this effect in some way. Finally, the copy was judged to be correct if its classification, as determined by measurement, was that of the appropriate projection system. These criteria are less siringent than those that measure minute deviations from the form of the stimulus, and may well add to the surprising lack of error
\[
9-17
\]
found here. If this is the case it does not detract from the force of the argument presented here which is dependent upon a comparison between errors produced in this study and those from Study 1 rather than an absolute measurement of accuracy of copying.

The sparseness of errors means that the information obtained from the few errors that did occur should be treated with caution. No subjects had difficulty with only \(A\) and \(C\), the oblique top, nor with \(B\) and \(D\), the perspective top. Therefore errors obtained in Study 1 on these stimuli are not directly attributable to the shape of the table top. Similarly, no subjects had problems with \(A, C\) and \(D\), and so error is not attributable to oblique parallel lines. The errors that there were, mainly for five year olds, indicate that the only parts subjects found difficult were those lacking symmetry.

To summarise, low error at all ages leads to the conclusion that young children's inability to copy a table in oblique projection is not wholly attributable to figural bias related to the shape of the table top.

\section*{STUDY THREE.}

\section*{The Copying of 'Table Legs in Perspective'.}

Study 1 showed that the majority of young children are unable to copy a line drawing of a table in perspective, and that the majority of errors were made in the way in which the table legs were copied. This study was designed to discover whether these errors are related to figural effects. As has been shown earlier, young children have a tendency, when depicting a table, to extend the back legs so that they are level with the front ones. This occurs whether the table is drawn from observation or from imagination, or whether it is copied from a line drawing or is part of a completion task. There is more than one possible reason for such a bias. If it is caused by a desire for order or neatness of the figure, it should occur whatever the orientation of the figure. If it is caused by the desire to indicate the relationship between the figure and the ground, the effect should only occur when the figure is correctly oriented. This study, therefore, employed two pairs of stimuli (see Figure 9:11) which are mirror images. The prediction is that if the effect is related to the knowledge that the lines represent table legs in perspective, rather than being a purely figural effect, then few errors should be made.

Method.

Subjects. The subjects were 72 children, between 4 and 9 years old, from a primary school on the outskirts of Leyland, Lancashire.

Task. The subjects were seen as a class, in their classroom. The stimulus used can be seen in Figure 9:11. The procedure was the same as that used in Study 2. It can be seen that stimulus elements \(A\) and \(C\) are identical except for a rotation, as are stimulus elements \(B\) and \(D\). Stimulus
elements \(A\) and \(B\) are the target shapes. These annotations were not included in the original stimulus.


Figure 9: 11. The stioulus usad in Stuay 3. Sed fort for datails.

Results.
The simulus can be analysed in four separate parts, marked \(A_{1} B_{1}\) \(C\) and \(D\) in Figure \(9: 11\). A response was only considered correct if it was an accurate replics of the part. Six subjects either did not copy the figures in the correct orientation or did not copy the number of legs correctly. These responses were not included in further analysis, as they did not reveal anything about the child's strategy in relation to length of line. Only 5 subjects made any other errors. These are shown in Figure 9:12. The nature of the error in each case was to complete the figure by extending the legs. Two five year olds copled both \(B\) and \(D\) inaccurately, a child of five years and another of eight years falled to copy \(B\), and a six year old falled to copy D.
\[
9-20
\]


Figure 9:12. The number of errors, by subject and vith age, ede on each stiaulus elenent,

\section*{Discussion.}

As \(1 n\) Study 2 the most striking aspect of the results presented here is the lack of error at all ages. Once again the subject population used here did not appear to be unusual, being the intake of a normal state primary school. No subjects had difficulty with only A and C. Only 2 five year olds extended the shorter lines on both parts \(B\) and \(D\), possibly showing a desire for figural coherence. One 5 year old and one 8 year old extended the lines on B, possibly showing a desire for a ground line, and one 6 year old extended the lines on \(D\). This makes it difficult to draw strong conclusions about the pattern of errors as a whole.

Many studies have shown the importance of ground line to the young child. For instance, Lowenfeld and Brittain (1966) used drawing to a ground line as a stage in the classification of children's drawings. The flat-bottom error in cube drawing is a good example of this phenomenon. In this the top surface of the cube is drawn correctly as a parallelogram, whilst the sides are extended to form a flat bottom. In an ingenious pllot study Willats (1981a) asked subjects to draw a cube from a model. The model was either resting on a table below eye level, or resting on perspex above eye level. He found that in the second condition the 'flat bottom error' occurred at the top of the drawing. He concluded that the child is conveying the direction from which the object is viewed, not just
\[
9-21
\]
the surface upon which the object rests. The suggestion that the error is caused by more than figural bias is supported by Freeman's (1986) discussion of the subject.

In conclusion, this study indicates that young children's inability to copy a table in perspective is not wholly attributable to figural bias related to the shape of the table legs.
\[
9-22
\]

The Copying of 'Table Legs in Oblique Projection'.

Study 1 showed that the majority of young children are unable to copy a table in oblique projection. Study 2 showed that this could not be wholly attributed to figural biases associated with the form of the table top. This study was designed to discover whether the errors made by children in Study 1 were caused by figural effects associated with the form of table legs in oblique projection. Study 3 indicated that when table legs are drawn in perspective the lengthening of the back legs is not related to figural bias. However. it is possible that table legs in the form of oblique projection are influenced by such a bias. As discussed earlier, drawing a table in oblique projection involves the accurate depiction of acute and obtuse angles. Young children succeeded in copying these when drawing the table tops, but the child also needs to use an acute angle when copying the 'exposed' back leg of a table in this form of projection. It is possible that children have difficulty with drawing an angle in this position and so make errors where they would not otherwise occur.

Method.
Subjects. The subjects were 170 children, between 4 and 11 years old. from a primary school in Leyland, Lancashire.

Task. The subjects were seen as a class, in their classroom. The stimulus used can be seen in Figure 9:13. The procedure was the same as that used in Study 2.
\[
9-23
\]


Figute \(\mathrm{g}: 13\) The stajulus used in study d . Sed tent for details.

Results.
The stimulus can be analysed in six separate parts, marked \(A, B, C, D, E\) and \(F\) in Figure 6. Part \(A\) is an obtuse angle. In \(B, C\) and \(E\) lines are added progressively, such that E contains all the lines necessary for table legs in oblique projection and is therefore the target stimulus, as it is identical in form to the oblique table legs in Study 1. Parts \(D\) and \(F\) are the alternatives to \(C\) and \(E\) respectively, in which the table legs extend to a ground line. These annotations were not included in the original stimulus. A response was only considered correct if it was an accurate replica of the part. If a child copled the target accurately but made
errors on other parts, these errors were not included in the analysis. Figure 9:14 shows the errors, with age, for each part in the replication of the table legs.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Age... & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline \multicolumn{9}{|l|}{Subjects... 12312345612341231231234512343} \\
\hline \(\lambda\) & , & -••••• & -••• & -•• & -•• & -•••• & -•••• & - \\
\hline 8 & ! & P & - . - & \(\cdots\) & \(\cdots\) & -••• & - . . . & - \\
\hline C & \(\cdots:\) & \(\cdots\) & - 88. & \(\because\) & & !. . . . & \(\cdots\) & \(\stackrel{\square}{-}\) \\
\hline F & 85 388 & 8igit & i: \(\mathbf{i}\) i & iji & ili & i 83811 & j8ij8 & - \\
\hline \(F\) & \(\underbrace{81}\) & - . . \({ }^{\text {c }}\) & . . & & & & & - \\
\hline No. of subjects & 11 & 23 & 18 & 29 & 23 & 23 & 36 & 11 \\
\hline
\end{tabular}

Kg: \(\mathrm{I}=\) all the kg s were extended 10 a ground line.
im the inside back leg was drawn slighty longer than the ouaside back leg.
io the obliyue angle was given as a righe angle
: \(=\) the obliyue angle was given as a straight line.
No other forms of efror were made.
Figure 9:14. The number of arrors in copying the table legs, by subject and with age, ade on each stinulus. The letter gives the form of error.

Analysis was done in two parts. Firstly errors on the copying of the oblique angle were analysed, and then the length of the table legs was examined. Table 4 shows that only seven subjects in total had problems with the angle. Two subjects used straight lines (s), three subjects used right angles ( \(r\) ), and two subjects used a combination of the two on different stimuli. Only one subject had problems with all the stimuli. This subject started using a right angle, but changed to a straight line on the last two stimuli. The other six subjects only produced errors as the stimuli became more complex. Twenty seven subjects made at least one error in copying the length of the lines. The criteria were, however, very stringent, and almost all of these errors were only marginal, classed as ' j ' In Figure 9:14. The errors occurred when subjects retained the relative lengths of the lines but showed a tendency to extend the inside back leg slightly. Chapters 3, 4 and 8 have shown that this is a frequent error when a table is drawn from a model, from imagination, or in a completion task. The error in copying legs that is being examined here, that of
extension of all the lines to ground line ( \(g\) ), was made by eight subjects, but not in a consistent manner. For example, six year old subject 2 makes this error on an easy part but not on a more complex one. The errors are spread across the age range and do not appear to indicate a consistent figural bias.

Discussion.
As in the previous two studies the most striking aspect of the results presented here is the lack of error at all ages. Once again the subject population used here did not appear to be unusual, being the intake of a normal state primary school, but again the study was unusual in that the parts were presented as one unit. More errors appear to be made as the parts become more complex, but there appears to be no consistent pattern in the type of errors made.

It is suggested that young children's inability to copy a table in oblique projection is not entirely caused by figural blas related to the shape of the table legs.

\section*{STUDY FIVE.}

Copying and Knowledge of what the Lines Represent.

This study was designed to discover whether the errors evident in Study 1 are caused by the knowledge of what the lines represent rather than by figural effects associated with the form of the line drawings. The target stimuli in each of the above studies were therefore presented again, together with an explanation of how they fit into a line drawing of a table.

Method.
Subjects. The subjects were 109 children, between 4 and 8 years old, from one infant school and one primary school in Leyland, Lancashire.

Task. The subjects were seen as a class, in their classroom. The stimulus used can be seen in Figure 9:15.

The stimulus was drawn in large scale upon the blackboard before the class entered. Each subject was given pencil and paper, and care was taken to ensure that the child could not see what his or her neighbours were doing. The stimulus was revealed, and it was explained how the perspective top fitted to the perspective legs, and the oblique top fitted to the oblique legs. The subjects were asked to imagine what they would look like if they were pushed together, and they were told that the drawings would both look like tables although they would be drawn in different ways. The teacher then explained that nobody was to actually draw a table, and asked the subjects to copy the lines on the blackboard as accurately as they could. When all the subjects had finished, name and age was put on the back of the paper, either by the experimenter, the teacher, or the child.


Figute \(9: 15\) The stacalus used an stedy 5 . Sed text for detalls.

Results.
The stimulus can be analysed in four separate parts, marked \(A, B\), \(C\) and \(D\) in Figure 9:25. These annotations were not included in the original stimulus. A response was only considered correct if it was an accurate replica of the part. Figure 9:16 shows the forms of response, with age, for each stimulus.

These results show that the youngest children had difficulty with each part of the stimulus. In conjunction with the results reported earlier in this paper they also show that children and adults extend the inside back leg slightly when drawing table legs in oblique projection, as in error type \(y\). Although this is not an absolutely correct response, it does accord with the spirit if not the letter of the law. Both here and in previous studies subjects of all ages appear to use this as an alternative method of depiction, hence this response is classed as correct for the purposes of comparison.


Figure 9:16. Trpes of error made in study 5. This tigure gives the number of subjects naking each error and the total parcentage of corcact cesponse, with age, for each part of the stinulus, The total nuaber of subjects in eath age group was 23, 28, 24 and 34 respactively.

When the proportions of errors for each age are compared by a two sample one-talled Kolmogorov-Smirnov test with those elicited by the target parts of the stimuli in studies 2, 3 and 4 a significant difference between the two is found for parts \(A, C\) and \(D\), but not for \(B\) (the lines representing a table top in perspective). (Part A v. Part A: Study 2: \(D=0.16, x^{2}=6.1, d f=2, p<0.02 ;\) Part B v. Part B: Study 2: \(D=0.02\), \(\chi^{2}=0.25, \mathrm{df}=2, \mathrm{p}>0.7\); Part C v. Part E: Study 4: \(\mathrm{D}=0.21, \chi^{2}=11\), \(\mathrm{df}=2, \mathrm{p}<0.001\); Part \(\mathrm{D} v\). Part B: Study 3: \(D=0.2, x^{2}=24.4, \mathrm{df}=2\), \(p\) < 0.001 . However, Kolmogorov-Smirnov two-sample one-talled tests falled
to find any significant differences between the proportions of errors with age obtained in this study and those produced for either the table tops or the table legs on the appropriate stimuli in Study 1 (in which the complete line drawing is copied). (Part A \(v\). The copying of the top of the oblique table in Study \(1: D=0.13, x^{2}=1.8, d f=2, p>0.2 ;\) Part \(B u\). The copying of the top of the perspective table in study \(1: D=0.02\), \(\chi^{-}=0.21, \mathrm{df}=2, p>0.7\); Part \(C v\). The copying of the legs of the oblique table in Study 1: \(D=0.09 . x^{2}=1.6, d f=2, p>0.2\); Part \(D v\). The copying of the legs of the perspective table in Study \(1: D=0.04\), \(\left.\chi^{2}=0.54, d f=2, p>0.3\right)\).

Discussion.
Subleats in either this study or in studies 1 or 2 showed little difficulty when copying a table top in perspective. Each part of the stimulus presented in this study was identical to one presented in either study 2, 3 or 4 , yet there were significant differences between the way the subjects in this study copied parts \(A, C\) and \(D\). ctable top and legs in obilque projection, and table legs in perspective) and the way subjects copied identical parts in the three other studies.

Earller it was argued that the ease with which the target parts of stimuli were copied could be related to the fact that they were presented in conjunction with similar line drowings which might increase the saliency of minor differences between them. In this study all the target parts of simuli were presented together. It is possible that the stimulus used here differed sufficiently to cause distraction rather than increased discrimination. If that is the case one might suppose that a comparison between the responses obtained with the stimulus used here and those obtained with the more complex stimull used in in Study \(l\) would show the same effect. However, one-talled tests failed to show any
significant differences between the patterns of error obtained here and those obtained in Study 1.

An alternative, and more convincing, explanation is offered by another aspect of the results. In Study 1 , when subjects were asked to copy line drawings of a table in different projections, subjects showed difficulty with the top and legs of the table in oblique projection and with the legs of the table in perspective. These particular difficulties were replicated by the subjects in this study. The stimuli used here generally elicited slightly more correct responses than elicited by table tops or table legs in oblique perspective and by table legs in perspective, which may be attributable to the greater complexity of the stimuli in Study 1, but the patterns of errors in the two studies are remarkably similar. The only feature shared by the stimull in Study 1 and the parts of the stimulus used in this study is the subject's knowledge of the object that is being represented.

To conclude, the pattern of errors obtained for each part of the stimulus was more closely related to that obtained on the relevant part of the different, and more complex, stimulus presented in Study 1 than it was to that obtained on a stimulus identical to the individual part, as presented in studies 2, 3 and 4. The point of similarity between this study and Study 1 is that subjects knew in each case that what they were drawing represented a table. This knowledge substantially altered the subjects' response on two otherwise identical tasks. Questions about why this effect is only apparent when table tops and legs in oblique projection and table legs in perspective are copled are examined in the general discussion that follows.

In the introduction to this chapter four possible areas of investigation were outlined:
a) The problem of translating three dimensions to two.
b) The problem of translating to two dimensions the three dimensions that are implicit in a two dimensional figure.
c) The problems caused by figural biases.
d) Perceptual-motor problems.

These problems were examined by the five studies presented here, in relation to those described in Chapters 3 to 6.

Chapters 3, 4 and 5 looked at the way in which subjects draw a table from observation or from imagination, and identified general trends in development independent of the task. These trends were from the use of orthographic to affine and proiective systems of natural perspective. Data obtained in Chapter 4 were used as a baseline from which to judge the problems of translating three dimensions to two.

The first study reported in the present chapter showed that if problems (a) and (b) above are avoided by presenting two dimensional stimuli, errors only occur when a table is in oblique projection or when the table's legs are in perspective.

The next three studies examined whether these errors were caused by figural biases or perceptual-motor problems specific to the form of the error producing stimuli. In each study this was found not to be the case.

The last study examined whether the errors were caused by the problem of translating to two dimensions the three dimensions that are implicit in a two dimensional figure. The stimuli were identical to those used in the previous three studies, on which subjects had produced very few errors, but subjects in this study were given the added information
that the lines formed part of a table drawing. The pattern of errors produced was the same as that in Study 1 , when subjects also knew that the lines represented a table, and was totally unlike those elicited in Studies 2, 3, and 4.

It would appear that when subjects appreciate that the stimull might be more than a collection of lines and could represent part of a table they unwittingly attempt to represent the three-dimensionality that is now associated with these lines. Their performance on the task 15 then similar that of subjects of their particular age in tasks requiring the representation of three-dimensionality, in that younger children no longer copy the stimuli accurately and produce the same errors that they would if they were drawing a three dimensional object. The same argument is used by Deregowski (1976 and 1978b). Deregowski and Strang (1986) used three dimensional stimuli to show that the dificulty in representation might lie In the conflict between the desire to convey the overall appearance of the object and the attempt to depict its elements correctly. The degree of dimensionality of the stimulus is a different, though normally inseparable, variable to that of completeness of the stimulus. The studies reported here separate these two variables and suggest that the elementary parts are generally only depicted correctly if they do not have the 'meaning' of the whole. In conclusion it is suggested that the knowledge that the lines represented a table, a three dimensional object, caused the majority of errors obtained in Study 1, and hence that the hypothesis put forward by Lazlo and Broderick (1985), that fallure to copy simple figures is largely due to perceptual-motor errors, needs modification.

If this is the case, why do subjects only have problems with table tops and table legs in oblique projection, and table legs in perspective? What is it about these that implies depth, that the other forms of stimuli used in Study 1 do not have? For example, a table top in perspective
might also be expected to imply depth. However, its trapezoidal shape, with the enlarged base, gives the appearance of sitting on a ground line rather than a ground plane. It looks like a balanced geometrical shape. Even with the knowledge that it represents a table top one can infer that it is a complete object on its own.

An oblique table top is unsymmetrical, and it has been shown that lack of symmetry does play a part in errors in copying this shape. However, it was also shown that this is not the whole reason. Mitchelmore (1985) suggests that an acute angle, in itself, might indicate depth, in that it is spontaneously interpreted as a representation of a perpendicular in three dimensions. The parallels in the oblique table top form one actual acute angle and one implicit acute angle. Whilst the shape itself is copled with little error, the added knowledge that it could be a table top might trigger a spontaneous interpretation of depth.

It is easier to see how table legs in either oblique projection or perspective can have implicit depth. If the back lines are understood to be table legs then both forms of stimulus imply hidden line elimination, in that the legs that come from the back must be partially hidden by the table top. and subjects 'know' that table legs must be of the same length and thus they are reproducing an invarlant attribute of tables. As has teen shown earller, two common methods employed by young children are the drawing of all the table legs to a ground line or the showing of them radiating from the table top. This is also the explanation given for the partial extension of the inside back leg in a table drawn in oblique projection, a form of error to which even adults are very prone and one that is evident in the studies described here.

It can be seen that implicit depth is apparent in each of the stimuli that children find problematical. The points raised here tie in closely with, and support. Mitchelmore's (1985) thesis which argues against
a close relationship between isographic and homographic errors. Essentially, isographic drawings do not have implicit depth whilst homographic ones do. The difficulty, as Mitchelmore indicates, is in designing an experiment which isolates the productive aspects of isographic and homographic drawing. The studies reported here attempt to do that. Studies 2, 3 and 4 can be considered as isographic whilst Study 5 can be seen as their homographic equivalent. The findings reported here strongly support the view that there is not a close relationship between the two. Freeman (1986), in summarising experiments on cube drawing, suggests that "what the children learned was how to relate lines on the page to their mental descriptions of the particular object; they did not learn how to solve 'the problem of depth'." Similarly Arnheim, (1974) argues that the simplicity of children's schematic representation does not reflect graphic incapacity so much as the basic analytical categories through which the child organises his or her world.

There are notable exceptions to the general development in drawing ability that have been described throughout this thesis. Some autistic children show remarkable ability at a very early age, depicting complex scenes from imagination quickly and with photographic accuracy (Selfe 1977, 1983b, 1985). By contrast, even those normal children who artistically gifted only show development a few years above thetr chronological age (harris 1963), and the drawings of other mentally retarded children are comensurate with their mental age CStotijn-Egge 1952). Further, the unusual drawing abllity shown by these autistic children 15 not relaied to enhanced spatial ability, as this is usually found to be in keeping with their mental age CHobson 1984).

Some lower I.Q. adults also show remarkable drawing abllity. \(O^{\prime}\) Connor and Hermelin (1987) examined the relationships between Intelligence and artistic ability on the one hand and skill at the
recognition, matching, reproduction and copying of two dimensional shapes with two levels of complexity and structure on the other. Their sixteen subjects were adults with an I.Q. of approximately 50 , eight of whom were idiot-savant artists and the other eight of whom, formed a control group. Four subjects in each of these groups had been diagnosed as autistic or showed autistic features in their behaviour. The remaining sixteen subjects were eleven to thirteen year old children of normal intelligence, eight of whom were artistically able. It was found that higher I.Q. groups were better at the recognition and matching of two dimensional nonrepresentational shapes, but idiot-savant artists were found to be as good as higher intelligence subjects and significantly better than I.Q. matched subjects when graphic production was required. This was also the case when graphic output was considered independently of any similarity between a drawing and a model. They concluded that "the difference between the level of performance in visual as compared with visual-graphic tasks is determined by a specific I.Q.-Independent ability".

What is this ability? The drawing ability of the idiot-savant artists was well above average, even though their reproduction and copying scores, and levels of motor coordination, were not found to be supertor to those of normal controls. \(O^{\prime}\) Connor and Hermelin suggest that the efficient accessing of graphic motor programmes depends more on artistic competence than on intelligence and the ability to evoke visual images. They suggest that drawing might be partially independent of visual memory, and related more to encoded motor programmes primed by the sight of the model, and comment that "the efficient use of domain-specific motor programmes by idiot-savant artists may indicate some sparing of cerebellar andior motor cortex structures independently of whether they are autistic or not". \(O^{\prime}\) Connor and Hermelin also point out that their tasks are only tangentially related to artistic ability, as are the two-dimensional, non-relational
stimuli they used, because normally the artist is more concerned with depicting a three dimensional form in two dimensions. However, they do hypothesize that the idiot-savant might have \("\) acquired his high level of skill in drawing familiar scenes and objects because these allow him to draw on his long-term visual memory as well as on well-practised graphic descriptions".

Selfe (1983b) found that autistic children with anamolous drawing ability normally executed their drawings from memory, although they did not rely upon it entirely. It is worthwhile quoting her extensively as her work is very pertinent to the discussion. She states that:
"All of the subjects had severe learning problems and had some degree of mental retardation. All had many of the features of autism (Rutter, 1978; Newson, 1979). In particular. all the children had suffered from delayed and deviant language development, and the mafority still had very restricted or bizarre language. All sublects had severe problems with soclal behaviour, and had had, or still had obsessions, rituals and bizarre mannerisms. An analysis of their drawing habits showed that all the subjects had started to draw representational drawings at an early age and this had not been preceded by the usual stages of scribkling and experimentation. All the subject's drawings, from an early age, had been fixed-viewpoint drawings of scenes or objects, frequently those objects that were of obsessional interest to the child. The drawings are therefore described as anamolous. (p 142)...... He (the child with normal, if accelerated, drawing abllity) represents those objects that have functional significance for hlm. The production of a characterising and meaningful symbolic representation appears to be more important than attention to idiosyncratic detalls or to a single view of an object. The autistic subjects, however, appear to be attending to non-symbolic aspects of visual experience. Objects are
truncated or partially occluded and represented without their defining characteristics, as seen from one fixed viewpoint. This type of drawing is necessarily autistic and asocial in so far as one single viewpoint is possible only to one single viewer at one fixed spot. It is therefore hypothesised that the autistic child, in drawing, records objects in his optic array more as patterns - edges, contours and shapes - rather than as representatives of classes or symbols. It is perhaps coincidental that adult layman generally value photographic realism in drawing and that this feature is the hall-mark in the drawings of the autistic group (p150)." (1985).

She showed that such children do not appear to go through the same developmental sequence as normal children. In particular, they appear not to show a 'conceptual' phase in their development. Paine (1981) made the same point when discussing children with exceptional artistic ability.

Arnheim (1980) suggested that Nadia (an idiot-savant artist) was not just 'copying' a form of eidetic imagery because she altered the scenes to accord with her own style. Baron-Cohen et al (1985) found that autistic children fail in conceptual perspective-taking skill, as opposed to perceptual perspective-taking tasks, in which they succeed. Baron-Cohen (1987) argues that if a symbol is interpreted as a representation of something else, then autistic children can create symbols. However, symbolic play involves second order representations in which the symbol is a representation of a concept, and it is in this area that outistic children fall. Thus they have a capacity to produce signs but not representations of concepts. Baron-Cohen et al (1985) conclude that this constitutes a specific cognitive defect that is largely independent of general intellectual level and has the potential to explain both lack of pretend play and social impairment by virtue of a circumscribed cognitive fallure. It must be emphasised that not all autistic children show
exceptional drawing ability, but it is possible that this cognitive deficit plays a part in the drawing of those that do.

This chapter has shown that the abllity of normal children to copy lines is affected adversely by the 'meaning' that these lines hold for the child. Unfortunately little work has been reported about the relative ability of subjects with anamolous drawing ability to copy isographic and homographic drawings. Idiot-savant artists are relatively poor at visually matching or recognising abstract shapes whilst they are relatively good at copying. Studies of drawing in autistic children have investigated free drawing, rather than the children's ability to copy lines, although Selfe (1977) reports that Nadia showed abllity at copying lines accurately. The exceptional aspect of the drawings produced by both idiot-savant artists and by autisilc children with anamolous drawing ability is shown in the way in which they can depict a three dimensional scene in two dimensions with photographic realism. Information on autistic children suggests that those with anamolous drawing abllity are not limited by the symbolle importance of lines. It is possible that all exceptional artists share this feature in some way. It is interesting to speculate that the cognitive deficit in autistic children suggested by Baron-Cohen et. al. is related to the children's lack of attendance to the symbolic aspects of visual experience found by Selfe, and that the fallure to copy meaningful lines in normal children is related to a lack of this deficit.

An interesting line of research would be to investigate the patterns of error elicited if the studies reported here were replicated with autistic children with anowalous drowing abllity.
Contents.
CONTENTS OF CHAPTER 10.
General Discussion of Findings.
A) OVERVIEW OF FINDINGS. ..... 10. 1
B) FINDINGS AND THEORIES: The relationship between the findings presented
in this thesis and the theories of development in the depiction of depth
discussed in Chapter 1. ..... 10. 5
* 1) Theories involving stages in cognition. ..... 10. 6
* 2) Theories involving visual realism. ..... 10. 7
* 3) Production error theories. ..... 10. 8
* 4) Conceptual/perceptual realism theories. ..... 10.10
C) CONCLUSIONS. ..... 10.11

\title{
Chapter 10.
}

General Discussion of Findings.
A) Overview of Findings.

Chapter 3 investigated the way in which adults and children use projection systems when drawing a table from observation. It was found that different forms of projection were used, and that older subjects used more complex forms of projection. However, the data did not support the view that development is directly linked to the understanding of projection systems. The most complex form of projection studied, linear perspective, was used incorrectly by all subjects. Oblique projection was used by a steady minority of older subjects, even though this did not accord with the view that they had of the table. The majority of younger subjects used orthographic or vertical oblique projection, and there appeared to be 1ittle progression from the use of one to the use of the other.

Chapter 4 looked at the way in which adults and children draw a table from imagination. Here it was found that the majority of older subjects drew a table in oblique projection. Very few used any form of perspective, and the proportion of those doing so peaked at about fourteen years of age. This is the age at which linear perspective is taught in art lessons in the majority of schools from which the subjects were obtained. The majority of younger subjects used orthographic or vertical oblique projection. Little difference was found between these two systems In the proportions of subjects using them, with age, and hence it was concluded that they are used in an equivalent way.

A comparison between this study and that discussed in Chapter 3 showed that the use of oblique projection or perspective is dependent upon whether subjects have been asked to draw from imagination or observation.

This task dependency becomes more marked from about ten years of age. There is no task dependency with orthographic and vertical oblique projection. It was also shown that there is development in the depiction of depth that is not directly related to the use of projection systems and is independent of the task.

Chapter 5 investigated the task dependency shown in the previous chapter. The older subjects' use of oblique projection when drawing a table from imagination and use of perspective when drawing a table from observation was found to be unrelated to saliency of background, knowledge of perspective, or level of artistic ability. It was found that the most important factor is the degree of centrallty of viewpoint specified in the stimulus. When the stimulus specified a central viewpoint the majority of older subjects used perspective, and when no viewpoint was specified the majority of older subjects used oblique projection.

These three chapters taken together showed that development in the depiction of depth is not uniquely related to development in efther the understanding or the use of projection systems. They showed that younger subjects tend to use orthographic and vertical oblique projection In an equivalent manner, whilst older subjects used elther oblique projection or perspective depending on the task constraints. It was necessary to make a more detalled analysis of the way in which tables were drawn, in order to identify developmental trends that are not task related, but whose existence had been inferred from the above findings. Chapter 6 set out a formal classification system of table drawings. This system utilises the way in which both the table top and the table legs are drawn, and is independent of any previous theories about how the depiction of depth develops. The data presented in Chapters 3 and 4 were classified according to this system. It was found that the use of depth cues within the drawing of a aingle table could be identified from the way in which
the relationship between the table top and each of the table legs is depicted. The depth cues identified were partial occlusion and height in the picture plane. Use of the latter occurs in three stages: absence of ground line, use of a ground line, and use of a ground plane. Diminishing size with distance could not be identified by examining the way in which the table legs were drawn, and could only be inferred from the depiction of the table top. An analysis of the developmental trends found in the use of depth cues identified in this way showed that such development is independent of task. It also showed that subjects used the depth cues necessary for the production of a particular projection system before they used that form of projection.

The studies reported in Chapter 7 .used a series of tasks in which subjects had to choose the form of depiction they preferred from a series of drawings. This was done in order to investigate whether children prefer tables to be drawn in the manner that they themselves would use, or If they are constrained by an inability to use more complex depth cues. It was found that the majority of all subjects preferred depictions showing the use of oblique projection, ground plane, and partial occlusion. These preferences held true across a variety of conditions, and for all ages. It remained the casa.even when a real table was placed in front of the subjects and they were asked which depiction they thought looked most like it. Under these conditions the vast majority of subjects up to ten years of age chose a table depicted in oblique projection. After this age the proportion of subjects preferring perspective increased gradually, but the proportion of subjects preferring oblique projection did not drop below approximately fifty percent even for the group aged thirteen and above. The strong preference for the use of ground plane and partial occlusion was unaffected by this task. These last findings support those presented earlier that suggest that sensitivity to centrality of viewpoint becomes a
salient feature of the task at about ten years of age.
In one study the wording of the question was altered and it was found that this alteration did have a small effect upon the response. This finding suggests that the assumption about a direct link between the stated preferred form of depiction and canonical representation needs to be made with caution. However, the strength of preference for oblique projection, partial occlusion and ground plane suggests that the majority of subjects would draw in this manner if they could.

Chapter 8 started with the hypotheses that, firstly, subjects might in some way be prevented from producing a depiction in the way that they think looks most like a table and, secondly, this inability might be overcome by substantial aid with the production of the line drawing. In order to investigate these hypotheses a serles of completion tasks wera used in which the number and the position of the lines to be complated were varled. Subjects were also asked to draw a table and to choose which depiction, including their own, they thought looked most like a table. It was implicit that the drawing should be done from imagination, although subjects did have line drawings in front of them which they could copy. This design enabled a direct comparison to be made between each subject's completions, production and choice. It was found that, as in the previous chapter, the majority of all subjects preferred a table which was in oblique projection, showing the use of ground plane and partial occlusion, but that subjects tended to complete tables in accordance with their own production despite the degree of help given. This effect was 60 strong that some subjects deliberately altered the stimulus rather than add the one line required to complete the table in oblique projection. Similarly, some subjects deliberately altered the table legs to give a ground line rather than leave them showing a ground plane. Thus the data presented here supported the first premise but indicated that even with substantial
ald subjects showed a reluctance to alter their mode of depiction to accord with their stated preference.

Chapter 9 extended this line of inquiry by examining which aspects of the line drawings presented most problems. This was done by using a serles of copying tasks. When subjects were asked to copy line drawings of tables in a variety of different forms of projection the majority of errors produced were ellcited by stimull with a table top in oblique projection and/or showing the use of ground plane and partial occlusion. Even though fewer errors were produced, the pattern of error was similar to that obtained when a table was drawn from imagination. Thus oblique is the form of projection that most subjects prefer, but is also the form of projection that subjects find most difficult to copy. However, very few errors were made when subjects were asked to copy parts of these line drawings without reference to the symbolic content of the depiction. Subjects who were only given parts of the line drawings to copy, but were told what they represented prior to copying, produced the same pattern of errors as was obtained when the whole line drawing was copied. These studies showed that the production difficulties encountered by these subjects were related to the symbolic content of the stimuli and not to figural biases. Finally, it was argued that the error producing aspect of the symbolic content was related to the implicit depth perceived within the stimulus.
B) The relationship between the findings presented in this thesis and the theories of development in the depiction of depth discussed in Chapter 1.

In Chapter 1 it was suggested that theories about development in the depiction of depth could be roughly grouped into four areas, concerned with, respectively: stages in cognition; visual realism; production errors; conceptual/perceptual reallsm. Little of the work reported in the
ilterature is based on one theory only, and most of it examines a particular aspect of depiction without placing it categorically within the framework of a particular theory. However, a lot of work contains underlying assumptions and it was these assumptions that were examined in the first chapter. This thesis did not set out to test between the alternative theories, however, the main tenets of each of these groups of theories can now be examined in the light of the findings summarised above.
1) Theories involving stages in cognition.

These theories suggest that development occurs by stages linked to the understanding of depth, evidenced by development in the use of a series of projection systems in which linear perspective is the final stage. Plaget (1977) has modified the original very close link between understanding of depth and use of projection systems by suggesting that some subjects, whilst in the stage of formal operations, might not use perspective because they lacked experience in depiction. However, his description still assumes that if a subject does use a projection system it Is because the theoretical implications of that system have been understood, and 60 if subjects do use linear perspective he would expect them to use it correctly. The findings presented in Chapters 3, 4, 5 and 6 are incompatible with all of these suggestions.

Firstly, although linear perspective was used by the majority of older subjects when drawing a table from observation, it was not used correctly. That is, subjects did not show a full understanding of how to use 1t, but used aspects of it without incorporating these aspects into a single system.

Secondly, the results reported in Chapter 5 showed that the use of oblique projection rather than perspective does not show a less developed
understanding of how to deplet depth, but reflects the task constraints. Similarly, the age profiles of the proportions of subjects using orthographic and vertical oblique projection overlap to a large extent on all the tasks, which does not offer support for the suggestion that their use is directly related to separate stages in the understanding of depth.

These findings show that development in the representation of depth is not directly linked to development in the understanding of depth itself: stages of development are not directly linked to the use of increasingly complex projection systems, and when linear perspective is used it is not necessarily 'understood'.

\section*{2) Theories involving visual realism.}

These theories also suggest that development. occurs in cognitive stages, but related to the understanding of how to depict depth, rather than the understanding of depth itself. The stages are linked to development away from the use of an object centred method of depiction and towards view specific depiction. These suggestions are also incompatible with the findings presented here.

Chapter 2 illustrated that view specific depiction, or drawing what we 'see', entails the use of perspective be it linear, oblique, hyperbolic etc.). When oblique projection is used a view centred, rather than a view specific, depiction is produced. It has been shown in Chapters 5, 6, 7 and 8 that linear perspective is only produced when the task constraints emphasise its importance and that oblique projection appears to be used as a default system even by older subjects. For: example, either oblique or perspective responses could have been made to some of the stimuli in the completion tasks reported in Chapter 8 , yet the vast majority of older subjects used oblique projection. Similarly, a strong preference for tables depicted in oblique projection was shown by all age
groups and across a variety of tasks, as reported in Chapters 7 and 8.
Although most of the studies reported in this thesis have required subjects to represent only a single object, it has also been demonstrated that the preference for view centred depletions is not a product of this task constraint. For example, in Chapter 5 subjects were asked to represent a table within a scene, depicting it both from observation and from imagination. In Chapter 7 subjects were asked to choose a line drawing of a table that was depicted against a background in perspective. Finally, also in Chapter 7, subjects were asked to choose which of a number of line drawings of tables looked most like a real table that was placed in front of them.

In conclusion, the data presented in this thesis do not support the idea of development towards view specific depiction. Instead they suggest that the predominant preference for, and use of, oblique projection arises from the drawer's preoccupation with object centred/object informative portrayal and that view specific depiction is only used when it is percelved to be necessary. Without such task constraints even older subjects would normally use oblique projection.

\section*{3) Production error theorles.}

These theorles suggest that development in the depiction of depth reflects the child's gradual resolution of production difficulties that are unrelated to the understanding of how to organise and depict depth. If we take a 1 imited view of production errors as figural blases then this view is not supported by the findings presented in Chapter 9, in which it was shown that simple figural blases could not account for the level of error produced. However, it is possible to take a broader view of production errors as reflecting the gradual acquisition of a skilled behaviour that is influenced by general cognitive development. That is, the ability to plan
and organise the process of depiction develops, irrespective of the way in which depth is depicted. Chapter 9 lends support to this wider view of production errors. The development in the ability to depict a table in oblique projection found when drawing from Imagination was similar to that found when a line drawing was copled. However, this development was shown to occur at an earlier age in the latter task. The copying of a line drawing involves less planning than is needed when drawing an object from imagination. With fewer planning problems the ability to depict depth is enhanced. This indicates that production difficulties, within the wider definition, do have an effect upon the depiction of depth that is not directly related to development in the understanding of how implicit depth within a stimulus can be represented in two dimensions.

In Chapter 1 it was suggested that children use graphic motor schemata as formulae for depicting objects, and that these are used as a method for reducing cognitive load. In Chapter 2 it was suggested that subjects might rely on these formulae to such an extent, that they use them inappropriately, and that it was only with experience that subjects developed a wider range of formulae tailored to coping with differing task demands. The findings presented here do suggest that subjects become 'rule bound'. On an individual level Chapter 8 showed that some subjects went to great lengths to alter the stimulus to accord with the way in which they normally depicted a table, even though the stimulus was then altered away from the form that they thought looked most like a table. On a more general level the analyses reported in Chapter 6 showed that whilst development in the use of each depth cue might be gradual, there are strong age related correlations between forms of depiction and these give the appearance of a stage like development. This study was not longitudinal, and therefore it cannot be concluded that a single child's depictions would develop along these lines. Howeyer; the data indicated
that there were areas of transition in which some parts of the depiction would be represented in a way that anticipated a later form of depiction. This brings to mind the description of development in graphic motor schemata that suggests that new rules are incorporated as they are found to be appropriate.

In conclusion, the findings presented here indicate that all error cannot be attributed to production difficulties, but that such difficulties do play a part in the subject's inability to represent the table in the way that he or she would wish to.

\section*{4) Conceptual/perceptual realism theories.}

These theories suggest, firstly, that development occurs in the knowledge of how to represent the salient aspects of a three dimensional stimulus (regardless of whether the third dimension is real or inferred) in a two dimensional depiction, and, secondly, that the end point of development can be view centred or view specific depending upon the task constraints. The second of these has already been discussed at length, and has been shown to be supported by the data presented here.

Support for the first of these can be found in a number of the studies reported here. Chapters 7 and 8 showed that even very young subjects thought that the best depiction of a table was one in oblique projection, showing the use of ground plane and partial occlusion, yet even with a great deal of help they found such a depiction difficult to produce. Chapter 9 showed that it was the symbolic element of the stimulus that elicited errors in copying line drawings of tables, and it was argued that the error producing aspect of this was related to the implicit depth perceived within the stimulus.

The object centred nature of our cognitive processes results in the high saliency of occlusion as a perceptual depth cue. The proportions
of subjects using occlusion shows a gradual increase with age, and no significant differences have been found in this across the various tasks reported here. These findings are not specific just to the tasks given here, as shown by the significant correlation between these findings and those of Cox (1981), who examined development in the use of occlusion when the relationship between two objects placed one behind the other was depicted (as reported in Chapter 4).

The data presented here support this general approach as presented in Chapter 1, and it forms part of the basis for the model suggested in the following chapter.

General conclusions.
The findings presented in this thesis suggest that a combination of the last two types of theories best explain development in the way in which depth is depicted when a table is drawn. Development has been found to occur in the knowledge of how to represent the salient aspects of a three dimensional stimulus (regardless of whether the third dimension is real or inferred) in a two dimensional depiction. This has been shown to Involve the abllity to overcome the object centred nature of the relevant cognitive processes. The depiction of depth cues appears to be the underlying factor that develops. The most common end point of development is view centred and in oblique projection. From about the age of ten, subjects attempt to produce view specific depictions if this is perceived to be the appropriate response, but do not do so correctly. The depiction of depth is alded if the amount of planning required by the task is reduced, but production difficulties do not account for all errors. Finally It has been suggested that the data support the idea that subjects used, and were sometimes bound by, graphic motor schemata, and that the use of these schemata might contribute to the appearance of stage like
development.
The merits of both groups of theories have been considered on an individual basis, producing a rather disjointed account of what actually happens. The following chapter attempts to knit the strands together and so provide a coherent model of such development.
\begin{tabular}{|c|c|}
\hline CONTENTS OF CHAPTER 11. Development in the Depiction of Depth. & \\
\hline A) THE PROCESS OF DEPICTION. & 11. 2 \\
\hline * The formation of general goals. & 11. 2 \\
\hline * Task demands. & 11. 5 \\
\hline * Route ' a '. & 11. 6 \\
\hline * Redefining the task, route 'b'. & 11. 8 \\
\hline Implicit depth. & 11. 8 \\
\hline * The formation of sub-goals. & 11.10 \\
\hline Sertalisation of drawing. & 11.11 \\
\hline * Feedback loop 'c'. & 11.12 \\
\hline * Feedback loop 'd'. & 11.13 \\
\hline B) Development in depiction. & 11.14 \\
\hline * Development related to conceptualisation of the task. & 11.14 \\
\hline * Development related to mental representation of the task. & 11.15 \\
\hline * Development related to serialisation of drawing. & 11.20 \\
\hline C) CONCLUSIONS. & 11.22 \\
\hline
\end{tabular}

\section*{Development in the Depiction of Depth.}

This chapter examines the processes that are involved in the depiction of depth in the drawing of a table and presents a tentative model of these processes which is based upon the findings and conclusions summarised in the previous chapter. The model is applicable to the restricted task of depicting depth in the drawing a table. However, some aspects of drawing where the model may have wider applicability but which have not been covered directly in this thesis will also be discussed.

Performance has been shown to be related to the task demands and to the level of symbolic content that has been attributed to the stimulus. Development has been shown to occur in the use of depth cues and in the subject's willingness, under certain circumstances, to accept the need for view specificity. These are, however, very general findings. In order to produce some coherence and to add structure to these findings it is first necessary to analyse the process of depicting a table. Once this has been clarified we can then use this structure to aid our examination of how the depiction of depth develops.

A process model has been designed to describe and separate out the processes of depiction that have been found in this thesis. The first part of the chapter concentrates upon explaining the model and examining the routes through it in relation to the findings presented earlier. This suggests that the processes of depiction are interdependent, but have clearly defined roles. The second part of the chapter focusses upon development in the depiction of depth. The use of the process model enables other aspects of development in depiction to be identified, because development in each of the different aspects of depiction, shown in this
thesis, can be allocated to different categories within the process model. Hence development in the depiction of depth can be isolated and examined in its own right.
A) THE PROCESS OF DEPICTION.

Figure 11:1 illustrates the process model discussed above. The box labelled 'perception of task demands' represents all task demands as percelved by the subject, both stated and unstated. For example, the subject might be asked to draw the table in front of her, but she might also be aware that if she wants to get to lunch on time she had better draw it quickly. 'Perception of task demands' also includes the initiation of the generation of internal 'stimuli', as for example when a subject is asked to imagine a table. That labelled 'stimulus' represents all forms of external stimuli that the subject might be presented with. The perception of the stimulus is seen to be separate from the stimulus itself. Aspects of perception that are particularly relevant here are those relating to the object centred nature of perception; thus each object within the stimulus is perceived as separate and as having implicit depth. Similarly, implicit depth is perceived in the spatial relationships between the symbolic elements of the stimulus.

THE FORMATION OF GENERAL COALS.

The box labelled 'conceptualisation of the task' indicates a decision-making area. Conceptualisation is normally seen to be an object centred process, in which consideration of how to depict an object involves imbuing it with implicit depth, and might involve invoking the canonical representation of the object. It is here that general goals of depiction are formed. Such goals can include those of artistic intent, such as: Is the depiction to be visually reallstic? Is it to be an expression of


Figure li:l. A aodel of the processes followed when draving a table. Please see text for detalls of annotations.
understanding? Is it to engender feelings in the observer? Is it to be balanced? Is it to be an abstract exploration of lines and colours? Is it to display a particular message? Such goals are based upon the way in which both the task demands and the stimulus are perceived.

In order to clarify this let us examine the routes that some of the subjects might have taken. Initially, let us assume that a subject is asked to draw a table from observation. The subject is aware that the demands of the task are that she should depict the table that is in front of her. Her perception of the stimulus may be affected by the way in which she has understood (conceptualised) the task demands. It can be seen that in this model a degree of variability has been introduced into the task before the subject has considered the mechanics of putting pencil to paper. The subject can interpret the task demands in many different ways, and from this many different general goals or strategies for the execution of the task can be formed. She might focus on the words 'draw' and 'table' and ignore the rest. In this case she will decide to 'draw a table' and although she might look at the stimulus briefly, she might well rely on her knowledge of tables, and therefore possibly use her canonical representation of a table as a source for her depiction. Alternatively, she might be aware of the need to draw a table, but also be aware of the need for visual realism, and decide to attempt thic. She might decide to look carefully at the stimulus, but, under these circumstances, her perception of the stimulus is most likely to be object centred and not actually visually realistic. If she is highly skilled she might initially perceive the stimulus in an object centred way, but night make a conscious decision to concentrate on the patterns of outline and light and shade presented by the stimulus. Another option 15 that she might feel that she cannot draw, and reject the task antirely, or she might be aware of
unstated task constraints, such as lack of time, and determine to produce a basic minimum response.

Task demands.
This indicates that there are a variety of task demands, both stated and unstated, that affect the way in which the task is understood and the general goals are formed. The object centred nature of the perception of the stimulus and the conceptualisation of the task implies that the subject will normally have to make a dellberate decision about how to approach the task if she does not wish to produce an object centred depiction.

The way in which the task is conceived can affect the perception of the stimulus. The subject might choose which aspects of the stimulus to which she wishes to pay attention. Similarly the way in which the stimulus is perceived might affect the conceptualisation of the task. On attending to particular aspects of the stimulus the subject might find that the task, as it has been interpreted, is inappropriate and therefore she might redefine the task.

Similar processes might occur in all the tasks presented in this thesis. When a subject is asked to draw a table from imagination there is no 'real' stimulus to perceive and so the need to imagine the stimulus is implicit in the task demands. This does not necessarily imply that she constructs a visual image of the table. She might try to do so if she feels that an attempt at visual realism is implicit in the task demands. However she might infer that the task demands require her to depict what she knows about 'tableness', and so she might incorporate aspects of her canonical representation of a table.

When a subject is asked to copy a line drawing of a table, or to complete a line drawing of a table, her perception of the stimulus will
normally be object centred. She will see a 'table'. She might well interpret the task demands as requiring her to depict this 'tableness' in some way. Thus although she has been presented with a two dimensional stimulus it is possible that when conceptualising the task she calls into play the same sorts of attributes (solidity, spatial relationship of symbolic elements, canonical representation, shape, size, and so on) as she would when drawing from observation or imagination.

Chapter 9 showed that subjects have little difficulty in copying Ines that are not seen to be symbolic elements of a table. It was argued that in this case perception of the stimulus did not trigger the idea of tableness, nor involve implicit depth. It is possible that under these circumstances that the subject's conceptualisation of the task is very basic. Once the subject has formed the general goal of getting what is in front of her onto the paper, it is probable that the majority of decisions she has to make will occur in 'serialisation of drawing'.

Route ' a '.
The route between perception of stimulus and serialisation of drawing is marked ' \(a\) ' in the process model. It is possible that this is also the path taken by skilled artists when drawing from observation. Skilled artists who were interviewed for this thesis report being able to look at an object and perceive it without apparent depth or meaning, but as a collection of contours and shapes with areas of contrast, colour and shade. When such artists draw from imagination they report the need to form the fundamentals of the scene into a clear image in their mind before depicting it. If this is the case it lends support to the idea that at times during the depiction a skilled artist acts almost as a transcriber. This is not to say that such an artist 'coples' her image. She is still making decisions. For example, even linear perspective is not totally
visually realistic. She has to decide if she wants to approach visual realism and if so what is the best method of indicating this. In real life a colour gradient might be very gradual, yet it cannot be represented in this way: to indicate depth it might be better to blurr the background in a visually unrealistic way. What it does imply is that such an artist has evolved her skill to such an extent that, once she has conceptualised her task and formed general goals, she can sidestep the problems of translating implicit depth in the stimulus and can perceive the aspects of the stimulus that she is concentrating on in a two dimensional way. It is only when she wants to make a decision about the nature of the task that she re-conceptualises it.

It is interesting to speculate that the processes that Nadia used when drawing (discussed in more detail in Chapter 9) also followed this route. Her drawing skill appeared to be related to highly developed perceptual ability, at the expense of conceptual ability (Selfe 1977). As she gradually acquired the abllity to use more than a few words, so her drawing ability declined. Selfe (1985) suggests that "autistic subjects (with anomalous drawing ability) appear to be attending to non-symbolic aspects of visual experience. Objects are truncated or partially occluded and represented without their defining characteristics, as seen from one fixed viewpoint. This type of drawing is necessarily autistic and asocial in so far as one single viewpoint is possible only to one single viewer at a fixed spot. It is therefore hypothesised that the autistic child, in drawing, records objects in his optic array more as patterns - edges, contours and shapes - rather than representatives of classes or symbols." The converse of this is that it is the normal child's object centred conceptualisation of the task that interferes with his ability to deplct depth in a manner approaching visual realism.

Redefining the task, route ' \(b\) '.
When considering lask demands and the formation of general goals within the conceptualisation of the task it would be unwise to assume that the subject develops an idea of what he or she is going to produce and then attempts to 'copy' 1t. The subject may well re-define the task several times as the depiction progresses. All the following senarios were observed during the collection of data for this thesis. One young boy started to draw a table, but felt that his partial depiction looked more like a house, and so he re-defined the task into one of house drawing. A teenager started to draw a table from observation but enjoyed the process so much that she redefined the task to include the whole scene. A fifty three year old wanted to draw the table as she saw it (from centre front) but drew the table top as a square. After several tries she gave up and said that although it did not look like that she was going to draw a plan view. Thus the distinction between conceptualisation of task and mental representation (the workbench) might be quite blurred, as might that between mental representation and perception of depiction. In this way perception of depietion can be seen to have an effect upon the way in which the task is conceived, and vice versa (route \(b\) in the model).

Implicit depth.
The findings reported in Chapter 7 are perhaps the closest indication of the way in which most subjects conceive the depiction of a table. The preferred form of table 16 affected by the task demands, but In general the majority of subjects preferred a table in oblique projection, showing the use of partial occlusion and ground plane, thus preferring a view centred rather than a view epecific depiction. It was suggested that this form of depiction is the two dimensional representation closest to the canonical representation, with its implicit
depth, that most subjects have of a table. The virtue of this form of representation is that it preserves to a certain degree the cuboid shape of a table, and the spatial relationship of the symbolic elements of the table, whilst also implying depth.

It has been suggested that when we identify an object, whether we perceive \(1 t\), think about \(1 t\), or \(t r y\) and build a mental representation of \(1 t\), each symbolic element can be perceived as separate and as having implicit depth. However, we have to ignore the symbolic nature of the elements in order to make a visually realistic depiction of the object. The existance of shape constancy means that, regardless of the form in which we see the object, there are attributes that we perceive as part of the nature of the object (such as the handle on a cup). The operation of size constancy means that we perceive the object to be approximately the same size however far away it is. Not only do children have to overcome this in order to draw in a view centred way, but they also have to overcome the urge to exaggerate the size of the elements of objects that they perceive as having greater symbolic importance than other elements. Similarly it is necessary to overcome colour and texture constancies in order to be able to use these as depth cues. Therefore the subject's final production depends, partially, upon her abllity to overcome the effects of perceptual constancies, the desire for separateness, and perceived dfferences in the importance of the symbolic elements.

Mental representation of the task is the decision making area in which these problems are addressed. It incorporates the idea of a mental 'workbench' in which the subject forms specific goals about how to translate the symbolic elements of the conceived depiction (with their implicit depth and spatial relationships to each other) into two dimensional reality. If the subject is quite skilled, or the object to be depicted is quite simple, it is feasible that the subject could construct
quite a clear mental representation of exactly what she wants to depict and of how it is to be done. Thus, in this case, conceptualising the task and forming a mental representation of how to proceed are part of the same process. However, if this is not the case, the model suggests that a series of sub-goals will be formed and, on completion of each sub-goal, decisions will be made with reference to the general goal and the state of the depiction itself: whether to continue as planned or to re-define the remaining sub-goals or to form new ones.

THE FORMATION OF SUB-COALS.
The use of drawing schemata can be seen as part of this process. The subject might have a highly developed scheme for depicting a particular type of symbolic element. If he then sees the need to depict that element he might utilise the scheme, whether or not it is actually appropriate. For example, if a young child is asked to draw a table from observation and has a clear idea of how he draws tables he might call this into play even though the resulting depiction does not resemble the table in front of him. Alternatively he might start to draw the table in front of him, but find that when he gets to areas of difficulty the way in which he perceives the depiction suggests solutions he has used previously. He knows they will not look exactly as he wants them to, but as he has used them to solve similar problems he belleves that they are the best solution. This sort of behaviour was illustrated in Chapter 8 where subjects were asked to complete drawings of tables. The completion task removed potential problems related to the serialisation of the drawing, but some subjects at all ages deliberately altered parts of the stimull to make them similar to their own form of production, even though this did not necessarily accord with their preferred form of depiction.

It is necessary to make a distinction between drawing rules
related to the planning of the depiction, such as 'always draw the whole shapes first', and rules relating to more conceptual problems of depicting the object in a view centred way. For example, a rule might be 'always draw the front face first to avoid the need for hidden line elimination'. The distinction between the two is that the former concentrates on the process of getting the lines on the paper, irrespective of any symbolism the lines might have, whilst the latter concentrates upon transforming the perceived symbolism into a depictable form. Although drawing schemata can encompass both sorts of rules, the rules are derived from different parts of the model. Rules that are developed to cope with the symbolic element of the task relate to the mental representation of the task, whilst rules developed to cope with non-symbolic elements of the task relate to the serialisation of the drawing.

Serialisation of drawing.
Serialisation of drawing involves the formation of specific planning goals and the drawing rules related to the planning of the depiction. Thus errors that occur irrespective of the symbolic nature of the task are attributable to this aspect of the process of depiction. This was examined in Chapter 9, where it was found that very few such errors occurred in the simple tasks given there. The incidence of such errors is, however, widely documented (see Freeman and Cox, Eds., 1985 for detalled analyses) and it is worth extending the discussion to include these if the model is to be seen to have relevance to other forms of depiction.

Serialisation of drawing assumes that the subject has a clear mental image of what he wants to put upon the paper. In the case of the skilled artist drawing from observation, discussed earlier in the chapter, he might only want to put a couple of lines on the paper, the position of which he has just examined and memorised. If he is drawing from
imagination it might be a whole series of lines representing a section of the imagined scene that he has analysed and planned how to depict. In the case of a young child it might be that he is employing a familiar drawing scheme and he has little planning to do and follows a well worn routine. Alternatively, he might have been asked to copy two lines foining at an angle. He might try to construct a visual image of them and get both on paper without looking back at the stimulus, or he might carefully copy one and then work out where the other should 80 . The unit of depiction that is involved can vary from one line to a whole serles of lines, but in each case the emphasis is upon memory, planning, and the correct placement of inses. The size of the unit is seen to be related to the complexity of task and the level of skill of the drawer.

Feedback loop 'c'.
Involved in this process is the small feedback loop, marked \(c\) in the model. This is the area in which the depiction of the units is executed and the mechanical control of the units is monitored. Errors can occur both in the execution of the unit and in the way in which it is monitored. For example, if the child is attempting to copy two lines joining at an angle he might have poor perceptual-motor coordination, and therefore not place the lines as he wishes, or he might fall prey to an extra- or intra- figural bias. He might appreciate the error and try to correct 1t, or the error might originate from the way in which he initially perceived the stimulus and hence he might not perceive the depiction to be erroneous. Therefore the final production is related to perceptual-motor coordination and the ability to overcome extra- and intra- figural blases, whether they originate from the perception of the stimulus, the process of deplction, or a combination of the two.

Feedback loop 'd'.
The second feedback loop, marked \(d\) in the model, indicates the route that the subject normally adopts on the completion of each unit. For example, when drawing from observation she may initially have planned how to draw the table top, decided to draw it as a square, and have executed that. The table legs were not included in her initial unit of depiction and she now needs to decide how she is going to draw them. She refers back to her mental representation of the task and decides that the front legs extend from the two front corners directly to the ground. This is moderately easy to plan and so she executes this in one unit, travelling through route \(c\) several times. She then needs to draw the back legs. She might have a clear idea of how she normally copes with the problem of showing them behind the others, and so she executes this, travelling several times through route \(c\), and finishing her depiction. Alternatively, she might know how she would like it to look, but does not know how to achieve this. She has gone through route \(d\) again to her mental representation of the task. She might alight upon a solution and so return to serialising the drawing. Alternatively, she might return to her conceptualisation of the task, review the task demands, or even have another look at the stimulus before deciding on what to do and travelling through loops \(c\) and \(d\) (possibly several times) and finishing the depiction.

This description of a route through the model highlights the fact that depiction is not a single process in which the stimulus is examined and then copied onto paper. The process of depiction is one requiring many decisions at different levels. The model emphasises the cyclical nature of depiction, and the frequency with which skilled depictors check on the progress of the depiction. Fallure to make the 'correct' decision at any part of the process will influence later decisions, and affect the final depiction.
B) DEVELOPMENT IN DEPICTION.

The model has allowed us to separate out the various processes involved in depiction. Having done this, we are now able to examine the development in depiction that has been shown in this thesis by allocating it to various categories. Three main areas of development can be identified: development related to conceptualisation of the task; mental representation of the task; serialisation of drawing. We are assuming that development of perception also occurs, but this is not addressed by the model which is specifically identifying development in the drawing process.

Development related to conceptualisation of the task.
Development related to conceptualisation of the task refers to development associated with increased ability to understand task demands and to form general goals that concur with the task demands. In Chapter 7 It was shown that the majority of subjects preferred a table in oblique projection, showing the use of parial occlusion and ground plane, thus preferring a view centred rather than a view specific description.

The preference for this form of representation remained strong across all ages and both Chapters 5 and 7 showed that the majority of children younger than ten years of age did not modify their performance if the task demands emphasised visual realism. In contradiction to this, as discussed in detall in Chapters 1 and 2, many researchers have found that very young children are able to modify their depictions in relation to the task demands. It may be possible to reconelle these two points. Barratt et al (1985) suggest that me acquisition of the flexibility which characterises the drawing behaviour of older children should be attributed, at least in part, to the acquisition of a greater sensitivity to the variable task demands which can be implied by different verbal Instructions, and not solely to the acquisition of additional drawing
devices for depicting objects in depth." The studies that showed young children's sensitivity to task demands all placed strong emphasis upon their appreciation of the need for view centred depictions, thus possibly increasing the salience of this aspect of the task. The studies reported here did not explicitly emphasise visual realism. When subjects were asked to draw a table from observation they were asked to draw a particular table but they were not primed to observe the table closely, to identify exactly what they could or could not see, or to explore the exact outline of the table. Similarly, when subjects were asked to identify the depiction that looked most like the table placed in front of them they were not asked to analyse exactly how that table looked. It could be argued that an awareness of the salience of visual realism occurs 'naturally' from about ten years of age, but that individual aspects of this, such as height in the picture plane or partial occlusion, might be elicited at an earlier age if the need for them is perceived in the task demands.

The model identifies one potential area of development in the manner in which the task demands are interpreted. It suggests that young children are normally insensitive to the need for a view centred depiction, although they prefer it and can produce aspects of it if the task demands make it salient. From about the age of ten, subjects begin to show (under certain circumstances) increased awareness of specificity of viewpoint. This does not, however, translate itself directly into their depictions. Their drawings become more view centred, but a specific viewpoint (linear perspective) is only attempted or chosen when it is seen to be a necessary part of the task.

Development related to mental representation of the task.
The second main area of development is that associated with
mental representation of the task. It is here that the model suggests that we form goals about translating the depth implicit within our conceptualisation of the task into two dimensions. To be effective we have to overcome the effects of perceptual constancies, the desire for separateness and perceived differences in the importance of the symbolic elements, and draw in such o way that others can infer three dimensionality from the depiction. Pictorial depth cues, which were shown earlier to be linked to the way in which we perceive objects in the visual scene, are the most effective representational devices to use. It follows from this that the ability to use depth cues correctly is linked directly to the abllity to depict implicit depth within objects and to the abllity to overcome the effects of perceptual constancies.

The relationship between overcoming perceptual constancies and the use of depth cues is an important one. The object centred nature of our cognitive processes renders occlusion highly salient as a perceptual depth cue, yet in order to use it as a pictorial depth cue we have to accept shared and disrupted boundaries. The strong correlations found between a wide variety of tasks both in studies reported in this thesis and in other studies) in the gradual increase, with age, in the proportions of subjects using occlusion indicates the strength and imporiance of the relationship between the use of occlusion and development in depiction.

Height in the picture plane can be seen \(0 s\) a precursor to the use of occlusion when it is used in the depiction of two or more objects. It maintains the object centred nature of the depiction whilst, in an approximate way, indicating the relative positions of the objects to the viewer. It can be argued that the same thing happens when it is used in the depiction of a single object. The drawer is indicating that some parts of the object are further from the viewer than other parts. The use of height in the picture plane within a single object presents the drawer
with the problem of indicating the relationship between the parts of the object, which leads to shape constancy being compromised. As was explained in Chapter 2, the use of a table as a single stimulus object should provide fewer such problems than would the use of other stimuli. Unfortunately, because it is an atypical stimulus in this respect, we cannot assume that the results found here are directly applicable to the depiction of other stimuli. Similarly it is difficult to make comparisons between findings presented in this thesis and those of other studies in which the use of height in the picture plane has co-varied with the use of other depth cues. However, throughout this thesis the proportions of subjects use ground plane have been shown to increase gradually with age, and in Chapter 6 it was demonstrated that, in the drawing of a table, the use of ground plane develops before the use of occlusion. Therefore the findings presented in this thesis suggest the need for further research into the use of height in the picture plane as a depth cue in its own right.

The perception and recognition of an object invokes the use of size, colour and texture constancies, yet a visually realistic depiction of such an object within a scene requires the ability to overcome such constancies and use the depth cues of diminishing size with distance and texture and colour gradients. These depth cues can all be applied in a view centred rather than a view specific way. For example, objects in the distance can be represented as smaller than those nearby, without necessarily specifying the viewpoint. These depth cues can also be used In the depiction of a single object, and, if diminishing size with distance is used consistently within an object, it can indicate a specific view point. However, in Chapter 3 it was shown that, whilst an increasing number of subjects, with age, used diminishing size with distance in the depiction of the table top, it was not used when the table legs were
depicted. Thus subjects who were using it did so in a view centred rather than a view specific way.

These findings suggest that within the subject population development in the use of each individual depth cue is gradual and involves a shift away from an object centred depiction to a view centred depiction. Therefore, whilst even very young subjects prefer depictions that use pictorial depth cues, they do not use them themselves because they are constrained by the object centred nature of their cognitive processes. Development in the use of depth cues reflects the learning of methods by which implicit depth can be represented in two dimensions.

It can be argued that there is a continuum between view centred and view specific depiction, in that within a scene the greater the number of depth cues used in conjunction with each other the greater the degree of view specificity. However, as has been shown repeatedly in this thesis, adults generally use a combination of occlusion and height in the picture plane to produce a depletion in oblique projection that they are happy with and belleve satisfies the requirement of an accurate depletion of an object. It is only when they perceive the need for a view specific depiction that they also attempt to use the depth cue of diminishing size with distance. The findings presented above show how difficult a cue this is to use within the depiction of a single object. Thus, when it was sallent to the task demands, subjects from about ten years old showed increasing sensitivity to view specific task constraints and produced a greater degree of view specificity within their depictions, although correct view specificity was never produced.

Development in each of the above depth cues has been found to occur across the subject population in a gradual manner. However it was suggested in the last chapter that development in drawing schamata might occur in a stage-like way for each individual subject. Part of the problem
of determining exactly what happens is the difficulty of separating ability from performance. For example, the child might be able to use occlusion, but not normally see the need for it. She might be 'hooked' into a particular form of drawing scheme that does not include the use of occlusion, and it is only as she is forced to abandon that particular scheme, or to develop a wider range of schemes, that she gradually incorporates occlusion into the way she normally draws. Alternatively she might appreciate that occlusion is a useful general rule, and she might decide to apply it wherever possible. Therefore it is quite probable that the ability to use one particular depth cue develops in a stage-like way, but that the frequency with which each subject uses it increases gradually with age, experience, and the complexity of the depiction. These speculations cannot be addressed in this thesis because no longitudinal data were obtained but they do emphasise the need for such investigations.

A varlety of groups of table drawings were identified in Chapter 6 and it was suggested that development between these groups might occur by the additive use of depth cues in the depiction of the symbolic elements of the table. It is worth examining ways in which this might occur. The subject might make an error when serialising the drawing but perceive that the depiction now accords more closely with the intended form of representation. The same process might occur if she attempts to draw a new object. She cannot rely on one particular drawing scheme and so she is forced either to look at the object closely, to combine parts of different drawing schemata, or to plan the depiction carefully and to construct new solutions. In each of these cases she might incorporate the mode of action into the drawing scheme for that particular object. However, if she appreciates the significance of what she has learnt she might try to remember it as a general rule of depiction, that is, as another tool to be placed beside her workbench.

\begin{abstract}
A further source of learning might be external. The subject might have been actively 'taught' how to use a particular depth cue, or he might have deliberately observed how other people cope with the same problem. Chapter 5 showed that the teaching of the rules of inear perspective 16 not a pariticularly effective method of encouraging view specificity. An interesting line of research would be to investigate the effects of tuition of young children in the use of individual depth cues and their importance for a view centred depiction.
\end{abstract}

Development related to serialisation of drawing.
The third main area of development is that related to the serialisation of drawing. The focus of attention here is on specific planning goals involving the non-symbolic elements of the task. Development occurs in perceptual-motor co-ordination and in the ablilty to overcome extra- and intra- figural biases. This development is ralated to that of memory and planning abilities. Development in perceptual-motor coordination could be purely physiological, involving, for example, the ability to put a line where you want it to 80 , or \(1 t\) could be partly related to planning, knowing exactly where you want the line to go in the first place. For example, Rand (1973) showed that accuracy is improved if children are taught to mark the end points before they draw lines. Slmilarly, the young child's lack of abllity to overcome extra- and intrafigural biases might be perceptuel, in that she might perceive the stimulus in a blased way and so not appreciate the error introduced into her depiction. However, this lack of ability Eight also be related to planning problems. If she forms a general rule to draw one side of the object the same as the other (symmetry) her cognitive load will be reduced, and she will also find symmetrical objects easier to draw than others. In this case the symmetry would not be an artisilc desire for
balance, but a method of reducing cognitive load. Other general rules to reduce cognitive load might be 'always use the sides of the paper as a guide when drawing vertical lines', or 'always draw the angle where lines meet as a right angle'. These rules are perfectly adequate for most of the spontaneous depictions that young children produce.

The model indicates that the rules made by the child only become inadequate when the task demands specify a form of depiction that is not covered by them. In this case the form of the final depiction is partially a function of the child's ability to handle the increased cognitive load necessitated by the abandonment of the rules, the perceived importance of the unwelcome task demands, and the ability to develop other coping strategies. For example, in Chapter 9 it was found that very little error occurred when young children were asked to copy diamond shapes. This is at varlance with the findings of Naeli and Harris (1976), who placed the development of this ability at a greater age. It is possible that the task demands presented in Chapter 9 were sufficient to enforce the abandonment of inapplicable rules of depiction and to highlight the need for extra cognitive load. Presumably those subjects who felt unable to handle the extra cognitive load would employ inflexible drawing strategies.

Part of the stage-like nature of a child's development in depiction could be attributed to the way in which development occurs in the rules of depiction upon which drawing schemata are based. It follows that the arguments presented above about development in drawing schemata also relate to the non-symbolic aspects of drawing schemata. In order to reduce cognitive load subjects might develop rules about how particular clusters of lines should be placed upon the paper. These rules might normally serve their purpose well, but could be inappropriate to certain task demands.

As the child's ability at general cognitive processing develops, so
he is able to develop a wider range of strategies for dealing with planning problems. Development occurs in the necessary problem solving skills, in particular those related to memory and planning. Past experience of placing lines on paper will enable the subject to gauge more accurately the size and complexity of unit he is capable of depicting accurately, and the circumstances under which he needs to check his progress. Experience will also enable him to gauge the effectiveness of general planning rules that he might develop and will enable him to extend his repertoire of such rules. This view of the serialisation of the task assumes that each subject can only cope with a particular level of cognitive load, and leads to the supposition that development can be alded by explicit tuition in methods of reducing cognitive load.

Conclusions.

This chapter has presented a model of the processes involved when a table is depicted. The model may be applicable to other forms of depiction, but the reason the model is presented here is to enable the processes involved to be categorised and so to isolate the different forms of development that have been shown in this thesis. The model has shown that there are several factors to take account of when we wish to explain how the depiction of depth develops. The ability to depict depth depends upon the subject's ability to place lines on the paper in the way he or she wishes them to be, upon the ability to use appropriate depth cues, and upon the abllity to perceive the need for the depiction of depth and the form that this should take. Each factor plays an important part in the final depiction. The results reported in this thesis show, however, that an analysis of development in terms of the use of depth cues 16 central to our understanding of the child's progression from an object centred to a view centred depiction.

Allik, J. and Lask, T. (1985) The head is smaller than the body: But how does it foin on? in Freeman, N. H. and Cox, M. V. (Eds), Visual Order: The nature and development of pictorial representation. Cambridge: Cambridge University Press.
Ames, L. B. and Ilg, F. (1963) The Gesell incomplete man test as a measure of developmental status. Genetic Psychology Monographs, 68, 247-307.
Arnheim, R. (1974) Art and Visual Ferception (2nd. Edition). Berkeley: University of Californis Press.
Arnheim, R. (1980) The puzzle of Nadia's drawings. Arts in Psychotherapy, ?, 79-85.

Avons, S. E. and Phillips, W. (1980) Visualisation and memorisation as a function of display time and poststimulus processing time. Journal of Experimental Psychology: Human Learning and Memory, 6, 407-420.

Barnhart, E. N. (1942) Developmental stages in compositional construction in children's drawings. Journal of Experimental Education, 11, 156-181

Baron-Cohen, S. (1987) Autism and symbolic play. British Journal of Developmental Psychology, 5, 139-148.

Baron-Cohen, S., Leslie, A. M. and Frith, U. (1985) Does the autistic child have a "theory of mind"? Cognition, 21, 37-46.

Barrett, M. D. (1983) The study of children's drawings: Fiagetian and experimental approaches. Early Child Development and Care, 12, 19-28.
Barrett, M. D., Beaumont, A. and Jennett, M. (1983) The effect of instructions upon the representation of depth in children's drawings. Paper presented at N.A.T.O. Conference on Intelligence and Learning: University of York.

Barrett, M. D. and Bridson, A. (1983) The effect of instructions upon childrens drawings. British Journal of Developmental Psychology, 1, 175178.

Barrett, M. D., Beaumont, A. V. and Jennett, M. S. (1985) Some children do sometimes do what they have been told to do: task demands and verbal instructions in children's drawings. In Freeman, N. and Cox, M. (Eds.), Visual Order: The nature and development of pictorial representation. Cambridge: Cambridge University Press.
Bartly, 5. H. (1941) Vision: A study of its bases. New York: Van Nosirand.
Bassett, E. (1977) Production strategies in the child's drawing of the human figure. in Butterworth, G. E. (Ed), The Child's representation of the World. New York: Plenum Press.

Bayraktar, R. (1985) Cross-cultural analysis of drawing errors. In Freeman, N. and Cox, M., (Eds.), Visual Order: The nature and development of pictorial representation. Cambridge: Cambridge University Press
Berman, P. W. (1976) Young children's use of the frame of reference in construction of the horizontal, vertical, and oblique. Child Development, 47, 259-263.

Berman, P. W., Cunningham, J. G. and Harkulich, J. (1974) Construction of the horizontal, vertical and oblique by young children: fallure to find the 'oblique' effect. Child Development, 45, 474-478.
Bornstein, M. H., Ferdinandsen, K. and Gross, C. G. (1981) Ferception of symmetry in infancy. Developmental Psychology, 17, 82-86.
Boswell, S. L. (1976) Young children's processing of symmetrical and asymmetrical patterns. Journal of Experimental Child Psychology, 22, 309-318.

Bower, C. H. (1972) Mental imagery and assoclative learning. in Gregg, L. (Ed), Cognition in Learning and Memory. New York: Wiley.
Bower, T.R.G. (1978) Perceptual development: object and space. in Carterette, E. C. and Friedman, M. P. (Eds), Handbook of Perception, Volume 8: Perceptual Coding. Academic Press.
Braine, L. (1978) A new slant on orientation perception. American Psychologist, 33, 10-22.
Brainerd, J. and lleuvel, K. V. (1974) Development of geometric imagery in five to eight year olds. Genetic Psychology Monographs, 89, 89-143.
Bremner, J. G. (1984) Errors towards the perpendicular in children's copies of angular figures: a test of the bisection interpretation. Perception, 13. 117-128.

Bremner, J. G. (1985a) Provoked use of height in picture as a depth cue in young children's drawings. British Journal of Developmental Psychology, 3, 95-98.

Bremner, J. G. (1985b) Figural blases and young children's drawings in Freeman, N., and Cox, M. (Eds.), Visual Order: The nature and development of pictorial representation. Cambridge: Cambridge University Press

Bremner, J. G. and Moore, S. (1984) Prior visual inspection and object naming: Two factors that enhance hidden feature inclusion in young children's drawings. British Journal of Developmental Psychology, 2, 371376.

Bremner, J. G. and Taylor, A. J. (1984) Children's errors in copying angles: perpendicular error or bisection error? Perception, 11, 163-171.
Brooks, M. R., Glenn, S. M. and Crozier, W.R. (1988) Fre-school children's
preferences for drawings of a similar complexity to their own. British Journal of Educational Psychology, 58, 165-171.

Bruner, J., Olver, R. and Greenfield, P. (1966) Studies in Cognitive Growth. New York: Wiley.

Bryant, P. E. (1974) Ferception and Understanding in Young Children: an experimental approach. London: Methuen.

Byrne, R. W. (1979) Memory for urban geometry. Quarterly Journal of Experimental Psychology, 31, 147-154.
Chase, W. G. (1983) Spatial representation in taxi drivers. in Rogers, D. R. and Sloboda, J. A. (Eds) The Acquisition of Symbolic Skills. New York: Plenum.

Chase, W. G. and Clark, H. H. (1972) Mental operations in the comparison of sentances and pictures. in Gregory, L. (Ed.), Cognition in Learning and Memory. New York: Wiley.

Chen, M. J. (1985) Young children's representational drawings of solid objects: a comparison of drawing and copying. in Freeman, N. and Cox, M. (Eds.), Visual Order: The nature and development of pictorial representation. Cambridge: Cambridge University Press.

Chen, M. J. and Cook, M. (1984) Representational drawings of solid objects by young children. Perception, 13, 377-385.

Chi, M. T. H. (1978) Knowledge structures and memory development. in Siegler, R. S. (Ed), Childrens Thinking: What Develops. Lawrence Erlbaum. Hillsdale: New Jersey.

Chipman, S. F. and Mendelson, M. J. (1975) The development of sensitivity to visual structure. Journal of Experimental Child Psychology, 20, 411-429.
Cohen, A. J. and Foley, J. E. (1982) Mental imagery and mental maps. Paper presented at conference at Keele University.

Cooper, L. A. (1975) Mental rotation of random two dimensional shapes. Cognitive Psychology, 7, 20-43.
Cooper, L. A. and Shepard, R. N. (1972) Cronometric studies of the rotation of mental images. in Chase, W. G. (Ed), Visual Information Processing. New York: Academic Press.

Costall, A. (1985) How meaning covers the traces. in Freeman, N. H. and Cox, M. V. (Eds), Visual Order: The nature and development of pictorial representation. Cambridge: Cambridge University Press.
Cox, M. V. (1981) One thing behind another: problems of representation in children's drawings. Educational Psychology, 1, 275-287.
Cox, M. V and Parkin, C. E. (1986) Young children's human figure drawing: cross sectional and longitudinal studies. Educational Psuchology, 6.

353-368.
Crook, C. (1983) Intellectual realism and segregation. Paper presented at the N.A.T.O. Conference on Intelligence and Learning, University of York. Crook, C. (1984) Factors influencing the use of transparency in children's drawing. British Journal of Developmental Psychology, 2, 213-221.
Crook, C. (1985) Knowledge and appearance. in Freeman, N. H. and Cox, M. (Eds), Visual Order: The nature and development of pictorial representation. Cambridge: Cambridge University Press.
Davies, G. and Brown, L. (1978) Recall and organisation in five year old children. British Journal of Psychology, 69, 343-349.

Davies, G. and Rushton, A. (1980) Fresentation mode and organisational strategies in young children. in Friedman, N., Das, J. P. and O'Connor, N. (Eds), Intelligence and Learning. New York: Plenum Press.
Davis, A. (1983) Contextual sensitivity in young children's drawings. Journal of Experimental Child Psychology, 35, 478-486.
Deregowski, J. B. (1969) A pictorial perception paradox. Acta Psychologica, 31, 365-374.
Deregowski, J. B. (1976) Coding and drawing of simple geometric stimull by Bukusu schoolch1ldren. Journal of Cross-Cultural Psychology. 7, 195-208
Deregowski, J. B. (1977) Pictures, symbols, and frames of reference. in Butterworth, G. E. (Ed), The Childs Representation of the World. New York: Plenum.
Deregowski. J. B. (1978a) Pictures as a means of communication: a psychologists view. Educational Broadcasting International, March.
Deregowski, J. B. (1978b) On reexamining Fortes' data; some implications of drawings made by children who have never drawn before. Perception, 7 , 479-484.

Deregowski, J. B. (1979) Perception of simple figures: implicit-shape constancy and mental rotation. British Journal of Psychology, 70, 25-34.
Deregowski, J. B. (1980a) Experienced and Inexperienced model makers. Journal of Cross Cultural Psychology, 11, 189-202.
Deregowski, J. B. (1980b) Mental rotation and typical views: a heuristic experiment. International Journal of Psychology, 15, 83-93.

Deregowski, J. B. (1980c) Experienced and inexperlenced model makers: model making and drawing in Rhodesia. Journal of Cross Cultural Psychology, 11. 189-202.

Deregowski, J. B. (1986) Kazimierz Bartel's observations on drawings of children and llliterate adults. The British Journal of Developmental Psychology, 4, 331-334.

Deregowski, J. B. and Strang, P. (1986) On the drawing of a cube and its derivatives. The British Journal of Developmental Psychology, 4, 323-330.
Donaldson, M. and Balfour, G. (1968) Less is more: a study of early language comprehension. British Journal of Psychology, 59, 461-471.

Duberry, F. and Willats, J. (1983) Perspective and other drawing systems. London: Herbert Press.
Duthie, R. K. (1985) The adolescent's point of view: studies in forms of conflict. in Freeman, N. H. and Cox, M. V. (Eds), Visual Order: The Nature and Development of Pictorial Representation. Cambridge: Cambridge University Press.
Eddy, J. K. and Glass, A. L. (1981) Reading and listening to high and low imagery sentances. Journal of Verbal Learning and Verbal Behaviour, 20 , 333-345.

Edwards, B. (1979) Drawing with the right side of the brain. Los Angeles: Tarcher.

Eldred, C. A. (1973) Judgements of right side up and figure rotation by young children. Child Development, 44, 395-399.

Elkind, D. (1970) Developmental studies of figurative perception. Advances in Child behaviour and Development, 4, 2-29.

Elliot, J. and Connolly, K. J. (1978) The effect of visual frame of reference on a judgement of plane stimulus orientation by children. Perception, 7, 139-149.

Farah, M. J. (1988) Is visual imagery really visual? Overlooked evidence from neuropsychology. Psychological Review, 95, 307-317.
Farber, J. and Rosinski, R.R. (1978) Geometric transformations of pictured space. Perception, 7, 269-282.
Fenson, L. (1985) The transition from construction to sketching. in Freeman, N. and Cox, M. (Eds.), Visual Order: The nature and development of pictorial representation. Cambridge: Cambridge University Press.
Finch, D. (1977) Hyperbolic geometry as an alternative to perspective for constructing drawings of visual space. Perception, 6, 221-225.
Finke, R. A. and Kosslyn, S. M. (1980) Mental imagery acuity in the peripheral visual field. Journal of Experimental Psychology, Human Perception and Performance, 6, 126-139.
Fisher, C. B. and Ferdinandsen, K. Bornstein, M. H. (1981) The role of symmetry in infant form discrimination. Child Development, 52, 457-462.
Fisher, G. H. (1974) An experimental study of linear inclination. Quarterly Journal of Experimental Psychology, 18, 52-62.
Fisher, R. B. (1982) A structured pattern matching approach to intermediate
level vision. Department of Artificial Intelligence Research Paper 117. University of Edinburgh.

Fisher, R. B. (1986) Identity independent object segmentation in 2kD sketch data. Department of Artificial Intelligence Research Paper 285: University of Edinburgh.

Fisher, R. B. (1987) S M S: A suggestive modelling system for object recognition. Personal Communication: Proposed chapter in Fisher, R. B., From Surfaces to Objects: Computer Vision and Three Dimensional Scene Analysis. Wiley.

Freeman, N. H. (1972) Process and product in children's drawing. Perception, 1. 123-140.

Freeman, N. H. (1976a) Childrens drawings cognitive aspects. Journal of Child Psychology and Psychiatry, 17, 345-350.

Freeman, N. H. (1976b) How Children Draw. Seminar version of a paper delivered at the British Psychological Society, Annual Conference: Developmental Section: Gulldford.

Freeman, N. H. (1977a) What is the child's own view in a spatial task? : a spatial by temporal interraction affecting errors in perceptual reports. Perception, 6, 393-398.

Freeman, N. H. (1977b) How young children try to plan drswings. In Butterworth, G. (Ed). The Child's Representation of the World. Plenum.
Freeman. N. II. (1980a) The underlying order in children's drawings. in Cox, M. (Ed), Are Young Children Egocentric? London: Bartsford Academic.

Frecman, N. IL (1980b) Strategies of representation in young children: analysis of spatial skills and drawing processes. London: Academic Press.

Freeman, N. H. (1983) Picture-plane blas in children's representational drawing. Australian Journal of Psychology, 35, 121-134.
Freeman, N. H. (1986) How should a cube be drawn? British Journal of Developmental Psychology, 4, 317-322

Freeman, N. H. and Janikoun, R. (1972) Intellectual realism in childrens drawings of a familiar object with distinct features. Child Development, 43, 1116-1121.

Freeman, N. H., Eiser, C. and Sayers, J. (1977) Children's strategies in producing three-dimensional relationships on a two-dimensional surface. Journal of Experimental child Psychology, 23, 305-314.

Freeman, N. H. and Hargreaves, S. (1979) Directed movements and the bodyproportion effect in preschool children's human figure drawing. Quarterly Journal of Experimental Psychology, 29, 227-235.

Freeman, N. H. and Hayton, C. (1980) Gross fallure to utilise alignment cues in children's drawing of three-dimensional relationships. Perception, 9, 353-359.
Freeman, N. K. and Kelham, S. E. (1981) The interference of a baseline with children's orientation judgement need not entirely mask their contextual responsiveness. Quarterly Journal of Experimental Psychology, 33A, 145154.

Freeman, N. H., Chen, M. J. and Hambly, M. (1984) Children's different use of alighnment cues when encoding and when producing a match-to-target. British Journal of Developmental Psychology, 2. 123-138.

Freeman, N. H. and Cox, M. (1985) Visual Order: The nature and development of pictorial representation. Cambridge University Press

Friedman, S. and Stevenson, (1975) Developmental changes in the understanding of implied motion in two-dimensional pictures. Child development, 46, 773-778.

Fry, G. A. (1952) The relationship between geometrical perspective and stereo cues. American Journal of Optometry, 29, 353-368.

Fujimoto, K. (1981) Children's copies of similar three-dimensional objects. Psychologica, 24, 55-64.

Furth, H. G. (1969) Plaget and Knowledge. Prentice Hall.
Gardner, H. (1980) Artful Scribbles - The Significance of Children's Drawings. London: Jill Norman Ltd.

Ghent, L. (1956) Ferception of overlapping and embedded figures by children of different ages. American Journal of Psychology, 69, 575-587.
Gibson, E. J., Gibson, J. J., Pick, A. D. and Osser, H. (1962) A developmental study of the discrimination of letter-like forms. Journal of Comparative and Physiological Psychology, 55, 897-906.
Gibson, J. J. (1950) The Ferception of the Visual World. Boston: Houghton Mifflin.

Gibson, J. J. (1978) The ecological approach to the visual perception of pictures. Boston: Houghton Mifflin.
Gogel, W. C. (1974) Cognitive factors in spatial responses. Psychologica, 17, 213-225.
Golomb, C. (1973) Children's representation of the human figure: the effects of models, media and instruction. Genetic Psychology Monographs, 87, 197-251.
Golomb, C. (1974) Young children's sculpture and drawing. Cambridge, Mass.: Harvard University Press
Golomb, C. (1981) Representation and reality: the origins and determinants
of young children's drawings. Review of Research in Visual Arts Education, 14, 36-48.
Gololeb, C. (1982) Young children's planning strategles and early learning principles of spatial organisation in drawing. Paper presented at the N.A.T.O. Conference on Intelifgence and Learning, University of York.

Gombrich, E. H. (1960) Art and Illusion. Princetown N. J.: Princetown University Press.

Goodnow, J. J. (1977) Children's Drawings. London: Open Books.
Goodnow, J. J. (1978) Visible thinking: cognitive aspects of change in children's drawings. Child Development, 49, 637-641.
Goodnow, J. and Friedman, 5. (1972) Orientation in ch1ldren's human figure drawings. Developmental Psychology, 7, 10-16.
Goodnow, J. J. and Levine, R. (1973) The grammer of action: sequence and syntax in children's copying. Cognitive Psychology, 4, 82-98.
Hogen, M. A. (1976a) Development of abllity to perceive and produce the pictorial depth cue of overlapping. Perceptual and Motor Skills, 42, 1007-1014.
Hagen, M. A. (1976b) The influence of picture surface and station point on the ability to compensate for oblique view in pictorial perception. Developmental Psychology, 12, 57-63.

Hagen, M. A (1985) There is no development in art. in Freeman, N. H. and Cox, M. V. (Eds), Visual Order: The nature and development of pictorial representation. Cambridge: Cambridge University Press.
Hagen, M. A. and Elliott, H. B. (1976) An investigation of the relationship between viewing condition and preference for true and modified innear perspective with adults. Journal of Experimental Psychology, Human Perception and Performance, 2, 479-490.
Hagen, M. A. and Jones, R. K. (1978) Differential patterns of preference for modifled linear perspective in adults and chlldren. Journal of Experimental Child Psychology, 26, 205-215.
Hagen, M. A. and Jones, R. K. (1980) A perspective on cross-cultursl picture perception. in Hagen, M. A. (Ed), The perception of Pictures, Volume 2. New York: Academle Press.
Haith, M. M. (1971) Developmental change in visual information processing and short term memory. Human Development, 14, 249-261.
Hangreaves, P. J., Jones, P. M. and Martin, D. (1981) The air-gap phenonomen In children's landscape drawings. Journal of Experimental Child Psychology, 32, 11-20.
Harris, D. B. (1963) Children's drawings as measures of intellectual
maturlty. New York: Harcourt, Brace and World.
Harris, L. J. and Stromen, B. A. (1972) The role of front-back features in children's 'front', 'back' and 'beside' placement of objects. MerrillPalmer Quarterly, 18, 259-271.
Hart, L. M. and Goldin-Meadow, S. (1984) The child as a nonegocentric art critic. Child Development, 55, 2122-2129.
Hebb, D. O. (1968) Concerning Imagery. Psychology Review, 75, 466-477.
Hermelin, B. and \(O^{\prime}\) Connor, N. (1986) Spatial representations in mathematically and in artistically gifted children. British Journal of Educational Psychology, 56, 150-157.
Hochberg, J. and Brooks, V. (1962) Pictorial recognition as an unlearned ability: A study of one child's performance. American Journal of Psychology, 75, 624-628.

Hochberg, J. and Gellman, L. (1977) The effect of landmark features on 'mental rotation' times. Memory and Cognition, 5, 23-26.

Horowitz, M. J. (1970) Image Formation and Cognition. London: Butterworth.
Huffman, D. A. (1971) Impossible objects as nonsense sentances. Machine Intelligence, 6, 295-323.

Hughes, M. (1978) Selecting pictures of another persons view. British Journal of Educational Psychology, 48, 210-219.

Hughes, M. and Donaldson, M. (1979) The use of hiding games for studying the coordination of viewpoints. Educational Review, 31, 133-140.

Huttenlocher, J. (1968) Constructing spatial images: a strategy in reasoning. Psychology Review, 75, 550-560.

Ibbotson, A. and Bryant, P. E. (1976) The perpendicular error and the vertical effect. Perception, 5, 319-326.
Ingram, N. (1985) Three into two won't go: Symbolic and spatial coding processes in young children's drawings. in Freeman, N. H. and Cox, M. V. (Eds), Visual Order: The nature and development of pictorial representation. Cambridge: Cambridge University Press.
Inhelder, B. (1965) Operational thought and symbolic Imagery. in Mussen, P. H. (Ed), European Research in Cognitive Development, Monographs of the Society for Research in Child Development, 100, 30, 2.
Inhelder, B. and Chipman, H. H. (1976) Piaget and his School. New York: Springer Verlag.

Itskowitz, R., Glaubman, H. and Hoffman, M. (1988) The impact of age and artistic inclination on the use of articulation and line quality in similarity and preference judgements. Journal of Experimental Child Psychology, 46, 21-34.

Ives, 5. W. (1980a) The use of orientations in children's drawings of famillar objects: princtples versus percepts. British Journal of Educational Psychology, 50, 295-296.
Ives, S. W. (1980b) Preschool chlldren's ability to coordinate spatial perspectives through language and pictures. Child Development, 51, 13031307.

Ives, S. W. and Rovet, J. (1979) The role of graphic orientations in childrens drawings of familiar and novel objects at rest and in motion. Merrill-Palmer Quarterly, 25, 281-292.

Ives, S. W. and Houseworth, M. (1980) The role of standard orientations in children's drawing of interpersonal relationships: Aspects of graphic feature making. Child development, 51, 591-593.
Ives, S. W. and Rovet, J. (1981) Elementary school chlldren's use of construction rules in drawings of familiar and novel objests: \(A\) cross cultural replication. Journal of Genetic Psychology,
Jahoda, G. (1981a) Drawing styles of schooled and unschooled adults: a study in Ghana. Quarterly Journal of Experimental Psychology, 33a, :33143.

Jahoda, G. (1981b) The influence of schooling on adult recall of famillar stimuli: a study in Ghana. International Journal of Psychology, 16, 5971.

Jahoda, G. and McGurk, H. (1974a) Ptctorial depth perception: A developmental study. British Journal of Psychology, 65, 141-149.

Jahoda, G. and McGurk, H. (1974b) Pictorial depth perception in Scottish and Ghanian children. International Journal of Psychology, 9, 255-267.
Jahoda, G. and McGurk, H. (1974c) Development of pictorial depth perception: cross cultural replication. Chlld Development, 45, 1042-1047.
Jahoda, G. and McGurk, H. (1974d) The development of pictorial depth perception: the role of figural elevation. British Journal of Psychology, 65. 367-376.

Jahoda, G., Deregowski, J. B., Ampene, E. and Williams, N. (1977) Pictorial recognition as an unlearned ability. in Butterworth, G. (Ed), The Child's Representation of the World. Plenum Press.
Johnson-Laird, P. (1972) The three-term serles problem. Cognition, 1, 57-82.
Jools, P. (1982) Children's representations in drawings and speech: content and structure. Paper presented at Conference at Keele University.
Kalyan-Masth, V. (1976) Graphic representation: from intellectual realism to visual realism in Draw-a-House-Tree task. Child Devalopment, 47, 10261031.

Kellogg, R. (1970) Analysing Children's Art. Palo Alto: National Press.
Kellogg, R. (1979) Children's Drawings, Children's Minds. U. S. A.: Avon Books.

Kemler, D. G. (1983) Wholistic and analytic models in perceptual and cognitive development. in Tighe, and Shepp, (Eds), Perception, Cognition and Development: Interractional Analyses. Hilsdale N. J.: Erlbaum.
Kennedy, J. M. (1974 ) A Psychology of Picture Perception: Images and Information. San Francisco: Jossey-Bass.
Kennedy, J. M. (1979) Subjective contours, contrast and assimilation. in Nodine, C. F. and Fisher, D. F. (Eds), Perception and Pictorial Representation. New York: Praeger Publishers.

Kennedy, J. M. (1980) Blind people recognising and making haptic pictures. in Hagen, M. (Ed), The Perception of Pictures, Volume 2. New York: Academic Press.

Kennedy, J. M. (1983) What can we learn about pictures from the blind? American Scientist, 71, 19-26.
Kennedy, J. M. and Silver, J. (1974) The surrogate functions of lines in visual perception: Evidence from antipodal rock and cave artwork sources. Perception, 3, 313-322.

Kennedy, J. M. and Ross, A. S. (1975) Outline picture perception by the Songe of Papua. Perception, 4, 391-406.

Kestenbaum, R., Termine, N. and Spelke, E. S. (1987) Perception of objects and object boundarles by 3-month-old infants. British Journal of Developmental Psychology, 5, 367-383.
Kosslyn, S. M. (1975) Information representation in visual images. Cognitive Psychology, 7, 341-370.
Kosslyn, S. M. (1976) Can imagery be distinguished from other forms of internal representation? Evidence from studies of information retrieval time. Memory and Cognition, 4, 291-297.
Kosslyn, S. M. (1978a) Imagery and cognitive development: A teleological approach. In Slegler, R. S. (Ed). Children's Thinking: What Develops?. Hillsdale N. J.: Lawrence Erlbaum.

Kosslyn, S. M. (1978b) Imagery and internal representation. in Rosch. E. and LLoyd, B. B. (Eds), Cognition and Catagorisation. Hillsdale N.J.: Lawrence Erlbaum.

Kosslyn, 5. M., Heldmeyer, K. H. and Locklear, E. P. (1977) Children's drawings as data about internal representations. Journal of Experimental Child Psychology, 23, 191-211.
Lark-Horowitz, B., Lewis, H. and Luca, M. (1967) Understanding Children's Art
for Better Teaching. Columbus Ohio: Merril.
Laszlo, J. I. and Brodericic, P.A. (1985) The perceptual-motor skill of drawing. in Freeman, N. H. and Cox, M. V. (Eds.), Visual Order: The nature and development of pictorial representation. Cambridge: Cambridge University Press.

Lewis, H. P. (1963) Spatial representation in drawing as a correlate of development and a basis for plcture preference. Journal of Genetic Psychology, 102, 95-107.
Liben, L (1978) Ferspective-taking skills in young children: Seeing the world through rose-coloured glasses. Developmental Psychology, 14, 8792.

Liben, L. and Belknap, B. (1981) Intellectual reallsm: Implications for investigations of perceptual perspective-taking. Child Development, 52, 921-924.

Light, P. H. (1982) The use of communication tasks to investigate depiction of spatial relationships in young children's drawings. Paper presented at the N.A.T.O. conference at Keele University.

Light, P. H. (1984) Drawings as messages. Paper presented at the British Psychological Society Conference, Developmental Section: Lancaster University.

Light, P. H. (1985) The development of view-specific representation considered from a socio-cognitive standpoint. In Freeman, N. H. and Cox, M. V. (Eds.), Visual Order: The nature and development of pictorial representation. Cambridge: Cambridge University Press.
Light, P. H. and MacIntosh, C. (1980) Depth relationships in young children's drawings. Journal of Experimental Child Psychology, 30, 79-87.

Light, P. H. and Humphreys, J. (1981) Internal spatial relationships in young children's drawings. Journal of Experimental Child Psychology, 31, 521-530.

Light, P. H. and Simmons, B. (1983) The effects of a communication task upon the representation of depth relationships in young children's drawings. Journal of Experimental Child Psychology, 35, 81-92.

Light, P. H. and Nix, C. (1983) 'Own view' versus 'good view' in a perspective-taking task. Child Development, 54, 480-483.
Light, P. H. and Foot, T. (1986) Fartial ocelusion in young children's drawings. Journal of Experimental Child Psychology, 41, 38-48.
Light, P. K. and McEwen, F. (1987) Drawings as messages: The effect of a communication game upon production of view-specific drawings. British Journal of Developmental Psychology, 5, 53-60.

Lindstron, M. (1967) Children's Art. Berkeley: University of California Press.
Lowenfeld, V. and Brittain, W. L. (1966) Crestive and Mental Growth (4th edition). New York: Macmillan.

Luquet, G. H. (1927) Le dessin enfantin. Paris: Alcan.
Lynch, K. (1960) The Image of the City. Cambridge: M.I.T. Press.
Mackay, C. K., Brazendale, A. H. and Wilson, L. F. (1972) Concepts of horizontal and vertical: A methodological note. Developmental Psychology, 7. 232-237.

Mackworth, A. K. (1976) Model driven interpretation in intelligent vision systems. Perception, 5, 349-370.

Marmor, G. S. (1975) Development of kinetic Images: when does the child first represent movement in mental images. paper presented at the Meeting of the Society for Research in Child Development. Denver University.

Marr, D. (1982) Vision. San Francisco: Freeman.
Marr, D. and Nishthara, H. K. (1978) Representation and recognition of the spatial organisation of three-dimensional shapes. Proceedings of the Royal Society, 200, 269-294.
Mascell, J. V. (1966) The 5 C's of Cinematography. California: Cini-grapicic Publications.

Mayhew, J. and Frisby, J. (1984) Computor Vision. in O'Shea, T. and Eisenstadt, M. (Eds), Artificial Intelligence: Tools. Techniques, and Appllcations. New York: Harper and Row.
McClelland, J. L. and Miller, J. (1979) Structural factors in figure perception. Perception and Psychophysics, 26, 221-229.
McGurk, H. (1972) The sallence of ortentation in young children's perception of form. Child Development, 43, 1047-1052.

McGurk, H. and Jahoda, G. (1974) The development of pictorial depth perception: the role of figural elevation. British Journal of Psychology, 65, 367-376.
Medin, D. L. (1983) Structural principles in catagorisation. in Tighe, T. J. and Shepp, B. E. (Eds), Perception, Cognition and Development: Interractional Analyses. Hillsdale N.J.: Erlbaum.
Mendleson, M. J. and Lee, S. P. (1981) The effects of symmetry and contour on recognition memory in children. Journal of Experimental Child Psychology, 32, 373-388.
Metz, P. (1929) Die eldetische Anlage der Jugendlichen in iner Beziehung zur kunstlerischen Gestaltung. Langensalza: H. Beyer and Sons.

Millar, S. (1975) Visual experience or translation rules? Drawing the human figure by blind and sighted children. Perception, 4, 363-371.

Millar, S. (1977) Spatial representation by blind and sighted children. in Butterworth, G. (Ed), The Child's Representation of the World. New York: Plenum Press.

Miller, P. (1983) Theories of Developmental Fsychology. San Francisco: Freeman.

Minnigerode, F. A. and Carey, R. N. (1974) Development of mechanisms underlying spatial perspectives. Child Development, 45, 496-498.
Minsky, M. L. and Papert, J. S. (1972) Frogress Report, A. I. memorandum 252. Massachusetts Institute of Technology, Cambridge, Mass.
Mitchelmore, M. C. (1978) Developmental stages in children's representation of regular solid figures. Journal of Genetic Psychology, 133, 229-239.

Mitchelmore, M. C. (1980a) Frediction of developmental stages in the representation of regular space figures. Journal for Research in Mathematical Education, 11, 83-93.

Mitchelmore, M. C. (1980b) Three-dimensional geometric drawing in three cultures. Educational Studies in Mathematics, 11, 205-216.

Mitchelmore, M. (1985) Geometrical foundations of children's drawing. in Freeman, N. and Cox, M. (Eds.), Visual Order: The nature and development of pictorial representation. Cambridge: Cambridge University Press
Moar, I. (1977) Spatial organisation in the recall of pletorial stimuli. Quarterly Journal of Experimental Psychology, 29, 699-708.

Moore, V. (1986a) The relationship between children's drawings and preferences for alternative depictions of a fam1liar object. Journal of Experimental Child Psychology, 42, 187-198.
Moore, V. (1986b) The use of a colouring task to elucidate children's drawings of a solld cube. British Journal of Developmental Psychology, 4. 335-340.

Moore, V. (1987) The influence of experience on children's drawilings of a famillar and unfamillar object. British Journal of Developmental Psychology, 5, 221-229.

Naeli, I. and Harris, P. (1976) Orfentation of the diamond and the square. Perception, 5, 73-78.
Neisscr, U. (1967) Cognitive Fsychology. New York: Appleton-Century-Crofts.
Neisser, U. (1972) Changing conceptions of Imagery. In Sheenan, P. W. (Ed), The Function and Nature of Imagery. New York: Academic Press.
Neisser, U. (1982) Towards a skillful psychology. paper presented at the N.A.T.O. Conference, Keele University.

Newson, E. (1979) Making sense of autism: an overview. University of Nottingham: Child Development Research Unit.
Nicholson, J. R. and Seddon, G. M. (1977) The influence of secondary depth cues on the understanding by Nigerian schoolboys of spatial relations in pictures. British Journal of Psychology, 68, 327-333.
Ninio, A., Lieblich, A. and Kugelmass, S. (1975) Developmental trends in directionslity of drawing in Jewish and Arab Israell children. Journal of Cross Cultural Psychology, 6, 504-511.
Ninio, A. and Lieblich, A. (1976) The grammer of action: 'phrase structure' in children's copying. Child Development. 47, 846-849.
\(O^{\prime}\) Connor, N. O. and Hermelin, B. (1983) The role of general and specific talents in information processing. British Journal of Developmental Psychology, 1, 389-403.
O'Connor, N. O. and Hermelin, B. (1987) Visual memory and motor programmes: Their use by idiot-savant artists and controls. British Journal of Psychology, 78, 307-323.
Oh, C. Y. (1968) A study of the development of children's ability to perceive depth in static two-dimensional pictures. Ph.D. Thesis, University of Indiana.
Olson, D. R. (1970) Cognitive Development: The Child's Acquisition of Diagonality. New York: Academic Press.
Olson, R. K. (1975) Children's sensitivity to pictorial depth information. Perception and Physiological Psychology, 17, 59-64.
Paraskevopoulos, I (1968) Symmetry, recall, and preference in relation to chronological age. Journal of Experimental Child Psychology, 6, 254-264.
Parisier, D. A. (1976) Children's drawings of wrecked cars: A study in the development of form. Ph.D. thesis, Harvard Graduate School of Education.
Pentland, A. P. (1986) Perceptual organisation and the representation of nstural form. Artificial Intelligence, 28, 293-331.
Phillips, W. A. and Christie, D. F. M. (1977) Interference with visualisation. Quarterly Journal of Experimental Psychology, 29, 637-650.
Phillips, W. A., Hobbs, S. B. and Pratt, F. R. (1978) Intellectual realism in children's drawings of cubes Cognition. 6, 15-23
Phillips, W. A., Inall, M. and Lauder, E. (1985) On the discovery, storage and use of graphic descriptions. in Freeman, N. H. and Cox, M. V. (Eds), Visual Order: The Nature and Development of Pictorial Representation. Cambridge: Cambridge University Press.
Plaget, J. (1977) Intellectual evolution from adolescence to adulthood in Johnson-Laird, P. N. and Wason, P. C. (Eds.), Thinking: Readings in

Cognitive Science. Cambridge University Press
Piaget, J. and Inhelder, B. (1956) The Child's Conception of Space. London: Routledge and Kegan Paul.
Piaget, J. and Inhelder, B. (1969) The Psychology of the Child. London: Routledge and Kegen Paul.
Pirenne, M. H. (1970) Optics, Painting, and Fhotography. Cambridge: Cambridge University Press.
Plumb, C. C. (1969) The effect of structural depth cues on delayed recognition responses and evaluative ratings of visual displays. Ph.D. thesis, Indiana University.
Pomerantz, J. R. (1977) Pattern goodness and speed of encoding. Memory and Cognition, 5, 235-241.
Pratt, F. R. (1982) Intellectual realism in adult's and children's copies of cubes and straight lines. paper presented at the N.A.T.O. Conierence. Keele University.
Pratt, F. R. (1985) A perspective on traditional artistic practices. in Freeman, N. H. and Cox, M. V. (Eds), Visual Order: The nature and deveiopment oi pictorial representation. Cambridge: Cambridge University Press.

Pufall, P. B. and Shaw, R. E. (1973) An analysis of the developaent of children's spatial reference systems. Cognitive Psychology, 5, 151-:75.

Pylyshym, 2. W. (1973) What the mind's eye tells the mind's brain. Psychological Bulletin. 80, 1-24.
Pylyshyn, 2. W. (1980) Computation and Cognition: 1ssues in the foundations of cognitive science. The Behavioral and Brain sciences, 3, 111-169.

Quinn, P. C. and Bomba, P.C. (1986) Evidence for a genertal category of oblique orfentations in four-menth-old infants. Journal of Experimental Child Psychology, 42, 345-354.

Radkey, A. L. and Enns, J. T. (1987) Da Vinci's window facilitates drawing of total and partial occlusion in young children. Journal of Experimental Child Psychology, 33. 222-235.
Rand, C. W. (1973) Copying in drawing: the importance of adequate visuad analysis versus the ability to utilise drawing rules. Child Development. 44. 47-53.

Ratoosh, P. (1949) An interposition as a cue for the perception of distance. in Proceedings of the National Academy of Science, 35, 257259.

Reese, H. W. (1973) Imagery in children's learning, a symposium. Psychological Bulletin. 73, 383-421.

Reese, H. W. (197;) Towards a cognitive theory of mnemonic imagery. Journal of Mental Imagery, 2, 229-244.
Reeves (1983) Children's perception and production of pictorial devices: A review of the evidence and its implications. paper presented at N.A.T.O Conference on Intelligence and Learning: York University.
Reith, E. (1988) The development of use of contour lines in children's drawings of figurative and non-figurative three-dimensional models. Archives de Psychologie, 56, 83-103.
Reynolds, E. (1981) The effect of different verbal instructions on young children's drawings of a familiar object. Honours Dissertation, University of Oxford.
Rock, I., Halper, F. and Clayton, T. (1972) Perception and recognition of complex figures. Cognitive Psychology, 3, 655-673.
Rock, I., Schallo, J. and Schwartz. F. (1978) Pictorial depth and related co.nstancy effects as a function of recognition. Perception, 7, 3-20.
Roodin, P. A., Vaught, G. M., Simpson, W. E. and Schmitt, N. (1971a) Bunnies and baskets: a temporal analysis of children's drawings before and after Easter. Personality, 2, 271-278.
Roodin, P. A., Vaught, G. M. and Simpson, W. E. (1971b) Christmas tree irswings before and after Christmas: a re-examination. Perceptuai and Motor Skills, 33, 365-366.

Roodin, P. A., Vaught, G. M. and Simpson, W. E. (1973) Correlational analysis of changes in children's easter drawings as a function of a naturally motivated expectancy. Social Behaviour and Personality, 1, 43-49.
Rosch, E. (1975) Cognitive representations of semantic categories. Journal of Experimental Psychology, 104, 192-233.
Rosch, E. (1976) Cognitive reference points. Cognitive Psychology, 7, 532547.

Rosch, E., Mervis, C., Gray, W., Johnson, D. and Boyes-Graem, P. (1976) Basic objects in natural categories. Cognitive Psychology, 8, 382-439.
Rosinski, R. R. (1976) Picture perception and monocular vision: a reply to Hagen. Psychological Bulletin, 83, 1172-1175.
Roth, I. and Frisby, J.P. (1986) Perception and Representation: A Cognitive Approach. Milton Keynes: Open University Press.
Rutter, M. (1978) Diagnosis and definitions. In Rutter, M. and Schopler, E. (Eds), Autism: A reappraisal of concepts and treatment. New York: Plenum.

Saenger, E. A. (1981) Drawing systems: a developmental study of representation. Ph.D. thesis, Department of Social Psychology, Harvard

University. (Cited in Willats, 1977, 1981, 1985, but copy of the original document appears to be unobtainable).
Schaller, M. J. and Harris, L. J. (1974) Children judge 'perspective' transformations of letter-like forms as different from prototypes. Journal of Experimental Child Psychology, 18, 226-241.

Selfe, L. (1977) Nadia: a case of extraordinary drawing ability in an autistic child. London : Academic Press

Selfe, L. (1983a) The representation of diminishing size with distance as a means of depicting depth in children's drawings. Paper presented at N.A.T.O. Conference on Intelligence and Learning: York University.

Selfe, L. (1983b) Normal and anomalous representationsl drawing ability in children London: Academic Press

Selfe, L. (1985) Anamolous drawing development: some clinical studies. in Freeman, N. and Cox, M. (Eds.), Visual Order: The nature and development of pictorial representation. Cambridge: Cambridge University Press

Shepard, R. N. (1975) Studies of the form, formation, and transformation of internal representations. in Solso, R. (Ed), Information Processing and Cognition. The Loyola Symposium. Potomac M.D.: Lawrence Erlbaum.
Shepard, R. N. and Chipman, H. H. (1970) Second order 1 somorphism of internal representations: shapes of states. Cognitive Psychology, 1, 117.

Shepard, R. N. and Metzler, J. (1971) Mental rotation of three-dimensional objects. Science, 171, 701-703.

Shepp, B. E. (1983) The analyzability of multidimensional objects: some constraints on perceived structure, the development of perceived structure and attention. in Tighe, T. J. and Shepp, B. E. (Eds), Perception, Cognition and Development: Interractional Analyses. Hillsdale N.J.: Erlbaum.

Siegal, S. (1956) Nonparametric statistics for the behavioral sciences. London: McGraw H1ll.

Siegler, R. S. (1978) Children's Thinking: What Develops? Hillsdale N.J.: Erlbaum.

Silk, A. M. and Thomas, G. V. (1986) Development and differentiation in children's figure drawings. British Journal of Psychology, 77, 399-410.
Silk, A. M. and Thomas, G. V. (1988) The development of size scaling in children's figure drawings. British Journal of Developmental Psychology, 6, 285-299.

Simon, H. A. (1972) What is visual imagery?. In Gregg, L. W. (Ed), Cognition in Learning and Memory. Wiley.

Simon, H. A. and Barenfeld, M. (1969) Information processing analysis of perceptual processes in problem solving. Psychological Review, 76, 473483.

Sinha, D. and Misra, P. (1975) Use of pictorial depth cues in children's paintings: a developmental study. Indian Journal of Psychology, 50, 222231.

Slack, J. (1984) Cognitive science research. In O'Shea, T. and Eisenstadt, M. (Eds), Artificial Intelligence: Tools, Techniques and Applications. New York: Harper Row.
Smothergill, D. W, Hughes, F.P., Timmons, S. A. and Hutko, P. (1975) Spatial visualising in children. Developmental Psychology, 11, 4-13.
Sovik, N. (1980) Developmental trends of visual feedback control and learning in children's copying and tracking skills. Journal of Experimental Education, 49, 106-119.
Sovik, N. (1982) Cybernetic theory and research with regard to learning performance of psychomotor skills, copying and handwriting in particular. Paper presented at N.A.T.O. Conference, Keele University.
Spielman, K. S. (1976) Development of the perception and production of line forms. Child Development, 47, 787-793.
Spiker, C. C. and Cantor, J. H. (1983) Componants in the hypothesis testing strategles of young children. in Tighe, T. J. and Shepp, B. E. (Eds), Perception, Cognition and Development: Interractional Analyses. Hillsdale N.J.: Erlbaum.

Spitz, H. H. and Borland, M. D. (1971) Redundancy in line drawing of familiar objects: effects of age and intelligence. Cognitive Psychology, 2, 196250.

Stein, N. L. and Mandler, J. M. (1975) Development of detection and recognition of orfentation of geometric and real figures. Child Development, 46, 379-388.
Stotijn-Egge, S. (1952) Investigation of the drawing ability of low grade subnormals. Leiden: Luctor et Emergo, 158, 172.
Strayer, J. and Ames, E.W. (1972) Stimulus orientation and the apparant developmental lag between perception and performance. Child Development, 43, 1345-1354.
Sudipatik, L. (1972) The effects of information-level and depth cues as portrayed in static two-dimensional pictures on the perception of depth by children aged five and six. Ph.D. Thesis: Indiana University.
Taylor, M. and Bacharach, V. R. (1981) The development of drawing rules: Metaknowledge about drawing influences performance on non-drawing
tasks. Child Development, 52, 373-375.
Taylor, M. and Bacharach, V. R. (1982) Constraints on the visual accuracy of drawings produced by young children. Journal of Experimental Child Psychology, 34, 311-329.
Thomas, G. V. and Tsalini, A. (1988) Effects of order of drawing head and trunk on their relative sizes in children's human figure drawings. British Journal of Developmental Psychology, 6, 191-204.
Van Soners, P. (1982) The conservatism of children's drawing strategies. At what level does stabillty persist? Paper presented at N.A.T.O. Conference, Keele University.

Vurpillot, E. (1969) Influence of the nature of a difference on its detection by children of pre-school age. Enfance, 3-4, 149-164.
Vurpillot, E. and Ball, W. A. (1979) The concept of identity and chlldren's selective attention. in Hale, G. and Lewis, M. (Eds), Attention and Cognitive Development. New York: Plenum.
Walker, J. T. and Walker, M. J. (1988) The apparent size of threedimensional objects and their silhouettes: a solld-superiority effect. Perception, 17, 23-30.

Waltz, D. (1975) Understanding line drawings of scenes with shadows. in Winston, P. H. (Ed), The Psychology of Computor Vision. New York: McGraw-Hill.

Wilcox, B. L. and Teghtsoonian, M. (1971) The control of relative size by pictorial depth eues in children and adults. Journal of Experimental Child Psychology, 11, 413-429.
Willats, J. (1977a) How children learn to draw realistic pletures. Quarterly Journal of Experimental Fsychology, 29, 000-016.

Willats, J. (1977b) How children learn to represent three-dimensional space in drawings. in Butterworth, G. (Ed), The Child's Representation of the world. New York: Plenum Press.

Willats, J. (1981a) Formal structures in drawing and painting. Fh.D. Thesis, Faculty of Arts, North-East London Folytechnic.
Willats, J. (1981b) What do the marks in the picture stand for? The child's acquisition of systems of transformation and denotation. Review of Research in Art Education. 13, 18-33.

Willats, J. (1983) Drawing systems revisited: the complementary roies of projection systems and denotation systems in the analysis of childrens drawings. Paper presented at N.A.T.O. Conference on Intelligence and Learning: York University,

Willats, J. (1984) Getting the drawing to look right as well ss be right:
the interraction between production and perception as a mechanism of development. in Crozier, W. R. and Chapman, A. J. (Eds), Cognitive Processes in the Perception of Art. Amsterdam: North Holland.

Willats, J. (1985) Drawing systems revisited: the role of denotation systems in children's figure drawings. in Freeman, N. H. and Cox, M. V. (Eds), Visual Order: The nature and development of pictorial representation. Cambridge: Cambridge University Press.
Willats, J. (1987) Marr and pictures: An information processing account of children's drawings. Archives de Psychologie, 55, 105-125.
Wilson, M. and Wilson, B. (1982) The case of the disappearing two-eyed proflle: or how ifttle children influence the drawings of little children. Review of Research in Visual Arts Education, 15, 19-32.
Wollheim, R. (1969) Representation: the philosophical contribution to psychology. in Butterworth, G. (Ed), The Child's Representation of the world. New York: Plenum Press.

Wood, D., Shotter, J. and Godden, D. (1974) An Investigation into the relationship between problem solving strategies, representation and memory. Quarterly Journal of Experimental Psychology, 26, 252-257.

\section*{Appendices to:}

DEVELOPMENT IN THE DEPICTION

\section*{OF DEPTH.}

BY

MONICA MARY LEE. B.Sc (Hons). Cert.Ed. M.I.T.D.

A thesis submitted for the degree of Ph. D. In Psychology.

June 1989.

Human Cognition Research Laboratory, The Open University, Milion Keynes.

\section*{Contente of Appendices.}
APPENDIX TO CHAPTER 1. ..... Ap.1. 1
Overview of Theories about Development in Drawing.
*A) WHAT WE 'KNOW' OF THE OBJECT: PERCEPTION.. ..... Page Ap.1. 2
The intrinsic image. ..... Ap.1. 3
Properties of the system. ..... Ap.1. 5
Development in perception. ..... Ap.1. 6
* B) WHAT WE 'KNOW' OF THE OBJECT: CONCEPTUALISATION ..... Ap.1. 6
Canonical orientation. ..... Ap.1. 7
* C) WHAT WE 'KNOW' OF THE OBJECT: MENTAL REPRESENTATION. ..... Ap.1. 7
Gibson's account of perception and depiction. ..... Ap.1. 8
Gibson's theory and mental representation. ..... Ap. 1.10
Development in mental representation. ..... Ap.1.11
( D) GENERAL CONCLUSIONS. ..... Ap. 1.13
CHAPTER 2.Theoretical and Empirical Aspects of Development in the Depiction of Depth.No appendices.
APPENDIX TO CHAPTER 3. ..... Ap.3. 1A Table Drawn from Observation.
- Data are contained in Appendix Ap.6:A.
Ap.3. Lee, M. and Bremner, G. (1987) The representation of depth inchildren's drawings of a table, The Quarterly Journal ofExperimental Psychology, 39A, 479-496.

CHAPTER 4.
A Table Drawn from Imagination.
No appendices. Data are contained in Appendix Ap.6:B.

\section*{CHAPTER 5.}

Aspects of the Task Causing Task Dependency.
No appendices. Data are contained in Chapter 5..

APPENDICES TO CHAPTER 6. Ap.6. 1
Classification of Table Drawings and the Use of Depth Cues.
- Introduction.

Ap.6. 2
TABLE 1. Classification system for table drawings.
Ap.6. 3
TABLE 2. Clessification of data discussed in Chapter 6.
Ap.6. 7
Ap.6:A. Data for tables drawn from observation.
Ap. 6.12
Ap.6:Aa. Subject totals for tables drawn from observation.
Ap. 6.13
Ap.6:Ab. Average ages for tables drawn from observation.
Ap. 6.13
Ap.6:Ac. Standard deviations of age for tables drawn from
observation.
Ap. 6.14
Ap.6:Ad. Percentage of total response, summed over age, for tables
drawn from observation.
Ap.6.14
Ap.6:Ae. Percentage response for each age group for tables drawn from observation.

Ap. 6.15
Ap.6:B. Data for tables drawn from imagination.
Ap.6.21
Ap.6:Ba. Subject totals for tables drawn from dwagination.
Ap.6.22
Ap.6:Bb. Average ages for tables drawn from imagination. Ap.6.22
Ap.6:Bc. Standard deviations of age for tables drawn from imagination.

Ap. 6.23

Ap.6:Bd. Percentage of total response, summed over age, for tables drawn from imagination.

Ap. 6.23
Ap.6:Be. Percentage response for each age group for tables drawn from imagination.

Ap. 6.24
Ap.6:C. Amalgamated data for tables drawn from observation and imagination.

Ap.6:Ca. Subject totals for tables drawn from observation and imagination.

Ap.6:Cb. Average ages for tables drawn from observation and imagination.

Ap.6:Cc. Standard deviations of age for tables drawn from observation and imagination.

Ap. 6.33
Ap.6:Cd. Percentage of total response, summed over age, for tables
drawn from observation and imagination.
Ap.6.33
Ap.6:Ce. Percentage response for each age group for tables drawn
from observation and imagination.
Ap. 6.34
Ap.6:D. Venn diagrams and dendrograms for tables drawn from observation, and the information upon which they are based.

Ap.6.41
1) Breakdown of data by cell type for cells accounting for more than
0.5 percent of all tables drawn from observation.

Ap.6:D,1a. Venn diagram of cells accounting for more than 0.5 percent of
all tables drawn from observation.
Ap. 6.42
Ap.6:D,1b. Reduced dendrogram of cells accounting for more than 0.5
percent of all tables drawn from observation.
Ap. 6.43
Ap.6:D,1c. Dendrogram of cells accounting for more than 0.5 percent of
all tables drawn from observation.
Ap. 6.44

Ap.6:D,1d. Age profiles for cells accounting for more than 0.5 percent of all tables drawn from observation.

Ap. 6.45
Ap.6:D, le. Smallest maximum differences of age profiles for cells accounting for more than 0.5 percent of all tables drawn from observation.

Ap. 6.46
2) Breakdown of data by cell type for cells of all tables drawn from observation.

Ap.6:D,2a. Venn diagram of cells of all tables drawn from observation.

Ap. \(6: D, 2 \mathrm{~b}\). Reduced dendrogram of cells of all tables drawn from observation.

Ap. 6.48
Ap.6:D,2c. Dendrogram of cells of all tables drawn from
observation.
Ap. 6.49
Ap.6:D,2d. Age profiles for cells of all tables drawn from observation.

Ap.6:D,2e. Smallest maximum differences of age profiles for cells of all tables drawn from observation.

Ap.6:E. Venn diagrams and dendrograms for tables drawn from imagination, and the information upon which they are based.

Ap. 6.53
1) Breakdown of data by cell type for cells accounting for more than
0.5 percent of all tables drawn from inagination.

Ap.6:E,1a. Venn diagram of cells accounting for more than 0.5 percent of all tables drawn from imagination.

Ap.6:E,1b. Reduced dendrogram of cells accounting for more than 0.5 percent of all tables drawn from dmagination.

Ap. 6.55
Ap.6:E,1c. Dendrogram of cells accounting for more than 0.5 percent of
all tables drawn from imagination.
Ap. 6.56

Ap.6:E,1d. Age profiles for cells accounting for more than 0.5 percent of all tables drawn from imagination. Ap.6.57 Ap.6:E,1e. Smallest maximum differences of age profiles for cells accounting for more than 0.5 percent of all tables drawn from imagination.
2) Breakdown of data by cell type for cells of all tables drawn from imagination.

Ap.6:E,2a. Venn diagram of cells of all tables drawn from imagination.

Ap. 6.60
Ap.6:E,2b. Reduced dendrogram of cells of all tables drawn from imagination.

Ap.6:E,2c. Dendrogram of cells of all tables drawn from imagination.

Ap.6:E,2d. Age profiles for cells of all tables drawn from imagination.

Ap.6:E,2e. Smallest maximum differences of age profiles for cells of all tables drawn from imagination.

Ap. 6.67
Ap.6:F. Venn diagrams and dendrograms for tables drawn from both observation and imagination, and the information upon which they are based.
1) Breakdown of data by cell type for cells accounting for more than 0.5 percent of all tables drawn from observation and imagination. Ap.6:F,1a. Venn diagram of cells accounting for more than 0.5 percent of all tables drawn from observation and imagination. Ap. 6.70

Ap.6:F,1b. Reduced dendrogram of cells accounting for more than 0.5
percent of all tables drawn from observation and imagination.
Ap.6.71

\begin{abstract}
Ap.6:F,1c. Dendrogram of cells accounting for more than 0.5 percent of all tables drawn from observation and imagination. Ap.6.72

Ap.6:F,1d. Age profiles for cells accounting for more than 0.5 percent of all tables drawn from observation and imagination. Ap.6.73

Ap.6:F,1e. Smallest maximum differences of age profiles for cells accounting for more than 0.5 percent of all tables drawn from observation and imagination.
2) Breakdown of data by cell type for cells of all tables drawn from observation and imagination.

Ap.6:F,2a. Venn diagram of cells of all tables drawn from observation and imagination.

Ap. 6.76
Ap.6:F,2b. Reduced dendrogram of cells of all tables drawn from observation and imagination.
\end{abstract}

Ap.6:F,2c. Dendrogram of cells of all tables drawn from observation and imagination.

Ap. 6.78
Ap.6:F,2d. Age profiles for cells of all tables drawn from observation and imagination.

Ap.6.79
Ap.6:F,2e. Smallest maximum differences of age profiles for cells of all
tables drawn from observation and imagination.
Ap.6:G. Analysis of depth cue by projection system.
Ap.6.85
Ap.6:Ga. Form of projection (types 1 to 9 ) by combinations of depth cue
usage as classified in Table 2.
Ap. 6.86
Ap.6:Gb. Form of projection (types 1 to 9) by use of depth cue. Ap.6.87
Ap.6:Gc. Form of projection (types 1 to 4) by use of depth cue. Ap.6.88

\section*{APPENDICES TO CHAPTER 7.}

Ap.7. 1
Preference in representation of tables.
\begin{tabular}{ll} 
Ap.7:A. Data for Study 7:1. & Ap.7. 2 \\
Ap.7:B. Data for Study 7:2. & Ap.7. 3 \\
Ap.7:C. Data for Study 7:3. & Ap.7. 4 \\
Ap.7:D. Data for Study 7:4. & Ap.7. 5
\end{tabular}

APPENDICES TO CHAPTER 8.
Ap.8. 1
Completion of line drawings of tables.
- Introduction.

Ap.8. 2
TABLE 3. The structure behind the stimuli used in Study 8.
Ap.8:A. Data for Study 8. Ap.8. 3
Ap.8:Aa. The raw data obtained on Stimulus sheet A. Ap.8. 4
Ap.8:Ab. The raw data obtained on Stimulus sheet B. Ap.8. 8
Ap.B:Ac. The raw data obtained on Stimulus
sheets \(W, X, Y\) and \(Z\).
Ap.8. 12
Ap.8:B. Statistical tests showing little difference between forms of stimuli.

Ap.8. 14
Ap.8:C. Amalgamated data giving proportions of response for each age group, for each individual stimulus.

Ap.8. 17
Ap.8:Ca. Analysis of amalgamated data, classified in detail by form of
response, stimulus and age.
Ap.8. 18
Ap.8:Cb. Analysis of amalgamated data, classified by projection system,
stimulus and age.
Ap.8. 43
Ap.8:Cc. Analysis of amalgamated data, classified by depth cue, stimulus
and age.
Ap.8. 56

\[
0-9
\]

Comparison of groups \(A\) and \(B\) with data from Chapters 4 and 7.Ap.8.136
Comparison of groups \(A\) and \(B\), and groups \(C\) to \(I\).

APPENDIX TO CHAPTER 9.
'Meaning', and the Copying of Line Drawings of Tables.
* Data are contained in Chapter 9.

Ap.9. Lee, M., (1989), When is an object not an object? The effect
of 'meaning' upon the copying of line drawings. British Journal
of Psychology, 80, 15-37.

CHAPTER 10.
General Discussion of Findings.
No appendices.

\section*{CHAPTER 11.}

Development in the Depiction of Depth.

No appendices.

\section*{APPENDIX TO CHAPTER 1.}

Overview of Theories about Development in Drawing.
```

This appendix presents a more detalled discussion of the theoretical basis for group of conceptual/perceptual realism theories presented in Chapter 1.

```
- A) What we 'xow' of the obsect: perception.

The intrinsic image.
Properties of the system.
Development in perception.
- B) WHAT WE 'KNOW' OF THE OBJECT: CONCEPTUALISATION.

Canonice! : :entation.
- C) WHAT WE 'KNOW' OF THE OBECT: MENTAL REPRESENTATION.

Gibson's account of perception and depiction.
Gibson's theory and mental representation.
Development in mental representation.
Page Ap.1. 2
Ap.1. 3
Ap.1. 5
Ap.1. 6
Ap.3. 6
Ap.1. 7
Ap.1. 7
Ap.1. 8
Ap. 1.10
Ap. 1.11
- D) general conclusions.
A) WHAT WE 'KNOW' OF THE OBJECT: PERCEPTION.

Marr (1982) proposed a three stage process of visual perception. He suggested that firstly a point by point representation of image intensities occurs, from which a primal sketch is computed. This makes explicit only changes in local intensity values, such as edges of objects or surface markings. A grouping process then occurs in which locally adjacent primitives are grouped into small 'edge segments' and assigned an orientation, thus producing an explicit description of local image intensity changes called the raw primal sketch. Finally local information is grouped into large scale contours or regions to form the full primal sketch, on principles of continuity, proximity and similarity. This involves the principle of 'least commitment' in which grouping does not occur in a single pass but instead utilises several stages that are characterised by the progressive relaxation of the requirements for joining elementary descriptions. Such a grouping mechanism can be used to explain subjective contours (Kennedy 1979). At this stage the attributes of the image are described without forming any hypothesis of what things might be, in the associated sense. Whilst some knowledge of the visual world is needed at this stage, the knowledge is of a very general kind. Mayhew and Frisby (1984) state that "fmplicit in the way we represent an occluding contour there are the a priori assumptions that where the occluding contour looks continuous it really is, and the convex/concave segments of the contour reflect similar properties of the generating surface, and that the generating surface is a generalised cylinder/cone". Thus a single line can be seen to have depth (Marr and Nishthara 1978) and may be seen to have many functions. For example the simple closed form of the circle on an otherwise blank background can depict a flat disc, a hole, a wire hoop, or

\title{
- ball (Kennedy 1974). Other pictorial alternatives are possible, employing transparency (Metelli 1974).
}

The intrinsic image.
A central part of Marr's theory, and of some computer vision systems, is that of the intrinsic image, which is an intermediate representation that makes explicit various aspects of visible surfaces. This is Marr's 26 D sketch which "provides a representation of objective physical reality that precedes the decomposition of the scene into objects and all the concommitant difficulties associated with object recognition" (Marr 1982). For example, Mackworth (1976) argued that intelligent vision systems need an a priori knowledge of objects when interpreting ine drawings.

It is this aspect of his theory that some researchers, such as Gibson, have found to be most contentious. Gibson's views are discussed more fully in section \(c\) of this appendix, but it is worth noting here that recent research in artificial intelligence has relaxed the need for an apriori knowledge of objects. Fisher (1982) suggested that we decompose objects into symbolic elements. For example, the perception of a table would involve the perception of the table top and the table legs, each as separate symbolic elements. He showed that a computer could identify tables in this way, even if the edge data and boundary connections were missing. In 1986 be proposed that an object recognition system first needs a figure ground separation mechanism, and then explicit information In the surface lmage is used to group surfaces to form a 'blob' level, Identliy independent, representation of three dimensional solids in the seene. Thus he uggests the use of an intermediate representation, that falls between the \(2 M D\) sketch and the model based object hypothesis. Peniland (1986) produced a similar suggestion. He argued that the
perceptual systems are, at least partially, organised to extract 'lumps' from the environment, and that we deduce the parameters of the 'lumps' from information about surface tilt. In 1987 Fisher proposed S. M. S.. This is a suggestive modelling system for object recognition, in which integrated multiple alternative representations use symbolic primitives to suggestively characterise the object and its shape. These views are in accordance with Roth and Frisby's (1986) discussion of Marr's theory. They suggest that whilst Marr's theory is essentially one involving 'bottom up' processing, it also involves knowledge. However, this is not knowledge of objects or things, or of the world as such, but is 'procedurally embedded knowledge' in which perception is guided by general rules about the way in which the world is organised.

It 1s, perhaps, unwise to base a theory about human perception too firmly upon work done in artificial intelligence, although Pylyshyn (1980) suggests that the two can be linked under certain circumstances. He argues that both computation and cognition are governed by rules acting on symbolic representations. Thus, under clearly defined conditions, in particular for areas that cannot be influenced by purely cognitive factors such as goals, bellefs, inferences and tacit knowledge, there are great similarities between the processes invoived in computation and cognition. Unfortunately it is difficult to be clear about the extent to which cognitive factors, as defined by Pylyshyn, do influence perception. Marr's work suggests that, under this definition, cognitive factors are not directly involved in perception, and so work in artificial intelligence might be relevant to our understanding of the processes of human perception. Recent work by Kestenbaum et al (1987) on infant perception reinforces this. They found that three month old bables perceive object boundarles by detecting the arrangement of surfaces in depth.

Properties of the system.
Marr suggests that the representation system for a three dimensional shape needs to be:- a) Object Centred. A viewer centred system would be more accessible for description but, when used for recognition, would be non-canonical and more costly in storage. b) Volumetric. A volumetric system can explicitly carry information about the spatial disposition of the parts of an object that are only implicit in a surface based representation. c) Modular and Hierarchically Organised. If all the primitives were at the same level the lower order descriptions would capture too fine a detall, whereas hierarchical descriptions are intrinsically stable. Thus "To recognise a visual object is to extract from the image a (hierarchically organised) description of the orientation of its principal and component axes, their adjunct relationships and relative lengths. Then with the principal axis as the basis of the object centred co-ordinate system, the description is matched to a canonical model that is held in memory" (Marr and Nishihara 1978). Allik and Laak (1985) suggest that a canonical model is a central requirement of Marr's theory.

Canonical models, as such, will be discussed later, but it is worth highlighting one aspect of the above paragraph. Marr has been accused of proposing an '1mage-based approach to perception' (Costall 1985), the implication being that these 'images' are static visual percepts. However, whilst Marr uses the term 'image' he does not suggest that, in his taxonomy, the word 'Image' has these attributes. The links between imagery and perception, and the view of imagery as dynamic and modality free, are discussed in section \(c\) (What we 'know' of the object: Nental Representation). It is worth noting that a perceptual theory based on the gradual extraction and grouping of knowledge of the environment, and the 2\% D representation of this knowledge, is not specific to the visual modality. Key relations can be obtained from a given object through other
perceptual systems (Kennedy 1980). This is dewonstrated by a study of sixteen week old blind children, who, once they had been provided with ultra-sonic spectacles, developed and acted as if they were sighted (Bower 1978).

Development in perception.
Perception is influenced by general cognitive development. Children are better able to organise their attention as they grow older, and the length of examination is extended Caprohetz 1969, Vurpillot and Ball 1979). Information pickup is more economical, necessary redundancy decreases with age (Spitz and Borland 1971, Sudipatik 1972), and selectivity becomes more skilled (Bruner et al 1966). It follows that perception becomes more analytical (Kemler 1983, Shepp 1983, Medin 1983. Rock et al 1972, Elkind 1970).
B) WHAT WE 'KNOW' OF THE OBJECT: CONCEPTUALISATION.

The views expressed above, that objects are perceived in an object centred, hierarchical manner and then identified according to the person's conceptual knowledge, lead naturally to theories about how we conceptualise natural categories of objects. Thus "Basic objects are seen to be the most inclusive categories for which a concrete image of the category as a whole can be formed, to be the first categorisations to be made during the perception of the environment, to be the earliest sorted and the earllest named by children, and to be the categorles most codable. coded, and most necessary in language" (Rosch et al 1976). "Natural categories are internally structured into a prototype (Clearest case, best example) of the category with non-prototype members tending towards an

\begin{abstract}
order from better to poorer examples ... best examples serve as reference points in relation to which other category members are judged" (Rosch 1976). Categories have the advantage that they yield the most information for the least cognitive load.
\end{abstract}

Canonical orientation.

Rosch (1975) suggested that "pictures may be closer to the underlying representation than are words". It would be unwise to assume that basic level categories have a strongly pictorial nature, but the discussion in the following section, about mental representation, indicates that part of their nature might be imaginal. The use of canonical orientation is widely documented and supported by cross-cultural research (see for example Ives and Houseworth 1980, Ives and Rovet 1979, 1981, Harris and Strommen 1972, Freeman and Janikoun 1972, Reynolds 1981, Arnheim 1974, and Freidman and Stevenson 1975). As Rosch et al (1976) suggest "the high agreement on canonical orientation is itself of interest: one may speculate that the canonical imagined orientation represents the most informative perspective in which to view the object"

In the previous section it was suggested that the very strong preference for oblique projection indicates that it holds a special position in perception and that this might be because oblique projection offers a non-specific view point. If so it may be the form of projection that most closely approximates to a canonical representation of depth.

\section*{C) WHAT WE 'KNOW' OF TTE OBJECT: MENTAL REPRESENTATION.}

Both perception and conceptualisation can be seen as aspects of mental representation, therefore in order to avoid confusion, quite a close
definition will be applied here. Perception can be seen as the process of input, conceptualisation as the process of storage, and mental representation as the process of preparation for output. Thus mental representation indicates the 'workbench' area of information processing. The term 'mental representation' rather than 'mental image' is used to reduce any unwarranted assumptions about its pictorial nature.

Before looking at mental representation it is worth taking a side step to examine a theory of perception proposed by Gibson. It was only briefly discussed in the earlier section on perception for reasons that will be outlined below, but aspects of his theory that he relates particularly to depiction are addressed more fully here.

Gibson's account of perception and depiction.
Gibson (1978) argues that the information in ambient light consists not of form and colours but of invariants, and so perception of a detached object is not compounded from a serles of detached forms but depends on invariant features of that family of forms over time.

\begin{abstract}
"It is not that he (the child) sees an abstract cat, or a conceptual cat, or the common features of a class of cats, as some philosophers would have us belleve: what he gets is the information for the persistence of that particular, furry, mobile, layout of surfaces. When the young child sees the cat run away, he does not notice the small image, but sees a farmoff cat. Thus when he sees two adjacent pictures of Fellx in the comic book, a large Fellx at the bottom of its pleture and another small Felix higher up in its picture, he is prepared to perceive the latter as further off. When he sees the cat half hidden by the chair, he perceives a partly hidden cat, not a half-cat, and therefore he is prepared to see the same thing in a drawing.

The child never sees a man as a silhouette, or as a cut-out like
\end{abstract}
a paper doll, but probably sees a sort of head-body-arms-legs invariant. Consequently, any outline drawing with this invariant is recogntsed as a man, and the outlines tend to be seen as the occiuding edges of a man with interchangeable near and far sides. Even when the outlines give way to line segments, as in so-called stick figures, the invariant may still be displayed and the man perceived" (pp. 271-272).

Glbson argues that neither 'concepts' nor 'images' are applicable.
"The invariants are not abstractions or concepts. They are not knowledge, they are simply invarlants ... (traditional theory) says that drawing is either from 'llfe', from 'memory' or from 'imagination': Drawing is always copying. The copying of the perceptual image is drawing from ilfe. The copying of the stored image is from memory. The copying of an image constructed from other memory images is drawing from imagination. This theory is consistent with the mentalistic doctrine that assumes an optical lmage on the retina, a physiological lmage on the receptors, a transmitted lmage on the nerve, a cerebral lmage in the brain and finally a mental image in the mind that is subject to all sorts of creative transformations ... I insist that what the draftsman, beginner or expert, actually does is not to replicate, to print, or to copy in any sense of the term, but to mark the surface in such a way as to display invariants and record an awareness ... When (the young child) first draws a man or a truck or a table, I suggest, he depicts the invariants that he has learned to notice. He does not draw in patchwork perspective, for he never had the experience of a patchwork. He may not yet draw in edge perspective because he has not noticed 1t. Hence he may draw a table with a rectangular top and four legs at the corners because those are the invariant features of the table he has noticed. This is a better explanation than saying that he draws what he knows about the table,
his concept, instead of what he sees of the table, his sensation" (pp. 278, 279).

Perception and mental representation have traditionally been discussed as separate entities. The beauty of this account is that Gibson minimises the difference between them: his work suggests that he believes that mental representation is perception, although he would not agree with this terminology. For example, he is saying that linear perspective is inappropriate as we do not perceive an object in this way and it should not be expected that we would draw it in this way (Costall 1985). Similarly, Bremner and Moore (1984) suggest that we draw what we see over time, rather than at a particular time.

Gibson's theory and mental representation.
Glbson's account is often held to contradict the theories of perception presented above. It is therefore worth considering the extent to which this is indeed the case in terms of practical outcome and testable hypotheses. Whilst Gibson argues against the idea of concepts, the way in which he discusses invariants suggests that he sees them as structures similar to Marr's \(2 k D\) sketch, prior to labelling (albeit structures that exist in the environment rather than internal structures). Gibson's invariants are ecological, not mental. However, ultimately, we only belleve that they might be 'out there' because our brain tells us so. Whilst his discussion of their properties and hence their implications for drawing is unclear it would appear from the description above that the use of invariants produces the same results for depiction as would the \(2 \% \mathrm{D}\) sketch. In particular he uses the idea of invariants to explain size and shape constancies and the importance of occlusion. It is therefore difficult to isolate instances in which the two theories would predict different behaviours.

Further, Gibson's cat is a very conceptual one. He does not agree with the idea of 'image', yet he does accept visualisation of the object (pp. 284). To be able to visualise an object one must have some form of constructible internal representation of that object, which does not appear to be too dissimilar from the arguments discussed above. Similarly he defines drawing as displaying invariants and recording an awareness. Yet presumably, when drawing, some of the ecological invariants become more salient to the task than others. For example, a child cannot draw his mother's voice although this might be one of the invariants that he is aware of. In order to be able to draw his mother he must be able to ignore non-visual invariants hence performing operations upon his awareness of 'mother'. Gibson does suggest that the child displays those Invariants he has noticed, thus he could be saying that the child has modality specific invariants, and so only displays visual invariants when drawing. However, modality specific invariants would lead to a very cumbersome mechanism of perception. Finally, Gibson implies that the child learns which invariants are appropriate to notice and so display. Thus, for Gibson, development in depiction appears to occur through a process of selection. This account, involving constructible internal representations, differential saliency of parts of these representations, and development in terms of selection of the appropriateness of parts of these representations in order to achieve the goal of depiction (as defined by the child) does not differ greatly from the general assumptions of the Information processing approach.

\section*{Developeent in mental representation.}

The developing abllity to form a mental representation appropriate to the task demands can be seen to be dependent upon several factors. Children are less able to manipulate mental representations than are
adults, although their image space and its properties is similar to those of an adult (Marmor 1975, Smothergill et al 1975). Development in the child's ablilty is not related to the number of knowledge chunks used, but to the appropriateness of these knowledge chunks. With age knowledge chunks become more accessible and more specific. Compared to the adult, the young child uses a greater proportion of literal knowledge structures which are, by their nature, unique and less manipulable than propositional ones. Hence the child is less able to manipulate his or her mental representations (Kosslyn 1978a).

The construction of a mental representation can be seen as a problem solving task, and children have been shown to become more able to adopt a systematic mode of problem solving as they grow older <Spiker and Cantor 1983). Mental representations are constructed, in part, on a basis of encoded perceptual information. Because experience alters the saliency of various cues, and children lack experience, cues that are actually salient to the task in hand may not be seen as such and may not have been encoded. Thus fixation onto a single, irrelevant, dimension might mask problem solving ability (Kosslyn 1978b, Moar 1977).

The ability to encode knowledge and the ability to form mental representations depends in part upon the child's knowledge structures. A cyclical method of development can be postulated in which improved encoding contributes to an improved ability to learn, which in turn contributes to an improved level of existing knowledge. Hence the use of appropriate mental representations will increase with age and ability (Siegler 1978, Brainerd and Heuvel 1974).

As Neisser (1982) suggested, drawing is a skilled behaviour which involves the ability to construct appropriate mental representations and utilise appropriate knowledge structures. Before the child can draw he or she already has a well formed body of conceptual knowledge, but this does
not contain much information about how to depict objects. Thus 'Drawings of objects are based on concepts; concepts are based on experience with objects. Expertence increases the aspects of objects to be reacted to, understood and incorporated in drawings" (Harris 1963).
D) GENERAL CONCLUSIONS.

The arguments presented here suggest that, regardless of how 'knowledge' of the object is stored or operated on, it appears to have an object centred nature. The overall plcture suggests that the form of projection that best reflects this is oblique projection. It also appears that the depth cue of occlusion is directly linked to the object centred nature of this 'knowledge', and that the use of height in the picture plane and relative size with distance will increase as shape and size constancies become less salient. It was also suggested that the child gains experience of the aspects of objects that are relevant to the process of depiction. These points are all consistent with the view that development in depiction indirectiy reflects the child's developing cognitive abilities.

Horowitz (1970) suggested that development is cyclical, in that more knowledge leads to new plans of action and new perceptual descriptions, which in turn lead to more knowledge. One might expect development in depiction to be affected by development in the ability to extract essential organising features and crucial elements of the task; in the ability to control and co-ordinate visual scanning, making it a strategic action based on task demands; and in meta-cognitive control, including planning ahead to facilitate later retrieval and executing a search according to a logical plan CJohnson-Laird 1972, Wood et al 1974, Ch1 1978).

\section*{APPENDIX TO CHAPTER 3. \\ A Table Drawn from Observation.}
* Data are contained in Appendix Ap.6:A.

Ap.3. Lee, M. and Bremner, G. (1987) The representation of depth in children's drawings of a table, The Quarterly Journal of ExperImental Psychology, 39A, 479-496.

\title{
The Representation of Depth in Children's Drawings of a Table
}

Monica Lee
Human Cosenition Research Laboratory, The Open University, U.K.

\section*{Gavin Bremner}

Department of Psychology, Lancaster University, U.K.

Willats (1977) analyeed developmenta in the drawing of a table in terms of the proiection system in which the table top was represented, and coacluded that representaion of depth in drawing goes through a series of discrete suagen, exch of whict cas be idencified with a projection system. A pertial replicition of Willass' atudy is presented here, using a much lurger ample. The relationship between age and use of proiection syseem found by Willats wat in general supported. Not all the "stages" were found to be discrete, however, and an eramination of the way in which the rable tops were drawa sbown that whilst the majority of older childrea appeared to use perspective, they did not use it correctly. A metbod is given by which ables that are dram as if from a central viewpoint can be fortally classified. It is concluded that development in the undersanding of the representition of depth is toot very closely linked to development in the use of pruiecion systems.

\section*{Introduction}

The way in which objects are drawn, and depth represented, differs with the subject's age and appears to develop with age in a specified manner. Willats (1977) examined this apparent development by looking at the way in which children used projection systems when they were drawing tubles. A large part of this paper is devoted to following up points made

\footnotetext{
Requeve for reprives abould be men wo: Monica Lese 86 Leyleod Lanc, Lyyleod,


The authore wish wo thenk Johen Herrison, Chericu Lex and Phwl Procoort for menincias vith tbe inecopretuica of the perales.
}
and questions raised in Willats' work. The projection system being used by the subject is determined by examining the lines in the picture that represent the edges of the solid normal to the picture plane. These are usually termed the "orchogonals". If the orthogonala are depicted as points, the drawing is said to be in orthographic projection. The use of paraltel lines indicates oblique proiection. If the orthogonals are depicred as verical lines, whilst still remaining parallel, the projecrion is seen as a special form of oblique and is called vericat-oblique. If the orthogonals appear to converge to a point, the solid is ssid to be drawn in perspective. Willats (1977) divided perspective into two categories, naive and true, depending upon the amount of convergence shown by the orthogonals.

This mecthod of analysis is more formal than ochers proposed. For instance, Lowenfeld and Britrain (1966), Mitchelonore (1978; 1980), and Willats (1981) have classified development in the depiction of depth in terms of stages in the amount of realism that the artiss is able so achieve. Mitchelmore classified drawings of a cuboid, a cylinder, a pyramid, and a cube in this way and found the same developmental sequences for cach solid. From this he was able to predict, correculy, the way in which development would occur in the drawing of a trapezoid. However, analysis of the drawing depends to rome extent upoo the experimenter's interpretation both of the drawing itself, and of the situntion. The beaury of an account of the represencation of depth direcely related to the use of projection systems comes pardy from the formality of the system. By ascertaining the form of projection thas is used by the child, the experimenter can identify the "stage" of depth depiction the child has achicved. The theory assumes that when children draw, they amempt to depict exactly what they see, and that as perspective is normally considered the best method of achieving this, children are working sowards drawing in perspective. Willats found that the way a rable top is depicted appears to develop from the use of orthographic projection. through verticat-oblique, to oblique, and finally to the use of naive or true perspertive. Willars described what children do, but this does not give secess to what they intend to draw, nor to rules soverning the transition berween systems. Freeman (1980) has suggested that what underlies transitions might be nothing more than the development of ability to produce first, a pair of right angles, tecond, a pair of oblique angles, and fanally one oblique and one obrase aggle. Ia his view it is the use of these "local decisions" that derermines the way in which the trble is drawn, not the dequee of understanding of how to represent an object in depth.

As Willats (1985) discusses et length, one major problem with bis
1977 account is that it docs not apply to all forms of drawing. For
example, Mitchetmore describes a suge in children's drawings (Suge 3, prerealistic) in which objects ase drawn as if from one viewpoint. Within this scage there is a progression from the use of one base line, through the use of several, to the use of a base plane. Depth is depicted by overlapping and size difierences. Drawings in this suge do nor fit comfortably into any of Withas' classifications. Similarly, Hagen (1985) identifies some forms of projection, such as divergent perspective in which the orthoconals are represented as diverging racher than converg ing, which are used by children but have no basis in reality. These points call into question whecher analysis purely in terms of projection systems uncovers all that is caking place in developmene.
The assumption that the projection system in use can be derived from table top alone is not free from doubr. The formality of this form of classification comes from the supposition that the projection system can be idencified by ii-: spalication of two formulae upon the angles doitened in the depiction of ine tulle eog. These formulac isolate the degrees of convergence and obliquiry shown by the orthogonats in the drawing. However, convergence of orthogoasls is direcdy related to the height of the subiect's eye-level. A subject looking edge-on at a table top will see it in orthographic proiection. As the eye-level rises, the table top will appear in true perspective, and then naive perspective, and finally as if in vertical-oblique projection. Hence the degree of convergence does not uniquely define the projection syseem in use. In order to minimize ambiguiry, it is necessary to exmine the way in which the whole table is projected. Therefore when analysis of the drawing is confined to the way in which the table top is depicted, the psychological relevance of the way in which the projection systems are classed becomes less clear. Orthoraphic or verticat-oblique proiection, as inferred by the form of the table rop, might in realiry represent a table drawn in linear perspective from an erreme viewpoint. Similarly, a distinction berween naive and rue perspective is not inherent in any formal method of classification. It is necessary to know something abour the position of the child's eyes before one can with any validity make a distinction based only on the drawing of the table top. In fact this can only be made if the drawing has been done from observation and with a fixed eye-level, as was the case in Willass' study, and always with the assumption that the child intends to draw exaculy what he or she can see.
Notice that in this scenario the object is never seen in oblique projection. For this to happen, the object would need to be viewed from the side, not the frooe. The implication of this point is that children appear to 50 through a period during which they no longer represent the table as if from the position in which they see it-the front-something they have been quite capable of doing before. Instead, they adopt an
inaginary side view for a while, before reverting to their origina practice of representing the cable from the correct side. Aternadively, it could be argued that development is related to shifu in the viewpoint first through a vertical rocstion, then horisoncal, and then beck ro vertical. If this were really the case, the orthogoale should converge in the oblique drawings, producing oblique perspective. Uafortunately the method of clasification used by Willats was not of sufficient delicacy to pick up possible small convergences in the oblique drawings.
These poins can be sddressed by cramining the manocr in which the table legs as well as the table top are depicted. This is a major departure from earlier practice and makes it possible to see whether the subjec uses a coherent unified projection system. For example, Figure la shows a cable drawn correcty in perspecaive. The table sop in Figure it is identical to that of Figure la, and classification based on the mearure ment of the rop alone would place it as true perspecrive, yet it can be seen that a siogle, unified form of projection is not in use.
These points susgest that the belief in a stage-like progression from orthographic projection to perspective, which gives a cenuine increase in complexity based only on an analysis of the way able sops are drawn merits further exanination. Further, cxamination ot tne table drawing as a whole, rather than only one aspect of it, will clarify the possibility that apparent changes in proiection system may really be shifts in imagined or constructed viewpoint.
There are three areas in which Willats' experimental mechod migh benefit from revision. Firsr, his conclusions were based on data drawn from a sample of only eight or ten subjects of each age, and for each age these drawings are placed into one of six classes. An elbow jogted at the wrong cime would make a large difference to his renults. When Kolmogorov-Sminnov two-sample test is applied to the frequencies (with age) that Willats oblained for either the use of true as opposed to naive perspective, or to the use of true perspective as opposed to the use of oblique, it can be seen that there are no sipnificant diferences berween cither pair. They could have occurred by chance-naive versus orve perspective: \(D=0.24, n=28, \rho>0.05\); true perspective versus oblique: \(D=0.26, n=20, p>0.05\). Given the amount of variacion found i children's drawings, this subject population is too small to support such - general conchusion.

The secood dificulty is that Willats' experimental task was designed co study simulaneously boch the use of projection systems and the use of partial occlusion. This was achieved by requiring children to draw a complicated array of objects upon the table top whilst also drawing the table. The complexiry of the task may have detracted from the representativencss of his results.

12. Correct perspective

1b. fALSE PERSPECTIVE


1c. GEOMETRIC ANALYSIS OF FIGURE ia
Figure 1. The relationship berween correct and talse persperoive, and a trigonomecric analysis of a table drawn in perspective.

Third, althouth Willats controlled the overall dimensions of the table, there was variety in the shape and position of the table legs presented to the subjects. The method Willats used for classifying the drawings according to the projecrion systems used was based wholly on the way the cable tops were drawn. There was no apparent need for control over the legs of the scimulus cable, but lack of control presupposes that any differences in the legs of the tables used as stimuli would
not affect the demands of the rask, and that the legs would be drawn in the same form of projection as the top. These assumptions were not verified.
Willas' study made a major conwibution to the undersanding of bow depth is represeoted and also its formal classificavion. It has been replicated bere in a modified form, because of the doubre discussed above. The stimulus able used in the present study was the same for all subjectr, thus enabling direct comparison of the way in which the cable legs were depicted, and the sample size was larger. The resula have been cxamined both in terms of the projection system used and in terms of the undersuodiog shown in its use.

\section*{Method}

\section*{Subjecse}

Subjects consisted of 789 children, representing the total inake of one primary and ooe secondary school in Lerland, Lancashire. The number of subjects in each age group can be seen in Table I.

\section*{Table I}

Number of Subjects in Eech Age Graup
\begin{tabular}{lrrrrrrrrrrr}
\hline Ase & 1 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline Subiect1 & 30 & 30 & 30 & 30 & 30 & 30 & 30 & 147 & 178 & 164 & 90 \\
\hline
\end{tabular}

Tash
Each child was seated as a lable facing the long side of a secoed table measuring \(112 \times 56 \mathrm{~cm}\). The child's eyea were approximately 32 cm above the uble top and 300 cra away from the facing table. Once serted, the child was given paper and pencil and asked to examine the surroundings of the table carefully. Tbe child was then asked to make the best drawing he or she could of the cable. No time limit was civen. These conditions are very similar to chose used by Willats. Figure la show the view of the scimulus as seen by the subject. If a child drew more than oas uble, it was the firse draws that was mesrured.

\section*{Results}

\section*{General Anclysis}

The drawingt were assigned to classes secording to the projection system in which the able top whis depicted. The projection sprem is
partially determined by the ande of convergence of the orthogonals. The same value cas be obovised by drawing suraight lines on the subject's picture along the line representing the front of the table and the lines representing the ordogeanls of the eable. The anglea between these lines are measured and used to ascertain the degree of convertence by takiog the soraller from the larger. For crample, the able top in Figure Ia can be seen to have an sagle of coavergence of \(147.5^{\circ}-32.5^{\circ}-115^{\circ}\). This is the same method as that used by Willats (1977). Figure ia illustrates that what in being ascertained is the angle 0 made by the orthogoanls as they epaverge to the vanishiog point. In sccordance with Willac' classification, all responses with a convergence of less than \(20^{\circ}\) were classified as non-perspective.

All noa-perspective responses were classified according to the degree of obliquiry shown, which is the mean of the two angles made by the orhogoasls, and the tine representing the front of the table. For example, in Figure la the degree of obliquiry is
\[
\frac{32.5+147.5}{2}=90
\]

Drawings with \(0^{\circ}\) obliquiry were classed as orthographic, those berween \(0^{\circ}\) and \(80^{\circ}\) were classed as eblique, those between \(80^{\circ}\) and \(100^{\circ}\) verticatoblique, and those over \(100^{\circ}\) oblique. The margins used by Willats for verrical-oblique were \(70^{\circ}\) and \(110^{\circ}\). The zessons for departiog from these margins are discussed later. Table Il gives the mean age and standard deviation for each class of projection.
Figure 2 shows the distribution of different trpes of class secording to age. The or thographic and vertical-oblique classes show similar parterns of distribution. These two rypes of response, with age, were significandy correlated, \(r=0.67, d /=9, p<0.05\), whilst also showing signiñcant differences, \(x^{2}=53.15, d /=10, p<0.001\). What these findings represene is unclear, and the implications are discussed later. The proporion of children that used orchographic projection declined at the age of 7. coinciding with a rise in the use of the oblique response, but the use of boch orthographic and verticat-oblique projection remained similar.

\section*{Table II}

Torel Nimber of Suljects, Averape Ace, and Siandard Doviacion of Age for Eacil Clans of Projection
\begin{tabular}{lcccc}
\hline Projectios & Orthographic & Verieal-Oblique & Oblique & Perspective \\
\hline No. subjects & 99 & 196 & 119 & 395 \\
Averate ate & 7.26 & 9.05 & 11.82 & 12.43 \\
Std. deviation & 2.48 & 2.97 & 1.62 & 1.06 \\
\hline
\end{tabular}


Figure 2. The proportions of use, with ase, of each class of projection.
declining steadily between the ages of 10 and 11 . The number of subjects in a particular age group using perspective increased from \(3 \%\) at 10 years old to \(80 \%\) by the age of 14 , whilse from 8 years old to adulthood the use of oblique remained at berween \(15 \%\) and \(25 \%\).

\section*{Perspective Response}

Willats arbitrarily divided the perspective response into aaive and true perspective at \(55^{\circ}\) convergence. A distinction between asive and true perspective can only be made if the drawing has been doae from observation, with a fixed eyc-level, as is the case both bere and in Willats' study. For this special case such a division would need to be supported by bi-modality in the data, or a relationship berween the
amount of convergence and the age of the child. Figure 3 , in which frequency soores of the data at intervals of \(5^{\circ}\) convergence are given, shows do apparent bi-modality. Furthernore, 2 one-way ANOVA using age (in years) as a crouping factor and degrees of convergence as a dependent variable failed to show that the depree of convergence in which the able top wes drawn was afferted by age, \(F(3,327)=2.3\), \(p>0.05\). Willates ( 1977 ) found no sipnificast correlation between the angle of convergence and age in his data. It an be concluded that there is no evidence to support a clear-cut distinction between naive and true perspective.

The view of the scimulus ruble that the subjects bad was at \(115^{\circ}\) convergence on the top. All except two of the subjects produced drawings with a convergeoce on the table top of less than this. None of the subjects used linear perspective that was correct for their viewing position.
As mentioned previously, alhough Willats imposed strict control over the position from which the subjects drew the table and the size of table top, the legs of the tribles he used varied. In this study each subject was presented with the same scimulus table, and so the depiction of the izble legs can be compared scross drawings. The degree of convergence shown by the legs in the drawing was measured by joining the drawn base of each front leg with a straight line, and by joining the base of each front leg to the base of the leg "behind" it by a straight line. The degree of convergence for the legs could then be calculated in the same manner


Figure 3. The distribution of date according to the degree of convergence.
as for the top. Figure is illustrates that what is being sseertained is the angle pande by the inferred orthogoals as they converge to the vanishing point, \(62.8^{\circ}\) in this ase. When a table in this position is drawn correctly in perspective (Figure 1a), the convergence of the legs should be less than that of the top. A drawing of a tuble in which the convergence of the legs is the same as or larger than that of the top (Figure 1b) is an obvious use of false perspective. In other words, when the able is drawa in correct perspective, the legs should be scaled according to the same size-distance rule.

Figure 3 shows that the convergence of the legs of those drawings whose tops were in perspective was signifantly greater than the convergence shown by the tops, \(1-21.59\), df \(=331, p<0.05\). In three cases angle p was \(180^{\circ}\)-in ocher words, the back legs were extended so far that the table gave the appcarance of being on a single ground or base line. Young children do draw to a ground line; howerex, there was no significant difference, with age, in the degree of convergence used to depict the table legs, as shown by a one-way ANOVA using age as the grouping factor, and degrees of convergence as a dependent variable, \(F(3,327)=1.5, p>0.05\).

Table Ill
Mean Degree of Cowvergence, by Agr, for she Tabfe Tops ( \(\theta\) ) and the Table Legs (f)
\begin{tabular}{lcccc}
\hline & 11 Yeari & 12 Years & 13 Years & 14 Years \\
\hline 0 deyrees & 47.08 & 47.36 & 48.48 & 54.26 \\
decrees & 84.86 & 87.19 & 81.16 & 80.65 \\
\hline
\end{tabular}

Table III shows a comparison of the means obtained in the last two \(F\) tests. A perspective response was only produced by two subjects who were less than il years of age ( 8 and 10 , respectively). The results for these two children are not included in this able. A posteriori tests showed no significant differences either between the means for the table tops or for the rable legs, Tukey \(>0.05\) in each case. It is possible that whilst the degrees of convergence shown both on the tops and by the legs are not age-related separately, there might be an age-rclated trend in the difference berween the two.

A significant difference with age is found between the scores for \(\theta\) and - when a one-way ANOVA is done with age as the grouping factor and the individual differences between \(\theta\) and \(p\) as the dependent variable, \(F(3,327)=3.78, p<0.05\). The mean dificrences between \(\varphi\) and \(\theta\) for
each sge proup are 11-year-oids - 37.67, 12 -yerr-olds \(=39.89\), 13 -yearolds -33.7 , 14-yenr-olds \(=26.37\). It would sppear that older children have a sipnifinant tendency to use similar angles of coavergence for both the cable top and the able kegh. At first sight this appears paradoxical. because 1 and 1 are dissimilar when a table is drawn in correct perspective; however, this tread shown by the older children only partially rectiket a large amount of error in the use of these angles.
The problean is comopliated by the fact that the relacive dimensions of the table may pot have been represented accurately. For instance, the form of perspecive the child is using anighe be correct for the shape of the table drawn, even if chat able is not an accurate representation of the "real table" in front of the child. The picture might be intermally consistent, but be a bad representation. The measures used so far rely upon the child's ability so depict, correctly, the relative dimensions of the uble. Figure le showe a geometrical analysis of half of a uble in corrert perspective. It can be seen that two verical parallel lines are crossed at right anglea by three paralle! horizoatal lines. The zeal orthogonal of the table top and the implied orthogonal of the table legs combine with these paraliels to give two right-ngiled uriangles. A trigonometric comparison of these triangles gives a measure of the correctess of perspective used. The logic for this is as follows: In a vable in true perspertive, where \(w\) is the widh of the table and \(y-x\) is the length of the leg (boch as measured on the drawing), then
\[
\begin{aligned}
\operatorname{cor}\left(\frac{y}{2}\right)-\cot \left(\frac{\theta}{2}\right) & =\frac{2 y}{\infty}-\frac{2 x}{v} \\
& =\frac{2}{\infty}(y-x) \\
& =\frac{2 \times \text { fice lenech) }}{v}
\end{aligned}
\]

Each drawing en therefore be given two values: on the left-hand side, a vilue showing the relationship between the angles of convergence in which the table rop and the able kegs are represented, and on the righe a value for the relative dimensions of the rable. In pracice, the table less are rarely drown the same length; therefore, height of table is taken so be the meas length of boch front keg.
Oa the basis of the above equacion, Figures ia and ib would be worked as follows:
Figure la:
\[
\cot \left(\frac{62.8}{2}\right)-\cot \left(\frac{115}{2}\right)=1.64-0.64
\]
\(-1.00\)

Figure ib:
\[
\cos \left(\frac{130}{2}\right)-\cot \left(\frac{115}{2}\right)-0.47-0.64
\]
\[
=-0.17
\]

For boch Figures 1a and 16:
\[
\frac{2}{1}(y-x)-\frac{2 \times 96}{112}
\]

Finully, a value \(P\) an be obeained for each drawing. This represenus the difference berween what \(\theta\) and \(p\) should be, siven the dimensions of the picture of the uble, and what they actually are. Thus is is a direct measure of the internal consistency on the pitture plane of the projection system used (perspective). This is a formal mechod of classifying tubles that are represented as if from a central viewpoint (Fisures la and it would bave \(P\) values of \(1.00-1.00-0\), and \(-0.17-1=-1.17\), resperively). A uble drawn in correct peripective should have a \(P\) value as near to zero as possible, constrained by the limits of the measuriog equipment. The more the \(P\) value differs from this, che larger the peripective error. Variation of \(P\) value within the data was from 0.03 to -5.68 . A one-way ANOVA using age (in years) as the grouping factor and value of \(P\) as the dependent varisble shows that the absolute correctess of perspective used is related to age, \(F(3,327)=6.17, p<0.01\). The mean \(P\) for each ase was: 11 -year-olds \(-1.1 .8,12\)-year-olds- -1.9 , 13 -yearolds \(=-1.7\), 14-year-olds \(=-1.5\). An examination of the mean value of \(P\) for each age group indicates that all children fail to use perspective correctly, but the perspecive used by the older children is more in keeping with che dimensions of their own drawings than is that of the younger children.
Figure 4 shows the data plotred according to the two ralues used to obutin \(P\). The diagonal \(C D D\) in chis figure indicates all possible posivions of drawings in correct perspective, given variations in the dimensions of the drawn cubles. As long as it is the uppernost surface of the table that is being depicted, the only possible correet responses for any shape or size of recupgular rable are those to the rithe of the vertical axis, i.e. those in which cot \((p / 2)\) is greater than cor ( \(\theta / 2\) ). Under the present experimenal condivions poine \(X\) is the oaly possible posidion of the correct response. No subjects achieved ic. As proved above, it can be seon that subiects do not produce correct perspective, and that the degree of incorrect perspective produced is related to age It is also evident in Figure 4 that these children, all of whom friled to dram perspertive correctly, were seasonably good at depicting the relative


Figure 4. The relationship between age and the ability to reproduce perspecfive and the relative dimensions of the tuble correctly.
dimensions of the table, as can be seen in the way most data cluster in a vertical band near to \(\mathbf{1 . 0}\). There is at most a mild tendency to underescimate the length of leg in relation to table width.

To summarize, chose subjects producing a perspective response did not use correct perspective. In no age group is there a distinction berween naive and true perspective. The cable legs are drawn with a greater degree of convergence than are the tops. No subject produced a form of perspective that was correct for any shape of table, let alone one with the specific measurements discussed here; however, the older children were more accurate than the younger ones in their use of perspective.

\section*{Non-perspective Responses}

Those drawings with less than \(20^{\circ}\) of convergence on the table top were termed non-perspective and were classified aecording to the degree of obliquiry shown, as described carlier. Figure 3 shows that in approximately \(5 \%\) of the drawings the orthogonals diverged, rather than converged. Because of the small number of such responses, they were not urated as a separate class of projection, even though physically impossible in the absence of a model whose back is longer than the front (Hagen, 1985), but were included with the other non-perspective responses


DEGREES © OBLIQUITY
Figure 5. The distribution of data according to the degree of obliquiry.

The distribution of non-perspective responses can be seen in Figure 5. The margins used by Willats were \(70^{\circ}\) and \(110^{\circ}\). However, as can be seen in Figure 5, the limits of \(80^{\circ}\) and \(100^{\circ}\) reflect more accurately the discontinuities in the distribution obrained here. This has the effect of marginally increasing the oblique response at the expense of the verri-cal-oblique. However, as Figure 2 shows, the vertical-oblique response was found to be much larger than that of the oblique, and so such a narrowing of the class limits does not alter conclusions drawn from an examination of the response in these classes.

It is possible to draw a uble in oblique-perspective, in which the uble is shown as if viewed from the side, but with orthogonals that converge. An oblique-perspective drawing with less than \(20^{\circ}\) convergence would be classed as non-perspective in this srudy. This means that some drawings, classed as non-perspective, may actually be in perspective, alchough drawn as if viewed from the side instend of the front. Theoretically, there should be no convergence of the orthogonals in oblique projection. This was not the case for any age eroup. The mean convergence of the oblique response for each age group was: 8 -yearolds \(=4.6,9\)-year-olds \(=3.57,10\)-ycar-old \(=2.33,11\)-ycar-olds \(=2.9\), 12 -year-olds \(=4.82,13\)-year-olds \(=1.46,14\)-year-olds \(=1.5\). A one-way ANOVA using age (in years) as a grouping factor and degrees conver-
gence as dependent variable reveals no significant difference with age berween these figures, \(F(6,106)=0.65, p 0.05\). These Gfures do not rule out the possibiliry that all childreo who produce oblique sctually use oblique-perspective; bowever, this would sppear unlikely. In this study onily two childres under eleven used perspective, yet cighteen used oblique. This is oor coasistent with a theory that relates development in the represeatation of depth to complexity of the projection system used. Furthermore, although there was no significant difference berween the menas, it would appear that the older childrea produce less, not more, convergence. This reversal cannot casily be explained in terms of the use of oblique-perspective but may be addressed anore plausibly by Freernan's theories of figural bias, or by local decisions. Younges children are less able than older to produce two oblique parallel lines (see Mitchelmore, 1985), and the evidence presented here suggests that if a figural biss is present it will lead to the depiction of such parallel lines as convertging.

\section*{Discussion}

This srudy partially seplicased that of Willars (1977) and found. as he did, that children depict a table top in a variety of ways that can be identified with the proiection systems of orthographic, verical-oblique, oblique and perspective. The maior departure from techniques used earlier has been the examination of the way in which the able kegs have been depicted, as well as, and in conjunction with, the way the table rops have been drawn. In this way it is possible to see whether the subject uses a coherent, unified projection system. This has enabled earlier resules to be extended and earlier assumptions to be queried. Further, this study used a sufficient number of subiects to obtain a reasonable distribution. This made it possible to discover in detail how the drawing of a table from observation changes with age and showed that some distinctions previously suesested disappear.

The results presented here sussest two aress in which the class limits used by Willats require modifiation. The least important is the narrowing of the band in which a table sop would be classed as verical-oblique. It was shown earlier that such a narrowing of the class limits does not alser conclusions drawn from an examination of the response in these classes. The second revision, that of amalgamatint naive and true perspective, has deeper implications. Theorics of drawing that assurne that the subject is trying to depict what is seen also assume that the best way of doing this is perspective, and that the subject is antempting to achicve a perspective resule. Alost importandy, they assume that adulis do draw in correct perspecrive. It has been shown here that a distinction
between maive and true perspecrive cannot be supported theoretially or empirically. The representation of depth does not develop from anive to true perspective, aod thus it rasy be appropriate to abasdoa this divisioa in general, and corainly in this specific case. It has also been abown that the vast majority of subjects who drew a bable in "perspective" drew the legs with more, rather than less, convergence than they hed used for the uble rops. This is the canct opposite of the reapoose ther would be expected from a tue undersinading of the projection syutem. The form of perspective they used was verifiably incorrect, Dor true, perspective. according to the formal method of measuriat perspecrive used here, the \(P\) value. The \(P\) value is a measure of the coasistency of perspective used by the subject in relation to the subject's own drawiog, not as inferred by the erperimenter from the stimulus. When the dan are eramioed in this light, a developanental uend is seen, from incorrect to true perspective, iccording to criteris interall to the dimensions of the drawing. The oldest subjers in this arudy were less than is years old, leaviag open the possibility that sdults do achieve true perspective. However, Lee (submitted) found that the perspective response peaks at 14, after which age most children are oo longer required to use it at school. These fiadings scrongly support the view that althouch most people would argue that perspective is the theoretically correct method by which to depict depth in two dimensions, it is Dot necessarily the mose chosen way psychologically.

In this study the oblique form of projection appears to be qualitacively different from the others. In the oblique system the eable is drawn as if seen from the side, rather than as the experimenal coodicion, "correcty's from the front. Yer in each group from cight years old to adulchood berween \(15 \%\) and \(25 \%\) of the subjects drew a table in this form. Subjects in this age range are not nombally coosidered so insensitive to the scene as to be incapable of showing the side from which they are in the process of viewing the table. Such a persistent use of oblique was also found by Duchic (1985), Hagen (1985) and Lee (subraitred) and begs for some form of explanation. The mean de gree of coavergence for each age group of the oblique response was positive, whereas theoretically it should have been zero. However, it has been argued that this does not imply that subjects were using some form of oblique-perspective. Instead, it has been suggested that this aspect of the oblique respoase is a Ggural bias of the sort discussed by Freeman (1960). This leads to a testable hypothesis in a predicted direction and lends itself to further research. However, it docs not solve the problem of why such a large percentage of older subiects choose to depict the table they can see in front of them in a way thst is inconsistent with what they can sec.

A large amount of overlap was found in the use of orthographic and
vertiat-oblique projection, and the paterns of response for these two classes correlated significandy. Serious doubt is cast upon the supposition that the use of these two classes indicates separate developmental suges. This doubt is supported bere by the observation that those children who did draw more than one table frequenty produced tables in both orthocraphic and veriat-oblique proiection side by side on the same page. The aenbiguous position of chese two forms of projection is emphasized by Lee (submited) who found that 2 sizeable minority of subjects who drew a uble in renical-oblique depicted objects along its top edge. Duthie ( 1985 ) reported that there were considerable variations berween drawings of the same object by the same child when a child was repeatedly tested. He rejects the view that a child atrempts to represent a scene in one particular form of proiection. This is supported here by the finding that when a table drawing classed as vertical-oblique on the basis of the way in which its top is drawn is ecamined, it is frequently found that the legs are depicted in a manner inconsistent with verticat-oblique proiection. As both Phillips, Inall and Lavder (1985) and Michelmore (1985) suggest, it would appear more likely that development is related to the finding and remembering of appropriate graphic descriptions rather than some general and slowly evolving conception of space. Cerainly the fact that an experimenter is able to classify a drawing in a particular projection system does not necessarily indicate that the artist intended to use that system.
In conclusion, this srudy has shown that no subjects drew in correct perspective, that there is no clear-aut distinction berween naive and true perspective, that oblique projection is qualitatively different from the other systems. The study has also cast doubt upon the supposition that orthographic and verical-oblique projection represent separate developmental stages. These findings suggest that Willats' conclusion that the representation of depth in drawing zoes through a series of discrete suges, each of which can be identified with a projection system, cannot be supported. They also suggest that the developmental processes of drawing a tuble are betrer srudied in terms of skill acquisition, as the finding and remembering of appropriate graphic descripions.

\section*{REFERENCES}

Duchie, R.K. (1985). The adoleconents poiot of viewt Studica in forms of coatica, In N.H. Freeman and M. V. Con (Eds.), Virnal order: The neture and drelopmest of pictorial reprecenearion. Cembridge: Cambridge Univeriify Pres, Pp. 101-120.
Frocman, N. H. (1980). Stratreies of roprocentaion in youns childrem: An andynis of sparial sillle and drowine processan, Loodoo: Academic Press.

Hagen, M. A. (1985). There is no development in are. la N. H. Freemen and M.V. Cox (Eds.), Visual order: The matuer and droclopment of pictiorial representarion. Cambridge: Cambridge Univerint Prets, Pp. 59-77.
Lee, M. M. (submited). Task depeadency and developanent in tuble drawing. Perceprion.
Lowenfeld, V. and Brittain, W.L. (1966). Craative and mental growith. New York: Macmillan.
Mitchelmore, M. C. (1978). Developmental suges in childran's representation of refular solid figures. Journal of Gemetic Poycholog, 133, 229-239.
Mircheimore, M.C (1980). Predicion of developmental soges in the represenuaion of regular space figures. Jowrnal for Remarch in Mathemotics Education. 11, 83-93.
Alichelmore, M. C. (1985). Geometrical foundations of children's drowing. In N. H. Freeman and M. V. Cox (Eds.), Virual erder: The nature and developN. ment of prictatial representation. Cambridze: Univerrity Press, pp. 289-309.
 use of graphic descriptions. Ia N. H. Freeman and M. V. Cox (Eds.), Visual order: The nature and development of picterial regpecertation. Cambridge: Cumbridge Universiry Press, pp. 122-134.
Willas, J. (197n). How children laern to draw realistic pictures. Qwarterly Joumal of Experimental Prycholocy, 29, 367-382.
Willats, J. (1981). What do the marks in the pierure suand forl The child: acqusition of systems of transformation and denowion. Reviere of Rescarch in Art Education, 13, 18-33.
Willass, J. (1985). Drawing systens revisited: The role of denowaion systems in children's Gigure drawings. In N.H. Freeman and M.V. Con (Ede.), Virnal adde: The nature and droviopment of pictorial reprasusarion. Cambridge: Cambridge Uaiversity Press, pp. 78-100.

\section*{APPENDIX TO CHAPTER 4. A Table Drawn from Imagination.}
* Data are contained in Appendix Ap.6:B.

\section*{APPENDIX TO CHAPTER 5.}

Aspects of the task causing task dependency.
- Data are contained in Chapter 5.

APPENDICES TO CHAPTER 6. Classification of Table Drawings and the Use of Depth Cues.
* Introduction.

Page Ap.6. 2
Ap.6:A. Data for tables drawn from observation. Ap.6.12

Ap.6:B. Data for tables drawn from imagination.
Ap.6.21
Ap.6:C. Amalgamated data for tables drawn from observation and imagination.

Ap.6:D. Venn diagrams and dendrograms for tables drawn from observation, and the information upon which they are based.

Ap.6:E. Venn diagrams and dendrograms for tables drawn from imagination, and the information upon which they are based.

Ap.6:F. Venn diagrams and dendrograms for tables drawn from both observation and imagination, and the information upon which they are based.

Ap.6.69
Ap.6:G. Analysis of depth cue by projection system.

\section*{Introduction.}

Table 1 presents a system by which drawings of tables can be classified. The form of projection used upon the table top is given along the horizontal axis and the way in which the table legs are drawn is given along the vertical axis. Therefore a table drawn like this: \(\square\) would be placed in cell la.

Table 2 has two functions. Firstly the data discussed in Chapters 3 and 4 (and given in appendices 6:A and 6:B respectively) are presented for each cell. Underneath the drawing within each cell there are three columns. The first column gives details for tables drawn from observation (Chapter 3), The second gives details for tables drawn from imagination (Chapter 4), and the third gives details for both sets of data amalgamated together. Within each column, hence for each set of data, the total percentage of responses accounted for by that cell is given, as is the mean age and standard deviation of age of subjects responding in that cell.

The second function served by Table 2 is that of classifying the form of depth response indicated by the way in which the table legs are drawn. This is shown by the figures to the right of the picture in each cell. Thus each cell contains a rating for height in the picture plane ( H ), partial occlusion ( 0 ), and diminishing size with distance (D). The depth cue of height in the picture plane is divided into four categories, namely:- no ground line (H1), plan view (H2), ground line ( H 3 ) and ground plane (H4). The depth cue of occlusion is divided into three categories,. namely:- no occlusion (O1), lack of hidden line elimination (O2) and partial occlusion (03). No subjects used diminishing size with distance on the table legs therefore the only category for this depth cue is no diminishing size with distance (D1). Some cells present problems when categorised in this way. In those instances both possible categories have been given, but it is the one presented in brackets that is adopted for later analysis.

TABLE 1. Classification system for table drawings.
TABLE 2. Classification of data discussed in Chapter 6.

Page Ap.6. 3
Ap.6. 7



TABLE 1. Continued.


TABLE 1. Continued.

be

TABLE 2. Classification of data discussed in Chapter 6.


TABLE 2. Continued.



TABLE 2．Continued．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & untm & & & ，omo & om & & anem & \\
\hline & & & & & & & & & \\
\hline \％ & \(\mathrm{H}_{\circ}^{\circ}\) &  & \％ & 号： & \[
0
\] & H。 & H & 今。 & 月吕 \\
\hline \％ &  &  &  & & & & & & \({ }_{0}^{\text {ens }}\) \\
\hline \％ & 粬 \({ }^{\circ}\) &  & 㴽品 & 首管 &  & \begin{tabular}{l}
监。 \\

\end{tabular} & 采 & 法。＂ & 产 \\
\hline 边 &  & \[
\bar{\square}
\] & it：： &  & ：2 &  & & \(9 \%\) & 9 \\
\hline  & &  &  & & \％ & 耑品： & & （an） & 肖然 \\
\hline
\end{tabular}


\section*{Appendix 6: A. \\ Data for tables drawn from observation.}

This appendix presents the data discussed in Chapter 3, classified according to the method given in Table 1. The total subject numbers, average age, standard deviation of age and percentage of the total response, summed over age, are given for each cell. The percentage response for each age group, is then given.

Ap.6:Aa. Subject totals for tables drawn from observation.
Page Ap.6. 13
Ap.6:Ab. Average ages for tables drawn from observation.
Page Ap.6. 13
Ap.6:Ac. Standard deviations of age for tables drawn from observation.

Page Ap.6.14
Ap.6:Ad. Percentage of total response, summed over age, for tables drawn from observation.

Ap.6:Ae. Percentage response for each age group for tables drawn from observation.

Appendix 6:Aa. Subject totals for tables drawn from observation.
Appendix 6:Ab. Average ages for tables drawn from observation.


Appendix 6:Ac. Standard deviations of age for tables drawn from observation. Appendix 6:Ad. Percentage of total response, summed over age, for tables drawn from observation.


Appendix 6:Ae. Percentage response for each age group for tables drawn from observation.
\[
\begin{aligned}
& \text { 6-15 }
\end{aligned}
\]

Appendix 6:Ae. Continued.
\[
\underset{ }{\circ}
\]














008000000000

Age= 0


\(8 \% 8\)
- \(\therefore 8:\)
\(\dot{\circ}\)
n
\begin{tabular}{ll}
\(\circ\) \\
\hline & \(\circ\) \\
\(\dot{\circ}\) & \(\dot{0}\)
\end{tabular}
\begin{tabular}{l}
\(\therefore\) \\
\(\dot{\circ}\) ㅇ \\
\(\dot{\circ}\) \\
\hline
\end{tabular}
\(\begin{array}{llll}\circ & \therefore & \circ & \therefore \\ \dot{\circ} & \dot{0} & \dot{0} & \dot{0}\end{array}\)
\(\begin{array}{lll}8 & 8 & 8 \\ 0 & \circ & 0\end{array}\)
\begin{tabular}{l}
\(\circ\) \\
\(\vdots\) \\
\(\vdots\) \\
\(\vdots\) \\
\(\vdots\) \\
\hline
\end{tabular}
\begin{tabular}{l}
\(\circ\) \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
\(\circ\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
ㅇ ㅇ
\begin{tabular}{llll}
\hline- & 8 & 8 & 8 \\
\(\dot{O}\) & \(\dot{O}\) & \(\dot{O}\) & \(\dot{\circ}\)
\end{tabular}
\(\circ\)
\(\dot{\circ}\)
\(\vdots\)
\(\vdots\)
\(\dot{\circ}\)
\(\vdots\)
0
:
\begin{tabular}{ll}
\hline & \(\circ\) \\
\(\dot{\circ}\) & \(\dot{0}\)
\end{tabular}
\(\therefore \stackrel{0}{\circ}\)

\(\begin{array}{lll}\therefore & \therefore & 0 \\ \dot{\circ} & \dot{0} & 0\end{array}\)
\begin{tabular}{lll}
\(\circ\) \\
\hline & \(\circ\) & \(\circ\) \\
\(\dot{0}\) & \(\dot{0}\) & 0
\end{tabular}
\begin{tabular}{ll}
\(\circ\) \\
\hline & 8 \\
\(\dot{\circ}\) & 0 \\
0
\end{tabular}
\(\stackrel{\circ}{\circ}\)
\(\stackrel{\circ}{\circ} \dot{\circ}\)
\(\circ\)
\(\circ\)
\(\dot{\circ}\)
0
0
\(\stackrel{8}{\circ}\)
\begin{tabular}{l}
\(:\) \\
\hline \\
\(\dot{0}\) \\
\hline
\end{tabular}
\(\dot{\circ} \dot{\circ} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0}\)
4
5
5
\(n\)

:
\begin{tabular}{ll}
\(\therefore\) & \(N\) \\
\(\dot{\circ}\) & \multirow{2}{*}{} \\
\hline
\end{tabular}
\(\begin{array}{ll}\therefore & N \\ 0 & \\ 0 & 0\end{array}\)
\(\circ\) ㅇ․ ㅇ
:
\(\stackrel{\circ}{\circ}\) ㅇ
\(\therefore 8\)
앙
\begin{tabular}{l}
\(\circ\) \\
\hline \\
\(\dot{\circ}\) \\
\hline 0
\end{tabular}
\(\begin{array}{lllll}\therefore & \therefore & 8 & 8 \\ \dot{\circ} & \dot{0} & \dot{0} & \dot{0} & 0\end{array}\)
\(\stackrel{8}{\circ}\)
\(\stackrel{8}{\circ}\)
\(\stackrel{8}{\circ}\)
\begin{tabular}{l}
\(\circ\) \\
\(\dot{\circ}\) \\
\(\dot{O}\) \\
\hline
\end{tabular}
\(\therefore\)
요
8
\(\dot{0}\)
\(\therefore\)
\(\therefore \quad \therefore\)
\begin{tabular}{l}
8 \\
0 \\
0 \\
\hline
\end{tabular}
Percentage


\(\stackrel{8}{\circ}\)
 \(\begin{array}{ll}\vec{n} & \text { : } \\ \dot{0} & \text { : }\end{array}\) \(\stackrel{\square}{-}\) \begin{tabular}{l}
8 \\
\(\stackrel{8}{\circ}\) \\
\hline
\end{tabular} \(\stackrel{8}{\circ}\) \(\therefore 8\) \(\stackrel{8}{\circ}\) \(\therefore\) : \begin{tabular}{l}
8 \\
\hline
\end{tabular} \(\therefore\) \(:\) \(\stackrel{8}{:}\) \(\therefore 8\)
\[
\begin{aligned}
& \circ \\
& \stackrel{\circ}{\circ}
\end{aligned}
\]
\(\circ\) \(\stackrel{8}{\circ}\) 8
\(\vdots\)
\(\vdots\)
\(\vdots\) \begin{tabular}{l}
\(\therefore\) \\
\(\vdots\) \\
\(\vdots\) \\
\(\vdots\) \\
\hline
\end{tabular} 8
\(\vdots\)
\(\vdots\)
\(\vdots\)
0 \(\stackrel{8}{\circ}\) \(\stackrel{8}{\circ}\) \(\circ\)
\(\vdots\)
\(\dot{\circ}\)
0 \(\therefore\)
\(\therefore\)
0
0
0 \(\begin{array}{lllll}\therefore & 0 & 0 & 8 & 0 \\ \dot{O} & \dot{0} & \dot{0} & \dot{0} & 0\end{array}\) \(\stackrel{8}{\circ}\)
\[
\begin{aligned}
& \text { Percentage of grand total. }
\end{aligned}
\]
\(\begin{array}{ll}\circ \\
\dot{\circ} & 8 \\
0 & 0 \\
0\end{array}\)
\begin{tabular}{l}
\(\circ\) \\
\(\vdots\) \\
\(\dot{\circ}\) O \\
\hline
\end{tabular}
\(\stackrel{\circ}{\circ}\)

Appendix 6:Ae. Continued.
\[
\begin{aligned}
& \text { 을 } \\
& 8
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & - & 7 & - & 9 & & & 1 & 2 & 3 & 4 & 5 & - & 7 & 0 & 9 & \\
\hline a & 0.13 & 0.38 & 0.25 & 0.38 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.14 & a & 0.00 & 0.13 & 0.00 & 0.51 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.03 \\
\hline \(b\) & 0.00 & 0.13 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.13 & \(b\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline c & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & c & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline d & 0.00 & 0.51 & 0.13 & 1.39 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 2.03 & d & 0.00 & 0.00 & 0.00 & 0.25 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.25 \\
\hline - & 0.00 & 0.00 & 0.25 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.25 & - & 0.00 & 0.13 & 0.38 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.51 \\
\hline 1 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0:00 & 1 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 8 & 0.13 & 0.00 & 0.13 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.25 & 8 & 0.00 & 0.13 & 0.00 & 0.13 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.25 \\
\hline b & 0.00 & 0.25 & 1.90 & 0.63 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 2.79 & b & 0.00 & 0.00 & 1.52 & 0.13 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.05 \\
\hline 1 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 1 & 0.00 & 0.25 & 0.25 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.51 & 1 & 0.00 & 0.00 & 1.65 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.05 \\
\hline \(\mathbf{z}\) & 0.25 & 2.41 & 0.63 & 12.04 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 15.34 & k & 0.13 & 1.52 & 1.14 & 13.05 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 15.84 \\
\hline 1 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 3 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & mi & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline n & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & - & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0. 00 & 0.00 & 0.00 & 0.00 \\
\hline 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline P & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & \(\mathbf{P}\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 9 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 9 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \(r\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & \(r\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline - & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & * & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \(t\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & \(t\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \(\checkmark\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 4 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \(\checkmark\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & \(\nabla\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \(*\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & \(*\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \(x\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & \(x\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline J & 0.00 & 0.00 & 0.00 & 0.13 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.13 & 7 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline z & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & z & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.51 & 3.93 & 3.551 & 14.58 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 22.56 & & 0.13 & 1.90 & 4.69 & 14.07 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 20.79 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \therefore \\
& \vdots \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& 0 \\
& 0
\end{aligned}
\] & \[
\stackrel{8}{\circ}
\] & : & \[
\stackrel{\cong}{0}
\] & \[
\pm
\] & \[
\stackrel{\circ}{\circ}
\] & \[
\dot{\circ}
\] & i & \[
\begin{aligned}
& \therefore \\
& \hline
\end{aligned}
\] & \[
\stackrel{8}{\circ}
\] & \[
\begin{aligned}
& \circ \\
& \hline \dot{\circ}
\end{aligned}
\] & : & : & \[
\begin{aligned}
& \therefore \\
& \dot{0}
\end{aligned}
\] & : & \[
\circ
\] & - & ○ & : & \[
\stackrel{8}{\stackrel{\circ}{\circ}}
\] & \[
\begin{aligned}
& \stackrel{8}{+} \\
& \hline
\end{aligned}
\] & 8 & \\
\hline & \(\cdots\) & \[
\begin{aligned}
& 8 \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \stackrel{\circ}{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \stackrel{\circ}{\circ}
\end{aligned}
\] & \[
\stackrel{8}{\circ}
\] & ! & \[
\begin{aligned}
& \therefore \\
& \vdots
\end{aligned}
\] & \[
\begin{aligned}
& : 0 \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{\circ}{0} \\
& \dot{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \dot{0}
\end{aligned}
\] & - & \[
\begin{aligned}
& \circ \\
& \dot{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \therefore \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \therefore \\
& \dot{0}
\end{aligned}
\] & 8 & \(\therefore\) & : & 8 & \[
\begin{aligned}
& : \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& : \\
& \vdots
\end{aligned}
\] & \[
\begin{aligned}
& : \\
& \hline 0
\end{aligned}
\] & \[
\stackrel{8}{\circ}
\] & \[
\stackrel{8}{\circ}
\] & : & \(\stackrel{8}{\circ}\) \\
\hline & \(\bigcirc\) & \[
\stackrel{8}{\circ}
\] & \[
\begin{aligned}
& 8 \\
& \stackrel{8}{0}
\end{aligned}
\] & : & \[
\begin{aligned}
& \stackrel{8}{\circ} \\
& \hline
\end{aligned}
\] & : & : & \[
\begin{aligned}
& \circ \\
& \stackrel{\circ}{\circ}
\end{aligned}
\] & : & \[
\begin{aligned}
& \therefore \\
& \vdots
\end{aligned}
\] & : & \(\dot{\circ}\) & \[
\stackrel{\circ}{\circ}
\] & \[
\stackrel{8}{\circ}
\] & \[
\begin{aligned}
& 8 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& : \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \dot{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \dot{8}
\end{aligned}
\] & \[
\begin{aligned}
& : \\
& \hline 0
\end{aligned}
\] & : & \[
\stackrel{8}{\circ}
\] & \[
\begin{aligned}
& 8 \\
& \stackrel{0}{0}
\end{aligned}
\] & \[
\begin{aligned}
& : \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& : \\
& \dot{\circ}
\end{aligned}
\] & \[
\therefore
\] & \[
\begin{aligned}
& : \\
& \dot{0}
\end{aligned}
\] \\
\hline & \(\cdots\) & \[
\begin{aligned}
& \therefore \\
& \dot{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& : \\
& \stackrel{\circ}{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \text { : } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \dot{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& : \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& : \\
& \dot{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \therefore \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \therefore \\
& \vdots \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& : \\
& \stackrel{\circ}{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& : \\
& \dot{\circ}
\end{aligned}
\] & \(\dot{\circ}\) & : & \[
\begin{aligned}
& 8 \\
& \dot{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \text { : } \\
& \dot{0}
\end{aligned}
\] & \[
\because
\] & 8 & \[
\begin{aligned}
& \circ \\
& \stackrel{\circ}{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \therefore \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& : \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \dot{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \text { : } \\
& \hline \mathbf{~}
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \dot{0}
\end{aligned}
\] & : & \[
\begin{aligned}
& \text { : } \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& : \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \vdots \\
& \hline
\end{aligned}
\] \\
\hline & \(\bigcirc\) & \[
\begin{aligned}
& \circ \\
& \dot{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \dot{0}
\end{aligned}
\] & \[
\stackrel{8}{\dot{\circ}}
\] & \[
\begin{aligned}
& 8 \\
& \hline 0
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{8}{0} \\
& \dot{0}
\end{aligned}
\] & \[
\stackrel{8}{\circ}
\] & \[
\begin{aligned}
& 8 \\
& \dot{8}
\end{aligned}
\] & \[
\begin{aligned}
& : \\
& \dot{8}
\end{aligned}
\] & \[
\stackrel{8}{\circ}
\] & \[
\begin{aligned}
& 8 \\
& \dot{0}
\end{aligned}
\] & \(\stackrel{\circ}{-}\) & \[
\begin{aligned}
& \dot{8} \\
& \dot{\circ}
\end{aligned}
\] & \[
\stackrel{8}{\circ}
\] & \[
\stackrel{8}{\circ}
\] & \[
\ddot{\circ}
\] & \[
\ddot{0}
\] & 8 & : & \[
\stackrel{8}{\vdots}
\] & : & : & \[
\stackrel{8}{\dot{\circ}}
\] & \[
\stackrel{8}{0}
\] & \[
\begin{aligned}
& : \\
& \hline \dot{0}
\end{aligned}
\] & ! & \[
\begin{aligned}
& 8 \\
& \hline 0
\end{aligned}
\] \\
\hline & \(n\) & \[
\begin{aligned}
& : \\
& \dot{\circ}
\end{aligned}
\] & \[
\stackrel{\circ}{\circ}
\] & \[
\stackrel{\circ}{\circ}
\] & \[
\stackrel{\circ}{\circ}
\] & : & \[
\stackrel{8}{\circ}
\] & \[
\begin{aligned}
& \text { : } \\
& \dot{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \therefore \\
& \vdots
\end{aligned}
\] & \[
\stackrel{8}{\circ}
\] &  &  & \[
\begin{aligned}
& \dot{\circ} \\
& \dot{\circ}
\end{aligned}
\] & \[
\stackrel{+}{\circ}
\] & \[
:
\] & : & : & \[
\begin{aligned}
& \therefore \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& : \\
& 0 \\
& 0
\end{aligned}
\] & \[
\stackrel{8}{\circ}
\] & \[
\begin{aligned}
& 8 \\
& \dot{8}
\end{aligned}
\] & \[
\stackrel{8}{\dot{8}}
\] & \[
\begin{aligned}
& \circ \\
& \hline
\end{aligned}
\] & \[
\stackrel{8}{\circ}
\] & \[
8
\] & ! & \(\stackrel{8}{\circ}\) \\
\hline & - & \[
\begin{gathered}
\text { ® } \\
\dot{0}
\end{gathered}
\] & \[
\stackrel{8}{\circ}
\] & \(\dot{-}\) & 8 & \(\bigcirc\) & - & : & \(\underset{\square}{\square}\) & - & - & \(\dot{\circ}\) & 8 & : & 8 & : & - & 8 & 8 & 8 & 8 & \(\stackrel{8}{\circ}\) & \(\stackrel{8}{6}\) & : & \(\stackrel{8}{8}\) & 8 & : \\
\hline & n & \[
\stackrel{\Xi}{0}
\] & \[
\begin{aligned}
& : \\
& \vdots
\end{aligned}
\] & : & 8 & 8 & - & \[
\begin{aligned}
& \stackrel{8}{+} \\
& \dot{\circ}
\end{aligned}
\] & \[
\stackrel{\ddot{\partial}}{\dot{\sim}}
\] & : & \(\cong\) & N & - & \(\stackrel{8}{\circ}\) & 8 & \(\bigcirc\) & 8 & - & \% & 8 & 8 & \[
\begin{aligned}
& 8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \hline \dot{\circ}
\end{aligned}
\] & \[
\stackrel{8}{\circ}
\] & 8 & \(\stackrel{8}{\circ}\) \\
\hline & \(\cdots\) & \[
\stackrel{\oplus}{\dot{\circ}}
\] & \[
\begin{aligned}
& 8 \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& 0 \\
& \hline 0
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \vdots
\end{aligned}
\] & \[
0
\] & \[
\begin{aligned}
& \circ \\
& \dot{\circ}
\end{aligned}
\] & \[
\underset{\sim}{\bullet}
\] & \[
\begin{aligned}
& 8 \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \dot{8}
\end{aligned}
\] & \[
\begin{aligned}
& \therefore \\
& \dot{\circ}
\end{aligned}
\] &  &  & \[
\begin{aligned}
& : \\
& \dot{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \therefore \\
& \stackrel{\circ}{\circ}
\end{aligned}
\] & : & ! & \[
\begin{aligned}
& 8 \\
& \vdots \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \dot{8}
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \dot{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \dot{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \dot{\circ}
\end{aligned}
\] & \[
8
\] & \[
\begin{aligned}
& 8 \\
& \dot{\circ}
\end{aligned}
\] \\
\hline & \(\cdots\) & : & \[
\begin{aligned}
& \text { : } \\
& \dot{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \therefore \\
& \dot{\circ}
\end{aligned}
\] & : & 8 & - & : & \[
\begin{aligned}
& \circ \\
& \vdots \\
& \dot{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \therefore \\
& \vdots \\
& \dot{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \therefore \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& \therefore \\
& \dot{\circ}
\end{aligned}
\] & & : & & \(\stackrel{-}{\circ}\) & \[
\begin{aligned}
& \stackrel{\circ}{0} \\
& \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& \therefore \\
& \vdots \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \therefore \\
& \hline \dot{0}
\end{aligned}
\] & \[
\begin{aligned}
& 8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \vdots
\end{aligned}
\] & \[
\begin{aligned}
& \circ \\
& \stackrel{+}{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& : \\
& \dot{0}
\end{aligned}
\] & & - & : \\
\hline
\end{tabular}

\section*{Appendix 6: B. Data for tables drawn from imagination.}

This appendix presents the data discussed in Chapter 4, classified according to the method given in Table 1 . The total subject numbers, average age, standard deviation of age and percentage of the total response, summed over age, are given for each cell. The percentage response for each age group, is then given.

Ap.6:Ba. Subject totals for tables drawn from imagination.

Ap.6:Be. Percentage response for each age group for tables drawn from imagination.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & Total & & 1 & 2 & 3 & 4 & 5 & 0 & 7 & 0 & 9 & \\
\hline & 525 & 175 & 11 & 26 & 29 & 13 & 1 & 23 & 0 & 803 & a & 7.45 & 7.72 & 12.18 & 11.92 & 5.52 & 7.77 & 7.00 & 0.61 & 0.00 & 7.63 \\
\hline & & & & 0 & 6 & 8 & 0 & 0 & 2 & 55 & b & 7.04 & 6.18 & 11.00 & 0.00 & 4.50 & 11.38 & 0.00 & 0.00 & 6.00 & 7.38 \\
\hline \(b\) & 14 & 22 & 3 & 0 & 6 & & & & & & & 0.00 & 0.00 & 8.33 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 8.33 \\
\hline c & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & c & & & & & & & & & & \\
\hline d & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & d & 14.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 14.00 \\
\hline & & & & & & 0 & 0 & 0 & 0 & 266 & - & 7.00 & 10.45 & 12.28 & 10.00 & 8.00 & 0.00 & 0.00 & 0.00 & 0.00 & 11.00 \\
\hline - & 1 & 40 & 223 & 1 & 2 & - & & & & & & & & & & & & & & & \\
\hline \(\varepsilon\) & 0 & 4 & 33 & 0 & 0 & 0 & 0 & 0 & 0 & 37 & 1 & 0.00 & 9.75 & 10.94 & 0.00 & 0.00 & 0.00 & 0.00 & & & 10.81 \\
\hline & 300 & 283 & - & 14 & 37 & 57 & 4 & 29 & 3 & 736 & \(g\) & 7.49 & 7.20 & 10.56 & 11.57 & 0.43 & 7.67 & 7.50 & 6.97 & 6.33 & 7.43 \\
\hline 8 & & & & & 5 & 2 & 15 & 0 & 0 & 611 & b & 0.00 & 10.20 & 13.73 & 12.00 & 9.60 & 9.00 & 0.13 & 0.00 & 0.00 & 13.47 \\
\hline , & 0 & 15 & 570 & 4 & & & & & & & 1 & 0.00 & 0.67 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 6.67 \\
\hline 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & & & & & \\
\hline 1 & 1 & 31 & 291 & 2 & 1 & 0 & 0 & 0 & 0 & 326 & J & 12.00 & 10.04 & 12.15 & 11.00 & 9.00 & 0.00 & 0.00 & 0.00 & 0.00 & 12.01 \\
\hline & & & 14 & 177 & 7 & 23 & 2 & 5 & 0 & 501 & k & 9.59 & 10.07 & 11.50 & 12.41 & 10.29 & 10.87 & 9.50 & 7.20 & 0.00 & 10.86 \\
\hline 2 & 02 & & & & & & & & & & 1 & 0.00 & 9.31 & 0.00 & 11.00 & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 & 9.28 \\
\hline 1 & 0 & 135 & 0 & 1 & 2 & 6 & 0 & 0 & 0 & 144 & & & & & & & & & & & \\
\hline m & 0 & 17 & 13 & 1 & 1 & 0 & 0 & 0 & 0 & 32 & - & 0.00 & 8.65 & 11.46 & 12.00 & 12.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.97 \\
\hline & & & & 0 & 20 & 5 & 0 & 4 & 0 & 105 & n & 5.33 & 5.35 & 0.00 & 0.00 & 4.40 & 7.20 & 0.00 & 0.00 & 0.00 & 5.28 \\
\hline n & 33 & 43 & 0 & 0 & & & & & & & 0 & 0.00 & 8.11 & 10.00 & 0.00 & 3.70 & 5.00 & 6.00 & 0.00 & 4.00 & 6.18 \\
\hline 0 & 0 & 38 & 1 & 0 & 30 & 2 & 1 & 0 & 1 & 73 & & & & & & & & & & & \\
\hline & 0 & \(\bigcirc\) & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 10 & P & 0.00 & 6.22 & 0.00 & 0.00 & 7.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.30 \\
\hline \(P\) & & & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 24 & 9 & 0.00 & 10.53 & 9.50 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 10.25 \\
\hline 9 & 1 & 19 & 4 & & & & & & & & r & 0.00 & 4.43 & 0.00 & 0.00 & 4.72 & 3.00 & 0.00 & 0.00 & 0.00 & 4.64 \\
\hline r & 0 & 7 & 0 & 0 & 36 & 1 & 0 & 0 & 0 & 44 & & & & & & & & & & & \\
\hline & 2 & 0 & 2 & 0 & 15 & 15 & 0 & 0 & 0 & 34 & E & 13.00 & 0.00 & 17.50 & 0.00 & 0.60 & 11.20 & 0.00 & 0.00 & 0.00 & 9.65 \\
\hline & & & & & & & & & & 2 & \(t\) & 0.00 & 6.50 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.50 \\
\hline t & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & & & & & & & & & & & \\
\hline * & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 2 & u & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 14.00 & 0.00 & 7.00 & 0.00 & 10.50 \\
\hline & & & & & & & & & 0 & 102 & \(\nabla\) & 0.00 & 7.03 & 0.00 & 0.00 & 0.43 & 9.00 & 0.00 & 0.00 & 0.00 & 7.01 \\
\hline \(\checkmark\) & 0 & 94 & 0 & 0 & 7 & 1 & 0 & 0 & 0 & & & & & & & & & & & & \\
\hline \(*\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(\cdots\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0 & 26 & 0 & 0 & 19 & 0 & 0 & 0 & 0 & 45 & x & 0.00 & 7.88 & 0.00 & 0.00 & 5.84 & 0.00 & 0.00 & 0.00 & 0.00 & 7.02 \\
\hline & & & & & & & & & & & 7 & 0.00 & 7.20 & 0.00 & 0.00 & 5.75 & 0.00 & 0.00 & 0.00 & 0.00 & 0.89 \\
\hline \(y\) & 0 & 15 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 19 & \(\gamma\) & & & & & & & & & & \\
\hline 2 & 7 & 10 & 1 & 0 & 4 & 10 & 0 & 0 & 0 & 32 & z & 10.00 & 10.10 & 11.00 & 0.00 & 9.75 & 15.70 & 0.00 & 0.00 & 0.00 & 11.81 \\
\hline & 967 & 1179 & 1178 & 226 & 225 & 144 & 23 & 62 & 6 & 4010 & & 7.61 & 0.25 & 12.86 & 12.26 & 5.70 & 9.35 & 0.74 & 6.79 & 5.83 & \\
\hline
\end{tabular}

Appendix 6:Bc. Standard deviations of age for tables drawn from imagination.
Appendix 6:Bd. Percentage of total response, summed over age, for tables drawn from imagination.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{stamard daviations of ages} \\
\hline 1 & 2 & 3 & 4 & 5 & - & 7 & \(\bullet\) & - & \\
\hline 2.73 & 2.30 & 2.23 & 1.08 & 2.54 & 3.00 & 0.00 & 2.20 & 0.00 & 2.81 \\
\hline 2.05 & 1.05 & 2.00 & 0.00 & 0.84 & 7.35 & 0.00 & 0.00 & 1.41 & 3.82 \\
\hline 0.00 & 0.00 & 2.31 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 2.31 \\
\hline 0.00 & 0.0 & . 00 & , 0 & 0.00 & 0.00 & 0.00 & 0.0 & 0.00 & 0.00 \\
\hline 0.00 & 1.0 & 5.15 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 4.82 \\
\hline 0.00 & 0.00 & 2.38 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & . 30 \\
\hline 1.05 & 1.0 & 2.07 & 9.18 & 1.02 & 1.71 & 1.00 & 1.55 & 2.53 & 2.21 \\
\hline 0.00 & 2.27 & 0.02 & 1.15 & 1.52 & 1.41 & 1.00 & 0.00 & 0.00 & 5.92 \\
\hline 0.00 & 0.50 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 50 \\
\hline 0.00 & 1.00 & 5.02 & 0.00 & 0.00 & 0.0 & 0.00 & 0.00 & 0.00 & 4.80 \\
\hline OT & 2.90 & 2.70 & 3.03 & 1.90 & 3.35 & 0.71 & 1.40 & 0.00 & 2.89 \\
\hline 0.00 & 1.00 & 0.00 & 0.00 & 2.41 & 1.00 & 0.00 & 0.00 & 0.00 & 1.05 \\
\hline . 00 & 2.00 & 2.51 & 0.00 & 0.00 & 0.00 & 0.00 & 0.0 & 0.0 & 2.00 \\
\hline . 07 & 1.07 & 0.00 & 0.00 & 2.50 & 3.40 & 0.0 & 0. 62 & 0.00 & . 00 \\
\hline . 00 & 4.40 & 0.00 & 0.00 & 1.00 & 1.41 & 0.00 & 0.00 & 0.00 & 4.04 \\
\hline . 0.00 & 1.20 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.16 \\
\hline . 0 & 2.00 & 2.03 & 0.0 & 0.00 & 0.00 & 0.0 & 0.00 & 0.00 & 1.78 \\
\hline . 00 & 0.53 & 0.00 & 0.00 & 1.16 & 0.00 & 0.00 & 0.00 & 0.00 & 1.10 \\
\hline 41 & 0.00 & 6.36 & 0.00 & 3.10 & 4.58 & 0.00 & 0.00 & 0.00 & 4.9 \\
\hline 0.00 & 2.12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 2.12 \\
\hline 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 4.05 \\
\hline 0.00 & 1.00 & 0.00 & 0.00 & 2.59 & 0.00 & 0.00 & 0.00 & 0. & 2.0 \\
\hline 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 0.00 & 1.53 & 0.00 & 0.00 & 1.21 & 0.0 & 0.00 & 0.00 & 0.00 & 1.73 \\
\hline 0.00 & 1.37 & 0.00 & 0.00 & 1.50 & 0.00 & 0.00 & 0.00 & 0.00 & 1.49 \\
\hline 1.53 & 2.02 & 0.00 & 0.00 & 1.26 & 10.07 & 0.00 & 0.00 & 0.00 & - \\
\hline 2.54 & 2.63 & 5.48 & 3.27 & 2.45 & 4.01 & 1.54 & 2.80 & 1.47 & \\
\hline
\end{tabular}

Appendix 6:Be. Percentage response for each age group for tables drawn from imagination.




\section*{Appendix 6:Be. Continued.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline a & 2.57 & 0.02 & 0.00 & 0.00 & 0.00 & 0.02 & 0.02 & 0.07 & 0.00 & 3.32 & a & 1.60 & 0.82 & 0.00 & 0.02 & 0.05 & 0.02 & 0.00 & 0.02 & 0.00 & 2.54 \\
\hline b & 0.02 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & 0.07 & b & 0.07 & 0.12 & 0.00 & 0.00 & 0.00 & 0.07 & 0.00 & 0.00 & 0.00 & 0.27 \\
\hline c & 0.00 & 0.00 & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.05 & c & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \(d\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & \(d\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline - & 0.02 & 0.00 & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.07 & - & 0.00 & 0.02 & 0.10 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.15 \\
\hline 1 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 \\
\hline \(\varepsilon\) & 1.97 & 1.67 & 0.02 & 0.02 & 0.17 & 0.25 & 0.07 & 0.20 & 0.00 & 4.39 & 8 & 0.90 & 0.75 & 0.00 & 0.05 & 0.10 & 0.37 & 0.00 & 0.10 & 0.02 & 2.29 \\
\hline b & 0.00 & 0.05 & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.10 & - & 0.00 & 0.00 & 0.12 & 0.00 & 0.05 & 0.02 & 0.07 & 0.00 & 0.00 & 0.27 \\
\hline 1 & 0.00 & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.05 & 1 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline J & 0.00 & 0.00 & 0.07 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.07 & 1 & 0.00 & 0.07 & 0.22 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.30 \\
\hline k & 0.17 & 0.27 & 0.00 & 0.02 & 0.02 & 0.02 & 0.00 & 0.05 & 0.00 & 0.57 & \(k\) & 0.27 & 0.42 & 0.00 & 0.05 & 0.00 & 0.05 & 0.00 & 0.02 & 0.00 & 0.62 \\
\hline 1 & 0.00 & 0.40 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.42 & 1 & 0.00 & 0.45 & 0.00 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.47 \\
\hline m & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & m & 0.00 & 0.05 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.07 \\
\hline n & 0.10 & 0.10 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & 0.00 & 0.22 & a & 0.05 & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.10 \\
\hline 0 & 0.00 & 0.12 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.15 & 0 & 0.00 & 0.22 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.25 \\
\hline P & 0.00 & 0.10 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.12 & P & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 \\
\hline 9 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & 9 & 0.02 & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.07 \\
\hline r & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & \(\boldsymbol{r}\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 \\
\hline - & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.02 & - & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & 0.05 & 0.00 & 0.00 & 0.00 & 0.07 \\
\hline t & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & \(t\) & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 \\
\hline 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & 0.00 & 0.02 & \(v\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \(\checkmark\) & 0.00 & 0.52 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.52 & - & 0.00 & 0.25 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.27 \\
\hline \(\sim\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & \(\cdots\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \(x\) & 0.00 & 0.07 & 0.00 & 0.00 & 0.12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.20 & x & 0.00 & 0.20 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.22 \\
\hline \(y\) & 0.00 & 0.15 & 0.00 & 0.00 & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 & 0.20 & Y & 0.00 & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.0 \\
\hline 2 & 0.02 & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.07 & \(z\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & 0.02 & 0.00 & 0.00 & 0.00 & 0.05 \\
\hline & 4.89 & . 2 & 0.27 & 0.05 & 0.47 & 0.32 & 0.10 & 0.37 & 0.02 & 10.75 & & 2.22 & 3.59 & 0.50 & 0.12 & 0.35 & 0.65 & 0.10 & 0.15 & 0.02 & 6. 40 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & - & 1.05 & 0.47 & 0.05 & 0.10 & 0.02 & 0.05 & 0.00 & 0.02 & 0.00 & 1.77 \\
\hline & \(b\) & 0.02 & 0.05 & 0.00 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.10 \\
\hline & c & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & d & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & - & 0.00 & 0.20 & 0.32 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.52 \\
\hline & 8 & 0.00 & 0.05 & 0.22 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.27 \\
\hline & 8 & 1.02 & 0.82 & 0.05 & 0.07 & 0.12 & 0.25 & 0.02 & 0.02 & 0.00 & 2.39 \\
\hline & L & 0.00 & 0.02 & 0.52 & 0.00 & 0.00 & 0.00 & 0.12 & 0.00 & 0.00 & 0.07 \\
\hline & 1 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 6 & 1 & 0.00 & 0.07 & 0.62 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.72 \\
\hline 1 & k & 0.35 & 0.90 & 0.05 & 0.40 & 0.02 & 0.15 & 0.02 & 0.02 & 0.00 & 1.92 \\
\hline \(N\) & 1 & 0.00 & 1.10 & 0.00 & 0.00 & 0.02 & 0.02 & 0.00 & 0.00 & 0.00 & 1.15 \\
\hline & - & 0.00 & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.05 \\
\hline & - & 0.02 & 0.00 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.05 \\
\hline & 0 & 0.00 & 0.10 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.12 \\
\hline & P & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 9 & 0.00 & 0.10 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.12 \\
\hline & r & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & E & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & 0.05 & 0.00 & 0.00 & 0.00 & 0.07 \\
\hline & \(t\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & . 00 \\
\hline & U & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & - & 0.00 & 0.20 & 0.00 & 0.00 & 0.02 & 0.02 & 0.00 & 0.00 & 0.00 & 0.25 \\
\hline & \(\cdots\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & \(\pm\) & 0.00 & 0.25 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.25 \\
\hline & \(y\) & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 \\
\hline & z & 0.02 & 0.02 & 0.00 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.07 \\
\hline
\end{tabular}
1.77
0.10
0.00
0.00
0.52
0.27
2.30
0.07
0.00
0.72
1.82
1.15
0.05
0.05
0.12
0.00
0.12
0.00
0.07
0.00
0.25
0.00
0.25
0.07
10.55
\(\begin{array}{lllllllll} & 0.00 & 0.25 & 0.05 & 0.15 & 0.00 & 0.02 & 0.00 & 0.00 \\ 0.00\end{array}\)
\(\begin{array}{llllllllll}0 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.02\end{array}\)
\(\begin{array}{lllllllllll}\text { c } & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02\end{array}\)
\(\begin{array}{lllllllllll}\text { d } & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}\)
\(\begin{array}{llllllllll}- & 0.00 & 0.35 & 1.12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 1.47\end{array}\)
\(1 \quad 0.00 \quad 0.02 \quad 0.10 \quad 0.00 \quad 0.00\)
\(\begin{array}{lllllllllll}8 & 0.25 & 0.20 & 0.05 & 0.10 & 0.00 & 0.07 & 0.00 & 0.02 & 0.00 & 0.70\end{array}\)
\(\begin{array}{lllllllllll}\mathrm{h} & 0.00 & 0.12 & 2.59 & 0.05 & 0.05 & 0.00 & 0.02 & 0.00 & 0.00 & 2.84\end{array}\)
1 \begin{tabular}{llllllllll}
1 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
\(\begin{array}{lllllllllll}\text { J } & 0.00 & 0.17 & 1.90 & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 2.12\end{array}\)
\(\begin{array}{lllllllllll}\mathrm{k} & 0.15 & 1.05 & 0.10 & 0.02 & 0.10 & 0.17 & 0.00 & 0.00 & 0.00 & 2.10\end{array}\)
\(1 \begin{array}{lllllllllll}1 & 0.00 & 0.37 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.40\end{array}\)
\(\begin{array}{llllllllllll}= & 0.00 & 0.02 & 0.07 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.12\end{array}\)
\(\begin{array}{lllllllllll}\text { n } & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.05 & 0.00 & 0.00 & 0.00 & 0.05\end{array}\)
\(\begin{array}{lllllllllll}0 & 0.00 & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.05\end{array}\)
\begin{tabular}{lllllllllll}
\(\boldsymbol{P}\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00
\end{tabular}
\(\begin{array}{lllllllllll}9 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02\end{array}\)
\(\begin{array}{lllllllllll}\boldsymbol{r} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}\)
\(\begin{array}{lllllllllll}= & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & 0.05 & 0.00 & 0.00 & 0.00 & 0.07\end{array}\)
\(\begin{array}{lllllllllll} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}\)
\(\begin{array}{lllllllllll}u & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}\)
\(\begin{array}{lllllllllll}\vee & 0.00 & 0.12 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.12\end{array}\)
\(\begin{array}{llllllllll}* & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00\end{array}\)
\(\begin{array}{lllllllllll}x & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}\)
\(\begin{array}{lllllllllll}y & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02\end{array}\)
\(=\begin{array}{lllllllllll}= & 0.10 & 0.02 & 0.02 & 0.00 & 0.02 & 0.05 & 0.00 & 0.00 & 0.00 & 0.22\end{array}\) \(\begin{array}{lllllllll}1.10 & 2.82 & 6.00 & 1.02 & 0.20 & 0.42 & 0.02 & 0.02 & 0.00\end{array}\)

\section*{Appendix 6:Be. Continued.}
\[
\begin{aligned}
& \text {-10702 p4019 } 20 \text { 080340010d }
\end{aligned}
\]
\[
\begin{aligned}
& \stackrel{N}{\mathrm{~N}}
\end{aligned}
\]
\[
\begin{aligned}
& \text { 6-29 }
\end{aligned}
\]

Appendix 6:Be. Continued.
\[
\begin{aligned}
& \stackrel{\circ}{\circ} \\
& \text { Percentage of grand total. } \\
& \begin{array}{c}
4 \\
0.02
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{llllllllllll}
\therefore & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
\dot{O} & \dot{O} & \dot{0} & \dot{0}
\end{array}
\end{aligned}
\]

Appendix 6:C.
Amalgamated data for tables drawn from observation and fmagination.

This appendix presents the data discussed in Chapters 3 and 4. These data have been amalgamated and classified according to the method given in Table 1. The total subject numbers, average age, standard deviation of age and percentage of the total response, summed over age, are given for each cell. The percentage response for each age group, is then given.

Ap.6:Ca. Subject totals for tables drawn from observation and imagination.

Ap.6:Cc. Standard deviations of age for tables drawn from observation and imagination.

Ap.6:Cd. Percentage of total response, summed over age, for tables drawn from observation and imagination.

Ap.6:Ce. Percentage response for each age group for tables drawn from observation and imagination.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline a & 577 & 204 & 15 & 41 & 29 & 13 & 1 & 23 & 0 & 903 \\
\hline \(b\) & 16 & 27 & 3 & 0 & 0 & 8 & 0 & 0 & 2 & 62 \\
\hline c & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\
\hline d & 1 & 4 & 1 & 15 & 0 & 0 & 0 & 0 & 0 & 21 \\
\hline - & 1 & 45 & 233 & 1 & 1 & 0 & 0 & 0 & 0 & 281 \\
\hline 2 & 0 & 5 & 36 & 0 & 0 & 0 & 0 & 0 & 0 & 41 \\
\hline 8 & 327 & 336 & 11 & 16 & 37 & 57 & 4 & 29 & 3 & 820 \\
\hline 4 & 0 & 28 & 617 & 23 & 5 & 2 & 15 & 0 & 0 & 680 \\
\hline 1 & 0 & 4 & - & 0 & 0 & 0 & 0 & 0 & 0 & 4 \\
\hline J & 1 & 36 & 326 & 3 & 1 & 0 & 0 & 0 & 0 & 367 \\
\hline k & 90 & 253 & 31 & 519 & 7 & 23 & 2 & 5 & 0 & 930 \\
\hline 1 & 0 & 137 & 0 & 1 & 2 & 6 & 0 & 0 & 0 & 146 \\
\hline ■ & 0 & 21 & 13 & 1 & 1 & 0 & 0 & 0 & 0 & 36 \\
\hline n & 33 & 43 & 0 & 0 & 20 & 5 & 0 & 4 & 0 & 105 \\
\hline - & 0 & 40 & 1 & 0 & 30 & 2 & 1 & 0 & 1 & 75 \\
\hline P & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 10 \\
\hline 9 & 1 & 19 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 24 \\
\hline \(r\) & 0 & 7 & 0 & 0 & 36 & 1 & 0 & 0 & 0 & 44 \\
\hline - & 2 & 0 & 2 & 0 & 15 & 15 & 0 & 0 & 0 & 34 \\
\hline \(t\) & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
\hline \(u\) & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 1 & 0 & 2 \\
\hline \(\checkmark\) & 0 & 103 & 0 & 0 & 7 & 1 & 0 & 0 & 0 & 111 \\
\hline \(\cdots\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \(\times\) & 0 & 26 & 0 & 0 & 19 & 0 & 0 & 0 & \(\bigcirc\) & 45 \\
\hline Y & 0 & 15 & 0 & 1 & 4 & 0 & 0 & 0 & 0 & 20 \\
\hline 2 & 7 & 11 & 1 & 0 & 4 & 10 & 0 & 0 & 0 & 33 \\
\hline
\end{tabular}


Appendix 6:Cc. Standard deviations of age for tables drawn from observation and imagination.
Appendix 6:Cd. Percentage of total response, summed over age, for tables drawn from observation and imagination.

aces
carded deviations
\&

 \(\circ\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\rightarrow\)
\(\stackrel{\circ}{\circ} \stackrel{\circ}{\circ} \stackrel{\circ}{\circ}\)

 \begin{tabular}{l}
\(\vdots\) \\
\hline
\end{tabular}
\[
\underset{i}{\circ} \stackrel{8}{\circ}
\]

Appendix 6:Ce. Percentage response for each age group for tables drawn from observation and imagination.
\[
\begin{aligned}
& 8
\end{aligned}
\]

Appendix 6:Ce. Continued.

Percentage of grand total．Age＝7



Percentage of grand total. Age= 11
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \\
\hline - & 0.58 & 0.23 & 0.06 & 0.23 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 1.13 \\
\hline b & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 \\
\hline c & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 \\
\hline d & 0.00 & 0.00 & 0.00 & 0.04 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.04 \\
\hline - & 0.00 & 0.33 & 0.98 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.31 \\
\hline 1 & 0.00 & 0.02 & 0.10 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.13 \\
\hline 8 & 0.27 & 0.21 & 0.06 & 0.10 & 0.00 & 0.06 & 0.00 & 0.02 & 0.00 & 0.73 \\
\hline h & 0.00 & 0.19 & 2.33 & 0.08 & 0.04 & 0.00 & 0.02 & 0.00 & 0.00 & 2.07 \\
\hline 1 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline J & 0.00 & 0.19 & 1.75 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 2.00 \\
\hline 1 & 0.17 & 1.21 & 0.10 & 2.06 & 0.08 & 0.15 & 0.00 & 0.00 & 0.00 & 3.77 \\
\hline 1 & 0.00 & 0.35 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.30 \\
\hline - & 0.00 & 0.04 & 0.06 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.13 \\
\hline n & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.04 & 0.00 & 0.00 & 0.00 & 0.04 \\
\hline 0 & 0.00 & 0.04 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.04 \\
\hline P & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline q & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 \\
\hline \(r\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & . 00 \\
\hline - & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & 0.04 & 0.00 & 0.00 & 0.00 & 0.06 \\
\hline \(t\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 00 \\
\hline \(u\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 00 \\
\hline \(\nabla\) & 0.00 & 0.10 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.10 \\
\hline \(\sim\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \(x\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \(y\) & 0.00 & 0.02 & 0.00 & 0,00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 \\
\hline z & 0.08 & 0.04 & 0.02 & 0.00 & 0.02 & 0.04 & 0.00 & 0.00 & 0.00 & 0.21 \\
\hline & 1.10 & 3.00 & 5.52 & 2.63 & 0.17 & 0.35 & 0.02 & 0.02 & 0.00 & 12.82 \\
\hline
\end{tabular}

Parcentage of grand total. Age= 12
0.02
0.04
1.31
0.13
0.00
2.00
3.77
0.36

04
0.04
0.00
0.02
0.00
0.08
0.00
0.00
0.10
0.00
0.00
0.02
.82
Parcentage of grand total. Age= 12
120000
\(\begin{array}{llllllllll}0 & 0.27 & 0.21 & 0.10 & 0.15 & 0.04 & 0.00 & 0.00 & 0.02 & 0.00 \\ 0.79\end{array}\) \(\begin{array}{llllllllll}0 & 0.02 & 0.02 & 0.02 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00\end{array}\)
\(\begin{array}{lllllllllll}c & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}\)
\(\begin{array}{llllllllll}d & 0.00 & 0.08 & 0.02 & 0.23 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}\) \(\begin{array}{lllllllll}0.00 & 0.13 & 0.05 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}\) \(\begin{array}{lllllllll}0.00 & 0.00 & 0.10 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.23 & 0.05 & 0.00 & 0.02 & 0.02 & 0.02 & 0.00 & 0.00 & 0.00\end{array}\) \(\begin{array}{lllllllll}0.23 & 0.04 & 0.00 & 0.02 & 0.02 & 0.02 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.08 & 2.40 & 0.10 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00\end{array}\) \(\begin{array}{llllllllll}0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}\) \(\begin{array}{llllllllll}0.02 & 0.13 & 1.15 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.29\end{array}\) \(\begin{array}{lllllllllll}0.29 & 0.73 & 0.13 & 2.09 & 0.02 & 0.02 & 0.00 & 0.00 & 0.00 & 3.00\end{array}\) \(\begin{array}{lllllllllll}0.00 & 0.13 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.13\end{array}\) \(\begin{array}{llllllllll}0.00 & 0.02 & 0.06 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.10\end{array}\) \(\begin{array}{lllllllllll}0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}\) \(\begin{array}{llllllllll}0.00 & 0.04 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}\) \(\begin{array}{llllllllll}0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}\) \(\begin{array}{llllllllll}0.00 & 0.08 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}\) \(\begin{array}{lllllllll}0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}\) \(\begin{array}{lllllllll}0.02 & 0.00 & 0.00 & 0.00 & 0.02 & 0.08 & 0.00 & 0.00 & 0.00\end{array}\) \(\begin{array}{lllllllllll}0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}\) \(\begin{array}{llllllllll}u & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}\)
\(\begin{array}{llllllllll}- & 0.00 & 0.06 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}\)
\(\begin{array}{llllllllll}* & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}\)
\(\begin{array}{lllllllllll}\times & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}\)
\(\begin{array}{lllllllllll}\mathbf{y} & 0.00 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02\end{array}\)
\(=\begin{array}{lllllllllll}= & 0.00 & 0.04 & 0.00 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.06\end{array}\)
\(\begin{array}{llllllllll}0.85 & 1.79 & 4.02 & 3.21 & 0.13 & 0.17 & 0.02 & 0.02 & 0.00 & 11.11\end{array}\)

\author{
Appendix 6:Ce. Continued.
}

Percentaga of grand total. age 10
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0.06 & 0.02 & 0.02 & 0.02 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.15 \\
\hline b & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline c & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline d & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline - & 0.00 & 0.00 & 0.13 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.13 \\
\hline 1 & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 \\
\hline 8 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline a & 0.00 & 0.02 & 0.46 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.48 \\
\hline 1 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline J & 0.00 & 0.02 & 0.10 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.21 \\
\hline k & 0.00 & 0.00 & 0.00 & 0.17 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.17 \\
\hline 1 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 \\
\hline \(\ldots\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline a & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \(p\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0. \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline r & 00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \(t\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline 4 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline - & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \(\cdots\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline x & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \(y\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \(z\) & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.0 & . 0 & 0.81 & 0.19 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 1. 17 \\
\hline
\end{tabular}

\title{
Appendix 6: D \\ Venn diagrams and dendragrams for tables drawn from abservation, and the information upon which they are based.
}

This appendix is presented in two sections. It contains an analysis of data by cell type for cells accounting for more than 0.5 percent of all tables drawn from observation as well as an analysis of all the data. This has been done to enable trends shown in the data to be more easily assimilated. Similarly, each dendrogram has been presented twice. A reduced version has been produced to facilitate an overall view of the data. This is followed by a larger, more readable, version

The dendrograms are constructed by comparing the age profiles for each cell (given in appendices d) using a series of Kolmogorov-Smirnov comparisons. On each pass the two cells with the smallest maximum difference (SMD) are identified and the data in these cells are amalgamated. Appendices e give the series of amlagamations and smd's.
1) Breakdown of data by cell type for cells accounting for more than 0.5 percent of all tables drawn from observation. Page : Ap.6:D,1a. Venn diagram of cells accounting for more than 0.5 percent of all tables drawn from observation.

Ap. 6.42
Ap.6:D,1b. Reduced dendrogram of cells accounting for more than 0.5 percent of all tables drawn from observation.

Ap. 6.43
Ap.6:D,1c. Dendrogram of cells accounting for more than 0.5 percent of all tables drawn from observation.

Ap.6:D,1d. Age profiles for cells accounting for more than 0.5 percent of all tables drawn from observation.

Ap.6:D,1e. Smallest maximum differences of age profiles for cells accounting for more than 0.5 percent of all tables drawn from observation.
2) Breakdown of data by cell type for cells of all tables drawn from observation.

Ap.6:D,2a. Venn diagram of cells of all tables drawn from observation.

Ap. 6.47
Ap.6:D,2b. Reduced dendrogram of cells of all tables drawn from observation.

Ap. 6.48
Ap.6:D,2c. Dendrogram of cells of all tables drawn from observation. Ap.6.49 Ap.6:D,2d. Age profiles for cells of all tables drawn from observation. Ap. 6.50

Ap.6:D,2e. Smallest maximum differences of age profiles for cells of all tables drawn from observation.

Ap. 6.52

Ap.6:D,1a. Venn diagram of cells accounting for more than 0.5 percent of all tables drawn from observation.


Ap.6:D,1b. Reduced dendrogram of cells accounting for more than 0.5 percent of all tables drawn from observation.



Ap.6:D,1d. Age profiles for cells accounting for more than 0.5 percent of all tables drawn from observation.

Columanamber
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & & 2 & 4 & 5 & 6 & , & 8 & 9 & & 1 & 12 & 13 \\
\hline 11 & & 19 & 14 & 23 & \(2 b\) & , & 29 & 2 h & j & 2 t & 21 & 20 \\
\hline 25 & & 3.57 & & 21.43 & 10.71 & & 21.13 & & & & & 3.57 \\
\hline 13.75 & 3.13 & 6.25 & & 12.5 & 6.25 & & 21.88 & & & 3.13 & & 3.13 \\
\hline 34.38 & & 25 & & 12.5 & & & 15.63 & & & & & \\
\hline 21,88 & & 15.63 & & 12.5 & & & 37.5 & 3.13 & & 6.25 & & \\
\hline 3,33 & 3.33 & 16.67 & & 6.67 & & & 23.33 & 6.67 & & 16,67 & & \\
\hline 12.5 & & 9.38 & 3.13 & 6.25 & & 3.13 & 21,88 & 6.25 & & & 6.25 & \\
\hline 9.38 & & 3.13 & 9.38 & 6.25 & & 3.13 & 12.5 & 6.25 & 3.13 & 6.25 & 3.13 & \\
\hline 2.72 & & 2.04 & 1.36 & 0.68 & & 1.36 & 1.36 & 2.04 & 1.36 & 11.56 & 0.68 & \\
\hline 0.56 & & 0.56 & 1.12 & 2.25 & 0.56 & & & 0.56 & 1.12 & 10.11 & & \\
\hline & & & 0.63 & 0.63 & & 0.63 & 0.63 & & & 7.55 & & \\
\hline & & & & 1.09 & & & 1.09 & & & 4.34 & & \\
\hline
\end{tabular}
\begin{tabular}{lllllllllllll}
\hline 153.5 & 6.1601 & 82.23 & 15.62 & 82.75 & 17.52 & 8.2501 & 157.23 & 21.9 & 5.6101 & 65.86 & 10.06 & 6.7001 \\
13.955 & 0.5973 & 7.6755 & 1.12 & 7.5227 & 1.5927 & 0.75 & 14.294 & 2.2636 & 0.51 & 5.9873 & 0.91166 & 0.6091 \\
\hline 6.52 & 6.5 & 7.63 & 11.0 & 7.18 & 6.0 & 10.8 & 7.26 & 9.92 & 11.2 & 11.34 & 9.75 & 6.5 \\
2.3 & 2.12 & 2.08 & 1.31 & 3.11 & 3.39 & 1.18 & 2.32 & 1.61 & 0.84 & 1.9 & 0.96 & 0.71 \\
52 & 2 & 27 & 8 & 29 & 5 & 5 & 53 & 13 & 5 & 62 & 1 & 2
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 14 & 16 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & & \\
\hline 2 V & 3 S & 31 & 3 h & 3 j & 3k & 12 & 1 d & 1 h & 4 k & total & Obttll-sa2l) \(=0.58\) \\
\hline & & & & & & & & & & & 3 years old \\
\hline 14.29 & & & & & & & & & & 100 & \\
\hline & & & & & & & & & & 100.02 & 5 \\
\hline 3.13 & & & & 3.13 & & & & & & 93.77 & 5 \\
\hline 3.13 & & & & & & & & & & 100.02 & 7 \\
\hline & 6.67 & & 10 & 3.33 & & & & & 3.33 & 100 & 8 \\
\hline 3.13 & & 9,38 & 6.25 & 12.5 & & & & & & 100.03 & \\
\hline 9.38 & 3.13 & & & 21.88 & & & & & 3.13 & 100.05 & 10 \\
\hline & 1,36 & 0.68 & 5.14 & 5.44 & 1.36 & 3.4 & 1.36 & 1.36 & 19,66 & 95,22 & 11 \\
\hline & 1.12 & & 8.13 & 1.12 & 3.37 & 1.69 & 6.18 & 2.81 & 53.37 & 21.93 & 12 \\
\hline & 1.89 & & & 8.18 & 5.66 & 2.52 & 1.26 & 0.63 & 61.64 & 99.4 & 13 \\
\hline & & & 8.7 & 1.09 & 2.17 & 3.26 & & 1.09 & 76,09 & 98,92 & 14 \\
\hline & & & & & & & & & & & 15 \\
\hline & & & & & & & & & & & adult \\
\hline 33.06 & 14.17 & 10.06 & 46.37 & 56.67 & 12.56 & 10.87 & 8.8001 & 5.8901 & 217.22 & 1082, & totals \\
\hline 3.0055 & 1.2882 & 0.9146 & 1.2155 & 5.1518 & 1.1418 & 0.9882 & 0.8 & 0.5355 & 22.475 & 98,397 & percentage totals \\
\hline \(\pi\) & 11.1 & 9.67 & 12,13 & 11,31 & 12.11 & 12,33 & 12.0 & 12.11 & 12.16 & & cean age \\
\hline 2.11 & 1.91 & 1.15 & 1.48 & 1.81 & 0.71 & 1.18 & 0,53 & 0.93 & 1.08 & & standapd deviation \\
\hline 9 & 10 & 3 & 41 & 35 & 17 & 15 & 15 & 9 & 312 & & subject nuabers \\
\hline
\end{tabular}

Ap.6:D,1e. Smallest maximum differences of age profiles for cells accounting for more than 0.5 percent of all tables drawn from observation.
\begin{tabular}{|c|c|c|}
\hline coluan & 13 added to colunn & 6 with an sad of 7.866558E-02 \\
\hline  & 23 added to colunn & 20 vith an sad of 8,578321E-02 \\
\hline unin & 5 added to colum & 1 vith an sad of 0.110769 \\
\hline coluan & 18 added to colum & 7 vith an sad of 0.1339933 \\
\hline coluan & 20 added to coluen & 19 with an sad of 0,1316802 \\
\hline colunn & 7 added to coluan & 4 with an sad of 0,1398809 \\
\hline colum & 8 added to colum & 3 vith an sad of 0,1560352 \\
\hline colu & 22 added to colunn & 21 vith an sad of 0.1850595 \\
\hline colum & 17 added to coluan & 11 vith an sud of 0.1981987 \\
\hline colusn & 15 added to coluna & 9 vith an sad of 0.2039804 \\
\hline coluan & 14 added to coluan & 1 vith an sud of 0.2357153 \\
\hline colun & 3 added to colum & 1 vith an sad of 0.2281812 \\
\hline coluan & 2 added to columa & 1 with an snd of 0,2110777 \\
\hline colun & 11 added to colunn & 4 vith an sad of 0,3075353 \\
\hline coluan & 9 added to colum & 4 vith an sad of 0,2605191 \\
\hline coluan & 16 added to colun & 12 vith an sad of 0.3111332 \\
\hline coluan & 21 added to colum & 19 vith an sad of 0.3563133 \\
\hline col & 12 added to colunn & 4 vith an sad of 0,387605 \\
\hline col & 10 added to coluin & 1 with an sad of 0.8201857 \\
\hline coluan & 19 added to colunn & 1 with an sad of 0,606898 \\
\hline coluan & 6 added to colum & 1 vith an sad of 0,6406599 \\
\hline colunn & 4 added to colun & 1 vith an sad of 0,6972582 \\
\hline
\end{tabular}

Ap.6:D,2a. Venn diagram of cells of all tables drawn from observation.


Ap.6:D,2b. Reduced dendrogram of cells of all tables drawn from observation.

\begin{abstract}




\end{abstract}


Ap.6:D,2d. Age profiles for cells of all tables drawn from observation.

\begin{tabular}{lllllllllllll}
14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 \\
\hline \(2 k\) & 21 & 21 & 20 & \(2 v\) & 22 & 32 & 30 & 38 & \(3 f\) & 39 & \(3 h\) & \(3 j\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{3.13} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 3,57 \\
& 3.13
\end{aligned}
\]}} & \multicolumn{9}{|l|}{14.29} \\
\hline & & & & & & & & & & & & \\
\hline & & & & 3.13 & & & & & & & & 3.13 \\
\hline 6.25 & & & & 3.13 & & & & & & & & \\
\hline \multirow[t]{2}{*}{16.67} & & & & & & & & 6.67 & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{9,38}} & 10 & 3.33 \\
\hline & & 6.25 & & 3.13 & & & & & & & 6.25 & 12.5 \\
\hline 6.25 & & 3.13 & & 9.38 & & & & 3.13 & & & & 21.88 \\
\hline 11,58 & \multirow[t]{2}{*}{1.36} & \multirow[t]{2}{*}{0,68} & & \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{0.68} & 0.68 & & 1.36 & 0.68 & 0.68 & 5.14 & 5.14 \\
\hline 10.11 & & & & & & 1.12 & 0.56 & 1.12 & & 0.56 & 8.43 & 1.12 \\
\hline 7.55 & & & & & & & & 1.89 & & & 7.55 & 8.18 \\
\hline 4,36 & & & & & & 1.09 & & & & & 8.7 & 1.09 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 65.86 & 1,3601 & 10.06 & 6.7001 & 33.06 & 0.6801 & 2.8901 & 0.5601 & 14.17 & 10.06 & 1,2401 & 16.37 & 56.67 \\
\hline 5,9873 & 0.1236 & 0.9116 & 0.6091 & 3,0055 & 0.0618 & 0,2627 & 0.0509 & 1,2882 & 0.9146 & 0,1127 & 4,2155 & 5,1518 \\
\hline 11.34 & 11.0 & 9.75 & 1.5 & 7.11 & 11.0 & 12.25 & 12.0 & 11.1 & 9.67 & 11.5 & 12.13 & 11,31 \\
\hline 1.9 & 0.0 & 0.96 & 0.71 & 2.71 & 0.0 & 1.26 & 0.0 & 1.91 & 1.15 & 0.71 & 1.18 & 1.81 \\
\hline 62 & ? & 4 & 2 & , & 1 & 1 & 1 & 10 & 3 & 2 & 17 & 35 \\
\hline
\end{tabular}

Appendix 6:D,2d. Continued.


\footnotetext{
Ap.6:D,2e. Smallest maximum differences of age profiles for cells of all tables drawn from observation.
}
```

column ig added to column is with an sad of 0
column 32 added to coluan 15 vith an sad of 0
column 3t added to column 21 vith an sad of 0
column 17 added to coluan 6 vith an sad of 7,81E558E-02
coluan }33\mathrm{ added to coluan 28 vithan sad of 8.578321E-02
coluan 5added to coluna I vith an sad of 0,110769
column 26 added to column 8vith an sad of 0.1139933
coluan }28\mathrm{ added to coluan }27\mathrm{ vith an sad of 0.1348802
column \& added to column 4 vith an sad of 0.1398809
column 29 added to column 21 vith an sad of 0.1515455
coluan }10\mathrm{ added to colum 3 with an sud of 0.1560352
coluan 27 added to coluan 20 vith an sod of 0,1820097
column 31 added to column 21 vith an sad of 0,1850594
column 25 added to column 14 vith an sad of 0.1981987
coluan 22 added to colura 11 vith an sad of 0.2039804
coluan is added to coluan I vith an sad of 0.2357153
coluan 3 added to coluan I vith an sad of 0.2281812
column 2added to column I vith an sad of 0.2110777
column 30 added to coluan 20 vith an sad of 0,3020034
column If added to coluan \& vith an sad of 0.3075353
coluan II added to columa I vith an sad of 0,2605191
coluan 23 added to colum 16 vith an sad of 0.3111332
coluan 21 added to coluan 20 vith an sad of 0,3683973
coluan }16\mathrm{ added to coluan 1 vith an sad of 0.387605
column }13\mathrm{ added to coluan }1\mathrm{ vith an sad of 0.4201857
coluan 24 added to coluan }15\mathrm{ vith an sad of 0,4516129
column 20 added to coluan }7\mathrm{ vith an sad of 0,6631528
coluan }9\mathrm{ added to coluan I vith an sad of 0.1878598
column 12 added to coluna }6\mathrm{ vith an sad of 0.5895954
column }7\mathrm{ added to column 4 vith an sad of 0,6074831
column is added to coluan 4 with an sad of 0.3891955
column }6\mathrm{ added to coluna I vith an sad of 0.6453361
coluan 1 added to column I vith an sad of 0.70260E6

```

\section*{Appendix 6: E}

Venn diagrams and dendrograms for tables drawn from fmagination, and the information upon which they are based.

This appendix is presented in two sections. It contains an analysis of data by cell type for cells accounting for more than 0.5 percent of all tables drawn from imagination as well as an analysis of all the data. This has been done to enable trends shown in the data to be more easily assimilated. Similarly, each dendrogram has been presented twice. A reduced version has been produced to facilitate an overall view of the data. This is followed by a larger, more readable, version

The dendrograms are constructed by comparing the age profiles for each cell (given in appendices d) using a series of Kolmogorov-Smirnov comparisons. On each pass the two cells with the smallest maximum difference (SMD) are identified and the data in these cells are amalgamated. Appendices e give the series of amlagamations and smd's.
1) Breakdown of data by cell type for cells accounting for more than 0.5 percent of all tables drawn from imagination. Page Ap.6:E,1a. Venn diagram of cells accounting for more than 0.5 percent of all tables drawn from imagination. Ap.6.54

Ap.6:E,1b. Reduced dendrogram of cells accounting for more than 0.5 percent of all tables drawn from imagination. Ap. 6.55 Ap.6:E,1c. Dendrogram of cells accounting for more than 0.5 percent of all tables drawn from imagination. Ap. 6.56

Ap.6:E,1d. Age profiles for cells accounting for more than 0.5 percent of all tables drawn from imagination.

Ap. 6.57
Ap.6:E,1e. Smallest maximum differences of age profiles for cells accounting for more than 0.5 percent of all tables drawn from imagination.
2) Breakdown of data by cell type for cells of all tables drawn fromimagination.Page
Ap.6:E,2a. Venn diagram of cells of all tables drawn from
imagination. ..... Ap. 6.60
Ap.6:E,2b. Reduced dendrogram of cells of all tables drawn from
imagination. ..... Ap. 6.61
Ap.6:E,2c. Dendrogram of cells of all tables drawn from imagination. ..... Ap.6.62
Ap.6:E,2d. Age profiles for cells of all tables drawn from
imagination. ..... Ap. 6.63
Ap.6:E,2e. Smallest maximum differences of age profiles for cells of all
tables drawn from imagination. ..... Ap. 6.67

Ap.6:E,1a. Venn diagram of cells accounting for more than 0.5 percent of all tables drawn from imagination.


Ap.6:E,1b. Reduced dendrogram of cells accounting for more than 0.5 percent of all tables drawn from imagination.



Ap.6:E,1d. Age profiles for cells accounting for more than 0.5 percent of all tables drawn from imagination.

Column numbers.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 14 & 15 & 16 & 17 & 18 & 19 & 20 & 2 & 12 & 13 & 24 & 15 & 26 \\
\hline 2 V & \(2 \times\) & 3 e & 31 & 3n & \(3 i\) & 12 & 15 & 52 & 59 & 5 n & 50 & 5 p \\
\hline 2.22 & \multicolumn{2}{|l|}{2.22} & & & & & & 8.89 & 2.22 & 13,33 & 10 & 8.89 \\
\hline 1.82 & & & & & & & & 4,85 & 3.03 & 2.12 & 4,85 & 6.67 \\
\hline 5.77 & 0.32 & & & & & & & 2.56 & 2.24 & 2.56 & 0.32 & 4.19 \\
\hline 5.38 & 0.51 & 0.26 & & 0.26 & 0.26 & & & 0.77 & 1.79 & 0.26 & & 1.28 \\
\hline 4.87 & 0.7 & 0.16 & & 0.46 & 0.7 & & 0.23 & & 1.62 & & 0.23 & 0.23 \\
\hline 2.97 & 2.37 & 1.19 & 0.3 & 1.18 & 2.67 & 0.3 & 0.59 & 0.59 & 1.19 & 0 & 0.2 & 0.3 \\
\hline 1,89 & 2.36 & 3.07 & 2.13 & 4.96 & 5.91 & 0.95 & 3.78 & 0.24 & 1.18 & 0.21 & 0.24 & \\
\hline 0.9 & 0.23 & 11.51 & 1.13 & 16.25 & 11,29 & & 3.84 & 0.23 & & & 0.23 & \\
\hline 1.07 & & 9.62 & 0.85 & 22,22 & 16.24 & 1.28 & 5.34 & & & & & \\
\hline 0.85 & & 10.99 & 1.11 & 28.17 & 11.93 & 1.13 & 9.58 & 0.56 & 0.28 & & & \\
\hline & & 8.85 & 1.15 & 33.85 & 12,31 & 1.15 & 13.85 & & & & & \\
\hline & & 13.64 & 1.52 & 39,39 & 2.09 & 3.54 & 16.67 & & & & & \\
\hline & & 10.71 & 1.79 & 39.29 & 16.07 & 1.79 & 11.29 & & & & & \\
\hline & & 9.45 & 0.79 & 60.63 & 11.81 & & 3.91 & & & & & \\
\hline 21.14 & 8.7101 & 79.75 & 11.07 & 216.96 & 101.28 & 10.11 & 72.11 & 18,69 & 13.55 & 18,81 & 15,87 & 21,86 \\
\hline 1.9814 & 0.6222 & 5,6964 & 0,7907 & 17,64 & 7,2343 & 0.7213 & \$, 1507 & 1,335 & 0.9679 & 1,3436 & & \\
\hline 7.03 & 7.88 & 12,28 & 10.94 & 13.73 & 12.15 & 11.92 & 12,41 & 5.52 & 6.43 & 4.4 & 3.7 & 4.72 \\
\hline 1.98 & 1.53 & 5.15 & 2,38 & 6.02 & 5.02 & 1.98 & 3.03 & 2.54 & 1.92 & 1.5 & 1.9 & 1.16 \\
\hline 91 & 26 & 223 & 33 & 570 & 291 & 26 & 177 & 29 & 37 & 20 & 30 & 36 \\
\hline
\end{tabular}


Ap.6:E,1e. Smallest maximum differences of age profiles for cells accounting for more than 0.5 percent of all tables drawn from imagination.
\begin{tabular}{|c|c|c|}
\hline & & \\
\hline non & 26 added to colunn & 22 vith an sad of 7.29 \\
\hline an & 21 added to coluan & 20 vith an sad of 7,6279EdE-02 \\
\hline colunn & 8 added to colum & 2 vith an sad of 7.917 \\
\hline & 14 added to colum & 1 with an sad of 0.1107591 \\
\hline colua & 11 added to colum & 3 vith an sad of 0.1205912 \\
\hline colun & 29 added to colusa & 2 vith an sad of 0.1216875 \\
\hline coluan & 2 added to colunn & 1 vith an sad of 0.1212957 \\
\hline colunn & 5 added to coluan & 1 vith an sad of 0.1268891 \\
\hline & 17 added to & 16 vith an sad of 0.13 \\
\hline & 10 added to & 7 vith an sad \\
\hline coluan & 15 added to & 13 vith an sad of 0.1581764 \\
\hline colum & 16 added to coluan & 9 vith an sad of 0.1E11167 \\
\hline coluan & 25 added to colunn & 24 with an sad of 0.1633641 \\
\hline colunn & 23 added to coluan & 6 vith an sud of 0.1638376 \\
\hline & 22 added to & 4 vith an sad of 0.16E2454 \\
\hline coluan & 20 added to colua & \(g\) vith an sad of 0.1699065 \\
\hline coluan & 18 added to colun & 9 vith an sad of 0.1541233 \\
\hline coluan & 13 added to colum & 1 vith an sed of 0.1781743 \\
\hline & 7 added to colunn & 3 vith an sad of 0.1930026 \\
\hline & 12 added to columa & 6 with an sad of 0.2104518 \\
\hline coluan & 28 added to coluan & 1 vith an sad of 0,220868 \\
\hline & 27 added to coluan & 24 vith an sad of 0,27058E \\
\hline & 6 added to coluan & 4 vith an sad of 0,3126144 \\
\hline & 3 added to coluan & 1 vith an sad of 0,50EAIE5 \\
\hline & 26 added to coluan & rith an sad of 0,5101682 \\
\hline & 4 added to colum & 1 vith an sad of 0.6100966 \\
\hline coluan & 9 added to coluan & 1 vith an sad of 0,7192217 \\
\hline
\end{tabular}

Ap.6:E,2a. Venn diagram of cells of all tables drawn from imagination.





Ap.6:E,2d. Age proflles for cells of all tables drawn from imagination.

Column numbers.


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 78 & 79 & 80 & 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 \\
\hline 21 & 21 & iv & 2 x & \(2 y\) & 22 & 31 & 3b & 36 & 3 e & 31 & 39 & 3 h \\
\hline \multirow[t]{14}{*}{2.12
0.96} & & 2.22 & 2.22 & & & & & & & & & \\
\hline & & 1.82 & & & & & & & & & & \\
\hline & 0.32 & 5.77 & 0.32 & & & & & & & & & \\
\hline & & 5.38 & 0.51 & 1.28 & & & & & 0.26 & & & 0.26 \\
\hline & & 1.87 & 0.7 & 1.39 & 0.45 & & & 0.46 & 0.46 & & 0.23 & 0.46 \\
\hline & 0.3 & 2.97 & 2.37 & 0.59 & & & & & 1.19 & 0.3 & & 1.18 \\
\hline & & 1.89 & 2.36 & 0.24 & 0.24 & 0.47 & & & 3.07 & 2.13 & 0.47 & 4.96 \\
\hline & & 0.9 & 0.23 & & 0.68 & 0.23 & 0.23 & & 11.51 & 1.13 & 0.23 & 16.25 \\
\hline & & 1.07 & & 0.21 & 0.21 & 0.13 & 0.21 & 0.21 & 9.62 & 0.85 & 0.43 & 22.22 \\
\hline & & 0.85 & & & 0.56 & 0.85 & 0.28 & & 10.99 & 1.11 & 0.56 & 28.17 \\
\hline & & & & & 0.38 & 0.38 & & & 8.85 & 1.15 & & 33.85 \\
\hline & & & & & & 0.51 & & & 13.64 & 1.52 & 0.51 & 39.39 \\
\hline & & & & & & 1.79 & & & 10.71 & 1.79 & & 35.29 \\
\hline & & & & & & 0.79 & & & 9.45 & 0.79 & & 60,63 \\
\hline 3.3801 & 0.6201 & 27.74 & 8.7101 & 3,7101 & 2,5301 & 5.4501 & 0.7201 & 0.6701 & 79.75 & 11.07 & 2.4301 & 246.96 \\
\hline 0.2414 & 0.0413 & 1,9814 & 0.6222 & 0.265 & 0.1807 & 0.3893 & 0.0514 & 0.0479 & 5,6968 & 0.7907 & 0.1736 & 17.61 \\
\hline \multirow[t]{3}{*}{1.13
0.53
7} & 6.5 & 7.03 & 7.88 & 7.2 & 10.1 & 12.18 & 11.0 & 8.33 & 12,28 & 10.81 & 10.56 & 13.73 \\
\hline & 2.12 & 1.99 & 1.53 & 1.37 & 2.02 & 2.23 & 1.0 & 2.31 & 5.15 & 2.38 & 2.07 & 6.02 \\
\hline & 2 & 91 & 26 & 15 & 10 & 11 & 3 & 3 & 223 & 33 & 9 & 570 \\
\hline
\end{tabular}
\begin{tabular}{llllllllllll}
91 & 12 & 93 & 94 & 95 & 96 & 97 & 98 & 6 & 2 & 3 & 4 \\
\hline \(3 j\) & \(3 k\) & 34 & 30 & 39 & 35 & 32 & 42 & \(4 e\) & 49 & \(4 h\) & \(1 j\) \\
\hline
\end{tabular}


\section*{Appendix 6:E,2d. Continued.}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0.2101 & 0.2101 & 18,69 & 3.0001 & 0.3001 & 13.55 & 1.2501 & 0.2401 & 1,6001 & 0.5201 & 0.2801 & 18.81 & 15.87 \\
\hline 0.015 & 0.015 & 1.335 & 0.2143 & 0.0214 & 0.9879 & 0.0893 & 0,0172 & 0.1143 & 0.0372 & 0.02 & 1,3136 & 3,2764 \\
\hline 11.0 & 11.0 & 5.52 & 4.5 & 8.0 & 6.13 & 9.60 & 9.0 & 10.29 & 8.0 & 12.0 & 1.4 & 3.1 \\
\hline 0.0 & 0.0 & 2.54 & 0.81 & 0.0 & 1.92 & 1.52 & 0.0 & 1.7 & 1.11 & 0.0 & 1.5 & 1.9 \\
\hline 1 & 1 & 29 & 6 & 1 & 37 & 5 & 1 & 72 & 2 & 1 & 20 & 30 \\
\hline
\end{tabular}


\section*{Appendix 6:E,2d. Continued.}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 45 & 46 & 47 & 48 & 49 & 50 & 51 & \\
\hline 8 & 8k & \& & 84 & 96 & 99 & 90 & intthlg \\
\hline 1.29 & 0.32 & 20.32 & & 0.32 & 20.32 & 0.61 & \[
\begin{aligned}
& 3 \text { years of age } \\
& 4 \\
& 5
\end{aligned}
\] \\
\hline 2,31 & & 0.51 & & & 0.26 & & 5 \\
\hline 1.86 & & 0.23 & 0.23 & 3 0.23 & & & 7 \\
\hline 1.19 & 0.3 & & & & 0.3 & & 8 \\
\hline 0.24 & 0.24 & & & & & & 9 \\
\hline 0.15 & & & & & & & 10 \\
\hline 0.21 & & & & & & & 11 \\
\hline & & & & & & & 12 \\
\hline & & & & & & & 13 \\
\hline & & & & & & & 14 \\
\hline & & & & & & & 15 \\
\hline & & & & & & & adult \\
\hline 7.5501 & 0.8601 & 1.0601 & 0.2301 & 0.5501 & 0.8801 & 0.6101 & totals \\
\hline 0,5393 & 0.0614 & 0.0757 & 0.0164 & 0.0393 & 0.0629 & 0.0436 & percentage of total \\
\hline 6.97 & 7.2 & 8.0 & 7.0 & 6.0 & 6,33 & 4.0 & \\
\hline 1.55 & 1.18 & 0.82 & 0.0 & 1.41 & 1.53 & 0.0 & standard deviation \\
\hline 29 & 5 & 1 & 1 & 2 & 3 & & nuaber of subjects \\
\hline
\end{tabular}

Ap.6:E,2e. Smallest maximum differences of age profiles for cells of all tables drawn from imagination.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
coluan \\
coluan
\end{tabular} & 91 added to coluan 6 added to coluan & \[
\begin{aligned}
& 1 \text { with an sad of } 0 \\
& 1 \text { with an sad of } 0
\end{aligned}
\] \\
\hline colun & 7 added to coluan & 4 vith an sad of 0 \\
\hline coluan & 97 added to coluan & 4 with an sad of \\
\hline luan & 13 added to coluan & 10 with an sad of \\
\hline luan & 60 added to colvan & 10 vith an sad of 0 \\
\hline cluan & 37 added to columa & 13 vith an sad of 0 \\
\hline luan & 57 added to coluan & 16 vith an sad of 0 \\
\hline luan & 38 added to colum & 19 vith an sad of 0 \\
\hline luan & 48 added to coluan & 19 vith an sad of 0 \\
\hline coluan & 55 added to coluan & 19 vith an sad of 0 \\
\hline coluan & 54 adjed to coluan & 36 vith an sad of 0 \\
\hline colunn & 91 added to coluna & 87 vith an sad of 5,879E82E-02 \\
\hline coluna & 63 added to colvan & 53 vith an sed of 7,072565E-02 \\
\hline colunn & 20 added to coluan & 8 with an sad of 7.295358E-02 \\
\hline cluan & 98 added to colun & 5 with an sed of 7,627964E-02 \\
\hline luan & 67 added to coluan & 56 vith an sad of 7.917112E-02 \\
\hline (u) & 30 added to colvan & 2 vith an sad of 9,06Eg0iE-02 \\
\hline lue & 78 added to coluan & 9 vith in sad of 9.069031E-02 \\
\hline coluan & 90 asded to coluan & 81 vith an sad of 0.1005512 \\
\hline coluan & 95 added to coluan & 58 vith an sad of 0.101456 \\
\hline luan & 66 added to coluan & 41 vith an sad of 0,1107266 \\
\hline U & 80 added to colven & 52 vith an sad of 0.1107591 \\
\hline una & 83 assed to colunn & 71 vith an sad of 0.1143838 \\
\hline an & 76 added to coluan & 19 with an sad of 0.1195219 \\
\hline coluan & 72 added to coluan & 58 with an sad of 0.1195978 \\
\hline coluan & 56 added to coluan & 53 vith an sad of 0,1216017 \\
\hline coluan & 53 added to colunn & 52 vith an sad of 0.1011095 \\
\hline coluan & 65 added to coluan & 14 vith an sad of 0.1278722 \\
\hline coluan & 34 added to coluan & 18 with an sad of 0.1279703 \\
\hline coluan & 52 added to colu & 45 vith an sad of 0.1391379 \\
\hline colum & 88 added to coluan & 87 vith an sad of 0,1393045 \\
\hline coluan & 79 added to colunn & 50 with an sad of 0,1524927 \\
\hline coluan & 81 added to coluan & 75 vith an sad of 0.1581764 \\
\hline col & 25 added to colvan & 12 with an sad of 0.1584999 \\
\hline coluan & 87 added to colun & 70 vith an sad of 0.1611167 \\
\hline col & 17 added to colvan & 14 vith an sed of 0.1619294 \\
\hline col & 71 added to coluan & 14 vith an sad of 0.1268974 \\
\hline coluan & 89 added to coluan & 11 vith an sed of 0.1548399 \\
\hline coluan & 23 added to colunn & 11 vith an sad of 0.1638376 \\
\hline coluan & 61 added to coluna & 11 vith an sad of 0.1358595 \\
\hline coluan & 59 added to coluan & 8 vith an sad of 0.16e2454 \\
\hline coluan & 18 added to colua & 17 vith an sed of 0.1692716 \\
\hline coluan & 70 added to colvan & 5 vith an sad of 0.1699065 \\
\hline coluan & 81 added to coluan & 5 with an sad of 0.1519521 \\
\hline coluan & 49 added to colunn & 41 vith an sad of 0,1714013 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & 17 added to coluan & 11 \\
\hline nan & 75 added to coluan & 45 vith an sid of 0.1783395 \\
\hline & 24 added to coluan 11 & 11 vith an sad of 0,1806118 \\
\hline cluan & 12 added to colunn & 41 vith an sad of 0.1812105 \\
\hline luan & 31 added to coluna & 29 vith an sad of 0.1876594 \\
\hline  & 74 added to colum & 11 vith an sid of 0.181318 \\
\hline clum & 58 added to coluna & 12 with an sad of 0.1978041 \\
\hline una & 14 added to colunn & 2 vith an sad of 0,2019846 \\
\hline colunn & 12 added to coluna & 2 vith an sad of 0.2101681 \\
\hline coluan & 45 added to colunn & 28 vith an snd of 0.2208436 \\
\hline & 35 added to colunn & 27 vith an sid of 0,231848 \\
\hline coluan & 73 added to coluan & 28 with an sidd of 0,2333453 \\
\hline coluna & 93 added to colunn & 3 vith an sad of 0.2342593 \\
\hline coluan & 11 added to colunn & 2 vith an sad of 0,2348722 \\
\hline colum & 16 added & 28 vith an sad of 0.2362044 \\
\hline & 92 added to coluin & 3 vith an sud of 0,2398051 \\
\hline colun & 41 added to coluen & 28 with an sad of 0.240656E \\
\hline coluan & 51 added to colunn & 9 vith an sad of 0.2413794 \\
\hline coluan & 62 added to colunn & 2 vith an sad of 0.2450246 \\
\hline colum & 32 added to coluan & 11 vith an sed of 0.2195625 \\
\hline colum & 50 added to colum & 28 vith an sad of 0,2500213 \\
\hline colum & 96 added to colunn & 38 vith an sad of 0,2515825 \\
\hline coluan & 33 added to & 9 vith an sad of 0.2616544 \\
\hline coluan & 21 added & 17 vith an sad of 0.2726796 \\
\hline & 27 added to colum & 2 vith an sad of 0.2793912 \\
\hline coluen & 82 added to colunn & 28 vith an sad of 0.2800669 \\
\hline colum & 68 added to coluna & 5 vith an snd of 0.2831029 \\
\hline coluan & 22 added to colunn & 11 with an sad of 0.2834317 \\
\hline coluan & 28 added to coluan & 26 with an snd of 0.3031753 \\
\hline colu & 86 added to coluan & 15 vith an sad of 0.3134328 \\
\hline & 40 added to coluna & 15 vith an sed of 0.2890205 \\
\hline coluan & 61 added to colunn & 5 vith an sad of 0.32E1238 \\
\hline colum & 26 added to colunn & 11 vith an sud of 0.3377278 \\
\hline coluan & 69 added to colun & 19 vith an sad of 0.3611111 \\
\hline coluan & 19 added to coluan & 11 with an sad of 0.3610E21 \\
\hline & 5 added to colunn 3 & 3 vith an sad of 0,3730803 \\
\hline & 29 added to colunn & 15 vith an sad of 0.3831999 \\
\hline 60 & 15 added to coluan & 10 vith an sid of 0,3757455 \\
\hline co & 85 added to coluan & 4 vith an sad of 0,3888889 \\
\hline colum & 9 added to colunn 8 & 8 vith an sad of 0,3907814 \\
\hline coluan & 2 added to colum 1 & 1 vith an snd of 0.428115 \\
\hline col & 11 added to colum & 10 vith an sad of 0.1348718 \\
\hline colun & 17 added to coluan & 8 vith an sad of 0.4656723 \\
\hline coluan & 1 added to coluan 1 & 1 vith an sad of 0,468964 \\
\hline coluan & 3 added to colum 1 & 1 vith an sud of 0,4880892 \\
\hline colun & 16 added to colunn 1 & 1 vith an sad of 0.5121447 \\
\hline coluen & 38 added to coluan & \(r\) vith an sud of 0.5162687 \\
\hline coluan & 36 added to colunn & 1 vith an sad of 0.6086247 \\
\hline coluan & 10 added to coluen & 8 vith an sud of 0,6513 \\
\hline coluan & 8 added to column 1 & 1 vith an sad of 0.7443892 \\
\hline coluan & 13 added & 0.5005503 \\
\hline
\end{tabular}

\section*{Appendix 6:F}

Venn diagrams and dendrograms for tables drawn from abservation and inagination, and the information upon which they are based.

This appendix is presented in two sections. It contains an analysis of data by cell type for cells accounting for more than 0.5 percent of all tables drawn from observation and imagination as well as an analysis of all the data. This has been done to enable trends shown in the data to be more easily assimilated. Similarly, each dendrogram has been presented twice. A reduced version has been produced to facilitate an overall view of the data. This is followed by a larger, more readable, version

The dendrograms are constructed by comparing the age profiles for each cell (given in appendices d) using a series of Kolmogorov-Smirnov comparisons. On each pass the two cells with the smallest maximum difference (SMD) are identified and the data in these cells are amalgamated. Appendices e give the series of amlagamations and smd's.
1) Breakdown of data by cell type for cells accounting for more than 0.5 percent of all tables drawn from observation and inagination. Page Ap.6:F,1a. Venn diagram of cells accounting for more than 0.5 percent of all tables drawn from observation and imagination.

Ap. 6.70
Ap.6:F,1b. Reduced dendrogram of cells accounting for more than 0.5 percent of all tables drawn from observation and imagination. Ap. 6.71

Ap.6:F,1c. Dendrogram of cells accounting for more than 0.5 percent of all tables drawn from observation and imagination.

Ap. 6.72
Ap.6:F,1d. Age profiles for cells accounting for more than 0.5 percent of all tables drawn from observation and imagination.

Ap. 6.73
Ap.6:F,1e. Smallest maximum differences of age profiles for cells accounting
```

for more than 0.5 percent of all tables drawn from observation and
imagination.
2) Breakdown of data by cell type for cells of all tables drawn from observation and leagination.

Ap.6:F,2a. Venn diagram of cells of all tables drawn from observation and imagination. Ap. 6.76

Ap.6:F,2b. Reduced dendrogram of cells of all tables drawn from observation and imagination. Ap. 6.77 Ap.6:F,2c. Dendrogram of cells of all tables drawn from observation and imagination. Ap. 6.78

Ap.6:F,2d. Age profiles for cells of all tables drawn from observation and imagination. Ap. 6.79

Ap.6:F,2e. Smallest maximum differences of age profiles for cells of all tables drawn from observation and imagination.

Ap.6:F,1a. Venn diagram of cells accounting for more than 0.5 percent of all tables drawn from observation and imagination.

Ap.6:F,1b. Reduced dendrogram of cells accounting for more than 0.5 percent
of all tables drawn from observation and imagination.

Ap.6:F,1d. Age profiles for cells accounting for more than 0.5 percent of all tables drawn from observation and imagination.

Columa	number	3	4	5	6	7	γ	9	10	11		13
12	19	it	14	28	26	$2 e$	29	2h	21	2	21	2n
1.11	0		1.41									
28.72	6.15		4.62	10.26	2.56		7.69			0.51		4.62
21.85	9.06		3.8	7.02	2.63		13.74			1.16	0.29	5.26
25.48	15.48	1.13	0.24	6.9	0.95	0.48	17.38	0.24	0.24	1,67	0.18	2,38
23.86	18	1.52	0.87	6.07	0.22		17.14	0.65		2.82	3.47	0.87
17.71	11.17	3	0.54	9.54	1.36	0.27	10.08	0.51	0.82	6.27	4.9	0.51
10.15	9.71	3,31	0.22	4.64	0.41	1.99	8.83	0,66	0.66	7.95	9.71	
6.98	5.07	4,86	0.21	3.81		1,58	5.92	1.06	1.18	8,25	5.71	
4.55	2.11	1.3		1.79		2.6	1.63	1.16	1.46	9.43	2.76	
2.4	2.06	2.63		1.88	0.19	1.13	0.38	0.75	1.13	6.57	1.13	
4.01	0.17	0.94		1.18		0.71	0.71		1.18	6.13	984	
3.17	0.35	0.69		0.69		0,35	0.69		0.35	2.78	0.35	
5.36	0			1.79				1.79	1.79		1.79	
1.57	0									1.57		
163.59	79.63	19.68	11.91	55.57	8.3501	9.1101	84.19	7,1501	9.1101	55.41	1024.6	13.67
11.685	\$.6879	1,1057	1,0672	3,9693	0,59E1	0,6507	6,013E	0.5107	0.6507	3.9579	73.185	Q.9764
7.36	7.5	9.71	5.33	7.69	6.15	10.19	7.21	10.07	10.89	10,38	9.34	5.35
2.7	1.96	1.96	1.67	2.19	1.99	1.63	1.93	1,96	1.86	2.65	1.66	1.07
571	327	90	33	204	27	45	336	28	36	253	137	13

27	28	29	30	
50	5 F	55	69	Tobiatotal-stall, 70.5
40	8.89	-6.67		3 years of age
4.1	5.64			
0.29	4,09	1.46	0.88	5
	1.19	0.24	3.33	6
0.22	0.22		2.17	7
0	0.27	0.27	4.09	8
0.220.21		0.22	2,21	9
		0.12		10
		0.16	0.19	11
		0.19	0.19	12
			0.24	13
				14
				15
				adult
45.04	20.3	9.6301	13.6	totals
3.2172	1.45	0.6879	0.9714	percentage of total
3.7	4.72	6.6	7.67	nean age
1.9	1.16	3.15	1.71	standard deviation
30	36	15	57	nunber of subjects

Ap.6:F,1e. Smallest maximum differences of age profiles for cells accounting for more than 0.5 percent of all tables drawn from observation and imagination.

coluan	20 added to coluan 28 added to coluan	17 vith an sid of 6,075954E-02 24 vith an sad of $7,3282335-02$
coluan	8 added to coluan	2 vith an sad of 7,557362E-02
	23 added to co	22 vith an sad of 8,178461E-02
	15 added to	1 vith an sad of 8,8086255-02
coluan	5 added to colun	2 with an sad of 0.100149
U1	2 added to colusn	1 vith an sud of 0.118884E
colusn	18 added to coluna	10 vith an sed of 0.1224176
coluan	11 added to coluna	7 vith an sad of 0.1474148
colut	17 added to colum	10 with an sad of 0,1486547
coluan	29 added to colunn	26 with an snd of 0.1533574
coun	21 added to coluan	4 vith an sad of 0.1715543
coluan	16 added to	14 vith an sad of 0.1762426
colun	25 added to coluan	6 vith an sad of 0.1790323
coluan	27 added to coluna	26 with an sad of 0.1862493
coluan	11 added to colunn	1 vith an sad of 0.187283
coluan	13 added to coluan	6 vith an sad of 0.1913124
uan	22 added to colunn	10 vith an sad of 0.2002916
coluan	7 added to coluan	vith an sad of 0.2021356
-	21 added to colunn	10 with an sad of 0,221068
coluan	9 added to coluan	3 vith an sad of 0.2317036
coluan	30 added to colum	1 vith an sad of 0.2391077
co	19 added to coluna	10 vith an sad of 0,243223
coluan	6 added to coluan	1 vith an sad of 0.3397269
uan	26 added to coluna	4 vith an sad of 0.4014173
un	10 added to coluan	3 vith an sed of 0,860167
coluan	12 added to coluen	3 vith an sad of 0,8171634
cluan	1 added to coluan	1 vith an sad of 0.6191983
un	aded to col	0.837

Ap.6:F,2a. Venn diagram of cells of all tables drawn from observation and imagination.

Ap.6:F,2c. Dendrogram of cells of all tables drawn from observation and

Ap.6:F,2d. Age profiles for cells of all tables drawn from observation and imagination.

Appendix 6:F,2d. Continued.

27	28	24	30	31	32	33	34	35	86	37	88	39
29	27	21	$2 v$	2 x	21	22	32	3b	36	3 d	3 E	31
			2,22	2,22								
	2.05		3.08									
	0.88	0.29	5.26	0.29								0.29
			5.24	0.18	1.19						0.24	
			4.77	0.65	1.3	0.13			0.13		0.13	
0.54		0.27	2.72	2.18	0.54					0	1.63	0.27
0.88			1.99	2.21	0.22	0.22	0.14				2.87	2.13
1.06			1.48	0.21		0.63	0	0.21			10.99	1.06
0.16			0.81		0.16	0.33	0.19	0.16	0.16	0	7.63	0.81
0.75			0.56			0.38	0.94	0.19		0.19	7.69	0.94
0.71						0.24	0.24				6.13	0.71
							0.69				9.38	1.04
							1.79				10.71	1,79
							0.79				9. 15	0.79
4.1001	2.9301	0.5601	28,13	8,2401	3.4101	2.2301	5.3801	0.5601	0.5901	0.1901	67.15	10.13
0.2929	0.2093	0.04	2,0093	0,5886	0.2436	0.1593	0,3843	0,04	0.0122	0.0136	17864	0.7236
10.53	4.13	6,5	7.01	7.88	7.2	10.18	12.20	11.0	8.33	12.0	12.23	10.83
1.68	0.53	2.12	2.05	1.53	1.37	1.98	1.97	1.0	2,31	0.0	5.05	2,32
19	1	2	103	26	15	11	15	,	3	,	233	36

40	41	42	43	44	45	46	47	48	49	50	5	52
39	3 h	3 j	3k	3 A	30	39	35	32	4	$1{ }^{1}$	18	19
											0	0
											0	0
											0	0
	0.21	0.18									0	0
0.22	0.13	0.65				0.22					0	0.22
	1,91	2.72		0.27					0.27		0	0.54
0.44	5.08	6.18	0.44			0.22			0.88		0	0.65
0.21	15.22	11.84	0.12	0.12	0.21	0.21					0.21	0.12
0.19	18,21	13,66	0.81	0.19				0.16	1.79	0.33	0	0.81
0.56	21.58	10.32	1.13	0.56		0.19			1,31	2,06	0	0.19
	23.58	10.61	2,83	0.94			0,24		1.65	0.47	0	0.24
0.35	29.86	6.6	1,39						3.47		0	0
	39.29	16.07							1,79		0	0
	60.63	11.81					0.79				0	0.79
2,2701	216.03	90.94	7.0201	2.6801	0.2101	0.8401	1.0301	0.1601	11.16	2.8601	0.2101	3.8701
0.1622	15,431	6,1957	0.5014	0,1918	0.015	0,06	0.0736	0,011	0,7972	0,2013	0,015	0,2764
10.73	13.61	12.06	12.16	11.46	10.0	9.5	14.5	11.0	12.07	12.0	10.0	11.63
1.9	5.82	4.79	1.39	1.51	0.0	2.08	6.36	0.0	1.72	0.53	0.0	6.69
11	617	326	31	13	.	1			41	15	1	16

Appendix 6:F,2d. Continued.

53	54	55	56	67	Se	59.6	60.6	61	62	63	64	65
16	$1 i$	4	11	11	4	51	50	Se	59	5	51	5 k
						8.89			2.32			
						1.1	2.05		2.56			
						2.31	0.29		2.05			
						0.71	0.21		1.67			
		0.22							1.52			0.22
		0.82				0.54		0.27	1.09	0.54		
		3.53				0.22			1.1		0.22	0.22
		3.81				0.21				0.21		
0.65	0.19	16.1	0.16	0.16	0.16					0.33		0.65
0.94		34.2				0,38			0.19			0.19
0.71		32.78										
0.35		35.07										
		14.29										
		3.91										
2,6501	0.1901	134.76	0.1601	0.1601	0.1601	17.39	2,5801	0,2701	12.1	1.0801	0.2201	1.2801
0.1893	0.035	9.6257	0.0111	0.0114	0.0118	1,2122	0.1813	0.0193	0.8857	0.0772	0.0157	0,0914
12.08	11.0	12.45	11.0	11.6	11.0	5.52	4.5	8.0	6.43	9.60	9.0	10.29
0.95	0.0	1.97	0.0	0.0	0.0	2.51	0.84	0.0	1.92	1.52	0.0	1.7
5	3	519	1	1	1	29	,	1	37	5	1	1

Appendix 6:F,2d. Continued.

[^0]| | 85 added to coluan | 3 |
| :---: | :---: | :---: |
| | 69 added to colun | 4 with an sad |
| uan | 89 added to coluan | 4 vith an sad of |
| coluan | 88 adoed to coluan | 4 vith an sed of |
| coluan | 11 added to colua | 6 vith an sad of |
| colum | 37 added to coluan | 6 vith an sad |
| coluan | 66 added to coluan | 6 vith an sad |
| coluan | 60 added to coluan | 9 vith an sed |
| coluan | 93 added to coluan | 9 vith an sad |
| coluan | 51 added to coluan | 45 vith an sad of |
| ana | 51 added to col | 48 vith an sad of |
| un | 56 added to coluan | 48 vith an sad of |
| uan | 57 added to coluan | 18 vith an sad of |
| coluan | 87 added to coluan | 63 vith an sad of |
| luan | 12 added to coluan | 38 vith an sad of 6,075951E-02 |
| colunn | 80 added to co | 52 vith an sad of 6,616791E-02 |
| coluan | 70 added to col | 58 vith an sed of 7.328233E-02 |
| coluan | 17 added to coluan | 5 with an sad of 7.557362E-02 |
| coluan | 33 added to coluan 2 | 21 vith an sad of 8.173802E-02 |
| luan | 55 added to coluen | 19 vith an sed of 8,178461E-02 |
| unn | 12 added to coluan 2 | 2 vith an sad of 8,256102E-02 |
| co | 30 added to colusn | 1 with an sad of 8,808625E-02 |
| coluan | 59 added to coluan | 28 vith an sad of 9.191497E-02 |
| coluan | 5 added to coluan 2 | 2 vith an sad of 9.519698E-02 |
| coluan | 2 added to coluan 1 | 1 vith an sad of 0,1103619 |
| coluan | 91 added to coluan | 81 vith an sad of 0.1113291 |
| unn | 84 added to coluna | 68 vith an sad of 0.1119006 |
| 隹n | 16 adced to colun | 7 vith an sad of 0.1120064 |
| coluan | 99 added to coluna | 26 vith an sad of 0.1168831 |
| coluan | 81 added to coluna | 16 vith an sad of 0,1171603 |
| coluan | 27 added to coluna | 21 vith an sad of 0.119535 |
| $t 0$ | 39 added to coluan | 20 vith an sad of 0, 1224176 |
| coluan | 64 adoded lo coluan | 15 with an sad of 0.1301512 |
| uan | 21 added to coluan | 15 with an sed of 0.1285393 |
| un | 11 adoed to coluan | 34 vith an sed of 0,1338153 |
| ven | 10 added to colum | 15 vith an sad of 0.1359415 |
| coluan | 38 added to toluan | 20 vith an sed of 0,1486547 |
| dol | 95 added to coluas | 1 vith an sed of 0.1518369 |
| coluan | 71 added to coluan 6 | 57 with an sad of 0,1533574 |
| lunn | 100 added to coluan | 29 vith an sad of 0.1553572 |
| and | 50 adoed to colua | 6 vith an sad of 0.1643356 |
| colum | 97 added to coluan | 98 vith an sad of 0.165061 |
| 析 | $5 t$ added to coluna | 8 vith an sad of 0.1745343 |
| col | 95 added to coluan | 78 vith an sad of 0.1749635 |
| coluan | 31 added to coluna | 25 with an sad of 0.1762426 |
| un | 51 added to coluan | 13 vith an sad of 0.1790323 |
| colum | 73 added to colua | 13 vith an sad of 0.1628149 |
| coluan | 11 added to colua | 13 vith an sad of 0.1757575 |

	1	62 with an
coluan	24 added to coluan	13 vith an sad of 0.1824137
unn	91 added to colu	26 vith an sad of 0.1852399
coluan	68 added to col	67 vith an sad of 0.1872298
	25 added to colua	1 vith an sad of 0.187713
coluan	16 added to columa	7 vith an sad of 0.1925855
colum	62 added to coluna	7 vith an sad of 0.176158
coluan	19 added to coluan	20 vith an sad of 0.200291
coluen	53 added to	43 vith an sad of 0,2011396
	41 added to	13 vith an sad of 0.2003812
coluan	85 added to columa	52 vith an sad of 0,2082591
coluan	78 added to colu	1 vith an sad of 0.2229086
coluan	82 added to col	13 with an sad of 0.2231934
coluan	88 added to coluan	17 vith an sad of 0.2239468
	18 added to colum	15 with an sad of 0.2292476
	29 added to co	1 vith an sad of 0.2343392
	34 added to coluna	20 vith an sad of 0,2388741
coluan	23 added to coluan	7 vith an sad of 0.2396064
coluan	79 added to coluna	7 with an sad of 0.2411605
	90 added to	65 vith an sud of 0.2471264
colum	26 added to colum	1 with an sad of 0.2492033
coluan	15 added to coluan	7 with an sed of 0.2537653
colum	83 added	28 vith an sad of 0.2552934
	101 added to coluna	28 vith an sad of 0,261755
	11 added to colunn	7 vith an sad of 0.2619409
	52 added to colum	7 vith an sad of 0.26E8282
coluan	72 added to coluna	13 with an sad of 0.2691419
colun	32 added to column	19 vith an sad of 0,2697948
coluan	65 added to colunn	36 with an sad of 0,2711864
colun	19 added to coluan	1 with an sad of 0.2970661
	77 added to colum	7 vith an sad of 0.3079769
coluan	76 added to coluan	1 vith an sad of 0.315580E
colun	36 added to colunn	4 vith an sad of 0.3157895
	20 added to coluan	10 vith an sad of 0.3211728
	13 added to coluen	1 with an sad of 0.3230102
	13 added to coluan	10 vith an sad of 0.33919
	48 added to coluan	35 vith an sad of 0,375
	67 added to coluan	8 with an sad of 0.0066336
	35 added to columa	7 with an sad of 0.4287518
	15 added to colunn	7 with an sad of 0.4388579
coluan	92 added to columi	7 vith an sad of 0.1374953
	10 added to coluan	7 vith an sad of 0,6689219
	7 added to col	0.1774697
	22 added to coluan	vith an sed of 0.144825
	4 added to coluan	with an sad of 0.1935782
	28 added to coluan	1 with an sad of 0.6058519
	8 added to coluan	1 vith an sad of 0.6165807
	47 added to coluan	vith an sad of 0,6567785
	9 added to column	1 vith an sad of 0.7187575
	63 added to colum	1 with an sad of 0,8236605
	6 added to coluan 1	1 vith an sad of 0.8298217
	3	1 with an sad of 0.8749169

Appendix 6: G. Analysis of depth cue by projection system.

This appendix has three parts. In the first part the amalgamated data are grouped according to system of projection used on the table top and combination of depth cues used on the table legs, as identified in Table 2. The percentage of total data, summed across age, number of subjects, mean age and standard deviation of age are given for each cell. The second and third parts give progressively shortened versions of this table.

Ap.6:Ga. Form of projection (types 1 to 9) by combinations of depth cue usage as classified in Table 2.

Page Ap.6.86
Ap.6:Gb. Form of projection (types 1 to 9) by use of depth cue.
Ap.6.87
Ap.6:Gc. Form of projection (types 1 to 4) by use of depth cue. Ap.6.88

Ap.6:Ga. Form of projection (types 1 to 9) by combinations of depth cue usage as classified in Table 2.

DESCRIPII		:	fonn of prostciton on tasle top															- Potal
of DEPIK	cue callon		1	12	: 3	:	1		5		6	!	7	:		!	θ	
CLASSIFICAILOK:		-		12	:	:	1	:		!	6	!	γ	:		8	2	
a	1	:		: 1.0	: 0	:		;	1.4	:	0.1	:	0	:		!	0	2.5
	5	:	0	: 47.0	- 1.0	:	0	:	66.0	:	3.0	:	1.0	:	0	:	1.0	: 119,0
H1. 01	MA	:		: 7.1	1. 10.0	:		:	4.26	;	1,33	:	8.0	:		:	1.0	- 3.58
	So	:		: 4.22	: 0	:		1	1.61	;	1,53	:	0	:		:	0	: 3.31
		-		:	-	-		!		,		.		-		-		1
1	1	:		: 0.2	:	:		:	0	:		:		:		;		: 0.9
	\$:	0	: 11.0	: 0	:	0	;	1.0	:	0	:	0	:	0	:	0	: 12,0
K2. 01 auliple	MA			: 6.27	-	;		!	7.0	:		:		:		:		: 6.33
	SO	-		: 1.21	:	:		:	0	:		:		:		:		: 1.33
Legs		.		-	-	:		-		-		-		-		:		1
6	1	:		: 3.0	:	:	0	:	0.6	:	0	:		:		:		3.7
	S	:	0	: 111.0	: 0	:	1.0	.	30.0	-	1.0	.	0	:	0	:	0	: 175.0
H2, 01	MA	:		: 7.21	:	:	12.0	:	8.97	:	9.0	:		:		:		: 7.09
	SO	:		: 1.92	:	:	0	:	1.11	;	0	:		:		:		: 1.36
		-		-	-	-		:		.		-		-		,		- 1.8
0	8	:	0.7	: 0.9	:	:		:	0.1	:	0.1	:		!	0.1	;		: 2.2
	5	:	33.0	: 13.0	: 0	:	0	;	20.0	:	8.0	!	0	:	4.0	!	0	\% 105.0
H3, 01	\% ${ }_{\text {c }}$:	5.33	: 5,35	:	:		:	4.1	:	7.2	1		!	6.0	:		: 5.28
aulliple	SD	:	1,67	: 1.07	:	:		:	1.8	:	3.19	1		1	0.82	;		: 1.6
Legs		-		-	-	-		-		.		-		1		-		-
E	8	:	19.2	: 11.8	: 0.6	:	1.2	:	1.8	:	1.8	:	0.1	:	1.1	!	1.1	: 37.9
	5		222.0	: 867.0	: 31.0	;	\$7.0	:	87.0	:	33.0	:	8.0	:	52.0	:	3.0	:1813.0
H3, 01	na	:	7.13	: 7.33	- 11.8	:	11.95	:	6.02	:	8.57	:	7.1	:	6.11	!	6.2	: 7.35
legs	\$0	:	2.17	: 2.17	: 2.61	:	3.76	:	2,99	:	3.51	:	0.85	:	1.8	:	1,3	12.7
Learesod.		.		-	1	-		.		,		,		,		,		,
8	1	:		: 0.1	: 0.1	:		:		:		:		:		:		: 0.1
	5	:	0	- 4.0	: 9.0	:	0	:	0	:	0	:	0	:	0	:	0	: 7.0
H3, 01	na	:		: 6.5	: 1.33	:		:		:		:		:		:		: 7.29
legs	SO	:		: 0,58	: 2,31	:		:		:		:		:		:		: 1.9
feor biet		:		-	,	,		$\stackrel{1}{2}$,		-		-		-		-
13, 03	1	1		10.1	: 0.8	:		:		:		:		:		:		: 0.8
	$\$$:	0	- 8.0	: 36.0	:	0	:	0	;	0	:	0	:	0	:	0	: 11.0
	na	:		: 1.0	: 10,13	:		:		!		:		1		:		: 10.61
	S0	:		: 1,87	: 2.32	:		:		:		:		:		:		: 2,93
		,		\cdots	-	-		,		1		-		,		,		-
H4, 01	8	:	0.2	14.9	(3.2	1	0.1	:	0.2	:	0.3	:		8		:		: 10.8
	8	1	. 2.0	1233.0	\% 251.0	1	3.0	!	0.0	1	16.0	:	0	8	0	:	1	: 820.0
	1 ma	:	9.14	: 9.65	: 12,11	:	10.67	:	9.98	:	13.19	:		8		:		: 10.96
	50	!	1.74	$: 1.85$: 4.8	:	0.18	:	1.69	1	0.57	:		8		:		: 1.12
		:		,	-	-		-		-		-				-		\bullet
1	3	!		$: 0.1$: 0.7	:	0.2	:	0.2	:		:		:		:		: 41.7
	δ	:	0	121.0	: 11.0	-	1.0	:	1.0	:	0	:	0	:	0	:	0	: 36.0
H4, 02	M	:		- 6.9	: 11.0	,	11.0	:	12.0	:		:		:		:		- 12,20
	50	:		: 2.7	: 1.5	:	0.0	:	0.0	:		:		:		:		: 4.26
		\bigcirc		-	-	-		-		-		$:$		$:$		\cdots		
H4, 03	8	:	1.8	16.7	: 20.3	-	11.5	:	0.9	!	0.3	!	0.1	1	0.1	:		: 11.7
	8	:	22.0	1321.0	: 975.0	:	\$50,0	:	13.0	:	26.0	:	17.0	1	6, 0	1	0	82000.9
	${ }^{\text {n/ }}$:	2.71	810.43	: 13.04	:	12.12	:	9.92	:	10.65	8	9.18	8	7,17	:		: 12,20
	50	:	2.0	: 2.81	: 5,45	:	1.92	:	1.55	:	3.26	:	1.81	:	1.33	:		: 1,26
		-		-	-	.		-		,		:		,		-		-
Total	8		22.0	\% 28.7	: 27.0	;	12.7	:	1.7	:	3.0	:	0.8	:	1.3	:	0.1	:
	5		0S5. 0	:1375.0	: 1287.0		611.0		225.0	$:$	114.0	:	23.0	;	62.0	:	S, 0	: 1789.0
	M ${ }_{\text {c }}$:	7.51	: 8.37	: 12.77	:	12.36	:	5.7	:	9.35	:	8.74	:	6.79	:	\$,83	:
	SO	:	2.53	: 2.69	: 5.25	:	2.16	:	2.45	:	4.61	:	1.51	:	1.6	:	1.47	:
				\cdots	\cdots	:		:		:		:				1		

Ap.6:Gb. Form of projection (types 1 to 9) by use of depth cue.

Ap.6:Gc. Form of projection (types 1 to 4) by use of depth cue.

APPENDICES TO CHAPTER 7.

Preference in representation of tables.
Ap.7:A. Data for Study 7:1. Ap.7. 2
Ap.7:B. Data for Study 7:2. Ap.7. 3
Ap.7:C. Data for Study 7:3. Ap.7. 4
Ap.7:D. Data for Study 7:4. Ap.7. 5

Appendix 7:A. Data for Study 7:1.

	0ata	lor nos	1 IKE	mestion												
A. ${ }^{\text {a }}$	2	1	1	8	6	1	1	g	14	11	12	13	18	15	3tull	11
stisu																
1	0.00	0.00	1.00	0.00	1.60	0.06	1.00	0.09	1.09	1.00	1.c9	0.00	0.00	0.00	0.00	3.06
2	1.00	1.6	1.00	0.00	1.80	0.00	0.00	0.00	1.00	0.00	0.00	1.00	0.01	0.00	0.09	2.00
3	0.00	1.00	4.49	1.04	2.00	4.00	1.09	0.09	1.09	1.00	1.00	1.09	0.00	1.80	1.00	11.00
1	1.00	1.00	1.06	0.89	1.01	0.00	0.00	0.00	1.09	0.00	1.00	0.10	0.00	4.04	0.00	2.01
6	1.00	2.00	1.00	0.80	0.00	1.60	0.08	0.00	1.00	0.00	1.00	1.00	0.00	0.00	0.00	4.00
8	1.00 00	1.00	1.09	1.04	0.00	1.04	0.00	0.00	1.00	1.00	1.00	1.04	0.01	0.00	1.00	2.06
1	3.00	11.00	11.09	1.00	3.00	11.00	8.68	11.60	13.00	21.00	20.09	17.00	23.00	21.00	15.00	212.00
5	1.00	2.08	1.09	1.00	1.00	0.09	0.00	0.00	8.00	4.00	0.00	0.04	0.00	1.01	0.00	6.01
10	1.09	0.09	1.00	0.00	1.00	0.00	0.08	0.00	1.00	0.00	0.00	0.09	1.00	0.00	0.00	0.00
11	1.00 2.00	2.00 2.00	1.09	2.00	0.00	0.60	0.07	0.00	0.00	1.00	1.60	1.08	0.00	0.00	0.00	6.00
12	2.00 0.00	2.08	1.60	2.00	0.00	0.00	0.01	0.00	1.00	1.00	0. 09	0.00	1.00	0.00	0.09	1.00
13	0.00	0.00	1.00	2.60	2.04	2.00	0.09	9.60	0.00	1.00	0.00	0.08	0.01	0.06	0.00	1.00
11	1.00 $\$.00$	0.00	3.00	2.04	1.06	1.60	1.09	3.00	1.00	3.00	6.00	1.09	6.00	3.00	5.00	11.00
15	8.00 00	6.00 1.09	1.00 1.00	12	1	11.00	18.00	12.00	13.00	1.00	2.00	6.46	0.00	1.00	3.00	109.00
16	1,00	1.60	1.00	1.00 1.00	1.60	0	09			1	0.00	00	0.01	0.00	1.00	2.00
tatals	21.00	28.00	18,00	23.00	21.00	19.00	21.09	35,00	23.00	33.00	28.00	21.06	29.00	0.01 27.00	28.00	$\begin{array}{r}7.00 \\ \hline 21.00\end{array}$

	$\begin{aligned} & \text { Ray dala } \\ & \text { ? } \end{aligned}$	for	11	$\begin{aligned} & \text { unt } \\ & 5 \end{aligned}$	ion.	1	1	1	10	11	11	13	11	15	asult	thlat
stiaulus																
1	1.00	0.00	1.00	2.09	0.80	0.00	0.07	1.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00	3.00
2	1.00	2.00	1.69	1.00	1.00	3.00	0.00	0.00	0.09	1.00	1.00	0.00	0.00	0.08	0.00	6.6
1	1.00	1.00	1.00	1.00	1.00	0.00	0.01	0.09	1.00	8.00	1.00	1.00	0.00	0.00	0.00	1.60
	1.00	1.00	3.00	2.00	0.00	0.00	0.60	0.00	1.09	1.00	1.00	1.00	0.00	0.00	0.00	5.00
5	1.00	1.00	1.00	1.00	1.00	1.09	0.00	1.00	0.02	0.00	1.00	1.00	0.09	0.00	0.00	6.00
1	1.00	1.00	1.00	3.04	6.00	2.00	1.00	0.09	1.00	1.00	1.00	0.60	0.00	0.00	1.00	25.08
1	1.00	1.00	8.00	3.00	1.00	6.00	7.00	12.00	11.00	15.94	15.00	12.09	20.00	11.00	15.00	151.00
8	1.00	1.00	1.00	2.00	1.00	0.08	0.00	4.00	1.00	0.00	0.14	1.04	0.00	0.04	1.00	5.00
$)$	1.09	1.00	1.09	0.00	0.00	1.00	1.00	4.00	0.00	0.00	0.00	0.00	1.60	0.60	0.00	2.00
11	2.00	J. ω	2.04	1.04	2.04	3.00	0.00	1.00	0.00	1.0	0.4	1.04	4.04	0.00	0.90	13.01
11	1.00	2.00	1.04	0.0	2.00	0.00	0.00	4.00	1.06	1.e0	1.04	1.09	0.00	0.00	4.89	6.00
12	1.09	8.04	1.00	1.00	P.4	1.00	0.69	0.00	1.00	1.00	0.00	1.00	0.00	0.00	1,00	\$.01
13	2.00	1.00	2.09	0.00	3.00	1.04	1.09	1.69	6.0	13.49	8,00	8.00	1.00	8.00	6.09	11.89
11	1.00	2.00	1.04	9.00	2.04	1.00	12.00	3,00	1,00	11.00	8.00	8.60	8.00	3.00	3.00	82.01
15	8.00	3.60	1.00	2.00	1.00	0.00	0.00	(0.09	0.0	1.90	1.00	0.00	1.00	0.00	1.00	11.00
15	1.00	1.00	0.00	2.00	1.04	1.00	0.60	0.00	1.00	1.00	1.60	0.00	0.00	0.00	0.00	5.01
Sotals	13.00	27,00	28.0	28.09	27.00	23.09	28.60	36.00	88.00	31.00	26.00	26.00	29.09	26.00	21.04	107.00

Appendix 7:B. Data for Study 7:2.

Row data for shaded and non-shaded conditions.

Shaded stimll.

Age-	1	5	1	1	β	9	12	Setile
Stinulus.								
1	3	2	1	1	6	6	5	30
2)	2	1		0	0	0	5
3	3	0	9	0	0	0	0	3
1	2	2	2	0	0	,	0	6
5	3	6	2	3	5	3	1	26
6	2	1	2	0	0	,	0	5
1	0	0	1	1	0	1	0	3
8	2	2	3	5	1	5	\%	21
total	15	15	15	15	15	15	15	105.

hinv-shajeg stinul.

10 _rinlu								
Stiaslus.								
1	1	2	2	9	6	1	1	28
2	1	0	1	0	2	0	1	5
3	3	3	1	0	0	0	0	1
1	2	3	0	0	0	0	0	5
5	2	3	3	3	1	5	1	21
6	1	0	0		1	0	0	2
1	2	2	0	0	0		0	
8	3	2	8	3	5	6	6	33
Sotal	15	15	15	15	15	15	15	105.

Appendix 7:C. Data for Study 7:3.

lay daid for choite of imale vith blaxk ackground

Age	1	5	6	7	1	1	10	11	12	13	14	Total
Stiaulus												
11	1	1	1	0	0	0	0	0	0	1	0	13
218	1	0	0	1	0	0	1	0	1	-	0	3
3h	15	15	13	17	16	21	11	13	52	37	21	261
J)	1	1	7	1	10	5	II	1	0	1	1	80
At	2	1	1	1	3	1	2	1	1	,	2	31
at(adive)	1	1	3	1	3	2	1	1	5	11	10	81
Potals	12	32	32	32	32	32	32	4)	38	52	33	116
Tops 12												
1	5	1	1	0	1	0	1	1	1	1	1	13
2	1	1	1	1	1	0	1	1	1	1	1	3
3	20	21	20	23	26	28	2	13	52	37	21	918
4	6	10	8	1	6	6	2	6	6	15	12	15

Appendix 7:D. Data for Study 7:4.

dav onia rat cmice milst looring at atal racle condifor a) vity silmarus cefore TaELE

44.	1	5	6	1	3	9	14	11	12	11	14	Asull	tolal.
8110.													
1 131)	1	1	1	0	1	-	1	-	0	1	0	1	4
$2(13)$	\cdots	1	1	0	-	1	1	1	1	1	4	1	11
3 (3) $\mathrm{H}^{\text {(}}$)	1	1	2	2	8	2	\leqslant	2	1	\cdots	1	-	14
(14.1	0	0	1	0	-	0	1	-	0	1	-	-	1
(121)	0	0	0	0	-	1	0	\leqslant	0	1	θ	0	0
(1 (h)!	3	6	1	5	1	1	3	2	1	1	2	j	40
1(1,)	0	0	0	0	0	0	1	0	1	1	4	1	1
(121)	0	0	0	0	1	0	0	0	0	1	\bullet	0	1
\% (28)	0	0	1	1	0	0	1	1	1	2	1	2	10
10 (5x)	0	0	0	0	1	-	0	0	1	1	0	1	0
II (2h)	1	θ	0	0	0	0	1	*	1	-	0	0	1
12 (3j1]	1	1	2	2	1	2	1	1	1	1	-	-	13
13 121]	0	0	0	0	0	0	0	0	1	0	0	0	0
11 (1)]	0	0	0	1	0	0	0	1	1	0	0	1	3
15 [9 M$)$	6	3	1	1	1	*	6	2	1	3	3	3	51
16 [4t]	1	1	1	0	1	0	0	4	1	1	5	1	35
11 138)	1	2	3	0	J	0	2	1	4	1	0	0	13
11 [7v)	0	0	0	0	0	0	0	0	1	0	0	1	0
18 (12)	0	0	1	0	1	0	1	0	1	1	0	0	1
20 [Spl	1	0	0	0	-	0	0	-	\bigcirc	1	\bigcirc	-	1

GENOITION BI. VICV IAELE ECFORE SHIMNUS.

192	1	3	6	7	1	8	10	11	12	13	11	Asult	lolal.
Stia,													
1 (31]	0	1	1	1	3	0	0	0	0	1	1	0	1
2 (11)	1	2	2	1	1	2	1	1	1	3	1	2	11
3 [Jji]	3	1	0	1	1	3	3	1	0	1	1	1	16
4 [i])	0	0	0	0	1	0	0	0	\bullet	1	0	0	0
5 (2i)	0	0	0	0	1	0	1	0	0	0	-	0	1
6 (thl)	1	3	6	1	1	2	0	2	6	3	5	6	12
7 (1)]	0	1	0	0	1	0	1	-	1	0	0	-	2
8 (21)	0	0	0	0	1	0	0	θ	-	1	1	0	2
) 171	1	0	0	1	0	0	1	0	1	\dagger	1*	2	1
10 (Sv)	-	1	0	-	\leqslant	0	0	\leqslant	\bigcirc	0	1	0	0
11 (th)	\cdots	-	-	-	-	-	\leqslant	θ	-	-	\checkmark	\cdots	-
12 1711)	2	1	1	1	2	1	4	4	1	0	1	-	23
11 (21)	θ	-	1	-	0	1	1	\bigcirc	\cdots	0	1	0	1
11 (11)	-	-	-	-	-	1	4	1	0	0	1	1	1
15 (3n)	8	8	1	2	3	4	1	3	2	3	1	1	14
If (at)	\bigcirc	-	-	-	-	-	1	2	3	5	5	3	80
17 130)	0	3	1	2	1	1	1	1	1	1	0	0	11
18 \2v!	-	0	\cdots	-	\leqslant	1	0	-	\bullet	\bigcirc	0	\bigcirc	-
13 (1a)	1	-	\bigcirc	-	-	\uparrow	-	\dagger	4	1	1	\leqslant	1
20 (3y)	1	\bigcirc	\leqslant	\cdots	-	0	0	\bigcirc	0	0	\bigcirc		

APPENDICES TO CHAPTER 8. Completion of line drawings of tables.

* Introduction. Page Ap.8. 2Ap.8:A. Data for Study 8.Ap.8. 3Ap.8:B. Statistical tests showing little difference between formsof stimult.Ap.8. 14
Ap.8:C. Amalgamated data giving proportions of response for each agegroup, for each individual stimulus.Ap.8. 17
Ap.B:D. Detailed analyses of proportions of response, with age, ofstimuli in Groups C to I.Ap.8. 81
Ap.8:E. Data amalgamated across each stimulus group, giving proportionsof response, with age for each group.Ap.8. 102Ap.B:F. Detalled analyses of proportions of response, with age,of differences between Groups C to I.Ap.8.111
Ap.8:G. Detailed analyses of proportions of response, with age, of differences between Groups A and B and C to I.

Introduction.

Each subject was asked to respond to 25 stimuli. Table 3, given below, illustrates both the links between the stimuli and the stimuli that the younger subjects responded to (marked w, x, y and z).

TABLE 3. The structure behind the stimuli used in Study 8.

Data for Study 8.

Appendix 8:A contains the raw data discussed in Chapter 8. The responses were classified according to the method set out in Chapter 6. Each subjects responses on each of the stimull are given below, however the data are presented in three parts. Ap.8:Aa and Ap.8:Ab give the data obtained on two different stimulus sheets (Stimulus sheets A and B respectively, discussed in Chapter 8) from the older subjects. Ap.8:Ac gives the data obtained from younger subjects who were presented with one of four different versions of a truncated stimulus sheet Stimuli W, X, Y or 2 .

In each part of this appendix the form of stimulus that the subject responded to is given at the head of the column. If there is a figure directly underneath this, it indicates the form of response that was expected. Extra lines have been added to some of the responses in Stimulus sheets W, X, Y and Z. A single line underneath the response indicates that the subject added a ground line to his or her completion. A square around the response indicates that the subject added a ground plane.

Ap.8:Aa. The raw data obtained on Stimulus sheet A.
Page Ap.8. 4
Ap.8:Ab. The raw data obtained on Stimulus sheet B.
Ap.8. 8
Ap.8:Ac. The raw data obtained on Stimulus sheets W, X, Y and Z.

Stienlus a Conpletion last.

1	-	26	1k	29	at	3 n	3 n	3n	3 n	3n	29	3 n	30	10	at	23	a	3 h	14	3n	3 h	11	12	3h	3h	8k	
2	1	28	3 k	20	1t	3n	3n	3n	3n	3h	20	3 n	Ak	11	4t	go	\%	3 H	1	3n	3n	20	*	3n	3 n	dk	3h
3	1	21	dk	21	At	3n	\%	in	3h	\%	\$0	\$ ${ }^{\text {H }}$	os	11	1	81	dt	\%	11	th	H1	21	d	${ }^{4}$	3 n	d	3n
1		32	$3 t$	20	dt	3 n	3n	3n	3 h	3 h	20	3 n	30	3 h	A	20	4	3 h	21	3 n	H	20	1	3n	3n	*	3n
5	1	16	12	29	At	3n	3n	3 h	3n	3n	22	3 h	4k	3 h	1 l	2 l	dk	3 h	31	3h	3n	20	,	$\begin{aligned} & 3 n \\ & 3 n \end{aligned}$	3 n	dt	3h
6		10	*	29	Ak	3 n	3 n	3 n	3 h	3 n	29	3 n	4k	19	4	29	t	3 n	1	3h	3n	12	4t	3h	ik	1 k	3h
7	-	16	4k	20	Ak	3 n	3n	$3 n$	3n	3 n	20	3 h	Ak	12	dx	20	dk	3n	1	3h	3 h	20	dk	3n	3 h	\%	3h
1		16	At	21	Ak	$3 n$	9n	1k	3n	Ak	21	3 n	$1 k$	2k	A	21	4t	3 n	11	3 h	3 h	28	Ak	9n	31	ck	3h
9	1	17	3k	20	dk	3 n	32	31	3 n	3n	20	3 n	3 k	12	A	20	di	3 h	1	3 n	3h	20	Ak	3n	J1	a	4
10	!	16	3 n	$2 x$	4k	3n	3n	3 n	3n	3n	2x	3 n	3h	3 g	Ak	2 x	4k	3 n	3h	3 h	3 h	2x	Ak	3n	3 n	4	4k 3n
11	-	17	dt	21	4k	3n	3n	3 h	3h	3n	21	3n	3h	3 h	4	28	4k	3 h	3 h	3 n	3 h	21	Ak	3n	18	ct	4
12	!	17	th	29	12	3 n	3 h	3 n	3h	3h	29	3 h	4	dk	4	29	dk	3 h	4k	3 h	3 h	29	dk	3 h	14	at	3 h
13		17	At	29	4k	3 n	3 n	3n	3n	3n	29	3 h	4k	3 h	4	29	ak	3 n	4k	3 h	3 h	29	4t	3 n	3 h	4k	3n
14	!	17	At	20	At	3 n	3n	3n	3h	3 h	20	3 h	dt	3 n	It	20	at	3 n	3h	3n	3 h	20	it	3n	3n	ik	3
15		15	1t	22	4k	3 n	3n	3n	3 h	3 h	21	3 h	dk	3 h	4	21	Ak	3 h	3h	3 h	3 h	in	Ak	3 h	3h	1k	3h
16		15	3n	3 n	ck	3n	3h	3n	3 n	3h	3 h	3 h	dk	3n	4	ck	it	3n	$2 x$	3n	3 h	20	4	3h	3 h	it	3 h
17	-	15	at	21	A	3n	3 n	3 h	3h	3 h	2a	3 h	3h	3n	14	21	dk	3n	3 h	3n	3 h	2	4k	dn	3 h	dt	\%
18	-	15	4k	29	ck	3 h	3n	59	3n	4k	29	3 h	dk	3h	4k	29	dk	3 h	29	3 n	3h	29	ck	3 h	it	$1 k$	
19	1	15	ar	21	Ak	3 n	3 h	3 h	3 h	3 n	29	3 h	1 k	dt	dt	is	Ak	3 h	3h	3n	3 h	18	dx	3n	3n	at	3h
20	1	16	41	20	4k	3n	3n	65	3h	3 h	20	3 n	4k	3 n	1 x	20	st	3 h	4t	3 h	3 h	20	dk	3 h	3 h	4t	1k
21	,	15	in	2 k	4k	4k	3 h	31	3n	3n	20	3h	4t	3 n	ak	2k	dk	3h	3h	3n	3 h	2 n	Ak	3 n	3n	1k	3 n
22	1	15	4k	28	4 4	3 n	3 l	3 n	$3 n$	3 h	21	3 h	3h	2 n	Ah	2 h	11	3h	31	3h	3 h	21	dit	In	3 n	a	3h
23		15	3n	29	4k	3 n	1k	dk	3n	3h	2 h	3n	4k	3 n	4	2 n	3n	3 n	3 h	3 h	3 h	in	Ak	3 n	19	4k	ck
21	f	15	at	20	4k	3n	3 n	12	3n	3h	20	3 n	4k	3 n	ak	20	ak	3h	31	3h	3 h	20	dr	3 h	18	at	3 h
25	1	15	dk	20	ck	3 n	3n	3j	3h	ak	20	3 n	dk	3 n	4k	20	it	3n	3 h	3n	3 n	20	Ak	In	31	Ak	31
26	-	is	4k	28	4t	3 n	3 n	12	3h	4k	21	3 h	Ak	3 n	4k	20	is	3n	3 n	3h	3h	20	dk	3n	3 n	4k	d
27	1	15	at	3 n	a	3n	32	3 n	3n	4k	3h	3h	ak	3 n	at	29	a	3h	31	3 h	3h	3 n	At	3 n	31	4k	3 h
28	1	15	4t	21	4	3 h	31	3 l	3h	4k	21	3 h	at	12	1k	21	it	3 h	3h	3n	3h	21	dt	3n	3 n	12	3 h
29	1	15	4t	22	Ak	$3 n$	3t	3 n	3 n	3h	22	3 h	4t	3 n	a	2 h	4t	3 h	3 n	3 h	3h	21	ck	3n	3 h	4t	3 h
30	1	15	4k	22	4k	3 n	3 n	3 n	3h	3h	2i	3h	dt	3 n	dk	21	14	3 h	4	3n	3n	21	dk	3 n	1 l	ck	3n
31	1	15	A 1	2	4k	3h	3 n	3 h	3n	4k	2 t	3 h	at	31	4	20	4	3h	3h	3n	3 n	20	At	3 n	3 h	4	3n
12	1	15	4k	2k	1k	3 n	31	31	3h	1 t	2t	3n	4t	3 h	di	2k	A	3 n	3n	3h	3n	2k	1k	3n	1 l	ck	31
33	1	16	At	4 k	4	3 h	3 n	3 n	3 n	1 k	2k	3 h	at	3 n	dk	21	4	3 h	31	3	3n	21	dk	\% ${ }^{1}$	3 n	4k	3 n
91	1	11	12	29	4	3n	3 n	31	3n	3h	29	3h	At	3 l	4k	29	A	3 h	3 l	3	3n	29	at	in	je	a	3 n
35	1	14	1	29	1t	3n	3 n	3 n	3n	1t	29	3n	4k	3 n	dt	29	41	3n	3h	3h	3n	29	4t	in	1 l	Ak	in
36	1	11	11	2 k	at	3 n	31	3n	3n	3 h	औ	3 h	4t	3 n	4	$2 j$	a	3 h	3h	3n	3n	21	At	3n	3 n	1	+
37	1	11	at	21	At	3n	3n	3n	3h	3 h	2a	3n	4k	11	4	21	At	3	3n	3n	3 h	28	4k	3 h	3 h	4	3h
38	1	14	4k	2t	4k	3 n	3n	Ak	3n	3	2	\%	3	at	4t	2k	A	3t	in	\%	3h	2k	4k	3 n	4k	11	3 n
39	1	14	$1 k$	2 x	4t	3n	\%	in	3 n	3t	2t	3t	4t	3 l	4	$2 x$	4	3 h	At	3 h	3n	2	4k	3n	dk	1k	3 h
10	1	14	4	$2 t$	4	3	3h	4k	\%	4t	2 t	3	ak	3 n	4.	2k	11	3 h	at	3 h	3n	2k	4k	3 h	4	at	3 n
11		11	\%	2	4t	3n	In	3	3n	4t	$2 t$	3	\%	3n	4t	2t	a	3 h	2	3 h	3	21	1k	3n	3	1t	
12		11	4	29	4t	3n	ge	3 l	3	31	21	31	It	at	4t	21	at	3 h	3	3 h	3	29	4k	\%n	3h	1k	29
13	1	Is	4	21	At	3 n	de	31	3	3h	21	\%	4	11	4	21	At	3 H	3	3 h	\%	21	1 t	in	3	14	\%
11		11	4t	21	4	3 h	11	3 n	3n	3h	id	3h	dk	11	4t	2 n	at	\%n	at	3 h	3h	22	4	In	3 n	1t	dk
15	1	11	4t	21	1t	In	3h	31	3 n	4t	2 t	34	at	3 n	at	2k	At	3 h	20	3 h	3 h	12	14	3 n	3 n	11	
16	-	14	1	2 t	dt	3 n	3n	3 n	$3 n$	3 n	2 h	3 n	3 n	3 n	4	2k	a	3h	3 n	3 n	3 h	3h	ik	3 h	3 h	It	
17		11	dt	21	1t	3 n	In	3n	3n	He	21	3 n	At	3 n	$1 k$	2j	$1 k$	3n	3 h	3 n	3n	21	Ak	3n	4k	4	3 n
18	1	15	at	21	At	3n	3n	31	3 h	3h	22	3 n	${ }^{1}$	3 n	$1 k$	28	4	3 n	12	3 n	3n	21	Ak	3 h	3 h	1 k	3 h
19		14	41	4	Ak	In	3n	6k	3 h	3n	20	3 h	4	3 h	1 l	29	at	3n	3 n	3 n	3h	3 h	4	3n	3 h	tk	3 h
80		11	at	29	ak	In	At	3j	3 n	4.	2 h	3 n	1	4 t	$1 k$	2 h	Ak	3 h	2 h	3 h	3n	2 n	4	3h	4k	dk	3 h
1		14	48	At	dt	3 n	1)	31	3 h	31	21	3 h		31		2k	4		3 l	3 n		2 k	1	3 h	31	4k	

Appendix.8:Aa. Continued.

Stiaulus A Conpletion Tisk,

				2					3		2											2					
2		13	dk	$2 x$	4k	3 h	3h	3 h	3 h	4 L	2 x	3 h	4k	3h	4k	$2 x$	Ak	3 h	$2 x$	3 h	3h	2 x	ck	3 h	3h	Ak	3h
53		13	4k	2 k	4k	3 h	3 h	3 l	3h	3h	2 h	3 h	3 h	3 h	4k	2 l	lk	3 h	12	3h	3n	29	Ak	Jn	3 h	dk	3 h
51		13	4k	2 j	4k	3h	3 h	2 h	3h	4k	2 h	3 h	3h	2k	4k	2 h	1k	3 h	2t	3 h	3 n	2k	dk	3n	3 n		3 h
55		13	4k	21	4k	4k	3h	3 h	3h	3 h	2 x	3 h	dk	3 l	4k	2 k	11	3 h	31	3 h	3 h	2 E	dk	3h	38	dk	je
36		13	4k	2k	4k	3h	3j	31	3 h	3h	2k	3h	1k	2k	dk	2k	dk	3 h	2x	3 h	3 h	2k	1k	3h	3 h		3k
\$7		13	4k	2x	4k	3h	3j	3j	3h	3h	2 h	3 h	4k	31	4k	2 h	at	3 h	2 n	3n	3 h	2 h	d	3 h	an	a	3 h
58		13	ck	29	Ak	3 h	3 j	3j	3h	31	29	3h	4k	31	4k	29	$1 k$	3 h	2	3h	3 h	29	29	3h	31	4	3 h
59		13	Ak	2k	Ak	3h	3h	3j	3h	3h	2k	3h	4k	3 h	1k	2 k	1k	3h	31	3 h	3 h	2 k	4k	3h	3 h	A	3h
60		13	3h	29	4k	2 g	31	31	3h	31	29	3h	3h	31	10	29	29	3 h	1	3 h	3 n	29	19	3 h	31	崖	3 h
61		13	ck	2 h	4k	3h	3 g	3j	3h	3h	kt	3h	4k	31	dk	2 h	$1 k$	3h	3 h	3h	3 h	2k	dk	3 h	31	dk	3 h
62		13	4k	22	4k	3h	3 l	3h	3h	4k	2 d	3n	4k	3 n	1k	29	dk	3 h	3j	3 h	3 h	29	dk	3 n	4k	1	41
63		13	1k	29	1k	3 h	3e	3 l	3h	dk	29	3h	4k	3 l	4k	29	$1 k$	3h	3 h	3 h	3 h	29	dk	3 n	3e	ck	31
61		13	ck	2k	Ak	3h	31	3j	3h	31	2 k	3n	3k	3h	dk	2 k	ck	3 h	2k	3h	3 h	2 k	dk	3h	3h	dk	3 n
65		13	k	2 L	4k	3 h	3 l	3k	3 h	3h	2k	3 h	3k	3h	4k	2k	dk	3 h	3 h	3h	3h	2k	dk	3n	3h	k	3h
66		13	3k	2 k	4k	3n	3h	2 h	3h	3 h	2 h	3h	3k	3h	dk	22	$1 k$	3 h	ck	3h	3h	2 h	Ak	3 h	3h	dk	3 h
67		13	Ak	2k	4k	3 h	3h	31	3h	4	2k	3 h	3h	3h	ck	2 k	ck	3 h	3 h	3h	3h	2k	4k	3 h	3 h	,	3h
68		12	4k	2 h	Ak	4k	3h	3 h	3h	3h	20	3h	3h	3h	4k	2 h	$1 k$	3 h	2 h	3h	3 h	2 h	dk	3n	3 n	1k	3 h
69		12	ck	22	4k	3 h	3 l	4k	3h	3j	21	3h	4k	4k	ak	12	dt	3 h	12	3 h	3 h	21	dk	3n	3e	1k	3 h
10		12	4k	29	Ak	3h	3h	3 n	3h	3 h	20	3 h	3k	3n	dk	20	dk	3 h	20	3 h	3h	20	dk	3h	3h	1k	3h
11		12	dk	2k	Ak	3 h	3h	3 h	3h	3h	2 h	3 h	4k	12	ck	2 x	1 k	3 h	1 L	3 h	3h	$2 x$	dk	3h	31	4t	3h
12		12	1k	22	Ak	3 h	3h	3 h	3h	3 h	2 l	3h	4k	3 h	ck	2 k	t	3h	It	3h	3h	29	dk	3h	3 h	1k	3 h
73		12	dk	22	4k	3 n	3h	3 h	3h	3 n	20	3 h	dk	3h	dk	22	$1 k$	3h	38	3h	3 h	20	dk	3 n	3 n	1k	3
1		12	Ak	2k	4k	3 h	3h	dk	3 n	4k	2k	3 h	4k	3h	ck	2k	dk	3 h	3 h	3 h	3 h	2k	dk	3 h	3 n	dr	3 h
75		12	3 h	2 n	dk	3h	3h	3j	3h	3 n	2 h	3h	3h	$3 j$	4k	2 h	ck	3 h	2 h	3h	3h	2h	dk	3 h	3h	dk	3 h
16	1	12	4k	2 h	dk	3h	3h	31	3h	4	2 h	3h	4k	3 h	4k	2 h	$1 k$	3h	3 h	3 h	3 h	2 h	4k	3 h	3h	ck	3h
77	1	11	4k	2k	4k	3h	3 l	19	3h	4	2t	3h	3k	2 h	dk	2 k	k	3 h	21	3h	3h	2k	ck	3h	3h	4	3 h
78	!	11	ck	29	1k	3h	3 l	5 s	3h	3 h	29	3h	3k	3 h	dk	29	$1 k$	3 h	11	3h	3h	29	1k	3h	3 e	d	S
19	!	11	At	20	4k	3h	3h	50	3h	4	20	3h	4	20	dk	20	$1 k$	3 h	20	3h	3h	20	4k	3 h	4		5
80	!	11	dk	20	1k	3h	3h	4k	3h	4k	20	3h	4k	la	4k	20	dk	3h	20	3h	3h	20	ck	3 h	dk	k	3 h
81	-	11	4k	20	4k	3h	3h	4k	3h	4k	20	3h	4t	3h	4k	2 h	1k	3 h	3h	3h	3h	20	ck	3 h	$1 k$	帾	3 h
82	-	11	Ak	2k	4k	3h	3h	3h	3 h	3h	2k	3h	3k	2k	4k	20	$1 k$	3 h	22	3h	3h	2a	4.	3 h	12	4	3h
83	-	12	Ak	2k	4k	3h	- k	2j	3h	4t	2 k	3 h	dk	2 k	ak	2 k	1 k	3k	2 L	3h	3h	2k	4	3h	4k	d	3 h
84	\cdots	11	4k	3k	4k	3h	3h	4k	3h	41	20	3h	4k	21	4k	2k	14	3 n	2k	3 n	3n	3h	4k	3 h	3 h	,	3 h
5	-	11	ck	20	dk	3h	4k	3n	3n	3k	20	3h	1	20	dk	20	4	3 h	2 t	3h	3h	20	4k	3h	$3 j$	ck	dk
6	d	11	4k	29	dk	3h	3h	dk	3h	3t	29	3h	dk	3h	dk	29	It	3h	20	3h	3h	21	4k	3 h	1	4k	3h
8	-	1	ck	2k	4k	3h	3 c	dk	3n	d	21	3k	3k	,	d	$2 k$	tk	3 h	$2 k$	3k	3k	2 k	$1 k$	3k	,	11	dk
8	-	12	4t	2 h	4k	3h	3e	1k	3n	14	2 h	3k	4	4t	1 k	2 h	1 k	3h	3h	3h	3h	21	-	3h	$1 k$	1	dk
89	-	1	4k	21	4 k	3h	3h	3h	3n	3n	22	3h	3k	3h	dk	22	ct	3 h	4k	3h	3h	2	4x	3h	3 h		3h
90	1	11	4k	2 L	1k	3 h	3 l	3h	3h	4	29	3k	4k	4k	4k	29	it	3 h	3h	3k	3k	29	4k	3n	4k	4k	4.
91	,	1	3k	2x	4k	3h	3n	2x	3h	4	2a	3h	4k	22	4k	22	dt	32	2a	3h	3h	2 l	31	32	32	4	3h
92	-	10	d	21	4k	3n	12	12	3h	4	2a	3h	4k	22	ck	2 k	ct	3 h	a	3h	3k	2 h	4	3h	3h	dk	h
83	,	10	dt	2k	Ak	3n	3k	2a	3h	3h	2 L	3n	4k	dk	ck	2 h	dt	3 h	29	3h	3h	29	At	39	4k	dk	3 h
94	1	10	3t	$2 k$	dk	3h	3k	31	3h	3h	2t	3h	3k	3j	4k	2k	ik	3n	3 j	3h	3h	2k	4k	3n	3j	d	3h
95	1	10	4k	2k	4t	3h	3h	2k	3 h	3h	2k	3 h	3k	3 h	4k	2 h	at	3 h	2k	3h	3n	2 h	Ak	3h	3)	1k	2k
96	*	10	dk	21	4k	3n	4k	21	3 h	4k	21	3 h	4k	12	1k	21	4k	3h	21	3 h	3n	21	4k	3h	4k	1k	3 h
97	1	10	dk	2k	4k	3h	3 h	4k	3 h	3n	2k	3 h	4k	31	1k	2 k	$4 k$	3 h	31	3h	3n	2k	4k	3h	31	1k	3h
98		10	dt	2k	4k	3n	4.	3e	3h	4k	2k	3 h	4k	19	4k	$2 k$	dk	3 h	2 x	3 h	3h	21	dk	3 h	19	At	3 l
99	-	10	4k	2 x	4t	3h	3h	31	3 h	3n	2k	3 h	ck	$2 k$	4k	2k	2 t	3 h	31	3h	3h	2k	dk	3 n	3k	1k	3 h
100	1	10	4k	21	dk	3n	3n	3n	3h	3h	21	3h	4	3h	dk	2 k	ak	3 h	3 h	3 h	3h	21	dk	3h	3h	1k	3 h
1	I	10	1k	2 x	4t	3n	3 h	5h	3 h	3k	2k	3 h	4k	2k	dk	$2 k$	ik	3 h	$2 k$	3 h	3h	2k	4k	3h		dk	2k
02		10	4k	29	dk	3h	3h	31	3 h	11	2 g	3h								3 h		2k	dk	3n			31

Appendix.8:Aa. Continued.

Stlavius A Coapletion Tisk.

Appendix.8:Aa. Continued.

Stiaulus A Coapletion Task,

				2	A						2	3				2	4	3				2	1	3		1	
154		8	4 k	2 k	4k	ak	4k	22	3k	ck	2 t	3k	4k	2k	Ak	2k	4 k	3k	3k	3k	3k	2k	dk	3k	4 k	4	3k
155	1	9	4	21	4k	3 h	ck	3J	3h	3h	21	3 h	8t	2k	4k	22	11	3 h	22	3h	3h	21	dk	3h	3h	dk	3 h
156	1	7	4t	2k	4k	3 h	3h	2k	2k	2k	2k	3k	3k	2 k	dk	2k	2 t	4k	2 t	3 h	3n	2k	dk	3 h	4k	Ak	3k
157	1	7	4k	$2 x$	Ak	Ak	gk	29	3 h	1 k	2 a	3 h	4 k	4k	4k	22	1k	3 h	3 h	3h	3 h	21	1 k	3 n	4k	1 k	h
158	,	13	4k	22	4k	3 h	3 h	50	3h	3h	22	3h	dk	3 l	in	21	ck	3e	20	3n	3n	20	dx	30	d	1 k	0
159	-	39	2a	4	3h	3 h	6 6	3h	3 h	2a	3 h	4k	35	dk	3j	4k	21	dk	3h	3h	3n	21	dk	3h	3h	4k	50
160	-	37	4k	20	12	3 h	3 h	3h	3h	3 h	2 a	3h	4k	12	4k	21	12	3n	12	3h	3 h	21	12	3 h	3n	4k	21
161	1	16	ak	21	Ak	3 h	3h	3h	3n	Ak	21	3h	ak	ck	ck	21	Ak	3 h	3 h	3h	3 n	21	dk	3 h	4k	4k	n
162	1	16	ak	21	4k	3 h	3 h	3 j	3 l	31	21	3 h	3k	11	4k	21	4k	31	21	3 h	3n	21	4k	31	4k	dk	h
163		16	4k	2k	Ak	3h	3h	3h	3 h	4	22	3h	4k	ck	ck	22	ck	3 n	4k	3h	3n	2k	dk	3 h	ck	1k	h
164	1	17	ak	21	1k	3 h	3 h	3 l	3 l	4 k	2 a	3 h	1 k	3 h	Ak	2 k	dk	3 n	3 h	3 h	3 n	22	1k	3 h	3 h	1k	3 h
165		18	ak	20	4k	3h	3 h	3h	3 h	3 h	20	3h	1 k	3 h	4k	20	1k	3 n	3 h	3 h	3 h	20	1 k	3 h	3 n	1k	3 h
166	\cdots	17	4k	21	Ak	3 h	3 h	3h	3h	3 h	2a	3h	4 k	3 l	4k	22	4k	3 n	4k	3 h	3 h	21	dk	3 h	3 n	4k	3h
167	-	17	3k	31	1k	3 h	3h	32	3 l	3 j	29	3h	3k	3 n	4k	29	4k	3 n	3 h	3 h	3 h	3 h	1k	3 h	1k	,	3 n
168		18	Ak	20	1k	3 h	3h	3 h	3 h	3 h	20	3h	4k	3 h	4k	20	4k	3 h	3 h	3 h	3h	20	ak	3 h	3 h	Ak	

Appendix.8:Ab. The raw data obtained on Stimulus sheet B.

Stiaulus B, Coapletion Task.

						1						2		3												
169	1	31	3 l	3h	3h	4k	3h	dk	3 h	3k	3h	20	3h	3h	3h	3 h	3 h	3 h	20	4k	4k	3h	3h	3h	20	3 h
70		33	3h	3h	3h	dk	21	dk	3 h	4t	3h	2i	3h	3n	3h	12	3h	4k	21	4k	ak	3 h	3 h	dk	2\%	3h 3h
171		38	5h	3h	3h	4k	3h	3k	3h	3k	3h	20	3h	3n	3h	3n	3 h	dk	20	4k	at	3 h	,	dk	20	3 h
172		51	1k	4k	3h	1k	20	1k	6 k	4t	3h	2 h	3h	3 n	3 h	3 h	3h	4k	20	1k	tk	3h	3h	1 k	2 k	3h
173		16	3h	3h	3n	4k	29	dk	3 h	4	3h	2 q	3h	3h	3h	3h	3 h	dk	29	-	4k	3h	,	1 k	2 d	3 h
74	1	17	3h	3 h	3h	4k	29	4k	3n	4k	3h	29	3h	3 h	3 n	3n	3 h	4k	29	ck	4k	3h	3h	dk	29	3h 3h
175	-	16	3 l	31	3h	4k	2k	1k	3 e	3k	3 h	2 k	3h	3n	3 h	3 h	3 h	dk	2k	Ak	4k	4k	3 h	3 h	d	3 h
76	-	16	3h	3 h	3h	4k	20	4k	4k	3n	3n	29	3h	3 h	3h	dk	3h	$1 k$	29	dk	4k	3h	3h	dk	20	3h
177	1	16	3h	3h	3h	4k	3h	1k	3n	dk	3n	29	4k	3 n	3h	3n	3 h	1 k	21	4k	4k	3 h	3 h	dk	I2	3 h 3 h
178	1	17	3n	4k	3h	4k	29	4k	3 h	4k	3h	29	dk	3 n	3h	3n	3 h	dk	29	4k	12	3h	3h	$1 k$	29	3h
79	1	17	3h	3 h	3h	4k	1k	1k	3 n	4	3h	3h	3h	3h	3h	3h	3n	4k	29	4k	4k	3h	3h	dk	3h	3h 3h
80	.	17	3h	3h	3 h	4k	20	4k	3h	4k	3h	20	3h	3n	3h	dk	3 h	dk	20	Ak	4k	3 h	3h	dk	20	,
181	-	17	3h	3h	3h	4k	29	4k	3h	dk	3h	29	3n	3 n	3h	3h	3n	dk	29	ak	4k	3 h	3h	1k	29	3h
82	.	15	3h	3h	3h	1k	22	dk	3 h	dt	3h	2a	3 h	3 n	3 h	3 h	3h	ck	21	ck	dk	1 k	3 h	1k	21	3h 3h
83	\cdots	15	3h	3h	3h	1k	28	Ak	22	3h	3n	29	3h	3n	3n	2i	3 h	4k	22	4k	4k	3 l	3 h	dk	21	3 h 3 h
84	-	15	3h	3h	3 h	4k	2 t	4k	3 h	dk	3h	ga	4k	3 h	3n	1k	3 n	ak	22	dk	ak	tk	3h	1k	21	3h 3h
85	1	15	3h	3h	3h	1k	20	dk	3h	1k	3h	20	3 h	3 h	3 h	3h	3 h	4k	20	4k	4k	3h	3 h	Ik	20	3h 3h
85	1	15	3h	3h	3h	4k	22	dk	3 h	3 h	3h	2 z	3h	3 h	3n	2 a	3n	a	21	4	4k	3h	3h	ck	22	3 h 3 h
87	1	15	4k	3n	3h	4k	29	4k	3n	3h	3h	20	3h	3 h	3 h	20	3h	4k	20	4k	ck	3 n	3 h	1k	20	3 h 3 h
88	1	15	28	3h	3n	4k	22	4k	20	4k	3h	20	,	39	3 h	3 n	3 h	Ak	20	4k	4k	ik	3 h	dk	20	3 h 3 h
89		15	31	3h	3h	4k	2k	4k	31	3k	3h	2k	3h	3 h	3 h	2k	3 h	ik	29	1k	ak	91	3 h	31	2 k	3h 3n
190		15	31	3h	3h	4k	20	4k	3)	dk	3h	20	3 h	3 h	3 h	3h	3 h	dk	20	dx	dk	4k	3 h	4k	20	3 h 31
91	-	15	2k	2a	3h	dk	2k	4k	7n	3k	3h	2 k	3 h	3h	3h	2k	3 n	1 k	2k	dk	1 k	dk	3 h	4k	2 x	3 n 3n
192	.	15	5k	3h	3h	4k	28	dk	3 h	ck	3 h	20	3 h	3h	3h	3h	3h	dk	29	dk	1 k	3 h	3 n	4k	29	3 h 3 n
193	,	15	3h	3)	3h	4k	3 h	4	3 h	3n	3n	3 h	dk	3h	3h	3h	3 h	$1 k$	29	dk	$1 k$	3h	3h	4k	3 h	3 n 3 h
198	,	15	3h	3n	3h	4k	3 n	1 k	3 h	4k	3h	3h	3h	3n	3h	3 h	3 h	dk	3 n	dk	dk	14	3 h	dk	3 h	3 h 3 h
95	1	15	3h	3h	3h	4k	21	dk	3 h	dt	3h	2a	3 h	3h	3 h	3h	3 h	dk	21	ak	1 k	3 h	3 h	dk	21	3n 3h
96		15	3n	3h	3h	4k	2k	1k	2k	4k	3b	2 k	3 h	3h	3h	$2 k$	3 h	$1 k$	$2 k$	dk	dk	dx	3 n	4k	2 k	3 h 3 h
97	1	15	3n	3h	3h	1k	2k	dk	3h	dk	3h	2 k	3 h	3h	3 h	3h	3h	lk	2k	dt	1 k	3h	3 h	4k	2 x	in dx
98		15	31	3h	3h	dk	2k	dk	3h	dk	3h	2k	ck	3 h	3h	3h	3h	12	2 k	ak	1k	3n	3 h	4k	$2 k$	3n
99		14	3 l	3h	3h	4k	22	相	3 h	1k	3h	2a	4k	3h	3h	ga	3h	$1 k$	20	dk	dx	4k	3 h	4k	4	3h 3h
200		11	3n	3h	3 h	4k	29	1k	3h	4k	3h	3h	3h	3h	3 h	4k	3 h	$1 k$	29	dk	$1 k$	3 h	3 h	dk	29	3 h 3n
		14	3n	3n	3 n	4k	29	4k	39	dt	3h	29	dk	3 g	3n	29	3 n	Ak	29	dx	Ak	39	3 h	4k	29	3n 3g
202		14	3e	3h	3 h	4k	2 e	dk	3n	4k	3h	2 l	ck	3 h	3n	3e	3 h	$1 k$	1	dt	1 k	3 l	3 n	*	2	3 h 3 h
203		14	3 h	3n	3 h	dk	21	1k	31	3h	3h	29	3 h	3h	3h	2 g	3h	dk	21	dk	lk	3e	3 h	ck	3 l	3h 3h
204		14	3 l	3h	3h	1k	22	1k	12	4t	3n	2 a	31	3 h	3h	$2 k$	3 j	1 k	22	1	$1 k$	3 h	3 h	$1 k$	22	3 h lk
05		14	3 h	3n	3h	Ak	2k	4k	3 h	dk	3 h	2 l	3n	3 n	3 h	3h	3 n	dk	$2 j$	12	ck	3 h	3h	ck	23	3h lk
206		14	31	3h	3h	1k	2k	4k	3h	4k	3h	2k	4	3 n	3n	3h	3h	$1 k$	$2 k$	4k	14	3 h	3 h	4k	2 k	3 h 3 h
07	1	15	$1 k$	3h	3h	dk	2 x	4k	3h	3h	3 h	$2 k$	3 h	3n	3 h	3h	3 h	dk	2 k	dk	1	,	3 h	dk	$2 k$	3 h at
208		14	3h	3h	3	4k	2a	4k	3 l	4t	3h	2 a	4k	3h	3h	4k	3h	$1 k$	22	4	4	3 c	3 h	ck	22	3 h lk
209	1	11	3 l	3e	3 h	4k	21	4k	3 l	dt	3 n	29	3h	3h	3h	3 c	3 h	dk	2 a	dk	1	3 l	,	ck	29	3 h lk
210	1	14	3h	3h	3n	4k	3n	1k	3 h	3h	3h	2 x	1t	3 h	3h	dk	3h	4k	2x	$1 k$	$1 k$	dk	3 h	ck	2 x	3h 3h
211	1	14	3n	3n	3 h	4k	21	dk	it	4k	3h	2a	3h	3 h	3 h	\&	3 h	1k	28	$1 k$	$1 k$	3 h	3 h	dk	22	3 h -k
212	-	11	Ik	3	3n	4k	2 r	4k	1	3h	3h	2 V	Ak	3h	3 h	3h	3h	$1 k$	2	12	dk	,	3 h		$2 v$	3 h 3 h
13	1	11	3h	3 l	3n	4k	21	4k	1k	dt	3h	2 a	ck	3 h	3 h	2a	3 h	$1 k$	21	$1 k$	at	ck	3 h	dk	29	3 h 3 h
214	1	11	3 n	31	3n	4k	38	4k	3 l	dt	3h	38	3 n	3 h	3 h	3 c	3 h	at	38	14	4	4k	3 h	dk	3 c	3h 3h
215	1	14	3n	औ	3 n	dk	41	dk	Ig	dk	3	2 k	3 h	3h	3h	3h	3 h	$1 k$	2 h	14	4	3 h	3 h	1k	2 h	3 h 3 h
216	1	15	3h	3h	3n	4k	22	dk	3 h	3	3h	2a	3 h	3n	3 h	3 h	3 h	dk	22	14	12	3 h	3 h	1k	22	3h 3h
217	\bullet	23	38	3h	3 h	4k	21	1k	3n	3t	3h	21	3 h	3h	3 h	3h	3 h	30	20	12	$1 k$	31	3 h	1k	20	3 h 3 l
18	1	13	21	3t 3	3 h	4k	21	4x	21	3k	3h	2J	3 h	3 h	3h	3 h	3h	Ak	2 l	4	4	3 h	3 h	$1 k$	$2 j$	3h

Appendix.8:Ab. Continued.

Stiaulus E, Coapletion fast,

		ceon						${ }_{1}$				2					3										
219		13	Sg	3n	3n	14	29	4	31	ak	3h	29	3	\%	\%	29	3h	14	29	4	4t	31	3	4k	29	3 h	3n
220		13	3n	3h	3n	4t	2 t	4t	3 n	3k	3h	2 t	3h	3h	3n	31	3n	dt	$2 t$	12	4t	an	3h	dk	21	3h	3 h
221		13	3h	3n	3	dt	21	dx	3n	3 t	3 h	28	3h	3h	3h	20	3 h	1k	21	4	1k	31	3 h	12	21	3h	3 h
232		13	3n	औ	3	4k	21	4k	3 n	3n	3 h	21	3	3 h	3 h	3 h	3h	dt	2	14	4k	3n	3h	dk	21	3 h	3
223		13	3n	3 h	औ	4k	2k	At	14	3 n	3n	21	3 h	3 h	3 h	3 n	3h	dt	21	At	4	3n	3 h	Ak	21	3 h	3 h
224		13	6s	3 n	3t	dk	11	ak	3n	4	3 h	3 h	4	3 h	3 h	$3 n$	3 n	d	29	ck	at	31	3 h	1 k	3 h	3 h	3 h
225		13	3n	3h	3h	dt	2 L	ak	18	4	3h	29	3 n	3 n	3n	ck	3n	dk	29	4	4	$4 k$	3 h	ck	29	3 h	3 h
226		13	3n	3h	3n	4k	29	3 n	3 l	3 h	3n	21	3n	3n	3 n	3 l	3 n	dx	22	At	at	3 c	3 h	dk	2 k	3 n	3 h
227		13	4k	3 h	3n	4	2 l	ck	3n	$3 n$	3 n	21	3n	3 h	$3 n$	3 h	$3 n$	4k	21	4	Ak	3n	3h	ck	2k	3 n	,
228		13	2J	31	3n	dt	21	dk	21	3 n	3h	21	31	3h	3 n	2 j	3h	1k	21	4	4	31	3 h	Ak	21	3 h	3 n
229		13	31	3 h	3h	dt	2 e	ak	10	4	$3 n$	21	4 c	3 n	3 n	21	3 h	dk	21	4k	4k	4k	3n	dk	2 l	3 h	3 h
230		13	31	3n	3n	At	2k	ak	Je	3 h	3n	2k	3 n	3n	3n	3 l	3 h	12	21	4k	4k	3 c	3n	1k	21	3 h	3 h
231		13	31	3 h	3h	At	21	Ak	3e	3 n	3 h	29	31	3h	3 n	31	3 h	at	29	4	a	3 l	3 h	dk	29	3n	3 h
232		11	3)	3 h	3n	1k	2 n	4k	3n	3n	3 n	2 h	3 k	3h	3 n	3 h	3n	4k	2 n	ck	4	3n	3 h	4k	2 h	3 n	3 h
233		12	2 h	14	3n	4k	21	ak	g	4 l	3 h	22	3n	3h	3h	2s	3n	dk	$2 x$	dk	4t	4k	3 h	4	21	3h	ck
234		12	3n	3 h	3 h	ak	29	1k	3n	3 n	3h	29	3 h	3 h	3 n	3 h	3n	dt	29	12	ck	3h	3h	1 k	29	3n	dk
235		13	3h	3h	3 n	At	21	4 k	3 h	3k	3 h	20	3n	3n	3 h	2k	3 n	1t	2 t	Ak	ak	\&	3 h	dk		3 h	gh
236		12	3h	3h	3n	41	29	ar	31	4	3n	29	ck	3 n	3n	3n	3n	ak	29	4k	ak	4k	3 h	1 t	29	3 h	3 h
231		12	2h	3h	3h	4	2 x	4	91	3 h	3 n	2 n	31	3h	3 n	3j	3n	dk	2 h	4k	4k	31	3 h	4k	2 h	3n	3 n
238		12	3h	3n	3n	A	2 x	ak	3 n	3k	3 n	2 x	dk	3n	3 n	3n	3 n	at	2 n	1k	4k	1 k	3 h	dt	2x	3n	3 h
239		12	31	3 n	3n	1k	2 k	18	3n	3k	3 t	29	3h	3h	3k	29	$3 n$	at	29	dk	4	3n	3n	It	29	In	31
210		12	3n	31	3n	1k	2 t	4k	4	3k	3 n	2 h	3 h	3h	3 n	$2 k$	3 n	dk	2 h	ck	4k	31	3n	1k	29	3k	3 h
211		12	3 n	3 n	3 n	4	21	4k	3n	3k	$3 n$	28	3k	3h	3n	21	3 n	4t	2 h	ck	4k	9k	3n	1k	2 h	3 n	3 h
212		12	29	34	3n	4t	2 n	4k	3 h	3k	3 h	2k	3k	3 n	3 n	2 n	3h	1 k	28	ak	4k	3h	3 h	dk	2 h	3 h	3 h
213		12	3 l	3 l	3n	4k	21	at	3 l	3t	3h	$2 k$	3 h	3h	3 n	9n	3n	ak	2 t	1k	ak	38	3h	4k	2 t	3h	3 h
241		12	3n	3n	3 h	4	$2 k$	4k	4k	4	3h	29	3h	3n	3n	3h	3n	4k	21	4k	ct	4k	3h	1k	21	3h	dk
215		12	It	3k	3h	dx	$2 x$	3k	2 y	3k	3h	2 x	3n	3h	3h	3n	3n	4 x	$2 x$	it	at	31	3 h	3h	$2 x$	3h	31
216		12	3h	3n	3n	1k	20	4k	3 h	3k	3h	20	3h	3h	3n	3h	3 h	4	20	Ak	4k	3h	3 h	dt	20	3h	3h
217		12	9h	3h	3n	14	21	ck	St	3k	3n	21	3n	In	3n	3 h	3 n	dk	21	4	4k	3n	3h	1 l	21	3n	3 h
218		12	3n	3 l	3h	4	20	Ak	36	3 t	3h	20	3h	3h	3 h	3e	3n	3n	20	Ak	ck	38	3n	4k	20	3n	31
219		12	3n	3h	3 h	At	2 n	Ak	36	4 A	3 h	2k	3h	3n	In	3 h	3 h	Ak	2n	4	ak	$3 j$	3h	12	2 x	3n	3 h
250		12	29	3h	3n	4k	2 h	dk	3 n	14	3n	20	Ak	3 n	$3 n$	20	3 n	11	20	4k	ak	3h	3 n	4t	20	3 h	3 h
251		12	3 l	3n	3n	4t	$2 x$	4t	34	ck	3h	2 x	3n	3n	3 n	ge	3h	4t	2 x	ct	dk	3 h	3 h	1 l	2x	3h	3 h
252		12	3n	3h	3 n	At	29	4k	29	3k	3t	29	3n	3 h	3 h	29	3 h	14	29	dk	ak	jn	3h	1k	29	3h	3 h
253	-	11	3h	3h	3 l	4t	21	dt	3 n	3t	3t	2 l	3n	3 h	3n	29	3 n	dk	28	4k	ak	3n	3 h	4k	21	3 n	3 h
251		11	31	3n	3n	4k	20	dk	11	3k	3h	20	in	3n	3n	20	3h	dk	21	at	at	9k	3 h	4k	20	3 h	3 h
255	-	11	3 n	引	3	4t	28	ck	3 n	3t	3h	2g	3n	\%	In	Ak	3h	dk	29	at	at	A	3n	4t	28	3h	3h
256		11	3h	Se	\%	4t	29	4k	3 t	3t	3t	20	dk	gh	3n	30	3h	1t	20	at	At	dt	\%	dt	20	3h	3n
257		11	11	3e	3h	4	2 h	4	12	ct	In	22	1t	औ	3 h	28	3	at	21	4k	4k	38	3	4t	21	3h	3
258		11	3h	3 l	3h	4k	21	4k	36	at	It	21	d	in	Jt	3 l	th	at	21	at	1t	4t	\%	at	21	3h	31
259	-	11	3h	31	3t	4	29	4k	34	3	\%	29	3n	3	3 n	30	3	4k	20	4t	at	38	\%	4t	29	3 h	3h
260		12	dt	1t	3h	4t	2	Ak	3)	4	In	$\underline{ }$	4	In	3	dk	3n	12	2	4	a	41	m	4t	$2 t$	3h	3n
261		11	2h	\%	3n	12	2 n	4 t	2	3	in	2 n	\%	In	3	\% 7	3)	4	2π	4t	At	1j	\%	14	2h	In	3h
262		11	3n	th	3h	4t	2	4k	3	4	3	20	31	H	3 n	2 t	3n	4k	21	4	4	3 h	2 h	it	$2 k$	3n	4
263		11	29	11	3n	42	29	4t	2 n	3 n	3	2 n	3	2 m	3h	2 h	3 h	dt	29	4k	at	49	2t	4t	20	\%	3
268		11	3h	3n	3n	4t	29	dk	31	4t	3	2 h	14	3	औ	2 n	\%	1t	2	4k	4	4	3h	at	2 h	3 h	3n
265	,	11	29	3	3h	4t	21	4k	11	4t	\%	21	31	3n	3n	31	3h	At	23	4t	at	if	3 h	it	2 h	3h	4t
266		11	3n	3n	3h	ak	2 n	4t	\%	3t	औ	2 l	\%	3 h	3 h	28	3 h	4t	20	1k	at	is	It	at	21	3	3
267		11	3 l	38	3n	4k	20	4k	12	4	औ	2 h	\%	3k	3n	20	3 n	12	21	ak	at	3h	3 h	it	22	3h	3h
268		11	3 n	3n	3 n	4k	20	4k	3 n	3k	3n	20	3 h	3h	3h	3 h	3h	$1 k$	20	4k	At	3 h	3 n	4	20	3h	3 n
269	-	11	4k	3 n	3 n	18	2k	Ak	31	3 t		2 t		3 h													dk

Appendix.8:Ab. Continued.

Stiaulus 8 , Coaplation iask.

	cor	10				1						2															
270	\bullet	10	4t	4k	3n	4k	29	dk	4k	1t	3 h	2k	d	3h	3h	4k	31	4k	29	4k	4k	ak	3h	dk	29	3h	ak
		10	3n	3h	3k	4k	2k	Ak	dk	3k	3k	2k	3n	3h	3 h	3n	3 k	4k	2 k	4k	ak	4k	3 h	dk	d	3 h	,
272		10	29	3h	3h	1k	2 x	Ak	At	4k	3 h	29	4k	39	3 h	1k	3 h	Ak	29	4k	ak	3h	3h	dk	29	3 h	3 h
273		10	4t	3h	3h	dk	2k	4k	1k	4k	3 h	2 k	3h	$3 n$	3 h	2k	3 h	A	2 k	4k	4k	3n	,	k	d	3 h	2 h
274		10	29	4k	3h	4k	29	3k	29	3k	3k	2 g	in	3 h	3k	29	3 s	29	29	1k	4k	Ak	3h	dk	29	3 h	29
275	-	10	29	3h	3h	19	29	4k	2 g	1k	3n	2 g	3 k	3h	3 h	29	3j	39	20	ak	ck	3)	3)	$1 k$	2 h	3 h	3 h
276	-	10	60	3h	3 h	4k	3n	dk	3 h	Ak	3 h	3 h	ak	3 l	3h	3 n	3 h	,	3h	4k	4k	3 h	3 h	dk	20	3 h	3 h
271		10	3n	4k	3k	4k	4k	4k	3 h	ak	3 h	2k	3 h	3 h	3 h	8k	3h	4k	2k	4k	4k	3h	3 h	dk	2 k	3 h	3 h
278	,	10	31	31	3h	4k	2k	dk	31	3k	3 h	2k	3j	3j	3h	2k	3j	4k	2k	4k	4k	3J	31	$1 k$	29	3 h	3 h
279		10	2k	dk	3n	4 k	2k	ak	4k	4k	3 h	2k	4k	3 h	3h	dk	$3 i$	ak	2 k	ck	dk	3 h	31	$1 k$	2k	3h	3 h
280		10	31	4x	3 h	4k	2k	ak	3n	ak	3n	21	1k	31	3k	dk	31	4 g	29	ck	ak	19	3	19	21	3k	3 h
		10	2k	4k	ak	4k	2k	1k	2k	4k	3 x	2 k	dk	$3 k$	3h	2 k	3k	4k	2k	4k	ak	3 k	3 l	lk	2 k	3k	3 h
882		10	2k	4k	3k	4k	2 k	4k	2 k	9k	3 h	20	9k	3k	3k	20	3k	4k	2k	4k	dk	dk	3k	dk	2k	3h	3 h
283		10	2k	3h	3n	4k	2k	k	2k	3k	3 h	d	3h	3h	3 h	2k	3 h	48	2k	4k	dk	3h	3 h	dk	2k	3h	3 h
284		10	4	12	3k	4	21	ck	4	4k	3k	2a	3k	3h	3h	12	3 h	4	22	4k	ak	41	3 l	1	21	3k	3 h
285		10	3 n	3h	3h	3 h	3h	4k	3h	3k	3h	3h	3 h	3h	3h	3h	3h	th	2h	4k	4k	An	3 h	th	2 h	3h	3 h
286		9	2k	4k	4k	4k	2k	2k	2k	4k	3 h	2k	2k	3k	3 k	2k	3k	4k	2k	4k	at	$3 k$	3k	dk	2k	3k	3k
287		g	4k	3h	3h	1k	3h	4k	3h	4	3n	29	4k	3h	3h	3 n	3h	3h	2 q	4k	4k	3 l	3 h	3 h	29	3h	3 h
288		9	8	9	3a	4	22	11	22	gi	32	2 a	92	32	3h	21	38	12	2 a	12	la	92	31	11	21	32	12
289		9	2 h	32	3 h	4k	20	4k	20	3k	3 h	2k	ga	30	3h	20	30	10	2k	4k	4k	9k	$3 k$	10	30	3h	3 h
290		9	21	3k	3h	41	$2 x$	4k	2 x	4k	3n	2 x	dk	2 x	3h	$2 x$	31	$1 \times$	2x	4k	at	3 j	3x	1x	$2 x$	3 h	3 h
291		9	$2 k$	4k	3k	4k	2 L	4k	3k	4k	3 h	2k	4k	39	3h	2k	31	19	2k	4k	ik	3k	31	1 k	2k	3h	dk
		9	3 h	3k	3k	19	29	4k	2h	Ak	3 h	2k	3k	3 h	3 k	2 h	31	19	29	ck	4k	31	31	19	29	3k	ck
293		9	2k	3 g	31	14	$2 k$	dk	2k	41	3 h	2 k	d	3k	3 h	2k	3k	ck	2 l	ak	4k	9k	3 l	k	2	3k	3h
294		9	3h	3h	3h	1	4	4	3n	3k	3k	20	32	10	3k	12	30	12	29	4k	ak	4k	31	10	20	3 h	3 h
295		9	3 h	3h	3h	ak	21	3k	22	3k	3 h	22	3h	2a	3n	2a	3 l	3 l	2 l	dk	la	12	3e	3e	21	3h	3 h
295		9	29	4k	3k	4k	2k	4k	2k	4k	3k	2k	9k	2	3k	2k	3k	dk	2k	ck	4k	4k	3k	dk	2k	3k	3k
297	,	9	29	4k	3t	4k	2k	dk	2 g	dk	3k	2k	3 k	2k	3k	2 k	Ak	4k	2k	dk	4k	4k	3k	ck	2 k	3k	$3 k$
298	,	9	3 h	3 h	3 h	A	2k	ck	31	dk	3 h	2k	3 h	2k	3 h	3h	3 h	4k	$2 k$	4k	4	3 n	3 h	*	2 t	3 h	4k
299		9	20	3 l	3h	4	$2 h$	4k	21	3k	4h	2h	3h	21	3n	2 h	3n	4	2 l	ck	4k	3h	31	3e	2	3 h	3k
300		9	3 n	4k	3h	4k	2k	4k	3j	4k	3h	2k	3 h	3 h	3h	4k	3h	4k	2k	Ak	dk	4k	31	ck	2k	3 h	3 h
		9	19	4k	3h	4k	$2 k$	4k	4k	dk	3h	29	4k	3h	3h	2k	3h	1k	2 k	ck	4k	4k	3 n	ck	29	3 h	h
302		8	3h	3h	3 h	4k	29	4k	29	4k	3 n	29	3j	31	3n	29	3q	4k	29	ck	ak	39	39	ck	29	3 h	3h
303		8	21	3 n	3h	ck	29	1	2 k	1k	3 h	2k	-	3k	促	2 n	3 j	4k	21	4k	dk	3 n	3 h	k	a	3 h	3h
304	-	8	$2 v$	3 g	3k	4	2v	dk	$2 r$	4k	3 h	$2 r$	dk	$2 r$	3h	$2 r$	31	$2 r$	2 r	4k	2 r	3 r	3 r	1	2γ	3 h	3 h
305	,	8	31	31	3n	1 k	$2 \times$	dk	$2 x$	3k	3n	$2 x$	3	31	3n	31	31	4k	21	ak	4k	31	31	1 k	$2 x$	3 h	3 h
306		8	21	3k	3k	4k	2 L	4k	2k	3k	3k	2k	3k	2k	3k	2k	3k	3k	2k	4k	at	3k	3k		$2 k$	3k	dk
307	-	8	31	12	31	19	29	1 g	29	1 g	31	29	4	31	31	29	31	19	29	1 g	49	19	31	19	29	31	31
308		8	29	1 g	3k	19	2 g	4k	29	1 k	3k	2 g	3k	39	3h	2 h	39	49	29	4k	4k	31	31	49	29	3 h	3h
309		8	29	3h	3n	4k	2 n	dk	21	3k	3h	2 h	ck	3j	3h	2k	3 h	4	21	4k	42	39	31	19	21	3h	3h
311	1	8	$2 k$ 21	3 h 4 g	3 h	4k	2 c	4k	3k	3k	3h	2k	3k	3k	3n	2k	3k	,	2 L	4k	4k	,	3k	4k	2k	3 h	3 h
311 312	.	8	21 2 n	19 38	31 $3 n$	419	21	1 c	21	dg	31	29	1 g	29	31	29	39	19	2 g	49	49	19	3 sk	19	29	31	$3 j$
13		8	3	31	3h	49	2v	1k	21	dk	औ			39	3 h	29	3k	4	29	4k	4 t	4k	3 l	4k	29	3 l	3h
314		1	$2 v$	31	3h	dv	2r	4k	20	4k	3h	20	3k	3 l			38		2 l	4k	4k	3k	31	dk	2	3h	3 J
315	1	7	2v	31	3	dv	29	dk	29	4k	3k	2k	4k	29	3 k	28	39	9	2 a 2 g	$\begin{aligned} & 4 k \\ & 4 k \end{aligned}$	4k	48		9	2t	3 hk	3h
316	-	7	2v	4k	3 h	4 x	2x	4k	$2 x$	1k	3h	2γ	4.	2 r	3h	$2 x$	3 x	g	2 x	dk	4k	4k	31	1k	$2 x$	3 h	n
317		7	2	3k	3h	4	$2 x$	3k	2x	3k	3h	2 x	3h	$2 x$	3n	2 x	3x	3 x	2 x	4k	4	3x	3x	3x	$2 x$	3h	3h
318		1	2k	3k	3k	19	21	4k	1k	4k	3k	2 L	,	21	3k	21	3k	48	21	4k	4	4k	31	11	21	3k	3k
919	-	1	11	gg	32	18	22	dk	12	ga	31	2 z	ga	21	22	21	31	31	21	92	4	R	39	31	21	31	,
20		7	2 h	4k	4t	dk	2 n	dk	2k	4	3h	2 h	4k	3h	3 h	3e	31	4	21	4k	Ak	31	3 h	dk	2 h	3h	3

Stioulus 8. Coapletion fast.

Appendix.8:Ac. The raw data obtained on Stimulus sheets W, X, Y and Z.

Stioulus r, Conpletion fask.

Stlaulus 2, Coapletion fast,

Appendix 8: B.

Statistical tests indicating that the data should be amalgamated.

This appendix contains a series of statistical analyses, performed to investigate the possibility of significant differences in the data attributable to sex of subject, positional bias, and type of stimulus sheet. These investigations failed to find any significant differences that were attributable to these measures, and so the data were amalgamated.

Appendix 8:B.

Statistical tests showing little difference between stimuli.

Sex. χ^{2} tests failed to find any significant sex differences in the proportions of response, with type of table top, drawn for stimulus C[17] ($\chi^{2}=1.7, \mathrm{df}=3, \mathrm{p}>0.5$). This stimulus was chosen because it allowed a wide range of response. Examination of the raw data suggested that if any variation with sex was to be found it would show in the responses for ten year olds, however a similar test, just for this age group, also failed to show any significant differences $\left\langle\chi^{2}=0.1, \mathrm{~d} f=2, \mathrm{p}\right.$ > 0.9).

Within Sheet. Within sheet variation was examined by looking at the proportions of correct (ie in perspective) responses, with age, for stimulus $\mathrm{G}[21]$, on the second stimulus sheet given to the older subjects, where $G[21]$ was included twice. A $K \chi^{2}$ test falled to find any significant differences between the two presentations $\left(\mathbb{K} \chi^{2}=0.03, d f=2, p>0.05\right)$.

Between sheets, older subjects. Between sheet variation was examined by, looking at proportions of responses in different projections as specified below, with age, for various stimuli, as specified below, across the two sheets given to the older subjects. The stimull chosen for comparison were those that gave most chance of variation, however χ^{2} tests failed to find any significant differences between the two sheets (Stimulus D[23]: oblique response, $\chi^{2}=5.1$, $d f=9, p>0.05 ;$ perspective response, $\chi^{2}=10.3, d f=9, p>0.05 ;$ Stimulus $D[5]$: oblique response, $\chi^{2}=$ 4.3, $\mathrm{df}=9, \mathrm{p}>0.05$; perspective response, $\chi^{2}=4.4$, $\mathrm{df}=3, \mathrm{p}>0.05$; Stimulus D(8): oblique response, $\chi^{2}=4.6, \mathrm{df}=9, \mathrm{p}>0.05$; perspective response, $\chi^{2}=6.5$, df $=9, p>0.05$; Stimulus C(123: vertical oblique response, $\chi^{2}=3.3, \mathrm{df}=7, \mathrm{p}$ 20.05; obllque response, $\chi^{2}=2.8, \mathrm{df}=7, \mathrm{p}$ > 0.05; perspective response, $\chi^{2}=6.6, d f=7, p>0.05 ;$ Stimulus C\{17]: vertical oblique response, $\chi^{2}=5.2, d f=9, p$ >0.05; oblique response, $\chi^{2}=$
9.5, $\mathrm{df}=9, \mathrm{p}>0.05$; perspective response, $\chi^{2}=1.5, \mathrm{df}=7, \mathrm{p}>0.05$; Stimulus Alf](own): vertical oblique, $X^{2}=3.9, d f=7, p>0.05$, oblique response, $\chi^{2}=4.1, d f=8, p>0.05$; perspective response, $\chi^{2}=7, d f=8$, $\mathrm{P}>0.05$; Stimulus $\mathrm{B}\left[25\right.$ (choice): oblique response, $\chi^{2}=6.8, \mathrm{df}=9, \mathrm{p}$ > 0.05; perspective response, $X^{2}=4, \mathrm{df}=8, p>0.05$)

Between sheets younger subjects.
These were compared across the two common tasks that gave most variation, namely, choice, and own production. In each case the proportion of oblique response with age was chosen for the comparison. Stimulus $\mathrm{B}[25$ (choice):W vs. $X: K X^{2}=0.2, d f=2, p>0.05 ; W$ vs. $Y: K X^{2}=0.05, d f=2, p>0.05 ;$ W vs. $Z: K X^{=}=2.46, d f=2, p>0.05 ; X$ vs. $Y: K X^{2}=0.21, d f=2, p>$ 0.05 ; X vs. $Z: K X^{2}=0.21, d f=2, P>0.05 ; Y$ vs. $Z: K X^{2}=0.21, d f=2, P$ >0.05. Stimulus A[6] (own):- W vs. $X: K \chi^{2}=3.33, d f=2, p>0.05 ; W$ vs. $Y: K X^{2}=1.12, d f=2, p>0.05 ; W$ vs. $Z: K X^{2}=4.19, \mathrm{df}=2, \mathrm{P}>0.05$; X vs. $Y: K X^{2}=1.76, d f=2, p>0.05 ; X$ vs. $Z: K X^{2}=1.04, d f=2, p>$ 0.05; Y vs. $Z: K X^{2}=1.75, \mathrm{df}=2, \mathrm{p}>0.05$.

Between subject groups.

Different experimental methods were used with older and younger subject groups. Subjects of seven to ten years of age were included in both groups in order to investigate whether the different methods of presentation had an effect upon the form of response. The patterns of responses obtained for four stimuli (A6 [own], B25 [choice], F22, and G3) were compared using a series of $K \chi^{2}$ tests. These tests failed to find any significant differences between the two subject groups in the patterns of response, with age, to these stimull. Stimulus A6 [own]:- Orthographic: K χ^{2} $=2.12, \mathrm{df}=2, \mathrm{p}>0.05$; Vertical oblique: $\mathrm{K} \chi^{2}=0.36, \mathrm{df}=2, \mathrm{p}>0.05$; Oblique: $K \chi^{2}=0.01, \mathrm{df}=2, \mathrm{p}>0.05 ;$ Perspective: $\mathrm{K} \chi^{2}=0.59, \mathrm{df}=2, \mathrm{p}>$ 0.05. Stimulus B25tchoicel:- Oblique: $K \chi^{2}=0.56, \mathrm{df}=2, \mathrm{p}>0.05$. Stimulus F22:- Oblique: $K \chi^{2}=0.88, \mathrm{df}=2, \mathrm{p}>0.05$. Stimulus G3:Perspective: $K \chi^{2}=0.6, \mathrm{df}=2, \mathrm{p}>0.05$.

A $K \chi^{2}$ test did find significant difference between the two groups of subjects when the total responses, amalgamated across the seven to ten age groups, were compared for Stimulus A6[own] $\mathbb{K} \chi^{2}=15.94$, $\mathrm{df}=2, \mathrm{p}$ < 0.001). The 'younger' subjects group, who had been given the shortened version of the stimull, produced significantly more orthographic and fewer perspective responses, in total, than did subjects from the other group who had received the full battery of stimuli.

Appendix 8: C.
Amalgamated data giving proportions of response for each age group, for each individual stimulus.

The amalgamated data discussed in Chapter 8 are presented in this appendix. The first part of the appendix gives, for each stimulus, the proportions of response, with age, classified in full by the system described in Chapter 6. The second part of the appendix gives the same data classified according to the projection system used. The third part presents the data classified according to the form of depth cue used.

Ap.8:Ca. Analysis of amalgamated data, classified in detail by form of response, stimulus and age.

Page Ap.8.18
Ap.8:Cb. Analysis of amalgamated data, classified by projection system, stimulus and age. Ap. 8.43

Ap.B:Cc. Analysis of amalgamated data, classified by depth cue, stimulus and age.

Ap. 8.56

Appendix 8:Ca. Analysis of amalgamated data, classified in detail by form of response, stimulus and age.

Table A. \% Responses 3sainst ase for columis 1..2G

	Colismm 1			Perspective Respense uxpected.										
	4.0	5.0	6. 0	7.0	$3 \cdot 0$	9.0	10.0	11.0	12.0	13.0	18.0	15.0	16-20	204
0	6.3	15.8	0.0	0.0	0.0	0.15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.	0.0	0.0	0.0	0.0	0.0	1.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
25	0.0	5.3	0.0	$7 \cdot 3$	0.0	1.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2r.	31.3	21.1	27.3	4.9	11.4	9.4	2.1	0.0	0.0	0.0	C.O	0.0	0.0	C. 0
3 f	0.0	0.0	0.0	2.4	$2 \cdot 3$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
33	0.0	0.0	0.0	0.0	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3 h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.3	6.3	2.9	5.3	2.9	10.0
31:	0.0	0.0	13.7	4.7	4.5	13.2	12.5	0.0	3.3	3.1	0.0	0.0	11.4	5.0
38	0.0	0.0	0.0	2.4	0.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
43	0.0	10.5	0.0	2.4	4.5	3.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
43	0.0	21.1	16.7	9.3	15.9	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4h	0.0	0.0	0.0	0.0	0.0	1.9	0.0	C.0	0.0	0.0	0.0	0.0	0.0	0.0
4k	56.3	25.3	33.3	63.1	59.1	64.2	85.1	100.0	73.3	90.6	77.1	94.7	85.7	85.0
4\%	0.0	0.0	5.6	0.0	0.0	0.0	0.0	0.0	-. 0	0.0	0.0	0.0	0.0	0.0
43	6.3	0.0	0.0	2.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.20	$20+$
0	c. 2	9.9	0.0	0.0	0.0	0.2	0.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0
22	0.0	0.0	30.0	12.0	10.7	7.7	9.5	7.1	13.3	15.6	23.4	42.1	25.7	30.0
2 e	9.0	0.0	0.0	0.0	0.0	0.0	0.0	3.3	3.7	6.3	2.9	5.3	0.0	0.0
25	0.0	0.0	20.0	16.0	17.9	15.8	14.3	$10 . ?$	0.0	0.0	6.0	2.6	2.9	0.0
2h	0.0	9.9	0.0	4.9	3.6	2.6	0.0	10.7	23.3	3.1	2.9	0.0	0.0	0.0
2 j	0.0	0.0	0.0	0.0	c. 0	0.0	0.0	2. ${ }^{\text {c }}$	0.0	9.4	0.0	0.0	0.0	0.0
2k	0.0	0.0	0.0	20.0	25.0	52.6	51.1	21.4	26.7	40.6	28.5	23.7	8.6	0.0
2?	0.0	0.0	0.0	8.0	7.1	2.6	2.3	0.0	-0.0	C. 0	0.0	C.O	5.7	0.0
20	0.0	0.0	0.0	0.0	7.1	0.9	5.7	14.3	13.3	15.5	17.5	5.3	22.9	10.0
2 r	0.0	0.0	0.0	8.0	3.8	2.6	0.0	25.0	6.7	0.0	0.6	10.5	22.9	15.0
2 V	O.0	0.0	0.0	12.0	10.7	0.0	0.0	0.0	0.0	0.0	2.9	0.0	0.0	0.0
2:	0.0	0.0	20.0	16.0	10.7	7.9	2.9	n.0	10.0	6.3	0.0	0.0	2.9	0.0
3 e	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	2.9	0.0	0.0	0.0
3 h	0.0	0.0	0.0	0.0	0.0	2.3	5.7	0.0	0.0	0.0	2.9	10.5	2.9	10.0
3 J	0.9	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1	0.0	0.0	2.9	0.0
3k.	0.0	0.0	0.0	4.0	0.0	0.0	0.0	3.5	0.0	0.0	0.0	6.0	0.0	0.0
43	0.9	0.9	0.0	0.9	0.0	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1 h	0.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0
4h.	0.0	0.9	0.0	0.0	3.6	0.0	2.9	0.0	0.0	0.0	11.8	0.0	2.9	0.0

훈 흔 $\underline{6}$

 Coluan $3 \rightarrow$ Perspective resporse expected.| | 1.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 | 11.0 | 12.0 | 13.0 | 11.0 | 15.0 | 16-20 | $20+$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 3.3 | 0.0 | 2.9 | 1.8 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 |
| 25 | 0.0 | 0.0 | 0.0 | 0.0 | 3.4 | 0.0 | 0.0 | 0.0 | c.o | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2 n | 0.0 | 0.0 | 0.0 | 1.8 | 0.0 | 0.15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 21. | 0.0 | 0.0 | 0.0 | 1.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2 r | $0.1)$ | 0.0 | 0.0 | 1.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| $2 v$ | 0.0 | 0.0 | 2.9 | 0.0 | 0.0 | 0.0 | 0.0 | c. 0 | 0.0 | c.0 | 90 | 0.0 | C. 0 | 0.0 |
| 3 h | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 45 | 36.7 | 50.0 | 40.0 | 19.2 | 15.5 | 11.8 | 6.2 | c.o | 3.3 | 0.0 | 0.0 | 0.0 | 2.9 | 10.0 |
| 46 | 3.3 | J. 3 | 0.0 | 1.0 | 0.0 | 0.0 | 1). 0 | 0.0 | 0.0 | $0.1)$ | 0.0 | 0.0 | 0.0 | 0.0 |
| 4 c | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | $\because \cdot 0$ |
| 40 | 0.0 | 0.0 | 2.9 | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 4 e | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 45 | 33.3 | 26.7 | 20.0 | 29.1 | 22.4 | 14.7 | 10.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 4 h | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 4j | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 4k. | 10.0 | 3.3 | 8.3 | 21.8 | 51.7 | 58.8 | 75.4 | 100.0 | 96.7 | 100.0 | 100.0 | 100.0 | 97.1 | 50.0 |
| 4 r | 0.0 | 0.0 | 2.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| $4 F$ | 0.0 | 3.3 | 8.6 | 1.8 | 1.7 | 2.9 | 3.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 4 r | 3.3 | 10.0 | 2.9 | 1.8 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| $4 v$ | 3.3 | 3.3 | 5.7 | 10.7 | 1.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 4:; | 3.3 | 0.0 | 2.9 | 5.5 | 1.7 | 2.9 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 48 | 3.3 | 0.0 | | | | | | | | | | | 0.0 | 0.0 |

	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.9	12.0	13.0	14.0	15.0	$16 \cdot 20$	$20+$
0	0.0	0.0	0.0	0.9	0.0	0.9	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25	0.0	0.0	0.0	4.0	7.1	0.0	0.0	0.0	0.0	3.1	0.0	0.0	0.0	c.o
2:	0.0	0.0	0.0	0.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.3	0.0	0.0	0.0	4.0	3.6	2.3	0.0	0.0	0.0	C.0	0.0	0.0	0.0	0.0
31	0.0	0.0	20.0	8.0	3.5	5.3	9.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3h	0.0	0.0	80.0	56.0	42.9	57.9	77.1	100.0	96.7	93.8	100.0	77.4	100.0	100.0
3 J	0.0	9.0	0.0	0.0	10.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
31.	0.0	0.0	0.0	12.0	17.9	23.7	17.1	0.9	C.C	0.0	0.0	C.O	0.0	0.0
43	0.9	0.0	0.0	0.9	0.0	2.8	n.f	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$4 k$.	0.0	0.0	0.0	16.0	10.7	7.9	2.4	0.0	2.3	3.1	0.0	2.6	0.0	0.0
4:\%	0.0	0.0	0.0	0.0	0.0	0.0	2.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0

	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16-20	204
0	0.0	0.0	0.0	0.0	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
28	57.1	0.0	23.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0
28	14.3	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2k	0.0	0.0	0.0	0.0	0.0	こ.2	0.0	0.0	C.0	0.0	0.0	0.0	0.0	0.0
$2 r$	14.3	1.0	0.0	0.0	0.0	9.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2\%	0.0	0.0	0.0	0.0	5.6	2.2	0.0	0.0	5.0	C. 0	0.0	0.0	0.0	0.0
3 a	9.0	16.7	23.1	3.0	2.8	2.2	0.9	0.0	0.0	0.0	0.0	0.0	2.9	0.0
3 e	0.0	0.0	0.0	6.1	0.0	4.4	$2 \cdot 3$	32.1	14.7	7.4	11.8	10.5	11.4	0.0
3 f	0.0	0.0	0.0	0.0	3.3	2.2	3. 3	3.3	0.0	3.1	0.0	0.0	0.0	0.0
35	0.0	0.0	7.7	3.0	5.3	4.4	2.3	0.0	0.0	$3 \cdot 1$	C.0	0.1	0.0	0.0
$3 n$	0.0	$0.1)$	0.0	6.1	16.7	20.9	36.4	57.1	S-. 7	68.8	76.5	76.3	82.9	90.0
3 J	0.0	0.0	0.0	0.0	2.8	2.2	4.5	0.0	3.3	15.6	8.8	7.9	6.0	0.0
3k	0.0	0.0	0.0	12.1	13.7	13.3	4.5	3.5	2. 3	0.0	0.0	0.0	0.0	0.0
38	0.0	0.0	7.7	9.1	0.0	0.0	2.3	0.0	C.C	0.0	0.0	0.0	0.0	0.0
3\%	0.0	. 0.0	0.0	0.0	0.0	2. 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
43	14.3	50.0	30.8	27.3	13.9	11.1	$9 \cdot 1$	0.0	3.3	0.0	C. 0	0.0	0.0	0.0
45	0.0	16.7	7.7	6.1	11.1	2.2	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4t:	0.0	0.0	0.0	24.2	19.4	20.9	27.3	2. 5	\&-7	0.0	2.9	2.6	2.9	10.0
4 r	0.0	16.7	0.0	0.0	0.0	0.9)	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$4 v$	0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	$\because 0$	0.0	0.0	0.0	0.0	0.0
4\%	0.0	0.0	0.0	0.0	0.0	$0.1)$	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Colismen 6 ocen drawing of a table.

	4.0	5.0	6.0	$7 \cdot 0$	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16-20	$20+$
0	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1 a	33.3	40.0	31.1	14.5	1.7	7.4	4.6	0.0	0.0	0.0	0.0	2.6	0.0	0.0
16	0.0	$3 \cdot 3$	0.0	0.0	1.7	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15	3.3	6.7	17.1	9.1	8.8	4.4	1.5	0.0	0.0	0.0	0.0	C. 0	0.0	0.0
$1 k$	0.0	0.0	0.0	0.0	0.0	1.5	3.1	0.0	$3 \cdot 3$	0.0	2.7	0.0	0.0	0.0
23	20.0	13.3	17.1	$7 \cdot 3$	$8 \cdot 6$	2.9	4.3	3.6	0.0	C. 0	0.0	0.0	0.0	0.0
26	3.3	6.7	0.0	0.0	0.0	$0.1)$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2 e	0.0	0.0	0.0	0.0	0.0	2.9	1.5	3.5	0.0	C. 0	0.0	2.6	0.0	0.0
$2 f$	0.0	0.0	2.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25	26.7	23.3	11.4	29.1	22.4	16.2	6.2	3.6	3.3	2. 1	0.0	2.6	0.0	0.0
2h	0.0	0.0	0.0	5.5	5.2	13.2	1.6	3.6	6.7	6.3	0.0	0.0	2.9	10.0
2j	0.0	0.0	0.0	0.0	C.0	0.0	1.5	0.0	3.3	$6 \cdot 3$	0.0	C. 0	0.0	0.0
2k	0.0	3.3	0.0	16.4	17.2	8.8	12.3	0.0	0.0	3. 1	0.0	5.3	0.0	0.0
2n	0.0	0.0	2.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2p	0.0). 0	2.9	1.8	3.1	4.1	4.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20	0.0	0.0	0.0	1.8	0.0	0.0	6.2	3.3	3.3	C. 0	C.0	0.0	0.0	0.0
$2 r$	0.0	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0
2v	6.7	0.0	2.9	12.7	1.7	1.5	4.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2\%	3.3	9.0	0.0	0.0	1.7	2.9	1.5	0.0	c. 0	0.0	0.0	0.0	0.0	0.0
3 3	0.0	0.0	2.9 0.0	0.0	5.2	0.0 2.7	3.1	3.6 0.0	6.7 0.0	12.5 3.1	17.6 0.0	0.0 0.0	11.4 0.0	15.0 0.0
31	0.0	0.0	0.0	0.0	1.7	2.7	1.5	0.0	0.0	3.1	0.0	0.0	0.0	9.0
3h	0.0	0.0	0.0	0.0	5.2	11.7	7.7	43.4	50.0	34.4	55. 7	52.6	68.6	55.0
3J	0.0	0.0	2.9	0.0	1.7	7.4	16.9	3.5	10.0	25.0	14.7	23.7	11.4	0.0
3V.	0.0	0.0	0.0	0.0	8.9	2.9	0.0	0.0	0.0	0.0	2.9	C. 0	0.0	5.0
3p	0.0	0.0	2.9	0.0	1.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3 r	0.0	0.0	0.0	0.0	0.0	0.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1	0.0	0.0	2.9	0.0
43	0.0	0.0	0.0	0.0	0.0	1.5	3.1	3.6	0.0	0.0	0.0	2.8		0.0
43	0.0	0.0	2.9	0.0	0.0	1.5	9.0	3.3	0.0	0.0	0.0	0.0	0.0	0.0
4k	0.0	0.0	0.0	1.8	5.2	2.9	9.2	21.4	13.3	$3 \cdot 1$	5.7	7.9	2.9	10.0

Columri 7 - oligue response empected.

	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	1.. 0	15.0	$16-20$	204
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23	0.0	0.0	20.0	8.0	$7 \cdot 1$	$5 \cdot 3$	0.0	0.0	0.0	0.0	C.0	0.0	0.0	0.0
$2 s$	0.0	1). 0	0.0	12.0	7.1	2.6	2.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.6	0.0	0.0	0.0	C.0	C. 0	0.0
2k	0.0	0.0	0.0	16.0	10.7	7.7	2.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2f	0.0	0.0	20.0	0.0	0.0	5.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$2 r$	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$2 v$	0.0	0.0	0.0	8.0	3.8	0.0	C. 0	0.0	0.0	0.0	$0 \cdot 0$	0.0	0.0	0.0
2:	0.0	0.1)	0.0	4.0	7.1	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3 a	0.0	0.0	0.0	4.0	0.0	2.6	0.0	C.0	0.15	0.0	0.0	0.0	0.0	0.0
3 e	0.0	0.9	0.0	4.0	0.0). 0	2,7	0.0	0.0	0.0	0.0	0.0	14.3	0.0
3 f	0.0	0.0	0.0	4.0	7.1	0.0	2.7	0.0	(1.0	0.0	0.0	0.0	0.0	0.0
3 ${ }^{\text {d }}$	0.0	0.0	40.0	0.0	10.7	7.7	0.9	0.0	0.0	0.9	2.3	2.6	0.0	0.0
3H	0.0	0.0	0.0	8.0	10.7	25.3	74.3	72.9	100.0	100.0	77.:	77.4	$77 \cdot 1$	100.0
$3{ }^{3}$	0.0	0.0	0.0	0.0	10.7	7.7	2.7	0.0	0.0	0.0	0.0	0.0	5.7	0.0
34.	0.0	0.0	0.0	8.0	25.0	15.4	0.6	2. 6	0.0	0.0	0.0	0.0	0.0	0.0
3%	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3 a	0.0	0.0	0.0	0.0	0.0	2.6	2.9	0.0	0.0	0.0	C.O	0.0	0.0	0.0
3 r	0.0	0.0	0.0	4.0	0.0	2.6	0.0	0.0	0.0	0.0	0.0	0.0	2.9	0.0
3:	0.0	0.0	0.0	8.0	0.0	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$3 ¢$	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
43	0.0	0.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$4 h$	0.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$4 r$	0.0	0.0	0.0	0.0	0.0	2.8	0.0	0.0	0.0	0.0	C. 0	(1.0	0.0	0.0

$\begin{aligned} & \dot{0} \\ & \mathbf{r} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{lll} 0 & 0 & 0 \\ 00 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{lllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	00000000000 \dot{O} ÓOOOO HOOO
$\begin{aligned} & c \\ & r \cdot \\ & \dot{0} \\ & \infty \end{aligned}$	$\dot{0}$	0	$\begin{aligned} & 0 \\ & 0 \end{aligned} 0000$	00000 TTOO $\circ 0^{\circ} \dot{\circ} \dot{\circ}+\cdots \circ \circ$	
$\begin{aligned} & 0 \\ & i j \end{aligned}$	0	0	$\begin{aligned} & 00090 \\ & 000 \\ & 000 \\ & 0 \end{aligned}$	$\begin{aligned} & 00000 \\ & 0000000 \\ & 00000 \end{aligned}$	
5	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 0000 \\ & 000 \\ & 000 \\ & 0 \end{aligned}$	OONOOHANO 	00000001000 $\therefore \circ \circ O$ NOO FOCO
$\begin{aligned} & 0 \\ & \text { H } \\ & \rightarrow \end{aligned}$	$\stackrel{0}{0}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & \circ & 0 \\ 0 & 0 \\ 0 \end{array}$		00000000000
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\dot{0}$	0	00000 $00^{\circ} 0$	$\begin{array}{lllll} 0 & 0 & 0 & 0 & N \\ \dot{O} \dot{0} \dot{0} \dot{0} & 0 \\ 0 & 0 \\ i \end{array}$	00000001.000 $\dot{O} \dot{\circ} \dot{0} 0 \dot{0} \dot{0} 0000$
0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0000 \\ & 0000 \\ & 000 \\ & \hline 00 \end{aligned}$	$\begin{array}{lllllll} 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & r i & r \end{array}$	$\begin{array}{lllllllll} 0 & 0 & 0 & 0 & r: 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 10 & 0 & 0 \end{array}$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	00000 -0 © i ©		$\begin{aligned} & 00000 \text { ry rro } 0 \\ & 00 \\ & 0000 \end{aligned}$
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { rjoritio } \\ & \text { riocirio } \end{aligned}$	HOONONMENO 	

$\begin{aligned} & 0 \\ & \infty \\ & \hline \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$			
0	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$	$0000 \infty 0 \alpha 0 \alpha$ 	

$\begin{aligned} & 0 \\ & j \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 00000 \\ & 00000 \\ & 0000 \end{aligned}$	OMONOOOOO $\circ 00000000$	$\begin{array}{lllllllll} m 0 & 0 & 0 & 0 & m & 0 & 0 & 0 \\ \infty & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$
$\begin{aligned} & 0 \\ & i \end{aligned}$	$\begin{aligned} & \boldsymbol{n} \\ & \underset{\sim}{x} \end{aligned}$	$\begin{aligned} & v \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 017000 \\ & 0000 \\ & 0400 \end{aligned}$	000000000 $00^{\circ} 0000000$	
0	\rightarrow	0	$\begin{aligned} & 0 \Rightarrow 000 \\ & 0 \Rightarrow 000 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned} 00000000$	

Celumri 9 Vertical obligue response expected.

	4.0	5.0	6.0	7.0	8.0	7.0	10.0	11.0	12.0	13.0	14.0	15.0	16-20	20:
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23	0.0	0.0	60.0	12.0	7.1	10.5	11.4	14.3	16.7	12.5	26.5	31.6	22.7	30.0
2 e	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.1	0.0	7.4	5.9	7.7	0.0	0.0
25	0.0	0.0	20.0	16.0	32.1	21.1	14.3	3.6	コ.3	0.0	2.7	0.0	0.0	0.0
2h	0.0	0.0	20.0	4.0	3.6	5.3	0.0	14.3	20.0	12.5	0.0	2.3	2.9	5.0
2 j	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.6	0.0	4.3	2.7	0.0	0.0	0.0
2k	0.0	0.0	0.0	24.0	32.1	42. 1	51.4	10.7	20.0	25.0	23.5	10.4	5.7	0.0
2 F	0.0	0.0	0.0	4.0	0.0	2.6	11.4	0.0	0.0	0.0	0.0	$0 \cdot 0$	2.6	0.0
2 a	0.0	0.0	0.0	4.0	3.5	2.6	2.9	14.3	10.0	21.8	11.8	7.7	25.7	10.0
2 r	0.0	0.0	0.0	0.0	0.0	7.7	2.5	22.1	20.0	2.1	2.7	2:.1	22.7	50.0
2 v	0.0	0.0	0.0	20.0	7.1	1.0	0.1	0.0	0.0	0.0	2.7	0.0	0.0	0.0
2\%	0.0	0.0	0.0	c. 0	10.7	5.3	0.0	0.0	10.0	3.1	2.7	0.0	2.7	0.0
2=	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	2.7	0.0
3 e	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.7	0.0	0.0	0.0
3 h	0.0	0.0	0.0	0.0	0.0	2.6	5.7	0.0	0.0	3.1	5.7	10.5	5.7	5.0
3k.	0.0	0.0	0.0	0.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1	0.0	0.0	0.0	0.0

Column 10 FT ocligue response expeted.

	4.0	5.0	6.0	7.0	8.0	7.0	10.0	11.0	12.0	13.0	1..0	15.0	16-20	204
0	28.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3 3	0.0	0.0	7.1	0.0	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3 e	0.0	0.0	0.0	3.2	2.7	1. 0	-). 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3 f	0.0	20.0	0.0	3.2	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3h	71.4	60.0	72.7	54.0	58.8	67.7	20.4	22.\%	53.3	100.0	100.0	100.0	100.0	100.0
$3 J$	0.0	20.0	0.0	5.7	14.7	4.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.	0.0	V. 0	0.0	27.0	14.7	23.7	1:1.6	?.	5.7	0.0	0.0	0.0	0.0	0.0
4h	0.0	0.0	0.0	0.0	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Appendix 8:Ca. Continued.

Column 12 - Variable response expected.

	4.0	5.0	6.0	7.0	D. 0	7.0	10.0	11.0	12.0	15.0	1.1.0	15.0	16-20	201
0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
18	0.0	0.0	0.0	4.0	0.0	0.0	0.0	10.7	3.3	2. 1	5.7	C. 0	5.7	15.0
16.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.7	0.0	0.0	0.0
1 r	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	5.1	0.0	0.0	0.0	0.0
23	0.0	0.0	10.0	4.0	14.3	15.0	$5 \cdot 7$	0.0	0.0	0.0	0.0	2.6	0.0	0.0
23	0.0	0.0	20.0	20.0	21.4	17.2	5.7	0.0	0.0	0.0	0.0	0.0	C. 0	0.0
$2 h$	0.0	0.0	0.0	0.0	3.6	5.3	1. 0	10.7	0.0	0.0	0.0	2.6	0.0	0.0
$2 J$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	6.3	0.0	0.0	0.0	0.0
2k.	0.0	0.0	20.0	20.0	17.7	2.5.J	13.1	3.6	3.3	6.5	0.0	2.6	2.7	5.0
28	0.0	0.0	20.0	4.0	?. 1	5.3	0.0	0.0	0.0	C. 0	0.0	0.0	2.7	0.0
2 a	0.0	0.0	0.0	0.0	3.6	0.0	2.7	0.0	3.3	0.0	0.0	0.0	2.7	0.0
$2 r$	0.0	0.0	0.0	0.0	0.0	2.6	0.0	7.1	0.0	0.0	0.0	2.6	0.0	0.0
$2 v$	0.0)	0.0	0.0	C. 0	3.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
28	0.0	0.0	0.0	C. 0	10.7	5.3	2.7	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
$2 \cdot 3$	0.0	0.0	0.0	4.0	0.0	1. 0	0.9	0.0	3.3	0.0	0.0	0.0	0.0	0.0
3 E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.7	13.5	15.6	11.5	0.0	14.3	10.0
3 f	0.0	0.0	0.0	0.0	$0.1)$	0.0	0.0	0.0	0.0	6.3	0.0	0.0	0.0	0.0
35	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.7	0.0	2.7	0.0
$3 \boldsymbol{}$	0.0	0.0	0.0	0.0	0.0	5. 5	20.0	32.1	40.0	46.9	50.0	71.1	51.4	40.0
$3{ }^{3}$	0.0	0.0	0.0	0.0	0.0	5.3	1\%.3	$7 \cdot 1$	13.3	7.4	5.7	7.7	2.7	15.0
3k	0.0	0.0	0.0	4.0	7.1	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Jァ	0.0	0.0	0.0	0.0	0.0	0.0	2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
43	0.0	9.0	0.0	0.0	3.6	0.0	5.7	J. 6	6.7	0.0	0.0	0.0		0.0
45	0.0	0.0	0.0	0.0	0.0	0.0	2.7	0.0	0.0	0.0	C. 0	0.0	C. 0	5.0
4h	0.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4j	0.0	0.0	0.0	0.0	0.0	0.0	0.0	こ. 6	0.0	0.0	0.0	0.0	C. 0	0.0
4k	0.0	0.0	0.0	0.0	7.1	7.7	20.0	7.1	13.3	3.1	17.6	7.7	14.3	10.0
48	0.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0	C. 0	0.0	0.0	2.8	0.0	C. 0

$\begin{aligned} & t \\ & 0 \\ & i d \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0000000000000 	$\begin{aligned} & 00 \\ & 00 \end{aligned}$
$\begin{aligned} & 0 \\ & 6 \\ & \vdots \\ & i \\ & -1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & i 0 \\ & \text { ij } 0: 0 \\ & \text { iv } \end{aligned}$	$\begin{aligned} & 00 \\ & 00 \end{aligned}$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	जMO～の日サONGOOO MVOMNOMONHOOO	0
$\begin{aligned} & 0 \\ & + \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	wOOOm由ルONのNのO 	$\begin{aligned} & 60 \\ & i 0_{0} \end{aligned}$
$\begin{aligned} & 0 \\ & \dot{r j} \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	（i）$\dot{\sim}$	$\begin{aligned} & 00 \\ & 00 \end{aligned}$
$\begin{aligned} & 0 \\ & c i \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	MOOMOOMOOMOME 	$\begin{aligned} & 00 \\ & 00 \\ & 0 \end{aligned}$
$\begin{aligned} & 0 \\ & \Rightarrow \\ & \hline 4 \end{aligned}$	0		$\begin{aligned} & 00 \\ & 00 \\ & 00 \end{aligned}$
$\begin{aligned} & 0 \\ & 0 \\ & - \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	moctorivriarorio	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}$
$\stackrel{0}{0}$	0		$\begin{aligned} & 00 \\ & 00 \end{aligned}$
$\begin{aligned} & 0 \\ & i j \end{aligned}$	0		$\begin{aligned} & 0 \\ & 00 \\ & 00 \end{aligned}$
$\stackrel{0}{0}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 00000000000000 \\ & -0 ; 000 \\ & i 0 \end{aligned}$	$\begin{array}{ll} 00 \\ 00 \end{array}$
0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0000000000000 $\therefore 000000000000000$	$\begin{aligned} & 0 \\ & 00 \\ & 00 \end{aligned}$
0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0000000000000 00000000000000	$\begin{aligned} & 00 \\ & 00 \\ & 00 \end{aligned}$
$$	$\stackrel{0}{0}$	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 000 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$	$\begin{aligned} & 00 \\ & 00 \\ & 00 \end{aligned}$

Appendix 8:Ca. Continued.

	4.0	5.0	6.0	7.0	E. 0	7.0	10.0	11.0	12.0	1こ.0	14.0	15.0	16-20	204
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11.1
27	0.0	0.0	0.0	0.3	14.3	0.17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25	0.0	0.0	0.0	16.7	14.3	5.0	5.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2h	0.0	0.0	50.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2k	0.0	0.0	0.0	25.0	0.0	5.0	5.6	0.0	0.0	C. 0	0.0	0.0	0.0	0.0
2 a	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.7	0.0	0.0	0.0	0.0
$2 v$	0.0	0.0	0.0	8.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2\%	0.0	0.0	0.0	0.0	$7 \cdot 1$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3h	0.0 0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	5.3 0.0	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$
3 a	0.0	0.0	0.0	0.0	$7 \cdot 1$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
43	0.0	0.0	50.0	0.0	$7 \cdot 1$	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.3	14.3	20.0)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4k	0.0	0.0	0.0	33.3	35.7	55.0	03.7	100.0	100.0	74.1	100.0	74.7	100.0	03.5
48	0.0	0.0	0.0	0.0	0.0	5.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Colunn 16 Otligue response expected.

	4.0	5.0	6.0	7.0	0.0	7.0	10.0	11.0	12.0	13.0	11.0	15.0	16.20	$20 t$
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25	0.0	0.0	0.0	8.0	$3 \cdot 6$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2k	0.0	0.0	0.0	4.0	0.0	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2*	0.0	0.0	0.0	0.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3 a	0.0	0.0	20.0	12.0	10.7	7.8	2.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Je	0.0	0.0	20.0	4.0	0.0	2.6	2.7	C. 0	0.0	0.0	0.	.	5.7	. 0
31	0.0	0.0	20.0	12.0	7.1	0.0	5.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35	0.0	0.0	40.0	3.0	10.7	13.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3h	0.0	0.0	0.0	C.0	10.7	20.7	60.0	100.0	96.7	100.0	77.1	100.0	05.7	CS.0
$3 \mathbf{3}$	0.0	0.0	0.0	0.0	10.7	10.5	14.3	0.0	0.0	0.0	2.7	0.0	0.6	0.0
3k	0.0	0.0	0.0	12.0	25.0	13.2	11.4	0.0	3.3	0.0	0.0	0.0	0.0	0.0
3 p	0.0	0.0	0.0	0.0	0.0	7.7	2.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3 a	0.0	0.0	0.0	0.0	J.3	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3 r	0.0	0.0	0.0	4.0	0.0	5.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3x	0.0	0.0	0.0	12.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
45	0.0	$0 \cdot 0$	0.0	0.0	3.6	0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	0.0 0.0
4k	0.0	0.0	0.0	12.0	7.1 0.0	5.3	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
4v	0.0	0.0	C. 0	4.0	0.0	0.0	0.0	0.0	0.0	C.0	0.0	0.0 0.0	0.0	0.0
48	0.0	0.0	0.0	0.0	J. 3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Column 17 Variable response expected.

	4.0	5.0	6.0	7.0	0.0	7.0	10.0	11.0	12.0	13.0	1\%.0	15.0	16.20	20%
0	14.3	27.3	0.0	3.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13	28.6	0.0	7.1	6.3	2.8	4.4	5.0	0.0	0.0	3.1	0.0	2.6	0.6	25.0
15	20.6	0.0	0.0	6.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1k	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.3	7.1	0.0	0.0	0.0	0.0
$1 \vee$	14.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23	0.0	10.2	36.4	9.4	13.7	0.7	7.5	7.1	$\pm .3$	0.0	2.7	5.3	0.0	0.0
2 e	0.0	0.0	0.0	3.1	0.0	0.0	0.0	3.6	0.0	6.3	0.0	0.0	0.0	0.0
25	0.0	0.0	7.1	10.0	27.8	15.6	2.5	0.0	3.3	0.0	2.7	0.0	0.0	0.0
2h	0.0	0.0	0.0	0.0	5.6	5.7	2.5	10.7	10.0	3.1	2.7	0.0	0.0	0.0
2j	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.6	0.0	2. 1	0.0	0.0	0.0	0.0
2k	0.0	7.1	7.1	15.6	17.4	26.7	20.0	14.3	5.7	12.5	5.7	7.9	0.0	0.0
$2 F$	14.3	0.0	0.0	9.4	0.0	15.J	15.0	0.0	0.0	0.0	0.0	C. 0	2.7	0.0
20	0.0	0.0	0.0	0.0	2.3	0.0	5.0	$7 \cdot 1$	3.3	3.1	2.7	$2 \cdot 5$	0.0	0.0
$2 r$	0.0	13.2	18.2	3.1	2.0	2.2	2.5	14.3	6.7	5. 1	2.7	2.6	0.0	10.0
$2 v$	0.0	0.0	9.1	6.3	2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2:	0.0	0.0	0.0	6.3	5.6	4.4	2.5	0.0	3.3	J. 1	0.0	$2 \cdot 6$	0.0	0.0
29	0.0	0.0	7.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3 e	0.0	0.0	0.0	3.1	2.8	0.0	0.0	10.7	10.0	12.5	17.6	5.5	2.7	0.0
3 f	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1	0.0	0.0	0.0	0.0
3n	0.0	0.0	0.0	3.1	2.8	13.3	12.5	10.7	40.0	20.1	35.3	60.5	54.3	50.0
3j	0.0	0.0	0.0	0.0	0.0	0.0	7.5	7.1	3.3	7.4	2.9	5.3	5.7	5.0
31.	0.0	0.0	0.0	0.0	5.6	0.0	0.0	0.0	0.0	0.0	$0 \cdot 0$	0.0	0:0	0.0
3 r	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.7	0.0
4 a	0.0	16.2	0.0	J. 1	2.5	0.0	2.5	2. 6	3.3	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0
45	0.0	7.1	0.0	3.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
4k	0.0	0.0	0.0	0.0	2.0	4.4	15.0	7.1	3.3	6.3	20.6	5.3	22.7	10.0
$4 r$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.7	0.0	0.0	0.0

	$\begin{aligned} & \mathbf{+} \\ & \text { is } \end{aligned}$	$\stackrel{0}{0}$	000000 000000	$\begin{array}{lll} 0 & 0 & 0 \\ 000 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$
	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{0}{0}$	000000 $00^{\circ} 0^{\circ} 0^{\circ}$	$\begin{aligned} & 000 \\ & 000 \\ & 000 \\ & 0 \end{aligned}$
	$\begin{aligned} & 0 \\ & 10 \\ & 70 \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \end{aligned}$	000000 $00^{\circ} 00^{\circ}$	000000 $00^{\circ} 00^{\circ} 0$
	$\begin{aligned} & 0 \\ & \ddot{-1} \end{aligned}$	0	000000 000000	000000 $\therefore 00000$
	$\begin{aligned} & 0 \\ & 0 \\ & i j \end{aligned}$	0	000000 $\dot{\circ} 00000$	000000 $00^{\circ} 00^{\circ}$
	$\begin{aligned} & 0 \\ & 0 \\ & i x \\ & 0 \end{aligned}$	0	000000 $\ddot{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$	$\begin{array}{llll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 \end{array}$
	$\begin{gathered} 0 \\ \therefore \\ \therefore \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	000000 $\circ 0_{0}^{\circ} 00^{\circ}$	$\begin{aligned} & 000 n 0 N \\ & 0000000 \\ & 000 \end{aligned}$
$\begin{aligned} & 3 \\ & \frac{2}{2} \\ & \frac{2}{2} \end{aligned}$	$\stackrel{0}{0}$	$\begin{aligned} & ? \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 0000 G 0 \\ & 0 \therefore 000 \\ & 000 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$\begin{aligned} & y \\ & \text { y } \\ & \text { y } \end{aligned}$	$\begin{aligned} & 0 \\ & i \end{aligned}$	$\stackrel{0}{\bullet}$	00000 A 0000 ㅂ․	$\therefore 00: 00$
$\frac{3}{\frac{3}{6}}$	$\begin{aligned} & 0 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ooromo } \\ & \text { oorjorro } \end{aligned}$	$0 \quad 0 N 04$
	$\begin{aligned} & 0 \\ & i \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{llll} \text { FóO } \\ \text { Nó } \end{array}$	
\pm	0	0		
$\begin{aligned} & \text { C } \\ & \text { E } \\ & \hdashline 0 \\ & 8 \end{aligned}$	$\begin{aligned} & 0 \\ & i n \end{aligned}$	\ddot{n}	$0000=0$	
	$\stackrel{0}{0}$	$\begin{aligned} & \dot{0} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 0 r o r r r \\ & 0: 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 000 \\ & 00040 \\ & 000 \\ & 0 \end{aligned}$
		0		

 Column 19 obligne response expected.

	4.0	5.0	6.0	7.0	0.0	7.0	10.0	11.0	12.0	13.0	1-1.0	15.0	16.20	$20+$
0	05.7	27.3	10.2	3.1	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
33	0.0	0.0	0.0	3.1	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3 e	0.0	5.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3 f	0.0	7.1	18.2	6.3	0.3	6.7	$0.1)$	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35	0.0	$27 \cdot 3$	S. 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$3 \boldsymbol{3}$	14.3	18.2	45.5	36.3	58.3	62.2	87.5	72.7	86.7	100.0	100.0	100.0	100.0	100.0
3 J	0.0	5.1	5.1	9.4	16.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3k.	0.0	0.0	0.0	21.7	13.7	26.7	12.5	7.1	3.3	0.0	0.0	0.0	0.0	0.0

Column 20 L Vertical obligue response expected.

	4.0	5.0	6.0	7.0	0.0	7.0	10.0	11.0	12.0	13.0	14.0	15.0	16-20	204
0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.7	2.6	0.0	15.0
			40.0	20.0	10.7	15.0	5.7	17.9	13.3	12.5	23.5	34.2	20.6	25.0
23	0.0	0.0	20.0	0.0	0.0	2.6	0.0	3.6	0.0	6.3	0.0	5.5	0.0	0.0
2 e	0.0	0.0	20.0				2.9	3.6	6.7	3.1	0.0	0.0	0.0	0.0
2 s	0.0	0.0	10.0	16.9	20.6	$10 \cdot 3$	2.7	10.7	20.0	3.3	0.0	5.3	0.0	0.0
2h	0.0	0.0	0.0	c.0	3.6	5.3	11.4	10.8	2.3	6.3	2.9	0.0	0.0	0.0
2ز	0.0	0.0	0.0	0.0	0.0	0.0	2.7	3.6	13.3	2.9.4	20.6	13.4	5.7	5.0
2k	0.0	0.0	0.0	22.0	25.0	36.0	4.6	14.3	12.0	0.0	0.0	0.0	0.6	0.0
2\%	0.0	0.0	0.0	0.0	J. 6	7.7	11.4	14.0	10.0	25.0	20.6	5.3	22.7	0.0
2 a	0.0	0.0	0.0	0.0	3.6	$5 \cdot 3$	11.4	14.3	10.7	0.0	0.0	10.4	25.7	55.0
2 r	0.0	0.0	0.0	4.0	0.0	7.7	2.7	28.0	10.7	0.0	2.7	0.0	0.0	0.0
20	0.0	0.0	0.0	4.0	7.1	0.0	0.0	0.0	6.0	3.1	2.9	0.0	2.7	0.0
2\%	0.0	0.0	0.0	8.9	10.7	2.6	2.7	0.0	10.7	3.1				
								0.0	0.0	0.0	5.9	0.0	0.0	0.0
3 e	0.0	0.0	0.0	0.0	0.0	0.0		3.6	0.0	J. 1	5.7	10.5	5.7	0.0
3h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C.0	0.0	0.0	0.0
3 r	0.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0						
	0.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
4k.	0.0	0.0	0.0	0.0	7.1	0.0	0.0	0.0	$0.0{ }^{\circ}$	0.0	2.7	0.0	0.0	0.0

	$\begin{aligned} & \infty \\ & 0 \\ & 0, \end{aligned}$	0	$\begin{aligned} & 000000 \\ & 0000000 \end{aligned}$	$\begin{aligned} & 0000000 \\ & 0004000 \end{aligned}$	000000000
	$\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & j \\ & n=1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 000000 \\ & 0000000 \end{aligned}$	ONONOOO $\dot{\circ}-9 \times 0$	N00：00000 NOO－$\stackrel{\circ}{\circ} \circ \circ 0$
	$\begin{aligned} & 0 \\ & i j \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 00090 \\ & 000 \\ & 0000 \\ & 000 \end{aligned}$	$\begin{aligned} & 0000100 \\ & 000080 \\ & \hline 0000 \end{aligned}$	$\begin{aligned} & 0008000000 \\ & 0000000000 \end{aligned}$
	0	0	$\begin{aligned} & 00090 \\ & 0000 \\ & 000 \\ & 00 \end{aligned}$	0000000 $\div 0 \div 0 \circ 00$	$\begin{array}{llllll} 0 & 0 & 0 & 0 & 0 & 0 \\ 00 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 \end{array}$
	$\begin{aligned} & 0 \\ & \dot{r} \\ & i=1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{llll} 00 & 0 \\ 0000 & 0 & 0 \end{array}$	0000000 0000000	$\begin{aligned} & 00000 \\ & 000 \\ & 000 \\ & \hline 0 \end{aligned}$
	$\begin{aligned} & 0 \\ & 0 \\ & \text { rid } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 00000 \\ & 00000 \\ & 000 \end{aligned}$	000 OOOO $\dot{\circ} \dot{O} \dot{O} \mathrm{O} \circ \circ$	$\begin{array}{llll} 0 & 0 & 00000 \\ 000 & 00 & 0000 \end{array}$
	$\begin{aligned} & 0 \\ & \square \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 000000 \\ & \dot{0} 00000 \end{aligned}$	0000000 $\therefore 0.0000$	$\begin{aligned} & 0000000000 \\ & 000 \\ & 0000 \\ & 0 \end{aligned}$
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 00000 \\ & 000000 \end{aligned}$	a000000 MOOOOOO	NaNROOOOO जणrivo io 000
	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \end{array}$	OMVNOOO －いrijo oi	
$\frac{5}{2}$	$\begin{aligned} & 0 \\ & \dot{\omega} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	vNOOO～ $\dot{r j M O O} \dot{\circ}$	$\begin{aligned} & 0000000 \\ & 00 \text { OiOrión } \end{aligned}$	
1	$\begin{aligned} & 0 \\ & N \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 000000 \\ & 000+00 \end{aligned}$	$\begin{aligned} & 0000000 \\ & -0.0000 \% \end{aligned}$	$\begin{array}{llll} 0 & 0 & 0 & 0 \end{array} 0000$
\vec{r}	$\begin{aligned} & 0 \\ & i \end{aligned}$	0	$\begin{aligned} & 00000 \\ & 000 \\ & 00000 \\ & 000 \end{aligned}$	$\begin{aligned} & 0000000 \\ & 000 \\ & 000000 \end{aligned}$	$\begin{array}{lllllll} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$
$\begin{aligned} & 2 \\ & 0 \\ & 0 \end{aligned}$	i	0	$\begin{array}{l:lll} 0 & 0 & 0 & 0 \\ 000 \\ 000 & 0 & 0 \end{array}$	0000000 $00^{\circ} 00000^{\circ}$	000000000 $\therefore \circ \circ \circ \circ \circ \circ \circ 000$
	$\stackrel{O}{\circ}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 000009 \\ & 000000 \end{aligned}$	0000000 0000000	000000000 $\therefore \div 0000000$
		0	M上 bucucucucis		

$\begin{aligned} & 1 \\ & 0 \\ & 84 \end{aligned}$	0	$\begin{aligned} & 00 \\ & 00 \\ & 00 \end{aligned}$	000000000000 	$\begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 \end{array}$
$\begin{aligned} & e \\ & r v \\ & \vdots \\ & b \\ & n \end{aligned}$	0	$\begin{aligned} & 00 \\ & 00 \end{aligned}$	000000000000 $\dot{O} \dot{O} O \dot{O} \dot{O} O$ OO O	$\begin{array}{llllll} 0 & 0 & 0 & 0 & 0 \\ 000 & 0 & 0 j & 0 & 0 \end{array}$
$\begin{aligned} & 0 \\ & i j \\ & -1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 00 \\ & 00 \\ & 00 \end{aligned}$	0000～0000000 $\dot{\circ} \dot{\sim} \dot{O} \dot{O} \dot{\circ} \dot{O} \dot{O} \dot{O} \dot{O}$ 4）	$\begin{array}{lllll} 0 & O & 0 & 1 & 0 \\ 0 & 0 \\ 0 & 0 & 0 & 0 & c J \\ 0 & 0 & 0 \\ V N & \end{array}$
$\begin{aligned} & 0 \\ & 8 \end{aligned}$	$?$	$\begin{aligned} & 00 \\ & 00 \\ & 00 \end{aligned}$		$\begin{aligned} & 000040 \\ & 000 \\ & 000 \end{aligned} 0$
$\begin{aligned} & 0 \\ & r j \\ & +1 \end{aligned}$	0	00	OUNOONOOOOOO 	$\begin{aligned} & 0000170 \\ & 000090 \\ & 000 \end{aligned}$
$\begin{aligned} & 0 \\ & i \mathbf{i} \end{aligned}$	0	00	0000 NNOOOOOO $\therefore 000$ OOOOCOOO	$\begin{array}{lllll} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & j \\ 0 & 0 \end{array}$
$\begin{aligned} & 0 \\ & -4 \end{aligned}$	0	$\begin{aligned} & 00 \\ & 00 \\ & 00 \end{aligned}$		$\begin{array}{llll} 0 & 0 & 0 & 0 \\ \text { HMOMAO } \end{array}$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	00	ヘONONHOOOOOO	
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 10 \\ & 0.10 \end{aligned}$		
$\begin{aligned} & 0 \\ & i \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \end{aligned}$	00		$\begin{aligned} & \because 00000 \\ & \sim N O O \\ & \sim 0 \end{aligned}$
$\begin{aligned} & 0 \\ & N \end{aligned}$	0	00	000000000000 $\div \dot{\circ}+\dot{\circ} \dot{\circ} \dot{\circ} \dot{\circ} \dot{\circ} \dot{\circ} \dot{\circ}$	$\begin{aligned} & 0000000 \\ & \text { i } 000 \\ & \text { Ni } 000 \end{aligned}$
O	$\begin{aligned} & 0 \\ & i \end{aligned}$	$\begin{aligned} & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & 0000000000000 \\ & 0000 \\ & 000000000000 \end{aligned}$	$\begin{array}{llllll} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$
o	0	00	000000000000 $\dot{O} 0 \dot{O} 0 \dot{O} 0 \dot{O} 0000$	0000000 $\div \circ \circ 00000$
$\stackrel{0}{\circ}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 00 \\ & 00 \\ & 00 \end{aligned}$	000000000000 $00^{\circ} \circ 0^{\circ} 00000000$	$\begin{array}{l:} 000000 \\ 000000000 \end{array}$
	\bigcirc	$\stackrel{m}{m}$	 	

Column 25 Choice

	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	1F. 2	
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
la	0.0	0.0	2.9	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2a	6.7	3.3	2.9	0.0	0.0	0.0	0.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0
26	0.0	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2 e	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0
29	3.9	0.0	2.9	1.8	0.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$2 h$	0.0	0,0	0.0	0.0	0.0	0.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2 k	0.0	3.3	2.9	0.0	0.0	0.0	4. 6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2 p	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0
29	0.0	0.0	0.0	0.0	0.0	0.0	1.5	0.0	0.0	0.0	2,9	0.0	0.0	0.0
$2 r$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0
$2 x$	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3 a	6,7	6, 7	2.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Se	0.0	3.3	2.9	1.8	6.7	0.0	1.5	3.6	E. 7	3.1	0.0	0.0	2.9	10.0
39	3.3	3.3	5.7	1.8	5.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
37	10.0	16.7	0.0	3.5	0.0	0.0	0.0	0.0	0.0	0.0	2.9	0.0	0.0	0.0
3	43.3	30.0	57.1	65,5	75.0	68, 2	80.0	6.7.9	73.3	84.4	75, 5	78.9	77.1	6.5 .0
3 j	5.7	10.0	17.1	7.3	6.7	3,0	3.1	0.0	6.7	3.1	0.0	7.9	0.0	0.0
Ek	3.3	0.0	0.0	14.5	3.3	15.2	1.5	0.0	0.0	3.1	0.0	0.0	0.0	0.0
3p	3.3	0.0	0.0	0.0	0.0	0.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3 v	6.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3 x	0.0	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4 a	3.3	6.7	0.0	0.0	0.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
49	0.0	3.3	0.0	0.0	1.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4 k	0.0	3.3	2.9	7.3	1.7	6.1	3.1	21.4	13.3	E. 3	17.E	13.2	20.0	15.0
40	0.0	0.0	0.0	1. 0	0.0	1. 5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table B. Z iesponses for numbers 1-4 Jsainst ase for columfi 1-25

	4.0	5.0	6.0	7.0	0.0	7.0	10.0	11.0	12.0	12.0	14.0	15.0	16.20	204
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	100.0	76.0	96.4	22.1	71.4	76.4	100.0	76.7	82.4	07.5	71.4	05.0
3	0.0	0.0	0.0	4.0	0.0	2.6	5.7	3.6	0.0	5.1	5.7	10.5	5.7	10.0
4	0.0	0.0	0.0	0.0	3.6	$5 \cdot 3$	2.9	0.0	0.0	0.0	11.8	0.0	2.9	5.0

	Column 3			-										
	4.0	5.0	8.0	7.0	0.0	7.0	10.0	11.0	12.0	13.0	14.0	15.0	16-20	204
0	3.3	0.0	2.9	1.8	0.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	2.9	5.5	3.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0	0.0	1.5	c.0	0.0	0.0	0.0	0.0	0.0	0.0
4	96.7	109.0	94.3	12.7	26.6	98.5	80.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0

	4.0	5.0	6.0	7.0	0.0	7.0	10.0	11.0	12.0	12.0	14.0	15.0	16-20	$20+$
0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	4.9	10.7	0.0	0.0	0.0	0.0	3.1	0.0	0.0	0.0	0.0
3	0.0	0.0	100.0	co.0	78.6	87.5	7A.3	100.0	75.7	23.0	100.0	27.4	100.0	100.0
1	0.0	0.0	0.0	13.0	10.7	10.5	5.7	0.0	3.3	3.1	0.0	2.6	0.0	0.0

Column $5 \quad \nleftarrow$

4.0	5.0	6.0	7.0	3.0	7.0	10.0	11.0	12.0	13.0	1.1 .0	15.0	16-20	$20:$
0.0	0.0	0.0	0.0	0.0	2.2	0.0	0.0	0.0	0.0 .	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
85.7	0.0	23.1	0.0	5.6	1.A	0.0	0.0	0.0	0.0	0.0	$2 \cdot 6$	0.0	0.0
0.0	16.7	38.5	37.4	50.0	51.1	57.1	76.4	70.0	100.0	77.1	74.7	77.1	70.0
14.3	23.3	39.5	60.6	44.4	42.2	40.7	3.6	10.0	0.0	2.9	2.6	2.7	10.0

Column 6 Own

	4.0	5.0	6.0	7.0	8.0	7.0	10.0	11.0	12.0	13.0	1.1 .0	15.0	13-20	20.4
0	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	36.7	50.0	43.6	23.6	12.1	13.2	9.2	0.0	3. 5	0.0	2.7	2.6	0.0	0.0
2	60.0	50.0	10.0	74.5	60.3	52.7	47.7	17.7	16.7	18.0	0.0	10.5	2.7	15.0
3	0.0	0.0	3.6	0.0	22.4	27.5	30.0	53.6	60.7	78.1	21.2	76.3	71.3	75.0
4	0.0	0.0	2.7	1.8	5.2	5.7	12.3	20.6	13.3	了. 1	5.9	10.5	2.7	10.0

column 10 /

| | 1.0 | 5.0 | 6.0 | 7.0 | 0.0 | 2.0 | 10.0 | 11.0 | 12.0 | 13.0 | 14.0 | 15.0 | 16.20 | 20.1 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | 20.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | |
| 3 | 71.4 | 100.0 | 100.0 | 100.0 | 100.0 | 27.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |

		Co	11	$+m$										
	4.0	5.0	6.0	$7 \cdot 0$	3.0	7.0	10.0	11.0	12.0	13.0	14.0	15.0	13－20	20：
0	20.6	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	28.6	20.0	14.3	3.2	8.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	14.3	0.0	14．3	25.0	17.6	52.6	ご．3	ここ．6	5J．	5i．	20.6	23.3	54.3	30.0
4	20.6	69.0	71.4	37.7	73.5	67.4	76.7	46.4	46．7	43.0	79.4	73.7	65.7	70.0

Coluan 12

	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16－20	204
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	4.0	0.0	0.0	0.0	10.7	3.2	6．3	0.0	0.0	5.7	15.0
2	0.0	0.0	100.0	84.0	02.1	73.7	34.3	25.0	10.0	12.5	0.0	10.5	3.6	5.0
3	0.0	0.0	0.0	4.0	7.1	13.2	37.1	50.0	66.7	70.1	73.5	70.5	71.4	65.0
4	0.0	0.0	0.0	8.0	10.7	13.2	23.3	14.3	20.0	J． 1	17.3	10.5	14.3	15.0

	4.0	5.0	4.0	7.0	0.0	7.0	10.0	11.0	12.0	12.0	11.0	15.0	$16-20$	$20+$
0.	11.3	16.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	2.3	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
4	85.7	83.3	100.0	100.0	97.2	77.8	109.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Column 14

| | | | | | | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 | 11.0 | 12.0 | 12.0 | 11.0 | 15.0 | $16-20$ | $20+$ |
| 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2 | 0.0 | 0.0 | 100.0 | 100.0 | 100.0 | 100.0 | 77.1 | 100.0 | 100.0 | 100.0 | 97.1 | 94.7 | 100.0 | 100.0 |
| 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.9 | 0.0 | 0.0 | 0.0 | 2.5 | 2.6 | 0.0 | 0.0 |
| 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.6 | 0.0 | 0.0 |

| | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 | 11.0 | 12.0 | 13.0 | 11.0 | 15.0 | $16-20$ | 204 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11.1 |
| 2 | 0.0 | 0.0 | 50.0 | 58.3 | 35.7 | 15.0 | 1.1 | 0.0 | 0.0 | 5.9 | 0.0 | 0.0 | 0.0 | 0.0 |
| 3 | 0.0 | 0.0 | 0.0 | 0.0 | 7.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.3 | 0.0 | 0.0 |
| 4 | 0.0 | 0.0 | 50.0 | 11.7 | 57.1 | 05.0 | 88.9 | 100.0 | 100.0 | 94.1 | 100.0 | 94.7 | 100.0 | 88.9 |

	Col	ก 16	-										
4.0	5.0	6.0	$7 \cdot 0$	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	18-20	$20+$
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0
0.0	0.0	0.0	12.0	$7 \cdot 1$	2.3	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0
0.0	0.0	100.0	72.0	70.6	92.1	100.0	100.0	100.0	100.0	100.0	100.0	10.0	0.0 100.0
0.0	0.0	0.0	16.0	14.3	5.3	0.0	10.0	100.0 0.0	160.0 0.0	$\begin{array}{r} 100.0 \\ 0.0 \end{array}$	$\begin{array}{r} 100.0 \\ 0.0 \end{array}$		

Column 18 \square

| | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 | 11.0 | 12.0 | 13.0 | 11.0 | 15.0 | 16.20 | $20 t$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 18.3 | 7.1 | 0.0 | 0.0 | 0.0 | 1.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2 | 25.0 | 21.4 | 20.0 | 9.5 | 4.5 | 5.7 | 1.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
| 3 | 56.3 | 71.4 | 80.0 | 90.5 | 95.5 | 92.5 | 90.1 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |

	1.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	11.0	15.0	$16-20$
0	85.7	27.3	18.2	3.1	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	14.3	72.7	81.8	96.9	97.2	97.8	100.0	100.0	$10 c .0$	100.0	100.0	100.0	100.0
1000.0													
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Column 20

	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	1 1.0	15.0	16-20	$20+$
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 0
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.9	2.6	0.0	15.0
2	0.0	0.0	100.0	190.0	22.9	94.7	100.0	76.4	100.0	76.9	32.4	36.8	94.3	85.0
3	0.0	0.0	0.0	0.0	0.0	2.5	0.0	3.6	0.0	3.1	11.8	10.5	5.7	0.0
4	0.0	0.0	0.0	0.0	7.1	2.6	の.9	0.0	0.0	0.0	2.9	0.0	0.0	0.0

Column 22

| | | | | | | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 5.0 | 10.0 | 11.0 | 12.0 | 13.0 | 11.0 | 15.0 | $16 .-20$ | $20 t$ |
| 0 | 3.3 | 0.0 | 2.9 | 3.5 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
| 3 | 96.7 | 100.0 | 97.1 | 96.4 | 100.0 | 70.5 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |

**
Column 23

	4.0	5.0	6.0	7.0	C. 0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16-20	204
0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0		
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	4.0	3.6	2.8	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	40.0	40.0	42.9	36.8	60.0	-4.0	77	07.0	0.0	0.0	0.0	0.0
4	0.0	0.0	60.0	56.0	53.6	40.5	10.0	abe 53.3	72.3	87.5	70.8	60.4	77.1	90.0

Colismn 24

	4.0	5.0	6.0	7.0	3.0	5.0	10.0	11.0	12.0	12.0	14.0	15.0	16.20
0	57.1	20.0	14.3	0.0	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	14.3	40.0	7.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	6.5	5.7	0.0	0.0	0.0	0.0				
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	28.6	40.0	78.6	73.5	94.1	97.0	120.0	100.0	100.0	0.0	0.0	0.0	0.0
									0.0				
											0.0	100.0	100.0
100.0	100.0												

Column 25 Choice

| 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 | 11.0 | 12.0 | 13.0 | 11.0 | 15.0 | 16.20 | 204 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.0 | 2.9 | 1.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 13.3 | 10.0 | 9.0 | 1.8 | 0.0 | 1.5 | 7.6 | 7.1 | 0.0 | 0.0 | 2.9 | 0.0 | 0.0 | 10.0 |
| 83.4 | 76.6 | 85.2 | 89.1 | 96.6 | 89.4 | 89.3 | 71.4 | 86.7 | 53.0 | 75.4 | 86.8 | 80.0 | 75.0 |
| 3.3 | 13.3 | 2.9 | 7.3 | 3.4 | 19.1 | 3.1 | 21.4 | 13.3 | 6.3 | 17.6 | 13.2 | 20.0 | 15.0 |

Appendix 8:Cc. Analysis of amalgamated data, classified by depth cue, stimulus and age.

Analysis of table legs, given as oposopilons of the total fop eish dee oreye
$z=$ Mo ground line, as partlal occlusion.
$j=$ ground lime, legs fros dack, no partial occlusion,
4- Ground line, legs fros fronf, mo partial occlusion,

Analysis of table legs, Soluan I.
F

Analysis of Categories of table legs, Coluan 1.

Leg					Yeaps									
categoiy	1.	5.	6.	1.	6.	1.	11.	11	12.	13.	16.	15.	16.	220
1	6.3	15.8	0.0	0.0	0.0	0.0	0,0	0.0	0,0	0.0	0.0	0.0	0.0	0.0
2	6.3	0.0	5.6	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	36.8	16.7	19.5	22.7	11.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	0.0	0.0	0.0	2.4	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7	87.5	47.1	17.1	73.2	75.0	36.8	100.0	100,0	96,7	83.8	97.1	81.7	97.1	90.0
1	0.0	0.0	0.0	0.0	0.0	1.8	0.0	0.0	3.3	6.3	2.9	3.9	2,9	10.0

Amalysis of Use of Depth Cues, Goluna 1.

Depth Gue.	1.	5.	6.	1.		$\begin{aligned} & \mathrm{Yed} \\ & \hline \end{aligned}$	10.	11.	12	13.	11.	15.	16.	320
1	6,3	15,1	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	6.3	0.0	5.6	4.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	0.0	36.8	16.7	21.9	25.0	11.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0	87.5	41.4	17.1	73.2	75,0	81.7	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
ε	87.5	47.4	17.8	75.6	71.3	36.8	100.0	100.0	100.0	100.0	100.0	100.0	100,0	100.0

Appendix 8:Cc. Continued.

Amifils of tate legs, tolvan $2, \quad \longrightarrow$

$\begin{aligned} & \text { Table } \\ & \text { log } \end{aligned}$	619	1.	1.	1.	1.		$\begin{aligned} & \text { Yeaps } \\ & \hline \end{aligned}$	11.	11.	11.	11.	11.	13.	11.	280
0	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
2	2	0.0	0.0	20.0	11.0	12.1	13.1	11.8	25.0	16.7	6.9	2.8	10.3	31.1	85,0
1	1	0.0	0.0	80.0	21.0	21.6	23.7	22.8	17.8	13.3	15.6	27.1	4.7	21.6	20.0
1	5	0.0	0.0	0.0	0.0	1.1	1.0	8.1	11.9	20.0	21.9	20.8	10.8	22.9	10.0
1	1	0.0	0.0	0.0	20.0	25.0	32.6	\$1. 1	21.1	26.7	10,6	26, 6	23.7	8.6	0.0
2	8	0.0	0.0	0.0	1.0	3.6	2.6	0.0	11.2	23.1	12,8	3.8	0.0	0.0	0.0
3	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.8	0.0	0.0	0.0
3	7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0
3	1	0.0	0.0	0.0	0.0	0.0	2.6	8.7	0.0	0.0	1.1	3.0	10.8	8.7	10.0
1	1	0.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	1	0.0	0.0	0.0	0.0	3.6	0.0	2.8	0.0	0.0	0.0	11.1	0.0	2.8	0.0
4	1	0.0	0.0	0.0	0.0	0.0	2,6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0

Andysis of Categories of table legs, Colvan $z_{\text {, }}$

Maalysis of Use of Depin Cues, Goluan 2,

Depth Cure	1.	1	Ω	1.		1	10.	11.	11.	11.	11.	If.	11.	384.
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
1	0.0	0.0	20.0	11.0	32.1	13.1	11.8	28.0	16.7	6.3	2.8	10.5	21.1	18.0
6	0.0	0.0	80.0	21.0	21.6	28. 3	88.9	17.9	13.8	18.6	27.1	14.7	21.6	20.0
1	0.0	0.0	0.0	27.0	29.3	C0, 8	66.9	87.1	70.1	71.1	67.6	14.7	80.1	25.0
1	0.0	1.0	1.0	27.0	82.8	60. $S^{\text {d }}$	co. 0	81.8	80.0	83.1	11.7	14,2	17.1	18.0

Appendix 8:Cc. Continued.

Analysis ol table legs, Coluan 3.

Analysis of Categoties of table legs, Coluan 3.

Lig														
Gitegory	1.	5	1.	1.	1.	2.	10.	11.	12.	13.	11.	15	16.	320.
1	3.3	0.0	2.8	1.8	0.0	1.5	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0
2	13.3	16.3	22.8	23,6	8, 1	7.3	1,6	0.0	0.0	0.0	0.0	0.0	0.0	0,0
3	0.0	0.0	0.0	0.0	0.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	13.3	80.0	62.9	19.1	11,4	26.5	16.9	0.0	3.3	0.0	0.0	0.0	2.9	10.0
5	0.0	0.0	0.0	0.0	0.0	0.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
. 1	10.0	3.3	11.1	23.6	$\$ 1.1$	60.3	75.4	100.0	96.7	100.0	100.0	100,0	97.1	90.0
1	0.0	0.0	0.0	1.8	1.1	2.8	1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Analyais of Use of Depth Cues, Coluan 3.

Depth Gue.	1	5.	6.	1	Age in Years.		10.	11.	12.	13.	11.	15	16.	220.
1	3.3	0.0	2.8	1,8	0.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	13.3	16.3	22,9	23,6	3.1	7.3	4,6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	73.3	78.0	62. 8	49.1	41.4	26,5	16,9	0.0	3.3	0.0	0.0	0.0	2.8	10.0
0	10.0	3.3	11.1	25.5	53.1	63.2	78.5	100.0	96,7	100.0	100.0	100,0	97.1	80.0
E	10.0	3.3	11.1	25,5	53.4	63.2	71.0	100.0	96.7	100.0	100.0	100.0	97.1	80.0

Appendix 8:Cc. Continued.

Anslysile el table legs, colvan A. \boldsymbol{T}^{\prime}

PableIne		1.	1.	1.	1.	ape la resps.			11.	12.	12	11.	11.	18.	180.	
		1.				2	16									
1	1		0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0
1	2	0.0	0.0	0.0	0.0	1.6	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2	1	0.0	0.0	0.0	1.0	2.1	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	
3	1	0.0	0.0	0.0	1.0	3.6	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
3	6	0.0	0.0	20.0	8.0	3.6	8.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
3	1	0.0	0.0	0.0	12.0	17.9	21.7	17.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
3	1	0.0	0.0	10.0	56.0	83.6	31.9	17.1	100.0	36.7	33.8	100.0	81.4	100.0	100.0	
4	2	0.0	0.0	0.0	0.0	0.0	0.0	2.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1	1	0.0	0.0	0.0	0.0	0.0	2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1	1	0.0	0.0	0.0	16.0	10.7	1.8	2.8	0.0	3.1	3.1	0.0	2,5	0.0	0.0	

Analysis of talegories of table legs, foluan 1.

leg Hestix	1.	1	1.		Yelrs	2.	10.	11.	12	11.	11.	11.	18.	220
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	3.6	0.0	2,9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	8.0	10.7	8.3	0.0	0.0	0.0	2.1	0.0	0.0	0.0	0.0
b	0.0	0.0	20.0	8.0	3.6	6. 3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7	0.0	0.0	0.0	21.0	21.6	31.6	20.0	0.0	3.1	3.1	0.0	2.1	0.0	0.0
1	0.0	0.0	10.0	86.0	31.6	87.8	71,1	100.0	26.1	93.1	100.0	07.1	100,0	100.0

Andysils of Vse of Depth Curs, coluan 1 .

Depth Cue.	1.	1.	1.	1.		$\begin{gathered} \text { Yeips } \\ 2 \end{gathered}$	10.	11.	12	11.	11.	11.	1.	191.
1	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0	2.6	0.0	2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	0.0	0.0	20.0	16.0	18.9	10.6	0.0	0.0	0.0	2.1	0.0	0.0	0.0	0.0
0	0.0	0.0	10.0	11.0	12.1	01.5	87.1	100.0	100.0	96, 8	100.0	100, 0	100.0	100.0
E	0.0	0.0	100.0	32.0	85.7	11,0	81.1	100.0	100.0	88, 8	100.0	100.0	100.0	100.0

Appendix 8:Cc. Continued.

Analysis of table legs, column B.

Analysis of Categories of table legs, Column $\$$,

Analysts of Use of Depth Cues, Column 5.

Appendix 8:Cc. Continued.
amprotio of table logs, colven f . aon.

1 lal	119						Yours								
lea	6.	1.	3	1.	1.	1.	2.	10	11.	12.	12.	11.	15.	18.	220
0	1	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
1	1	36.7	\$0,0	11.6	23.6	12.1	11.1	6.2	0.0	0.0	1,0	0.0	2.6	0.0	0.0
1	1	0.0	0.0	0,0	0.0	0.0	1.5	3.1	0.0	3.3	0.0	2.1	0.0	0.0	0.0
2	2	10.0	3.3	8.1	14.3	6.8	8.1	10.8	0.0	0.0	0.0	0.0	0.0	0.0	0.3
2	1	50.0	43.3	31.5	35.1	31.0	19.1	10.1	7.1	3.1	2.1	0.0	2.6	0.0	0.0
2	3	0.0	0.0	0.0	1.8	0.0	2.9	7.9	7.2	2.3	0.0	0.0	2.6	0.0	0.0
2	6	0.0	0.0	2.9	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	7	0.0	3.3	0.0	16.1	17.2	1.1	12.3	0.0	0.0	d, 1	0,0	8.3	0.0	0.0
2	1	0.0	0.0	0.0	5.6	3.2	13.1	6.1	3.5	10.0	12.5	0,0	0.0	2.9	10.0
3	2	0.0	0.0	2.1	0.0	1.9	0.0	1.8	0.0	0.0	0.0	0,0	0.0	0.0	0.0
3	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1	0.0	0.0	2.9	0.0
3	5	0.0	0.0	2.9	0.0	8.2	0.0	3.1	3.6	6.9	12.8	17.6	0.0	11.1	15.0
3	6	0.0	0.0	0.0	0.0	1.7	2.9	1.8	0.0	0.0	3.1	0,0	0.0	0.0	0.0
3	1	0.0	0.0	0.0	0.0	6.9	2.9	0.0	0.0	0.0	0.0	2.9	0.0	0.0	8.0
3	1	0.0	0.0	2.8	0.0	6.9	22.1	21.6	80.0	10.0	81.1	20.6	86.3	00.0	85.0
1	1	0.0	0.0	2.8	0.0	0.0	2.9	3.1	7.1	0.0	0,0	0,0	2.6	0.0	0.0
1	1	0.0	0.0	0.0	1.8	8.2	2.9	9.8	21.1	13.3	2.1	8.9	7.1	2.9	10.0

Ansiygis of Categories of table legs, colvan 6.

Age														
Culegaty	1	1	1.	1.	1	1.	16	11	12	11	11	15	15.	320
1	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0,0	0.0	0.0
2	10.0	3.3	1.7	14, 3	1.8	1.1	12.1	0.0	0.0	0.0	0.0	0.0	0.0	8.0
1	16.1	31.3	11.1	60.0	13.1	33.1	20.0	11,9	3.1	6.3	0.0	7.9	2.9	0.0
5	0.0	0.0	2.9	1.1	3.2	2.9	10.1	10.1	10.0	12.8	11.6	2.6	11.1	15.0
6	0.0	0.0	2.9	0.0	1.9	2.9	1,8	0.0	0.0	3.1	0.0	0.0	0.0	0.0
1	0.0	3.3	0.0	11.2	29.3	16.2	24.6	21.4	16.1	6.3	11.1	13.2	2.9	18.0
1	0.0	0.0	2.1	\$, 5	12.1	35.1	30.1	63.8	70.0	11.8	30.6	76,3	12.8	65.0

Analysis of tre of Depth Cues, Coluan \mathbf{B},

Bopin														
cre	1.	1.	1.	2	1.	2	12.	11.	12.	12.	11.	11.	11.	290
1	2.1	0.0	0.0	0.0	1.0	0.0	0,0	0.0	0.0	0.0	0.0	0,0	0.0	0.0
1	10.0	3.1	1.7	11.5	1.8	1.8	12.3	0.0	0.0	0.0	0.0	1,0	0,0	8.0
c	86.9	93.9	H.0	80.0	81.8	28.7	21.6	14.9	2, 8	0.1	1.0	2.9	2.9	0.0
1	0.0	1,9	8.7	28.5	46.6	81.1	64.2	05.1	$\boldsymbol{x} .1$	8.6	100.0	82.1	87.1	88.0
E	0.0	3.1	8.7	23.7	43.1	81.6	4.0	76.1	66.9	11.2	92.1	89.8	85.1	80.

Appendix 8:Cc. Continued.

Analysis of table legs, tolvan 7. -

$\begin{aligned} & \text { lable } \\ & \text { lop } \end{aligned}$	$\begin{aligned} & \text { Leg } \\ & \text { fipe } \end{aligned}$	1.	5.	6.	1.		Veaps.	10	11.	12.	12.	11	15.	16.	320.
0	1	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	2	0.0	0.0	20.0	15,0	10.7	1.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	1	0.0	0.0	20.0	20.0	11.3	1.9	2.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	7	0.0	0.0	0,0	16.0	10.7	7.9	2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	8	0.0	0.0	0.0	0.0	0.0	0.0	0,0	3.6	0.0	0.0	0.0	0.0	0.0	0.0
3	2	0.0	0.0	0.0	20.0	0.0	8.3	0.0	0.0	0.0	0.0	0.0	0.0	2.9	0.0
3	1	0.0	0.0	10.0	4.0	10.7	10.5	0.0	0.0	0.0	0.0	2.9	2.6	0.0	0.0
3	5	0.0	0.0	0.0	1.0	0.0	2.6	5.8	0.0	0.0	0.0	0.0	0.0	11.3	0.0
3	6	0.0	0.0	0.0	4.0	7.1	0.0	2.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	7	0.0	0.0	0.0	8.0	25.0	18.4	8.6	3.6	0.0	0.0	0.0	0.0	0.0	0.0
3	8	0.0	0.0	0.0	8.0	21.1	31.2	17.1	92.9	100.0	100.0	97.1	37.1	82.8	100.0
1	2	0.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	1	0.0	0.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	8	0.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Analysis of Gategories of table legs, Coluan 1.

Le9														
Gilegocy.	1.	5	6.	1.	8.	1.	10.	11.	12	13.	11.	15.	16.	320.
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	20.0	36.0	10.7	15.8	0.0	0.0	0.0	0.0	0.0	0.0	2.1	0.0
4	0.0	0.0	80.0	24.0	25.0	18.4	2.9	0.0	0.0	0.0	2.9	2.6	0.0	0.0
\$	0.0	0.0	0.0	4,0	0.0	2.6	5.8	0.0	0.0	0.0	0.0	0.0	14,3	0.0
6	0.0	0.0	0.0	4.0	7.1	0.0	2,9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	21.0	35.7	26.3	11.1	3.6	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	8.0	21.1	36,4	77.1	96.1	100.0	100.0	97.1	37.4	82,8	100.0

Analysis of Use of Depth Cues, Column 1.

depth Gue_	1.	\leqslant	6.	1.		Year	11.	11.	12.	13.	11.	15.	16.	220.
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	20.0	36.0	10.7	15,8	0.0	0.0	0.0	0.0	0.0	0.0	2.9	0.0
6	0.0	0.0	10.0	28.0	32,1	18.1	8.7	0.0	0.0	0.0	2.1	2.6	0.0	0.0
0	0.0	0.0	0.0	36.0	17.1	65,8	21.3	100.0	100,0	100.0	97.1	97.1	97.1	100.0
ε	0.0	0.0	0.0	36.0	\$1. 2	63.3	91.1	100.0	100.0	100.0	37.1	97.1	82.8	100.0

Appendix 8:Cc. Continued.
amprole of table lega, coluan 1
H

Amiyslis of tategories al table logs, coluan 8.

Malysis of Use of mepth tues, Colven B,

Appendix 8:Cc. Continued.

Analysis of table legs, Coluan 9 . \square

Table	leg						Yeap								
100	60.	1.	1.	6.	1.	1.	2.	10.	11.	12.	13.	11.	15.	16.	220
0	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	2	0.0	0.0	0.0	10.0	17.9	15.8	11.3	32.1	30.0	6.3	8.1	21.1	34.3	50.0
2	4	0.0	0.0	80.0	28.0	39.3	31.6	25.7	17.9	20.0	12.5	29.1	31.6	22.1	30.0
2	5	0.0	0.0	0.0	4.0	3.6	2,6	2,8	21.1	10.0	31.3	17.7	15.8	27.1	10.0
2	1	0.0	0.0	0.0	24.0	32.1	12.1	\$1.1	10.7	20.0	25.0	23.5	18.1	5,7	0.0
2	8	0.0	0.0	20.0	4.0	3.5	5.3	0.0	17.9	20.0	18.7	11.7	2.6	2.9	5.0
3	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.9	0.0	0.0	0.0
3	1	0.0	0.0	0.0	0.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	8	0.0	0.0	0.0	0.0	0.0	2,6	5.7	0.0	0.0	3.1	5.8	10.5	5.7	5.0
1	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1	0.0	0.0	0.0	0.

Analysis of Categorise of table legs, Coluan ${ }^{\text {S. }}$

Gitezory.	1.	5.	6.	1.	1.	2.	16	11	12.	13.	11	15.	16.	220
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	10.0	17.9	15.8	14.3	32,1	30.0	6.3	8.8	21.1	31.3	\$0.0
4	0.0	0.0	80.0	28.0	39.3	31.6	25.9	17.9	20.0	12.5	29.1	31.6	22.5	30.0
5	0.0	0.0	0.0	4.0	3.6	2.6	2,9	21.4	10.0	31.3	20.6	15.8	27.1	10.0
7	0.0	0.0	0.0	21.0	35.7	12.1	51.1	10.7	20.0	28.1	23.5	18.1	5.7	0.0
8	0.0	0.0	20.0	1.0	3.5	3.3	\$. 1	17.9	20.0	21.8	17.6	13.1	8.6	10.0

Analysis of Use of Depth Cues, Columa 9.

Depth cue	1.	5	6.	1.		Years	11.	11.	12	12	11.	15.	16.	320
A	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	0.0	0.0	0.0	10.0	17.8	15,	11.3	32.1	30.0	6.3	8.1	21.1	31, 3	80.0
6	0,0	0.0	80.0	28.0	39.3	31.6	25.7	17.9	20.0	12.8	29.1	31.6	22, 5	30.0
0	0.0	0.0	20.0	32,0	42,9	52.6	60.0	\$0,0	50.0	81.3	61.8	17.1	12,8	20.0
E	0.0	0.0	20.0	28.0	39.2	17,4	\$7.1	28.6	40.0	49.9	11.1	31.5	11.3	10.0

Appendix 8:Cc. Continued.

maslysis of table legs, colvan 10. 4

Ansipale ol Categorles of table legs, colvan 10.

Analysis of Une of Depth Cues, Colven 10 .

Analysis of table legs, Golvan 11, fr

Table Lop	$\begin{aligned} & \text { Leg } \\ & 60 \end{aligned}$	1.	5.	6.	1.		Yeaps, 1	10.	11.	12.	13.	11.	15.	16.	270
0	1	28.6	20.0	0.0	0.0	0,0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0
2	2	0,0	0.0	0.0	0.0	2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	1	0.0	0.0	0.0	3.2	2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	7	28.5	20.0	14.3	0.0	2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	2	0.0	0.0	0.0	3.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	4	0.0	0.0	7.1	6.5	2.9	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	7	11.3	0.0	7.1	19.4	14.9	21,3	23.3	50.0	10.0	21.8	0.0	5.3	22.1	5.0
3	8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.6	13.3	31.1	20.6	21.1	11.1	25.0
1	2	0.0	0.0	0.0	0.0	2.9	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	1	0.0	20.0	0.0	9.1	26,5	6.5	4.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	1	28.6	10.0	71.4	58.1	41.1	86.5	72,1	46,1	16.1	43.8	79.1	73.7	65.1	70.0
1	8	0.0	0.0	0.0	0.0	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Analysts of Categories of table legs, Colvan 11.

Analysis of Use of Depin Cues, Coluan II,

Depth Cue.	1.	1	6.	1.		$\begin{aligned} & \text { Years } \\ & 1 . \end{aligned}$	11.	11.	12.	13.	11.	15.	16.	220
1	28.6	20.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0,0	0,0	0.0
B	0.0	0.0	0.0	3.2	3.9	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	0.0	20.0	7.1	19.1	32.4	10.5	4.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0	71.4	60.0	92,9	17.1	61.8	17.0	95, 3	100.0	100.0	100.0	100.0	100.0	100,0	100,0
E	11.4	60.0	92.8	17.4	81.8	17.0	95, 3	100.0	100,0	100.0	100,0	100.0	100.0	100.0

Appendix 8:Cc. Continued.

Analysts of lable legs, Goluan 12. _

$\begin{aligned} & \text { 1able } \\ & 100 \end{aligned}$	$\begin{array}{ll} \text { len } \\ \text { fin } \end{array}$	1.	5	1	1		Yeaps. 1	10.	11.	12.	13.	11.	11.	15.	120
1	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
1	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1	0.0	0.0	0.0	0.0
1	1	0.0	0.0	0.0	4.0	0.0	0.0	0.0	10.7	3.3	3.1	8,	0.0	8.7	15.0
1	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	2.1	0.0	0.0	0.0
1	2	0.0	0.0	20.0	32.0	21.1	11.2	2,8	7.1	3.7	0.0	0.0	2.5	2.8	0.0
1	1	0.0	0.0	80.0	32.0	35.1	21.9	11.1	0.0	0.0	0.0	0.0	2.6	0.0	0.0
2	1	0.0	0.0	0.0	0.0	2.6	0.0	2.8	0.0	3.1	0.0	0.0	0.0	2.8	8.0
2	7	0.0	0.0	0.0	20.0	17.9	26.3	17,1	3.6	1.1	6.1	0.0	2.6	2.8	0.0
2	1	0.0	0.0	0.0	0.0	9.5	6.9	0.0	11.3	0.0	6.9	0.0	2.6	0.0	0.0
1	2	0.0	0.0	0.0	0.0	0.0	0.0	2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.8	0.0	2.8	0.0
1	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.7	23, 3	18,8	11.8	0.0	11.3	10.0
3	6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.8	0.0	0.0	0.0	0.0
1	7	0.0	0.0	0.0	1.0	7.1	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	1	0.0	0.0	0.0	0.0	0.0	10.8	11.3	39.3	\$3, 1	36.3	85.1	71.9	81.3	85.0
1	2	0.0	0.0	0.0	0.0	0.0	8.6	0.0	0.0	0.0	0.0	0.0	2.8	0.0	0.0
1	1	0.0	0.0	0.0	0.0	2, 6	0.0	8.6	3.6	6.1	0.0	0.0	0.0	0.0	\$,0
1	7	0.0	0.0	0.0	8.0	1.1	1.8	20.0	7.1	13.3	3.1	17.6	1.8	11.3	10.0
1	1	0.0	0.0	0.0	0.0	0.0	2.6	0.0	3,6	0.0	0.0	0.0	0.0	0.0	0.0

Analysit of Categorles of table legs, toluan 12.

Leg														
Gregoir	1.	5.	1.	2	1.	1.	10	11.	12	11.	11	15.	11.	220
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	20.0	32,0	11.1	18.8	1.1	1.1	3.9	3.1	0.0	6.8	2.9	0.0
1	0.0	0.0	60.0	36.0	19.3	26.8	20.0	11,3	10.0	1.1	11.1	2.6	1,6	20.0
5	0.0	0.0	0.0	0.0	2.6	0.0	2.8	10.7	16.6	13.6	11.1	0.0	17.2	10.0
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6,3	0.0	0.0	0.0	0.0
1	0.0	0.0	20.8	32.0	32.1	35.8	37.1	10.7	16,1	8.1	20.1	10.5	17.1	15.0
1	0.0	0.0	0.0	0.0	3.5	18.1	21, 3	87, 2	83.1	62,6	35.1	81.6	\$1, ${ }^{\text {\% }}$	\$5,0

danlysis of Use of beph Cues, Colven 12.

Depith Sue.	1.	1	1	1		Yed	11.	11	12.	12	11	15	11.	220.
1	0.0	0.0	0.1	1.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	20.1	12.0	21.1	15,1	6.8	7.1	3.1	3.1	0.0	8,2	2.8	0.0
6	0.0	4.0	SO. 0	3.0	\$9.3	28.9	20.0	14.1	10.0	2.1	11.1	2.6	1,6	20.0
0	0.0	0.0	20.1	32.1	28. ${ }^{\text {P }}$	85.3	71.1	7,6	*, 7	01.8	*, 2	92.1	81.6	80.0
E	0.0	0.0	20.1	32.1	25.6	85, 3	71.1	61.8	70.7	78.3	76.1	92.1	11.1	70.0

Appendix 8:Cc. Continued.

Analysis of table legs, coluan 13. for

Table 100	leg .	1.	1.	1.	1.		$\begin{aligned} & \text { Yeats. } \\ & 2 . \end{aligned}$	10.	11.	12.	13.	11	15.	16.	320
0	1	11.3	16.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	2	0.0	0.0	0.0	0.0	2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	1	0.0	0.0	0.0	0.0	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1	0.0	0.0	0.0	0.0
1	1	0.0	16.7	15, 1	12.1	22.2	1.4	4.5	0.0	0.0	0.0	0.0	0.0	2.9	0.0
1	1	85.7	66.1	14.6	87.9	15.0	11.1	95.5	100.0	100.0	96, 9	100.0	180.0	87.1	95.0
1	1	0.0	0.0	0.0	0.0	0.0	2,2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0

Analysis of Catogofles of tabla logs, Coluan 13.

Leg														
Gitegory	1.	s	6	1.	1.	2.	10.	11.	12.	13.	11.	15.	16.	220
1	11.3	16.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	2,1	0.0	0.0	0.0	0.0	3.1	0,0	0.0	0,0	0.0
1	0.0	16.7	15.1	12.1	22.2	6.7	1.5	0.0	0.0	0.0	0.0	0.0	2.8	0.0
1	85.7	66.7	14.6	87.8	75.0	91.1	95, 5	100.0	100.0	96.9	100.0	100,0	97.1	35.0
1	0.0	0.0	0.0	0.0	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0

Analysis of Use of Depth Cues, Coluan 13.

Depth Gut.	1.	5.	6.	1.		Yeal	10.	11.	12.	13.	11.	15.	16.	320
1	11.3	16.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0	2.8	0.0	0.0	0.0	0.0	3.1	0.0	0.0	0.0	0.0
C	0.0	16.7	15, 1	12.1	22.2	6.7	1.5	0.0	0.0	0.0	0.0	0.0	2.8	0.0
0	85.7	66.1	81,6	87.1	15.0	93.3	35.5	100.0	100,0	86.9	100.0	100.0	87.1	100.0
E	85.7	66.7	81.6	87.1	15.0	83.3	95,5	100,0	100,0	96.9	100.0	100.0	97.1	100.0

\square

lable 160	lif 10	1	1.	1	1.		$\begin{aligned} & \text { Years } \\ & \hline \end{aligned}$	10.	11.	12.	11.	11.	15.	16.	120
1	1	0.0	0.8	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
1	2	0.0	0.0	0.0	27.0	25.0	13.2	1,6	25.0	26. 7	3.1	11.8	18,8	31,2	63.0
2	1	0.0	0.0	C0, 0	36.0	12.8	81.1	20.0	25.0	16.7	18.6	28.	21,2	22.9	25.0
2	8	0.0	0.0	0.0	0.0	3.6	10.8	11.1	17.1	10.0	31.3	4.1	18.8	21.5	10.0
2	6	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0
2	1	0.0	0.0	20.0	32.0	21.6	47.4	45.1	17.8	16.7	37.5	23.1	11.1	11.1	0.0
2	1	0.0	0.0	20.0	0.0	0.0	1.9	11.5	14.3	30.0	12,5	20.8	7.1	0.0	0.0
1	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.9	0.0	0.0	0.0
3	1	0.0	0.0	0.0	0.0	0.0	0.0	2.1	0.0	0.0	0.0	0.0	2.6	0.0	0.0
1	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0

Analyits of tategorles ol tasto legs, toluan 14.

leg Gilegory	1.	1	1.	Age in Yeaps,			10	11.	12.	11.	11.	15.	11.	276
				1.	,	2.								
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	28.0	25.0	13,2	1,6	25.0	26.7	2.1	11.8	18.8	37.2	89.0
1	0.0	0.0	60.0	36.0	12.9	21.1	20.0	25.0	16.7	18,6	26.5	31.2	22.8	25.0
5	0.0	0.0	0.0	0.0	2.6	10.5	11.1	17.1	10.0	31.3	17.6	11.8	21,8	10.0
6	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0
7	0.0	0.0	20.0	32.0	23.6	41.4	15.7	17.8	16.7	31.5	23.8	21.1	11.1	0.0
1	0.0	0.0	20.0	0.0	0.0	7.8	11.1	11.9	30,0	12,5	20.6	10.1	0.0	0.0

Amalysis of Use of Depth Cues, Colvan II.

Depin Cure	1.	1.	1	1.			11.	11	12.	11	11	12	16	230.
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	28.0	28.0	11.2	1,6	25.0	26.7	3.1	11.1	15.1	37.2	\$5.0
6	0.0	1.0	60.0	80.0	42.8	21.1	20.0	28.0	16,7	18.6	26.8	14,2	22, 1	25.0
0	0.0	1.0	40.6	22.0	32.1	65.1	71.1	80.0	86. 7	81.1	61.1	80.0	10.0	10.0
E	0.0	1.0	40.0	3.0	22,1	85.9	60.1	12.8	16.7	80.0	81,1	$\mathbf{2 8 . 8}$	11.1	0.0

Appendix 8:Cc. Continued.

Analysis of table lega, Coluan 15,

Table Ion	$\begin{aligned} & \text { Le9 } \\ & 60 \end{aligned}$	1.	5.	6.	1.		$\begin{aligned} & \text { Yeat1 } \\ & 2 . \end{aligned}$	10.	11.	12.	12.	11.	15.	16.	320
0	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11.1
2	2	0.0	0.0	0.0	1.3	7.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	1	0.0	0.0	0.0	25.0	28.6	8.0	5.6	0,0	0.0	0.0	0.0	0.0	0.0	0.0
2	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.9	0.0	0.0	0.0	0.0
2	1	0.0	0.0	0.0	25.0	0.0	8.0	5.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	8	0.0	0.0	50.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	5	0.0	0.0	0.0	0.0	7.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	8.3	0.0	0.0
1	2	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	1	0.0	0.0	\$0.0	8.3	21.1	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	1	0.0	0.0	0.0	33.3	35.7	55.0	88.9	100.0	100,0	81.1	100.0	81.7	100.0	88,9

Analysis of Categorles of table legs, Coluan is.

Leg														
Ategoer	1.	1.	\leqslant	1.	8.	1.	10.	11.	12	13.	11.	15.	16.	320
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0,0	0.0	0.0	8.3	7.1	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0
4	0.0	0.0	50.0	33.3	50,0	30.0	5.6	0.0	0,0	0.0	0.0	0.0	0.0	11.1
5	0.0	0.0	0.0	0.0	7.1	0.0	0.0	0.0	0.0	5.9	0.0	0.0	0.0	0.0
7	0.0	0.0	0.0	58,3	35.7	60.0	91,9	100.0	100,0	91.1	100.0	84.1	100.0	88.8
8	0.0	0.0	50,0	0.0	0.0	8.0	0.0	0.0	0.0	0.0	0.0	5.3	0,0	0.0

Analysts of Use of Depth Cuns, coluan is.

Depth	1	5.	6.	1.	Age in Years		10.	11.	12.	13.	11.	15.	16.	220.
A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	0.0	0.0	0.0	8.3	7.1	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C	0.0	0.0	50.0	33.9	50.0	30,0	1.6	0.0	0.0	0.0	0.0	0.0	0.0	11.1
0	0.0	0.0	50.0	58.3	12,9	65.0	91,9	100.0	100.0	100,0	100.0	100.0	100.0	88.9
ε	0.0	0.0	50.0	\$8.3	35.7	65,0	81,9	100.0	100,0	24,1	100,0	100.0	100.0	88.9

Appendix 8:Cc. Continued.
analysit of table legs, coluan 16 . \square

$\begin{aligned} & \text { Table } \\ & \text { Loig } \end{aligned}$	Leg Sen	1.	1.	1.	1.		Yoaps	11.	11.	12.	11.	11	11.	11.	320.
0	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0
2	2	0.0	0.0	0.0	0.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
2	1	0.0	0.0	1.0	1.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	7	0.0	0.0	0.0	4.0	0.0	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	2	0.0	0.0	0.0	16.0	0.0	13.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	4	0.0	0.0	60.0	20.0	21.1	21.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	5	0.0	0.0	20.0	1.0	3.6	8.2	2.8	0.0	0.0	0.0	0.0	0.0	8.9	18.0
1	6	0.0	0.0	20.0	12.0	1.1	0.0	5.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	1	0.0	0.0	0.0	12.0	25.0	13.2	11.1	0.0	3.3	0.0	0.0	0.0	0.0	0.0
3	1	0.0	0.0	0.0	1.0	21.1	39.5	24.2	100.0	86.7	100.0	100,0	100.0	81.9	15.0
4	2	0.0	0.0	0.0	4.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	1	0.0	0.0	0.0	0.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	1	0.0	0.0	0.0	12.0	1.1	8.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Analyals ol tategorles of table legs, colvan 16.

leg														
Culeact	1.	1	1.	1.	1.	1.	10.	11.	12	11.	11	15	16	230
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	20.0	7.1	13.2	2.9	0.0	0,0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	00.0	28.0	21.8	21,1	2.9	0.0	0.0	1.0	0.0	0.0	0.0	0.0
5	0.0	0.0	20.0	8.0	3.6	8.2	2.9	0.0	0.0	0.0	0.0	0.0	8.1	15.0
6	0.0	0.0	20.0	12.0	7.1	0.0	8.1	0.0	0,0	1.0	0.0	0.0	0.0	0.0
,	0.0	0.0	1.0	23.0	32.1	21.1	11.1	0.0	1.3	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	1.0	21.1	39.5	11.9	100.0	86.9	100.0	100.0	100.0	11.1	85.0

Andyils of Use ol Depth Cues, coluan is.

Bepth						Yist								
Sus	1	1	1	1.	1.	2.	10	1.	12.	12	11.	15.	16	390
,	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	20,0	9.1	13.8	2.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	0.0	0.0	80.0	10.0	35.1	21.1	1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	20.0	10.0	87.1	65.1	01.6	100.0	100.0	100.0	100,0	100.0	100,0	100.0
E	0.0	0.0	20.0	11.0	60,6	60.6	81.9	100.0	100.0	100.0	100.0	100.0	81.3	83.0

Analysis of table logs, colvan in. \quad I

Table Ion	leg 60°	1.	5.	1.	1.		$\begin{aligned} & \text { Years } \\ & 2 \end{aligned}$	11	11.	12.	12.	11.	11.	16.	230
1	1	11.3	27.3	0.0	3.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	2	11.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	1	57.1	0.0	9.1	12.5	2.1	4.4	5.0	0.0	0.0	3.1	0.0	2.6	4.6	25.0
1	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1	3.1	0.0	0.0	0.0	0.0
2	2	11.3	18.2	36.1	25.0	11.1	20.0	20.0	11.3	10.0	6.3	2.8	5.3	2.8	10.0
1	1	0.0	18.2	15.5	28.1	41.7	24.1	10.0	7.1	6.1	0.0	6.8	5.3	0.0	0.0
2	5	0.0	0.0	0.0	3.1	2.1	0.0	5.0	10.1	3.3	9.1	2.9	2.6	0.0	0.0
2	1	0.0	9.1	9.1	15.6	11.4	26.1	20.0	14.3	6.1	12,5	8.9	7, 8	0.0	0.0
2	8	0.0	0.0	0.0	0.0	4.5	6.1	2.5	14.3	10.0	6.2	3.0	0.0	0.0	0.0
3	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.8	0.0
3	5	0.0	0.0	0.0	3.1	2.1	0.0	0.0	10.1	10.0	12.5	17.6	5,3	2.9	0.0
3	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1	0.0	0.0	0.0	0.0
3	7	0.0	0.0	0.0	0.0	5.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	1	0.0	0.0	0.0	3.2	2.8	13.3	20.0	17.8	43.3	37.5	38.3	65.8	60.0	35.0
4	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.9	0.0	0.0	0.0
1	1	0.0	21.3	0.0	6.3	2.1	0.0	2.5	3.6	3.3	0.0	0.0	0.0	0.0	0.0
1	7	0.0	0.0	0.0	0.0	2.8	1.1	15,0	7.1	3.3	6,3	20.6	\$,3	22.9	10.0

Analysis of Categorles of tible legs, Coluan 17.

Leg Age ta Yeats,														
Gregory	1.	5.	6.	1.	1.	2	10	11.	12.	13.	11.	15.	16.	220.
1	11.3	21.3	0.0	3.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	28.6	18.2	36.1	25.0	11.1	20.0	20.0	14.3	10.0	6,3	5.8	3,3	5.8	10.0
4	57.1	15,5	51.5	16.9	47,2	28.8	17.5	10.1	10.0	3.1	5.9	7.1	1,6	25.0
S	0.0	0.0	0.0	6.2	5,6	0.0	S,0	21.1	13,3	21.9	20.5	7.9	2.1	0.0
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1	0.0	0.0	0.0	0.0
7	0.0	3.1	2.1	15.6	21.8	31.1	35.0	21.4	13.3	21.1	26.5	13.2	22.9	10.0
8	0.0	0.0	0.0	3.2	0.3	20.0	21.5	32.2	53.3	13.1	41.3	65.8	\$0.0	35.0

Analysis of Use of Depth Cues, Coluan 17,

Oepth Cus.	1.	5.	6.	1.	1	Yeare 1	10	11	12	11.	11.	15.	16.	120
1	14.3	21.3	0.0	3.1	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0
1	28,6	18.2	36.1	25,0	11.1	20.0	20.0	14.9	10.0	6.3	8.1	5.3	5.8	10.0
C	\$1.1	45.5	51.5	46.9	47.2	28, 8	17.5	10.7	10.0	6.2	8, 8	7.8	1.6	25.0
0	0,0	9.1	9.1	25,0	11.7	\$1.1	62.5	75.0	30.0	81,5	88.1	16. 1	85.7	65.0
E	0.0	9.1	9.1	18.1	46. 1	\$1.1	62,5	\$3.6	66.6	68.7	67.1	73,0	82.9	\$5,0

Appendix 8:Cc. Continued.

Anslysis of table legs, coluen it.

fable Ien	leg	1.	1.	1.	1		$\begin{aligned} & \text { Yespi, } \\ & \hline \end{aligned}$	10.	11.	12.	12	11.	11.	15.	120.
1	1	18.8	1.1	0.0	0.0	0.0	1.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	3	6.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0
2	4	6.3	0.0	8.0	2.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	7	0.0	0.0	0.0	0.0	0.0	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	1	12.5	21.1	15.0	7.1	2,2	1.8	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	1	0.0	21.8	0.0	0.0	0.0	0.0	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	5	0.0	0.0	0.0	0.0	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	6	0.0	1.1	0.0	4.1	11.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	7	0.0	0.0	0.0	16.7	1.5	11.8	1,6	10.7	3.3	0.0	0.0	0.0	2.5	0.0
1	1	31.3	35.1	10.0	69.0	19.5	73.6	86,5	19.3	26.1	100,0	100.0	100.0	87.1	100.0

Andysif of Cotegoplos of table logs, Goluan 18.

les					ear									
cricgopy	1.	1	6	2	1.	1.	10	11.	12.	11.	11.	15	16.	220
1	18.8	1.1	0.0	0.0	0.0	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	6.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	6.3	28.6	8.0	2.4	0.0	0.0	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	0.0	1.1	0.0	1.1	11.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	16.1	4.5	20.1	9.6	10.7	3.9	0.0	0.0	0.0	2.8	0.0
1	61.1	87.1	35.0	76.2	11.8	17.4	88.5	19.3	15.7	100.0	100.0	100.0	87.1	100.0

Analysis of Vis of Depth Cues, Colvan If,

Depin Cue	1.	1	6.	2		$\begin{aligned} & \text { Yeap } \\ & 2 \end{aligned}$	11.	11.	12	11	11.	15.	16.	290
1	18.1	1.1	0.0	0.0	0.0	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	12.5	21.6	6.0	7.2	11.1	0.0	1,5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0	61.8	51.1	35.0	82.9	11.6	28.1	81.1	100.0	100.0	100,0	100.0	100.0	100.0	100.0
t	61.1	61.2	85.0	91.7	87.1	88.1	88, 1	100.0	100.0	100,0	100.0	100,0	100.0	100.0

Appendix 8:Cc. Continued.

Anlysis of table legs, colvan 19. 1

Table	Leg						Yeat								
108	60	1.	1.	6.	1.	8.	1.	10.	11.	12.	13.	11.	15.	16.	270
0	1	85.1	21.3	18.2	3.1	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	1	0.0	0.0	0.0	0.0	2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	4	0.0	21.3	3.1	3.1	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	5	0.0	9.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	6	0.0	9.1	18.2	6.3	1.3	6.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	7	0.0	0.0	0.0	21.9	13.9	26.7	12.5	7.1	3.3	0.0	0.0	0.0	0.0	0.0
3	1	11.3	27.3	\$4.5	65.6	75.0	62,2	87.5	92,9	96.7	100.0	100,0	100,0	100.0	100.0

Analysis of citegoties of sable legs, Coluan 19,

Leg Age in Yeaps,														
Cilegory	1.	1	6.	1.	1.	1	10.	11	12	11.	11.	15.	16.	320.
1	85.7	27.3	18.2	3.1	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	27.3	8.1	3.1	2.8	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	9.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	0.0	9.1	18.2	6.3	8.3	6.7	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	21.9	13.9	26, 7	12.5	7.1	3.3	0.0	0.0	0.0	0.0	0.0
8	11.3	21.3	\$1.5	65.6	75.0	62, 2	07.5	92,9	96.1	100.0	100.0	100.0	100.0	100.0

Analysis of Use of Depth Cues, Golvan 19,

Depth Gue.	1.	\leqslant	6.	1.		Yeat	10.	11.	12.	13.	11.	15.	16.	320.
1	85.7	27.3	18.2	3.1	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	0.0	36.1	21.3	9.4	11.1	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0	14.3	36.1	\$1.5	87.5	88.9	88.9	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
E	14.3	36.1	72.7	93,8	\$7,2	95,6	100.0	100,0	100.0	100,0	100.0	100.0	100.0	100.0

Appendix 8:Cc. Continued.

Amivile of table logs, coluata $20 . \quad L$

Table	$\begin{aligned} & 609 \\ & 60 \\ & \hline \end{aligned}$	1.	5	1.	1.		$\begin{aligned} & \text { Yoses. } \\ & \hline \end{aligned}$	12	11.	12	11	11	11	11.	320
1	1	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
1	1	0.0	0.0	0.0	0.0	0.0	1.0	0.8	0.0	0.0	0.0	2.8	2.6	1.8	18.0
2	2	0.1	0.0	0.0	21.0	21.8	18.1	11.1	28.6	83.1	3.1	8.8	11.4	27.2	85.0
2	1	0.0	0.0	10.0	36.0	39.3	26.8	8.6	21.4	20.0	18.6	23.5	14.2	28.6	25.0
2	f	0.0	0.0	20.0	0.0	3.6	1.8	11.6	17.1	10.0	11, 2	20.6	10.6	22.8	0.0
2	7	0.0	0.0	0.0	32.0	29,0	$\boldsymbol{3 . 1}$	18,6	14.9	18,3	11,4	20.6	11.1	5.7	3.0
1	1	0.0	0.0	0.0	1.0	1, 5	8.3	11.3	14.8	23.8	12,8	11.8	8.2	0.0	0.0
1	2	0.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.8	0.0	0.0	0.0
1	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.6	0.0	3.1	6.8	10.6	8.1	0.0
1	7	0.0	0.0	0.0	0.0	1.1	0.0	0.0	0.0	0.0	0.0	2,8	0.0	0.0	0.0
1	1	0.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Analysis of Colegories of table legs, coluan 20.

619														
Giteasey	1	1.	1.	1.	,	2	10.	11.	12	11.	11.	11	11.	320
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	21.0	21.8	21.0	11.1	21.6	33.1	3.1	6.9	11.1	17.2	85.0
1	0.0	0.0	10.0	36.0	31.3	26.3	1.6	21.1	20.0	18.6	26.8	36.1	24.6	10.0
\$	0.0	0.0	20.0	0.0	9,6	1.8	11.1	11.8	10.0	31.3	26.5	10.6	22,8	0.0
1	0.0	0.0	0.0	32.0	32.1	36,1	48.6	11.9	13.3	11.1	23.8	11.6	8.7	8.0
1	0.0	0.0	0.0	1.0	3.3	1.8	11.3	17.1	21.3	18.6	17.8	15.7	$\$.7$	0.0

andysis of Vis of dopith Cubs, Coluan 20.

Deplin cue.	1.	1.	1.	1.		$\begin{aligned} & \text { Yesrs } \\ & 2 \end{aligned}$	11.	11.	12.	11.	11.	11.	11.	220
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
1	0.0	0.0	0.0	21.0	21.6	21.0	17.1	21.6	23.3	2.1	8.8	11,4	31.2	85.0
6	0.0	0.0	10.0	K. 0	31,3	26.9	8.6	21.1	20.0	18.6	8.8	W. 1	28.6	10.0
0	0.0	0.0	20.0	10.0	91, 3	12.6	71, 8	30.0	85, 7	11.8	67.6	4.1	11, 3	B, 0
t	0.0	0.0	0.0	40.0	35.6	41.8	62.9	22,1	36.6	\$0.0	40.1	$\boldsymbol{\mu} .1$	11.1	6.0

Appendix 8:Cc. Continued.

Analysis of table legs, coluan $21 . \geq$

Table I00	Leg 60^{2}	1.	5.	1.	1.	Age	$\begin{aligned} & \text { Yars, } \\ & 2 \end{aligned}$	10.	11.	12.	13.	11.	15.	16.	320.
0	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	2	0.0	0.0	20.0	0.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0
2	1	0.0	0.0	0.0	8.0	7.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1	0.0	0.0	0.0	0.0
2	1	0.0	0.0	0.0	1.0	0,0	6, 3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	1	0.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	2	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	1	0.0	0.0	20.0	8.0	3.6	2.6	2.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	5	0.0	0.0	0.0	0.0	0.0	5.3	0.0	0.0	0.0	0.0	0.0	0.0	2.9	0.0
3	7	0.0	0.0	0.0	0.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	8	0.0	0.0	0.0	0.0	0,0	2.6	0.0	0.0	3.3	0.0	0.0	2.6	2.8	3,0
1	2	0.0	0.0	0.0	16.0	7.1	13.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0
4	4	0.0	0.0	60.0	21.0	32.1	13.2	8.6	0.0	0.0	0.0	0.0	0.0	0.0	\$,0
4	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.1	0.0	0.0	0.0	0.0
1	7	0.0	0.0	0.0	32.0	42,9	52.6	85.1	100.0	26.7	93.8	100.0	97.1	91.1	85.0
1	8	0.0	0.0	0.0	6.0	0,0	2.6	2.9	0.0	0.0	0.0	0.0	0,0	0.0	0.0

Analysis of Categories of table legs, Coluan 21.

Leg Age in Years.														
Citegary	1.	5.	6.	1.	1.	2.	11.	11.	12	13.	11.	15.	16.	320
1	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	20.0	20.0	10.7	13.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.0
1	0.0	0.0	80.0	40.0	12,9	15.8	11.1	0.0	0.0	0.0	0.0	0.0	2.9	8.0
\$	0.0	0.0	0.0	0.0	0.0	5.3	0.0	0.0	0.0	6.2	0.0	0.0	0.0	0.0
7	0.0	0.0	0.0	36.0	86.1	57.9	85.7	100.0	96.7	93.8	100.0	97.1	81.4	85.0
1	0.0	0.0	0.0	1.0	0.0	1.8	2.8	0.0	3.3	0.0	0.0	2.6	2,8	5.0

Analysls of Use of Depth Cues, Coluan 21 ,

Depth fue.	1.	5.	6.	1.		$\begin{gathered} \text { Year } \\ \hline \end{gathered}$	10.	11.	12	13.	11.	15.	16	120.
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	20.0	20.0	10.7	13.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0
6	0.0	0.0	10.0	10.0	42, 8	15,8	11.4	0.0	0.0	0.0	0.0	0.0	2.9	5.0
0	0.0	0.0	0.0	40.0	46.4	31.1	88.6	100.0	100.0	100.0	100.0	100.0	97.1	90.0
E	0.0	0.0	0.0	40.0	16.1	SS, 7	88.6	100.0	100,0	33.8	100.0	100.0	81.2	90.0

Appendix 8:Cc. Continued.
dalyils of table legs, Golun 22. \square

Talle 100	$\begin{aligned} & 68 \\ & 80 \end{aligned}$	1	1	1	1		Yosts	11	11.	12.	11.	11	18.	11.	220
1	1	1.3	6.0	2.1	1.6	0.0	1.8	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
1	1	13.1	20.0	31.1	20.8	10.3	14.7	3.1	0.0	0.0	1.0	0.0	0.0	1.0	8.0
1	3	0.0	6.7	8.1	0.0	1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
1	1	36.7	83.3	20.0	31.0	17.2	8.8	1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	1	6.7	6.7	14.1	3.6	13.6	8.8	1.7	0.0	0.0	0.0	0.0	0.0	6.1	8.0
j	6	3.3	3.1	11.1	8.8	15, 3	1.8	1.6	0,0	0.0	0.0	0.0	0.0	0.0	0.0
j	1	3.3	3.3	0.0	12.9	13.1	11.1	3.1	2.6	0.0	0.0	0.0	0.0	0.0	0.0
1	1	1.3	6.6	11.1	22.1	22.1	11.0	16.7	81.6	100.0	100,0	100.0	100.0	84.3	20.0

aaslysis of categorlas of table lags, colvan 22.

618 Sitegain	1	1.	1	Age in Years.			12.	11.	12	11.	11	15	11	220
				2	1.	2.								
1	3.3	0.0	2.8	3.6	0.0	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	13.1	20.0	34.3	20.0	10.7	14.1	3.1	0.0	0.0	0.0	0.0	0.0	0.0	3.0
1	0.0	6.1	8.7	0.0	1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	36.7	83.3	20.0	31.0	11.8	3.8	4.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
b	6.1	6.7	11.3	3.6	13.8	\$. 8	7.1	0.0	0.0	0.0	0.0	0.0	5.7	3.0
1	3.3	1.3	11.1	3.1	18.5	8.8	4.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	3.3	1.3	0.0	12.1	13.8	19.1	1,1	3.6	0.0	0.0	0.0	0.0	0.0	0.0
1	3.3	6.6	11.1	22.7	22.8	17.0	76.7	81.6	100.0	100.0	100.0	100.0	11.3	90.0

Amalysis of Use of Dopth Cuss, Colusa 22.

lusin Cul.	1.	1.	1.	1.		Year	16.	11.	12.	12.	11.	11.	15	320
1	3.3	0.0	2.8	1.6	0.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	13,4	20.0	21.3	20.0	10.1	11.7	3.1	0.0	0.0	0.0	0.0	0.0	0.0	1.0
5	10.0	83.1	37.1	36.8	83.1	11.1	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0	13.3	16.7	25.7	10.0	65.1	12.1	81.1	100.0	100.0	100.0	100.0	100.0	100.0	35.0
E	9.9	13.5	22.1	10.1	\$2, 2	12.1	81.1	100,0	100, 0	100,0	100.0	100.0	81.3	30.0

Appendix 8:Cc. Continued.

Amiysis of table legs, Coluna 23. $\quad \mathbb{L}$

Tabla len	$\begin{aligned} & 689 \\ & 60 \end{aligned}$	1.	5.	6.	1.		$\begin{gathered} \text { Yeaps } \\ 2 \end{gathered}$	10	11.	12.	13.	11.	15	16.	220
0	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	2	0.0	0.0	0.0	0.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	4	0.0	0.0	0.0	1.0	0.0	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	2	0.0	0.0	0.0	12.0	8.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	4	0.0	0.0	20.0	8.0	10.7	2.6	3.8	0.0	0.0	0.0	2.8	0.0	0.0	0.0
3	5	0.0	0.0	0.0	0.0	3.6	2,6	0.0	10.1	10.0	15.6	14.7	2.6	8.6	10.0
3	6	0.0	0.0	20.0	4.0	0.0	0.0	3.9	0.0	10.0	6.3	0.0	0.0	0.0	0.0
3	7	0.0	0.0	0.0	8.0	10.7	10,5	8.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	8	0.0	0.0	0.0	8.0	7.1	21.1	45.7	35.1	33.3	65.7	32.9	65.8	68.5	80.0
4	2	0.0	0.0	0.0	8.0	0.0	2,6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	4	0.0	0.0	60.0	16.0	23.0	13.2	14.3	7.1	0.0	0.0	0.0	2.6	0.0	0.0
4	7	0.0	0.0	0.0	32.0	28.6	39.5	22, 8	42.8	26.7	12.5	29.4	28.8	22,9	10.0
4	8	0.0	0.0	0.0	0.0	0.0	8.3	2.8	3.6	0.0	0.0	0.0	0.0	0.0	0.0

Analysis of Categories of table legs, Goluan 23.

6 l					Year									
titegory	1.	5.	6.	1	1	2.	10.	11.	12.	13.	11.	15.	16.	120.
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.1	0.0	0.0	20.0	13.3	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	80.0	28.0	35.7	18.6	17.1	7.1	0.0	0.0	2.9	0.0	0.0	0.0
\$	0.0	0.0	0.0	0.0	3.6	2.6	0.0	10.7	10.0	15,6	11.7	2.6	8.6	10.0
6	0.0	0.0	20.0	1.0	0.0	0.0	2.9	0.0	10.0	6.3	0.0	0.0	0.0	0.0
7	0.0	0.0	0.0	10,0	39.3	50,0	31.1	12, 1	26.7	12.5	29.1	28.9	22.8	10.0
1	0.0	0.0	0.0	8.0	7.1	26.1	18.6	39.3	\$3.3	65.7	52,9	65.8	68.5	80.0

Analysis of Use of Depth Gues, Coluan 23,

$\begin{aligned} & \text { Ozpin } \\ & \text { fue } \end{aligned}$	1.	5.	5.	1.		$\begin{gathered} \text { Yeap } \\ 2 \end{gathered}$	10.	11.	12	13.	11.	15.	16.	120
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	0.0	0.0	0.0	20.0	13, 3	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	0.0	0.0	100.0	32.0	35.7	18.1	20.0	7.1	10.0	6.3	2.8	2.6	0.0	0.0
0	0.0	0.0	0.0	48.0	50,0	78.9	80.0	92, 9	90.0	33.8	97.1	91.1	100.0	100,0
E	0.0	0.0	20.0	52.0	46.1	75.4	02.8	12,2	90.0	81.5	82.3	21.7	91.4	90.0

Appendix 8:Cc. Continued.

Analysis of table legs, column 21.

Amiysis of Categories of table legs, Column 24.

Analysis of Usp of Depth Cuts, Column 21.

Appendix 8:Cc. Continued.

Analysis of table legs, coluan 25 Choice.

Table	Lig						Years,								
102	60	1.	1.	6	1.	1.	1.	10.	11.	12.	12	11.	15.	16.	390.
0	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	2	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.0
2	1	10.0	6.6	8.8	1.8	0.0	. 1,5	0.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0
2	\$	0.0	0.0	0.0	0.0	0.0	$0 ; 0$	1.5	3.6	0.0	0.0	2,5	0.0	0.0	0.0
2	7	0.0	3.3	2.8	0.0	0.0	0.0	4.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	1	0.0	0.0	0.0	0.0	0.0	0.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	2	13.3	0.0	0.0	0.0	0.0	0.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	3	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	4	16.7	23.1	2.8	3.6	0.0	0.0	0.0	0.0	0.0	0.0	2.8	0.0	0.0	0.0
3	5	0.0	3.3	2.9	1.8	6.7	0.0	1.5	3.6	6.7	3.1	0.0	0.0	2.9	10.0
3	6	3.3	3.3	5.7	1.1	3.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	7	3.3	0.0	0.0	11.5	3.3	13.2	1.5	0.0	0.0	3.1	0.0	0.0	0.0	0.0
J	1	80.0	10.0	74.2	12.8	11.1	71.2	13.1	67.9	80.0	81.5	36.5	36.1	17.1	65.0
1	2	0.0	0.0	0.0	0,0	0.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	1	3.3	10.0	0.0	0.0	1.7	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	1	0.0	3.3	2.8	7.3	1.7	6.1	3.1	21.1	13.3	6.3	17.6	13.2	20.0	15.0

Analysls of Eategories of fable legs, Colunn 25,

Analysis of Use of Depth Cues, Cotuan 25

Depith Cus.	1.	5.	6.	1.		$\begin{aligned} & \text { Yeas } \\ & \hline \end{aligned}$	$10 .$	11.	12	13.	11.	15.	16.	120
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	16.6	0.0	0.0	0.0	0.0	1.5	1.5	0.0	0.0	0.0	0.0	0.0	0.0	10.0
6	36,6	10.0	11.1	1.2	6.7	8.0	0.0	3.6	0.0	0.0	2,8	0.0	0.0	0.0
0	53.9	18.8	82.8	86.1	22,4	92,5	36.8	36.1	100,0	100.0	87.1	100.0	100.0	30.0
E	\$6.6	18.9	85.7	26.1	80.7	\$5, 5	33.8	18.9	93, 3	86.9	91,2	100.0	87.1	10.0

Appendix 8: D.
Detailed analyses of proportions of response, with age, of stimull in Groups C to I.

In this appendix responses to the stimuli in groups C to I (as outlined in the introduction to Appendices 8) are compared within each group. A truncated version of this appendix is presented in Chapter 8.

* Group C.

Page Ap.8.82

* Group D. Ap.8.85
* Group E.

Ap.8.88

* Group F.

Ap.8.91

* Group G.

Ap.8.93

* Group H.

Ap.8.96

* Group I.

Ap.8.99

Appendix 8:D.

I) Datalled amalysis of proportions of rasponst, with age, of stioull in group C.

This group is comprised of two table types, nos. 12 [-]
and 17 [$]$ in Figure 8:1. The proportions of response, with age, both on type of table top and type of depth cue produced, were compared across the two figures by a series of Kolmogorov Smirnov two sample, one tailed χ^{2} approximation tests. These tests failed to find any significant differences in response to the two stimuli for the oblique response, or the use of ground line, ground plane, or partial occlusion, but did show significant differences in the production of the orthographic, vertical oblique, and perspective table tops, and in the production of no ground plane. Comparison of Stimulus no. 12 vs. Stimulus no. 17 = Orthographic:$K \chi^{2}=9.57, \mathrm{df}=2, \mathrm{p}<0.01$; Vertical Oblique:- $\mathrm{K} \chi^{2}=32.0, \mathrm{df}=2, \mathrm{p}$ < 0.001; Oblique:- $K \chi^{2}=1.5, \mathrm{df}=2, \mathrm{P}>0.05$; Perspective:- $\mathrm{K} \chi^{2}=8.74$, df $=2, \mathrm{p}<0.02$; No ground line:- $\mathrm{K} \chi^{2}=14.68$, $\mathrm{df}=2, \mathrm{p}<0.001$; Ground line:- $K \chi^{2}=1.04, \mathrm{df}=2, \mathrm{p}>0.05$; Ground plane:- $K \chi^{2}=0.6, \mathrm{df}=2, \mathrm{P}$) 0.05; Partial Occlusion:- $K \chi^{2}=1.3, \mathrm{df}=2, \mathrm{p}>0.05$.

The main areas of difference between the two stimuli appear to be In the proportions, with age, of the vertical oblique and no ground line responses. It can be argued that differences between the two stimuli in orthographic and perspective responses are, to a certain extent, an artifact of the study. Because the data are proportional, a difference in response on one measure necessitates differences on other measures. If the difference is sufficiently strong on one measure, the other differences may well be found significant also. The fact that oblique is the only table top measure on which no significant differences are evident is of interest. It reinforces arguments put forward in earlier chapters about
the uniqueness of the oblique response.
Figure 8:D1 illustrates that filmulus 17 elicits significantly more vertical oblique and no ground line responses from older children

Key:- Stioulus 12. 1 - 1 —— Veptical oblique —— No ground line.

Figure 8:01. a cooparison of the propoptions of vertical oblique and no ground line responses to Stuauli is and 17 .
than does fimulus 12, the straight line. In the same way stimulus 12 ellcits more orthographic and perspective responses in the same subjects than does stimulus 17. Thus the inclusion of two lines at right angles to the top, and hence an essentially square shape to the stimulus, encourages subjects to draw a square table top, and also discourages subjects from using a ground line or ground plane. This effect is evident in subjects between nine and iffteen years of age. It is interesting to speculate that some of the subjects in this age group, who spontaneously produce 'plan' type of tables as identified in Chapters 3 to 6, do so because of the way in which they place the first lines on the paper.

Whilst there are significant differences in response to the two stimuli there are also similarities. The differences will be addressed later when further cross-stimulus comparisons are made, however in order to compare the different stimulus groups it is necessary to axamine the amalgamated data for Group C. Figure 8:D2 shows that few subjects leave

Figure 8:02. The proportions of subjects draving ach type of table top, on stiaulus group C.

Figure 8:03. The proportions of subjects draving eath type of depth cue, on Stiaulus broup C.
the stimuli unaltered or use orthographic projection. The majority of younger subjects use vertical oblique projection, whilst the majority of older subjects use oblique. A small, but relatively steady proportion of subjects use perspective.

Figure 8:D3 illustrates the way in which depth cues are used in Group C. Subjects show a steadily increasing preference, with age, for the production of ground plane and partial occlusion. Younger subjects prefer no ground line and ground line, and, whilst the strength of this preference declines with age, some subjects, at all ages, complete the stimuli in this way.
2) Detailed analysis of proportions of response, with age, of stioull in Group D.

This group is comprised of three table types, nos. $23\{<\}$, $5\{\uparrow\}$, and $8[\nmid\}$ in Figure 8:1. The proportions of response, with age, both on type of table top and type of depth cue produced, were compared across the three figures by a series of Kolmogorov Smirnov two sample, one talled X^{2} approximation tests. These tests found significant differences in the proportions of response, with age, between the three stimull on some of the perspective, and ground line responses, but falled to find any significant differences in the remaining responses. Comparison of Sifmulus no. 23 vs. Stimulus no. $5=$ Vertical Oblique:- $K \chi^{2}=0.99$, df $=2, p>0.05$; Oblique:- $K x^{2}=0.65, d f=2, p>0.05$; Perspective:- $K X^{2}=$ 57.98, $d f=2, p<0.01 ;$ No ground line: $-K x^{2}=4.46, d f=2, p>0.05 ;$ Ground IIne:- $K_{X^{2}}=1.33$, $\mathrm{df}=2, \mathrm{P}>0.05$; Ground plane: $\mathrm{K} \chi^{2}=0.19$, df $=2 . \mathrm{P}>0.05$: Partial Occlusion: $K \chi^{2}=0.69$, df $=2, \mathrm{P}>0.05$. Comparison of Sitmulus no. 23 vs. Stimulus no. 8 = Vertical Oblique:- $K X^{2}$ $=0.32$, df $=2, p>0.05$; Oblique: $K \chi^{2}=1.23$, df=2, $p>0.05$; Perspective:- $K \chi^{2}=1.28, d f=2, P>0.05$; No ground line:- $K \chi^{2}=0.77$. df $=2, P>0.05$; Ground 11ne:- $K x^{2}=9.15$, df $=2, p<0.02 ; \quad$ Ground plane:- $K \chi^{2}=1.72, d f=2, p>0.05$; Partial Occlusion:- $K \chi^{2}=0.74$, $d f=$ 2, $p>0.05$. Comparison of Stimulus no. 8 vs. Stimulus no. $5=$ Vertical Oblique:- $K \chi^{2}=3.23, d f=2, p>0.05 ;$ Oblique: $K \chi^{2}=2.43, d f=2, p \geqslant$ 0.05; Perspective:- $K X^{2}=51.39$, $d f=2, P<0.01$; No ground line:- $K x^{2}=$ 1.16, df $=2, \mathrm{P}>0.05$; Ground line:- $K x^{2}=3.88$, df=2, $P>0.05$; Ground plane:- $K \chi^{2}=1.72$, $d f=2, P>0.05$; Parisal Occlusion:- $K \chi^{2}=$ 1.64, $d f=2, p>0.05$.

Figure 8:D4 shows little significant difference in the perspective response for stimuli 23 and 8, however that elicited by stimulus 5 varies

Key:- Stiaulus 23 t ,
Figure 8:01. The proportions, with age, of perspactive response for stiouli 23, 5, and 8,
significantly from both the others. Stimulus 5 encourages a lower proportion of perspective response from older subjects than do the other stimuli. This is counter-balanced by a higher oblique response, however the difference between the stimuli for the oblique response does not reach significance.

Figure 8:D5 illustrates that the majority of younger subjects complete table tops in Group D in perspective, however, with age, an increasing number of subjects complete it in oblique projection. The exception to this is the four year old subjects, the majority of whom alter the stimulus to provide a table top in vertical oblique projection. A small proportion of subjects between five and nine years of age, and a few fifteen year olds, also make this alteration.

Figure 8:D6 shows that the majority of subjects between four and six years old complete the table legs to a ground line, however after this age ground plane and partial occlusion are used.

Figure B:05. The proportions of subjects draving each type of table top, on Stiaulus group 0 .

Figure 8:06. The proportions of subjects draving ewch trpe of depth cue, on Stiaulus group 0 .
3) Detailed amiysis of proportions of response, vith age, of stiouli in broup E,

This group is comprised of three table types, nos. 2 [] , $9[\square]$, and $14 〔 \square]$ in Figure 8:1, forming Group Ea, and a fourth, Stimulus 20 [L J, which together with the others forms Group E. The proportions of response, with age, both on type of table top and type of depth cue produced, were compared across the three figures by a series of Kolmogorov Smirnov two sample, one tailed χ^{2} approximation tests. These tests found significant differences in the proportions of response, with age, between the three stimuli in Group Ea on some of the no ground line responses, but failed to find any significant differences in the remaining

Key:- Stiaulus 2 !
Figure 8:07. A conparison of the no ground line response, with age, on Stiould 2, 9 , and 11 ,
responses. Comparison of Stimulus no. 2 vs. Stimulus no. $9=$ Vertical Oblique:- $\mathrm{K} \chi^{2}=0.21, \mathrm{df}=2, \mathrm{p}>0.05$; Oblique:- $\mathrm{K} \chi^{2}=0.78, \mathrm{df}=2, \mathrm{p}>$ 0.05; Perspective:- $K \chi^{2}=4.48$, $\mathrm{df}=2, \mathrm{p}>0.05$; No ground line:- $\mathrm{K} \chi^{2}=$ 6.13, $\mathrm{df}=2, \mathrm{p}<0.05$; Ground line:- $\mathrm{K} \chi^{2}=3.67$, $\mathrm{df}=2, \mathrm{p}>0.05$; Ground plane:- $\mathrm{K} \chi^{2}=1.0, \mathrm{df}=2, \mathrm{p}>0.05$; Partial Occlusion:- $\mathrm{K} \chi^{2}=0.74$, $\mathrm{df}=2, \mathrm{p}>0.05$. Comparison of Stimulus no. 9 vs. Stimulus no. $14=$ Vertical Oblique:- $K \chi^{2}=0.21, \mathrm{df}=2, \mathrm{p}>0.05$; Oblique:- $\mathrm{K} \chi^{2}=1.63$, $\mathrm{df}=$ 2, $p>0.05$; Perspective:- $K \chi^{2}=5.66, d f=2, p>0.05 ; \quad$ No ground line:$K \chi^{2}=3.39, \mathrm{df}=2, \mathrm{P}>0.05$; Ground line:- $\mathrm{K} \chi^{2}=2.08$, $\mathrm{df}=2, \mathrm{P}>0.05$; Ground plane:- $K \chi^{2}=0.98, \mathrm{df}=2, \mathrm{P}>0.05$; Partial Occlusion:- $K \chi^{2}=$
1.25, $\mathrm{df}=2, \mathrm{p}>0.05$. Comparison of Stimulus no. 2 vs. Stimulus no. $14=$ Vertical Oblique:- $K \chi^{2}=0.04, d f=2, p>0.05 ;$ Oblique:- $K \chi^{2}=2.77, d f=$ 2, $p>0.05 ;$ Perspective:- $K \chi^{2}=5.4, \mathrm{df}=2, \mathrm{p}>0.05$; No ground line:$K \chi^{2}=11.18, \mathrm{df}=2, \mathrm{p}<0.01$; Ground line: $\mathrm{K} \chi^{2}=5.75$, $\mathrm{df}=2, \mathrm{p}>0.05$; Ground plane:- $K \chi^{2}=1.01, d f=2, P \geqslant 0.05$; Partial Occlusion:- $K \chi^{2}=$ 2.07, $\mathrm{df}=2, \mathrm{p}>0.05$.

These tests indicate that the significant differences between the three stimuli on the no ground line response 15 attributable to stimulus 2. However, as can be seen in Figure 8:D7, the cause of these differences is unclear.

Stimulus group E also includes Stimulus 20. A statistical comparison of the proportions of response, with age, between Group Ea and Stimulus 20 found significant differences in the perspective response, but failed to find any others. Comparison of Stimulus Group Ea vs. Stimulus no. $20=$ Vertical Oblique: $\mathrm{K}_{\chi^{2}}=0.23$, $\mathrm{df}=2, \mathrm{P}>0.05$; Oblique: $-\mathrm{K} \chi^{2}=$ 2.61, $\mathrm{df}=2, \mathrm{p}>0.05$; Perspective: $-K \chi^{2}=7.05, \mathrm{df}=2, \mathrm{p}<0.05$; No ground line:- $K \chi^{2}=4.28$, $d f=2, p>0.05$; Ground line:- $K \chi^{2}=0.67$, $\mathrm{df}=$ 2, $p>0.05$; Ground plane:- $K X^{2}=1.81$, $d f=2, p>0.05 ;$ Partial Occlusion:- $K \chi^{2}=2.04, d f=2, p>0.05$. Very few subjects in any age group produced a perspective response, thus limiting the psychological significance of this finding.

Figure 8:D8 shows that the vast majority of all table tops, at all ages, completed in Group E, are in vertical oblique projection. Some older subjects alter the stimulus to depict the table top in oblique projection, however the number at each age group doing this is very small.

In Figure 8:D9 it can be seen that the way in which the depth cues are drawn on the stimuli in Group E is quite complex. A steadily increasing proportion of younger children, with age, show a preference for using ground plane and partial occlusion, and correspondingly, a steadily decreasing preference for no ground line and ground line. However there is a reversal of these trends between ten and thirteen years of age, until, by adulthood, the majority of subjects use no ground line, with equal numbers of subjects using ground line or ground plane. Decrease in the use of partial occlusion, with age, is even greater than that of ground plane. The no ground line response is further complicated in that it shows a secondary peak between eleven and twelve years of age, reaching approximately 30% at this time. This complex response is elicited by all four stimuli, and indicates an area which might reward further investigation, and which will be discussed later.

Figure 8:08. The proportions of subjocts draving esth type of table top, on Stiaulus group E,

Figure 8:09. The proportions of subjects draving each type of depth cue, on Stisulus group E,

1) Detailed analysis of proportions of response, vith age, of stiouli in group F.

This group is comprised of three table types, nos. 7 [], 16 l \subsetneq, and 22 (\square) in Figure 8:1. The proportions of response, with age, both on type of table top and type of depth cue produced, were compared across the three figures by a series of Kolmogorov Smirnov two sample, one tailed X^{2} approximation tests. These tests found significant differences in the proportions of response, with age, on some of the oblique and perspective responses, but falled to find any significant

Key:- stiaulus 7 (ニ), stioulus 16 (モ1, stiaulus 22 i \square).

OBLIQUE

 perspective…-.........
Figure 8:D10. A coaparison of the obligue and perspective responses, with age, on Stioulf \%, i6, and 22.
differences in the remaining responses. Comparison of Stimulus no. 7 vs. Stimulus no. $16=$ Vertical Oblique:- $K X^{2}=1.66$, df $=2, p>0.05$; Oblique:- $K X^{2}=3.22, d f=2, p>0.05 ;$ Perspective:- $K X^{2}=13.3$, $d f=2, p$ < 0.01; No ground line:- $K \chi^{2}=0.84$, df $\left.=2, p\right\rangle 0.05$; Ground line:- $K \chi^{2}$ $=0.95, \mathrm{df}=2, \mathrm{p}>0.05$; Ground plane:- $\mathrm{K}^{2}=0.19$, df $=2, \mathrm{P}>0.05$; Partial Occlusion:- $K X^{2}=0.19$, df $=2, p>0.05$. Comparison of Stimulus no. 7 vs. Stimulus no. $22=$ Vertical Oblique:- N.A.; Oblique:- $K \chi^{2}=13.19$, df $=2, p<0.01$; Perspective:- N.A.; No ground line:- $K \chi^{2}=3.99$, df $=2$, $p>0.05$; Ground line:- $K x^{2}=1.8, d f=2, p>0.05 ; \quad$ Ground plane:- $K \chi^{2}=$ 0.19, $d f=2, p>0.05 ;$ Partial Occlusion:- $K X^{2}=0.19, d f=2, p>0.05$.

Figure 8:011. The propoptions of subjects draving ath trpe of table top, on stiaulus group F.

Figure 8:D12. The proportions of subjects oraving each type of depth cues, on Stioulus group F.

Comparison of Stimulus no. 16 vs. Stimulus no. $22=$ Vertical Oblique:N.A.; Oblique:- $K \chi^{2}=3.42$, $d f=2, P>0.05 ; ~ P e r s p e c t i v e:-~ N . A . ; ~ N o ~$ ground line:- $K X^{2}=0.77$, $\mathrm{df}=2, \mathrm{P}>0.05$; Ground line:- $\mathrm{KX}{ }^{2}=0.49$, $\mathrm{df}=$ 2, $p>0.05 ; \quad G r o u n d ~ p l a n e:-K \chi^{2}=0.19$, $d f=2, p>0.05 ;$ Partial Occlusion:- $K X^{2}=0.75, d f=2, p>0.05$.

Figure 8:D10 shows that the proportion of subjects responding in oblique projection on the table top is a function of the number of table top lines given in the stimulus. Thus the fewer lines in the stimulus encouraging an oblique response, the less younger subjects make such a response.

Figure 8:D10 also shows the perspective response for the three stimuli. Stimulus 22 elicits no perspective response at all, however a few younger subjects do respond in perspective on stimuli $7 f$ and 16 . The fewer the lines to complete in the stimulus, the smaller the proportion of subjects responding with a table top in perspective. Whilst this effect might have statistical significance, the number of subjects responding in this way is very small, and tests failed to find significant differences in the vertical response between the two stimuli, thus indicating that the effect might have little psychological significance.

Figure 8:D1l shows that the majority of all table tops completed in Group F, at all ages, are in oblique projection. However a minority of subjects between 5 and 10 years old appear unhappy with the table top in oblique projection, and alter the stimulus. The majority alter it to form a table top in vertical oblique projection, though between four and ten percent of subjects between six and nine years old alter it to perspective.

In Figure 8:D12 it can be seen that the proportion of subjects using ground plane and partial occlusion rises steadily from about ten percent at four years of age to a hundred percent at eleven. This rise corresponds to a steady decline, with age, in the use of no ground line and ground line, the first being less popular than the eecond.
5) Detailed amalysis of proportions of pesponse, with aga, of stioull in Iroup 6 .

This group is comprised of three table types, nos. 15 [- ,
$21 〔 \beth$ d, and 3 \{ Ω in Figure 8:1. The proportions of response, with age, both on type of table top and type of depth cue produced, were compared across the three figures by a series of Kolmogorov Smirnov two sample, one tailed χ^{2} approximation tests. These tests found significant differences in the proportions of response, with age, between the three
stimuli in Group G on some of the perspective responses, but failed to find any significant differences in the remaining responses. Comparison of Stimulus no. 15 vs. Stimulus no. $21=$ Vertical Oblique:- $\mathrm{K} \chi^{2}=1.06$, $\mathrm{df}=$ 2, $\mathrm{p}>0.05$; Oblique:- $\mathrm{K} \chi^{2}=2.28$, $\mathrm{df}=2, \mathrm{p}>0.05$; Perspective:- $\mathrm{K} \chi^{2}=$ 5.19, df $=2, p>0.05$; No ground line:- $K \chi^{2}=0.83$, $\mathrm{df}=2, \mathrm{p}>0.05$; Ground line:- $K X^{2}=1.58$, $\mathrm{df}=2, \mathrm{p}>0.05$; Ground plane:- $\mathrm{K} \chi^{2}=0.75$, df $=2, \mathrm{P}>0.05$; Partial Occlusion:- $K \chi^{2}=0.74$, $\mathrm{df}=2, \mathrm{P}>0.05$. Comparison of Stimulus no. 15 vs. Stimulus no. $3=$ Vertical Oblique:- $K \chi^{2}$ $=2.08$, df $=2, \mathrm{p}>0.05$; Oblique:- $\mathrm{K} \chi^{2}=1.74, \mathrm{df}=2, \mathrm{p}>0.05$; Perspective:- $\mathrm{K} \chi^{2}=9.94$, $\mathrm{df}=2, \mathrm{P}<0.01 ; \quad$ No ground line:- $\mathrm{K} \chi^{2}=1.57$, $\mathrm{df}=2, \mathrm{p}>0.05$; Ground line:- $\mathrm{K} \chi^{2}=2.26, \mathrm{df}=2, \mathrm{p}>0.05$; Ground plane:- $K \chi^{2}=1.67, \mathrm{df}=2, \mathrm{p}>0.05$; Partial Occlusion:- $K \chi^{2}=1.66$, $\mathrm{df}=$ 2, $p>0.05$. Comparison of Stimulus no. 21 vs. Stimulus no. $3=$ Vertical Oblique:- $K \chi^{2}=3.07, \mathrm{df}=2, \mathrm{P}>0.05$; Oblique:- $\mathrm{K} \chi^{2}=2.1, \mathrm{df}=2, \mathrm{p}>$ 0.05; Perspective:- $\mathrm{K} \chi^{2}=1.89, \mathrm{df}=2, \mathrm{p}>0.05$; No ground line:- $\mathrm{K} \chi^{2}=$ 2.56, $\mathrm{df}=2, \mathrm{P}>0.05$; Ground line:- $\mathrm{K} \chi^{2}=2.64$, $\mathrm{df}=2, \mathrm{P}>0.05$; Ground plane:- $K X^{2}=0.73$, $d f=2, p>0.05$; Partial Occlusion:- $K X^{2}=$ 0.73, $\mathrm{df}=2, \mathrm{p}>0.05$.

Figure 8:013. A couparison of the perspective response, with age, on Stioull 15, 21, and 3.

Figure 8:D13 shows that the proportion of subjects responding in perspective on the table top is a function of the number of table top

Figure 8:014. The propurtions of subjects draving ash type of table top, on stioulus group 6 .

Figure 8:015, The propoptions of aubjects draving aseh type of depth ewe on Stioulus froup 6.
lines given in the stimulus. Thus the fewer lines in the stimulus encouraging a perspective response, the less younger subjects make such a response.

Figure 8:D14 shows that the majority of all table tops completed in Group G, at all ages, are in perspective. However a minority of subjects between 5 and 10 years old appear unhappy with the table top in perspective, and alter the stimulus. The majority alter it to form a table top in vertical oblique projection, though between two and five percent of subjects between six and nine years old alter it to oblique projection.

In Figure 8:D15 it can be seen that the proportion of subjects using ground plane and partial occlusion rises steadily from about four percent at five years of age to a hundred percent at eleven. This rise corresponds to a steady decline, with age, in the use of ground line. No ground line is used by between eight and fifteen percent of subjects between four and nine years of age.
6) Detailed analysis of proportions of response, vith age, of stiauli in Group H_{1},

This group is comprised of three table types, nos. $19\left[\uparrow / \prod_{\text {, }}\right.$ 10 [\mathcal{M}], and 18 [\mathcal{T}^{1}] in Figure 8:1, forming Group Ha , and a fourth, stimulus 4 [h^{\prime}], which together with the others forms Group H. The proportions of response, with age, both on type of table top and type of depth cue produced, were compared across the three figures by a series of Kolmogorov Smirnov two sample, one talled χ^{2} approximation tests. These tests found significant differences in the proportions of response, with age, between the three stimuli in Group Ha on some of the oblique responses, but failed to find any significant differences in the remaining responses. Comparison of Stimulus no. 19 vs. Stimulus no. $10=$ Vertical Oblique:-N.A.; Oblique:- $K \chi^{2}=12.86$, $\mathrm{df}=2, \mathrm{p}<0.01$; Perspective:- N.A.; No ground line:- N.A.; Ground line:- $K \chi^{2}=0.86$, df $=2, \mathrm{p}>0.05$; Ground plane:- $K \chi^{2}=0.86, \mathrm{df}=2, \mathrm{p}>0.05$; Partial Occlusion:- $K \chi^{2}=0.22, \mathrm{df}=$ 2, $\mathrm{P}>0.05$. Comparison of Stimulus no. 19 vs. Stimulus no. $18=$ Vertical Obllque:- $K \chi^{2}=1.92, \mathrm{df}=2, \mathrm{p}>0.05$; Oblique:- $\mathrm{K} \chi^{2}=2.29, \mathrm{df}=2, \mathrm{p}$ > 0.05; Perspective:- N.A.; No ground line:- N.A.; Ground line:- $K \chi^{2}=2.13$, $\mathrm{df}=2, \mathrm{p}>0.05$; Ground plane:- $\mathrm{K} \chi^{2}=0.21$, $\mathrm{df}=2, \mathrm{p}>0.05$; Partial Occlusion:- $K X^{2}=0.22, d f=2, p>0.05$. Comparison of Stimulus no. 10 vs. Stimulus no. $18=$ Vertical Oblique:- N.A.; Oblique:- $K \chi^{2}=0.22, \mathrm{df}=2, \mathrm{p}$ > 0.05; Perspective:- N.A.; No ground line:- N.A.; Ground line:- $\mathrm{K}^{2}{ }^{2}=$ 0.48, df $=2, \mathrm{p}>0.05$; Ground plane:- $K \chi^{2}=0.22, \mathrm{df}=2, \mathrm{p}>0.05$;

Partial Occlusion:- $K \chi^{2}=0.00, \mathrm{df}=2, \mathrm{p}>0.05$.

Figure 8:016. A comparison of the oblique response, with age, on stiauli 19, 10 , and 18 .

Figure 8:D16 indicates that the significant difference on the oblique response between stimuli 19 and 10 is because a greater proportion of the younger subjects are able to complete the stimulus correctly when It is the top back line that is missing.

Stimulus group H also ineludes Stimulus 4. A statistical comparison of the proportions of response, with age, between Group Ha and Stimulus 4 failed to find any significant differences. Comparison of Stimulus Group Ha vs. Stimulus no. $4=$ Vertical Oblique:- $K \chi^{2}=0.72, d f=$ 2, $p>0.05 ;$ Oblique: $-K X^{2}=1.91, d f=2, p>0.05 ;$ Perspective:- $K X^{2}=$ 0.72, $\mathrm{df}=2, \mathrm{p}>0.05$; No ground line:- N.A.; Ground line:- $K \chi^{2}=0.69$, df $=2, p>0.05$; Ground plane:- $K X^{2}=0.85$, df $=2, p>0.05 ;$ Partial Occlusion:- $K \chi^{2}=0.22, d f=2, p>0.05$.

Figure 8:D17 shows that the vast majority of all table tops, at all ages, are in oblique projection. However between five and ten percent of subjects between the ages of four and nine alter the stimulus to depict the table top in vertical oblique projection, rather than adding the single ine required to complete the stimulus. A smaller proportion of subjects (3 to 5%) aged between seven and nine, alter the stimulus to give a table top in perspective.

Figure 8:017. The proportions of subjects draving eath type of table top, on Stiaulus group H^{1}

Figure 8:018. The proportions of subjacts draving eath trpe of depth cue, on Stiaulus group $H_{\text {. }}$

The stimuli for complation in Group H use the depth cues of ground plane and partial occlusion. In Figure 8:D18 it can be seen that between four and thirty percent of subjects from four to nine years of age deliberately alter the stimull, by extending the legs, to give a ground line rather than accept the use of ground plane.
7) Detailed analysis of proportions of espponse, vith age, of stloulf in froup I.

This group is comprised of three table types, nos. 1 \{ F), 13 (fir) 1 , and 24 ($1 / 1$ in Figure 8:1, forming Group Ia, and a fourth, Stimulus 11 (forl, which together with the others forms Group I. The proportions of response, with age, both on type of table top and type of depth cue produced, were compared across the three figures by a series of Kolmogorov Smirnov two sample, one talled χ^{2} approximation tests. These tests found significant differences in the proportions of response, with age, between the three stimuli in Group la on some of the no ground line responses, but failed to find any significant differences in the remaining responses. Comparison of Stimulus no. 1 vs. Stimulus no. $13=$ Vertical Oblique:- $K x^{2}=1.92, \mathrm{df}=2, \mathrm{P}>0.05$; Oblique:- N.A.; Perspective:- $K \chi^{2}=$ 1.84, df $=2, \mathrm{p}>0.05$; No ground line:- $\mathrm{K} \chi^{2}=10.7$, df $=2, \mathrm{p}<0.01$; Ground line:- $K \chi^{2}=2.38$, $d f=2, p>0.05 ; \quad$ Ground plane:- $K x^{2}=0.83$, $d f$ $=2, \mathrm{P}>0.05$; Partial Ocelusion:- $K \chi^{2}=0.83, \mathrm{df}=2, \mathrm{p}>0.05$. Comparison of Stimulus no. 1 vs. Stimulus no. $24=$ Vertical Oblique:- K χ^{2} $=5.08$, df $=2, \mathrm{p}>0.05$; Oblique:- N.A.; Perspective:- $K \chi^{2}=1.83, \mathrm{df}=2$, P > 0.05; No ground line:- $K \chi^{2}=7.17$, df $=2, P<0.05 ;$ Ground line:$K x^{2}=1.0, d f=2, p>0.05 ; \quad G r o u n d ~ p l a n e:-K x^{2}=0.21, d f=2, p>0.05 ;$ Partial Ocelusion:- $K \chi^{2}=0.82$, $d f=2, p>0.05$. Comparison of Stimulus no. 13 vs. Stimulus no. $24=$ Vertical Oblique:- $K \chi^{2}=3.85, d f=2, p$) 0.05; Obllque:- N.A.; Perspective:- $K^{2} \chi^{2}=0.22$, $d f=2, p>0.05$; No ground line:- $K x^{2}=4.02$, $\mathrm{df}=2, p>0.05$; Ground line:- $K X^{2}=1.61$, $\mathrm{df}=$ 2, $p>0.05$; Ground plane:- $K \chi^{2}=1.86$, $d f=2, p>0.05 ;$ Partial Occlusion:- $K \chi^{2}=1.86, d f=2, p>0.05$.

Whilst the tests do find significant differences in the no ground line response, they are attributable to the way in which 0.003% of the subjects completed Stimulus 1. This linits the peychological significance of the finding.

Stimulus group I also includes Stimulus 11. A statistical comparison of the proportions of response, with age, between Group Ia and Stimulus 11 falled to find any significant differences. Comparison of

Figure 8:019. The proportions of subjects draving each type of table top, on stiaulus group l,

Figure 8:020. The proportions of subjects draving eath type of depth cue, on Stiaulus group .

Stimulus Group Ia ve. Stimulus no. $11=$ Vertical Oblique:- $K X^{2}=2.43$, df $=2, p>0.05 ;$ Oblique:- $K \chi^{2}=3.91$, df $=2, p>0.05 ;$ Perspective:- $K \chi^{2}=$ 4.24, $\mathrm{df}=2, \mathrm{p}>0.05$; No ground line:- $K \chi^{2}=0.28$, df $=2, p>0.05$; Ground line:- $K \chi^{2}=0.05, d f=2, p>0.05$; Ground plane:- $K \chi^{2}=0.2, d f=$ 2. p > 0.05; Partial Occlusion:- $K x^{2}=0.21$, $d f=2, p>0.05$.

Figure 8:D19 shows that the majorlty of all table tops, at all ages, are completed in perspective for stimuli in Group I. There are two main exceptions to this. Until subjects are ten years old a swall proportion of them in each age group alter the stimulus to produce a table top in vertical oblique projection. Secondly, from about six years of age, a small, but steady proportion of subjects. in each age group alter the stimulus to give a table top in oblique projection.

The stimuli for completion in Group H use the depth cues of ground plane and partial occlusion. In Figure 8:D18 it can be seen that approximately twenty percent of subjects from five to nine years of age deliberately alter the stimuli, by extending the legs, to give a ground Ine rather than accept the use of ground plane.

Abstract

Appendix 8:E. Data amalgamated across each stimulus group, giving proportions of response, with age for each group.

This appendix presents the data discussed in Chapter 8 amalgamated across stimulus groups. It contains two parts. The use of projection system on the table top, with age, for each stimulus group is given in the first part. In the second part the use of depth cues, with age, for each stimulus group is given.

Ap.8:Ea. Use of projection system, by stimulus group.
Ap.8.Eb. Use of depth cue, by stimulus group.

$\begin{aligned} & \text { Table } \\ & \text { IeR } \end{aligned}$	1	5	6	7	8	9	Age in Years,			13	14	15	16	320
							10	11	12					
0	5.6	6.3	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	6.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	48.5	6.3	7.7	3.3	1.9	4.5	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0
3	0.0	8,4	34,5	35.3	12.1	15,3	56,8	67,9	78.9	88,5	74.5	78.1	85.7	91.7
4	46.1	72,9	57.8	61.1	53.0	19.5	43,2	32.1	21.1	11.5	25.5	21.1	14.3	8.3

Analysis of table tops, group F.

Analysis of table tops, GROUP 6.

	Table lep	1	5	6	1	8	9	Age in Years.			13	11	15	16	120.
								10	11	12					
	0	3.3	0.0	1.0	0.6	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.7
D	2	0.0	0.0	24.3	25.3	16.6	7.6	3.7	0.0	0.0	3.0	0.0	0.0	0.0	0.0
∞	3	0.0	0.0	6.7	4.0	1.8	3.5	1.5	0.0	1.1	0.0	0.0	2.6	1.9	1.7
1	1	96.6	100,0	68.1	70.1	78.6	88.1	94.8	100.0	98.9	97.0	100.0	97.1	98.1	94.6

Analysis of table tops, GROUP Ha_{a}

Table 100	1	5	6	1	8	9	Age in Years,			13	11	15	16	320.
							10	11	12					
0	44.3	11.5	6.1	1.0	0.0	1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	8.3	7.1	6.7	3.2	2.1	1.9	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	47.3	81.1	87.3	95.8	97.6	96.0	99.4	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1	0.0	0.0	0.0	0.0	0.0	0.7	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Analysis of table tops, group h

Table Iop	Age in Years,													
	1	5	6	1	B	9	10	11	12	13	11	15	16	320.
0	14.3	11.5	1.6	0.8	0.0	1.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	8.3	7.1	5.0	5.1	3.6	2.1	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	47.3	81.4	90.5	89.9	92,9	95.0	99.6	100.0	100.0	100.0	100.0	100.0	100.0	100.0
4	0.0	0.0	0.0	4.0	3.6	1.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Analysis of table tops, GROUP I

Analysis of Depth cue depistion in the Stinulus broups.

\section*{| D |
| :--- |
| 1 |
| 0 |} Key:- $A=5$ stinulus unaltered, $B=$ No Ground line, $C=$ Ground line, $O=$ Ground Plane, $E=$ Partial Occlusion,

Analysis of Depth Cues, GROUP C.

Depth Cues	Age in Years.													
	1	5	6	1	8	9	10	11	12	13	11	15	16	320.
A	14.4	27.3	0.0	1.6	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0
8	28.6	18,2	28.2	28.5	16.3	17.9	12,9	10.9	6.7	4.7	3.0	5.3	4.4	5.0
c	57.1	45,5	57.3	41.5	13.3	28.9	18.8	12.5	10.0	7.8	8.9	5.3	8.6	22.3
0	0.0	9.1	14,6	28,5	10,5	53,2	68, 1	76.8	83.1	87,5	88.2	89,5	81.2	72.5
E	0.0	9.1	11,6	25.1	10.9	53.2	67.0	60.8	81.5	73.5	72.1	85.6	71.2	67.5

Analysis of Depth Cues, group 0 .

Qepth Cues	Age in Years,													
	1	5	6	1	8	9	11	11	12	13	14	15	16	220.
A	5.6	6.3	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0
8	7.2	11.6	5.3	12,6	8.2	3.1	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C	81.8	79.2	83.6	33, 5	36,0	19.4	16.6	1.8	4.4	5.2	1.0	1.7	1.0	0.0
0	5.6	0.0	11.1	51,8	55.6	76.8	82.5	95.7	95.6	91.8	99.0	98.3	99.0	100.0
E	5.6	0.0	23.3	47.7	58, 1	76,0	84,9	82,2	90.0	90.6	88.2	93,8	92,4	96.1

Analysis of Depth Cues, GROUP Ea

Deeth Cues	1	5	6	1	8	2	Age in Years.			13	11	15	16	120.
							10	11	12					
A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	0.0	0.0	6.7	37.3	25.0	14.0	11.5	27.1	21.5	5.2	7.8	15.8	35.0	53.3
C	0.0	0.0	73.3	32.0	36,9	26.3	22.9	20.3	16.7	11.6	28.1	36.8	21.7	28.3
0	0.0	0.0	20.0	30.7	38.1	59.6	55.7	52.1	58.9	80.2	63.7	17.1	11.0	18.3
E	0.0	0.0	20.0	30,7	31.5	54.4	59.1	33.3	45.6	51.0	13.3	31.5	14.3	8.3

Analysis of Depth Cues, GROUP F.

Depth_Cues	Age in Years.													
	1	5	6	1	1	2	10	11	12	13	11	15	16	120.
A	3.3	0.0	1.0	1.2	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	13,1	20.0	18.1	25.3	9.1	11.6	2.0	0.0	0.0	0.0	0.0	0.0	1.0	1.7
C	40.0	63.3	65.7	34.8	33.7	17.1	7.8	0.0	0.0	0.0	1.0	0.9	0.0	0.0
0	13.3	16.7	15.2	38.7	56, 1	67.9	90.2	100.0	100.0	100.0	99.0	99.1	99.0	98.3
E	9.9	13.5	11,3	39.0	59,0	65.3	89.0	100.0	100.0	100.0	99.0	99.1	90.5	91.1

Analysis of Depth Cues, 6ROUP 6 .

Depth Cues	1	5	6	1	8	9	Age in Years,			13	14	15	16	120.
							10	11	12					
A	3.3	0.0	2.9	1.8	0.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	13.3	16.3	14.3	17.3	7.6	8,5	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C	73.3	78.0	61.3	10.8	41.8	24.1	11.3	0.0	1.1	0.0	0.0	0.0	1.9	8.7
0	10.0	3.3	20.5	41.3	17.6	65.1	87.3	100.0	98.9	100.0	100.0	100.0	98.1	89.6
E	10,0	3.3	20.5	41.3	45.2	61.6	86.8	100.0	98.9	96.0	100.0	100.0	97.1	89.6

D

Analysis of Depth Cues, GROUP Ha

Analysis of Depth Cues, GROUP H

Bepth Cues	1	5	6	7	8	9	Age in Years,			13	14	15	16	120.
							10	11	12					
A	11.1	11.5	4.6	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
B	0.0	0.0	0.0	0.0	0.9	0.0	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C	4.2	28.3	14.8	9.0	6.1	3.1	0.5	0.0	0.0	0,8	0.0	0.0	0.0	0.0
0	51.5	60.2	80,6	90.3	87.7	95.9	98.8	100.0	100,0	99.2	100.0	100.0	100.0	100.0
E	51.5	66.9	90.2	95.1	91.5	96.6	98.8	100.0	100.0	99.2	100.0	100.0	100.0	100.0

Ap．8．Eb．Continued．

Analysis of Depth Cues，GROUP ：

00＇001	\＆＇66	0.001	0.001	2.66	0.001	0.001	¢＇96	$9 \cdot 18$	2＇89	9.61	0.08	s＇¢s	$6^{\prime} 12$	3
0.001	ع＇66	0.001	0.001	266	0.001	0.001	¢．96	1 ＇58	6＇19	0.61	0.08	$5^{\circ} \mathrm{\varepsilon}$ ¢	$6^{\circ} 12$	0
0.0	10	00°	0.0	$8{ }^{\circ}$	000	0%	$\varsigma^{\prime} \varepsilon$	6．8	L＇81	て＇81	9 ＇ll	1 ＇82	0%	J
0.0	0.0	0%	$0 \cdot 0$	00°	$0 \cdot 0$	0%	0.0	9%	$L^{\prime} \mathrm{C}$	$8^{\prime} \mathrm{Z}$	て＇ε	$0 \cdot 0$	9.1	8
0%	0%	$0^{\prime} 0$	0.0	0.0	0.0	0.0	0.0	90	0.0	0.0	9＇ε	1＇81	9×2	－
－					21					l	9	5		उEM了 4 IO

Appendix 8:F.
Detailed analyses of proportions of response, with age, of differences between Groups C to I.

In this appendix responses to stimulus groups C to I (as outlined In the introduction to Appendices 8) are compared. A truncated version of this appendix is presented in Chapter 8.

* Comparison of groups H and I.
* Comparison of groups H and F.

Ap.8.114

* Comparison of groups I and G.

Ap.8.116

* Comparison of groups E, F and G.

Ap.8.119

* The effect of the number of lines given for completion.

Ap.8. 123

* Comparison of groups C and D.

Ap.8.124

- Comparison of groups C and D, and E, F and G.

Ap.8.126

* The effect of the position of a table leg.

Ap.8.128

Appendix 8:F.

Detailed analyses of proportions of response, with age, of differences betveen Groups C to l.

1) Differences in proportions of response, with age, between Groups H and I,

The table tops and legs are given in both of these groups and the expected response is the addition of one or two lines to complete the table top. All table legs should show ground plane and partial occlusion, thus the only expected variation is in the compulsory completion of the oblique or perspective table top. The proportions of response, with age, both on type of table top and type of depth cue produced, were compared across the two groups by a series of Kolmogorov Smirnov two sample, one talled χ^{2} approximation tests.

Figure 8:Fl. Proportions of oblique and perspective respenses, with age, to Stimulus Groups H and l, These tests found significant differences in response to the two stimuli groups for the perspective table tops, and for the use of ground line, but failed to find any significant differences between the groups on the other responses. Comparison of Stimulus Group H vs. Stimulus Group $I=$ Orthographic:- N. A.; Vertical Oblique:- $K \chi^{2}=1.15$, df $=2, p>0.05$; Oblique:- $K \chi^{2}=4.56, \mathrm{df}=2, \mathrm{P}>0.05$; Perspective:- $K \chi^{2}=14.97, \mathrm{df}=2$,
$p<0.001$; No alteration:- $K \chi^{2}=3.17, \mathrm{df}=2, \mathrm{P}>0.05$; No Ground IIne:$K \chi^{2}=2.31, d f=2, \mathrm{P}>0.05$; Ground 1ine: $-K \chi^{2}=7.78$, $\mathrm{df}=2, \mathrm{P}$ < 0.05; Ground plane:- $K \chi^{2}=0.99 \mathrm{df}=2, \mathrm{p}>0.05$; Partial Occlusion:- $K \chi^{2}=2.27$. $d f=2, p>0.05$.

It is worth noting here that firstly, that there was a much wider range of response than expected, and secondly, the fallure to find any differences in the oblique response. Thus subjects not only changed the stimuli, but did so in a particular way.

Key:-

Figure 8:p2, froportions of ground line response, vith age, for stiauli groups H and l.

As expected, very few subjects changed the oblique stimuli to perspective, however, whilst only a small number of subjects changed the perspective stimuli to oblique, the proportions of subjects doing so, at each age, were not significantly different to those responding correctly to the oblique stimuli, as can be seen in Figure 8:Fi.

The other significant difference found between the two groups is in the ground line response. As Figure 8:F2 shows, whilst some younger subjects in both groups alter the stimulus to provide a ground line response, the majority of such alterations attributable to Stimulus Group H are elicited at an earlier age than are those attributable to Stimulus Group I. Finally, although more subjects complete the table tops on the stimuli in Group H correctly, than they do the stimuli in Group $I, ~ a X^{2}$ test falled to find any significant differences between the two groups in
the proportions of correct responses, with age,on the table tops $\mathrm{K}_{\mathrm{X}}{ }^{2}=$ $0.25, \mathrm{df}=2, \mathrm{p}>0.05$.
2) Differences in proportions of response, with age, between groups H and F,

In both of these groups the expected completion is that of a table top in oblique projection, with table legs showing ground plane and partial occlusion. All Group H requires is the addition of one or two lines to complete the table top as the table legs are already given. The stimuli in Group F only provide the table tops, again requiring one, two or no lines for correct completion (the latter is Stimulus 22 in Group F). The only expected variation between the two groups is in the way in which the legs are completed. The proportions of response, with age, both on type of table top and type of depth cue produced, were compared across the two groups by a series of Kolmogorov Smirnov two sample, one talled χ^{2} approximation tests. These tests found significant differences in response to the two stimull groups for the vertical oblique and oblique table tops, and for the use of ground plane and partial occlusion, but falled to find any significant differences between the groups on the other responses.

Key:- Ground plane -------Stiaulus group H Stiaulus Group l, Partial occlusion 一一 Stiaulus 6roup H —— Stinulus Group i.

Figure 8: f3, Proportions of Ground plane and Partial occlusion, with age, to stiauli groups H and F.

Comparison of Stimulus Group H vs. Stimulus Group. F = Orthographic:- N. A.; Vertical Oblique:- $K \chi^{2}=14.79$, $d f=2, p<0.001$; Oblique:- $K \chi^{2}=6.5$, df $=2, p<0.05 ; \quad$ Perspective:- $K \chi^{2}=2.82$, $d f=2, p>0.05$; No Ground line:- $k \chi^{=}=3.95, \mathrm{df}=2, \mathrm{p}>0.05$; Ground line:- $\mathrm{K} \chi^{2}=1.84$, $\mathrm{df}=2, \mathrm{p}$ > 0.05; Ground plane:- $\mathrm{K} \chi^{2}=56.98 \mathrm{df}=2, \mathrm{p}<0.001$; Partial Occlusion:$K \chi^{2}=64.08, \mathrm{df}=2, \mathrm{p}<0.001$.

Many more subjects used no ground line and ground line in Group F than in Group H, however the tests failed to find any significant differences between the two groups in profiles of the proportions of subjects doing so at each age. Figure 8:F3 illustrates that this was not the case for the use of ground plane and partial occlusion, where, as expected there were major differences between the two groups.

figure 8:fl. Proportions of Vertical ablique and coligue responses, with age, to Stiauli his and F16.

The significant differences found between the two groups in the use of vertical oblique and oblique projection on the table tops is less expected. However reference to the previous section shows that there were differences in the way in which the table tops were completed within Group F. Stimulus F 22 requires no lines to be added for a correct completion, and the majority of the variation found within Group F appears to be
attributable to this. The statistical comparisons applied here rely upon the amalgamated responses for both groups, and thus could be affected by a lack of direct comparability between the two groups caused by the inclusion of a completed table top in Group F but not in Group H. Two individual stimuli, one from each group, are directly comparable, namely:F16 and H18. $\mathrm{K} \chi^{2}$ tests on the two stimuli show significant differences in the oblique response, but fall to find any significant differences in the vertical oblique response. Vertical Oblique:- $K \chi^{2}=2.29, \mathrm{df}=2, \mathrm{p}>0.05$; Oblique:- $K \chi^{2}=10.38, \mathrm{df}=2, \mathrm{p}<0.01$. Figure 8:F4 illustrates that the inclusion of the table legs results in a greater proportion of the younger children completing the table top in oblique projection.
3) Differences in proportions of response, with age, between Groups I and 6 ,

In both of these groups the expected completion is that of a table top in perspective, with table legs showing ground plane and partial occlusion. All Group I requires is the addition of one or two lines to complete the table top as the table legs are already given. The stimuli in Group G only provide the table tops, again requiring one, two or no lines for correct completion (the latter is Stimulus 3 in Group G). The only expected variation between the two groups is in the way in which the legs are completed. The proportions of response, with age, both on type of table top and type of depth cue produced, were compared across the two groups by a series of Kolmogorov Smirnov two sample, one tailed χ^{2} approximation tests. These tests found significant differences in response to the two stimuli groups for the vertical oblique and perspective table tops, and for the use of ground line, ground plane and partial occlusion, but failed to find any significant differences between the groups on the other responses. Comparison of Stimulus Group I vs. Stimulus Group $G=$ Orthographic:- N. A.; Vertical Oblique:- $\mathrm{KX}^{2}=16.62$, $\mathrm{df}=2, \mathrm{P}<0.001$; Oblique:- $\mathrm{K} \chi^{2}=1.56, \mathrm{df}=2, \mathrm{p}>0.05$; Perspective:- $\mathrm{K} \chi^{2}=6.29, \mathrm{df}=2$, p 〈 0.05; No Ground line:- $K \chi^{2}=2.58$, $\mathrm{df}=2, \mathrm{p}>0.05$; Ground line:- $K \chi^{2}$ $=12.7$, $\mathrm{df}=2, \mathrm{p}<0.01$; Ground plane:- $K \chi^{2}=55.35 \mathrm{df}=2, \mathrm{p}<0.001$; Partial Occlusion:- $K \chi^{2}=62.15, \mathrm{df}=2, \mathrm{p}<0.001$.

As in the previous section, stimull with the table legs already given encourage many more responses that use ground plane and partial occlusion, as illustrated in Figure 8:F5. This figure also shows the no ground line responses for the two stimulus groups. The proportions of these responses, with age, were found to be significantly different. It
can be seen that this significant difference is attributable to the fact that, of the total response, a greater percentage of older children continue to extend the back legs of the stimulus to give a ground line, when legs are included in the stimulus. This, taken with the findings presented above about the comparison between stimulus groups H and I indicates that not only are the table legs deliberately altered to provide a ground line, but that this effect is greater when the table top 15 in perspective, and is elicited from older children than when the table top is in oblique projection, or when no table legs are included in the stimulus.

Figure 8:F5. Proportions of Ground line, Ground plane and Partial occlusion, with age, to Stiauli Groups 6 and 1 .

It is worth noting here that both in this and earlier chapters the use of ground plane has been found to be in advance of the use of partial occlusion, however both Figure 8:F3 and 8:F5 show that the opposite appears to be the case for stimulus groups H and I. Of the subjects who do decide to alter the legs of the stimull in these groups, more are concerned with producing a ground line than they are with producing no partial occlusion.

The significant differences found between the two groups in the use of vertical oblique projection and perspective on the table tops is of interest. Figure 8:F6 shows the complexity of the interaction. The majority of variance in the perspective response appears to be
attributable to the very small number of four and five year old children attempting to alter the table top away from perspective when presented with a table top on its own.

Figure 8:F6, Proportions of Vertical oblique and ferspective responses, with age, to Stiauli Groups 6 and 1 .

The addition of legs appears to encourage alteration of the stimulus by very young children, thus, if the statistical analysis is restricted to subjects from seven years of age and older no significant differences are found between the stimulus groups for the table top responses (Vertical Oblique:- $K \chi^{2}=0.63$, $\mathrm{df}=2, \mathrm{p}>0.05$; Perspective:$K X^{2}=0.82, \mathrm{df}=2, \mathrm{p}>0.05$. As in the last section, there were differences in the way in which the table tops were completed within Group G. Stimulus $G 3$ requires no lines to be added for a correct completion, and the majority of the variation found within Group G appears to be attributable to this. The statistical comparisons applied here rely upon the amalgamated responses for both groups, and thus could be affected by a lack of direct comparability between the two groups caused by the inclusion of a completed table top in Group G but not in Group I. Two individual stimuli, one from each group, are directly comparable, namely:G21 and I1. $K X^{2}$ tests on the two stimuli show significant differences in the oblique response, but fail to find any significant differences in the vertical oblique and perspective responses. Vertical Oblique:- $K \chi^{2}=0.06$,
$d f=2, p>0.05 ; \quad$ Oblique:- $K \chi^{2}=9.55, \quad d f=2, p<0.01 ;$ Perspective:$K X^{2}=0.2, d f=2, p>0.05$.

Figure 8:F7. Proportions of oblique and Perspective responses, with age, to Stiauli ll and 621.

Figure 8:F7 illustrates that the inclusion of the table legs results in a greater proportion of the younger children completing the table top in oblique projection, even though the table legs are presented in perspective. It is interesting that this effect occurs regardless of the way in which the table top should be completed, and regardless of the way in which the legs are presented. This suggests a link between the presence of the depth cues of ground plane and partial occlusion (regardless of the system of projection used) and the desire to depict a table top in oblique projection.
4) Diffarences in proportions of response, with age, between 6roups $E_{1} F_{1}$ and 6 ,

The atimuli in all three groups only provide the table tops, requiring one, two or no lines for correct completion. The groups vary in the form of table top expected, thus Group E expects a vertical oblique table top, F an oblique top, and G a top in perspective. Because no table legs are given it is expected that the table legs will be drawn in a elmilar manner across all groups. The proportions of response, with age,
both on type of table top and type of depth cue produced, were compared across the three groups by a series of Kolmogorov Smirnov two sample, one tailed χ^{2} approximation tests. These tests found significant differences across all measures of Group E against Group F and Group G, except for the perspective response between E and G. They also found significant differences on the oblique and perspective measures between groups F and G, but failed to find any significant differences between the groups on the other responses. Comparison of Stimulus Group E vs. Stimulus Group F $=$ Orthographic:- N. A.; Vertical Oblique:- $K \chi^{2}=85.9$, $\mathrm{df}=2, \mathrm{p}<0.001$; Oblique:- $K \chi^{2}=20.07, \mathrm{df}=2, \mathrm{p}<0.001$; Perspective:- $\mathrm{K} \chi^{2}=11.95, \mathrm{df}=$ 2, $\mathrm{p}<0.01$; No Ground line:- $\mathrm{K} \chi^{2}=70.95$, $\mathrm{df}=2, \mathrm{p}<0.001$; Ground line:- $K \chi^{2}=96.59, \mathrm{df}=2, \mathrm{P}<0.001$; Ground plane:- $\mathrm{K} \chi^{2}=20.11$, $\mathrm{df}=2$, $\mathrm{p}<0.001$; Partial Occlusion:- $\mathrm{K} \chi^{z}=42.34, \mathrm{df}=2, \mathrm{P}<0.001$. Comparison of Stimulus Group E vs. Stimulus Group G = Orthographic:- N. A.; Vertical Oblique:- $K \chi^{2}=101.22, \mathrm{df}=2, \mathrm{p}<0.001$; Oblique:- $\mathrm{K} \chi^{2}=16.26, \mathrm{df}=2, \mathrm{p}$〈 0.001; Perspective:- $\left.K \chi^{2}=3.37, d f=2, \mathrm{p}\right\rangle 0.05$; No Ground line:- $\mathrm{K} \chi^{2}$ $=56.89$, $\mathrm{df}=2, \mathrm{p}<0.001$; Ground line:- $\mathrm{K} \chi^{2}=94.81$, $\mathrm{df}=2, \mathrm{p}<0.001$; Ground plane:- $K \chi^{2}=19.96, \mathrm{df}=2, \mathrm{p}<0.001$; Partial Occlusion:- $\mathrm{K} \chi^{2}=$ 46.71, $\mathrm{df}=2, \mathrm{P}<0.001$. Comparison of Stimulus Group F vs. Stimulus Group $G=$ Orthographic:- N. A.; Vertical Oblique:- $K \chi^{2}=0.89, \mathrm{df}=2, \mathrm{p}$ > 0.05; Obllque:- $\mathrm{K}^{2}=9.16, \mathrm{df}=2, \mathrm{p}<0.02$; Perspective:- $\mathrm{K} \chi^{2}=29.74$, $\mathrm{df}=2, \mathrm{P}<0.01$; No Ground line:- $K \chi^{2}=4.48$; $\mathrm{df}=2, \mathrm{P}>0.05$; Ground line:- $K \chi^{2}=2.16, \mathrm{df}=2, \mathrm{P}>0.05$; Ground plane:- $K \chi^{2}=0.78, \mathrm{df}=2, \mathrm{p}$ > 0.05; Partial Occlusion:- $K \chi^{2}=0.77$, $d f=2, p>0.05$.

The comparison of responses for Stimulus Groups F and G produces the expected results. The only area of difference between the two is that of the forced response, oblique or perspective table tops respectively. This is attributable to the responses of a small proportion of older subjects who changed the perspective stimuli to form a table top in oblique projection. It is noticeable that no older subjects changed the oblique top to perspective. These findings suggest that older subjects prefer to complete a table top in oblique projection rather than perspective, and show that development in the way in which the table legs are depicted is not dependant upon the table top is presented in oblique projection or perspective.

The stimuli in Group E force a vertical oblique response on the table top, this produces a complex effect upon all the measures of response. Figure 8:F8 illustrates the vertical oblique response for the three groups. It can be seen that a small proportion of older subjects
alter the stimuli in Group E away from Vertical oblique, thus providing substantially different age profiles to those obtained from Groups F and G.

Koy:-
Stioulus group E ----- Stioulus Group f —— Stiaulus broup 6 ,
Figure 8:F8. Vertical oblique response on Stioulus Groups E, F, and 6 ,

Reference to Appendix 8:D shows that, across these three stimulus groups, the opposite effect occurs for oblique projection and perspective. In both groups F and G it is the younger subjects who alter the stimuli away from the expected table top to provide a table top in vertical oblique. Thus, of the small proportion of subjects at any age who alter the stimulus, it is the younger ones who alter it to provide a table top in vertical oblique projection, and the older ones who have been presented with a table top in perspective who alter it to one in oblique projection. However an examination of the proportions of correct responses on the three stimulus groups shows that these effects fail, marginally, to reach statistical significance. Group F Oblique vs. Group G Perspective:- $K \chi^{2}=$ 0.21, df = 2, $p>0.05$; Group E Vertical oblique vs. Group G Perspective:$K x^{2}=5.16$, df $=2, p>0.05$; Group E Vertical oblique vs. Group F Oblique:- $K \chi^{2}=5.21, \mathrm{df}=2, \mathrm{p}>0.05$.

None of the etimuli in groups E, F, and G include table legs. Whilst tests failed to find significant differences between groups F and G in the way table legs were completed, Group E was found to be significantly different to the other two groups on all table leg measures. Reference to the individual group profiles in Appendix 8:D shows the
complexity of the table leg response in Group E, here Figure 8:F9 simplifies this by showing the comparative ways in which ground plane is used in all three groups. It can be seen that until about ten years of age an increasing proportion of subjects, with age and in all three groups, produce ground plane. This increasing use of ground plane continues in both groups F and G, until 100% of subjects are using ground plane and partial occlusion at eleven years of age, and is mirrored by an equivalent decrease in the use of ground line, and to a lessor extent, no ground line. This pattern does not hold in Group E. Here, between ten and thirteen years of age there is a partial decrease, low plateau, and then slight increase in the use of ground plane, mirrored by an increase, and then decrease in the use of no ground line. From thirteen onwards there is a steady decrease, with age, in the use of ground plane, mirrored by an increase in the use of ground line, and no ground line. In Group E the age profile for the use of partial occlusion is significantly different to that of the use of ground plane ($K \chi^{2}=9.99$, $\mathrm{df}=2, \mathrm{p}<0.01$).

Figure 8; f9. Proportions in the use of Ground plane, with age, on Stioulus Groups E, F, and 6 ,

Stimuli in groups E (vertical oblique top) and G (perspective top) all present the subject with a single line at the bottom of the table top from which to draw the legs. If subjects were not sensitive to the form of the table top one would expect similar development in the use of depth cues across all these stimull, as appears to occur until ten years of age.

Such development also occurs across the oblique stimuli where the line at the bottom of the table top is the one nearly always used in the production of ground line. Until this age it could be argued that subjects are just reacting to this bottom line. However, the vast majority of older subjects use the bottom line of the perspective table top, but use the bottom and side lines of the oblique top when producing a ground plane. The similarity between the age profiles of the ground plane and partial occlusion responses shows that very few subjects produced ground plane by extending the table legs from the back corners of the table. Thus older subjects do not respond to the vertical oblique stimull es they do to the perspective stimuli. The significant difference between the age profiles of ground plane and partial occlusion show that many of the subjects produce ground plane by extending the legs from the back corners of the table top, whilst an increasing proportion of other subjects, with age, produce either a plan view of a table (no ground line) or extend all the legs to a ground line. They might be responding to figural biases caused by the square shape of the stimulus, however the lack of difference between the responses to the perspective and oblique stimuli suggests that older subjects respond in this manner because they are attempting to match the table legs to the way in which the top is drawn.

These findings reinforce earlier conclusions that development in the use of depth cues appears to be independent of the form of projection used in the depiction, and that subjects appear to become sensitive to the nature of their depiction at about ten years of age.
5) The effect that the number of lines given for conpletion in Groups E, F, and 6 has upon corfectness of response.

For this analysis the stimull were grouped according to the number of lines required for completion of the table top, thus etimull E2, F7, and G15, all required two lines for completion, hence responses for these stimuli were amalgamated. Similarly, responses for stimuli E9, Fi6, and G21 were amalgamated to form the one line for completion group, and E14. F22, and G3, formed the no lines for completion group. A series of $K \chi^{2}$ tests on the proportions of correct responses, with age, for the three groups failed to find any significant differences between the three cNo line vs. One line:- $\mathrm{K}^{2}=0.85, \mathrm{df}=2, \mathrm{p}>0.05$; Two line vs. One line:$K X^{2}=1.81, d f=2, p>0.05$; No line vs. Two line:- $K X^{2}=5.16, d f=2, p$ > 0.05). However, as can be seen in Figure 8:F10, whilst the number of
lines for completion has no statistically significant effect it would appear that, to a certain extent, the more lines that require completion, the more errors the younger children make.

Key:- No lines required ----- One line required - Tro lines required,
Figure 8:F10. Proportions of correct response, with age, on in relasion of the number of lines required for completion on the table top.
6) Differences in proportions of response, with age, between Groups C, and D,

None of the stimuli in these groups are intended to elicit only one form of response. The stimull in Group C allow any form of response on either the table top or the table legs, whereas the stimuli in Group D are designed to encourage either perspective or oblique responses on the table top, and the majority of table leg responses. The proportions of response, with age, both on type of table top and type of depth cue produced, were compared across the three groups by a series of Kolmogorov Smirnov two sample, one tailed χ^{2} approximation tests. These tests found significant differences across all measures except for those of ground plane and partial occlusion. Comparison of Stimulus Group C vs. Stimulus Group $D=$ Orthographic: $-K \chi^{2}=6.52, ~ d f=2, p<0.05$; Vertical oblique:$K \chi^{2}=99.82, \mathrm{df}=2, \mathrm{P}<0.001$; Oblique: $\mathrm{K} \chi^{2}=39.11$, df=2, $\mathrm{p}<0.001$; Perspective:- $K \chi^{2}=60.83$, $\mathrm{df}=2, \mathrm{P}<0.001$; No Ground IIne:- $\mathrm{K} \chi^{2}=12.91$, $\mathrm{df}=2, \mathrm{p}<0.01$; Ground line:- $\mathrm{K} \mathrm{X}^{2}=38.93$, $\mathrm{df}=2, \mathrm{p}<0.001 ;$ Ground
plane:- $K \chi^{2}=1.57$, $d f=2, p>0.05$; Partial Occlusion:- $K x^{2}=2.61$, $d f=$ 2, $\mathrm{p}>0.05$.

Key:- Stiaulus Group C........ Vartical oblique - - Perspective, Stiaulus group 0 ----Vartical obligue - Perspective,

Figure 8:Fll. Vertical oblique and Perspactive responses on stiaulus Groups C, and D.

Stimulus Group D does not allow an orthographic response, hence the significant differences on this measure are expected. Stimuli in group C encourage 70% of the four year olds to respond orthographically, and encourage a low, but steady response across the remaining age groups, whereas only a very few subjects deliberately alter the stimulus to provide a similar response on stimull in Group D. The oblique responses In both stimuli groups increase steadily with age, and whilst the KX^{2} test showed significant differences between the age profiles for the two stimulus groups, the age profiles are also aignificantly correlated $(r=$ 0.892, $v=11, \mathrm{p}$ (0.001), this is not the case for either the vertical oblique or perspective responses (Vertical oblique:- $r=0.235, v=12, p$) 0.05: Perspective:- $r=0.064, v=12, p>0.05$). As Figure 8:Fil shows, the majority of younger children respond in perspective to stimuli in Group D (where they are provided with an oblique line upon which to construct their drawing), but in vertical oblique to stimuli in Group C (where only the front line of the table is provided). As with the oblique responses there are statistically significant differences between the Group D perspective response and the Group C vertical oblique response, when

$$
A 8-125
$$

compared by a $K \chi^{2}$ test, but they are also significantly correlated $\mathrm{K}_{\mathrm{K}} \chi^{2}=$ 15.56, $\mathrm{df}=2, \mathrm{p}<0.001 ; \mathrm{r}=0.936, \mathrm{v}=12, \mathrm{p}<0.001)$.

The stimuli in Group D provided subjects with complete freedom to complete them in either oblique projection or perspective. If the two were conceptually equivalent one would expect them to be used in equal proportions at each age group, this did not occur. Whilst the younger subjects preferred to use perspective, the older subjects preferred to use oblique projection. It appears, to a certain degree, that under these conditions the younger subjects use vertical oblique projection and perspective equivalently, and that the use of these two 1s task dependant, but that the use of oblique projection develops with age independantly of the task.

There was very little difference between the two stimulus groups in the development of use of ground plane and partial occlusion. Reference to Appendix 8:D shows that the stimuli in Group C encourage a larger Ground line response and a lessor No ground line response from the younger subjects than do the stimuli in Group D. This effect does not appear to be related to the inclusion of the shortened table leg in Stimulus D8 (as seen in Appendix 8:D). The only other difference between these stimulus groups is the inclusion of the oblique line indicating the side of a table top, and thus it must be presumed that it is the inclusion of this line that causes the difference. To summarise, development in the use of ground plane and partial occlusion appears not to be task dependant, however, inclusion of a line that prevents the drawing of the table top in vertical oblique projection also significantly reduces the number of no ground line responses and increases the number of ground line responses.
7) A conparison of the proportions of response with age between Stimulus Group C and D, and E, F, and 6 .

The stimuli in Group C were designed to allow any form of response on the table top, those in Group D to allow either oblique or perspective responses on the table top, and Groups E, F, and G were designed to elicit vertical oblique, oblique, and perspective responses, respectively. All these groups allowed any form of response on the table legs. The proportions of response, with age, both on type of table top and type of depth cue produced, were compared across the three groups by a series of Kolmogorov Smirnov two sample, one tailed χ^{2} approximation
tests. These tests found significant differences across all measures except for those of ground plane and partial occlusion for C vs. G and F, for Perspective on C vs. G, and for Oblique and Perspective for C vs. E. Comparison of Stimulus Group C vs. Stimulus Group E $=$ Orthographic:- N. A. ; Vertical oblique:- $K \chi^{2}=128.27, d f=2, p<0.001$; Oblique:- $K \chi^{2}=2.25$, $d f=2, p>0.05$; Perspective:- $K \chi^{2}=1.17$, $d f=2, p>0.05 ;$ No Ground line:- $K X^{2}=32.75, \mathrm{df}=2, \mathrm{p}<0.001$; Ground line:- $K \chi^{2}=27.94$, $\mathrm{df}=2, \mathrm{P}$ < 0.001; Ground plane:- $K \chi^{2}=21.81$, di = 2, $p<0.001$; Partial Occlusion:- $K \chi^{2}=46.95$, $d f=2, p<0.001$. Comparison of Stimulus Group C vs. Stimulus Group $F=$ Orthographic:- N.A. : Vertical oblique:- $K \chi^{2}=$ 14.84, $\mathrm{df}=2, \mathrm{p}<0.001$; Oblique: $-K X^{2}=184.75, \mathrm{df}=2, \mathrm{p}<0.001$; Perspective:- $K \chi^{2}=34.38$, $\mathrm{df}=2, \mathrm{p} \leqslant 0.001$; No Ground line:- $K \chi^{2}=19.8$, $d f=2, p<0.001$; Ground line:- $K \chi^{2}=32.54$, $d f=2, p<0.001$; Ground plane:- $K \chi^{2}=2.84, d f=2, p>0.05$; Partial Occlusion: $K \chi^{2}=1.5, d f=2$, P $>$ 0.05. Comparison of Stimulus Group C vs. Stimulus Group $G=$ Orthographic:- N.A. ; Vertical oblique:- $\mathrm{K}^{2}=19.05$, di $=2, \mathrm{p}<0.001$; Oblique:- $K \chi^{2}=40.45$, $\mathrm{df}=2, \mathrm{P}<0.001$; Perspective:- $K \chi^{2}=3.71$, $\mathrm{df}=$ 2, $p>0.05$; No Ground line:- $K \chi^{2}=15.08$, $d f=2, p<0.001$; Ground line:- $K \chi^{2}=25.83, d f=2, p<0.001$; Ground plane:- $K \chi^{2}=1.57, d f=2, p$ >0.05; Partial Occlusion:- $K \chi^{2}=0.66$, di $=2, \mathrm{p}>0.05$.

A similar series of tests comparing Stimulus Group D with Groups E, F, and G found significant differences on all measures apart from the perspective response on D vs. E, and the table leg responses on D vs G and D vs. F. Comparison of Stimulus Group D vs. Stimulus Group $E=$ Orthographic:- N. A. ; Vertical oblique: $K \chi^{2}=22.0, \mathrm{df}=2, \mathrm{P} \leqslant 0.001$; Oblique:- $K \chi^{2}=7.85, \mathrm{df}=2, \mathrm{P}<0.05$; Perspective:- $\mathrm{K} \chi^{2}=5.29$, $\mathrm{df}=2$, $p>0.05$; No Ground line:- $K \chi^{2}=41.45$, $d f=2, p<0.001$; Ground line:$K \chi^{2}=70.26$, $d f=2, p<0.001$; Ground plane:- $K \chi^{2}=20.12$, $d f=2, p<$ 0.001; Partial Occlusion:- $K \chi^{2}=41.47, d f=2, p<0.001$. Comparison of Stimulus Group D vs. Stimulus Group F = Orthographic:- N.A. i Vertical oblique: $-K X^{2}=70.08$, $d f=2, p<0.001$; Oblique: $K X^{2}=71.09, \mathrm{df}=2, p<$ 0.001; Perspective:- $K X^{2}=9.03$, $d f=2, P<0.02$; No Ground line:- $K X^{2}=$ 4.9, $\mathrm{df}=2, \mathrm{p}>0.05$; Ground line:- $\mathrm{K} \chi^{2}=3.02$, $\mathrm{df}=2, \mathrm{p}>0.05$; Ground plane:- $K X^{2}=1.76, \mathrm{df}=2, \mathrm{p}>0.05$; Partial Occlusion:- $\mathrm{KX}^{2}=0.76, \mathrm{df}=$ 2, $P>0.05$. Comparison of Stimulus Group D vc. Stimulus Group $G=$ Orthographic:- N.A. i Vertical oblique:- $K \chi^{2}=81.12$, di $=2, P<0.001$; Oblique:- $K X^{2}=23.73$, $\mathrm{df}=2, \mathrm{p}<0.001$; Perspective:- $\mathrm{K} \mathrm{X}^{2}=107.57$, $\mathrm{df}=$ 2, $\mathrm{P}<0.001$; No Ground line:- $K X^{2}=0.2$, di $=2$, $P>0.05$; Ground line:$K X^{2}=1.15$, di $=2, p>0.05$; Ground plane:- $K X^{2}=0.77$, $\mathrm{df}=2, \mathrm{p}>0.05$;

$$
A 8-127
$$

Partial Occlusion:- $\mathrm{K} \chi^{2}=3.01$, $\mathrm{df}=2, \mathrm{p}>0.05$.
There are wide disparities in the proportions of subjects responding, with age, on all the table top measures in which KX^{2} tests failed to find any significant differences. These disparities in proportion limit the psychological significance of the findings. The table leg responses do not suffer from this problem. Earlier a large difference was found between the way in which depth cues were used in response to stimuli in Group E as opposed to Groups F and G. The results presented here extend this finding. Development in the use of depth cues, and in particular those of ground plane and partial occlusion, appears to be similar across all the stimull in groups C, D, F, and G. This form of development is not related to whether or not there is an oblique line on the table top, nor to the inclusion of some table legs in the stimulus, either extended from the front, or implicitly from the back of the table. The aspect of the stimuli in Group E that appears to be the prime cause of eliciting an unusual use of depth cues appears to be the forcing of older subjects into the use of vertical oblique projection on the table top.

To conclude, the main finding from these comparisons, supports earlier findings that the stimuli in Group E elicit unusual use of depth cues, and extends these findings to suggest that it is the presentation of the vertical oblique table top, rather than any other aspect of the stimuli, that causes this.
8) The effect of the position of one table leg in Stinuli $08, \mathrm{HA}$, and 111 .

Stimull D8 [$f\left(\mathrm{fl}\right.$, $\mathrm{H} 4\left[\mathrm{f}^{1}\right]$, and Ill [$\left.\mathcal{F}\right]$] were designed to vary only in the position of one table leg. Stimulus $D 8$ could be completed correctly either in oblique projection or perspective, whereas the position of the additional table leg means that $\mathbf{H 4}$ should be completed in oblique projection, and Ill in perspective. The proportions of response, with age, both on type of table top and type of depth cue produced, were compared across the three stimuli by a series of Kolmogorov Smirnov two sample, one tailed χ^{2} approximation tests. These tests found significant differences across the oblique and perspective measures, but falled to find any other significant differences. Comparison of Stimulus D8 vs. Stimulus $\mathrm{H} 4=$ Orthographic:- N. A. : Vertical oblique:- $K \chi^{2}=1.29, \mathrm{df}=2, \mathrm{p}>0.05$; Oblique:- $K x^{2}=19.75$, $\mathrm{df}=2, \mathrm{p}<0.001$; Perspective:- $K \chi^{2}=18.85$, $\mathrm{df}=$ 2, $p<0.001$; No Ground line:- $K \chi^{2}=3.55, d f=2, p>0.05 ;$ Ground line:-
$K \chi^{2}=0.99, \mathrm{df}=2, \mathrm{p}>0.05 ;$ Ground plane:- $\mathrm{K} \chi^{2}=3.26, \mathrm{df}=2, \mathrm{p}>0.05$; Partial Ocelusion:- $K X^{2}=5.14, d f=2, p>0.05$. Comparison of Stimulus D8 vs. Stimulus Ill = Orthographic:- N. A. ; Vertical oblique:- $K \chi^{2}=3.73$, df $=2, \mathrm{P}>0.05$; Oblique:- $\mathrm{K} \chi^{2}=21.78$, $\mathrm{df}=2, \mathrm{p}<0.001$; Perspective:$K \chi^{2}=33.5, \mathrm{df}=2, \mathrm{p}\left\langle 0.001\right.$; No Ground line:- $\mathrm{K} \chi^{2}=0.48$, $\left.\mathrm{df}=2, \mathrm{p}\right\rangle$ 0.05; Ground line:- $\mathrm{K} \chi^{2}=1.3$, $\mathrm{df}=2, \mathrm{p}>0.05$; Ground plane:- $\mathrm{K} \chi^{2}=0.8$, df $=2, \mathrm{p}>0.05$; Partial Occlusion:- $K \chi^{2}=0.8$, df $=2, p>0.05$. Comparison of Stimulus H_{4} vs. Stimulus Ill = Orthographic:- N. A. ; Vertical oblique:- $\mathrm{K} \chi^{2}=0.83$, $\mathrm{df}=2, \mathrm{p}>0.05$; Oblique:- $\mathrm{K} \chi^{2}=8.89$, $\mathrm{df}=$ 2, p < 0.02; Perspective:- $\mathrm{K} \chi^{2}=35.77$, $\mathrm{df}=2, \mathrm{p}<0.001$; No Ground line:- $\mathrm{K}_{\chi^{2}}=1.29$, $\mathrm{df}=2, \mathrm{p}>0.05$; Ground line:- $K x^{2}=0.68$, $\mathrm{df}=2, \mathrm{p}$ > 0.05; Ground plane:- $K \chi^{2}=1.86$, $d f=2, p>0.05$; Partial Occlusion:- $K \chi^{2}$ $=3.34, \mathrm{df}=2, \mathrm{p}>0.05$.

Key:stiaulus of $f=-$ stiaulus $M A f^{\prime}$-stinulus 111 fm

Figure 8;F12. Proportions of oblique response, with age, on Stiaull o8, HI, and III.

These findings support those presented earlier that development in the use of depth cues is generally stable across stimull. The significant differences found on the oblique and perspective responses are illustrated in Figures 8:F12 and 8:F13 respectively. Figure 8:F12 illustrates that oblique projection is the preferred response, not only in Stimulus D8, where elther oblique or perspective could be used, but also, for subjects between eleven and thirteen years of age, on Stimulus ill where a perspective response was expected.

Figure 8:F13 illustrates that not only is the perspective response comparatively lower than the oblique response for all three stimuli, but that very few subjects make erroneous perspective responses on Stimulus H 4 , where an oblique response is expected.

Key:-

Figure 8:F13. Proportions of Perspactive response, with age, on Stiauli 08, H1, and III,

Appendix 8: G.
Detalled analyses of proportions of response, with age, of differences between Groups A and B, and C to I.

In this appendix responses to stimulus groups A and B (as outlined in the introduction to Appendices 8) are compared. They are also compared with responses to groups C to I. A truncated version of this appendix is presented in Chapter 8.

* Comparison of groups A and B.

Page Ap.8.132

* Comparison of groups A and B with data from Chapters 4 and 7. Ap.8.136
* Comparison of groups A and B, and groups C to I.

Ap.8.139

Appendix 8:G.

Detailed analyses of proportions of response, with age, of differences betveen Groups A and B and C to 1.

1) Differences in proportions of response, with age, between Groups A and B,

All subjects were asked to both draw a table of their own (Group A, stimulus 6) and to choose from all the representations of a table the one they thought looked most like a table (Group B, stimulus 25). This design has several important points that need clarification.

When drawing their own table subjects had many depictions of tables, represented in various forms of projection, directly in front of them. Thus, although they were asked to draw their own table they were at perfect liberty to make an accurate copy of any of those that were on the sheet in front of them.

When subjects were asked to choose the representation that looked most like a table they were at perfect liberty to choose their own drawing. This design minimalises the problem that subjects might not wish to choose their own depiction because of feelings of inferiority about their own production in relation to the other neatly printed stimuli. Subjects had added lines of their own to all the stimull, thus whatever they chose had some aspect of their own work in it. This does create a further problem in that some of the younger subjects altered all the stimuli, thus limiting the amount of choice available to them.

The design allows a direct comparison between how each subject draws a table and the form of representation that they think actually looks most like a table.

The proportions of response, with age, both on type of table top and type of depth cue produced, were compared across the two groups by a series of Kolmogorov Smirnov two sample, one tailed χ^{2} approximation tests. These tests found significant differences in response to the two stimuli groups for all measures, apart from orthographic projection. Comparison of Stimulus A6 vs. Stimulus B25 = Orthographic:- $\mathrm{K} \chi^{2}=3.4$, df $=2, \mathrm{p}>0.05$; Vertical Oblique:- $\mathrm{K} \chi^{2}=7.2, \mathrm{df}=2, \mathrm{p}<0.05$; Oblique:$K \chi^{2}=236.16, \mathrm{df}=2, \mathrm{P}<0.001$; Perspective: $-\mathrm{K} \chi^{2}=6.38, \mathrm{df}=2, \mathrm{P}<$ 0.05; No Ground Line:- $\mathrm{K}^{2}{ }^{2}=14.75$, $\mathrm{df}=2, \mathrm{p}<0.001$; Ground Line:- $\mathrm{K} \chi^{2}$ $=25.34, \mathrm{df}=2, \mathrm{p}<0.001$; Ground Plane:- $\mathrm{K} \chi^{2}=98.48$, $\mathrm{df}=2, \mathrm{p}<0.001$;

Partial Occlusion:- $K X^{2}=100.6, d f=2, p<0.001$.

figure 8:61. The proportions of subjects draving ach trpe of table top, on Stioulus A6.

Figure 8:62. The proportions of subjects draving asen trpe of depth cue, on Stiaulus A6.

Figure 8:63. The proportions of subjocts draving aich type of table top, on Stiaulus b25.

Figure 8:6d. The proportions of subjects draving each type of depth cue, on Stioulus b25,

Figures 8:G1 to 8:G4 give the individual profiles for each stimulus. It can be seen that in the subjects own drawings there is clear development in the use of oblique projection, ground plane, and partial occlusion, whereas this is not the case in their choices. These three attributes are preferred by the vast majority of subjects at all ages, and show no development. It could be argued that marginal development occurs in preference for ground plane and partial occlusion is apparent in the responses of the very young subjects in Figure 8:G4, however, as discussed above, many of these very young children altered their stimull to show a ground line and no partial occlusion, thus constraining their choice.

A direct comparison between each subjects own production and their choice shows that very few subjects, at any age, chose what they themselves had drawn, as can be seen in Table 8:G1.

1able 8:61. The number of subjects, with age, whe shose thejr oun draving as the one cost like a table.

A larger number of subjects chose depictions with table tops that were similar to their own, without choosing their own drawing. Thus nearly all subjects who drew a table top in oblique projection also chose one. The majority of younger subjects drew table tops in orthographic or Vertical oblique projection, yet few chose them as representations most like a table, however, of those who did choose them, the majority also drew a table top in that manner <approximately ten percent of subjects between the ages of four and six, and between nine and ten). This provides some support for the suggestion that some children do prefer their own form of
depiction. The perspective response is more confused. Figures $8: G 1$ and 8:G3 appear to indicate that a small proportion of subjects at most ages both choose and prefer a table top in perspective, however this is not the case. As Figure 8:G5 shows, the majority of these subjects either draw a table top in perspective, but do not choose one in perspective or choose one in perspective but do not draw it.

Key:- Stinulus AE [Own〕 -----Stinulus E25 [Choice] - Both Onn and Choice,
Figure 8:65, A conparison of the proportions of subjects asking perspactive responses on either Stiaulus A6 or Stiaulus E25, and those ade by subjacts on both stiauli,
2) Differences in proportions of response, with age, between A and B, and data fron Chapters 4 and 7.

Because of the design of this study it could be argued that these results have no real compatibility with those given in earlier chapters. This was examined by looking at the proportions of response, with age, both on type of table top and type of depth cue produced, across groups A and B, and the Imagination responses from Chapter 4, and the Choice of depiction Most Like a table from the previous chapter, using a series of Kolmogorov Smirnov two sample, one tailed χ^{2} approximation tests. These tests found significant differences in the Vertical Qbilque and We ground Line responses for Choice of depiction, and for the Orthographic,

Perspective, No Ground Line, and ground Line responses for drawing the table, but failed to find any other significant differences. Comparison of Stimulus B25 vs. Most Like choice data = Orthographic:- N.A.; Vertical Oblique:- $K \chi^{2}=8.49, d f=2, P\left\langle 0.02 ;\right.$ Oblique:- $\left.K X^{2}=5.66, d f=2, p\right\rangle$ 0.05; Perspective:- $K X^{2}=1.59, \mathrm{df}=2, \mathrm{p}>0.05$; No Ground Line:- $\mathrm{K} X^{2}=$ 7.05, $\mathrm{df}=2, \mathrm{p}<0.05$; Ground Line:- $\mathrm{K} \chi^{2}=1.53$, $\mathrm{df}=2, \mathrm{p}>0.05$; Ground Plane:- $K \chi^{2}=1.65$, $\mathrm{df}=2, \mathrm{p}>0.05$; Partial Occlusion:- $K \chi^{2}=1.01$, $\mathrm{df}=$ 2, $p>0.05$.

Key:- …....stiaulus 825 (ehoice) --- - Most Like condition, Chaptap 7.
Figure 8:66. The proportions of subjects, with age, ehoosing a table top in vertical oblique projection as the one that looks wost like a table when presented with stiauli they have coapleted (B25) or when presented vith ready prepared stiouli (Chapter 71.

Comparison of Stimulus A6 vs. Imagination data $=$ Orthographic:- $K \chi^{2}=$ 29.56, $\mathrm{df}=2, \mathrm{p}<0.001$; Vertical Obliqua:- $K X^{2}=2.75, \mathrm{df}=2, \mathrm{p}>0.05$; Oblique:- $K \chi^{2}=2.5, \mathrm{df}=2,>0.05$; Parspective:- $\mathrm{K} \chi^{2}=28.93, \mathrm{df}=2, \mathrm{p}$ < 0.001; No Ground Line:- $K \chi^{2}=11.81$, df $=2, \mathrm{p}<0.01$; Ground Line:$\mathrm{K} \chi^{2}=14.25, \mathrm{df}=2, \mathrm{p}<0.001$; Ground Plane:- $\left.\mathrm{X} \chi^{2}=2.3, \mathrm{df}=2, \mathrm{p}\right\rangle 0.05$; Partial Ocelusion:- $X^{2}=5.98, d f=2, p>0.05$.

The differences between the choice stimulus (B25) presented here, and the choice of projection system other subjects made when they were asked which depiction they thought looked most like a table are very small. There are two measures on which there were significant differences. The number of subjects using a Mo Ground dine response were very small in
both cases, hence severely limiting the psychological significance of the differences found. The number of responses on the Vertical oblique measure were larger, and, as Figure 8:G6 1llustrates, a larger proportion of subjects between the ages of four and nine make this response when presented with fully completed stimuli (previous chapter), than they do if asked to choose from stimuli that they have to complete. However this effect is reversed for subjects between the ages of nine and eleven. These findings, taken in conjunction with those discussed in the section above about the relationship in the Vertical Oblique responses between the subjects own production and choice, strengthens the point that the choice of Vertical oblique as the depiction most like a table may well imply different, age related, reasons for this choice.

Key:-
Orthographic
Sticulus A6 (own) Iagination, Chapter 4,
Perspective
Figure 8:67. The proportions of subjects, with age, using orthographic projection and perspastive on Stiaulus ab and when draving a table fron iagination.

A larger number of significant differences were found between the responses to Stimulus A6 (own production, done with examples of different ways of depicting tables in front of the subjects and available for copying), and the drawing of a table from imagination (Chapter 4, done with no outside aid). Figure 8:G7 shows that more older subjects use orthographic projection, and less younger subjects use perspective, on the table tops when they are drawing unaided. Figure 8:G8 shows that more
younger subjects use No Ground Line, and more older subjects use ground Line when they are drawing unaided. Therefore, having depictions of tables avallable for copying appears to encourage, partially, the production of the forms of response used by older subjects. This effect is not universal, because the development of Oblique projection, ground plane and partial ecclusion remains unaffected by the difference in the tasks.

Koy:-
No Ground line Ground line

Stlaulus ag (oun) loggination, Chapter 1 .
.............
———

Figure 8:68. The proportions of subjects, with age, using no bround line and bround line on Stioulus A6 and when draving a table frou inagind tion,
3) Differenses in proportions of response, with age, besween broups A and B, and 6roups C to l,

A comparison was made between the eubjects choice of depiction (Stimulus B25, the depiction that they thought looked most like a table), and the responses made on Stimulus groups C to I. This was examined by looking at the proportions of response, with age, both on type of table top and type of depth cue produced, across groups B to I using a series of Kolmogorov Smirnov two sample, one talled χ^{2} approximation tests. These tests found significant differences in the majority of the comparisons, only failing to find significant differences on the ground plane and partial ©celusion measures when B25 was compared with Groups H and I. All the other comparisons that falled to find significant differences involved
low subject numbers, thus limiting the psychological significance of the findings. Comparison of Stimulus B25 vs. Stimulus Group $C=O r t h o g r a p h i c:-~$ $\mathrm{K} \chi^{2}=4.92, \mathrm{df}=2, \mathrm{p}>0.05$; Vertical Oblique:- $\mathrm{K} \chi^{2}=15.37$, $\mathrm{df}=2, \mathrm{p}<$ 0.001; Oblique:- $\mathrm{K} \chi^{2}=232.69$, $\mathrm{df}=2, \mathrm{p}<0.001$; Perspective:- $\mathrm{K} \chi^{2}=$ 4.64, df $=2, \mathrm{p}>0.05$; No Ground Line:- $K \chi^{2}=17.23$, df $=2, \mathrm{p}<0.001$; Ground Line:- $K X^{2}=48.73$, $\mathrm{df}=2, \mathrm{p}<0.001$; Ground Plane:- $\mathrm{K} \chi^{2}=69.27$, $\mathrm{df}=2, \mathrm{p}<0.001$; Partial Occlusion:- $\mathrm{K} \chi^{2}=65.84$, $\mathrm{df}=2, \mathrm{p}<0.001$.

Comparison of Stimulus B25 vs. Stimulus Group D = Orthographic:$K \chi^{2}=10.77, \mathrm{df}=2, \mathrm{p}<0.01$; Vertical Oblique:- $\mathrm{K} \chi^{2}=25.54, \mathrm{df}=2 \mathrm{p}$ < 0.001; Oblique:- $\mathrm{K} \chi^{2}=108.93$, $\mathrm{df}=2, \mathrm{p}<0.001$; Perspective:- $\mathrm{K} \chi^{2}=$ 81.87, $\mathrm{df}=2, \mathrm{p}<0.001$; No Ground Line:- $K \chi^{2}=9.81, \mathrm{df}=2, \mathrm{p}<0.01$; Ground Line:- $\mathrm{K} \chi^{2}=15.7$, $\mathrm{df}=2, \mathrm{p}<0.001$; Ground Plane:- $\mathrm{K} \chi^{2}=62.93$, df $=2, \mathrm{p}<0.001$; Partial Occlusion:- $K \chi^{2}=60.96, d f=2, \mathrm{p}<0.001$.

Comparison of Stimulus B25 vs. Stimulus Group E = Orthographic:$\mathrm{K} \chi^{2}=5.35, \mathrm{df}=2, \mathrm{p}>0.05$; Vertical Oblique:- $\mathrm{K} \chi^{2}=3.47, \mathrm{df}=2, \mathrm{p}>$ 0.05; Obllque:- $\mathrm{K} \chi^{2}=15.9, \mathrm{df}=2, \mathrm{p}<0.001$; Perspective:- $\mathrm{K} \chi^{2}=1.67$. $\mathrm{df}=2, \mathrm{p}>0.05$; No Ground Line:- $\mathrm{K} \chi^{2}=15.53$, $\mathrm{df}=2, \mathrm{p}<0.001$; Ground Line:- $K \chi^{2}=17.08$, df $=2, \mathrm{p}<0.001$; Ground Plane:- $K \chi^{2}=3.63$, $\mathrm{df}=2, \mathrm{P}$ >0.05; Partial Occlusion:- $\mathrm{K}^{2}=27.17$, $\mathrm{df}=2, \mathrm{p}<0.001$.

Comparison of Stimulus B25 vs. Stimulus Group F = Orthographic:N.A.; Vertical Oblique:- $K \chi^{2}=18.85$, $\mathrm{df}=2, \mathrm{p}<0.001$; Oblique:- $\mathrm{K} \chi^{2}=$ 6.22, $\mathrm{df}=2, \mathrm{p}<0.05$; Perspective:- $\mathrm{K} \chi^{2}=34.29$, $\mathrm{df}=2, \mathrm{P}<0.001$; No Ground Line:- $K \chi^{2}=12.59$, $\mathrm{df}=2, \mathrm{p}<0.01$; Ground Line:- $\mathrm{K} \chi^{2}=8.32$, $\mathrm{df}=$ 2, $\mathrm{p}<0.02$; Ground Plane:- $\mathrm{K} \chi^{2}=56.64$, $\mathrm{df}=2, \mathrm{p}<0.001$; Partial Occlusion:- $K \chi^{2}=70.02, \mathrm{df}=2, \mathrm{p}<0.001$.

Comparison of Stimulus B25 vs. Stimulus Group G = Orthographic:$K \chi^{2}=10.05, \mathrm{df}=2, \mathrm{p}<0.01$; Vertical Oblique:- $\mathrm{K} \chi^{2}=19.39$, $\mathrm{df}=2, \mathrm{p}<$ 0.001; Oblique:- $K \chi^{2}=11.13$, $\mathrm{df}=2, \mathrm{p}<0.01$; Perspective:- $\mathrm{K} \chi^{2}=11.1$, $\mathrm{df}=2, \mathrm{p}<0.01$; No Ground Line:- $\mathrm{K} \chi^{2}=13.09$, $\mathrm{df}=2, \mathrm{p}<0.01$; Ground Line:- $K \chi^{2}=16.99, \mathrm{df}=2, \mathrm{p}<0.001$; Ground Plane:- $\mathrm{K} \chi^{2}=10.33, \mathrm{df}=2$, $\mathrm{p}<0.01$; Partial Occlusion:- $K \chi^{2}=85.89$, $\mathrm{df}=2, \mathrm{p}<0.001$.

Comparison of Stimulus B25 vs. Stimulus Group H = Orthographic:N.A.; Vertical Oblique:- $K \chi^{2}=14.99$, $\mathrm{df}=2, \mathrm{p}<0.001$; Oblique:- $\mathrm{K} \chi^{2}=$ 8.91, $\mathrm{df}=2, \mathrm{P}<0.02$; Perspective: $K \chi^{2}=17.07$, $\mathrm{df}=2, \mathrm{p}<0.001$; No Ground Line:- $K X^{2}=1.9, \mathrm{df}=2, \mathrm{p}>0.05$; Ground Line:- $\mathrm{K} \mathrm{X}^{2}=11.17$, $\mathrm{df}=$ 2, P < 0.01; Ground Plane:- $K X^{2}=0.25$, df $=2, \mathrm{P}>0.05$; Partial Occlusion:- $K \chi^{2}=0.25, d f=2, p>0.05$.

Comparison of Stimulus B25 vs. Stimulus Group I = Orthographic:$K \chi^{2}=12.1, \mathrm{df}=2, \mathrm{p}<0.01$; Vertical Oblique:- $\mathrm{K} \chi^{2}=20.4, \mathrm{df}=2, \mathrm{p}<$
0.001; Obllque:- $K \chi^{2}=1.77$, $d f=2, p>0.05$; Perspective:- $K \chi^{2}=8.12$, $\mathrm{df}=2, \mathrm{p}<0.02$; No Ground Line:- $\mathrm{K} \chi^{2}=6.28$, $\mathrm{df}=2, \mathrm{p}<0.05$; Ground Line:- $K x^{2}=23.68$, $\mathrm{df}=2, \mathrm{p}<0.001$; Ground Plane:- $K \chi^{2}=0.99$, $\mathrm{df}=2, \mathrm{P}$ > 0.05; Partial Occlusion:- $K \chi^{2}=3.92$, $\mathrm{df}=2, \mathrm{p}>0.05$.

A comparison was made between the subjects depiction (Stimulus A6), and the responses made on Stimulus groups C to I. This was examined by looking at the proportions of response, with age, both on type of table top and type of depth cue produced, across groups B to I using a series of Kolmogorov Smirnov two sample, one tailed χ^{2} approximation tests. These tests found significant differences in the majority of the comparisons, only failing to find significant differences on the oblique, fround plane and fartial Beclusion measures when $A 6$ was compared with Stimulus Group C, and the ground Line and partial Occlusion measures when 16 was compared with Group G. All the other comparisons that falled to find significant differences involved low subject numbers, thus limiting the psychological significance of the findings. Comparison of Stimulus A6 vs. Stimulus Group $C=$ Orthographic:- $K \chi^{2}=37.94, \mathrm{df}=2, \mathrm{p}<0.001$; Vertical Oblique:- $\mathrm{K}_{\chi^{2}}=17.28$, $\mathrm{df}=2, \mathrm{p}\left\langle 0.001\right.$; Oblique:- $\left.\mathrm{K} \chi^{2}=1.76, \mathrm{df}=2, \mathrm{p}\right\rangle$ 0.05; Perspective:- $\mathrm{K}^{2}{ }^{2}=8.16$, $\mathrm{df}=2, \mathrm{p}<0.02$; No Ground Line:- $\mathrm{K}^{2}{ }^{2}=$ 4.06, df $=2, P>0.05$; Ground Line:- $K X^{2}=18.48$, df $=2, P<0.001$: Ground Plane:- $K \chi^{2}=2.65$, $d f=2, \mathrm{P}>0.05$; Partial Occlusion:- $K X^{2}=$ 3.77, $d f=2, p>0.05$. The significant differences found here in the perspective response are attributable to AS vs. C 17 ($\mathrm{K} \chi^{2}=11.48$, $\mathrm{df}=2$, P (0.02). The significant differences found on the other responses are equally applicable to either A6 vs C17 or A6 vs. C12.

Comparison of Stimulus A6 vs. Stimulus Group $D=$ Orthographic:$K \chi^{2}=7.94, \mathrm{df}=2, \mathrm{p}<0.05$; Vertical Oblique:- $\mathrm{K} \chi^{2}=68.08$, $\mathrm{df}=2, \mathrm{p}$ < 0.001; Oblique:- $K \chi^{2}=27.32, \mathrm{df}=2, \mathrm{P}<0.001$; Perspective:- $K \chi^{2}=$ 88.95, df $=2, \mathrm{p}<0.001$; No Ground Line:- $K X^{2}=9.47$, $\mathrm{df}=2, \mathrm{p}<0.01$; Ground Line:- $\mathrm{KX}^{2}=6.66, \mathrm{df}=2, \mathrm{p}<0.05$; Ground Plane:- $\mathrm{KX}{ }^{2}=6.55, \mathrm{df}=$ 2, $P<0.05$; Portial Occlusion:- $K \chi^{2}=10.85, \mathrm{df}=2, \mathrm{P}<0.01$.

Comparison of Stimulus a6 vs. Stimulus Group $E=$ Orthographic:$K X^{2}=16.34, \mathrm{df}=2, \mathrm{P}<0.001$; Vertical Oblique:- $\mathrm{K} \mathrm{X}^{2}=133.31, \mathrm{df}=2, \mathrm{P}$〈 0.001; Oblique:- $K X^{2}=2.28$, $\left.\mathrm{df}=2, \mathrm{P}\right\rangle 0.05$; Perspective:- $\mathrm{K} \chi^{2}=$ 2.58, $\mathrm{df}=2, \mathrm{p}>0.05$; No Ground Line: $\mathrm{K} \chi^{2}=53.65$, $\mathrm{df}=2, \mathrm{p}<0.001_{\text {; }}$ Ground Line:- $K X^{2}=79.88$, $\mathrm{df}=2, \mathrm{p}<0.001$; Ground Plane:- $K \chi^{2}=22.64$, $\mathrm{df}=2, \mathrm{p}<0.001$; Partial Occlusion:- $\mathrm{K} \chi^{2}=58.19$, df $=2, \mathrm{p}<0.001$.

Comparison of Stimulus A6 vs. Stimulus Group $F=$ Orthographic:N.A.; Vertical Oblique:- $K \chi^{2}=12.4, d f=2, P<0.01$; Obllque:- $K \chi^{2}=$
184.4, $\mathrm{df}=2, \mathrm{p}<0.001$; Perspective:- $\mathrm{K} \chi^{2}=48.96, \mathrm{df}=2, \mathrm{p}<0.001$; No Ground Line:- $\mathrm{K} \chi^{2}=15.69$, $\mathrm{df}=2, \mathrm{p}<0.001$; Ground Line:- $\mathrm{K} \chi^{2}=8.15$, $\mathrm{df}=2, \mathrm{p}<0.02$; Ground Plane:- $\mathrm{K} \chi^{2}=9.03$, $\mathrm{df}=2, \mathrm{p}<0.02$; Partial Occlusion:- $\mathrm{K} \chi^{2}=6.22, \mathrm{df}=2, \mathrm{p}<0.05$.

Comparison of Stimulus A6 vs. Stimulus Group $G=$ Orthographic:$\mathrm{K} \chi^{2}=14.53, \mathrm{df}=2, \mathrm{p}<0.001$; Vertical Oblique: $-\mathrm{K} \chi^{2}=15.82$, $\mathrm{df}=2, \mathrm{p}<$ 0.001 ; Oblique: $-\mathrm{K} \chi^{2}=38.33$, $\mathrm{df}=2, \mathrm{P}<0.001$; Perspective: $-\mathrm{K} \chi^{2}=$ 21.85, $\mathrm{df}=2, \mathrm{p}<0.001$; No Ground Line:- $\mathrm{K} \chi^{2}=10.9$, $\mathrm{df}=2, \mathrm{p}<0.01$; Ground Line:- $\mathrm{K} \chi^{2}=3.9$, $\mathrm{df}=2, \mathrm{p}>0.05$; Ground Plane:- $\mathrm{K} \chi^{2}=6.54$, $\mathrm{df}=$ 2, $\mathrm{p}<0.02$; Partial Occlusion: $-\mathrm{K} \chi^{2}=4.29$, $\mathrm{df}=2, \mathrm{p}>0.05$.

Comparison of Stimulus A6 vs. Stimulus Group $H=$ Orthographic:N.A.; Vertical Oblique:- $K \chi^{2}=16.4, \mathrm{df}=2, \mathrm{p}<0.001$; Oblique: $-\mathrm{K} \chi^{2}=$ $172.72, \mathrm{df}=2, \mathrm{p}<0.001$; Perspective:- $\mathrm{K} \chi^{2}=25.12, \mathrm{df}=2, \mathrm{p}<0.001$; No Ground Line:- $\mathrm{K} \chi^{2}=1.63$, $\mathrm{df}=2, \mathrm{p}>0.05$; Ground Line:- $\mathrm{K} \chi^{2}=5.62$, df $=2, \mathrm{p}>0.05$; Ground Plane: $-\mathrm{K} \chi^{2}=99.01$, $\mathrm{df}=2, \mathrm{p}<0.001$; Partial Occlusion:- $K \chi^{2}=94.14, \mathrm{df}=2, \mathrm{p}<0.001$.

Comparison of Stimulus A6 vs. Stimulus Group $I=$ Orthographic:$K \chi^{2}=15.68, \mathrm{df}=2, \mathrm{p}<0.001$; Vertical Oblique: $-\mathrm{K} \chi^{2}=13.95$, $\mathrm{df}=2, \mathrm{p}<$ 0.001; Oblique: $-\mathrm{K} \chi^{2}=33.25$, $\mathrm{df}=2, \mathrm{p}<0.001$; Perspective: $-\mathrm{K} \chi^{2}=$ 18.3, $\mathrm{df}=2, \mathrm{p}<0.001$; No Ground Line:- $\mathrm{K} \chi^{2}=4.18$, $\mathrm{df}=2, \mathrm{p}>0.05$; Ground Line:- $\mathrm{K} \chi^{2}=10.97$, $\mathrm{df}=2, \mathrm{P}<0.01$; Ground Plane:- $\mathrm{K} \chi^{2}=80.98$, df $=2, \mathrm{p}<0.001$; Partial Occlusion: $-K \chi^{2}=68.95, \mathrm{df}=2, \mathrm{p}<0.001$.

Figures 8:G9 to 8:G17 present these findings in a slightly more user friendly manner. In these figures each stimulus group is given a different type of line, thus:-

Figure 8:G9 shows that there were very few orthographic responses to any of the stimuli, apart from Stimulus A6, when subjects were asked to draw their own table.

Figure 8:G10, looking at the vertical oblique response, shows that Group E stimuli encourage a high vertical oblique response at all ages, but that Group C stimuli elicit a higher vertical oblique response than is produced in Group A (subjects own drawing). None of the remaining groups encourage a high response as subjects had to deliberately alter the stimuli to produce one, though Groups G and F show a peak in vertical oblique response between six and eight years of age.

Figure 8:69. The use of orthographic projection in each stiaulus group.

Figure 8:610. The use of vertical obligus projection in each atioulus group.

Figure 8:611. The use of oblique projection in each stimulus group.

Figure 8:612. The use of perspective in each stinulus group.

Figure 8:613. The use of no ground line in each stiaulus group,

Figure 8:614. The use of ground line in each stiaulus group.

Figure 8:615. The use of ground plane in each stivulus group,

Figure 8:616. The use of partial occlusion in each stioulus group.

Abstract

Stimulus groups F and H, as might be expected, elicit a high oblique response at all ages, as does Group B, the subjects choice of deplation most like a table, as can be seen in Figure 8:G11. Development in the subjects own production of oblique projection 16 closely correlated with development in the use of oblique on stimuli in Groups C and D. These were clasised as variable 'groups, thus subjects were equally able to use perspective, but did not do so. A small number of subjects from six years of age upwards deliberately alter the other stimull to provide an obllque response.

Stimulus Groups G and I elicit a high perspective response at all ages, as can be seen in Figure 8:G12. Similarly, stimull in Group D ellcit a high perspective response, but only from the younger subjects. It would appear that as they develop the abllity to use oblique projection, they choose to use this form of depiction on the table top rather than perspective. Stimulus Groups A, B, and C all elicit a low perspective response from most age groups, but the remaining stimuli encourage hardly any perspective at all.

Figure 8:G13 shows that stimuli in Group E encourage the highest no ground line response, particularly from the older subjects. Stimull in Group C encourage a small but steady no ground line response across all ages, whilst the remaining stimuli only encourage a no ground line response from the younger subjects. Very few subjects at any age show a preference for no ground line.

The picture is slightiy different for the ground line response, as can be seen in figure 8:G14. Here the majority of the stimuli encourage a high ground line response from the younger subjects. The strength of this response declines steadily from about six to twelve years of age. Stimull In Groups H and I do not allow a ground line response, yet between ten and thirty percent of subjects from five to nine years of age, alter the stimulus to provide such a response. Some of the younger subjects drew ground lines or ground planes onto the stimuli, as can be seen in Appendix 8:A. The numbers involved are too small to carry much peychological significance, but the unexpected addition of these indicates that, for these subjects, an inportant aspect of the stimulus is its percieved possession of a ground line or a ground plane. This indicates that extending the legs to produce a ground line, on stimull that initially possessed a ground plane is a deliberate action coinciding with the stated preference for ground line.

Figures 8:G15, and 8:G16, showing the ground plane and partial
occlusion responses are very similar and will be discussed together. The majority of subjects at all ages think that a depiction showing ground plane and partial occlusion looks most like a table, and subjects show a developing ability to use these depth cues from about four to twelve years of age. The use of ground plane and partial occlusion on stimulus groups H and I, where these depth cues are already given, closely matches the subjects stated preference, though some younger subjects do alter the stimuli in both groups to provide a ground line, as discussed above. Responses on stimulus groups C, D, F, and G, match those produced on Stimulus A6, when each subject draws their own table. The only stimuli that have a dramatic effect upon the table legs are those in Group C, where subjects are forced into drawing a table top in vertical oblique projection. Here subjects appear to match this with the production of 'less advanced' depth cues.

To summarise an analysis of the stimulus groups shows that the vast majority of subjects at all ages think that a table top in oblique projection and table legs showing the use of ground plane and partial occlusion makes the depiction look most like a table. Subjects show a developing ability to use oblique projection, ground plane, and partial occlusion (from about four to twelve years of age). The provision of stimull that ald the production of these measures encourage a similar response showing developmental trends at an earlier age. The oblique response on variable stimuli shows the same developmental trend, thus subjects prefer to use oblique projection, rather than perspective, and do so as soon as they become able to. The strength of preference for an oblique response is illustrated by the fact that a small proportion of subjects at most ages deliberately alter the stimuli to provide oblique projection. Similarly the strength of preference for ground plane and partial occlusion is shown by the fact that development in these measures is very similar across all stimuli apart from those in stimulus group E.

The discussion at the beginning of this appendix pointed out that subjects had many depictions of tables to copy from, yet this does not appear to have enabled them to complete the stimuli in the way that they think looks most like a table. Some subjects have deliberately altered the stimuli to accord with their normal production, and the use of oblique projection, ground plane, and partial occlusion develops with age in a relatively non-task dependant way.

APPENDIX TO CHAPTER 9 .

'Meaning', and the Copying of Line Drawings of Tables.

- Data are contained in Chapter 9.

Ap.9. Lee, M., (1989), When is an object not an object? The effect of 'meaning' upon the copying of line drawings. British Journal of Psychology, 80, 15-37.

Ap.9. 2

When is an object not an object? The effect of 'meaning' upon the copying of line drawings

Monica Lee
SC Later Lor. Lenal Lemativ PRS MHD. UK

Abstract

 dr wwes of a celle ote pateve of evroer in wery yonder to thas obrained whes the seme componem pors mere copped wethour the trovied ge of whea they mprexme wey ko errors we mile.

Many themeies of eognitive and social development in children refep to the child's drawing sbilisy. This devetopanem is of such relisbilite that it is used as pant of general rests of developmem (Goodenough, 1926; Harris, 1\%3). It is, howerer, nor general rests of developmem (Goodenough, 1926; Harris, 1\%3). It is, toweref, no
cleas exacty whas a normal child's developing ability to represent a three. cleas exactly whas a normal child's developing ability to represent a three-
dimensional object in two dimensions indicates in terms of cognitive development. dimensional object in two dimensiona indicates in cerms of cognitive developrning people in tadpote form, few would argue that children really believe peopie to be of this form. or that children are convinced that the legs of a table really do splay ou in all directions when they draw, a table in this way. If a 'normal' child's risualizaton of a table is similar to that of an adult why do children not draw tables as adults do?
Mose adults preier to view a drawing that uses oblique projection (Hagen al Elliot 1976) rather than one drawn in linear perspective, and almose all adults preier ro draw a table in oblique proiection. Examples of a table drawn in these projection gresems an be seen in Fig. I. Eren very young children prefer to look at a table represented in oblique proiection. even though they do not depict in in this manner. Further, when young children are given a completion task in which ic is necessary to add only one line to the stimulus shey will go to great srouble to alter the stimulus so that in aecords with their normal form of depiction (Lee. 1988).
A substantial amount of work has already been done on the difficulties children A substantial amount of work has already been done on the difficulties children
experience in drawing and copying, and the possible causes of these dificulties. One experience in drawing and copying. and the possible causez of these dificulties. One
is that difficultey is relared to the physical task oi dra wing. Lassio \& Broderick (1985) is that difficulty is relared to the physical rask or drawing. Laszio \& Broderick (1985) They found that accurney improved steadily with age, and partially with training.

The performance of five- and six-year-olds was poor, and chiddren showed parricular difficulty with the diamond and the horseshoe. Laszlo \& Broderick argue thas plannine of action, ertor detection, and error correction may be sourees of difficulty. The specinic problems shown by young children are identified as anability to copy angles accurately, and failure of closure. These errors occur more m the diamond rather than the square (idencical in shape, but roeared through 45 degrees) which indicares that it is not solely the physical shape of the object that causes problems.
Freeman (1980) suggested that development in table drawing could be relaced so mabilitr to overcome figural biases. Bremner (1985) discussed the problem or figural biases in detail and suggested that there are three classes of bias: local bias, figural effects (such as symmerry), and extra-figural effects (such as the edge of paper). There are two biases that are particulariy relevant here. The firse is a local bias, called the perpendieular bias, in which the child shows a tendency towards drawing one line as nighe angles to another. This appears to be the most pervasive, and mighe account ior the greater difficulty experienced by the young child when copying a diamond nether than a square. The second is a bias rowards symmerry around an axis.

I further pussible cause of dificulty is related to the child's conception oi a cable 2s a three-dimensional object and his or her inability or lack of experience in coakescine three dimensions onto a ewo-dimensional plane. Theoretically, when a child is asked to copy a line drawing the problems of eranslation irom three dimensions to two dimensions are removed, as the subject is presented with the solution to copy. A further complication has been suggeated by Phillips. Hobbs \& Pratt (1978), however. A line drawing is seen as a solid object and the internal description created by this will describe the form oi that object in three-dimensional space. Thereiore, although the stimulus is two dimensional, the child may still experience the problem of iransiating three dimensions to two. Then (1985) rejects this vew. She found that children do not alwars produce the same drawings whether copping a line drawing or drawing a solid model. In particular, she poinis out that older children tend to produce more advanced drawings when copying a twodimensional model than when copying a shree-dimensional model. She detinea more advanced as 'towards perspective representation'. Her criticism assumes that the only difference between copying from a ewo-dimensional or a three-dimensional model is that of the extra dimension and hence n ignores any extra figural effects that mighe occur, such as the relationship between the model, either a piece of paper or a solid object, and the table upon which ir is placed. or indeed the whole room. This implicit assumption that children draw an obiect in a consistent manner is not necessanle well founded (Golomb, 1974). Nor is it the case that perspective is necessarily a more 'advanced' form of representation, as Lee (1988) showed that the form of projection used was partially a function of cask demands. It is quite ieasible that extra-higural effects might alter the cask sufficiently to affect the form of that extra-igural effects might alter the cask surficiendy to affect
proiection used, independently of the dimensionality of the
The iour possible areas of error investigated here are:
The iour possible areas of error investigated here are:
(d) the problem of translating three dimensions to two:
(d) the problem of translating three dimensions to two:
(b) the problem of translating to two dimensions the three dimensions that are implicit in a two-dimensional figure:

\pm
17
 Lee \& Bremorer (1987) and Lee (1988). Although the une of a perriculin proiection yyutem was found ro be uak dependem subiecto thowed, with age, in incresse in the use of 'affine' or 'proiective' sywems of naruoral perppective (sa defined by Hagen. periormmoce can be compored when eopying liose drawinge of a able. In the firse suody repormed here subiecta were sated no enpy line drawings of a uble This comporison ppovides informmion on the dificulyy of transtaing three Thin comparion provides informmion on the diviculsy of transtaing three effects and thoce dimencionaling implicin in the ewn-divemional figure It does.
 subjects sere miked no copt 'meaninglese ' parss of the hiae dravinge, and the results were compared with ctow obecined on che firsx medy. These comparisoas anable

 ox implicie dimensionalivy to be evaluaced by giving the 'mesoningless' parts meaning. and hence implicin divnemsionalivy, and then comparing the resuls wish those in -hich the ximuli were mesningiess (Srodies 2, 3 and d). Exrra-figural enfects are unumportant because ite cash of copring a collection of lines is the same in boch cases. The only diference berween ithe row osaks in the way in which subiects
incerpree the lines. A final companson wivh Srudr l. in which ohe lines have meanune interpree the lines. A final companson winh Srudr l. in which othe lines have meznone
In order to ensure experimental nalvery no subiet was used for more than ome eredr.
. Westered

Table 2 The proportons of response, with age, for scimuli winh a cable top in orthographic. vervical-oblique oblique, or perspective projection (measured as a percenage of the tocal reiponse for that age)

Are... So. meponeas	50	$\begin{array}{r} 3 \\ 48 \end{array}$	6	$\begin{array}{r} 7 \\ 60 \end{array}$	3	9	$\begin{aligned} & 10 \\ & 60 \end{aligned}$	11	$\begin{gathered} 12 \\ 1: 1 \end{gathered}$	$\begin{aligned} & 13 \\ & 169 \end{aligned}$	14 0
Orioprapior mami											
Ontrographe	6	co	4	100	4	100	88	100	100	100	100
Verical-ob	22	∞	14		12		12				
Otrhogrephe	28	12									
Verncitob.	-4	35	100	00	100	100	*	100	100	100	100
Propective		3		20			12				
Oummend											
Rowd	11										
Ovihorapine	14	19	13	2							
Verucatoth.	4	75	63	14	54	20	15				
Otlique		4	2	17	4	30	is	100	100	100	100
Perpperive	3			3							
Fanue	18	2	2	-							
Propmat moed											
Romed	20	6									
Onemegraphe		7	-	14							
Verncest-ob.	3	31	27	21	1	21					
Obhque				65		79	100	100	${ }^{2}$		100
Perspectuve	3	56	ω	bs		. 9				100	100

the response, yet only five subjects failed to use perspective. Because of the lack of difference in response berween the two stimuli, responses to them are amalgamased for the remaining analyses.

Main andfris. (a) Copying of sbe tabtr nops. Table 2 shows the responses analrsed in relation to the trpe of table top given in the stimulus. This provided four classes of stimulus, orthographic (stimulus 1), vertical-nblique (stimuli 2 and 3), oblique (stimuli 4, 5, and 6), and perspective (stimuli 7, 8, and 9).
A threc-sample x^{2} between the proporion of correet responses, with age, for orthographic and vertical-oblique and perspective scimuli fiiled to show a signisicant difference ($x^{2}=20.7$, d.f. $=20, P>0.3$). However, a four-sample rese, inctudiag the responses on oblique stimuli, showed significame differences $\left(X^{2}=198.4\right.$, d.f. $=30$.
$P<0.001$. $P<0.001$).
Table 2 shows that where errons do occur they rarety take the form of an oblique response. The maiority of errors on orthographic, oblique, and perspective stimuli are caused by verical-oblique responses, and on vertical-oblique simuli, by orthographic responses.
Oblique stimuli elicit a form of response that is qualitatively different from responses on the orher stimuli. The similarity in the proportions of errors from the

Table 1. The proponions of correct responsea, winh age, for esch stimulus and for esch ximulus group. 'Oblique' depth [B] inchudes marginal errors, see texe for detala

Ase.. No. of reppenses	30	$\begin{gathered} 5 \\ 4 \end{gathered}$	$\underset{6}{6}$	$\begin{gathered} 9 \\ \infty \end{gathered}$	si	$\underset{\infty}{9}$	$\begin{aligned} & 10 \\ & 60 \end{aligned}$
Stimelve 1	100	76	100	100	100	100	100
Scimatra 2	100	76	${ }^{5}$	100	100	100	100
Scimane 7	100	50	9	100	100	100	100
Averoge	100	67	9	9	100	100	100
		-					
Stimile 4/5	-	-	41	18	23	33	0
Scimmbe 6	0	0	0	0	63	61	56
Averse	0	4	20	9	4	50	23
Stimble 4/5	6	32	9	70	82	37	100
Srimelue 6	0	33	14	ω	76	100	18
Average	3	33	31	63	79	94	95
-Poramoios dopt							
Stimule 3	0	34	43	60	63	4	4
Stimines 9	20	38	40	28	63	57	80
Arener	10	36	42	43	63	1	15

orther sthere formes of simmali indicare than these erroes might be refared to deretoponemal facrons linked to skill in copping. The oblique srimuti appear to preseme fienter problems then can onty be retated to eixher ligural biases unnque to preserk fiventer problems dhes can onty be retated to eriner haural bises unsque to those stimwti (such as in the dra wing of rwo o
(b) Copging of itm andt horr. Analysia of rive wimmiti relaced wo the way ia which the table legt are depicted provides three stimulus groups: ao implicix depth (strmuli 1,2 and 2 implicir depth in a perspeceive menaer (stimati 3, and 9), and implicit depeh in an oblique maneer (ximmoli 4, 5, and 6). In this analrisis a response was considered correct if the rable legs were depicted correctly, regardless of how the table top was drawn. Table 3 shows the proportions of correct responses with age fine each sximelus.
 and $7\left(x^{2}=7.1\right.$. d.f. $=12 P>0.1$). All age growps thowed liztle difficulty in copring eable lege that involved no depeh Similarty, a Kotnoporov-Smimov rwosample test faiked to show a significam difference bermeen simuli 3 and 9 ($D=0.09$.
 P
table legs in perspertive. Responses for table legs in oblique depth show interesting
rariacions. There are significant differences berween acimali 6 and $4 / 5$ as showa by rwo-sample Kolmogoron-Smimov eent ($/=0.5, P<0.05$). However, 43 per cent of errors on stimuli $4 / 5$ ule the form of the able shown in rimaluss 6, with the back leg that falls between the ewo front ones elongated, whereas 20 per cent of errons on stimulus 6 ate the form of ables shown in stimuli 4 and $\$$ (true oblique). When this form of error is included in the analysis (i.e when those denwing in which the subject is showing depeh, bue has aot depicted the table kegs winh the same relative
lengths as shown in the simulus, are judged correct) a Kolmogorov-Smiroov swolengths as shown in the suimulus, are judged correct) a Kolmogoror-Smircov swo-
sample ress fals so show any significant diferences berween the simuli $(\mathbb{}=0.09$. sample rese fals to show any significant
$\mathrm{P}>\mathrm{O} 0.05$), showe as "oblique depth $[\mathrm{B}]^{\prime}$.
Even the younger subice made very few errons then copying a acianulus with mo implicis depth, however. these stimuli were less complex than those wich either perspective of oblique depeh. the copping of which produced clear developanental trends. A Kolmogorov-Smirbot rwo-sample tese fill to show eay significans differences between these last iwo groups of stimuli ($\langle=0.07, P>0.05$). The developmental trendesthown on these rwo groupa of scimali appear to be similar. However, it is as per moclear whether they can be actribueed to the greater complexury of the stimuli, implici depth in the scimuli, or a combination of the rwo.
Developenem in the copying of a rable top in oblique projection or mble kegt in oblique projection or perspective is similar ro developrnent shown in drawing a eable from imagination. All proportions of childree correct as each age are significancly correlated with each orber. (Table rop and imagination: $r=0.93$. df. $=9$. $P<0.001$: table rop and rable kgs: $r=0.93$, d.f. -5 . $P<0.01$; able kegs and imagination: $r=0.84$. d.f. $=5$. $P<0.05$). Having a srimulus to copy clicies more correct responses than if the subject were drawing a mable from inagination bur the form of development is sumilar whether the cable is drawn from imagination. copied from stimuli with nblique zable rops, or copied from simuli with kgs in implicir depih.

Diswasive

This srody exrablishes basclines agsinss which fucure copping behaviour can be eraluated. The first question rised by this srody is whether the form of the oblique able rop itself causes the difficulty children have in copying is sccurately. This question is examined in the nexe srudy.

Sxudy 2

The previous study showed thas the majoriny of yowng childrea sase able wo copy a rable rop in perspective bur nor in oblique projection. This strady is dasigred to discover whether the difference in rate of error, with age, berween the two forms of stimuli is relsted to figural effects. The main figural diferences berween the seimuli are (d) symmetry around a verical axis (in the peripective rop) and (b) parallel oblique lines (in the oblique top).
Symmerry is an imporant aspeet of a figure (Bremmer, 1995). For example, fiveto 9 -year-olds judge symmetrical parterms as simpler then asymmetrical ones

> Moening and ith copping of lime dravings

33
(Chipman \& Mendelson, 1973), and reproduce symmetrical dor patterns more accurately than asymmetrical patterns (Boswell. 1976). Failure to copy the oblique table top may thus be due to ies lack of symmetry.
Similarly in is known that young children show difficulty when eopying acuee and obruse angles (Bremner. 1985). Borh forms of table rop contain these angles, yet children are able to copy those in perspective stimuli. The main differences between the two iorms of stimuli is that the orthogonals in the oblique iorm are also paraltel. Mitchelmore (1985) seares thas ' young children can copy a line parallel ro another line with considerable accurscy, bur when the target line is inclined at an angle to the base line they gencrally show a syscematic error rowards the perpendicular direction ". The baseline in an oblique able cop is not inclined at an angle, although the parallel lines of the oblique form might give this subiective effect. For example, it wis thown by Lee (1988) ehat when subjeers draw an oblique cable from imagination younger Lee (1988) that when subjects draw an obique table from imagination y.
children have a greater tendency to draw she oblique parallels converping.
This scudy was designed to find our firstly, whether the effect shown in Study I is seill evidene when only the table cops are drawn, and secondly, whether this effect could be attributed eirther to the symmetry of form and/or to the parallel lines.

Mretbed

Schwrt, The subiects were 171 ehildient, aged berween iove and 11 reass old, from a pevmary sctionl on

Reswles

The stimulus cas be analysed in four separate parts, marked A, B, C, and D in Fig. 2 Pars C and D are identical to A and B but are rotated to give symmetry around a verical axis in C and oblique parillel lines in D, as can be seen in Fig. 2 None of a veruca axus in C and obluque paribel hines in D , as can be seen in Fig. 2 None of in actordance with the classification of projection syseems described in lee \&e Bremner (1987). Further, the response to part C was only considered correct if it was symmerrical around the veracal ais, and the response to D was only considered correct if the two oblique lines were parallel. Parts \boldsymbol{A} and B were the target shapes. .Is they were identical to the oblique and perspective table tops in Srudy I errors on C or \bar{D} were nor analysed if the subject copied both of them socurately.
Only 11 of the 171 subjects made errors on parts λ and B. Three four-yeas-olds made efrors on each part, and two seven-year-olds made no other errors. The remaining six subjects, mosely five-vear-olds, made errors both on A and D, bue none on B or C.

Discussion
The mose striking aspect of the resules presented here is the lack of error at all ages. Many seudies have been done on the way children copy dianonds (see Alicehelmore. 1985) and the general consensus appears to be that young children have greas dirficulty with this contiguration. The subiect population used here did not appeat to be unusual, being the incake of a normal state primary school, although there are three aspects of the experimental method that might be relevant. Firstly, beciuse of the iocus of the seudy errors on part C were only included in the analysis when subjects had fuiled to copr A or B correctly. In all age groups there were a few children who iailed to copy C correctly, bur because of this shey did nox iall within the scope of the analrsis. Secondir, unlike mose experiments the pars were presented as one unit. Several studies have shown that children alter their drawings in an attempt to diferentiate berween stimuli (see Lighe. 1985). It is possible that she presentation of all four parts rogether increased general securacy as the children rried to clarify the differeaces berween them. Finally, the copy wns judged to be correct if irs classification. as determined by measurement, was that of the appropriace proiection system. Therefore these criteria are less atringeat than those that measure minure deviations from the form of the scimulus, and may well add to the surprising lack of error iound here. If this is the case is does nor detraca from the force of the argument presented here which is dependent upon a comparison berween errors produced in this study and those from Study 1 rather than an absolute measurement of accuracy of eopring.

The sparseness oi errors means that the information obtained from the iew errors

 table rop. Similarly, no subieess had problems with A, C, sad D, and so error is noe
 symmerty.
 cop.

Soudy 3

Srudt 1 wes desixaed wo discover wherher the inobitivy shown by some younk children ro copp cable kegs in perspective is rewed so hroum effects Younz children have a rendency, when depicting a table, to entend the bect keps so that they are kevel imsinesion, oherther in is eopied frome a line draving or is part oi s completion task (Lee \& Breminer. 1987; Lee, 1988). There in more then one posible reason for such a bies. If in is cavsed by : desire for onder, or neacness of the figure, in should occur whacerer the onvensasion of the fizure. If in in camed br the desure is indicate the
 that the lines represene able k ghs in perppective, iew errors should be made.

Mratsed

Renchas
The swouver can be malyrued to fowe separser perce, marked A. B. C and D in Fig. 3.

 pars. Six subieers einher did noe copp the figures in the correct orventation or did not enpy the number of kegi correetly. These reeponses were nox inclucted in further
 bowh B and D inseciurarety, a child of five reand and anorher of elche vears ialled to copy B. and a six-year-old faiked to copy D.

In conclusion this study indicates that young children's inability to copy a table in perspective is not caused by figural bias related to the shape of the table legs.

Study 4

Sudy 4 was designed to discover whether the errors made by the children in Siudy 1 were caused by igural effects associated with the form of table legs in oblique projection. Study 3 showed that when rable legs are drawn in perspective the lengethening of the back legs is nox related to figural bas. However, it is possible that table legs in the form of oblique projection are influenced by such a bias. Drawing table legs in oblique projection also involves the aceurate depictuon of an obtuse angle, and young children are known to have difficulty constructing such angles angie, and young children are known to have dificuity constructing such angles
(Bremner. Iy85). It is quite possible that this extra task demand causes the child so (Bremner. I 885). It is quite possible that this extra task demand ca
make ground line errors where they would not otherwise occur.

.Mecthad

 Cerland. Lucashore
 proxedure was the same as that used in Srudv 2

Resuir

The stumulus an be analysed in sux separate parts. marked A. B. C. D. E. and fin Iite. G. Part A is an obruse angle. In B, C, and E: lines are added progressivelv, such that I : connatns all the lines necessart ior table less in oblique propection and is theretore the earser stimulus. Parss D and F are the alternatives to \mathbb{C} and E respectiveit, in which the table kess extend to a ground tine. These annoxations were respectiveit, in which the table kes extend to a ground line. These annorations were in accurate replica oi the part. If a child copted the target accusately, bue made errors in onher parts, these errors were nor included in the analysis. Table 4 shows the errors, with age, fior each part in the replication or the table kegs.

Analisis was done in iwn parns. firstly, ertors on the copying of the obleque angle were analvsed. and then the keneth of the able kgs was examined. Table 4 shows that only seven subiects in incal had problems with the angle. Twor subicats used straight lines (s), three subjects used right angles (r), and iwn subjects used a combinatom of the two on different scimuli. Only one subiect had problems with all the stimult, she started using a righe angle, but changed to a straighe line on the last (wo) seunuli. The wher sux subiects only produced ermors as the sumuli became more (wo) seltinult. The wher six subiects onily prixduced errors as the stamuli became more complex. Twentr-seven subjects made at leas one error in copying the length at the hnes. The criteria were, however, very stringent, and almose all ot these errors were onle marcinal. Marginal error necurred when subiects retained the relative lengits
of the lines, but showed a tendencv to extend the inside back leg slightly (i). Lee of the lines, but showed a tendencv to extend the inside back leg sightily (i). Lee
$(198 H)$ showed that this is a irequent error when a rable is drawn from a model, irom imagination. or in a complection rask. The error that is being examined here, that of

 each pars oi the manulus. The ketier giver ithe form of errow

n.

enensmm of all the lines to groumd tine (g). is macke br erghe subpects, bur nux in a consistent mannce. For example, six-vear-ohid subiect 2 makes this ermer on an easy part but nor on a move complez one. The errors are spread across the age range and do men moncate a cunsiscent figural bias.

Discestom

Is in the last two studies the muss suriking aspect orithe results presented there is the lack ofierroe at all ages (ince again the subiect popularion used here did nox appear
 ro be unusual, being the menake of a normal seare primary shon, Alove errors appear so be was unusual in that the paris were presented ss ane enic. Alore to be no consistent made as the parts become more co
pattern in ithe ispe of errors made. is is surgested that mune children's inability ro empr a table mabluye propection is mex caused by figural bias related to the shape of the table legs.

Sudy 5

This studr is designed to discover whether errons erident in Srudy I are caused nox Thiss studr is designed to discovithe form orithe line drawngs, bur by the knowkedge br figurs the lines represent. The earger sumuli in exch of the above srudies are
 theretione presented
drawing ori a eable.
. Wesbad

Krim/s

 lorms in respunar. with age. lion each simulus.
 athmilus. In comiunction with elve resulis reported carlice in this paper ther alur show

\& Ot totel s7 se 31 e2

 exch error and the toxil percemaee of cormer reppome. wnh spe. for exch part oi she stimulus. The weeni number of subierts in each age group wn 23, 28, 24 and 34 respectively.

Subjects oi all ages appear to use this as an alternative method of depiction, showing no developmental trend, hence this response is classed as correct ior the purposes oi comparison.
When the proportions of errors for each age are compared by a two-sample nnetailed Kolmogorov-Smimov test with those elicited by the target parts of the stumuli tailed Kolmogorov-Smimor test with those elicited by the target parts or the samali
in Studies 2, 3 , and 4 a significant difference berween the two is found for pars A. C, and D. but not ior B (the lines representing a table top in perspective) (Part A rs. part A. Seudy 2: $d=0.16, x^{2}=6.1$. d.f. $=2 P<0.02$; pari B rs, parr B. Srudy $2 ;$
 $p<0.001$). However. Kolmogorov-Smimov rwo-sample one-cailed tests faiked to
find any significant differences berween the proportions of errons with age obained in this study and those produced for cither the table tops or the able legs on the appropriate stimuli in Study 1 (in which the complete line draving is copied). (Part λ vs. the copying of the top of the oblique table in Study $1, d=0.13, x^{2}=1.8$, d.f. $=2, P>0.2$; part B vs. the copying of the top of the perspective able in, Study $1 . d=0.02, x^{2}=0.21$, d.f. $=2, P>0.7 ;$ part C vs. the copying of the legs of the oblique table in Srudy $1 . d=0.09 . x^{2}=1.6, d . f,=2 P>0.2$; part D vs. the copying of the kgs of the perspective table in Study $1, d=0.04, x^{2}=0.54$, d.f. $=2, P>0.3$.)

Discussion

Subjects in either this study or in Studies I or 2 showed little difficulty when copying 2 table sop in perspective. Each part of the stimulus presented in this scudy was identical to one presented in either Study 23 or 4, yet there were significant differences berween the way the subjects in this study copied parts A. C, and D. (cable rop and legs in oblique projection, and table kgs in perspective) and when subjects copied identical parts in the three orher studies.
Earlier it was argued that the case with which the rarget parts of sximuli were copied could be related to the face that they were presented with similar line drawings which might increase the saliencr of minor differences between them. In this study which might increase the saliency of minor differences between them. In this study all the target parts of stimuli were presened together. It is possible that the scimulus
used here difered sufficienty to cause distraction rather than inereased discrimiused here differed sumicienuy ro cause distiction rather than increased discrimiwith the stimulus used here and the more complex stimuli used in Srudy I would with the stimulus used here and the more complex stimuli used in Srudy I would show the same effert. However, even one-tailed tests failed to show any significant
differences berween the patterns of erroe obeained here and those obrained in Seudy 1 . differences berween the patterns of error obeained here and those obezined in Serdy 1 .
An aliemative, and more convincing. explanation is offered by anorher aspect of the results. In Srudy 1, when subiects were asked to copy line dra wings of a eabie in different projections, subjects showed difficuity with the sop and legs of the nble in oblique projection, and with the legs of the table in perspective. These particular difficulties were replicated by the subjects in this scudy. The stimuli used here generally elicited slightly more correct responses than elicited by table rops or table legs in oblique perspective and by table legs in perspective, which may be atributable ta the greater complexiry of the sumuli in Study 1 , but the partems of etrors in the rwo srudies are remarkably simular. The only feature shared by the stimuli in Srudy I and the parts of the stimulus used in this study is the subjecr's knowiedge of the object that is being represented.

To conclude, the pattern of errors obeained for each part of the stimulus was more closely related to that obrained on the relevine part of the different, and more complex, stimulus presented in Srudy 1 than it was to that obrained on part of a stimulus identical to one used in this study. The point of similarity berween this study and Study I is that subjects knew in each case that what they were drawing represented a table. This knowledge dramatically altered the subjecers' response on two otherwise identical tasks. Questions about why this effect is only apparent when
able rops and legs in oblique projection and able legs in perspective are copied are exaroined in the general discustion that follows.

Gencral dibcuesion

It would appear that whea subjects appreciace that dhe simalb mighe be more than a collecrion of lines and could repersear pert of a cable they wawiriogly actempt to represenk the chree dimensioasliry that is now amocisted winh these lincs. These performance oa the ansk is then similer so che way subiects of their particular age are knowa to represens three dimenaionaliry, in thas younger childrea no longer copy the scimplif scruracely and produce the same errors that they would if they were drawing sciavili scrarsect and produce the same argumeot is used by Deregoviki (1976). Deregowski \& Serng (1986) wed there-dimensional sxianali so show that that difficulty in representacioa might lie in the contict beeween the desire to convey the overill appearnoce of che obiect and the amempt to depict ise elemencs correcty. The
 degree of dincasionalicy of the stianulus ia a dinerese, thonga almoss inseparable. ariable to thas of completeness of the stimulus. The srodies reporied here separate these two viriables and suggest thas the elemescary parts are gencrilly oniy depicted correcty if they do nor have the 'memaing' of the whole. In conclusion, it is uggested that the knowiedge that the linees represeoned a abile, a chree-dimensional object, caused the maiority of errors obatined in Srody 1 .
If this is the case why do subjecas only have problems with rable rops and rable lecs in oblique propection, and table legs in perspective? Whate is is abour these that imply depeh that the octer forms of stimuli used in Srudy 1 do nor have? For example. a table top in perspective might also be expecred to imply depeh. However, its rapezoid shape, wish the enlarged base gives the appearnnce of situing on a ground line rather than a ground plane. It looks like a balanced geometrical shape. Even wreh the knowledge that in represents a able top one can infer that in is a complere object the knowled
ins ownique table rop is unsymmetrical, and is has been shown that lack of An oblique table rop is unsymmetrical, and in has been shown that lack of shown that this was not the whote reason. Mitchelonore (1985) ruggescs that an acute angle, in iselt. might indicate depth, in that in is spontancously interpreted as a representacion of a perpendicular in three dimensions. The paralikls in the oblique table top form one acrual scute angle, and one implicit accure angle. Whilst the shape itself is copied with litele error, the added knowiedge that in could be a table top might trigger a sponaneous interpretarioa of depeh.
It is easier to see how able legs in either oblique proiection or perspective can have molicit depch. If the beck lines are underseood to be table legs both forms of simulus inpicir depch If the beck lines are undersoood to be tabie kegs both forms or ximulus mply hidden wne elimination, ia that the keg that conse from she back must be parcially hidden by the table top, and subjects 'know' that table kegs muse be of the same length and thus they are reproducing an invaram qualiry of tables. Two common methods employed by young children are the drawing oi all the table legs to s ground line or showing them radiating from the rable rop (Lee. 1988). This is also the explanation given for the partial extension of the inside back leg in a table
dravn in oblique projection, a form of error that even adulta ase very prone to, and one that in evident in the srudies described here.
It an be seex that implicit depth is apperens in ench of the atimuli that children find problernacical. The poinas ruised here tie in conely with and suppore. Mitchelmore's (1985) thesis which aggua aginse a close relatioaship berween isographic and homographic errors. Essentially isographic drawings do oor have implicit depeth, whilst homographic onea do. The difficulry, as Mitehelmore indicates, is in designing an experimene chas isolares the producrive sspects of isographice and homographic draving. The scudies reported here actempr to do that, Srudies 2, 3, and 4 cas be considered as isographic, whilse Srudy 5 cas be seen as their honographic equivalent. The fiodings reported here serongly support the view that there is not a dose relacionship berween the two. Freeman (1986) in summarizing experimencs on cube draving suggessas that 'whas the childrea bearsed was hoo to selate lines on the page to their mencal descriptions of the particulat object: they did not leans how to solve "the problem of depth"." Similuty Ambeira (1974) argwes that the simpliciry of childrea's schemacic represcatation does not reflect griphic incapeciry so much as it reflects the basie analprical cavegorias through which the child organimes his or her world.
There are notable exceptions so the gesernd development in draving abiliey that has been described in this paper. Sorme aucisicic children show remarkable abiliry at a very earfy age depicting complex seenes from imaginacioa quickly and with phorographic sccuracy (Selfe. 1977, 1983, 1985). By comrnas, even those normal children who are artistically gifted only show development a few years above their chronotogical age (Harris, 1963), and the draviogs of other mentally rearded children are comensurate with their mencal age (Sroxijn-Egge, 1952). Further, the unusual draving ability shown by these aucisoc childrea in sot relaced to enhanced spatil ability, as this is usually found to be ia keeping with cheir mental age (Hobson. 1984).

Some lower $1 Q$ adults also show remarkable deawing abiling. O'Connor \& Hermelin (1987) examined the relationships between intelligence and artistic ability on the one hand and skill at the recognition, marching, reproduction and copying of wo-dimensional shapes wish reo kevels of complexiny and structure on the other. Their 16 subjects were adules with an IQ of approximarely 50 , eighe of whom were dior-savant artises and the octher eight of whom formed a concrol group. Four subiecrs in each of these groups had been diagnosed as aurisic or showed autisuc ieatures in their behavious. The remaining 16 subjects were 11 . to 13 -vear-old children of normal ineclligence, eight of whom were artiscicalty able. is was found hat higher IQ groups wert betrer ap the recognicion and matchiog of twoimensional non-representacional shapea, but idion-savant arcisses were found to be as good as higher intelligence subiects and significantly better than IQ marched subjects when graphic production wis required. This wis also the cuse when graphic output was considered independendy of any similatity of a drawisg to a model. The was considered independencty of any similatity of a drawing to a model. They concluded that 'the difference berween the level of performance in visual as compared with wisual-graphic tasks is determined by a specific IQ independent
What is this ability? The drawing ability of the idiot-savant artists was well above
average, even though their reproduction and copying scores, and levels of motor coordination, were not found to be superior to chose of normal controls. O^{\prime} Connor \& Hermelin suggest that the efficient'scoessiog of graphic motor programmes depends more on artistic competence than inteliligence and the ability to evoke visual images. They suggest that drawing mighe be partially independent of visual memory, and relared more to encoded moror programunes primed by the sight of the model, and comenent that

O'Connor \& Hermelin also point out, their tasks are only angentially related to arristic ability, as are the two-dimensional, noa-relational stimuli they used, because the artist is more concerned with depicting a chree-dimensional form in two dimensions. However, they do hypothesize that the idior-savant mighe have acquired his high level of skill in drawing familiar scenes and objects because these allow him to draw on his long-term visual memory as well as on well-practised graphic descriptions'. Selfe (1983) found that autistic children with anomalous drawing ability normally executed their dravings from memory, bur did nor rely upon it enurely. She seates that

The sucusic subiects .. appers to be seending no non-symbolic apers of vimeal experience.

 represertanves of dasest or aymboth (198).
She also showed that such children do not appeap to go through the same developmental sequence as normal children, in particular they appear nor to show a "conceprual' phase in their development. Paine (1981) made the same point when discussing children with excepcional arriscic ability.

Baron-Cohen. Leslic \& Frith (1985) found that autisice childrea fail in mareptmal perspective-taking skill, as opposed to perreprmal perspective-aking easks, in which they succeed. They conclude that this consuirutes a specific cognicive defert that is largely independent of general intellectual level and has the porencial to explain borh lack of pretend play and social impairment by virtue of a circumscribed cognitive failure. It must be emphasized that not all autistic chidren show exceptional drawing ability, but is is possible that this cognicive deficit plays a part in the drawing of those that do.
This paper shows that the ability of normal children to copy lines is affected adversely by the 'meaning' that these lines hold for che child. Uafortunately there is little reported about the relative ability to copy isographic and homographic drawings shown by subjects with anornalous drawing ability. Idioe-savane arises are relatively poor at visually matching or recognizing abseract shapes whilst they are relatively good as copying. Studies of drawing in sutistic children have investigated free draving, rather than the children's abiliry to copy lines, although Selfe (1977) reports that Nadia showed ability at copying lines sccurntely. The exceptional aspect of the drawings produced by both idiot-savane artists and by auriscic children with
nomalous drawing ability is shown in the way they cas depice a three-dimensional scene in rwo dimensions with phorographic realism. Information on autistic children suggests that those with anomalous drawing ability are not limited by the symbolic importance of lines (Selfe, 1985). It is possuble that all exceptional arists share ehis fearure in some way. It is interesting to speculate that the cogaitive deficit in autistic childrea suggested by Baroa-Cohen af al. is related to the children's lack of attendance to the symbolic aspects of visual experience found by Selfe, and that the failure to copy meaningful lines in normal children is related to a lack of this deficit.

Acknowiedgements

would tite to thank Peecer Corbert for hin help owh gathering the deat and Gavm Bremner foe bringing the posmble efferty of summery to my nonce.

References

Com-Cohen, S. Lestice, A. M. \& Frich U. (198S). Doee de secisie chald have it 'theory of and' Cogmrins. 21, 37-46.
 Eemser, J. G. (1995). Figuril bien 309-316.
 Pren Chen. M. J. (198S). Young childere's sppresenczoonal derwangs of solid obierts: A compemon of
 Pichoin Reprowation. Cambndge: Cambrndge Univerwy Prese.

 Orwbacivel Pintelogo, 4, 323-330.
 Perian N. H. (1996) How hould

\& Wordd.
 Drowhopumed Dimitra is. 85-104.
Leulo, J. I. \& Eroderich. P. A. (19es). The percepreat-moror shill of drawng. In N. Freemen \&

[^0]: Ap.6:F,2e. Smallest maximum differences of age profiles for cells of all tables drawn from observation and imagination.

