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Abstract

Knowledge acquisition for expert systems is notoriously difficult, often de-
manding an enormous effort on the part of the domain expert, who is es-
sentially expected to spell out everything he knows about the domain. The
task is non-trivial and can be time-consuming and tedious. Machine learn-
ing research, particularly into automatic rule induction from examples, may
provide a way of easing this burden.

Arguably, the most popular and successful rule induction algorithm in
general use today is Quinlan’s ID3. ID3 induces rules in the form of de-
cision trees. However, the research reported in this thesis identifies some
major limitations of a decision tree representation. Decision trees can be
incomprehensible, but more importantly, there are rules which cannot be
represented by trees. Ideally, induced rules should be modular and should
capture the essence of causality, avoiding irrelevance and redundancy.

The information theoretic approach employed in ID3 is examined in de-
tail and some of its weaknesses identified. A new algorithm is developed

which, by avoiding these weaknesses, induces rules which are modular rather

than decision trees. This algorithm forms the basis of a new rule induction
program, PRISM.

Given an ideal training set, PRISM induces a complete and correct set
of maximally general rules. The program and its results are described using
training sets from two domains, contact lens fitting and a chess endgame.
Induction from incomplete training sets is discussed and the performance of

PRISM is compared with that of ID3 with particular reference to predictive

POWET.

A series of experiments is described, in which PRISM and ID3 were
applied to training sets of different sizes and predictive power calculated.
The results show that PRISM generally performs better than ID3 in these
two domains, inducing fewer, more general rules, which classify a similar

number of instances correctly and significantly fewer incorrectly.
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Chapter 1

Introduction

There has been a rapid increase in the number and variety of expert systems
applications over recent years, particularly in commerce and industry. With

this increase has come a demand for improved development techniques, and

a call for standardization of established techniques, in an attempt to ensure
that future systems are increasingly robust and reliable. As the technology
matures so confidence in it grows and applications become more ambitious,
domains more complex. The task of knowledge acquisition for expert sys-

tems is becoming more difficult, and although significant advances in this

field are being made on many fronts, problems which were recognized two
decades ago still exist.

Machine learning research has played an important role in trying to ease

some of the difficulties associated with knowledge acquisition. A variety of
approaches has been tried, some with reasonable success. The aim of the
project reported in this thesis was to research a small but increasingly im-
portant part of this field — that of automatic rule induction from examples.

The thesis begins with a brief introduction to some of the issues involved
in expert systems design and development (Chapter 2), including knowledge
representation and knowledge acquisition. In section 2.4 it is suggested that
machine learning, and in particular rule induction from examples, may hold
the key to solving some of the problems of knowledge elicitation. Chapter 3
describes four classic expert systems, DENDRAL, MYCIN, Prospector and
XCON, toillustrate the use of decision rules in these systems, and Chapter 4



describes four programs which were ‘milestones’ in the history of learning
from examples.

Some of the most successful rule induction systems in general use are
derivatives of Ross Quinlan’s ID3 [44,46,47,48]. ID3 was developed in 1978/9
to induce classification rules in the form of decision trees from large sets
of examples, and was itself based on a learning algorithm, CLS (Concept
Learning System), designed by Earl Hunt in the early 1960s [29]. Chapter 5
describes CLS, ID3 and some of its derivatives and enhancements.

Although the ID3 algorithm is arguably the most popular rule induc-
tion system in general use, it expresses its output in the form of a decision
tree. The research reported in this thesis identifies some major weaknesses
of a decision tree representation (Chapter 6). The incomprehensibility of
decision trees has proved to be a significant disadvantage in real-world ap-
plications. They are difficult to manipulate — to extract information about
any single classification it is necessary to examine the complete tree. This
problem can be only partially resolved by trivially converting the tree into
a set of individual rules, as the amount of information contained in some of
these rules is often more than can be easily assimilated.

More importantly, there are rules which cannot be represented by trees,
for example, two or more rules which do not share a common attribute. The
consequence of forcing a decision tree representation on such a set of rules is
that the individual rules, when extracted from the tree are often too specific,
i.e. they reference attributes which are irrelevant. An expert system using a
decision tree in these cases frequently demands the results of more tests than
are necessary, with possibly serious consequences if the tests are expensive
or dangerous to perform. Furthermore, the inclusion of irrelevant attributes
may prevent relevant and correct attributes being identified. Ideally, the
induced rules should be modular and should capture the essence of causality,
i.e. a rule’s premise should consist of those features which cause a set of
instances to be classified in a particular way. Irrelevance and redundancy are
potentially misleading and should be avoided. Chapter 6 describes an ideal

training set and the sort of rules which should be expected from it, arguing

10



that if an induction algorithm is to perform well in real-world applications,
it must first be known to perform well under ideal conditions. Section 6.5
explains why ID3, designed to induce decision trees, cannot always produce
a perfect set of rules even from a training set which is ideal.

Chapter 7 describes how ID3 partitions a training set according to the
values of an attribute which is selected using an information theoretic ap-
proach. When the tree is being formed, at each node available attributes are
tested for expected information gain in the resulting tree if that attribute
were selected for partitioning. The attribute which maximizes average in-
formation gain is selected. This is repeated until the leaves of the tree are
each of a single class. Thus at each node, ID3 searches for the attribute
which is most relevant overall, dividing a training set into homogenous sub-
sets without reference to the class of this subset. Section 7.3 describes how
this approach can be modified to eliminate redundancy by searching for only
relevant values of attributes within subsets of a specified class. A new algo-
rithm is developed which maximizes not average information gain but the
actual amount of information contributed by knowing the value of the at-

tribute to the determination of a specific classification, with the result that
the induced decision tree is replaced by a set of modular rules.

This algorithm forms the basis of a new rule induction program, which
has been called PRISM. Given an ideal training set as described in Chap-

ter 6, PRISM induces a complete and correct set of maximally general rules.

It is described in detail in Chapter 8.

~ The main value of rule induction is that rules induced from incomplete
training sets can be used to predict the classification of new instances, i.e.
instances not in the original training set. Induction from incomplete train-
ing sets is discussed in Chapter 9 which describes a series of experiments
performed to assess the predictive power of rules induced using PRISM com-
pared with decision trees induced using ID3. Rules induced from incomplete
training sets are prone to errors. The algorithm may fail to induce one or
more rules, some rules may be too specific, some rules may be too gen-

eral, or there may be a combination of errors. Chapter 9 discusses how and

11



why some of these errors occur. Unlike ID3, the basic algorithm used by
PRISM can induce rules which contradict each other. This does not occur
in decision trees produced by ID3 because there is always at least one com-
mon attribute, e.g. at the root of the tree, whose value is specified in all
branches. It is this feature which causes over-specialization in ID3, and in
avoiding it, PRISM may induce rules which are not specific enough to dis-
criminate between classes. The basic algorithm has therefore been enhanced
to enable it to identify and remove ambiguity by selectively specializing one
or more over-general rules. The procedure, described in detail in section 9.4,
significantly improves the performance of PRISM.

To compare PRISM and ID3 with reference to predictive power of in-
duced rules and decision trees, a series of experiments was performed, in
which a fixed number of instances was selected at random from a complete
data set. PRISM and ID3 were applied to these instances and the resulting
rules were tested on the full set of instances to calculate the percentage of
instances which were classified correctly, the percentage of instances which
were classified incorrectly and the percentage of instances which could not

be classified. The average number of induced rules (or branches of a deci-

sion tree) and the total number of terms comprising these rules were also

calculated. This was repeated one hundred times each for ten different sizes
of training set and the results averaged for each size.

These experiments and their results are described in Chapter 9 (sec-

tion 9.6). The experiments were performed for two different types of data,

the first in the domain of fitting contact lenses and the second in a chess
endgame domain. The results show that the numbers of correctly classified
instances is similar for both PRISM and ID3, PRISM performing slightly
better in one domain and very slightly worse in the other, but the numbers of
incorrectly classified instances differs significantly in both domains. PRISM
regularly classifies fewer instances incorrectly than does ID3. Furthermore,
ID3’s decision trees are in general considerably more specific than rules
induced by PRISM, indicating that PRISM has achieved its goal of reduc-

ing irrelevance and redundancy. Thus PRISM reduces over-specialization

12



without sacrificing predictive power; performance is improved because of a
reduced likelihood of incorrect classification; and incomprehensibility is re-
duced because, on average, each rule has fewer terms and is therefore easier

to assimilate.
Finally, Chapter 10 suggests how PRISM might be enhanced to deal with

attributes with linear values. This and other directions for further research
are discussed in Chapter 11. A full listing of PRISM is given in Appendix A.
Appendix B gives an example of a static data base and'training set, and

PRISM’s output when applied to this training set is given in Appendix C.
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Chapter 2

Issues in expert systems development

2.1 Expert systems design

Feigenbaum [22] describes an expert system as ...

...an intelligent computer program that uses knowledge and

inference procedures to solve problems that are difficult enough
to require significant human expertise for their solution. The
knowledge necessary to perform at such alevel, plus the inference

procedures used, can be thought of as a model of the expertise

of the best practitioners in that field.

There have been many varied attempts at designing and building such _s*ys-
tems (see [8] or [5] for a description of some of themj, but the modern day

consensus is that an expert system should consist of two basic parts — a

knowledge base, which contains all the necessary domain-specific knowledge,
and an inference engine, or control structure, which accesses this knowledge
to reason about the domain. There should also be a third (subsidiary) part
— an explanation program to provide the user, on demand, with an explana-
tion of the line of reasoning. The expert system should also necessarily have
a dynamic database, or working memory, to be used for storing information
pertinent only to the current application/consultation, and of course, an
interface to enable the user to communicate with the program.

Current consensus also indicates that the knowledge base and control

structure should be separate, i.e. there should be no domain-dependent pro-

14



e e

cedures in the control program.

2.1.1 The knowledge base

Domain-specific knowledge can present itself in a variety of ways. The knowl-

edge base may contain:

o facts, i.e. factual statements about the domain; information which is
widely known and probably available from textbooks or other such

sources, e.g. (from MYCIN) the MORPHOLOGY of E.COLI is ROD.

Facts may be stored in numerous ways — as lists, tables, rules, or in

semantic networks, etc.

e heuristics or rules of thumb i.e. the knowledge used when reasoning
about the domain. This is the knowledge which constitutes ‘profes-

sional judgement’ and may be (and often is) imprecise or uncertain.

Heuristics are most often expressed as inference rules, of the form:

if premise then (with some certainty) action

where premise is usually a conjunction of conditions describing a sit-
uation and action is the action to be taken or decision to be made

if all the conditions of the premise are satisfied. Inference rules are
discussed in more detail in section 2.2.1.

o meta-knowledge. This is knowledge about knowledge and is an ex-
tremely important part of the knowledge base. It describes the struc-
ture of the domain and any relationships between the various concepts.
For example, a large part of MYCIN’s knowledge base is concerned
with contexts, their types and positions in the context tree and with
parameters, their types and the contexts which they describe. (See sec-
tion 3.2.3 for a fuller description of MYCIN’s knowledge base.) This
part of the knowledge base is often the most difficult for which to find

an adequate representation.

15



META-RULE 001

IF (1) the infection is a pelvic abscess, and
(2) there are rules that mention in their premise
Enterobacteriaceae, and

(3) there are rules that mention in their premise
gram positive rods,
THEN There is suggestive evidence (.4) that the rules
dealing with Enterobacteriaceae should be evoked
before those dealing with gram positive rods.

Figure 2.1 One of TEIRESIAS’ meta-rules.

¢ meta-rules. These are rules which act on other (domain) rules. They

are generally used for deciding in which order those rules should be

fired. TEIRESIAS (see section 2.4.1) makes extensive use of such
rules. Figure 2.1 is an example of a meta-rule from TEIRESIAS.
Meta-rules are not always present in an expert system’s knowledge
base. Frequently, rule-ordering information is implicit in the program

(see section 2.2.1), or in another part of the knowledge base! or even

in the language in which the system is written?.

As expert systems research continues, it is becoming increasingly evident
that vast amounts of expert knowledge are going to be necessary for fu-
ture systems — ‘in the knowledge lies the power’ [23]. Although perfectly
adequate expert systems have been built with surprisingly few rules (e.g.
PUFF [31]), the biggest impact on society will be created by systems with
many thousands of rules (or the equivalent amount of knowlege if a differ-
ent representation is chosen). For example, XCON [32], a system of over
6000 rules which is used by Digital Equipment Corporation for configuring

computer systems to customers’ needs®, outperformed their best technical

'In MYCIN one of the properties of a parameter is a list of the rules which conclude
about it; and in most cases these rules will be evoked in the order in which they are listed.
“OPS5 has an inbuilt conflict resolution strategy such that if there are tworules, one of
which is a specialized version of the other, then the more specialized rule will be selected.
See section 3.4 for a brief description of XCON.

16



salesmen (38] within two years of being built, and was successful in saving

the company a large amount of money.

2.1.2 The control structure

The control structure (or inference engine) is the program which determines
how facts and heuristics in a knowledge base should be applied to the prob-
lem under consideration. The design of a control structure will depend
mostly on the problem solving strategies employed by the domain expert.
Also, to a certain extent it may depend on the structure of the domain
knowledge, and even sometimes on the language in which the system is to
be implemented.

The basic reasoning strategy will generally be either data-driven, in
which the knowledge is used to infer as much as possible from known facts
about the domain (e.g. DENDRAL and XCON, both described in Chapter 3)
or goal-driven, in which a hypothesis is formed and the knowledge is used
to try to prove that hypothesis (goal) by iteratively forming and proving
sub-goals (e.g. MYCIN and Prospector, also described in Chapter 3).

The various search techniques used are a central theme of Al research
and have been widely documented (see, for example, [3]; [4], [40] and [58)).

Whichever reasoning strategy and search techniques are used, the control

structure must be kept conceptually simple, otherwise it becomes opaque to
users, with the result that the system becomes difficult to build, difficult to

understand, and consequently, difficult to use.

2.1.3 Explanationm

It is generally accepted nowadays, that an expert system should be able
to provide the user with some sort of explanation of its reasoning strategy.

Many researchers believe that systems without this facility are not likely to

be used seriously. Shortliffe [53) states:

[Explanation] provides the program with a mechanism for

Justification of decisions; a physician will be more willing to ac-

17



cept a program’s advice if he is able to understand the decision
steps that the system has taken. This gives him a basis on which
to reject the system’s advice if he finds that the program is not
able to justify its decisions sufficiently. It thereby helps the pro-
gram conform to the physician’s requirement that a consultation

system be a tool and not a dogmatic replacement for the doctor’s

own decisions.

Rule-based systems which provide explanations all employ similar techniques
to do so; namely, they unravel rules which have been used in the reasoning
chain from the point at which the request was made. The sequence in which
rules are unravelled depends on the inference procedure used.

Suggestions have been made that this level of explanation is not suffi-
cient; that it is too shallow. However, attempts at automatic explanation
have already shown that, even to provide this basic level of explanation,
much attention has to be paid to the way in which heuristics are repre-
sented. A recurring theme is that of modularity of rules. Modular rules are
easy to insert, delete and/or modify. Moreover, they represent a ‘chunk’
of knowledge which is easy to handle and meaningful to experts, and thus,

they are useful for explanation purposes. Michalski [33] has proposed a
‘comprehensibility postulate’. He states:

As a practical guide, one can assume that the components of
descriptions (single sentences, rules, labels or nodes in a hierar-
chy, etc.) should be expressions that contain only a few (say, less
than five) conditions in a conjunction, few single conditions in a
disjunction, at most one level of bracketing, at most one implica-
tion, no more than two quantifiers, and no recursion (the exact
numbers may be disputed but the principle is clear). Sentences
are kept within such limits by substituting names for appropriate
subcomponents. Any operators used in descriptions should have
a simple intuitive interpretation. Conceptually related sentences

are organized into a simple data structure, preferably a shallow

hierarchy or a linear list, such as a frame.
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RULEO85

IF: 1) THE STAIN OF THE ORGANISM IS GRAMNEG, AND

2) THE MORPHOLOGY OF THE ORGANISM IS ROD, AND
- 3) THE PATIENT IS A COMPROMISED HOST
THEN: THERE IS SUGGESTIVE EVIDENCE (.6) THAT THE

IDENTITY OF THE ORGANISM IS PSEUDOMONAS

Figure 2.J2 One of MYCIN’s rules |

Michalski applies this postulate to rules which are induced automatically,
but it is equally applicable to rules provided by humans.

2.2 Knowledge representation

There are many ways in which knowledge can be stored. A description of
some of the most common representational techniques can be found in [3]
and in [2]. The first part of this section is concerned with the structure and
use of inference rules*, which have been the most widely used representa-

tional form for expert systems. The second part gives a brief description of

semantic networks and frames, both techniques which are often used.

2.2.1 Inference rules.

Inference rules have the general form:

if premise then (with some certainty) action

where premise is usually a conjunction of conditions describing a situation
and action is the action to be taken or decision to be made if all the condi-
tions of the premise are satisfied. o

 Figure 2.2 (from [53]page 75) shows the English translation of a typicﬂ
MYCIN rule (RULE085) . RULEO85 references fou£ attributes (called clin-
ical parameters in MYCIN)®: STAIN of the organism (which has a possible

*Also called situation = action rules, if ...then rules, condition = action rules,
decision rules.

® Also called descriptors, properties.
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value GRAMNEG), MORPHOLOGY of the organism (which has a possi-

ble value ROD), patient is a COMPROMISED HOST (which is TRUE or
FALSE) and IDENTITY of the organism (which has a possible value PSEU-
DOMONAS). This rule is applied to a database of facts (MYCIN’s dynamic
database is described in section 3.2.4). Each condition (or clause) in the
premise tests the value of one of the attributes (a fact) in the database.
If all conditions are satisfied, then the action part of the rule is activated,
and the database is updated accordingly. RULEO085 fires when the system
is trying to discover the identity of an offending organism. If conditions 1,
2 and 3 are found to be true, then MYCIN concludes that the identity of
this organism is Pseudomonas with a certainty factor of .6 (for a discussion

of certainty factors see [14]).

Feigenbaum, when discussing expert systems under development at Stan-

ford University [24] says:

Situation = action rules are used to represent experts’ knowl-
edge in all of the case studies. Alwaysthe situation part indicates
the specific conditions under which the rule is relevant. The ac-

tion part can be simple (MYCIN: conclude presence of particular

organism; DENDRAL: conclude break of particular bond). Or it
can be quite complex (MOLGEN: an experimental procedure).
The overriding consideration in making design choices is that the

rule form chosen be able to represent clearly and directly what

the expert wishes to express about the domain.

Inference rules are a most popular form of representation for expert
systems. Firstly, they are modular, i.e. each rule is self-contained, and as
such can be altered, inserted into or deleted from the database without
affecting any other rule. This allows ease of modification of the knowledge
base, a necessity if the knowledge base is to grow and/or change with time.
It also allows ease of explanation — again vitally important if the system is
to be widely accepted in the community for which it is intended, as explained
in section 2.1.3. Secondly, they are easily understood by experts. This also

allows for ease of explanation, but furthermore, the user can recognise it
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as a ‘chunk’ of knowledge relevant to the advice being sought. Rules are a
natural way of expressing what to do in a particular situation — frequently

the sort of information an expert wishes to pass on when explaining how he
does his job.

Most early expert systems were rule-based,designed to operate essentially
as production systems. A brief description of four such systems (MYCIN,
DENDRAL, Prospector and XCON) and a rule-based expert system shell
(Xi Plus®) is given in Chapter 3.

In all production systems, rules are applied to a database of facts (the dy-
namic database) to infer new facts, which are then added to the database.

The process is iterative, continuing until the user’s request has been met

(or until all possible rules have been exhausted). DENDRAL and XCON
operate by using a data-driven (or forward-chaining, antecedent-driven or
bottom-up) mechanism, whereas MYCIN and Prospector use a goal-driven
(or backward-chaining, consequent-driven or top-down) mechanism, although
both of the latter systems employ a data-driven approach occasionally. Xi
Plus can be used in either backward-chaining or forward-chaining mode. To

illustrate the two modes of operation, consider the following rule set:

1. if A and B then E- -
2. if C and D then G
> 3. if E then F

4. if F and G then H
5. if H then X

6. if D and F then J

7. if A and J then X

8. if D and E then X - | ;

Let the database contain the facts A, B and D.

®Xi Plus is a trademark of Expertech Ltd.
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Forward-chaining

In the forward-chaining mode of operatibn the premise of each rule is tested
against the database of facts and all rules whose premises are satisfied are
triggered. If there are two or more such rules, then one of these is selected

by what is known as conflict resolution. Several strategies have been used

for conflict resolution (see, for example [18)), including:

e Rule order, in which all rules are ordered, and the rule with the highest

priority is selected.

¢ Data order, in which facts in the database are ordered, and that rule

is selected which matches facts with highest priority.

o Generality order, in which the most specific rule is selected.

o Rule precedence, in which precedence is determined by a hierarchy or

network.

e Recency order, in which that rule is selected which references the most

recently matched fact in the database.

Once a rule has been selected, it is fired, thus updating the database. The
whole cycle is then repeated until the required information has been deduced.

If, in the above example, we wish to deduce X, the sequence of events is

as follows:

1. All rules are tested on the database, and any rule whose premise is

satisfied is triggered. In this case, only rule 1 (if A and B then E) is
triggered. | |

2. As there is only one rule, it is fired, and the fact E is added to the

database.

3. The remaining rules are tested on the database. This time rule 3 (if
E then F) and rule 8 (if D and E then X) are triggered.

22



4.

Assuming that the conflict resolution strategy is to select the most

specific rule, rule 8 is selected. Rule 8 concludes about X, so X is

added to the database, and the program terminates.

Backward-chaining

In the backward-chaining mode of operation, only those rules which conclude
about the required information are retrieved and tested. If their premises
are not matched by facts in the database, then rules which conclude about
facts specified in these premises are retrieved and tested, and so on until

either the premises can be matched or all rules are exhausted. Using the

above set of rules to deduce X, the sequence of events is as follows:

1.

The goal is to deduce X. All rules which conclude about X, i.e. rule 5
(if H then X), rule 7 (if A and J then X) and rule 8 (if D and E then

X), are retrieved and their premises tested on facts in the database.

. None of the premises is matched, so one of these rules is selected and

a subgoal set up. If the conflict resolution strategy this time is rule

order, then rule 5 is selected and H becomes the subgoal.

. The rule which concludes about H (there is only one) is retrieved and

tested. This is rule 4 (if F and G then H).

. Neither F nor G are in the database, therefore F becomes the new

subgoal and rule 3 (if E then F) is retrieved.

. Again, E is not in the database, so this time E becomes the subgoal

and rule 1 (if A and B then E) is retrieved and its premise tested.

. This time both A and B are known, therefore rule 1 is fired and E is

added to the database, which in turn enables rule 3 to be fired and F

to be added to the database. The database now contains facts A, B,
D, E and F.

. The system is testing rule 4 (if F and G then H). F has been deduced,

so now G becomes the new subgoal and rule 2 (if C and D then G) is
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10.

11.

retrieved and tested to try to deduce G. D is known but C is not, and

as there are no rules which conclude about C, rule 4 fails.

. Rule 4 was retrieved to conclude about H, which was needed by rule 5

to conclude about X. As rule 4 has failed, rule 5 also fails and the

system returns to step 2, and selects the next rule in turn. This is
rule 7 (if A and J then X). A is known but J is not, so J becomes the

subgoal.

. There is only one rule which concludes about J, namely rule 6 (if D

and F then J). The premise of rule 6 is tested on the database.

D and F are both known, therefore rule 6 succeeds and J is added to
the database.

A and J are now both known, therefore rule 7 fires and X is added to

the database and the program terminates.

The choice between a forward-chaiﬁing and a backward-chaining control
structure will depend to a certain extent on the domain, and on the type
of deductions the system is intended to make. If the intention is to deduce
as many facts as possible, then the forward-chaining mechanism would be
the better one to employ. If, on the other hand, the purpose is to confirm

or deny a particular hypothesis, then backward-chaining would probably be
the better choice to make.

2.2.2 Other reprege;ltational tecl;niques

Semantic networks

In some cases, doﬁain—speciﬁc knowledge is most readily represented by
semantic networks. These generally consist of nodes, which represent objects
or concepts in the domain, and arcs, which represent relationships between
objects or concepts. The basic functional unit of a semantic network is two
nodes linked by an arc. The arc is usually directed to indicate which node

is the subject and which is the object of the relation represented by the arc.
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Figure 2.3 An ‘is-a’link in a semantic network

For example, the fact that Fido is a dog can be represented by two nodes,
‘Fido’ and ‘dog’, linked by an ‘is-a’ link, as shown in figure 2.3. Each node
can have any number of links, and thus quite complex networks can be built.
Prospector (see section 3.3) successfully uses such a network when reasoning

about the likelihood of certain mineral-ore deposits and advising geologists

about the favourability of an exploration site.

Frames

Frames are data structures which comprise the name of a concept, e.g.
NOVEL, and either a general or a specific description of it, made up of
a number of filled-in ‘slots’. Frames representing specific examples are said
to be instantiations of general frames and have the same slots, i.e. properties
describing a general concept are inherited by specific examples of that con-
cept. Each slot has a name and, in the general case, a description of how it
is to be filled when the frame is instantiated. This description may itself be
the name of another frame. For example, figure 2.4 shows an example of a
frame for the general concept ‘NOVEL’. This frame indicates that ‘NOVEL?’
is a specialization of the general concept ‘BOOK’ and is described by (the
slots) title, author, publisher, year and type-of-cover. The slot ‘publisher’ is
filled by a frame ‘PUBLISHER' which has its own slots, e.g. name, address.

Figure 2.5 shows a possible instantiation of the general frames ‘NOVEL’ and
‘PUBLISHER’.
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name ;: NOVEL

specialization-of : BOOK
title : title
author : Surname, First-name

publisher : PUBLISHER
year : year ...
type-of-cover : hard-back, paperback

Figure 2.4 An example of a frame.

name : Novel-1

specialization-of : NOVEL
title : Paradise Postponed
author : Mortimer, John
publisher : pub-1

year : 1986

type-of-cover : paperback

name : pub-1

specialization-of : PUBLISHER
name : Penguin
- address : Middlesex, England

Figure 2.5 Possible instantiation of general frames
‘NOVEL’ and ‘PUBLISHER!’
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Because there can be several levels in the frame hierarchy, and because
each slot can itself be filled by a frame with its own hierarchy, quite a
complex data structure can be built. An example <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>