
Open Research Online
The Open University’s repository of research publications
and other research outputs

Knowledge aquisition for expert systems: inducing
modular rules from examples
Thesis
How to cite:

Cendrowska, Jadzia (1990). Knowledge aquisition for expert systems: inducing modular rules from examples.
PhD thesis The Open University.

For guidance on citations see FAQs.

c© 1990 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

0411110N 0 11ý1ý1ý
DX 92631

UtLPESTt GTE3)

Knowledge Acquisition for Expert

Systems: Inducing Modular Rules from

Examples

Jadzia Cendrowska

B. A., B. Sc., F. B. C. O.

A thesis submitted for the degree of Doctor of Philosophy

in the
Discipline of Computing

of the
Faculty of Mathematics

of
The Open University

August 1989

f\Ahor's number : K0 4- 205 8
1sAe 4 sulo rni sto an : '{ t' sp- ý ember N029

-NaEe. o,, oawarcl : 2nd March 1gqO

- rte Co r; raw r. F7ýI2
F

HIGH DD S OFFICE N'Zter Degree3 Off p.
07SEr; 91d

LIBRARY AurlRLSATIO 1 FCMj'j
..... P4ss to _. _.. ýý. -

SUMENr: _
Cc tvý 20 ýý c vý ýtscaý '' ýý 4 Zý Sý

m OF MiESIS:
- C-L evil, c

I oonfizm that I am willirrg that my thesis be made available to readers and maybe pbabooppied, subject to the discretion of the Librarian.

SIGNED: DATE: Qj ýj 'J

r

Abstract

Knowledge acquisition for expert systems is notoriously difficult, often de-

manding an enormous effort on the part of the domain expert, who is es-

sentially expected to spell out everything he knows about the domain. The

task is non-trivial and can be time-consuming and tedious. Machine learn-

ing research, particularly into automatic rule induction from examples, may

provide a way of easing this burden.

Arguably, the most popular and successful rule induction algorithm in

general use today is Quinlan's ID3. ID3 induces rules in the form of de-

cision trees. However, the research reported in this thesis identifies some

major limitations of a decision tree representation. Decision trees can be

incomprehensible, but more importantly, there are rules which cannot be

represented by trees. Ideally, induced rules should be modular and should

capture the essence of causality, avoiding irrelevance and redundancy.
The information theoretic approach employed in ID3 is examined in de-

tail and some of its weaknesses identified. A new algorithm is developed

which, by avoiding these weaknesses, induces rules which are modular rather
than decision trees. This algorithm forms the basis of a new rule induction

program, PRISM.

Given an ideal training set, PRISM induces a complete and correct set

of maximally general rules. The program and its results are described using
training sets from two domains, contact lens fitting and a chess endgame.
Induction from incomplete training sets is discussed and the performance of
PRISM is compared with that of ID3 with particular reference to predictive

power.
A series of experiments is described, in which PRISM and ID3 were

applied to training sets of different sizes and predictive power calculated.
The results show that PRISM generally performs better than ID3 in these
two domains, inducing fewer, more general rules, which classify a similar
number of instances correctly and significantly fewer incorrectly.

Acknowledgements

In-undertaking this research, I have become deeply indebted to Professor

Max Bramer for his help and encouragement over the years, for his enthusi-

asm when rapid progress was being made and his patience when it was not.
I thank him.

I should also like to acknowledge the provision of facilities by the Open

University, and to thank the staff of the Academic Computing Service for

their help with the production of this document.

Part of this thesis has appeared in International Journal of Man-Machine

Studies Vol. 27, pp. 349-370,1987.

Contents

1 Introduction '9

2 Issues in expert systems development 14

2.1 Expert systems design
14

2.1.1 'The knowledge base 15

2.1.2 The control structure
17

2.1.3 Explanation
........................

17

2.2 Knowledge representation 19

2.2.1 Inference rules
19

2.2.2 Other representational techniques
24

2.3 Knowledge representation in future expert systems 27

2.4 Approaches to knowledge acquisition 28

2.4.1 Early approaches 30

2.4.2 More recent approaches
31

3A Review of some Classic Expert Systems 35

3.1 Heuristic DENDRAL 35

3.1.1 The Planning Program 36

3.1.2 The `Generate' program
36

3.1.3 The Testing and Ranking programs 37

3.2 MYCIN
38

3.2.1 The structure of the domain 38
3.2.2 Inference rules 39

3.2.3 The static database
..... 39

3.2.4 The dynamic database 40

1

3.2.5 The control structure 40

3.3 Prospector
42

3.3.1 The structure of the domain
42

3.3.2 The control structure
44

3.4 XCON
45

3.4.1 The knowledge base 46

3.4.2 The control mechanism
48

3.5 Xi Plus
49

3.5.1 The database
................. 49

3.5.2 The knowledge base
49

3.5.3 The control structure
50

4 Overview of machine learning from examples 51

4.1 Winston's blocks
52

4.2 Meta-DENDRAL 54

4.2.1 INTSUM
...................

55

4.2.2 RULEGEN
55

4.2.3 RULEMOD 57

4.3 Mitchell's candidate elimination algorithm
57

4.4 AQ11
59

5 The ID3 family 62

5.1 The CLS experiments
64

5.2 ID3................................... 65

5.2.1 The KRKN experiments
68

5.3 ACLS ...:...........................
71

5.4 ASSISTANT
............................

72

5.5 Other enhancements
73

6 Induction of decision trees 75

6.1 An example
76

6.1.1 The domain
........................

76

6.1.2 The results 79

2

6.2 The training set - necessary requirements 81

6.2.1 The set of attributes must be adequate 81

6.2.2 The classes must be specifiable in terms of attribute
descriptions

..... 84

6.2.3 The classes must be mutually exclusive 87

6.3 The training set - other characteristics 88

6.4 A perfect set of rules 93

6.5 Limitations of decision trees 93

7 Information theoretic approaches to induction 97

7.1 ID3's information theoretic approach 97

7.1.1 Entropy
......... 98

7.1.2 Reducing entropy 99
7.2 The problem in focus

......
100

7.3 Induction of modular classification rules 101

7.3.1 Calculating information content 102

7.3.2 Maximizing information gain 104
7.3.3 Modular rules 106

8 PRISM 109
8.1 The basic algorithm 109

8.2 The `correctness' of rules 110

8.3 PRISM compared with ID3 111

8.4 The use of heuristics
....................... 114

8.4.1 Opting for generality I... 115

8.4.2 Opting for generality II 115
8.5 The training set - necessary requirements 117

8.5.1 The set of attributes must be adequate 117
8.5.2 The classes must be specifiable in terms of attribute

descriptions
............ 118

8.5.3 The classes must be mutually exclusive 119
8.6 Duplicate instances

... 119

3

9 Induction from incomplete training sets 121

9.1 The training set 121

9.2 PRISM applied to an incomplete training set 125

9.3 Analysis 127

9.3.1 Failure to induce a rule
127

9.3.2 Over-specialization
. 128

9.3.3 Over-generalization and ambiguity in induced rules .. 129

9.4 Specialization of over-general rules 130

9.5 Summary of the induction procedure 134

9.6 Predictive power 135

10 Attributes with linear values 147

10.1 Values of e divided into equal ranges 151

10.2 Iterative binary split 154

10.3 Range selection 156

10.4 Summary
. 163

11 Conclusions 164

11.1 Discussion
. 164

11.2 Directions for further research 170

A PRISM 180

B Inputs 207

C The results 209

4

List of Figures

2.1 One of TEIRESIAS' meta-rules 16

2.2 One of MYCIN's rules
19

2.3 An `is-a' link in a semantic network
25

2.4 An example of a frame
. 26

2.5 Possible instantiation of general frames `NOVEL' and `PUB-

LISHER' 26

3.1 One of DENDRAL's rules
36

3.2 One of DENDRAL's fragmentation rules 37

3.3 Nodes and relations in a Prospector-like inference network .. 43

3.4 One of XCON's rules 47

4.1 A positive example of an arch 53

4.2 A negative example of an arch 53

4.3 A positive example of an arch 54

4.4 Example of candidate elimination 58

5.1 Binary decision tree for concept cat 63

6.1 Decision tree produced by ID3
................. 80

6.2 Decision tree produced when attribute a is missing 83

6.3 Decision tree produced when attribute d is missing
83

6.4 Rectangle X
........... 84

6.5 Decision tree for classifying rectangles (ideal) 86

6.6 Decision tree for classifying rectangles (actual) 86

6.7 Decision tree induced when classes are not mutually exclusive 87

5

6.8 Instance no. 8 (al&b2&c2&d2 -º 5) duplicated 5 times 90

6.9 Instance no. 22 (a3&b2&ci&d2 -º 53) duplicated 5 times ... 91

6.10 Instance no. 18 (a3&bl&ci&d2 -º 63) duplicated 5 times ... 91

6.11 Instance no. 18 (a3&bl&cl&d2 -º b3) duplicated 10 times .. 92

6.12 Decision tree representation of Rules 1 and 2......... 95

7.1 S partitioned according to d 102

7.2 `Decision tree' after induction of the first rule
107

8.1 Decision tree for Quinlan's third problem 113

9.1 Decision tree for contact lens fitting problem
126

9.2 Correct and incorrect classification of instances 138

9.3 Number of riles and terms induced
139

9.4 Decision tree for incomplete training set 140

9.5 Classification of chess data
143

9.6 Number of rules and terms induced (chess data) 144

9.7 Predictive power of rules 146

6

List of Tables

5.1 Comparison of classification methods for lost 2-ply 70

6.1 Decision table for fitting contact lenses 78

6.2 Training set for classifying rectangles
85

6.3 Examples of different types of attribute value 89

7.1a Selecting the first term
105

7.1b Selecting the second term 105

7.1c Selecting the third term
105

9.1 Decision table for fitting contact lenses (part 1) 122

9.1 Decision table for fitting contact lenses (part 2) 123
9.2 Incomplete training set 127

9.3 Relative frequency f vs. probability p for a small training set 128

9.4 Results of experiment to test predictive power of rules induced
by PRISM from incomplete training sets 137

9.5 Results of experiment to test predictive power of decision

trees induced by ID3 from incomplete training sets 137
9.6 Results of experiment to test predictive power of rules induced

by PRISM using chess data
....... 142

9.7 Results of experiment to test predictive power of decision

trees induced by ID3 using chess data 142

9.8 Predictive power of PRISM's rules 145

10.1 Incomplete training set with linear values for e (part 1) ... 149

10.1 Incomplete training set with linear values for e (part 2) ... 150

7

10.2 Rules induced by PRISM when values of e are discrete groups 151

10.3 p(b31ei)(i = 1... 20) for a complete training set 157

10.4 p(53le,.)(r = 1-4,2-5,. - ", 17-20) for an incomplete training

set 158

8

Chapter 1

Introduction

There has been a rapid increase in the number and variety of expert systems

applications over recent years, particularly in commerce and industry. With

this increase has come a demand for improved development techniques, and

a call for standardization of established techniques, in an attempt to ensure

that future systems are increasingly robust and reliable. As the technology

matures so confidence in it grows and applications become more ambitious,
domains more complex. The task of knowledge acquisition for expert sys-

tems is becoming more difficult, and although significant advances in this

field are being made on many fronts, problems which were recognized two

decades ago still exist.
Machine learning research has played an important role in trying to ease

some of the difficulties associated with knowledge acquisition. A variety of

approaches has been tried, some with reasonable success. The aim of the

project reported in this thesis was to research a small but increasingly im-

portant part of this field - that of automatic rule induction from examples.

The thesis begins with a brief introduction to some of the issues involved
in expert systems design and development (Chapter 2), including knowledge

representation and knowledge acquisition. In section 2.4 it is suggested that

machine learning, and in particular rule induction from examples, may hold

the key to solving some of the problems of knowledge elicitation. Chapter 3
describes four classic expert systems, DENDRAL, MYCIN, Prospector and
XCON, to illustrate the use of decision rules in these systems, and Chapter 4

9

describes four programs which were `milestones' in the history of learning

from examples.
Some of the most successful rule induction systems in general use are

derivatives of Ross Quinlan's ID3 [44,46,47,48]. ID3 was developed in 1978/9

to induce classification rules in the form of decision trees from large sets

of examples, and was itself based on a learning algorithm, CLS (Concept

Learning System), designed by Earl Hunt in the early 1960s [29]. Chapter 5

describes CLS, ID3 and some of its derivatives and enhancements. -
Although the ID3 algorithm is arguably the most popular rule induc-

tion system in general use, it expresses its output in the form of a decision

tree. The research reported in this thesis identifies some major weaknesses

of a decision tree representation (Chapter 6). The incomprehensibility of

decision trees has proved to be a significant disadvantage in real-world ap-

plications. They are difficult to manipulate - to extract information about

any single classification it is necessary to examine the complete tree. This

problem can be only partially resolved by trivially converting the tree into

a set of individual rules, as the amount of information contained in some of

these rules is often more than can be easily assimilated.
More importantly, there are rules which cannot be represented by trees,

for example, two or more rules which do not share a common attribute. The

consequence of forcing a decision tree representation on such a set of rules is

that the individual rules, when extracted from the tree are often too specific,
i. e. they reference attributes which are irrelevant. An expert system using a
decision tree in these cases frequently demands the results of more tests than

are necessary, with possibly serious consequences if the tests are expensive

or dangerous to perform. Furthermore, the inclusion of irrelevant attributes

may prevent relevant and correct attributes being identified. Ideally, the

induced rules should be modular and should capture the essence of causality,
i. e. a rule's premise should consist of those features which cause a set of
instances to be classified in a particular way. Irrelevance and redundancy are

potentially misleading and should be avoided. Chapter 6 describes an ideal

training set and the sort of rules which should be expected from it, arguing

10

that if an induction algorithm is to perform well in real-world applications,

it must first be known to perform well under ideal conditions. Section 6.5

explains why ID3, designed to induce decision trees, cannot always produce

a perfect set of rules even from a training set which is ideal.

Chapter 7 describes how ID3 partitions a training set according to the

values of an attribute which is selected using an information theoretic ap-

proach. When the tree is being formed, at each node available attributes are

tested for expected information gain in the resulting tree if that attribute

were selected for partitioning. The attribute which maximizes average in-

formation gain is selected. This is repeated until the leaves of the tree are

each of a single class. Thus at each node, ID3 searches for the attribute

which is most relevant overall, dividing a training set into homogenous sub-

sets without reference to the class of this subset. Section 7.3 describes how

this approach can be modified to eliminate redundancy by searching for only

relevant values of attributes within subsets of a specified class. A new algo-

rithm is developed which maximizes not average information gain but the

actual amount of information contributed by knowing the value of the at-

tribute to the determination of a specific classification, with the result that

the induced decision tree is replaced by a set of modular rules.
This algorithm forms the basis of a new rule induction program, which

has been called PRISM. Given an ideal training set as described in Chap-

ter 6, PRISM induces a complete and correct set of maximally general rules.
It is described in detail in Chapter 8.

The main value of rule induction is that rules induced from incomplete

training sets can be used to predict the classification of new instances, i. e.
instances not in the original training set. Induction from incomplete train-

ing sets is discussed in Chapter 9 which describes a series of experiments

performed to assess the predictive power of rules induced using PRISM com-

pared with decision trees induced using ID3. Rules induced from incomplete

training sets are prone to errors. The algorithm may fail to induce one or

more rules, some rules may be too specific, some rules may be too gen-

eral, or there may be a combination of errors. Chapter 9 discusses how and

11

why some of these errors occur. Unlike ID3, the basic algorithm used by

PRISM can induce rules which contradict each other. - This does not occur
in decision trees produced by ID3 because there is always at least one com-

mon attribute, e. g. at the root of the tree, whose value is specified in all
branches. It is this feature which causes over-specialization in ID3, and in

avoiding it, PRISM may induce rules which are not specific enough to dis-

criminate between classes. The basic algorithm has therefore been enhanced
to enable it to identify and remove ambiguity by selectively specializing one

or more over-general rules. The procedure, described in detail in section 9.4,

significantly improves the performance of PRISM.

To compare PRISM and ID3 with reference to predictive power of in-

duced rules and decision trees, a series of experiments was performed, in

which a fixed number of instances was selected at random from a complete
data set. PRISM and ID3 were applied to these instances and the resulting

rules were tested on the full set of instances to calculate the percentage of
instances which were classified correctly, the percentage of instances which

were classified incorrectly and the percentage of instances which could not
be classified. The average number of induced rules (or branches of a deci-

sion tree) and the total number of terms comprising these rules were also
calculated. This was repeated one hundred times each for ten different sizes
of training set and the results averaged for each size.

These experiments and their results are described in Chapter 9 (sec-

tion 9.6). The experiments were performed for two different types of data,
the first in the domain of fitting contact lenses and the second in a chess
endgame domain. The results show that the numbers of correctly classified
instances is similar for both PRISM and ID3, PRISM performing slightly
better in one domain and very slightly worse in the other, but the numbers of
incorrectly classified instances differs significantly in both domains. PRISM

regularly classifies fewer instances incorrectly than does ID3. Furthermore,
ID3's decision trees are in general considerably more specific than rules
induced by PRISM, indicating that PRISM has achieved its goal of reduc-
ing irrelevance and redundancy. Thus PRISM reduces over-specialization

12

without sacrificing predictive power; performance is improved because of a

reduced likelihood of incorrect classification; and incomprehensibility is re-
duced because, on average, each rule has fewer terms and is therefore easier

to assimilate.
Finally, Chapter 10 suggests how PRISM might be enhanced to deal with

attributes with linear values. This and other directions for further research

are discussed in Chapter 11. A full listing of PRISM is given in Appendix A.

Appendix B gives an example of a static data base and training set, and

PRISM's output when applied to this training set is given in Appendix C.

If

13

Chapter 2

Issues in expert systems development

2.1 Expert systems design

Feigenbaum [22] describes an expert system as ...

... an intelligent computer program that uses knowledge and

inference procedures to solve problems that are difficult enough

to require significant human expertise for their solution. The

knowledge necessary to perform at such alevel, 'plus the inference

procedures used, can be thought of as a model of the expertise

of the best practitioners in that field.

There have been many varied attempts at designing and building such sys-

tems (see [8] or [5] for a description of some of them), but the modern day

consensus is that an expert system should consist of two basic parts -a
knowledge base, which contains all the necessary domain-specific knowledge,

and an inference engine, or control structure, which accesses this knowledge

to reason about the domain. There should also be a third (subsidiary) part

- an explanation program to provide the user, on demand, with an explana-

tion of the line of reasoning. The expert system should also necessarily have

a dynamic database, or working memory, to be used for storing information

pertinent only to the current application/consultation, and of course, an

interface to enable the user to communicate with the program.

Current consensus also indicates that the knowledge base and control

structure should be separate, i. e. there should be no domain-dependent pro-

14

cedures in the control program.

2.1.1 The knowledge base

Domain-specific knowledge can present itself in a variety of ways. The knowl-

edge base may contain:

" facts, i. e. factual statements about the domain; information which is

widely known and probably available from textbooks or other such

sources, e. g. (from MYCIN) the MORPHOLOGY of E. COLI is ROD.

Facts may be stored in numerous ways - as lists, tables, rules, or in

semantic networks, etc.

. heuristics or rules of thumb i. e. the knowledge, used when reasoning

about the domain. This is the knowledge which constitutes 'profes-

sional judgement' and may be (and often is) imprecise or uncertain.
Heuristics are most often expressed as inference rules, of the form:

if premise then (with some certainty) action

where premise is usually a conjunction of conditions describing a sit-
uation and action is the action to be taken or decision to be made
if all the conditions of the premise are satisfied. Inference rules are
discussed in more detail in section 2.2.1.

" meta-knowledge. This is knowledge about knowledge and is an ex-
tremely important part of the knowledge base. It describes the struc-
ture of the domain and any relationships between the various concepts.
For example, a large part of MYCIN's knowledge base is concerned

with contexts, their types and positions in the context tree and with

parameters, their types and the contexts which they describe. (See sec-
tion 3.2.3 for a fuller description of MYCIN's knowledge base.) This

part of the knowledge base is often the most difficult for which to find

an adequate representation.

15

META-RULE 001

IF (1) the infection is a pelvic abscess, and
(2) there are rules that mention in their premise

Enterobacteriaceae, and
(3) there are rules that mention in their premise

gram positive rods,
THEN There is suggestive evidence (. 4) that the rules

dealing with Enterobacteriaceae should be evoked
before those dealing with gram positive rods.

Figure 2.1 One of TEIRESIAS' meta-rules.

0 meta-rules. These are rules which act on other (domain) rules. They

are generally used for deciding in which order those rules should be

fired. TEIRESIAS (see section 2.4.1) makes extensive use of such

rules. Figure 2.1 is an example of a meta-rule from TEIRESIAS.

Meta-rules are not always present in an expert system's knowledge

base. Frequently, rule-ordering information is implicit in the program
(see section 2.2.1), or in another part of the knowledge base' or even
in the language in which the system is written2.

As expert systems research continues, it is becoming increasingly evident
that vast amounts of expert knowledge are going to be necessary for fu-

ture systems - `in the knowledge lies the power' [23]. Although perfectly

adequate expert systems have been built with surprisingly few rules (e. g.
PUFF [31]), the biggest impact on society will be created by systems with

many thousands of rules (or the equivalent amount of knowlege if a differ-

ent representation is chosen). For example, XCON [32], a system of over
6000 rules which is used by Digital Equipment Corporation for configuring

computer systems to customers' needs3, outperformed their best technical

'In MYCIN one of the properties of a parameter is a list of the rules which conclude
about it; and in most cases these rules will be evoked in the order in which they are listed.

2OPS5 has an inbuilt conflict resolution strategy such that if there are two rules, one of
which is a specialized version of the other, then the more specialized rule will be selected.

3 See section 3.4 for a brief description of XCON.

16

salesmen [38] within two years of being built, and was successful in saving
the company a large amount of money.

2.1.2 The control structure

The control structure (or inference engine) is the program which determines

how facts and heuristics in a knowledge base should be applied to the prob-
lem under consideration. The design of a control structure will depend

mostly on the problem solving strategies employed by the domain expert.
Also, to a certain extent it may depend on the structure of the domain

knowledge, and even sometimes on the language in which the system is to

be implemented.

The basic reasoning strategy will generally be either data-driven, in

which the knowledge is used to infer as much as possible from known facts

about the domain (e. g. DENDRAL and XCON, both described in Chapter 3)

or goal-driven, in which a hypothesis is formed and the knowledge is used
to try to prove that hypothesis (goal) by iteratively forming and proving
sub-goals (e. g. MYCIN and Prospector, also described in Chapter 3).

The various search techniques used are a central theme of AI research
and have been widely documented (see, for example, [3]; [4], [40] and [58]).

Whichever reasoning strategy and search techniques are used, the control
structure must be kept conceptually simple, otherwise it becomes opaque to

users, with the result that the system becomes difficult to build, difficult to

understand, and consequently, difficult to use.

2.1.3 Explanation

It is generally accepted nowadays, that an expert system should be able
to provide the user with some sort of explanation of its reasoning strategy.
Many researchers believe that systems without this facility are not likely to
be used seriously. Shortliffe [53] states:

[Explanation] provides the program with a mechanism for
justification of decisions; a physician will be more willing to ac-

17

cept a program's advice if he is able to understand the decision

steps that the system has taken. This gives him a basis on which

to reject the system's advice if he finds that the program is not

able to justify its decisions sufficiently. It thereby helps the pro-

gram conform to the physician's requirement that a consultation

system be a tool and not a dogmatic replacement for the doctor's

own decisions.

Rule-based systems which provide explanations all employ similar techniques

to do so; namely, they unravel rules which have been used in the reasoning

chain from the point at which the request was made. The sequence in which

rules are unravelled depends on the inference procedure used.

Suggestions have been made that this level of explanation is not suffi-

cient; that it is too shallow. However, attempts at automatic explanation

have already shown that, even to provide this basic level of explanation,

much attention has to be paid to the way in which heuristics are repre-

sented. A recurring theme is that of modularity of rules. Modular rules are

easy to insert, delete and/or modify. Moreover, they represent a `chunk'

of knowledge which is easy to handle and meaningful to experts, and thus,

they are useful for explanation purposes. Michalski [33] has proposed a

`comprehensibility postulate'. He states:

As a practical guide, one can assume that the components of
descriptions (single sentences, rules, labels or nodes in a hierar-

chy, etc.) should be expressions that contain only a few (say, less

than five) conditions in a conjunction, few single conditions in a
disjunction, at most one level of bracketing, at most one implica-

tion, no more than two quantifiers, and no recursion (the exact

numbers may be disputed but the principle is clear). Sentences

are kept within such limits by substituting names for appropriate

subcomponents. Any operators used in descriptions should have

a simple intuitive interpretation. Conceptually related sentences

are organized into a simple data structure, preferably a shallow
hierarchy or a linear list, such as a frame.

18

RULE085

IF: 1) THE STAIN OF THE ORGANISM IS GRAMNEG, AND
2) THE MORPHOLOGY OF THE ORGANISM IS ROD, AND
3) THE PATIENT IS A COMPROMISED HOST

THEN: THERE IS SUGGESTIVE EVIDENCE (. 6) THAT THE
IDENTITY OF THE ORGANISM IS PSEUDOMONAS

Figure 2.2 One of MYCIN's rules

Michalski applies this postulate to rules which are induced automatically,

but it is equally applicable to rules provided by humans.

2.2 Knowledge representation

There are many ways in which knowledge can be stored. A description of

some of the most common representational techniques can be found in [3]

and in [2]. The first part of this section is concerned with the structure and

use of inference rules4, which have been the most widely used representa-

tional form for expert systems. The second part gives a brief description of

semantic networks and frames, both techniques which are often used.

2.2.1 Inference rules.

Inference rules have the general form:

if premise then (with some certainty) action

where premise is usually a conjunction of conditions describing a situation

and action is the action to be taken or decision to be made if all the condi-
tions of the premise are satisfied.

Figure 2.2 (from [53]page 75) shows the English translation of a typical
MYCIN rule (RULE085)

. RULE085 references four attributes (called clin-
ical parameters in MYCIN)5: STAIN of the organism (which has a possible

'Also called situation action rules, if ... then rules, condition action, rules,
decision rules.

"Also called descriptors, properties.

19

value GRAMNEG), MORPHOLOGY of the organism (which has a possi-
ble value ROD), patient is a COMPROMISED HOST (which is TRUE or
FALSE) and IDENTITY of the organism (which has a possible value PSEU-

DOMONAS). This rule is applied to a database of facts (MYCIN's dynamic

database is described in section 3.2.4). Each condition (or clause) in the

premise tests the value of one of the attributes (a fact) in the database.

If all conditions are satisfied, then the action part of the rule is activated,

and the database is updated accordingly. RULE085 fires when the system
is trying to discover the identity of an offending organism. If conditions 1,

2 and 3 are found to be true, then MYCIN concludes that the identity of
this organism is Pseudomonas with a certainty factor of .6

(for a discussion

of certainty factors see [14]).

Feigenbaum, when discussing expert systems under development at Stan-

ford University [24] says:

Situation = action rules are used to represent experts' knowl-

edge in all of the case studies. Always the situation part indicates

the specific conditions under which the rule is relevant. The ac-
tion part can be simple (MYCIN: conclude presence of particular

organism; DENDRAL: conclude break of particular bond). Or it

can be quite complex (MOLGEN: an experimental procedure).
The overriding consideration in making design choices is that the

rule form chosen be able to represent clearly and directly what
the expert wishes to express about the domain.

Inference rules are a most popular form of representation for expert

systems. Firstly, they are modular, i. e. each rule is self-contained, and as

such can be altered, inserted into or deleted from the database without

affecting any other rule. This allows ease of modification of the knowledge

base, a necessity if the knowledge base is to grow and/or change with time.
It also allows ease of explanation - again vitally important if the system is

to be widely accepted in the community for which it is intended, as explained
in section 2.1.3. Secondly, they are easily understood by experts. This also

allows for ease of explanation, but furthermore, the user can recognise it

20

as a `chunk' of knowledge relevant to the advice being sought. Rules are a

natural way of expressing what to do in a particular situation - frequently

the sort of information an expert wishes to pass on when explaining how he

does his job.

Most early expert systems were rule-based, designed to operate essentially

as production systems. A brief description of four such systems (MYCIN,

DENDRAL, Prospector and XCON) and a rule-based expert system shell
(Xi Plus6) is given in Chapter 3.

In all production systems, rules are applied to a database of facts (the dy-

namic database) to infer new facts, which are then added to the database.

The process is iterative, continuing until the user's request has been met
(or until all possible rules have been exhausted). DENDRAL and XCON

operate by using a data-driven (or forward-chaining, antecedent-driven or
bottom-up) mechanism, whereas MYCIN and Prospector use a goal-driven
(or backward-chaining, consequent-driven or top-down) mechanism, although

both of the latter systems employ a data-driven approach occasionally. Xi

Plus can be used in either backward. chaining or forward-chaining mode. To

illustrate the two modes of operation, consider the following rule set:

1. if A and B then E

2. ifCandDthenG

-3. ifEthenF

4. ifFandGthenH

5. if H then X

6. if D and F then J

7. if A and J then X

8. if D and E then X

Let the database contain the facts A, B and D.
'Xi Plus is a trademark of Expertech Ltd.

21

Forward-chaining

In the forward-chaining mode of operation the premise of each rule is tested

against the database of facts and all rules whose premises are satisfied are
triggered. If there are two or more such rules, then one of these is selected
by what is known as conflict resolution. Several strategies have been used
for conflict resolution (see, for example [18]), including:

9 Rule order, in which all rules are ordered, and the rule with the highest

priority is selected.

" Data order, in which facts in the database are ordered, and that rule
is selected which matches facts with highest priority.

" Generality order, in which the most specific rule is selected.

" Rule precedence, in which precedence is determined by a hierarchy or

network.

" Recency order, in which that rule is selected which references the most

recently matched fact in the database.

Once a rule has been selected, it is fired, thus updating the database. The

whole cycle is then repeated until the required information has been deduced.
If, in the above example, we wish to deduce X, the sequence of events is

as follows:

1. All rules are tested on the database, and any rule whose premise is

satisfied is triggered. In this case, only rule 1 (if A and B then E) is

triggered.

2. As there is only one rule, it is fired, and the fact E is added to the
database.

3. The remaining rules are tested on the database. This time rule 3 (if

E then F) and rule 8 (if D and E then X) are triggered.

22

4. Assuming that the conflict resolution strategy is to select the most

specific rule, rule 8 is selected. Rule 8 concludes about X, so X is

added to the database, and the program terminates.

Backward-chaining

In the backward-chaining mode of operation, only those rules which conclude

about the required information are retrieved and tested. If their premises

are not matched by facts in the database, then rules which conclude about
facts specified in these premises are retrieved and tested, and so on until

either the premises can be matched or all rules are exhausted. Using the

above set of rules to deduce X, the sequence of events is as follows:

1. The goal is to deduce X. All rules which conclude about X, i. e. rule 5
(if H then X), rule 7 (if A and J then X) and rule 8 (if D and E then
X), are retrieved and their premises tested on facts in the database.

2. None of the premises is matched, so one of these rules is selected and

a subgoal set up. If the conflict resolution strategy this time is rule

order, then rule 5 is selected and H becomes the subgoal.

3. The rule which concludes about H (there is only one) is retrieved and
tested. This is rule 4 (if F and G then H).

4. Neither F nor G are in the database, therefore F becomes the new

subgoal and rule 3 (if E then F) is retrieved.

5. Again, E is not in the database, so this time E becomes the subgoal

and rule 1 (if A and B then E) is retrieved and its premise tested.

6. This time both A and B are known, therefore rule 1 is fired and E is

added to the database, which in turn enables rule 3 to be fired and F

to be added to the database. The database now contains facts A, B,

D, E and F.

7. The system is testing rule 4 (if F and G then H). F has been deduced,

so now G becomes the new subgoal and rule 2 (if C and D then G) is

23

retrieved and tested to try-to deduce G. D is known but C is not, and

as there are no rules which conclude about C, rule 4 fails.

8. Rule 4 was retrieved to conclude about H, which was needed by rule 5

to conclude about X. As rule 4 has failed, rule 5 also fails and the

system returns to step 2, and selects the next rule in turn. This is

rule 7 (if A and J then X). A is known but J is not, so J becomes the

subgoal.

9. There is only one rule which concludes about J, namely rule 6 (if D

and F then J). The premise of rule 6 is tested on the database.

10. D and F are both known, therefore rule 6 succeeds and J is added to

the database.

11. A and J are now both known, therefore rule 7 fires and X is added to

the database and the program terminates.

The choice between a forward-chaining and a backward-chaining control

structure will depend to a certain extent on the domain, and on the type

of deductions the system is intended to make. If the intention is to deduce

as many facts as possible, then the forward-chaining mechanism would be

the better one to employ. If, on the other hand, the purpose is to confirm

or deny a particular hypothesis, then backward-chaining would probably be

the better choice to make.

2.2.2 Other representational techniques

Semantic networks

In some cases, domain-specific knowledge is most readily represented by

semantic networks. These generally consist of nodes, which represent objects

or concepts in the domain, and arcs, which represent relationships between

objects or concepts. The basic functional unit of a semantic network is two

nodes linked by an arc. The arc is usually directed to indicate which node
is the subject and which is the object of the relation represented by the arc.

24

Fido is-a dog

Figure 2.3 An `is-a' link in a semantic network

For example, the fact that Fido is a dog can be represented by two nodes,
`Fido' and `dog', linked by an `is-a' link, as shown in figure 2.3. Each node

can have any number of links, and thus quite complex networks can be built.

Prospector (see section 3.3) successfully uses such a network when reasoning

about the likelihood of certain mineral-ore deposits and advising geologists

about the favourability of an exploration site.

Frames

Frames are data structures which comprise the name of a concept, e. g.
NOVEL, and either a general or a specific description of it, made up of

a number of filled-in `slots'. Frames representing specific examples are said
to be instantiations of general frames and have the same slots, i. e. properties
describing a general concept are inherited by specific examples of that con-

cept. Each slot has a name and, in the general case, a description of how it

is to be filled when the frame is instantiated. This description may itself be

the name of another frame. For example, figure 2.4 shows an example of a
frame for the general concept `NOVEL'. This frame indicates that `NOVEL'

is a specialization of the general concept 'BOOK' and is described by (the

slots) title, author, publisher, year and type-of-cover. The slot `publisher' is

filled by a frame `PUBLISHER' which has its own slots, e. g. name, address.
Figure 2.5 shows a possible instantiation of the general frames `NOVEL' and
`PUBLISHER'.

25

name : NOVEL

specialization-of : BOOK
title : title
author : Surname, First-name

publisher : PUBLISHER
year : year -.
type-of-cover : hard-back, paperback

Figure 2.4 An example of a frame.

name : Novel-i

specialization-of : NOVEL
title : Paradise Postponed
author : Mortimer, John
publisher : pub-1
year : 1986
type-of-cover : paperback

name : pub-1

specialization-of : PUBLISHER
name : Penguin
address : Middlesex, England

Figure 2.5 Possible instantiation of general frames
`NOVEL' and `PUBLISHER'

26

Because there can be several levels in the frame hierarchy, and because

each slot can itself be filled by a frame with its own hierarchy, quite a

complex data structure can be built. An example of an expert system using

a frame-like representation is MOLGEN, which assists biologists in designing

experiments in molecular genetics. A description can be found in [56] and
[25].

2.3 Knowledge representation in future expert
systems

The early classic expert systems (e. g. MYCIN, Prospector, DENDRAL)

all used more than one representational form for their respective knowledge

bases. This had been found to be necessary mainly because of the complexity

of their respective domains. However, the result was that the final systems
turned out to be extremely complex. Each had to be hand-crafted over a

number of years. It was soon realised that this was a very inefficient way of
building expert systems and that some way of speeding up their development

had to be found.

Expert system shells began to appear on the market. Most of these used

a single fixed representation (usually rules) for domain knowledge, which

greatly simplified the development process. However, it was not long before

dissatisfaction was being expressed about the limited performance of some
of these systems in some domains (e. g. see [7]). The realisation is now
spreading that a single representation is not enough, and that future systems

will probably need to use different representations for different parts of the
domain.

Much recent research has been concerned with methods of represent-
ing and using `deep knowledge' in expert systems. Deep knowledge can
be thought of as the knowledge required for a detailed understanding of

underlying causal mechanisms of a domain. In order to reason with such
knowledge, an expert system will have to have a functional or causal model,

and this model will have to be represented somehow. It is unlikely that

27

inference rules alone will be adequate. Steels [55] states:

The kernel of a [second generation] expert system consists

of two components: A representational component and a prob-
lem solving component. ... The representational component is

typically frame-based. Information is structured in units with

various slots that hold information about the concept described

by the unit. This information can be in the form of defaults,

rules, procedures to compute information, etc. and is inherited

by more specific units.... In first generation expert systems, the

problem solving component consists solely of a collection of rules

... In second generation expert systems there is an additional

problem solving component which performs deep reasoning.

Thus it seems that future expert systems will be as complex as (if not more

complex than) the original expert systems. However, their knowledge bases

will be much more structured, and therefore easier to manipulate, build and

understand. Irrespective of the structure of these systems and of the chosen

representational forms for deep knowledge, it is likely that most will still
have a problem solving component (the heart of the expert system) in the

form of inference rules.
With this view of future expert systems the question now arises of how

all this knowledge in all its different forms is going to be captured. The

next section discusses briefly some past and current techniques of knowledge

acquisition.

2.4 Approaches to knowledge acquisition

Expert systems such as the ones described in Chapter 3 owe their success
largely to the vast amount of knowledge that they contain. In the early
days of expert systems research, it was generally believed that in order for

a system to be `expert', it would be necessary for that system to embody

powerful reasoning/search/control techniques. As time passed, it slowly
became clear that this was not in fact the case, that it was better to keep

28

the control strategies simple, that `the power resides in the knowledge' [23].

Knowledge representation became a major issue - it was necessary to find

ways of representing knowledge such that simple control structures could

access it efficiently and use it effectively [24]. As expert systems started to

be built an even more difficult problem emerged - that of acquiring the

vast amounts of expert knowledge required for a system's performance to

approach that which had been envisaged. Feigenbaum [23] states:

[Knowledge acquisition] is the most important of the central

problems of Artificial Intelligence research. The reason is sim-

ple: to enhance the performance of AI programs, knowledge is

power. The power does not reside in the inference procedure.
The power resides in the specific knowledge of the problem do-

main. The most powerful systems will be those which contain
the most knowledge.

The problem of acquiring this knowledge is one which has been well doc-

umented [6,9,10,23,26,37,53,57,60]. The task of collecting and synthesizing

all relevant knowledge has generally required many hours to be spent in

consultation with a domain expert. Elicitation is an extremely laborious

process, demanding enormous effort on the part of the expert, who is es-

sentially expected to spell out everything he knows about the domain. The

task is particularly daunting if the expert has difficulty in articulating what
he knows or expressing it in a format suitable for coding. However, this

should not be surprising. Welbank [57] points out:

There is no logical reason why it should be necessary to be

aware of how a thing is done in order to do it. The impression

given by those psychological experiments that have addressed the

question is that people are, in general, not very aware of their

own reasoning. Furthermore, the more expert they are, the less

they are aware of it. As reasoning becomes more practised and
faster, it sinks out of consciousness [21].

29

2.4.1 Early approaches

The systems described in Chapter 3 were hand-crafted over many years.

The acquisition problem became clear early on in the work on DENDRAL.

By 1969 it was apparent that something would have to be done to speed up

the process of knowledge acquisition. Work on Meta-DENDRAL began.

Meta-DENDRAL [11] is a program which automatically infers rules of

mass spectroscopy (i. e. fragmentation or cleavage rules). Like DENDRAL,

it is data-driven and uses a plan-generate-test strategy. It comprises three

programs - INTSUM, RULEGEN and RULEMOD. INTSUM takes as in-

put a molecular structure and its associated spectrum and produces a set

of very specific cleavage rules. It uses what has been called a `half-order

theory' of mass spectroscopy to simulate the bombarding of the molecular

structure and then compares the simulated spectrum and original spectrum

to infer the causes of the observed peaks. RULEGEN then generates a set

of plausible rules, i. e. rules for which positive evidence has been provided
by INTSUM, and finally, RULEMOD tests and refines these rules, special-

izing, generalizing, merging rules or removing redundancies, as necessary.
Meta-DENDRAL is described in more detail in section 4.2.

While work on DENDRAL and Meta-DENDRAL was in progress, work

on another major expert system project started - MYCIN. Again, it be-

came clear very early on that knowledge acquisition was going to be a prob-
lem. The difficulty was somewhat different, though. With DENDRAL the

major problem had been that for certain families of molecules, there simply

were no experts whose knowledge was broad enough to provide the required

cleavage rules. With MYCIN it was discovered that the experts had diffi-

culty in articulating their knowledge to the required level of detail and the

best way of eliciting this knowledge was to observe the experts while they

worked their way through some difficult cases, asking pertinent questions as

and when necessary. Davis [17] found that he was able to automate this pro-

cedure to a great extent and developed an interactive program, TEIRESIAS,

to help with the knowledge elicitation problems which were clearly hindering

the development of MYCIN (and other MYCIN-like systems). TEIRESIAS

30

is brought into use by an expert to help debug a rule base. The procedure

can be divided into three stages:

1. Run a consultation with the current knowledge base and find a diag-

nosis with which the expert does not agree.

2. Run TEIRESIAS' explanation program to identify the faulty or miss-
ing rule.

3. Modify, delete or add a rule as necessary. TEIRESIAS prompts for

clauses, diagnoses, etc.

TEIRESIAS uses meta-rules to aid the debugging process. These rules

contain knowledge about MYCIN's reasoning strategy and about the knowl-

edge contained in its standard rules. It also uses `rule models' to help the

expert formulate new rules. These rule models contain information about

what any particular rule should look like, e. g. what parameters should be

contained in the premise of a rule concluding about the identity of an or-

ganism. Thus TEIRESIAS can identify and prompt for a missing clause in

a rule.

2.4.2 More recent approaches

Prospector and XCON both `evolved', i. e. building the knowledge bases was

an iterative process, in which the first step involved an expert learning a
little about the system, and the system builder learning a little about the
domain of expertise - enough to construct a rudimentary version of the

system. Once the system was working - no matter how badly - it was
relatively simple (although time-consuming and tedious) to iteratively run,
debug and modify it until its performance was acceptable.

This method of knowledge elicitation is the one which is most frequently

used today. Welbank [57] divides the procedure into three stages:

1. Eliciting the domain structure and terminology; defining the important

concepts; describing the attributes.

31

2. Getting enough knowledge to construct the initial working system.

3. Refining the knowledge base, i. e. testing and debugging.

She states that although the stages may not be clearly separate, each stage
does have its own problems associated with it. Some of the problems iden-

tified with the first stage (and to a certain extent the second stage) are:

" the expert may be inaccessible

" the expert may be unenthusiastic

" there may be a lack of communication

" the expert may be inarticulate

9 the expert may be totally unaware

These problems can be overcome by choosing appropriate elicitation tech-

niques. Questions must be of the right sort. They must be asked the right

way. They must be specific. Different types of knowledge may require dif-

ferent elicitation techniques.

Interviews

Interviewing is the most popular method of knowledge elicitation. Unfortu-

nately, it is a lengthy and tedious process, more suited to eliciting knowledge

about the basic domain structure and concepts, than acquiring the fine de-

tails necessary for high performance. This remains so despite the many and

varied interview and questioning techniques which have been developed (see

[57] for a brief discussion of some of these).

Protocol and task analysis

These methods involve watching the expert while he works through a prob-
lem to its solution. This may provide more detailed information than

straightforward interviewing, but has the disadvantage that it may not cover
unusual cases.

32

Debugging

With many of the early expert systems, it became clear that experts were
far more adept at debugging a faulty set of rules than formalizing new ones.
Many system builders found that it was worthwhile trying to build a pro-
totype as early on as possible. Once the system was running and making

mistakes, it was far easier to elicit information in the context of these mis-
takes. This was the basis on which TEIRESIAS was built. It is also the

method recommended for building knowledge bases for Xi Plus and other

modern expert system shells.

Automatic rule induction from examples

All of the above knowledge elicitation techniques are open-ended, i. e. the

only way in which gaps or errors in the knowledge are discovered is if the

system makes a mistake. Furthermore, as the knowledge bases grow, it is

often difficult to keep a check on rule interaction and consistency.
Automatic induction techniques may hold the key to some of these prob-

lems. Programs which accept as input a number of examples of concepts or
decisions and produce a set of inference rules explaining these concepts or
decisions have a distinct number of advantages over traditional knowledge

acquisition techniques:

" experts find it easier to give examples than to formalize rules

" elicitation can be accomplished in a fraction of the time

" gaps in the knowledge can (often) be more easily identified

" errors can be more easily identified and remedied by the use of counter-

examples

However, automatic rule induction also has a number of disadvantages:

" only rules can be elicited

" knowledge representation is uniform, therefore some of the domain
knowledge may have to be forced into an unnatural representation

33

9 the expert still needs to produce the original structure of the domain

and definition of concepts and attributes

. (at the present time) usually only one type of rule can be induced at

any one time, i. e. rules which describe an object or decision in terms

of relationships between attributes e. g. if A>B then ... or in terms of

structural descriptions e. g. if A is on top of B then ... cannot be mixed

with rules which describe an object or decision in terms of attribute
descriptions e. g. if attribute A= blue and attribute B= square

If, as envisaged, the expert systems of the future are going to be multi-

representational, it seems that knowledge acquisition techniques will have

to be multi-faceted, with different techniques being used for different types

of knowledge.

Despite current shortcomings, automatic rule induction from examples
holds the promise of enabling a great amount of knowledge to be acquired
in a very short time. This was recognised many years ago, and research in

this area (under the umbrella of the broader topic of machine learning) has

been active for over two decades. An overview of machine learning is given
in Chapters 3 and 4.

34

Chapter 3

A Review of some Classic Expert

Systems

This chapter describes the structures, representational techniques and con-
trol mechanisms used in four `classic' expert systems - DENDRAL, MYCIN,

Prospector and XCON. It is included in this thesis to illustrate the different

forms and uses of inference rules. The chapter also includes a description of
Xi Plus, as an example of a modern, commercially available expert system

shell.

3.1 Heuristic DENDRAL

Heuristic DENDRAL [11] is a set of programs which were designed for

use by organic chemists to infer plausible molecular structures for unknown

organic compounds from their chemical formulae, mass spectroscopic and

other data. It was developed by Joshua Lederberg, Bruce Buchanan, Ed-

ward Feigenbaum and others from about 1965 onwards as a collaborative

project between Stanford University and the Stanford Mass Spectroscopy

Laboratory.

The basic inference procedure of Heuristic DENDRAL comprises a se-

quence of three steps; namely, plan, generate and test.

35

If the spectrum for the molecule has two peaks
at masses xi and z2 such that
a. X1 + x2 =M+ 28, and
b. xl - 28 is a high peak, and
c. Z2 - 28 is a high peak, and
d. at least one of xl or x2 is high,
Then the molecule contains a ketone group.
(M is the molecular weight which is inferred from
the chemical formula.)

Figure 3.1 One of DENDRAL's rules.

3.1.1 The Planning Program

DENDAAL's planning program takes as input the chemical formula and

mass spectrum of the compound to be analyzed, and returns two lists:

goodlist -a list of molecular fragments that must be in the final molecular

structure, and

badlist -a list of molecular fragments that must not appear in the final

molecular structure.

These lists are used in the `generate' stage as constraints to limit the number

of plausible structures generated. Their construction' is enabled by the use

of a great deal of judgemental knowledge, which is encoded as production
rules. Figure 3.1 (from [4]page 107) shows an example of such a rule.

The planning program uses a forward-chaining mechanism to infer as

much as possible from the given facts, and thus makes goodlist and badlist

as complete as possible. This will increase the constraints placed on the

generator, which in turn will infer fewer plausible structures to be passed to

the test program.

3.1.2 The `Generate' program

When the planning program comes to an end, the lists goodlist and badlist

are passed to the `generate' program. This program is known as CONGEN

36

If N-C-C-C Then N-C * C-C

Figure 3.2 One of DENDRAL's fragmentation rules

and is responsible for systematically generating all the possible molecular

structures for the unknown compound. Goodlist and badlist together

with other constraints, which can be input directly, are used to limit the

generator to enumerate only plausible structures, thus drastically limiting

the number of structures generated.
The structures are generated in stages. A small part of a molecule will

be generated first, and then new atoms or molecule fragments added in all

possible configurations. The molecule structures thus `grow'. Several con-

straints should be added at each stage, otherwise the combinatorial explosion
in molecule structures becomes quite prohibitive.

CONGEN can be used (and often is used) on its own. It has been

proved mathematically to produce an exhaustive and non-redundant list of
legal candidate structures, and is unrivalled by human performance [24].

3.1.3 The Testing and Ranking programs

Heuristic DENDRAL's final stage is the testing and ranking of the can-
didate structures generated by CONGEN. This is done by two programs,
MSPRUNE and MSRANK.

First, for each possible structure, MSPRUNE generates a hypothetical

mass spectrum using a fairly simple model of mass spectrometry, which
is encoded as a set of production rules. Figure 3.2 shows an example of

such a rule. Fragmentation rules such as this indicate expected peaks in a

mass spectrum. MSPRUNE uses these rules to build a hypothetical mass

spectrum for the candidate structure. It then compares this with the original

mass spectrum and if the two are not similar, the candidate structure is

removed from the list of possible structures. Every candidate structure

37

generated by CONGEN is tested in this way.
Finally, all remaining plausible structures are ranked by MSRANK ac-

cording to the number of predicted peaks found (or not found) in the original

mass spectrum. This process also involves the use of detailed knowledge of

cleavage and migration laws which are encoded as production rules.

3.2 MYCIN

MYCIN [53], [14] is a rule-based expert system developed by Edward Short-

liffe and others at the Stanford Heuristic Programming Project, in collabo-

ration with the Infectious Diseases Group at the Stanford Medical School.

It was designed to assist physicians in the diagnosis and treatment of dis-

eases caused by certain kinds of bacterial infection. Work on the MYCIN

project started in 1972. The task was to design a system which could play

a similar role to that of a human specialist in infectious diseases. Thus,

it was to interact with a physician to collect all the relevant information

available about a patient under consideration, and then to examine this in-

formation for evidence upon which to base a diagnosis and recommendation
for therapy.

The entire MYCIN system comprises three subprograms: the consulta-

tion program, the explanation program and the rule-acquisition program.
It stores its information in two databases: a static database which contains

all, the rules used during a consultation, and a dynamic database which is

created afresh for each consultation and contains patient information and
details of any questions asked in the consultation.

3.2.1 The structure of the domain

As a consultation proceeds, MYCIN builds up information about a number
of entities in its domain, such as an offending organism or the culture from

which it was isolated. These entites are known as contexts. The information
is either provided directly by the user or deduced using rules.

There are a number of context types employed, e. g. PERSON, CURORGS.

38

Contexts are arranged hierarchically in a tree structure known as a context

tree, which varies in detail from one consultation to another. In every con-

sultation there is exactly one context of the type PERSON (i. e. the patient
himself or herself). This context has no `parent context' and serves as the

root node of the context tree. Contexts of every other type can occur as

many times as necessary (including zero times). Every context type except
PERSON has a corresponding `parent' context type, i. e. a CURCULS con-

text can only be a direct descendant of the PERSON, a CURORGS context

can only be a direct descendant of a CURCULS context, and so on.

3.2.2 Inference rules

MYCIN uses inference rules to embody its expert knowledge about infectious

diseases, as inference rules of the general form

if premise then action

where premise generally involves testing the value of one or more clinical pa-

rameters (e. g. SITE - the site of the culture) and action generally involves

concluding the value of one or more further parameters.
For many of its clinical parameters, MYCIN usually computes not one

definitive value but a number of alternative possibilities each with its own

probability-like value called a certainty factor. This'is a number between

-1 and +1 and is used to indicate the degree of belief that the value of the

clinical parameter is the true value.
Each of MYCIN's rules is intended to correspond to an item of knowledge

meaningful to the physician. Each rule has both an internal (stored) form

and an external English translation. In the internal form, both the premise

and the action part of the rule are held as a (LISP) list structure. Figure 2.2

on page 19 is an example of one of MYCIN's rules.

3.2.3 The static database

MYCIN has a static database which contains its production rules and all
the other fixed information needed by the consultation program. Every

39

context type and every clinical parameter used by MYCIN has a number

of properties which fully describe it. These properties enable the program

to make all the correct associations between parameters and contexts and
between the contexts themselves, and provide information which tells it

which rules to invoke and when to invoke them, when to ask a question,

which question to ask and what answers to expect. They also enable MYCIN

to find the right position in the context tree for a particular context, and

indicate which basic questions to ask when a context is first instantiated.

The static database is set up only once, when the system is being built,

but it can be modified by experts using the Rule-Acquisition Programs.

3.2.4 The dynamic database

MYCIN makes use of a dynamic database which is set up afresh for each

consultation. This contains data of the kinds described below. In each

case the data can be thought of as taking the form of object-attribute-value
triples:

1. patient data, i. e. the values of clinical parameters (as supplied by the

physician or inferred by the program);

2. so-called dynamic data, which records the details of acquisition of data

mainly for explanation purposes;

3. properties of context types used when instantiating contexts;

4. information about the context tree as it is built up.

3.2.5 The control structure

When the physician feels that he needs advice about the management of a

particular patient, he enters the system by starting the Consultation Pro-

gram. The ensuing interaction is the core of the program, during which

the system asks the necessary questions, draws its inferences and makes its

recommendations as to the diagnosis and therapy. A typical consultation
'For a description of the Rule-Acquisition Program see [17] or [53].

40

lasts about 20 minutes. The questions asked depend upon answers previ-

ously given, and are only asked if the information cannot be inferred from

data already acquired. They are asked in a logical sequence so that the

physician can follow the course of the consultation. Redundancy is avoided.
If the physician feels that some part of the consultation is obscure, e. g. if

he cannot see the reason for a particular question, he can temporarily ad-
journ from the consultation to ask for clarification. The system can then

explain the reason for the question and give examples of the type of answer
it expects. Afterwards, the physician can return to the basic consultation

without having to retrace his steps from the beginning.

MYCIN's control structure is (principally) a goal-directed backward-

chaining of rules. At any point, the program is working towards the goal of
finding the value of some parameter of a context, i. e. tracing the parameter,

and it does this by invoking all the rules which make a conclusion about

that parameter in their action part. This leads to a depth-first search of

an implicit AND/OR tree formed by the constituent conditions of the rules.
At the leaf nodes of this tree, the values of parameters are provided by the

user in response to questions.
The aim of MYCIN's backward-chaining approach is to avoid asking

questions unnecessarily. Instead, with few exceptions, questions are asked

only when needed to trace the value of a clinical parameter.
The consultation starts by instantiating the patient'context as the root

node of the context tree and then attempts to find the value of the REGI-

MEN parameter for that context. There is a single relevant rule, called the

goal rule, which leads to a deduction of the value of REGIMEN. In order
to find the value of REGIMEN, MYCIN traces the values of the parame-
ters referenced in the premise part of the goal rule. The physician probably
does not know these values, so the rules which infer these values have to be

invoked, and the parameters in their premise parts traced, and so on until
the physician can supply some answers.

When the consultation is over, the system passes automatically to the

second subprogram, the Explanation Program, which answers questions

41

from the user and explains its line of reasoning. It does this by showing

an English version of the rules used, to explain why it needed a particular

piece of information, and how certain conclusions were reached. The main

purpose of this is to allow the physician to decide if MYCIN's reasoning is

sound, and to reject its advice if he feels that it is not.

3.3 Prospector

Prospector [19) was developed by R. Duda, J. Gaschnig, P. Hart and others
at SRI International in California, in collaboration with a number of eco-
nomic geologists and the U. S. Geological Survey. It was designed to assist
field geologists in evaluating possible exploration sites for the existence of
certain ore deposits. Like MYCIN, it is an interactive consultation program

which allows the user to interrupt and question it.
The consultation starts with the user giving the program some basic

information about rock types and minerals which have been observed at the

site in question. The program uses this information to form some tentative

hypotheses about ore deposits at the site. It then uses its stored geological
knowledge, in a goal-directed fashion, to try to either prove or refute each of
its hypotheses, asking for further information from the user if necessary. The

eventual outcome of the consultation is a numerical indication that a certain
type of ore deposit exists at the site (if indeed it does exist), together with

a list of favourable factors supporting the hypothesis and a list of possible

unfavourable factors (if there are any).

3.3.1 The structure of the domain

The core of Prospector's knowledge base consists of a number of computa-
tional `models', each of which is designed to represent a body of knowledge

about a particular class of ore deposit. The knowledge base is completely
independent of Prospector's control mechanism. Each model is encoded as

a separate inference network of facts and hypotheses, known as assertions.
These assertions are the nodes in the network and are connected together

42

P(Hi) p(H2)
El Z'1 hil W2 H2

Figure 3.3 Nodes and relations in a Prospector-like inference network

by arcs or relations. Each assertion has a probability-like value associated

with it, indicating the degree of belief in it. Each relation between two as-

sertions is also quantified, i. e. a numerical value indicates to what degree

one assertion affects the other. Thus, the network can be thought of as a set

of interlinking inference rules, each rule consisting of two nodes joined by

a relation. For example, if observation El implies hypothesis H1, which in

turn implies hypothesis H2, then this would appear in an inference network

as shown in figure 3.3, in which wl and wz are weights assigned to the rules
indicating strength of implication and p(Hi) and p(H2) are the prior prob-

abilities of Hl and H2 respectively. Leaf nodes in the network correspond

to field evidence supplied by the user. Thus Ei in figure 3.3 would be a leaf

node. When the user supplies this piece of evidence, he must also input his

degree of belief in its existence. This is expressed as a number between -5

and +5 (where +5 indicates that the evidence is definitely present and -5
indicates that it is definitely absent), and is converted by the program into

a probability-like value.
Each Prospector model also has a semantic network which defines the

logical relations between various entities. This network includes a large

taxonomy of minerals which allows facts such as `Pyrite is a Sulphide' and
`Sulphide is a Mineral' to be directly represented. Thus if the program needs

to know if sulphide is present, and the user volunteers the information `Pyrite

is present', the program can make the relevant deductions automatically.

The semantic network is partitioned into higher level spaces which form

the nodes of the inference network. Thus each assertion in the inference

network has its own structure which is explicitly described.
There are three types of relation between assertions in Prospector: plau-

43

sible, logical and contextual.

" Plausible Relations. Each inference rule has an associated weighting

factor which indicates how a change in the probability of one assertion

affects the probability of the other. The weighting factor comprises

two numbers, LS and LN. LS is called the `sufficiency factor' and is

used if the evidence in question is observed to be present. LN is called

the `necessity factor' and is used if the evidence in question has been

proved to be absent. Frequently, the user may not be certain about

the evidence, in which case an interpolation formula is used to update

the probability of the hypothesis. LS and LN are derived from Bayes'

Theory.

" Logical Relations. There are three logical relations: AND, OR and

NOT. A hypothesis may be defined as the logical conjunction (AND) of

several pieces of evidence, or it may be the logical disjunction (OR) of

two or more assertions, or it may simply be the logical negation (NOT)

of an assertion. Fuzzy set theory is used to compute the truth value of

the hypothesis from the truth value of its component assertions, when

these are not known with certainty.

" Contextual Relations. These are used when an assertion cannot be

used in the reasoning process until another assertion has been deter-

mined, or a piece of evidence has been made available.

3.3.2 The control structure

A consultation with Prospector begins with the user giving the program

some basic information about rock types and minerals which have been ob-

served at the site in question. The information does not have to be definite.

The user can use phrases such as `There may be ... 'or `It is unlikely that

... ', and the program will translate these into probability-like values. The

user can also express his degree of belief numerically using a scale from -5
to +5 where +5 means ̀ definitely' and -5 means ̀ definitely not'.

44

The volunteered information is matched against the models, any rele-

vant probabilities are updated and the change is propagated through the

inference network via the inference rules. When the user has finished volun-
teering information, Prospector examines each of its models and selects one

as the current hypothesis. The selection is made on the basis of the num-
ber and types of connections between the model and the given information,

i. e. the best-matching model is chosen. Prospector's control strategy now
becomes goal-driven, or backward-chaining. The initial goal corresponds to

the selected model. The program tries to establish the assertion that the

given field evidence matches the model. It does this by trying to establish

a number of hypotheses which support this assertion. These hypotheses in

turn may require third-level assertions to be determined. The program will

chain in this way until assertions can be established directly, i. e. asked of

the user. When all the evidence has been collected, the program is able

to assign a truth value to the top-level assertion. If, at any time, the field

evidence gathered by Prospector indicates that the top-level goal is unlikely,

then the model is discarded and a new one selected.
At any time, the user may interrupt the consultation to ask for an expla-

nation, or to volunteer new information, or to change a previous statement.
Occasionally, the program asks the user if he wishes a particular line of rea-

soning to be pursued, or if he wishes to discount any particular hypothesis.

The final outcome is a numerical indication (between -5 and +5) of the

degree of belief that a particular ore deposit is present at a given site.

3.4 XCON

XCON (formerly Ri) [32] is a rule-based expert system which was designed

to configure Digital Equipment Corporation VAX-11/780 computer systems.
It was developed by John McDermott at Carnegie-Mellon University from

about 1978 onwards, and is now thought to be arguably the most successful

expert system ever, in that it is saving the company in the region of $40

million per year.

45

XCON's task is to take a customer's order, check that it is complete and

correct, configure the components which make up the order in some suitable

and satisfactory way, and output a diagram of the computed configuration.

3.4.1 The knowledge base

XCON is implemented as a production system using the production system
language OPS5. The knowledge base comprises a production memory (or

rule base) and a database of component descriptions and is equivalent to

MYCIN's static database.

The rule base contains approximately 6000 if premise then action rules.

As usual, the premise is generally a conjunction of conditions which are to

be matched by elements in the working memory, and action is the action

to be taken if the conditions are matched and normally involves adding,
deleting or changing an element in working memory. There are three types

of rules:

" Sequencing rules. These rules are responsible for dividing up the task
into sub-tasks and for determining the order in which these sub-tasks
have to be tackled.

" Operator rules. As well as checking that all necessary components are
available and are of the correct type, the operator rules are responsi-
ble for determining optimal configurations or part-configurations. Fig-

ure 3.4 is an example of an XCON operator rule (from [32]).

" Information-gathering rules. These rules access the database or per-
form appropriate calculations to provide sequencing and operator rules

with relevant information.

The configuration task is divided into a (large) number of sub-tasks,

which are called contexts, e. g. ASSIGN-POWER-SUPPLY or CHECK-FOR-
MISSING-ESSENTIAL-COMPONENTS. Each context has a fairly small
number of rules associated with it, and the first condition in the premise

46

ASSIGN-POWER-SUPPLY-7

IF: THE MOST CURRENT ACTIVE CONTEXT IS ASSIGNING
A POWER SUPPLY

AND A UNIBUS ADAPTOR HAS BEEN PUT IN A CABINET
AND THE POSITION IT OCCUPIES IN THE CABINET (ITS

NEXUS) IS KNOWN
AND THERE IS SPACE AVAILABLE IN THE CABINET FOR A

POWER SUPPLY FOR THAT NEXUS
AND THERE IS AN AVAILABLE POWER SUPPLY
AND THERE IS AN H7101 REGULATOR AVAILABLE
THEN: PUT THE POWER SUPPLY AND THE REGULATOR IN THE

CABINET IN THE AVAILABLE SPACE.

Figure 3.4 One of XCON's rules

of every domain-specific rule indicates the context to which the rule be-

longs. The rule shown in figure 3.4 belongs to the context ASSIGN-POWER-

SUPPLY, and will not fire unless this is the most current active context.
XCON's database contains descriptions of components which are nec-

essary for the configuration task. At the present time it knows about ap-

proximately 20,000 such components. Each entry in the database includes

the name of the component and a description of its properties, stated as

attribute-value pairs. Every component has a `type' attribute (e. g. disk

drive) and a `class' attribute (e. g. bundle, backplane). On average, each com-

ponent description comprises eight attribute-value pairs. XCON's database

also contains cabinet templates, which describe the space available in each

cabinet type. Cabinet templates are used by XCON to keep track of the

availability of cabinet space, and to enable it to assign a specific location to

each component placed in the cabinet.

The working memory contains details of components which have been

ordered for a particular configuration task, descriptions of partial configura-
tions and other dynamic information such as the results of various computa-
tions and context symbols indicating which contexts are currently active and
the relative length of time they have been active for. The working memory

47

is initially empty. As the program proceeds, details of components and then

partial configurations are stored in the working memory. New descriptions

are added; old ones, which are no longer necessary, are deleted. Eventually,

the working memory contains the full computed configuration.

3.4.2 The control mechanism

XCON divides its task into sub-tasks, which it then divides into sub-sub-
tasks, etc. At the top level, there are six major sub-tasks:

1. check the order for missing or mismatched components;

2. put the appropriate components into the cpu and cpu expansion

cabinets;

3. put boxes in the unibus expansion cabinets and put appropriate

components in those boxes;

4. put panels in the unibus expansion cabinets;

5. do the floor lay-out;

6. work out the cabling.

For each of these sub-tasks, a context is selected and the relevant rules

retrieved. XCON works in a data-driven (forward-chaining) mode. Unlike

DENDR. AL, MYCIN and Prospector, it does not use the generate-and-test

approach in which a hypothesis is generated and then tested on the data.

Instead, it has a powerful matching algorithm and enough knowledge in

its rules to enable an appropriate action to be taken at each stage of the

configuration task. No backtracking is necessary.
For each context there are a small number of relevant rules. Some of these

rules are specializations of other rules (the more specialized rule will always
fire first); some rules check for missing components; others are sequencing

rules. In each case, there is enough information in the rules for the program
to know what to do next; whether to add a missing component, or to put a

48

device in a cabinet, or to go on to the next context. The program proceeds
in a step-wise manner until the configuration task is complete.

3.5 Xi Plus

Xi Plus is a modern, commercially available, rule-based expert system shell.

It comprises an empty database, an empty knowledge base and a control

mechanism, as well as facilities for editing, interfacing to external programs,

graphics packages, etc.

3.5.1 The database

Xi Plus' database is the equivalent of MYCIN's dynamic database or XCON's

working memory. When a user runs an application for advice about a par-

ticular problem, he may volunteer information concerning the problem or
he may be asked to give information in response to specific questions. The

system stores his answers (or any volunteered information) in the database,

which is then accessed by the system's knowledge base or by an external

program via the control structure. Any inferences made by the system are

also stored in the database.

3.5.2 The knowledge base

Domain-specific knowledge is stored in Xi Plus' knowledge base as inference

rules or facts, or it may be in an external program which is then referenced
by an item in the knowledge base. A rule's premise and a fact may both be

either an assertion (a statement which is true or false) or a relation of the

form

(identifier) (relation) (value)

or

(attribute) of (identifier) (relation) (value)

49

where (identifier) or its (attribute) is the object to be described, and can be

single-valued or multi-valued, (value) is its value, and (relation) is either a

numerical relation (_, $, >, >_, < or <=) in which case (value) must be

numerical, or one of.

" is/are [not] ((identifier) must be single-valued)

" [does not] include[s] ((identifier) is multi-valued)

" is [not] a ((identifier) is a member of the set (value))

9 or it can be user defined.

Defaults may be specified, in which case they are also stored in the knowledge

base.

The action part of a rule may deduce the (value) of an (identifier) or it

may call an external program, load a knowledge base, instigate a new query

or even change the control mechanism from backward-chaining to forward-

chaining or vice versa.
The knowledge base also contains questions to be asked of the user to

determine values of certain identifiers.

3.5.3 The control structure

Rules and facts may be processed in either a backward-chaining or forward-

chaining mode. The default is backward-chaining, but the knowledge engi-

neer responsible for building an application may request single-level or full

forward-chaining if he feels that it is appropriate.
When a user enters a query, the program searches for the answer to this

query in a set pattern. It looks first in the database to see if the answer is

already there. If not, it searches the list of facts in the knowledge base. It

then (if still unsuccessful) either asks the user for the answer (if there is a
relevant question stored in the knowledge base) or tries to infer it using its

rules. If this fails to produce an answer, the program may call an external
program if one has been defined. As a last resort, the program can generate
a relevant question to ask the user.

50

Chapter 4

Overview of machine learning from

examples

Machine learning has been a topic of interest to AI researchers since AI re-

search began. Different groups have approached the subject from different

angles and with different aims. Some saw it as a means to understanding

more about human learning; others were more interested in equipping com-

puters with the ability to learn (not necessarily in the same way as humans

do) with a view to making them more `intelligent'. More recently, interest in

the subject has surged again as a result of the need for. automatic knowledge

acquisition techniques for expert systems.

Machine learning is now a broad subject, with research being active on

many fronts. It can be classified in a number of waysl. One of these is a

classification based on what is being learned, e. g. procedures, skills, struc-
tural descriptions, inference rules, mathematical and/or scientific laws, etc.
A second way of classifying learning is according to how learning takes place,

e. g. learning by being told, learning by analogy, learning from examples or
learning by discovery. All of these learning methods, and others, have at

one time or another, been the subject of learning programs.
Future expert systems will probably require learning programs which

are able to learn in a variety of ways and acquire many different types of
knowledge. However, such programs will have to be built step-by-step, and

'Carbonell et al [12] describe three ways.

51

are not likely to be available for some time to come.
This thesis is concerned with a very small (but expanding) section of

this field - that of automatic induction of classification rules from sets of

examples. This chapter sets the background to the work by describing some

programs which were `milestones' in the history of learning from examples.

4.1 Winston's blocks

In 1970, Winston published his now well-known thesis [59]2 describing his

research on the machine learning of structural descriptions from examples.
At the heart of this work was a program which could learn the concept of an

arch when presented with examples of arches and non-arches, one at a time.

He used a semantic network to represent the learned concept. Figure 4.1

(from [15]) shows a positive example of an arch and a simplified description

of it.

The program starts with a positive example of an arch such as that

shown in figure 4.1 as its concept description. It is then given a negative

example of an arch. This negative example must be a `near-miss', i. e. a

structure which is not an arch but differs from an arch in only one respect.
Figure 4.2 is an example of a near-miss. The only difference between the
descriptions of figure 4.1 and figure 4.2 is that the description of the near-

miss does not include `is-supported-by'. The program therefore infers that

the two conditions:
is-supported-by (LINTEL, POSTA)
is-supported-by (LINTEL, POSTB)

are necessary for the structure to be an arch. It therefore changes these

conditions to `must-be-supported-by' and updates its concept description

accordingly.

The program continues accepting examples of near-misses as long as new

examples are available. Each time, some `sufficient' condition is converted to

a `necessary' condition. It is also able to generalize by accepting new positive
'See also [58]

52

is-supported-by (LINTEL, POSTA)
is-supported-by (LINTEL, POSTB)
has-property (LINTEL, lying)
has-property (POSTA, standing)
has-property (POSTB, standing)
does-not-abut (POSTA, POSTB)
does-not-abut (POSTB, POSTA)
has-shape (LINTEL, rectangular)
a-kind-of (LINTEL, brick)

a-kind-of (POSTA, brick)
a-kind-of (POSTB, brick)

Figure 4.1 A positive example of an arch

has-property (LINTEL, lying)
has-property (POSTA, standing)
has-property (POSTB, standing)
does-not-abut (POSTA, POSTB)
does-not-abut (POSTB, POSTA)
has-shape (LINTEL, rectangular)
a-kind-of (LINTEL, brick)

a-kind-of (POSTA, brick)

a-kind-of (POSTB, brick)

Figure 4.2 A negative example of an arch

53

has-property (LINTEL, lying)
has-property (POSTA, standing)
has-property (POSTB, standing)
does-not-abut (POSTA, POSTB)
does-not-abut (POSTB, POSTA)
has-shape (LINTEL, triangular)

a-kind-of (LINTEL, brick)

a-kind-of (POSTA, brick)

a-kind-of (POSTB, brick)

Figure 4.3 A positive example of an arch

examples. Figure 4.3 is a positive example of an arch. The only difference

between figures 4.1 and 4.3 is the shape of the LINTEL (rectangular in

figure 4.1 and triangular in figure 4.3). As these are both positive examples

of an arch, the program concludes that the shape of the LINTEL does not

matter and drops the `has-shape' condition, The program continues learning

in this step-wise manner until all possible examples have been exhausted.

4.2 Meta-DENDRAL

At about the same time as Winston was developing his program for inferring

structural descriptions at MIT, work was in progress at Stanford on the

DENDRAL project. There, researchers were having difficulties in extracting
domain-specific rules from experts to incorporate into their system. They

decided to try to simplify the problem by building a program to infer these

(cleavage) rules automatically. This program, Meta-DENDRAL [11], is the

first example of automatic rule induction from examples for expert systems.

54

Like DENDRAL, it uses a plan-generate-test strategy. It consists of three

programs - INTSUM, RULEGEN and RULEMOD.

4.2.1 INTSUM

INTSUM takes as input three-dimensional structures of a class of molecules

and their associated mass spectra. These can be thought of as training

instances of the form

(whole molecular structure) . (mass spectrum).

INTSUM converts these training instances into a set of very specific cleavage

rules of the form

(whole molecular structure) (one designated broken bond).

In order to do this, it makes use of what has been called a'half-order theory'.

This is a set of general rules of fragmentation and migration, e. g.

" double bonds and triple bonds do not break

" no aromatic bonds break

" two bonds to the same carbon atom cannot break together

" at most two hydrogen atoms can migrate after a fragmentation

These rules are applied to each molecular structure to-simulate the action of

the mass spectrometer and produce a spectrum. This spectrum is then com-

pared with the original spectrum. If there are matching peaks then INTSUM

infers that the cause of the simulated peak is a possible cause of the observed

peak. Once the data has been interpreted, the results are summarized to

produce a set of highly specific cleavage rules for each fragmentation in each

molecule, together with its total evidence.

4.2.2 RULEGEN

RULEGEN also generates a set of cleavage rules, but these are much more

general than those produced by INTSUM. It starts with the most general

rule possible:

55

x*x (x is any atom type)

i. e. all bonds break. It then specializes this rule in all possible ways. The

specialization is made either by adding new neighbour atoms or by specifying

an atom feature. There are four features which can be specified:

" atom type, e. g. carbon, nitrogen

" the number of non-hydrogen neighbours

" the number of hydrogen neighbours

"' the number of double-bonded neighbours.

As each specialization is made, it is tested against the positive training

instances produced by INTSUM. Those specializations for which there is no

supporting evidence are pruned. After each cycle of specializations, the new

rules are compared to their `parent' rules and an `improvement criterion'

is computed. This indicates the plausibility of the specialization, ensuring

that it:

" predicts fewer fragmentations per training molecule than its parent

" predicts fragmentations forat least half of all the training molecules

" predicts fragmentations for as many molecules' as its parent (unless

the parent was too general)

Any specializations which do not meet these criteria are pruned. If all spe-

cializations of a parent are pruned, then the parent is output as a cleavage

rule. The cycle of specialize-and-prune is repeated until no more specializa-

tions are possible.

The outcome is a set of general cleavage rules. However, these rules

are only approximate, frequently being too general, redundant, or simply
incorrect.

56

4.2.3 RULEMOD

RULEMOD is responsible for testing and refining the rules produced by

RULEGEN. It does this by first removing redundant rules and merging

overlapping rules. It then tests the remaining rules on negative evidence
(i. e. incorrect predictions - the spectrum shows that the designated bond

did not break). It specializes the rules when necessary to remove negative

evidence. Some of the rules produced by RULEGEN are too specific, so

RULEMOD generalizes these, and finally any redundancies which are intro-

duced during these procedures are removed. The final outcome is a set of

cleavage rules which have been proved to be highly accurate [11].

4.3 Mitchell's candidate elimination algorithm

At the same time as work on Meta-DENDR. AL was in progress, a post-

graduate student at Stanford, Tom Mitchell, was working on a more gen-

eral learning algorithm - the candidate elimination algorithm3 [39], [15].

Candidate elimination is based on the formation and modification of rule

version spaces.
Back in 1974, Simon and Lea [54] had described the problem of learning

rules from examples as one of using training instances to discover general

rules. They coined the terms `rule space' and `instance space', which refer to

the space of all possible rules, and the space of all possible training instances,

respectively. For any learning problem of appreciable size, however, the

entire rule space is too large to be manageable. Mitchell observed that

rules can be partially ordered according to their generality. For example,
if A then X is a generalized version of if A and B then X, which in turn

is a generalized version of if A and B and C then X. Therefore, it was not

necessary to list the entire set of rules to describe the rule space -a set

of ,
most specific and a set of most general versions would suffice; all other

rules would lie between these boundaries. A correct rule or rules describing

-'This algorithm was later (1978) applied to Meta-DENDRAL as part of Mitchell's
thesis work.

57

instance +ve or -ve most general
rule boundary

most specific
rule boundary

1 A, B, C, D +ve null if A and B and C
and D then X

2 B, C, D, -, A '-ve if A then X if A and B and C
and D then X

3 A, B, C, -, D +ve if A then X if A and B and C
then X

4 A, C, D, -'B -ve if A and B then X if A and B and C
then X

5 A, B, D, -+C +ve if A and B then X if A and B then X

Figure 4.4 Example of candidate elimination

a set of training instances, being more general than the instances themselves

but more specific than the null rule, would therefore lie somewhere between

these two boundaries. Mitchell called the space between the boundaries the

rule version space (i. e. the space which includes all plausible hypotheses or

rule versions).
Mitchell's candidate elimination algorithm makes use of version spaces.

It starts with the entire rule space as its version space and proceeds to test

it on training instances, which are presented one at a time. If the instance

is a positive one, the most specific rule is removed or eliminated from the

space, i. e. it is generalized; if the instance is a negative one, the most general

rule is removed, i. e. it is specialized. The version space gradually shrinks as

more instances are presented until it contains only the correct rule or rules.
As an example, consider the rule if A and B then X, which the program

must induce., Suppose the first instance presented to the program is a pos-

itive one in which A, B, C and D are all true. A version space will be set

up in which the most general rule boundary is the null rule, and_the most

specific rule boundary is if A and B and C and D then X.
_
Let the next

example be a negative one in which B, C and D are true and A is false.

The program infers that as this is a negative example, A must be necessary

and changes the most general rule boundary to if A then X. The course of

events is summarized for clarity in figure 4.4. As can be seen from figure 4.4,

58

instance 3 (A, B, C and -'D) which is positive, generalizes the most specific

rule boundary to if A and B and C then X; instance 4 (A, C, D and -, B)

which is negative, specializes the most general rule boundary to if A and B

then X, and finally instance 5 (A, B, D and -+C) which is positive, gener-

alizes again the most specific rule boundary to if A and B then X. At this

time the most specific and most general rule boundaries are identical - if

A and B then X. The program, therefore, outputs this rule as the learned

rule.
One of the disadvantages of the original candidate elimination algorithm

was that it could not deal with disjunctive concepts. However, a solution to

this was quickly found [15] and the algorithm was modified to enable it to

be applied iteratively to a set of examples. The improved algorithm induces

one rule at a time, removing the instances covered by it at each iteration.

4.4 AQ11

AQ11 is a multiple-concept learning program which inductively determines a

set of classification rules for a complex domain. It was developed by Ryszard

Michalski and others at the University of Illinois in 1977/78 and is described

in [35] and [36].

AQ11 has been applied to the domain of disease diagnosis; specifically,
to diseases of the soybean plant. The induced rules are required to diagnose

any one of fifteen diseases when presented with the symptoms of the diseased

plants. A selected set of examples of all diagnoses is used as input to the

program and a further set is used for testing purposes. The domain is non.
trivial, particularly as it has associated with it an element of uncertainty,
both in the sense that a case description may be classified differently by

different experts, and that the actual descriptions may contain uncertainties.
Each example of a diseased plant (called an event) is characterized by

a conjunction of attribute-value pairs. There are 35 attributes (called de-

scriptors) each with its own set of possible values, and each concerned with
one particular aspect of the plant's condition. Some attributes describe

59

environmental factors, such as time of occurrence or temperature; others
describe the plant as a whole (e. g. height) or parts of the plant (e. g. condi-
tion of leaves or stem). A description in terms of all 35 attributes should

give enough information to diagnose the disease. The representation lan-

guage used is a variable-valued logic calculus called VL1, which allows each

attribute to be related in a variety of ways to one or more of its values. It

is a very rich language, capable of set manipulation as well as conjunction

and disjunction. There is also provision for denoting degree of certainty.
AQ11 simplifies the problem of learning multiple concepts by converting

it into a series of single-concept learning problems. It uses a `covering'

algorithm, Aq (developed by Michalski in the late 1960's and extended in

the 1970's), which was designed specifically for use with this representation
language.

Aq is very similar to Mitchell's candidate elimination algorithm. It

chooses as its starting point a positive example from the training set. This

example is maximally generalized in all possible ways by removing all terms

except one, and each generalization is applied to the complete set of nega-
tive examples. If any generalization is found to cover some of the negative

examples, it is specialized by adding another term from the original posi-
tive example. It is then tested again and the process is repeated until no

negative examples are covered. The result is one or. more generalizations,

each of which is a conjunction of terms. The best of these is selected, using

pre-defined selection criteria, and all positive examples covered by it are re-

moved from the training set. This generalization constitutes the first `rule'.

Aq then selects another positive example which is not covered by any of the

generalizations, and repeats the process to find the second rule. It continues
in this way until all positive examples are covered.

Because the same representation is used for both examples and rules,
the Aq algorithm can substitute a generalization for the set of negative

examples. AQ11 uses this technique whenever possible, and in doing so,

makes substantial savings in computational effort.
The general induction process comprises four steps:

60

Step 1 For each concept (classification) a selected hypothesis is tested on

the data creating two sets of examples:

" F+ contains those examples which should be covered by the hy-

pothesis but are not, and

9 F- contains those examples which are covered but should not be.

Step 2 The covering algorithm is used to determine a set of generalizations

which covers all of the examples in F-, but no others (these are called
`exception' examples).

Step 3 For each concept, the covering algorithm is again used to determine

a set of generalizations which covers all of the positive examples. The

generalizations developed in Step 2 and any previously generated hy-

potheses for other concepts are used as negative examples whenever

possible. This `corrects' the original hypothesis by effectively remov-
ing from it the set of exception examples and adding it to the set of

examples in F+.

Step 4 The rules are simplified according to pre-specified criteria.

This process produces a set of if premise then action rules, where each

premise is a conjunction of terms, and the action is a diagnosis. Statistical

information is also provided, which indicates the number of examples to

which each rule applies. Where rules represent only a few examples, these

may be considered as `exceptions' or may indicate errors. Evaluation of the

derived rules has shown AQ11 to be highly accurate [35].

61

Chapter 5

The ID3 family

ID3 [44,46,47,48] is an algorithm which was developed by Ross Quinlan in

1978/9 to induce classification rules in the form of decision trees from large

sets of examples. It was based on a learning algorithm, CLS (Concept Learn-

ing System), designed by Earl Hunt in the early 1960s [29]. Hunt defines a

concept to be a decision rule which is applied to a description of an object
(given in terms of values of pre-defined attributes) to determine whether or

not the object is a member of a specified set or class of objects. He found

it convenient to represent such decision rules as sequences of tests of the

values of individual attributes, and as he was concerned only (initially) with

simple conjunctive characteristics descriptions of single concepts, these se-

quences of tests naturally formed binary decision trees. For example, the

concept cat can be described as `a four-legged, furry animal which purrs'.
This is a conjunctive characteristic description. Cats have four legs (muta-

tions and mutilations are not considered here); cats have furry coats; cats

purr. Thus a cat can be described in terms of three attributes - number of
legs (possible values : 2,4, more than 4), type of coat (possible values : fur,

feathers, scales, hide) and purrs (possible values : yes, no). The description

of a cat given above is the only one possible in terms of these attributes.
There is no alternative description. A system (human or otherwise) which,

when presented with an animal, must decide whether or not it is a cat,
'Hunt also applied his algorithm to disjunctive concepts but always found that the

results were considerably worse than for conjunctive concepts.

62

no. of legs =4

no es
1= positive instance
0= negative instance

(0) coat = fur

no es

(0) purrs

no es

(0) (1)

Figure 5.1 Binary decision tree for concept cat

has to ask three questions - Does it have four legs?, Does it have a furry

coat? and Does it purr?. Hunt found it most convenient to represent this

test sequence as a decision tree e. g. figure 5.1. Thus the framework for the

original, rule induction problem addressed by Hunt and his co-workers was

set. Objects were described in terms of values of a fixed number of pre-
defined attributes. Each object was either a positive example or a negative

example of a concept. The decision as to whether an object was a positive

or negative example of a concept could be made on the basis of a sequence

of tests performed on individual attributes. This sequence of tests could be

represented as a binary decision tree.

63

5.1 The CLS experiments

Hunt devised a number of CLS algorithms (CLS1 - CLS9) [29], of which
CLS2 - CLS9 were all modifications of the basic algorithm CLS1. CLS1

proceeds as follows:

1. Search for a value of an attribute which appears in the description of

all positive instances and no negative ones. If found, the problem is

solved as the concept can be described in terms of that single attribute.

2. If no such value exists, then search for the reverse, i. e. a value of an

attribute which appears in all negative instances and no positive ones.

3. If steps 1 and 2 fail, count the frequency with which values appear in

the descriptions of positive instances only. Choose the attribute-value

pair with the highest frequency of occurrence as the root node of the

decision tree.

4. Divide the set of examples into two sets - one containing examples

which have the attribute-value pair chosen in step 3, the other con-
taining all other examples. Assign each set to a branch of the decision

tree.

5. Apply the algorithm to each branch of the decision tree until all leaf

nodes contain instances which are either all positive examples or all

negative examples.

CLS2 and CLS3 differed from CLS1 only in the amount of memory which

was made available to the algorithm. CLS4 and CLSS were adapted so

that critical examples, i. e. examples which had previously been misclassified,

could be added to the example set. Step 3 in the above algorithm was altered
for CLS6, such that the relative frequency of occurrence was calculated.
CLS7 and CLS8 were allowed to select which of two groups of instances

would be called positive and which negative. Finally, CLS9 was developed

as an algorithm which combined a number of features from previous versions.

64

Hunt applied all nine algorithms to a number of sets of test data. These

data were all artificial, designed to represent various levels of complexity

ranging from simple conjunction to double implication (see [29] for a more
detailed description of both algorithms and data). The results of applying

algorithms CLS1 - CLS8 to the data were, with some minor variations, very

similar. Each algorithm performed very well on simple conjunctive data

and less well as disjunction was introduced. Different algorithms were best

suited to different types of data. Hunt attempted to resolve this problem

with CLS9 by defining a `cost' of selecting an attribute in step 3 of the

algorithm. Thus, for every attribute, CLS9 computes

vs
Hs =L nsj,

j=1

where Vi = number of possible values of attribute i,

niJk = number of instances at current node which
have value j of attribute i and are in

class k, and

n; j. = maximum of nijk over k.

The attribute which maximizes H; is selected. To his great surprise, Hunt

found that on the whole, CLS9 performed less well than previous versions,

particularly CLS2, to which it was most similar. He attributed this to

the fact that CLS9 made finer distinctions between the data and thus was

more prone to errors. The biggest difference between CLS9 and the other

versions was, of course, that the resultant decision tree was no longer binary.

At each node, CLS9 sets up as many branches as there are values of the

selected attribute. This leads to a much more complex tree, with many

more branches for irrelevant attributes to be included in.

5.2 ID 3

The core of Quinlan's ID3 algorithm [44,46,47] is essentially the same as
Hunt's CLS. Quinlan however, chose to use a different strategy for selecting

65

an attribute at each node in the tree from Hunt's cost calculation. His

concern was that the tree be as simple as possible. He argued that at

each internal node of the tree there is a collection of positive and negative
instances. The simplest sub-tree which could be formed at this node would
be one in which, for each value of a selected attribute, the corresponding
instances were either all positive or all negative. Failing this, if an attribute

could be chosen such that for each of its values, the corresponding instances

were mostly positive or mostly negative, then the resulting sub-trees would
be less complex than otherwise. After some trial and error, Quinlan decided

that the complexity of a tree could be adequately represented by the formula

V;

minimum(sý, lý)
j=l

which is calculated for each attribute, and where

Vs = number of values of candidate attribute,
aJ = number of positive instances which have the jth. value

of the candidate attribute,
1j '= number of negative instances which have the jth. value

of the candidate attribute.

The attribute which minimizes this sum is selected.
Later (see [46]), Quinlan abandoned this ad hoc complexity estimate in

favour of a formula derived from information theory. For this, the decision

tree is thought of as a source of a message, and the amount of information

conveyed by this message is related to the complexity of the tree. When the

tree is being formed, at each node the attributes can be tested for expected
information gain in the resulting tree if that attribute were selected for

partitioning. That attribute is selected which minimizes entropy (and thus

maximizes average information gain). This formula and its use are described

in detail in section 7.1.

Quinlan chose as his initial domain a chess end game in which the only

pieces left on the board are the two kings, white rook and black knight,

and it is black's turn to move. The program must derive a rule which,

66

given the positions of these pieces on the board, can determine whether

or not the knight's side is lost in two ply. There are about eleven million
legal configurations of these pieces. However, Quinlan argues that it should
be possible to derive a rule, or collection of rules, which can classify each

position as lost or safe taking into account only the relationship between the

pieces, i. e. without applying the laws of chess.
The attributes which characterize each configuration of pieces on the

board are chosen by a domain expert and describe the `adjacency' of pieces,

e. g. black king, knight, rook in line; distance of white king to knight. No two

positions having different classifications share the same description. Thus

the training set consists of a large number of instances, each of which is a
description of a position in terms of a pre-defined set of attributes, and the

class of which (i. e. lost or safe) is known. The induced rule(s) should be able
to deduce this class given a set of values for the attributes.

ID3's decision tree is built recursively:

1. Each instance in the training set is examined to determine its class. If

all instances belong to the same class, or the training set is empty, then

the objective has been reached and the program terminates, returning

either a class value or `null'. Otherwise, the training set consists of

two or more instances of different classes.

2. An attribute is selected as the root node of the decision tree.

3. The training set is partitioned according to the'values of this selected

attribute, forming the branches of the decision tree. `

4. The algorithm is applied, to each subset to build a descendant subtree
for each branch.

Each leaf of the resultant tree consists of a set of instances of a single class,
which may be empty. The class of instances at each leaf is then described by

the attribute-value pairs used in the path from the root node to that leaf.

67

5.2.1 The KRKN experiments

Quinlan applied the above algorithm to the King-Rook-King-Knight chess

end game problem referred to earlier, in which the attributes describe re-
lationships between these chess pieces on a board. The classifications are
lost (for knight's side, two-ply) and safe, where knight's side is lost two-ply

(black to move) if a) black is checkmated, or b) black is not stalemated and

on its next move, white can either checkmate black, or capture the knight

without producing stalemate and without leaving the rook en prise.
Quinlan tackled this problem in stages. He conducted a series of seven

experiments in which he first placed severe constraints on the number of

allowable configurations of the pieces, and then gradually relaxed these con-

straints until in the seventh experiment he could apply his algorithm suc-

cessfully to the original unrestricted problem. Thus, for the first experiment

checkmate and stalemate were ignored (i. e. lost was true only if the knight

was captured without leaving the rook en prise, even if this resulted in stale-

mate) and the knight was pinned; for the second experiment checkmate and

stalemate were still ignored, but the position could be a pin, fork or skewer;

edge effects were excluded for the third experiment; stalemate was allowed
for the fourth; for the fifth and sixth experiments checkmate was also allowed
but the position of the black king was restricted; and finally, all restrictions

were lifted for the seventh experiment. As the complexity of the experiments
increased, both the time taken for computation and memory requirements

also increased. For the second experiment it was found necessary to adopt

a tutorial approach in which the algorithm was first applied to a training

set containing forty lost and forty safe positions, the resulting rule being

checked by a human tutor, who would then select further instances which

contradicted the rule, add these to the training set and apply the algorithm

again. This was repeated until the rule was correct.
This tutorial approach was found to be extremely tedious and frustrat.

ing. Furthermore, it was difficult to prove that a rule was correct. For the
third experiment, therefore, the concept of a `window' was introduced and
the algorithm was iteratively applied to a subset of the training set which

68

was modified until the resultant rule was correct. Thus the procedure was

as follows:

1. Select a subset of the training set (the window)

2. Repeat:

(a) Apply the algorithm to the window.
(b) Test the rule on the remaining instances.

(c) If exceptions are found modify the window.

until no exceptions are found.

Two ways of forming the window were investigated. In the first, a prede-

termined number of exceptions was added to the window at each iteration,

and in the second, the window size was kept constant by allowing exceptions

to replace instances currently in the window. The second method was later

abandoned because of the possibility of looping (see [6] for a more detailed

discussion of this). .

.
As the experiments became more complex, so it became increasingly

difficult to define an adequate set of attributes. In the later experiments

many plausible sets had tobe tried before a satisfactory one was found.

The final set (for the seventh experiment) contained. 25 attributes varying
in complexity from

distance from black king to knight (possible values : 1,2 and 3)

to

knight can move to a restful square which is either between the

mating square and the black king, or from which the knight can

move to a square between the mating square and the black king

(if a mating square exists) (possible values :t and f) [44]

Even this final set of attributes proved to be inadequate in that there were
some instances which shared the same description but were of different

69

Classification Method CPU Time (ursec)
Minimax search 7.67
Specialized search 1.42
Using first decision tree 1.37
Using second decision tree 0.96

Table 5.1 Comparison of classification methods for lost 2-ply

classes. The problem was circumvented by allowing some leaves of the deci-

sion tree to be labelled `search', meaning that the instances at such leaves

had to be discriminated between by some other method'.
Despite the difficulties which had been encountered along the way, the

results of Quinlan's KRKN experiments were extremely impressive. The

final tree was induced from only 7% of the initial training set and will give a

correct answer with probability 0.9974 [44]. Furthermore, Quinlan showed

that for classification purposes, decision trees were much more efficient than

other search methods. Table 5.1 (taken from [48]) shows the average time

required to classify a position by various methods on the DEC-KL10. The

two decision trees referred to in table 5.1 were formed using different at-
tribute sets. Specialized search is a classification method which uses domain

knowledge.

The success of Quinlan's experiments created much interest in the AI re-

search community. Various research groups began to develop their own ID3-

like systems. Quinlan himself has enhanced his algorithm so that it can deal

with noisy data, missing attributes, continuous values, etc. [43,45,46,50].

The basic induction algorithm described above has now been widely ac-
knowledged as the father of many modern rule induction systems, notably
ACLS [42], of which there have been a number of commercial derivatives,

and ASSISTANT [30], both of which are described briefly below.

2This was not such a disaster at might appear at first sight. There were only 75 out of
a total of 29,236 instances at 'search' nodes.

70

5.3 ACLS

ACLS (Analog Concept Learning System) is a UCSD Pascal program which

uses a modified version of ID3 to produce a classification rule either in the

form of a decision tree or as a Pascal conditional expression. It was written

by Andy Paterson, Andrew Blake and Alen Shapiro at Intelligent Terminals

Limited, Glasgow in 1981.

The core of the program is an induction algorithm which is effectively
ID3 but which allows more than two class values and also allows attribute

values to be one of two types - integer or logical. An attribute value of type

integer can be any integer within the range allowed by Pascal. An attribute

value of type logical can be any one of a number of specified discrete values.
The program was designed to be used interactively. Examples are held

in two separate stores. A rule is induced from a training set of examples
held in primary store. This rule may be induced using the complete training

set, or it may be induced iteratively using a growing window as described in

the previous section. In the latter case it may be that a rule which is correct
for the whole training set is induced from only a subset of the examples in

primary store. Any examples not used are then moved to a secondary store.
Once a rule has been induced it is displayed and the user can then correct or

refine it by adding new examples or counter-examples. These can be read in

either from the terminal or from a file and are added either to the primary

store if they contradict the current rule, or, to secondary store if they supply

new information but do not contradict the current rule, or if they `clash'

with examples already in primary store. Duplicate examples are ignored.

When the user has finished adding examples, a new rule is induced using

examples in primary store. The rule is displayed and clashes or exceptions
in secondary store reported. The user continues to add new examples until
he feels that the induced rule is correct. The program allows him to enter

examples with `don't care' values for attributes, to move examples between

primary and secondary stores, and to examine and/or delete examples from

either store.
Apart from being interactive, ACLS differs from ID3 in that it allows

71

continuous integer attribute values. Like ID3, ACLS computes an informa-

tion theoretic measure, entropy, for each attribute at each internal node of
the decision tree. For integer-type attributes, however, this measure has to

be computed many times. Let attribute A be of type integer, and let the

training set contain N examples each with a different value Vi(i = 1... N)

for-A. For each Vi, the N. examples are divided into two subsets - one

with values of A less than Vý, and the other with -values greater than or

equal to V;. Entropy is calculated for a decision tree having these two sub-

sets as branches. Entropy is thus calculated N times, and that value of A

which minimizes it is selected for comparing with entropy values for other

attributes.
One other major difference between the two types of attribute is that

whereas logical attributes can only appear once in any path from root node
to leaf node in a decision tree, integer attributes can appear many times,

the split being at a different value each time.

5.4 ASSISTANT

ASSISTANT is also an enhanced version of ID3. It was developed by

Kononenko, Bratko and others at the Jozef Stefan Institute in Ljubljana,

Yugoslavia in 1984.

Like ACLS, ASSISTANT is able to classify objects into more than two

classes. Also, it allows attributes to have continuous values (real as well as
integer) which it handles in the same way as ACLS. Unlike ACLS, however,

ASSISTANT performs a binary split for every attribute, discrete (logical) as

well as continuous. The reason for this is that, whilst working with ID3 in

a medical domain, the research group found that the information theoretic

measure used for attribute selection tended to favour attributes with many

values [46,28]. By performing a binary split for every attribute, this bias

was avoided, with a further advantage that the resulting binary decision tree

tended to be smaller and more precise. I-
Further enhancements include the ability to handle missing information,

72

and a tree pruning heuristic which makes the algorithm reasonably robust
in the presence of noise. Missing information is handled by the use of Bayes

theorem, which is used to calculate the most likely value of an attribute (in

an instance of given class) or to calculate the most likely class at a `null' leaf

node in the decision tree. The tree pruning ability enables the algorithm to

terminate if there are too few instances in a training set to perform reliable

computations. The leaf nodes of a pruned tree then contain instances of

more than one class, the class with the highest relative frequency being

considered to be the correct one.
ASSISTANT has been used to aid construction of knowledge bases for a

number of expert systems in different domains.

5.5 Other enhancements

Many of the enhancements described above have also been implemented in

a system called C4, which has recently been developed by Quinlan himself

[50]. C4 induces a rule iteratively using a growing window as described in

section 5.2.1. The basic algorithm is the same as in ID3 with the exception
that, as in ASSISTANT, the program terminates if a specified `stopping

criterion' is satisfied, leaving a set of instances of more than one class at

the leaf nodes. The stopping criterion is based on the chi-square statistical
test for independence [46]. A rule is induced in the form of a decision tree.

Frequently, because of noise in the data, this tree is overly complex. C4,

therefore, allows a full tree to be generated, but then prunes it by examining

subtrees and assessing the increase in error rate when classifying unseen
instances if certain subtrees were replaced by leaves. While the error rate
does not increase significantly, C4 continues to replace subtrees by leaves.

C4 generates and prunes several decision trees and then selects the most

promising one, based on size and complexity.
The complexity of decision trees has been a major consideration in the

development of ID3-like systems. Trees of any appreciable size are notori.

ously difficult to assimilate and may be totally incomprehensible even to the

73

domain expert. This problem has been addressed by Alen Shapiro at the

University of Edinburgh, who has developed a system which uses an interac-

tive version of ID3 (probably a predecessor of ACLS) to perform `structured

induction' [52]. Shapiro's program relies on a domain expert to break the

induction problem into a series of subproblems by introducing some high-

level attributes. Thus the concept to be learned can be described in terms

of these high-level attributes, which in turn are described by lower-level at-
tributes, which can then be described by even-lower-level attributes, and so

on. Using this system, extremely complex trees can be re-induced as a series

of relatively simple trees which are much less opaque to the user.
Despite these enhancements, the potential complexity of decision trees

is still one of the major limitations of the ID3 family of rule induction pro-
grams. This and other problems associated with decision trees are discussed

more fully in Chapter 6.

74

Chapter 6

Induction of decision trees

The project reported in the remaining chapters of this thesis was designed

to tackle the problem of automatically inducing basic classification rules
in modular form from sets of examples. Each induced rule is to be an if

... then ...
(inference) rule whose premise describes an object or situation

in terms of a conjunction of features, where each feature is of the form

<attribute> <relation> <value>, and which concludes that if the premise
is satisfied then the object or situation is a member of a particular class from

a pre-specified set of classes. The algorithm to be used must induce these

rules by searching and selecting relevant features from a set of examples,

each example being a description of a particular class in terms of values of

attributes. The algorithm must be simple, efficient and robust, and must

produce reliable rules which can be used with some degree of confidence
to classify an object or situation and to discriminate between the various

possible classes.

The most successful attempts so far at tackling this problem have ar-

guably been Michalski's AQ11 and Quinlan's ID3. ID3, in particular, its

potential having been demonstrated in the domain of chess endgames, came
under the scrutiny of a substantial number of researchers, was modified and
improved, tested in other domains, and soon adopted for use in a number of
commercial applications. However, before long, some major limitations to
the ID3 algorithm became apparent. In particular, the algorithm's inabil-
ity to deal with noisy data and the incomprehensibility of its decision tree

75

output proved to be stumbling blocks in real-world applications. Attempts

at remedying these faults have resulted in some of the enhancements to ID3

described in Chapter 5. However, the fact that ID3 produces its output
in the form of a decision tree creates a much deeper (and more serious)

problem than simply one of incomprehensibility. Some rules cannot be rep-

resented easily by decision trees. An expert system using a decision tree in

these cases frequently demands the results of more tests than are necessary,

with possibly serious consequences if these tests are expensive or dangerous

to perform. This problem is discussed in section 6.5 of this chapter and is

highlighted by means of a simple example, introduced in section 6.1.1.

The training set of examples to which ID3 (or any similar algorithm)

is applied must meet certain requirements. These are discussed briefly in

section 6.2 and sections 6.3 and 6.4 describe the characteristics of an ideal

training set, arguing that if an induction algorithm is to perform well in

real-world applications, it must first be known to perform well under ideal

conditions.

6.1 An example

6.1.1 The domain

The following example, taken from the world of ophthalmic optics, will be

used to illustrate the procedures involved in rule induction.

An adult spectacle wearer enters an ophthalmic practice with a view to

purchasing her first pair of contact lenses. She has had her 'eyes examined

recently elsewhere and has brought her prescription with her. She under-

stands that there are different types of contact lenses available, and that it

is the optician's decision as to whether or not she is suitable for contact lens

wear, and if so, which type she should be fitted with.
From the optician's point of view, this is a three-categoryl classification

problem. His decision will be one of:
It should be noted that this is a highly simplified example. In real life there are many

types of contact lenses and many more factors affecting the decision as to which type, if

any, to fit.

76

Si : the patient should be fitted with hard contact lenses,

b2 : the patient should be fitted with soft contact lenses,

b3 : the patient should not be fitted with contact lenses.

In reaching his decision he must consider one or more of fours factors:

a: the age of the patient

1. young,

2. pre-presbyopic, or

3. presbyopic

b: her spectacle prescription

1. myope, or

2. hypermetrope

c: whether she is astigmatic

1. no, or

2. yes

d: her tear production rate

1. reduced, or

2. adequate

Table 6.1 shows the optician's decision for each combination of the four

factors. However, the optician does not carry such a table around with
him, either on his person or in his head. Instead, through his training and

experience, he has learned to exercise his professional judgement in each
individual case, and will make his decision almost instinctively. If questioned

as to how he arrived at a particular decision, his answer is likely to be of
the form

This patient is not suitable for contact lens wear because her

tear production rate is reduced.

77

value of
attribute

abcd
decision2

5
1 1 1 1 1 3
2 1 1 1 2 2
3 1 1 2 1 3
4 1 1 2 2 1
5 1 2 1 1 3
6 1 2 1 2 2
7 1 2 2 1 3
8 1 2 2 2 1
9 2 1 1 1 3

10 2 1 1 2 2
11 2 1 2 1 3
12 2 1 2 2 1
13 2 2 1 1 3
14 2 2 1 2 2
15 2 2 2 1 3
16 2 2 2 2 3
17 3 1 1 1 3
18 3 1 1 2 3
19 3 1 2 1 3
20 3 1 2 2 1
21 3 2 1 1 3
22 3 2 1 2 2
23 3 2 2 1 3
24 3 2 2 2 3

Table 6.1 Decision table for fitting contact lenses.

or

This patient can only be fitted with hard contact lenses because

she is astigmatic. As she is young and has an adequate tear

production rate, hard lenses are not contraindicated.

Each explanation is a justification of a decision in terms of the values of

relevant attributes, and is based on one or more `rules of thumb', i. e.:
'The reader is asked not to be tempted to use this decision table to determine whether

or not (s)he is suitable for contact lenses as there are many factors, not mentioned here,
which may radically influence the decision.

78

if tear production rate is reduced
then do not fit contact lenses,

or

if the patient is astigmatic, and
the patient is young, and
the tear production rate is adequate

then fit hard contact lenses.

Although the optician is able to justify easily each individual decision, he

would find it quite difficult to formalize his knowledge as a complete set of

rules. ID3 seeks to establish this underlying set of rules, in the form of a

decision tree, from examples of the optician's decisions. The algorithm is

described in detail in section 7.1. Table 6.1 is used as the training set of

instances; 61,62 and 63 are the decisions or classifications; a, b, c and d

are the attributes. Attribute a has three possible values (1,2 and 3) and

attributes b, c and d each have two possible values (1 and 2). Each instance

is a description of a classification in terms of values of the four attributes.

The following notation will be used in the remaining sections of this thesis:

ax = attribute a has value x
bn = class has value n

al&bl&cz&dz -º ö3 = , an instance in which attribute a has value 1,

attribute b has value 1, attribute c has value 2 and attribute d has

value 2, and which is classified as b3.

b2 A cl A d2 -+ 62 =a rule which states that the set of instances in which

attribute b has value 2, attribute c has value 1 and attribute d has

value 2 is classified as 62

6.1.2 The results

Applying the algorithm described in section 5.23 to the training set shown
in table 6.1 produces the decision tree of figure 6.1. As can be seen, the

3The original ID3 algorithm was designed to deal with only two classes, but it is a
trivial matter to adapt it to deal with any number of classes.

79

61 = fit hard lenses
S 62 = fit soft lenses

63 = do not fit lenses

dl dz
Ö3 FJC2

aaa3 61 b2
a2 b2 61 6Z 61 a1 a1.]a3

Ö3 62 b1 63 Ö3

Figure 6.1 Decision tree produced by ID3

training set is divided first according to the values of attribute d, and then

according to the values of attributes c, and a or b respectively. The resulting

subsets are each of a single class. This is one of the simplest possible single
decision trees which fully explain the data. Selecting the attributes in a
different order does not reduce the number of nodes. For convenience, the

decision tree can be rewritten as a set of individual rules:

i. d1 -' 63

2. d2 A cl A al -' 62

3. d2AclAa2-+63

4. d2Ac1Aa3Abl-463

5. d2 A Cl A a3 A b2 52

6. d2 A c2 A bi -º bi

7. d2 A C2 A b2 A al -º b1

8. d2Ac2Ab2Aa2-º63

9. d2Ac2Ab2Aa3-º63

80

There are-nine rules, with a total of 30 terms -a considerable com-

pression of the full decision table which contains 24 X4= 96 terms. This

has been done extremely efficiently and entirely automatically. The decision

tree which has been produced is simple and efficient to use as long as all the

necessary data is available, and has the further advantage of being complete,

i. e. all possible combinations of attributes and their values are represented.

6.2 The training set - necessary requirements

A training set to which ID3 is to be applied consists of a number of instances

each of which is a description of a given classification or decision in terms

of values for a fixed number of attributes. ID3 searches these instances and

selects attribute-value pairs which appear to characterize particular clas-

sifications and to discriminate between two or more classifications. If the

results are to be meaningful, the training set must meet certain require-

ments, namely:

9 the set of attributes must be adequate,

" the classes must be specifiable in terms of attribute descriptions, and

" the classes must be mutually exclusive.

The following subsections briefly describe these requirements and the sorts

of results which might be expected'if they are not met.

6.2.1 The set of attributes must be adequate

The set of attributes is inadequate if there are two or more correct instances

which have the same values for the attributes but are of different classes. In

such cases, the algorithm tests each attribute in turn to try to distinguish

between the classes, but fails to do so. The result is a decision tree which
has one or more branches for which the class is indeterminate. In his original

experiments [44], Quinlan chose to label the leaves of these branches search4.

4This was later replaced by a probability that the instances corresponding to these
leaves belong to a specified class [49].

81

For example, let the two instances

1. xl& ! 2&z3 -+ 61

2. xi& ! 2&z3 -º 52

be present in the data. If the two instances are correct, this implies that a
fourth attribute, say w, is needed to distinguish between the classes:

1. z1&y2&z3&wl -º bl

2. xl&y2&z3&w2 -º bz

Omitting attribute w from the training set may have far reaching conse-

quences. If it is the case that attribute w is necessary to distinguish between

the classes only in the case where the value of x is 1, the value of y is 2 and

the value of z is 3, its omission will be relevant only for a single branch.

At the other extreme, if attribute w is the sole distinguishing attribute the

result may be simply a message saying that the algorithm is unable to find

a distinguishing attribute or it may be a tree in which some or all of the

branches are labelled search. If the training set is incomplete it is possible
for the algorithm to return a tree which distinguishes between classes in all

cases (i. e. there are no search leaves) using the given attributes, even though

in reality these are all irrelevant.

To illustrate the sort of results which can be expected when the set of

attributes is inadequate, all references to attribute a were removed from

the training set of table 6.1 and ID3 was applied to the remaining data.

The decision tree of figure 6.2 was induced. This tree is similar to that of

figure 6.1 except that two internal nodes referencing attribute a have been

removed with the effect that the class is indeterminate at two leaves (B and

E).

The experiment was then repeated with all references to attribute d

removed from the training set. The result was the decision tree of figure 6.3.

This tree is able to classify some instances of class 53 only, but these are

classified without reference to attribute d, which was the attribute thought

to be most important originally. No other instances can be classified.

82

Figure 6.2 Decision tree produced when attribute a is missing

Cl c2

hi s3 bi bz

search search bl b2 search al 3

b3 search search 63 b3

Figure 6.3 Decision tree produced when attribute d is missing

83

search ö2 bl search
BCDE

There is also a danger (which is not demonstrated by the above examples)

when the set of attributes is inadequate that ID3 may discover apparent

relationships between irrelevant attributes and class with the result that the

induced decision tree may appear to classify some (or all) instances, but in

reality be totally meaningless, and thus dangerously misleading.

6.2.2 The classes must be specifiable in terms of attribute
descriptions

ID3 is unable to discover predicates or functions linking two or more at-
tributes. Thus rules which describe structure, e. g. a is on top of b, or a=b,

will not be induced.

Figure 6.4 Rectangle X

For example, a square is defined to be an equilateral rectangle. Let A and
B be two adjacent sides of rectangle X (fig. 6.4), and a and b be the lengths

of A and B respectively, each with possible values 1,2 and 3 units. Let

the classifications be square and not-square. Given the training set shown
in table 6.2, we wish to derive rules which would determine whether or not

rectangle X is also a square.

The rules which we would like to derive are:

1. a=b -+ Öiquare

2. d#b -º Önot-square

84

a b b
1 1 square
1 2 not-square
1 3 not-square
2 1 not-square
2 2 square
2 3 not-square
3 1 not-square
3 2 not-square
3 3 square

Table 6.2 Training set for classifying rectangles

which can be represented by the decision tree of figure 6.5. However, as

ID3 does not attempt to relate values of attributes to any values other than

those of the class, the actual rules derived from the training set of table 6.2

(the decision tree is shown in figure 6.6) are:

1. al A bi -º Öaquare

2. al A b2 -º önot-, quere

3. al A b3 -º bnot-square

4. a2 A bi -' Önot-square

5. a2 A b2 -º Ösquare

6. a2 A b3
-

bnot-equare

7. a3 A bl --º bnot-square

8. a3 A bz -º 6not-aqua.
re

9. a3 A b3 -+ aaquare

These rules are clearly just a reproduction of the training set, and as such
have no value even for data compression.

85

d= b)trtia a= 6)fat,
e

6,
quare

6not-square

Figure 6.5 Decision tree for classifying rectangles (ideal)

a, a2 a3

--ý Fb1b1b2b3

aaquare Snot-Square 5aquare Snot-square baquare

Snot-Square Snot-Square Snot-aquare Snot-square

Figure 6.8 Decision tree for classifying rectangles (actual)

86

6.2.3 The classes must be mutually exclusive

Induction algorithms such as ID3 are based on finding attributes which
distinguish between classes. Thus if the classes are not mutually exclusive

there will be instances which can be classified correctly in more than one

way, and the results of induction will be similar to results obtained when

the set of attributes is inadequate (see subsection 6.2.1).

For example, let class 52 be a subset of class bi and the following instances

be correct:

1. X1&y2&x3 -º öl

2. xi&y2&z3 1 b2

Unlike the situation where the set of attributes is inadequate, in this case
there is no fourth attribute which will distinguish between the classes.

IX1

Y2

Fl
zz z3

bl bl search
ABC

Figure 6.7 Decision tree induced when classes are not mutually exclusive

Let it be the case that for xl A yz the class is 61 only but for x1 A Y2 A z3

the class is 62. Because ö2 is a subset of 61, this latter instance can be

classified correctly both ways. This situation cannot easily be represented

as a decision tree. Nevertheless, ID3 would attempt to induce a tree. The

result is shown in figure 6.7, in which branches A and B are too specific with

87

respect to attribute z and the class of instances corresponding to branch C

is indeterminate. The results are similar if öi and 62 are overlapping sets.

6.3 The training set - other characteristics

The training set of table 6.1 fulfills all three of the above conditions. It is

also an `ideal' training set in the sense that:

" it is complete

" the values of all attributes are discrete

" there are no duplicate instances

" there is no noise

These characteristics are not typical of most real-world training sets. In par-

ticular, it would be most unrealistic to expect a training set to be complete,

i. e. to contain all possible instances5. If this were the case, rule induction

would be useful only for data compression. No new information would be

provided by the induced rules as classification of an instance could be de-

termined in every case by means of a simple table look-up algorithm. The

main value of rule induction is that rules induced from incomplete training

sets can be used to predict the classification of new instances, i. e. instances

not in the original training set. Induction from incomplete training sets is

discussed in more detail in Chapter 9.

A requirement that the values of all attributes be discrete is more eas-
ily attained. In reality, attributes can have values which are discrete, i. e.

the value is one, and only one, of a finite number of mutually-exclusive

values, or continuous, i. e. the value is a point which lies within a range

with fixed boundaries (which may or may not be oo and/or -oo) but pos-

sibly an infinite number of points within the boundaries. Discrete values

may be ordered, i. e. each value is a point which lies within a range with
B With a large number of multi-valued attributes, the total number of possible instances

could soon add up to many millions or more.

88

type attribute examples of possible values
discrete (unordered) sex male, female
discrete (unordered) shape square, triangle, circle
discrete (ordered) number of children 0,1,2,5
discrete (ordered) distance in squares from 1,2,3,7

black king to knight
continuous distance in kms. 0.1,576,23.785

continuous age in years 1.5,81,1011

Table 6.3 Examples of different types of attribute value

fixed boundaries and a finite number of points within the boundaries, or

unordered. Examples of attributes with discrete (unordered), discrete (or-

dered) and continuous values are given in table 6.3. Other types of attribute

values, e. g. structured, can be found in [34].

In practice, the distinction between continuous and ordered discrete val-

ues can be ignored because continuous values must be measured to within

a certain degree of accuracy and can thus be treated as (possibly a very
large number of) ordered discrete values. Therefore, for the purposes of
this project, continuous and ordered discrete values are treated equally and
termed linear values. In practice also, linear values can often be grouped
into meaningful ranges and treated in the same way as unordered discrete

values. This has, in fact, been done with the contact lens data, in which

attributes a, b and d all normally have linear values, but which for the pur-

poses of this thesis have been grouped into meaningful ranges as described

in section 6.1.1. Chapter 10 discusses the question of linear values in more
detail.

Quinlan [46] distinguishes between two types of training set, the first

consisting of instances which come from an existing database, e. g. a set of

patient records in a medical domain, which may contain duplicate instances

or omit uncommon ones, and the second consisting of instances prepared

carefully by a domain expert to omit duplicate instances and include un-

common ones. He states that ID3 and ID3-like algorithms will deal with
both kinds of training set `in a satisfactory way'. However, the following

89

ds

b3 F JC2

b1
Z a3 a1a2 3

bz bz
b1 b2 bl b1 b3 b1 b2

b3 b2 bl

j3

b1 63

Figure 6.8 Instance no. 8 (ai&b2&cz&d2 -º 6) duplicated 5 times

examples show that the inclusion of duplicate instances can easily affect the

order in which attributes are selected, causing the induced decision trees to

differ from each other depending on which instances are duplicated.

Each in turn of instances no. 8, no. 22 and no. 18 of the training set

of table 6.1 were duplicated five times and ID3 was applied to each new
training set of 29 instances. It was also applied to a training set of 34

instances in which instance no. 18 was duplicated ten times. The results are

shown in figures 6.8,6.9,6.10 and 6.11, respectively. As can be seen, four

different decision trees were induced and each of these was different from

the original decision tree of figure 6.1. In fact, the original ID3 seems to

be quite sensitive to duplicate instances - instance no. 22 only needs to

be duplicated once or instance no. 8 twice for the induced decision trees to

differ from the original.

The project reported in this thesis is concerned with examining ID3's

induction strategy in detail, and using it as a model to develop a new algo-

rithm which induces modular rules. As, in the initial stages of development,

it is necessary to ensure that the algorithm itself is not a potential source

of error, the training set used for development and testing must be totally

90

Figure 6.9 Instance no. 22 (a3&62&cl&d2 -+ 52) duplicated 5 times

Figure 6.10 Instance no. 18 (a3&bl&cl&d2 -º 83) duplicated 5 times

91

ö2 52 ö3 61 63 ö3

63 ö2 61 ö3 63

c2 Cl
--]

23
Id,

s

1s
Id,

dbi bs b3 Jbi lb2

63 62 83 b2 a3 d1 d Z
bl

isa

63 62 51 63 63

Figure 6.11 Instance no. 18 (a3&bl&ci&d2 -º 63) duplicated 10 times

error-free. Only when the algorithm is known to perform well on such a

training set, can it be tested on real-world training sets. The presence of

noise in data, a problem which has been widely researched and documented

by Quinlan and others [45,46,49], is a major source of error. An ideal train-

ing set should therefore be totally noise-free. The problems associated with

noisy data are not addressed in this thesis.

Thus an ideal training set has the following characteristics:

" The set of attributes is adequate.

. The classes are specified in terms of attribute descriptions.

" The classes are mutually exclusive.

" The training set is complete.

9 The values of all attributes are discrete.

9 There are no duplicate instances.

" There is no noise.

Table 6.1 is an example of an ideal training set.

92

6.4 A perfect set of rules

A minimum requirement of any induction algorithm is that when applied
to an ideal training set, it produces a rule or set of rules which classifies

all possible instances correctly. One should, however, expect a little more
than this. An ideal_training set can itself be used by a simple table look-up

algorithm to classify all instances correctly. In a perfect world an induction

algorithm should ideally produce a perfect set of rules, i. e. a set of rules

which not only classifies all possible instances correctly but which captures
the underlying decision or classification strategy. The rules which are in-

duced should be the rules which a domain expert uses when deciding how

an instance should be classified. They should contain all the information

necessary for classification and no redundant information.

However the world is not perfect. Incomplete training sets, duplicate

instances and noise are potential sources of error or variability in the results.
The aim of induction, therefore, should be to produce rules in which these

errors are minimized. Only then can they be used with a reasonable degree

of confidence to predict the class of unseen instances.

If the induction algorithm itself is a potential source of error, i. e. it pro-
duces rules which are less than perfect from an ideal training set, confidence
in those rules will be reduced when it is applied to a training set taken from

the real world. The training set of table 6.1 is an ideal training set as de-

scribed in the previous section. It contains all the necessary information for

a perfect set of rules to be deduced, and no redundant or misleading infor-

mation. Section 6.5 describes why ID3, designed to induce decision trees,

cannot always produce a perfect set of rules even from a training set which
is ideal. In Chapter 7 the algorithm is examined in detail and used as a

model for a new algorithm (called PRISM) which overcomes the problem.

6.5 Limitations of decision trees

One of the principal features of rule-based expert systems is that the modu-
larity of the rules typically enables a knowledge base to be easily updated or

93

modified. It also provides a means for explanation. There is a requirement,
therefore, that rules should be both modular and comprehensible, whether
they are elicited from experts or automatically induced from examples.

Although ID3 has been proved to be computationally efficient [12,38,41],

it produces its output in the form of a decision tree (e. g. figure 6.1). This

decision tree representation of rules has a number of disadvantages. Firstly,

decision trees are extremely difficult to manipulate - to extract information

about any single classification it is necessary to examine the complete tree, a

problem which is only partially resolved by trivially converting the tree into

a set of individual rules, as the amount of information contained in some of
these will often be more than can easily be assimilated. More importantly,

there are rules that cannot easily be represented by trees.

Consider, for example, the following rule set:

Rule 1: al A b1 -+ b,

Rule 2: cl Ad1-+61

Suppose that Rules 1 and 2 cover all instances of class bl and all other
instances are of class 62. These two rules cannot be represented by a single
decision tree as the root node of the tree must split on a single attribute,

and there is no attribute which is common to both rules. The simplest
decision tree representation of the set of instances covered by these rules

would necessarily add an extra term to one of the rules, which in turn would

require at least one extra rule to cover instances excluded by the addition of
that extra term. The complexity of the tree would depend on the number

of possible values of the attributes selected for partitioning. For example,
let the four attributes, a, b, c and d each have three possible values, 1,2

and 3, and let attribute a be selected for partitioning at the root node. The

simplest decision tree representation of Rules 1 and 2 above is shown in

figure 6.12. The paths relating to class Si can be listed as follows:

1. al A bi -+ bl

2. al A b2 A cl A dl -º 61

94

23

lbl ba b3 C1 Ic2 Ic3 Cl Ic2 Ic3 bi Idi 1c2 IC3 Cl IC2 IC3 Id1 d2 d3 s Idi
Id2

Id362 bs

12
Id3 S2 a2 Idi d2 3

52 52 a1 52 52 b1 b2 b2

öl 52 52 b1 bZ 52

Figure 6.12 Decision tree representation of Rules 1 and 2

3. a, A b3 A cl A d1 -' 61

4. a2Acl Adl--ºbi

5. a3Ac1Ad1--ºöi

Clearly, the consequence of forcing a simple rule set into a decision tree

representation is that the individual rules, when extracted from the tree, are

often too specific (i. e. they reference attributes which are irrelevant). This

makes them highly unsuitable for use in many domains, as is illustrated in

the following example.
Suppose the decision tree in figure 6.1 was used as the knowledge base

for an expert system advising on contact lens suitability, and suppose the

patient requiring contact lenses was a presbyope with high hypermetropia

and astigmatism (attributes a3 & b2 & c2). The optician would know imme.

diately from the age of the patient and her prescription that she was not a

suitable candidate for contact lens wear (a decision taking about 30 seconds

to make and costing the patient nothing). The expert system, however,

would be unable to make a decision without the result of a tear production

rate test (attribute d). This test is normally carried out as part of a contact
lens consultation requiring a lot of time and payment of a fee. Having spent

all this time and money, it would be quite understandable if the patient
became upset or angry on finding out that the consultation had been, after

95

all, unnecessary. The consequences could be even more serious if the expert

system was a medical one and attribute d involved surgery.
Clearly, a decision tree in its unmodified form is most unsuitable for

some domains, not only because it can be incomprehensible, but because

in many cases its use would demand irrelevant information to be supplied,
information that could be costly to obtain. Attempts have been made at

modifying the algorithm to avoid this problem by assigning a 'cost' to each

attribute. Attempts have also been made [1,16] at converting decision trees

into simple rule sets by identifying and removing redundant nodes, or by

incorporating extra information which enables the user to focus on only

relevant parts of the tree, but the problem is not an easy one to solve,

particularly for very large and complex decision trees.

Although simplification of the trees is possible by identifying common
branches or parts of branches, the combinatorial explosion in the number

of comparisons that have to be made as the complexity increases makes
this method only feasible for small trees. Also, parts of a branch may be

matched in different ways, and the question then arises as to which is the
better generalization to make. This would involve either asking the expert,
or using another rule induction program to induce new rules from the old
ones.

The research described in this thesis has as its goal an alternative ap-

proach, in which only the relevant parts of a tree are induced, i. e. relevant
branches or parts of branches are induced individually. This research has

resulted in a new induction algorithm, PRISM, which uses an information

theoretic approach to selecting relevant attributes. The theory underly-
ing the algorithm was developed by investigating in detail the process of

attribute selection used by Quinlan's ID3 (described in section 7.1), and
deciding how relevant attributes could be identified and separated from ir-

relevant ones (sections 7.2 and 7.3). PRISM is described in detail in Chapter

8.

96

Chapter 7

Information theoretic approaches to

induction

Chapter 6 discussed some of the disadvantages of having a decision tree rep-

resentation of decision or classification rules. Although a decision tree can
be converted to a set of individual rules simply by listing each branch sepa-

rately, many of these rules may still contain redundant terms. This chapter
describes first how ID3 uses information theory for selecting attributes to

partition the training set (section 7.1) and then how this process can be

used as a model for an information theoretic approach to selecting non-

redundant terms for modular rules (sections 7.2 and 7.3). The processes are
described using the contact lens classification problem and ideal training set
introduced in Chapter 6.

7.1 ID3's information theoretic approach

Originally, Quinlan chose to use a complexity estimate (see section 5.2) to

select the `best' attribute for partitioning. Later, this was abandoned in
favour of a formula derived from information theory, for which the decision

tree is thought of as a source of a message, and the amount of information

conveyed by this message is related to the complexity of the tree. When

the tree is being formed, at each node the attributes can be tested for ex-
pected information gain in the resulting tree if that attribute were selected
for partitioning. That attribute is selected which minimizes entropy, thus

97

maximizing average information gain.

The procedure is described in detail in the following subsections.

7.1.1 Entropy

The training set can be thought of as a discrete information system, i. e. it

contains a number of discrete messages (values of attributes) which impart

some information about an event (classification). The entropy of a set of

events has been defined as a measure of the `freedom of choice' involved in

the selection of the event, or the `uncertainty' associated with this selection

[20,27,51]. Let S be an ideal training set as described in Chapter 6. Because

it is ideal, each instance in S is classified correctly and uniquely, i. e. there

is no uncertainty about the classification. The entropy of S is 0. The

entropy of a decision tree or rule set, which fully describes S is also 0, but in

most cases the decision tree is a generalization of S, which implies that some

information offered by the training set is redundant. ID3 tries to reduce this

redundant information as much as possible (and thus find the least complex

decision tree which fully describes the training set) by partitioning S into

the smallest possible number of subsets, each of which can be described by

a set of features (attribute-value pairs) whose entropy is 0.

If all that is known about the classifications is their probabilities of oc-

currence, p(b; ;i=1,2,3), then the entropy of the set of classifications,

H=- p(b;)1og2 p(8j) bits. (7.1)

For the contact lens classification problem,

H= -P(ai)1092 P(bi) - P(52)1og2P(62) - P(ba)logs p(63) bits.

The probabilities of occurrence of each of the classifications are

p(bl) = 4/24

p(bz) = 5/24

p(53) = 15/24

98

Thus,

H
244

4-555 1092
(24)

241og2
(24)

241og2
(24)

= 0.4308 + 0.4715 + 0.4238

= 1.3261 bits. (7.2)

The induction algorithm iteratively partitions the training set in such a way

as to reduce this entropy by the maximum amount at each iteration, and

continues until the entropy is 0.

7.1.2 Reducing entropy

If the training set, S, is divided according to the values of some attribute, a,
then unless the classification, b, is completely independent of a, the values

will contain some information about S. The total entropy of the subsets is

known as the conditional entropy of S with known a, H(SIa). Let p(ax)
be the probability that attribute a has value x, and let p(b� fl a.) be the

probability that the classification is b� and the value of a is x. Then

H(SI a) = H(S n a) - H(a) (7.3)

where
H(S fl a) =-EE p(b, fl p(6, (7.4)

xn

and
H(a) p(ax) logs p(a27) (7.5)

By performing this calculation for each attribute, it is possible to minimize
the entropy of S by dividing it into subsets according to the values of that

attribute for which H(SIa) is minimum.
The calculation can be simplified by using a frequency table, for example

for attribute a:

99

no. of instances

referencing al a2 a3 total
bl 2 1 1 4

62 2 2 1 5

b3 4 5 6 15

total 8 8 8 24

H(Sla) = H(S n a) - H(a)

L p(6, n a.) 1092 P(6 n ate)+ P(am)1o92P(am)
n

_ -3X
24

1092
(2)

2- 3x
241ogs

24 - 241og2 24

55668
241og2

(24)
- j4-1092

C24)
+3X

241og2
(24)

= i4-(3X810928-3X210922-3X'0921-410924

- 51092 5- 61092 6)

= 1.2867 bits. (7.6)

Similarly,

H(SIb) = 1.2867 bits. (7.7)

H(Slc) = 0.9491 bits. (7.8)

H(SId) = 0.7773 bits. (7.9)

Therefore, the entropy of S can be reduced by the greatest amount by

dividing S according to the values of attribute d. Two subsets are formed,

each of which is then further subdivided in the same way until the entropy

of each subset is 0, i. e. all instances in the subset belong to the same

classification. The final decision tree is shown in Figure 6.1.

7.2 The problem in focus

The above procedure evolved directly from Hunt's early work on concept

learning and in particular from his CLS9 experiment (see section 5.1) in

100

which he introduced a formula for defining the `cost' of selecting an attribute
for partitioning the tree. This cost was an average cost which assumed that

all values of a particular attribute were equally relevant, an assumption

which was valid for the preceding experiments in which all attributes had

been binary.
-However,

the main cause of the problem described in section 6.5

is either that an attribute is highly relevant to only one classification and

irrelevant to the others, or that only one value of the attribute is relevant.
For example, the attribute d in the contact lens problem is highly relevant

to the classification 53, if its value is 1, and because of this, it is selected for

partitioning the training set, for which all its values are used.

Figure 7.1 shows the decision tree after S has been partitioned according
to the values of attribute d. It can be seen that although the entropy of the
branch dl has been reduced to 0, the entropy of the branch d2 has actually
increased to 1.555 bits. Attribute d was chosen because ID3 minimizes the

average entropy of the training set, or alternatively, it maximizes the average

amount of information contributed by an attribute to the determination of
any classification.

In order to eliminate the use of irrelevant values of attributes and at.
tributes which are irrelevant to a classification, the algorithm needs to max.
imize the actual amount of information contributed by knowing the value of

the attribute to the determination of a specific classification.

7.3 Induction of modular classification rules

The information theoretic approach to inducing decision trees described in

section 7.1 can be modified fairly readily to enable the induction of modular

classification rules, thus reducing the problems of incomprehensibility and
irrelevance. Each induced rule comprises a conjunction of terms forming

the premise and the classification which applies if the premise is satisfied.

These rules can be induced by considering each possible term in turn and

selecting the term (attribute-value pair) which maximizes information gain

to partition the training set of instances. Thus emphasis is placed on calcu-

101

S

di s

a b c d b
1 1 1 1 1 3

3 1 1 2 1 3

5 1 2 1 1 3

7 1 2 2 1 3
9 2 1 1 1 3

11 2 1 2 1 3

13 2 2 1 1 3

15 2 2 2 1 3

17 3 1 1 1 3

19 3 1 2 1 3

21 3 2 1 1 3

23 3 2 2 1 3

a b c d 8
2 1 1 1 2 2

4 1 1 2 2 1

6 1 2 1 2 2

8 1 2 2 2 1

10 2 1 1 2 2

12 2 1 2 2 1
14 2 2 1 2 2
16 2 2 2 2 3

18 3 1 1 2 3

20 3 1 2 2 1

22 3 2 1 2 2

24 3 2 2 2 3

H(SIdl) =0 bits H(S1d2) = 1.555 bits

Figure 7.1 S partitioned according to d

lating the information contributed byi an attribute-value pair to knowing a

particular classification.

7.3.1 Calculating information content

As stated at the beginning of section 7.1.1, the values of attributes can be

thought of as discrete messages in a discrete information system. Now, the

amount of information about an event in a message i,

C probability of event after the message is received 1
I(i) = logt

probability of event before the message is received)
bits.

102

The rest of this chapter describes how this definition (from standard infor-

mation theory [20,27,51]) can be applied to the problem of inducing modular

rules. The theory proposed here has been embodied in a new rule induction

program, PRISM, which is described in Chapter 8.

The training set, S, contains 4 instances belonging to class 61,5 belong-

ing to class £2 and 15 to class 53. 'Therefore, the probability of an instance

belonging to class 61, p(S') is 4/24 and thus if the message i was Si (i. e. the

class is 5) then the amount of information received in this message,

I(bl) =1092 1
p(bl)) = -logs

(j4-)
= 2.585 bits. (7.10)

Similarly, the amount of information received in the message b2,

1(52) == 1092
(p2)

=- loge
(-!) 4=

2.263 bits. (7.11)

and in the message 63,

1(63) =1og2 I
p(a3)ý - loge

(24
I=0.678 bits. (7.12)

Thus the lower the probability of occurrence of an event, the more informa-

tion we receive if we are told that the event has occurred.
Now, if the message received was that attributed has value 1, the amount

of information received in this message about 6,

I(b3I di) =1og2
(P(b31d)))

bits. (7.13)
P(b3)

where p(ö3l d1) is the probability of b3 given that the value of d is 1.

For S, p(b31d1) = 1, therefore

1=0.678 bits. (7.14) I(b31d1) "= 1092
(P(63))

Thus knowing that attribute d has value 1 contributes 0.678 bits of infor-

mation to the belief that an instance belongs to class 63.

If, on the other hand, the message was that attribute d has value 2, then

the amount of information received about 63,

I(63l d2) = loge I pý(3)))
= 1092

(153/12/24)
= -1.322 bits. (7.15)

103

The minus sign indicates that knowing that the value of d is 2 makes it less

certain that an instance belongs to ö3 than if the value of d was unknown.
d2 is therefore not a good choice for describing ö3.

If an attribute-value pair, a, and a classification, ö,,, are mutually ex-

clusive, p(b�lax) =0 and I(5 Ia3,) = 1092 0= -oo. Thus knowing that the

value of a is x indicates that the instance definitely does not belong to class
on.

If ax and 5,, are completely independent, then p(önIax) = p(bn) and
I(bnIax) = logt 1=0, i. e. the fact a,, contributes no information to the
belief that the class is'b,,.

7.3.2 Maximizing information gain

The task of an induction algorithm should be to find the attribute-value pair,

ax, which contributes the most information about a specified classification,
ö,,, i. e. for which I(b�jax) is maximum. Now,

I(6 tcx) -1og2
(p p(5)))

bits. (7.16)

but p(ö) is the same for all a, and thus it is only necessary to find the ax
for which p(5f cr) is maximum.

The values of p(b,, I a--) for all ax and n=1 are listed in table 7.1a.
There are two candidates for `best' a.. These are c2 and d2. For c2, chosen
arbitrarily, the information gain,

I(6i1c2) =1og2 \Pp(6
C2))=

logt
(4112)

=1 bit. (7.17)
/24

Had d2 been chosen, the information gain would also have been 1 bit. Re-

peating the process now on a subset of S which contains only those instances

which have value 2 for attribute c, it can be seen from table 7.1b that p(öl ýax)

has the highest value for d2. The information gain (for this subset),

1(611d2) =-- 1092 (pýý6l)
))

= loge
(4_L/16

2) =1 bit. (7.18)

104

ax P(alI az)

ai 2/8 = 0.25

a2 1/8 = 0.125

a3 1/8 = 0.125

bi 3/12 = 0.25

b2 1/12 = 0.083

Cl 0= 0

c2 4/12 = 0.333

dl 0= 0
dz 4/12 = 0.333

Table 7.1a Selecting the first term

ax P(b11 ax)

al 2/4 = 0.5

a2 1/4 = 0.25

a3 1/4 = 0.25

bi 3/6 = 0.5

b2 1/6 = 0.167

di 0 =o
d2 4/6 = 0.667

ax p(6i Ia=)
al 2/2 =1

a2 1/2 = 0.5

a3 1/2 = 0.5

bi 3/3 =1
bz 1/3 = 0.333

Table 7.1b Selecting the second term Table 7.1c Selecting the third term

105

If the process is now repeated on the subset which contains only those in-

stances which have value 2 for attribute c and value 2 for attribute d (ta-

ble 7.1c), there is again a choice for `best' ate. Suppose the second of these,

bl, is selected'. Then

I(bi1 bl) '= 1092 1
ppýbiý)/

=1092
(-4/6L)

= 0.585 bits. (7.19)

From equation 7.10, the information provided by the message bl before any

attributes are known = 2.585 bits.

The information provided by c2 =1 bit.
The information provided by d2 when C2 is known =1 bit.

The information provided by bl when d2 and C2 are known = 0.585 bits.

Therefore, the information provided by c2 A dz A bl ,
=1+1+0.585 = 2.585 bits.

i. e. the message C2 A d2 A bl provides the same amount of information as the

message öl.

Specialization of (i. e. adding more attribute-value pairs to) cz A d2 A bl

does not increase the information gain. All other attributes are irrelevant

in this description as all instances containing c2&d2&bl belong. to class bl

(p(611c2 A d2 A bl) = 1). The induced rule is therefore

C2 A dZ A bi
-º

b1

and is known to be correct for S.

7.3.3 Modular rules

The decision tree at this stage of the induction process is shown in Figure 7.2.

The algorithm has concentrated on building the shortest branch possible for

the class 61. The remaining branches are not yet labelled, and the next step
in the induction process is to identify the best rule for the set of instances

which are not examples of the first rule. This is done by removing from S all
instances containing c2&d2&bl and applying the algorithm to the remaining

'The reason for this choice is explained in section 8.4.1

106

S

-712

bi

bl

Figure 7.2 `Decision tree' after induction of the first rule

instances. If this is repeated until there are no instances of class bl left

in S, the result is not a single decision tree but a collection of individual

branches. The whole process can then be repeated for each classification in

turn, starting with the complete training set, S, each time.

The final output is an unordered collection of modular rules, each rule
being as general as possible (but see section 8.4), thus ensuring that there are

no redundant terms. The rule set for the optician's contact lens classification

problem is as follows:

1. c2 A d2 A bl bl

2. al A C2 A d2 -º 61

3. cl A d2 A b2 --: öz

4. cl Ad2Aa1--ºbz

5. cl A d2 A a2 -º 62

6. d1 - 63

7. b2Ac2Aa2- 63

107

8. b2 A C2 A a3 -'83

9. a3AblAci-'63

Although the number of rules in this set is the same as the number of leaf

nodes in the decision tree (figure 6.1), five of the rules have had redundant

terms removed. The presbyopic patient with high hypermetropia and astig-

matism no longer needs to undergo an examination to be told that she is

not suitable for contact lens wear (Rule 8).

108

Chapter 8

PRISM

The theory outlined in Chapter 7 has been embodied in a new rule induction

program, PRISM. PRISM takes as input a training set entered as a file of

ordered sets of attribute values, each set being terminated by a classification.

Information about the attributes and classifications (e. g. name, number of

possible values, list of possible values, etc.) is input from a separate file at

the start of the program, and the results are output as individual rules for

each of the classifications listed in terms of the described attributes.

8.1 The basic algorithm

The basic induction algorithm is essentially as described in section 7.3,

namely: -
If the training set contains instances of more than one classification, then
for each classification, b,,, in turn:

Step 1: calculate the probability of occurrence, p(bnjax), of the

classification b,, for each attribute-value pair ay,

Step 2: select the as for which p(b�Iax) is a maximum and create a

subset of the training set comprising all the instances which
contain the selected ax,

Step 3: repeat Steps 1 and 2 for this subset until it contains only
instances of class b,,. The induced rule is a conjunction of all

109

the attribute-value pairs used in creating the homogenous

subset.

Step 4: remove all instances covered by this rule from the training

set,

Step 5: repeat Steps 1-4 until all instances of class 6,, have been

removed.

When the rules for one classification have been induced, the training set

is restored to its initial state and the algorithm is applied again to induce

a set of rules covering the next classification. As the classifications are con-

sidered separately, their order of presentation is immaterial. If all instances

are of the same classification then that classification is returned as the rule,

and the algorithm terminates.

8.2 The `correctness' of rules

Given an ideal training set, as described in Chapter 6, the above algorithm

produces a complete set of correct rules, i. e. a perfect set of rules, in most

casesi. This is because PRISM concentrates on discovering the underlying

rules which cause instances to be classified as ö,, by calculating p(b,, I ax) for

all ate. The theory behind this can be explained in general terms as follows:

If the training set is complete and correct, the values of any attributes

which are irrelevant to the class b,, are equally distributed in the set of
instances of class b,,, i. e. p(ai 6n) = p(azl bn) _"""= p(a�16n) where v

= number of possible values of attribute a. As a complete training set

contains an equal distribution of the values of each attribute, i. e. p(al) =

p(a2) _ ... = p(a�), p(aT1 bn) = p(ar) if a is irrelevant to 6n. If on the other

hand, a., causes or partly causes an instance to be classified as ö,,, p(a. 1bn)

increases with respect to p(ax) while p(ayjbn)(y # x) decreases with respect

to p(ay). It is possible for p(ayl5n) to decrease with respect to p(ay) if ay

'The exception to this is the case where all attributes are equally relevant (or irrelevant)
to all classes and is described in section 8.4.

110

is a component of a rule describing E ,, but only if ax is a component of a

rule or set of rules which covers a higher proportion of instances than that

referencing ay. In a complete training set, if the attributes are mutually

exclusive, p(ax lb,,) increases with respect, to p(a.) only if a. is a component

of a rule describing 5ý. If the attributes are not mutually exclusive, e. g.
if say attribute p is partially dependent on attribute a such that if a has

value 1, p can have only value 1, p(ß Ib
a) will increase with respect to p(PI)

if p(a1Il,,) increases with respect to p(al), but p(plj6, ')/p(ß1) will always
be less than or equal to p(aiI6)/p(al), unless pl is independently relevant

to 6".

Thus the ax which has the highest value for p(axj6n)/p(a,,) must be a

component of a rule describing b,,. As p(aI b a)/p(ax) = p(b,, l ax)/p(b�) and

p(b,,) is constant, the az which has the highest value for p(b�ja.) must be

a component of a, rule describing b,,.

8.3 PRISM compared with ID3

Although the basic induction algorithm used by PRISM is based on tech-

niques employed by ID3, it is quite unlike ID3 in many respects. The major
difference is that PRISM concentrates on finding only relevant values of at-

tributes, while ID3 is concerned with finding the attribute which is most

relevant overall, even though some values of that attribute may be irrele.

vant. All other differences between the two algorithms stem from this. ID3

divides a training set into homogenous subsets without reference to the class

of this subset, whereas PRISM must identify subsets of a specific class. This

has the disadvantage of slightly increased computational effort, but the ad-

vantage of an output in the form of modular rules rather than a decision

tree.

This section demonstrates the performance of PRISM on a training set

containing a large number of examples. The training set is provided by

the King-Knight-King-Rook chess end-game on which Quinlan performed
his original experiments [44]. The problem is to find a rule set which will

111

determine for each configuration of the four pieces, whether knight's side
is lost two-ply in a black-to-move situation. Quinlan tackled the problem
in stages, by first placing severe constraints on the number of allowable

configurations of the pieces, and then gradually relaxing these constraints

until he could apply his algorithm successfully to the original unrestricted

problem. He identified a total of seven problems of increasing complexity.
The training set described below is provided by the third of these problems.

There are seven attributes:
a: distance from black king to knight, values 1,2 or 3,

b: distance from black king to rook, values 1,2 or 3,

c: distance from white king to knight, values 1,2 or 3,

d: distance from white king to rook, values 1,2 or 3,

e: black king, knight, rook in line, values t or f,

f: rook bears on black king, values t or f,

g: rook bears on knight, values t or f.

There are two possible classifications - lost and safe, and the training

set consists of 647 instances2. The decision tree produced by ID3 is shown
in figure 8.1. It has 20 branches, and if these are trivially converted into

separate rules, there are a total of 105 terms. In contrast, the rule set

produced by PRISM has 15 rules and 48 terms:

1. of -º safe

2. ff -º safe

3. gf -º safe

4. bi A d2 -º safe

5. bl A d3 -º safe

6. al A c2 -º safe
'There is one combination of the seven attributes (al & bi & cl & dl & et & f, & gt)

which is illegal and therefore not included in the training set.

112

e safe

safe

S safe
b

safe
ec

rb2

lost
b lost

a
C2 safe
c safe

d lost
b d

safe
d

safe c
b lost

a
b

1-a

-lost
d lost

b d
safe

d
safe a

b lost

b lost

Figure 8.1 Decision tree for Quinlan's third problem

113

7. a2 A C2 -+ safe

8. al A c3 -º safe

9. a2 A c3 --º safe

10. a3Ab2AetA ftAgt -ºlost

ii. b3 A cl A et A ft A 9t -º lost

12. a3 A b3 A et A ft A gt -º lost

13. b2AciAesAftAgt -+ lost

14. a3AbiAdlAetnftA9t--ºlost

15. a2 A bl A cl A di A et n, ft A 9t -º lost

Both the decision tree and the above rule set classify all 647 instances cor-

rectly, but an expert system using the decision tree as its knowledge base

would require significantly more tests to be performed.
There is also one less obvious difference between the outputs, which is

that the decision tree would classify the illegal instance (al & bi & cl & dl

& et & ft & gt) as safe, whereas the rule set produced by PRISM is unable
to classify it.

8.4 The use of heuristics

ID3 and PRISM are similar in that they both employ an information theo-

retic approach to discovering disjunctive rules by grouping together sets of

instances with similar features. Consequently, they both encounter similar

difficulties in certain circumstances. In particular, there is the problem of

which attribute or attribute-value pair to choose when the results of the

respective calculations indicate that there are two or more which are equal.

In ID3 the choice is immaterial because the objective is to reduce entropy

at the maximal rate and this is achieved equally well whichever attribute

is chosen. On the other hand, if the wrong choice is made in PRISM, the

114

result is that an irrelevant attribute-value pair may be chosen. Fortunately,

this situation can often be avoided by incorporating some heuristics in the

basic algorithm.

8.4.1 Opting for generality I

If there are two or more rules describing a classification, PRISM tries to

induce the most general rule first. The rationale behind this is that the more

general a rule is then the less likely it is to reference an irrelevant attribute.

Thus where there is a choice of attribute-value pairs, PRISM selects that

attribute-value pair which has the highest frequency of occurrence in the set

of instances being considered. Referring back to table 7.1c in section 7.3.2

(selection of a third term for the first rule for class bl), it can be seen that

the attribute-value pairs al and bi both offer an equal information gain.

PRISM selects bi because the resulting rule covers three instances, whereas

the rule resulting from the selection of al would only cover two instances.

Thus the rule c2 A d2 Abi -º bl is more general than c2 A d2 A al -º 61. In this

particular case, both rules are in fact equally correct, and so the order in

which they are induced does not really matter, but opting for generality in

this way has the advantage of reducing computational effort when there is a

significant difference in the number of instances covered by each of the rules.
Its true value, however, is realized when the training set is an incomplete

one and there is a possibility that one potential rule is a specialization of

another. In this situation PRISM must select the more general.

8.4.2 Opting for generality II

When both the information gain offered by two or more attribute-value pairs

is the same and the numbers of instances referencing them is the same,
PRISM selects the first. This is the only time that the order of input of

the attributes affects the induction process, and in these cases it is still

possible for an irrelevant attribute-value pair to be selected. To illustrate

how PRISM copes with this situation, suppose there are four attributes, a,
b, c and d, each having three possible values, 1,2 and 3, and the rules to be

115

induced for class bl are:

Rule 1: cl A di --º öi

Rule 2: ca A d2 --º öl

Rule 3: C3 A d3 --> bl

Thus, attributes a and b are irrelevant to 61, whereas all values of attributes c

and d are equally relevant. If the training set is complete, p(bi I a.) is the

same for all ax and PRISM selects al. The subset containing only instances

which have value 1 for attribute a also presents the same problem: p(öiIa.)

is equal for all ax, so bi is selected, and so on. The result is the following

set of rules:

Rule 1: a, Ab1Ac1Adl--ºöl

Rule 2: a2 AbiAc1Ad1--º61

Rule 3: a3 A b1 A c1 A d1 -º bi

Rule 4-. b2Aa, AcAd, 61

Rule 5: b3 A al A cl A dl -º öi

At this stage p(bll a ,) is greater for c2, c3, d2 and d3 than for any other

attribute-value pair, so the next two rules are induced correctly:

Rule 6: c3Ad2-º61

Rule 7: c3 A d3 --º bl

The remaining instances all have value 1 for attribute c and value 1 for

attribute d, so the final rule is

Rule 8: c1Ad1- 61

Rules 1-5 are all specializations of Rule 8. To avoid this happening,

PRISM first induces all rules for a classification and then selects the most

general of these on the basis of i) the rule which covers the maximum number

of instances, and ii) the rule which references the fewest attributes. The

instances covered by this rule are removed from the training set, and PRISM

116

goes on to induce the remaining rules in the same way. For the above

example, the result is that Rules 6 and 7 are induced first, and then Rule 8.

These three rules account for all instances of class 61, so Rules 1-5 are
discarded.

Although this iterative procedure is quite costly in terms of computa-
tional effort, it ensures (at least for a complete training set) that the induced

rules are maximally general.

8.5 The training set - necessary requirements

Section 6.2 described some characteristics of a training set which must be

present for ID3 to perform successfully, namely:

" the set of attributes must be adequate

9 the classes must be specifiable in terms of attribute descriptions

" the classes must be mutually exclusive

The same characteristics are necessary for PRISM to perform successfully

and are described again below, this time with reference to PRISM.

8.5.1 The set of attributes must be adequate

ID3 allows instances for which the attributes are found to be inadequate to

remain unclassified. PRISM, however, attempts to find a set of rules which

covers all instances in the training set. If the training set contains a pair of

contradictory instances, i. e. a pair of instances which have the same values
for the attributes but are of different classes, the result is that a pair of

contradictory rules is induced. For example, all references to attribute a

were again removed from the training set of table 6.1. PRISM was applied
to the remaining data, resulting in the following rules:

1. b1 A C2 A d2 --º bl

2. b2 A C2 A d2 --º bl

117

3. b2 A ci A d2 -º 52

4. bl A cl A d2 --º bz

5. dl -+ 63

6. b2AC2Ad2 -'63

7. bi A cl A d2 --º b3

These results are very similar to the decision tree of figure 6.2, except
that branch B (unclassified) has been replaced by rules 4 and 7 above and
branch E has been replaced by rules 2 and 6. The only rules which were in-

duced correctly3 (rules 1,3 and 5) were those which do not need to reference

attribute a.
PRISM uses all attributes in an attempt to discriminate between con-

tradictory instances and, like ID3, may discover apparent relationships be-

tween irrelevant attributes and class, resulting in incorrect or misleading

rules. Thus if PRISM is to be used successfully, the set of attributes must
be adequate. At the very least, all contradictory instances must be removed
from the training set.

8.5.2 The classes must be specifiable in terms of attribute
descriptions

Like ID3, PRISM can only discover rules in terms of attribute descriptions.

If applied to the complete training set for classifying rectangles (table 6.2,

page 85) or any other similar domain, the result may often be a set of rules

which is just a reproduction of the instances comprising the training set.

PRISM does not and should not be expected to induce structural descrip-

tions or relations between two or more attributes. Thus it is not suitable

for a domain characterized by such features.

3when compared with the rules induced from the complete and correct training set

118

8.5.3 The classes must be mutually exclusive

Both ID3 and PRISM are based on finding attributes which distinguish

between classes. If the classes are not mutually exclusive and there are
instances which can be classified correctly in more than one way, the results

of induction are similar to results obtained when the set of attributes is

inadequate, as explained in sections 6.2.3 and 8.5.1.

8.6 Duplicate instances

The sensitivity of ID3 to duplicate instances was described in section 6.3,

where it was shown that different decision trees could be induced simply by

duplicating certain instances in a complete training set. The training set

used was that of table 6.1 on page 78, from which four new training sets

were created, in which:

1. Instance no. 8 was duplicated five times.

2. Instance no. 22 was duplicated five times.

3. Instance no. 18 was duplicated five times.

4. Instance no. 18 was duplicated ten times.

These same training sets were used to assess the sensitivity of PRISM to

duplicate instances. It was found that in each case PRISM induced the

same set of rules, and these rules were identical to those (listed on page 107)

induced from the original training set. The only effect of duplicate instances

is that the rules may be induced in a different order. This is because PRISM

tends to induce the most general rules first, i. e. those covering the most

instances. Thus for the training set of table 6.1, rule 1 (b1 A C2 A d2 -º bi)

covers three instances and rule 2 (al A C2 A d2 -º öl) covers two instances.

Rule 1 is induced first. By duplicating instance no. 8 (ai&b2&c2&d2 -+ 61)

five times, the number of instances covered by rule 2 increases to seven,

causing rule 2 to be induced first. However, as the rules are modular their

119

order is irrelevant. Thus the inclusion of duplicate instances has no effect on

the results (apart from an increase in computation to achieve those results).
This is true in all cases. PRISM induces its rules by iteratively selecting

the attribute-value pair ax which has the highest value for p(ö�ja.) (see

sections 7.3 and 8.2). When an instance of class 6, is duplicated, although
it may no longer be true that p(ax1ö�) = p(a.,) if a is irrelevant to b, the

instance which is duplicated must be covered by a rule describing &. As the

number of instances containing a., is increased by the same amount for all

a-, which comprise the duplicated instance, it is still true that the ax which
has the highest value for p(a3I ö,,)/p(a3,), and therefore the highest value for

p(b�las), is a component of a rule describing b,,.

120

Chapter 9

Induction from incomplete training sets

When PRISM is applied to a complete and correct training set, the resulting

set of rules can confidently be expected to be complete and correct. When

the training set is incomplete, this confidence is reduced. The smaller the

proportion of instances in the training set, the more likely it is that the rule

set will contain errors. Errors in the induction process arise for a number of

reasons which can be best explained by example. The training set used for

this purpose is described in section 9.1. Section 9.2 lists the rules induced

by PRISM from about 20% of this training set and an analysis of how and

why errors arise is given in section 9.3. PRISM has been enhanced to enable

some of these errors to be reduced - this is described in detail in section 9.4.

Section 9.5 gives a summary of the complete induction procedure and finally,

section 9.6 contains an analysis of the performance of PRISM, compared

with ID3, with particular reference to predictive power, i. e. the ability to

induce rules which correctly classify unseen instances.

9.1 The training set

The training set (table 9.1) used for most of the experiments described in

this chapter is an extension of the training set described in section 6.1.1

(table 6.1). Attribute b, spectacle prescription, has been modified to have

three possible values: 1: myopia, 2: high hyperrnetropia and 3: low hyper-

metropia, and a fifth attribute, e: tear break-up time, has been added.

121

val
a

ue of a
bc

ttribute
de

decision 1
5

val
a

ue of a
bc

ttribute
de

decision
b

1 1 1 1 1 1 3 28 1 3 1 2 1 3
2 1 1 1 1 2 3 29 1 3 1 2 2 3
3 1 1 1 1 3 3 30 1 3 1 2 3 3
4 1 1 1 2 1 3 31 1 3 2 1 1 3
5 1 1 1 2 2 2 32 1 3 2 1 2 3
6 1 1 1 2 3 2 33 1 3 2 1 3 3
7 1 1 2 1 1 3 34 1 3 2 2 1 3
8 1 1 2 1 2 3 35 1 3 2 2 2 3
9 1 1 2 1 3 3 36 1 3 2 2 3 3

10 1 1 2 2 1 3 37 2 1 1 1 1 3
11 1 1 2 2 2 2 38 2 1 1 1 2 3
12 1 1 2 2 3 1 39 2 1 1 1 3 3
13 1 2 1 1 1 3 40 2 1 1 2 1 3
14 1 2 1 1 2 3 41 2 1 1 2 2 3
15 1 2 1 1 3 3 42 2 1 1 2 3 2
16 1 2 1 2 1 3 43 2 1 2 1 1 3
17 1 2 1 2 2 2 44 2 1 2 1 2 3
18 1 2 1 2 3 2 45 2 1 2 1 3 3
19 1 2 2 1 1 3 46 2 1 2 2 1 3
20 1 2 2 1 2 3 47 2 1 2 2 2 3
21 1 2 2 1 3 3 48 2 1 2 2 3 1
22 1 2 2 2 1 3 49 2 2 1 1 1 3
23 1 2 2 2 2 2 50 2 2 1 1 2 3
24 1 2 2 2 3 1 51 2 2 1 1 3 3
25 1 3 1 1 1 3 52 2 2 1 .2 1 3
26 1 3 1 1 2 3 53 2 2 1 2 2 3
27 1 3 1 1 3 3 54 2 2 1 2 3 2

Table 9.1 Decision table for fitting contact lenses (part 1)

'The reader is asked not to be tempted to use this decision table to determine whether
or not (s)he is suitable for contact lens wear as there are many factors, not mentioned
here, which may radically influence the decision.

122

va
a

lue of attri
bcd

bute
e

decision
8

va
a

lue of attri
bcd

bute
e

decision
ö

55 2 2 2 1 1 3 82 3 1 2 2 1 3
56 2 2 2 1 2 3 83 3 1 2 2 2 3
57 2 2 2 1 3 3 84 3 1 2 2 3 1
58 2 2 2 2 1 3 85 3 2 1 1 1 3
59 2 2 2 2 2 3 86 3 2 1 1 2 3
60 2 2 2 2 3 3 87 3 2 1 1 3 3
61 2 3 1 1 1 3 88 3 2 1 2 1 3
62 2 3 1 1 2 3 89 3 2 1 2 2 3
63 2 3 1 1 3 3 90 3 2 1 2 3 2
64 2 3 1 2 1 3 91 3 2 2 1 1 3
65 2 3 1 2 2 3 92 3 2 2 1 2 3
66 2 3 1 2 3 3 93 3 2 2 1 3 3
67 2 3 2 1 1 3 94 3 2 2 2 1 3
68 2 3 2 1 2 3 95 3 2 2 2 2 3
69 2 3 2 1 3 3 96 3 2 2 2 3 3
70 2 3 2 2 1 3 97 3 3 1 1 1 3
71 2 3 2 2 2 3 98 3 3 1 1 2 3
72 2 3 2 2 3 3 99 3 3 1 1 3 3
73 3 1 1 1 1 3 100 3 3 1 2 1 3
74 3 1 1 1 2 3 101 3 3 1 2 2 3
75 3 1 1 1 3 3 102 3 3 1 2 3 3
76 3 1 1 2 1 3 103 3 3 2 1 1 3
77 3 1 1 2 2 3 104 3 3 2 1 2 3
78 3 1 1 2 3 3 105 3 3 2 1 3 3
79 3 1 2 1 1 3 106 3 3 2 2 1 3
80 3 1 2 1 2 3 107 3 3 2 2 2 3
81 3 1 2 1 3 3 108 3 3 2 2 3 3

Table 9.1 Decision table for fitting contact lenses (part 2)

123

A full description of the data is reproduced below.

Class (decision) :

öl : the patient should be fitted with hard contact lenses

bz : the patient should be fitted with soft contact lenses

b3 : the patient should not be fitted with contact lenses

Attributes :

a: the age of the patient

1. young

2. pre-presbyopic

3. presbyopic

b: spectacle prescription

1. myopia

2. high hypermetropia

3. low hypermetropia

c: astigmatic

1. no

2. yes

d: tear production rate

1. reduced

2. normal

e: tear break-up time

1. <5 secs.

2. >5 secs., <, 10 secs.

3. > 10 secs.

The rules induced by applying PRISM to a complete and correct training

set are:

124

1. bl n c3 A d3 A e3 -º b1

2. alAb2Ac2Ad2Ae3-'b1

3. bz A Cl A d2 A e3 -º bz

4. alAblAd2Ae2-º52

5. al A b2 A d2 A e2 -+ 52

6. alAb1AclAd2Ae3-'b2

7. a2AblAClAd2Ae3- 52

8. dl -º63

9. b3 -+ b3

10. el --º b3

11. a3 A e2 -º b3

12. a2 A e2 I53

13. a3 A b2 A C2 -º b3

14. a3AblAc1--º63

15. a2Ab2Ac3- 53

The decision tree induced by ID3 from the same training set is shown in

figure 9.1.

9.2 PRISM applied to an incomplete training set

21 instances (just under 20%) were selected at random from the training

set of table 9.1 and PRISM was applied to this new training set (shown in

table 9.2). The following nine rules were induced:

A a, Ab1Ad2-+E

125

dl dz
63 el e2 e3

b3 F
a2 Ja3 lbl b2 lb3 Fb, a3 b3

cl lcZ Cl 1C2 63

52 62 53
al a2 Ja3 ö1 öZ

al a2 a3

bZ E2 63 61 63 ö3

Figure 9.1 Decision tree for contact lens fitting problem

B b2Ac1Ad3Ae3- 63

aAb2'82

D dl
-º63

E e1- 53

F b3 -. 53

G a3Ac2-+ö3

H cl Ae2- 63

I a3Ab1-+b3

When these are compared with the complete set of correct rules (listed

in section 9.1), it can be seen that rules B, D, E and F have been induced

correctly (rules 3,8,10 and 9, respectively), rules C, G and I are general-
izations of rules 5,15 and 14 respectively and rules 2,4,6,7 and 13 of the

correct set have not been induced at all. Rule A is an incorrect version of

rule 1 and rule H is an incorrect version of the conjunction of rules 11 and'
12.

Section 9.3 analyses in detail how and why some of these errors occur.

126

a b c d e b
9 1 1 2 1 3 3

12 1 1 2 2 3 1
23 1 2 2 2 2 2
30 1 3 1 2 3 3
41 2 1 1 2 2 3
43 2 1 2 1 1 3
47 2 1 2 2 2 3
50 2 2 1 1 2 3
51 2 2 1 1 3 3
52 2 2 1 2 1 3
54 2 2 1 2 3 2
59 2 2 2 2 2 3
60 2 2 2 2 3 3
63 2 3 1 1 3 3
78 3 1 1 2 3 3
82 3 1 2 2 1 3
85 3 2 1 1 1 3
89 3 2 1 2 2 3
90 3 2 1 2 3 2

103 3 3 2 1 1 3
105 3 3 2 1 3 3

Table 9.2 Incomplete training set

9.3 Analysis ,

9.3.1 Failure to induce a rule

For a rule to be induced, the training set must contain at least one instance

which it covers uniquely. For example, PRISM failed to induce rule 13
(a3 A b2 A c2 -+ 63). There are six possible instances of this rule, five of
which are also covered by at least one other rule (rule 8,10 or 11). It is the

sixth instance (instance no. 96 in table 9.1) which must be included in the
training set for rule 13 to be induced. In fact, none of these six instances is
included in the partial training set, table 9.2.

Rules 2,4,6 and 7 cover only five instances in total, all uniquely. As

none of these five instances is included in the training set, these rules cannot
be induced.

127

a= f(biIa.) P(biIa.)
al 0.25 0.056
a2 0 0.028
a3 0 0.028
bl 0.143 0.083
b2 0- 0.028
b3 0 0
Cl 0 0
C2 0.1 0.074
dl 0 0
d2 0.077 0.074
e1 0 0
e2 0 0
e3 0.1 0-111'

Table 9.3 Relative frequency f vs. probability p for a small training set

9.3.2 Over-specialization

Theoretically, the induction algorithm is based on finding the ax for which

p(biIa=) is a maximum. In practice, for an incomplete training set, the true

probability of occurrence p is unknown, and is approximated by relative
frequency, f (51 Ia.). This approximation of p introduces errors in the esti-

mation of information gain of each a=, which become significant for small
training sets, resulting in the selection of an irrelevant attribute-value pair

as the best representative of 61.

Pure over-specialization does not occur with the training set of table 9.22,

but the principle can be demonstrated by examining how rule A (al A b1 A

d2 -º 81) is induced from this training set. Rule A is an incorrect version

of rule 1 on page 125 (b1 A cs A dz A e3 -+ 81). It is incorrect because it is

too general with respect to attributes c and e, but it has also been over-

specialized with respect to attribute a, i. e. a1 is an unwanted term. The

reason for the selection of a1 becomes clear when the values of p and f for

each at are compared (see table 9.3). It can be seen from table 9.3 that

the value of p(Silal) is somewhat smaller than the value of p(Eile3), (e3 is

the term which would have been selected if the training set were complete),

2An example of a training set in which it does occur is given in (13].

128

but as the distribution of the values of a is inaccurately represented in the

training set, f(biIai) is artificially high, thus leading to the selection of al

as `best' attribute-value pair.
Statistical problems associated with approximating probability by rel-

ative frequency of occurrence cannot easily be avoided in PRISM, ID3 or

other similar induction algorithm. As the training set becomes smaller, any

rules induced from it become less reliable. PRISM informs the user of how

many instances are covered by each rule, but does not specify which rules,

if any, may be unreliable.

9.3.3 Over-generalization and ambiguity in induced rules

An induced rule may be too general if there are no counter-examples to it in

the training set. For example, rule I above (a3 A bl -º 63) is a generalization

of the correct rule, rule 14 (a3 A bl A cl -º 53). As there is only one possible

counter-example to rule I (instance no. 84), and this instance has not been

included in the training set, there is no evidence that rule I should be spe-

cialized. Similarly, rule G (az A cz -º b3) is a generalization of the correct

rule, rule 15 (a2 A bs A cs -+ b3). Again, there is only one possible counter.

example (instance no. 48) which has not been included in the training set.

So again, there is no evidence that rule G should be specialized.

The situation is somewhat different with rule C (al A bz -+ 52) which is

a generalization of the correct rule, rule 5 (al A bz A d2 A e2 - 52). There are

eight possible counter-examples to rule C, none of which has been included

in the training set. However, rules D (dl -º b3), E (ei -º b3) and H (clAe2 -º

b3), induced later on in the induction process, all clash with, i. e. contradict,

rule C, which implies that some specialization may be necessary. Clashes,

whether or not produced by over-generalization, can result in ambiguity in

the final rule set. For example, an instance in which attribute a has value

1, attribute b has value 2 and attribute d has value 1 (al&b3&dl) would be

classified as 62 by rule C and as 63 by rule D of the above rule set.

These clashes do not occur in decision trees produced by ID3 because

there is always at least one common attribute, e. g. at the root node of the

129

tree, whose value is specified in all rules (branches). If this attribute has

the same value in rules for different classes, other attributes are selected

until one is found whose value differs for different classes. -It is exactly
this process which causes over-specialization in ID3. Attributes which are
deemed necessary for discrimination along one branch are included, often

unnecessarily along other branches.

Any attempts by PRISM to remove dashes between rules by special-
ization could have similar consequences. There is no guarantee that an

attribute chosen for specialization is a relevant one. For example, the clash
between rules C (al A bz -+ bz) and D (dl -º ö3) could be resolved by

specialization in one of a number of different ways:

a: rule C can be specialized to C1 : al A b2 A d2 -+ 62,

b: rule D can be specialized to D1 : a2 A dl -' b3 and
D2 : a3Ad1 -+ 63,

c: rule D can be specialized to D1 : bl A dl -+ ö3 and
D2 : b3 A dl -º b3,

d attribute c can be introduced into both rules,

e attribute e can be introduced into both rules,

f: any combination of the above.

There is no significant evidence in the training set that any one of these

choices is more correct than the others. Nevertheless, if ambiguity is to be

removed a choice must be made.

Section 9.4 describes in detail a simple procedure which has been incor-

porated in PRISM to check consistency and specialize where necessary.

9.4 Specialization of over-general rules.

PRISM checks consistency by comparing each induced rule with all rules

previously induced for other classes. If there is at least one attribute whose

value differs for the two rules being compared there is no contradiction,

i. e. the rules are consistent with one another, otherwise
'a

clash occurs and

specialization becomes necessary.

130

Specialization is an iterative procedure:
1. The rules to be specialized are selected. One rule is chosen

from each pair of contradictory rules, the choice being made on the basis of
lesser generality. Thus the rule which potentially covers the fewer instances

is selected. For example, rule C above (al A bz -º 53) covers 12 possible
instances, whereas rule D (di -+ b3) covers 54 possible instances. There

are six instances which are covered by both rules. These are instances con-

taining the terms al&bz&dl. The purpose of specialization is to remove the

ambiguity in classifying these six instances, but the cost of specializing the

wrong rule can be high - the more general the rule, the higher the cost.
For example, if rule C is correct, six of the instances which it covers are

classified correctly (as 62 by rule C) and six are classified ambiguously (as

62 by rule C and 63 by rule D). Specializing rule C by adding the term d2

(rule C becomes al A b3 A d2 -+ 62) causes the instances which were previ-

ously classified ambiguously now to be classified incorrectly (by rule D). The

other six instances are still classified correctly. If on the other hand, rule D

is correct, 48 instances are classified correctly (as 63 by rule D) and six am-

biguously (as ö3 by rule D and 63 by rule C). Rule D can be specialized with

respect to attribute a or with respect to attribute b. Unless it is specialized

with respect to both attributes separately (replacing rule D by four rules -

a3 A dl -º 63, a3 A di -+ ö3, bi A di -º 53i 63 A dl -+ ö3) there will be a set

of instances which can no longer be classified. If rule D is specialized with

respect to attribute a only (a3 A dl -+ 63, a3 A dl -º b3), the six ambiguously

classified instances will now be classified incorrectly (by rule C), 36 of the

previously correctly classified instances (those covered by the two new rules)

will remain correctly classified, but the remaining 12 instances which were

correctly classified (ai&b1V3&dl) will now be unclassified. The same applies

if rule D is specialized with respect to attribute b only. Thus in both cases,

specializing the wrong rule causes the six instances which were classified am-

biguously to be classified incorrectly, but selecting the more general rule for

specialization
(by adding a single term) also reduces the number of correctly

classified instances. The risk of introducing these new errors is minimized

131

by selecting the less general rule for specialization. For the training set of
table 9.2, rules A and C are selected for specialization.

2. An attribute to be used for specialization is selected. When

all rules have been induced and checked for consistency, each rule which
has been marked for specialization is specialized by adding one or more
terms. The attributes to be used are chosen by examining the frequency of

occurrence of available attributes in the rules which clash with the rule to

be specialized. Thus rule C (al A b2 -º b2) clashes with rules D (dl -+ ö3),

E (el -º 63) and H (cl A ez -+ ö3). Attributes c, d and e are available
for specialization. Attibutes c and d occur once each in rules D, E and H,

whilst attribute e occurs twice. Thus rule C is specialized with respect to

attribute e. Selecting attributes on this basis allows clashes to be removed

at a maximal rate, i. e. selecting attribute e has the potential of removing

two clashes, whereas selecting attribute c or d would only allow at most one

clash to be removed.
3. The attribute value is selected. The attribute value to be used for

specialization is selected by examining which values of the relevant attribute

occur in the set of instances which are covered uniquely by the rule to be

specialized. Rule C covers only one instance uniquely - instance no. 23 in

the training set of table 9.2. Attribute e in this instance has value 2. Thus

rule C is specialized by adding the term e2 to its premise. Rule C becomes

al A b2 A e2 -+ b2. Had the set of uniquely covered instances contained

more than one value for e, rule C would have been duplicated for each new

value. Thus had there been three uniquely covered instances, with values

for attribute e of 2,1 and 3 respectively, rule C would have been specialized

as above, and two new rules - al A b2 A el -+ 52 and al A bz A e3 -º b1 -

would have been added. The new rules would be then checked further for

consistency separately.

4. Rule C is now checked for consistency with rules D, E and H. It is

found that the clash with rule E has been removed, but the clashes with

rules D and H remain. Thus rule C needs to be specialized further. Steps 2

and 3 above are repeated. The available attributes are c and d, occurring

132

once each in rules D and H. Attribute c is chosen (arbitrarily); its value in
instance no. 23 is 2. Thus the term c2 is added to rule C, removing the

clash with rule H. Finally, steps 2 and 3 are repeated again, and the term
d2 is added to rule C to remove the clash with rule D. Rule C has therefore
been specialized to al A bz A cz A d2 A e2 -º 62. Three new terms have

had to be added in this case to remove clashes with three rules. Rule A
(al A bl A dl -+ 61) however, only needs the addition of one extra term, C3,
to remove clashes with two rules, rules E and H.

The final rule set for the training set of table 9.2 is:

A a1Ab1Ad3Ae3-+bl

B b2Ac1Ad3Ae3-ºbz

C a1Ab2Ac2Ad2Ae2-'62

D dl -s 3

E el --º 63

F b3 --º b3

G a2 A c2 =º b3

H cl A e2 -º b3

I a3Ab1 63

There is no ambiguity in this rule set, and its performance has been signif.

icantly improved. If this rule set is tested on the complete set of instances

(table 9.1) it is found that 98 instances are classified correctly, five are classi.
fied incorrectly and five are unclassified, whereas the original rule set (listed

on pages 125-126) classified 88 instances correctly and six incorrectly, three

instances being unclassified and 11 classified ambiguously. So specialization

has resulted in an increase in the number of correctly classified instances

and a decrease in the number of incorrectly classified instances, as well as

the removal of any ambiguity.

133

A summary of the complete algorithm is given in section 9.5 and sec-
tion 9.6 describes a series of experiments which was performed to test how

well PRISM's induced rules can predict the class of unseen instances in

general and to compare this with the performance of ID3.

9.5 Summary of the induction procedure

PRISM uses the basic algorithm described in section 8.1 for inducing indi.

vidual rules. This algorithm, reproduced here for completeness, proceeds as
follows:

Step A: calculate the probability of occurrence, p(b�jax), of the

classification b,, for each attribute-value pair a.,

Step B: select the a. for which p(ö,, I a.,) is a maximum and create a

subset of the training set comprising all the instances which

contain the selected a,

Step C: repeat Steps A and B for this subset until it contains only
instances of class bn. The induced rule is a conjunction of all
the attribute-value pairs used in creating the homogenous

subset.

Step D: remove all instances covered by this rule from the training

set,

Step E: repeat Steps A-D until all instances of class 6, have been

removed.

The complete induction procedure is summarized below.

Step 1: Use the basic algorithm to induce a set of rules for the first

class bi.

Step 2: Select the most general rule from this set and add it to the
final rule set.

134

Step 3: Check this rule for consistency with other rules in the final

rule set (if there are any). If a clash occurs, select one rule
for specialization.

Step 4: Remove all instances covered by this rule from the training

set.

Step 5: Repeat steps 1-4 until there are no instances of class 5i

left in the training set.

Step 6: Restore the training set to its initial state.

Step 7: Repeat steps 1-6 for each class 62 """6,, in turn.

Step 8: Specialize each rule identified as being too general in step 3

by iteratively selecting and adding new terms until no clashes

occur.

A full listing of the program is given in Appendix A.

9.6 Predictive power

If one defines the predictive power of an induced rule set as its ability to clas-

sify instances correctly, then as can be expected, predictive power depends

on the relative size of the training set from which the rules were induced. In

order to determine the relationship between the size of a training set and the

predictive power of a rule set induced from it, a fixed number of instances

were selected at random from the complete data set shown in table 9.1, a

set of rules was induced from these instances using PRISM, and then the

induced rules were tested on the full set of instances to calculate a) the

percentage of instances which were classified correctly, b) the percentage of

instances which were classified incorrectly, and c) the percentage of instances

which could not be classified. This was repeated one hundred times each

for training sets containing 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%

and 90% of the complete data set, and the results averaged for each size

of training set. These results are shown in table 9.4. Table 9.4 also shows

135

the average number of rules induced and the average total number of terms

comprising these rules.
The experiment was then repeated using ID3 (adapted for more than

two classes); the results are shown in table 9.5.

The results relating to correct and incorrect classification from both

tables 9.4 and 9.5 are shown in figure 9.2, in which graph A shows the

percentage of instances classified correctly by rules induced using PRISM

and graph B shows the percentage of instances classified correctly by the

decision tree induced using ID3. Graphs C and D show the percentage of
instances classified incorrectly by PRISM's rule set and ID3's decision tree,

respectively.
These results show that although the numbers of correctly classified in-

stances is similar for both PRISM and ID3, the numbers of incorrectly clas-

sified instances differ significantly. ID3 regularly classifies more instances

incorrectly than does PRISM. Tables 9.4 and 9.5 also show the average

number of rules (or branches in a decision tree) induced from each size of

training set and the total number of terms comprising these rules3. These

are displayed in figure 9.3, which shows that in general ID3's rules are con-

siderably more specific than those induced by PRISM. Thus PRISM has

reduced over-specialization without sacrificing predictive power. Further-

more, performance has been improved because the probability of incorrect

classification is lower. An expert system using a decision tree induced by

ID3 requires on average more tests to be performed than does one using

PRISM's rule set, but the probability of the decision being correct is similar

and the probability of the decision being incorrect is greater.

The reason for this is simply that ID3 uses a decision tree representation.
For example, ID3 was applied to the incomplete training set of table 9.2,

The branches of the induced decision tree, shown in figure 9.4, are listed

below as separate rules:

3To determine the number of terms in a decision tree, the tree is first trivially converted
into a set of individual rules, and the total number of terms in those rules counted.

136

% of complete data set average average
size of classified classified not number number

training set correctly incorrectly classified of rules of terms
5 75.07 15.06 9.86 1.90 2.00
10 76.00 12.36 11.64 3.27 5.27
20 84.76 7.28 7.95 5.97 13.21
30 88.28 5.67 6.05 7.95 19.78
40 90.94 3.60 5.46 9.56 26.22
50 92.65 3.36 3.99 10.66 30.63
60 95.03 2.16 2.81 12.16 36.24
70 96.22 1.64 2.14 13.05 39.55
80 97.53 0.94 1.53 13.76 42.40
90 98.81 0.56 0.62 14.52 45.34

Table 9.4 Results of experiment to test predictive power of rules induced
by PRISM from incomplete training sets

% of complete data set average average
size of classified classified not number number

training set correctly incorrectly classified of rules of terms
5 76.31 20.69 3.00 1.95 1.80
10 76.95 18.90 4.15 3.67 5.89
20 81.54 15.38 3.08 6.72 15.78
30 85.74 11.57 2.69 9.10 25.25
40 89.48 8.79 1.73 11.24 34.53
50 91.31 7.13 1.56 12.51 40.72
60 94.09 4.68 1.23 13.92 47.55
70 96.10 2.83 1.06 14.62 52.59
80 98.06 1.20 0.74 15.23 56.45
90 99.16 0.49 0.35 15.65 59.88

Table 9.5 Results of experiment to test predictive power of decision trees
induced by ID3 from incomplete training sets

137

I

LP,

100

90

w 80
w 0 V

10

60

50

40

30

B A: % of instances classified ýve correctly by rules
induced using PRISM
B: ö of instances classified
correctly by decision trees
induced using ID3
C: % of instances classified
incorrectly by rules
induced using PRISM
D: % of instances classified
incorrectly by decision trees
induced using ID3

20

10

oý 0 10 20 30 40 50 60 70 80 90 100

size of training set -"

Figure 9.2 Correct and incorrect classification of instances

138

70

j 60
to ID3

terms 50

' 40
PRISM

ä
30

0
G 20 rules ID3

10 PRISM

00
10 20 30 40 50 60 70 80 90 100

size of training set -

Figure 9.3 Number of rules and terms induced

139

lbi bs 63

J.
frz2

Ja3 Iai la2 Q3 N

3 ei es e3 ei es Idj d2 Ic3 CDE
63 61 Ö3 63

Cl C2 63 63 52

ABFGKLM
dl d2 a3

b3 62
HI

Figure 9.4 Decision tree for incomplete training set

A alAblAdl-ºb3

B a, Ab1Ad2-. 51

C a2Abl-->b3

D a3 A bl -º
Ö3

E al A b2 -º bz

F a2 A b2 A el -º ö3

G a2 A b2 A e3 -. 63

H a2Ab2Acl AdjAe3--ºb3

I a2Ab2Ac1Ad2Ae3-º52

J a2 A 62 A C2 A e3 -º 63

K a3 A b2 A el 63

L a3Ab3Ae2- 53

140

M a3Ab2Ae3-+62

N b3 -' 63

Consider the set of instances which have value 1 for attribute e. These

instances are covered by the rule el -+ 63 and should therefore all be clas-

sified as 63. PRISM discovers this underlying rule (rule E on page 133)

and thus classifies the instances correctly. ID3 does not discover the rule

el -º 63. The instances are classified correctly only if they are covered by

some other rule which classifies them as 63, or if attribute e has been chosen
(correctly) for specialization after other attributes have been tried (incor-

rectly). Branches F and K of the decision tree illustrate this. Both of these

branches reference attributes a and b, i. e. they are over-specialized. This will

always be the case with the contact lens data set because the underlying rule

set contains three (equally general) rules, dl -º 63, el -º 63 and b3 -º 63.

ID3 can only discover one of these rules without over-specialization. In the

current example the rule b3 -º 63 has been induced correctly (branch N).

Predictive power, as defined at the beginning of this section, depends on

the size of the training set. It also depends on the generality and number

of actual rules governing the data. The experiment described above was

repeated using Quinlan's chess data (see section 8.3). The results are shown
in tables 9.6 and 9.7 and figures 9.5 and 9.6, which show the percentages

of instances classified correctly and incorrectly, and the average numbers of

rules and terms induced.

By comparing figures 9.2 and 9.5 it can be seen that for the same relative

size of training set, a rule set induced for the chess data is more accurate

than one induced for the contact lens data. One of the reasons for this is

that the rules underlying the chess data tend to be on average more general

than those underlying the contact lens data (15 rules cover 647 instances in

the former case and 108 instances in the latter case). The more general a

rule the easier it is to induce it, i. e. fewer instances are needed, and once

induced, it classifies more instances correctly. Thus, to classify 90% of the

instances correctly requires an initial training set of 40% - 45% for the

141

% of complete data set average average
size of classified classified not number number

training set correctly incorrectly classified of rules of terms
5 89.34 3.87 6.79 4.80 9.68
10 92.79 2.67 4.54 6.97 16.58
20 95.65 1.72 2.62 10.14 30.27

30 97.04 0.93 2.03 12.63 40.53
40 98.07 0.48 1.44 13.83 43.76
50 99.01 0.20 0.77 14.89 47.68
60 99.46 0.12 0.42 14.95 47.10
70 99.71 0.04 0.24 15.11 47.22
80 99.85 0.02 0.13 15.13 47.62
90 99.94 0.00 0.06 14.90 46.85

Table 9.6 Results of experiment to test predictive power of rules induced
by PRISM using chess data

% of complete data set average average
size of classified classified not number number

training set correctly incorrectly classified of rules of terms
5 88.87 9.24 1.89 5.55 13.12
10 92.67 6.24 1.09 7.82 23.71
20 96.57 2.81 0.63 10.73 43.36
30 97.83 1.58 0.59 13.42 61.75
40 98.55 0.99 0.46 15.22 72.91
50 99.11 0.53 0.36 16.87 83.90
60 99.37 0.42 0.21 18.17 92.37
70 99.64 0.18 0.17 19.02 98.10
80 99.90 0.06 0.04 19.64 102.43
90 99.92 0.05 0.03 20.09 105.80

Table 9.7 Results of experiment to test predictive power of decision trees
induced by ID3 using chess data

142

? 1100

0 90

80

T 70
Z5 60

cd 50 I

30

? +20
v a)

0-10 VI
C

oý 0

B

A

A: % of instances classified
correctly by rules
induced using PRISM
B: % of instances classified
correctly by decision trees
induced using ID3
C: % of instances classified
incorrectly by rules
induced using PRISM
D: % of instances classified
incorrectly by decision trees
induced using ID3

Dý
C-

10 20 30 40 50 60 70 80 90 100

size of training set -º

Figure 9.5 Classification of chess data

143

110

100

90

80

70

10 60

50

40

30

ID3

terms

PRISM

20 ID3
r es

10 PRISM

00
10 20 30 40 50 60 70 80 90 100

size of training set -+

Figure 9.6 Number of rules and terms induced (chess data)

144

size of
training set

% of instances classified correctly
contact lens data chess data

5 73.76 88.78
10 73.33 91.99
20 80.95 94.56
30 83.24 95.77
40 84.90 96.78
50 85.28 98.02
60 87.58 98.65
70 87.40 99.03
80 87.65 99.25
90 88.10 99.40

Table 9.8 Predictive power of PRISM's rules

contact lens data, but less than 10% of the chess data.

The graphs of figures 9.2 and 9.5 show results which include instances

which are present in the training set. As all of these instances are always

classified uniquely and correctly, it must be expected that predictive power
increases with the size of the training set. However, if one defines predictive

power as the ability of an induced rule set to classify new instances correctly,

this is not so obvious. The results of tables 9.4 and 9.6 were used to calculate

the percentages of new instances which were classified correctly in each case.

These are shown in table 9.8 and figure 9.7, which shows the percentages of

new instances classified correctly by PRISM's rule set, Graph A being the

results for the contact lens data and graph B the results for the chess data.

These results show that predictive power does in fact increase with the size

of the training set in each case.

145

100

90

T 80

va
4) 70
C
to

IV 60

50
U

40
Cd A: contact lens data

30 B: chess data

20

10

00
10 20 30 40 50 60 70 80 90 100

size of training set -+

Figure 9.7 Predictive power of rules

146

Chapter 10

Attributes with linear values

The underlying theory on which PRISM, like ID3, is based was developed

under the assumption that all attributes have discrete values. This chapter
describes a series of experiments performed to assess ways in which PRISM

might be modified to enable it to deal with attributes with linear values, as
defined in Chapter 6.

The experiments were performed using the contact lens data detailed in

section 9.1, modified to allow the values, V, of attribute e, tear break-up

time, measured to the nearest second, to be given as actual measurements
in seconds within the range 0<V< 20. The values of attributes a, b, c

and d are discrete, as described in section 9.1. The new complete training

set consists of 3X3x2X2x 20 = 720 instances. When PRISM was applied
to it, 80 rules were induced. These were the same as those induced from

table 9.1, listed on page 125, except where a rule references attribute e, a

separate rule was induced for each value of e within the relevant range. Thus

10 rules were induced in place of rule 1 on page 125, one for each value of

attribute e in group 3 (10 < VV < 20); 10 rules were induced in place of each

of rules 2 and 3,5 rules in place of each of rules 4 and 5, etc.

Selecting single values of attribute e instead of groups of values is a form

of specialization. With an incomplete training set in which the frequency of
occurrence of each value of e is likely to be greatly reduced (compared with
a training set in which the values are grouped into ranges and treated as dis-

crete) there is less likelihood of counter-examples. Consequently, attribute e

147

is more discriminating than and is likely to be selected in preference to other
(discrete) attributes.

Table 10.1 is an incomplete training set containing 144 (20%) instances

selected at random from the complete set. The rules listed in table 10.2 are
those induced by PRISM when the values of attribute e are grouped into

the appropriate ranges and treated as discrete. In comparison, the following

rules are those induced by PRISM from the training set of table 10.1 without

grouping the values of e:

1 a, Ab1Ad3Ae20- 51

2 ai A bl A d2 A e15 -º 51

3 ai A b2 A d2 A e18 -º ö1

4 al A b2 A d2 A ell -+ 51

5 al A bi A C2 A d2 A e12 -+ b1

6 a, AblAc2Ad2Ae14--ºb1

7 al A bl A C2 A d2 A e16 -+ b1

8 a2 A bl A d2 A el$ -º 61

9 a2Ab1Ac2Ad2Ae17--º81
10 al Ab1Ac1Ad2Ae16--' 52

11 b2Ad2Ae17-º62
12 a1Ab2Ad2Aee-º62
13 b3Ad2Ae13-º62

14 al A bl A cl A d2 A e12 -º 52

15 b2Ad2Ae14- 52

16 a, A b2 A d2 A e7 -. 62

17 al A b2 A d2 A e12 -º 62

18 a, Abi Ad3Aell -º62

19 alAb2Ad2Ae9-º62

20 alAb2AczAd2Aeg-º53

21 a, Ab1Ac1Ad2Ae14-º62

22 al A b1 A c1 A d2 A elo -' 52

23 alAb1Ad2Ae17-'52

24 dl -º b3

25 b3 -º b3

26 a3Ab1--º63
27 e4-º63
28 e2-º63

29 e3 -º 63
30 eig --º ö3

31 ciAe8-º63

32 a2Ae7-ºb3

33 a2Aeg-ºö3

34 a2 A b1 A c1 A d2 A e16 -º ö2

As expected, most of these rules are over-specialized with respect to

attribute e. This causes over-generalization with respect to other attributes
leading to clashes which can only be resolved by further specialization.

148

a b c d e 5 a b c d e 5
1 1 1 1 1 8 3 37' 1 2 2 2 11 1
2 1 1 1 1 16 3 38 1 2 2 2 18 1
3 1 1 1 1 17 3 39 1 3 1 1 4 3
4 1 1 1 1 18 3 40 1 3 1 1 10 3
5 1 1 1 2 10 2 41 1 3 1 1 13 3
6 1 1 1 2 11 2 42 1 3 1 1 20 3
7 1 1 1 2 12 2 43 1 3 1 2 4 3
8 1 1 1 2 14 2 44 1 3 1 2 9 3
9 1 1 1 2 16 2 45 1 3 1 2 10 3

10 1 1 1 2 17 2 46 1 3 1 2 12 3
11 1 1 2 1 7 3 47 1 3 1 2 14 3
12 1 1 2 1 10 3 48 1 3 1 2 15 3
13 1 1 2 1 14 3 49 1 3 2 1 1 3
14 1 1 2 1 15 3 50 1 3 2 1 2 3
15 1 1 2 1 19 3 51 1 3 2 1 9 3
16 1 1 2 2 12 1 52 1 3 2 1 11 3
17 1 1 2 2 14 1 53 1 3 2 1 12 3
18 1 1 2 2 15 1 54 1 3 2 2 9 3
19 1 1 2 2 16 1 55 1 3 2 2 17 3
20 1 1 2 2 20 1 56 2 1 1 1 3 3
21 1 2 1 1 1 3 57 2 1 1 1 11 3
22 1 2 1 1 14 3 58 2 1 1 1 13 3
23 1 2 1 1 17 3 59 2 1 1 1 14 3
24 1 2 1 1 20 3 60 2 1 1 1 18 3
25 1 2 1 2 4 3 61 2 1 1 1 19 3
26 1 2 1 2 6 2 62 2 1 1 2 2 3
27 1 2 1 2 12 2 63 2 1 1 2 4 3
28 1 2 1 2 14 2 64 2 1 1 2 8 3
29 1 2 2 1 9 3 65 2 1 1 2 9 3
30 1 2 2 1 19 3 66 2 1 1 2 16 2
31 1 2 2 1 20 3 67 2 1 2 1 10 3
32 1 2 2 2 3 3 68 2 1 2 2 17 1
33 1 2 2 2 4 3 69 2 1 2 2 18 1
34 1 2 2 2 7 2 70 2 2 1 1 3 3
35 1 2 2 2 8 2 71 2 2 1 1 10 3
36 1 2 2 2 9 2 11 72 2 2 1 1 11 3

Table 10.1 Incomplete training set with linear values for e (part 1)

149

a b c d e 6 a b c d e 6
73 2 2 1 1 16 3 109 3 1 2 2 7 3
74 2 2 1 2, 3 3 110 3 1 2 2 8 3
75 2 2 1 2 7 3 111 3 1 2 2 10 3
76 2 2 1 2 8 3 112 3 2 1 1 1 3
77 2 2 1 2 13 2 113 3 2 1 1 5 3
78 2 2 1 2 17 2 114 3 2 1 1 6 3
79 2 2 2 1

-1
3 115 3 2 1 1 18 3

80 2 2 2 1 2 3 116 3 2 1 1 20 3
81 2 2 2 1 18 3 117 3 2 1 2 2 3
82 2 2 2 2 7 3 118 3 2 1 2 4 3
83 2 3 1 2 3 3 119 3 2 1 2 8 3
84 2 3 1 2 6 3 120 3 2 1 2 17 2
85 2 3 1 2 8 3 121 3 2 2 1 2 3
86 2 3 1 2 9 3 122 3 2 2 1- 5 3
87 2 3 1 2 13 3 123 3 2 2 1 12 3
88 2 3 ,1 2 17 3 124 3 2 2 1 16 3
89 2 3 2 1 6 3 125 3 2 2 1 18 3
90 2 3 2 1 8 3 126 3 2 2 1 19 3
91 2 3 2 1 20 3 127' 3 2 2 2 2 3
92 2 3 2 2 5 3 128 3 2 2 2 19 3
93 2 3 2 2 10 3 129 3 3 1 1 1 3
94 2 3 2 2 17 3 130 3 3 1 1 3 3
95 2 3 2 2 19 3 131 3 3 1 1 4 3
96 3 1 1 1 2- 3 132 3 3 ,1 1 8 3
97 3 1 1 1 4 3 133 3 3 1 1 11 3
98 3 1 1 1 6 3 134 3 3 1 1 16 3
99 3* 1 1 1 13 3, 135 3 3 1 2 3-r3

100 3 1 1 1 17 3 136 3 3 1 2 12 3
101 3 1 1 1 18, -3 137 3 3 1 2 13 3

.
102 3 1 1 1 19 3 138. 3 3 2 1 1 3
103 3 1 1 2 2 3 139 3 3 2 1 3 3
104 3 1 1 2 4 3 140 3 3 2 2 2 3
105 3 1 1 2 9 3 141 3 3 2 2 5 3
106 3 1 1 2 11 3 142 3 3 2 2 13 3
107 3 1 1 2 17 3 143 3 3 2 2 15 3
108 3 1 2 1 19 3 11 144 3 3 2 2 18 3

Table 10.1 Incomplete training set with linear values for e (part 2)

150

1 alAb1Ac2Ad2Ae11_20-'61
2 a1Ab2Ac2Ad2Ae11_2o-+61
3 a, Ab1Ac1Ad2Ae6_1o-'62
4 b2 A cl A d2 A ell-20 -º ö2

5 al A b2 A d2 A es_lo -º bz
6 a2Ab1AclAd2Aell_20 --'62
7 dl -º E3
8 b3-º63

9 el-s-'63
10 a3Ac2-'53
11 a3 A b1 -º ö3

12 a2 A e6_1o --I 53
13 a3 A es_io -º 53

14 a2 A bl A C2 A d2 A ell-20 -º 61
15 a, Ab, AclAd2Aefl_2o- 52

Table 10.2 Rules induced by PRISM when values of e are discrete groups

To try to remedy this, three different modifications of PRISM were tried.

In the first, the values of attribute e were divided into a number of equal

ranges. The results are described in section 10.1 below. The second modifi-

cation enabled PRISM to handle linear values in a similar way to ACLS and

ASSISTANT (see sections 5.3 and 5.4, and [42] and [30]). This is described

in section 10.2, and section 10.3 describes the third modification which en-

abled PRISM to select a `best' range of values in terms of information gain.

10.1 Values of e divided into equal ranges

The values of attribute e were divided first into ten equal ranges: 1-2 secs.

incl., 3-4 secs. incl., """, 19-20 secs. incl. PRISM induced 29 rules:

1 a2Ab1Ac2Ad2Ae17_18-"6i 7 a1Ab1Ac1Ad2Ae9_10- , 52

2 a1A61AC2Ad2Aeli-1281
3 a1Ab1AC2Ad3Ae15-1681
4 a, Abinc2Ad2Aeis-zo51

5 aiAblAC2Ad2Aeia-14--º51
6 a, Ab2AC2Ad2Ae17-18--'61

8 a1Ab3Ad2Ae13_14--'62
9 a, Ab2Ad2Ae7_$-º62

10 b2Acl Ad2Ae17_18-º63

11 a, A b2 A d2 A e5_6 -. 52

12 a2Ab1Ad3Aei5_ls-º 63

151

13 al A b2 A d2 A es-io -. 52
14 alAb2AciAd2Aeli_12-+by

15 d1-º63

16 b3 63

17 a3AC2^- 63

18 e3-4 '"4
63

19 a3Ab1-ºÖ3

20 el-2 --º ö3
21 a2 A e7_8 -º b3

22 a2Ae9_1o-+63

23 a3 A e7_8 -4 63

24 al A b2 A C2 A d2 A ell-12 -º ö1

25 a1 A b1 A cl A d2 A e11_12 -º 62

26 a1 A b1 A c1 A d2 A e13_14 -. 62

27 al A bl A cl A d2 A e15_16 -º 52

28 alAblAclAd2Ae17_18-, 62

29 a2 A bz A d2 A e13_14 --º öl

As can be seen, many of these rules are still highly specialized; in particular
with reference to attribute e. Because each range is small (it contains only
two points) and because the training set is incomplete (it contains 40% of the

possible number of instances) e is a highly discriminating attribute, making
it more likely to be selected than other (correct) attributes.

The values of attribute e were then divided into five equal ranges: 1-

4 secs. incl., 5-8 secs. incl., """, 17-20 secs. incl. The training set contained

about 57% of the total number of possible instances with some duplicates.

There were also two clashing instances. These are instances no. 36 and

no. 37 from table 10.1:

36. al&b2&c2&d2&e9 -º ö1

37. al&b2&c2&d2&eli -+ b1

Both of these instances have values for attribute e which fall into the same

range (9-12 secs. incl.), which violates the condition that for PRISM to

work the attributes must be adequate. The consequences of this violation

are that PRISM is unable to discriminate between the two instances and

thus reproduces them as two maximally specific but contradictory rules. If

instances no. 36 and no. 37 and other duplicate instances are removed from

the training set, the following 22 rules are induced:

1 a1 A bi n c2 A d2 A e9_12 -º b1 3 a1 A b2 A C2 A d2 A e17_20 --º a1

2 al A bl A C2 A d2 A e17_2o -º 6l 4 al A bl A cl A d3 A e9_12 -º 52

152

5 al A b2 A d2 A e13_16 -i
52

6 al A b2 A d2 A e5_8 -º 62

7 b2AC1Ad2Ae17_18--º62

8 al A b2 A d2 A e9_12 -º 52

9 a2 A bl A d2 A e13-16 -º 52

10 d153

11 b3 -º 53

12 el-4 -º 53

13 a3 A C2 -º
63

14 a3 A bi -º 63
15 a3 A e5-8 53

16 a2 A e5-8 b3

17 a2Ae9_12T- 53

18 a1Ab1Ac2Ad2Ae13_16-. 51

19 a2 A b1 A C2 A d2 A e17_20 -' 51

20 al A bl A cl A d2 A e13_16 -º 82

21 al A bl A cl A d2 A e17_20 -º 62

22 a2 A b2 A d2 A e13_16 --º bl

Although many of the rules are still over-specialized with respect to at-
tribute e, there are fewer rules and less over-specialization in general. As

the ranges into which the values of e are divided become larger and fewer in

number, so the chance of selecting the wrong attributes decreases.

The values of attribute e were then divided into two equal ranges: 1-

10 secs. incl. and 11-20 secs. incl. which resulted in an increase in the number

of clashing instances. The following 12 rules were induced from atraining

set from which all clashes and duplicates had been removed:

1. al AblAC2Ad2Ae11_20-º öi

2. a1 A b3 A C2 A d2 -+ 61

3. b2Ac1Ad2Aell-2o--: 52

4. al A bi A Cl A d2 -º 62

5. a2AblAcl Ad2Aeis-zog 62

6. di -º63

7. b3 --º 63

8. a3Ael-lo -º63

9. a2 A el-lo --º 63

10. a3 AC3 : 53

153

11. a3 A b1 "+ 63

12. a2 A bl A C2 A d2 A e11_20 -º öl

Because e is no longer such a discriminating attribute, the quality of most
of the rules has improved. For the same reason, some other rules are too

general with respect to attribute e. Furthermore, some of the improvement
in quality can be attributed to the fact that the range 11-20 secs. incl.
happens to coincide with one of the ranges into which the values of e should
be divided.

Thus dividing the linear values of an attribute into too many small ranges

results in gross over-specialization. Increasing the size of the ranges reduces

over-specialization up to the point where one or more range(s) coincide(s)

with the correct range(s), beyond which the attributes become inadequate

causing clashing instances and contradictory rules, which again results in

over-specialization.
Attribute e ideally should be divided into three ranges, 1-5 secs. incl.,

6-10 secs. incl. and 11-20 secs. incl. The method of dividing linear values
into equal ranges will never allow these true ranges to be discovered because

they are not equal. Even in cases where the true ranges are equal, the exact

number of ranges is unknown unless specified by a domain expert, in which

case the values can be made discrete prior to induction.

For these reasons the method of dividing linear values into equal ranges

was found to be unsatisfactory and was abandoned.

10.2 Iterative binary split

ACLS [42] and ASSISTANT [30] are enhanced versions of ID3 which allow

attributes to have linear values (see sections 5.3 and 5.4). The entropy for

such attributes is calculated for each value of the attribute contained in the

training set, by performing a binary split of the training set at that value.

The value for which entropy is minimized is selected for comparison with

other attributes. Thus if the training set contained all 20 possible values
for attribute e, for each value Y (V, " = 1... 20) entropy would be calculated

154

for a training set divided into two subsets, one with values of e less than V

and the other with values greater than or equal to V. Entropy would thus
be calculated 20 times, and the value for which it was minimized would be

selected. The attribute could then be selected again for a further binary

split if necessary and this could be repeated many times.

A similar approach was tried with PRISM For each value V of at-
tribute e, the training set (table 10.1) was divided into two subsets, one

with values of e less than V; and the other with values of e greater than

or equal to V;. The probabilities p(b,, I e<v) and p(6�je>v1) were calcu-
lated for each V, the maximum being selected for comparison with all other

p(6 Ja..)(a = a, b, c, d). The following rule set was induced:

1. al AblAc2AdzAe>il -+ 61

2. a1Ab2Ac3Ad3Ae>18--ºbi

3. al Ab2Ad2Ae>9Ae<is -. öl

4. a1Abinc1Ad2Ae>5-I 62

5. b2AclAd2Ae>12 --' 52
-

6. al Ab2Ad3Ae>5Ae<lo-ºbs

7. a2AblAd2Ae>l6Ae<17-452

8. dl -º ö3

9. b3 -º ö3

10. e<5-º83

11. a3Abi-+63

12. a2Ae<lo-4 53

13. a3Ab2AC2Ae>i9-+63

14. a3 A e<9 --º ö3

155

By comparing these rules with those of table 10.2, it can be seen that many

of the rules are the same or very similar. However, rules induced by PRISM

are intended to be as general as possible in the sense that each rule should

reference the least number of attributes necessary for classification. A rule is

specialized only when it is too general to discriminate between classes. With

a training set in which one or more attributes have linear values, there are
two ways in which specialization can be achieved - another attribute can be

selected for inclusion in the rule, or an attribute with linear values can have

its range reduced. PRISM tends to choose the latter of these two alternatives

when the training set is incomplete because of the lack of counter-examples,

which in many cases results in over. specialization with respect to attributes

with linear values. An iterative binary split as described above does not

prevent this from happening. For example, rules 2,3,7 and 13 above each

reference attribute e, but the selected ranges for e are much smaller than

they should be, making ea highly discriminating attribute.

10.3 Range selection

PRISM constructs rules by identifying the attribute-value pairs, ax, which

are relevant to a class, ö,,, i. e. for which the information gain, I(bnýax),

is positive (see sections 7.3.1 and 7.3.2). The theory was developed for

attributes which have discrete values, but can be extended to apply to at-
tributes with linear values. Information gain is positive when p(b�ja.) >

p(b�), thus if a has linear values, it is necessary to find the range R for which

all p(ö�laj)(i E R) > p(4). There may be more than one such range, in

which case it is necessary to find the range for which p(ö�Ian) is maximum.
The process is straightforward if the training set is complete - p(b�lai) is

calculated for all ai and if it is greater than p(5, ß), i is included in the range.
For example, table 10.3 shows p(b3le;) for all i for the complete training set

of 720 instances, for which p(ö3) = 0.847. Thus if the value i of attribute e
lies within the range 1-10 secs. incl., p(ö31ei) > p(ö3). Therefore, the range

of values of e which are relevant to b3 is 1-10 secs. incl., and p(831e1_lo) is

156

p(53Ie1) = 1.0
P(53le2) = 1.0.
p(63Ie3) = 1.0

p(63Ie4) = 1.0
p(831es) = 1.0
p(53I es) = 0.889
p(63I eT) = 0.889
p(63I es) = 0.889
p(53les) = 0.889

p(ö3lelo) = 0.889

p(63leu) = 0.75
p(53leis) = 0.75
P(83lei3) = 0.75
p(63le14) = 0.75
p(b3leis) = 0.75

p(b3leis) = 0.75

p(63lei7) = 0.75
p(b3leis) = 0.75
p(53leis) = 0.75
p 53leso) = 0.75

Table 10.3 p(63lei)(i = 1... 20) for a complete training set

calculated (0.944) for comparison with p(ö3Ia.,) for all a(a = a, b, c, d).
r

When the training set is incomplete, however, this process can be highly

inaccurate, as p(53jej) =0 if there are no instances of class 63 in the training

set which have the specific value i for attribute e. If i lies within a relevant

range R and the training set contains instances with other values of e(say

j and k) within the same range, then it is likely that p(631eJ) > p(b3) and

p(ö3jek) > p(b3) resulting in (at least) two highly specific ranges for e.
Therefore, p(b3Ies) is not calculated for each individual. i. Instead, a

range r of fixed size is selected, and p(ö3je,.) is calculated for all possible

e, or for as many as is practical. A domain expert must supply the lower

and upper limits of the total range of possible values of e (limy and limu

respectively) and the accuracy (Ac) to within which the measurements are

taken. For attribute e of the contact lens data, lime =1 sec., lirn, ' = 20 secs.

and Ac =1 sec. A range of one-fifth of the total range (i. e. 4 secs.) is

157

P(63lel-4) = 1.0
P(bale2-s) = 1.0
p(63Ie3-e) = 0.962

P(63I e4-7) = 0.913
P(631es-s) = 0.870
P(63Ie6-9) = 0.852

P(63Ie7-lo) = 0.867

P(83les-n) = 0.844

P(53Ie9-22) = 0.767
P(631eio-13) = 0.759

P(53lell -14) = 0.679

P(63lels-is) = 0.68
P(63lei3-16) = 0.68

P(63Ie14-i7) = 0.621

P(63Ie15-is) = 0.677

P(63lei6-i9) = 0.743
P b3I eis-2o) = 0.794

Table 10.4 p(531e,,)(r = 1- 4,2 - 5,. -., 17 - 20) for an incomplete training

set.

selected and p(631er) calculated for all possible e,., i. e. for r= 1-4 secs. incl.,

2-5 secs. incl., """, 17-20 secs. incl. in turn. The lower limit of a relevant

range R lies within the first r for which p(b3Ie*) > p(b3). This is recorded

and p(631 er) continues to be calculated for each successive r until p(631e,.) <

p(63). The upper limit of the relevant range lies within the preceding r.
The actual limits of R are taken to be the mid-point of each respective r,

or limy and/or lim,, if r is the first or last range, respectively. p(ö3Ien) is

calculated and then p(b31 er) for all remaining r in search of further relevant

ranges. The maximum p(b3jeR) is selected for comparison with p(631ax) for

attributes a, b, c and d. Table 10.4 shows the values of p(b3je,.) for all r when

the above algorithm is applied to the incomplete training set of table 10.1,

for which p(63) = 0.826. The relevant range R is 1-9 secs. incl. for which

p(baI eR) = 0.937.

Once attribute e has been selected for inclusion in a rule and its relevant

range R has been determined, the limits of R are fixed and any future cal-

culations of p(6,1 e,) take place within these already established limits. This

158

is because once a range has been selected, a rule induced and the appropri-

ate instances removed from the training set, any range r which contains a
limiting value of R is biased away from b,,. The problem is compounded by

an increase in error when approximating probability by relative frequency

of occurrence as the training set becomes smaller. Therefore, limits selected

early on in the induction process for each class are most likely to be correct.
Thus if a range limit has been established at 10 secs., p(63je*) is calculated
for the ranges 1-4, """, 7-10 and again for the ranges 11-14,. - ", 17-20. This

tends to prevent a second limit being selected at 8 secs., 9 secs., 11 secs. or

12 secs., and so stabilizes internal limits to a certain degree.
When a value is measured to a high degree of accuracy, there may be

many possible ranges, r, for attribute a. In such cases it would not be

practical to calculate p(6Ja,.) for all r, so it is necessary to determine first

by how much the lower limit of r should be increased to find the next r.
The number of possible values = (lim,, - lime) = Ac is calculated. If it is

greater than 50, r is increased by (1im,, - lime)/50, rounded to the given

accuracy, otherwise r is increased by the minimum amount (the given degree

of accuracy) each time. The size of r is fixed at (lim,, - limb)/5, with a

minimum of 1.

Thus the algorithm for selecting ranges is as follows:

Step 1 Calculate the number of possible values, the size, s of r and the

amount, inc, by which r is to be increased at each step.

Step 2 For the first pair of fixed limits, b1 and bu (for the first rule for

each class, bt = limj and b,, = lim,,), calculate p(ö�ja,) for all

ar(r = bi ... (bl+s), (bt+inc) ... (bl-Fs+inc), (bt+2*inc) ... (bi -F
j+2 inc), ..., (b� - s) ... b,,).

Step 3 Establish the lower limit RI of a relevant range at the mid-point

of the first r for which p(b�I a,.) > p(b,,) or at bi if r= bi """ (bi+s).

Step 4 Establish the upper limit R,, of the range at the mid-point of
the last r before p(6 a,.) < p(ö�) or at b,, if r= (b,, - a) "" "b,

159

Step 5 Calculate PC ö, I aR).

Step 6 Repeat steps 3,4 and 5 until r= (b� - 3) "" "b,

Step 7 Repeat steps 2-6 for each pair of fixed limits b.,, and bl.

Step 8 Select the R for which p(5,, IaR) is maximum.

If aR is selected for inclusion in a rule the limits of R are fixed as internal

limits for any subsequent calculations.
Using this algorithm PRISM induced the following set of rules from the

complete training set of 720 instances:

1. b1Ac2Ad2Ae11-z0--ßb1

2. a1Ab2Ac2Ad2Ae11-20--'81

3. b2 A c1 A d2 A e11-20 -º 62

4. al Ab1Ad2Ae6_10-º 62

5. a1Ab2Ad2Ae6_1o--'62

6. a1 A bl A cl A d2 A e11_20 -+ 63

7. a2Ab1Ac1Ad2Ae11-20-'62

8. di-º63

9. b3-º63

10. e1-5 --4 53

11. a3 A e6-10 b3

12. a3 A e6-10 53

13. a3Ab2AC2-º63

14. a3Ab1Ac1- 53

15. a2Ab2AC263

160

These rules match those induced from table 9.1 precisely.
The following rules are those induced when the algorithm was applied

to the incomplete training set of table 10.1:

1. b1 A cz A d2 A e13_20 -º b1

2. a1Ab1Ac2Adz-ºbi

3. a1 A b2 A d2 A e17-20 -º öl

4. a1 A b2 A C2 A d2 A e8_12 -º b1

5. a1 A b1 A c1 A d2 -º 62

6. b2 A c1 A d2 A e11_30 -º 52

7. al Ab2Ad2Aes-lo -º 62

8. a2 A b1 A cl A eis-i? -º öz

9. d1 63

10. b3 63

11. e1_5 _"+
53

12. a3 A b1 --º 63

13. az A e6-9 -" b3

14. a3AC3-+63

15. a3 A e6_9 -4 63

These rules were induced without employing a specialization procedure to

maintain consistency, and contain inaccuracies, only some of which can be

corrected by specialization. Other inaccuracies can be attributed to the

ad hoc method of selecting boundaries for the ranges of attribute e, com-
bined with an increase in error when approximating probabilities by relative
frequencies of occurrence when small ranges are considered. For example,

161

whilst inducing rule 1 above, the lower limit of the relevant range R of at-
tribute e was found to lie within the range 11-14 secs. incl. The mid-point

of this range was selected and R was fixed at 13-20 secs. incl. The resulting

rule (61 A C2 A d2 A e13_20 -º bi) covers instances nos. 17,18,19,20,68 and 69

of table 10.1, but excludes instance no. 16 in which the value of attribute e
is 12. This in turn causes rule 2 (ai A bl A C2 A d2 -º Si) to be induced. Had

R been fixed at 11-20 secs. incl. or 12-20 secs. incl., rule 1 would have been

slightly more accurate and rule 2 would never have been induced.

The size s of each range r was fixed at one-fifth of the possible range by

trial and error using the contact lens data set. The smaller s becomes the

more specific are the ranges of e in induced rules because of the increased

likelihood that statistical errors are included. On the other hand, the larger

the range the smaller the difference between successive p(b,, Ia,.) and the

more likely it is that a true limit does not lie at exactly the mid-point of

r. Furthermore, if there are any true ranges which are smaller than r the

attributes become inadequate. This is illustrated by rule 4 above. Rule 4

was induced to cover instance no. 37 in table 10.1, in which the value of

attribute e is 11. Because 13 secs. was fixed as an internal limit whilst
inducing rule 1, and because the size s of r is fixed at 4 secs., the relevant

range of attribute e for rule 4 was found to be 8-12 secs. incl. This was the

smallest range which could be found to include 11 secs., i. e. the value of e
in instance no. 37. The result is that rule 4 also covers instances nos. 35

and 36, and classifies them incorrectly. Had the internal limit been fixed

at 11 secs. instead of at 13 secs., the relevant range for e would have been

found to be 11-14 secs. incl., making rule 4 considerably more accurate.

Alternatively, had 3 been fixed at 2 secs., the relevant range for e would

have been 10-12 secs. incl. and instances nos. 35 and 36 would not have

been classified incorrectly.

For these reasons, the method of range selection described in this subsec.

tion was not thought to be sufficiently accurate or robust to be incorporated

into PRISM.

162

10.4 Summary

This chapter has described three ways in which PRISM might be modified
to enable it to handle linear values.

The first method was to divide the values into a fixed number of equal

ranges. However, this was found to be unsatisfactory because unequal ranges

could never be discovered. Even in cases where the true ranges are equal,
the exact number of ranges is unknown unless specified by a domain expert,
in which case the values can be made discrete prior to induction.

The second potential method of handling linear values was to use an it-

erative binary split as employed by ACLS [42] and ASSISTANT [30]. This

method was found to be unsatisfactory because some values, particularly

those near the limits of the total possible range or those which occur infre-

quently, tend to be highly discriminatory, causing PRISM to select linear-

valued attributes with highly specific ranges in preference to discrete-valued

attributes.
The third, and probably most promising, potential method of handling

linear values was to use a window of fixed size to scan sequentially the en-

tire range of values in order to determine a range R for which p(b�jan) is

maximum. However, the procedure contained an ad hoc method of deter-

mining the precise limits of R, causing slight inaccuracies which tended to

be propagated throughout other rules. Thus, this method was thought to

be not yet sufficiently robust to be incorporated into PRISM.

Consequently, PRISM currently can handle only discrete values. If it

is to be applied to a training set containing linear-valued attributes, the

appropriate ranges of these attributes must first be specified by a domain

expert, and the values converted to discrete groups prior to induction.

163

Chapter 11

Conclusions

11.1 Discussion

The process of building the knowledge base for an expert system can be long

and tedious, both for the knowledge engineer who is building the system

and for the domain expert supplying the knowledge. Even if the knowledge

engineer and domain expert are one and the same person, a complex domain

makes the task non-trivial. If the expert underestimates the effort required

to build the knowledge base, although initially he may be most willing, in

time he may lose his enthusiasm and become reluctant to continue. Much

recent research has been aimed at easing the elicitation process, but often

the expert is still expected to provide all the details, to essentially spell out

all he knows about the domain. A computer program which learns from

examples, thereby releasing the expert from much of the time-consuming

task of iterative refinement of the knowledge base, may be able to ease this

burden.
Arguably, the most popular and successful algorithm to address this

problem is Quinlan's ID3 [44,46,47,48], which induces classification rules in

the form of decision trees and is used as the basis of many modern com-

mercially available induction programs. Another program which is claimed

to have had reasonable success is Michalski's AQ11 (described in Chapter 4

and [35,36]) which induces modular classification rules. Programs such as

these offer an alternative to the currently popular but laborious method

164

of rule elicitation by interviewing or task and protocol analysis and then

iteratively building, testing and refining a knowledge base until it appears
to perform satisfactorily. Although automatically induced rules may not
be totally accurate, the process of debugging a set of approximate rules is

generally much easier for a domain expert than it is for him to conceive

even approximate rules. Thus with their promise to minimize inefficient use

of human resources in the construction of knowledge bases for rule based

expert systems, the potential usefulness of such programs is high.

Obviously, such programs cannot be used in all cases - the represen-

tation language must be suited to the domain, examples must be available

or readily made available, etc., and of course, it is unlikely that all the

knowledge necessary for an application can be so induced. Rule induction

programs seek to reduce demand on the expert by transferring the burden

of responsibility of rule formation and refinement to a computer program,

but the expert's role cannot be completely automated. For a program to be

able to acquire new knowledge, it must start with some basic information

about the domain in which it is expected to operate. It is the expert who

must provide this information, e. g. information about the domain structure,

important concepts, attributes, their possible values, which itself can be a

major source of difficulty.

For example, the identification of an adequate set of attributes may prove

to be a time-consuming and laborious task. Attributes must be defined in

such a way as to make it possible to discriminate between the classifications

and to enable significant compression of the data, and the expert must see

them as meaningful concepts. This problem manifests itself in different ways

for different types of domain. The chess endgame used by Quinlan in (44]

typifies the situation where any single instance can be described in a number

of distinct ways, and attributes are not pre-defined. Consider, for example,

the following board position:

165

There are many possible ways of describing this position (other than

specifying the coordinates of the squares that the pieces occupy):

. The white king is on a corner square; the black knight is one square

away from an edge.

" The distance between the white king and black knight is two king

moves.

" The distance between the white king and black knight is one knight

move.

" The black knight checks white.

" The black knight is in a rank or file adjoining the white king.

" The white king can move next to the black knight.

This list grows rapidly as the level of abstractness of the descriptions is in-

creased. The expert is faced with the dilemma of selecting those descriptions

which are `best' for a particular classification problem, when the definition

of `best' depends on the classification itself and on the actual instance be-

ing described. Fortunately, descriptive attributes often present themselves

naturally. AQ11, in its application to soybean disease classification, uses a

set of attributes which are simply symptoms of a diseased plant or exter-

nal factors affecting the growth of the plant. The terminology used is the

standard terminology of plant pathologists, and relatively easy to define.

166

However, AQ11 also requires extra domain-specific information. Its

highly complex representation language employs many different types of

operator, not all of which apply to all attributes. Attributes can have values

which are discrete, linear or structured and have to be classified accordingly.

In the case of structured attributes, the typical structure and any constraints

on combinations of values have to be specified, either in the form of rules

or otherwise, and the expert may need to be familiar with formal set ma-

nipulation procedures. This again requires him to go through the iterative

process of refine and test, the problem being that it is not obvious when

enough information has been supplied.
An examination of some of the rules derived by AQ11 reveals the nature

of the difficulty. A number of rules contain the disjunction (leaves = nor-

mal) V (leaf malformation = absent) [35] (Rules D3 and D5. Other rules

contain similar disjunctions.) However, the first term (leaves = normal)

is redundant as it is a generalization of the second term. AQ11 contains

information showing that these two attributes are related, but the type of

relationship is not described explicitly enough for the program to recognize

the generalization.
Other types of background information are also frequently required. For

example, several of the derived rules include a term specifying that leaves,

stem or some other factor is normal. However, unless this is a specific re-

quirement of the disease, its inclusion is unnecessary and could even prohibit

diagnosis in cases where a plant has more than one disease. This indicates

that it is necessary for the expert (using AQ11) to state which attributes

are relevant and which are irrelevant to each classification. It is also pos-

sible that where a classification can be described in a number of ways, an

attribute may be relevant to only one or some, but not to other descriptions.

Demand on the expert is increased still further if he is expected to provide

control information. For example, AQ11 employs an algorithm which relies

on user-specified criteria for limiting search of implausible hypotheses. Many

hypotheses are generated during the process of induction, only a few of which

can be retained. The expert must decide how these hypotheses are to be

167

selected, by choosing from a list which includes such criteria as minimize

the number of terms and maximize the number of positive examples covered.
Unless the expert is familiar with the details of the algorithm, this sort of
decision is quite difficult to make and prone to errors.

These demands on the expert are not much' reduced once a set of rules
has been induced. It is likely that one or more of the rules will be faulty

and need correction. The expert then has to decide where the source of each

error may lie. It may be that critical instances have been omitted from the

training set; or it may be that not enough domain-specific information has

been supplied, or that it is not specific enough; or the fault may lie with the

selection of plausible hypotheses. The task is not trivial.

If automatic rule induction systems are to be used for knowledge acqui-

sition for expert systems, they must reduce significantly the time and effort

required of the domain expert. A system which releases the expert from the

task of defining rules, but requires him to learn a complex representation
language or to define search techniques for a control structure with which
he may be unfamiliar is not likely to be popular, irrespective of the elegance

of its induction algorithm.
The representation language used by ID3 is much simpler. Although

this places constraints on the types of domain to which the algorithm can

be applied, in those domains which are suitable, the expert's role is greatly

simplified. Having decided that parts of the domain may be amenable to rule

induction, the expert's role would be simply to identify a set of attributes

and supply sufficient examples. However, as explained in Chapter 6, new

problems arise, problems associated with a decision tree representation. De.

cision trees are difficult to manipulate. They contain a lot of information,

much of which may be irrelevant to the classification, but is included to

maintain structure, which in turn is often unnecessary or even damaging. If

a set of modular rules is required, the expert is left with the difficult task

of dismantling the tree, which may involve identifying and removing redun-

dant nodes, identifying common branches or parts of branches and selecting

appropriate generalizations. This can be a daunting task, particularly for

168

large and complex trees, and especially so if they contain errors. The ex-

pert is again required to iteratively test and debug the knowledge base until
he feels it is satisfactory, with the added difficulty of having to simplify a
decision tree at perhaps every iteration.

PRISM was designed as an alternative to ID3 for use when the knowl-

edge base would be better expressed in modular rule form rather than as

a decision tree. As with all rule induction systems, if the training set is

incomplete, PRISM's output cannot be guaranteed to be totally error-free.
But because PRISM searches only for necessary and sufficient attributes,

and tends to capture the essence of causality, any errors should be easily
identifiable. The advantage is that PRISM's output can be examined one

rule at a time. If a faulty rule is identified, it can either be corrected by

hand or a counter-example can be added to the training set and the program

re-run. In this way rapid progress can be made, as the inclusion of a new

instance which supplies new information usually has an immediate beneficial

effect on the quality of the rules. Consequently, PRISM provides a starting

point much further along in the elicitation process than starting with noth-
ing or starting with an inappropriate representation. The laborious task of

testing and refining a knowledge base can be simplified considerably without

introducing an expensive overhead to deal with the difficulties of a complex

representation language or control structure.
The development of PRISM is still in its early stages. Nevertheless, its

performance has been shown to better that of ID3 in some domains (see

section 9.6). The predictive power of induced rules is an important issue.

It will most often be the case that rules induced from incomplete training

sets will be expected to predict the class of unseen instances. ID3 performs

very well in this respect - in the chess endgame referred to in section 9.6

a decision tree induced from 10% of the complete data set classifies more

than 92% of instances correctly. PRISM, however, performs better still.

A set of rules induced by PRISM classifies the same number of instances

correctly and significantly fewer incorrectly. PRISM's rules are also less

specific, indicating that the goal of avoiding redundancy has been achieved

169

without sacrificing predictive power.
Of course, PRISM can only induce modular rules. It cannot induce de-

cision trees; nor can it induce structural descriptions at the present time.

Its representation language is not as rich as, for example, that of AQ11.

But PRISM is not intended to be a universal induction program, applicable
in all situations. Indeed, it, was designed for use only in those situations

where simple modular classification rules are required and a sufficient num-
ber of examples are available. However, examples of such applications are

numerous. The ID3 algorithm has been used in, amongst others, medical,

engineering and business domains, some of which might be better repre-

sented in modular rule form rather than as a decision tree. Because PRISM

induces modular rules from training sets which are identical to those used
by ID3, it is potentially more suitable than ID3 to these applications.

However, PRISM cannot yet deal with attributes with linear values, nor

has its performance in the presence of noise been evaluated. Thus some
further work on PRISM has to be undertaken before it can be used for

complex real-world applications. This futher research is discussed below.

11.2 Directions for further research

The project reported in this thesis was concerned with designing an induc-

tion algorithm with a sound theoretical basis for inducing modular classi.

fication rules from sets of examples. The work was completed successfully

and PRISM performs exceptionally, well when applied to a training set of

high quality examples. However, real-world problems do not always present

examples which are of high quality. Very often, data is noisy, uncertain or

ambiguous, and the most obvious next step in the development of PRISM

is to assess its performance in these cases. Quinlan [45] has shown that the

presence of noise or uncertainty in data can have a significant impact on

the quality of induced rules. No algorithm can be expected to perform well

with very poor data, but it is essential to ensure that any degradation in

performance is graceful; that the algorithm is robust enough to cope with

170

levels of noise which can be reasonably expected in the real world. PRISM,

in its current form, has not been designed to deal with noise, and will al-

most certainly require some modification - at least some sort of stopping

criterion may need to be included if its output is to remain dependable.

Further research is necessary to determine precisely how errors are caused
by different types of noise and thus what sorts of preventative measures are
likely to be effective in minimizing these errors.

Uncertainty or ambiguity in the data can arise at all levels, e. g. it may
be that the value of an attribute is uncertain, or it may not be possible to

classify one or more instances with certainty, or two experts may disagree on

either of these or other points. Because PRISM has an information theoretic

foundation, it should be amenable to modification to allow induction under

uncertainty.
PRISM's ability to resolve ambiguity caused by contradictory rules seems

highly successful in the domain to which it was applied. However, clashes

may need to be resolved in different ways for different domains, or perhaps a
domain expert may prefer clashes to remain unresolved but to include some

measure of uncertainty. An assessment needs to be made of the relative

merits of different approaches and their applicability to different domains.

Further work is also necessary to enable PRISM to deal with attributes

which have linear values. Chapter 10 described three ways in which this

might be done. Of these, the third method - that of range selection -

appeared to be the most promising. However, this method employed an ad

hoc procedure for determining the precise limits of a relevant range, and al-

though the algorithm seemed quite good at selecting appropriate ranges, this

slight imprecision tended to cause errors which were propagated throughout

the whole induction process. Further research is necessary to determine a

better way of fixing limits and a way of preventing the propagation of er-

rors. Alternatively, the second method, that of iterative binary split, might

be found to be appropriate if the algorithm could be prevented from per-

forming the split in such a way as to isolate a single value or very small

range of values, thus causing over-specialization.

171

Other related work could include, for example, the designing of a PRISM-

like algorithm to induce structural descriptions, or for incremental induction.

A useful development might be a system which uses PRISM to perform

structured induction in a similar way to that described by Shapiro in [52].

On a broader front, there is still much research to be done in the gen-

eral field of knowledge elicitation for expert systems. It has been recognized

that modern expert systems should not depend on a single representational

form, that different parts of the domain may each need to be represented

differently, for which a knowledge engineer may need to call upon differ-

ent elicitation techniques. At the present time, knowledge engineering is

still very much an art. There is no set theory as to how the task should

be performed. Indeed, there are no guidelines for choosing the best repre-

sentational form for a domain or part of a domain, let alone for eliciting

knowledge in that form. The definition of such a set of guidelines, although

a major undertaking, could make a useful contribution to the field. Armed

with a basic methodology, knowledge engineers would no longer be. pioneers

in a new field of expertise, but true expert practitioners in the domain of

knowledge engineering. As such, they should have to hand some basic tools

of the trade. They should not be expected to make each tool afresh as it is

needed, but to be able to use tools which are readily available and either per.

fectly suited to the job in hand or needing no more than minor adjustment.

PRISM could be one such tool.

172

Bibliography

[1] T. R. Addis. Designing Knowledge-Based Systems. Kogan Page, Lon-
don, 1985.

[2] J. L. Alty and M. J. Coombs. Expert Systems, Concepts and Examples.

NCC Publications, Manchester, England, 1984.

[3] A. Barr and E. A. Feigenbaum. The Handbook of Artificial Intelligence.
Volume 1, William Kaufmann, Los Altos, 1981.

[4J A. Barr and E. A. Feigenbaum. The Handbook of Artificial Intelligence.

Volume 2, William Kaufmann, Los Altos, 1982.

[5] A. H. Bond, editor. Machine Learning: Infotech State of the Art Report.

Series 9 No. 3. Pergamon Infotech Ltd., 1981.

[6] M. A. Bramer. Automatic induction of rules from examples: a critical
analysis of the ID3 family of rule induction systems. In Proceeding's

of the First European Workshop on Knowledge Acquisition, Reading,

England, September 1987.

[7] M. A. Bramer, editor. Research and Development in Expert Systems:

Proceedings of the Fourth Technical Conference of the British Computer

Society Specialist Group on Expert Systems, University of Warwick,

Cambridge University Press, Cambridge, England, 1984.

[8] M. A. Bramer. A survey and critical review of expert systems re-

search. In D. Michie, editor, Introductory Readings in Expert Systyems,

pages 3-29, Gordon and Breach, London, 1982.

173

[9] B. G. Buchanan. Research on Expert Systems. Technical Report STAN.
CS-81.837, Stanford University, Dept. of Computer Science, Stanford
University, Stanford, CA, »'1981. ,-

[10] B. G. Buchanan. Some Approaches to Knowledge Acquisition. Techni-

cal Report STAN-CS-85-1076, Stanford University, Dept. of Computer

Science, Stanford University, Stanford, CA, 1985.

[11] B. G. Buchanan and E. A. Feigenbaum. DENDRAL and meta-
DENDRAL: their applications dimension. Artificial Intelligence, 11: 5-
24,1978.

[12] J. G. Carbonell, R. S. Michalski, and T. M. Mitchell. An overview

of machine learning. In R. S. Michalski, J. G. Carbonell, and T. M.

Mitchell, editors, Machine Learning: An Artificial Intelligence Ap-

proach, Tioga, Palo Alto, 1983.

[13] J. Cendrowska. PRISM: an algorithm for inducing modular rules. In-

ternational Journal of Man-Machine Studies, 27: 349-370,1987.

[14] J. Cendrowska and M. A. Bramer. A rational reconstruction of the
MYCIN consultation system. International Journal of Man-Machine

Studies, 20: 229-317,1984.

[15] P. R. Cohen and E. A. Feigenbaum, editors. The Handbook of Artificial
Intelligence. Volume 3, William Kaufmann, Los Altos, 1982.

[16] R. A. Corlett. Explaining induced decision trees. In Expert Systems 83:
Proceedings of the Third Technical Conference of the British Computer
Society Specialist Group on Expert Systems, 1983.

[17] R. Davis. ' Applications of Meta-Level Knowledge to the Construc-

tion, Maintenance and Use of Large Knowledge Bases. Technical Re-

port STAN-CS-76-552, Stanford University, Computer Science Dept.,
Stanford University, Stanford, 1976.

174

[18] R. Davis and J. King. An overview of production systems. In E. W.

Elcock and D. Michie, editors, Machine Intelligence 8, pages 300-332,

Edinburgh University Press, Edinburgh, 1976.

[19] It. 0. Duda, J. Gaschnig, and P. E. Hart. Model design in the prospec-
tor consultant program for mineral exploration. In D. Michie, editor,
Expert Systems in the Microelectronic Age, Edinburgh University Press,

Edinburgh, 1979.

[20] E. Edwards. Information Transmission. Chapman and Hall, London,

1964.

[21] K. Ericsson and H. A. Simon. Verbal reports on data. Psychological
Review, 87: 215-251,1980.

[22] E. A. Feigenbaum. Expert systems in the 1980s. In A. H. Bond, editor,
Machine Learning: Infotech State of the Art Report. Series 9 No. 8,

Pergamon Infotech Ltd., 1981.

[23] E. A. Feigenbaum. Knowledge engineering: the applied side. In J. E.

Hayes and D. Michie, editors, Intelligent Systems: The Unprecedented

Opportunity, Ellis Horwood Ltd., Chichester, England, 1984.

[24] E. A. Feigenbaum. Themes and case studies of knowledge engineer.
ing. In D. Michie, editor, Expert Systems in the Microelectronic Age,

Edinburgh University Press, Edinburgh, 1979.

[25] P. E. Friedland. Knowledge-Based Experimental Design in Molecular

Genetics. PhD thesis, Heuristic Programming Project, Computer Sci-

ence Dept., Stanford University, Stanford, CA, 1979.

[26] B. It. Gaines. An overview of knowledge-acquisition and transfer.
In B. R. Gaines and J. H. Boose, editors, Knowledge Acquisition for

Knowledge-Based Systems, Academic Press Ltd., London, 1988.

[27] S. Goldman. Information Theory. Dover Publications, New York, 1968.

175

[28] A. E. Hart. Experience in the use of an inductive system in knowledge

engineering. In M. A. Bramer, editor, Research and Development in

Expert Systems: Proceedings of the Fourth Technical Conference of the

British Computer Society Specialist Group on Expert Systems, Cam-

bridge University Press, Cambridge, 1985.

[29] E. - B. Hunt, J. Marin, and P. J. Stone. Experiments in Induction.

Academic Press, New York, 1966.

[30] I. Kononenko, I. Bratko, and E. Roskar. Experiments in Automatic

Learning of Medical Diagnostic Rules. Technical Report, Jozef Stefan

Institute, Ljubljana, Yugoslavia, 1984.

[31] J. Kunz et al. A Physiological Rule-Based System for Interpreting Pul-

monary Function Test Results. Technical Report HPP-78-19, Heuristic

Programming Project, Computer Science Dept., Stanford University,

Stanford CA., 1978.

[32] J. McDermott. Rl: a rule-based configurer of computer systems. Arti-
ficial Intelligence, 19: 39-88,1982.

[33] R., S. Michalski. A theory and methodology of inductive learning. At-

tificial Intelligence, 20(2), February 1983.

[34] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors. Machine

Learning: An Artificial Intelligence Approach. Tioga, Palo Alto, 1983.

[35] R. S. Michalski and It. L. Chilausky. Knowledge acquisition by encod.
ing expert rules versus computer induction from examples :a case study
involving soybean pathology. International Journal of Man-Machine

Studies, 12,1980.

[36] R. S. Michalski and J. B. Larson. Selection of Most Representative

Training Examples and Incremental Generation of VL1 Hypotheses:

The Underlying Methodology and the Description of Programs ESEL

and AQ11. Technical Report 867, Computer Science Dept. University

of Illinois, Urbana, 1978.

176

[37] D. Michie. Current developments in expert systems. In J. R. Quinlan,

editor, Applications of Expert Systems, Addison-Wesley, Maidenhead,

1987.

[38) D. Michie. Inductive rule generation in the context of the fifth gen-
eration. In R. S. Michalski, editor, Proceedings of the International
Machine Learning Workshop, University of Illinois, June 1983.

[39] T. M. Mitchell. Version spaces: a candidate elimination approach to

rule learning. In Proceedings of the Fifth International Joint Conference

on Artificial Intelligence, pages 305-310, MIT, Cambridge, Mass., 1977.

[40] N. J. Nilsson. Principles of Artificial Intelligence. Springer-Verlag,

1980.

[41] P. O'Rorke. A Comparative Study of Inductive Learning Systems

AQJIP and ID-3 Using a Chess Endgame Test Problem. Technical

Report UIUCDCS-F"82-899, Dept. of Computer Science, University of
Illinois, September 1982.

[42) A. Paterson and T. Niblett. ACLS User Manual. Technical Report,
Intelligent Terminals Limited, Glasgow, 1982.

[43] J. R. Quinlan. Decision trees as probabilistic classifiers. In P. Langley,

editor, Proceedings of the Fourth International Workshop on Machine
Learning, Morgan Kaufmann, Los Altos, CA, June 1987.

[44] J. R. Quinlan. Discovering rules by induction from large collections of
examples: a case study. In D. Michie, editor, Expert Systems in the
Micro-Electronic Age, Edinburgh University Press, 1979.

[45] J. R. Quinlan. The effect of noise on concept learning. In R. S. Michal.

ski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning:
An Artificial Intelligence Approach, Morgan Kaufmann, Los Altos, Cal.
ifornia, 1986.

177

[46] J. R. Quinlan. Induction of decision trees. Machine Learning, 1: 81-106,

1986.

[47] J. It. Quinlan. Induction Over Large Data Bases. Technical Re-

port HPP - 79'- 14, Heuristic Programming Project, Stanford Uni-

versity, 1979.

[48] J. R. Quinlan. Learning efficient classification procedures and their

application to chess end games. In R. S. Michalski, J. G. Carbonell, and
T. M. Mitchell, editors, Machine Learning: An Artificial Intelligence

Approach, Tioga, Palo Alto, 1983.

[49] J. R. Quinlan. Learning from noisy data. In It. S. Michalski, editor,
Proceedings of the International Machine Learning Workshop, Univer-

sity of Illinois, June 1983.

[50] J. R. Quinlan, P. J. Compton, K. A. Horn, and L. Lazarus. Inductive

knowledge acquisition: a case study. In J. R. Quinlan, editor, Applica-

tions of Expert Systems, Addison-Wesley, Maidenhead, 1987.

[51] C. E. Shannon and W. Weaver. The Mathematical Theory of Com-

munication. University of Illinois Press, Urbana, 1949. Published in

1964.

[52) A. D. Shapiro. The Role of Structured Induction in Expert Systems.
PhD thesis, The University of Edinburgh, 1983.

[53] E. H. Shortliffe. Computer-Based Medical Consultations: MYCIN. El.

sevier, New York, 1976.

[54] H. A. Simon and G. Lea. Problem solving and rule induction: a unified

view. In L. Gregg, editor, Knowledge and Cognition, pages 105-127,

Lawrence Erlbaum Associates, Potomac, Maryland, 1974.

[55] L. Steels. Second generation expert systems. In M. A. Bramer, edi-
tor, Research and Development in Expert Systems III: Proceedings of

178

the Sixth Technical Conference of the British Computer Society Special-

ist Group on Expert Systems, Cambridge University Press, Cambridge,

1986.

[56] M. J. Stefik. Planning with Constraints. PhD thesis, Heuristic Pro-

gramming Project, Computer Science Dept., Stanford University, Stan-

ford, CA, 1980.

[57] M. Welbank. A Review of Knowledge Acquisition Techniques for Ex-

pert Systems. Technical Report, British Telecom, Martlesham Heath,

Ipswich, England, 1983.

[58] P. H. Winston. Artificial Intelligence. Addison-Wesley, second edition,

1984.

[59] P. H. Winston. Learning Structural Descriptions from Examples. Tech-

nical Report AI-TR-231, MIT, Cambridge, Mass., Sept. 1970.

[60] It. M. Young. Role of intermediate representations in knowledge elici-

tations. In D. S. Moralee, editor, Research and Development in Expert

Systems: Proceedings of Expert Systems 87, the Seventh Annual Tech-

nical Conference of the British Computer Society Specialist Group on

Expert Systems, Cambridge University Press, Cambridge, 1987.

179

Appendix A

PRISM

{-- }
{ PRISM° }

{ Jadzia Cendrowska June 1989 }

{ }

{ A program for inducing modular rules from examples. }

{ }

{ Inputs : static data base }

{ training set of examples }

{ Output : set of modular rules }

{ }

{ Language : ProPascal (version iid 2.1) for MS-DOS }

{ }

{-- ----------}

180

program prism;

{globale}

const maxnatt = 7;

maxninst = 720;

maxnpv = 20;

maxrul = 50;

namelength = 6;

type zott = 0.. 3;

byte = 0.. 255;

twobyte = 0.. 65535;

{maximum no. of attributes}
{maximum no. of instances}

{maximum no. of possible attribute values}
{maximum possible no. of rules}
{maximum length of attribute name)

vallist = array CO.. maznatt] of byte;

(used for storing either an instance or a)
{rule. Each element specifies the position}
{of a value in a list of possible values.)

(The zeroth element refers to the class;)

{the remaining elements refer to each)
{attribute in turn. If used for storing a)
(rule, 0 indicates that the attribute is)
{irrelevant. }

rule = record

abbr vallist; {abbreviated rule}

-lprem : byte; {no. of clauses in the premise}

noic, npic twobyte;

{number of actual instances and number of}
{possible instances covered by this rule,)

{respectively}

toogeneral : boolean;
{indicates whether the rule needs to be}

{specialized}

clashwith : array[O.. maxrul] of byte;

{a list of rules which contradict this rule}

181

end; {record}

att = record

name : packed array Cl.. namelength] of char;

npv : byte; {number of possible values}

pdv : array [i.. maxnpv] of twobyte;
(list of possible values)

end; {record}

tspt = array CO.. maxninst] of twobyte;
{list of instances. Each element is the}
{position of an instance in the training}
{set. }

ft = array to.. maxnpv. i.. maxnpv] of byte;

{frequency table used for calculating}
{relative information gain}

var f: text;

natt,

nclass,

nrul : byte; {number of attributes, classes and rules}

ninst : twobyte; {number of instances}

is : array [i.. mazninst] of vallist;
{contains the training set}

attset : array CO.. maznatt] of att;
(list of attributes. The zeroth attribute)
(refers to the class.)

pt1,

pt2,

pt3 : tspt; {contain various subsets of the training set}

182

used : array [i.. maxnatt] of boolean;

{indicates which attributes are available}
{for selection}

bestrule,

temprule : rule; {used for storing rules currently being}

{induced. }

rulset : array[1.. maxrul] of rule; {set of induced rules}

uniq : array[O.. mazninst] of twobyte;

{list of instances covered uniquely by rule}
{to be specialized}

uvals : array[O.. maznpv] of byte;

{list of values of a specific attribute}
{appearing in array uniq}

{---}

procedure exitprog(returncode: integer); external;

{e=xxxcaxcxxs=xxxýxxo=axýxxxxxýxxxcxxxxxsxxxsaxxxxeasaaasssasassssSan= esssss}

183

procedure initdata;

{initialises all data and prepares the training set}

var tit : string[ll];

ch : char;

a, i, j, pos : integer;

begin
{read in the attribute details from the static database and}
{complete the attribute records}

write('Hame of static data file? ');

readln(fil); assign(f, fil); reset(f);

read(f, natt); I

if natt > maznatt then

begin

writeln('Number of attributes exceeds the maximum allowed');

ezitprog(1);

end;

for a :=0 to natt do

begin

readln(i);

read(i. ch);

while ch ='' do read(f. ch);

{read in the name of the attribute}
i. =1;

attset[a]. name [i] := ch;

read(f. ch);

while ((ch <> ' ') and (i < namelength)) do

begin

i := i+1;

att s et [a] . name [i7 := ch;

read(f, ch);

end;

184

i := i+1;

while i <= namelength do

begin

attset[a]. name [i) :='';
i .= i+i;

end;

{read the number and list of possible values)

read(f. attset[a]. npv);
if attset[a7. npv > maznpv then

begin

vrite('Number of possible values of attribute

ariteln(' exceeds the maximum allowed');

exitprog(1);

end;
for i : =1 to attset[a]. apv do

read(f, attset [a]
. pdv [i]) ;

end;

nclass := attset[OJ. npv;

close(t);

{read and prepare the training setY

write('Name of file containing training set?

readln(fii); assign(f. tii); reset(f);

read(S. ninst);

if ninst > maxninst then

begin

writeln('Hnmber of instances exceeds the maximum allowed');

exitprog(i);

end;

for i :=1 to ninst do

begin
for j :=1 to natt do

185

read(f, ts [i, j));

read(f, ts[i, 0]);

end;

close(t);

{modify is so that each element represents the position of a value}
{in the list of possible values of an attribute, rather than the}
{value itself. }

for i :=1 to ninst do

for j :=0 to natt do

begin

p08 :=0;

repeat

pos := pos+i;

until (pos > attset[j]. npv) or
(ts[i. j] = attset[j]. pdv[pos]);

if pos <= attset[j]. npn then

ts[i, j] := pos

else
begin

it j=0 then

vrite('The class value')

also vrite('The value of atttibute no.

vriteln(' in instance no. ', i: i, ' cannot be identified');

ezitprog(1);

end;

end;

{prepare a file for results and initialize all structures tor}

{holding rule information}

write('Name of file to write to? ');

readln(fil); assign(f. fil); rewrite(f);

for i :=i to maxrul do

begin

rulset[i]. toogeneral := false;

186

for j :=I to mairul do

rulset[i]. clashwith[j] :=0;

rulset[i]. lprem :=0;

end;

end;

. ________________________ _ ____________________ýý_ýscýeo=xsszasaasz=ssssas}

procedure checlass (cc : byte; var w: tspt; var b: zott);
{Checks the classes of instances in the training set w and returns }

{0,1,2 or 3: }

{0 = the training set is empty }

{i = all instances are of class cc }

{2 = there are no instances of class cc in the training set w}
{3 = some but not all instances are of class cc }

var i: twobyte;

begin
b :=0;
i: =1;

while (i <= v[0]) and (b <> 3) do

begin

if is[v[i], O] = cc then

if b=2 then b :=3

else b :=1;
if is [w [i]

. 0] <> cc then

if b=I then b :=3

else b: 2;

i := i+1;

end;

end;

{---}

procedure countval (a : byte; var iregtab : it);

{Sills in the 2-dimensional array fregtab, where col is the colwnn and}

187

{cls is the row in the array. The elements are as follows, e. g. for}
{attribute A, where A has two possible values, and there are two classes; }
{ ----------------------- ------------------------ }
{ I total no. of instances ltotal no. of instances I }

which have the first I which have the second I }
{ I value for A value for AI }

{ I----------------------- I-----------------------I }
{ I no. of instances I no. of instances I }
{ I which have the I which have the I }

{ I first value for AI second value for AI }

{ I and are of class II and are of class 1I }

{ I----------------------- I-----------------------I }
{ I no. of instances I no. of instances I }

{ I which have the I which have the I }

{ I first value for AI second value for AI }

{ I and are of class 2I and are of class 2I }

{ ------------------------ ----------------------- }

var i, j. col, cls : byte;

r: twobyte;

begin

for i :=0 to nclass do

for j :=1 to attset[a]. npv do

iregtab[i, j] :=0;

while r <- pt3 [0] do

begin

col ts[pt3[r], a7;

cls ts[pt3[r], 0];

iregtab[cls, col] := iregtab[cla, col]+i;

r .= r+i;

end;

for j :=1 to attset[a]. npv do

188

for i :=1 to nclass do

iregtab[O. j] := tregtab[O. j]+fregtab[i, j];

end;

{---}

function checkprem (ins : twobyte; var pram : vallist) : boolean;

{returns true if the instance ins is covered by the premise of the}

{rule prem. false otherwise)

var p: byte;

checkp : boolean;

begin

checkp := true;

p

while (p <= natt) and checkp do

if (prem[p] <>0) and (ts[ins, p] <> prem[p]) then

checkp := false

else p p+1;

checkprem checkp;

end;

{---}

procedure iindcovers;

{counts the no. of instances which are, covered by the rule temprule)

var i: twobyte;

begin

with temprule do

for i :=1 to ninst do

it (ts[i. O] = abbr[0]) and checkprem(i, abbr) then

noic := noic + 1;

end;

189

{---)

procedure getav (cc : byte; var basta, bestv : byte);

{uses the frequency table freqtab to calculate which attribute-value}
{pair provides the most information about class cc}

var noi, a, j: twobyte;

into, 2: real;
ttab it;

begin

beste 0; {the best attribute so far}

bestv 0; {its best value so far}

info :=0; {indicates relative information gain)

not :=0; {the number of instances covered}

for a :-1 to natt do

if not(used[a]) then {attribute a is available for selection}
begin

countval(a, ftab); {sets up the frequency table}

for j :=1 to attset[a]. npv do

if ftab[O, j] <> 0 then

begin

{calculate relative information gain for a}

f := ftab[cc, j]/ftab[O, j];

if ((abs(f-info) < 0.001) and
(ftab[cc, j] > noi)) or
(((f-info) > 0.001) and
(ftab[cc, j] > 0)) then

{attribute a, value J. provides more}
{information than besta, besty}

begin

info .=f;
not ftab[cc, j];

beste :=a;

190

beste

end;
end;

and;

end;

{---}

procedure selectin (a. v : byte);

{removes from pt3 any instances which do not have value v for}

{attribute a}

var m, n: twobyte;

begin

m. =1;

n

while m <= pt3[0] do

begin

it is [pt3 [m]
. a] =v then

begin

pt3 [n] pt3 [m] ;

n .= n+i;

and;

m m+i;

end;

pt3[0] .= n-i;

end;

{-- ----}

- procedure ftrule (cc : byte);

{induces a rule temprule from the training set represented by pt2}

tear besta, bestv : byte;

P, i: twobyte;

191

t: zott;

begin
{initialize temprale}

for i :=1 to natt do

begin

used[i] := false;

temprule. abbr[i] :=0;

-- end;

temprule. noic :=0;
for i :=0 to ninst do

pt3[i] := pt2[i]; {pt3 will contain only those instances}

{covered by temprule. These will later be}

{removed from pt2. }

t 3;

p 0; {index for the premise of temprule}

getav(cc, besta, bestv); {finds the best attribute-value pair}

while (t = 3) and (besta <> 0) do

begin
{add the new term to the premise of temprule}

p "=p+1;
used[besta] := true;

temprule. abbr[besta) := bestv;

{modify pt3 so that it contains only instances which have}

{value bestv for attribute basta}

selectin(besta. bestv);

{check if all instances in pt3 are of class cc}

checlass(cc, pt3, t);

(ii not. select the next attribute-value pair)

it t=3 then getav(cc, besta, bestv);

end;

192

temprule. lprem :=p;
temprale. abbr(o] := cc;

{count the number of instances covered by temprule}

findcovers;

end; -

{--

procedure modmts (var w: tspt; var rl : vallist);
{removes from the training set w all instances covered by rule rl}

var i, n: twobyte;

begin

n :=0; {index for new training set}
for i :=1 to v[0] do {v[0] contains the no. of instances in v)

if (ts [a [i] . 0] <> rl [0]) or not (checkprem(v [i]
, ri)) then

{instance a[i] is not covered by rl}
begin

n. =n+i;

vEn] .= W[i];

end;

v Col :=n;

end;

{---

procedure itrset (cc : byte);
{induces all rules for the class cc}

var t: zott;

begin

ftrule(cc); {induces the first rule}

193

bestrule := temprnls;

{remove from pt2 all instances covered by temprule}

modmts(pt2. temprule. abbr);

(check it all instances in pt2 are of class cc}

checlass(cc. pt2. t);
4-

{it not. induce the next rule and modify pt2 accordingly}

while tw3 do

begin

Itrale(cc);

modmts(pt2, temprmle. abbr);

(keep the more general rule)

it (temprnle. noic > bestrule. noic) or
((temprule. noic = bestrule. noic) and
(temprule. lprem < bestrule. lprem)) then

bestrule :s temprule;

checlass(cc, pt2. t);

end;

end;

{---- --

procedure bestcover;

{adds a rule to°rulset and calculates the possible no. of instances}

{covered}

var i: byte;

begin

nrul := nrul + 1;.

it nrnl > mazrul then

begin

194

vriteln('Yamber of rules exceeds the maximum allowed');

exitprog(i);

end;

rulset[nral] :- bestrnle;

with rulset[nrnl] do

begin

{calculate the possible number of instances covered}

npic :=1;
for i :z1 to natt do

it abbr[i] u0 then

npic := npic * attset[i]. npv;

end;

end;

{---

procedure consistency (cc : tvobyte);

{checks it the latest rule contradicts any rule previously induced, }

{and if so, selects one for specialization}

var i. j byte;

clash : boolean;

begin

for i :=1 to (nrul-i) do

{check that rulset[urul] and rulset[i] conclude about}
{different classes}
if (cc <> rulset[i]. abbr[0]) then

begin
(two rules do not contradict each other only if they)
{reference different values of the same attribute}
(otherwise a clash occurs)

clash true;
j: =
while clash and (j <= natt) do

195

begin

if (rulset[i]. abbr[j] <> ruleet[nrul]. abbr[j]) and
(rulset[i]. abbr[j] <> 0) and
(rulset[nrul]. abbr[j] <> 0) then

clash := false;

j: = j+1;
end;
{Select the less general rule for specialization. If the}

{two rules are equally general, select nrul unless i has}

{already been selected and nrul has not. Thus if i is}

{specialized because it contradicts a rule other than nrul)
{the clash with nrul may also be removed, and nrul may no}
{longer need to be specialized}

if clash then

if (rulset [i] . npic < rulset Cnrul]
. epic) or

((rulset(i]. npic = rulset[nrul]. npic) and
rulsetCi]. toogeneral and

not(rulset[nrul]. toogeneral)) then

with rulset [i] do

begin

toogeneral :- true;
{add nrul to clashvith list for i}

clashwith[O] := clashwith[0] + 1;

clashvith[clashaith[O]] := nrul;

end

else

with rulset[nrul] do

begin

toogeneral := true;
{add i to clashwith list for nrul}

clashwith[O] := clashwith[O] + 1;

clashwith[clashwith[0]] :=i;

end;

end;

end;

196

{--"

function clashes (x, y: byte) : boolean;

{returns true it the two rules x and, y. contradict each other, }

{false otherwise}

var a: byte;

cl : boolean;

begin

a
it rulset[z]. abbr[O] = rulset[y]. abbr[0] then

cl := false

else cl : =-true;.

{two rules contradict each other if the classes are different and}

{each attribute is either not specified in one or both rules, or}
{has the same value in both rules}

while cl. and (a <= natt) do

if (rulset[x]. abbr[a] <> rulset[y]. abbr[a]) and

(rule at[x]. abbr[a] <> 0) and (rulaet[q]. abbr[a] <> 0) then

cl := false,

also a :=a+1;

clashes := cl;

end;

{--

procedure finduniq (r : byte);
{linde all instances which are covered uniquely by rule r and stores)
{them in array uniq}

var i. n: twobyte;
j: byte;

covered : boolean;

197

begin

uniq[0] :=0; {uniq[0] = no. of instances covered uniquely}

{first find all instances covered by rule r}
for i :=1 to ninst do

if (ts [i. 0] = rulset [r] . abbr[0]) and

checkprem(i, rulset[r]. abbr) then

begin

nniq[0] := uniq[0] + 1;

nniq[uniq[0]] :=i;

end;

{next remove from uniq all instances which are covered by}

{some other rule}

n: =0;
for i :=I to uniq[O] do

begin

j
covered := false;

while ((j <= nrul) and not(covered)) do

if ((j <> r) and (ts[uniq[i], 0] = rulset[j]. abbr[O]) and
checkprem(uniq[i]. rulset[j]. abbr)) then

covered := true

else j :=j+1;
if not(covered) then

begin

A . _n+1;

unigtnj := unigti7;

end;

end;

uniq[0] : n;

end;

{---}

198

procedure Sindbestatt (r : byte; var a: byte);

{selects from the available attributes the attribute which occurs most}
{frequently in the rules which contradict rule r}

var i, z. inn. ann : byte;

begin

a :=0; {a is the most frequently used attribute}

anu :=0; {anu is the number of times a is used}

for i :=1 to natt do

if rule et[r]. abbr[i] =0 then
{attribute i is available for selection}

begin

inn :=0; {inu is the number of times i is used}
for x :=1 to rulset[r]. clashvith[0] do

{rulset[r]. clashvith[x] is a rule which clashes with r}
if rnls et [rule et [r] . clashwith [x]]. abbr [i] <> 0 then

{attribute i is used in this rule}

inu := inu + i;

if inu > anu then
{attribute i is used more often than attribute a}
begin

a :=i;

anu inu;

end;

end;

end;

{---}

procedure findvals (a : byte);

{stores in array uvals all values of attribute a which are used in the}

{set of instances comprising uniq}

var i: twobyte;

199

j byte;

begin

uvals[0] :=0; {number of elements in uvals}
for i :=i to nniq[0] do

begin

{search ovals for the value of a in instance uniq[i]}
j: 1;

while (j <= ovals [0]) and (ts [uniq[i] . a] <> uvals [j]) do
j := j+1;

{if the value is not already there, add it to uvals}
if j> uvals[0] then

begin

uvals[j] := ts[uniq[i], a];

uvals[0] := uvals[O] + 1;

end;

end;

end;

{---}

procedure specialize;
{specializes rules to remove all contradictions}

var r, n, i, a: byte;

begin f

r. =1;

while r <= nrul do

begin

if rulset[r7. toogeneral then

{remove from clashwith list all rules which no longer}

{contradict rule r}

begin

a :=0;

200

for i :=1 to rnlset[r]. clashwith[0] do

it (rulset[r]. clashwith[i] > r) or

clashes (rulset[r]. clashwith[i], r) then-

begin

n . =n+ 1;

rulset [r] . clashaith[n] := rulset [r]
. clashwith[i] ;

end;

rulset[r]. clashwith[O] :=n;

if rulset[r]. clashvith[O] =0 then

rulset[r]. toogeneral false

also {specialize rule r}
if rulset[r]. npic >1 then

{r is not maximally specific. A maximally specific)
{rule only cotradicts another rule if there are}
{contradictory instances in the training set}

repeat
{find all instances covered uniquely by r}

finduniq(r);

{ii there are no instances covered uniquely}
{this rule can be removed and so does not}
(need to be specialized}
it uniq[0] >0 then

begin

{select an attribute}

findbestatt(r, a);

{search uniq for values of a}

findvals(a);

{specialize r by adding attribute a, taking}
{the first value for a which appears in uvals}

rulsetCr]. abbr[a] := uvals[i];

rulset[r]. lprem := rulset[r]. lprem + 1;

rulset[r]. npic := round(rulset[r]. npic/

201

attset [a3 . npv) ;

{create a new rule for every other value}
{in uvals}
for i :=2 to uvals[O] do

begin

nrul := nrul + 1;

if nrul > mazrul then

begin

vriteln('Number of rules exceeds the maximum allowed');

exitprog(1);

end;

rulset[nrul] := rulset[r];

rulset[nrul]. abbr[a] := uvals[i];

end;

{remove from the clashvith list all rules}
{which no longer contradict rule r}

n :=0;
for i :=1 to rulset[r]. clashaith[0] do
if clashes (rulset[r]. clashwith[i], r) then

begin

n. =n+ 1;

rulset[r]. clashaith[n]

rulset[r]. clashwith[i];

end;

rulset[r]. clashwith[0] :=n;

{ii there are no more contradictory rules. }

{rule r does not need to be specialized}
{further}

if rulset[r]. clashwith[0] =0 then

rulset[r]. toogeneral :_ false;

end;

until not(rulset[r]. toogeneral) or

(uniq[0] = 0) or (rulaet[r]. npic = 1);

202

{count the number of instances covered by rule r}
with ralset[r] do

begin

noic :=0;
for i :=I to ninst do

if (ts[i, 0] = abbr[0]) and

checkprem(i, abbr) then`

noic := noic + 1;

end;

end;

r :=r+1;

end;

end;

{---}

procedure findrule;

{induces all rules and stores them in rulset}

var i: twobyte;

cc : byte;

t: zott;

begin

nrul :=0;
for cc :=1 to nclass do

begin

{initialize ptl to represent the full training set}

for i :=0 to ninst do

pti[i] :=i;

ptl[0] := ninet;

{check if all instances in ptl are of the same class}

checlass(cc. ptl. t);

203

case t of
0: begin

writeln(f. 'The training set is empty');

exitprog(1);

end;

i begin

writeln(f. 'All instances are of class ', cc: l);

ezitprog(i);

end;

2 writeln(f, 'There are no instances of class ', cc: l);

3: while t=3 do

begin

{induce a set of rules for class cc and add the}

{most general one to rulset}

for i :=0 to ninst do pt2[i] := ptl[i];

ftrset(cc);

bestcover;

{check consistency with other rulse in rulset}

consistency(cc);

{remove from ptl all instances covered by this rule}
{and check the classes of the remaining instances. }

modmts(pti. bestrule. abbr);

checlass(cc. pti. t);

end;

end;

end;

{specialize any contradictory rules}

specialize;

end;

204

{xoxcssxxxsxxxýxsxxxxxxxsxasaaaaasasxssýsssssýxxxxaxsxxssxsaxxxxxxxxxxxaxxsx}

procedure wrabbr;
{writes rules to file}

vas r, p, a. val : byte;

begin

for r :=1 to nrul do

if not(rulset[r]. toogeneral) then
{toogeneral is true it r does not cover any instances uniquely. }

for if there are clashing instances in the training set. i. e. }

{the attributes are inadequate}

begin

vrits(2. 'i! 0;

p. =0;
for a :=i to natt do

if rulset[r]. abbr[a] <> 0 then
begin

(write clausal

write(f, attset[a]. name: 6. ' = ');

val := attset[a]. pdv[rulset[r]. abbr[a]];

vrite(f, val: 1);

p : =p+1;
if p< rulset[r]. lprem then

begin

writeln(i, 'and': 6);

rrite(f. ' ') ;

and

else writeln(i);

end;

{write class and number of instances covered}

vrite(f. 'then '. attset[0]. name: 6, ' = ');

val. := attset[0]. pdv[rulset[r]. abbr[0]];

vriteln(f, vat: 1. '(': 10. rulset[r]. noic: 1.1)');

205

vrit. ln(i);

end;

end;

{c=coo==cocsa=aacsssazacsssssssa=sssss: ssz: satssesssssssss=ssssa=ssaaxs: sssa}

begin {prism}

initdata;

iindrule;

wrabbr;

close(s);

end.

{ca=nxaz: caczaaaszzzzxaaaszszxzes: sszsasssssazsssszsasxssaxaassaxs: asssxssa=}

206

Appendix B

Inputs

The following examples of a static data base and training set provide infor-

mation about the contact lens fitting problem detailed in Chapter 8.

The static data base:

&

Class 3123

age 3123

specRx 3123

astig 212

tears 212

tbu3123

207

The training set:

21

1 1 2 1 3 3

1 1 2 2 3 1

1 2 2 2 2 2

1 3 1 2 3 3

2 1' 1 2 2 3

2 1 2 1 1 3

2 1 2 2 2 3

2 2 1 1 2 3

2 2 1 1 3 3

2 2 1 2 1 3

2 2 1 2 3 2

2 2 2 2 2 3

2 2 2 2 3 3

2 3 1 1 3 3

3 1 1 2 3 3

3 1 2 2 1 3

3 2 1 1 1 3

3 2 1 2 2 3

3 2 1 2 3 2

3 3 2 1 1 3

3 3 2 1 3 3

208

Appendix C

The results

The following rules are those induced by PRISM from the training set given
in Appendix B. The attributes and their values are described in Chapter 9.

if age =1 and

specfx -I and

tears -2 and
tbu -3

then Class -1 (1)

if specRx -2 and

astig -1 and
tears -2 and
tbu -3

then Class =2 (2)

if age =1 and

specax -2 and

astig -2 and
tears -2 and
tbu -2

then Class -2 (1)

I

209

if tears =1

then Class =3 (8)

if tbu =1
then Class -3 (5)

if specRx =3
then Class =3 (4)

if age =2 and

astig -2

then Class =3 (4)

if astig =1 and
tbu =2

then Class =3 (3)

if age =3 and

specRx =1
then Class =3 (2)

210

