
Open Research Online
The Open University’s repository of research publications
and other research outputs

The “Mera” lahar deposit in the upper Amazon basin:
Transformation of a late Pleistocene collapse at Huisla
volcano, central Ecuador
Journal Item

How to cite:
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The “Mera” lahar deposit in the upper Amazon basin: 

transformation of a late Pleistocene collapse at Huisla volcano, 

central Ecuador 

 

 

       Abstract: 

 

The Sub-Andean zone east of the Cordillera Real, Ecuador and out to the Amazon 

basin’s western margin has been the depository of voluminous lahars related to 

volcanic activity in the Andean highlands. These lahars arrived to the Sub-Andean 

zone via gravitational transport through narrow river canyons and emplaced volumes 

surpassing several cubic kilometers over robust   inundation   zones.   This paper 

discusses the origin, flow route, depositional zone, terrace formation and geomorphic 

significance of the most important lahar deposit yet mapped in this region, that of the 

Mera lahar, which likely formed from a late Pleistocene collapse of Huisla volcano, 

followed by impounding by temporary dams behind drainage-blocking debris 

avalanche deposits (DAD), then subsequent rupture of the blockage.   The actual 

deposit of the Mera lahar has a thickness between 30 to 70 meters, is mainly 

comprised  of  DAD  breccia,  is  matrix-supported  (c 70%),  of  reddish  gray  color  

and  is   well-consolidated.   Based on geochemical and petrographic similarities, Huisla 

volcano´s DAD is the best candidate for the lahar´s source.   Huisla volcano is located 

some 90 km up valley of the bulk of Mera lahar´s mapped deposit.  Clasts of Mera 

lahar rocks and Huisla´s DAD breccias have 57-61 wt% SiO2, corresponding to 

andesites of the calc-alkaline series with mean values of 1-1.5 wt% for K2O. The 

mapped Mera lahar deposit has an actual volume estimated in 1.2 km3 compared to 

its original estimated volume of 5.4 km3. Cross-sectional widths of 1.5 to 4.5 km span 

and extend laterally beyond the actual Pastaza river channel where the lahar´s 

deposition produced high-standing isolated surfaces that are notable local 

geomorphic features of the upper Sub-Andean zone.  The flow modeling program 
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LaharFlow, employing the modern landscape as the topographic base, adequately 

simulates the flow route and inundation zones of the Mera lahar. 

 

KEY WORDS: Lahar deposits; Mera, Pastaza; Huisla volcano; Huisla DAD, Pastaza river; 

Ecuador´s Sub-Andean zone 
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          1.1 Introduction: 1 

1.1.1 -Lahars 2 
 3 

Lahars are complex mixtures of volcanic debris and water. They can be classified as debris flows 4 

(usually >50-60% sediment volume) or hyperconcentrated flows (typically 20-60% sediment volume) 5 

(Vallance, 2000; Darnell et al, 2013, Vallance and Iverson, 2015). Primary lahars may occur 6 

infrequently at volcanoes in long repose, with lapses of hundreds or more years between eruptions. 7 

 8 

Such is the case at Cotopaxi volcano whose huge primary lahars were associated with the destruction 9 

and melting of the perennial glacier by incandescent pyroclastic density currents related to large 10 

eruptions every 100 to 200 years (Mothes et al., 2004).   On the other hand, secondary lahars at 11 

Tungurahua volcano, 80 km downriver from Cotopaxi have been a common occurrence since 1999 12 

because  of  ongoing  eruptive  activity  and  subsequent  remobilization  of  fresh  volcaniclastics by 13 

precipitation on steep flanks (Mothes and Vallance, 2015).  Other lahars, of a more secondary origin 14 

are those that formed from damming of water bodies by debris avalanche deposits and then 15 

subsequent rupture of these temporary dams, as is the well-documented case at Mount St. Helens in 16 

1980 (Lipman and Mullinaux, 1981; Manville, 2015).   A case similar to the one described herein is 17 

that at Colima volcano, Mexico when a DAD (debris avalanche deposit) blocked a river about 18.5 ka; 18 

the temporary dam overflowed and breached and the resultant lahar flowed 130 km to the Pacific 19 

Ocean (Capra and Macias, 2002). Owing to the different repose times and  styles of volcanic activity, 20 

people living around or downstream of volcanoes may not anticipate or plan for dangers represented 21 

by lahars even though in the last decade lahars have killed thousands of people worldwide (Loughlin 22 

et al., 2015). Because lahars are saturated in fluids and form a dense matrix, rock fragments of varying 23 

sizes are transported and contribute to the degree of destructiveness of this phenomenon (Pierson 24 

et al., 2014). 25 

 26 

 27 

1.1.2 -Potential Source Volcanoes for Lahars Emplaced in Ecuador´s Sub-Andean Zone 28 
 29 
The Ecuadorian volcanic arc has two main cordilleras (Eastern and Western) and both of them are 30 

characterized by frequent explosive eruptions that have generated gravitational flows whose 31 

discharge and reach have been unpredictable (Hall et al., 2008).  In Ecuador there are over 40 32 

potentially active volcanoes, and many of these have yet to be adequately studied (Hall et al., 2008).  33 

At least seven volcanoes in central Ecuador that drain into the Pastaza river basin have experienced 34 

Pleistocene to Holocene-age sector collapses or important slides that transformed to lahars and 35 

flowed down the montane Pastaza river.  Volcanoes located in the middle Pastaza river headwaters 36 
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that have produced debris avalanche deposits are: Huisla and Altar (Bustillos, 2008); Chimborazo 37 

(Bernard et al., 2008; Samaniego   et   al., 2012); Carihuairazo (Vásconez R. et al., 2011; Vásconez et 38 

al., 2016); Quiñuales Massif (Herrera, 2013) and Tungurahua (Hall et al., 1999; LePennec et al., 2013) 39 

(Fig. 2). 40 

 41 

The transit of lahars borne on the flanks of steep Eastern Cordillera stratocones has been mostly 42 

confined in narrow high-gradient canyons where they remobilized important volumes of 43 

volcaniclastics which then were transported eastward to the Sub-Andean Zone and continued to the 44 

low-gradient western piedmont of the Amazon basin, far from the parent volcano. Lahars can also 45 

flow over low gradients and cover broad areas, such as the long distance lahars from Cotopaxi volcano 46 

(Mothes et al., 1998, 2004). 47 

 48 

 49 

The aim of this contribution is to explore the origin, flow routes and landscape modification 50 

associated with the Mera lahar, whose deposits outcrop along the lower Pastaza river channel (Fig. 51 

1). The Mera lahar is an example of a large-volume flow that overtopped and extended laterally 52 

beyond the preexisting channel limits of the Rio Pastaza and left high-standing surfaces above present 53 

river level. The origin of Mera lahar is believed to be a volcanic sector collapse in the upper Pastaza 54 

river catchment and its deposit is the first to be mapped in Ecuador´s Sub-Andean zone. 55 
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56 
83 57 

Figure 1. Hydrology, towns and place name locations in the study area of the Mera lahar. Inset is the trace of the Eastern 58 
and Western cordilleras, major cities and the Pacific Ocean offshore Ecuador. 59 

 60 

 61 
 62 
 63 
 64 
 65 
 66 
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 68 
Figure 2. Huisla volcano, avalanche deposit and fault trace. Yellow circle east of Ambato city represents one area of 69 
lacustrine deposits possibly related to the damming of the Cutuchi-Patate river system by the Huisla DAD. Chimborazo´s 70 
DAD deposit is outlined in tan color, and is centered around the city of Riobamba, built upon the DAD. 71 

 72 

 73 

2.1 Methodology 74 

2.1.1 Tracing the Mera Lahar: 75 

 76 

 77 

In the study area we map the Mera lahar´s beginnings as being emplaced into the Patate and Chambo 78 

rivers which join at “Las Juntas” to form the Pastaza River (Fig. 1 & 2). The Pastaza River is the 79 

master river in the area and has numerous second order high-gradient inflowing streams between 80 

Baños to El Topo town (Fig. 3).  Between El Topo and Mera towns the Pastaza canyon verves sharply 81 

south as it cuts through granites of the Abitagua batholith, where the canyon width is approximately 82 

only 0.5 km wide and Mera lahar may have experienced resistance to flow while traversing the narrow 83 

canyon, since the lahar flowed up the side canyon of the Topo river for more than 700 meters in a SW 84 

direction. 85 
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Flowing up side canyons due to hydraulic damming in the main channel was also a characteristic of 86 

the giant Osceola Mudflow, Rainier volcano during transit (Vallance and Scott, 1997).  87 

Below Mera town the Pastaza receives inputs of the Pindo and Alpayacu rivers (Figure 1), both borne 88 

on the Abitagua massif (Pratt et al., 2005).  The majority of the outcrops of the Mera lahar deposit lie 89 

between El Topo and Santa Ana on the left margin of the Pastaza River (Fig. 3), with towns of Mera 90 

and Moravia and others all built upon the terraces consisting of the lahar deposit. Along the Pastaza’s 91 

right margin only one outcrop is recognized at Cumanda. Following original deposition all along the 92 

Pastaza river and reflux into incoming side channels, such as that of the Alpayacu River, subsequent 93 

lateral erosion of the deposit has left outstanding terraces upon which the mentioned towns are 94 

established on the Pastaza´s left margin. 95 

 96 

River-borne  deposits  overlying  the  Mera  lahar  were  discharged  from  the  local  Alpayacu   river 97 

descending the Abitagua massif and the deposits are mainly granitic clasts, contrasting strongly with 98 

the andesitic components of Mera lahar. Further downriver at Santa Ana younger reworked 99 

volcanoclastic layers from the Calcaurcu volcanic complex (Ball, 2015) overly the lahar deposit. We 100 

do not observe other gravitational flow products of volcanic origin overlying the present surface of 101 

the Mera lahar (Fig. 3), even though two sector collapses of Tungurahua volcano reported by Hall et 102 

al. (1999) could possibly have had sufficient flow heights along the lower Pastaza to overbank onto 103 

the Mera lahar depositional surface.  104 

105 
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 106 
Figure 3. Mera lahar deposit map based on field mapping. Fault traces modified from Pratt et al., 2005 and Bes de Berc et al., 107 
2005). 108 

 109 

2.1.2 -Source of the Mera Lahar based on Geochemical and Petrographic Fingerprinting 110 
 111 

In order to determine the source of clastic material of the Mera lahar we examined fresh and 112 

unweathered rocks from several volcanoes in the Pastaza discharge basin and compared them with 113 

the petrography of representative clasts extracted from Mera lahar deposit. The petrography of lithic 114 

clasts within Mera lahar is principally a light to dark gray, porphyritic to aphanitic andesitic rock. The 115 

general mineral assemblage is plagioclase, pyroxene (clinopyroxene and orthopyroxene) with scarce 116 

hornblende in a gray pinkish microcrystalline matrix.117 

118 

Whole-rock analysis shows that Mera lahar is principally comprised of andesites ranging from 57 to 119 

61 wt% SiO2 that plot in the medium K calc-alkaline series (containing 1 to 1.5 wt% K2O). Rocks from 120 

volcanoes located on the Eastern Cordillera (EC) generally show higher K values than those located 121 

on the Western Cordillera (WC) (Schiano et al., 2010). (Figure 4a), apattern due to the overall greater 122 

differentiation of magmas in the EC (Barragán et al., 1998) (Fig. 4a).  Rock compositions from the Mera 123 

lahar suggest that the source could be in the WC, due to its lower K values. Following this line of 124 
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evidence the potential volcano sources of the WC for the Mera lahar debris flow would be 125 

Chimborazo and/or Carihuairazo volcanoes (Fig. 2). While from the EC the volcano candidates would 126 

be: Huisla, Tungurahua and Altar volcanoes and Quiñuales massif (see Fig. 2). Nonetheless , except 127 

for Huisla and Chimborazo rocks, characteristics of samples from other possible source volcanoes steered  128 

Espín (2014) to reject them as  source candidates because of: lower potassium values for Carihuairazo 129 

rocks; overwhelming presence of hornblende in Altar rocks; the young, recent age of Tungurahua 130 

DAD events, and the more basaltic composition of Quiñales rocks. 131 

 132 

In Figure 4a we observe in samples from Mera Lahar that K2O presents a positive correlation when 133 

plotted against silica (SiO2) whereas trace element, Sr, Ni, Cr, V, Co, Y, Yb, Gd, Dy, Eu, and Nb have a 134 

negative correlation with increasing silica content. On the contrary, Ba, Rb, Zr, Th, Nd, La y Ge present 135 

a positive correlation (Supplementary Data_1). Overall these elements form a non-dispersed field 136 

which implies that they are likely of only one source.137 
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 138 

 139 

Figure 4. Volcanic rock classification diagrams and insertion of the Mera lahar rocks.  a) K2O wt% vs. SiO2 wt% (Peccerrillo 140 
and Taylor 1976). A clear distinction is made between rocks of the Eastern and Western cordillera (Schiano et al., 2010). 141 

b) Trace elements variation diagrams, major elements vs. SiO2 wt%.  c) Comparison between the Riobamba and Huisla 142 
avalanche deposits as potential source candidates for the Mera lahar deposit.  143 

 144 

Our geochemical study exhibits a correlation between rocks of both the Mera lahar and rocks from 145 

debris avalanche deposits, of Huisla and Riobamba (Chimborazo volcano), Samaniego et al., 2012,).   146 

A correlative relationship is represented in the Harker diagram (Fig. 4b). With respect to major 147 

elements, differing trends cannot be distinguished between the possible source volcanoes since the 148 

samples fall closely together in plots exhibiting SiO2 vs trace elements (Sr, Zr or Y) (Fig. 4c) and the 149 

tendencies are almost  indistinguishable.   Geochemistry of Tungurahua DAD rocks is not discussed 150 

here as these events are younger than the Mera lahar, which has a 14C date greater than 40 ka (see 151 

section 4.1.2). 152 

 153 
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Alternatively, petrographic comparison between clasts from Mera lahar with clast samples from the 154 

possible source volcanoes suggests  the source option as Huisla volcano DAD rocks. Rocks from both 155 

Mera lahar and Huisla avalanche deposit share a similar mineral paragenesis (plagioclase, 156 

orthopyroxene and clinopyroxene). The similarities are also seen within the phenocrysts and the 157 

matrix (Fig. 5a). 158 

 159 

Figure 5. a) Thin section made from andesite clast from Huisla-DAD shown with crossed nickles, showing the plagioclase, 160 
pyroxene and opaque minerals.  b) Thin section from representative clasts from Mera Lahar deposit showing mineral 161 
association: plagioclase > clinopyroxene >>orthopyroxene >> opaque minerals. c) Thin section of rock from Riobamba DAD 162 
with nickels crossed from Samaniego et al., (2012), differs from the Mera lahar rocks by having fewer plagioclase crystals 163 
and the presence of oxidized and altered hornblende. d) View of thin section with crossed nickels (Riobamba DAD) of 164 
oxidized hornblende, plagioclase crystals and the matrix. 165 

 166 

 167 

As stated above, geochemically Chimborazo volcano rocks of the Riobamba DAD (Samaniego et al., 168 

2012) are also akin to rocks in Mera lahar. However, the higher percentage of plagioclase crystals and 169 

the presence of oxidized and altered hornblende crystals in Chimborazo rocks (Fig. 5cd) differ 170 

significantly from those in all samples of the Mera lahar rocks (Fig. 5ab),  as observed by Espin (2014).   171 
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To further strengthen our choice of source rock for the Mera lahar, additional spot sampling was 172 

undertaken at ten Riobamba DAD outcrops.  Altered hornblende crystals were apparent in clasts 173 

removed from the avalanche deposit, as opposed to the fresh, but scarce hornblende crystals present 174 

in Mera lahar lithic clasts.175 

 176 

3.1 Results 177 
 178 
3.1.1 Huisla Volcano, Source of Mera Lahar 179 

 180 
Huisla volcano is located 6.5 km south-southwest of Pelileo and 13 km to the south- southeast 181 

of 182 

 183 
Ambato and is part of a low-lying volcanic complex which consists of three main peaks: Huisla (3763 184 

 185 
m.), Llimpe (3732 m.) and Padreloma (3650 m) (Fig. 1, 2 & 6). 186 

 187 

 188 

Figure 6a. Huisla volcano´s edifice and surrounding area, with main towns Pelileo and Huambalo. View is toward the west 189 
and in the foreground is the nonbuttressed E and NE portion of the volcano, whose predecessor peak/dome had a sector 190 
collapse, the breccias coming to rest in the valley bottom of the Patate River at base of photo. La Florida section is 191 
highlighted. The low pass left of Llimpe peak is cut by a regional transpressive SW-NE striking fault. Inset on left concerns 192 
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the area of proposed collapse of Huisla. Inset on right shows Huisla in relation to other nearby volcanoes in the upper 193 
Pastaza drainage basin. Huisla´s coordinates are: UTM- 0770930/9847616. 194 
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 195 

 196 

Fig. 6b. View S-SW of Huisla´s central peak, which regrew inside the remaining concentric walls after collapse. Multiple 197 
meter thick post-collapse rhyolitic ashfall layers outcrop below the highway on the opposite side of the valley from Totoras 198 
town. Pachanlica stream runs at the base of the rhyolitic tephra fall units. 199 

 200 

The Huisla volcanic complex is built upon rocks of the Cisaran volcanic formation of Miocene age 201 

(Bustillos, 2008) and is mainly composed of calco-alkaline andesitic rocks of medium potassium (K) 202 

and basaltic andesites of low potassium.   Petrographically   they   are porphyritic andesites whose 203 

mineral association consists of plagioclase >> clinopyroxene > orthopyroxene, scarce hornblende and 204 

presence of Fe/Ti oxides that are usually distributed in a microcrystalline matrix with interstitial glass. 205 

Few studies have been made of Huisla and due to its subdued topography, the volcano commands 206 

little attention.207 

 208 

 209 

 210 

211 
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Our studies on Huisla were conducted with the objective to identify the source of Mera lahar. 212 

Following the sector collapse the volcano erupted rhyolitic magmas  resulting in  the deposition  of 213 

several  white pumiceous high silica (73-75 wt% SiO2) tephra falls and pyroclastic flow layers on the 214 

western, northwestern and northern flanks which overly the avalanche breccia layers (Fig. 6 & 7).  215 

Evidence for bimodal eruptive activity (varying between andesitic to rhyolitic) is not observed in 216 

deposits comprising the pre- collapse Huisla flanks, therefore we hypothesize that the sector collapse 217 

decapped the magmatic system and could have facilitated the eruption of the high silica magma. 218 

Huisla´s new edifice regrew and now occupies the base of Huisla´s caldera-like structure (Fig 6b). A 219 

late Pleistocene age is assigned to the collapse based on younger ages of two overlying fine-grained 220 

rhyolitic tephra falls sourced to a vent in the Pisayambo area to the northeast (Mothes and Hall, 2008) 221 

and which are dated with the 14C method as between 20 – 40 ka (Fig. 7).  222 

 223 

Huisla´s presumed low elevation summit would not have supported growth of permanent Pleistocene 224 

glaciers of Late Glacier Maximum (LGM) age and no morraines are found on Huisla´s older flanks.  225 

Neighboring Igualata volcano (4430 m asl), 15 km to the southwest, however has well-defined Late 226 

Glacier Maximum moraines (Hastenrath, 1981) that extend to below 4000 m asl elevation.  More 227 

likely is that periglaciel conditions likely existed on Huisla´s former summit, fostering local bogs and 228 

some ground ice.  Without significant summit glaciers during the Late Glacier Maximum, little if any 229 

in-situ superficial water would have been available to contribute to subsequent lahar formation, 230 

unless a small crater lake had been present.231 
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  232 

3.1.2 -Huisla Stratigraphy 233 
 234 
There are two prominent debris avalanche breccia layers exposed in the La Florida outcrop (Fig. 6a & 235 

7). Layer AV1 is without ballistic bombs, while AV2 displays abundant radially fractured bombs.   A 236 

lithic fall layer lies between them (Fig. 7). Adjacent to La Florida outcrop a Cangahua layer caps 237 

the lithic-rich layers and is overlain by several white pumice lapilli fall layers whose thickness exceeds 238 

1 meter. Cangahua is a regional indurated fine ash accumulation of Pleistocene-age (Clapperton, 239 

1990). In some places the top part of the stratigraphic sequence is also covered by a prominent lithic–240 

scoria fall deposit from Tungurahua volcano (Fig. 7). Dating by the 14C method of small charcoal pieces 241 

in the ashy medium associated with the top scoria layer provided a date of ca.9 ka (Bustillos, 2008; Le 242 

Pennec et al., 2013).  243 

On the northwest flank of the volcano (above Totoras town, Fig. 6b), thick pyroclastic flow  deposits 244 

outcrop between the principal tephra fall layers that are of rhyolitic composition (Fig. 6b). Huisla 245 

volcano is cut on its SW flank by the trace of a regional transpressive strike-slip fault, known as the 246 

Chingual-Cosanga-Pallatanga-Puná (CCPP) fault (Alvarado et al., 2016). The CCPP fault enters the 247 

study area from the southwest creating morphological displacements of young strata on neighboring 248 

Igualata volcano. The fault´s trace through Huisla´s SW flank roughly aligns with the southern 249 

boundary of the sector collapse scar (Fig. 6ab).  The same fault trace crosses the Patate River canyon, 250 

trending northeast into the Llanganati-Pisayambo area.   Sheared topography and meter range 251 

displacements on Younger Dryas glacial stage moraines are observed, as are small, but frequent 252 

ground displacements detected by InSAR eastward of Pisayambo lake (Champenois et al., 2017). 253 

 254 
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 255 

Figure 7. Geological sequence at La Florida area (see Fig. 6a for location) where it is possible to see two layers of Huisla 256 
debris avalanche deposit (AV1 & AV2), several ash fall layers and lahar deposits. The rhyolitic tephra falls so prominent at 257 
the Totoras section (Fig. 6b) are poorly preserved at this outcrop, which is cut by a regional transpressive fault, observed 258 
in Fig 6b. The cross-cutting yellow line represents the fault trace. 259 

 260 

3.1.3 -The Huisla Debris Avalanche Footprint 261 

The Huisla DAD underlies Pelileo, Patate, and Pingue towns and notably outcrops along the Pelileo-262 

Baños highway (Fig. 6b).  It can also be found outcropping on the E side the Patate River in the barrio 263 

of Tauwicha, situated some 830 m above the Patate valley bottom.  Our field mapping shows that the 264 

DAD covered an area of approximately 150 km2 with an average thickness of about 50 m and whose 265 

volume is estimated in 4 km3  (Espín, 2014; Espín et al., 2015). (Figure 2). Huisla’s older eroded flanks 266 

that comprise the south, northwest and western rims once encircled  a  former  peak/dome  of  Huisla  267 

and  which,  based  on  projection  of  the  present morphology, had a volume of approximately 4-5 268 

km3 before flank failure (Fig. 6b).  269 

 270 

Provoked by  Huisla´s flank failure the avalanche breccias from the peak/dome slid down the 271 

unbuttressed east and northeast flanks and lodged in the canyon bottom of the Cutuchi–Patate River 272 

south to the union with the Chambo River, at Tungurahua volcano´s base (Fig. 1 & 2). The Panchanlica 273 

River channel north of Huisla and now occupied by the northern portions of Pelileo, Totoras, and 274 

Salasaca towns may also have received Huisla DADs, but evidence is meagre (Fig. 1 & 6b)275 
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 276 

4.1 Deposits of Mera Lahar 277 

4.1.1 -Deposit Description 278 
 279 
In the main depositional zone along the Pastaza River, east of El Topo town (Fig. 1 & 3), the Mera 280 

lahar deposit underlies a 2 m thick layer of tropical brown soil or alternatively, river cobbles in most 281 

outcrops. In Moravia, Pindo and Madre Tierra towns a layer of rhyolitic ash fallout with a thickness of 282 

60-70 cm (Figure 8ab) overlies the reworked top of the lahar deposit. The base of this ash layer is 283 

dated at ca. 20 ka at a cut near Mera dike (a natural swimming pool, 1 km E of Mera town, see Fig. 3) 284 

(Keen, 2015), and its provenance is believed to be the Pisayambo area 40 km northwest, where 285 

large siliceous eruptions occurred in the late Pleistocene (Mothes and Hall, 2008). Bulk major and 286 

trace element geochemistry shows good correspondence between this marker rhyolitic ash layer 287 

and the suggested Pisayambo source (Table 1 and Supplemental data_2). In contrast, at an important 288 

cut 0.5 km downstream from Mera dike the lahar is overlain by a 12 m thick accumulation of 289 

intercalated organic layers, mainly peat, tephras and also granitic stream cobbles. 290 

 291 

Deposition on top of the flat poorly-drained Mera lahar favored long-term swampy conditions and   292 

isolation from flooding, as described by Keen (2015).293 
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 294 

 295 
Figure 8. a) Outcrop of Mera lahar deposit in an abandoned quarry located 15 vertical meters below the fire brigade station at 296 
Moravia. Box at top of photo indicates location of photo 8b. b) Lithological section at the same quarry showing a few 20-30 cm 297 
diameter clasts in a gray-fawn-colored matrix. A rhyolitic ash layer is located near the top of the reworked top of the lahar deposit. 298 
Inset is an abbreviated stratigraphic column in which the Pastaza alluvium underlies the lahar deposit. 299 
 300 

 301 

 302 
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 303 

 304 

4.1.2 –Dating of Mera lahar and Overlying Strata 305 

 306 

An earlier study by paleonologists Lui and Coolinvauz (1985) reported a major lahar deposit 2 km west 307 

of Mera town where two organic layers on top of the lahar gave radiocarbon ages of ca. 26 ka and 33 308 

ka.  Later, Heine (1994) reported radiocarbon ages of 33.7 and 40.6 ka for two overlying peat layers 309 

found in a cut between Mera and Pindo Mirador towns. Finally, Bès de Berc et al., (2004) presented 310 

two ages of ca. 41 ka and ca. 18 ka for organic layers overlying the lahar along the Mera-Baños 311 

highway cut. For this study, and based on Espin, (2014), we report a new radio carbon age of  >43.5  312 

ka  for  a  tree  trunk  pulled  out  of  the  Mera  lahar  deposit (Table 1).  Table 1 is a compendium of 313 

all known age dates for deposits overlying the Mera lahar.   All of the age dates (uncalibrated) ranging 314 

between about 17 ka to 40.5 ka relateto organic strata overlying the Mera lahar and therefore provide 315 

a minimum age for the stratigraphically lower (underlying) Mera lahar (Table 1 & Fig. 9). 316 

Site & UTM 
Coordinates 

Unit dated Date 
Collecte
d 

Material 
dated 

Conventional 
age (BP); 
Laboratory 

Calibrated 
Age- cal yr 
BP, 2 
sigma 

Reference 

Mera Dike East Organic layer “O” 04 Sept. Pollen 16,690 ±60 19,965- Keen, 

Organic layer “O” at ~100 cm depth 2012 residual AMS 20,215 2015 

   in    

underlies fine- & ~11 mts above  Macro- Beta Analytic   

grain rhyolitic ash Mera lahar top. Fossils. ID # 397417 

(Sample    

MERA2YTEPH1    

 with pumice    

lapilli layer on    

top. (72.93 wt%    

SiO2 & 4.2 wt%    

K2O). 500m    

downstream of    

Mera Dike.    

UTM (17M)    

822352/983857    

1118m    

Mera Dike East Organic layer “N” 04 Sept. Wood 28,580 ± 140 31,877- Keen, 

 at 185 cm depth; 2012   33,058 2015 

 overlies tephra      

 MERA2YTEPH2      

Mera Dike East Organic layer “I” 04 Sept. Pollen 39,500 ± 270 42,702- Keen, 

Organic Layer “I” 

 
at 665 cm depth, 

at 665 cm depth; 
provides maximum 

2012 residual 
in macro 
fossils. 

AMS 
 

Beta Analytic 

43,683 2015 

and ontop Mera    date for   ID # 411030   

Lahar, 6 m lower. Tephra layer,      

500 m downriver MERA2YTEPH3      

of Mera Dike.       

UTM (67.53 wt% SiO2      

822352/983857 & 2.64 wt%      

1118m K2O).      

Mera 1 site, near Vegetal (peat) 1991 Peat 33,670 ±520 34,582- Heine, 

Rio Pastaza/Rio layer overlying   Lab unknown 37.311 1994 
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Alpayacu Mera lahar.      

confluence. In       

highway cut on N       

side, after       

crossing Rio       

Alpayacu. UTM       

822363/983750       

1082m       

Mera 1 site, near Tree trunks and 1991 Wood 40, 580±1220 40,472- Heine, 

Rio Pastaza/Rio branches on top of   Lab Unknown 44,882 1994 

  Alpayacu underlying Mera      

confluence. Lahar      

In highway cut       

on N side, after       

crossing Rio       

Alpayacu. UTM       

822363/983750       

1082m       

Mera-Baños Peat layer, 10 m July 29, Organic 40,580±1030 40,692- Bes de 

highway. UTM 

819848/983941 

below top and 

overlying Mera 

lahar. 

2002 layer/ Peat Radiometric 

Beta Analytic 

44,238 Berc et 

al., 2004 

1114m    ID # 169315;   

    Sample   

    MERA   

    240702   

Moravia fire 

brigade station quarry, UTM 
824919/9835442, 1902masl 

Mera Lahar interior. 

 

30 July 2011 

 

Tree 
trunk 
from 
lahar´s 
interior 

>43,500 

Radiometric 

Beta Analytic ID 

# 366381 

 Espín, 

2014 

 317 

 318 

Table 1: Radiocarbon dates for organic layers overlying the Mera lahar and also from the lahar´s interior. 319 

 320 
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 321 

Figure 9: Simplified stratigraphic column for the Mera Dike East section UTM 822352/983857, 1118 m asl and located 0.5 322 
km downstream of Mera dike swimming area. 14C dates from Keen (2015). Geochemical analysis of the three main tephra   323 
layers that overly Mera lahar at Mera dike are presented in Supplemental Data_2. Top tephra, MERA2YTEPH1 is a rhyolitic 324 
marker layer of Pisayambo provenance (Mothes and Hall, 2008). 325 

 326 

 327 

4.1.3 – Mera Lahar Componentry 328 

 329 

The Mera lahar deposit is primarily monolithologic and is best described as a matrix-supported breccia 330 

(70%) of reddish gray color with angular and sub angular, gray and reddish andesitic clasts  (Figure 331 

10a-e). However, exogenous clasts, mainly granitic, outcrop at the base.   Overall, sorting is poor-- 332 

millimetric grain size to clasts of >30 cm), although sand-size grains can be abundant.  333 

The deposit´s matrix is hardened and well-consolidated, but also displays molds and pores within the 334 

matrix.  The lahar´s top surface tends to be indurated   In the middle of the deposit there is greater 335 

alteration (oxidation) in the matrix. At the base there are more angular than rounded clasts (size: 336 

decimeter to 1.5 m).  Radially fractured bombs are occasionally found within the lahar´s body and the 337 

lahar also carried along cobble substrate as it bulked up while flowing downstream. 338 

 339 
 340 

 341 
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Fig. 10. Composition of Mera lahar deposit. a) Meter-size clasts in the Moravia area, b) Characteristic andesitic clast of the 343 
deposit. c) Reddish gray to fawn colored matrix is well-consolidated at Moravia quarry. d) Matrix in Motolo area. e) 344 
Oxidized matrix at the Cumanda cut. 345 

 346 

At the deposit´s base at Madre Tierra the clasts are surrounded by a matrix with poor sorting, 347 

oxidation zones and granitic clasts that the lahar dragged along.  Also the contact between fluvial lens 348 

of the Pastaza river fan and the lahar deposit is sheared by reverse thrust faulting (Figure 11a).  The 349 

faults belong to a family of N-NE striking regional structures that absorb tectonic compression on the 350 

E flank of the Cordillera Real (Pratt et al., 2005) (Fig. 3).    351 
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Figure 11. Outcrop seen on the road to Madre Tierra. a) Presence of shear structures in the deposit due to local thrust faulting. 352 
b) Oxidation zone in the matrix. c) Reddish gray matrix, andesitic clast and granitic clast in the lahar. d) Rounded clasts at the 353 
bottom of deposit and the contact with alluvial cobbles of the Pastaza River. 354 

 355 
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At Cumanda town, on the right margin of the Pastaza River, along the new road to Palora town, the 356 

deposit is embedded in a sequence that includes river deposits and abundant weathering and 357 

alteration is observed (Fig. 11b & c).  Numerous metamorphic rocks (schists) belonging to the Eastern 358 

Cordillera basement complex are present, having been entrained along the flow route. At the 359 

deposit´s base there are alluvial deposits with rounded Abitagua granitic clasts (Fig. 11d). Finally, a 360 

layer of rhyolitic ash, with similar mineralogy and texture to that observed at nearby Moravia, Mera 361 

and Pindo cuts (Fig. 8b; Fig. 9 & Table 1- see notes on MERA2YTEPH1 ash)), overlies the upper and 362 

reworked portion of the Mera lahar deposit at Cumanda.363 

364 

4.1.4 -Granulometry 365 
 366 
We provide granulometric parameters for 16 samples taken from the proximal, central and distal 367 

phases of Mera lahar deposit. Overall granulometry of the Mera lahar shows a distribution between 368 

fine grain particles of 0.06 to 1.0 mm with accumulations of 55% in the proximal phase samples, while 369 

in the central and distal phases grain sizes of 0.06 to 1.0 mm constitute between 28-60% and 45%, 370 

respectively of the samples. There is essentially no material finer than 0.06 mm, ie., an absence of silt  371 

and clay-size grains.  The matrix comprised of grain sizes smaller or equal to 2.0 mm (coarse sand size 372 

granules) overall constitutes 60%, 40-70% and 50%, respectively of the three categories (Fig. 12). 373 

Grain sizes in the >2.0 – 100 mm range (gravel size) occupies about 40-50 % of the deposit for the 374 

three phases. 375 

 376 

Comparing the Mera lahar´s granulometric values with those of Cotopaxi´s Chillos Valley Lahar, a 377 

 378 
matrix-rich deposit that contains between 10-20% clay and silt-size grains in bulk deposits (Mothes et 379 

 380 
al., 1998), and of the Electron lahar from Rainier volcano, USA, which has around 30% silt and clay- 381 

 382 
size components (Scott and Vallance, 1995), we see that Mera lahar deposit overall has a higher 383 

 384 
percentage of coarser components in the sand and gravel categories. 385 
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 386 
 387 

 388 

 389 
 390 

Figure 12. Granulometry of the Mera lahar matrix using data from 16 samples taken in proximal, central and distal zones. 391 

Data for Electron lahar from Scott and Vallance (1995) and Chillos Valley lahar from Mothes et al., (1998). 392 

Consult Fig. 1 & 3 for place name locations. 393 
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 394 

5.1 Modeling the Mera Lahar 395 
 396 

Employing  the  program  LaharFlow  (Woodhouse  et  al.,  2016a)  we  simulated  the  flow  path and 397 

inundation zones of the Mera Lahar.  Laharflow is a computer code that uses equations from fluid 398 

mechanics for simulating lahars (see https://laharflow.bris.ac.uk/?loginfailed).  Recently  developed  399 

by  the   Earth  Sciences  and  Mathematics departments of The University of Bristol (Woodhouse et 400 

al., 2016a), its input parameters include a digital  terrain  model  (30  m  actual  DEM),  flow  rheology  401 

parameters  such  as  Chézy  roughness coefficients (turbulent fluid), Coulomb coefficient (flow 402 

granular e.g. Pouliquen, 1999) and Voellmy coefficient (fluid grains). These parameters were 403 

calibrated using the Nevado del Ruiz lahar´s estimated volumes and flow hydrographs 404 

(Supplementary Data_3). 405 

Simulation with LaharFlow takes into account mass and momentum conservation and kinetic energy.  406 

This program has now been used to simulate Cotopaxi´s 1877 primary lahars and Tungurahua´s 407 

secondary lahars of 2016 (Woodhouse et al., 2016b), and finally, the potential primary lahars that 408 

could flow down the east flank of Cayambe volcano, Ecuador (Espín et al., 2017). For modeling the 409 

Mera lahar, a total volume of 5.4 km3 was used (original avalanche breccia volume of 4 km3 + c 1/3 410 

water). The transit begins with the breakage of a proposed temporary dam near to Patate, unleashing 411 

most of the water necessary to remobilize the avalanche breccia and bring about transformation to a 412 

voluminous lahar (Fig. 13). 413 
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 414 
 415 

Figure 13. Results of Mera lahar simulation using the LaharFlow program; total volume used was 5.4 km3 (4 km3 of DAD 416 
breccia and 1.4 km3 of water). (Google Earth Base). The turquoise-colored area near Patate represents the zone of ponded 417 
water accumulation in the avalanche deposit, while the pink color is the lahar´s modeled inundation footprint. The dark 418 
green shapes are approximate limits of remnants of the mapped Mera lahar deposit. Sections AA´. BB´ and CC´ refer to 419 
topographic profiles discussed in figure 15. 420 

 421 

We hypothesize that the failure of the temporary dam in the DAD breccia could have occurred due to 422 

shaking by a local earthquake, pore pressure threshold failure in the dam wall, overtopping, etc, and 423 

that the ensuing rupture resulted in a watery avalanche breccia that incorporated available water and 424 

was transformed to a potent secondary lahar. Due to the steep gradients (5%) in the Pastaza river 425 

canyon between Baños and Rio Negro town, perhaps the Mera lahar was not deposited in this stretch, 426 

since no deposits are observed.427 
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The lahar traveled down the Pastaza River and began major deposition where the Pastaza canyon 428 

widens at Rio Negro town, then it again experienced choked flow in the Rio Topo area, south of Rio 429 

Negro. Here westward verging reverse thrust faults cut through granites in the El Topo area (Bes de 430 

Berc, 2005; Pratt et al., 2005; Bernal et al., 2012; Alvarado et al., 2016), effectively lowering gradient 431 

in the Pastaza river channel.  Terraces 30-50 m high comprise the first mapped Mera lahar deposits 432 

found between Rio Negro and El Topo towns (Fig. 13). 433 

 434 

Once passing the constriction of the Abitagua batholith, the flow burst out onto the lower gradient 435 

Sub- Andean zone and the lahar´s footprint became increasingly wider to the east-southeast of Mera 436 

(Fig. 13) and deposited along the paleowalls of the Pastaza River channel as well as invading side 437 

valleys and braided channels associated with the lower Pastaza River (Fig. 13). Subsequent and 438 

ongoing erosion by the Pastaza River left prominent stranded terraces on either side of the Pastaza 439 

(Fig. 14a), i.e. the surfaces where the towns of Mera and Shell are situated.  These high stand terraces, 440 

with their indurated lahar core now control the drainage patterns of incoming streams, such that 441 

secondary streams run parallel to the Pastaza River before finally cutting through the indurated Mera 442 

lahar surface to reach local base level of the Pastaza River.  One such example is that of the Alpayacu 443 

River which makes 3 hard bends before joining the Pastaza River (Fig. 14b).444 

 445 

Southeast of Shell town the Pastaza channel widens to several kilometers and verves eastward. Bernal 446 

et al., (2012) provide evidence of changes in the main course of the Pastaza River along this 20 km 447 

stretch, particularly for migrations on the river’s left margin when the main Pastaza pirated into the 448 

channel of the neighboring Puyo River in 1906 and 1976 near Tarqui town (Fig. 13).  Earlier avulsions 449 

of the main Pastaza River would have caused erosion and or burial of the Mera lahar and perhaps for 450 

this reason we do not find the lahar deposits in the zone of Tarqui and Nueva Vida (Fig. 13).   Precisely 451 

in this zone our modeling shows the lahar´s route and inundation zone.  Bernal et al (2012) emphasize 452 

the importance of back tilting of the Pastaza´s channel´s gradient in order for the bulk of the river to 453 

leave its normal course.  The back tilting, they suggest, is from westward verging thrust faulting, 454 

evidence of which we have seen and example at nearby Madre Tierra (Fig 11a).  Field confirmation of 455 

the presence of Mera lahar deposit in the eastern lobe between Shell and Nueva Vida towns has been 456 

unsuccessful (Fig. 13). 457 
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 458 

Figure 14.  a) Aerial photo of the Mera terrace with Mera town in the center on the left margin of the Pastaza River.  459 

Approximate outline of Mera lahar limits is shown in broken red line. b) Google image of the curvy route taken by the 460 

Alpayacu river (represented by solid red color) as it cuts through the indurated Mera lahar deposit over a distance of 1.3 461 

km from near Mera dike to the Pastaza River channel. Black arrows in both a and b photos represent flow direction of 462 

Pastaza River 463 

 464 

5.1.1 -Mera Terrace Heights along the Pastaza Canyon 465 

 466 

The lahar´s high-standing terraces are particularly well identified at Mera, Shell and Cumanda, nearest 467 

to the mouth of the Pastaza canyon where they are 30-50 m above the actual river level (Fig. 15). 468 
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Further downvalley, both the Madre Tierra and Santa Ana terraces, which well display the Mera lahar 469 

rock suite and matrix, are of decreased height, apparently having suffered erosion.  In the stretch 470 

between Mera  and  Santa  Ana  the  lahar  deposit´s base overlaps  preexisting  Pastaza  river  alluvial  471 

deposits seen particularly well in the Moravia, Alpayacu and Madre Tierra outcrops. 472 

 473 

The cross section AA (Fig. 13 & 15A-A´) between El Topo town and the opposite side of the Pastaza 474 

River channel measures 2.2 km wide and lahar depositional thickness is 70 m.  Between Cumanda and 475 

Pindo Biological Station, section BB has dimensions of 4.5 km wide and lahar thickness is 30 m (Fig. 476 

13 & 15B-B´). At Santa Ana, the deposit´s farthest studied site, the lahar had a width of 4. 5 km (Fig. 477 

13 & 15C-C´) and is where a stratigraphic relationship can be seen between Mera lahar and the 478 

Cacalurco volcanics on the left margin and the younger DAD of Sangay volcano on the right margin. 479 

To the southwest of Santa Ana the younger Sangay volcano DAD (Valverde et   al.,   2015) presumably 480 

buried   the   Mera lahar deposit, which is well represented on the opposite side of the Pastaza, but 481 

we do not see Mera lahar outcropping on the SW bank.   The Sangay avalanche occurred 482 

approximately 29 ka, (Valverde et al., 2015), thus confirming the older age of the underlying Mera 483 

lahar (Fig. 15C-C). These cross sections ratify not only the astounding height but also the broad lateral 484 

extent of the lahar compared to the actual Pastaza river channel. 485 
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 486 
 487 

Figure 15. Topographic x-sections showing the interpretation of the current distribution of Mera lahar deposits. On the Y 488 
axis are the elevations above sea level in meters, while the X axis represents horizontal distances in meters. All placements 489 
of Mera lahar and relationship with other features are based on field mapping. Note variable scales for each cut.490 
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 491 

         6.1 DISCUSSION 492 

 493 

 494 

Breccias related to the sector collapse of Huisla, a non-descript, little studied volcano on the central 495 

Ecuadorian Andean landscape provided the bulk of the clasts and matrix for the Mera lahar. We base 496 

the correlation between Mera lahar and the   Huisla DAD on   strong petrographic   similarity between 497 

the plagioclase, clinopyroxene - orthopyroxene crystal assemblage observed in the clasts of both the 498 

Mera lahar rocks and the Huisla breccias. While the whole rock geochemical signatures of these two 499 

rock families are similar they are also akin to the Chimborazo avalanche breccias. The Chimborazo 500 

DAD rocks however have a high concentration of altered hornblende crystals, which are not 501 

characteristic to rocks found in the Mera lahar or in Huisla DAD clasts. Therefore, mineral 502 

fingerprinting was key to identifying the most likely source volcano as Huisla.   Relative clast and 503 

crystal freshness and petrographic similarity of lithic clasts in the Huisla DAD deposit and equally so 504 

in the Mera lahar provided the convincing inputs. Additionally, no Mera-like lahar deposits are found 505 

in the upper part of the Chambo river valley alongside  or  downstream  of Chimborazo avalanche  506 

deposit  breccias  (Bernard  et al., 2008),  even  though  there  are  wide  valley  stretches  and stream 507 

inlets favorable for  deposition  and preservation.  Neither are Chimborazo DAD deposits identified in 508 

the lower rio Chambo valley or near the intersection of the incoming Patate valley (Fig. 1). However, 509 

Huisla DAD outcrops are found all along the upper Patate River drainage (Fig. 1 & 2). 510 

 511 

The presence of radially fractured fresh dome rocks in the avalanche breccia and also in the Mera 512 

lahar deposits suggests Huisla volcano had an active central peak/dome which subsequently 513 

collapsed. The   dome rocks are very similar in mineral assemblage and composition both in the Huisla 514 

DAD and the Mera lahar deposit.  The collapse involved a volume of ca. 4 km3 of the unsupported E-515 

NE flank of Huisla´s edifice which sharply abuts the 300 meter deep Patate River canyon.  The 516 

triggering of the sector collapse could have been facilitated by shaking from a local shallow 517 

earthquake on the active fault that cuts under Huisla´s SE shoulder or to violent volcanic activity. As 518 

shown in figure 7, a lithic fall is associated with a respite between the two avalanche deposits. A blast 519 

deposit has not been identified.  520 

 521 

As evidence of the post avalanche damming and resultant lake conditions, two packages of lacustrine 522 

deposits, each some 15 m thick are observed at the union of the Ambato and Cutuchi-Patate River 523 
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and also just below Pelileo town, both deposits which we believe may be the result of the Huisla DAD 524 

blocking the river course (Fig. 2). Following accumulation of ≥1 km3 of water, the dam broke and  525 

provoked a great flood/slurry.  Other incidences of accumulation of > 1 km3 behind temporary 526 

impoundments blocked by DAD material was noted by Capra (2006) who showed that well-sorted 527 

fine material in a DAD of mixed facies that constitutes a dams´ interior may experience internal 528 

erosion by piping, thus accelerating dam failure. The mixed facies and matrix-predominance of the 529 

Huisla DAD where it slid into the Patate River canyon and effectively blocked the channel could have 530 

been a factor in accentuating the destruction of the temporary dam by overflowing.   531 

  532 

We hypothesize that the mixing of Huisla avalanche debris and the accumulated water effectively 533 

transformed into the Mera lahar. In order to remobilize between 3 or more cubic kilometers of solids, 534 

at least 1 km3 of water would have been necessary (Vallance and Iverson et al., 2015). Assuming an 535 

efficient dam, it would have taken about 600 days to accumulate a reservoir of 1 km3 water volume 536 

using present discharge rates for the Patate River of ca. 50 m3/sec.  Flow was restricted within the 537 

large Pastaza canyon and deposition didn´t begin until arriving to the widened sector at Rio Negro- El 538 

Topo towns (Fig. 1 & 3). 539 

  540 

The lahar is remarkable for its matrix-rich, although non-cohesive nature that experienced little 541 

transformation downstream over the mapped 90 km distance. It´s high concentration of sand-size 542 

particles may have retarded transformation to a dilute hyperconcentrated flow, as was also the case 543 

reported by Scott et al (1995) with some lahars at Mount St Helens.  The almost total absence of clay 544 

size grains in the lahar is likely testimony to the lack of active hydothermal alternation of the source 545 

volcano, but which is so common at Rainier volcano, and hence lahars borne from the flanks of Rainier 546 

where alternation is strongest have high clay-size content and hence were cohesive in nature (Scott 547 

et al (1995); Reid et al., 2001).     548 

 549 

At Mera lahar´s base, rounded river cobbles are incorporated, but within the central core, few 550 

exogenous rocks are seen.  Precise dating of the Mera lahar has been unsuccessful, since a tree trunk 551 

pulled from its interior gave a date older than 43.5 ka and overlying dated organic units also range in 552 

age from earlier to ca. 40 ka, while a marker rhyolitic ash layer that is found near the top of a 553 

stratigraphic section at Mera dike is dated at approximately 20 ka, and the overlying Sangay DAD is 554 

dated at ca. 29 ka (Table 1: Fig. 9; Fig. 15C-C).  555 
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 556 

One of the most remarkable aspects of the Mera lahar is the preservation of the high-standing 557 

terraces which are situated well above the Pastaza River. Given that more than 40 ka have passed 558 

since the lahar´s passage, the overall field mapping and verification of the deposit in this heavily 559 

vegetated and erosive zone was complex. We successfully employed the program LaharFlow 560 

(Woodhouse et al., 2016a) to simulate the lahar´s transit along the river channels from its starting 561 

location in the Eastern Cordillera to its end in the Sub-Andean zone, a distance of > 90 km and with a 562 

relief change of about 1500 m. Modeling results of LaharFlow, necessarily used the present 563 

topography,  but shows strong similarity to deposit locations of the Mera lahar that we mapped in 564 

the field (Fig. 3 & 13), offers confirmation for the cross sectional areas of the lahar and also reaffirms 565 

the heights of the lahar terraces with a precision of ± 10 m. Output of the modeled lahar ceased to 566 

flow at Puyopungo, which is coherent with our final mapped point of the deposit.  It is clear that since 567 

only scant Mera lahar deposits remain on the right margin of the Pastaza River, erosion on this bank 568 

has been preferential compared to the opposite margin where Mera lahar terraces are still found. 569 

Erosion has been preferential on this bank perhaps due to:  1) change of position of the Pastaza River 570 

channel (Burgos, 2006; Bernal et al., 2012), 2) effects of younger volcanism from the Madre Tierra 571 

(Calcaurco) volcanoes (Ball, 2015) or by action of reverse fault systems (Mirador, Bobonaza) that could 572 

have covered or remobilized the deposit or changed the river´s course. Furthermore, at its farthest 573 

mapped extent the Mera lahar deposit underwent burial by a DAD from Sangay volcano at about 29 574 

ka (Valverde et al., 2015). 575 

 576 

 7.1 CONCLUSIONS 577 

 578 

The Mera deposit is a secondary lahar deposit borne as a result of the transformation of a debris 579 

avalanche breccia that mixed with water and debris after rupture of an impounded temporary 580 

reservoir then flowed down the Pastaza River.  The DAD of Huisla volcano is the best candidate as the 581 

source for the mainly monolithologic matrix and clasts comprising the Mera lahar.  582 

 583 

The debris avalanche was produced by a sector collapse of the central peak/dome of Huisla volcano 584 

which slid into the Patate River valley. Radially fractured bombs found in the avalanche breccias on 585 

Huisla´s northeast slopes, also in the Mera lahar deposit, and a fall deposit of fresh lithic clasts lying 586 
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between the two avalanche layers, suggests that the volcano was active at the time of collapse.  587 

Another possible factor contributing to the collapse is strike-slip movement of the transpressive 588 

fault which cuts through the southern limb of Huisla volcano. Rupture of this fault was also cited 589 

as responsible for the destructive 1949 Mw  6.9 Pelileo earthquake (Beauval et al., 2013; Alvarado, et 590 

al., 2016). Earlier ruptures on the same fault were of similar magnitude or greater, such as the local 591 

04 February 1797 devastating Patate earthquake (Beauval et al., 2013). 592 

 593 
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The Mera lahar is a matrix-rich but non-cohesive type (Scott and Vallance, 1995), with 

a matrix which is comprised of grain sizes smaller or equal to 2.0 mm (coarse sand size 

granules) that overall constitutes 60%, 40-70% and 50%, respectively of the proximal, 

central and distal categories of the samples. No clay or silt grain sizes were measured. 

The Mera lahar´s sandy matrix on the whole did not support the transport of huge 

blocks (multiple meter diameter) far from source and its non-cohesiveness  possibly 

permitted greater mixing with water, and thus also the formation of some minor 

fluvial stratigraphy, which is observed at the distal site of Santa Ana.  Where the Mera 

deposit is last observed more than 90 km from source, the lahar had not transformed 

to a hyperconcentrated flow. At this distance clasts of 20-30 cm diameter are still 

observed suspended in the matrix. In most areas the lahar deposit has formed an 

important local morphology of isolated high stand terraces that are well preserved on 

the left margin of the Pastaza River.  Output of the computational modeling program, 

LaharFlow, confirms the results of our mapping of the lahar´s deposit and also the 

subsequent post-depositional erosion of the lahar.  

Nonetheless, we have not confirmed in the field if the lahar actually covered the 

Tarqui –Nueva Vida swath, since erosion by river avulsions has been significant.  The 

actual mapped area of the lahar represents a present volume of 1.2 km3.  The 

modeled area gives a volume of 5.4 km3 which is coherent with the input of 4 km3 of 

DAD solids and 1.4 km3 of water. 

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

In areas of such high erosion and cloaking by jungle vegetation, modeling of the 

deposit is the only way to appreciate the lahar´s full inundation zone. Without a doubt 

the channel conditions may have been very different in the late Pleistocene.   Still at 

Moravia town, where the lahar has 70 meter thickness, it is possible to see the basal 

contact with rounded river cobbles. The Mera lahar left an exceptional identifiable 

deposit which is testimony to collapse of the central part of Huisla volcano, a little 

studied and only vaguely recognized volcano in the Eastern Cordillera of Ecuador.  

Although both Tungurahua and Carihuairazo volcanoes have had subsequent major 

eruptions and avalanches after the Huisla-Mera duo, their associated gravitational 

volcaniclastic flows have not overtopped the high-standing terraces or deposited 

upon the terrace surfaces left by the Mera lahar in the upper Amazon Sub-Andean 

zone, and therefore have been eroded and are not easy to identify. These 

important  geomorphic remnants are testimony to  the lasting footprints left  by the 

late Pleistocene  Mera  lahar  and  which  are  still  preserved  in  the Sub-Andean 

landscape. Given the widespread reach of the Mera lahar we are compelled to 

increase our knowledge about transformation from avalanche breccias that form 

temporary dams to lahar flows and to provide relevant information that steers society 

to be prepared for other potential major lahars, particularly at volcanoes which are 

sliced by an active fault. 
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Highlights of the Mera Lahar study: 

 

-Detailed petrographic fingerprinting shows that Huisla volcano´s DAD breccias provided 

the bulk clastic material to form the Mera lahar. 

 

-Huisla volcano had a late Pleistocene collapse, possibly from shaking provoked by the 

transpressive active fault under its SW shoulder.  Eruptive activity is also suspect, due to 

finding radially fractured bombs in both the Huisla DAD deposit and the Mera lahar. 

 

-Temporary dams formed from the DAD blockage in deep canyons and impounded the river 

system.  Once the dams ruptured the ensuing mixture of water and breccia formed an 

enormous secondary lahar (volume ~ 5 km3) that flowed to the Sub-Andean-western Amazon 

area, some 90 km from source.  Passage was along the channel of the master Pastaza river. 

 

-The lahar deposit is characteristically rich in the Huisla DAD breccias, has a high sand grain 

content, was a non-cohesive type and did not transform to a hyperconcentrated flow.  

 

-The deposit is still well preserved on the left margin of the Pastaza river, where 30-50 m 

high terraces now host the towns of Mera and Shell, among others. 

 

-Mapping was complex due to jungle vegetation and erosion caused by avulsions of the 

Pastaza river.   

 

-The modeling program LaharFlow provided results that show good similarity with the field 

mapping in certain preserved areas, ie Mera and Shell and also showed where the deposit 

may have been, but which we now find no evidence, since erosion or burial has been very 

complete. 

 

-A log was extracted from Mera lahar´s interior and a radio carbon date of > 43.5 ka was 

obtained.  Overlying dated strata (17 ka - 40.5 ka) provide minimum ages for the Mera lahar. 

 

-Due to its long distance lahar, the low profile volcano Huisla with its collapse events 

provoked a major lahar, whose deposits are clearly recognizable some 40 ka after the event. 
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