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ABSTRACT

Rapid prototyping is an approach to software development which
attempts to remedy some of the shortcomings of the linear life cycle model,
e.g. its inability to cope with fuzzy requirements and system evolution. This
thesis first presents a broad survey of rapid software prototyping. It
describes the rationale behind the process, the applications of prototyping,
and specific techniques which may be used to achieve them.

We then describe a system, called EPROS, together with its
methodology, which supports a number of prototyping techniques in a
coherent framework. The system is comprehensive in its approach and
covers the prototyping and development of both functional and
human-computer interface aspects of software systems. The former is based
on the execution of VDM-based formal specification notation META-IV; the
latter is based on a textual representation of state transition diagrams.
Dialogue development is further supported by a rich set of abstractions
which allow interaction concepts to be specified and directly executed rather
than implemented.

EPROS is based on a wide spectrum language which supports the
main phases of a software development process, namely specification,
design, and implementation. Included in this notation is a meta abstraction
facility which facilitates its extension by the programmer.

The primary application of EPROS is for evolutionary prototyping,
where a system is developed iteratively and gradually from the abstract to
the detailed, while it undergoes use and while its capabilities evolve. EPROS
copes with all the requirements of evolutionary prototyping, namely rapid
development, intermediate deliveries and gradual evolution of the system
towards the final product.

The thesis also describes a number of case studies where the
presented ideas are put in practice, and which provide data in support of the

effectiveness of the described system.
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Chapter 1 INTRODUCTION

No doubt there are programs that are used
once and thrown away. No doubt there are
even more programs that should be thrown
away before ever being used!

-G M Weinberg

1.1 THE LIFE CYCLE MODEL

For the past twenty years or so, software system development has been based on a
model, commonly referred to as the software life cycle model [Zelkowitz79, Boehm$1,
Sommerville82, Shooman82, Fox82]. Though characterized differently by different authors,
its overall theme is well-understood and universally acknowledged. The life cycle model
leads to a software development strategy which is usually called the phase-oriented, the linear
or the traditional strategy.

The life cycle model essentially advocates that software projects should consist of a
number of distinct stages; these being: requirements analysis, requirements specification,
design, implementation, validation, verification, operation and maintenance. Requirements
analysis is concerned with deriving, from the customer, the desired properties and
capabilities of a proposed software system. Requirements specification involves stating the
system functions and constraints in a precise and unambiguous way. Design is the task of
producing, and consequently refining solutions that satisfy the specification. Implementation
is the act of realising the design in a programming language which can be executed on the
target machine. Validation is the process of checking that a system fulfills its user
requirements. Verification has the objective of ensuring that the end product of each of the
first four stages matches its input. Operation is the activity of installing and running a
completed system in its intended environment. Lastly, maintenance is the process of
modifying a system, during its operational lifetime, to correct detected errors, improve
performance, and incorporate newly emerging requirements.

The life cycle model was originally derived from the hardware production model of:
requirements, fabrication, test, operation and maintenance [Blum82b]. It primarily reflects
management concerns in production, such as planning, control, budget expenditure and

resource allocation. Its aim is to provide a basis for estimating the correct distribution of
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labour and capital over a well-planned period of time by dividing the production process into
a number of rationalised phases, each with its own milestones and deliverables.

Central to the model is its linear structure; with exception to validation and verification,
all other stages are carried out linearly, i.e. each stage begins only when the previous stage
has been completed. The model works very well in hardware production; its appropriateness

for software development, however, is becoming increasingly questionable.

1.2 DEFICIENCIES OF THE LIFE CYCLE

Software producers who currently use the life cycle model have to cope with three
unpleasant facts. Firstly, the earlier an activity occurs in a project the poorer are the notations
used for that activity. Secondly, the earlier an activity occurs in a project the less we
understand about the nature of that activity. Finally, the earlier an error is made in a project
the more catastrophic the effects of that error. For example, early requirements and
specification errors have typically cost a hundred to a thousand times as much as those errors
made during implementation [Boehm81] and have lead to a number of multi-million dollar
projects being cancelled.

Increasing user dissatisfaction with software since the early nineteen seventies has
motivated researchers to pay greater attention to the earlier stages of software development
[Ramamoorthy84]. As a result, many requirements analysis and specification techniques
have been invented [Davis77, Ross77, Taggart77, Levene82, Lehman85]; some of which
are even computerised {Smith76, Teichroew77, Bell77]. At the same time there is a rapidly
increasing interest in formal, more mathematical methods of software development which
adherents claim lead to more reliable systems which have an increased probability of meeting
user needs [Musser79, Davis79, Jones80b, Silverberg81].

Unfortunately, even when a software developer uses modern notations and
techniques, success is likely only when the application is both well-understood and
supported by previous experience [Bally77, Blum82a, Brittan80]. The current rate of growth
in hardware has meant that, each year, large numbers of new applications emerge for which

the old knowledge is inadequate. Faster and larger, cheaper memories mean that computers
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are being used in novel projects where the relation of the computer to its environment, to
human operators, and to other computers has not been researched adequately. Many such
projects are based on specifications which are not true reflections of the customer's
requirements. This is due to three reasons.

First, there is usually a significant cultural gap between the customer and the
developer and the way they communicate [Christensen84]. Consequently, a customer often
finds it extremely hard to visualise a system by simply reading a technical system
specification document {Gomaa81, Mayr84]. If the customer is unable to visualise such a
system then validation during the early part of the project becomes a very error-prone
activity. Indeed, the difficulties involved in communication with the user can be a serious

barrier to proper development [McCracken82]:

"The life cycle concept perpetuates our failure so far, as an industry, to build an effective bridge
across the communication gap between end-user and system analyst. In many ways it constraints
future thinking to fit the mold created in response to failures of the past.”

Second, the customer, unfamiliar with information technology, may have produced very
vague requirements which could be interpreted arbitrarily by the developer [Brittan80].
Third, empirical evidence [Ackford67, Alter80] suggests that once a user starts employing a
computer system, many changes occur in his perception as to what the intended system
should do; this obviously invalidates the original requirements. As a result, user
requirements are often a moving target, and producing a system that meets them is a risky
and error-prone activity.

A further complication is that a software project of considerable size may take many
years to complete; during this time the user requirements, as well as the user environment,
may change considerably, making the final system even more obsolete [McLean76,

Gladden82, Ramamoorthy86]. This is graphically described by Blum [Blum82b]:

"Development is like talking to a distant star; by the time you receive the answer, you may have
forgotten the question.”

The life cycle model is strongly based on the assumption that a complete, concise and
consistent specification of a proposed system can be produced prior to design and

implementation. The validity of this assumption has been challenged and refuted by a
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number of authors [Swartout82, McCracken82, Shaw85]. In many cases a complete
specification cannot be produced, simply because the user does not really know what he
wants [Berrisford79, Parnas86].

Lack of experience in projects where it is almost impossible to construct a precise
specification leads to the situation where the customer requirements can be established only
when a complete software system has been built and when the system can be examined in a
fully concrete form [Blum82a]. For this reason many systems end up being written at least
twice. To quote Brooks [Brooks75]:

"Plan to throw one away; you will, anyhow."

There are numerous examples in the literature of substantial modifications of systems during
maintenance because of inadequate requirements analysis. For example, it has been reported
[Boehm74] that in some large systems up to 95% of the code had had to be rewritten to meet
user requirements. Even more formal, improved techniques and notations for requirements
specification are not helpful in this respect, as the transition from the user conceptual model
of a system to a specification of the system is an inherently informal process [Leibrandt84].

All evidence, therefore, suggests that the life cycle model has many shortcomings
which may have adverse effects on software projects. This is, of course, not to say that this
model should be rejected outright. To the contrary, in certain areas, such as embedded
software and real time control systems, it is the most rational approach and indeed the best
way of controlling the complexity of such projects. However, for the majority of other
applications, especially those related to commercial data processing, it is inappropriate and
has many deficiencies which are too serious to be ignored. The deficiencies may be

summarised as follows:

« It is unable to cope with vague and incomplete user requirements [Brittan80,
MacEwen82].

. It discourages feedback to the earlier stages because of the cost escalation problems
[Bastani85].

. It cannot predict the effects of introducing a new system into an organisation before the

system is complete [Keen81].
. It cannot properly study and take into account the human factors involved in using the
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system.

* Itintroduces a computer system into an organisation suddenly. This is a rather risky

approach since users are known to resist significant, sudden social changes
[Rzevski84].

* The customer may have to wait for a long time before actually having a system
available to him for use. This could have undesirable effects on customer trust and
may cause frustration [Gladden82].

»  The final product will, at best, reflect the user requirements at the start of the project
and not the end. In long projects, these two may differ considerably due to changes in
the customer's organisation and practices.

*  Once the users start employing the final system and learn more about it, their views

and intentions change significantly. Such changes in user perception can by no means
be predicted [Clark84].

1.3 THE PROTOTYPING SOLUTION

In the light of the difficulties described above, many researchers have arrived at the
conclusion that software development, particularly during its early stages, should be
regarded as a learning process and practiced as such [Mason83], and that it should actively
involve both the developer and the customer [Christensen84]. For it to be efficient, it
requires close cooperation, and can be successful only when it is based on an actual working
system [Somogyi81]. Although customers are not very good at stating what they want from
a future software system, they are very proficient at criticizing a current system!

A number of techniques have emerged in recent years that are based on this idea. They
are classed under the generic term rapid prototyping [Smith82b, Zelkowitz84]. The use of
these techniques represents a major change in the way software is produced. They rely on an
idea borrowed from other engineering disciplines — that of producing a cheap and simplified
prototype version of a system rapidly and early in a project. This prototype becomes a
learning device to be used by both the customer and the developer and provides essential
feedback during the construction of a system specification. The prototyping approach, when
compared to current methods, is so dynamic that the difference can be compared to that
between interactive and batch-oriented systems [Naumann82].

Like software testing [Meyer78], the main philosophical issue in prototyping is

admission of failure; that we, as human beings, no matter how careful in our development
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practices, are likely to make mistakes. Bally [Bally77] puts the idea, appropriately, in the

following words:

"In one sense the prototype strategy is an admission of failure, an admission that there will be
circumstances in which, however good our techniques and tools for investigation, analysis and
design, we shall not develop the right system at the first attempt. But surely this is only realism

based on hard experience, theoretically ideal solutions are often far from satisfactory in a very
imperfect world."

One of the objectives of the prototyping approach is to reduce the maintenance effort.
There is now considerable evidence [Swanson76, Zelkowitz79, Lientz80, Lientz83] that
software maintenance can occupy between 50 to 90% of total project cost during the lifetime
of a system. There is increasing empirical evidence [Boehm84] that prototyping can indeed
produce more maintainable products.

Overall, the limited results and experience which have been obtained have been very
encouraging. For example, in a reported experiment {Boehm84] using prototyping, systems
were developed at 40% less cost and 45% less effort than conventional methods. Other
researchers have reported even more impressive figures. Scott {Scott78] has described a
system which was estimated to cost $350,000 to develop but was accomplished by a
prototype that cost less than $35,000. The figures that have been reported have also
supported the contention that prototyping shortens the overall development cycle for software

[Berrisford79, Mason83, Bonet84].

1.4 THE SCOPE AND LAYOUT OF THIS THESIS

This thesis is a report on the outcome of a research in investigating, developing and
integrating rapid prototyping techniques and applying them to the process of software
development. It provides a study of the current state of the art in rapid software prototyping,
suggests and describes a particular approach, namely the executable specification approach,
and combines it with other methods to produce a comprehensive approach for utilising the
power of prototyping. The advocated approach is backed up by a fully implemented software
development environment, together with working examples and case studies which were

performed using the system.

The thesis makes four principal contributions. First, it describes concepts, approaches,
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tools and techniques for rapid software prototyping and explores the potential benefits and
limitations of its use. It describes the process of prototype development within a systematic
framework. Second, it makes a contribution to the integration of diverse areas of
mathematical formalism and rapid prototyping. In particular, it promotes the ways in which
these two may benefit from one another. Third, it advances the rather under-researched area
of wide spectrum languages and programming environments which primarily support the
rapid prototyping approach. Finally, it makes a contribution to software abstraction methods
by introducing a novel abstraction technique, called cluster, which is of immediate utility in
both rapid prototyping and software design.

The earlier chapters of this thesis describe the prototyping approach in a general and
critical sense. They provide a background for later chapters which focus on the particular
method pursued by this research. Chapter 2 attempts to define prototyping, examine its
applications, broadly classify the current approaches, and elaborate on the constituent steps
of prototyping projects. Chapter 3 presents a list of technical approaches to rapid prototyping
and describes each in some detail.

The specific approach of this work is outlined in chapter 4 which also describes the
EPROS prototyping system, its intentions, its scope and the wide spectrum language it is
based on — EPROL. Chapters 5, 6 and 7 go into greater depth in describing EPROL and its
relevance to specification, design and implementation of functional as well as user interface
aspects of software systems within a prototyping framework. Chapter 8 describes clusters
and the motivation for their creation.

In addition to many small problems, a relatively large prototyping project was carried
out using EPROS to investigate the appropriateness of the methods described in this thesis.
This is described in chapter 9. The last chapter examines other work carried out in this area,

compares it with the research reported here, and lists a number of future research directions

which would be of benefit.



Chapter 2 RAPID SOFTWARE PROTOTYPING

The old order changeth, yielding to new ...
- A Tennyson

2.1 WHAT IS PROTOTYPING?

Prototyping originated from those engineering disciplines which are involved in mass
production. There, it refers to a well-established phase in the production process whereby a
model is built which exhibits all the intended properties of the final product. Such a model
serves the purposes of experimentation and evaluation to guide further development and
production. It is important to note that no kind of hardware production is conceivable without
going through this phase.

In software engineering the notion of mass production is absent; instead, production
refers to the entire process of building the one product. For this reason, the concept of
prototyping takes a rather different meaning. Here, most commonly, it refers to the practice
of building an early version of the system which does not necessarily reflect all the features
of the final system, but rather those which are of interest. In particular, and in contrast to
hardware production, we require a prototype to cost very little and take a significantly short
time to develop, hence the term rapid prototyping. The purpose, as before however, is to
experiment, to learn and to guide further development.

As one would expect with any new term, there is some dispute over the exact meaning
of prototyping within the context of software engineering. Some insist that it should be used
to refer to a mocked-up initial version of a system which is thrown away after use
[Gehani82a, Budde84]. Others suggest that a prototype may become the final system by
means of a process of continual improvement [Dodd80]. To avoid confusion, some authors
suggest that the term prototype should be used to refer to the throw-it-away approach, and
the term evolutionary development be used when a prototype ‘evolves' to become the final
system [Gilb81, Patton83].

Other terminologies exist. For example, throw-away prototypes have also been called
scale models [Weiser82], although it has been argued [Dearnley83] that a model should be

regarded as a pictorial representation whereas a prototype is a working system. It has also
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been suggested [Gregory84] that a system with a user interface similar to the final product,
but incomplete in terms of functionality, should be called a mock-up and not a prototype. In
contrast to this, the term bread-board has been suggested to refer to a system that has a high
functionality and no user interface [Botting85].

Other revelant terms used in the literature are: test vehicle, engineering prototype and
production prototype {Bally77], heuristic development [Berrisford79], infological simulation
[Naumann82], system sculpture [Blum82a], iterative enhancement [Basili75], evolutionary
development {Gilb81] and incremental development [Baldwin82].

It is not the intention of this thesis to discuss the merits of all these terms. For our
purposes, however, we need to establish what we mean by a prototype. When referring to a

prototype, we shall assume the following:

« Itis a system that actually works; it is not just an idea or a drawing.

It will not have a generalised lifetime. At the one end of the spectrum, it may be
thrown away immediately after use; and at the other end, it may even become the final
system.

. It may serve many different purposes, ranging from requirements analysis to taking
the role of the final product.

«  For whatever purpose, it must be built quickly and cheaply.

It is an integral part of an iterative process which also includes modification and

evaluation.

We shall, therefore, use the term in a rather broad but, at the same time, controlled sense.
Throughout the rest of this thesis, by prototype we shall mean a rapid software prototype

unless otherwise stated.

2.2 APPLICATIONS OF PROTOTYPING
Prototyping can be applied to various phases of the software life cycle and can also

replace some or even all of them. In general, it can be applied in the following areas:

. To aid the task of analysing and specifying user requirements. Here it may have a
complementary role, assisting the analyst in finding out actual user requirements. In

some cases, the prototype itself may replace the requirements specitication document.
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As a complementary tool in software design. For example, to study the feasibility and
appropriateness of a system design; to verify novel designs; to contrast and compare
the merits of alternative designs; and to demonstrate that a design meets its
specification.

+ Asatool to resolve uncertainty. For example, to study the effects of, and to cope with,
organisational changes due to introduction of new technology; to gradually adapt a
computer system to its intended environment; and to decrease the level of risk in
introducing automation.

« As an experimental tool, to study the human factors of new computer systems;
especially for deriving acceptable human-computer interfaces.

« As avehicle to support user training in parallel to system development.

+ As an economic way of implementing one-shot applications [Smith82b]. These
concern problems which may be solved by writing a program and running it only
once; after the solution is obtained the program will be of no further use.

«  As a complementary tool in software maintenance; especially in situations where due to
unstable user requirements heavy maintenance is expected, requiring much of the
design to be re-worked.

«  As a system development method whereby the prototype evolves to become the final

system.

For many technical problems, however, prototyping is not a suitable solution. In such
cases, prototyping is likely to have adverse effects, creating more problems than actually
solving anything. Example are: space and time efficiency problems, error recovery problems,
system security problems, concurrency problems (e.g. deadlocks), hardware interfacing
problems, networking problems (e.g. congestion control) and heavy numerical calculations
(e.g. solving partial differential equations.)

In general, there are three major areas where prototyping, although possible, is not

advisable:

. Embedded software [Zave81].
. Real time control software [Walter84].

. Scientific numerical software [Aggleton86].

Interesting enough, the life cycle model works rather well in these areas and there is usually

no need for prototyping. One major area where prototyping could be most valuable is that
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which has dominated the software market: commercial data processing. The effectiveness of
prototyping here has been demonstrated in many applications such as management
information systems [Scott78, Read$l, Blum82a], decision support systems
[Henderson82], business transaction systems [Dearnley81, Burns86], database applications

[Canning81], accounting systems [Earl78], language processors [Zelkowitz80, Kruchten84]

and many others.

2.3 CATEGORISING PROTOTYPING

The question of whether a prototype should become the final system is an important
one. Even if it is agreed that a prototype will become the final product, other questions, such
as how it should be constructed and when it can be accepted as the final product, need to be
answered. Because of the importance of the relationship between a prototype and the final
system, a classification based on this criterion is appropriate. This is depicted by the
following classification which divides the approaches to prototyping into three main

categories.

throw-it-away prototyping

This corresponds to the most appropriate use of the term prototype, and is often used
for the purpose of requirements identification and clarification [Dearnley81, Kraushaar85).
To stress the relevance of this approach to requirements analysis and specification, it has also

been called specification prorotyping [Keus82] and specification by example

[Christensen84].

The need for rapid development is the greatest for throw-away prototyping. Since the
prototype is to be used for a limited period, quality factors such as efficiency, structure,
maintainability, full error handling, and documentation are of little relevance. The prototype
may even be implemented on hardware or within an environment other than the one required
for the target system. What is important about throw-away prototyping is the process itself
and not the product [Floyd84]. The major part of the effort, therefore, should go into the

critical evaluation of the prototype rather than its design.
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The use of throw-away prototypes, however, is not limited to the specification phase.
They may be equally useful in the design phase, as reported in [Dearnley84, Bonet84]. Used
in this way, prototypes are often a useful tool for exploring alternative designs and evaluating
the appropriateness or feasibility of a new design idea. They are also useful in the testin g of
a developed system, where they can be used as a comparator that evaluates the correctness of
the test results of the system [Weyuker82].

As throw-away prototypes can be easily employed within conventional projects, they
do not require any major changes to current software development practices. The cost of
throw-away prototyping is highly influenced by the availability of appropriate software tools.

Very high level languages have been most commonly used [Zelkowitz80, Gomaa§83].

evolutionary prototyping

This approach is in complete contrast to throw-away prototyping [Blum83]; it is in
complete antithesis to current software development methods. Proponents of this strategy
argue that information systems, once installed, evolve steadily, invalidating their original
requirements [Naumann82, Brittan80, Gilb81]. The purpose of the evolutionary approach
is to introduce a system into an organisation gradually while allowing it to adapt to the
inevitable changes that take place within the organisation as a result of using the system
[Rzevski84].

Evolutionary prototyping is by far the most powerful way of coping with change. This
approach requires the system to be designed in such a way so that it can cope with change
during and after development. A design practice that does not take the possibility of

change into account can lead to severe problems; this is illustrated by the following revealing
remark [Alter80]:

"Systems were strained badly or died as the result of corporative reorganisation ... An old version
of a planning model was abandoned as the result of a reorganisation, only to have its basic logic
restructured years later ... The conceptual design problem here is building systems that are truely
flexible.”

In evolutionary prototyping a system grows and evolves gradually [Nosek84,

Gilb85]. For this reason, the first prototype usually does not implement the whole
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application. Instead, enough development is carried out to enable the customer to carry out
one or more tasks completely [Dyer80, Mittermeir82b]. Once more is known about these
tasks and how they may affect other tasks, more parts of the system are designed,
implemented and integrated with the existing components. This allows a continuous and
gradual low-risk development while the system is undergoing use.

Addition and modification are two essential features of evolutionary prototyping and
results in new complete deliveries [Gilb81, Patton 83]. Unlike the throw-away approach, the
prototype is always installed and used at the customer's site [Rzevski84]. This is of prime
importance as the use of a prototype within its actual application environment is the most
effective way of performing a comprehensive task analysis.

The primary difference between this approach and conventional software development
is that it is highly iterative and dynamic; during each iteration a re-specification, re-design,
re-implementation and re-evaluation of the system takes place. As a result, the impact of early
errors is far less serious. Furthermore, the initial version of the system is delivered very early
in the project and throughout the development process an operational system is always
available to the user. This not only supports user training alongside development but also
ensures that the final system will not 'surprise’ the users when eventually introduced
[Hagwood82].

The dynamic nature of this approach, however, may be a considerable challenge to
both the developer and the user. Success often depends not only on an effective means of
designing an adaptable system but also on a willingness for both sides to open themselves to
communication and change for a significant period of time [Floyd84].

At some point in time the final prototype is eventually transformed into the final
product. Depending on how well the system design has survived the evolution process the
final prototype may serve as the production version or a complete re-design might be
necessary to facilitate smoother maintenance. Once again, the availability of appropriate tools
is vital. To cut down the re-design effort, a highly modular design which can cope with
extension and contraction [Parnas72, Parnas79] should be employed. The success of the

evolutionary approach is very much dependent on the ability of the designer to build



2 Rapid Software Prototyping K

flexibility and modifiability into the software from the start [Munson§ 1].

incremental prototyping

Here the system is built incrementally; one section at a time. Incremental and
evolutionary prototyping have often been used as synonyms [Baldwin82, Dyer80].
However, there is a significant difference between the two. Incremental prototyping is based
on one overall software design [Floyd84] whereas with evolutionary prototyping the design
evolves continuously. In incremental prototyping a full scale design is first conducted and
then modules are implemented and added in sequence. As with evolutionary prototyping the
system grows gradually but in a considerably less dynamic way. Since the incremental
approach mostly affects the implementation phase it can be used in conventional software
projects [Blum86]. Consequently, it has also been called the plug-in strategy [Bally77,
Taggart77]. Incremental prototyping provides less scope for adaptation than evolutionary

prototyping but has the advantage of being easier to control and manage.

Prior to prototype development the nature of the prototype should be well-understood
by both the customer and the developer, i.e. whether the prototype should be throw-away,
evolutionary or incremental. This point has created considerable confusion in the literature.
For example, it has been suggested that it is possible to decide on the nature of a prototype
after it has been constructed and evaluated [McNurlin81]. This does not seem to be helpful as
the design of a prototype is highly influenced by the developer's perception of what it should
be used for. For example, because of the significant difference in their expected lifetme, the
design of an evolutionary prototype is very different from that of a throw-away prototype
[Patton83].

Some authors suggest that prototyping and conventional development methods are
complementary rather than alternative approaches to system development [Riddle84,

livari84]. This is certainly true in the case of the throw-away and incremental approach, but

not the evolutionary approach.
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2.4 PROTOTYPING ACTIVITIES

To be effective, prototyping should be carried out within a systematic framework. The
framework advocated by this thesis consists of four steps. These steps and the way they

relate to each other are described below.

the establishment of prototyping objectives

It is essential to establish what a prototype is supposed to be used for and what aspects
of a proposed system it should reflect. A clear statement of the lessons that are expected to
be learnt from the prototype is also required. This information may be recorded in a

document which we may refer to as the prototyping objectives document (POD).

function selection

A prototype usually covers only those aspects of the system from which the required
information may be obtained. The selection of the functions to be included in the prototype
should be directly influenced by the prototype objectives. Depending on these objectives,
prototyping may be carried out horizontally, vertically or diagonally [Floyd84, Mayr84].
Horizontal prototyping involves including all the system functions in a prototype, where each
functon is considerably simplified and reduced. Vertical prototyping involves including only
some of the functions, where each of these is fully realised. Diagonal prototyping is a hybrid
of these two. Function selection often boils down to simplifying the original requirements to
some extent. However, care should be taken to ensure that the assumed simplifications are

both consistent and continuous [Rich82].

prototype construction

Of great importance is the speed and cost of prototype construction. Fast, low-cost
construction is normally achieved by ignoring the normal quality requirements for the final
product unless, of course, these are in conflict with the objectives. Throughout construction
it must be ensured that everyone is aware of the fact that the main purpose of the prototype

is experimentation and learning rather than long-term use.
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evaluation

This is the most important step in the prototyping process and must be planned
carefully. The users of the system must have already been given proper training and
resources should have been made available for evaluation sessions. During evaluation,
inconsistencies and shortcomings in the developer's perception of the customer requirements
are uncovered. Many features of the system may prove unexpected or inadequate to the user.
As evaluation progresses, the customer learns more about the proposed system and his own
needs. At the same time, the developer learns about the way the customer conceives the
system. The prototype becomes an effective communication medium which enables the two
parties to learn about each other, without requiring them to have an in-depth knowledge of
each other's fields. The feedback obtained from the evaluation phase must be studied,
recorded and used judiciously to improve the prototype.

The prototyping process usually involves a number of evaluation sessions
[Naumann82]. After each session, the prototype is modified in the light of the experience
gained from its use and then subjected to further evaluation. This process is carried out
iteratively until the prototype meets the objectives. The time between the iterations is
extremely important. Good, timely feedback is essential for productive learning

[Henderson82].

2.5 BENEFITS AND DIFFICULTIES OF PROTOTYPING
The value of the prototyping approach and its suitability for use in software
development may be assessed by comparing its advantages against the difficulties it may

cause. The advantages may be summarised as follows:

. Prototyping enables one to cope with fuzzy requirements [Bally77].

. A prototype system may be used as a teaching environment. This facilitates user
training alongside development. Also, users will not be frustrated while waiting for the
target system [Gomaa81].

. A prototype facilitates effective communication between the developer and the user.

. Prototyping gives the user the opportunity to change his mind before committing
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himself to the final system [Groner79].

*  Prototyping enables the low-risk development of computer systems to be more feasible

[Somo81].

*  Prototyping enables a computer system to be gradually introduced into an organisation
[Hawgood§82].

*  Prototyping transforms the software development process into a learning process
[{Gomaa83].

« Prototyping has the effect of increasing the chance that a system will be more
maintainable and user-friendly [Somo81].

+  Prototyping can reduce the cost and time of development [Dodd80, Naumann§82].

+  Prototyping encourages users to participate in the development process and improves
their morale {Gill82, Earl78§].

Prototyping has also its pitfalls and difficulties; these are:

*  When carried out in an artificial environment which does not match the final user
environment there is a chance that users could miss some of the shortcomings.

« The 'model effect' [Bally77] or 'tunnel vision' {Sol84] might result in inappropriate
conclusions being derived from a prototype

- Iteration might not be easily accepted by software designers as it requires the
discarding of their own work [Hawgood82, Ramamoorthy86].

« There is a danger that the prototyping process could converge to a set of requirements
too quickly, missing some essential points [Henderson82].

«  Resource planning and management can be difficult [Alavi84].

It may be difficult to keep system documentation up-to-date.

Although there is an increasing body of evidence that prototyping has positive
implications for the process of software development, a large part of the software community
still remain sceptical. Prototyping is not accepted as readily as other engineering disciplines.
One reason for this is that software education and training is still strongly based on the
conventional model of software development. Another reason is that the prototyping
approach still lacks a coherent methodology [Boehmg83]. While the former can be solved by
updating software courses, the latter can only be solved by further research. The research

presented in this thesis is a step towards the latter.



Chapter 3 TECHNIQUES OF PROTOTYPING

A little inaccuracy sometimes saves tons of
explanation.

- Saki

In this chapter we describe a number of technical approaches to prototyping. These
techniques invariably aim to achieve the same goal — the quick and cheap construction of
working prototypes — but vary in the way they go about doing this and the applications for
which they may be suitable.

A recent view of software development is that the processing and user interface of a
system should be regarded as separate entities and designed as such [Draper85, Hagen85].
This view is adopted here by classifying the technical approaches to prototyping to those that
are relevant to prototyping the functional aspects of a system and those that are relevant to
user interface prototyping. This classification, however, is not a clean cut; some of the
techniques are applicable to both categories. Where that has been the case, we have used a

further criterion — the frequency of use in each group.

3.1 FUNCTION PROTOTYPING

An important aspect of any computer system is its functional behaviour, i.e. what it
must do. This is normally described by a functional requirements specification document,
produced by either the developer or the customer. Waters [Waters79] provides a useful
check list of technical facts that must be recorded in such a document. He uses this list to
evaluate the completeness of a number of specification languages and concludes that none is
even 40% complete. There is also empirical evidence [Bonet84] that once development
progresses functional requirements may change and expand considerably. For example, in
the case of the project reported in [Bonet84], the requirements expanded by a factor of 5, but
were easily controlled by employing a prototyping approach. All this evidence points to the
importance of including the functional aspects of a system in a prototype. This section

discusses some of the technical approaches to prototyping these aspects.
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executable specifications

A promising approach to rapid prototyping is the executable specification approach
[McGowan85]. Here, the basic idea is that if a specification language is formal and has
operational semantics then it is possible to construct a system that can execute it directly.
One attraction of this approach is that it can eliminate the cost of producing a prototype
altogether since the specification of a system has to be produced anyway.

Formal specification techniques can be broadly divided into two categories [Liskov75,
Claybrook82]. The first category is based on writing a specification as a set of axioms
[Hoare73, Guttag77, Furtado85]. Axioms may be written as algebraic equations which,
when treated as rewrite rules, can specify the operational semantics of the specification. For
example, an unbounded stack with three operations of NEW_STACK, PUSH and POP may be

specified as:

NEW_STACK: --> Stack

PUSH: Stack, Element --> Stack

POP: Stack --> (Element | Undefined)
POP (NEW_STACK()) = Undefined

POP (PUSH (stk,elem)) = stk

Where the first three lines specify the syntax of operations and the last two lines specify their
semantics as axiom. This technique has been employed in the OBJ specification language
[Goguen79]. Systems now exist which can translate OBJ specifications into executable code.
Similar ideas have been used in the language NPL, its successor HOPE [Burstall80], and also
in CLEAR [Burstall81] and SPECINT [Darlington83]. Virtually all these languages allow the
axioms to be written as conditional as well as pure equations [Drosten84].

The second category of formal specification techniques is the abstract model approach.
This is based on specifying the functions of a system in terms of abstract mathematical

objects such as sets and functions. The above stack problem, for example, can be specified

in an abstract model-oriented method such as VDM as:

Stack = Element-1list

NEW STACK: -->

;ost(stk,stk') == gtk' = <>
PUSH: Element -->

post(stk,elem,stk') == stk' = <elem> || stk
POP: --> Element

pre(stk) == stk /= <>

post(stk,stk',res) == stk' = tl stk & res = hd stk
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Where a stack is modelled by a list and each operation is specified by predicates on its
arguments, result, and the stack. Typical specification languages in this category are
described in {Jones80a, Silverberg81, Claybrook82, Sunshine82, Morgan84, Beichter84,
Berzins85]. Examples of related executable specification systems are described in [Balzer82,
Feather82, Urban82, Henderson84, Belkouche85, Kemmerer85, Lee85].

Henderson and Minkowitz [Henderson86b] provide an excellent comparison of these
two categories in the context of executable specifications. They conclude that the differences
between these methods are more artificial than real, and illustrate how functional
programming could form a suitable basis for both. Similar ideas have also been expressed in
[Ardis86].

There are two potential difficulties in making a specification language executable.
First, mathematical objects such as infinite sets cannot be represented in finite store and have
to be restricted to finite representations. Second, very implicit constructs cannot be easily
dealt with and often need to be replaced by more explicit constructs to facilitate execution.
Although these problems have no simple solutions, they do not diminish the usefulness of
executable specifications. Once a means of execution is available, the work involved in
preparing a specification for execution is usually very small [Tavendale85].

Symbolic execution [Cheatham79a, Danenberg82] has also been su ggested as a means
of both verifying and animating formal specifications. Symbolic execution is a term applied

to the execution of programs in a form which produces algebraic rather than numeric values.

For example, the fragment of Pascal program:

s:= 1;
for j:=1 to 5 do
s:= s*al[jl’

writeln(s):

will, when symbolically executed, produce the algebraic expression:
a(ll*a[2]*a[3]1*a(4]*a(5]

rather than a numerical product. This approach has the advantage of addressing the class of

all possible implementations for a specification. Discussions of this type of execution to

produce prototypes can be found in [Guttag78a, Cohen82, Feather82a). Unfortunately,



3 Techniques of Prototyping

21

symbolic execution suffers from many problems that are only likely to be solved in the very
long term. For example, the symbolic execution of anything but unrealistically small
specifications produces an overwhelming amount of symbolic print-out. Consequently, it is
unlikely that this technique will play any significant part in software prototyping in the
future.

To summarise, even though there are a number of difficult research problems
outstanding, there are a number of advantages associated with prototyping by means of
specificaton execution. Apart from being intellectually appealing, this technique ensures that
a precise level of documentation is always available to the developer. A specification
gradually evolves towards user requirements and, at each stage, a precise description of the
system is available rather than being buried in the working detail of a mocked up prototype.
Another advantage is the low cost of producing a prototype; little extra work is normally

required after a formal specification has been produced.

very high level languages

Very high level languages (VHLL) are programming languages in which it is possible
to express complicated operations in a small amount of written program code [Podger79];
they can offer significant gains in increased productivity at the expense of inefficiency in
terms of increased running time and storage needs. For this reason they are valuable tools

for prototyping. Some of the relevant features of VHLLs are:

- They are interpretive and interactive; a user can interact with such languages in

real-time.
- They offer a rich set of objects together with numerous operations on these objects.

. The language notation is short and concise and usually very expressive.
They are normally supported by powerful software environments and debugging

facilities.
.  Because of their extensive run-time checks, they are more productive than

conventional languages.

One language that has been advocated for prototyping more than any other is APL

[Tavolato84]. The basic object in APL is the array and is supported by a large number of
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powerful operations. Most APL systems also provide flexible filing systems and a report
formatting facility which makes them suitable for prototyping commercial data processing
applications. Although APL programs are very concise, they can be quite cryptic and hard to
read. Thus, APL is only advisable for throw-away prototyping [McLean76]. A typical use of
APL for producing a throw-away prototype for a large commercial system is reported in
[Gomaa81].

LISP [Wilensky84] is another VHLL that has been used for rapid prototyping (see for
example [Heitmeyer82]). The language itself has a good reputation for very high productivity
{Sandewall78]. Also, some very powerful programming environments have been built
around LISP and, although primarily conceived as a language for artificial intelligence, it has
a number of attractive features making it suitable for rapid prototyping. Amongst these, the
uniform treatment of data and programs as lists, a powerful macro facility, and highly
interactive features may be named.

PROLOG [Clocksin84] has also been advocated as a rapid prototyping tool
[Leibrandt84]. This language is representative of a recent development in programming
techniques known as logic programming [Kowalski79] which employs a restricted form of
logic to express an algorithm. Currently the language does not enjoy as much popularity as
other VHLLSs as a medium for prototyping. This is due to poor PROLOG programming
environments [Venken84] and partly because PROLOG is still evolving and a number of
important technical and language issues have remained unresolved. However, its underlying
structure makes it a particularly useful current tool for prototyping database and expert
system applications.

Two other VHLLs which have been used for prototyping are SETL and SNOBOL. SETL
[Kennedy75] is a programming language which is based on set theory. It has been used in
prototyping the first approved compiler for the American Department of Defense language
Ada [Kruchten84]. SNOBOL [Griswold71] is a long-established programming language used
for manipulating character strings. Zelkowitz [Zelkowitz80] reports on its use in prototyping

a language processor.

VHLLS require rather large run-time environments that can consume inordinate amounts
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of storage space. This makes them unsuitable for implementing a final product. They also
tend to be many times slower than conventional high level languages. However, this does
not diminish their utility for rapid prototyping as time and space considerations are often of
little concern.

Being real-time and highly interactive, VHLLSs enable efficient experimentation with and
modification of prototypes; almost a mandatory pre-requisite for prototyping. However, no
single VHLL is suitable for all prototyping tasks. Instead a choice should be made by
considering which language is suitable for which application domain. For example, if the
application in mind is an expert system then APL would be a poor choice while PROLOG or

LISP would match the application domain more naturally.

application oriented very high level languages

Application oriented vary high level languages (AHLL) are languages that provide
significant savings in implementation time by providing facilities concentrating on a specific
application domain such as cost accounting or stock control [Martin82]. These languages are
embodied by systems that are either interpretive or program-like. An interpretive system is
one in which the user provides a description of an application and the system responds to
user requests by performing the desired functions through interpreting the application
description; such systems are often known as application generators. A program-like system
is one in which the user provides a high level program-like description of an application and
the system translates it into a program in a conventional programming language; such
systems are often known as program generators [Lucker86] and the language used is usually
referred to as a fourth generation language [Read81].

Application generators are highly parameterised and are used to model an application
through adjustment of these parameters. The basic idea behind these systems is that if an
application domain is well-understood then it is possible to provide systems that can cater for
all possible (or at least the most common) functions that would be used in that application

domain.

Prywes and Pnueli [Prywes83] describe a program generator which is based on a
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non-procedural language [Leavenworth74] called MODEL and is aimed at commercial DP
applications. A MODEL program simply consists of a description of data items and a set of
equations which describe interrelations between the data items. This description is then
translated into a PL/1 or COBOL program. The description is usually compact due to
avoidance of input/output detail and the detailed processing that is to occur. Because of this,
MODEL programs tend to be 5-10 times shorter than their equivalent COBOL or PL/1
programs. Furthermore, MODEL's comprehensive error checking is a major factor in
increased productivity [Tseng86]. The use of MODEL by an accountant, with limited
computing background, to generate an accounting system is described in [Cheng84].
Another typical AHLL is HIBOL [Mittermeir82a]. It differs from MODEL, in that it is highly
interactive. It allows the interactive definition of business forms and provides facilities for
interfacing to a database.

By restricting themselves to small application domains, AHLL systems can achieve
high efficiency. As a result, these systems have also been used for producing finished
products. In addition, since they facilitate rapid development, they are able to support
evolutionary prototyping. The use of such systems for this method of prototyping is detailed
in [Canning81]. This reports on the development of a system where the final product
contained about 13,000 lines of code most of which was produced by a program generator
with the whole development process taking just six weeks.

An attractive advantage of AHLLs is that they can be used by staff with little computing
experience. The major disadvantage of AHLL systems is their very limited scope. They are
useful for such applications as accounting, payroll, and banking where the application

domain is well-understood and where there is a wealth of existing implementation history

and expertise [Ramamoorthy84].

functional programming languages

Ever since its early days, computing has been dominated by procedural languages.
Such languages allow the programmer to explicitly retrieve data from areas of store, carry out

some operation such as addition or multiplication on the data, and then deposit it back into
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store again. Procedural languages such as FORTRAN and COBOL have dominated data
processing since the nineteen fifties. However, a number of computer scientists have recently
pointed out three serious drawbacks with such languages [Backus78, Stoy82]. First, they
have become over-complicated. Second, they are unsuitable for implementing software on
the multi-processor machines that have been made possible by advances in VLSI technology.
That in order to take full advantage of multi-processor architectures some very painstaking
and error-prone programming is required. Third, programs expressed in procedural
languages are mathematically intractable; it is almost impossible to reason easily about the
functionality of large, realistic programs.

As a reaction against the disadvantages outlined above a new generation of functional
programming languages [Henderson80, Darlington82] have been designed. The impetus
towards their development has been the emergence of new 'fifth generation' multi-processor
architectures. Typical functional languages are SASL [Turner79], MIRANDA [Turner85], and
ML [Gordon79]. The prime attraction of these languages is their conciseness; functional
programs tend to be much smaller and easier to develop than corresponding conventional
programs. An example of the conciseness that can be achieved is shown below. It shows a
MIRANDA program for taking a finite list of objects and returning the set of all permutations
of the list. The corresponding procedural program, expressed in a language such as

Pascal,would occupy at least ten lines of code.

perms [] = [([]]
perms x = {a:pl a<-x; p<-perms (x--[al]) }.

Functional programming languages are also a medium for a technique known as
transformational programming [Darlington76, Darlington81a, Bird84, Barstow85]. This
involves a developer producing an extremely concise program for an application which
would be very inefficient in terms of memory space and processing time. This program
would then be gradually transformed into a working system by the process of replacing
inefficient parts by more efficient facilities of the functional language used. This obviously

has important implications for evolutionary prototyping.

Functional programming languages are still in their infancy, and many rescarch
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questions remain unresolved. Consequently, their scope as a prototyping tool has yet to be
explored. However, given promised developments in fifth generation hardware technology
over the next decade, functional programming should become an indispensable medium for

prototyping.

the tool-set approach

Within the context of software prototyping a tool can be defined as a program that aids
the rapid construction of a prototype system. A prototyping tool-set [Glass82] is an
environment offering a collection of such tools and a support facility for combining and
integrating them quickly and easily.

The most well known tool-set is the UNIX operating system [Bourne83]. Although it
was not originally designed for the purpose of prototyping, UNIX offers features that make it
suitable for this purpose. The UNIX approach is based on providing a large number of tools
[Bell79] that include various language processors, analyser generators, filters, report
formatters and many others. The most significant feature of the UNIX tool-set is a uniform
and clean common interface. The common interface is called pipe and allows the output of
one tool to be passed to the input of another tool. Furthermore, the more sophisticated tools,
such as LEX and YACC which can quickly generate language processors, have all been
interfaced to a common programming language (C).

Prototyping in UNIX often means breaking a problem down into a number of steps
where each step is realised by a tool [Kernighan84]. The tools are usually applied
successively to data so that the output from one tool becomes the input to another. The high
level control which determines the flow of data is obtained through a program known as the
shell which is a programming language in its own right. In UNIX, the shell acts as glue,

joining the tools together with minimal effort. To give an example, consider a program which

processes a file of employees, where each employee is represented by a record consisting of

his or her name, salary etc., and produces a sorted file of those employees earning more than

£10000. [t may be implemented as the following shell procedure:

cat employees | awk '$2 >= 10000' | sort +0 -1 > high_earnings
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where the vertical bars are pipes and > writes the output to a file. A number of projects which
have used the UNIX tool-set approach are discussed in [Gehani82a, Olsen83, Gray8§5].

Van Hoeve and Engmann [VanHoeve84] describe a tool-set called TUBA which is
specifically designed for the rapid prototyping and development of business application
programs. TUBA is built around the programming language Simula-67 [Britwistle73]. It
provides facilities for screen formatting and for this purpose it uses a data dictionary to store

the pictorial description of objects manipulated and displayed by the system.

reusable software

The relevance of reusable software to rapid prototyping is obvious. If a number of
useful modules are available then it is possible to produce a crude, but rapidly constructed,
version of a system by joining these modules together. Since the emphasis in prototyping is
on ease and speed of construction, reusable modules must have some specific properties.
First, and most importantly, they must all have a simple and clean interface [Kernighan78§,
Meyer82]. Second, they should be highly self-contained; 1i.e. they should not be dependent
on any other module or data structure as far as possible [Parnas72, Hall86]. Third, they must
provide some very general functions [Polster86]. Good documentation is, of course, vital.
An absolutely minimal documentation standard would insist on a description of each
module's interface, function and error conditions.

Reusing old modules is not a new technique; it has been practiced in certain application
areas for a very long time. These modules are usually provided in pre-compiled form in a
library. The widely-known NAG library of general purpose numerical analysis subroutines is
a good example. The domain of applications that have used reusable modules has been very
limited. The reason being that not many good general purpose libraries exist. However, the
high cost of software development is now providing an impetus to research in this area. This
research has included the use of very high level programming languages [Cheng84], the use
of a functional programming language to control libraries written in Ada [Gogueng4]. and
the transformation of programs written in one language to another language [Boyle84] or to

the same language [Cheatham84]. Recent practical experiences with developing systems
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from reusable software are reported in [Lanergan84, Matsumoto84, Litvintchouk84,
Polster86].

Since applications vary considerably from developer to developer, it seems reasonable
to suggest that each developer should put serious effort into collecting reusable modules
[Neighbours84], even though the tight requirements for reusable modules may require a
change in a developer's design practice. However, this change should not conflict with good
design practices and is, in fact, a strong pre-requisite for good design. A number of criteria
for decomposing systems into modules have been advanced [Parnas72, Parnas85]. Much
stress is placed on the importance of information hiding and that the design process should
start with considering difficult design decisions, especially those that are likely to change
with time. Each such decision is then hidden by means of a module. As Parnas
demonstrates, this not only results in a clean design but also produces a set of highly
independent modules where each has a well-defined function.

Although program code has normally been the medium for writing reusable modules,
the ideal medium is a software design notation [Kant81]. The most serious problems that
have occurred in employing reusable software have been connected with implementation and
programming language details [Balzer83). A machine-independent software design which
has been precisely documented does not suffer from such problems and can normally be

implemented quickly on a wide variety of computers and in different languages.

3.2 USER INTERFACE PROTOTYPING

In current interactive systems a large part of the system is devoted to managing
human-computer interaction. Sutton and Sprague [Sutton78] report that, on average, about
60% of the program code accounts for the user interface. It should not therefore be
surprising that a major part of a software project effort may be expended on the design and
implementation of the interface.

User interface design is an inherently difficult task. There are a number of reasons for

this. First, specifying a user interface can be very difficult. Written specifications are even

less helpful when compared to their use in specifying functionality. There 1s always a definite
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need to be able to visualise the appearance of a system [Lenorovitz77] and this is exactly
where written specifications fail. Second, a single system may have a variety of users with
considerably different backgrounds [Meurs77, Carey82, Kruesi83]. Attempting to design an
interface which is appealing to all users is not a simple task. Third, the complexity of the
requirements for a user interface often results in conflicting design goals which necessitate a
compromise {Shneiderman79]. It is difficult to detect conflicts on the basis of paper studies
and even more difficult to reach a suitable compromise. Lastly, desirable properties of a user
interface such as user friendliness and ease of use are highly subjective and are revealed only

when a system becomes operational [Tomeski75].

In the past most computer systems were designed with the assumption that the user
should adapt to the system. This assumption can no longer be accepted. The majority of
current computer users are not data processing professionals and are usually casual users
[Benbasat84, Rich84]. It is, therefore, unreasonable to require all users to spend
considerable time learning how to use a system, and one has to take novice behaviour into
account {Good84].

The traditional methods of software development have been relatively unsuccessful

in the design of human-computer interfaces for the following reasons:

« Usually a user interface is not thought of in advance, or not even designed
[Mills85]. Most design decisions are left unclear giving the designer the freedom to
decide how the user interface should operate. The designer constructs the interface
around his own conceptual model which, in most cases, is very distant from the
user's conceptual model [Hayes81, Dagwell83].

. The issue of user acceptability [Young81, Foley82] is not dealt with adequately; this
inevitably leads to systems which are hard to use.

.  The user interface is a major part of the system and is subject to continuous change

more than any other part [Munson81]. The need for change is rarely thought of in

advance.

It is now well recognised that the user interface should be designed as a separate

entity from the rest of a system [Olsen83, Edmonds81, Greeng5]. This not only

eases maintenance but also simplifies the task of providing a number of interfaces to

the same system. This advice is rarely followed. Those parts of the system

responsible for human-computer interaction are usually embedded so deeply in the
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system that their modification requires changes on a global scale.

Proper design of the user interface is such an important step in system development
that many authors believe that it should be the first part of the system to be designed
[Hagen&0]. The high degree of uncertainty and the possibility of change are good reasons
why the design of a user interface should be carried out in an experimental and adaptive
manner [Edmonds82] and why it should always consider the user model as an important
issue [Green81, Norman83, Draper85]. Unfortunately, the design of such interfaces still
remains more an art than a science [Smith82a, Turoff 82]. There are no well-understood
procedures that can be followed to guarantee a successful design. Much of what is known
is in the form of guidelines [James80, Gaines81]. An obvious problem with using such
guidelines is that they are unmeasurable and subjective [Shneiderman79].

The prototyping approach recognises the above difficulties by requiring the design of
a user interface to be an iterative process involving a large degree of user participation. This
approach allows the designer to derive a conceptual model that is appealing to a majority of
users. Actual design of the system only starts when a reliable conceptual model is
discovered. There are a number of technical approaches which can be used for prototyping

the user interface. They are discussed below.

simulation

One promising approach to the design of human-computer interface is that of
simulation [Clark81]. It is a powerful means of studying both user behaviour and the
effectiveness of a proposed system, especially when little experience exists of the technology

to be used in constructing the interface {Meijer79]. Simulation is especially effective when

the problem area is ill-structured [Bosman81].

An interesting use of simulation is outlined in [Gould83]. It describes an experiment in

which users were exposed to a 'listening typewriter’. The study was carried out by having

' ' ' inal. The user w
an operator and a user 1n separate rooms each equipped with a VDU termina ser would

compose his letters by speaking through a microphone. User requests would be intercepted

by the operator who would carry them out accordingly, thus giving the impression that the
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computer was in control. The aim of the study was to compare user's performance and
reactions to a listening typewriter as compared with conventional means of composing
letters. The use of simulation allowed the authors to study aspects such as speech mode, size
of vocabulary, composition strategy and user experience; most important of all, it enabled
them to decide whether an imperfect listening typewriter would be of any utility. This study
is important in the sense that it demonstrated that human factors can be studied very
effectively through a simple and cheap simulation exercise prior to costly development.
When carrying out a simulation the first task is to derive a simple model of the real
system to be developed. This model forms a vehicle for conducting experiments that would
otherwise have to be carried out on the real system. The purpose of simulation is to gain
insight into the behaviour of a system and also to evaluate techniques behind the operation of
a system [Shannon75]. Simulation is a methodology for problem solving and is most
effective when the real world experiments are too costly and impractical to perform. Some

authors consider prototyping as a specific instance of simulation [Sol84].

formal grammars

A useful mathematical tool for the specification and design of human-computer
interaction are formal grammars. These are notations used to describe the syntactic structure
of various languages. The most commonly used notation is the Backus-Naur Form (BNF)
which was originally designed for the specification of the syntax of programming languages
[Naur63].

The specification of a human-computer dialogue consists of two parts; the first part is
the specification of the user input; the second part is the specification of the system's
response to that input. Using BNF, one can easily specify user input formally and concisely

(Shneiderman82]. The specification of a system'’s response to user input is not possible

without extensions to BNF. Such an extension will introduce semantic actions into a BNF

description. These actions check the validity of the user input and perform the required

requests. For example, a simple mailing system with a single command for sending

documents to users may be specified as:
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<mail> ::= 'send' document 'to' user [send_mail ($namel, $name2) ]
<document> ::= {'A'..'Z'}+ [Snamel = match]
<user> ::= ('A'..'Z'}+ [Sname2 = match]

where the parts enclosed in square brackets represent the semantic actions. This approach has
been used in a tool which takes a BNF description of graphical input devices and produces a
prototype user interface [Hanau80]. A similar, but more flexible approach, is described in
[Olsen83].

If the user interface is based on a simple command language then compiler generator
tools can be used to prototype the user interface. Such tools have, in the past, enabled
developers to rapidly produce translators for programming languages from a BNF description
of a language. One such tool which has proved useful in user interface design is the
UNIX-based YACC compiler generator [Johnson75].

A different and more ambitious approach to the use of formal grammars for dialogue
design involves what is known as the command language grammar (CLG) [Moran81] which
describes a user interface at four levels; these being task, semantic, syntactic and interaction
levels. CLG, although important as an attempt to extend the use of formal grammars, does
not seem to be immediately suitable for prototyping purposes. It produces very long and
detailed specifications that are often too complicated to comprehend. Furthermore, no
automated tools are available to support its use. CLG, however, is a useful conceptual
framework for the specification and design of dialogue systems [Davis83, Browne86].

An interesting use of formal grammars for prototyping has been suggested by Reisner
[Reisner81] who used formal grammars as a predictive tool to make a pre-development
comparison of alternative designs. She predicted that certain properties of the BNF description
of a user interface determine the complexity of the interface. To substantiate her claims she
performed an experiment that demonstrated the correlation of empirical results of user
performance with her predictions. Two similar approaches to user interface evaluation using
formal grammars are described in [Blesser82, Wang70].

Formal grammars are by no means the ideal tool for dialogue design and prototyping.
They have a number of problems [Jacob83]. Firstly, for any serious dialogue, the BNF

description can become very complicated and incomprehensible. As a result, it may be very
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difficult to decide what event might occur after a series of user actions and vice-versa.
Secondly, BNF is particularly weak in describing error cases and help messages. Such

messages must occur at very specific points in the dialogue and their inclusion often requires
adding further complicated rules to a BNF description which do not seem to correspond to

any reasonable concept.

state transition diagrams

The use of state transition diagrams (STD) for dialogue specification and design was
first proposed by Parnas [Parnas69]. The concept has also been used for specifying the
functional requirements of computer systems [Casey82]. An STD is a directed graph
consisting of nodes and edges. Each node is usually represented by a circle and depicts a
state of the dialogue. Nodes are connected by edges representing transitions between states.
With each edge an input stream may be associated indicating that a transition between states
will occur if the user input matches the specified input stream.

STDs of this type have been used in the design of lexical analysers, parsers and
compiler generators [Conway63, Johnson68]. Like formal grammars, in order to be useful
for dialogue design, some extensions to the STD notation are necessary. Two extensions are
usually provided [Casey82, Kieras83, Wasserman85]. The first extension allows each edge
to be labelled with an output message. This message is sent to the user when the associated
transition takes place. The second extension incorporates semantic actions into an STD. These

actions are again associated with edges and are invoked by transitions. For example, the

mailing system described in the previous section can be specified by the following STD:
sk

*/send_mail($namel,$name2)

'A'."Z /Sname 1=match

‘A'..'Z'/[$name2=malch

where a slash is used as a separator between user input and corresponding computer action.

A number of tools have been constructed that convert an STD specification of a user
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interface into a prototype of the user interface [Wasserman79, Wasserman§82a,
Wasserman82b, Jacob83]. In all these tools a linear textual notation is used for specifying
STDs. The tools process the specification of a command driven user interface, expressed in
this notation, and generate a finite state automaton which acts as a prototype of the user
interface.

An important characteristic of STDs is that they make the state of a dialogue explicit
and hence more readable; with formal grammars, this information is always hidden and
usually very difficult to extract. This feature of STDs is very important from the point of view
of the staff carrying out prototyping [Norman83]. An STD specification is also an
exceptionally useful aid in the design of error/help facilities [Feycock77]. In an interesting
study [Guest82] two dialogue design systems were compared. One system, SYNICS
[Edmonds84], used the formal grammar approach while the other was based on state
transition diagrams. SYNICS was rejected by almost all the staff who used it; the reaction to
the other system, however, was positive and was even used productively by non-computer

experts.

other formal methods

There are a number of other formal methods which have been applied to the
specification and, in some cases, prototyping of user interfaces. One approach reported in
[Hopgood80] uses production systems as a basis for specifying human-computer interaction.
Production systems are extensively used in expert systems and are based on situation-action
or if-then rules [Winston81]. The use of production systems in dialogue design involves
producing a knowledge base of if-then rules, where each rule associates a predicate over user
input (and possibly systems states) to a system action in response to that input.

Although similar in some sense to state transition diagrams, production systems are
distinguished by the fact that they avoid specifying 1/O order. Interesting enough however, an
STD can always be mapped to an equivalent production system easily.

Formal functional specification notations have also been applied to dialogue

specification. Examples of these are given in [Feather82b, Sufrin82, Sulrin86, Cookst,
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Meandzija86]. Chi {Chi85] provides an interesting evaluation of the use of four formal
notations for dialogue specification which includes both algebraic and model-oriented
methods. He demonstrates that, while these notations are capable of specifying interaction,
their use is difficult and time-consuming. This is not surprising, as these notations were not
originally invented for the purpose of dialogue specification, and fall short of many useful
dialogue-oriented features. Indeed, what they lack most is a suitable underlying model for
specifying interaction.

One such model is described in [Alexander86] and is an extension to a current formal
specification and prototyping notation, called ME-TOO [Henderson86]. This model is based
on the notions of dialogue events and finite state machines, and uses a LISP-like
read-eval-print concept to model interaction. It retains the functionality of ME-TOO and,
having been based on an executable notation, it is capable of prototyping human-computer
interaction.

Another method is described in [Silbert86] and is based on the object-oriented
programming paradigm. In this model a user interface is designed as a network of objects of
pre-defined classes which depict different views of the dialogue and which communicate to
one another by passing messages. The model is primarily intended for graphical user

interfaces but is general enough to be applicable to other applications as well.

screen generators and tools

The appearance of the screen display is usually of great importance to a user. The
traditional methods of screen design usually rely on producing paper drawings of screens.
There are two difficulties with this approach. First, the drawings can take considerable time
and effort to produce. Second, experience has shown that what seems to be acceptable on
paper appears very different when displayed on a VDU screen. Software developers now
recognise that the best way to reach an agreement on screen layout is by actually producing
them on a VDU and carrying outa repeated process of modification until the user agrees with
ch screen displays 1s a time-consuming and

the presentation. However, programming Su

expensive task and can only be economically carried out by means of prototyping tools.
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Screen prototyping tools fall into two categories. The first category is based on
providing a high level notation for screen definition. This is implemented either by means of
a processor which converts screen definitions to a prototype version of the screen display
[Christensen84], or as a package of library routines accessible from a programming language
[Dixon85, Sale85, Kenneth81].

The second category makes use of sophisticated screen editors to produce the screen
layouts interactively {Mittermeir82a], where each time a screen is produced it can be stored in
a database and subsequently re-displayed. Both approaches allow rapid generation of a
scenario of the application user interface. A scenario is a way of presenting to the user the
sequence of events he or she would experience while performing some task and is more
concerned with the presentation than the actual processing behind it.

The use of scenarios for the design of interactive systems has been advocated as the
most eloquent way to design a human-computer interface [Hooper82, Mason83]. Scenarios
usually contain little or no application logic, so the sequence of events occurs in a
predetermined, fixed order. This, nevertheless, is a very useful concept which allows the
user to experience a system without the developer committing much resources to
implementation.

Mason and Carey [Mason83] have employed these ideas in a systematic way. They
have devised a technique known as the architecture-based methodology. It takes its name
from the similarity of the approach to the way buildings are developed; the technique places
great importance on the external view of a system. The designer starts with an external view
of the system and works inwards from this. During this process the designer has the
responsibility of ensuring that the system appearance is both acceptable and understandable
to the user. The methodology is supported by a tool called ACT/1 which rapidly produces
scenario prototypes of systems.

In a way, the architecture-based methodology is the reverse of conventional
pment where the system grows from inside outwards with its

approaches to system develo

appearance becoming known only when it is fully constructed. The most significant
C

advantage of this methodology is that it ensures that the system appearance is acceptable to
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the user during the whole of the development process. A limitation of this methodology is
that it is only suitable for producing interactive information systems. In these systems the
user interface dominates the entire system and its quality accounts for the quality of the
system as a whole. The architecture-based approach is representative of a number of recent
approaches which argue that system development should start with the user interface. Other

approaches which make use of tools to aid the construction of user interfaces are described in

{Buxton83, Aaram84, VanHoeve84].

language supported facilities

Another way of prototyping user interfaces is via facilities built into a programming
language [Shaw83]. These facilities have the potential of eliminating the need for dealing
with the very low-level detail commonly found in programming human-computer interfaces.

Almost all current programming languages were designed with an emphasis on batch
processing rather than interactive computing [Shaw83]. This is evident from the type of
input/output facilities provided by them; these facilities are usually limited to reading and
displaying strings and numbers. Modem interactive systems rely on much more flexible and
powerful concepts of interaction (e.g. windows) [Hagen85]. Therefore, it is not surprising
that much of the design and programming effort in user interface construction is expended on
implementing these facilities by employing painstaking, laborious and error-prone low-level
programming. Early work in this area has been centred around very high level languages.
Examples include the use of LISP for prototyping command languages [Levine80] and the
report generation facilities of APL [Tavolato84].

There are four types of facilities which are increasingly being used in modern
interactive systems; these are electronic forms, menus, overlapping windows and icons.
Suitable extensions to programming languages would allow the use of these facilities to be
'specified' rather than programmed [VanWyk82, Mallgren82].

The specification and design of electronic forms using language supported facilities is

extensively described in [Gehani82b, Gehani83, Yao84, Tsichritzis82]. Language facilities

for specifying and prototyping icons and menus are discussed in [Brown82, Gittins&4,
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Lafuente78]. Use of windows is detailed in [Teitelman79, Rowe83]. The provision of

programming language constructs to support abstract input/output tools is discussed in

[Bos78, Bos83].

3.3 DISCUSSION

It would be useful to compare the techniques described above in terms of their
potential application domains and usefulness. This is summarised in figure 3.1. Examination
of this figure leads us to the conclusion that none of the techniques can, on its own, be
regarded as a complete and comprehensive prototyping tool. Each technique, while capable
of capturing some aspects of an application, falls short of being applicable to others. Even
the ones which have been classified as general have their own problems. In the reusable
software approach, for example, no matter how many reusable modules we have at our
disposal, moving to a new application will always require the development of additional

unforeseen modules.

TECHNIQUE DOMAIN ADVANTAGE DISADVANTAGE
executable specs.  functionality concise & productive not all specs. are executable
VHLL language-dependent productive often cryptic

AHLL very restricted very productive very application dependent
functional PL functionality concise often inflexible

tool-sets tool dependent very productive incoherent

reusable software  general very productive initially expensive
simulation general early application no general support tools
formal grammars  certain interactions concise inflexible ‘
STD interaction graphical textual notation often cryptic
screen generators mostly static dialogues productive ' inﬂe-xible 3

language facilities  language-dependent concise & productive restricted utlity

FIGURE 3.1 A comparison of prototyping techniques.

Previous researchers have concentrated on devising systems that each support only
one of the above techniques (see for example [Goguen79, Jacob83, Mason83, Olsen83,
Prywes83, Shaw83, Cheng84, Turner85].) This in turn has limited the utility of such
systems for prototyping. The incompleteness of individual techniques and their highly
different properties suggest that a combination of some of these techniques may be required

in order to produce a powerful and general prototyping tool. This in fact s onc of the major
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issues that we shall be exploring in this thesis. Our interest, therefore, will lie in integrating a
number of prototyping techniques so that they will compensate for each other's
shortcomings.

The next chapter will describe the combination of techniques that we have adopted and
a system that implements and integrates these techniques within a coherent framework. The
combination may seem rather arbitrary and is obviously one of many possibilities. We shall
show, however, that it is an effective one and that it can accommodate all prototyping

approaches described previously.



Chapter 4 THE EPROS PROTOTYPING SYSTEM

In this chapter we give an overview of our approach to prototyping and its application
to system development. The approach and its methodology are supported by a development
and prototyping environment called EPROS. In EPROS a system is developed in a top-down
manner, from the abstract to the detailed. Progress is iterative and cyclic where each cycle
produces a self-contained description of the system. This description, no matter how abstract

or how detailed, is always executable and is automatically converted into a working

prototype.

4.1 THE APPROACH AND ITS SCOPE

The EPROS approach is based on utilizing and integrating four technical approaches to

prototyping (see chapter 3); these are:

*  Executable specifications

+  State transition diagrams

» Language supported facilities
* Reusable software

The functional requirements of a system are formally specified in META-IV [Jones80a,
Jones86]. EPROS automatically translates such specifications into working prototypes. The
user interface of a system is formally specified using state transition diagrams [Denert77].
EPROS provides a textual notation for describing these diagrams which is readily executable.
User interface development and prototyping is further backed up by language supported
facilities which have been especially designed to simplify the task of constructing user
interfaces. Language supported facilities can be readily extended by the programmer through
a facility called cluster which is also the main tool for reusable software development.

EPROS supports the three main approaches to prototyping; namely, the throw-away,
the incremental and the evolutionary approach. When used for throw-away prototyping, a
system is first formally specified and then automatically converted into a prototype. Next, the

prototype is evaluated by the user, whose feedback is used to improve the prototype. Any
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changes to the prototype are carried out by modifying the specification and regenerating a
new prototype. This process is repeated until the prototype converges to a stable set of user
requirements, at which time the prototype is discarded and the final system description is
used for initiating a separate development process.

When used for incremental prototyping, an overall specification of the system is first
produced (possibly using the throw-away approach.) This specification is refined to generate
a design which is then frozen. A small subset of the design is selected as the first increment;
this is fully developed and handed over to the customer. The rest of the design is broken
down into subsequent increments which are developed similarly and handed over to the
customer one by one. User feedback obtained during this process is used to improve the
increments. The architecture of the system, however, will remain intact; any requested
changes will be restricted to the implementation of the increments.

EPROS is primarily intended to be used for the evolutionary approach. Evolutionary
prototyping has three important requirements: fast iterations, intermediate deliveries, and
gradual evolution of prototypes towards the final product. The executable specification
features of the system cope with the first two requirements. The system also provides
extensive facilities for the design and implementation of software systems; these support the
last requirement of the evolutionary approach. Because of this comprehensive support, the
entire development takes place within the system and is expressed in one notation, i.e.
EPROL.

EPROS relies on the use of formal methods and notations for two reasons. The first
reason is the potential of these methods for the automatic and fast generation of prototypes.
The second reason is the power of these methods in producing clean and flexible designs
[Jones77, Musser79, Feather82b, Sufrin82, Morgan84, Berzins85, Minkowitz86,
Weber86, Ford86]. This is highly crucial and indispensable for evolutionary prototyping as,

without a good design, modifications and extensions become totally impractical. VDM was

chosen as the underlying formal method since it is a well-developed methodology and has

been used successfully in the development of many non-trivial systems [Hansal76,

Cottam84, Minkowitz86, Bloomfield86].
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4.2 THE DEVELOPMENT PROCEDURE

Figure 4.1 shows a schematic view of the evolutionary prototyping procedure of
EPROS. Development always starts with an informal specification of user requirements,
which may be vague, incomplete and unstable. After a preliminary study of the requirements
a formal specification is produced. The first specification may consider only functional
requirements, or only those related to the user interface, or both. Usually, however, one
starts with the functional requirements, in which case, they provide a backbone and context
for formulating the user interface requirements.

The formal specification is then converted into a working prototype and is evaluated
by the user. After a few iterations, which may result in changes and/or extensions to the
specification, the specification is refined. Each refinement produces a prototype for
evaluation and more iteration. At some stage, the functional part of the system and the
dialogue part are integrated. Integration can also take place before the refinement of the
specification. The issue of when to integrate is really application dependent and is influenced
by the way the project progresses. However, before integration starts, the user must be fully
satisfied with the exhibited behaviour of the system.

The result of integration is a further prototype. Evaluation of this prototype will
reveal whether a loop back to a previous stage is necessary or not. Once the system 1is
integrated, it is repeatedly refined. Each refinement produces a complete delivery in form of a
prototype. During the refinement process, abstract constructs in the system are replaced by
more concrete ones. This process continues until the system is in its most concrete form and
the last prototype may be tuned and released as the final system.

The development process can also be complemented with formal verification. This is
not shown in figure 4.1. Verification can be applied to the specification and refinement steps.
Experience with the methodology, however, suggests that verification is usually

cost-effective only when it is applied to the top level specification, after it has been evaluated

and agreed upon. The reason for this is that top level specifications are very abstract and,

therefore, easy to verify; but the more the system is refined the harder verification becomes.
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Also, errors is the top level specification are much more costly to correct than those in the

refinements.
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FIGURE 4.1 The evolutionary prototyping procedure of EPROS.

4.3 THE EPROL WIDE SPECTRUM LANGUAGE

EPROS is based on a wide spectrum language called EPROL which supports the
formal specification, design and implementation of software system. EPROL is both a
prototyping and a development language. It provides facilities for dealing with functional and
dialogue aspects of a system, and is fully executable. Various facilities of EPROL are briefly
described below. The syntax of EPROL is formally specified in appendix A. For a much more

comprehensive description of the system and its language see the user manual
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[Hekmatpour86].

Sfunctional specification notation

The functional specification notation of EPROL is based on META-IV - the formal
specification notation of VDM [Bjorner78). Specifications are written using mathematical
notations and objects such as predicate calculus, sets, lists, mappings, abstract syntax,
applicative combinators and pure functions. Side-effects are specified by pre- and
post-conditions over a class of states, in an abstraction called an operation. The main notation
for specifying functionality is the abstract data type notation; it is used for specifying new
data types, i.e. those which are not directly available in the language [Rowe83].

EPROL provides a number of extensions to the META-IV notation. Amongst these are:

polymorphic types, operator mapping and operator distribution.

dialogue specification notation

Dialogues, in EPROL, are specified by state transition diagrams. The notation for
STDs is based on the graphical notation of Denert [Denert77], which distinguishes between
three kinds of dialogue states. These are simple states, complex states and interaction points.
A simple state refers to a computer action involving no interaction with the user. A complex
state is an abstraction of an entire STD and may involve interaction with the user. An
interaction point is where actual interaction with the user takes place. The notation of

complex states allows dialogue specifications to be modularised in much the same way

functional specifications are.

design notation

The term design, in EPROL, refers to the refinement and modularisation of a

software system. In addition to abstract data types, four other kinds of modules are available

for this purpose:

« Functions which roughly correspond to functions and procedures in modern

programming languages. These are by nature imperative and can have a hierarchical
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structure.
» Dialogues which correspond to complex states in a dialogue specification. These are
again imperative and can have a hierarchical structure.

»  Forms which are used for defining electronic forms as abstract data types. These are
non-hierarchical and object-oriented.

« Clusters which provide a powerful mechanism for extending the base language,
introducing new abstractions and designing reusable software modules. Clusters have
syntax driven interfaces and can also have a hierarchical structure.

The rules for the use of the above modules in hierarchical design are depicted by figure 4.2.

Directed arrows should be read as 'may contain.’

G »

FUNCTION

DIALOGUE CLUSTER

FORM

FIGURE 4.2 Module containment in EPROL.

implementation notation

The implementation notation is based on a hybrid of C and Pascal, and is strongly
typed and structured. Notably, all the constructs of META-IV are also supported by the

1 1 1 icati rely imperative, or a
implementation notation. So, the notation can be purely applicative, purely 1mp

mixture of the two.

4.4 THE ARCHITECTURE OF THE SYSTEM

The architecture of EPROS is shown in figure 4.3. The system is partitioned into 11

independent components. Central to the system is the EPROL compiler which implements the

EPROL language. The compiler 1s itself divided into three major partiions which in turn cover
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the functional specification, the implementation, and the dialogue notations. These
components are further modularised in a way that reflects the modularisation of the notation.
This open architecture has the advantage that the notation can be upgraded during the lifetime

of the system with minimum amount of effort. Appendix B describes an example which

illustrates the use of the EPROL compiler.

Optimiser EPROL o oo II Interpreter | g— 3

compiler

. el N
o’ ‘~~ L 1
o' “
o' : * .
0" “‘
AO Q’
Lisp < Lisp Abstract o
compiler code machine Libraries
‘Q L4
‘\ "
l‘ "0
\“ "
s‘ "
. L?
machine
code p | Executer <

I/O Window
subsystem manager

FIGURE 4.3 The architecture of EPROS.
The second major part of the system is the interpreter, which sits directly on top of the
compiler. The interpreter allows direct, interactive access to EPROL. The style of interaction

is very much like a LISP environment, with the following exceptions:

+ Two interaction modes are provided. The first, the expression mode, restricts the user
to the functional specification notation. Computations causing side-effects are strictly
prohibited in this mode. Also, the result of any interactively typed expression is
immediately displayed (as in LISP.) The second interaction mode, the statement mode,
allows any form of computation. The display of end-results in this mode is
intentionally avoided; these may be optionally displayed using explicit 1/O statements.
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*  The interpreter provides an interface to the symbol table of EPROL. This means that the
user can find out what is currently defined. The interface also allows the user to
remove unwanted definitions. Objects can be referred to either individually (by
specifying an object's name), or collectively (by specifying a category, e.g.
FUNCTIONS, CLUSTERS, etc.) The notation used for displaying objects is that of
EPROL, and is handled by a dedicated pretty-printer.

Using the interpreter, the user can interact with an already compiled EPROL file, or
alternatively, create his own definitions.

The interpreter has direct interface to four other components of the system: the help
subsystem, the tools, the abstract machine, and the libraries. The help subsystem provides
interactive on-line help on a variety of topics, which include system commands, interpreter
commands, and all syntactic components of the EPROL notation (e.g. operators.)

The tools part consists of a set of pre-developed tools. These currently include a
cross-reference tool for EPROL, a highlighter for the neat display of EPROL files on the
screen, and a pretty-printer for pretty printing META-IV objects. In addition, new tools can be
included with considerable ease, without disturbing the overall system.

The abstract machine part consists of a set of compact and highly optimised routines
which implement the abstract objects of META-IV (i.e. sets, lists, mappings and trees.) The
libraries part consists of a set of predefined standard libraries for EPROL. (See appendix C
for a brief description of each library.)

Both the abstract machine and the libraries are also shared by the executer component.
The executer has the role of executing finished products (i.e. ones which have gone through
design iteration.) This component can be run quite independent of the rest of the environment
to achieve greater efficiency by avoiding the overhead of unnecessary components.

The executer is, in turn, interfaced to the 1/O subsystem and the window manager,
which collectively support the dialogue mechanisms of EPROL. Both these are based on an
‘nternal notation which is hidden away from the user. This has the obvious advantage that
these components can be changed (possibly in the event of porting the system to a new
hardware configuration) without actually affecting the EPROL notation.

The remaining two components of the system (the optimiser and the LISP compitler)
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deal with the code generated by the EPROL compiler. The optimiser performs some
straightforward improvements on the intermediate LISP code. The LISP compiler is a
customised version of the standard Franz LISP compiler in the UNIX environment (i.e. Liszt.)

It simply translates the intermediate LISP code into machine code.

EPROS is implemented as two monolithic programs. The first program (eps) is the
entire environment and includes all the components shown in figure 4.3. The second
program (epx) consists of the executor, the I/O subsystem, and the window manager. It is

intended to be used for running complete systems only. The overall system has the following

features:

«  Compilation speed of approximately 1000 lines of EPROL source per minute.

«  Full error detection, reporting and recovery.

«  Separate compilation.

«  Compiler switches.

«  Compiler directives.

«  Optional object code optimisation.

«  Various useful libraries.

. An extensive interactive synopsis and help facility.

- Various useful tools.

«  An interface to the UNIX operating system, allowing interactive execution of UNIX

commands from within the environment.

EPROS was developed and runs on a VAX-11/750 computer under Berkeley UNIX 4.2.
It consists of 412 modules and occupies just under 20,000 lines of code. Two thirds of the
system was written in Franz LISP; the remaining third, which contains the main bottlenecks
of the system, was written in C for the sake of efficiency.

The system itself was developed using an evolutionary prototyping approach which
consisted of 12 development cycles. Each cycle lasted about 6 weeks, with major reviews at
the end of every second cycle. The approach proved very effective; although currently a

prototype, the system matches the quality of a finished product very closely.
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Abstraction is the only mental tool by

means of which a very finite piece of

reasoning can cover a myriad of cases.
-EW Dijkstra

The specification of a software system is divided into two parts. The first part specifies
the functional requirements of the system and is described in this chapter. The second part
specifies the user interface requirements of the system and is described in chapter 7. The
notations and methods presented also cover the design stage where decisions about how the
requirements are to be realised are made.

As stated earlier, the functional specification notation of EPROL is largely based on

VDM, a brief outline of which is given below.

5.1 THE VIENNA DEVELOPMENT METHOD

VDM 1is a constructive or abstract model-oriented formal specification and design
method based on discrete mathematics [Jones80, Bjorner82]. The formal specification
language of VDM is known as META-IV and is extensively described in [Bjorner78]. vDM
only considers the functional specification and development of software systems. Other
aspects, such as the user interface, have to be developed using other notations and

methodologies.

Very briefly, in VDM, a system is developed according to the following steps:

specify the system formally. _
prove that the specification 1s consistent.

do
refine and decompose the specification (re'ahsatmn).. .
prove that the realisation satisfies the previous specification.

until the realisation is as concrete as a program.
revise the above steps.

In VDM, a specification is written as a constructive specification of a data type, by defining a
class of objects and a set of operations to act upon these objects while preserving their
essential properties; such a data type is known as an abstract data type. A program is itself
specified as an abstract data type, by considering it to consist of a set of operations on a class

of states which model the program variables. The notion of state is, therefore, made explicit
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in VDM; this is in contrast to other specification methods such as those of the algebraic
approach.

A number of data types and constructs are considered as primitives in VDM. These are
familiar mathematical objects such as sets, lists, mappings, abstract syntax and functions. In
addition, the notation of first order logic is used extensively. The following sections describe
these notations briefly. Section 5.6 describes the way abstract data types are specified,
developed and verified. The chapter ends with an example which illustrates the method in
practice.

The actual notation that we shall use below is that of EPROL whose syntax is slightly
different to that of VDM, but essentially the same in meaning. Certain constructs and notions

(e.g. polymorphic types) are peculiar to EPROL and do not exist in VDM.

5.2 LOGIC

The notation of logic is based on a simple set containing two elements only. These
elements are TRUE and FALSE. The set is called Bool, so:

Bool = {TRUE, FALSE}
rrUE and FALSE are often called truth values. Every expression in logic (also called a
boolean expression or predicate) has a truth value. Logic provides a number of operators,
usually referred to as boolean operators, for writing predicates. These are: not, and, or,
implication and equivalence operators, represented by the symbols ~, &, |, ==> and <=>

respectively. The boolean operators have the following meanings:

~X is true if x is false, and false otherwise. .

X &y is true if both x and y are true, and false otherwise.

x |y is false if both x and y are false, and true otherwise.

x => y is falseif x is true and y 18 false, and true otherwise. _

x <=> vy is true if both x and y are either true or false, and false otherwise.

It follows, therefore, that:

~X | y

y (x & y) | (~x & ~y)

=>

o

A

X
X
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quantifiers

Occasionally in logic, we would like to state that a certain predicate holds for various
values of some variable. This 1s where quantifiers may be useful. There are two quantifiers
in logic called the universal and the existential quantifier, represented here by the symbols . A
and . E respectively. Predicates written using quantifiers are called quantified expressions;

examples are:

(.A x £ s: p(x))

(.E x £ s: p(x))
where s is a set and p is a predicate over x. The former expression states that for any x in s,
p (x) is true. The latter expression states that there is a x in s such that p (x) is true. It

follows, therefore, that:

~(.A x £ s: p(x)) <=> (.E x £ s: ~p(x))
~(.E x £ s: p(x)) <=> (.A x £ s: ~p(x))

A special case of the existential quantifier is the unique existential quantifier represented by
.E!; for example,

(.E!' x £ s: p(x))
states that there is a unique x is s such that p (x) holds.

In the above examples, x is called a bound variable; s is called a constraint, and p is
called the body of the quantified expression. In general, a quantified expression may have
more than one bound variable. Such expressions can always be written as a sequence of

nested quantified expressions with single bound variables; for example:

(\A Xq,Xp,---1%p £ S: p)

<=> (.A X4 £ S: (.A X, £ S: ... (.A X, £ S: p)...))

5.3 ABSTRACT OBJECTS

This section briefly describes certain abstract object classes which are used
extensively in specifications. Each object class will be described briefly, and informally,

together with its associated set of operators.
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sets

A set is an unordered collection of objects with no repetitions. An object in a set is
said to be a member of that set. A set may be defined explicitly by enumerating all its
members. For example,

{Japan, Italy, Canada, Germany}
specifies a set of countries. Sets which consist of a range of integers may be abbreviated to a
range; for example:

{10, 11, 12, 13, 14} = {10:14)

A set may also be defined implicitly, by defining a general member of the set. For example,

{sqrt(x): x £ s & is_even(x)}
specifies the set of square roots of even integers in s. In general, an implicit set is written as:

{fe(x1,...,xn): p(x1l,...,xn)}
where e is an expression called the generator and p is a predicate called the constraint, both
over variables x1, ..., xn which are called the bound variables.

The set operators are summarised in figure 5.1 and have the following meanings:

e £ s is true if e is a member of s, and false otherwise.
sl .S. s2 is true if s 1 is a subset of s2, and false otherwise.
formally, s1 .s. s2 <=> (.A e £ sl: e £ s2)
sl .P. s2 is true if s1 is a proper subset of s2, and false otherwise.
formally, s1 .P. s2 <=> s1 .S. s2 & sl /= s2
sl .U. s2 denotes the union of s1 and s2 (i.e. the set of objects which are eitherin s 1.

or in s2, or both.)
formally, s1 .U. s2 = {e: e £ s1 | e £ s2}

sl .I. s2 denotes the intersection of s1 and s2 (i.e. the set of objects which are in
both s1 and s2.)
formally, s1 .I. s2 = {e: e £ sl & e £ s2} ' .

sl - s2 denotes the difference of s1 and s2 (i.e. the set of objects which are in s1
but notin s2.)
formally,s1 - s2 = {e: e £ 5 & ~(e £ 52)}

card s denotes the cardinality of s (i.e. the number of members of s.)

power s denotes the power set of s (i.e. the set of all subsets of s.)
formally, power s = {e: e .S. s} . .

union Ss denotes the distributed union of ss (i.e. the union of all sets in a set of sets
sS.)

formally, union ss = {e: (.E s £ ss: e £ s)}
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FIGURE 5.1 Summary of set operators.

Two additional operators are selection and unique selection, represented by ! and ! !
respectively. These have a similar syntax to quantifiers; for example,

(! x £ s: p(x))
produces an element of s (if any) for which p holds, in a pseudo non-deterministic manner.
Similarly,

('! x £ s: q(x))

produces the unique element of s (if any) for which q holds.

lists

A list is an ordered collection of objects which may contain repetitions. An objectin a
list is said to be an element of that list. Like sets, a list may be defined explicitly by
enumerating all its elements. For example,

<Austin, Fiat, Rover, Fiat, Ford>
specifies a list of cars. Alternatively, a list may be defined implicitly. For example,

<i: i £ s & (.A J £ (2:i}: 1i%3 /= 0)>
produces the list of all those integers in s which are prime (% is the remainder operator.) In
general, an implicit list definition is written as:

<e(x1l,...,xn): p(x1l,...,xn)>

and is similar to an implicit set definition.
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The list operators are summarised in figure 5.2 and have the following meanings:

1(1] denotes the i-th element of list 1 (starting at 1.)

11 | 12 denotes the concatenation of 11 and 12 (i.e. the list consisting of elements
of 11 followed by elements of 12, in the same order as 11 and 12 and
having a length equal to the length of 11 plus length of 12.)

hd 1 denotes the head of 1 (i.e. the first element of 1.)
formally, ha 1 = 1[1]

tl1 1 denotes the tail of 1 (i.e. the list consisting of all elements of 1 except the
first, in the same order as 1))
formally, hda 1 1| t1 1 = 1

len 1 denotes the length of 1 (i.e. the number of elements of 1 including the
repetitions, if any.)

elems 1 denotes the elements of 1 (i.e. the set consisting of elements of 1.)

inds 1 denotes the set of indices of 1.
formally, inds 1 = {1:1en 1)

conc 11 denotes the distributed concatenation of the lists in the list of lists 11.
formally, 11 = <11,12,...,1n> <=> conc 11 = 11| 112(1...111n

*-]ist -list

FIGURE 5.2 Summary of list operators.

Two additional list operators are map and dist. These have an unusual syntax and are
used for mapping or distributing an operator (or a function) over a list, where the operator
(or function) must be unary or binary for map, and binary for dist. Here are two examples

of their use:

map(card: <{},{1,2},{5}>) = <0,2,1>
dist(+: <5,10,20>) = 35

Combination of map and dist provides a succinct notation for specification. For example, a
predicate denoting that the elements of a list of numbers are sorted in ascending order may be

written as:
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dist(&,<: 1)
which is equivalent to:
dist(&: map(<: 1))

Nested map and dist applications may be abbreviated according to the following

conventions:

map(fl,£2,...,fn: 1)

= map(fl: map(f2: ... map(fn: 1)...))
and

dist(f,ql,...,gn: 1)
= dist(f: map{(gl: ... map(gn: 1)...))

where £'s and g's may be operators or functions.

mappings

A mapping (or map) is a finite function. It maps the elements of a set, called its
domain, to the elements of a set, called its range. A mapping can be defined explicitly by
enumerating how individual elements of its domain are mapped into individual elements of its
range. For example,

[John -> 20, Peter -> 12, Steve -> 25]
maps three persons to their ages. As with sets and lists, a mapping can also be defined
implicitly. For example,

(1 => i**2: 1 £ s]
maps every number in s to its square. In general, an implicit mapping is written as:

[el(xl,...xn) -> e2(x1l,...,xn): p(xl,...,xn)]

The mapping operators are summarised in figure 5.3 and have the following meanings:

m(x) denotes an element of the range of m to which x is mapped by m.
ml + m2 denotes the mapping which is the result of merging m1 and m2 provided the
domains of m1 and m2 are disjoint.
formally,m1 + m2 = [e->f: e £ dom ml & f = ml(e)|
e £ domm2 & f = m2(e)]

ml ++ m2 denotes the mapping which is the result of overwriting m1 by m2.
formally, m1 ++ m2 = [e->f: e £ (dom ml-dom m2) & £ = ml(e) |
e £ domm2 & f = m2(e)] .
ml ~ m2 denotes the composition of m1 and m2 provided the range of m2 1s a subset
of the domain of m1.
formally, m1 ~ m2 = [e->f: e £ dom m2 & £ = ml(m2(e))] .
m/+ s denotes the mapping which is identical to m but whose domain 1s restricted

to the set s.
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m /- s

dom m
rng m
merge ms

56

formally,m /+ s = [e->m(x): x £ (dom m LI, s)]
denotes the mapping which is identical to m but from whose domain the
elements of the set s have been removed.
formally,m /- s = [e->m(x): x £ (dom m - s)]
denotes the domain of m.
genotcs the range of m.

enotes the distributed merge of the ma ings i i
provided the domains of thc%nappings arg I<)iisjgosir11rt]. e set of mappings ms,
formally, merge ms = [e=>(!! m £ ms: e £ dom m) (e)

: e £ union {dom m: m £ ms}]

FIGURE 5.3 Summary of mapping operators.

5.4 ABSTRACT SYNTAX

Certain elementary domains are predefined in EPROL; these are:

Nat
Nat0
Int
Real
Bool
Char
Str

- Natural numbers.

- Natural numbers including zero.
- Integer numbers.

- Real numbers.

- Booleans, i.e. {TRUE, FALSE}.

- Characters.

- Strings.

The notation of abstract syntax allows one to define other, possibly more complex domains.

An abstract syntax definition consists of one or more abstract syntax rules. A rule has the

general form:

domain_id = domain expr

which introduces a new domain called doma in_id, denoted by domain_expr. A domain

expression is an expression consisting of domain names and domain operators. The
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operators of the abstract syntax notation are as follows:

D-set denotes a class of objects where each object is a subset of D.
formally, s £ D-set <=> s .. D

D-1list denotes a class of objects where each object is a list of some objects in D.
formally, 1 £ D-1ist <=> elems 1 .S. D

D1 -> D2 denotes a class of objects where each object is a mapping whose domain is a

subset of D1 and whose range is a subset of D2.
formally,m £ (D1 -> D2) <=> domm .S. D1 & rng m .S. D2

D1 | D2 denotes a class of objects where each object is either in D1, or in D2, or
both.
formally,d £ (D1 | D2) <=> d £ D | d £ D2

[D] denotes a class of objects where each object is either in D or is just the NTIL
object.

formally,d £ [D] <=> d £ D | d = NIL

Round brackets may also be used in domain expressions for grouping and to enhance

readability. Two domain definition examples are given below:

D1 = Int-set -> Bool-list-set
D2 = (D1 -> Str) -> (D1 | Int | Real)

Each object in D1 is a mapping from the power set of integers to the sets of lists of booleans.
Each object in D2 is a mapping from the mappings which map D1 to strings, to either an
object in D1, or an integer, or a real.

Abstract syntax rules may also be recursive (i.e. refer to themselves.) For example,

D = Int —-> [D]
defines a domain called D, where each objectin D is a mapping from integers to either D itself,

Oor to NIL.

trees

The notation so far described does not allow us to define structured objects. An
structured object is an object which consists of a number of components. The domain of
such objects is called a tree. These are specified by replacing the = symbol, in an abstract
syntax definition, by the symbol ::. For example,

D :: Int, Str-list, Real-set
defines a tree domain called D where each object in D has exactly three components. These
being, in order, an integer, a string list, and a real set. An object in a tree domain is usually

called a tree branch. A special function called mk may be used to make such objects, €.2.:
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mk-D(1,<"ab","ef">,{1.5}) £ D
Individual components of a tree domain may be named as shown below:

D :: .i: Int, .sl: Str-list, .rs: Real-set
Given this domain definition, individual components of an object in D may be specified by
adding the component name to the end of an object. For example, let

d = mk-D(2,<"hi","there">, {1.5})

d.sl = <"hi", "there">
d.rs = (1.5}

It is also possible to name only selected components:
D :: Int, .sl: Str-list, Real-set
A tree may also be defined using the following notation
D = tree Int, Str-list, Real-set
which is equivalent to
D :: Int, Str-list, Real-set
The former form is useful for defining nested trees, sets of trees etc., in a single abstract
syntax rule. For instance,
P = tree .n: Str, .a: Int, .p: (tree str-set, Int)

is a shorter way of saying:

P :: .n: Str, .a: Int, .p: Q
Q :: Str-set, Int

and avoiding the definition of a new domain Q.

5.5 COMBINATORS

EPROL provides a number of combinators for use in specifications. These do not

cause any side-effects; they simply return a value. Each combinator is informally and briefly

described below.
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the let expression
The let expression is used for naming one or more expressions within another

expression. The simplest form of a let expression is:

let id = eXprq in
expr2

which means that every occurrence of id in expr, will be bound to the value of expr.

More generally,

let id) = exprq,
id, = expr,,

ldn = expr, in
expr

binds id,, idy, ..., id, to exprq, expry, ..., €xpr,, respectively, and in parallel, in expr.
The let combinator may also be used for naming individual fields of a tree. Consider
the following abstract syntax definition:
Student :: .name: Str, .age: Nat, .id: NatO0;

Now suppose st £ Student and that st = ("Phil", 25, 10516) then:

let (n,a,id) = st in
n = "Phil" & a = 25 & id = 10516

is true. In this example n is bound to the first field in the tree (i.e. "Phil"), a to the second

field (i.e. 25) and id to the last field (i.e. 10516).

the if-then-else expression

The simplest form of a conditional expression is the if-then-else expression. The
general form for this combinator is:

if bool expr then expr;
else expr,

The overall value of this expression is the value of exprl if bool_expr evaluates to TRUE,

and the value of expr2 if it evaluates to FALSE.
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the mac expression

This is McCarthy's expression and has the general form:

mac
bool_expr1 => exprq,
bool_exprz => expr,,
bool_exprn => expr,,
}
which provides a multi-branch conditional expression. The bool_exprs on the left hand side
are evaluated in the order they appear. If bool expr i evaluates to TRUE then expr ; will be

evaluated and its value will be returned as the value of the overall mac expression. At least

one bool_expr; must evaluate to TRUE.

the cases expression

This is similar to the mac expression and has the general form:

cases exprs {
lexpr1 => rexpry
lexpr2 => rexpr,

lexprn => rexpr,,

}

First expr is evaluated. Then lexpr's are evaluated in the order they occur. If lexpr; =
exprg then rexpr; will be evaluated and its value will be returned as the value of the cases

expression. At least one lexpr; must have the same value as expr s- As a convention, the

last 1expr may be simply TRUE to ensure this.

5.6 ABSTRACT DATA TYPES

To be concise when specifying software systems, one must depart from the elementary
data types of a specification language and instead 'create’ data types which match the

problem at hand more closely and more naturally. Such a data type 1s known as an abstract

data type and 1s characterised by its private set of operations.
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specification

An abstract data type is specified by a class of states and a set of private operations to
act upon the states. It introduces a new data type, where an object of this type can be
manipulated only through the specified operations. The class of states is denoted by a domain
usually restricted by a predicate, called the data type invariant, which must be preserved by

the operations.

In EPROL, abstract data types are specified by abT modules. The general structure of

an ApT module is shown in figure 5.4.

ADT adt_id

DOM ... private domain definitions
TYPE ... private type clause definitions
AUX ... private auxiliary function definitions

OPS
private operation definitions
END adt_id

FIGURE 5.4 The general structure of an RDT module.

The first three parts in the definition (i.e. poM, TYPE and aux) are optional. The poM part

introduces new domains; for example,

DOM Product = Pname -> Pid;
Pname = Str;
Pid = Int;

defines three new domains called Product, Pname and Pid. The object class (i.e. class of
states) for the abstract data type itself must be defined here.
The aux part is used for defining new auxiliary functions. Every function defined here

must have its type clause already defined in the TYPE part. For example,

TYPE is disjoint: Int-set, Int-set --> Bool;
is _empty: Int-set --> Bool;
AUX is disjoint(sl,s2) == sl .I. s2 = {};

is_empty(s) == s = (};

defines two auxiliary functions called is_disjoint and is_empty. The domuin of a

function can be restricted by a pre-condition; this is a predicate over the domain of the
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function which must hold before the function is applied. For example, a function called max

which takes a set of integers and returns the largest integer in the set may be defined as:

TYPE max: Int-set --> Int;
AUX pre-max(s) == s /= {};
max(s) == (! e £ s: (A el £ s: e >= el));

where the pre-condition indicates that max is not defined for the empty set.

If an abstract data type has a data type invariant then it must be defined in the Aux part.

For example,

AUX inv-Product(p) == dom p /= {(};
defines a data type invariant for an abstract data type called Product.

The last part in an ApT module is ops and specifies one or more operations for the
abstract data type. The general structure of an operation specification is shown in figure 5.5.
Each operation acts upon the class of states of the abstract data type. In addition, an operation
may take arguments and/or return a result, as in a function. This is specified by the type
clause of the operation. For example,

OP: Doml, Dom2 --> Dom3
specifies that operation OP takes two arguments in Dom1 and Dom2 and returns a result in

Dom3.

OP _ID: ... operation type clause ...;
pre(...) == ... pre-condition predicate ...;
post(...) == ... post-condition predicate ...;

private auxiliary function definitions

END OP_1ID

FIGURE 5.5 The general structure of an operation specification.

An operation is specified in terms of two predicates called the pre and the
post-condition. The pre-condition is optional and is assumed to be TRUE if it is not present. It
is a predicate over the states and any arguments the operation may take, and specifies a
condition which must hold before the operation is applied. Alternatively, it may be specified

as a list of exception clauses, where each exception clause maps a predicate to an exception
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name. The overall pre-condition will then be a conjunction of the negation of individual
exception predicates (see appendix D.1.)

The post-condition specifies a condition which must hold after the operation is applied.
It is a predicate over the states before and after the operation is applied, and any arguments

and result the operation may take and produce. Consider a general operation op over the

states St with the following type clause:
OpP: Doml, Dom2, ..., Domn --> Res;

The pre and post-conditions will have the following implicit type clauses:

pre: St, Doml, Dom2, ..., Domn --> Bool;
post: St, Doml, Dom2, ..., Domn, St, Res --> Bool;

The position of a parameter in a condition indicates its actual domain. So, for example,

pre(st,argl,arg2,...,argn) == ;
post(st,argl,arg2,...,argn,st',res) == ... ;

indicates that

st, st' £ St
argl £ Doml, arg2 £ Dom2, ..., argn £ Domn
res £ Res

where st and st ' refer to the 'states before' and 'states after’ the operation is applied
respectively.

In EPROL, a parameter can be replaced by a minus symbol according to the following

conventions:

. When replacing the 'states before' parameter it implies that we are not interested in the

value of the states before the operation is applied.
. When replacing the 'states after' parameter it implies that the value of the states will not

be changed by the operation.
«  When replacing any other parameter it implies that the value of that parameter is not

relevant to the specified condition.

An operation can also have its own private auxiliary functions. Such functions may appear

inside an operation specification, just after the post-condition.
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refinement

The initial specification of an abstract data type is written as abstractly as possible
while ensuring that it captures all the required properties of the problem at hand. The abstract
data type is then developed by the process of data refinement, whereby it is realised in a more

concrete form. This process produces a so called representation of the abstract data type. The

process consists of four steps:

*  Find a more concrete class of states for the abstract data type.
* Redefine the data type invariant for the new class of states.
*  Find a function which maps each object in the new class of states to its corresponding

object in the previous class of states. This is called a retrieve function and relates a
representation to its abstraction.

»  Redefine each operation of the abstract data type for the new class of states.

Refinement is an iterative process which results in successively more concrete
representations of an abstract data type. It is repeated until the final representation is in a
sufficiently concrete form.

The original specification and each subsequent refinement can be shown to be
internally correct. In addition, one can show that a representation is correct with respect to its

abstraction.

verification rules

VDM provides a number of useful rules for verifying the correctness of abstract data
type specifications and their refinements. These are directly used in EPROL and are briefly
described below. For a more detailed discussion of the rules see [Jones80] or [Jones86].

Let D be an abstract data type, having a class of states S, a data type invariant inv and a

set of operations P1, P2, ..., Pn. Operation P1i is valid if it preserves the data type invanant,

i.e. forany s in S:

pre-pi(s,args) & inv(s) & post-Pi(s,args,s',res) ==> inv(s’)  [R1]
Let D1 be a refinement of D, having a class of states S1, a data type invanant 1nv1 and

a set of operations Q1, 02, ..., Qn corresponding to P1, P2, ..., Pn respectively. Also, let



5 Functional Specification

retr be the retrieve function from S1 to S;
retr: S1 --> §

The retrieve function is total over valid states (ie. states which satisfy the data type invariant

invl) if:

(\A sl £ S1: invi(sl) ==> (.E s £ S: s = retr(sl)) & inv(retr(sl)))
[R2]

and S1 is an adequate representation of S if:

(.A s £ S: inv(s) ==> (.E sl £ S1: invi(sl) & s = retr(sl))) (R3]

Operation Qi models operation P1 if:

(.A s1 £ S1: invl(sl) & pre-Pi(retr(sl),args) ==> pre-Qi(sl,args))
(R4]
and

(.A sl £ S1: invl(sl) & pre-Qi(sl,args) & post(sl,args,sl', res)
==> post-Pi(retr(sl),args, retr(sl'), res)) [(R5]

Proof of correctness reduces to showing that r1 holds for each specification and that R2-Rr5

hold for each specification with respect to its abstraction.

polymorphic types
All abstractions so far described such as functions, operations and abstract data types
required a precise domain specification. This in turn limits their utility. Consider, for

example, a function called largest which returns the largest set in a set of sets and has the
following definition:

largest: Int-set-set --> Int-set;

pre-largest(ss) == ss /= {};
largest (ss) == (! s £ ss: (.A sl £ ss: card s >= card sl)).

This functon is only valid for sets of integer sets.

More desirable, and certainly more useful, would be a function which would work for
sets of sets of any type. Such functions may be defined using polymorphic types [ Turner85].

The function largest, for example, may be defined polymorphicly by defining its tvpe

clause to be:

largest: *-set-set --> *-set;
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More complicated functions may require more than one polymorphic type. Additional types
may be specified by **, *** and so on. To give an example, suppose we were to define the

map remove operator /- as a function. It may be defined as the followin g polymorphic

function:
m_remove: * -=> **  *.set —-> *x -> *x*;
m_remove(m,s) == [x -> m(x) : x £ (domm - s)]

Here * * specifies a type which may be different from the one specified by *, as shown by

the following applications of m_remove:

m_remove ([1->"small", 10->"big", 100->"very big"], {10})
= {1->"small",100->"very big"]

m_remove ([1->(1}, 2->{1,2}, 3->(1,2,3}1, {1,2,5})
(3->{1,2,3}]

I

In the first example * becomes Int and ** becomes St r. In the second example * becomes
Int and ** becomes Int-set. Every application of m remove involves three type
checkings, as depicted by the diagram below:
f T
m remove: * —> **  *_get —=> * > **,

.,

1 2

The use of polymorphic types is not restricted to functions. They may also be used in
operations, abstract data types and other forms of abstraction described in the rest of this
thesis. Polymorphic types are especially suitable for writing general purpose abstractions,

which crop up in a variety of specifications, without losing the advantages of type checking.

5.7 A DEVELOPMENT EXAMPLE

This section illustrates, by means of a realistic example, how a formal specification
may be developed, refined, evaluated and formally verified in EPROS. The interactive
evaluation of a formal specification can serve two purposes. Firstly, it can provide a means
of observing the behaviour of the specified system in order to see whether it is indeed the one

desired. Secondly, it may serve as a cheap and quick way of detecting design errors. The

/
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example given here exhibits the potential of the approach for both applications.

problem specification

The program to be specified is a software tool that records the relationships between

the modules of a software system. An informal statement of the requirements is given below:

A program 1is required which records the uses and used-by
relationships between the modules of a software system. It should
allow the user to do the following:

* Add a module to the system.

* Delete a module from the system.

* List what modules a given module may use.

* List what modules may use a given module.
* List all recursive modules.

Let us call this program the 'Cross Usage' program. Our first task is to find a suitable
object class that can model the problem. Let us call the object class Xusage; it can be
modelled by a mapping which maps every module in a system to the set of modules it may
use, 1.e.:

Xusage = Module -> Module-set;

At this point, we shall not specify the domain Module. Every object in Module is understood
to correspond to a module in a system. Module, in other words, is the set of all possible

modules in software systems. As an example, consider the following object in Xusage:

[modl -> {mod2,mod3},
mod2 -> {},
mod3 -> {}]

It represents a system which has the structure diagram shown in figure 5.6,

mod1l

N

mod 2 mod3

FIGURE 5.6 A simple structure diagram.

where mod1 may call mod2 and mod3, and mod2 and mod3 may not call any other module.

Obviously, given that s is the set of modules a module m may call then s must be
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contained in the domain of the mapping, i.e.:
(.Am £ dom xu: xu{m) .S. dom xu)
where xu is the mapping. This is specified by the following data type invariant:
inv-Xusage (xu) == union rng xu .S. dom xu
Now let us specify the operations of abstract data type Xusage. The first operation is
very simple; it just initialises the mapping to an empty map:
INIT: --> ;

post(-,xu') == xu' = [];
END INIT

The next operation to be specified, adds a module to the system. It will take a module and a

set of modules that the module may use and adds them to the mapping:

ADD_MOD: Module, Module-set --> ;

pre(xu,mod,-) == ~(mod £ dom xu) | xu(mod) = {};
post (xu,mod,uses, xu') ==
xu' = xu + [m => {}: m £ (uses - dom xu)]

++ [{mod -> uses];
END ADD MOD

The pre-condition specifies that either the module (to be added) should not be already in the
mapping or, if it is, it should not be using any other module at the moment. The
post-condition specifies that the mapping after the operation is applied will be equal to the
mapping before the operation is applied, merged with an implicit mapping which maps each
new module in uses to the empty set, and then overwritten by an explicit mapping which
maps the module to be added to uses.

The next operation deletes a module from the system:

DEL MOD: Module --> ;

pre(xu,mod) == mod £ dom xu;
post (xu,mod, xu') ==
xu' = [m -> xu(m) - {mod} : m £ (dom xu - {mod})];

END DEL_MOD

Obviously a module to be deleted must already be present in the system, hence the
pre-condition. The post-condition specifies that the effect of the operation will be that all
occurrences of the deleted module will be removed from the right hand side of the mapping

and the particular entry for the module itself will be totally removed from the mapping.
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The next two operations are trivial. The first is uses and returns the set of modules

given module may use:

USES: Module --> Module-set;

pre(xu,mod) == mod £ dom xu;
post{(xu,mod, -,ms) == ms = xu(mod) ;
END USES

The second operation, USED_BY, returns the set of modules that may use a given module:

USED_BY: Module --> Module-set;

pre(xu,mod) == mod £ dom xu:;
post (xu,mod, -,ms) ==
ms = {m : m £ dom xu &§ mod £ xu(m)};

END USED_BY

The last operation produces the set of recursive modules in a system:

REC_MOD: --> Module-set;
post(xu,-,ms) ==
ms = {m: m £ dom xu & reaches(m,m, xu) };
pre-reaches(ml,m2,xu) == ml £ dom xu & m2 £ dom xu;
reaches (ml,m2,xu) ==
m2 £ xu(ml) | (.Em £ xu(ml): reaches(m,m2,xu));

END REC_MOD

The post-condition uses an auxiliary function called reaches which has the following typ
clause:

reaches: Module, Module, Xusage --> Bool;
This function is defined to be local to the operation and returns TRUE if a module can reacl]
another module through a sequence of one or more calls. We observe the conciseness of th

post-condition: the set of modules m in the system such that m can somehow reach itself.

~ y top
ijidl mid?2
| bot1l bot?2

FIGURE 5.7 A simple software system.
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Having specified our abstract data type the next stage in the development process
involves the evaluation of the specification. Here, we examine the behaviour of the system
by executing the specification. The following is a simple evaluation session based on setting
up and manipulating the system of figure 5.7. The domain Module is assumed to be Str.

EPROS response is printed in bold.

epi> VAR x: Xusage;; /* define x to be of type Xusage */
epi> INIT(x); /* initialise x */

epi> x; /* check the contents of x */

{1

epi> ADD MOD (x,"top", {"midl", "mid2"}) ; /* add modules */

epi> ADD MOD (x, *midl”, {"midl", "botl", "bot2"});
epi> ADD MOD (x, "mid2", {"bot2"});
epi> ADD MOD (x, "botl", {"top", "midl"});
epi> x; /* check the contents of x */
["bot2" -> {},
*"mid2" -> {("bot2"},
"top" -> {"mid2","midl"},
"midl" -> {"bot2","botl", "midl"},
"botl" -> {"midl","top"}]

epi> USES(x,"top"); /* list modules that top uses */
{"mid1", "mid2"}
epi> USED_ BY(x,"midl"); /* list modules that use midl */
{"top", "midl", "bot1"}
epi> REC_MOD (x); /* list recursive modules */
{("top", "midl", "botl"}
epi> DEL MOD (x,"mid2") ; /* delete module mid2 */
epi> x; /* check the contents of x */
["bot2"™ -> {1},

"top" -> {"midl"},

umidln - { "bot2 " ; "botl" ' nmidl L] } ’
"bOtl" _> { "midlu ‘ "top" }]

Having convinced ourselves that the exhibited behaviour is indeed the one desired, we
then verify the specification. Since this is the first specification of the system, all that we can

verify at this stage is validity, i.e. that each operation preserves the data type invariant.

Theorem S.1: Operation INIT is valid.

Proof: For this operation we observe that:

post (xu,xu') ==> inv(xu') ---= (1)
since
inv(xu') = 1inv(([])
= union rng [] .S. dom []
= {} .S. {} = TRUE

From (1) it follows that:

pre(xu) & Inv(xu) & post(xu,xu') ==> inv(xu')
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which proves that INIT is valid.

Theorem 5.2: Operation apb_MoD is valid.
Proof: We must show that:

pre(xu,mod,uses) & inv(xu) & post(xu,mod,uses,xu')

Now
inv(xu') = inv(xu + ml ++ m2)
where
ml = [m -> {}: m £ (uses - dom xu)]
and m2 = [mod -> uses]
Hence

inv(xu') = inv(xu + ml ++ m2)

= union rng (xu + ml ++ m2) .S. dom (xu + ml ++ m2)

From pre it follows that

union rng (xu + ml ++ m2) = union rng Xu

Hence
inv(xu') =
= (union rng Xxu
= (union rng xu
= (union rng Xxu
(union rng xu

uses) .S. (dom xu .U.
uses) .S. (dom xu .U.

aagag

which is true since using inv(xu):
union rng xu .S. dom xu

and completes the proof.

Theorem 5.3: Operation DEL_MOD is valid.
Proof: Consider the stronger condition:

inv(xu) & post(xu,mod,xu') ==> inv(xu')
where

inv(xu') == union rng xu' .S. dom xu'
Now (using post):

union rng xu' .S. union rng xu - {mod}
and (using inv):

union rng xu - {(mod} .S. dom xu - {mod}
also (using post):

dom xu - {mod} = dom xu'

From (1),(2) and (3) it follows that:

union rng (ml ++ m2))
uses) .S. (dom xu .U. dom ml .U. dom m2)
(uses-dom xu) .U. {mod})
uses .U. {mod})

.S. dom (xu + ml ++ m2)

=> inv{(xu')

.U. union rng ml ++ m2

(1)

(2)

(3)
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union rng xu' .S. dom xu'
hence
inv{(xu') = TRUE

which completes the proof.

The last three operations require no proof since they do not change the states and, therefore,

are always valid. The complete specification of abstract data type Xusage is shown in figure

5.8.

ADT Xusage
DOM Xusage = Module -> Module-set;
TYPE reaches: Module, Module, Xusage --> Bool;

AUX inv-Xusage(xu) == union rng xu .S. dom xu;
OPS
INIT: =->;
post(-,xu') == xu' = [];
END INIT

ADD MOD: Module, Module-set -->;

pre(xu,mod,-) == ~(mod £ dom xu) | xu(mod) = {(};
post (xu,mod,uses,xu') ==
xu' = xu + [m -> {} : m £ (uses - dom xu)]

++ [mod -> uses]:;
END ADD_ MOD

DEL _MOD: Module -->;

pre(xu,mod) == mod £ dom xu;
post (xu,mod, xu') ==
xu' = [m -> xu{m)-{mod} : m £ (dom xu - {mod})];

END DEL_MOD

USES: Module --> Module-set;

pre(xu,mod) == mod £ dom xu;
post(xu,mod, -, ms) == ms = xu (mod) ;
END USES

USED_BY: Module --> Module-set;

pre(xu,mod) == mod £ dom xu;
post (xu,mod, -, ms) ==
ms = {m : m £ dom xu & mod £ xu(m) };

END USED_BY

REC_MOD: --> Module-set;
post (xu, -,ms) ==
ms = {m : m £ dom xu & reaches (m,m, xu) };
pre-reaches (ml,m2,xu) == ml £ dom xu & m2 £ dom xu;
reaches (ml,m2, xu) == m2 £ xu(ml) |
(.Em £ xu(ml): reaches (m,m2, xu)) ;

END REC_MOD
END Xusage

FIGURE 5.8 Specification of abstract data type Husage.
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refinement of the specification
Having completed the first specification of the system, the next stage involves refining
the specification. First we must choose a new, more concrete, object class for the abstract

data type. A number of possibilities exist; we suggest the following:

Xusagel = Module -> Cross;
Cross :: .u: Module-set, .b: Module-set;

Xusagel is the domain of mappings from Module to a new domain called Cross. Every
object in Cross has two components. The first component denotes the set of modules a
module may use; the second component denotes the set of modules which may use that
module. So, for example, the structure diagram in figure 5.6 will be represented by the
following mapping in Xusagel:

[modl -> ({mod2,mod3},{}),

mod2 -> ({}I{mOdl})l
mod3 -> ({}, {modl})]

What we have done in fact is that we have introduced some redundancy in our model by
explicitly including, for each module, the set of modules which may use that module. This is
a design decision. The refinement process typically involves making one or more design
decisions at each stage.

Every design decision must have some justification. The design decision above was
made with the hope of gaining some conceptual efficiency in the system. We observe that the
introduced redundancy may simplify some operations (e.g. USED_BY) at the cost of making
other operations more complicated (e.g. AbD_MoD). In systems that deal with information
storage and retrieval usually one requires the retrieve operations to be considerably simpler
than the storage operations for the simple reason that the former are used much more often
than the latter. This is the basis of the design decision we have made here.

Our next task is to strengthen the data type invariant to preserve the meaning of the

problem. The new data type invariant is:

inv-Xusagel (xu) ==
(.Am¢£ dom xu: (.Aml £ xu(m).u: m £ xu(ml).b) &
(.Aml £ xu(m).b: m £ xu(ml).u) );
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This simply states that the following must hold for every module m in the system: if m uses a
module m1 then m should be in the set of modules that use m1 in the mapping, and that if m is
used by a module m1 then m should be in the set of modules that m1 uses in the mapping. This
is shown diagrammatically in figure 5.9 for the system in figure 5.6.

[ nlxoldl -> ({mOle, mod3}. (}),
{

J
; |
mod2 -—> ({}. {(modl}),.

-

| l

mod3 -> ({}. (modl}) ]

FIGURE 5.9 A Diagrammatic view of inv-Husagel.

The relationship between Xusage and Xusagel is documented by the following

retrieve function:

retr: Xusagel --> Xusage;
retr(xul) == [m -> xul(m).u: m £ dom xul];

We now show that retr is total over valid states and that Xusagel is an adequate
representation of Xusage.
Theorem S4: (.A x1 £ Xusagel: inv-Xusagel (x1l) ==>

(.E x £ Xusage: x = retr(xl) & -—== (1)
inv-Xusage (retr(x1l)))) -—== (2)

Proof: (1) is immediate from the definition of retr. Consider (2), which reduces to showing

that:

union rng x .S. dom X
where

x = [m -> x1(m).u: m £ dom x1] ——== (3)
Using inv-Xusagel:

union {x1(m).u: m £ dom x1} .S. dom x1
and, using (3) it reduces to:

union rng x .S. dom x1

which completes the proof since (using inv-Xusagel):
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dom x1 = dom x

Theorem 5.5: Xusagel is an adequate representation of Xusage.
Proof: Let x £ Xusage and inv-Xusage(x) = TRUE then

x1 = [m -> mk-Cross(x(m), {n: n £ dom x & m £ x{(n)))
: m £ dom x] -=-——- (1)

represents x. To prove this, letm £ dom x1, we must show that

(.Aml £ x1(m).u: m £ x1{(ml).b) -———= (2)
and that
(\Aml £ x1(m).b: m £ x1(ml).u) -——= (3)

Using (1), (2) reduces to:
ml £ x(m) ==> m £ {n: n £ dom x & ml £ x(n)}

which is immediate by considering the case whenn = m. Using (1) again, (3) reduces to:
ml £ {n: n £ dom x & m £ x(n))} ==> m £ x(ml)

which is immediate by considering the case when n = m1, and completes the proof.

The next step in the refinement process involves producing operations in the
representation which model the operations in the original specification. The first operation,

INIT, will remain as before. Operation apb_mop is modeled by app_Mop1:

ADD MOD1l: Module, Module-set --> ;
pre(xu,mod,uses) == ~(mod £ dom xu) | xu(mod).u = {};
post (xu,mod,uses,xu') == xu' =
xu ++ [m => if m £ dom xu then
mk-Cross(xu(m) .u,xu(m).b .U. (mod})
else mk-Cross({}, {(mod})
: m £ uses]
++ [mod -> mk-Cross(uses,if mod £ dom xu then
xu (mod) .b
else {}1)1}:
END ADD MOD1

The pre-condition of ApD MoD1 is more or less identical to that of App_mop. The
post-condition, however, has changed considerably. The explicit mapping in post produces
the entry for mod itself. The implicit mapping produces an entry for each module in uses. It
ensures that for each mapping m in uses, mod is included in the set xu' (m) .b.

Let us now evaluate operation ADD MOD1:

epi> VAR x: Xusagel;;
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epi> INIT1 (x):
epi> x;
(]
epi> ADD MOD1 (x,"top", {"midl", "mid2"}) ;
epi> ADD MOD1 (x, "midl", {"midl", "bot1l", "bot2"}) ;
k%% post-state of ADD MOD1l does not satisfy the invariant
epi> x;
["midl" -> ({}, {"top"}),
"mid2" -> ({}, {"top"}),
"top" -> ({"mid2","midl"}, (})]

This simple evaluation shows that app_mop1 does not preserve the data type invariant.
Operation ADD_MoD1 is therefore not valid. If we examine the post-condition of this operation
carefully we see that it does not behave properly when mod is recursive; if mod £ dom xu
then

xu' (mod) = mk-Cross (uses, xu(m).b)
and if ~ (mod £ dom xu) then

xu' (mod) = mk-Cross(uses, {})
Both cases produce wrong results since the second set will not contain mod. This problem is

avoided by the following post-condition for Abp_MoD1:

post (xu,mod,uses,xu') == xu' =
xu ++ [m -> if m £ dom xu then
mk-Cross (xu(m) .u,xu{m) .b .U. {mod})
else mk-Cross({}, {mod})
: m £ uses]
++ [mod -> mk—-Cross(uses, (if mod £ dom xu then
xu (mod) .b
else {}) .U.
(if mod £ uses then {mod}
else {}))1:

Let us now evaluate the new version of ADD_MOD1:

epi> VAR x: Xusagel;;
epi> INIT(x);
epi> x;
[]
epi> ADD MOD (x,"top", {"midl", "mid2"}) ;
epi> ADD MOD (x, "midl", {"midl", "bot1l"™, "bot2"}):
epi> ADD MOD (x, "mid2", {"bot2"});
epi> ADD_MOD(X,"botl",{"top","midl"});
epi> x;
["bot2" -> ({},{"midl", "mid2"}),
"mid2" -> ({"bot2"}, {"top"}),
"top" -> ({"mid2", "midl"}, {"botl"}),
"midl" -> ({"bot2","botl","midl"}, {"top", "midl", "botl"}),
"botl" -> ({"midl","top"}, {"midl"})]
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The behaviour is promising. Now we may attempt to prove that Abp_MoD1 preserves the data

type invariant of Xusage1l:

Theorem 5.6: app_MoD1 is valid.
Proof: We must show that:

pre(xu,mod,uses) & inv(xu) & post (xu,mod,uses,xu') ==> inv(xu')

Suppose that the Lh.s. of the implication is TRUE. The proof then reduces to showin g that for

each module min dom xu' the followings are TRUE:

(.Aml £ xu'(m) . .u: m £ xu'(ml).b) -——= (1)
and

(.\Aml £ xu'(m).b: m £ xu'(ml) .u) -——= (2)
Using post:

(.Am £ (dom xu - uses - {mod}): xu'(m) = xu(m)) -——= (3)
and

(.Am£ (dom xu .I. uses): xu'(m).u = xu(m).u &

xu'(m).b = xu(m).b .U. {mod})

Now -—-= (4)

(.Am¢£ (dom xu .I. uses): m £ xu' (mod) .u)
<=> (.Am¢£ (dom xu .I. uses): m £ uses) ——== (5)

Using (3),(4) and (5) the proof reduces to showing that (1) and (2) hold for any module m in

uses .I. {mod}.We shall consider two separate cases:

(1) Letm = mod, (1) reduces to

(.Aml £ uses: m £ xu'(ml).b)

This is obvious and immediate from post. Consider (2), the case when mod 1s recursive is
obvious since (by post):

mod £ xu' (mod) .b
& mod £ xu'(mod) .u

So suppose mod is not recursive, i.e. ~ (mod £ uses). Two cases must be considered: when
~(mod £ dom xu), by post:

xu' (mod) .b = {}
hence (2) is immediate. Whenmod £ dom xu, by post:

xu' (mod) .b = xu(mod) .b

So (2) reduces to:



S Functional Specification B

(.A ml £ xu(mod) .b: m £ xu' (ml) .u)
which is immediate from inv-Xusage, (3) and 4).

(i1) Now consider uses - dom xu, we observe that (using post):

(.Am £ (uses - dom xu - {mod}) : Xxu'(m).u = (} &
¥xu'(m).b = {mod})
hence (1) is immediate, and (2) reduces to:
(.Am £ (uses - dom xu - {mod}): (.A ml £ {mod}:m £ xu' (ml) .u))
<=> (.A m £ (uses - dom xu - {mod}): m £ xu' (mod) .u)
<=> (A m £ (uses - dom xu - {mod}: m £ uses)

which is immediate.

Theorem 5.7: app_Mop1 models ADD_MOD.

Proof: We must show two things:
() We must show that given xul £ Xusagel then

inv-Xusagel (xul) & pre—-ADD MOD (retr (xul),mod, uses)
==> pre-ADD MOD1 (xul,mod, uses)

suppose that the Lh.s. of the implication is TRUE, and let:
xu = retr(xul) = [m -> xul{(m).u: m £ dom xul] -—-=-= (1)
Using pre~aApD MOD:
~(mod £ dom xu) | xu(mod) = {}
Using (1) this reduces to:
~(mod £ dom xul) | xul(mod).u = {}
which verifies the r.h.s. of the implication.
(i1) Given that xul £ Xusagel we must show that:
inv-Xusagel (xul) & pre-ADD MOD1 (xul,mod,uses) &
post-ADD MOD1 (xul,mod, uses, xul') ==
post—-ADD MOD(retr (xul),mod,uses, retr(xul'))

Suppose that the Lh.s. of the implication is TRUE. It is easy to show that retr is distributive

over ++, 1.e:
retr(ml ++ m2) = retr(ml) ++ retr(m2)
for any two mappings m1 and m2 in Xusagel. Applying retr to post—ADD_MOD1 we get:
retr(xul') = retr(xul) ++ retr(m -> if m £ dom xul then

mk-Cross (xul (m) .a, ...)
else mk-Cross({}, ...)
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m £ uses]

++ retr[mod -> mk-Cross (uses, o) ]
= retr(xul) ++ [m -> if m £ dom retr(xul) then
xul {(m) .u
else ()

:m £ uses]
++ [mod -> uses)
= retr(xul) ++ [m -> xul(m) .u:

m £ (uses .I. dom retr(xul))]
++ [m -> {}: m (uses - dom retr(xul))]
++ {mod -> uses]

= (retr(xul)++ [m -> retr(xul(m)):

m £ (uses .I. dom retr(xul))])
++ [m -> {}: m £ (uses - dom retr(xul))]
++ [mod -> uses]
= retr(xul) ++ [m -> {}: m £ (uses - dom retr(xul))]
++ [mod -> uses]

which verifies the r.h.s. of the implication and completes the proof.

From the theorems above it follows that operation Abp_MoD1 is correct and models
app_Mob. The refinement, evaluation and verification of other operations is very similar to
app_MoD and is not further discussed here. The complete specification of Xusage1 is given in

figure 5.10.

ADT Xusagel
DOM Xusagel = Module -> Cross;
Cross :: .u: Module-set, .b: Module-set;
TYPE reaches: Module, Module, Xusagel --> Bool;
AUX inv-Xusagel (xu) ==
(.Am£ dom xu: (.Aml £ xu(m).u: m £ xu(ml) .b) &
(.Aml £ xu(m).b: m £ xu(ml).u));
OPS
INIT1: --> ;
post(-,xu') == xu' = [];
END INIT1

ADD MOD1l: Module, Module-set --> ;
p;e(xu,mod,uses) == ~(mod £ dom xu) | xu(mod).u = {(};
post (xu,mod,uses,xu') == xu' =
xu ++ [m -> if m £ dom xu then
mk-Cross (xu(m) .u,xu(m) .b .U. {mod})
else mk-Cross({}, {mod})
m £ uses]
++ [mod -> mk-Cross (uses, (if mod £ dom xu then
xu (mod) .b

else {}) .U.
(if mod £ uses then {mod}
else {}))1]:

END ADD MOD1

DEL MOD1l: Module --> ;
pre(xu,mod) == mod £ dom xu;
post (xu,mod, xu') ==



3 Functional Specification &

xu' = [m -> mk-Cross(xu(m).u - {mod}, xu(m).b - {(mod})
:m £ (dom xu - {mod})];
END DEL MOD1

USES1: Module =--> Module-set;

pre(xu,mod) == mod £ dom xu;
post(xu,mod,-,ms) == ms = Xu (mod) .u;
END USES1

USED_BY1l: Module --> Module-set;
pre(xu,mod) == mod £ dom xu;
post(xu,mod, -, ms) == ms = xu (mod) .b;

END USED BY1

REC_MOD1: --> Module-set;
post(xu,-,ms) == ms = {(m : m £ dom xu & reaches (m,m, xu) };
pre-reaches(ml,m2,xu) == ml £ dom xu & m2 £ dom xu;
reaches (ml,m2,xu) == m2 £ xu(ml) .u |

(.Em £ xu(ml) .u: reaches (m,m2, xu) ) ;
END REC_MOD1
END Xusagel

FIGURE 5.10 Specification of abstract data type Rusagel.

5.8 DISCUSSION

By borrowing ideas from the Vienna development method, we have arrived at a
notation that, while preserving the useful features of VDM, such as conciseness and
formality, lends itself to execution.

The provision of an abstract data type encapsulation mechanism on top of VDM has
enabled us to formulate a software system specification at different levels of abstraction more
easily. Two advantages are gained here. First, the encapsulation enables us to enforce useful
disciplines, e.g. that an abstract data type 1s manipulated through its own set of private
operations only. Second, it allows us to talk about abstract data types as objects, both
conceptually and in reality. This in turn facilitates the construction of formal specification
libraries which consist of self-contained abstract data type specifications. Libraries of this
form would be an indispensable tool in software development and prototyping for two
reasons. First, they significantly reduce the verification effort by allowing developers to
build on top of each other's work; once an abstract data type is developed, verified and
deposited in the library, subsequent users can employ 1t and rely on its correctness. Second,

being executable, the library becomes a powerful tool for rapid prototyping. This is. of
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course, the familiar reusable software approach to prototyping, but is more productive since
it is applied to a higher, more stable level of abstraction.

Needless to say, by requiring our notation to be executable, we have necessitated some
compromises concerning the implicitness of EPROL. For example, the implicit predicate:

(.E x £ Real: x**3 - 2*x = 2)
is not executable in EPROL since the search domain is potentially infinite. The implication of
this is that certain styles of VDM predicates, while expressible in EPROL, are not executable.
This does not necessarily mean that we have to restrict ourselves to executable constructs.
Indeed, in our developments, we first produce a specification using any construct that we
find appropriate. Once a specification is produced in this way, its transformation to an
executable form is straightforward and involves very little effort (see chapter 9.)

The essential difference between the VDM approach and our approach is in the
priorities these two assign to different aspects of development. VDM primarily concerns itself
with rigorous verification of correctness from the start. EPROS regards verification as a
complementary option; it primarily concerns itself with the appropriateness of a specification
and with experimenting with alternative designs, and argues that executing a specification
before verification can detect errors more easily and at a greatly reduced cost. This opinion is

also shared by a number of other researchers [Goguen84, Kemmerer85, Henderson86a].



Chapter 6 IMPLEMENTATION

The better adapted a system is to a
particular environment, the less adaptable
it is to new environments.

- R A Fisher

This chapter describes the implementation notation of EPROL. It introduces various
implementation constructs and the most basic facility for modularisation — imperative
functions. Functions may be used for concrete realisation of several abstractions, e.g.
abstract data types. Other forms of modules will be described in the next two chapters.

The implementation notation is not isolated from the specification notation. In fact, all
the constructs and objects described in chapter 5 (e.g. combinators and sets) can be used

freely in the implementation notation.

6.1 STATEMENTS
In the implementation notation, computation is usually defined in terms of statements.

These are computation rules that cause useful side-effects.

assignment

This is the most elementary form of statement, the general form for which is:

location := expression

The effect of this statement is that expression is first evaluated and the resulting value is

stored in locat ion. Examples are:

x = 12%%*3;

11 := <<"X">,<"Y","Z">>,’
m("John") := 30;

t.r := [1->1, 2->4];

where x is an integer, 11 is a list, m is a mapping and t is a tree variable.

control structures

The simplest form of control statement is the if-then-else statement. It may take one of

the following two forms:
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if bool expr then
stat,;

if bool expr then
Statl

else
statz;

In both cases bool expr is evaluated first. If it evaluates to TRUE then stat 1 is executed. If
it evaluates to FALSE then, in the former case nothing will happen whereas in the latter case
stat, will be executed.

There are two kinds of multi-branch control statements. The first is the mac statement ;

this is very similar to the mac expression and has the general form:

mac |
bool_expr, => stat,;
bool_expr, => stat,;

} bool_expr  => stat:.

where bool exprs to the left hand side are evaluated in the order they appear. If
bool_expr, evaluates to TRUE then stat ; will be executed and the mac statement will

terminate.

The second multi-branch statement is the cases statement; this is very similar to the

cases expression and has the general form:

cases exXprg {
expr, => stat,;
expr, => staty;

expr, => stat.;
}:

where expr ¢ is evaluated first and then expr ;s are evaluated in the order they appear. If

expr; = exprgthenstaty will be executed and the cases statement will terminate.

loop structures

Three kinds of loop structure are provided. The for-do statement iterates over the

elements of a set or a list. It has the general form:
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for var in expr do
stat;

where var is a bound variable and expr is a set or list expression. The bound variable needs
no declaration. This statement iterates var over individual objects in expr. If expr is a set
expression then iteration will be done pseudo non-deterministicly.

The while-do statement executes a statement repeatedly while a predicate is true, and

has the general form:

while bool expr do
stat;

It evaluates the bool expr first; if it evaluates to TRUE then it will execute stat. This
process is repeated until bool expr evaluates to FALSE at which time the loop is terminated.
The do-while statement executes a statement repeatedly until a predicate becomes false,

and has the general form:

do
stat;
while bool_ expr;

Here stat is first executed, then bool expr is evaluated; if it evaluates to TRUE then the
whole process is repeated again, otherwise the loop is terminated.

Two other related statements are the done and the got o statement. The former appears
in a loop structure and when executed terminates the loop immediately. The latter is used for

explicit jump to a statement within a sequence of statements.

blocks

A sequence of statements may be grouped together to form a block by enclosing them

within curly brackets, 1.e.:

{ Statl;
Statz;

stat ;

}

A block is itself treated as a single statement.
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assertions

Recording important invariants when writing programs is a good practice. In EPROL

such invariants may be specified using assertion statements. An assertion statement has the

general form:

assert (bool_expr);
When this statement is executed the bool expr is evaluated; if it evaluates to TRUE then
nothing will happen, otherwise the system will report that the assertion has failed. For
example, the statement:

assert(.A i £ (l:1len 1 - 1}: 1[i] <= 1[i+1]);

asserts that a list of numbers 1 is sorted in ascending order.

6.2 DATA TYPES

The data types described in chapter 5 (i.e. elementary types such as integers, and
composite types such as sets) can be used directly in the implementation notation. In
particular, trees may be used to implement record structures. Also, any abstract data types
defined by the programmer in the specification part can be used freely.

Except for the elementary types, objects of all other types are dynamic. EPROL uses a
heap storage mechanism for storing these objects, which is automatically garbage collected.

Certain additional data types are also provided, the use of which is restricted to the

implementation part. These are briefly described below.

arrays

An array is a composite object of predefined length, containing a contiguous sequence
of objects of the same type. For example,

array(5] Int
defines an array of 5 integers. Arrays may be one or multi-dimensional. In general, an array
type has the following form:

array(el] [e2]...[en] Elem

where e1, e2, ..., en are arbitrary positive integer expressions, and Elem is the type of array



6 Implementation &

elements. Arrays may also be dynamic, i.e. their size may be decided at run time. Array

elements are referenced in a manner identical to lists, albeit the index starts at 0.

files
A file refers to an external storage space; file is supported by a pre-defined type

denoted by the keyword f£ile. File operations are described in appendix C.3.

forms
Electronic forms are special abstract data types in EPROL (see chapter 7.) A form type
is defined as: form form_ id, where form id is the name of a form module. Form

operations are described in appendix C.4.

databases
The term database in EPROL refers to a collection of records which are stored and
retrieved by a key. Every record in a database must be either a form image or a tree branch.

For example,

DOM Student :: .name: Str, .age: Nat, .sub: Str;
St_dbase = Student-dbase(key=name) ;

defines a database domain called St _dbase where every record in such a data base is an
element of the domain Student. These records are stored by the name key. Similarly,
DOM Ap dbase = (form Appliance_ order) -dbase(key=S$code) ;

defines a form database domain. Database operations are described in appendix C.5.

6.3 INPUT AND OUTPUT

Input and output can be performed with respect to standard channels, external

channels, and windows. All such I/O is formatted. In addition, composite objects can be

pretty printed using a special output function.
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ordinary il/o

Standard and external formatted I/0 is primarily supported by two functions called put
and get. Put sends its output to either the standard output or an external file. It has the
following call form:

put (file, format, argl, ..., argn);
where file is optional and indicates the destination of output. Format is a string which
contains the output format specifications for argl, ..., argn. The format specifications
follow the conventions of C [Kernighan78a].

Get obtains its input from either the standard input or an external file. The general call
form for get is:

get(file, string, locl, ..., locn):;
where file and string are optional. It first outputs st ring (if any and if £ile is not

present) and then reads n values and stores them in locations locl, ..., locn.

window-oriented ilo
EPROL supports the creation and manipulation of overlapping windows. Windows can
be treated as channels for sending output and receiving input. Window functions and /O

operations are described in appendix C.4. An example of a window function is given below:

w_text(6,43,"“RText Frame”N",
\In EPROL printing mode is controlled by

AN

~~N prints in Normal mode

~"B prints in "“BBold”N mode

~rU prints in ~UUnderline”N mode

~~K prints in ~“KblinK”N mode

AR prints in “RReverse video”N mode\);

It creates the following window:

Text Frame

In EPROL printing mode 1is controlled by

A

“N prints in Normal mode

“B prints in Bold mode

~U prints in Underline mode
~K prints in blinK mode

"R prints in [T RZ LX) node
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pretty printing

The function ppr is responsible for pretty printing objects in EPROL and is extensively
used by the interpreter. It takes an expression as argument and pretty prints its value. For
example,

ppr(power{"apple","orange","pear"});

will produce:

{{1},
{"pear"},
{"pear", "orange"},
{"orange"},
{"pear™,"apple"},
{"pear", "orange", "apple"},
{"orange", "apple"}
{"apple"}}

6.4 IMPERATIVE FUNCTIONS
Imperative functions are defined by the rFuncTION module; they correspond to
procedures and functions in modern programming languages and support procedural

abstraction. Figure 6.1 shows the general structure of a FUNCTION module.

FUNCTION ifun_id (... parameter-list ...): result_type;
DOM ... private domain definitions
VAR ... private variable definitions

loéal definitions
BEGIN
stétements
END if;n_id

FIGURE 6.1 The general structure of a FUNCTION module.

The parameter list and/or result type may be empty. It specifies the names and domains of
function parameters. Each parameter is specified as
par: dom

if it is a value parameter, or as
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VAR par: dom
if it is a variable parameter. The pom part of a function is similar to the poM part of an abstract
data type. The vaR part defines one or more variables. For example,

VAR 1: Int-list := <1,10,100>;
defines 1 to be a list of integers and initialise 1 to <1, 10, 100>.

The body of a function consists of a sequence of statements. A function can also
contain local FUNCTION, DIALOGUE, FORM and CLUSTER modules. An example of a function

module is given below. It is an implementation of the familiar quick sort algorithm.

FUNCTION quick_sort (table: Table, size: Nat):
DOM Table = arrayl(size] Str;
FUNCTION quick sort aux(lower:Nat(0, upper:Nat0);
VAR i: Nat0 := lower;
j: Nat0O := upper;
key: Str := table( (lower+upper)/2];
FUNCTION swap (VAR x: *, VAR y: *);
VAR temp: *;

BEGIN
temp := x;
X =y’
y := temp;

END swap

BEGIN
do {

while table(j] .name > key do j := j - 1;
while table[i] .name < key do i :=1i + 1;

if 1 <= j then {
swap (table[i],table{]j]);
i :=1+ 1;
j =3 - 1;
}:
} while i <= j;
if i < upper then quick sort_aux(i,upper);
if lower < j then quick_sort_aux(lower,j);
END quick_sort_aux
BEGIN
quick_sort_aux(O,size—l);
END quick_sort

6.5 DISCUSSION

The implementation notation described in this chapter fits next to the specification
notation of chapter 5, and takes us down to the lowest level of abstraction. The provision
of a sharp border between these two has ensured that the concepts would not be confused.

This border, however, does not correspond to a sudden change of notation, but rather to



6 Implementation D

an extension of the notation.

Accepting the fact that design is a process of decision making, its separation from
the above two is impossible; it therefore runs well into the specification and implementation

notations. This is depicted by the following diagram.

specification implementation
1
]

——
-

-

design

So far we have been restricting ourselves to functionality only. This represents half
of the picture in a software project. The other half, represented by the user interface, is of
equal importance. It involves producing notations which support the specification and
implementation of those parts of a system responsible for the dialogue between the user
and the system. Our separate treatment of these two issues is a consequence of our desire
to achieve such a separation both conceptually and in reality for reasons that were
discussed earlier on.

The next chapter describes a notation for dialogue development which achieves such
a separation. Our dialogue specification notation will be very different from that we used
for specifying functionality. For implementation purposes, however, we shall be using the

same notation as described in this chapter.
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Software stands between the user and the
machine.

-H D Mills

This chapter describes the notation of EPROL for user interface specification and
development. This notation consists of an encapsulation mechanism for separating dialogues
from functionality and a number of independent abstractions supporting well-developed
concepts in user interfaces. Unlike functional specifications, the dialogue specification

notation is initially graphical and semi-formal; this is described below.

7.1 STATE TRANSITION DIAGRAMS

The STD notation employed by EPROL is based on the one proposed by Denert
[Denert77]. This is an extension of the usual STD notation and allows one to describe
dialogue systems hierarchically. The symbols used in this notation are summarised in figure

7.1. Each symbol is briefly described below.

v' initial state
A final state

simple state

complex state

O interaction point

S state transition

FIGURE 7.1 State transition diagram symbols.

«  [nitial state — Denotes the entry point for an STD. An STD must have exactly one initial

state.

. Final state - Denotes the exit point for an STD. An STD must have exactly one final
state.

. Simple state — Represents an action which involves no interaction with the user and 1s

executed immediately. The action is usually described by a brief text in the box.
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«  Complex state —Is an abstraction of an entire STD which may be refined separately. A
complex state may involve interaction with the user; for this reason, the system may

remain in a complex state for an arbitrary length of time. A complex state may be
labelled by a brief description of its function.

- Interaction point — Denotes a state in which actual interaction between the user and the

computer takes place. Interaction points are usually labelled by a number or
abbreviation.

«  State transition - Indicates transition between states. Arrows entering and emerging
from a complex state are conceptually tied to the initial and final states of the
refinement of that state respectively. An arrow emerging from an interaction point must
be labeled with user input or a predicate which will trigger that transition.

Complex states allow the abstraction of an entire STD in much the same way functions allow
the abstraction of a sequence of processing steps. Using this notation, dialogue systems may

be modularised and designed in a top-down manner.

the dialogue module
Once a dialogue system is specified as an STD it is then converted to the one
dimensional notation of EPROL. This notation is supported by the p1aLoGUE module. The

general structure of a DIALOGUE module is shown in figure 7.2.

DIALOGUE dial_id(...parameter—list...): result-type;
DOM ...private domain definitions...
VAR ...private variable definitions...

local deéinitions
BEGIN
;tate descriptions
END Aial_id

FIGURE 7.2 The general structure of a DIALOGUE module.

A pIALOGUE module represents a complex state. Each part of a DIALOGUE module is
the same as that of a FuncTION module except for the body. The body consists of one or

more state descriptions where each state is either a simple state or an interaction point. A
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simple state has the following form:

state state_id;: action => state_id,;
where act ion is a statement. It defines a simple state called stat e_id; which performs the
specified action and then moves to state_id,. Stat e_id, itself must be a simple state or
interaction point in the same DIALOGUE module.

An interaction point has the following form:

iap stat_id: input_action;
: pred,, output_action1 => stat_idl;
: pred,, output:_action2 => stat_id,;
: predjy => stat_idsy;

TRUE => stat_id_;

where input_action and output_actions are all statements. Each stat_id; mustbe a
simple state or interaction point in the same DI1ALOGUE module. Each predicate pred; isa
predicate over user input or program variables. As shown above, output actions are
optional. Also, the last predicate may be simply TRUE, specifying a transition which will take
place if no other predicate evaluates to TRUE. The above description defines an interaction
point called stat_id. In this state, first input_action is performed; then the predicates are
evaluated in the order they occur. If pred; evaluates to TRUE then output_action; will be
performed (if any) and the system will move to stat_id;. An iap description must specify
at least one state transition.

The first state in a DIALOGUE body is assumed to be the initial state. The final state is
defined implicitly using return statements. For example, in

state sl: action => return(1l0);
act ion is first executed and then the D1ALOGUE module is terminated returning the number

10. All such return statements are conceptually tied to the pb1ALOGUE module's final state.

an example

This section will illustrate, by means of an example, the way in which a simple

dialogue may be specified as an STD and then implemented by a DIALOGUE module.
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display
reader menu

choose
option

new reamove find close p
reader reader reader reader menu
3 4 5

FIGURE 7.3 A simple state transition diagram.

Figure 7.3 shows an STD which is part of the user interface specification of a library
system (see chapter 9.) The STD contains three complex states. A refinement of the complex
state remove reader is shown in figure 7.4. The refinement is at the bottom of the dialogue
hierarchy since it contains no further complex states.

The first state in the refinement is a simple state which creates a dialogue box within
which all subsequent interaction will take place. The STD then moves to an interaction point
which asks the user for a password. If the user types a wrong password the STD will move
to state 4.3, report the error and move back to the interaction point. If the user makes too
many wrong guesses the STD will move to state 4.5, wam the user that further interaction is
denied and then move to state 4.10. When a correct password is given the STD will move to
interaction point 4.5 where the user is asked for the id. of the reader who is to be removed.
Invalid id's are handled by the simple state 4.6. Instead of giving an id., the user may quit
the dialogue, in which case the STD will move to state 4.7, confirm the quit and then move to
state 4.10. However, if the user supplies a valid id., the STD will move to state 4.8 and then

4.9. where it will remove the specified reader and confirm the removal respectively. The STD
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will then move to state 4.10 where the dialogue box is closed, and lastly to the final state.

create
dialogue box 4.1

: ---------------------------------- |
: 4.2 :

{
: report wrong t00 many display LJ\
: error password \ password attempts—ﬂ warming

\
\

{
: 4.3 correct password 4.5 :

P R M oma TR e e e e an W e e em e e e wm wm wm

report
error

4.6

L em em wm em em TE e Wm e wn L e wa W e e

lose
4.10] . ©
dialogue box “ ~

FIGURE 7.4 Refinement of complex state 'remove reader.’

The STD in figure 7.4 can be directly implemented by a p1aLocue module. However,
before implementation, one should always look for potential simplifications in the diagram.
Typically, many simple states can be squeezed into their neighbouring interaction points. In
this way one can reduce the number of states in a DIALOGUE module considerably and hence
simplify the implementation. The two boxes with dashed lines in figure 7.4 depict this point.
The first box, for example, suggests that simple states 4.3 and 4.5 can be squeezed into

interaction point 4.2. This practice is referred to as state reduction.
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An implementation of the STD, using the suggested state reductions, is given below. It
consists of four states. Simple state box corresponds to state 4.1 in figure 7.4. The assertion
in this state ensures that the user has permission to do a removal operation. Function
message displays a note or waming at the bottom of the dialogue box. Interaction point pass
corresponds to state 4.2 and its associated simple states. Interaction point read corresponds

to state 4.5 and its associated simple states. The last state, out, is a simple state and

corresponds to state 4.10.

DIALOGUE remove reader (VAR rmv_list: Id-list, VAR rmv_ok: Bool);

VAR width: Nat := 30;
passwd: Str;
attempts: Nat0 := 0;
id: Id;

BEGIN

state box: { assert(rmv_ok);
w_open(3,width, "M Remove Reader ~N");
message (3,NOTE,"") ;
} => pass;

iap pass: { w _move(l,1);
w_get (" Password: ",passwd,8,noecho);
message (3,NOTE, "") :
}:
passwd = DEL_PASS => read;
attempts >= ATTEMPT LIM,
{ message (3,WARN, "Imposter!™);

rmv_ok := FALSE;
wait(2);
} => out;
TRUE, { attempts := attemptst+l;
message (3, WARN, "Wrong!") ;
} => pass;

iap read: { w_move(2,1);
w_get (" Reader Id: ",id,5)
}s
db find(rds_db,id) /= NIL,

{ rmv_list := rmv_list || <id>;
message(3,NOTE,"Removed“);
} => out;
id = 0, message (3, NOTE, "Quited") => out;
TRUE, message(3,WARN,"Non—existant!") => read;
state out: w close(l) => return;

END remove reader

Figure 7.5 shows the effect of the dialogue on the screen. It shows the dialogue box after a

reader has been successfully removed.
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Remove Readex

Password:
Reader Id: 3460___

Removed -

FIGURE 7.5 The dialogue box for removing a reader.

7.2 POP-UP MENUS

Many modern interactive systems are menu driven [Smith82a, Webster83]. In such
systems the user interface usually consists of a network of menus where each menu serves a
particular task. The user sends his request to the system by moving to the relevant menu and
then selecting the required option.

Menus can be broadly classified into two categories. Each option of a menu in the first
category depicts an action. Each option of a menu in the second category corresponds to a
binary switch, i.e. it is either on or off. These two categories are supported by the menu and

switch statements in EPROL respectively. Each is briefly described below.

the menu statement

A menu specification consists of the following:

« A menu title.

+ A set of option names.

« A set of constraints where each option may be associated with at most one constraint.
A constraint will indicate, at any point in time, whether an option is active. Options
with no constraint are always active. Only active options may be selected by the user.
The set of active options is called the active set.

« A set of actions where each option must be associated with one action.

Menus are specified by the menu statement; this has the general form:

menu |
title
optionq, constraint pred; => act%onl;
option, => actiony;

option,, constraint pred, => actiony;

b
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where title and options are all strings; preds are boolean expressions and act ions are
arbitrary statements. Options 1 and k above are both constrained; the second option is
unconstrained.
As an example, consider a menu which allows the user to do insert, delete, and change
operations on the records of a database. The menu specification will look something like this:
menu {

"~RDB-operation”N"
"Insert record", constraint size < MAX SIZE => ins_rec();

"Change record", constraint size > 0 => chg rec():
"Delete record", constraint size > 0 => del—rec();
"Help" => menu { -

"~RHelp~N"

"Insert" => _.... ;

"Change" => ..... ;

"Delete" => ,.,... H
"Back to last menu" => exit;

}s

Where modules ins_rec, chg rec and del rec deal with insertion, change and deletion of
records and are not further specified here. The variable size depicts the number of records in
the database. MAX SIzE is an upper bound on the size of the database. The last option in the
menu is unconstrained. The action associated with this option is itself a menu statement
which provides help for operations in the original menu. The help texts are not specified
here. The word exit in the last option of the help menu specifies that when this option is
selected the help menu will be closed and control will be sent back to the original menu.
Figure 7.6a show what the menu will look like on the screen when actually activated.
As shown in the figure, active options (i.e. 1 and 4) are printed in bold. The option the user
is at (i.e. option 4) is always highlighted. The system ensures that the user will not be able to
select inactive options. The user can move from the current option to the previous/next option

by pressing the arrow keys, and selects an option by pressing the return key.
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DB-opexations

Insext recoxd
Change record
Delete record

FIGURE 7.6a Menu as seen on the screen.

DB-opexrations

Insext record

Change record

Delete record

§ Help!
Delete

Go back to last menu

FIGURE 7.6b The help option is itself a menu.

Figure 7.6b shows the effect of selecting the last option. A further menu is opened, giving

the options on which help is available.

the switch statement

A switch specification consists of the following:

« A switch title.

« A set of option names.

« A set of constraints as in a menu.

- A predicate per option. If this predicate evaluates to TRUE then the option will be set

otherwise it will be reset.
. An action per option. The action is executed whenever the corresponding option is

selected.

A switch statement takes the following general form:

switch |
title
optiony, constraint consy, tick pred; => act%onl;
option,, tick pred, => actiony;
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optionk, constraint cons,, tick predk => actionk;
};
where constraints have the same role as they had in menus and are optional. Each option
must be associated with a tick predicate. If this predicate evaluates to TRUE then the option
will be ticked (i.e. marked on the left hand side to show that it is set). Like a menu, each
switch option is associated with an action. When option; is selected action; will be

executed.

To give an example, suppose we wish to allow the user to control the following

parameters in a dialogue:

verbose whether the system response should be brief or verbose.

warnings  whether the system should give warnings when it finds it appropriate to do
SO.

prompt whether the dialogue prompt should be displayed or hidden.

cursor whether the cursor should appear as a block or an underscore.

tabs whether the system should convert tabs into spaces.

Each of these may be represented by a boolean variable, for example:

VAR verb, warn, prompt,
blockcursor, tabconv: Bool := FALSE;

The facility may then be provided by a switch statement:

switch {
"~RModes”"N",
"verbose", constraint level>l, tick verb => verb := ~verb;
"give warnings", tick verb | warn => warn := ~warn | verb;
"give prompt", tick verb | prompt => prompt:= ~prompt | verb;
"block cursor", tick blockcursor => blockcursor := ~blockcursor;
vconvert tabs", tick convtabs => convtabs := ~convtabs;

}s

The variable Level depicts the level of the dialogue. So, as specified in the first option, the
user may only choose the verbose mode when he or she is at some level other than the first.
The action for this option simply toggles the variable verb. The next two options are
dependent on the first option, in the sense that when the dialogue is in the verbose mode the

warning and prompt modes will be set anyway. This 1s ensured by including verb as a

disjunction in the tick predicates of the second and third options.
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Initially the switch frame will appear on the screen as shown in figure 7.7a. If the
user, for example, selects the first option the first three options will be ticked, as shown in
figure 7.7b. If the user again selects the first option the first three options will be reset taking

us back to figure 7.7a.

gllodes
give warnings
give prompt
block cursorx
convert tabs

FIGURE 7.7a A switch frame.

gllodes,
¢

¢+ give warnings
¢ give prompt
block cursox
convert tabs

FIGURE 7.7b Switch frame after the first option is selected.

7.3 ELECTRONIC FORMS

A useful concept in user interface design are electronic forms. These are commonly
used in office automation system and are exceptionally suitable for changeover from manual
to computer-based systems [Tsichritzis80, Yao84]. The most useful aspect of forms is that

they reflect the logical relationship between data items in a user interface [Tsichritzis82,

Gehani82b].

the form module

The EPROL notation for defining electronic forms is based on the notation proposed by

Gehani [Gehani83] who suggested that forms should be specified as abstract data types.

Forms are defined using the FORM module; the general structure of which is shown in figure

7.8.
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FORM form id;

field definitions

END form id

FIGURE 7.8 The general structure of a FORM module.

The form layout part defines the layout of the form as it will appear on the screen. A form is

always displayed in a window. The two backslash characters in the form layout depict the

top left hand corner and the bottom right hand corner of the window. In a form layout, each

field appears as a field identifier. This is just like a normal identifier, preceded by a $ symbol

(e.g. $name).

Each field that appears in the layout part must be defined in the field definitions part.

Each field is defined by specifying its type, maximum size, and optionally one or more

attributes. The attributes define the properties of the field. An attribute may be one of the

followings:

after

computed

constraint

initially

lock
noecho

optional

permanent

required

system

specifies that the field must be filled after certain other fields.

gives a computation rule (a statement) that the system will use to compute
the field automatically.

imposes a constraint that must be satisfied when the field is filled. If the
constraint fails user data will be rejected.

defines an initial value for the field. The field will maintain this value unless
the user changes it during interaction.

specifies one or more fields which will be locked after the field is filled.
specifies that the user data for the field must not be echoed on the screen

(e.g. a password).
specifies that the field is optional and may be filled if the user wishes to do

SO.

specifies that the field is permanent, i.e. once filled it may not be changed.
specifies that a value for the field is required and must be supplied by the
user. This is the default case.

specifies that the field will be automatically filled by the system.
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an example

To illustrate the use of the rFory module, consider the following form definition; it

defines a form called appliance order.

FORM appliance order;
\"BAppliance:“N

Name : $name Code: $code
Quantity: Squantity Price:£ Sprice
Total Price:£ Stotprice
"BCustomer”~N
Name : S$cname
Address: Sstreet
Stown
$county
Post Code: $postcode Delivery: S$delivery

Department: $dept Date: $date \
Sname: Str (12), required; /* required is the default */
Scode: Int (5), lock (S$name) :
$quantity: Int (5), constraint 0 < $quantity < 100;
Sprice: Real (6), after (S$Sname, $code);
$totprice: Real (8), after (Squantity, Sprice),

computed $Stotprice := $quantity*S$price;

Scname: Str (14);
Sstreet: Str (24);
Stown: Str (24);
Scounty: Str (24);

$postcode: Str (7), optional;
Sdelivery: Str (4), after (Scode),
computed menu {

"By Post" => S$delivery := "POST":
"By Ship" => Sdelivery := "SHIP";
"Special Delivery", constraint Scode<=1000,
=> $delivery := "SDEL";

"To Be Collected" => $delivery := "TBC";
};

Sdept: Str (12);

Sdate: Str (8), system (sdate):

END appliance order

Everything in the form layout, apart from the field identifiers, is treated literally. Escape
sequences are understood here too; for example, Appliance and Customer are both
specified to be printed in bold.

In the field definition part a field is typically defined to be of type Int, Real or St r.
The first field, for example, is defined to be of type St r having a maximum length of 12

characters. This field is also defined to be required. The second field has a lock attribute: it
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specifies that when it is filled the $name field will be locked. The third field specifies, by
means of a constraint attribute, that Squant ity must be an integer between 0 and 100.
The fifth field is computed automatically; here, an after attribute is used to ensure that all
variables used in the computation are already bound. The last field is filled automatically by
the system,; the identifier sdate here stands for short date (e.g. 12/02/86).

Figure 7.9a shows what the form will look like on the screen when activated. As
shown there, the position of the fields directly conforms to that specified by the form layout
part. Figure 7.9b shows the form when the user is actually filling the Delivery field. This

was defined to be a computed field where computation is performed by a menu.

Appliance Oxdexr Fox

Appliance
Nane : Code:
Quantity: Price:f
Total Price:.f
Customex
Nane :
Address:
Post Code: Delivery:
Department: Date:

FIGURE 7.9a Form as seen on the screen.

Appliance Oxder Fox
Appliance
Name : Freezer Code: 01233
Quantity: 2 Price:£ 452.00
Total Price:£ 904.00__
Customer
Name : J. Green__
Address: 5. Commercial Road
Seaford
East Sussex ISE
- 40R SEVRS M Delivery s
Post Code: SF2 4Q T
: Date
tment:
beparth Special Delivery

To Be Collected

FIGURE 7.9b Denuergfuﬂdisconuuuedandtnenudrwen.
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The user fills a form by using the arrow keys to move to previous/next field. No particular
order is imposed on the way a form may be filled other than that specified by the attributes.
Other function keys may be used to cancel a field/all fields, exit from the form, quit the form,
get help from EPROS, etc. The system performs many checks on user actions to ensure
correctness. One such check, for example, concerns the type of data. An example is shown
in figure 7.10a where the user attempts to assign a non-integer value to the Quant ity field.
In this case, the error frame will last for a short while on the screen and will disappears
automatically. The field will be then cleared to allow the user to re-enter the data. Other
checks ensure that the facts specified by field attributes remain integral. An example of this is

shown in figure 7.10b where the user attempts to fill the Price field before the Code field.

Appliance Oxdex Fox

Appliance
Nane : Freezer Code:
Quantity: q2_ Price: £
IThis field must be an integex|—
Customer 7
Name :
Address:
Post Code: Delivery:
Department: Date:

FIGURE ?7.10a Example of a type error.

Appliance Oxder Fox

Appliance

Nane : Freezer Code:

Quantity: Price:.£

Total
Code is required

Customer

Nane :

Address:

Post Code: Delivery:
Department: Date:

FIGURE 7.10b Example of an attribute violation.
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Once a form is filled the user may complete the task by pressing the Ex1T key. The
system will then check all the fields to ensure that everything is in order (for example that all

non-optional fields have been filled.) If not, it will give appropriate messages to guide the

user in completing the form.

7.4 DISCUSSION

The ability to separate a dialogue from the usual processing in a program is an
important one. For one thing, the dialogue part stands out, explicitly indicatin g where and
how it fits with the rest of the system. As a result, it simplifies difficult tasks such as
changing the user interface to a system and introducing multiple interfaces to the same
system. Also, it encourages the developer to think of the user interface as an entity separate
from the rest of the system.

The dialogue specification and development notation described in this chapter enables
us to achieve such a separation. As we saw, the modularisation concept is a direct extension
of the familiar notion of procedural abstraction and supports hierarchical development in a
similar way.

Our notation is strongly based on the STD concept and regards each separate dialogue
as consisting of individual states connected through transitions which are invoked by
predicates over user input and system states. Obviously, such a framework can also be
represented by the implementation notation, where each state transition is realised by a goto
statement. By restricting ourselves to a specific and tighter notation, however, we have
gained the advantage of imposing a discipline which directly reflects the STD concept. The
indication that a state is simple, complex, or an interaction point, for example, has on its
own, enhanced the readability of dialogue specifications and has increased the amount of
information that can be conveyed by a dialogue description.

We also showed how other self-contained abstractions can be exceptionally useful in
dialogue development, and how they can lead to the specification and direct execution of

certain interactions, rather than their time-consuming implementation. A question that arises

at this point is how and what other abstractions may be useful in dialogue design. This is a
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difficult question and can be properly answered only in the light of extensive experience. A
useful criterion that we have used in this respect, and which has proved effective, is that
concepts which are used repeatedly and which can be generalised should be abstracted. The
provision of menus and forms, for example, reflects the use of this criterion. However,
following this line of abstraction is not easy unless we have a higher order abstraction facility
which allows us to design such abstractions with considerable ease and without disturbing

the base language. This brings us to the concept of clusters and meta abstraction which is the

topic of the next chapter.



Chapter 8 CLUSTERS AND META ABSTRACTION

Everything should be made as simple as
possible, but no simpler.

- A Einstein

Two important techniques of abstraction, that is data abstraction and procedural
abstraction, have already been discussed. Data abstraction was extensively covered in our
discussion on abstract data types. Procedural abstraction was described in the context of
FUNCTION modules.

This chapter returns back to the topic of procedural abstraction to introduce a new and
novel abstraction technique called cluster. Clusters may be regarded as a generalisation of
current techniques for procedural abstraction and are particularly useful in situations where
procedures and functions are inadequate, and unable to capture the required level of

abstraction.

8.1 THE NEED FOR CLUSTERS

Clusters, in fact, have already been used in this thesis. The menu and switch
statements described in chapter 7 are two good examples; these are predefined clusters in
EPROL. To justify the need for clusters, we shall go back to the problem of specifying menus
and consider the difficulties that we may encounter when we attempt to realise menus using

FUNCT IONS.

As stated in chapter 7, a menu specification consists of the following:

« A menu title.
« A set of option names.
« A set of constraints, each associated with an option.

« A set of actions, one per option.

The first problem we encounter is that the number of data items is by nature variable. As a

result. the data has to be passed to a function using composite data structures. Lists seem to

be a good choice. Consider the following function:

FUNCTION menu(title: Str, options: Option—list): Choirce;

DOM Option :: .op_name: Str, .CODS: Bool;
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Choice = Nat;
BEGIN
/* draw the menu.
print the title.
print the options:

if an option is active print it in bold
otherwise print it in normal mode .
loop forever:

cases pressed-key ({

up-arrow: move to previous option.
down-arrow: move to next option.
return-key: return the option number.

*/

END menu

Every object in the domain Option consists of an option name and its constraint. The
function returns a unique id. in the domain Choice which identifies the selected option. A

sample call to this function is shown below:

casesmenu ("TEST", <mk-Option("optionl",predl),
mk-Option("option2", pred2),

mk-Option ("optionk", predk)>) {
1l: actionl;
2: action2;

k: actionk;
}s

Although this approach works it has two drawbacks:

+  The association of options and actions is controlled outside the menu function. Each
call requires an additional cases statement to manage this. As a result, each call is
longer and more complicated than it should be. Furthermore, this increases the
possibility of introducing some inconsistency between options and actions. For
example, suppose that during maintenance a new option is inserted in the middle of the
option list. This will require a consistent re-numbering of the cases branches and is
potentially error prone.

«  The function will not allow the user to select more than one option from a menu. For
example, the user cannot select option 2 then option 6 and so on. To do so, one will
have to call the function repeatedly. This is unreasonable since it will display the menu
everytime the function is called whereas one display would -bc sufficient. Note that
repeated calls cannot be avoided since the constraints are first evaluated and then

passed as booleans. Because the active set may change during execution, passing the
al :

constraints after each action execution 18 essential.
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Both these problems can be avoided by passing the constraints and actions
symbolically (i.e. in an unevaluated form), and managing them inside the menu module

1self. However, function parameters are not powerful enough to support this.

8.2 THE CLUSTER MODULE

The cluster module has been especially designed to avoid the kind of problems

mentioned in the previous section. The general structure of a cluster module is shown in

figure 8.1.

CLUSTER clus id {...cluster-scheme...};
DOM ...private domain definitions...
VAR ...private variable definitions...
local definitions
BEGIN
statements
END clus_id

FIGURE 8.1 The general structure of a CLUSTER module.

A cluster definition consists of three distinct parts. These are cluster scheme, local
definitions, and cluster body. A cluster scheme is a syntactic description embedded with
semantic descriptions such as type of objects, and effectively defines the syntactic domain of

a cluster. It is composed of syntax operators and objects with pre-defined syntax and

semantics.

The domain, variable and local definitions parts are identical to that of functions.
Cluster modules may be nested in exactly the same way as other modules such as functions

and dialogues. A cluster body is also very similar to that of a function; it consists of a

sequence of statements.

A cluster scheme is defined using a meta notation which allows the definition of
syntactic rules to describe the way in which objects may be grouped, ordered and related to

each other. This notation is described below.
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the meta notation

The meta notation is very similar to the Backus-Naur Form (BNF) notation [Naur63]
used for specifying the syntax of programming languages. The notation is based on a
number of meta characters.

The characters { and } are used to specify repetition. Objects appearing between { }
may be repeated a number of times. The characters [ and ] specify optional objects. Any
object (or group of objects) appearing between [] is considered to be optional. The
characters ( and ) are used for grouping and to override the precedence of other meta
characters. A vertical bar | will specify choice from a group of objects. Characters * and +
may be used in association with {} to specify zero or more, and one or more appearances
respectively. Finally, single quotes ' ' are used to specify literals. Literals are arbitrary
sequences of characters.

For example,

{object}*n
specifies that object may appear zero or more times and that the number of appearances will
be recorded in variable n. Similarly,

[object]n
specifies that object may or may not be present; n will be one if it is present and zero if not.
An example of using the choice character | is:

(objectl | object2 | object3)n
where one of object, object, orobject 3 must be present; n will be 1, 2 or 3 indicating
which one is present. Variable n, used in the above examples, is called an indicator; it
records a specific instance of a meta expression.

A cluster scheme is a meta expression and is composed of meta characters and four
predefined object classes. The object classes are constants, expressions, statements and
identifiers, represented by the keywords Const, Exprn, Statmand Ident respectively. The
exact syntax and semantics of these is that established by EPROL itself. A short informal

Aacrrintinn nf parh 10 muven halAuy
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Exprn

Const
Statm
Ident

a composition of variables, constants, operators, functions, etc. which when
evaluated produces a value. These usually do not cause any side-effects.

an Exprn which can be, and is, evaluated at compile time.

computation rules which achieve their ends through useful side-effects.

a unique sequence of alphanumeric characters. Examples are variable and
function names.

To avoid confusion, we should stress that literals and identifiers are totally different

things. Literals have very simple semantics - they map to themselves - whereas identifiers

represent objects with more elaborate meaning (e.g. a variable name). The meta notation is

summarised in figure 8.2.

{object}k - object must appear k times exactly.

{object}*n - object may appear zero or more times.

{object}+n - object may appear one or more times.

[objectln - object is optional.

(object) - object itself, useful for grouping.

(objectl | object2 | object3)n - Exactlyoneofobjectl,object2 orobject3
must be present.

‘charseq" - charseq is a literal and maps to itself. Other examples
are '*=>', ', 'and 'constraint"'.

Exprn - expression.

Const - constant.

Statm = Statement.

Ident - identifier.

where k is a positive integer and n is an indicator.

FIGURE 8.2 Summary of the meta notation.

Comparing the four object classes just described to parameters in a function, we observe a

few differences: unlike parameters, objects are generalised, syntax directed, and may be

symbolic (as opposed to a value). For this reason, we shall use the term object to refer to

them hereafter. Similarly the terms actual object and formal object will be used in the place of

actual and formal parameter.

cluster schemes

In a cluster scheme, an object is specified by a unique name followed by an object

class followed by a type specification (if required). For example,
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x: Exprn: Real

specifies x to be an object in the object class Exprn having the type Real. All objects require
a type specification except Statm for which the type is always void, e.g.:

sS: Statm
specifies s to be in the object class Statm. The object class Tdent can have the most general
type specification. For example,

id: Ident: Nat --> Nat-list

specifies id to be in the object class Ident and having a function type clause which maps

natural numbers to lists of natural numbers.

The meta notation provides a powerful means of grouping objects together with

considerable ease. The followings are two simple examples of its use:

'if' cond: Exprn:Bool 'then' stl: Statm
[‘else' st2: Statm]n ';°

'begin' {st: Statm ';'}+n ‘end’

The first example specifies an if-then-else statement where the else part is optional. The
second example specifies a Pascal-like begin...end compound statement. In the second
example, the object st occurs within { } and automatically becomes a list of statements. The

length of this list is indicated by the value of the indicator n. So, for example, in

begin
i = 1i+1;
k := k-1;
f(i,k):
end;

st becomes a list of three statements, i.e.:

st = <i := i+l, k := k-1, £(i, k)>
Individual statements may be accessed by indexing the list; i.e. st [1], st [2] and st [3].In
general, every level of nesting by { } makes the formal objects within the nesting a list of
whatever they are. So in

{...{...{... ex: Exprn:Int ...}*k ...}+m ...}+n

the formal object st is a list of lists of lists of integer expressions, i.e.:

ex: Int-list-list-list
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The same rule equally applies to indicators. So, for example, n, m and k are of types:

n: Int
m: Int-list
k: Int-list-list
Such types are automatically setup by the EPROL compiler. Note that [] does not produce

any nesting effects. For example, in

[...{... ex: Exprn:Int ...}+k ... es: Statm ...]*m
the types are:

m: Int

es: void

k: Int

ex: Int-1list

8.3 A CLUSTER DEFINITION

To illustrate the use of clusters we shall define a variant of the menu statement of
EPROL as a cluster. This definition is useful in the sense that it shows how various parts of a
cluster relate to each other. In particular, it shows how formal objects and indicators are

manipulated. The complete definition is given below:

$library "scc"
$library "str"

CLUSTER menu { 'title' title: Const:Str
{ 'option' optn: Const:Str
[',' 'constraint' cons: Exprn:Bool]m
'=>' action: Statm ';'
}+n
}i
VAR active: array[n] Bool;

margin: array[n] Nat0;
max_len: Nat0 := 0;
cur _opn: Nat0 := 1;

opn_len: Nat0;

FUNCTION update active set ();
VAR actv: Bool;

BEGIN
for i in (1l:n} do {
actv := m[(1]=0 | cons{i]:
i1f (active(i] /= actv) then {
active[i] := actv;

w move (i, margin[i]);
w_put ("%$s%s",if actv then ""B"
else ""N", optn(i]);
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}:
}i
END update_active_set

BEGIN
for i in {1l:n} do {
opn_len := st len (optn[i]);
if (opn_len > max len) then
max _len := opn_ len;

}:
w _open (n, max _len, title);
for i in {l:n} do {
margin[i] := (max len - st_len (optn(i])) / 2 + 1;
active([i] := m[i]=0 | cons[i];
w_move (i, margin(i]);
w _put ("%s%s", if active(i] then "~B"
else ""N", optn[il]);
}:
while TRUE do {
w_move (cur_opn, margin[cur opnl);
w_put ("%s%s", if active(cur_opn] then ""M"
else “""R", optn(cur_opn]);
w_move (cur_opn, 1);
cases keybd () {
'F1' => { w_move (cur_opn, margin[cur_opnl); /* next */
w put ("%s%s", if active[cur_opn] then ""B"
else ""N", optn[cur opn]);
cur opn := if cur _opn = n then 1
else cur_opn+l;
}:
'F2' => { w _move {(cur_opn, margin{cur_opnl);
w put ("%$s%s", if active[cur_opn] then "7"B"
else ""N", optn(cur opnl);
cur_opn := iIf cur opn = 1 then n /* previousx*/
else cur_opn-1;
}i
'F3' => if active([cur opn] then {
action([cur opnl; /* select */

update active_set ()
}

else bell ():
'F4' => done; /* exit */
'F5' => w text (5, 30, ""“RMenu-help”N", /* help */

\"BF1"N - go to next option
~BF2°N - go to previous option
~BF3~"N - select this option
~BF4~N - quit this menu
~BF5"N - this help\ ):

TRUE => bell ():
b
}:
on_exit do
w close (1);
END menu

The definition makes use of two standard libraries called scr, for screen management, and
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str, for string manipulation (see appendix C.) The cluster scheme is the part appearing
between curly brackets just after the clusterid.; title, option, ,, constraint, =>and ;

are all literals. The cluster scheme contains four named objects; these are t it le, optn, cons
and action. The first object, title, is a string constant. The second object is a list of string
constants since it occurs inside a repetition. The third object is a list of boolean expressions,
and the fourth object is a list of statements. The definition also contains two indicators; n is
an integer and records the number of options etc.; m is an integer list indicating which options
have constraints.

The local variable definition part defines two dynamic arrays called active and
margin of types boolean and positive integer respectively. Note how the indicator n is used
to specify the dimension of these arrays. Array act ive indicates which option is active at
any time. Array margin records a left margin for each option so that it may be printed in the
centre. The local function update active set updates the active set of the menu after each
action execution.

The first loop in the cluster body finds the maximum length of options and records it in
max_len. A window is then opened which is n lines long and max_len characters wide,
having the title t it 1e. The next loop prints the options in this window, centring each option
on a line and printing active options in bold.

The last loop executes user commands. Each time round the loop, the current option is
highlighted on the screen; it is printed in mixed mode if active and in reverse video if
inactive. A cases statement is used to decide which key is pressed by the user: F1 moves to
the next option, F2 moves to the previous option, F3 selects an option, F4 exits from the
loop, and F5 produces a help frame. Any other key is rejected by ringing the margin bell.
Also note that r1 and 2 produce a wrap around effect when the user is at the last or the first
option respectively.

Note that every reference to an Exprn or Statm object causes evaluation of that object
at run time. For example, cons [1] evaluates and returns the value of the i-th constraint.
Const objects, on the other hand, are evaluated at compile time. It follows, therefore, that

Const objects can be arbitrary expressions which do not refer to any free vanables. For
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example , t it le is a Const object and in an actual call it may be

st _conc ("Menu ", "2.5")

117

where st_ conc is a string concatenation function. This expression is evaluated at compile

time and is replaced by the constant "Menu 2.5".

An example of a call to the menu cluster is shown below. It has the same effect as the

one corresponding to figure 7.5 in chapter 7. The only difference is that this call contains two

more literals (i.e. tit le and opt ion) and that is because of the way we have defined our

cluster.

menu {
title
option
option
option
option

b

"~RDB-operation”~N"
"Insert record", constraint size < MAX SIZE => ins rec();
"Change record", constraint size > 0 => chg rec():
"Delete record", constraint size > 0 => del rec():
"Help" => menu {

title "~RHelp"N"

option "Insert" => .. ... ;

option "Change" => _.... ;

option "Delete" => .. .. ;

option "Back to last menu" => exit;

8.4 TERMINATION MECHANISMS

There are four ways in which a cluster may be terminated. These are:

+ By astatic return statement in the cluster body.

* By adynamic return statement in a cluster call.

By adynamic exit statement in a cluster call.

« By flow of control reaching the end of the cluster body.

Often before returning from a cluster we would like to ensure that certain tasks are

properly terminated. For example, in our menu cluster, we must ensure that the menu

window is closed before exiting from the cluster. One way to achieve this is to require each

return statement to be preceded by aw_close (1) statement. However, such a solution is

very unwise as it exposes a major design decision to the user and places considerable burden

upon him. An alternative approach, offered by the cluster mechanism, is to use an on_exit

do statement. This specifies a statement which is always executed before leaving the cluster.
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To illustrate the features of the termination mechanism consider the following example.

It is a partially defined function which contains a nested call to the menu cluster.

FUNCTION foo(): Int;
BEGIN

menu

title "“RDB-operation”N"

option "Help" => menu {
title "~RHelp”N"
option "Insert" =>
option "Change" =>
option "Delete" =>
option "Quit this menu" => exit;
option "Quit previous menu" => return(0);

i
END.foo
The exit statement in the above example terminates the inner call. This causes the on_exit
do statement for the inner menu call to be executed. Hence the window of this menu will be
closed and control will be transferred to the outer menu. This is an example of a dynamic
exit statement. The return statement above is static with respect to function foo, and
dynamic with respect to both menu calls. When executed it first causes the on_exit do
statement of the inner menu to be executed and then the on_exit do statement of the outer
menu call. Therefore, both menu windows will be closed successively. Then function foo

will be then terminated and the value O will be returned as the result of the function.

As a general rule, therefore, it can be stated that:

« A dynamic exit terminates the most recently invoked cluster (which is still active).
« A dynamic return terminates all clusters in a nested call (which are still active) until a
module body is reached.

8.5 APPLICATIONS OF CLUSTERS

The most important use of clusters is for modular software design. Two advantages
may be gained here. Firstly, the notational power of clusters simplifies the task of properly
decomposing a system into modules according to the important criteria laid down by Parnas

|Parnas72, Parnas79). This is because clusters have a far greater potential for information
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hiding than functions. For example, in the function version of menu we had to expose a
major design decision to the user and require him to manage the association of options and
actions outside the function. This decision was properly hidden by the cluster version which
managed the association inside the cluster.

Secondly, clusters facilitate the construction of truly reusable software modules. The
primary reason for this is that, unlike functions which are based on rigid interfaces, clusters
allow the programmer to program the interface. In this way one can cater for a variety of call
requirements without exposing any internal details of a module.

A further use of clusters is for pseudo language extension. Using this approach, a
number of constructs may be added to the base language to support and simplify the task of
implementing specific applications. An interesting area here is user interface design, where
clusters may be used for designing dialogue facilities as abstractions. One general abstraction

of this kind is what we call dialogue box and is described below.

dialogue boxes

In window-oriented user interfaces usually all dialogue takes place within windows.
Earlier on, we saw two styles of such windows (i.e. menus and forms.) A further style is
what might be called a dialogue box. A dialogue box has some similarity to a menu or a form
in the sense that it embodies a dialogue with a predefined protocol. Unlike menus and forms,
however, the protocol is controlled by the programmer and may vary considerably from one
dialogue box to another.

We illustrate the concept by an example. The following is a dialogue box definition

taken from a library system which will be described in chapter 9. The corresponding

dialogue box frame is shown in figure 8.3.

dial box {
"M Find Book “N"
field " Code: ", code: 6, empty 0 => commands;

"

field " Author: ", auth: 20, empty ;
field " Title: ", title: 25, empty ""i

command " FIND " => { books := find_books(code,auth,title);
count := 1;
cases len books {
0 => message (6,WARN, .. )’

1 => fm_view(hd books, "") ;
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TRUE => message (6,NOTE, ...);
};
}:

command " NEXT " => { if books = <> then
message (6, WARN, .. .)
else ({
fm _view(hd books, ...),
count := count+l;
books := t1 books;

message (6,NOTE, ...);
b
}:
command " BACK " => message(6,NOTE,"") => fields;
command " QUIT " => exit;
}i

Code:
Author:

Title: ware

FIGURE 8.3 A dialogue box for finding books.

The dialogue box defines a number of fields and commands. Each field consists of a field
name, a field variable, the length of the field, and a value which depicts an empty field. In the
fields part, the symbol => depicts a transfer of control to commands. Each command
consists of a command name and a corresponding action. In the commands part, the symbol
=> depicts the association of an action with a command, and also the transfer of control to
fields.

The effect of the above dialogue box is that it first allows the user to supply a book
code. If the user does so control will be transferred to the commands. The user can then
select a command and execute it. If no book code is given, the user will be asked for an
author name and a book title. If either of these, or both, is given then control will be
ransferred to the commands, otherwise the whole process will be repeated, i.e. the user will
be asked for a book code etc. When in the command section, the user can FIND books, look
at the NEXT book if more than one book is found, go BACK to the fields part, or QUIT the
dialogue box. The number of fields and commands is only limited by the physical size of the

screen.
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As illustrated in chapter 7, complex states allow the abstraction of an entire STI
Clusters allow the abstraction of STDs along other dimensions; a recurring pattern in STD
can be abstracted and supported by a cluster-defined notation. For example, the dialogue bo

above corresponds to a specific pattern in the STDs of a library system (see appendix C.2.)

8.6 DISCUSSION

A higher order abstraction technique based on user-defined syntax rules which, i
contrast to normal abstraction techniques, allows one to treat non-elementary components ¢
a language such as statements and expressions as objects, can be a highly useful tool i
software development. It allows one to manipulate the very things a language is compose
of, and to extend the base language in directions which cannot, in general, be predicted i
advance.

An additional level of abstraction of this kind has two advantages. First, it allows th
formulation and encapsulation of concepts which have been developed by others, but whic
cannot be conveniently captured by conventional means. Second, important abstractions ca:
be developed and integrated into the base language, thereby extending its capabilities toward
the needs of its users. One can also envisage the use of this form of abstraction for deriving
from the base language, languages which are geared towards specialised applications. Th
potentials of all this for prototyping is obviously tremendous.

Some of the meta abstraction techniques described in this chapter are also available i
certain programming languages. Clusters, for example, share with LISP the idea of direc
manipulation of expressions in an unevaluated form. The concept of a programmabl
syntax-driven module interface, however, is unique to clusters and in not supported by an

other language.



Chapter 9 CASE STUDIES

Good judgement comes from experience.
Experience comes from bad judgement.
-J Horning

In addition to numerous small published programs [Jones80, Bjorner79, Bjorner82]
EPROS has also been applied to three relatively large problems. These problems are o
increasing size and complexity and are described in the following sections. The first two ar
based on published VDM speciﬁcations and address functionality only. The last problem wa:
entirely specified and developed by the author and considers functionality as well as use

interface.

9.1 ABSTRACT MAPPINGS

This study was based on the VDM specification of Fielding [Fielding80] for binary anc
BY trees [Comer79]. These specifications have been formally verified, refined, and
implemented in Pascal by the original author. The study involved converting the
specifications to a suitable form for EPROS, compile them, and evaluate the resulting
prototypes. The conversion task was straightforward; only three lines in the entire
specification of the B* tree had to be changed. No changes were required for the
specification of the binary tree.

The results were quite interesting. The specification of the B* tree contained an error
which had been overlooked by Fielding, even in the formal proofs. This error was
discovered by the EPROL compiler. However, no other errors were found during the

evaluations. The study is summarised in figure 9.1.

specification size (lines) man days effort errors in the specification
binary tree 93 0.5 0
B+ tree 118 1 1

FIGURE 9.1 Abstract mappings case study summary.
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9.2 A VERSION CONTROL PROGRAM
This study was based on the VDM specification of Cottam [Cottam84] for a system
version control program {SVCP). An SVCP is a program which records the interdependency
relations of the documents for a software system and is used to keep track of different
versions of the system (especially its source code). Like the previous study, the conversion
of the specification to the EPROL notation was straightforward and no changes were required.
The study confirmed the correctness of the specification and no errors were detected

during the compilation and evaluation sessions. The study is summarised in figure 9.2.

specification size (lines) man days effort errors in the specification

SVCP 168 1.5 0

FIGURE 9.2 SUCP case study summary.

9.3 A LIBRARY SYSTEM

The last case study was based on developing a computerised system to automate the
daily functions of a conventional library. This study is useful for two reasons. Firstly, the
system to be discussed corresponds to a real world problem of considerable size. It puts into
practice the techniques, described in earlier chapters, in the context of a realistic project.
Secondly, it gives an idea of the effort involved in our development method. In particular, if

provides some rough productivity measures for evolutionary prototyping.

requirements

The requirements for the system were derived from the procedures for the Oper
University library. This is a manual library of moderate size. The procedures cover S1)
volumes of written text and are relatively complicated. After an initial study of th
procedures, a simplified set of requirements were derived.

The major simplifications of the requirements were:

. The system will only deal with books and no other forms of publication.

- A keyboard will be used as the data entry device instead of a light pen.
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+  The system will be single user to avoid concurrency problems.
»  Apart from the usual reports, the system will not generate any statistical data on the
activities of the library.

+ A year will be assumed to consist of 12 months each 30 days long.

The actual requirements will not be presented in full here. The following is an informal

overview of some of the more important requirements:

The library must provide functions for dealing with reader registration/deregistration
and purchasing, issuing, discharging, reserving, recalling and renewing books.

»  Each reader must register with the library. Each registered reader is allocated an id.
number.

» For each registered reader the system must record the following: reader name etc.,
joining date, expected leaving date and the books he or she has on loan.

» Each book is allocated a code number for the purpose of identification.

»  For each book the system must record the author, title, volume number etc.

+ A reader may borrow up to 40 books.

» The loan period for a book is 14 days. After this period the reader must renew the
book or return it to the library.

- If a reader does not return or renew a book after 14 days it will be recalled by the
library.

« If arecalled book is not returned after 30 days it will be recalled again.

« A book may be recalled up to 4 times.

« If a reader does not return a book after 200 days it will be assumed lost.

« A reader whose entire loan is assumed lost is deregistered immediately and may no
borrow again from the library.

« A reader is deregistered when he or she leaves, provided the loan has been returned tc
the library.

« A reader who has left, but has not returned his or her loan, will remain registered unti
he or she does so, or until the entire loan is assumed lost. In the mean time, the reade
will not be allowed to borrow any more books.

« A book already on loan to a reader may be reserved by any other reader provided th
reserving reader is within the loan limit.

«  There is no limit on the number of readers who may reserve the same book.

«  There is no limit on the number of books a reader may reserve.

- When a reserved book becomes available it will be offered to the first person who ha
reserved it. The reader is given 14 days to collect the book otherwise it will be offere

to the next reader in the reservation queue.
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+  The library records shall be updated on a daily basis.

*  The system should produce reports of new readers, new books, deregistered readers,
lost books, released books, additions to the stock etc.

The library system was developed in four cycles. Each cycle is briefly described below. For

a more detailed description of the system see [Hekmatpour87).

cycle 1

During the first cycle a formal specification of the functional requirements was
produced. The specification was then compiled and the resulting prototype was evaluated. A
few iterations then followed during which a number of errors and shortcomings in the
specification were detected and corrected. When the specification reached an acceptable level,
it was formally verified. However, no further errors were detected. The end product of this

cycle is the formal specification given in appendix D.1.

cycle 2

The user interface to the system was specified as a hierarchy of state transition
diagrams, the latest version of which is given in appendix D.2. The user interface was
realised in a crude form and subjected to evaluation. A few dialogue errors were detected and
subsequently corrected. The evaluations led to a number of improvements in the specification

of the dialogue.

cycle 3

The user interface was improved in a number of respects. The simple command line
based interface was gradually replaced by a menu driven interface. Also, the information held
about readers and books was extended and these were designed as electronic forms.
Following some evaluation of the generated prototypes, a number of dialogue boxes were

designed which made the user interface more convenient and suggestive.

cycle 4

The last cycle involved making the system more concrete. For example, the in-core
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databases were replaced by external files, and many abstractions were realised by more
concrete constructs, €.g. a number of sets were realised as liked lists. As refinement
progressed, the specification part shrank and the implementation part grew steadily.
Eventually, the specification part vanished completely and the system reached a fully concrete
form. A number of modifications were also made to the design of the system. For instance,
two dialogue boxes which contained a number of fields for data entry and a number of
associated commands were generalised and converted into a cluster. During the evaluations
of the system, only one error was detected which corresponded to the original specification.
All other errors were refinement errors. The final code of the system is given in appendix
D.3. It consists of 1 cluster module, 6 dialogue modules, 2 form modules, and 22 function

modules. The development cycles are summarised in figure 9.3.

size (lines) man days effort errors in this cycle | errors in previous cycles
cycle 1 262 5 6 0
cycle 2 405 4 4 0
cycle 3 758 4 5 0
cycle 4 1253 5 5 1

FIGURE 9.3 Summary of the development cycies.

Start Up

Registratio Date: 12/12/86

Surname: Richards Title: Dr__
Forenames: John William
Position: RA

Faculty: AT T— Extension: _
Home Addre Axt
Education
6eography
Telephone Leaving date: _ /_ /__

Sciences
Technology

ot e o i W i R - - P2 at 11:34:35 on 12 Dec 86

FIGURE 9.4 Registering a reader in the library system.
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The final system has a clean design, is well modularised and relatively efficient. The
user interface is hierarchical and quite friendly in operation. Figure 9.4 shows a snap shot of

a dialogue with the system when filling a reader registration form.

concluding remarks

The experience gained from the development of the library system may be summarised

as follows:

*  The development process was smooth and no major problems were experienced.

*  The results of evaluation sessions were often surprising, exposing errors which were
least expected. For example, despite the simplicity of the operation REM_READ (see
appendix D.1), two errors were detected in its specification.

+  Although the functional specification formulated in the first cycle was formally
verified, nevertheless, an error got through and was only detected in the last cycle.

+ Numerous syntactic and semantic errors were detected automatically by the EPROL
compiler.

» All other errors were discovered by evaluation of the prototypes. These errors often
surfaced very quickly after a few minutes of use.

» The use of prototypes was most helpful in deciding the appearance of the user
interface. Again, the results were surprising here; what appeared good on paper was
usually different on the screen. For example, the layout of one of the dialogue boxes
was changed a number of times before deciding on its final form.

« The use of prototyping in a disciplined way resulted in a clean and modular design.
Much of this cleanness is due to the first two cycles.

«  The decision to formulate functionality before specifying the user interface was helpful
and worked very well.

»  The overall development was very fast and productive. Use of prototypes allowed us
to compare the merits of many design decisions in a short period of time and adopt the

ones which were most satisfactory.

It should, however, be noted that this exercise was not carried out in as realistic a
condition as we would have desired. For example, there were no real customers involved
and the development team consisted of one programmer only. Feedback on the use of the
prototypes was obtained from colleagues who were willing to play the role of a customer.

These simplifications, of course, could not be avoided since the resources required for
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simulating a 'real world' experiment were not available and could not be provided.

Despite these limitations, the library system was a good exercise in evaluating the
potentials of EPROS for evolutionary prototyping and at least substantiates our claims of the
appropriateness of the presented methods for prototyping non-trivial systems. We suspect
that had we followed a conventional method, the development would have required much

more effort and would have resulted in a system of lower quality.



Chapter 10 CONCLUSIONS

We presented a broad and comprehensive view of rapid prototyping and its role in
software development. A system was described which is novel in a number of respects and
which provides direct support for and integrates a number of prototyping techniques. It was
demonstrated how the system could be beneficial in prototyping both the functional and the
dialogue aspects of a software system, and how these prototypes could evolve within the
system towards the final product. We also illustrated, through a case study, how the
evolutionary prototyping approach could be made practical and productive, using this
system.

In this chapter, we shall look at the work carried out by other researchers in this area
and compare it to the research described here. The chapter ends with a discussion of potential

research avenues for the future.

10.1 RELATED WORK

Rapid prototyping is a relatively new topic in software engineering. Because of its
newness, not much work has been done in this area and research has only been intensified in
the past two or three years. The existing literature on the subject, although small, shows a
wide range of ideas and attempts, of which, the following are related to the work presented

here.

executable specification systems

The idea of constructing a system which automatically generates a working prototype
from a formal specification is not new and has already been pursued by other researchers. A
number of such systems were described in chapter 3. Most of these systems, however, are
either too elementary [Darlington83, Belkhouche85, Goguen84, Farkas82, Lee85] or geared
towards specific applications [Urban85, Zave86, McGowan85]. A common fault of current
systems is that they lack the concept of data abstraction. The Ina Jo system of Kemmerer

[Kemmerer85] is a notable exception; this system, however, is currently based on symbolic
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execution and is unable to produce realistic prototypes.

There have been two previous attempts to produce executable specification systems for
subsets of VDM. Henderson [Henderson85] describes a system called ME-TOO which is
based on a functional language and has most of its features borrowed from VDM and
MIRANDA [Turner84]. LDM [Farkas82] is another system based on a subset of VDM, but
simpler in some respects. Again, both these systems have no facilities for specifying abstract
data types and instead rely on pure functions.

EPROS is an improvement over the above systems in three respects. First, its
functional specification notation is more comprehensive. In fact, it is the largest VDM-based
system to the author's knowledge. Second, it offers a number of additional useful features
which are non-existent in other systems {e.g. abstract data type protection and polymorphic
types.) Third, unlike similar systems which are interpreted, it provides a compiler as well as
an interpreter for executing specifications. The use of a compiler is rather crucial for large
specifications.

An interesting use of formal specifications has been reported by McMullin
[McMullin83]. He describes a compiler-based system called DAISTS [Gannon81] which
combines the algebraic specification of an abstract data type with its implementation. DAISTS
uses the former as a test driver for the latter. Exactly the same principle is supported by
EPROS.

As noted in chapter 5, the relationship between a specification and its refinement can
be documented by a retrieve function. This function can play the role of a test oracle
[Weyuker82] to ensure that the behaviour of an implementation matches that of its
specification. DAISTS requires the developer to define a function which checks the equality of
objects in an abstract data type, for no purpose other than producing the oracle. EPROS
avoids this overhead since the equality operator is fully generalised and works for any object.

A number of other researchers have constructed and/or used abstract programming
languages as executable specification notations. The languages used for this purpose include
PROLOG [Lee85, Kowalski8S, Tavendale85], SETL [Levin83], and MIRANDA [Turner84]. A

common drawback of these languages is their very restricted and primitive 1/O facilities.
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Amongst these notations, MIRANDA is probably the most powerful. It is a purely functional
language and has some advanced features such as polymorphic types and currying.
Disregarding the syntactical differences, however, nearly the entire notation of MIRANDA can
be viewed as a subset of the functional specification notation of EPROL.

Semi-formal notations have also been used for the automatic generation of prototypes.
These include data flow diagrams [Olson85, Docker86], Petri nets [Bruno85], and
requirement statement languages {Bell77]. Unfortunately, because of their choice of notation,
these systems lack the facilities expected of a general purpose prototyping tool and are more
useful for simulating very specific aspects of an application (e.g. flow of data in a control

system) than prototyping.

application generators

Application generators are systems with a non-procedural front-end which enable
users to generate an application after a short sequence of interaction with the system
[Horowitz84, Read81, Lucker86]. A number of such systems were described in chapter 3.
The most significant advantage of application generators is their high productivity. Also, the
user needs to know little about the system. This makes them exceptionally suitable for
inexperienced end-users who are interested in producing their own applications. Obviously,
these system can also be valuable prototyping tools.

The serious limitation of these systems, however, is their very restricted scope. Their
use is often confined to database manipulation and report generation in applications such as
stock control and accounting [Martin82, Ramamoorthy84]. A few application generators,
notably QBE/OBE [Zloff81], have gone a step further by integrating knowledge about general
data processing, word processing and graphics into the system.

The essential differences between an application generator and EPROS is their scope

and intended audience. In contrast to the former, the latter is for experienced software

engineers and has a much wider application scope.



10 Conclusions .

program transformation systems

The basic idea behind this approach is to initially produce an abstract and concise
program which is generally inefficient. This program is then refined using transformation
rules which are either supplied interactively by the user or suggested automatically by the
system [Knuth74, Loveman77, Darlington81b, Bastani84]. The purpose of the
transformations is to either refine or optimise the program.

Obviously, program transformations, when attainable, can be very valuable in
prototyping. However, research into program transformation has been slow and has had
very limited success so far. One reason for this is the difficulties associated with discovering
correct and useful transformations. Another reason is the question of detecting parts of a
program to which transformations should be applied [Wegbreit76]. The current body of
knowledge on program transformation is quite limited [Barstow85] and much work remains
to be done before it can be of serious utility in large software projects.

An interesting and more practical application of program transformation has been
implemented in the DRACO system [Neighbours84]. This system relies on creating large
transformation databases for specific application domains. Neighbours reports that he has
successfully constructed a number of large applications using DRACO [Neighbours81]. A
similar approach is described in [Rice81]. Although the use of domain specific
transformation is attractive, two research issues remain to be explored. One is related to the
potential difficulties of analysing a domain in great depth; another is related to the growth and
size of domain languages which have to be mastered in order to use the system
[Horowitz84].

EPROS does not utilise any program transformation techniques. We do suspect,
however, that should program transformation become sufficiently practical in the future, the

functional specification notation of EPROL will be a suitable candidate for applying these

techniques.

program refinement systems

Cheatham [Cheatham79b] describes a program development system (PDS) where the
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levels of refinement of a program are formally managed by the system. The system uses a
database to maintain multiple representations of a program module and is based on an
extensible language. In PDS, a module can be modified, either by manual editing or by
applying rewrite rules, to generate another version of the module. The commands used for
this can be saved in the database and later on, in the event of module modification, used to
replay the derivation sequence. PDS can obviously be useful as a support tool for writing
reusable modules and hence for prototyping. Unfortunately, however, the use of rewrite
rules requires the indepth understanding of a module structure, since these operate like Lisp
macros and must build program fragments piece by piece.

EPROS does not provide any automatic support for managing the levels of refinement
of a program, and requires the programmer to do this manually. The addition of a suitable
database, however, could provide such a facility. Currently, this is being planned as an

extension to the system.

formal program development environments

Latham [L.atham85] describes a formal program development environment based on
the OBJ algebraic specification language [Goguen84] and a subset of Pascal, called abstract
Pascal. Programs in this system are first specified in OBJ and then manually implemented in
abstract Pascal. The system also provides support for the partial proof of correctness of
programs with respect to their specifications.

Many systems of this kind have been developed in the past; see for example
[Deutsch69, German75, Tamir80, Shaw81]. Typically these systems consist of a verification
condition generator which automatically generates assertions about programs using some
heuristics, and an interactive theorem prover which assists the user in proving the correctness
(or otherwise) of the generated assertions. Some systems also provide a compiler and a
run-time environment for the implementation language used in the system.

EPROS is similar to these system in its use of a formal specification notation only. It
differs from these systems in the way it utilises formal specifications in software

development. The former uses a formal specification as a basis for generating rapid
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prototypes. The latter use it as a basis for semi-mechanical program proofs. Although EPROS
takes program proofs also into account, it takes a purely manual approach to this. This is a
conscious decision and there are three reasons for it. First, mechanical theorem proving
technology has not reached a stage to guarantee the possibility of proving any theorem in first
order predicate calculus (especially non-trivial ones) and is not likely to do so. This, in turn,
puts some serious limitations to the utility of the approach for practical applications. Second,
program proofs at the code level are more time-consuming and less productive than at the
design level (see [Jones80] for an excellent discussion of this issue) and, indeed, many
reports on cost estimation of software errors strongly support this view [Boehm81]. Third,
one of the most useful side-effects of a formal proof is that the person attempting the proof
learns a great deal about the specification and the ways in which it may be simplified or

improved. With automatic approaches this advantage is practically lost.

user interface management systems

A user interface management system (UIMS) is a software tool which frees application
programs from low-level 1/O details [Green85, Ramamoorthy86]. Regardless of its actual
form, it provides an abstract notation for describing a user interface. In a way a UIMS is
similar to a database management system [Buxton83]. The latter manages the communication
between a program and its data, hiding away details about the internal organisation of data.
The former plays a similar role between a program and its I/O events.

A number of user interface management systems have been previously constructed
[Edmonds84, Jacob83, Hays85, Wasserman85, Bos83, Hartson84], mostly in the area of
computer graphics [Hanau80, Olsen 83, Olsen84, Buxton83, Kasik82, Hagen85, Myers86].
These systems invariably achieve abstraction by restricting their application domains
[McLean86, Hutchins86].

EPROS is similar to some of these system in its use of state transition diagrams. It has
two important features which are not possessed by most other systems. First, it supports the
view of dialogue refinement and encapsulation [Green85]. Second, it is application

domain-independent. This is in complete contrast to RAPID/USE [Wassermang86), for
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example, which uses a single level of state transition diagrams and is geared towards
database manipulation.

The UIMS component of EPROS is based on the screen management library (scr) and is
different from the above systems in the following way. Rather than providing a pre-defined
and fixed notation, EPROS relies on a set of library routines and /O primitives for dialogue
design. This set has been intentionally kept small to simplify its use. Higher level notations
are constructed by the programmer using clusters. In this way the programmer can bend the
UIMS in many different ways and come up with notations that match the application at hand

more naturally. No such facility exists in other systems.

executable dialogue abstractions

Certain dialogue concepts are so commonly used in interactive system that it pays to
have abstractions that support them directly. Examples are electronic forms [Tsichritzis79],
pop-up menus [Brown82] and dialogue boxes, and were extensively described in earlier
chapters.

Currently, there are office automation systems that support the user definition of some
of these concep\ts, for example forms, in a rudimentary way [Tsichritzis80, Fikes80,
Bass85]. Other researchers have come up with notations that are abstract but are either too
application specific [Rowe83] or not implemented [Gehani82b, Lafuente78].

Compared to these, the dialogue abstractions of EPROL have a number of advantages:
they are general purpose, fully executable, abstract, and user definable/extensible. Some of
these abstractions, however, have benefited from the existing unimplemented notations (e.g.

Gehani's notation for forms [Gehani82b].)

10.2 WHAT IS NEW ABOUT THIS RESEARCH
The EPROS environment is a contribution to research on software prototyping,
software development environments and language theory. This work is important 1n a

number of ways:

. It is an attempt to produce a software development environment for evolutionary
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prototyping where a working system is available during all the phases of development.
starting at the highest level of specification and finishing with concrete code. To the

author's knowledge there are no similar systems with such comprehensive capabilities

 Itis an attempt to produce a software development environment for developers who
wish to use the executable specification approach to prototyping and yet allow the
human-computer interface to be prototyped as well. Most current systems, for example
[Henderson86, Urban85, Kemmerer85, Goguen79], cater only for functional aspects
of prototyping. Others [Wasserman86] support both but are application dependent.
Since a significant part of many systems consists of the user interface, we feel that any
environment for prototyping, be it evolutionary or throw-it-away, should also support
user interface development.

 Itis an attempt to remove the notational barriers between successive stages of software
development and provide support for the entire life cycle. The result of this is
smoother communication between various experts of the development team and
avoidance of the problem of having to cope with widely differing notations for
different phases. In this, it is only similar to the work reported by Bauer [Bauer78,
Bauer81]. This work does involve a wide spectrum language. However, it is not fully

executable and also ignores the human-computer interface.

» Unlike other systems which take a simplistic view of dialogue design and restrict
themselves to simple string oriented dialogues [Wassermann85, Jacob83,
Edmonds84, Hanau80, Hartson84], the EPROS environment supports the prototyping
of modern interaction concepts such as windows, pop-up menus and forms, which are

becoming increasingly popular and contributing to more user-friendly interfaces.

« As a by-product of the need to produce an environment for evolutionary prototyping,
we have devised an executable wide spectrum language which is capable of improving
the efficiency of the formal development process. For example, the normal process of
formal software development using VDM consists of a series of steps which are
rigorously verified during which errors are discovered and removed. Past experience
[Cottam84] suggests that even the simplest errors can involve large amounts of pape:
rework and can be excessively time consuming. We have found that the automatic
syntactic and semantic checkings built into our processors expose these errors very

quickly without costly mathematical verification.

»  As a result of our attempt to simplify the task of prototyping software systems, w

have devised a new meta abstraction technique which facilitates the encapsulation o
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non-trivial concepts. This technique is a departure from the usual methods of
procedural abstraction and considerably simplifies the task of developing reusable
software modules. Its utility, however, is not restricted to prototyping; it can also be
used profitably in software design.

10.3 FUTURE RESEARCH DIRECTIONS

Naturally, this thesis does not claim to have found all the answers. Indeed, the nature
of some of the unresolved issues implies that many more years of research is needed before
comprehensive conclusions can be drawn, and before we can claim to have the ideal means
for prototyping. There are a number of areas where further research could prove beneficial;
these are discussed below.

One potential research area, which we may consider as a direct extension of this work,
would involve the construction of a prototyping environment which progressively produces
more efficient prototypes. We achieved this goal, to some extent, by gradually moving along
a notation spectrum, from the abstract to the detailed. Better results can be obtained by also
improving our translation techniques. This may involve the direct translation of our notations
into machine code (as opposed to Lisp in our system) and the use of sophisticated
optimisation techniques. Although there is currently a wealth of knowledge available on
advanced compilation techniques, the problem of applying these to prototyping
environments, such as ours, still remains outstanding. An obvious payoff of such research
would be more efficient environments for evolutionary prototyping where finished products
can compete in terms of efficiency with those produced using conventional methods.

A second area of research would concentrate on inventing improved notations and
techniques for prototyping. Of particular interest would be a unified notation and framework
for function and user interface prototyping. Although we made some progress towards this
in this thesis, there still remains a wealth of questions that need to be explored. For example.
can methods be invented where functionality and dialogue can be derived from one another?
Can systems be built which extract information from previous developments to guide future
developments? Can Al techniques be of any benefit in these respects?

There are also a number of existing notations which could form a suitable basis for
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prototyping new concepts. One such concept, which we did not consider in this thesis, is
concurrency. Recent developments in computer science have lead to some powerful notations
for expressing concurrency [Milner80, Manna81, Inmos84, Hoare85, Zave86]. Some work
has also been carried out on the application of these notations to prototyping certain aspects
of software systems (for example, interaction [Alexander86].) More research is needed in
order to fully exploit the power of these notations and, particularly, to investigate how these
notations may be integrated with others, such as those described in this thesis.

A third area of research would focus on devising more effective and accessible
front-ends to prototyping environments. There are a number of existing technologies which
could contribute towards this. For example, syntax directed editors [Teitelbaum81] could
speed up development and reduce errors, and bit map display-based workstations [Smith82a,
Webster83] could provide a suitable basis for the direct use of graphical notations [Reader85,
Reiss86] for prototyping.

The last area of research would concentrate on applying the outcome of the research
into prototyping to a realistic number of real-life projects. Such research will be highly
empirical with the aim of generating valuable feedback which would be used in the
development of a coherent prototyping methodology. This research could have a number of
useful outcomes. First, it may provide data on the impact of the project size and nature of
application on the effectiveness of the prototyping approach. Second, it may increase our
understanding about how a prototype system should be designed. Third, the results could
provide sensible answers to some of the management problems that the prototyping approach
generates [Canning81, Keus82].

In parallel to these, effort should be put into recording and preparing the findings of
research on prototyping for use by software practitioners. Most software developers hesitate
to use prototyping because they know little about it and there is little material available in a
suitable form to guide them. Continuous formulation of new techniques and tools for

prototyping into a set of prototyping procedures could remedy this problem to some extent.
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DIALOGUE Identifier —.@__

Dom-def

y

Yar-def

" Forward-def

" Module-def

p

» Dialogue-body

Identifier —

Dialogue-body

BEGIN
Identifier
Identifier

‘.@——» Expression

Statement => )} Dial - state| (5 )4—

Statement —»@—ﬁ

Statement j
H@—v Dial-state—@

7136

END
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Dial-state

A

Identifier

o Expression
Form-def
FORM Identifier " Text
» Field-def
END Identifier b——
Field—def

—— $identifier

Field-type

Identifier

| Field-attribute

Field-type @—-’

v

____,®__—~ Nat-const
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Field-attribute

G

" Identifier

initially

" Expression >

¥ Statement

¢

@T $identifier f)\
.

S
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Cluster

—(CLUSTER

ldentifier

——*@—‘ Cluster-scheme

L—v Cluster-body

" ldentifier

Cluster—-scheme

|dentifier

G

H’@——* Domain

A\ _/ ’| Literal

_ NG
( Cluster-scheme ‘ \)/

H@-‘C]uster-scheme —]—’@—4 Identifier
@ Cluster-scheme ] Identifier
L-'@* Cluster-scheme ——@—- Identifier |
Nat-const
Cluster-body
BEGIN r ¥ Statement —{ 5 ——{END
@ Statement

on-exit
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Statement

Statement 1

Statement
ldentifier —"@7
——(if )— Expression
» Mac-stat
»Cases-stat

Expression

Statement

ldentifier

h 4

Identifier

s

Statement

Expression

Expression

Exp

20
S

Statement

ression

O

Identifier

-

Cluster-csll

000

Expression

)

Expression

L —()—

Identifier

Expression

assert

goto

Expression

Identifier

return

Expression

]

i

done

-

Compound-stat

H Put-stat

" Get-stat

Menu-stat

A Switch-stat
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Mac—-stat

mac

Cases—stat

-—VG&SCS)—'

Expression

Cluster—call

—{ ldentifier

Literal

®

Expression

:

Statement

H Expression [

Statement

7L

Expression —0@——*

Statement

» Expression

Statement

Expression

 Literal

» Stetement

R

Character

T
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Compound-stat

Put-stat

Get—stat

Menu-stat

menu

Statement

©

(e
/"

h

Identifier —@4@ @—‘ Expression

Identifier

String —j

g

—O——'
o String _.@_

ldentifier

__Q.___

3
\

String "'’ constrair@-——v Expression = Statement
TRUE
AN
"

O—

___.<D..—.
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Switch-stat

String

String

@ »(constraint)—|

Expression

Expression

Expression*

Statement

—O—

Constant

G )e
O

Int-const

(@ }

H Int-const }
NN
R

v

H Real-const }
N4 A
C

¥ Char-const}

L e o)
H Str-const }—

" TRUE )

A
» FALSE }

(P
SN
WD~

Real-const

~On
o

» Nat-const

Int-const

Nat-const

Int-const
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Nat-const

4[ » Digit NN

Char—-const

O Character O____‘

Stir-const
NN ~
N {:>______*
Character
ldentifier
Alpha [ [Oj
—}Alpha ¥ R
Digit }e
$identifier
{(9) ldentifier ———
Alpha
20 -
W 2)
2/
{(a) ,
P~/
Ve '
N4
J’\ B
\—/
Digit NES .
s g
Character

Any visible character (ie. Alphs, Digit, Space, Tab and special characters).




Appendix B COMPILATION EXAMPLE

This appendix illustrates the use of the EPROL compiler by listing the compilation of a

§in;ple stack specification which contains some deliberate errors. User input is printed in
italics.

>> ec -t stack /* compile file stack.e & produce compiler listing */
stack.e -ec-> stack.l, stack.t

5 post (st,st') == st' := <>;
*EPROL 1

1l: ERROR 097, pre/post condition must be boolean.

9 post (st,e,st') = st' = <i> || st;
*EPROL 1 2
1: ERROR 100, '==' expected.
2: ERROR 115, identifier not bound.

-- 3 errors.
-- no warnings.

>> lcat stack.t /* list the compiler listing file stack.t */
0 ec -t stack

1 ADT Stack
2 DOM Stack = Int-list;
3 OPS
4 INIT: --> ;
5 post (st,st') == st' := <>;
*EPROL 1
1: ERROR 097, pre/post condition must be boolean.
6 END INIT
9
8 PUSH: Int --> ;
9 post (st,e,st') = st' = <i> || st;
*EPROL 1 2
1: ERROR 100, '==' expected.
2: ERROR 115, identifier not bound.
10 END PUSH
11
12 POP: --> ;
13 pre(st) == st /= <>;
14 post(st,st') == st' = tl st;
15 END POP

16 END Stack
-~ 3 errors.

-- no warnings.
>>
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Five standard libraries of EPROL are described. The use of each library must be
explicitly stated using a library directive (e.g. $1ibrary "scr".

C.1 math

exp: Real --> Real;

exp (x)
Returns the number e raised to the power of x.

log: Real --> Real;
log(x)
Returns the (base €) logarithm of x.

fix: Real --> Int;
fix(x)
Returns the integral part of x.

float: Int --> Real;
float (i)
Converts i to a real number.

abs: Int | Real --> Int | Real;
abs (n)
Returns the absolute value of n.

sqrt: Int | Real --> Real;
sqrt (n)
Returns the square root of n.

sin: Real --> Real;
sin (x)
Returns the sine of angle x.

cos: Real —--> Real;
cos (x)
Returns the cosine of angle x.

evenp: Int --> Bool;
evenp (1)
Returns TRUE if i is an even number and FALSE otherwise.

oddp: Int --> Bool;
oddp (1)
Returns TrRUE if i is an odd number and FALSE otherwise.

C.2 str
st_new: Nat0 --> Str;
st_new (1)

Returns a new string which initially contains i blanks.

st_len: Str --> Nat0;
st_len(s)
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Returns the length (i.e. the number of characters) of s.

st_app: Str, Str --> Str;
st_app(sl,s2)
Returns a new string which is the result of appending s2 to s1.

st_left: Natl, Str --> Str;
st _left (i, s)
Returns a new string which consists of the i leftmost characters of s.

st_right: Nat0, Str --> Str;
st_right (i, s)
Returns a new string which consists of the i rightmost characters of s.

st mid: Nat0, Nat0O, Str --> Str;
St_m.id(ll jl S)
Returns a new string which consists of the i-th through to the j-th character of s.

st mk: Char-list --> Str;
st mk(cl)
Returns a new string which consists of the characters in list c1.

st unmk: Str --> Char-1list;
st_pnmk(s)
Returns a list of all characters in s.

CJ3 io
f open (f: Str, m: Str): File;
Opens and returns a file with name £ and mode m. m may be one of "r" (for reading),

"w" (for writing), "r+w" (for reading & writing), or "a" (for appending).

f close (f: File);
Closes file £.

f getc (f: File): Char;
Reads and returns the next character of file f.

f getl (f: File): Str;
Reads and returns the next line of file f.

f zap (file: File); '
Reads and ignores to the end of the current line of file £.

f copy (fl: Str, f2: Str);
Copies the contents of file £1 to file £2.

unix(com: Str): Int; .
Executes com as a UNIX command and returns the status as an integer.

inp - standard input.
outp - standard output.
eor - end of file marker.
C.4 scr

init _scr ()
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Initialises and clears the vdu screen and forces the terminal into special modes for screen
10. The cursor is moved to the top left hand corner of the screen. This function must be
called before any other function in the scr library.

tini scr ()
Performs the reverse of init_scr by restoring the original modes of the terminal.

clear ():
Clears the vdu screen.

move (lin: Nat, col: Nat);

Moves the cursor to.the coordinates (1in, col). If this lies outside the screen then it will
be automatically adjusted to the nearest position inside the screen.

w_open (lins: Nat, cols: Nat, titl: Str);
Opens a window with its origin positioned at the current position of the cursor. The
window will be 1ins lines long and cols columns wide. The title tit 1 will be
displayed on top of the window. If the window, or part of it, lies outside the screen then
its position will be automatically adjusted to the nearest suitable position. A window
larger than the entire screen will be reduced to the size of the screen.

w_close (n: Nat0);
Closes the n most recently opened windows in the reverse order of openning. The cursor
will be moved back to its original position, i.e. where it was before the window was
opened.

w_move (lin: Nat, col: Nat);
Moves the cursor to the local coordinates (1in, col) inside the current window. If the
position lies outside the window then it will be automatically adjusted to the nearest
position inside the window.

q_clear Q)
Clears the contents of the current window. The cursor will be moved to the top left hand
corner of the window.

w scroll (n: Int);

"~ This function first awiats the press of a key (any key will do). It will then scroll the
current window by n lines. A negative n specifies the number of lines of the old text to
be kept after a scroll. If n is zero then the window will be scrolled h-1 lines where h is
the height of the window.

w text (lins: Nat, cols: Nat, titl: Str, tex: File | Str-1list);

"~ This function first opens a window of the specified size and title (see w_open), and then
displays t ex in the window. tex may be a text file or a string list. The window may be
scrolled as many times as necessary to accommodate the whole text. Once the entire text
is displayed the window will be closed upon pressing any key.

w spec (spec: Char): Int; ] ' ‘
~ 'This function may be used to obtain the specification of current window according to the
following values for spec:
'L': Length of window.
'C': Hightof window.
'1': Origin line of window.
'c': Origin column of window.

bell ()
Rings the margin bell.

keybd ()
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Returns the next key stroke.

wait (n: Nat0);
Waits for n seconds.

time (t: Char): Int;
Returns the current time according to the following values for t :

'Y': Year
'M': Month
'D': Day
‘h*': Hour
'm': Minute
's': Second

fm new (f: Form *, titl: Str);

~ Displays the form £ in a window having the title t it 1. The user is then invited to fill the
form interactively.

fm view (f: Form *, titl: Str);
Displays the form £ in a window having the title t it 1. The specification of the window
1s deduced from the form itself.

fm drain (f: Form *);
Drains the image of the form f.

fm put (file: File, f: Form *);
Writes the image of the form £ to file.

fm get (file: File, f: Form *);
Reads the image of the form f from file.

C.5 dbase

db_init (db: *-dbase) ;
Initialises the databse db.

db size (db: *-dbase): Nat0;
Returns the size (i.e. the number of records) of db.

db_insert (db: *-dbase, rec: *): Bool;
Inserts the record rec in database db provided it is not already there. A successful
insertion will return TRUE; a failure will return FALSE.

db delete (db: *-dbase, k: **): Bool;
Deletes the record whose key matches k from db provided it is already in the database. If
successful it will return TRUE, otherwise it will return FALSE.

db find (db: *-dbase, k: **): * | NIL;
Finds and returns the record in db whose key matches k. If no record with such key
exists then N1L will be returned.

db list (db: *-dbase): *-1list;
Returns a list of records in db.
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D.1 FUNCTIONAL SPECIFICATION

DOM Id
Code =
Name =
Date
Days =
Author
Title
Volume
Recall

ADT Lib
DOM Lib

Reader

Book

Loan

Reserve

Top

Report

TYPE

del id: Reserve-list,

AUX

Nato0;
Nato;

Str;

= Nat0;

Nat;
Str;
Str;

Nato0;
Nato;

14

14

’

14

14

.rds: Id -> Reader,
.stk: Code -> Book,
.loan: Code -> Loan,
.top: Top;

.name: Name,
.join: Date,
.leav: Date,
.loan: Code-set;

.auth: Author,
.titl: Title,
.vol: Volume;

.date: Date,

.rd: [Id],

.res: Reserve-1list,
.rec: Recall;

.date: Date,
.rd: Id,
.till: [Date]:

.code: Code,
.id: Id,
.date: Date;

.lvs: Id-set,
.dis: Id-set,
.rcs: Code-set,
.rss: Code-set,
.1st: Code-set,

Inv-Lib((rds, stk, loan, top)) ==
dom loan .S. dom stk &
(.A id £ dom rds:
let rd = rds(id) 1In
(let 1n = rd.loan Iin
(.A cd £ 1n: cd £ dom loan & loan{cd).rd = id) &
(let el = {cd: cd £ 1ln & top.date - loan(cd).date > 200}
(rd.leav > top.date |
(In /= (} & (.A cd £ 1ln:

card 1ln <= 40 &

/* registered readers */
/* library stock */
/* current loans */
/* top indicators */

/* reader's name */
/* joining date */
/* leaving date */
/* books borrowed */

/* author's name */
/* book title */
/* book volume no. */

/* date of loan/renew/discharge */

/* reader */

/* reservation list */

/* no.

of recalls */

/* date of reservation */

/* reader */

/* reserved until */

/* last book code */
/* last reader id., */
/* current date */

/* leavers - with no loan */
/* dishonoured readers */
/* recalled books */

/* reserved books

/* lost books */
.rsf: Code -> Reserve-1list;
/* reserve failures due to loss */

(card 1n

Id --> Reserve-list;

loan(cd) .rec > 0)))

0

I

card 1ln > card el))))

- now available */

in

&
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(.A cd £ dom loan:
let (-,rd,rs,rc) = loan(cd) in
(rd /= NIL | rs /= <> | rc > 0)

(rd = NIL ¢ rc = 0 & rs /= <> ==>
((hd rs).till /= NIL & (hd rs).till > top.date))
rc <= 4§
(rd = NIL | (.E! rd £ rng rds: cd £ rd.loan) &
cd £ rds(rd).loan)
(let rss = elems rs in
(.Arz f rss: rz.rd /= rd &
(rz.till = NIL | top.date > rz.till))));
del_id(rs, id) == mac {
rs = <> = <>,
(hd rs).rd = id => tl rs,
TRUE => <hd rs> || del_id(tl rs,id),
}:
OPS
/* initialise the library */
INIT: --> ;
post(-,1lib') == 1lib' = mk-Lib((],[), (], mk-Top(0,0,0));
END INIT
/* register a new reader */
NEW_READ: Name, Days --> Id;
post ((rds, stk, loan, top), name,days, 1lib',id) == lib' =
mk-Lib (rds+
(top.id+1 -> mk-Reader (name, top.date, top.date+days, {})],
stk, loan,
mk-Top{top.code, top.id+1,top.date)) &
id = top.id+1;
END NEW_READ
/* de-register a reader */
REM_READ: Id --> Code-set;
exep((rds, -, loan,-),1id) ==
~(id £ dom rds) => "No such reader"™,
rds (id) .loan /= {} => "Has still books on loan";
post ((rds, stk, loan, top), id, lib',cs) ==
(let In = [cd -> 1l: cd £ dom loan &
(let (dt,rd,rs,rc) = loan(cd) in
1 = mk-Loan(dt,rd,del_id(rs,id),rc))] in
¢cs = {cd: cd £ dom 1ln & (let (-,rd,rs,rc) = ln(cd) in
rd = NIL & rs = <> & rc = 0)} &

1ib' = mk-Lib(rds /- {id},stk,ln /- cs,top));
END REM READ

/* add a new book to the library */
NEW BOOK: Author, Title, Volume --> Code;
post ((rds, stk, loan, top),auth,titl,vol, lib', code) ==
1ib*' = mk-Lib(rds,
stk + [top.code+l -> mk-Item(auth,titl,vol)],
loan,
mk-Top{(top.code+1, top.id, top.date)) &
code = top.code+l;
END NEW BOOK

/* remove a book from the library */
REM BOOK: Code --> Reserve-list;
exep(lib, code) ==
~(code £ dom lib.stk) => "No such book":
post {(rds, stk, loan, top),code,lib', rsv) ==
rsv = loan(code) .res &
lib* = mk-Lib(rds, stk /- {code},loan /- {code},top):

2
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END REM_BOOK

/* issue a book for a reader */
ISSUE: Id, Code --> ;
exep((rds, stk, loan,top), id, code) ==
~(id £ dom rds) => "No such reader",
~(code £ dom stk) => "No such book",
code £ dom loan &
(let 1n = loan(code) in
In.rd /= NIL | ln.rec /= 0 |
(ln.res /= <> & (hd ln.res).rd /= id))
=> "Already on loan",
rds(id).leav < top.date => "Reader's Reg. expired",
card {cd: cd £ rds(id).loan & loan{cd).rd = id} >= 40
=> "Borrow limit reached";

post ((rds, stk, loan,top),id, code,lib') == lib' =
mk-Lib(rds ++ [id -> let (nm, jn,lv,1ln) = rds(id) in
mk~Reader (nm, jn,1lv,1n .U. {code})],
stk,
loan ++ [code -> mk-Loan(top.date, id,
1f code £ dom loan then
tl loan(code) .res

else <>,
0)1],
top):
END ISSUE
/* discharge a book */
DISCHARGE: Code --> {Id]:;
exep(lib, code) ==
~(code £ dom lib.stk) => "No such book",
~{code £ dom lib.loan) => "Is not on loan'";

post((rds, stk, loan, top),code,lib',id) ==
let (-,rd,rs,rc) = loan(code) in
let 1ln = mk-Loan(top.date,NIL,
if rs /= <> & rc = 0 then

let (dt,rd,-) = hd rs 1in
<mk-Reserve (dt, rd, top.date+l4)> || tl rs
else rs,
rc) 1in
lib* = mk-Lib(rds ++ [loan(code).rd ->
let {nm, jn,1lv, 1ln)=rds(loan(code).rd) 1in
mk~Reader (nm, jn,1v,1ln - {code})],
stk,loan ++ [code -> 1ln],top) &
id = (i{f rs /= <> & rc = 0 then (hd rs).rd
else NIL);
END DISCHARGE
/* renew a book */
RENEW: Code --> ;
exep{(-,stk, loan,top), code) ==
~(code £ dom stk) => "No such bock",
~(code £ dom loan) => "Is not on loan",
loan (code) .rec /= 0 => "Recalled - can't renew",
loan (code) .res /= <> => "Reserved - can't renew";
post ((rds, stk, loan, top),code,1lib’) == lib' =

mk-Lib(rds, stk,
loan ++ {[code -> mk-Loan (top.date, loan (code) .rd, <>, 0) ],
top) ;
END RENEW
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/* reserve an book */
RESERVE: Id, Code --> ;

exep((-,stk,loan,-), id,code) ==
~(code £ dom stk) => "No such book",
~(code £ dom loan) => "Is not on loan",

loan(code) .rd = id => "You have the book - can't reserve",
loan(code) .res /= <> &

(.E rs £ elems loan(code).res: rs.rd = id)

=> "Already reserved for you";

post ((rds, stk, loan,top),id, code,lib') ==
let (dt,rd,rs,rc) = loan(code) in

lib"

END RESERVE

= mk-Lib(rds, stk,
loan ++ [code ->
mk-Loan (dt, rd,
rs || <mk-Reserve (top.date, id, NIL)>,
rc) ),
top);

/* check a recalled book which has been returned */
CHECKED: Code =-=-> ;
exep({(-,-,loan,-),code) ==
~(code £ dom loan) => "Is not on loan",
loan(code) .rec = 0 => "Was not recalled";
post ({rds, stk, loan, top}),code, lib') ==
1ib' = mk-Lib(rds, stk,

END CHECKED

loan ++ (code -> let (dt,rd,rs,-) = loan(code) in
mk-Loan (dt,rd,rs,0)],
top);

/* daily operation - to be performed once a day */
DAILY: --> Report;
post((rds, stk, loan,top),lib',rep) ==

let ex
lon

1ls
let dis

let lvs
rcs

rss

lst
let rsft
rep
lib’

{id: id £ dom rds & rds{id).leav < top.date},
[ed => 1n: ¢cd £ dom loan &
In = (let (dt,rd,rs,rc) = loan(cd) 1in
if rd = NIL & rs /= <> & rc = 0 &
(hd rs).till /= NIL &
(hd rs).till < top.date then
mk-Loan (dt, rd, tl rs,rc)
else loan(cd)) ]},
{cd: cd £ dom loan & top.date - loan(cd).date > 200} in
{id: id £ dom rds & rds(id).loan /= {} &
rds (id) .loan .S. 1ls} in

{id: id £ ex & rds(id).loan = {(}},
{cd: cd £ dom lon &
(let (dt,rd,rs,rc) = lon{(cd) in
rd /= NIL & rc < 4 &
lon(cd) .rec*30+14 <= top.date - dt)} .U.
(union {rds(id).loan: id £ ex} -
{cd: cd £ dom lon & lon(cd).rec > 0}),
{cd: cd £ dom lon & (let (-, rd, rs,rc) = lon{(cd) in
rd = NIL & rs /= <> &
rc = 0 & (hd rs).till = NIL)},
{cd: cd £ 1ls & lon(cd).rd £ dis) in
[ed -> lon(cd) .res: cd £ lst & lon(cd) .res /= <>} In
mk-Report (lvs,dis, rcs, rss,lst,rsf) &
= mk-Lib(rds /- (lvs .0U. dis),
stk /- lst,
[ed -> 1n:
cd £ (dom lon - 1lst} &

189
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END DAILY
END Lib

(let (dt,rd,rs,rc) = lon{cd) in
ln = mk-Loan(dt,rd,
I1f cd £ rss then
<mk-Reserve ((hd rs) .date,
(hd rs).rd,
top.date+14)> || tl
else rs,
if cd £ rcs then rc+l else rc))l,
mk—-Top (top.code, top. id, top.date+l));

rs

IX
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D.2 USER INTERFACE SPECIFICATION

top level
display
1
system menu
2
choose
option
start /dcsk reader book reports shut\
counter desk
start up umenu reader menu book menu reports menu shut down
8
3 4 5 6 7 ¢
9 close
system menu
counter desk menu
display
4.1
desk menu
quit

i y |

) close
' discharge rencw books reserve books desk menu
issue books books
4.7
4.3 4.4 4.5 4.6
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reader menu

i

display
reader menu

5.1

remove

y

find quit

N

insert thing remove thing find readers close
reader menu
5.3 5.4 5.5 5.6
book menu :
display 6.1
book menu )
6.2
choose
option
/new remove find quit

) _ . close
insert thing remove thing find books book menu

wn
(]

5.4

6.3

6.4

192



Appendix D

reports menu

display
reports menu

7.1

do readers do books do loans do stock close
report report report report reports menu
7.3 7.4 7.5 7.6 7.7

193
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oo - - -

insert thing

report
error

5.3.3

create
dialogue box

- e e R . . W R R R . e e . e e e

add reader &

confirm

too many
attempts

display
waming

5.3.4

add book &

close
dialogue box

194
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remove thing create
dialogue box 5.4.1
e Sni :
\ 5.4.2 .
. \
: report wrong 00 many dxsp!ay \
: error password \PasSword /= 4o nrs warming 7
\
\
4.4 \
: 5.4.3 correct password S :
e e e e e e e e e e
e ‘:
\ \
\ \
\
\ report conﬁ_rm _\\
: error quit :
\ A
: 5.4.6 valid id/code 5.47
\
\ y :
\ \
\
1 5.4.8 reamove \
\ reader/book :
' \
\
| Y :
\ confirm :
: 5.4.9 removal :
N eeere rge=d \
Lemccmcmc—cecammm—mmm— 1 ___________
s.a.10]  close 1o Wy

dialogue box
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issue books create
dialogue box 4.3.1

e en mm em WA Gm Gm em R ML e e em s . o

report
error

WS W WS R EE W S W W W W T W e W me W W e

\ \
\ \
\ \
: report invalid book on give N
\ error code loan warning j
\

\ \
: 4.3.5 \ 4.3.6 :
issue book &

4.3.7 confirm
close Y, B,
4.3.8 dialogue box -
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renew books

discharge books

create
dialogue box

A - A o pw am o e e e A e - - - e

4.3.5
4.3.4 discharge close
e book dialogue box
create
dialogue box | 4-5-1
\
\
\
\
\
\
\
\
\
\
\
\
4.3.6 4.3.7
\
\
renew \ close
' | dialogue box
book \ g
\
\
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reserve books

VR em em em e W W R WA G wm MM SR Gm wm e R e mm wm

crror

]
]
\
: report
\
\
\
\
\

o o - - o o L o - - - -

4.6.8

4.6.9

create
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find readers

create

dialogue box | 3-5-1

empty

getname | 5.5.3

5.5.2

getid id_w

empty

name

quit

show next close
find readers reader dialogue box
5.5.5 5.5.6 5.5.7
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find books

Y

create

dialogue box | 6-3-1

both
empty

6.3.2
get code oodeﬂ
empty

get
author 6.3.3

6.3.4

show next close
find books book dialogue box
6.3.6 6.3.7 6.3.8
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D.3 FINAL PROTOTYPE

$library "scr" /*
$library "str" /*
$library "io" /*

$library "dbase™ /*

CONST MONTHS = <"Jan", "Feb"

*"Jul", "Aug"
DEL_PASS = “r2d2";
INS PASS = "x2y2";
ATTEMPT LIM = 3;
READER = 'R';
BOOK = 'B';
NOTE = 'N';
WARN = 'W';
DOM Id = Nat0;
Code = NatO0;
Author = Str;
Title = Str;
Date = Nat;
Day_no = Nat;
Recall = {0:4};
Name = Str;

Position = NatO0;

screen management library */
string library */

I0 library */

database library */

, “Mar", llAprll’ "May", "Jun",

, nsepu' “"Oct “1 "NOV", "Dec">,‘

What = {(READER, BOOK};

Message = ({NOTE,WARN};

DESIGN library_system(};

DOM Reader :: .id: Id,
.pos: Posi
.name: Name
.valid: Bool

tion,
.

’

.count: NatoO,

.loan: Code

Book :: .code: Code
.pos: Posi
.auth: Auth
.titl:  Titl

Loan :: .code: Code,
.rd: [1d].
.date: Date,
.rec: Recal
.res: Reser

Reserve :: .date: Date,
.rd: Id,

.till: [Date

TopDate :: .no: Nat, .Y:
ReadersDb = Reader—-dbas
BooksDb - Book-dbase(
LoansDb = Loan-dbase(

ReaderkForm form Reade

RooklForm = form BookR

-list;

.
tion,
or,

e,

ll
ve-1list;

1

Nat, .m: Nat, .d: Nat;

elkey = id);
key = code);
key = code);
rReq;

ec,
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VAR rds_db: ReadersDb;
bks_db: BooksDb;
Ins_db: LoansDb;

rds_list: Reader-1list :=

H <>;
bks_list: Book-list 1= <>;
new_rds: ReaderForm-list := <>;
rmv_rds: Id-list = <>;
new_bks: BookForm-list = <>;
rmv_bks: Bool := TRUE;
ins_ok: Bool := TRUE;
del ok: Bool := TRUE;
started: Bool := FALSE;
stock_rep ready: Bool := FALSE;
day no: Nat;
cur_date: TopDate;
FORM ReaderReg
\
Date: $date
Surname: $sname Title: $title
Forenames: $fnamel $fname2
Position: $pos
Faculty: $fac Extension: S$Sext
Home Address: $road
Stown
$pcode
Telephone No: $telno Leaving date: $d/$m/$y \
$date: Sstr(8), system(sdate);
$sname: Str(20);
Stitle: Str(4):;
S$fnamel: Str(l5):
$fname2: Str(l5), optional;
Spos: str(2), computed menu {
»"~M Position ~N"
"Dean"” =>
"Senior Lecturer” =>
"Lecturer"” =>
"yisitor" =>
“Research Fellow" =>
"Reasearch Assistant™ =>
“Research Student” =>
"Technician” =>
wgecretary"” =>
}:
$fac: str(l11), computed menu {
“~M Faculty ~N"
"Art" => ($fac
“Education" => {$fac
»"Geography" => ($fac
*Mathematics" => {S$fac
"Sciences" => {S$fac
"Technology" => ($fac
)
Sext: Nat (4), constraint 1000 <= $ext <= 9999

Sroad:

Sstr(30);

{Spos := "DN"; exit};
{$pos := "SL"; exit});
{$pos := "LC"; exit};
{$pos := "VS"; exit};
{Spos := "RF"; exit};
{$pos := "RA"; exit};
{Spos := "RS"; exit};
{$pos := "TC"; exit};
($pos := "SC"; exit}:

:= itself; exit};

1= itself; exit});

:= itself; exit}):

.= jtself; exit}:

1= itself; exit};

1= itself: exit});
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Stown: Str(30)
Spcode: Str(7),
$telno: Nat (1),

sd: Nat (2),
Sm: Nat (2),
Sy: Nat (2),

END ReaderReg

FORM BookRec

optional;

optional;

constraint 1 <= $d <= 31;
constraint 1 <= S$m <= 12;
constraint time('Y') <= $y <= 99;

\
Date: Sedate
Class: LS$cl.Scr Purchase Date: $d/$m/Sy
Author: $i. $auth Year: Syear

Title: $titl
Volume: S$vol
Publsh: $pub

Sedate: Str(8),

$cl: Nat0(3),
S$cr: Nat0(3);
$d: Nat (2),
Sm: Nat(2),
Sy: Nat (2),
$i: Str(2);

Sauth: Str(20);
Syear: Nat(4),
S$titl: Str(e0);
Svol: Nato0o(2),
Sedtn: Nat(2),

Spub: Str(30),
$sl: Nat(3) ;
$s2: Nat (5);
$s3: Nat (1) ;

END BookRec

Edition: $edtn
ISBN: 0-$s1-$s2

system(sdate) ;
constraint 0 <= $cl <= 799;

constraint 1 <= $d <= 31, initially time('D"):
constraint 1 <= $m <= 12, initially time('M');
initially time('Y');

after(Sy), constraint S$Syear <= 1900 + $y;

initially 0;

initially 1;
optional;

FUNCTION init readers():

VAR rdf: File;
rds_cnt: Nat0;
id: Id;
pos: Position := 0;
valid: Bool;
count: Nato;
loan: Code;
loans: Code-list := <>;
rd fm: ReaderForm;
BEGIN
rdf := f open("readers","r");

db _init(rds_db)

’

get (rdf, rds_cnt);

f zap(rdf);

for i iIn {l:rds_cnt} do ({

get (rdf, id,

valid, count);

for j in {1: count} do |{

get {rdf, loan);

loans
)
fm get(rdf,

db insert (rds_db, mk-Re

.= loans || <loan>;

ra fm);

-$s3\

ader (id, pos, rd fm.Ssname, valid,count,loans));
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pos := pos+l;
Y
f _close(rdf);
END init_readers

FUNCTION init books{():

VAR bkf: File;

bks cnt: NatO;

code: Code;

bk fm: BookForm;

pos: Position := 0;
BEGIN

bkf := f open("books™","r");
db_init(bks db);

get (bkf,bks_cnt);

f zap(bkf);

for i in {l:bks_cnt} do {
get (bkf, code) ;
fm_get (bkf,bk_fm);
db_insert (bks_db, mk-Book (code,pos,bk fm.$auth,bk fm.$titl));
pos := pos+l;

}:

I close(bkf);

END init_books

FUNCTION init loans (): Day no;
VAR 1nf: File;
Ins_cnt,rs_cnt: Nato0;
date, rs_date: Date;
rd,rs_rd: Id;
code: Code;
rec: Recall;
rs_till: [Date}:
res: Reserve-list := <>;

day no: Nat;
BEGIN
Inf := f open("loans","r");
db_init(lns_db);
get{(lnf, lns_cnt,day_no);
f zap(1lnf);

for i in {l:1ns_cnt} do {
get (1nf, code, rd, date, rec,rs_cnt);
for j in {l:rs_cnt} do {
get (1nf,rs date,rs_rd,rs_till):;
res := res || <mk-Reserve(rs_date,rs_rd,
If rs till = O then NIL else rs_till)>;
}e
db_insert(lns_db, mk-Loan(code, if rd=0 then NIL else rd,date,rec,res));
}i
f close(lnf);
return(day no+l);
END init_loans

FUNCTION is _element of (obj: Id | Code, objl: (Id | Code)-list): Bool;
BEGIN
while objl /= <> do ({
if obj = hd objl then
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return(TRUE) ;
objl tl objl;

}:
return(FALSE) ;
END is_element of

FUNCTION is_expired(y: Nat, m:
BEGIN
return(y*365+m*30+d < cur_date.no);

Nat, d: Nat): Bool;

END is_expired

FUNCTION update readers(rds_db: ReadersDb, new_rds:

VAR rdf, logf,tempf: File;
valid, stays: Bool := FALSE;
rds_cnt, lns_cnt: NatO;
rd fm: ReaderForm;
id Id := 0y
rds _cnt': Nat0O := 0;
code: Code;
rd: Reader;
loans: Code-1list;
loan: [Loan];
BEGIN
rdf := f open("readers","r");
logf := f open("readers.log","w");
tempf := f open("temp", "w");

get (rdf, rds_cnt):
f zap(rdf);
put (tempf, "%$05d*n", rds_cnt');

for i in {l:rds_cnt} do {
get (rdf, id,valid,lns_cnt);
for j in (l:1lns_cnt} do
get (rdf, code);
fm_get (rdf,rd_£fm);
rd db find(rds_db, id);
loans rd.loan;

if is_element_of(id,rmv_rds) then {
put (logf, "* Reader Removed: $5d %s Req.
id, rd_fm.$sname, rd_fm
while loans /= <> do {
loan db find(lns_db, hd loans);

put (logf, "Lost Book: %06d by $05d

tl loans;

loans

}

else if is_expired(rd_fm.Sy,rd_fm.Sm,rd_fm.

if (rd.count > 0) then {
rd.valid := FALSE;
while loans /= <> do {
loan := db find(lns_db, hd loans);
if loan.rec = 0 then |
loan.rec := 1;

.5d, rd_fm.$m,
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ReaderForm-list, rmv_rds: Id-list):

-~

on %02d-%02d-%02d
rd fm.$y);

nn’

~n",loan.code, id) ;

sd) then {

put (logf, "Recall Book: %06d from %$05d ~n",loan.code, id):

}:

loans

tl loans;
y:
stays

TRUE;
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}
else
put (logf, "Reader Removed: %05d %s Reg. on %02d-%02d4d-%02d ~n",
id, rd_fm.$sname, rd_fm.S$d, rd_fm.Sm, rd fm.Sy):
} _
else
stays := TRUE;
if stays then {
put (tempf, "%d %s %d", id,
if rd.valid then "TRUE" else "FALSE",rd.count);
loans := rd.loan;
for i in {l:rd.count} do {
put (tempf, "%d", hd loans);
loans := tl loans;
}:
fm_put (tempf, rd_fm);
rds_cnt' := rds_cnt'+l;
}i
}:
while new_rds /= <> do {
id := id + 1;
rd_fm := hd new_rds;
put (tempf, "%d %s %d",id, "TRUE",0);
fm_put (tempf, rd_fm);
put{logf, "New Reader: %5d %20s on %d-%d-%d"n",
id, rd_fm.$sname, rd_fm.$d, rd_fm.Sm, rd_fm.S5d);
rds_cnt' := rds_cnt'+l;
new_rds := tl new_rds;
}i
f close(rdf);
f close(tempf);
f close(logf);
tempf := f open("temp","r+w");
put (tempf, "%$05d"n", rds_cnt');
f close(tempf);
f;copy(“temp","readers");

END update_readers

FUNCTION update books (new_bks: BookForm-1list, rmv_bks: Code-list);
VAR bkf, logf,tempf: File;

bk _ fm: BookForm;
id: Id;
code : Code := 0;
pos Position;
stays: Bool := FALSE;
bks cnt: Int;
bks cnt': Int := 0;
bk : Book:
BEGIN
bkf := f open("books","r");
logf := f_open("books.log","w");
tempf := [ _open("temp",6 "w");
get (bkf,bks cnt);
f zap(bkf);

put(tempf,"%OSdAn",bks‘cnt');

for i In {l:bks cnt} do {
get (bkf, code) ;
fm get (bkf,bk tm);
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if is element_of (id, rmv_bks) then
put (logf, "Book Removed: %06d %s-%4d Purch. on %02d-%02d-%02d ~n",
code,bk_fm.Sauth,bk fm.$year,bk fm.$d,bk_fm.Sm,bk_fm.Sy)
else { N
put (tempf, "%d", code) ;
fm _put (tempf,bk fm);
bks_cnt' := bks_cnt'+l;
}:
)i
while new _bks /= <> do {
code := code + 1;
bk_fm:= hd new_bks;
put (tempf, "%d", code) ;
fm_put (tempf,bk_fm) ;
put (logf,"New Book: %06d %s/%4d on $02d-%02d-%02d “n",
code,bk_fm.$auth,bk_fm.Syear,bk_fm.Sd,bk_fm.Sm,bk_fm.Sd);
bks cnt' := bks_cnt'+l;
new_bks := tl new_bks;
)i
f close(bkf);
f close(tempf);
f close(logf):
tempf := f_open("temp","r+w");
put(tempf,"%OSd“n",bks_cnt');
f close(tempf);
f copy("temp", "books");
END update_books

FONCTION update loans (lns_db: LoansDb, rds_db: ReadersDb, VAR rmv_rds: Id-1ist);
VAR 1lnf,logf: File;

lns_list: Loan-list := db_list(lns_db);
rds_list: Reader-list := db list(rds_db);
lns_cnt: NatO := len lns_ list;
loan: Loan;
1n: Code-1list;
resl: Reserve-1list;
res: Reserve;
lost: Code-1list := <>;
reader: Reader;
stays: Bool := TRUE;
BEGIN
Inf := f;open("loans","w"):
logf := {_open("loans.log","w");

put{lnf, "%d $d~n", lns_cnt,day_no)’
while lns_list /= <> do |
loan := hd lns_list;
resl := loan.res;
if loan.rec = 0 then |
if loan.rd = NIL then {
if resl = <> then
stays = FALSE
else if resl(l].till /= NIL & resl(1).till < cur date.no then {
loan.res := tl resl;
if loan.res = <> then
stays := FALSE
else {

loan.res([1).till := cur_date.no + 14,

put(loqf,"Reserved: $06d for %OSd“n",loan.code,loan.ros[l].rd);
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)i
}
else
stays := FALSE;
}
else If loan.date+l4 > cur date.no then {
loan.rec := 1; -

put (logf, "Recall Book: %06d from %05d “n",loan.code, loan.rd);

}
else if loan.rd = NIL then
stays := FALSE

else if loan.rec<4 & loan.rec*30+14 <= cur_date.no - loan.date then {

loan.rec := loan.rec+l;

put (Logf, "Recall Book (%d): %06d from %$05d~n", loan.rec, loan.code, loan.rd);

}

else if loan.rec = 4 & loan.rec*30+14 > 200 then

lost := <loan.code> || lost;
if stays then {

208

put (lnf,"%d %d %d %d %d ",loan.code, loan.rd, loan.date, loan.rec, len resl);

while resl /= <> do {

res := hd resl;

put(lnf,"%d %d %d ", res.date, res.rd,
if res.till = NIL then 0 else res.till);

resl := tl resl;
}:
put (inf,""n");
}i
Ins_list := tl lns_list;
}i
while rds_list /= <> do {
reader := hd rds_list;
1n ;= reader.loan;
while 1ln /= <> do {
if ~is_element_of (hd ln,lost) then
done;
1n := tl 1n;
}:
if reader.loan /= <> & ln /= <> then
rmv_rds := rmv_rds || <reader.id>;
rds_list := tl rds_list;
)i
f close(lnf);
f close(logf);
END update_loans

FUNCTION is_reserved_for(id: Id, resl: Reserve-1list):

BEGIN
while resl /= <> do {
if id = (hd resl).rd then
return(TRUE);
resl := tl resl;
b
return(FALSE) ;

END is_reserved_for

FUNCTION message (line: Nat, kKind: Message, message:

BEGIN
if kind = WARN then

Bool;

str):
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bell(});

w_move(line,2);

w_put (""R%s", message);

for i in {
w_put{

1 : w spec('C') - st_len{message) - 2} do

[ ll) ;

w—put (n ANII) ;

END message

DIALOGUE remove_thing(what: What, VAR rmv_list: (Id | Code)-1ist, VAR del ok:

VAR width:
passwd:
attempts:
ic:

BEGIN
state box:

iap pass:

lap read:

state out:

Nat := 30;
Str;

Nat0 := 0;
Id | Code;

{ assert{del_ok):
w_open(3,width, if what = READER then
"~M Remove Reader “N"
else "~M Remove Book "N"};
message (3, NOTE, "") ;

} => pass;

{ wmove(l,1);
w_get (" Password: ", passwd, 8, noecho};
message (3, NOTE, "") ;
}i
passwd = DEL_PASS => read;
attempts >= ATTEMPT_LIM,
{ message(3,WARN,"Imposter!");

wait(2):

del ok := FALSE;
} => out;
TRUE, { attempts := attempts+l;

message (3, WARN, "Wrong!");
} => pass;

{ w.move(2,1):
if what = READER then
w_get (" Reader Id: ", ic.95)
else
w_get (" Book Code: ",ic,6});
}i
(if what = READER then db_find(rds_db,ic)
else db_find{bks_db,1c)) /= NIL,

{ rmv_list := rmv_list || <ic>;
message (3, NOTE, "Ok™) 7

} => out;

ic = 0, message(B,NOTE,"Quited") => out;

TRUE, message(3,WARN,"Non-existant!") => read:;
y_close(l) => return;

END remove_thing

DIALOGUE insert thing(what: What,

VAR width:
passwd:
attempts:

ok:

VAR new list: (ReaderForm | BookForm) -list,
VAR ins_ok: Bool):

Nat := 30;
Str;
Nat0 := 0;
Bool;

Bool) ;
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resp:

rd fm:

bk fm:
BEGIN

state box:

lap pass

lap read:

fap next:

state out:

END insert_thi

DIALOGUE issue
VAR width: Nat

id: Id;
code: Cod
BEGIN

state box:

Char;
ReaderForm;
BookForm;

{ assert(ins_ok);
w_open(3,width, if what = READER then
"*M New Reader ~N"
else "M New Book ~N");
message(3,NOTE, "") ;

} => pass;

: ( w_move(l,1);
w_get (" Password: ",passwd, 8, noecho) ;
message (3, NOTE, "") ;
}i
passwd = INS PASS => read;
attempts >= ATTEMPT LIM,
{ message (3, WARN, "Imposter!");

wait(2);

ins_ok := FALSE;
} => out;
TRUE, { attempts := attempts+l;

message (3, WARN, "Wrong!") ;
} => pass;

ok := If what = READER then
fm_new(rd_fm,"~M New Reader ~N")
else
fm new(bk_ fm,”"M New Book "N");
ok & what = READER,
{ new_list := new_list || <rd fm>;
message (3, NOTE, "Registered") ;

} => next;
ok & what = BOOK,
{ new_list := new _list || <bk_fm>;
message (3, NOTE, "Recorded”) ;
} => next;
TRUE, message(3,NOTE, "Ignored") => next;
{ w move(2,1);
w_put (" More [y/n]: ")
w_move(2,14);
resp := keybd():;
bi
resp = 'y' | resp = 'Y', w_put("yes") => read;
resp = 'n' | resp = 'N', w put("no ") => out;
TRUE, message (3, WARN, "Yes or No please’") => next;
w close(l) => return;

ng

books (rds_db: ReadersDb, bks_db: BooksDb, lns_db:

:= 30;
e;
{ w open(3,width, ""M Issue "N"});

messaqe (3, NOTE, "") ;
} => reader;

LoansDb) ;
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iap reader: { w_move(l,1);
w_get (" Reader Id: ",id,S5);
}i

id = 0 => out;
db_find(rds_db, id) = NIL,
message (3, WARN, "No such reader") => reader;
TRUE => book;

iap book: { w move(2,1);

w_get (" Book Code: ",code, 6):;
}:
code = 0 => out;
db_find{(bks_db, code) = NIL,
message (3, WARN, "No such book") => book;
db_find(lns_db,code) /= NIL,
message (3, WARN, "Is on lcan") => book;
TRUE => issue;

state issue: { db insert(lns_db, mk-Loan(code,id,cur_date.no,0,<>});

message (3, NOTE, "Issued");
} => book;
state out: w close(l) => return;
END issue_books

FUNCTION del element (code: Code, codel: Code-1list);

VAR head: Code := hd codel;
tail: Code-list := tl codel;
idx: Nat := 2;

BEGIN

1f code /= head then
while tail /= <> do {
if code = hd tail then {

codel[idx] := head;
codel := tl codel;
done;
}i
tail := tl1 tail;
idx := idx+1;
}
else
codel := tl codel;

END del element

DIALOGUE discharge_books (rds_db: ReadersDb, lns_db: LoansDb);

VAR width: Nat := 30;
code: Code;
loan: [Loan];

reader: Reader;

BEGIN
state box: { w_open(3,width,"“M Discharge "N"):
message {2, NOTE, "")
message (3,NOTE, "");
} => book;
iap book: { w move(l,1l);
w get (" Book Code: ", code, 6);
}:
code = 0 => out;

(loan :- dbﬁfind(lnsddb,code)) = NIL | loan.rd

Nl I.u
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message (2, WARN, "Is not on loan') => book;
TRUE => disch;
state disch: { reader := db find(rds_db, loan.rd);
del element (code, reader.loan):
loan.rd := NIL;
message (2,NOTE, "Discharged”) ;
mac |
loan.rec>0 => message(3,WARN, "Goes to RECALLED shelf");
loan.res=<> => { message(3,NOTE, "Goes to shelves”);
db _delete(lns_db, code);
}:
TRUE => { message (3, WARN, "Goes to RESERVE shelf");
loan.resfl).till
}i
i
} => book;
state out: w_close(l) => return;

END discharge_books

DIALOGUE renew books (lns_db: LoansDb);

VAR width: Nat := 30;
code: Code;
loan: [Loan];

reader: Reader;

BEGIN

state box: { w_open(2,width,”"M Renew ~“N");

lap book:

state renew: loan.date

state out: w_close(l)

message (2, NOTE, "") ;

{ w_move(l,l);
w_get (" Book Code: »,code, 6);
bi

code = 0 =>
(loan := db find(lns_db,code}) = NIL | loan.
message (2, WARN, "Is not on loan") =>

loan.rec > 0,
message(2,WARN,"Recalled - can't renew") =>

loan.res /= <>,

message(Z,WARN,"Reserved - can't renew") =>
TRUE =>
:= cur_date.no =>

=>

END renew_books

state box:

{ w open(3,width,"”M Reserve “N"):

messaqe(3,NOTR,"");
} => reader;

iap reader: | w move(l.,1)7

w get (" Reader Id: ", id.5):

}:

:= cur_date.no;

book;

out;
rd = NIL,
book;

book:;

book:

renew;

out;

return;

DIALOGUE reserve_books(rds_db: ReadersDb, lns_db: LoansDDb)
VAR width: Nat := 307

id: 1d;

code: Code;

loan: [Loan]’
BEGIN
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id = 0

db find(rds_db,id) = NIL,
message (3, WARN, "No such reader")
TRUE

=> out;

=> reader;
=> book;

iap book: { w _move(2,1);
w_get (" Book Code: ",code, 6);
}:
code = 0 => out;
(loan := db find(lns_db,code)) = NIL,
message (3, WARN, "Is not on loan") => book:
loan.rd = id,
message (3, WARN, "Reader has the book") => book:;
is reserved_for(id, loan.res),
message (3, WARN, "Already reserved for reader™) => book:
TRUE => reserve;
state reserve: { loan.res := loan.res || <mk-Reserve (cur_date.no, id, NIL)>;
message (3,NOTE, "Reserved"”) ;
} => book;
state out: w_close(l) => return;
END reserve_books
CLUSTER dial_box ({
title:Const: Str
{ 'field' fld:Const: Str ',' fid:Ident: (Str | Int Real)
v.' fsz:Const: Nat
',' '‘empty' emp:Const: (Str | Int | Real)
{ '=>' ‘commands’']co i
}+fr
{ 'command' comnd:Const: Str '=>' action:Statm
[*=>' 'fields’']fo ';'
}+cr
)i
VAR flen: NatO0;
lins: Nat := fr+3;
cols: Nat;
sum: Nat = 2;
max_len, max_siz: Nat := 1;
com_pos: arraylcr+l] Nat;
id: str | Int | Real;
ch: Char;
op: Nat;
BEGIN
for i in (1:fr} do {
i1f (flen := st_len(fld[i])) > max_len then
max_len := flen;
if fsz[i]) > max_siz then
max_siz := fsz(i]:
)i
cols := max_lentmax_slz;/

for i in (l:cr} do {
com pos[i] := sum/

sum := com pos[i]+st_1en(comnd[i])+2;

}:
if sum > cols then
cols := sum;

W opcn(lins,cols,titln);



Appendix D

214

for i in {1l:fr} do
w_put("%s“n",fld[i]);

for i in {(l:cr} do {
w_move (fr+l,com_pos(i]+1);
w~put(“‘R%s“N",comnd[i]);

}:

message (lins,NOTE, "");

while TRUE do {
for 1 in {l:fr} do {
w_move({i,max_len+l);
w_get (id, fsz([i});
fid(il := id;
if fid{i] /= emp(i] & co(i) = 1 then
done;
}e
op := 1;
while TRUE do (
w_move (fr+l,com_pos(op]+1);
w;put(““M%s‘N",comnd[op]);
w_move(fr+l,com_pos(opl):

cases {(ch := keybd()) {
‘Fl1' => { w_put(" ~R%s~N",comnd[op])
op := if op = 1 then cr else op-1;

}:
‘F2' => { w_put(” ~R%s~N",comnd(opl);
op := if op = cr then 1 else op+l;
}y:
vart => { actionlop];
if folop]l = 1 then {
w_put (" ~R%s~N",comnd[op]);
done;
}:
}:
TRUE => bell();

on_exit do
w_close(l);
END dial_box

FUNCTION sort_by_pos(items: (Reader | Book)-list):
VAR swap: Bool := TRUE:;
length: Nat0O := len items;
temp: (Reader | Book):
BEGIN
while swap do {
swap := FALSE;
for i in {l:length-1} do
if items{l).pos > items{i+l].pos then {

temp := items(i};
jitems{i} := items{i+1}]:
items[i+1l) := temp;

swap := TRUE;
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END sort_by_pos

FUNCTION find readers_dial(rds_db: ReadersDb);

VAR id: 1d;
sname: Name;
readers: ReaderForm-1ist := <>;
count: Nat0 := 0;

FUNCTION find readers(id: Id, sname: Name): ReaderForm-list;

VAR rdf: File;
rds_cnt: Nato;
rd: [Reader]:
rds_list': Reader-1list;
rds: Reader-1list := <>;
rd fm: ReaderForm;
rd_fms: ReaderForm-list := <>;
valid: Bool;
count: Nato0;
code: Code;
from: Position;

BEGIN

rdf := f;open("readers","r");
get (rdf, rds_cnt);
f _zap(rdf):
if id /= 0 then |
if (rd := db_find(rds_db,id)) /= NIL then {
for i in {l:rd.pos} do
ﬁ_zap(rdf);
get (rdf, id,valid,count);
for i in {l:count} do
get (rdf, code);
fm_get (xdf,rd_fm);
f close(rdf);
rd fms := <rd_fm>;
}:
}
else {
rds list' := rds_list;
while rds_list' /= <> do {

if st_sub(sname,(hd rds_list').name) then
rds := rds || <hd rds_list'>;
rds_list' := tl rds_list';

}i
if rds /= <> then {
sort_by_pos(rds);
from := 0;
while rds /= <> do {
for i in {from: (hd rds) .pos-1) do
f_zap(rdf);
get(rdf,id,valid,count);
for i In {l:count} do
get (rdf, code)’
fm_get(rdf,rd_fm);
rd_fms := rd_fms [ <rd_ftm>;
from := (hd rds) .pos+1l¢
rds := tl rds;
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}:

f_close(rdf):

return(rd_fms);
END find_readers

BEGIN
dial box {
“~M Find Reader ~N"
field " Id Number: ', 1id: 5, empty 0 => commands;
field " Surname: ", sname: 20, empty ""
command " FIND " => { readers := find readers(id, sname);
count := 1;

cases len readers {

0 => message (5, WARN, "Can't find reader");

1 => fm_view(hd readers,

TRUE => message (5, NOTE,

ll") :
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st_app(st_num(len readers),” hits")):

}:
}e
command " NEXT " => { if readers = <> then

message (5, WARN, "No reader found yet")

else {

fm view(hd readers,

st_app(st_app(""M Item £",st_num{count)),

" ~N™))
count := count+l;
readers := tl readers;
message (5,NOTE,

st_aPP(st_num(len readers),"

}:
Y

.
’

command " BACK " => message (5,NOTE, "") => fields;

command " QUIT " => exit;
}e
END find readers_dial

FUNCTION find books_dial (bks_db: BooksDDb) ;
VAR code: Code;

auth: Author;

title: Title;

pooks: BookForm—1list;

BookForm-1ist;

remaining”));

count: Nat0 := 0;
FUNCTION find_books(code: i1d, auth: Author, title: Title):
VAR bkf: File;
rds_cnt: Nat0;
bk: [Book}:
bks list': Book-1list;
bks: Book-1list := <>;
bk _fm: BookForm;
bk fms: BookForm-1list := <27
from: Position;
BEGIN
bkf := f_open("books","r"):

get (bkf, rds_cnt);
f zap(bkf);
if code /= 0 then {

if (bk

.= db find(bks db,code)) /= NIL then {

for i in {1l:bk.pos} do

f zap{bkt});
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get (bkf, code) ;
fm_get (bkf,bk fm);
f _close(bkf) ;
bk_fms := <bk_fm>;

}
else {
bks_list' := bks list;
while bks_list' /= <> do ({
if st_sub(auth, (hd bks_list').auth) ¢
St_sub(title, (hd bks_list').titl) then
bks := bks || <hd bks_list'>;

bks_list' := tl bks_list';

};

1f bks /= <> then (
sort_by pos(bks);
from := 0;
while bks /= <> do {

for i in (from: (hd bks).pos-1} do

r zap(bkf) ;
get (bkf, code) ;
fm_get (bkf,bk fm);

bk_fms := bk_fms || <bk_fm>;
from := (hd bks).pos+1;

bks := tl1 bks;

}:

I close(bkf);

return(bk_fms);
END find_books

BEGIN
dial box {
"~M Find Book “N"
field " Code: ", code: 6,

empty 0 => commands;

field " Author: ", auth: 20, empty "";

field " Title: ",

title: 25, empty "";

command " FIND " => { books := find_books(code,auth,title);
count := 1;

cases len

0 =>
1 =>
TRUE =>

}2
}s
command " NEXT " => { if books =

books {
message (6, WARN, "Can't find book");
fm view(hd books, "");
message (6, NOTE,
st_app(st_num(len books),™ hits"));

<> then

message (6, WARN, "No book found yet")

else |

fm view(hd books,

count
books

st _app(st_app(""M Item L",st_num(count)),
” ANI!));

:= count+1l;
:= tl books;

217

message (6, NOTE, st_app(st_num(len books),"remaining”}):

}s
)y,

command " BACK " => message (6,NOTE,"") => fields;

command " QUIT " => exit;
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}s

END find books_dial

FUNCTION start up ():

BEGIN

move (24, 2);

put ("~"MPlease Wait~N"});
init_readers();

init_books ()

4

rds_list := db list(rds_db);
bks_list := db list(bks db);
day no := init loans();
cur_date :=

cur_date.no
move (24,2);

mk-TopDate (0, time('Y'), time('M'),time('D"));

put(""RDAY: %d
move(24,48) ;

put("~RUP: at %02d:%02d:%02d,

“N",day_no);

time('h'),time('m'),time('s"),

:= cur_date.y*365 + cur_date.m*30 + cur_date.d;

on %02d %3s %44d",

cur_date.d,MONTHS[cur_date.m],1900+cur_date.y):

END start_up

FONCTION counter_desk_menu ():

BEGIN

menu {

»"~M Counter Desk ~“N"

"Issue" => issue books (rds_db, bks_db,lns_db);
“Discharge"™ => discharge_books (rds_db, lns_db);
"Renew" => renew_books (1ns_db);

"Reserve' => reserve_ books (rds_db, 1ns_db};
"Quit" => exit;

TRUE => exit;

}s;

END counter_desk_menu

FUNCTION reader_

BEGIN

menu {

menu ()7

wAM Reader “N"

"New Reader",

"Remove Reader",

"Find Reader"

"Quit™
TRUE
}i
END reader_menu

FUNCTION book menu ();

BEGIN
menu {
"~M Book

“New Book",

"Remove Book",

AN"

"+ind Book"

"Quit"
TRUE
b
END book menu

constraint

constraint

=> insertﬂthing(READER,new_rds,ins_ok);
=> remove_thing(READER,rmv_rds,del_ok);
=> find readers_dial(rds_db);

=> exit;

=> exit;

constraint ins_ok => insert_thinq(BOOK,new_bks,ins_ok);
constraint del_ok => remove_thinq(BOOK,rmvnbks,del_ok);
- > find_books~dial(bks_db):

=> exit;

=> exit;

218
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FUNCTION report menu ();
FUNCTION prepare stock_report ():
VAR bkf, stkf: File;

bks cnt: Nato0;
code: Code;
bk fm: BookForm;
BEGIN
bkf := f open("books","r"):
stkf := f open("stock.log"”,"w");

get (bkf,bks_cnt);

f_zap(bkf);

for i in ({1:bks_cnt} do {
get (bkf, code) ;

fm_get (bkf,bk_fm);
put (stkf, "$06d %s %s --- L%03d.%03d /%d/ ISBN 0-%03d-%05d-%¥d “n",

code, bk_fm.S$Sauth, bk_fm.$i, bk_fm.$cl, bk_fm.Scr,
bk fm.$year, bk_fm.$sl, bk_fm.$s2, bk_fm.5s3);
put (stkf, " $s “n $s, %$02d-%02d-%02d -- %d(%d) “n",
bk fm.S$titl, bk_fm.Spub, bk_fm.$d, bk_fm.$m, bk_fm.Sy,
bk _fm.$vol, bk_fm.S$edtn);
}i
f close(bkf);
f close(stkf);
END prepare_stock_report
BEGIN
menu (
"“M Reports "N"
"Readers" => w_text(10,60,""M Readers Log "N","readers.log");
"“"Books" => Ww_text(10,60,""M Books Log ~N","books.log");
"Loans™" => w_text(10,60," M Loans Log ~“N","loans.log"):
"Entire Stock"
=> { 1If ~stock_rep_ready then {
w open(2,27,"");
w_put (""BPlease Wait~N"nwhile I prepare the report");
prepare_stock report{);
stock_rep_ ready := TRUE;
w_close(l);
}i
w_text(10,60,""M Stock Log "~N","stock.log"):
}:
"Quit™" => exit;
TRUE => exlit;
i
END report menu

FUNCTION shut down (started: Bool);
BEGIN
if started then {
move(24,2);
put (""MPlease Wait"N");
update_loans(lns_db,rds_db,rmv_rds);
update_readers(rds_db,neW_rds,rmv_rds);
update_books(new_bks,rmv~bks);
)i
END shut_down

BEGIN /* design */
init scr{);

put ("~R%26sL I B R A R Y S YSTE M$26s7N", ", "),
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move (24, 1) ;
put ("'\R%BOS’\NN' nn) ;

menu {
"Start Up",
"Counter Desk™",
"Reader",
"Book",
"Reports",
"Shut Down™

}:
tini_scr();
END library system

constraint
constraint
constraint
constraint
constraint

~started =>
started =>
started =>
started =>

started =>
=>

{start_up();

started

counter_desk_menu () ;

reader_ _menu();

book_menu () ;

report menu();

{ shut_down(started)

exit;

TRUE} ;

220
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