
Open Research Online
The Open University’s repository of research publications
and other research outputs

Formal specification based prototyping
Thesis

How to cite:

Hekmatpour, Shahram (1987). Formal specification based prototyping. PhD thesis The Open University.

For guidance on citations see FAQs.

c© 1987 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html


Formal Specification Based Prototyping 

a thesis submitted in partial fulfillment 
of the requirements for the degree of Doctor of Philosophy in 

Computer Science 

Shahram H ekmatpour 

Computing Discipline, Mathematics Faculty 
Open University 

March 1987 



to my parents 



EX35 

HIGHER DIDREES OFFICE 

LIBRARY AUIHORISATIOO 

SIUDENr: • • • • • • • • • • • • • • SERIAL NO: • • • • • • • • • • • • 

DIDREE: • • • • • • • • • • • • • • 

TITLE OF 'IHESIS: • • • • • • • • • • • 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

I confirm that I am willing that my thesis be made available to readers 
and may be photocopied, subject to the discretion of the Librarian. 

Signed: • • • • • • • • • • • • • • • & • • • • • Date: · !.%/J.~/. ~~ .. · · 



ABSTRACT 

Rapid prototyping is an approach to software development which 

attempts to remedy some of the shortcomings of the linear life cycle model, 

e.g. its inability to cope with fuzzy requirements and system evolution. This 

thesis first presents a broad survey of rapid software prototyping. It 

describes the rationale behind the process, the applications of prototyping, 

and specific techniques which may be used to achieve them. 

We then describe a system, called EPROS, together with its 

methodology, which supports a number of prototyping techniques in a 

coherent framework. The system is comprehensive in its approach and 

covers the prototyping and development of both functional and 

human-computer interface aspects of software systems. The former is based 

on the execution of VDM-based formal specification notation META-IV; the 

latter is based on a textual representation of state transition diagrams. 

Dialogue development is further supported by a rich set of abstractions 

which allow interaction concepts to be specified and directly executed rather 

than implemented. 

EPROS is based on a wide spectrum language which supports the 

main phases of a software development process, namely specification, 

design, and implementation. Included in this notation is a meta abstraction 

facility which facilitates its extension by the programmer. 

The primary application of EPROS is for evolutionary prototyping, 

where a system is developed iteratively and gradually from the abstract to 

the detailed, while it undergoes use and while its capabilities evolve. EPROS 

copes with all the requirements of evolutionary prototyping, namely rapid 

development, intermediate deliveries and gradual evolution of the system 

towards the final product. 

The thesis also describes a number of case studies where the 

presented ideas are put in practice, and which provide data in support of the 

effectiveness of the described system. 



CONTENTS 

1 INTRODUCTION . · · · · · · · · · · · · · · · 1 
1.1 THE LIFE CYCLE MODEL · · · · 1 · · · 
1.2 DEFICIENCIES OF THE LIFE CYCLE 2 
1.3 THE PROTOTYPING SOLUTION . · · · · · · 5 
1.4 THE SCOPE AND LA YOUT OF THIS THESIS 6 

2 RAPID SOFTWARE PROTOTYPING . 8 
2.1 WHAT IS PROTOTYPING? · · · · · · · 8 
2.2 APPLICATIONS OF PROTOTYPING · · · · . · · 9 
2.3 CATEGORISING PROTOTYPING 11 

throw-it-away proto typ ing · · · 11 
evolutionary prototyping 12 
incremental prototyping · · · · 14 

2.4 PROTOTYPING ACTIVITIES 15 
the establishment of pro to typ ing objectives . . · · · · 15 
function selection · · · 15 
prototype construction · · · · · · . 15 
evaluation · · · · · · · · · · · · . 16 

2.5 BENEFITS AND DIFFICULTIES OF PROTOTYPING 16 

3 TECHNIQUES OF PROTOTYPING · · · 18 
3.1 FUNCTION PROTOTYPING . · 18 

executable specifications . · · · · · · 19 
very high leve/languages 21 
application oriented very high level languages 23 
functional programming languages · · · 24 
the tool-set approach · · · · · · 26 
reusablesofnvare · · · 27 

3.2 USER INTERFACE PROTOTYPING 28 
simulation · · · · · 30 
formal grammars . . . 31 
state transition diagrams · 33 
other formal methods · 34 
screen generators and tools 35 
language supportedfacilities 37 

3.3 DISCUSSION . · · · · · · 38 

4 THE EPROS PROTOTYPING SYSTEM 40 
4. I THE APPROACH AND ITS SCOPE 40 
4.2 THE DEVELOPMENT PROCEDURE . 42 
4.3 THE EPROL WIDE SPECTRUM LANGUAGE 43 

functional specification notation 44 
dialogue specification notation 44 
design notation 44 
implementation notation 45 

4.4 THE ARCHITECTURE OF THE SYSTEM 45 



5 FUNCTIONAL SPECIFICATION · 49 · 
5.1 THE VIENNA DEVELOPMENT METHOD 49 
5.2 LOGIC · · · · · · · · 50 

quantifiers · · · · · · · 51 
5.3 ABSlRACT OBJECTS . 51 

sets · · · · · · · . . . · · · 52 
lists · · · · · · . · 53 
mappings · · · · 55 

5.4 ABSlRACTSYNTAX · · · · 56 
trees · · · · · · · · · 57 

5.5 COMBINATORS . · · · · · 58 
the let expression · · · · · · 59 
the if-then-else expression 59 
the mac expression · · . · · · · 60 
the cases expression 60 

5.6 ABSlRACT DATA TYPES . · · 60 
specification · · · 61 
refinement · · · · 64 
verification rules · · · · · 64 
polymorphic types 65 

5.7 A DEVELOPMENT EXAMPLE . . · · · 66 
problem specification · · · · · 67 
refinement of the specification 73 

5.8 DISCUSSION · · 80 

6 IMPLEMENT A TION · · · 82 
6.1 STATEMENTS · · · · 82 

assignment · · · · · . . 82 
control structures · · · 82 
loop structures 83 
blocks · · 84 
assertions · · · · · · 85 

6.2 DATA TYPES · · · 85 
arrays 85 
files . · · 86 
forms · · · · · 86 
databases 86 

6.3 INPUT AND OUTPUT · · 86 
ordinary i/o · · 87 
window oriented i/o 87 
pretty printing · · · 88 

6.4 IMPERATIVE FUNCTIONS 88 

6.5 DISCUSSION · · 89 

7 USER INTERFACES 91 

7.1 STATE TRANSITION DIAGRAMS 91 
the dialogue module 92 
an exL1mple 93 · · 

7.2 Pop-up MENUS. 97 · 
the menu statement 97 
the switch statement 99 



7.3 ELECTRONIC FORMS 

the form module 
an example . . . . 

7.4 DISCUSSION . . . 

8 CLUSTERS AND META ABSTRACTION .. 
8.1 THE NEED FOR CLUSTERS 

8.2 THE CLUSTER MODULE 

8.3 
8.4 
8.5 

8.6 

the meta notation . . . 
cluster schemes 

A CLUSTER DEFINITION 

TERMINATION MECHANISMS 

APPLICA nONS OF CLUSTERS 

dialogue boxes 
DISCUSSION . 

9 CASE STUDIES . . . . 
9.1 ABSTRACT MAPPINGS 

9.2 A VERSION CONTROL PROGRAM 

9.3 A LIBRARY SYSTEM 

requirements . . . 
cycle 1 ... 
cycle 2 
cycle 3 
cycle 4 
concluding remarks 

10 CONCLUSIONS 
10.1 RELATED WORK 

executable specification systems 
application generators . . . . . 
program transformation systems 
program refinement systems 
formal program development environments 
user interface management systems 
executable dialogue abstractions . . 

10.2 WHAT IS NEW ABOUT THIS RESEARCH? 

10.3 FUTURE RESEARCH DIRECTIONS. 

References .......... . 
Appendix A EPROL SYNTAX ... . 

Appendix B COMPILATION EXAMPLE 

Appendix C STANDARD LIBRARIES 

Appendix D THE LIBRARY SYSTEM · 

101 
101 
103 
106 

108 
108 
110 

. . . 111 
112 
114 
117 
118 
119 
121 

122 
122 
123 
123 
123 
125 
125 
125 
125 
127 

129 
129 
129 
131 
132 
132 
133 
134 
135 
135 
137 

139 
158 
181 
182 
186 



ILLUSTRATIONS 

3.1 A comparison of prototyping techniques . 38 · · · · 
4.1 The evolutionary prototyping procedure of EPROS 43 · · · · 4.2 Module containment in EPROL . · · · · 45 
4.3 The architecture of EPROS · · · · · · · · 46 · · · · 
5.1 Summary of set operators · · · · · · · · · · · · 53 
5.2 Summary of list operators · · · · · · · · · · · · 54 
5.3 Summary of mapping operators · · · · · · · · · 56 
5.4 The general structure of an ADT module · · · · · · · · · · 61 
5.5 The general structure of an operation specification · · · · 62 
5.6 A simple structure diagram · · · · · · · · · · · · · · · 67 
5.7 A simple software system · · · · · · · · · · · · 69 
5.8 Specification of abstract data type Xusage · · · · · · · · 72 
5.9 A diagrammatic view ofinv-Xusage1 · · · · · · · · · · · · 74 
5.10 Specification of abstract data type Xusage1 · · · 80 

6.1 The general structure of a FUNCTION module · · · · · · · · · 88 

7.1 State transition diagram symbols . · · · · · 91 
7.2 The general structure of a DIAWGUE module 92 
7.3 A simple state transition diagram . · · · · 94 
7.4 Refinement of complex state 'remove reader' · · · 95 
7.5 The dialogue box for removing a reader · · · · · · 97 
7.6a Menu as seen on the screen . · · · · · · · · · · · · · 99 
7.6b The help option is itself a menu · · · · · · 99 
7.7a A switch frame . . . . · · · · · · · · · · 101 
7.7b Switch frame after the fIrst option is selected · · · 101 
7.8 The general structure of a FORM module . · · · · · · · · · · · 102 
7.9a Fonn as seen on the screen · · · · · · · · · · 104 
7.9b Delivery field is computed and menu driven · · · · · · · 104 
7.10a Example of a type error . · · · · · · · · · · · 105 
7.10b Example of an attribute violation . · · · · · · · · 105 

8.1 The general structure of a CLUSTER module · · · 110 

8.2 Summary of the meta notation . · · · · · · · · · · · 112 

8.3 A dialogue box for finding books · · · · · · · · · 120 

9.1 Abstract mappings case study summary · 122 

9.2 SVCP case study summary · · · · · · · · · 123 

9.3 Summary of the development cycles · · · 126 

9.4 Registering a reader in the library system 126 



PUllLICATIONS 

The following is a list of author's publications relevant to the research presented here. 

Some of the material included in this thesis has also appeared in these publications. 

PAPERS 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Rapid Software Prototyping, Oxford Surveys in Information Technology, Vol. 3 
pp. 37-76, 1987 (with D. Ince). 

A Formal Specification Based Prototyping System, in Proc. BCS/IEE Software 
Engineering '86 Conference, Southampton, pp. 317-335, 1986 (with D. Ince). 

Some Applications of Artificial Intelligence in Software Engineering, in Software 
Engineering: The Crucial Decade, Peter Peregrinus, 1986 (with D. Ince and M. 
Woodman). 

Forms as a Language Facility, ACM SIGPLAN Notices, Vol. 21(9) pp. 
42-48,1986 (with D. Ince). 

Software Prototyping: Progress and Prospects, Journal of Software and 
Information Technology, Vol. 1(1) pp. 8-14, 1987 (with D. Ince). 

A Notation for Specifying Menus, ACM SIGPLAN Notices, Vol. 22(4) pp. 
59-62 (1987). 

Experience with Evolutionary Prototyping in a Large Software Project, ACM 
SIGSOFT Software Engineering Notes, Vol. 12(1) pp. 38-41 (1987). 

The Cluster - a new abstraction in programming, submitted to IEEE Transactions 
on Software Engineering, 1986. 

A Window Manager for UNIX, submitted to The Computer Journal, 1986. 

nOOKS 

• Software Prototyping, Formal Methods and VDM (with D. Ince), to appear. 



ACKNOWLEDGEMENTS 

I would like to express my deep gratitude to professor Darrel Ince, who supervised 

this work; his technical guidance, enthusiasm and constructive suggestions made the 

completion of this work possible. I am grateful to John Wilson for his kind technical advice 

on the innards of the UNIX system. Without his guidance I would have been lost in piles of 

documentation long before doing any useful work. I am also debted to Thomas Carroll for 

his comments and the time he spent on reading the user manual and a number of other 

pu blications. 



CC1hlSl]pter li INTRODUCTION 

1.1 THE LIFE CYCLE MODEL 

No doubt there are programs that are used 
once and thrown away. No doubt there are 
even more programs that should be thrown 
away before ever being used! 

- G M Weinberg 

For the past twenty years or so, software system development has been based on a 

model, commonly referred to as the software life cycle model [Zelkowitz79, Boehm8l, 

Sommerville82, Shooman82, Fox82]. Though characterized differently by different authors, 

its overall theme is well-understood and universally acknowledged. The life cycle model 

leads to a software development strategy which is usually called the phase-oriented, the linear 

or the traditional strategy. 

The life cycle model essentially advocates that software projects should consist of a 

number of distinct stages; these being: requirements analysis, requirements specification, 

design, implementation, validation, verification, operation and maintenance. Requirements 

analysis is concerned with deriving, from the customer, the desired properties and 

capabilities of a proposed software system. Requirements specification involves stating the 

system functions and constraints in a precise and unambiguous way. Design is the task of 

producing, and consequently refining solutions that satisfy the specification. Implementation 

is the act of realising the design in a programming language which can be executed on the 

target machine. Validation is the process of checking that a system fulfills its user 

requirements. Verification has the objective of ensuring that the end product of each of the 

first four stages matches its input. Operation is the activity of installing and running a 

completed system in its intended environment. Lastly, maintenance is the process of 

modifying a system, during its operational lifetime, to correct detected errors, improve 

performance, and incorporate newly emerging requirements. 

The life cycle model was originally derived from the hardware production model of: 

requirements, fabrication, test, operation and maintenance [Blum82b]. It primarily reflects 

nlanagement concerns in production, such as planning, control, budget expenditure and 

resource allocation. Its aim is to provide a basis for estimating the correct distribution of 



1 Introduction ----------------------______ 2 

labour and capital over a well-planned period of time by dividing the production process into 

a number of rationalised phases, each with its own milestones and deliverables. 

Central to the model is its linear structure; with exception to validation and verifIcation, 

all other stages are carried out linearly, i.e. each stage begins only when the previous stage 

has been completed. The model works very well in hardware production; its appropriateness 

for software development, however, is becoming increasingly questionable. 

1.2 DEFICIENCIES OF THE LIFE CYCLE 

Software producers who currently use the life cycle model have to cope with three 

unpleasant facts. Firstly, the earlier an activity occurs in a project the poorer are the notations 

used for that activity. Secondly, the earlier an activity occurs in a project the less we 

understand about the nature of that activity. Finally, the earlier an error is made in a project 

the more catastrophic the effects of that error. For example, early requirements and 

specifIcation errors have typically cost a hundred to a thousand times as much as those errors 

made during implementation [Boehm81] and have lead to a number of multi-million dollar 

projects being cancelled. 

Increasing user dissatisfaction with software since the early nineteen seventies has 

motivated researchers to pay greater attention to the earlier stages of software development 

[Ramamoorthy84]. As a result, many requirements analysis and specifIcation techniques 

have been invented [Davis77, Ross77, Taggart77, Levene82, Lehman85]; some of which 

are even computerised [Smith76, Teichroew77, Bell77]. At the same time there is a rapidly 

increasing interest in formal, more mathematical methods of software development which 

adherents claim lead to more reliable systems which have an increased probability of meeting 

user needs [Musser79, Davis79, Jones80b, Silverberg81]. 

Unfortunately, even when a software developer uses modern notations and 

techniques, success is likely only when the application is both well-understood and 

supported by previous experience [Bally77, Blum82a, Brittan80]. The current rate of growth 

in hardware has meant that, each year, large numbers of new applications emerge for which 

the old knowledge is inadequate. Faster and larger, cheaper memories mean that computers 



1 Introduction ---------------------________ 3 

are being used in novel projects where the relation of the computer to its environment, to 

human operators, and to other computers has not been researched adequately. Many such 

projects are based on specifications which are not true reflections of the customer's 

requirements. This is due to three reasons. 

First, there is usually a significant cultural gap between the customer and the 

developer and the way they communicate [Christensen84]. Consequently, a customer often 

finds it extremely hard to visualise a system by simply reading a technical system 

specification document {Gomaa81, Mayr84]. If the customer is unable to visualise such a 

system then validation during the early part of the project becomes a very error-prone 

activity. Indeed, the difficulties involved in communication with the user can be a serious 

barrier to proper development [McCracken82]: 

"The life cycle concept perpetuates our failure so far, as an industry, to build an effective bridge 
across the communication gap between end-user and system analyst. In many ways it constraints 
future thinking to fit the mold created in response to failures of the past" 

Second, the customer, unfamiliar with information technology, may have produced very 

vague requirements which could be interpreted arbitrarily by the developer [Brittan80]. 

Third, empirical evidence [Ackford67, Alter80] suggests that once a user starts employing a 

computer system, many changes occur in his perception as to what the intended system 

should do; this obviously invalidates the original requirements. As a result, user 

requirements are often a moving target, and producing a system that meets them is a risky 

and error-prone activity. 

A further complication is that a software project of considerable size may take many 

years to complete; during this time the user requirements, as well as the user environment, 

may change considerably, making the final system even more obsolete [McLean76, 

Gladden82, Ramamoorthy86]. This is graphically described by Blum [Blum82b]: 

"Development is like talking to a distant star; by the time you receive the answer, you may have 
forgotten the question." 

The life cycle model is strongly based on the assumption that a complete, concise and 

consistent specification of a proposed system can be produced prior to design and 

implementation. The validity of this assumption has been challenged and refuted lw a 



1 Introduction ----_______________________ _ 
4 

number of authors [Swartout82, McCracken82, Shaw85]. In many cases a complete 

specification cannot be produced, simply because the user does not really know what he 

wants [Berrisford79, Parnas86]. 

Lack of experience in projects where it is almost impossible to construct a precise 

specification leads to the situation where the customer requirements can be established only 

when a complete software system has been built and when the system can be examined in a 

fully concrete form [Blum82a]. For this reason many systems end up being written at least 

twice. To quote Brooks [Brooks75]: 

"Plan to throw one away; you will. anyhow." 

There are numerous examples in the literature of substantial modifications of systems during 

maintenance because of inadequate requirements analysis. For example, it has been reported 

[Boehm74] that in some large systems up to 95% of the code had had to be rewritten to meet 

user requirements. Even more fonnal, improved techniques and notations for requirements 

specification are not helpful in this respect, as the transition from the user conceptual model 

of a system to a specification of the system is an inherently informal process [Leibrandt84]. 

All evidence, therefore, suggests that the life cycle model has many shortcomings 

which may have adverse effects on software projects. This is, of course, not to say that this 

model should be rejected outright. To the contrary, in certain areas, such as embedded 

software and real time control systems, it is the most rational approach and indeed the best 

way of controlling the complexity of such projects. However, for the majority of other 

applications, especially those related to commercial data processing, it is inappropriate and 

has many deficiencies which are too serious to be ignored. The deficiencies may be 

summarised as follows: 

• 

• 

• 

• 

It is unable to cope with vague and incomplete user requirements [Brittan 80, 

MacEwen82]. 

It discourages feedback to the earlier stages because of the cost escalation problems 

[Bastani85]. 

It cannot predict the effects of introducing a new system into an organisation before the 

system is complete [Keen81]. 

It cannot properly study and take into account the human factors involved in using the 



1 Introduction ------------________________ 5 

• 

• 

• 

• 

system. 

It introduces a computer system into an organisation suddenly. This is a rather risky 

approach since users are known to resist significant, sudden social changes 

[Rzevski84] . 

The customer may have to wait for a long time before actually having a system 

available to him for use. This could have undesirable effects on customer trust and 

may cause frustration [Gladden82]. 

The final product will, at best, reflect the user requirements at the start of the project 

and not the end. In long projects, these two may differ considerably due to changes in 

the customer's organisation and practices. 

Once the users start employing the final system and learn more about it, their views 

and intentions change significantly. Such changes in user perception can by no means 

be predicted [Clark84]. 

1.3 THE PROTOTYPING SOLUTION 

In the light of the difficulties described above, many researchers have arrived at the 

conclusion that software development, particularly during its early stages, should be 

regarded as a learning process and practiced as such [Mason83], and that it should actively 

involve both the developer and the customer [Christensen84]. For it to be efficient, it 

requires close cooperation, and can be successful only when it is based on an actual working 

system [Somogyi81]. Although customers are not very good at stating what they want from 

a future software system, they are very proficient at criticizing a current system! 

A number of techniques have emerged in recent years that are based on this idea. They 

are classed under the generic term rapid prototyping (Smith82b, Zelkowitz84]. The use of 

these techniques represents a major change in the way software is produced. They rely on an 

idea borrowed from other engineering disciplines - that of producing a cheap and simplified 

prototype version of a system rapidly and early in a project. This prototype becomes a 

learning device to be used by both the customer and the developer and provides essential 

feedback during the construction of a system specification. The prototyping approach, when 

compared to current methods, is so dynamic that the difference can be compared to that 

between interactive and batch-oriented systems [Naumann82]. 

Like software testing [Meyer78], the main philosophical issue in prototyping is 

admission of failure; that we, as human beings, no matter how careful in our development 



1 Introduction ---------------------________ 6 

practices, are likely to make mistakes. Bally [Bally77] puts the idea, appropriately, in the 

following words: 

"In one sense the prototype strategy is an admission of failure, an admission that there will be 
circumstances in which, however good our techniques and tools for investigation, analysis and 
design, we shall not develop the right system at the nrst attempt. But surely this is only realism 
based on hard experience, theoretically ideal solutions are often far from satisfactory in a very 
imperfect world." 

One of the objectives of the prototyping approach is to reduce the maintenance effort. 

There is now considerable evidence [Swanson76, Zelkowitz79, LientzSO, LientzS3] that 

software maintenance can occupy between 50 to 90% of total project cost during the lifetime 

of a system. There is increasing empirical evidence {BoehmS4] that prototyping can indeed 

produce more maintainable products. 

Overall, the limited results and experience which have been obtained have been very 

encouraging. For example, in a reported experiment {BoehmS4] using prototyping, systems 

were developed at 40% less cost and 45% less effort than conventional methods. Other 

researchers have reported even more impressive figures. Scott [Scott7S] has described a 

system which was estimated to cost $350,000 to develop but was accomplished by a 

prototype that cost less than $35,000. The figures that have been reported have also 

supported the contention that prototyping shortens the overall development cycle for software 

[Berrisford79, MasonS3, BonetS4]. 

1.4 THE SCOPE AND LA YOUTOF THIS THESIS 

This thesis is a report on the outcome of a research in investigating, developing and 

integrating rapid prototyping techniques and applying them to the process of software 

development. It provides a study of the current state of the art in rapid software prototyping , 

suggests and describes a particular approach, namely the executable specification approach, 

and combines it with other methods to produce a comprehensive approach for utilising the 

power of prototyping. The advocated approach is backed up by a fully implemented software 

development environment, together with working examples and case studies which were 

perfomled using the system. 

The thesis makes four principal contributions. First. it describes concepts, approaches, 



1 Introduction ___________________________ _ 
7 

tools and techniques for rapid software prototyping and explores the potential benefits and 

limitations of its use. It describes the process of prototype development within a systematic 

framework. Second, it makes a contribution to the integration of diverse areas of 

mathematical fonnalism and rapid prototyping. In particular, it promotes the ways in which 

these two may benefit from one another. Third, it advances the rather under-researched area 

of wide spectrum languages and programming environments which primarily support the 

rapid prototyping approach. Finally, it makes a contribution to software abstraction methods 

by introducing a novel abstraction technique, called cluster, which is of immediate utility in 

both rapid prototyping and software design. 

The earlier chapters of this thesis describe the prototyping approach in a general and 

critical sense. They provide a background for later chapters which focus on the particular 

method pursued by this research. Chapter 2 attempts to define prototyping, examine its 

applications, broadly classify the current approaches, and elaborate on the constituent steps 

of prototyping projects. Chapter 3 presents a list of technical approaches to rapid prototyping 

and describes each in some detail. 

The specific approach of this work is outlined in chapter 4 which also describes the 

EPROS prototyping system, its intentions, its scope and the wide spectrum language it is 

based on - EPROL. Chapters 5, 6 and 7 go into greater depth in describing EPROL and its 

relevance to specification, design and implementation of functional as well as user interface 

aspects of software systems within a prototyping framework. Chapter 8 describes clusters 

and the motivation for their creation. 

In addition to many small problems, a relatively large prototyping project was carried 

out using EPROS to investigate the appropriateness of the methods described in this thesis. 

This is described in chapter 9. The last chapter examines other work carried out in this area, 

con1pares it with the research reported here, and lists a number of future research directions 

which would be of benefit. 



Chapter 2 RAPID SOFTWARE PROTOTYPING 

2.1 WHAT IS PROTOTYPING? 

The old order changeth. yielding to new ... 
- A Tennyson 

Prototyping originated from those engineering disciplines which are involved in mass 

production. There, it refers to a well-established phase in the production process whereby a 

model is built which exhibits all the intended properties of the final product. Such a model 

serves the purposes of experimentation and evaluation to guide further development and 

production. It is important to note that no kind of hardware production is conceivable without 

going through this phase. 

In software engineering the notion of mass production is absent; instead, production 

refers to the entire process of building the one product. For this reason, the concept of 

prototyping takes a rather different meaning. Here, most commonly, it refers to the practice 

of building an early version of the system which does not necessarily reflect all the features 

of the final system, but rather those which are of interest. In particular, and in contrast to 

hardware production, we require a prototype to cost very little and take a significantly short 

time to develop, hence the term rapid proto typing. The purpose, as before however, is to 

experiment, to learn and to guide further development. 

As one would expect with any new term, there is some dispute over the exact meaning 

of prototyping within the context of software engineering. Some insist that it should be used 

to refer to a mocked-up initial version of a system which is thrown away after use 

[Gehani82a, Budde84]. Others suggest that a prototype may become the final system by 

means of a process of continual improvement [Oodd80]. To avoid confusion, some authors 

suggest that the term prototype should be used to refer to the throw-it-away approach, and 

the term evolutionary development be used when a prototype 'evolves' to become the final 

system [Gilb81, Patton83]. 

Other terminologies exist. For example, throw-away prototypes have also been called 

scale models [Weiser82], although it has been argued [Oeamley831 that a model should be 

regarded as a pictOIial representation whereas a prototype is a working system. It has also 



2 Rapid Software Prototyping ----------------------_ 9 

been suggested [Gregory84] that a system with a user interface similar to the final product, 

but incomplete in tenns of functionality, should be called a mock-up and not a prototype. In 

contrast to this, the tenn bread-board has been suggested to refer to a system that has a high 

functionality and no user interface [Botting85]. 

Other revelant tenns used in the literature are: test vehicle, engineering prototype and 

production prototype (Bally??], heuristic development [Berrisford79], infological simulation 

[Naumann82], system sculpture [Blum82a], iterative enhancement [Basili75], evolutionary 

development [Gilb81] and incremental development [Baldwin82]. 

It is not the intention of this thesis to discuss the merits of all these tenns. For our 

purposes, however, we need to establish what we mean by a prototype. When referring to a 

prototype, we shall assume the following: 

• It is a system that actually works; it is not just an idea or a drawing. 

• It will not have a generalised lifetime. At the one end of the spectrum, it may be 

thrown away immediately after use; and at the other end, it may even become the final 

system. 

• It may serve many different purposes, ranging from requirements analysis to taking 

the role of the final product. 

• For whatever purpose, it must be built quickly and cheaply. 

• It is an integral part of an iterative process which also includes modification and 

evaluation. 

We shall, therefore, use the tenn in a rather broad but, at the same time, controlled sense. 

Throughout the rest of this thesis, by prototype we shall mean a rapid software prototype 

unless otherwise stated. 

2.2 APPLICATIONS OF PROTOTYPING 

Prototyping can be applied to various phases of the software life cycle and can also 

replace some or even all of them. In general, it can be applied in the following areas: 

• To aid the task of analysing and specifying user requirements. Here it may have a 

complementary role, assisting the analyst in finding out actual user requirements. In 

some cases, the prototype itself may replace the requirements specification document. 



2 Rapid Software Prototyping ---------------------__ 10 

• 

• 

• 

• 

• 

As a complementary tool in software design. For example, to study the feasibility and 

appropriateness of a system design; to verify novel designs; to contrast and compare 

the merits of alternative designs; and to demonstrate that a design meets its 

specification. 

As a tool to resolve uncertainty. For example, to study the effects of, and to cope with, 

organisational changes due to introduction of new technology; to gradually adapt a 

computer system to its intended environment; and to decrease the level of risk in 

introducing automation. 

As an experimental tool, to study the human factors of new computer systems; 

especially for deriving acceptable human-computer interfaces. 

As a vehicle to support user training in parallel to system development. 

As an economic way of implementing one-shot applications [Smith82b]. These 

concern problems which may be solved by writing a program and running it only 

once; after the solution is obtained the program will be of no further use. 

• As a complementary tool in software maintenance; especially in situations where due to 

unstable user requirements heavy maintenance is expected, requiring much of the 

design to be re-worked. 

• As a system development method whereby the prototype evolves to become the final 

system. 

For many technical problems, however, prototyping is not a suitable solution. In such 

cases, prototyping is likely to have adverse effects, creating more problems than actually 

solving anything. Example are: space and time efficiency problems, error recovery problems, 

system security problems, concurrency problems (e.g. deadlocks), hardware interfacing 

problems, networking problems (e.g. congestion control) and heavy numerical calculations 

(e.g. solving partial differential equations.) 

In general, there are three major areas where prototyping, although possible, is not 

advisable: 

• 

• 

• 

Embedded software [Zave81]. 

Real time control software [Walter84]. 

Scientific numerical software [Aggleton86]. 

Interesting enough, the life cycle model works rather well in these areas and there is usually 

no need for prototyping. One major area where prototyping could be most valuable is that 



2 Rapid Software Prototyping ------_________________ 11 

which has dominated the software market: commercial data processing. The effectiveness of 

prototyping here has been demonstrated in many applications such as management 

information systems [Scott78, Read81, Blum82a], decision support systems 

[Henderson82], business transaction systems [Dearnley81, Burns86], database applications 

[Canning81], accounting systems [EarI78], language processors [Zelkowitz80, Kruchten84] 

and many others. 

2.3 CATEGORISING PROTOTYPING 

The question of whether a prototype should become the final system is an important 

one. Even if it is agreed that a prototype will become the final product, other questions, such 

as how it should be constructed and when it can be accepted as the final product, need to be 

answered. Because of the importance of the relationship between a prototype and the final 

system, a classification based on this criterion is appropriate. This is depicted by the 

following classification which divides the approaches to prototyping into three main 

categories. 

throw-it-away prototyping 

This corresponds to the most appropriate use of the term prototype, and is often used 

for the purpose of requirements identification and clarification [Deamley81, Kraushaar85]. 

To stress the relevance of this approach to requirements analysis and specification, it has also 

been called specification proto typing [Keus82] and specification by example 

[Christensen84]. 

The need for rapid development is the greatest for throw-away prototyping. Since the 

prototype is to be used for a limited period, quality factors such as efficiency, structure, 

maintainability, full error handling, and documentation are of little relevance. The prototype 

may even be implemented on hardware or within an environment other than the one required 

for the target system. What is important about throw-away prototyping is the process itself 

and not the product [Floyd841. The major part of the effort, therefore, should go into the 

critical evaluation of the prototype rather than its design. 



2 Rapid Software Prototyping ---------------------__ 12 

The use of throw-away prototypes, however, is not limited to the specification phase. 

They may be equally useful in the design phase, as reported in [OearnleyS4, BonetS4]. Used 

in this way, prototypes are often a useful tool for exploring alternative designs and evaluating 

the appropriateness or feasibility of a new design idea. They are also useful in the testing of 

a developed system, where they can be used as a comparator that evaluates the correctness of 

the test results of the system [WeyukerS2]. 

As throw-away prototypes can be easily employed within conventional projects, they 

do not require any major changes to current software development practices. The cost of 

throw-away prototyping is highly influenced by the availability of appropriate software tools. 

Very high level languages have been most commonly used [ZelkowitzSO, GomaaS3]. 

evolutionary prototyping 

This approach is in complete contrast to throw-away prototyping [BlumS3]; it is in 

complete antithesis to current software development methods. Proponents of this strategy 

argue that information systems, once installed, evolve steadily, invalidating their original 

requirements [NaumannS2, BrittanSO, GilbSl]. The purpose of the evolutionary approach 

is to introduce a system into an organisation gradually while allowing it to adapt to the 

inevitable changes that take place within the organisation as a result of using the system 

[RzevskiS4] . 

Evolutionary prototyping is by far the most powerful way of coping with change. This 

approach requires the system to be designed in such a way so that it can cope with change 

during and after development. A design practice that does not take the possibility of 

change into account can lead to severe problems; this is illustrated by the following revealing 

remark [AlterSO]: 

"Systems were strained badly or died as the result of corporative reorganisation ... An old version 
of a planning model was abandoned as the result of a reorganisation, only to have its basic logic 
restructured years later ... The conceptual design problem here is building systems that are truely 

flexible." 

In evolutionary prototyping a system grows and evolves gradually [Nosek8..l, 

GilbS5]. For this reason, the first prototype usually does not implement the whole 



2 Rapid Software Prototyping --------------------___ 13 

application. Instead, enough development is carried out to enable the customer to carry out 

one or more tasks completely [Dyer80, Mittenneir82b]. Once more is known about these 

tasks and how they may affect other tasks, more parts of the system are designed, 

implemented and integrated with the existing components. This allows a continuous and 

gradual low-risk development while the system is undergoing use. 

Addition and modification are two essential features of evolutionary prototyping and 

results in new complete deliveries [Gilb81, Patton 83]. Unlike the throw-away approach, the 

prototype is always installed and used at the customer's site [Rzevski84]. This is of prime 

importance as the use of a prototype within its actual application environment is the most 

effective way of performing a comprehensive task analysis. 

The primary difference between this approach and conventional software development 

is that it is highly iterative and dynamic; during each iteration are-specification, re-design, 

re-implementation and re-evaluation of the system takes place. As a result, the impact of early 

errors is far less serious. Furthennore, the initial version of the system is delivered very early 

in the project and throughout the development process an operational system is always 

available to the user. This not only supports user training alongside development but also 

ensures that the final system will not 'surprise' the users when eventually introduced 

[Hagwood82] . 

The dynamic nature of this approach, however, may be a considerable challenge to 

both the developer and the user. Success often depends not only on an effective means of 

designing an adaptable system but also on a willingness for both sides to open themselves to 

communication and change for a significant period of time [Aoyd84]. 

At some point in time the final prototype is eventually transfonned into the final 

product. Depending on how well the system design has survived the evolution process the 

final prototype may serve as the production version or a complete re-design might be 

necessary to facilitate smoother maintenance. Once again, the availability of appropriate tools 

is vital. To cut down the re-design effort, a highly n10dular design which can cope with 

extension and contraction [Parnas72, Parnas79] should be employed. The success of the 

evolutionary approach is very much dependent on the ability of the designer to build 



2 Rapid Software Prototyping -----------------______ 14 

flexibility and modifiability into the software from the start [Munson81]. 

incremental prototyping 

Here the system is built incrementally; one section at a time. Incremental and 

evolutionary prototyping have often been used as synonyms [Baldwin82, Dyer80]. 

However, there is a significant difference between the two. Incremental prototyping is based 

on one overall software design [Floyd84] whereas with evolutionary prototyping the design 

evolves continuously. In incremental prototyping a full scale design is ftrst conducted and 

then modules are implemented and added in sequence. As with evolutionary prototyping the 

system grows gradually but in a considerably less dynamic way. Since the incremental 

approach mostly affects the implementation phase it can be used in conventional software 

projects [Blum86]. Consequently, it has also been called the plug-in strategy [Bally77, 

Taggart77]. Incremental prototyping provides less scope for adaptation than evolutionary 

prototyping but has the advantage of being easier to control and manage. 

Prior to prototype development the nature of the prototype should be well-understood 

by both the customer and the developer, i.e. whether the prototype should be throw-away, 

evolutionary or incremental. This point has created considerable confusion in the literature. 

For example, it has been suggested that it is possible to decide on the nature of a prototype 

after it has been constructed and evaluated [McNurlin81]. This does not seem to be helpful as 

the design of a prototype is highly influenced by the developer's perception of what it should 

be used for. For example, because of the significant difference in their expected lifetime, the 

design of an evolutionary prototype is very different from that of a throw-away prototype 

[Patton83]. 

Some authors suggest that prototyping and conventional development methods are 

complernentary rather than alternative approaches to system development [Riddle84, 

Iivari84]. This is certainly true in the case of the throw-away and incremental approach, but 

not the evolutionary approach. 



2 Rapid Software Prototyping -----------------______ 15 

2.4 PROTOTYPING ACTIVITIES 

To be effective, prototyping should be carried out within a systematic framework. The 

framework advocated by this thesis consists of four steps. These steps and the way they 

relate to each other are described below. 

the establishment of prototyping objectives 

It is essential to establish what a prototype is supposed to be used for and what aspects 

of a proposed system it should reflect. A clear statement of the lessons that are expected to 

be learnt from the prototype is also required. This information may be recorded in a 

document which we may refer to as the prototyping objectives document (POD). 

function selection 

A prototype usually covers only those aspects of the system from which the required 

information may be obtained. The selection of the functions to be included in the prototype 

should be directly influenced by the prototype objectives. Depending on these objectives, 

prototyping may be carried out horizontally, vertically or diagonally [Floyd84, Mayr84]. 

Horizontal prototyping involves including all the system functions in a prototype, where each 

function is considerably simplified and reduced. Vertical prototyping involves including only 

some of the functions, where each of these is fully realised. Diagonal prototyping is a hybrid 

of these two. Function selection often boils down to simplifying the original requirements to 

some extent. However, care should be taken to ensure that the assumed simplifications are 

both consistent and continuous (Rich82]. 

prototype construction 

Of great importance is the speed and cost of prototype construction. Fast, low-cost 

construction is nonnally achieved by ignoring the nonnal quality requirements for the final 

product unless, of course, these are in conflict with the objectives. Throughout construction 

it must be ensured that everyone is aware of the fact that the main purpose of the prototype 

is experimentation and learning rather than long-tenn use. 



2 Rapid Software Prototyping --------------------___ 16 

evaluation 

This is the most important step in the prototyping process and must be planned 

carefully. The users of the system must have already been given proper training and 

resources should have been made available for evaluation sessions. During evaluation, 

inconsistencies and shortcomings in the developer's perception of the customer requirements 

are uncovered. Many features of the system may prove unexpected or inadequate to the user. 

As evaluation progresses, the customer learns more about the proposed system and his own 

needs. At the same time, the developer learns about the way the customer conceives the 

system. The prototype becomes an effective communication medium which enables the two 

parties to learn about each other, without requiring them to have an in-depth knowledge of 

each other's fields. The feedback obtained from the evaluation phase must be studied, 

recorded and used judiciously to improve the prototype. 

The prototyping process usually involves a number of evaluation seSSIons 

[Naumann82]. After each session, the prototype is modified in the light of the experience 

gained from its use and then subjected to further evaluation. This process is carried out 

iteratively until the prototype meets the objectives. The time between the iterations is 

extremely important. Good, timely feedback is essential for productive learning 

[Henderson82] . 

2.5 BENEFITS AND DIFFICULTIES OF PROTOTYPING 

The value of the prototyping approach and its suitability for use in software 

development may be assessed by comparing its advantages against the difficulties it may 

cause. The advantages may be summarised as follows: 

• 

• 

• 

• 

Prototyping enables one to cope with fuzzy requirements [Bally77]. 

A prototype system nlay be used as a teaching environment. This facilitates user 

training alongside development. Also, users will not be frustrated while waiting for the 

target system [Gomaa81]. 

A prototype facilitates effective communication between the developer and the user. 

Prototyping gives the user the opportunity to change his mind before committing 



2R~~S~~nProw~~---------------_______ ~17 

• 

• 

• 

• 

• 

• 

himself to the final system [Groner79]. 

Prototyping enables the low-risk development of computer systems to be more feasible 

[Som081]. 

Prototyping enables a computer system to be gradually introduced into an organisation 

[Hawgood82]. 

Prototyping transforms the software development process into a learning process 

(Gomaa83]. 

Prototyping has the effect of increasing the chance that a system will be more 

maintainable and user-friendly [Somo81]. 

Prototyping-can reduce the cost and time of development [Oodd80, Naumann82]. 

Prototyping encourages users to participate in the development process and improves 

their morale [Gi1l82, Earl78]. 

Prototyping has also its pitfalls and difficulties; these are: 

• When carried out in an artificial environment which does not match the final user 

environment there is a chance that users could miss some of the shortcomings. 

• The 'model effect' [Bally77] or 'tunnel vision' [SoI84] might result in inappropriate 

conclusions being derived from a prototype 

• Iteration might not be easily accepted by software designers as it requires the 

discarding of their own work [Hawgood82, Ramamoorthy86]. 

• There is a danger that the prototyping process could converge to a set of requirements 

too quickly, missing some essential points [Henderson82]. 

• Resource planning and management can be difficult [Alavi84]. 

• It may be difficult to keep system documentation up-to-date. 

Although there is an increasing body of evidence that prototyping has positive 

implications for the process of software development, a large part of the software community 

still remain sceptical. Prototyping is not accepted as readily as other engineering disciplines. 

One reason for this is that software education and training is still strongly based on the 

conventional model of software development. Another reason is that the prototyping 

approach still lacks a coherent methodology [Boehm83]. While the fonner can be solved by 

updating software courses, the latter can only be solved by further research. The research 

presented in this thesis is a step towards the latter. 



C1hSlpteJr 3 TECHNIQUES OF PROTOTYPING 

A lillie inaccuracy sometimes saves tons of 
explanation. 

- Saki 

In this chapter we describe a number of technical approaches to prototyping. These 

techniques invariably aim to achieve the same goal - the quick and cheap construction of 

working prototypes - but vary in the way they go about doing this and the applications for 

which they may be suitable. 

A recent view of software development is that the processing and user interface of a 

system should be regarded as separate entities and designed as such [Draper85, Hagen85]. 

This view is adopted here by classifying the technical approaches to prototyping to those that 

are relevant to prototyping the functional aspects of a system and those that are relevant to 

user interface prototyping. This classification, however, is not a clean cut; some of the 

techniques are applicable to both categories. Where that has been the case, we have used a 

further criterion - the frequency of use in each group. 

3.1 FUNCTION PROTOTYPING 

An important aspect of any computer system is its functional behaviour, i.e. what it 

must do. This is normally described by a functional requirements specification document, 

produced by either the developer or the customer. Waters [Waters79] provides a useful 

check list of technical facts that must be recorded in such a document. He uses this list to 

evaluate the completeness of a number of specification languages and concludes that none is 

even 40% complete. There is also empirical evidence [Bonet84] that once development 

progresses functional requirements may change and expand considerably. For example, in 

the case of the project reported in [Bonet84], the requirements expanded by a factor of 5, but 

were easily controlled by employing a prototyping approach. All this evidence points to the 

importance of including the functional aspects of a system in a prototype. This section 

discusses some of the technical approaches to prototyping these aspects. 



3 Techniques of Proto typing ------------------------ 19 

executable specifications 

A promising approach to rapid prototyping is the executable specification approach 

[McGowan85]. Here, the basic idea is that if a specification language is formal and has 

operational semantics then it is possible to construct a system that can execute it directly. 

One attraction of this approach is that it can eliminate the cost of producing a prototype 

altogether since the specification of a system has to be produced anyway. 

Fonnal specification techniques can be broadly divided into two categories [Liskov75, 

Claybrook82]. The first category is based on writing a specification as a set of axioms 

[Hoare73, Guttag77, Furtad085]. Axioms may be written as algebraic equations which, 

when treated as rewrite rules, can specify the operational semantics of the specification. For 

example, an unbounded stack with three operations of NEW_STACK, PUSH and pOP may be 

specified as: 

NEW STACK: --> Stack 
PUSH: Stack, Element --> Stack 
POP: Stack --> (Element I Undefined) 
POP(NEW_STACK(» = Undefined 
POP(PUSH(stk,elem» = stk 

Where the first three lines specify the syntax of operations and the last two lines specify their 

semantics as axiom. This technique has been employed in the OBJ specification language 

[Goguen79]. Systems now exist which can translate OBJ specifications into executable code. 

Similar ideas have been used in the language NPL, its successor HOPE [Burstall80], and also 

in CLEAR (Burstall81] and SPECINT [Darlington83]. Virtually all these languages allow the 

axioms to be written as conditional as well as pure equations [Drosten84]. 

The second category of fonnal specification techniques is the abstract model approach. 

This is based on specifying the functions of a system in terms of abstract mathematical 

objects such as sets and functions. The above stack problem, for example, can be specified 

in an abstract model-oriented method such as VDM as: 

Stack = Element-list 
NEW STACK: --> 

post(stk,stk') == stk' = <> 
PUSH: Element --> 

post(stk,elem,stk') == stk' 
POP: --> Element 

pre(stk) == stk /= <> 
post(stk,stk',res) stk' 

<elem> I I stk 

tl stk & res hd stk 



3 Techniques of Proto typing ------------------------ 20 

Where a stack is modelled by a list and each operation is specified by predicates on its 

arguments, result, and the stack. Typical specification languages in this category are 

described in [Jones80a, Silverberg81, Claybrook82, Sunshine82, Morgan84, Beichter84, 

Berzins85]. Examples of related executable specification systems are described in [Balzer82, 

Feather82, Urban82, Henderson84, Belkouche85, Kemmerer85, Lee85]. 

Henderson and Minkowitz [Henderson86b] provide an excellent comparison of these 

two categories in the context of executable specifications. They conclude that the differences 

between these methods are more artificial than real, and illustrate how functional 

programming could form a suitable basis for both. Similar ideas have also been expressed in 

[Ardis86]. 

There are two potential difficulties in making a specification language executable. 

First, mathematical objects such as infinite sets cannot be represented in finite store and have 

to be restricted to finite representations. Second, very implicit constructs cannot be easily 

dealt with and often need to be replaced by more explicit constructs to facilitate execution. 

Although these problems have no simple solutions, they do not diminish the usefulness of 

executable specifications. Once a means of execution is available, the work involved in 

preparing a specification for execution is usually very small [Tavendale85]. 

Symbolic execution [Cheatham79a, Danenberg82] has also been suggested as a means 

of both verifying and animating formal specifications. Symbolic execution is a term applied 

to the execution of programs in a form which produces algebraic rather than numeric values. 

For example, the fragment of Pascal program: 

s:= 1; 
for j:=l to 5 do 

s:= s*a[j]; 
writeln(s) ; 

will, when symbolically executed, produce the algebraic expression: 

a [lJ *a [2] *a [3] *a [4] *a [5] 

rather than a numerical product. This approach has the advantage of addressing the class of 

all possible implementations for a specification. Discussions of this type of execution to 

produce prototypes can be found in fGuttag78a, Cohen82, Feather82a]. Unfortunately, 



3 Techniques of Prolotyping ------------------______ 21 

symbolic execution suffers from many problems that are only likely to be solved in the very 

long term. For example, the symbolic execution of anything but unrealistically small 

specifications produces an overwhelming amount of symbolic print-out. Consequently, it is 

unlikely that this technique will play any significant part in software prototyping in the 

future. 

To summarise, even though there are a number of difficult research problems 

outstanding, there are a number of advantages associated with prototyping by means of 

specification execution. Apart from being intellectually appealing, this technique ensures that 

a precise level of documentation is always available to the developer. A specification 

gradually evolves towards user requirements and, at each stage, a precise description of the 

system is available rather than being buried in the working detail of a mocked up prototype. 

Another advantage is the low cost of producing a prototype; little extra work is normally 

required after a formal specification has been produced. 

very high level languages 

Very high level languages (VIll...L) are programming languages in which it is possible 

to express complicated operations in a small amount of written program code [Podger79]; 

they can offer significant gains in increased productivity at the expense of inefficiency in 

terms of increased running time and storage needs. For this reason they are valuable tools 

for prototyping. Some of the relevant features of VIll...Ls are: 

• 

• 

• 

• 

• 

They are interpretive and interactive; a user can interact with such languages in 

real-time. 
They offer a rich set of objects together with numerous operations on these objects. 

The language notation is short and concise and usually very expressive. 

They are normally supported by powerful software environments and debugging 

facilities. 
Because of their extensIve run-time checks, they are more productive than 

conventional languages. 

One language that has been advocated for prototyping more than any other is APL 

ITavolat0841. The basic object in APL is the array and is supported by a large number of 



3~~~~~~~~~--------------------____ n 

powerful operations. Most APL systems also provide flexible filing systems and a report 

fonnatting facility which makes them suitable for prototyping commercial data processing 

applications. Although APL programs are very concise, they can be quite cryptic and hard to 

read. Thus, APL is only advisable for throw-away prototyping [McLean76]. A typical use of 

APL for producing a throw-away prototype for a large commercial system is reported in 

[Gomaa81]. 

LISP [Wilensky84] is another VHLL that has been used for rapid prototyping (see for 

example [Heitmeyer82]). The language itself has a good reputation for very high productivity 

[Sandewa1l78]. Also, some very powerful programming environments have been built 

around LISP and, although primarily conceived as a language for artificial intelligence, it has 

a number of attractive features making it suitable for rapid prototyping. Amongst these, the 

uniform treatment of data and programs as lists, a powerful macro facility, and highly 

interactive features may be named. 

PROLOG [Clocksin84] has also been advocated as a rapid prototyping tool 

[Leibrandt84]. This language is representative of a recent development in programming 

techniques known as logic programming [Kowalski79] which employs a restricted fonn of 

logic to express an algorithm. Currently the language does not enjoy as much popularity as 

other VHLLs as a medium for prototyping. This is due to poor PROLOG programming 

environments [Venken84] and partly because PROLOG is still evolving and a number of 

important technical and language issues have remained unresolved. However, its underlying 

structure makes it a particularly useful current tool for prototyping database and expert 

system applications. 

Two other VHLLs which have been used for prototyping are SETL and SNOBOL. SETL 

[Kennedy7S] is a programming language which is based on set theory. It has been used in 

prototyping the first approved compiler for the American Department of Defense language 

Ada [Kruchten84]. SNOBOL [Griswold71] is a long-established programming language used 

for nlanipulating character strings. Zelkowitz [Zelkowitz80] reports on its use in prototyping 

a language processor. 

VHLLs require rather large run-time environments that can consume inordinate amounts 



of storage space. This makes them unsuitable for implementing a final product. They also 

tend to be many times slower than conventional high level languages. However, this does 

not diminish their utility for rapid prototyping as time and space considerations are often of 

little concern. 

Being real-time and highly interactive, Vill..Ls enable efficient experimentation with and 

modification of prototypes; almost a mandatory pre-requisite for prototyping. However, no 

single VHLL is suitable for all prototyping tasks. Instead a choice should be made by 

considering which language is suitable for which application domain. For example, if the 

application in mind is an expert system then APL would be a poor choice while PROLOG or 

LISP would match the application domain more naturally. 

application oriented very high level languages 

Application oriented vary high level languages (AHLL) are languages that provide 

significant savings in implementation time by providing facilities concentrating on a specific 

application domain such as cost accounting or stock control [MartinS2]. These languages are 

embodied by systems that are either interpretive or program-like. An interpretive system is 

one in which the user provides a description of an application and the system responds to 

user requests by performing the desired functions through interpreting the application 

description; such systems are often known as application generators. A program-like system 

is one in which the user provides a high level program-like description of an application and 

the system translates it into a program in a conventional programming language; such 

systems are often known as program generators [LuckerS6] and the language used is usually 

referred to as afourth generation language [ReadSl]. 

Application generators are highly parameterised and are used to model an application 

through adjustment of these parameters. The basic idea behind these systems is that if an 

application domain is well-understood then it is possible to provide systems that can cater for 

all possible (or at least the most common) functions that would be used in that application 

domain. 

Prywes and Pnueli [Prywes831 describe a program generator which is based on a 



3 Techniques of Prolotyping ------------------------ 24 

non-procedural language [Leavenworth74] called MODEL and is aimed at commercial DP 

applications. A MODEL program simply consists of a description of data items and a set of 

equations which describe interrelations between the data items. This description is then 

translated into a PL/l or COBOL program. The description is usually compact due to 

avoidance of input/output detail and the detailed processing that is to occur. Because of this, 

MODEL programs tend to be 5-10 times shorter than their equivalent COBOL or PL/l 

programs. Furthermore, MODEL's comprehensive error checking is a major factor in 

increased productivity [Tseng86]. The use of MODEL by an accountant, with limited 

computing background, to generate an accounting system is described in [Cheng84]. 

Another typical AHLL is HIBOL [Mittermeir82a]. It differs from MODEL, in that it is highly 

interactive. It allows the interactive definition of business forms and provides facilities for 

interfacing to a database. 

By restricting themselves to small application domains, AHLL systems can achieve 

high efficiency. As a result, these systems have also been used for producing finished 

products. In addition, since they facilitate rapid development, they are able to support 

evolutionary prototyping. The use of such systems for this method of prototyping is detailed 

in [Canning81]. This reports on the development of a system where the final product 

contained about 13,000 lines of code most of which was produced by a program generator 

with the whole development process taking just six weeks. 

An attractive advantage of AHLLs is that they can be used by staff with little computing 

experience. The major disadvantage of AHLL systems is their very limited scope. They are 

useful for such applications as accounting, payroll, and banking where the application 

domain is well-understood and where there is a wealth of existing implementation history 

and expertise [Ramamoorthy84]. 

functional programmIng languages 

Ever since its early days, computing has been dominated by procedural languages. 

Such languages allow the programmer to explicitly retrieve data from areas of store, carry Ollt 

some operation such as addition or multiplication on the data, and then deposit it back into 



3 Techniques of Prototyping ------------------______ 25 

store again. Procedural languages such as FORTRAN and COBOL have dominated data 

processing since the nineteen fifties. However, a number of computer scientists have recently 

pointed out three serious drawbacks with such languages [Backus78, Stoy82]. First, they 

have become over-complicated. Second, they are unsuitable for implementing software on 

the multi-processor machines that have been made possible by advances in VLSI technology. 

That in order to take full advantage of multi-processor architectures some very painstaking 

and error-prone programming is required. Third, programs expressed in procedural 

languages are mathematically intractable; it is almost impossible to reason easily about the 

functionality of large, realistic programs. 

As a reaction against the disadvantages outlined above a new generation of functional 

programming languages [Henderson 80, Darlington82] have been designed. The impetus 

towards their development has been the emergence of new 'fifth generation' multi-processor 

architectures. Typical functional languages are SASL [Turner79], MIRANDA [Tumer85], and 

ML [Gordon79]. The prime attraction of these languages is their conciseness; functional 

programs tend to be much smaller and easier to develop than corresponding conventional 

programs. An example of the conciseness that can be achieved is shown below. It shows a 

MIRANDA program for taking a finite list of objects and returning the set of all permutations 

of the list. The corresponding procedural program, expressed in a language such as 

Pascal,would occupy at least ten lines of code. 

pe rms [] = [[]] 
perms x = {a:pl a<-x; p<-perms(x--[a))}. 

Functional programming languages are also a medium for a technique known as 

transformational programming [Darlington76, Darlington81a, Bird84, Barstow85]. This 

involves a developer producing an extremely concise program for an application which 

would be very inefficient in tenns of memory space and processing time. This program 

would then be gradually transfonned into a working system by the process of replacing 

inefficient parts by more efficient facilities of the functional language used. This obviously 

has important implications for evolutionary prototyping. 

Functional programming languages are still in their infancy, and many research 



3~~~~~Pro~~~---_____________________ ~ 

questions remain unresolved. Consequently, their scope as a prototyping tool has yet to be 

explored. However, given promised developments in fifth generation hardware technology 

over the next decade, functional programming should become an indispensable medium for 

prototyping. 

the tool-set approach 

Within the context of software prototyping a tool can be defined as a program that aids 

the rapid construction of a prototype system. A prototyping tool-set [Glass82] is an 

environment offering a collection of such tools and a support facility for combining and 

integrating them quickly and easily. 

The most well known tool-set is the UNIX operating system [Boume83]. Although it 

was not originally designed for the purpose of prototyping, UNIX offers features that make it 

suitable for this purpose. The UNIX approach is based on providing a large number of tools 

[Be1l79] that include various language processors, analyser generators, filters, report 

fonnatters and many others. The most significant feature of the UNIX tool-set is a unifonn 

and clean common interface. The common interface is called pipe and allows the output of 

one tool to be passed to the input of another tool. Furthennore, the more sophisticated tools, 

such as LEX and Y ACC which can quickly generate language processors, have all been 

interfaced to a common programming language (C). 

Prototyping in UNIX often means breaking a problem down into a number of steps 

where each step is realised by a tool [Kernighan84]. The tools are usually applied 

successively to data so that the output from one tool becomes the input to another. The high 

level control which detennines the flow of data is obtained through a program known as the 

shell which is a programming language in its own right. In UNIX, the shell acts as glue, 

joining the tools together with minimal effort. To give an example, consider a program which 

processes a file of employees, where each employee is represented by a record consisting of 

his or her name, salary etc., and produces a sorted file of those employees earning more than 

£ 1 0000. It may be implemented as the following shell procedure: 

1 I k ' $2 >- 10000' I sort +0 -1 > high earnings cat emp oyees aw - -



3~~~~~~~~~-----------------_______ V 

where the vertical bars are pipes and> writes the output to a file. A number of projects which 

have used the UNIX tool-set approach are discussed in [Gehani82a, Olsen83, Gray85]. 

Van Hoeve and Engmann [VanHoeve84] describe a tool-set called TUBA which is 

specifically designed for the rapid prototyping and development of business application 

programs. TUBA is built around the programming language Simula-67 [Britwistle73]. It 

provides facilities for screen fonnatting and for this purpose it uses a data dictionary to store 

the pictorial description of objects manipulated and displayed by the system. 

reusable software 

The relevance of reusable software to rapid prototyping is obvious. If a number of 

useful modules are available then it is possible to produce a crude, but rapidly constructed, 

version of a system by joining these modules together. Since the emphasis in prototyping is 

on ease and speed of construction, reusable modules must have some specific properties. 

First, and most importantly, they must all have a simple and clean interface [Kemighan78, 

Meyer82]. Second, they should be highly self-contained; i.e. they should not be dependent 

on any other module or data structure as far as possible [Pamas72, Ha1l86]. Third, they must 

provide some very general functions [Polster86]. Good documentation is, of course, vital. 

An absolutely minimal documentation standard would insist on a description of each 

module's interface, function and error conditions. 

Reusing old modules is not a new technique; it has been practiced in certain application 

areas for a very long time. These modules are usually provided in pre-compiled form in a 

library. The widely-known NAG library of general purpose numerical analysis subroutines is 

a good example. The domain of applications that have used reusable modules has been very 

limited. The reason being that not many good general purpose libraries exist. However, the 

high cost of software development is now providing an impetus to research in this area. This 

research has included the use of very high level programming languages [Cheng84], the use 

of a functional programming language to control libraries written in Ada [Goguen841. and 

the transformation of programs written in one language to another language [Boyle84] or to 

the same language [Cheatham84]. Recent practical experiences with developing systems 



3 Techniques of Proto typing ------------------------ 28 

from reusable software are reported In [Lanergan84, Matsumot084, Litvintchouk84, 

Polster86] . 

Since applications vary considerably from developer to developer, it seems reasonable 

to suggest that each developer should put serious effort into collecting reusable modules 

[Neighbours84], even though the tight requirements for reusable modules may require a 

change in a developer's design practice. However, this change should not conflict with good 

design practices and is, in fact, a strong pre-requisite for good design. A number of criteria 

for decomposing systems into modules have been advanced [Pamas72, Parnas85]. Much 

stress is placed on the importance of information hiding and that the design process should 

start with considering difficult design decisions, especially those that are likely to change 

with time. Each such decision is then hidden by means of a module. As Parnas 

demonstrates, this not only results in a clean design but also produces a set of highly 

independent modules where each has a well-defined function. 

Although program code has normally been the medium for writing reusable modules, 

the ideal medium is a software design notation [Kant81]. The most serious problems that 

have occurred in employing reusable software have been connected with implementation and 

programming language details [Balzer83]. A machine-independent software design which 

has been precisely documented does not suffer from such problems and can normally be 

implemented quickly on a wide variety of computers and in different languages. 

3.2 USER INTERFACE PROTOTYPING 

In current interactive systems a large part of the system is devoted to managing 

human-computer interaction. Sutton and Sprague [Sutton78] report that, on average, about 

600/0 of the program code accounts for the user interface. It should not therefore be 

surprising that a major part of a software project effort may be expended on the design and 

implementation of the interface. 

User interface design is an inherently difficult task. There are a number of reasons for 

this. First, specifying a user interface can be very difficult. Written specifications are even 

less helpful when compared to their use in specifying functionality. There is always a lkfll1itc 



need to be able to visualise the appearance of a system [Lenorovitz77] and this is exactly 

where written specifications fail. Second, a single system may have a variety of users with 

considerably different backgrounds [Meurs77, Carey82, Kruesi83]. Attempting to design an 

interface which is appealing to all users is not a simple task. Third, the complexity of the 

requirements for a user interface often results in conflicting design goals which necessitate a 

compromise [Shneiderman79]. It is difficult to detect conflicts on the basis of paper studies 

and even more difficult to reach a suitable compromise. Lastly, desirable properties of a user 

interface such as user friendliness and ease of use are highly subjective and are revealed only 

when a system becomes operational [Tomeski75]. 

In the past most computer systems were designed with the assumption that the user 

should adapt to the system. This assumption can no longer be accepted. The majority of 

current computer users are not data processing professionals and are usually casual users 

[Benbasat84, Rich84]. It is, therefore, unreasonable to require all users to spend 

considerable time learning how to use a system, and one has to take novice behaviour into 

account [Good84]. 

The traditional methods of software development have been relatively unsuccessful 

In the design of human-computer interfaces for the following reasons: 

• 

• 

• 

• 

Usually a user interface is not thought of in advance, or not even designed 

[Mills85]. Most design decisions are left unclear giving the designer the freedom to 

decide how the user interface should operate. The designer constructs the interface 

around his own conceptual model which, in most cases, is very distant from the 

user's conceptual model [Hayes81, Dagwe1l83]. 

The issue of user acceptability [Young81, Foley82] is not dealt with adequately; this 

inevitably leads to systems which are hard to use. 

The user interface is a major part of the system and is subject to continuous change 

more than any other part [Munson81]. The need for change is rarely thought of in 

advance. 
It is now well recognised that the user interface should be designed as a separate 

entity from the rest of a system [Olsen83, Edmonds81, Green851. This not only 

eases maintenance but also simplifies the task of providing a number of interfaces to 

h t Thl' s advice is rarely followed Those parts of the svstem t e same sys em. . -
responsible for human-computer interaction are usually embedded so deeply in the 



3 Techniques of Proto typing - ______________________ _ 

system that their modification requires changes on a global scale. 

Proper design of the user interface is such an important step in system development 

that many authors believe that it should be the flfSt part of the system to be designed 

[Hagen80]. The high degTee of uncertainty and the possibility of change are good reasons 

why the design of a user interface should be carried out in an experimental and adaptive 

manner [Edmonds82] and why it should always consider the user model as an important 

issue [Green8l, Norman83, Draper85]. Unfortunately, the design of such interfaces still 

remains more an art than a science [Smith82a, Turoff 82]. There are no well-understood 

procedures that can be followed to guarantee a successful design. Much of what is known 

is in the form of guidelines [James80, Gaines81]. An obvious problem with using such 

guidelines is that they are unmeasurable and subjective [Shneiderman79]. 

The prototyping approach recognises the above difficulties by requiring the design of 

a user interface to be an iterative process involving a large degree of user participation. This 

approach allows the designer to derive a conceptual model that is appealing to a majority of 

users. Actual design of the system only starts when a reliable conceptual model is 

discovered. There are a number of technical approaches which can be used for prototyping 

the user interface. They are discussed below. 

simulation 

One promising approach to the design of human-computer interface is that of 

simulation [Clark81]. It is a powerful means of studying both user behaviour and the 

effectiveness of a proposed system, especially when little experience exists of the technology 

to be used in constructing the interface [Meijer79]. Simulation is especially effective when 

the problem area is ill-structured [Bosman81]. 

An interesting use of simulation is outlined in [Gould83]. It describes an experiment in 

which users were exposed to a 'listening typewriter'. The study was carried out by having 

an operator and a user in separate rooms each equipped with a YOU tem1inal. The user would 

con1pose his letters by speaking through a microphone. User requests would be intercepted 

h h ld carry them out accordingly thus giving the impression that the by t e operator w 0 WOll , '-



3Th~n~~~Prow~~g-----__________________ ~~ 

computer was in control. The aim of the study was to compare user's performance and 

reactions to a listening typewriter as compared with conventional means of composing 

letters. The use of simulation allowed the authors to study aspects such as speech mode, size 

of vocabulary, composition strategy and user experience; most important of all, it enabled 

them to decide whether an imperfect listening typewriter would be of any utility. This study 

is important in the sense that it demonstrated that human factors can be studied very 

effectively through a simple and cheap simulation exercise prior to costly development. 

When carrying out a simulation the first task is to derive a simple model of the real 

system to be developed. This model forms a vehicle for conducting experiments that would 

otherwise have to be carried out on the real system. The purpose of simulation is to gain 

insight into the behaviour of a system and also to evaluate techniques behind the operation of 

a system [Shannon75]. Simulation is a methodology for problem solving and is most 

effective when the real world experiments are too costly and impractical to perform. Some 

authors consider prototyping as a specific instance of simulation [SoI84]. 

formal grammars 

A useful mathematical tool for the specification and design of human-computer 

interaction are formal grammars. These are notations used to describe the syntactic structure 

of various languages. The most commonly used notation is the Backus-Naur Form (BNF) 

which was originally designed for the specification of the syntax of programming languages 

[Naur63]. 

The specification of a human-computer dialogue consists of two parts; the first part is 

the specification of the user input; the second part is the specification of the system's 

response to that input. Using BNF, one can easily specify user input formally and concisely 

(Shneiderman82]. The specification of a system's response to user input is not possible 

without extensions to BNF. Such an extension will introduce semantic actions into a BNF 

description. These actions check the validity of the user input and perform the required 

F 1 a simple mailing system with a single command for sending requests. or examp e, 

documents to users may be specified as: 



<mail> ::= 'send' document 'to' user [send_mail($namel,$name2)] 
<document> - {'A' .. 'Z'}+ [$namel = match] 
<user> ::= {'A' .. 'Z'}+ ($name2 = match] 

where the parts enclosed in square brackets represent the semantic actions. This approach has 

been used in a tool which takes a BNF description of graphical input devices and produces a 

prototype user interface [Hanau80]. A similar, but more flexible approach, is described in 

[Olsen83]. 

If the user interface is based on a simple command language then compiler generator 

tools can be used to prototype the user interface. Such tools have, in the past, enabled 

developers to rapidly produce translators for programming languages from a BNF description 

of a language. One such tool which has proved useful in user interface design is the 

UNIX-based YACC compiler generator [Johnson75]. 

A different and more ambitious approach to the use of formal grammars for dialogue 

design involves what is known as the command language grammar (CLG) [Moran81] which 

describes a user interface at four levels; these being task, semantic, syntactic and interaction 

levels. CLG, although important as an attempt to extend the use of formal grammars, does 

not seem to be immediately suitable for prototyping purposes. It produces very long and 

detailed specifications that are often too complicated to comprehend. Furthermore, no 

automated tools are available to support its use. CLG, however, is a useful conceptual 

framework for the specification and design of dialogue systems [Davis83, Browne86]. 

An interesting use of formal grammars for prototyping has been suggested by Reisner 

[Reisner81] who used formal grammars as a predictive tool to make a pre-development 

comparison of alternative designs. She predicted that certain properties of the BNF description 

of a user interface determine the complexity of the interface. To substantiate her claims she 

performed an experiment that demonstrated the correlation of empirical results of user 

performance with her predictions. Two similar approaches to user interface evaluation using 

formal grammars are described in [Blesser82, Wang70]. 

Formal grarnmars are by no means the ideal tool for dialogue design and prototyping. 

They have a number of problems [Jacob83]. Firstly, for any serious dialogue, the BNF 

description can become very complicated and incomprehensible. As a result, it may be very 



3~~~~~ProwW~-----------____________ ~B 

difficult to decide what event might occur after a series of user actions and vice-versa. 

Secondly, BNF is particularly weak in describing error cases and help messages. Such 

messages must occur at very specific points in the dialogue and their inclusion often requires 

adding further complicated rules to a BNF description which do not seem to correspond to 

any reasonable concept. 

state transition diagrams 

The use of state transition diagrams (SID) for dialogue specification and design was 

first proposed by Pamas [Pamas69]. The concept has also been used for specifying the 

functional requirements of computer systems [Casey82]. An STD is a directed graph 

consisting of nodes and edges. Each node is usually represented by a circle and depicts a 

state of the dialogue. Nodes are connected by edges representing transitions between states. 

With each edge an input stream may be associated indicating that a transition between states 

will occur if the user input matches the specified input stream. 

STDs of this type have been used in the design of lexical analysers, parsers and 

compiler generators [Conway63, Johnson68]. Like formal grammars, in order to be useful 

for dialogue design, some extensions to the STD notation are necessary. Two extensions are 

usually provided [Casey82, Kieras83, Wasserman85]. The first extension allows each edge 

to be labelled with an output message. This message is sent to the user when the associated 

transition takes place. The second extension incorporates semantic actions into an STD. These 

actions are again associated with edges and are invoked by transitions. For example, the 

mailing system described in the previous section can be specified by the following SID: 

* 

* Iscnd_mail($name l,$namc2) 

'A' .. 'Z'/$namc2=maLch 'A' .. 'Z'/$namc l=match 
'LO' 

where a slash is llsed as a separator between user input and corresponding computer action. 

A number of tools have been constructed that convert an STD specification of a user 



3 Techniques of Proto typing ------_________________ _ 

interface into a prototype of the user interface [Wasserman79, Wasserman82a, 

Wassennan82b, Jacob83]. In all these tools a linear textual notation is used for specifying 

STDs. The tools process the specification of a command driven user interface, expressed in 

this notation, and generate a finite state automaton which acts as a prototype of the user 

interface. 

An important characteristic of STOs is that they make the state of a dialogue explicit 

and hence more readable; with fonnal grammars, this information is always hidden and 

usually very difficult to extract. This feature of STOs is very important from the point of view 

of the staff carrying out prototyping [Norman83]. An STO specification is also an 

exceptionally useful aid in the design of error/help facilities [Feycock77]. In an interesting 

study [Guest82] two dialogue design systems were compared. One system, SYNICS 

[Edmonds84], used the formal grammar approach while the other was based on state 

transition diagrams. SYNICS was rejected by almost all the staff who used it; the reaction to 

the other system, however, was positive and was even used productively by non-computer 

experts. 

other formal methods 

There are a number of other formal methods which have been applied to the 

specification and, in some cases, prototyping of user interfaces. One approach reported in 

[Hopgood80] uses production systems as a basis for specifying human-computer interaction. 

Production systems are extensively used in expert systems and are based on situation-action 

or if-then rules [Winston81]. The use of production systems in dialogue design involves 

producing a knowledge base of if-then rules, where each rule associates a predicate over user 

input (and possibly systems states) to a system action in response to that input. 

Although similar in some sense to state transition diagrams, production systems are 

distinguished by the fact that they avoid specifying I/O order. Interesting enough however, an 

STD can always be mapped to an equivalent production system easily. 

Formal functional specification notations have also been applied to dialogue 

'f' . E I s of these are given in fFeather82b, Sufrin82. Sufrin86, Cook86, speci IcatlOn. xamp e 



3 Techniques of Proto typing ----------------------- 35 

Meandzija86]. Chi [Chi85] provides an interesting evaluation of the use of four fonnal 

notations for dialogue specification which includes both algebraic and model-oriented 

methods. He demonstrates that, while these notations are capable of specifying interaction, 

their use is difficult and time-consuming. This is not surprising, as these notations were not 

originally invented for the purpose of dialogue specification, and fall short of many useful 

dialogue-oriented features. Indeed, what they lack most is a suitable underlying model for 

specifying interaction. 

One such model is described in [Alexander86] and is an extension to a current fonnal 

specification and prototyping notation, called ME-TOO [Henderson86]. This model is based 

on the notions of dialogue events and finite state machines, and uses a LISP-like 

read-eval-print concept to model interaction. It retains the functionality of ME-TOO and, 

having been based on an executable notation, it is capable of prototyping human-computer 

interaction. 

Another method is described in [Silbert86] and is based on the object-oriented 

programming paradigm. In this model a user interface is designed as a network of objects of 

pre-defined classes which depict different views of the dialogue and which communicate to 

one another by passing messages. The model is primarily intended for graphical user 

interfaces but is general enough to be applicable to other applications as well. 

screen generators and tools 

The appearance of the screen display is usually of great importance to a user. The 

traditional methods of screen design usually rely on producing paper drawings of screens. 

There are two difficulties with this approach. First, the drawings can take considerable time 

and effort to produce. Second, experience has shown that what seems to be acceptable on 

paper appears very different when displayed on a YDU screen. Software developers now 

recognise that the best way to reach an agreement on screen layout is by actually producing 

them on a VDU and carrying out a repeated process of modification until the user agrees with 

the presentation. However, programming such screen displays is a time-consuming and 

expensive task and can only be economically carried out by means of prototyping tools. 



3~~~~~~wW~g-----___________________ ~ 

Screen prototyping tools fall into two categories. The first category is based on 

providing a high level notation for screen defmition. This is implemented either by means of 

a processor which converts screen definitions to a prototype version of the screen display 

[Christensen84], or as a package of library routines accessible from a programming language 

[Dixon85, Sa1e85, Kenneth81]. 

The second category makes use of sophisticated screen editors to produce the screen 

layouts interactively [Mittenneir82a], where each time a screen is produced it can be stored in 

a database and subsequently re-displayed. Both approaches allow rapid generation of a 

scenario of the application user interface. A scenario is a way of presenting to the user the 

sequence of events he or she would experience while perfonning some task and is more 

concerned with the presentation than the actual processing behind it. 

The use of scenarios for the design of interactive systems has been advocated as the 

most eloquent way to design a human-computer interface [Hooper82, Mason83]. Scenarios 

usually contain little or no application logic, so the sequence of events occurs in a 

pr-edetennined, fixed order. This, nevertheless, is a very useful concept which allows the 

user to experience a system without the developer committing much resources to 

implementation. 

Mason and Carey [Mason83] have employed these ideas in a systematic way. They 

have devised a technique known as the architecture-based methodology. It takes its name 

from the similarity of the approach to the way buildings are developed; the technique places 

great importance on the external view of a system. The designer starts with an external view 

of the system and works inwards from this. During this process the designer has the 

responsibility of ensuring that the system appearance is both acceptable and understandable 

to the user. The methodology is supported by a tool called ACT/l which rapidly produces 

scenario prototypes of systems. 

In a way, the architecture-based methodology is the reverse of conventional 

approaches to system development where the system grows from inside outwards with its 

be . known only when it is fully constructed. The most significant appearance comIng 

f h· th d I gy 1· S that it ensures that the system appearance is acceptahle to advantage 0 t IS me 0 0 0 , 



the user during the whole of the development process. A limitation of this methodology is 

that it is only suitable for producing interactive information systems. In these systems the 

user interface dominates the entire system and its quality accounts for the quality of the 

system as a whole. The architecture-based approach is representative of a number of recent 

approaches which argue that system development should start with the user interface. Other 

approaches which make use of tools to aid the construction of user interfaces are described in 

{Buxton83, Aaram84, VanHoeve84]. 

language supported facilities 

Another way of prototyping user interfaces is via facilities built into a programming 

language [Shaw83]. These facilities have the potential of eliminating the need for dealing 

with the very low-level detail commonly found in programming human-computer interfaces. 

Almost all current programming languages were designed with an emphasis on batch 

processing rather than interactive computing [Shaw83]. This is evident from the type of 

input/output facilities provided by them; these facilities are usually limited to reading and 

displaying strings and numbers. Modem interactive systems rely on much more flexible and 

powerful concepts of interaction (e.g. windows) [Hagen85]. Therefore, it is not surprising 

that much of the design and programming effort in user interface construction is expended on 

implementing these facilities by employing painstaking, laborious and error-prone low-level 

programming. Early work in this area has been centred around very high level languages. 

Examples include the use of LISP for prototyping command languages [Levine80] and the 

report generation facilities of APL [Tavolat084]. 

There are four types of facilities which are increasingly being used in modern 

interactive systems; these are electronic fonns, menus, overlapping windows and icons. 

Suitable extensions to programming languages would allow the use of these facilities to be 

'specified' rather than programmed [Van Wyk82, Mallgren82]. 

The specification and design of electronic forms using language supported facilities is 

extensively described in [Gehani82b, Gehani83, Ya084, Tsichritzis82]. Language facilities 

for specifying and prototyping icons and menus are discussed in I Brown82, GittinsR4, 



3 Techniques of Pr%typing -----------------_______ 38 

Lafuente78]. Use of windows is detailed in [Teitelman79, Rowe83]. The provision of 

programming language constructs to support abstract input/output tools is discussed in 

[Bos78, Bos83]. 

3.3 DISCUSSION 

It would be useful to compare the techniques described above in tenns of their 

potential application domains and usefulness. This is summarised in figure 3.1. Examination 

of this figure leads us to the conclusion that none of the techniques can, on its own, be 

regarded as a complete and comprehensive prototyping tool. Each technique, while capable 

of capturing some aspects of an application, falls short of being applicable to others. Even 

the ones which have been <;lassified as general have their own problems. In the reusable 

software approach, for example, no matter how many reusable modules we have at our 

disposal, moving to a new application will always require the development of additional 

unforeseen modules. 

TECHNIQUE DOMAIN ADVANTAGE DISADVANTAGE 
executable specs. functionality concise & productive not all specs. are executable 
VHLL language-dcpendent productive often cryptic 
AHLL very restricted very productive very application dependent 
functional PL functionali ty concise often inflexible 

tool-sets tool dependent very productive incoherent 

reusable software general very productive initially expensive 

simulation general early application no general support tools 

formal grammars certain interactions conCIse inflexible 

STD interaction graphical textual notation often cryptic 

screen generators mostly static dialogues productive inflexible 

language facilities language-dependent concise & productive restricted utility 

FIGURE 3.1 A comparison of prototyping techniques. 

Previous researchers have concentrated on devising systems that each support only 

one of the above techniques (see for example [Goguen79, Jacob83, Mason83, Olsen83, 

Prywes83, Shaw83, Cheng84, Turner85].) This in turn has limited the utility of such 

systems for prototyping. The incompleteness of individual techniques and their highly 

different properties suggest that a combination of some of these techniques may be required 

in order to produce a powerful and general prototyping tool. This in fact is one of the major 



3 Techniques of Proto typing ----------------------- 39 

issues that we shall be exploring in this thesis. Our interest, therefore, will lie in integrating a 

number of prototyping techniques so that they will compensate for each other's 

shortcomings. 

The next chapter will describe the combination of techniques that we have adopted and 

a system that implements and integrates these techniques within a coherent framework. The 

combination may seem rather arbitrary and is obviously one of many possibilities. We shall 

show, however, that it is an effective one and that it can accommodate all prototyping 

approaches described previously. 



Chapter 4 THE EPROS PROTOTYPING SYSTEM 

In this chapter we give an ove' f rvlew 0 our approach to prototyping and its application 

to system development. The approach and its methodology are supported by a development 

and prototyping environment called EPROS. In EPROS a system is developed in a top-down 

manner, from the abstract to the detailed. Progress is iterative and cyclic where each cycle 

produces a self-contained description of the system. This description, no matter how abstract 

or how detailed, is always executable and is automatically converted into a working 

prototype. 

4.1 THE APPROACH AND ITS SCOPE 

The EPROS approach is based on utilizing and integrating four technical approaches to 

prototyping (see chapter 3); these are: 

• 

• 

• 

• 

Executable specifications 

State transition diagrams 

Language supported facilities 

Reusable software 

The functional requirements of a system are formally specified in META-IV [Jones80a, 

Jones86]. EPROS automatically translates such specifications into working prototypes. The 

user interface of a system is formally specified using state transition diagrams [Denert77]. 

EPROS provides a textual notation for describing these diagrams which is readily executable. 

User interface development and prototyping is further backed up by language supported 

facilities which have been especially designed to simplify the task of constructing user 

interfaces. Language supported facilities can be readily extended by the programmer through 

a facility called cluster which is also the main tool for reusable software development. 

EPROS supports the three main approaches to prototyping; namely, the throw-away, 

the incren1ental and the evolutionary approach. When used for throw-away prototyping, a 

system is first fOlmally specified and then automatically converted into a prototype. Next, the 

prototype is evaluated by the lIser, whose feedback is used to improve the prototype. Any 



4 The EPROS Prototyping System --------____________ _ 41 

changes to the prototype are carried out by modifying the specification and regenerating a 

new prototype. This process is repeated until the prototype converges to a stable set of user 

requirements, at which time the prototype is discarded and the final system description is 

used for initiating a separate development process. 

When used for incremental prototyping, an overall specification of the system is frrst 

produced (possibly using the throw-away approach.) This specification is refined to generate 

a design which is then frozen. A small subset of the design is selected as the frrst increment; 

this is fully developed and handed over to the customer. The rest of the design is broken 

down into subsequent increments which are developed similarly and handed over to the 

customer one by one. User feedback obtained during this process is used to improve the 

increments. The architecture of the system, however, will remain intact; any requested 

changes will be restricted to the implementation of the increments. 

EPROS is primarily intended to be used for the evolutionary approach. Evolutionary 

prototyping has three important requirements: fast iterations, intennediate deliveries, and 

gradual evolution of prototypes towards the final product. The executable specification 

features of the system cope with the first two requirements. The system also provides 

extensive facilities for the design and implementation of software systems; these support the 

last requirement of the evolutionary approach. Because of this comprehensive support, the 

entire development takes place within the system and is expressed in one notation, i.e. 

EPROL. 

EPROS relies on the use of fonnal methods and notations for two reasons. The first 

reason is the potential of these methods for the automatic and fast generation of prototypes. 

The second reason is the power of these methods in producing clean and flexible designs 

[Jones??, Musser?9, Feather82b, Sufrin82, Morgan84, Berzins85, Minkowitz86, 

Weber86, Ford86]. This is highly crucial and indispensable for evolutionary prototyping as, 

without a good design, modifications and extensions become totally impractical. YOM was 

chosen as the underlying formal method since it is a well-developed methodology and has 

d f 11 . n the development of many non-trivial systems [Hansal7 6, 
been use success u y 1 

Cottan184, Minkowitz86, Bloomfield86]. 



4 The EPROS Prototyping System ---__________________ _ 

4.2 THE DEVELOPMENT PROCEDURE 

Figure 4.1 shows a schematic view of the evolutionary prototyping procedure of 

EPROS. Development always starts with an infonnal specification of user requirements, 

which may be vague, incomplete and unstable. After a preliminary study of the requirements 

a fonnal specification is produced. The first specification may consider only functional 

requirements, or only those related to the user interface, or both. Usually, however, one 

starts with the functional requirements, in which case, they provide a backbone and context 

for fonnulating the user interface requirements. 

The fonnal specification is then converted into a working prototype and is evaluated 

by the user. After a few iterations, which may result in changes and/or extensions to the 

specification, the specification is refined. Each refinement produces a prototype for 

evaluation and more iteration. At some stage, the functional part of the system and the 

dialogue part are integrated. Integration can also take place before the refinement of the 

specification. The issue of when to integrate is really application dependent and is influenced 

by the way the project progresses. However, before integration starts, the user must be fully 

satisfied with the exhibited behaviour of the system. 

The result of integration is a further prototype. Evaluation of this prototype will 

reveal whether a loop back to a previous stage is necessary or not. Once the system is 

integrated, it is repeatedly refined. Each refinement produces a complete delivery in form of a 

prototype. During the refinement process, abstract constructs in the system are replaced by 

more concrete ones. This process continues until the system is in its most concrete form and 

the last prototype may be tuned and released as the final system. 

The development process can also be complemented with formal verification. This is 

not shown in figure 4.1. Verification can be applied to the specification and refinement steps. 

Experience with the methodology, however, suggests that verification is usually 

cost-effective only when it is applied to the top level specification, after it has been evaluated 

and agreed upon. The reason for this is that top level specifications are very abstract and, 

h f t 'f . but the more the system is refined the harder verification becomes. t ere ore, easy oven y, 



4 The EPROS Prototyping System ----------___________ _ 43 

Also, errors is the top level specification are much more cost! y to correct than those in the 

refinements . 

. - - - - - - - -, 
: prototype 14 
• --------, 

It-------, 
• , prototype ~ , , refinement 
L. _______ .. 

integration 

specification 

refinement 

,--------" , 
~ prototype , , , , 

.. --------

...-------, , 
~ prototype , , 

L _______ ~ 

,--------' 
_____________ ~ prototype , 

L-_--.-_---J '- - - - - - --' 

refinement 

____ ---"l1li 
, final , \ 
, prototype \ L _______ t 

,-------, , , 
_____________ ~ prototype , , , L _______ _ 

FI GURE 4.1 The euolutionory prototyping procedure of [PROS. 

4.3 THE EPROL WIDE SPECTRUM LANGUAGE 

EPROS is based on a wide spectrum language called EPROL which supports the 

formal specification, design and implementation of software system. EPROL is both a 

prototyping and a development language. It provides facilities for dealing with functional and 

dialogue aspects of a system, and is fully executable. Various facilities of EPROL are briefly 

described below. The syntax of EPROL is fomlally specified in appendix A. For a much more 

cOlnprehensive description of the system and its language see the user manual 



4 The EPROS Prototyping System ---__________________ _ 
44 

[Hekmatpour86] . 

functional specification notation 

The functional specification notation of EPROL is based on META-IV - the fonnal 

specification notation of VDM {Bjomer78]. Specifications are written using mathematical 

notations and objects such as predicate calculus, sets, lists, mappings, abstract syntax, 

applicative combinators and pure functions. Side-effects are specified by pre- and 

post-conditions over a class of states, in an abstraction called an operation. The main notation 

for specifying functionality is the abstract data type notation; it is used for specifying new 

data types, i.e. those which are not directly available in the language [Rowe83]. 

EPROL provides a number of extensions to the META-IV notation. Amongst these are: 

polymorphic types, operator mapping and operator distribution. 

dialogue specification notation 

Dialogues, in EPROL, are specified by state transition diagrams. The notation for 

STDs is based on the graphical notation of Denert [Denert77], which distinguishes between 

three kinds of dialogue states. These are simple states, complex states and interaction points. 

A simple state refers to a computer action involving no interaction with the user. A complex 

state is an abstraction of an entire STD and may involve interaction with the user. An 

interaction point is where actual interaction with the user takes place. The notation of 

complex states allows dialogue specifications to be modularised in much the same way 

functional specifications are. 

design notation 

The tern1 design, in EPROL, refers to the refinement and modularisation of a 

software system. In addition to abstract data types, four other kinds of modules are available 

for this purpose: 

• Functions which roughly correspond to functions and procedures in modern 

prograrnming languages. These are by nature imperative and can have a hierarchictl 



4 The EPROS Prototyping System ---------------------- 45 

• 

• 

• 

structure. 

Dialogues which correspond to complex states in a dialogue specification. These are 

again imperative and can have a hierarchical structure. 

Forms which are used for defining electronic forms as abstract data types. These are 

non-hierarchical and object-oriented. 

Clusters which provide a powerful mechanism for extending the base language, 

introducing new abstractions and designing reusable software modules. Clusters have 

syntax driven interlaces and can also have a hierarchical structure. 

The rules for the use of the above modules in hierarchical design are depicted by figure 4.2. 

Directed arrows should be read as 'may contain.' 

FUNCTION 

CLUSTER 

FORM 

fiGURE 4.2 Module containment in EPROl. 

implementation notation 

The implementation notation is based on a hybrid of C and Pascal, and is strongly 

typed and structured. Notably, all the constructs of META-IV are also supported by the 

implementation notation. So, the notation can be purely applicative, purely imperative, or a 

mixture of the two. 

4.4 THE ARCHITECTURE OF THE SYSTEM 

Th h
· f EPROS l·S shown in figure 4 3 The system is partitioned into 11 e arc Itecture 0 . . 

. C t I to the system is the EPROl compiler which implements the 
mdependent components. en ra 

. .. fd··d d· t th ee maJ·or partitions which in tum cover 
EPROl language. The compIler IS Itsel IVI e 1Il 0 r • , 



4 The EPROS Prototyping System _____________________ _ 
46 

the functional specification, the implementation, and the dialogue notations. These 

components are further modularised in a way that reflects the modularisation of the notation. 

This open architecture has the advantage that the notation can be upgraded during the lifetime 

of the system with minimum amount of effort. Appendix B describes an example which 

illustrates the use of the EPROL compiler. 

Lisp 
compiler 

GG .. .. 
.. # 

~ 
, .. .. .. 

.. # .. .. 
.. # , .. 

L..-_~_:m_R_~_·l~_r--J - - - - -- -- - -I m~~ I ... ~----..... {~, 
.. .. , .. , .. .. .. .. .. .. .. .. .. , .. , .. 

" .. " .. 
r---A-b-s .... tra-c-t"-o r.~ 

machine ~ 
.. " .. " .. " .. .. .. , .. ' .. " .. " .. .. 

.~ ." 
---------------I~~ I Ex~:~r 1 ... ~I----... e~&~~~~~:~:~~~I>!...~, 

, .. 
" .. " .. .. .. , .. , .. .. .. 

" .. " .. .. .. 
r----.;."---. .. '-_ 

I/O 
subsystem 

flGUR[ 4.3 The architecture of [PROS. 

Window 
manager 

The second major part of the system is the interpreter, which sits directly on top of the 

compiler. The interpreter allows direct, interactive access to EPROL. The style of interaction 

is very much like a LISP environment, with the following exceptions: 

• Two interaction modes are provided. The first, the expression mode, restricts the user 

to the functional specification notation. Computations causing side-effects are strictly 

prohibited in this mode. Also, the result of any interactively typed expression is 

inlmediately displayed (as in LISP.) The second interaction mode, the statement mode, 

allows any form of computation. The display of end-results in this mode is 

intentionally avoided; these may be optionally displayed using explicit I/O statements. 



4 The EPROS Proto typing System --------_____________ _ 
47 

• The interpreter provides an interface to the symbol table of EPROL. This means that the 

user can find out what is currently defined. The interface also allows the user to 

remove unwanted definitions. Objects can be referred to either individually (by 

specifying an object's name), or collectively (by specifying a category, e.g. 

FUNCTIONs, CLUSTERs, etc.) The notation used for displaying objects is that of 

EPROL, and is handled by a dedicated pretty-printer. 

U sing the interpreter, the user can interact with an already compiled EPROl file, or 

alternatively, create his own definitions. 

The interpreter has direct interface to four other components of the system: the help 

subsystem, the tools, the abstract machine, and the libraries. The help subsystem provides 

interactive on-line help on a variety of topics, which include system commands, interpreter 

commands, and all syntactic components of the EPROl notation (e.g. operators.) 

The tools part consists of a set of pre-developed tools. These currently include a 

cross-reference tool for EPROl, a high lighter for the neat display of EPROl files on the 

screen, and a pretty-printer for pretty printing META-IV objects. In addition, new tools can be 

included with considerable ease, without disturbing the overall system. 

The abstract machine part consists of a set of compact and highly optimised routines 

which implement the abstract objects of META-IV (i.e. sets, lists, mappings and trees.) The 

libraries part consists of a set of predefined standard libraries for EPROL. (See appendix C 

for a brief description of each library.) 

Both the abstract machine and the libraries are also shared by the executer component. 

The executer has the role of executing finished products (i.e. ones which have gone through 

design iteration.) This component can be run quite independent of the rest of the environment 

to achieve greater efficiency by avoiding the overhead of unnecessary components. 

The executer is, in turn, interfaced to the I/O subsystem and the window manager, 

which collectively support the dialogue mechanisms of EPROL. Both these are based on an 

internal notation which is hidden away from the user. This has the obvious advantage that 

these components can be changed (possibly in the event of porting the system to a new 

hardware configuration) without actually affecting the EPROl notation. 

The remaining two components of the system (the optimiser and the LISP compiler) 



4 The EPROS Prototyping System --------_____________ _ 48 

deal with the code generated by the EPROL compiler. The optimiser perfonns some 

straightforward improvements on the intermediate LISP code. The LISP compiler is a 

customised version of the standard Franz LISP compiler in the UNIX environment (Le. Liszt.) 

It simply translates the intennediate LISP code into machine code. 

EPROS is implemented as two monolithic programs. The first program (eps) is the 

entire environment and includes all the components shown in figure 4.3. The second 

program (epx) consists of the executor, the I/O subsystem, and the window manager. It is 

intended to be used for running complete systems only. The overall system has the following 

features: 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Compilation speed of approximately 1000 lines of EPROL source per minute. 

Full error detection, reporting and recovery. 

Separate compilation. 

Compiler switches. 

Compiler directives. 

Optional object code optimisation. 

Various useful libraries. 

An extensive interactive synopsis and help facility. 

Various useful tools. 
An interface to the UNIX operating system, allowing interactive execution of UNIX 

commands from within the environment. 

EPROS was developed and runs on a VAX-llnsO computer under Berkeley UNIX 4.2. 

It consists of 412 modules and occupies just under 20,000 lines of code. Two thirds of the 

system was written in Franz LISP; the remaining third, which contains the main bottlenecks 

of the system, was written in C for the sake of efficiency. 

The system itself was developed using an evolutionary prototyping approach which 

consisted of 12 development cycles. Each cycle lasted about 6 weeks, with major reviews at 

the end of every second cycle. The approach proved very effective; although currently a 

prototype, the system matches the quality of a finished product very closely. 



CChalJP~e1r 5 FUNCTIONAL SPECIFICATION 

Abstraction is the only mental tool by 

means of which a very finite piece of 
reasoning can cover a myriad of cases. 

- E W Dijkstra 

The specification of a software system is divided into two parts. The first part specifies 

the functional requirements of the system and is described in this chapter. The second part 

specifies the user interface requirements of the system and is described in chapter 7. The 

notations and methods presented also cover the design stage where decisions about how the 

requirements are to be realised are made. 

As stated earlier, the functional specification notation of EPROL is largely based on 

YOM, a brief outline of which is given below. 

5.1 THE VIENNA DEVELOPMENT METHOD 

VOM is a constructive or abstract model-oriented fonnal specification and design 

method based on discrete mathematics [Jones80, Bjomer82]. The fonnal specification 

language of VOM is known as META-IV and is extensively described in [Bjomer78]. VDM 

only considers the functional specification and development of software systems. Other 

aspects, such as the user interface, have to be developed using other notations and 

methodologies. 

Very briefly, in YOM, a system is developed according to the following steps: 

specify the system form all y. 
prove that the specification is consistent. 
do 

refine and decompose the specification (realisation). 
prove that the realisation satisfies the previous specification. 

until the realisation is as concrete as a program. 
revise the above steps. 

In YOM, a specification is written as a constructive specification of a data type, by defining a 

class of objects and a set of operations to act upon these objects while preserving their 

essential properties; such a data type is known as an abstract data type. A program is itself 

specified as an abstract data type, by considering it to consist of a set of operations on a class 

of states which model the progran1 variables. The notion of state is, therefore, made explicit 



5 Functional Specification _______________________ _ 

in VDM; this is in contrast to other specification methods such as those of the algebraic 

approach. 

A number of data types and constructs are considered as primitives in VDM. These are 

familiar mathematical objects such as sets, lists, mappings, abstract syntax and functions. In 

addition, the notation of first order logic is used extensively. The following sections describe 

these notations briefly. Section 5.6 describes the way abstract data types are specified, 

developed and verified. The chapter ends with an example which illustrates the method in 

practice. 

The actual notation that we shall use below is that of EPROL whose syntax is slightly 

different to that of VDM, but essentially the same in meaning. Certain constructs and notions 

(e.g. polymorphic types) are peculiar to EPROL and do not exist in VDM. 

5.2 LOGIC 

The notation of logic is based on a simple set containing two elements only. These 

elements are TRUE and FALSE. The set is called Boo 1, so: 

Bool = {TRUE, FALSE} 

TRUE and FALSE are often called truth values. Every expression in logic (also called a 

boolean expression or predicate) has a truth value. Logic provides a number of operators, 

usually referred to as boolean operators, for writing predicates. These are: not, and, or, 

implication and equivalence operators, represented by the symbols -, &, I, ==> and <=> 

respectively. The boolean operators have the following meanings: 

-x 
x & y 
x I y 
x -> y 
x <=> Y 

is true if x is false, and false otherwise. 
is true if both x and y are true, and false otherwi~e. 
is false if both x and y are false, and true otherwl.se. 
is false if x is true and y is false, and true otherwIse. . 
is true if both x and y are either true or false, and false otherwIse. 

It follows, therefore, that: 

x ==> Y - -x Y 
x <=> Y == (x & y) I (-x & -y) 



5F~~oMl~u~w~n-------------------------~ 

quantifiers 

Occasionally in logic, we would like to state that a certain predicate holds for various 

values of some variable. This is where quantifiers may be useful. There are two quantifiers 

in logic called the universal and the existential quantifier, represented here by the symbols . A 

and. E respectively. Predicates written using quantifiers are called quantified expressions; 

examples are: 

(.A x £ s: p (x) ) 

(.E x £ s: p(x)) 

where s is a set and p is a predicate over x. The former expression states that for any x in s, 

p (x) is true. The latter expression states that there is a x in s such that p (x) is true. It 

follows, therefore, that: 

-(.A x £ s: p(x)) <=> (.E x £ s: -p(x)) 

-(.E x £ s: p(x)) <=> (.A x £ s: -p(x)) 

A special case of the existential quantifier is the unique existential quantifier represented by 

. E ! ; for example, 

(.E! x £ s: p(x)) 

states that there is a unique x is s such that p (x) holds. 

In the above examples, x is called a bound variable; s is called a constraint; and p is 

called the body of the quantified expression. In general, a quantified expression may have 

more than one bound variable. Such expressions can always be written as a sequence of 

nested quantified expressions with single bound variables; for example: 

( . A Xl' x2' ... ,xn £ s: p) 
<=> (.A Xl £ S: (.A x2 £ s: ... (.A xn £ s: p) ... )) 

5.3 ABSTRACT OBJECTS 

This section briefly describes certain abstract object classes which are used 

extensively in specifications. Each object class will be described briefly, and informally, 

together with its associated set of operators. 



5 Functional Specification ---------------__________ 52 

sets 

A set is an unordered collection of objects with no repetitions. An object in a set is 

said to be a member of that set. A set may be defined explicitly by enumerating all its 

members. For example, 

{Japan, Italy, Canada, Germany} 

specifies a set of countries. Sets which consist of a range of integers may be abbreviated to a 

range; for example: 

{10, 11, 12, 13, 14} = {10:14} 

A set may also be defined implicitly, by defining a general member of the set. For example, 

{sqrt(x): x £ s & is_even (x) } 

specifies the set of square roots of even integers in 8. In general, an implicit set is written as: 

{ e (x 1, ... , xn): p (x 1, ... , xn) } 

where e is an expression called the generator and p is a predicate called the constraint, both 

over variables xl, ... , xn which are called the bound variables. 

The set operators are summarised in figure 5.1 and have the following meanings: 

e £ 8 

sl .S. s2 

sl .P. s2 

sl .U. s2 

sl .I. s2 

sl - s2 

card s 
power s 

union ss 

is true if e is a member of 8, and false otherwise. 
is true if 81 is a subset of 82, and false otherwise. 
formally, s1 .s. s2 <=> (.A e £ s1: e £ s2) 
is true if s 1 is a proper subset of 82, and false otherwise. 
formally, s1 . P. s2 <=> s1 . S. s2 & s1 /= s2 
denotes the union of 81 and 82 (i.e. the set of objects which are either in 8 1, 
or in s2, or both.) 
formally, s1 .u. s2 = {e: e £ s1 I e £ s2} 
denotes the intersection of s 1 and s 2 (i.e. the set of objects which are in 
both sl and 82.) 
formally, s1 .I. s2 = {e: e £ s1. & e £ s2}. . . 
denotes the difference of 81 and 82 (I.e. the set of objects whIch are In 81 
but not in 82.) 
formally, s1 - s2 = {e: e £ s & -(e £ s2)} 
denotes the cardinality of 8 (i.e. the number of members of 8.) 
denotes the power set of 8 (i.e. the set of all subsets of 8.) 
form all y, po we r s = { e: e . s. s}. . . 
denotes the distributed union of 88 (1.e. the umon of all sets In a set of sets 
ss.) 
formally, union ss = {e: (.E s £ ss: e £ s)} 



5 Functional Specification ________________________ _ 
53 

card 
.u. . I. union 

FIGURE 5.1 Summ Bry 0 f set op erBtors. 

Two additional operators are selection and unique selection, represented by and I I 

respectively. These have a similar syntax to quantifiers; for example, 

(! x £ s: p(x)) 

produces an element of s (if any) for which p holds, in a pseudo non-deterministic manner. 

Similarly, 

( !! x £ s: q (x) ) 

proouces the unique element of s (if any) for which q holds. 

lists 

A list is an ordered collection of objects which may contain repetitions. An object in a 

list is said to be an element of that list. Like sets, a list may be defined explicitly by 

enumerating all its elements. For example, 

<Austin, Fiat, Rover, Fiat, Ford> 

specifies a list of cars. Alternatively, a list may be defined implicitly. For example, 

<i: i £ s & (.A j £ {2:i}: i%j /= 0» 

produces the list of all those integers in s which are prime (% is the remainder operator.) In 

general, an implicit list definition is written as: 

<e(xl, ... ,xn): p(xl, ... ,xn» 

and is similar to an implicit set definition. 



5 Functional Specification -----___________________ 54 

The list operators are summarised in figure 5.2 and have the following meanings: 

l[i] 
11 II 12 

hd 1 

tl 1 

len 1 

elems 1 
inds 1 

cone 11 

denotes the i-th element of list 1 (starting at 1.) 
denotes the concatenation of 11 and 12 (i.e. the list consisting of elements 
of 11 followed by elements of 12, in the same order as 11 and 12 and 
having a length equal to the length of 11 plus length of 12.) 
denotes the head of 1 (i.e. the first element of 1.) 
fonnally, hd 1 = 1 [1] 

denotes the tail of 1 (i.e. the list consisting of all elements of 1 except the 
first, in the same order as 1.) 
fonnally, hd 1 I I tl 1 = 1 

denotes the length of 1 (i.e. the number of elements of 1 including the 
repetitions, if any.) 
denotes the elements of 1 (i.e. the set consisting of elements of 1.) 
denotes the set of indices of 1. 
fonnally, inds 1 = {1: len I} 

denotes the distributed concatenation of the lists in the list of lists 11. 
fonnally, 11 = <11,12, ... , In> <=> cone 11 = 111 1121 I ... I lIn 

FIGURE 5.2 Summary of list operators. 

Two additional list operators are map and dist. These have an unusual syntax and are 

used for mapping or distributing an operator (or a function) over a list, where the operator 

(or function) must be unary or binary for map, and binary for dist. Here are two examples 

of their use: 

map(card: <{}, {1,2}, {5}» 
dist(+: <5,10,20» = 35 

<0,2,1> 

Combination of map and dist provides a succinct notation for specification. For example, a 

predicate denoting that the elements of a list of numbers are sorted in ascending order may be 

written as: 



dist(&,<: 1) 

which is equivalent to: 

dist(&: map«: 1)) 

Nested map and dis t applications may be abbreviated according to the following 

conventions: 

map(fl, f2, ... , fn: 1) 
= map(fl: map(f2: ... map(fn: 1) ... » 

and 
dist(f,gl, ... ,gn: 1) 

= dist(f: map{gl: ... map(gn: 1) ... » 

where fts and gts may be operators or functions. 

mappings 

A mapping (or map) is a finite function. It maps the elements of a set, called its 

domain, to the elements of a set, called its range. A mapping can be defined explicitly by 

enumerating how individual elements of its domain are mapped into individual elements of its 

range. For example, 

[John -> 20, Peter -> 12, Steve -> 25] 

maps three persons to their ages. As with sets and lists, a mapping can also be defined 

implicitly. For example, 

[i -> i**2: i £ s] 

maps every number in s to its square. In general,an implicit mapping is written as: 

[ e 1 (x 1, . . . xn) - > e 2 (x 1, . . . , xn): p (x 1, . . . , xn) ] 

The mapping operators are summarised in figure 5.3 and have the following meanings: 

m(x) 
ml + m2 

ml ++ m2 

ml A m2 

m /+ S 

denotes an element of the range of m to which x is mapped by m. 
denotes the mapping which is the result of merging ml and m2 provided the 
domains of ml and m2 are disjoint. 
formally, ml + m2 = [e->f: e £ dom ml & f = ml (e) I 

e £ dom m2 & f = m2(e)] 
denotes the mapping which is the result of overwriting ml by m2. 
formally,ml ++ m2 = [e->f: e £ (domml-domm2) & f = ml(e) 

e £ dom m2 & f = m2(e)] 
denotes the composition of ml and m2 provided the range of m2 is a subset 
of the domain of ml. 
formally, ml " m2 = [e->f: e £ dom m2 & f = ml (m2 (e) ) ] 
denotes the mapping which is identical to m but whose domain is restricted 
tothesets. 



m /- s 

dam m 
rng m 
merge rns 

fonnally, m /+ s.= [e-~m(~):. x £ (dom m . I. s)] 
denotes the mappIng WhIch IS Identical to m but from whose domain the 
elements of the set s have been removed. 
fonnally, m /- s = [e->m(x): x £ (dom m - s)] 
denotes the domain of m. 
denotes the range of m. 
den~tes the distrib.uted merge of ~he mappings in the set of mappings ms, 
proVIded the domaIns of the mappmgs are disjoint. 
fonnally, merge ms = [e-> ( !! m £ ms: e £ dom m) (e) 

: e £ union {dom m: m £ ms}] 

FIGURE 5.3 Summary of mapping operators. 

S.4 ABSTRACT SYNTAX 

Certain elementary domains are predefined in EPROL; these are: 

Nat 
NatO 
Int 
Real 
Bool 
Char 
Str 

- Natural numbers. 
- Natural numbers including zero. 
- Integer numbers. 
- Real numbers. 
- Booleans, i.e. {TRUE, FALSE}. 
- Characters. 
- Strings. 

The notation of abstract syntax allows one to define other, possibly more complex domains. 

An abstract syntax definition consists of one or more abstract syntax rules. A rule has the 

general form: 

which introduces a new domain called dorna in id, denoted by dorna in _ exp L A domain 

expression is an expression consisting of domain names and domain operators. The 



5F~c~MI~u~w~-------------------------9 

operators of the abstract syntax notation are as follows: 

D-set denotes a class of objects where each object is a subset of o. 
fonnally, s £ D-set <=> s . S. D 

D-list denotes a class of objects where each object is a list of some objects in o. 
fonnally,l £ D-list <=> elems 1 .S. D 

01 -> 02 denotes a class of objects where each object is a mappin (T whose domain is a 
subset of 01 and whose range is a subset of 02. b 

01 I 02 
fonnally, m £ (Dl -> D2) <=> dom m .S. Dl & rng m .5. D2 
denotes a class of objects where each ob1ect is either in 01 or in 02 or 
both. J' , 

[0] 
fonnally,d £ (Dl I D2) <=> d £ Did £ D2 
denotes a class of objects where each object is either in 0 or is just the NIL 

object. 
formally, d £ [D] <=> d £ Did = NIL 

Round brackets may also be used in domain expressions for grouping and to enhance 

readability. Two domain definition examples are given below: 

Dl Int-set -> Bool-list-set 
D2 (Dl -> Str) -> (Dl I Int I Real) 

Each object in 01 is a mapping from the power set of integers to the sets of lists of booleans. 

Each object in 02 is a mapping from the mappings which map 01 to strings, to either an 

object in 01, or an integer, or a real. 

Abstract syntax rules may also be recursive (i.e. refer to themselves.) For example, 

D = Int -> [D] 

defines a domain called 0, where each object in 0 is a mapping from integers to either 0 itself, 

or to NIL. 

trees 

The notation so far described does not allow us to define structured objects. An 

structured object is an object which consists of a number of components. The domain of 

such objects is called a tree. These are specified by replacing the = symbol, in an abstract 

syntax definition, by the symbol ::. For example, 

D :: Int, Str-list, Real-set 

defines a tree domain called 0 where each object in 0 has exactly three components. These 

being, in order, an integer, a string list, and a real set. An object in a tree domain is usually 

called a tree branch. A special function called mk may be used to make such objects, e.g.: 



5 Functional Specification 58 

mk-D(l,<"ab","ef">,{l.S}) £ D 

Individual components of a tree domain may be named as shown below: 

D :: .i: Int, .sl: Str-list, .rs: Real-set 

Given this domain definition, individual components of an object in D may be specified by 

adding the component name to the end of an object. For example, let 

then 

d = mk-D(2,<"hi","there">,{1.S}) 

d.i = 2 
d.s1 = <"hi", "there"> 
d.rs = {l.S} 

It is also possible to name only selected components: 

D :: Int, .sl: Str-list, Real-set 

A tree may also be defmed using the following notation 

D = tree Int, Str-list, Real-set 

which is equivalent to 

D :: Int, Str-list, Real-set 

The fornler fonn is useful for defining nested trees, sets of trees etc., in a single abstract 

syntax rule. For instance, 

P = tree .n: Str, .a: Int, .p: (tree str-set, Int) 

is a shorter way of saying: 

P .n: Str, .a: Int, .p: Q 
Q Str-set, Int 

and avoiding the definition of a new domain Q. 

5.5 COMBINATORS 

EPROL provides a number of combinators for use in specifications. These do not 

cause any side-effects; they simply return a value. Each combinator is informally and briefly 

described below. 



5F~~oool~~~wti@ _________________________ ~ 

the let expression 

The let expression is used for naming one or more expressions within another 

expression. The simplest form of a let expression is: 

let id = expr1 in 
expr2 

which means that every occurrence of id in expr2 will be bound to the value of exprl' 

More generally, 

let id1 = expr1 , 
id2 = expr2' 

idn exprn in 
expr 

binds id1, id2 , ... , idn to expr1' expr2, ... , exprn respectively, and in parallel, in expr. 

The let combinator may also be used for naming individual fields of a tree. Consider 

the following abstract syntax definition: 

Student :: .name: Str, .age: Nat, .id: NatO; 

Now suppose st £ Student and that st = ("Phil", 25, 10516) then: 

let (n,a,id) = st in 
n = "Phil" & a = 25 & id = 10516 

is true. In this example n is bound to the first field in the tree (i.e. "Phil ,,), a to the second 

field (i.e. 25) and id to the last field (Le. 10516). 

the if-then-else expression 

The simplest form of a conditional expression is the if-then-else expression. The 

general fonn for this combinator is: 

if bool_expr then expr1 
else expr2 

The overall value of this expression is the value of exprl if bool_ expr evaluates to TRUE .. 

and the value of expr2 if it evaluates to FALSE. 



5F~C~~~«~W~ _________________________ ~ 

the mac expression 

This is McCarthy's expression and has the general fonn: 

mac { 
bool_expr1 => expr

1
, 

bool_expr2 => expr2 , 

which provides a multi-branch conditional expression. The bool_ exprs on the left hand side 

are evaluated in the order they appear. Ifbool expr· evaluates to TRUE then expr. will be 
- 1 1 

evaluated and its value will be returned as the value of the overall mac expression. At least 

one bool_ expr i must evaluate to TRUE. 

the cases expression 

This is similar to the mac expression and has the general fonn: 

cases exprs { 
lexpr1 => rexpr1 , 
lexpr2 => rexpr2 

lexprn => rexprn , 

First expr s is evaluated. Then lexpr's are evaluated in the order they occur. If lexpr i = 

expr s then rexpr i will be evaluated and its value will be returned as the value of the cases 

expression. At least one lexpr i must have the same value as expr s' As a convention, the 

last lexpr may be simply TRUE to ensure this. 

5.6 ABSTRACT DATA TYPES 

To be concise when specifying software systems, one must depart from the elementary 

data types of a specification language and instead 'create' data types which match the 

problem at hand more closely and more naturally. Such a data type is known as an abstract 

data type and is characterised by its private set of operations. 



5F~C~ool~u~w~ _________________________ & 

specification 

An abstract data type is specified by a class of states and a set of private operations to 

act upon the states. It introduces a new data type, where an object of this type can be 

manipulated only through the specified operations. The class of states is denoted by a domain 

usually restricted by a predicate, called the data type invariant, which must be preserved by 

the operations. 

In EPROL, abstract data types are specified by ADT modules. The general structure of 

an ADT module is shown in figure 5.4. 

ADT adt id 
DOM private domain definitions ... 
TYPE 

AUX 
private type clause definitions 
private auxiliary function definitions 

OPS 

private operation definitions 

END adt id 

FI GURE 5.4 The general structure of an RDT module. 

The first three parts in the definition (Le. DOM, TYPE and AUX) are optional. The DOM part 

introduces new domains; for example, 

DOM Product = Pname -> pid; 
Pname = Str; 
pid = Int; 

defines three new domains called Product, Pname and P id. The object class (i.e. class of 

states) for the abstract data type itself must be defined here. 

The AUX part is used for defining new auxiliary functions. Every function defined here 

must have its type clause already defined in the TYPE part. For example, 

TYPE 

AUX 

is disjoint: Int-set, Int-set --> 
is=empty: Int-set --> Bool; 
is disjoint(sl,s2) -- sl .I. s2 = 
is=empty(s) == s = {}; 

Baal; 

{ } ; 

. . . II d' d' , , t and is empt y The domain of a defines two aUXIliary functIons ca e lS_ lS ]Oln _ . 

. ., .}' " dicate over the domain of the function can be restncted by a pre-conditIOn, t l1S IS d pre 



5 Functional Specification ________________________ _ 

function which must hold before the function is applied. For example, a function called max 

which takes a set of integers and returns the largest integer in the set may be defined as: 

TYPE max: Int-set --> Int; 
AUX pre-max(s) == s /= {}; 

max (s) == (! e £ s: (. A e 1 £ s: e >= e 1) ) ; 

where the pre-condition indicates that max is not defined for the empty set. 

If an abstract data type has a data type invariant then it must be defined in the AUX part. 

For example, 

AUX inv-Product(p) == dom p /= {}i 

defines a data type invariant for an abstract data type called Product. 

The last part in an ADT module is oPS and specifies one or more operations for the 

abstract data type. The general structure of an operation specification is shown in figure 5.5. 

Each operation acts upon the class of states of the abstract data type. In addition, an operation 

may take arguments and/or return a result, as in a function. This is specified by the type 

clause of the operation. For example, 

OP: Doml, Dom2 --> Dom3 

specifies that operation OP takes two arguments in Doml and Dom2 and returns a result in 

Dom3. 

OP ID: ... operation type clause ... , 
pre( ... ) == ... pre-condition predicate ... , 
post( ... ) -- post-condition predicate ... i 

private auxiliary function definitions 

END OP ID 

FIGURE 5.5 The general structure of an operation specification. 

An operation IS specified in terms of two predicates called the pre and the 

post-condition. The pre-condition is optional and is assumed to be TRUE if it is not present. lt 

is a predicate over the states and any arguments the operation may take, and specifies a 

condition which must hold before the operation is applied. Alternatively, it may be specifi~d 

as a list of exception clauses, where each exception clause maps a predIcate to an exception 



5 Functional Specification --------------------_____ 63 

name. The overall pre-condition will then be a conjunction of the negation of individual 

exception predicates (see appendix 0.1.) 

The post-condition specifies a condition which must hold after the operation is applied. 

It is a predicate over the states before and after the operation is applied, and any arguments 

and result the operation may take and produce. Consider a general operation OP over the 

states S t with the following type clause: 

OP: Doml, Dom2, ... , Domn --> Res; 

The pre and post-conditions will have the following implicit type clauses: 

pre: St, Doml, Dom2, 
post: St, Doml, Dom2, 

... , 

... , 
Domn --> Boo1; 
Domn, St, Res --> Boo1; 

The position of a parameter in a condition indicates its actual domain. So, for example, 

pre(st,argl,arg2, ... ,argn) == ... ; 
post(st,argl,arg2, ... ,argn,st',res) -- ; 

indicates that 

st, st' £ St 
argl £ Doml, arg2 £ Dom2, ... , argn £ Domn 
res £ Res 

where stand s t' refer to the 'states before' and 'states after' the operation is applied 

respecti vel y. 

In EPROL, a parameter can be replaced by a minus symbol according to the following 

conventions: 

• 

• 

• 

When replacing the 'states before' parameter it implies that we are not interested in the 

value of the states before the operation is applied. 

When replacing the 'states after' parameter it implies that the value of the states will not 

be changed by the operation. 
When replacing any other parameter it implies that the value of that parameter is not 

relevant to the specified condition. 

An operation can also have its own private auxiliary functions. Such functions may appear 

inside an operation specification, just after the post-condition. 



5 Functional Specification _______________________ _ 

refinement 

The initial specification of an abstract data type is written as abstractly as possible 

while ensuring that it captures all the required properties of the problem at hand. The abstract 

data type is then developed by the process of data refinement, whereby it is realised in a more 

concrete form. This process produces a so called representation of the abstract data type. The 

process consists of four steps: 

• 

• 

• 

• 

Find a more concrete class of states for the abstract data type. 

Redefine the data type invariant for the new class of states. 

Find a function which maps each object in the new class of states to its corresponding 

object in the previous class of states. This is called a retrieve function and relates a 

representation to its abstraction. 

Redefine each operation of the abstract data type for the new class of states. 

Refinement is an iterative process which results in successively more concrete 

representations of an abstract data type. It is repeated until the final representation is in a 

sufficiently concrete form. 

The original specification and each subsequent refinement can be shown to be 

internally correct. In addition, one can show that a representation is correct with respect to its 

abstraction. 

verification rules 

VDM provides a number of useful rules for verifying the correctness of abstract data 

type specifications and their refinements. These are directly used in EPROL and are briefly 

described below. For a more detailed discussion of the rules see [Jones80] or [Jones86]. 

Let 0 be an abstract data type, having a class of states S, a data type invariant inv and a 

set of operations P 1, P 2, ... , P n. Operation pi is valid if it preserves the data type invariant, 

i.e. for any s in S: 

pre-Pi(s,args) & inv(s) & post-Pi(s,args,s',res) ==> inv(s') [Rl] 

Let 01 be a refinement of D, having a class of states S 1, a data type invariant in vI and 

, f t' Ql Q2 Qn corresponding to PI. P2, ... , Pn respectively. Also, kt .\ set 0 opera IOns , , ... , 



retr be the retrieve function from Sl to S: 

retr: Sl --> S 

The retrieve function is total over valid states (i.e. states which satisfy the data type invariant 

inv1) if: 

(.A sl £ Sl: invl(sl) ==> (.E s £ s: s retr(sl» & inv(retr(sl») 
[R2 ] 

and S 1 is an adequate representation of S if: 

(.A s £ s: inv(s) ==> (.E sl £ Sl: invl (sl) & s retr(sl») [R3] 

Operation Qi models operation Pi if: 

(.A sl £ Sl: invl(sl) & pre-Pi(retr(sl),args) ==> pre-Qi(sl,args» 
[R4] 

and 

(.A sl £ Sl: invl(sl) & pre-Qi(sl,args) & post(sl,args,sl',res) 
==> post-Pi(retr(sl),args,retr(sl'),res» [RS] 

Proof of correctness reduces to showing that R1 holds for each specification and that R2 -RS 

hold for each specification with respect to its abstraction. 

polymorphic types 

All abstractions so far described such as functions, operations and abstract data types 

required a precise domain specification. This in tum limits their utility. Consider, for 

example, a function called largest which returns the largest set in a set of sets and has the 

following definition: 

largest: Int-set-set --> Int-set; 
pre-largest (ss) == ss /= {}; 
largest (ss) == (! s £ ss: (.A sl £ ss: card s >= card sl» ; 

This function is only valid for sets of integer sets. 

More desirable, and certainly more useful, would be a function which would work for 

sets of sets of any type. Such functions may be defined using polymorphic types ITumer85]. 

The function largest, for example, may be defined polymorphic\y by defining its type 

clause to be: 

largest: *-set-set --> *-set; 



More complicated functions may require more than one polymorphic type. Additional types 

may be specified by * *, * * * and so on. To give an example, suppose we were to define the 

map remove operator / - as a function. It may be defined as the following polymorphic 

function: 

m_remove: * -> **, *-set --> * _> **; 
m_remove(m,s) == [x -> m(x) : x £ (dom m - s)] 

Here * * specifies a type which may be different from the one specified by *, as shown by 

the following applications of ~ remove: 

m remove ( [1->" small" 10->"big" - " 100->"very big"], {10}) 
[1->"small",100->"very big"] 

m_remove((1->{1}, 2->{1,2}, 3->{1,2,3}], {1,2,5}) 
= (3->{1,2,3)] 

In the first example * becomes In t and * * becomes St r. In the second example * becomes 

Int and ** becomes Int-set. Every application of m_remove involves three type 

checkings, as depicted by the diagram below: 

( 3 I 
m remove: * -> ** *-set --> * -> **. I , 

Ll~2~ 

The use of polymorphic types is not restricted to functions. They may also be used in 

operations, abstract data types and other forms of abstraction described in the rest of this 

thesis. Polymorphic types are especially suitable for writing general purpose abstractions, 

which crop up in a variety of specifications, without losing the advantages of type checking. 

5.7 A DEVELOPMENT EXAMPLE 

This section illustrates, by means of a realistic example, how a formal specification 

nlay be developed, refined, evaluated and formally verified in EPROS. The interactive 

evaluation of a formal specification can serve two purposes. Firstly, it can provide a means 

of observing the behaviour of the specified system in order to see whether it is indeed the one 

desired. Secondly, it may serve as a cheap and quick way of detecti ng design errors. The 



5 Functional Specification ------------______________ 61 

example given here exhibits the potential of the approach for both applications. 

problem specification 

The program to be specified is a software tool that records the relationships between 

the modules of a software system. An informal statement of the requirements is given below: 

A program is required which records the uses and used-by 
relationships between the modules of a software system. It should 
allow the user to do the following: 

• Add a module to the system. 
• Delete a module from the system. 
• List what modules a given module may use. 
• List what modules may use a given module. 
• List all recursive modules. 

Let us call this program the 'Cross Usage' program. Our first task is to find a suitable 

object class that can model the problem. Let us call the object class Xusage; it can be 

modelled by a mapping which maps every module in a system to the set of modules it may 

use, I.e.: 

Xusage = Module -> Module-set; 

At this point, we shall not specify the domain Module. Every object in Module is understood 

to correspond to a module in a system. Module, in other words, is the set of all possible 

nlodules in software systems. As an example, consider the following object in Xusage: 

[modl -> {mod2,mod3}, 
mod2 -> {}, 
mod3 -> I}] 

It represents a system which has the structure diagram shown in figure 5.6, 

flGUR£ 5.6 A simple structure diagram. 

where modI may call mod2 and mod3, and mod2 and mod3 may not call any other module. 

Obviously, given that s is the set of modules a module m may call then s must be 



5 Functional Specification ----------------________ _ 

contained in the domain of the mapping, i.e.: 

(.A m £ dom xu: xu (m) . S. dom xu) 

where xu is the mapping. This is specified by the following data type invariant: 

inv-Xusage(xu) == union rng xu .S. dom xu 

Now let us specify the operations of abstract data type Xusage. The first operation is 

very simple; it just initialises the mapping to an empty map: 

INIT: --> ; 
post(-,xu') -- xu' = []; 

END INIT 

The next operation to be specified, adds a module to the system. It will take a module and a 

set of modules that the module may use and adds them to the mapping: 

ADD_MOD: Module, Module-set --> ; 
pre(xu,mod,-) == -(mod £ dom xu) I xu (mod) = {}; 
post(xu,mod,uses,xu') == 

xu' = xu + [m -> {}: m £ (uses - dom xu)] 
++ [mod -> uses]; 

END ADD MOD 

The pre-condition specifies that either the module (to be added) should not be already in the 

mapping or, if it is, it should not be using any other module at the moment. The 

post-condition specifies that the mapping after the operation is applied will be equal to the 

mapping before the operation is applied, merged with an implicit mapping which maps each 

new module in uses to the empty set, and then overwritten by an explicit mapping which 

maps the module to be added to uses. 

The next operation deletes a module from the system: 

DEL MOD: Module --> ; 
pre (xu,mod) == mod £ dom xu; 
post(xu,mod,xu') == 

xu' = [m -> xu(m) - {mod} 
END DEL MOD 

m £ (dom xu - {mod})]; 

Obviously a module to be deleted nlust already be present in the system, hence the 

pre-condition. The post-condition specifies that the effect of the operation will be that all 

occurrences of the deleted module will be removed from the right hand side of the mapping 

and the particular entry for the mcxiule itself will be totally removed from the mapping. 



5 Functional Specification ----------------___________ (J) 

The next two operations are trivial. The first is USES and returns the set of modules 

given module may use: 

USES: Module --> Module-set; 
pre (xu,mod) == mod £ dom xu; 
post{xu,mod,-,ms) == ms = xu(mod); 

END USES 

The second operation, USED_BY, returns the set of modules that may use a given module: 

USED_BY: Module --> Module-set; 
pre (xu, mod) == mod £ dom xu; 
post (xu,mod,-,ms) --

ms = {m : m £ dom xu & mod £ xu(m)}; 
END USED BY 

The last operation produces the set of recursive modules in a system: 

REC_MOD: --> Module-set; 
post(xu,-,ms) == 

ms = {m: m £ dom xu & reaches (m,m,xu) }; 

pre-reaches (ml,m2,xu) == ml £ dom xu & m2 £ dom xu; 
reaches (ml,m2,xu) --

m2 £ xu (ml) I (. E m £ xu (ml): reaches (m, m2, xu) ) ; 
END REC MOD 

The post-condition uses an auxiliary function called reaches which has the following typ 

clause: 

reaches: Module, Module, Xusage --> Bool; 

This function is defined to be local to the operation and returns TRUE if a module can reacl 

another module through a sequence of one or more calls. We observe the conciseness of th 

post-condition: the set of modules rn in the system such that rn can somehow reach itself. 

top 

m.id2 

"'------i bot 1 bot2 

FIGUR£ 5.7 A simple software system. 



5 Functional Specification --------------------------

Having specified our abstract data type the next stage in the development process 

involves the evaluation of the specification. Here, we examine the behaviour of the system 

by executing the specification. The following is a simple evaluation session based on setting 

up and manipulating the system of figure 5.7. The domain Module is assumed to be Str. 

EPROS response is printed in bold. 

epi> VAR x: Xusage;; 
epi> INIT(x); 

/* define x to be of type Xusage */ 
/* initialise x *1 

epi> x; /* check the contents of x *1 
[] 

ADD_MOD (x, "top", {"midI","mid2"}); /* add modules */ epi> 
epi> 
epi> 
epi> 
epi> 

ADD_MOD (x, "midI", {"midI","botl","bot2"}); 
ADD_MOD (x, "mid2", {"bot2"}); 
ADD_MOD (x, "botl", {"top","midl"}); 
x; /* check the contents of x */ 

["bot2" -> {}, 
"mid2" -> {"bot2"}, 
"top" -> {"mid2","midl"}, 
"midl" -> {"bot2","botl","midl"}, 
"botl" -> {"midl","top"}] 

epi> USES(x,"top"); /* list modules that top uses */ 
{ "midl" , "mid2" } 
epi> USED_ BY(x,"midI"); /* list modules that use midI */ 

{"top", "midl","botl"} 
epi> REC_MOD (x) ; /* list recursive modules */ 

{"top", "midl","botl"} 
epi> DEL_MOD(x,"mid2"); /* delete module mid2 *1 
epi> x; /* check the contents of x *1 
["bot2 " -> { } , 
"top" -> { "midl" } , 
"midl" -> {"bot2","botl","midl"}, 

"botl" -> {"midl","top"}] 

Having convinced ourselves that the exhibited behaviour is indeed the one desired, we 

then verify the specification. Since this is the first specification of the system, all that we can 

verify at this stage is validity, i.e. that each operation preserves the data type invariant. 

Theorem 5.1: Operation INIT is valid. 

ProQf: For this operation we observe that: 

SInce 

post(xu,xu') ==> inv(xu') 

inv(xu') inv([]) 
= union rng [] .S. dam [] 

{} . S. {} = TRUE 

From (l) it follows that: 

pre(xu) & inv(xu) & past(xu,xu') ==> inv(xu') 

---- (1) 



5 Functional Specification --------------------_______ 71 

which proves that INIT is valid. 

Theorem 5.2: Operation ADD_MOD is valid. 

Proof: We must show that: 

pre (xu,mod, uses) & inv(xu) & post(xu,mod,uses,xu') => inv(xu') 
Now 

inv(xu') = inv(xu + ml ++ m2) 
where 

ml = [m -> {}: m £ (uses - dom xu)] 
and m2 = [mod -> uses] 

Hence 
inv(xu') = inv(xu + ml ++ m2) 
= union rng (xu + ml ++ m2) .S. dom (xu + ml ++ m2) 

From pre it follows that 

union rng (xu + ml ++ m2) = union rng xu .U. union rng ml ++ m2 

Hence 
inv(xu' ) 

(union rng 
= (union rng 

xu 
xu 

· U. 

· U. 

union rng (ml ++ m2» .S. dom (xu + ml ++ m2) 
uses) .S. (dom xu .U. dom ml .U. dom m2) 

(union rng xu 
(union rng xu 

· U. 

· U. 

uses) .S. (dom xu .U. (uses-dom xu) .U. {mod}) 
uses) .S. (dom xu .U. uses .U. {mod}) 

which is true since using inv(xu) : 

union rng xu .S. dom xu 

and completes the proof. 

Theorem 5.3: Operation DEL_MOD is valid. 

Proof Consider the stronger condition: 

inv(xu) & post(xu,mod,xu') ==> inv(xu') 
where 

inv(xu') == union rng xu' .S. dom xu' 

Now (using post): 

union rng xu' .S. union rng xu - {mod} 

and (using inv): 

union rng xu - (mod} .S. dom xu - {mod} 

also (using post): 

dom xu - {mod} = dom xu' 

From (1),(2) and (3) it follows that: 

---- (1) 

---- (2) 

---- (3) 



5 Functional Specification ----------------------------

union rng xu' .S. dom xu' 
hence 

inv(xu') = TRUE 

which completes the proof. 

72 

The last three operations require no proof since they do not change the states and, therefore, 

are always valid. The complete specification of abstract data type Xusage is shown in figure 

5.8. 

ADT Xusage 
DOM Xusage = Module -> Module-set; 
TYPE reaches: Module, Module, Xusage --> Bool; 
AUX inv-Xusage(xu) == union rng xu .S. dom xu; 
OPS 

INIT: -->; 
post (-, xu') 

END INIT 
xu' = []; 

ADD MOD: Module, Module-set -->; 
pre(xu,mod,-) == -(mod £ dom xu) I xu (mod) = {}; 
post(xu,mod,uses,xu') == 

xu' = xu + [m -> {} : m £ (uses - dam xu)] 
++ [mod -> uses]; 

END ADD MOD 

DEL MOD: Module -->; 
pre (xu,mod) == mod £ dam xu; 
post(xu,mod,xu') == 

xu' = [m -> xu<m)-{mad} : m £ (dom xu - {mod})]; 

END DEL MOD 

USES: Module --> Module-set; 
pre (xu, mod) == mod £ dom xu; 
post(xu,mod,-,ms) == ms = xu(mod); 

END USES 

USED BY: Module --> Module-set; 
pre (xu, mad) == mod £ dom xu; 
post(xu,mod,-,ms) --

ms = {m : m £ dom xu & mod £ xu(m)}; 

END USED BY 

REC MOD: --> Module-set; 
post(xu,-,ms) 

ms = {m : rn £ dom xu & reaches (m,rn,xu) }; 

pre-reaches (ml,m2,xu) -- rnl £ dam xu & rn2 £ dom xu; 
reaches (rnl,m2,xu) == m2 £ xu (rnl) 

END REC MOD 
END Xusage 

(.E rn £ xu (rnl) : reaches(m,m2,xu)); 

fIGUR£ S.B SpecificBtion of BbstrBct dBtB type HusBge. 



5 Functional Specification -----------------________ 73 

refinement of the specification 

Having completed the fIrst specifIcation of the system, the next stage involves refining 

the specification. First we must choose a new, more concrete, object class for the abstract 

data type. A number of possibilities exist; we suggest the following: 

Xusagel = Module -> Cross; 
Cross :: .u: Module-set, .b: Module-set; 

Xusage 1 is the domain of mappings from Module to a new domain called eros s. Every 

object in eros s has two components. The first component denotes the set of modules a 

module may use; the second component denotes the set of modules which may use that 

module. So, for example, the structure diagram in fIgure 5.6 will be represented by the 

following mapping in Xusagel: 

[modl -> ({mod2,mod3}, {}), 
mod2 -> ({}, {modl}), 
mod3 -> ({}, {modl})] 

What we have done in fact is that we have introduced some redundancy in our model by 

explicitly including, for each module, the set of modules which may use that module. This is 

a design decision. The refinement process typically involves making one or more design 

decisions at each stage. 

Every design decision must have some justification. The design decision above was 

made with the hope of gaining some conceptual effIciency in the system. We observe that the 

introduced redundancy may simplify some operations (e.g. USED_BY) at the cost of making 

other operations more complicated (e.g. ADD_MOD). In systems that deal with information 

storage and retrieval usually one requires the retrieve operations to be considerably simpler 

than the storage operations for the simple reason that the former are used much more often 

than the latter. This is the basis of the design decision we have made here. 

Our next task is to strengthen the data type invariant to preserve the meaning of the 

problem. The new data type invariant is: 

inv-Xusagel (xu) 

(.A m £ dom xu: (.A ml £ xu(m) .u: m £ xu(ml) .b) & 
(.A ml £ xu(m).b: m £ xu(ml).u) ); 



5 Functional Specification -----------------------__ 74 

This simply states that the following must hold for every module m in the system: if m uses a 

module ml then m should be in the set of modules that use ml in the mapping, and that if m is 

used by a module ml then m should be in the set of modules that ml uses in the mapping. This 

is shown diagrammatically in figure 5.9 for the system in figure 5.6. 

[ m.od1 -> ({m.od2, m.od3}, { } ) , 
I I 

J 1 ! 
m.od2 -> ( { } , {m.od1} ) , 

1 
m.od3 -> ( { } , (m.od1}) 

FIGURE 5.9 R Diagrammatic uiew of inu-Husagel. 

The relationship between Xusage and Xusagel is documented by the following 

retrieve function: 

retr: Xusagel --> Xusage; 
retr(xul) == [m -> xul(m) .u: m £ dom xul]; 

We now show that ret r is total over valid states and that Xusage 1 is an adequate 

representation of Xusage. 

Theorem 5.4: (.A xl £ Xusagel: inv-xusagel (xl) ==> 
(.E x £ Xusage: x = retr(xl) & 

inv-Xusage(retr(xl)))) 

(1) 
(2 ) 

PrOQ[. (1) is immediate from the definition of retr. Consider (2), which reduces to showing 

that: 

union rng x .S. dom x 

where 
x = [m -> xl(m) .u: m £ dom xl] 

Using inv-Xusagel: 

union (xl(m) .u: m £ dom xl} .S. dom xl 

and, using (3) it reduces to: 

union rng x .S. dom xl 

which completes the proof since (using inv-xusage 1): 

---- (3) 



5 Functional Specification _________________________ _ 

dom xl = dom x 

Theorem 55: Xusagel is an adequate representation of Xusage. 

PrOQC Let x £ Xusage and inv-Xusage(x) = TRUEthen 

xl = [m -> mk-Cross(x(m), in: n £ dom x & m £ x(n») 
: m £ dom xl ---- (1) 

represents x. To prove this, let m £ dom xl, we must show that 

(.A ml £ xl(m) .u: m £ xl(ml) .b) 
and that 

(.Aml £ xl(m).b: m £ xl(ml).u) 

Using (1), (2) reduces to: 

ml £ x(m) ==> m £ in: n £ dom x & ml £ x(n)} 

(2) 

(3 ) 

which is immediate by considering the case when n = m. Using (1) again, (3) reduces to: 

ml £ in: n £ dom x & m £ x(n)} ==> m £ x(ml) 

which is immediate by considering the case when n = ml, and completes the proof. 

The next step in the refinement process involves producing operations In the 

representation which model the operations in the original specification. The first operation, 

INIT, will remain as before. Operation ADD_MOD is modeled by ADD_MODI: 

ADD_MODI: Module, Module-set --> ; 
pre(xu,mod,uses) == -(mod £ dom xu) I xu (mod) .u {}; 
post(xu,mod,uses,xu') == xu' = 

xu ++ [m -> if m £ dom xu then 
mk-Cross (xu (m) .u,xu(m).b .U. {mod}) 

else mk-Cross({}, {mod}) 
m £ uses] 

++ [mod -> mk-Cross(uses,if mod £ dom xu then 
xu (mod) .b 

else (}) 1 ; 
END ADD MODI 

The pre-condition of ADD_MODI is more or less identical to that of ADD_MOD. The 

post-condition, however, has changed considerably. The explicit mapping in post produces 

the entry for mod itself. The inlplicit mapping produces an entry for each module in uses. It 

ensures that for each mapping m in uses, mod is included in the set xu ' (m) . b. 

Let us now evaluate operation ADD_MODI: 

epi> VAR x: Xusagel;; 



5 Functional Specification ---------------------_____ 76 

epi> INITl (x) ; 
epi> x; 
[] 
epi> ADD_MODl(x, "top", {"midl","mid2"}); 
epi> ADD_MODl(x,"midl", {"midl","botl","bot2"}); 
*** post-state of ADD MODl does not satisfy the invariant 
epi> x; 
["midl" -> ({}, {"top" } ) , 
"mid2" -> ({}, ("top"}) , 
"top" -> ({"mid2","midl"},{})] 

This simple evaluation shows that ADD_MODl does not preserve the data type invariant. 

Operation ADD_MOD 1 is therefore not valid. If we examine the post -condition of this operation 

carefully we see that it does not behave properly when mod is recursive; if mod £ dom xu 

then 

xu' (mod) = mk-Cross(uses, xu(m) .b) 

and if - (mod £ dom xu) then 

xu' (mod) = mk-Cross(uses, {}) 

Both cases produce wrong results since the second set will not contain mod. This problem is 

avoided by the following post-condition for ADD_MODl: 

post(xu,mod,uses,xu') == xu' = 

xu ++ [m -> if m £ dom xu then 
mk-Cross(xu(m) .u,xu(m).b .U. {mod}) 

else mk-Cross({}, {mod}) 
: m £ uses] 

++ (mod -> mk-Cross(uses, (if mod £ dom xu then 
xu (mod) .b 

else {}) .U. 

(if mod £ uses then {mod} 
else {}»]; 

Let us now evaluate the new version of ADD_MODl: 

epi> VAR x: Xusagel;; 
epi> INIT(x); 
epi> x; 
[] 
epi> ADD MOD(x,"top", {"midl","mid2"}); 
epi> ADD-MOD (x, "midI", {"midl","botl","bot2"}); 
epi> ADD MOD(x,"mid2", {"bot2"}); 
epi> ADD MOD(x,"botl", {"top","midl"}); 
epi> x; 
["bot2" -> ({}, {"midl" , "mid2" } ) , 
"mid2" -> ({ "bot2" }, {"top" } ) , 
"top" -> ({ "mid2" , "midl" ) , {"botl"}) , 
"midl" -> ({"bot2","botl","midl"}, {"top","midl","botl"}), 
"botl" -> ({ "midl", "top"}, ("midl"}) ] 



5 Functional Specification -----------------_________ 71 

The behaviour is promising. Now we may attempt to prove that ADD _ MODl preserves the data 

type invariant of Xusage 1: 

Theorem 5.6: ADD_MODl is valid. 

Proof: We must show that: 

pre(xu,mod,uses) & inv(xu) & post(xu,mod,uses,xu') ==> inv(xu') 

Suppose that the l.h.s. of the implication is TRUE. The proof then reduces to showing that for 

each module m in dam xu' the followings are TRUE: 

( . A ml £ xu' (m) . u: m £ xu ' (ml) . b) (1) 
and 

( . A ml £ xu' (m) .b: m £ xu' (ml) .u) (2) 

Using post: 

(.A m £ (dom xu - uses - (mod}) : xu' (m) = xu (m) ) ---- (3 ) 

and 
( .A m £ (dom xu · I . uses) : xu' (m).u xu(m) .u & 

xu' (m).b xu (m) . b .u. {mod} ) 
Now ( 4) 

(.A m £ (dom xu · I . uses) : m £ xu' (mod) . u) 

<=> (.A m £ (dom xu · I . uses) : m £ uses) (5) 

Using (3),(4) and (5) the proof reduces to showing that (1) and (2) hold for any module m in 

use s . I . { mod}. We shall consider two separate cases: 

(i) Let m = mod, (1) reduces to 

(.A ml £ uses: m £ xu' (ml) .b) 

This is obvious and immediate from post. Consider (2), the case when mod is recursive is 

obvious since (by post): 

mod £ xu' (mod) . b 

& mod £ xu' (mod) . u 

So suppose mod is not recursive, i.e. - (mod £ uses). Two cases must be considered: when 

- (mod £ dam xu), by post: 

xu' (mod) . b = {} 

hence (2) is i01illediate. When mod £ dam xu, by post: 

xu' (mod).b = xu (mod) .b 

So (2) reduces to: 



5~M~~~U~~~ __________________________ ~ 

(.A m1 £ xu (mod) .b: m £ xu' (m1) .u) 

which is immediate from inv-Xusage, (3) and (4). 

(ii) Now consider uses - dom xu, we obseIVe that (using post): 

(.A m £ (uses - dom xu - {mod}): xu' (m).u = {} & 

xu' (m) .b = {mod}) 

hence (1) is immediate, and (2) reduces to: 

(.A m £ (uses - dom xu - (mod}): (.A m1 £ (mod}:m £ xu' (m1) .u» 
<=> (.A m £ (uses - dom xu - (mod}): m £ xu' (mod) .u) 

<=> (.A m £ (uses - dom xu - {mod}: m £ uses) 

which is immediate. 

Theorem 5.7: ADD_MOD1 models ADD_MOD. 

Proof: We must show two things: 

(i) We must show that given xul £ Xusagel then 

inv-Xusage1(xu1) & pre-ADD_MOD(retr(xu1),mod,uses) 
==> pre-ADO_MOD 1 (xu1,mod,uses) 

suppose that the l.h.s. of the implication is TRUE, and let: 

xu = retr(xu1) = [m -> xu1{m) .u: m £ dom xu1] 

Using pre-ADO_MoD: 

-(mod £ dom xu) I xu (mod) = {} 

Using (1) this reduces to: 

- (mod £ dom xu1) I xu1 (mod) . u { } 

which verifies the r.h.s. of the implication. 

(ii) Given that xul £ Xusagel we must show that: 

inv-Xusage1(xu1) & pre-ADD MOD 1 (xul,mod,uses) & 
post-ADD_MOD1(xu1,mod,uses,xul') ==> 
post-ADD_MOD(retr(xu1),mod,uses,retr(xul'» 

---- (1) 

Suppose that the l.h.s. of the implication is TRUE. It is easy to show that ret r is distributive 

over ++, i.e: 

retr(m1 ++ m2) = retr(ml) ++ retr(m2) 

for any two mappings ml and m2 in Xusage 1. Applying ret r to pos t- ADD _ MODl we get: 

retr(xul') = retr(xul) ++ retr[m -> if m £ dom xui then 
mk-Cross(xul(m) . ..1, ••• ) 

else mk-Cross ( ( I, ... ) 



5 Functional Specification ___________________________ _ 

: m £ uses] 
++ retr [mod -> mk-Cross (uses, ... )] 

retr(xul) ++ [m -> if m £ dom retr(xul) then 
xul (m) .u 

else {} 
: m £ uses] 

++ [mod -> uses] 
= retr(xul) ++ [m -> xul(m) .u: 

m £ (uses .I. dom retr(xul»] 
++ [m -> {}: m (uses - dom retr(xul»] 
++ {mod -> uses] 

= (retr(xul)++ [m -> retr(xul(m»: 
:m £ (uses .I. dom retr(xul»]) 

++ [m -> {}: m £ (uses - dom retr(xul»] 
++ [mod -> uses] 
retr(xul) ++ [m -> {}: m £ (uses - dom retr(xul»] 

++ [mod -> uses] 

which verifies the r.h.s. of the implication and completes the proof. 

From the theorems above it follows that operation ADD MOD 1 is correct and models 

ADD ~OD. The refinement, evaluation and verification of other operations is very similar to 

ADD_MOD and is not further discussed here. The complete specification of Xu sage 1 is given in 

figure 5.10. 

ADT Xusagel 
DOM Xusagel = Module -> Cross; 

Cross :: .u: Module-set, .b: Module-set; 
TYPE reaches: Module, Module, xusagel --> Bool; 
AUX inv-Xusagel(xu) 

OPS 

(.A m £ dom xu: (.A ml £ xu(m) .u: m £ xu(ml) .b) & 
(.A ml £ xu(m) .b: m £ xu(ml) .u»; 

INIT1: --> ; 
post(-,xu') == xu' = []; 

END INITl 

ADD MOD1: Module, Module-set --> ; 
pre(xu,mod,uses) == -(mod £ dom xu) I xu (mod) .u {}; 
post(xu,mod,uses,xu') == xu' = 

xu ++ [m -> if m £ dom xu then 
mk-Cross(xu(m) .u,xu(m).b .U. (mod}) 

else mk-Cross({}, (mod}) 
m £ uses] 

++ [mod -> mk-Cross(uses, (if mod £ dom xu then 
xu (mod) .b 

END ADD MODl 

DEL MOD1: Module --> ; 
pre (xu, mod) == mod £ dom xu; 
post(xu,mod,xu') == 

else (}) . U . 

(if mod £ uses then {mod} 
else (}»]; 



5F~c~Ml~~~rot~n _________________________ _ 

xu' = 

END DEL MODI 

[m -> mk-Cross(xu(m).u - {mod}, xu(m).b - (mod}) 
: m £ (dom xu - {mod})]; 

USESI: Module --> Module-set; 
pre (xu, mod) == mod £ dom xu; 
post (xu,mod,-,ms) == ms = xu (mod) .u; 

END USESI 

USED BYI: Module --> Module-set; 
pre (xu, mod) == mod £ dom xu; 
post(xu,mod,-,ms) == ms = xu (mod) .b; 

END USED BYI 

REC MODI: --> Module-set; 

post(xu,-,ms) == ms = {m : m £ dom xu & reaches (m,m,xu) }; 

pre-reaches (ml,m2,xu) == ml £ dom xu & m2 £ dom xu; 
reaches (ml,m2,xu) -- m2 £ xu(ml).u I 

(.E m £ xu(ml) .u: reaches(m,m2,xu»; 
END REC MODI 

END Xusagel 

FI GURE 5.10 Specification of abstract data type Husage 1. 

5.8 DISCUSSION 

By borrowing ideas from the Vienna development method, we have arrived at a 

notation that, while preserving the useful features of VDM, such as conciseness and 

fonnality, lends itself to execution. 

The provision of an abstract data type encapsulation mechanism on top of VDM has 

enabled us to fonnulate a software system specification at different levels of abstraction more 

easily. Two advantages are gained here. First, the encapsulation enables us to enforce useful 

disciplines, e.g. that an abstract data type is manipulated through its own set of private 

operations only. Second, it allows us to talk about abstract data types as objects, both 

conceptually and in reality. This in turn facilitates the construction of fonnal specification 

libraries which consist of self-contained abstract data type specifications. Libraries of this 

form would be an indispensable tool in software development and prototyping for two 

reasons. First, they significantly reduce the verification effort by allowing developers to 

build on top of each other's work; once an abstract data type is developed, verified and 

deposited in the library, subsequent users can employ it and rely on its correctness. Second, 

being executable, the library becomes a powerful tool for rapid prototyping. This is, of 



5F~c~~~u~w~n _________________________ & 

course, the familiar reusable software approach to prototyping, but is more productive since 

it is applied to a higher, more stable level of abstraction. 

Needless to say, by requiring our notation to be executable, we have necessitated some 

compromises concerning the implicitness of EPROL. For example, the implicit predicate: 

(.E x £ Real: x**3 - 2*x = 2) 

is not executable in EPROL since the search domain is potentially infmite. The implication of 

this is that certain styles of VDM predi<;ates, while expressible in EPROL, are not executable. 

This does not necessarily mean that we have to restrict ourselves to executable constructs. 

Indeed, in our developments, we first produce a specification using any construct that we 

find appropriate. Once a specification is produced in this way, its transfonnation to an 

executable fonn is straightforward and involves very little effort (see chapter 9.) 

The essential difference between the VDM approach and our approach is in the 

priorities these two assign to different aspects of development. VDM primarily concerns itself 

with rigorous verification of correctness from the start. EPROS regards verification as a 

complementary option; it primarily concerns itself with the appropriateness of a specification 

and with experimenting with alternative designs, and argues that executing a specification 

before verification can detect errors more easily and at a greatly reduced cost. This opinion is 

also shared by a number of other researchers [Goguen84, Kemmerer85, Henderson86a]. 



Cllilrdl.pter (6 IMPLEMENTATION 

The better adapted a system is to a 
particular environment, the less adaptable 
it is to new environments. 

- R A Fisher 

This chapter describes the implementation notation of EPROL. It introduces various 

implementation constructs and the most basic facility for modularisation - imperative 

functions. Functions may be used for concrete realisation of several abstractions, e.g. 

abstract data types. Other forms of modules will be described in the next two chapters. 

The implementation notation is not isolated from the specification notation. In fact, all 

the constructs and objects described in chapter 5 (e.g. combinators and sets) can be used 

freely in the implementation notation. 

6.1 STATEMENTS 

In the implementation notation, computation is usually defined in terms of statements. 

These are compu tation rules that cause useful side-effects. 

assignment 

This is the most elementary form of statement, the general form for which is: 

location := expression 

The effect of this statement is that expression is first evaluated and the resulting value is 

stored in location. Examples are: 

x := 12**3; 
11 := «"x">,<"y","z"»; 
m("John") := 30; 
t.r := [1->1, 2->4]; 

where x is an integer, 11 is a list, rn is a mapping and t is a tree variable. 

control structures 

The simplest foml of control statement is the if-then-else statement. It may take one of 

the following two fomls: 



6 Implementation -------____________________ _ 

if bool_expr then 
stat l ; 

if bool_expr then 
stat l 

else 
stat2 ; 

83 

In both cases boo1_ expr is evaluated first. If it evaluates to TRUE then stat 1 is executed. If 

it evaluates to FALSE then, in the fonner case nothing will happen whereas in the latter case 

stat2 will be executed. 

There are two kinds of multi-branch control statements. The first is the mac statement; 

this is very similar to the mac expression and has the general form: 

mac { 

} ; 

bool_expr l => stat l ; 
bool_expr2 => stat2 ; 

where boo 1_ ex p r S to the left hand side are evaluated in the order they appear. If 

boo1_expri evaluates to TRUE then stati will be executed and the mac statement will 

terminate. 

The second multi-branch statement is the cases statement; this is very similar to the 

cases expression and has the general fonn: 

cases exprs 

} ; 

exprl => stat l ; 
expr2 => stat2 ; 

exprn => statn ; 

where expr s is evaluated first and then expr is are evaluated in the order they appear. If 

expr i = expr s then stat i will be executed and the cases statement will terminate. 

loop structures 

Three kinds of loop structure are provided. The for-do statement iterates over the 

elCInents of a set or a list. It has the general fonn: 



6 Implementation -----______________________ _ 

for var in expr do 
stat; 

84 

where var is a bound variable and expr is a set or list expression. The bound variable needs 

no declaration. This statement iterates var over individual objects in expr. If expr is a set 

expression then iteration will be done pseudo non-deterministicly. 

The while-do statement executes a statement repeatedly while a predicate is true, and 

has the general form: 

while bool_expr do 
stat; 

It evaluates the bool_expr first; ifit evaluates to TRUE then it will execute stat. This 

process is repeated until bool_ expr evaluates to FALSE at which time the loop is tenninated. 

The do-while statement executes a statement repeatedly until a predicate becomes false, 

and has the general form: 

do 
stat; 

while bool_expr; 

Here stat is first executed, then bool_ expr is evaluated; if it evaluates to TRUE then the 

whole process is repeated again, otherwise the loop is terminated. 

Two other related statements are the done and the goto statement The fonner appears 

in a loop structure and when executed terminates the loop immediately. The latter is used for 

explicit jump to a statement within a sequence of statements. 

blocks 

A sequence of statements may be grouped together to fonn a block by enclosing them 

within curly brackets, i.e.: 

stat 1 ; 
stat2 ; 

A block is itself treated as a single statement. 



61mplementation --_________________________ _ 
85 

assertions 

Recording important invariants when writing programs is a good practice. In EPROL 

such invariants may be specified using assertion statements. An assertion statement has the 

general fonn: 

assert(bool_expr); 

When this statement is executed the bool expr is evaluated' if it evaluates to TRUE then - , 

nothing will happen, otherwise the system will report that the assertion has failed. For 

example, the statement: 

assert(.A i £ {1:1en 1 - 1}: lei] <= l[i+l]); 

asserts that a list of numbers 1 is sorted in ascending order. 

6.2 DATA TYPES 

The data types described in chapter 5 (i.e. elementary types such as integers, and 

composite types such as sets) can be used directly in the implementation notation. In 

particular, trees may be used to implement record structures. Also, any abstract data types 

defined by the programmer in the specification part can be used freely. 

Except for the elementary types, objects of all other types are dynamic. EPROL uses a 

heap storage mechanism for storing these objects, which is automatically garbage collected. 

Certain additional data types are also provided, the use of which is restricted to the 

implementation part. These are briefly described below. 

arrays 

An array is a composite object of predefined length, containing a contiguous sequence 

of objects of the same type. For example, 

array[S] Int 

defines an array of 5 integers. Arrays may be one or multi-dimensional. In general, an array 

type has the following form: 

array[el] [e2] .,. [en] Elem 

where el, e2, ... , en are arbitrary positive integer expressions, and Elem is the type of array 



61mplementation --_________________________ _ 

elements. Arrays may also be dynamic, i.e. their size may be decided at run time. Array 

elements are referenced in a manner identical to lists, albeit the index starts at O. 

files 

A file refers to an external storage space; file is supported by a pre-defined type 

denoted by the keyword file. File operations are described in appendix C.3. 

forms 

Electronic forms are special abstract data types in EPROL (see chapter 7.) A form type 

is defined as: form form_id, where form id is the name of a form module. Form 

operations are described in appendix C.4. 

databases 

The term database in EPROL refers to a collection of records which are stored and 

retrieved by a key. Every record in a database must be either a form image or a tree branch. 

For example, 

DOM Student .name: Str, .age: Nat, .sub: Str; 
St dbase = Student-dbase(key=name); 

defines a database domain called St _ dbase where every record in such a data base is an 

element of the domain Student. These records are stored by the name key. Similarly, 

DOM Ap_dbase = (form Appliance_order)-dbase(key=$code); 

defines a form database domain. Database operations are described in appendix C.5. 

6.3 INPUT AND OUTPUT 

Input and output can be performed with respect to standard channels, external 

channels, and windows. All such I/O is fonnatted. In addition, composite objects can be 

pretty printed using a special output function. 



6lmplementation ---------------------------__ 87 

ordinary i/o 

Standard and external fonnatted I/O is primarily supported by two functions called put 

and get. Put sends its output to either the standard output or an external file. It has the 

following call fonn: 

put (file, format, argl, ... , argn); 

where file is optional and indicates the destination of output. Format is a string which 

contains the output fonnat specifications for argl, ... , argn. The fonnat specifications 

follow the conventions of C [Kernighan78a]. 

Get obtains its input from either the standard input or an external file. The general call 

fonn for get is: 

get(file, string, locl, ... , locn); 

where file and string are optional. It first outputs string (if any and if file is not 

present) and then reads n values and stores them in locations locl, ... , locn. 

window-oriented i/o 

EPROL supports the creation and manipulation of overlapping windows. Windows can 

be treated as channels for sending output and receiving input. Window functions and I/O 

operations are described in appendix C.4. An example of a window function is given below: 

w_text(6, 43, ""RText Frame"N", 
\In EPROL printing mode is controlled by"" 

""N prints in Normal mode 
""B prints in "BBold"N mode 
""U prints in "UUnderline"N mode 
""K prints in "KblinK"N mode 
""R prints in "RReverse video"N mode\); 

It creates the following window: 

printing mode is controlled by '" In EPROL 
"'N prints in Normal mode 

"'B prints in Bold mode 
"'U prints in Underline mode 

"'K prints in blinK mode 
"'R prints in I ~~~'~Il-~;.al~ ~ ~~I~ mod e 



6 Implementation ---_________________________ _ 

pretty printing 

The function ppr is responsible for pretty printing objects in EPROL and is extensively 

used by the interpreter. It takes an expression as argument and pretty prints its value. For 

example, 

ppr(power{"apple","orange","pear"}); 

will produce: 

{ { } , 
{"pear"}, 
{"pear", "orange"}, 
{"orange"}, 
{"pear","apple"}, 
{"pear", "orange", "apple"}, 
{"orange", "apple"} 
{"apple"}} 

6.4 IMPERATIVE FUNCTIONS 

Imperative functions are defined by the FUNCTION module; they correspond to 

procedures and functions in modem programming languages and support procedural 

abstraction. Figure 6.1 shows the general structure of a FUNCTION module. 

FUNCTION ifun_id ( ... parameter-list ... ): result_type; 
DOM private domain definitions .. . 
VAR ... private variable definitions .. . 

local definitions 

BEGIN 

statements 

END ifun id 

FIGURE 6.1 The general structure of a FUNCTION module. 

The parameter list and/or result type may be empty. It specifies the names and domains of 

function parameters. Each parameter is specified as 

par: dom 

if it is a value parameter, or as 



6 Implementation ----------------------------_ 

VAR par: dom 

if it is a variable parameter. The DOM part of a function is similar to the DOM part of an abstract 

data type. The VAR part defines one or more variables. For example, 

VAR 1: Int-list := <1,10,100>; 

defines 1 to be a list of integers and initialise 1 to <1, 10, 100>. 

The body of a function consists of a sequence of statements. A function can also 

contain local FUNCTION, DIALOGUE, FORM and CLUSTER modules. An example of a function 

module is given below. It is an implementation of the familiar quick sort algorithm. 

FUNCTION quick_sort (table: Table, size: Nat); 
DOM Table = array[size] Str; 

FUNCTION quick_sort_aux(lower:NatO, upper:NatO)i 
VAR i: NatO:= lower; 

j: NatO:= upper; 
key: Str := table[(lower+upper)/2]; 

FUNCTION swap(VAR x: *, VAR y: *); 
VAR temp: *; 
BEGIN 

temp := x; 
x := y; 
y := temp; 

END swap 
BEGIN 

do 
while table[j] . name > key do j := j - 1; 
while table[i] . name < key do i := i + 1; 
if i <= j then { 

swap(table[i],table[j]); 

1 · = 1 + 1; · 
j · = j - 1; · 

} ; 
while 1 <= j; 

if i < upper then quick_sort_aux(i,upper); 
if lower < j then quick_sort_aux(lower,j); 

END quick_sort_aux 

BEGIN 
quick_sort_aux(0,size-1); 

END quick_sort 

6.5 DISCUSSION 

The implementation notation described in this chapter fits next to the specification 

notation of chapter 5, and takes us down to the lowest level of abstraction. The provision 

of a sharp border between these two has ensured that the concepts would not be confused. 

This border, however, does not correspond to a sudden change of notation, but rather to 



6 Implementation ---------------------------_ 

an extension of the notation. 

Accepting the fact that design is a process of decision making, its separation from 

the above two is impossible; it therefore runs well into the specification and implementation 

notations. This is depicted by the following diagram. 

specification implementation 

design 

So far we have been restricting ourselves to functionality only. This represents half 

of the picture in a software project. The other half, represented by the user interface, is of 

equal importance. It involves producing notations which support the specification and 

implementation of those parts of a system responsible for the dialogue between the user 

and the system. Our separate treatment of these two issues is a consequence of our desire 

to achieve such a separation both conceptually and in reality for reasons that were 

discussed earlier on. 

The next chapter describes a notation for dialogue development which achieves such 

a separation. Our dialogue specification notation will be very different from that we used 

for specifying functionality. For implementation purposes, however, we shall be using the 

same notation as described in this chapter. 



Chapter 7 USER INTERFACES 

Software stands between the user and the 
machine. 

- H D Mills 

This chapter describes the notation of EPROL for user interface specification and 

development. This notation consists of an encapsulation mechanism for separating dialogues 

from functionality and a number of independent abstractions supporting well-developed 

concepts in user interfaces. Unlike functional specifications, the dialogue specification 

notation is initially graphical and semi-formal; this is described below. 

7.1 STATE TRANSITION DIAGRAMS 

The STD notation employed by EPROL is based on the one proposed by Denert 

[Denert77]. This is an extension of the usual STD notation and allows one to describe 

dialogue systems hierarchically. The symbols used in this notation are summarised in figure 

7.1. Each symbol is briefly described below. 

• 

• 

• 

initial state 

final state 

simple state 

complex state 

interaction point 

state transition 

FI GURE 7.1 Sta te transitio n dia gram sym bois. 

Initial state - Denotes the entry point for an STD. An SID must have exactly one initial 

state. 
Final state - Denotes the exit point for an STD. An STD must have exactly one final 

state. 
Simple state - Represents an action which involves no interaction with the user and is 

executed immediately. The action is usually described by a brief text in the box. 



7 User Interfaces ---------------------------- 92 

• Complex state - Is an abstraction of an entire SID which may be refined separately. A 

complex state may involve interaction with the user; for this reason, the system may 

remain in a complex state for an arbitrary length of time. A complex state may be 

labelled by a brief description of its function. 

• Interaction point - Denotes a state in which actual interaction between the user and the 

computer takes place. Interaction points are usually labelled by a number or 

abbreviation. 

• State transition - Indicates transition between states. Arrows entering and emerging 

from a complex state are conceptually tied to the initial and final states of the 

refinement of that state respectively. An arrow emerging from an interaction point must 

be labeled with user input or a predicate which will trigger that transition. 

Complex states allow the abstraction of an entire SID in much the same way functions allow 

the abstraction of a sequence of processing steps. Using this notation, dialogue systems may 

be modularised and designed in a top-down manner. 

the dialogue module 

Once a dialogue system is specified as an STD it is then converted to the one 

dimensional notation of EPROL. This notation is supported by the DIALOGUE module. The 

general structure of a DIALOGUE module is shown in figure 7.2. 

DIALOGUE dial_id( ... pararneter-list ... ): result-type; 
DOM ... private domain definitions .. . 
VAR ... private variable definitions .. . 

local definitions 

BEGIN 

state descriptions 

END dial id 

fIGUR£ 7.2 The general structure of a DIALOGU£ module. 

A DIALOGUE module represents a complex state. Each part of a DIALOGUE module is 

the same as that of a FUNCTION module except for the body. The body consists of one or 

more state descriptions where each state is either a simple state or an interaction point. A 



7 User Interfaces -------____________________ _ 
93 

simple state has the following form: 

where act ion is a statement. It defines a simple state called state id which performs the 
- 1 

specified action and then moves to state _ id2. State _ id2 itself must be a simple state or 

interaction point in the same DIALOGUE module. 

An interaction point has the following form: 

iap stat id: input_actioni 
pred1 , output_action1 
pred2 , output_action2 
pred3 

TRUE 

=> stat_id1 i 
=> stat_id2 i 
=> stat_id3 i 

=> stat id . - n' 

where input action and output actions are all statements. Each stat id· must be a 
- - - l 

simple state or interaction point in the same DIALOGUE module. Each predicate predi is a 

predicate over user input or program variables. As shown above, output_actions are 

optional. Also, the last predicate may be simply TRUE, specifying a transition which will take 

place if no other predi~ate evaluates to TRUE. The above description defines an interaction 

point called stat_ id In this state, first input_action is performed; then the predicates are 

evaluated in the order they occur. If predi evaluates to TRUE then output _actioni will be 

performed (if any) and the system will move to stat _ idi. An iap description must specify 

at least one state transition. 

The first state in a DIALOGUE body is assumed to be the initial state. The final state is 

defined implicitly using return statements. For example, in 

state sl: action => return(10); 

act ion is first executed and then the DIALOGUE module is terminated returning the number 

10. All such return statements are conceptually tied to the DIALOGUE n1odule's final state. 

an example 

This section will illustrate, by means of an example, the way in which a simple 

dialogue may be specified as an STD and then implemented by a 0 IALOGUE module. 



7 User Interfaces ------------_______________ _ 

new 
rearer 

3 

reamove 
reader 

4 

display 
reader menu 

1 

find 
realer 

5 

quit 

close 
reader menu 

FIGURE 7.3 R simple state transition diagram. 

6 

94 

Figure 7.3 shows an STO which is part of the user interface specification of a library 

system (see chapter 9.) The SID contains three complex states. A refinement of the complex 

state remove reade r is shown in figure 7.4. The refinement is at the bottom of the dialogue 

hierarchy since it contains no further complex states. 

The first state in the refinement is a simple state which creates a dialogue box within 

which all subsequent interaction will take place. The SID then moves to an interaction point 

which asks the user for a password. If the user types a wrong password the STO will move 

to state 4.3, report the error and move back to the interaction point. If the user makes too 

many wrong guesses the SID will move to state 4.5, warn the user that further interaction is 

denied and then move to state 4.10. When a correct password is given the SID will move to 

interaction point 4.5 where the user is asked for the ide of the reader who is to be removed. 

Invalid id's are handled by the simple state 4.6. Instead of giving an id., the user may quit 

the dialogue, in which case the STO will move to state 4.7, confirm the quit and then move to 

state 4.10. However, if the user supplies a valid id., the STD will move to state 4.8 and then 

4.9, where it will remove the specified reader and confirm the removal respectively. The STD 



7 User Interfaces ____________________________ _ 

will then move to state 4.10 where the dialogue box is closed, and lastly to the final state. 

create 
dialogue box 4.1 

,-------------------- -------------------~ , 
, ' , ' 
, report ' , too many display' 
: error attempts warning , , , 4.3 correct password 4.5 

~-------------------- -------------------~ 
~------------------- --------------------. 

report 
error 

4.6 

4.8 

valid id 

reamove 
reader 

confmn 
4.9 removal 

quit_--.t confirm 
quit 

4.7 

~-------------------- --------------------

close 4.10 
dialogue box 

FIGURE 7.4 Refinement of compleH state 'remoue reader.' 

95 

The STD in figure 7.4 can be directly implemented by a DIALOGUE module. However, 

before implementation, one should always look for potential simplifications in the diagram. 

Typically, many simple states can be squeezed into their neighbouring interaction points. In 

this way one can reduce the number of states in a DIALOGUE module considerably and hence 

sirnplify the implementation. The two boxes with dashed lines in figure 7.4 depict this point. 

The first box, for example, suggests that simple states 4.3 and 4.5 can be squeezed into 

interaction point 4.2. This practice is referred to as state reduction. 



7 User Interfaces -------------------------------

An implementation of the SID, using the suggested state reductions, is given below. It 

consists of four states. Simple state box corresponds to state 4.1 in figure 7.4. The assertion 

in this state ensures that the user has permission to do a removal operation. Function 

message displays a note or warning at the bottom of the dialogue box. Interaction point pass 

corresponds to state 4.2 and its associated simple states. Interaction point read corresponds 

to state 4.5 and its associated simple states. The last state, OU t, is a simple state and 

corresponds to state 4.10. 

DIALOGUE remove reader(VAR rmv list: Id-list, VAR rmv ok: Boo1); 
VAR width: Nat:= 30; 

passwd: 
attempts: 
id: 

BEGIN 

Str; 
NatO := 0; 
Id; 

state box: { assert(rmv ok); 

iap pass: 

iap read: 

w_open(3,width, ""'M Remove Reader "'NtI); 
message(3,NOTE,""); 

=> pass; 

w move(l, 1); 

w_get (" Password: " , passwd, 8, noecho) ; 
message(3,NOTE,""); 

} ; 
passwd = DEL_PASS => read; 
attempts >= ATTEMPT_LIM, 
{ message(3,WARN,"Imposter!"); 

rmv ok := FALSE; 
wait(2); 

=> out; 

TRUE, attempts := attempts+1; 
message(3,WARN,"Wrong!"); 

w move (2, 1) ; 
w_get (" Reader Id: ", id, 5) 

} ; 
db find(rds db,id) /= NIL, 
{ rmv list ~= rmv_list I I <id>; 

mes;age(3,NOTE, tl Removed tl
); 

id = 0, message (3,NOTE, "Quited") 

=> pass; 

TRUE, message (3, WARN, "Non-existant!tI) 

state out: w close(l) => return; 

END remove reader 

=> out; 
=> out; 
=> read; 

Figure 7.5 shows the effect of the dialogue on the screen. It shows the dialogue box after a 

reader has been successfully removed. 



7 User Interfaces 97 

Password: 
Reader Id: 3460 
Removed -

FI GURE 7.5 The dialogue bOH for remouing a reader. 

7.2 POP-UP MENUS 

Many modem interactive systems are menu driven [Smith82a, Webster83]. In such 

systems the user interface usually consists of a network of menus where each menu serves a 

particular task. The user sends his request to the system by moving to the relevant menu and 

then selecting the required option. 

Menus can be broadly classified into two categories. Each option of a menu in the first 

category depicts an action. Each option of a menu in the second category corresponds to a 

binary switch, i.e. it is either on or off. These two categories are supported by the menu and 

switch statements in EPROL respectively. Each is briefly described below. 

the menu statement 

• 

• 

• 

• 

A menu specification consists of the following: 

A menu tide. 

A set of option names. 

A set of constraints where each option may be associated with at most one constraint. 

A constraint will indicate, at any point in time, whether an option is active. Options 

with no constraint are always active. Only active options may be selected by the user. 

The set of active options is called the active set. 

A set of actions where each option must be associated with one action. 

Menus are specified by the menu statement; this has the general form: 

menu { 
title 

} ; 

option
l

, constraint pred l => action l ; 

option2 => action2; 

option k , constraint predk => action k ; 



7 User Interfaces ___________________________ _ 

where title and options are all strings; preds are boolean expressions and actions are 

arbitrary statements. Options 1 and k above are both constrained; the second option is 

unconstrained. 

As an example, consider a menu which allows the user to do insert, delete, and change 

operations on the records of a database. The menu specification will look something like this: 

menu { 
""RDB-operation"N" 

} ; 

"Insert record", constraint size < MAX SIZE => ins_rec(); 
"Change record", constraint size> 0 => chg_rec(); 
"Delete record", constraint size> 0 => del_rec(); 
"Help" => menu { 

""RHelp"N" 
"Insert" => ..... , 
"Change" => ..... , 
"Delete" => ..... , 
"Back to last menu" => exit; 

} ; 

Where modules ins _ rec, chg_ rec and de 1_ rec deal with insertion, change and deletion of 

records and are not further specified here. The variable size depicts the number of records in 

the database. MAX _ SIZE is an upper bound on the size of the database. The last option in the 

menu is unconstrained. The action associated with this option is itself a menu statement 

which provides help for operations in the original menu. The help texts are not specified 

here. The word exi t in the last option of the help menu specifies that when this option is 

selected the help menu will be closed and control will be sent back to the original menu. 

Figure 7.6a show what the menu will look like on the screen when actually activated. 

As shown in the figure, active options (i.e. 1 and 4) are printed in bold. The option the user 

is at (i.e. option 4) is always highlighted. The system ensures that the user will not be able to 

select inactive options. The user can move from the current option to the previous/next option 

by pressing the arrow keys, and selects an option by pressing the return key. 



7 User Interfaces ____________________________ _ 

Insex:t x:ecox:d 
Change record 
Delete record 

FI GURE 7.66 Menu 6S seen on the screen. 

Insex:t x:ecox:d 
Change record 
Delete record 

ff&11ia 
Change 
Delete 

Go back to last Menu 

FIGURE 7.6b The help option is itself 6 menu. 

Figure 7.6b shows the effect of selecting the last option. A further menu is opened, giving 

the options on which help is available. 

the switch statement 

A switch specification consists of the following: 

• A switch title. 

• A set of option names. 

• A set of constraints as in a menu. 

• A predicate per option. If this predicate evaluates to TRUE then the option will be set 

otherwise it will be reset. 

• An action per option. The action is executed whenever the corresponding option is 

selected. 

A switch statement takes the following general foml: 

swi tch { 
title 
option 1 , constraint consl' 
option2' 

tick pred1 => actionl; 
tick pred2 => action2; 



7 User Interfaces -----------------------------

optionk' constraint cons k , tick predk => actionk ; 
} ; 

}oo 

where constraints have the same role as they had in menus and are optional. Each option 

must be associated with a tick predicate. If this predicate evaluates to TRUE then the option 

will be ticked {Le. marked on the left hand side to show that it is set). Like a menu, each 

switch option is associated with an action. When opt ion· is selected act ion· will be l l 

executed. 

To give an example, suppose we wish to allow the user to control the following 

parameters in a dialogue: 

verbose whether the system response should be brief or verbose. 

warnings whether the system should give warnings when it finds it appropriate to do 

prompt 

cursor 

tabs 

so. 

whether the dialogue prompt should be displayed or hidden. 

whether the cursor should appear as a block or an underscore. 

whether the system should convert tabs into spaces. 

Each of these may be represented by a boolean variable, for example: 

VAR verb, warn, prompt, 
blockcursor, tabconv: Boo1 := FALSE; 

The facility may then be provided by a switch statement: 

switch { 

} ; 

""RModes"N", 
"verbose", constraint level>l, tick verb => verb := -verb; 
"give warnings", tick verb I warn => warn := -warn I verb; 
"give prompt", tick verb I prompt => prompt:= -prompt I verb; 
"block cursor", tick blockcursor => blockcursor := -blockcursor; 

=> convtabs := -convtabs; "convert tabs", tick convtabs 

The variable 1 eve 1 depicts the level of the dialogue. So, as specified in the first option, the 

user n1ay only choose the verbose mode when he or she is at some level other than the first. 

The action for this option simply toggles the variable ve rb. The next two options are 

dependent on the first option, in the sense that when the dialogue is in the verbose mode the 

warning and prompt modes will be set anyway. This is ensured by including ve rb as a 

disjunction in the tick predicates of the second and third options. 



7 User Interfaces --------------------------- 101 

Initially the switch frame will appear on the screen as shown in figure 7.7a. If the 

user, for example, selects the first option the first three options will be ticked, as shown in 

figure 7. 7b. If the user again selects the first option the first three options will be reset taking 

us back to figure 7.7 a. 

qi ve wax:ninqs 
qive prompt 
block cursor 
convert tabs 

FIGURE 7.7a R switch frame. 

+ E'ZJ'# 111101;) 
+ qi ve wax:ninqs 
+ qi ve prompt 

block cursor 
convert tabs 

FIGURE 7.7b Switch frame after the first option is selected. 

7.3 ELECTRONIC FORMS 

A useful concept in user interface design are electronic fonns. These are commonly 

used in office automation system and are exceptionally suitable for changeover from manual 

to computer-based systems [Tsichritzis80, Ya084]. The most useful aspect of fonns is that 

they reflect the logical relationship between data items in a user interface [Tsichritzis82, 

Gehani82b]. 

the form module 

The EPROL notation for defining electronic fonns is based on the notation proposed by 

Gehani [Gehani83] who suggested that fonns should be specified as abstract data types. 

Forms are defined using the FORM module; the general structure of which is shown in figure 

7.8. 



7 User Interfaces ----------------__________ _ 102 

\ ................. . 
.. form layout .. . 
. . . . . . . . . . . . . . . . . . \ 

field definitions 

END form id 

FIG U R E 7. B Th e 9 e n e ra 1st ru c t u re 0 f a FOR M mod u Ie. 

The fonn layout part defines the layout of the fonn as it will appear on the screen. A fonn is 

always displayed in a window. The two backslash characters in the fonn layout depict the 

top left hand corner and the bottom right hand corner of the window. In a fonn layout, each 

field appears as a field identifier. This is just like a nonnal identifier, preceded by a $ symbol 

(e.g. $name). 

Each field that appears in the layout part must be defined in the field definitions part. 

Each field is defined by specifying its type, maximum size, and optionally one or more 

attributes. The attributes define the properties of the field. An attribute may be one of the 

followings: 

after 

computed 

constraint 

initially 

lock 

noecluJ 

optiolUll 

permanent 

required 

system 

specifies that the field must be filled after certain other fields. 

gives a computation rule (a statement) that the system will use to compute 

the field automatically. 

imposes a constraint that must be satisfied when the field is filled. If the 

constraint fails user data will be rejected. 

defines an initial value for the field. The field will maintain this value unless 

the user changes it during interaction. 

specifies one or more fields which will be locked after the field is filled. 

specifies that the user data for the field must not be echoed on the screen 

(e.g. a password). 

specifies that the field is optional and may be filled if the user wishes to do 

so. 
specifies that the field is pennanent, i.e. once filled it may not be changed. 

specifies that a value for the field is required and must be supplied hy the 

user. This is the default case. 

specifies that the field will be automatically filled by the system. 



7 User Interfaces ____________________________ _ 
103 

an example 

To illustrate the use of the FORM od I' . 
m u e, consIder the followmg form definition; it 

defines a fonn called appliance_order. 

FORM appliance order" - , 
\"BAppliance:"N 

Name: $name 
Quantity: $quantity 

"BCustomer"N 
Name: 
Address: 

$cname 
$street 
$town 
$county 

Post Code: $Postcode 

Department: $dept 

Code: $code 
Price:£ $price 

Total Price:£ $totprice 

Delivery: $delivery 

Date: $date \ 

$name: 
$code: 

Str (12), required; /* required is the default */ 
Int (5), lock ($name); 

$quantity: 
$price: 
$totprice: 

Int (5), constraint 0 < $quantity < 100; 
Real (6), after ($name,$code); 
Real (8), after ($quantity,$price), 
computed $totprice" $quantity*$price; 

$cname: Str (14); 
$street: Str (24); 
$town: Str (24); 
$county: Str (24); 
$postcode: Str (7), optional; 
$delivery: Str (4), after ($code), 

computed menu { 

Str (12); 

"By Post" => $delivery := "POST"; 
"By Ship" => $delivery := "SHIP"; 
"Special Delivery",constraint $code<=1000, 

=> $delivery .- "SDEL"; 
"To Be Collected" => $delivery := "TBe"; 

} ; 

$dept: 
$date: Str (8), system (sdate); 

END appliance_order 

Everything in the form layout, apart from the field identifiers, is treated literally. Escape 

sequences are understood here too; for example, Appliance and Customer are both 

specified to be printed in bold. 

In the field definition part a field is typically defined to be of type In t, Rea 1 or S t r. 

The first field, for example, is defined to be of type St r having a maximum length of 12 

characters. This field is also defined to be required. The second field has a lock attribull': it 



7 User Interfaces __________________________ _ 
104 

specifies that when it is filled the $ name field will be locked. The third field specifies, by 

means of a constraint attribute, that $quanti ty must be an integer between 0 and 100. 

The fifth field is computed automatically; here, an after attribute is used to ensure that all 

variables used in the computation are already bound. The last field is filled automatically by 

the system; the identifier sdate here stands for short date (e.g. 12/02/86). 

Figure 7.9a shows what the form will look like on the screen when activated. As 

shown there, the position of the fields directly conforms to that specified by the form layout 

part. Figure 7.9b shows the form when the user is actually filling the Delivery field. This 

was defined to be a computed field where computation is performed by a menu . 

.Appliance 
Name: 
Quantity: 

Customer 
Name: 
Address: 

Post Code: 

Department: 

Code: 
Price:£ 

Total Price:£ 

Delivery: 

Date: 

FIGURE 7.9a Form as seen on the screen . 

.Appliance 
Name: Freezer ____ _ Code: 01233 

Price:£ 452.00 
Total Price:£ 904.00 

Quantity: 2 __ __ 

Customer 
Name: 
Address: 

Post Code: 

J. Green __ __ 
5, Commercial Road ___ __ 
Seaford ______________ _ 
East Sussex _______ ~~7 
SF2 4QR Delivery 

By Post 
Da te ru ... liUJ] Department: L-__ ~ _____________________________________ Special Delivery 

To Be Collected 

FIGURE 7.9b Oeliuery field is computed Bnd menu driuen. 



7 User Interfaces __________________________ _ 
105 

The user fills a fonn by using the arrow keys to move to previous/next field. No panicular 

order is imposed on the way a fonn may be filled other than that specified by the attributes. 

Other function keys may be used to cancel a field/all fields, exit from the fonn, quit the fonn, 

get help from EPROS, etc. The system perfonns many checks on user actions to ensure 

correctness. One such check, for example, concerns the type of data. An example is shown 

in figure 7.1 Oa where the user attempts to assign a non-integer value to the Quan tit Y field. 

In this case, the error frame will last for a short while on the screen and will disappears 

automatically. The field will be then cleared to allow the user to re-enter the data. Other 

checks ensure that the facts specified by field attributes remain integral. An example of this is 

shown in figure 7.10b where the user attempts to fill the Price field before the Code field. 

Appliance 
Name: 
Quantity: 

Freezer __ _ Code: 
Price:£ q2_r 8ili,j'i 

_This field must be an integerl--
Customer 

Name: 
Address: 

Post Code: 

Department: 

Delivery: 

Date: 

FI GUR[ 7.1 Oa [Hample of a type error. 

Appliance 
Name: 
Quantity: 

Customer 
Name: 
Address: 

Post Code: 

Department: 

Freezer __ _ Code: 
Price:£ 

Total ruot'N 
Code lS 

Delivery: 

Date: 

FIG U R [ 7. lOb [H amp leo fan a tt ri but e u i 0 I a ti 0 n . 

required I 



7 User Interfaces -------____________________ _ 
J(Xy 

Once a form is filled the user may complete the task by pressing the EXIT key. The 

system will then check all the fields to ensure that everything is in order (for example that all 

non-optional fields have been filled.) If not, it will give appropriate messages to guide the 

user in completing the form. 

7.4 DISCUSSION 

The ability to separate a dialogue from the usual processing in a program is an 

important one. For one thing, the dialogue part stands out, explicitly indicating where and 

how it fits with the rest of the system. As a result, it simplifies difficult tasks such as 

changing the user interface to a system and introducing multiple interfaces to the same 

system. Also, it encourages the developer to think of the user interface as an entity separate 

from the rest of the system. 

The dialogue specification and development notation described in this chapter enables 

us to achieve such a separation. As we saw, the modularisation concept is a direct extension 

of the familiar notion of procedural abstraction and supports hierarchical development in a 

similar way. 

Our notation is strongly based on the STD concept and regards each separate dialogue 

as consisting of individual states connected through transitions which are invoked by 

predicates over user input and system states. Obviously, such a framework can also be 

represented by the implementation notation, where each state transition is realised by a goto 

statement. By restricting ourselves to a specific and tighter notation, however, we have 

gained the advantage of imposing a discipline which directly reflects the STD concept. The 

indication that a state is simple, complex, or an interaction point, for example, has on its 

own, enhanced the readability of dialogue specifications and has increased the amount of 

information that can be conveyed by a dialogue description. 

We also showed how other self-contained abstractions can be exceptionally useful in 

dialogue development, and how they can lead to the specification and direct execution of 

certain interactions, rather than their time-consuming implementation. A question that arises 

at this point is how and what other abstractions may be useful in dialogue design. This is a 



7 User Interfaces ------------------------__ _ 107 

difficult question and can be properly answered only in the light of extensive experience. A 

useful criterion that we have used in this respect, and which has proved effective, is that 

concepts which are used repeatedly and which can be generalised should be abstracted. The 

provision of menus and forms, for example, reflects the use of this criterion. However, 

following this line of abstraction is not easy unless we have a higher order abstraction facili ty 

which allows us to design such abstractions with considerable ease and without disturbing 

the base language. This brings us to the concept of clusters and meta abstraction which is the 

topic of the next chapter. 



ClhlSl]pter 8 CLUSTERS AND MET A ABSTRACTION 

Everything should be made as simple as 
possible, but no simpler. 

- A Einstein 

Two important techniques of abstraction, that is data abstraction and procedural 

abstraction, have already been discussed. Data abstraction was extensively covered in our 

discussion on abstract data types. Procedural abstraction was described in the context of 

FUNCTION modules. 

This chapter returns back to the topic of procedural abstraction to introduce a new and 

novel abstraction technique called cluster. Clusters may be regarded as a generalisation of 

current techniques for procedural abstraction and are particularly useful in situations where 

procedures and functions are inadequate, and unable to capture the required level of 

abstraction. 

8.1 THE NEED FOR CLUSTERS 

Clusters, in fact, have already been used in this thesis. The menu and switch 

statements described in chapter 7 are two good examples; these are predefined clusters in 

EPROL. To justify the need for clusters, we shall go back to the problem of specifying menus 

and consider the difficulties that we may encounter when we attempt to realise menus using 

FUNCTIONS. 

As stated in chapter 7, a menu specification consists of the following: 

• A menu title. 

• A set of option names. 

• A set of constraints, each associated with an option. 

• A set of actions, one per option. 

The first problem we encounter is that the number of data items is by nature variable. As a 

result, the data has to be passed to a function using composite data structures. Lists seem to 

be a good choice. Consider the following function: 

FUNCTION menu(title: Str, options: option-list): Choi~e; 
DOM Option:: .op_name: Str, .cons: Bool; 



8 Clusters and Meta Abstraction _______________________ _ 
J(E 

Choice = Na t; 
BEGIN 

/* draw the menu. 
print the title. 
print 

loop 

*/ 
END menu 

the options: 

if an option is active print it in bold 
otherwise print it in normal mode. 

forever: 
cases pressed-key 

up-arrow: mo t . ve 0 preV10US option. 
down-arrow: move to next option. 
return-key: return the option number. 

Every object in the domain Opt ion consists of an option name and its constraint. The 

function returns a unique ide in the domain Choice which identifies the selected option. A 

sample call to this function is shown below: 

cases menu ("TEST", <mk-Option ("option1", pred1) , 
mk-Option("option2",pred2), 

1: action1; 
2: action2; 

k: actionk; 
} ; 

mk-Option("optionk",predk») 

Although this approach works it has two drawbacks: 

• The association of options and actions is controlled outside the menu function. Each 

call requires an additional cases statement to manage this. As a result, each call is 

longer and more complicated than it should be. Furthermore, this increases the 

possibility of introducing some inconsistency between options and actions. For 

example, suppose that during maintenance a new option is inserted in the middle of the 

option list. This will require a consistent re-numbering of the cases branches and is 

potentially error prone. 

• The function will not allow the user to select more than one option from a menu. For 

example, the user cannot select option 2 then option 6 and so on. To do so, one will 

have to call the function repeatedly. This is unreasonable since it will display the menu 

every time the function is called whereas one display would be sufficient. Note that 

repeated calls cannot be avoided since the constraints are first evaluated and then 

passed as booleans. Because the active set may change during execution, passing the 

constraints after each action execution is essential. 



8 Clusters and Meta Abstraction ------------------------------ 110 

Both these problems can be avol'ded by . h . passIng t e constraInts and actions 

symbolically (Le. in an uneval t de) . . . ua e 10nn, and managmg them lnslde the menu module 

itself. However function para , meters are not powerful enough to support this. 

8.2 THE CLUSTER MODULE 

The cluster module has been especially designed to avoid the kind of problems 

mentioned in the previous section. The general structure of a cluster module is shown in 

figure 8.1. 

CLUSTER clus_id { ... cluster-scheme ... }; 
DOM ... private domain definitions .. . 
VAR ... private variable definitions .. . 

local definitions 

BEGIN 

statements 

END clus id 

FIGURE 8.1 The general structure of a CLUSTER module. 

A cluster definition consists of three distinct parts. These are cluster scheme, local 

definitions, and cluster body. A cluster scheme is a syntactic description embedded with 

semantic descriptions such as type of objects, and effectively defines the syntactic domain of 

a cluster. It is composed of syntax operators and objects with pre-defined syntax and 

semantics. 

The domain, variable and local definitions parts are identical to that of functions. 

Cluster modules may be nested in exactly the same way as other modules such as functions 

and dialogues. A cluster body is also very similar to that of a function; it consists of a 

sequence of statements. 

A cluster scheme is defined using a meta notation which allows the definition of 

syntactic rules to describe the way in which objects may be grouped, ordered and related to 

each other. This notation is described below. 



8 Clusters and Meta Abstraction ______________________ _ 111 

the meta notation 

The meta notation is very similar to the Backus-Naur Form (BNF) notation [Naur63] 

used for specifying the syntax of programming languages. The notation is based on a 

number of meta characters. 

The characters { and } are used to specify repetition. Objects appearing between { } 

may be repeated a number of times. The characters [ and ] specify optional objects. Any 

object (or group of objects) appearing between [] is considered to be optional. The 

characters (and) are used for grouping and to override the precedence of other meta 

characters. A vertical bar I will specify choice from a group of objects. Characters * and + 

may be used in association with { } to specify zero or more, and one or more appearances 

respectively. Finally, single quotes ' , are used to specify literals. Literals are arbitrary 

sequences of characters. 

For example, 

{object}*n 

specifies that object may appear zero or more times and that the number of appearances will 

be recorded in variable n. Similarly, 

[object]n 

specifies that object mayor may not be present; n will be one if it is present and zero if not. 

An example of using the choice character I is: 

(objectl I object2 I object3)n 

where one of object l , object2 or object3 must be present; n will be 1,2 or 3 indicating 

which one is present. Variable n, used in the above examples, is called an indicator; it 

records a specific instance of a meta expression. 

A cluster scheme is a meta expression and is composed of meta characters and four 

predefined object classes. The object classes are constants, expressions, statements and 

identifiers, represented by the keywords Const, Exprn, Statm and Ident respectively. The 

d semantics of these is that established bv EPROl itself. A short informal exact syntax an ' -



8 Clusters and Meta Abstraction ---___________________ _ 112 

Exprn a composition of variables, constants, operators, functions, etc. which when 

evaluated produces a value. These usually do not cause any side-effects. 
Const 

Statm 

Ident 

an Exprn which can be, and is, evaluated at compile time. 

computation rules which achieve their ends through useful side-effects. 

a unique sequence of alphanumeric characters. Examples are variable and 

function names. 

To avoid confusion, we should stress that literals and identifiers are totally different 

things. Literals have very simple semantics - they map to themselves - whereas identifiers 

represent objects with more elaborate meaning (e.g. a variable name). The meta notation is 

summarised in figure 8.2. 

{object}k 
{object}*n 
{object}+n 
[object]n 
(object) 
(objectl I object2 I object3)n 

'charseq' 

Exprn 
Const 
Statm 
Ident 

- object must appear k times exactly. 
- object may appear zero or more times. 
- object may appear one or more times. 
- object is optional. 
- object itself. useful for grouping. 
- Exactly one of objectl, object2 or object3 

must be present 
- charseq is a literal and maps to itself. Other examples 

are '=> I. I , I and I constraint I. 
- expression. 
- constant. 
- statement. 
- identifier. 

where k is a positive integer and n is an indicator. 

FI GURE S.2 Summary of the meta notation. 

Comparing the four object classes just described to parameters in a function, we observe a 

few differences: unlike parameters, objects are generalised, syntax directed, and may be 

symbolic (as opposed to a value). For this reason, we shall use the term object to refer to 

them hereafter. Similarly the terms actual object andformal object will be used in the place of 

actual and formal parameter. 

cluster schemes 

In a cluster scheme, an object is specified by a unique name followed by an object 

class followed by a type specification (if required). For example, 



I 

I 
i 
I 

I 
I 

I 
I. 
I 
I 
I 

113 

x: Exprn: Real 

specifies x to be an object in the object class Exprn having the type Rea 1. All objects require 

a type specification except Statm for which the type is always void, e.g.: 

s: Statm 

specifies s to be in the object class Statm. The object class Ident can have the most general 

type specification. For example, 

id: Ident: Nat --> Nat-list 

specifies id to be in the object class Ident and having a function type clause which maps 

natural numbers to lists of natural numbers. 

The meta notation provides a powerful means of grouping objects together with 

considerable ease. The followings are two simple examples of its use: 

'if' cond: Exprn:Bool 'then' stl: Statm 
['else' st2: Statm]n 

'begin' {st: Statm ';'}+n 'end' 

, . , , 

The first example specifies an if-then-else statement where the else part is optional. The 

second example specifies a Pascal-like begin ... end compound statement. In the second 

example, the object st occurs within { } and automatically becomes a list of statements. The 

length of this list is indicated by the value of the indicator n. So, for example, in 

begin 

end; 

1 := i+l; 
k := k-l; 
f(i,k); 

st becomes a list of three statements, Le.: 

st = <i := i+l, k := k-l, f(i,k» 

Individual statements may be accessed by indexing the list; i.e. st [1] , st [2] and st [3] . In 

general, every level of nesting by {} makes the fonnal objects within the nesting a list of 

whatever they are. So in 

{ ... { ... { ... ex: Exprn:Int ... }*k ... }+m ... }+n 

the fonnal object s t is a list of lists of lists of integer expressions, i.e.: 

ex: Int-list-list-list 



I· 

I 
I 
II 

8 Clusters and Meta Abstraction ------------------------ 114 

The same rule equally applies to indicators. So, for example, n, m and k are of types: 

n: Int 
m: Int-1ist 
k: Int-1ist-1ist 

Such types are automatically setup by the EPROL compiler. Note that [] does not produce 

any nesting effects. For example, in 

[ ... { ... ex: Exprn: Int ... }+k ... es: Statm ... ] *m 

the types are: 

m: Int 
es: void 
k: Int 
ex: Int-1ist 

8.3 A CLUSTER DEFINITION 

To illustrate the use of clusters we shall define a variant of the menu statement of 

EPROL as a cluster. This definition is useful in the sense that it shows how various parts of a 

cluster relate to each other. In particular, it shows how fonnal objects and indicators are 

manipulated. The complete definition is given below: 

%library "scr" 
%library "str" 

CLUSTER menu { 'title' title: Const:Str 
'option' optn: Const:Str 

VAR active: 
margin: 
max len: 
cur_opn: 
opn_ len: 

[',' 'constraint' cons: Exprn:Boo1]m 
'=>' action: Statm I;' 

}+n 
} ; 
array[n] Boo1; 
array[n] NatO; 

NatO .= 0; . 
NatO . - 1; 
NatO; 

FUNCTION update_active_set (); 
VAR actv: Boo1; 
BEGIN 

for i in {l:n} do { 
actv := m[i] =0 I cons [i]; 
if (active[iJ /= actv) then 

active[i] := actv; 
w_move (i, margin[i]); 
wyut ("%s%s",if actv then ""8" 

else ""N", optn[i]); 



8 Clusters and Meta Abstraction --------------------------

} ; 
} ; 

END update_active_set 

BEGIN 
for i in {l:n} do { 

} ; 

opn_len := st_len (optn[i]); 
if (opn_len > max_len) then 

max len := opn_len; 

w_open (n, max_len, title); 
for i in {l:n} do { 

} ; 

margin[i] := (max_len - st_len (optn[i]» / 2 + 1; 
active[i] := m[i]=O I cons[i]; 
w_move (i, margin[i]); 
wyut ("%s%s", if active[i] then ""B" 

else ""N", optn[i]); 

while TRUE do { 
w_move (cur_opn, margin[cur_opn]); 
wyut ("%s%s", if active [cur opn] then ""M" 

else ""R", optn[cur_opn]); 
w_move (cur_opn, 1); 
cases keybd () { 

'F1' => { w_move (cur_opn, margin[cur_opn]); /* next */ 
w yut (" %s%s", if active (cur _ opn] then ""B" 

else ""N" , optn(cur_opn])i 
cur_opn := if cur_opn = n then 1 

else cur_opn+1; 
} ; 

'F2' => { w move (cur_opn, margin[cur_opn]); 
wyut ("%s%s", if active(cur_opn] then ""B" 

else ""N", optn[cur_opn]); 
cur_opn := if cur_opn = 1 then n /* previous*/ 

else cur_opn-1; 
} ; 

'F3' => if active [cur_opn] then 
action[cur opn]; /* select */ 

else bell ()i 
'F4' => done; 
'FS' => w text (S, 30, 

TRUE => bell (); 

/* exit */ 
""RMenu-help"N", / * help * / 
\"BF1"N - go to next option 

"BF2"N - go to previous option 
"BF3"N - select this option 
"BF4"N - quit this menu 
"BFS"N - this help\ ); 

} ; 
} ; 
on exit do 

w close (1); 
END menu 

115 

The definition olakes use of two standard libraries called s c r, for screen managenlcnt, and 



8 Clusters and Meta Abstraction ---------------------__ 116 

str, for string manipulation (see appendix C.) The cluster scheme is the part appearing 

between curly brackets just after the cluster id.; title, option, , , constraint, => and ; 

are all literals. The cluster scheme contains four named objects; these are title, optn, cons 

and act ion. The first object, tit Ie, is a string constant. The second object is a list of string 

constants since it occurs inside a repetition. The third object is a list of boolean expressions, 

and the fourth object is a list of statements. The definition also contains two indicators; n is 

an integer and records the number of options etc.; m is an integer list indicating which options 

have constraints. 

The local variable definition part defines two dynamic arrays called act i ve and 

margin of types boolean and positive integer respectively. Note how the indicator n is used 

to specify the dimension of these arrays. Array act i ve indicates which option is active at 

any time. Array margin records a left margin for each option so that it may be printed in the 

centre. The local function update_active _set updates the active set of the menu after each 

action execution. 

The first loop in the cluster body finds the maximum length of options and records it in 

max len. A window is then opened which is n lines long and max len characters wide, - -

having the title title. The next loop prints the options in this window, centring each option 

on a line and printing active options in bold. 

The last loop executes user commands. Each time round the loop, the current option is 

highlighted on the screen; it is printed in mixed mode if active and in reverse video if 

inactive. A cases statement is used to decide which key is pressed by the user: Fl moves to 

the next option, F2 moves to the previous option, F3 selects an option, F4 exits from the 

loop, and FS produces a help frame. Any other key is rejected by ringing the margin bell. 

Also note that Fl and F2 produce a wrap around effect when the user is at the last or the first 

option respectively. 

Note that every reference to an Exprn or Statm object {:auses evaluation of that object 

at run time. For example, cons [i] evaluates and returns the value of the i-th constraint. 

Const objects, on the other hand, are evaluated at compile time. It follows, therefore, that 

Con s t objects can be arbitrary expressions which do not refer to any free variables. For 



8 Clusters and Meta Abstraction ------------___________ _ 
117 

example, title is a Const object and in an actual call it may be 

st cone ("Menu ", "2.5") 

where st _cone is a string concatenation function. This expression is evaluated at compile 

time and is replaced by the constant "Menu 2. 5" . 

An example of a call to the menu cluster is shown below. It has the same effect as the 

one corresponding to figure 7.5 in chapter 7. The only difference is that this call contains two 

more literals (i.e. tit Ie and opt ion) and that is because of the way we have defined our 

cluster. 

menu 

} ; 

title ""'RDB-operation"N" 

option "Insert record", constraint size < MAX SIZE => ins_rec(); 
option "Change record", constraint size> 0 => chg_rec(); 
option "Delete record", constraint size> 0 => del_rec(); 
option "Help" => menu { 

title ""RHelp"N" 
option "Insert" => ..... , 
option "Change" => ..... , 
option "Delete" => ..... , 
option "Back to last menu" => exit; 

} ; 

8.4 TERMINATION MECHANISMS 

There are four ways in which a cluster may be terminated. These are: 

• By a static return statement in the cluster lxxiy. 

• By a dynamic ret urn statement in a cluster call. 

• By a dynamic exi t statement in a cluster call. 

• By flow of control reaching the end of the cluster body. 

Often before returning from a cluster we would like to ensure that certain tasks are 

properly tenninated. For example, in our menu cluster, we must ensure that the menu 

window is closed before exiting from the cluster. One way to achieve this is to require each 

retunl statement to be preceded by a w close (1) statement. However, such a solution is 

very unwise as it exposes a major design decision to the user and places considerable burden 

upon him. An alternative approach, offered by the cluster mechanism, is to use an on_ exi t 

do statement. This specifies a statement which is always executed before leaving the cluster. 



8 Clusters and Meta Abstraction ------------------____ _ 118 

To illustrate the features of the termination mechanism consider the following example. 

It is a partially defined function which contains a nested call to the menu cluster. 

FUNCTION foo(): Int; 
BEGIN 

menu 
title ""'RDB-operation"N" 

option "Help" => menu { 
title ""RHelp"N" 
option "Insert" => 
option "Change" => 

..... , 

..... , 
option "Delete" => ..... , 
option "Quit this menu" => exit; 
option "Quit previous menu" => return(O); 

} ; 
} ; 

END foo 

The exi t statement in the above example terminates the inner call. This causes the on exit 

do statement for the inner menu call to be executed. Hence the window of this menu will be 

closed and control will be transferred to the outer menu. This is an example of a dynamic 

exit statement. The return statement above is static with respect to function foo, and 

dynamic with respect to both menu calls. When executed it first causes the on _ exi t do 

statement of the inner menu to be executed and then the on exit do statement of the outer 

menu call. Therefore, both menu windows will be closed successively. Then function foo 

will be then terminated and the value 0 will be returned as the result of the function. 

As a general rule, therefore, it can be stated that: 

• A dynamic exit terminates the most recently invoked cluster (which is still active). 

• A dynamic return terminates all clusters in a nested call (which are still active) until a 

module body is reached. 

8.5 APPLICATIONS OF CLUSTERS 

The most important use of clusters is for modular software design. Two advantages 

o1ay be gained here. Firstly, the notational power of clusters simplifies the task of properly 

decomposing a system into modules according to the important criteria laid down by Parnas 

I Parnas72, Parnas79]. This is because clusters have a far greater potential for information 



8 Clusters and Meta Abstraction ----------------------_ 119 

hiding than functions. For example, in the function version of menu we had to expose a 

major design decision to the user and require him to manage the association of options and 

actions outside the function. This decision was properly hidden by the cluster version which 

managed the association inside the cluster. 

Secondly, clusters facilitate the construction of truly reusable software modules. The 

primary reason for this is that, unlike functions which are based on rigid interfaces, clusters 

allow the programmer to program the interface. In this way one can cater for a variety of call 

requirements without exposing any internal details of a module. 

A further use of clusters is for pseudo language extension. Using this approach, a 

number of constructs may be added to the base language to support and simplify the task of 

implementing specific applications. An interesting area here is user interface design, where 

clusters may be used for designing dialogue facilities as abstractions. One general abstraction 

of this kind is what we call dialogue box and is described below. 

dialogue boxes 

In window-oriented user interfaces usually all dialogue takes place within windows. 

Earlier on, we saw two styles of such windows (i.e. menus and forms.) A further style is 

what might be called a dialogue box. A dialogue box has some similarity to a menu or a form 

in the sense that it embodies a dialogue with a predefined protocol. Unlike menus and forms, 

however, the protocol is controlled by the programmer and may vary considerably from one 

dialogue box to another. 

We illustrate the concept by an example. The following is a dialogue box definition 

taken from a library system which will be described in chapter 9. The corresponding 

dialogue box frame is shown in figure 8.3. 

dial_box { 
"AM Find Book "N" 
field" Code: ", code: 6, empty 0 => commands; 
field" Author: ", auth: 20, empty""; 
field" Title:" title: 25, empty""; 
command" FIND" => { books := find books (code,auth,title) ; 

count : = 1; 
cases len books ( 

o => message (6,WARN, .. ); 
1 => fm view(hd books, 1111); 



} ; 

command " NEXT " => 
} ; 

TRUE => message (6,NOTE, ... ); 
} ; 

{ if books = <> then 
message (6,WARN, ... ) 

} ; 

else { 

} ; 

fm_ view(hd books, ... ) , 
count := count+l; 
books := tl books; 
message (6,NOTE, ... ); 

command" BACK" > (6 = message ,NOTE,"") => fields; 
command" QUIT " => exit; 

Code: 
Author: 
Title: ware -----------------------

FIGURE 8.3 A dialogue bOH for finding boolcs. 

120 

The dialogue box defines a number of fields and commands. Each field consists of a field 

name, a field variable, the length of the field, and a value which depicts an empty field. In the 

fields part, the symbol => depicts a transfer of control to commands. Each command 

consists of a command name and a corresponding action. In the commands part, the symbol 

=> depicts the association of an action with a command, and also the transfer of control to 

fields. 

The effect of the above dialogue box is that it first allows the user to supply a book 

code. If the user does so control will be transferred to the commands. The user can then 

select a command and execute it. If no book code is given, the user will be asked for an 

author name and a book title. If either of these, or both, is given then control will be 

transferred to the commands, otherwise the whole process will be repeated, i.e. the user will 

be asked for a book code etc. When in the con1mand section, the user can FIND books, look 

at the NEXT book if more than one book is found, go BACK to the fields part, or QU IT the 

dialogue box. The number of fields and commands is only limited by the physical size of the 

screen. 



8 Clusters and Meta Abstraction ----__________________ _ 1 

As illustrated in chapter 7, complex states allow the abstraction of an entire ST[ 

Clusters allow the abstraction of STDs along other dimensions; a recurring pattern in STD 

can be abstracted and supported by a cluster-defined notation. For example, the dialogue bo 

above corresponds to a specific pattern in the STDs of a library system (see appendix C.2.) 

8.6 DISCUSSION 

A higher order abstraction technique based on user-defined syntax rules which, i 

contrast to normal abstraction techniques, allows one to treat non-elementary components c 

a language such as statements and expressions as objects, can be a highly useful tool i 

software development. It allows one to manipulate the very things a language is composel 

of, and to extend the base language in directions which cannot, in general, be predicted i 

advance. 

An additional level of abstraction of this kind has two advantages. First, it allows th 

fonnulation and encapsulation of concepts which have been developed by others, but whic: 

cannot be conveniently captured by conventional means. Second, important abstractions ca 

be developed and integrated into the base language, thereby extending its capabilities toward 

the needs of its users. One can also envisage the use of this form of abstraction for derivin~ 

from the base language, languages which are geared towards specialised applications. Th 

potentials of all this for prototyping is obviously tremendous. 

Some of the meta abstraction techniques described in this chapter are also available i 

certain programming languages. Clusters, for example, share with LISP the idea of dire( 

manipulation of expressions in an unevaluated form. The concept of a programmabl 

syntax-driven module interface, however, is unique to clusters and in not supported by an 

other language. 



CC]ffirdlpter 9) CASE STUDIES 

Good judgement comes from experience. 
Experience comes from bad judgement. 

- J Horning 

In addition to numerous small published programs [Jones80, Bjomer79, Bjomer82] 

EPROS has also been applied to three relatively large problems. These problems are 0 

increasing size and complexity and are described in the following sections. The first two arl 

based on published VDM specifications and address functionality only. The last problem wa: 

entirely specified and developed by the author and considers functionality as well as use] 

interface. 

9.1 ABSTRACT MAPPINGS 

This study was based on the VDM specification of Fielding [Fielding80] for binary anc 

B + trees [Comer79]. These specifications have been formally verified, refined, and 

in1plemented in Pascal by the original author. The study involved converting the 

specifications to a suitable form for EPROS, compile them, and evaluate the resulting 

prototypes. The conversion task was straightforward; only three lines in the entire 

specification of the B+ tree had to be changed. No changes were required for the 

specification of the binary tree. 

The results were quite interesting. The specification of the B + tree contained an errOl 

which had been overlooked by Fielding, even in the fonnal proofs. This error wa5 

discovered by the EPROL compiler. However, no other errors were found during the 

evaluations. The study is summarised in figure 9.1. 

specification size (lines) man days effort errors in the specification 

binary tree 93 0.5 0 

B+ tree 118 1 1 

FIGUR£ 9.1 Abstract mappings case study summary. 



9 Case Studies -------------------________ _ 12. 

9.2 A VERSION CONTROL PROGRAM 

This study was based on the VDM specification of Cottam [Cottam84] for a system 

version control program (SVCP). An SVCP is a program which records the interdependency 

relations of the documents for a software system and is used to keep track of different 

versions of the system (especially its source code). Like the previous study, the conversion 

of the specification to the EPROL notation was straightforward and no changes were required. 

The study confirmed the correctness of the specification and no errors were detected 

during the compilation and evaluation sessions. The study is summarised in figure 9.2. 

specification size (lines) man days effort errors in the specification 

SVCP 168 I.S 0 

fI GURE 9.2 SUCP case study summary. 

9.3 A LIBRARY SYSTEM 

The last case study was based on developing a computerised system to automate the 

daily functions of a conventional library. This study is useful for two reasons. Firstly, the 

system to be discussed corresponds to a real world problem of considerable size. It puts into 

practice the techniques, described in earlier chapters, in the context of a realistic project. 

Secondly, it gives an idea of the effort involved in our development method. In particular, i1 

provides some rough productivity measures for evolutionary prototyping. 

requirements 

The requirements for the system were derived fronl the procedures for the Oper 

University library. This is a manual library of moderate size. The procedures cover si) 

volumes of written text and are relatively complicated. After an initial study of th~ 

procedures, a simplified set of requirements were derived. 

The major simplifications of the requirements were: 

• The system will only deal with books and no other fOnTIS of publication. 

• A keyboard will be used as the data entry device instead of a light pen. 



9 Case Studies ----------------___________ _ 12 

• 

• 

• 

The system will be single user to avoid concurrency problems. 

Apart from the usual reports, the system will not generate any statistical data on th( 

activities of the library. 

A year will be assumed to consist of 12 months each 30 days long. 

The actual requirements will not be presented in full here. The following is an informa1 

overview of some of the more important requirements: 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

The library must provide functions for dealing with reader registration/deregistration. 

and purchasing, issuing, discharging, reserving, recalling and renewing books. 

Each reader must register with the library. Each registered reader is allocated an id. 

number. 

For each registered reader the system must record the following: reader name etc., 

joining date, expected leaving date and the books he or she has on loan. 

Each book is allocated a code number for the purpose of identification. 

For each book the system must record the author, title, volume number etc. 

A reader may borrow up to 40 books. 

The loan period for a book is 14 days. After this period the reader must renew th~ 

book or return it to the library. 

If a reader does not return or renew a book after 14 days it will be recalled by the 

library. 

If a recalled book is not returned after 30 days it will be recalled again. 

A book may be recalled up to 4 times. 

If a reader does not return a book after 200 days it will be assumed lost. 

A reader whose entire loan is assumed lost is deregistered immediately and may no 

borrow again from the library. 

• A reader is deregistered when he or she leaves, provided the loan has been returned t( 

the library. 

• A reader who has left, but has not returned his or her loan, will remain registered unti 

he or she does so, or until the entire loan is assumed lost. In the mean time, the reade 

will not be allowed to borrow any more books. 

• A book already on loan to a reader maybe reserved by any other reader provided th 

reserving reader is within the loan limit. 

• 

• 

• 

There is no limit on the number of readers who may reserve the same book. 

There is no limit on the number of books a reader may reserve. 

When a reserved book becomes available it will be offered to the first person who ha 

reserved it. The reader is given 14 days to collect the book otherwise it will be offere 

to the next reader in the reservation queue. 



9 Case Studies ----------------___________ _ 12 

• The library records shall be updated on a daily basis . 

• The system should produce reports of new readers, new books, deregistered readers, 

lost books, released books, additions to the stock etc. 

The library system was developed in four cycles. Each cycle is briefly described below. For 

a more detailed description of the system see [Hekmatpour87]. 

cycle 1 

During the first cycle a formal specification of the functional requirements was 

produced. The specification was then compiled and the resulting prototype was evaluated. A 

few iterations then followed during which a number of errors and shortcomings in the 

specification were detected and corrected. When the specification reached an acceptable level, 

it was fonnally verified. However, no further errors were detected. The end product of this 

cycle is the formal specification given in appendix 0.1. 

cycle 2 

The user interface to the system was specified as a hierarchy of state transition 

diagrams, the latest version of which is given in appendix 0.2. The user interface was 

realised in a crude form and subjected to evaluation. A few dialogue errors were detected and 

subsequently corrected. The evaluations led to a number of improvements in the specification 

of the dialogue. 

cycle 3 

The user interface was improved in a number of respects. The simple command line 

based interface was gradually replaced by a menu driven interface. Also, the information held 

about readers and books was extended and these were designed as electronic forms. 

Following some evaluation of the generated prototypes, a number of dialogue boxes were 

designed which made the user interface more convenient and suggestive. 

cycle 4 

The last cycle involved making the system more concrete. For example, th~ in-core 



9 Case Studies --------------------________ _ 126 

databases were replaced by external files, and many abstractions were realised by more 

concrete constructs, e.g. a number of sets were realised as liked lists. As refinement 

progressed, the specification part shrank and the implementation part grew steadily. 

Eventually, the specification part vanished completely and the system reached a fully concrete 

form. A number of modifications were also made to the design of the system. For instance, 

two dialogue boxes which contained a number of fields for data entry and a number of 

associated commands were generalised and converted into a cluster. During the evaluations 

of the system, only one error was detected which corresponded to the original specification. 

All other errors were refinement errors. The final code of the system is given in appendix 

D.3. It consists of 1 cluster module, 6 dialogue modules, 2 form modules, and 22 function 

modules. The development cycles are summarised in figure 9.3. 

size (lines) man days effort errors in this cycle errors in previous cycles 

cycle 1 262 5 6 

cycle 2 405 4 4 

cycle 3 758 4 5 

cycle 4 1253 5 5 

fiG U R [ 9.3 Sum mary 0 f the de lJ e lop men t eye I e s . 

Start Up 
Counter Desk 

Surname: 
Forenames: 
Position: 
Faculty: 
Home Addre 

Telephone 

, , , 

Richards 
John 
RA 

Art 
Education 
Geogra.phy 

I: m:~ ct§:: [, (; (ft1 
Sciences 

Tecbnology 

Date: 12/12/86 
Title: Dr_ 

William 

Extension: 

Leaving date: / / ---

0 

0 

0 

1 

41)3, (11 I At H<ft.j ,-EI f%4:Id 

fiGURE 9.4 Registering a reader in the library system. 



9 Case Studies -----------------__________ _ 127 

The final system has a clean design, is well modularised and relatively efficient. The 

user interface is hierarchical and quite friendly in operation. Figure 9.4 shows a snap shot of 

a dialogue with the system when filling a reader registration form. 

concluding remarks 

The experience gained from the development of the library system may be summarised 

as follows: 

• 

• 

• 

The development process was smooth and no major problems were experienced. 

The results of evaluation sessions were often surprising, exposing errors which were 

least expected. For example, despite the simplicity of the operation REM READ (see 

appendix D.l), two errors were detected in its specification. 

Although the functional specification formulated in the first cycle was formally 

verified, nevertheless, an error got through and was only detected in the last cycle. 

• Numerous syntactic and semantic errors were detected automatically by the EPROL 

compiler. 

• All other errors were discovered by evaluation of the prototypes. These errors often 

surfaced very quickly after a few minutes of use. 

• The use of prototypes was most helpful in deciding the appearance of the user 

interface. Again, the results were surprising here; what appeared good on paper was 

usually different on the screen. For example, the layout of one of the dialogue boxes 

was changed a number of times before deciding on its final form. 

• The use of prototyping in a disciplined way resulted in a clean and modular design. 

Much of this cleanness is due to the first two cycles. 

• The decision to formulate functionality before specifying the user interface was helpful 

and worked very well. 

• The overall development was very fast and productive. Use of prototypes allowed us 

to compare the merits of many design decisions in a short period of time and adopt the 

ones which were most satisfactory. 

It should, however, be noted that this exercise was not carried out in as realistic a 

condition as we would have desired. For example, there were no real customers involved 

and the development team consisted of one programmer only. Feedback on the use of the 

prototypes was obtained from colleagues who were willing to play the role of a customer. 

These simplifications, of course, could not be avoided since the resources required for 



9 Case Studies ---------------------------- 128 

simulating a 'real world' experiment were not available and could not be provided. 

Despite these limitations, the library system was a good exercise in evaluating the 

potentials of EPROS for evolutionary prototyping and at least substantiates our claims of the 

appropriateness of the presented methods for prototyping non-trivial systems. We suspect 

that had we followed a conventional method, the development would have required much 

more effort and would have resulted in a system of lower quality. 



CClhl~1P~eJr 10 CONCLUSIONS 

We presented a broad and comprehensive view of rapid prototyping and its role in 

software development. A system was described which is novel in a number of respects and 

which provides direct support for and integrates a number of prototyping techniques. It was 

demonstrated how the system could be beneficial in prototyping both the functional and the 

dialogue aspects of a software system, and how these prototypes could evolve within the 

system towards the final product. We also illustrated, through a case study, how the 

evolutionary prototyping approach could be made practical and productive, using this 

system. 

In this chapter, we shall look at the work carried out by other researchers in this area 

and compare it to the research described here. The chapter ends with a discussion of potential 

research avenues for the future. 

10.1 RELATED WORK 

Rapid prototyping is a relatively new topic in software engineering. Because of its 

newness, not much work has been done in this area and research has only been intensified in 

the past two or three years. The existing literature on the subject, although small, shows a 

wide range of ideas and attempts, of which, the following are related to the work presented 

here. 

executable specification systems 

The idea of constructing a system which automatically generates a working prototype 

from a formal specification is not new and has already been pursued by other researchers. A 

number of such systems were described in chapter 3. Most of these systems, however, are 

either too elementary [Darlington83, Belkhouche85, Goguen84, Farkas82, Lee851 or geared 

towards specific applications [Urban85, Zave86, McGowan851· A common fault of current 

systems is that they lack the concept of data abstraction. The Ina 10 system of Kemmerer 

[Kemmerer851 is a notable exception; this system, however, is currently based on symbolic 



10 Conclusions -----------------------_____ 130 

execution and is unable to produce realistic prototypes. 

There have been two previous attempts to produce executable specification systems for 

subsets of YOM. Henderson [Henderson85] describes a system called ME-TOO which is 

based on a functional language and has most of its features borrowed from VOM and 

MIRANDA [Turner84]. LOM [Farkas82] is another system based on a subset of YOM, but 

simpler in some respects. Again, both these systems have no facilities for specifying abstract 

data types and instead rely on pure functions. 

EPROS is an improvement over the above systems in three respects. First, its 

functional specification notation is more comprehensive. In fact, it is the largest YOM-based 

system to the author's knowledge. Second, it offers a number of additional useful features 

which are non-existent in other systems (e.g. abstract data type protection and polymorphic 

types.) Third, unlike similar systems which are interpreted, it provides a compiler as well as 

an interpreter for exe<;uting specifications. The use of a compiler is rather crucial for large 

specifications. 

An interesting use of formal specifications has been reported by McMullin 

[McMullin83]. He describes a compiler-based system called OAISTS [Gannon81] which 

combines the algebraic specification of an abstract data type with its implementation. OAISTS 

uses the former as a test driver for the latter. Exactly the same principle is supported by 

EPROS. 

As noted in chapter 5, the relationship between a specification and its refinement can 

be documented by a retrieve function. This function can play the role of a test oracle 

[Weyuker82] to ensure that the behaviour of an implementation matches that of its 

specification. OAISTS requires the developer to define a function which checks the equality of 

objects in an abstract data type, for no purpose other than producing the oracle. EPROS 

avoids this overhead since the equality operator is fully generalised and works for any object. 

A number of other researchers have constructed and/or used abstract programming 

languages as executable specification notations. The languages used for this purpose include 

PROLOG [Lee85, Kowalski85, Tavendale85], SETL [Levin83], and MIRANDA [Turner84]. A 

cornmon drawback of these languages is their very restricted and primitive I/O facilities. 



10 Conclusions ---------------------_______ 131 

Amongst these notations, MIRANDA is probably the most powerful. It is a purely functional 

language and has some advanced features such as polymorphic types and currying. 

Disregarding the syntactical differences, however, nearly the entire notation of MIRANDA can 

be viewed as a subset of the functional specification notation of EPROL. 

Semi-fonnal notations have also been used for the automatic generation of prototypes. 

These include data flow diagrams [0Ison85, Docker86], Petri nets [Brun085], and 

requirement statement languages {Be1l77]. Unfortunately, because of their choice of notation, 

these systems lack the facilities expected of a general purpose prototyping tool and are more 

useful for simulating very specific aspects of an application (e.g. flow of data in a control 

system) than prototyping. 

application generators 

Application generators are systems with a non-procedural front-end which enable 

users to generate an application after a short sequence of interaction with the system 

[Horowitz84, Read81, Lucker86]. A number of such systems were described in chapter 3. 

The most significant advantage of application generators is their high productivity. Also, the 

user needs to know little about the system. This makes them exceptionally suitable for 

inexperienced end-users who are interested in producing their own applications. Obviously, 

these system can also be valuable prototyping tools. 

The serious limitation of these systems, however, is their very restricted scope. Their 

use is often confined to database manipulation and report generation in applications such as 

stock control and accounting [Martin82, Ramamoorthy84]. A few application generators, 

notably QBE/OBE [Zloff81], have gone a step further by integrating knowledge about general 

data processing, word processing and graphics into the system. 

The essential differences between an application generator and EPROS is their scope 

and intended audience. In contrast to the former, the latter is for experienced software 

engineers and has a much wider application scope. 



10 Conclusions ------------------------____ 132 

program transformation systems 

The basic idea behind this approach is to initially produce an abstract and concise 

program which is generally inefficient. This program is then refined using transformation 

rules which are either supplied interactively by the user or suggested automatically by the 

system [Knuth74, Loveman77, Darlington81 b, Bastani84]. The purpose of the 

transformations is to either refine or optimise the program. 

Obviously, program transformations, when attainable, can be very valuable in 

prototyping. However, research into program transformation has been slow and has had 

very limited success so far. One reason for this is the difficulties associated with discovering 

correct and useful transformations. Another reason is the question of detecting parts of a 

program to which transformations should be applied [Wegbreit76]. The current body of 

knowledge on program transformation is quite limited [Barstow85] and much work remains 

to be done before it can be of serious utility in large software projects. 

An interesting and more practical application of program transformation has been 

implemented in the DRACO system [Neighbours84]. This system relies on creating large 

transformation databases for specific application domains. Neighbours reports that he has 

successfully constructed a number of large applications using DRACO [Neighbours81]. A 

similar approach is described in [Rice81]. Although the use of domain specific 

transformation is attractive, two research issues remain to be explored. One is related to the 

potential difficulties of analysing a domain in great depth; another is related to the growth and 

size of domain languages which have to be mastered in order to use the system 

[Horowitz84]. 

EPROS does not utilise any program transformation techniques. We do suspect, 

however, that should program transfonnation become sufficiently practical in the future, the 

functional specification notation of EPROL will be a suitable candidate for applying these 

techniques. 

program refinement systems 

Cheatham [Cheatham79b] describes a program development system (PDS) where the 



10 Conclusions - __________________________ _ 
133 

levels of refinement of a program are formally managed by the system. The system uses a 

database to maintain multiple representations of a program module and is based on an 

extensible language. In PDS, a module can be modified, either by manual editing or by 

applying rewrite rules, to generate another version of the module. The commands used for 

this can be saved in the database and later on, in the event of module modification, used to 

replay the derivation sequence. PDS can obviously be useful as a support tool for writing 

reusable modules and hence for prototyping. Unfortunately, however, the use of rewrite 

rules requires the indepth understanding of a module structure, since these operate like Lisp 

macros and must build program fragments piece by piece. 

EPROS does not provide any automatic support for managing the levels of refinement 

of a program, and requires the programmer to do this manually. The addition of a suitable 

database, however, could provide such a facility. Currently, this is being planned as an 

extension to the system. 

formal program development environments 

Latham [Latham85] describes a formal program development environment based on 

the OBI algebraic specification language [Goguen84] and a subset of Pascal, called abstract 

Pascal. Programs in this system are first specified in OBI and then manually implemented in 

abstract Pascal. The system also provides support for the partial proof of correctness of 

programs with respect to their specifications. 

Many systems of this kind have been developed in the past; see for example 

[Deutsch69, German75, Tamir80, Shaw81]. Typically these systems consist of a verification 

condition generator which automatically generates assertions about programs using some 

heuristics, and an interactive theorem prover which assists the user in proving the correctness 

(or otherwise) of the generated assertions. Some systems also provide a compiler and a 

run-time environment for the implementation language used in the system. 

EPROS is similar to these system in its use of a formal specification notation only. It 

differs from these systems in the way it utilises formal specifications in software 

development. The former uses a formal specification as a basis for generating rapid 



10 Conclusions ---------___________________ 134 

prototypes. The latter use it as a basis for semi-mechanical program proofs. Although EPROS 

takes program proofs also into account, it takes a purely manual approach to this. This is a 

conscious decision and there are three reasons for it. First, mechanical theorem proving 

technology has not reached a stage to guarantee the possibility of proving any theorem in frrst 

order predicate calculus (especially non-trivial ones) and is not likely to do so. This, in tum, 

puts some serious limitations to the utility of the approach for practical applications. Second, 

program proofs at the code level are more time-consuming and less productive than at the 

design level (see [Jones80] for an excellent discussion of this issue) and, indeed, many 

reports on cost estimation of software errors strongly support this view [Boehm8!]. Third, 

one of the most useful side-effects of a formal proof is that the person attempting the proof 

learns a great deal about the specification and the ways in which it may be simplified or 

improved. With automatic approaches this advantage is practically lost. 

user interface management systems 

A user interface management system (UIMS) is a software tool which frees application 

programs from low-level I/O details [Green85, Ramamoorthy86]. Regardless of its actual 

form, it provides an abstract notation for describing a user interface. In a way a UIMS is 

similar to a database management system [Buxton83]. The latter manages the communication 

between a program and its data, hiding away details about the internal organisation of data. 

The fonner plays a similar role between a program and its I/O events. 

A number of user interface management systems have been previously constructed 

[Edmonds84, Jacob83, Hays85, Wasserman85, Bos83, Hartson84], mostly in the area of 

computer graphics [Hanau80, Olsen 83, Olsen84, Buxton83, Kasik82, Hagen85, Myers86]. 

These systems invariably achieve abstraction by restricting their application domains 

[McLean86, Hutchins86]. 

EPROS is similar to some of these system in its use of state transition diagrams. It has 

two important features which are not possessed by most other systems. First, it supports the 

view of dialogue refinement and encapsulation [Green85]. Second, it is application 

domain-independent. This is in complete contrast to RAPID/USE [Wassemlan86], for 



10 Conclusions ---------------------------- 135 

example, which uses a single level of state transition diagrams and is geared towards 

database manipulation. 

The UIMS component of EPROS is based on the screen management library (scr) and is 

different from the above systems in the following way. Rather than providing a pre-defined 

and fixed notation, EPROS relies on a set of library routines and I/O primitives for dialogue 

design. This set has been intentionally kept small to simplify its use. Higher level notations 

are constructed by the programmer using clusters. In this way the programmer can bend the 

UIMS in many different ways and come up with notations that match the application at hand 

more naturally. No such facility exists in other systems. 

executable dialogue abstractions 

Certain dialogue concepts are so commonly used in interactive system that it pays to 

have abstractions that support them directly. Examples are electronic fonns [Tsichritzis79], 

pop-up menus [Brown82] and dialogue boxes, and were extensively described in earlier 

chapters. 

Currently, there are office automation systems that support the user definition of some 

of these concepts, for example forms, in a rudimentary way [Tsichritzis80, Fikes80, 

Bass85]. Other researchers have come up with notations that are abstract but are either too 

application specific [Rowe83] or not implemented [Gehani82b, Lafuente78]. 

Compared to these, the dialogue abstractions of EPROL have a number of advantages: 

they are general purpose, fully executable, abstract, and user definable/extensible. Some of 

these abstractions, however, have benefited from the existing unimplemented notations (e.g. 

Gehani's notation for fOnTIS [Gehani82b].) 

10.2 WHAT IS NEW ABOUT THIS RESEARCH 

The EPROS environment is a contribution to research on software prototyping, 

software development environments and language theory. This work is important in a 

number of ways: 

• It is an attempt to produce a software development environment for evolutionary 



10 Conclusions -------------------------___ 1] 

• 

prototyping where a working system is available during all the phases of development 

starting at the highest level of specification and finishing with concrete code. To the 

author's knowledge there are no similar systems with such comprehensive capabilities 

It is an attempt to produce a software development environment for developers who 

wish to use the executable specification approach to prototyping and yet allow the 

human-computer interface to be prototyped as well. Most current systems, for example 

[Henderson86, Urban85, Kemmerer85, Goguen79], cater only for functional aspects 

of prototyping. Others [Wasserman86] support both but are application dependent. 

Since a significant part of many systems consists of the user interface, we feel that any 

environment for prototyping, be it evolutionary or throw-it-away, should also support 

user interface development. 

• It is an attempt to remove the notational barriers between successive stages of software 

development and provide support for the entire life cycle. The result of this is 

smoother communication between various experts of the development team and 

avoidance of the problem of having to cope with widely differing notations for 

different phases. In this, it is only similar to the work reported by Bauer [Bauer78, 

Bauer81]. This work does involve a wide spectrum language. However, it is not fully 

executable and also ignores the human-computer interface. 

• Unlike other systems which take a simplistic view of dialogue design and restrict 

themselves to simple string oriented dialogues [Wassermann85, Jacob83, 

Edmonds84, Hanau80, Hartson84], the EPROS environment supports the prototyping 

of modem interaction concepts such as windows, pop-up menus and forms, which are 

becoming increasingly popular and contributing to more user-friendly interfaces. 

• As a by-product of the need to produce an environment for evolutionary prototyping, 

we have devised an executable wide spectrum language which is capable of improving 

the efficiency of the formal development process. For example, the normal process of 

formal software development using VDM consists of a series of steps which are 

rigorously verified during which errors are discovered and removed. Past experience 

[Cottam84] suggests that even the simplest errors can involve large amounts of pape] 

rework and can be excessively time consuming. We have found that the automatic 

syntactic and semantic checkings built into our processors expose these errors vel) 

quickly without costly mathematical verification. 

• As a result of our attempt to simplify the task of prototyping software systems, we 

have devised a new meta abstraction technique which facilitates the encapsulation 0 



10 Conclusions --------------------________ _ 131 

non-trivial concepts. This technique is a departure from the usual methods of 

procedural abstraction and considerably simplifies the task of developing reusable 

software modules. Its utility, however, is not restricted to prototyping; it can also be 

used profitably in software design. 

10.3 FUTURE RESEARCH DIRECTIONS 

Naturally, this thesis does not claim to have found all the answers. Indeed, the nature 

of some of the unresolved issues implies that many more years of research is needed before 

comprehensive conclusions can be drawn, and before we can claim to have the ideal means 

for prototyping. There are a number of areas where further research could prove beneficial; 

these are discussed below. 

One potential research area, which we may consider as a direct extension of this work, 

would involve the construction of a prototyping environment which progressively produces 

more efficient prototypes. We achieved this goal, to some extent, by gradually moving along 

a notation spectrum, from the abstract to the detailed. Better results can be obtained by also 

improving our translation techniques. This may involve the direct translation of our notations 

into machine code (as opposed to Lisp in our system) and the use of sophisticated 

optimisation techniques. Although there is currently a wealth of knowledge available on 

advanced compilation techniques, the problem of applying these to prototyping 

environments, such as ours, still remains outstanding. An obvious payoff of such research 

would be more efficient environments for evolutionary prototyping where finished products 

can compete in terms of efficiency with those produced using conventional methods. 

A second area of research would concentrate on inventing imprOVed notations and 

techniques for prototyping. Of particular interest would be a unified notation and framework 

for function and user interface prototyping. Although we made some progress towards this 

in this thesis, there still remains a wealth of questions that need to be explored. For example, 

can methods be invented where functionality and dialogue can be derived from one another? 

Can systems be built which extract infomlation from previous developments to guide future 

developments? Can AI techniques be of any benefit in these respects? 

There are also a number of existing notations which could foml a suitable basis fOl 



10 Conclusions ---------------------------- 138 

prototyping new concepts. One such concept, which we did not consider in this thesis, is 

concurrency. Recent developments in computer science have lead to some powerful notations 

for expressing concurrency [Milner80, Manna81, Inmos84, Hoare85, Zave86]. Some work 

has also been carried out on the application of these notations to prototyping certain aspects 

of software systems (for example, interaction [Alexander86].) More research is needed in 

order to fully exploit the power of these notations and, particularly, to investigate how these 

notations may be integrated with others, such as those described in this thesis. 

A third area of research would focus on devising more effective and accessible 

front-ends to prototyping environments. There are a number of existing technologies which 

could contribute towards this. For example, syntax directed editors [Teitelbaum81] could 

speed up development and reduce errors, and bit map display-based workstations [Smith82a, 

Webster83] could provide a suitable basis for the direct use of graphical notations [Reader85, 

Reiss86] for prototyping. 

The last area of research would concentrate on applying the outcome of the research 

into prototyping to a realistic number of real-life projects. Such research will be highly 

empirical with the aim of generating valuable feedback which would be used in the 

development of a coherent prototyping methodology. This research could have a number of 

useful outcomes. First, it may provide data on the impact of the project size and nature of 

application on the effectiveness of the prototyping approach. Second, it may increase our 

understanding about how a prototype system should be designed. Third, the results could 

provide sensible answers to some of the management problems that the prototyping approach 

generates [Canning81, Keus82]. 

In parallel to these, effort should be put into recording and preparing the findings of 

research on prototyping for use by software practitioners. Most software developers hesitate 

to use prototyping because they know little about it and there is little material available in a 

suitable form to guide them. Continuous formulation of new techniques and tools for 

prototyping into a set of prototyping procedures could remedy this problem to some extent. 



REFERENCES 

[Aaram84] 

[Ackford67] 

[Aggleton86] 

[Alavi84] 

[Alexander86] 

[Alter80] 

[Ardis86] 

[Backus78] 

[Baldwin82] 

[Bally77] 

[Balzer82] 

[Balzer83] 

[Barstow85] 

[Basili75] 

[Bass85] 

[Bastani84 ] 

[Bastani85] 

[Bauer78] 

J. Aaram, "The BOP Prototyping Concept," in Approaches to Prototyping, R. Budde et 
al. (eds.), Springer-Verlag, pp. 179-187 (1984). 

R. L. Ackford, "Management Misinfonnation Systems," Management Science, Vol. 
14(4) pp. 456-461 (1967). 

P. Aggleton, "Towards Effective Prototyping," Computing - Software Notebook, 3 parts: 
pp. 35-36,52-53, 39 (Oct.-Nov. 1986). 

M. Alavi, "An Assessment of Prototyping Approach to Information System 
Development," Communications of the ACM, Vol. 27(6) pp. 556-563 (1984). 

H. Alexander, Formally-Based Tools and Techniques for Human-Computer Dialogues, 
PhD Thesis, Dept. of Computing, Stirling University (1986). 

S. A. Alter, Decision Support Systems - current practice and continuing challenges, 
Addison-Wesley, Reading MA (1980). 

M. A. Ardis, "Comparison of Algebraic and State-Machine Specification Methods," 
ACM SIGSOFT Software Engineering Notes, Vol. 11(4) pp. 54-56 (1986). 

J. Backus, "Can Programming be Liberated from the von Neumann Style? A Functional 
Style and its Algebra of Programs," Communications of the ACM, Vol. 21(8) pp. 
613-641 (1978). 

R. R. Baldwin, "Reportage on Spring 1982 IEEE COMPCON Conference," ACM 
SIGSOFT Software Engineering Notes, Vol. 7(2) pp. 13-20 (1982). 

L. Bally, J. Brittan, and K. H. Wagner, "A Prototype Approach to Infonnation System 
Design and Development," Information & Management, Vol. 1 pp. 21-26 (1977). 

R. Balzer, N. M. Goldman, and D. S. Wile, "Operational Specification as the Basis of 
Rapid Prototyping," ACM SIGSOFT Software Engineering Notes, Vol. 7(5) pp. 3-16 
(1982). 

R. Balzer, T. E. Cheatham, and C. Green, "Software Technology in the 1990's: Using a 
New Paradigm," IEEE Computer, Vol. 16(11) pp. 39-45 (1983). 

D. Barstow, "On Convergence Towards a Database of Program Transfonnations," ACM 
Trans. Programming Languages and Systems, Vol. 7(1) pp. 1-9 (1985). 

V. R. Basili and D. Turner, "Iterative Enhancement: A Practical Technique for Software 
Development," IEEE Trans. Software Engineering, Vol. 1(4) pp. 462-471 (1975). 

L. J. Bass, "An Approach to User Specification of Interactive Display Interfaces," IEEE 
Trans. Software Engineering, Vol. 11(8) pp. 686-698 (1985). 

F. A. Bastani, "Perfonnance Improvement of Abstractions Through Context Dependent 
Transfonnations," IEEE Trans. Software Engineering, Vol. 10(1) pp. 100-116 (1984). 

F. A. Bastani, "Experience with a Feedback Version Development Methodology," IEEE 
Trans. Software Engineering, Vol. 11(8) pp. 718-723 (1985). 

F. L. Bauer et. aI., "Towards a Wide Spectrum Language to Support Program 
Specification and Program Development," ACM SIGPLAN Notices, Vol. 13(12) pp. 



References ------------------------------____________________________ ___ ]40 

[Bauer81] 

[Beichter84 ] 

[Belady80] 

.(Belkouche85] 

[Be1l77] 

[Be1l79] 

[Benbasat84 ] 

[Berrisford79] 

[Berzins85] 

[Bird84] 

[B jorner78] 

[Bjorner82] 

[Blesser82] 

[Bloomfield86] 

[Blum82a] 

[Blum82b] 

[Blum83] 

[Blum86] 

15-24 (1978). 

F. L. Bauer et. a1.. "Programming in a Wide Spectrum Language: A Collection of 
Examples." Science of Computer Programming, Vol. 1 pp. 73-114 (1981). 

F. W. Beichter. O. Herzog. and H. Petzsch, "SLAN-4 - A Software Specification and 
Design Language." IEEE Trans. Software ENgineering, Vol. 10(2) pp. 155-162 (1984). 

L. A. Belady and B. Leavenworth. "Program Modifiability," in Software Engineering. H. 
Freeman and P. M. Lewis (eds.). Academic Press, New York (1980) . 

B. Belkhouche. "Compilation of Specification Languages as a Basis for Rapid and 
Efficient Prototyping." in Proc. 3rd Int. Workshop Software Specification & Design, 
London. pp. 16-19 (1985). 

T. E. Bell, D. C. Bixler, and M. E. Dyer, "An Extendable Approach to Computer-Aided 
Software Requirements Engineering." IEEE Trans. Software Engineering, Vol. 3(1) pp. 
49-60 (1977). 

Bell Lab., UNIX Programmer's Manual. 7th Edition (1979). 

I. Benbasat and Y. Wand. "A Structured Approach to Designing Human-Computer 
Dialogues." Int. Journal of Man-Machine Studies, Vol. 21 pp. 105-126 (1984). 

T. Berrisford and J. Wetherbe, "Heuristic Development: A Redesign of Systems Design," 
MIS Quarterly. Vol. 3(1) pp. 11-19 (1979). 

V. Berzins and M. Gray, "Analysis and Design in MSG.84: Formalizing Functional 
Specifications." IEEE Trans. Software Engineering, Vol. 11(8) pp. 657-670 (1985). 

R. S. Bird. "The Promotion and Accumulation Strategies in Transformational 
Programming." ACM Trans. Prog. Langs. and Systems, Vol. 6(4) pp. 487-504 (1984). 

D. Bjorner and C. B. Jones (eds.). The Vienna Development Method: The 
Meta-Language. Lecture Notes in Computer Science, Vol. 61. Springer Verlag, Berlin 

(1978). 

D. Bjorner and C. B. Jones. Formal Specification and Software Development, 

Prentice-Hall, London (1982). 

T. Blesser and J. D. Foley, "Towards Specifying and Evaluating the Human Factors of 
User-Computer Interfaces," in Proc. Con! Human Factors in Compter Systems, 

Gaithersburg, Maryland, pp. 309-314 (1982). 

R. E. Bloomfield and P. K. D. Froome. "The Application of Formal Methods to the 
Assessment of High Integrity Software," IEEE Trans. Software Engineering, Vol. 12(9), 

pp. 988-993 (1986). 

B. I. Blum and R. C. Houghton, Jr., "Rapid Prototyping of Information Management 
Systems." ACM SIGSOFf Software Engineering Notes, Vol. 7(5) pp. 35-38 (1982). 

B. I. Blum, "The Life Cycle - A Debate Over Alternate Models," ACM SIGSOFT 

Software Engineering NOles, Vol. 7(4) pp. 18-20 (1982). 

B. I. Blum, "Still More About Rapid Prototyping," ACM SIGSOFT Sofl~"'(lre 
Engineering NOles, Vol. 8(3) pp. 9-11 (1983). 

B. I. Blum, "Iterative Development of Information Systems: A Case Study," Software 

Practice and Exprerience, Vol. 16(6) pp. 503-515 (1986). 



References _____________________________ _ 
141 

[Boehm74] 

[Boehm81] 

[Boehm83] 

[Boehm84] 

[Bonet84] 

[Bos78] 

[Bos83] 

[Bosman81] 

[Botting85] 

[Bourne83] 

[Boyle84] 

[Britwistle73] 

[Brittan80] 

[Brooks75] 

[Brown82] 

[Browne86] 

[Brun085] 

[Budde84] 

[Burns861 

[Bursta1l80] 

B. W. Boehm, "Some Steps Towards Formal and Automated Aids to Software 
Requirements Analysis and Design," IFIP 74, North-Holland, pp. 192-197 (1974). 

B. W. Boehm, Software Engineering Economics, Prentice-Hall, New Jersey (1981). 

B. W. Boehm and T. A. Standish, "Software Technology in the 1990's: Using an 
Evolutionary Paradigm," IEEE Computer, Vol. 16(1) pp. 30-37 (Nov. 1983). 

B. W. Boehm , T. E. Gray, and T. Seewaldt, "Prototyping Versus Specifying: A 
Multiproject Experiment," IEEE Trans. Software Engineering, Vol. 10(3) pp. 290-303 
(1984). 

R. Bonet and A. Kung, "Structuring into Subsystems: the experience of a prototyping 
approach," ACM SIGSOFT Software Engineering Notes, Vol. 9(5) pp. 23-27 (1984). 

J. Bos, "Definition and Use of Higher-Level Graphics Input Tools," Computer Graphics, 
Vol. 12(3) pp. 38-42 (1978). 

J. Bos, M. J. Plasmeijer, and P. H. Hartel, "Input-Output Tools: A Language Facility for 
Interactive and Real-Time Systems," IEEE Trans. Software Engineering, Vol. 9(3) pp. 
247-259 (1983). 

A. Bosman and H. G. Sol, "Evolutionary Development of Infonnation Systems," in TC8 
Working Conference on Evolutionary Information Systems, Part 1 pp. (Sep. 1981). 

R. J. Botting, "On Prototyping vs. Mockups vs. Breadboards," ACM SIGSOFT Software 
Engineering Notes, Vol. 10(1) p. 18 (Jan. 1985). 

S. R. Bourne, The Unix System, Addison-Wesley, London (1983). 

J. M. Boyle and N. M. Muralidharan, "Program Reusability Through Program 
Transfonnation," IEEE Trans. Software Engineering, Vol 10(5), pp. 574-588 (1984) 

G. M. Birtwistle et. a1., Simula Begin, Petrocelli, New York (1973). 

J. N. G. Brittan, "Design for a Changing Environment," The Computer Journal, Vol. 
23(1) pp. 13-19 (1980). 

F. Brooks, The Mythical Man-Month, Addison-Wesely, Reading MA (1975). 

J. W. Brown, "Controlling The Complexity of Menu Networks," Communications of the 
ACM, Vol. 25(7) pp. 412-418 (1982). 

D. P Browne, "The Fonnal Specification of Adaptive User Interfaces Using Command 
Language Grammar," in Proc. CHJ'86, Boston MA, pp. 256-260 (1986). 

G. Bruno and G. Marchetto, "Rapid Prototyping of Control Systems Using High Level 
Petri Nets," in Proc. 8th Int. Con/. Software Engineering, pp. 230-235 (1985). 

R. Budde and K. Sylla, "From Application Domain Modelling to Target System," in 
Approaches to Prototyping, R. Budde eL aI. (cds.), Springer-Verlag, pp. 31-48 (1984). 

A. Burns and 1. A. Kirkham, "The Construction of Information Management System 
Prototypes in Ada," Software Practice and Experience, Vol. 16(4), pp. 341-350 (1986). 

R. M. BurstaIl, D. MacQueen, and D. Sanclla, "HOPE: an Experimental Applicativc 
Language," in Con/. Rec. 1980 Lisp Con/., Stanford Univ., pp. 136-143 (1980). 



References _____________________________ _ 
142 

[Burstall81] 

(Buxton83] 

[Canning81] 

[Carey82] 

[Casey82] 

[Cheatham79a] 

[Cheatham79b] 

[Cheatham 84 ] 

[Cheng84] 

(Chi85] 

[Christensen84 ] 

[Clark81] 

[Clark84] 

[Claybrook82] 

[Clocksin84] 

[Cohen82] 

[Comer79] 

[Conway63] 

[Cook86] 

R. M. B~r.stall and J. A. Goguen, "An Informal Introduction to Specifications Using 
CLEAR, In The Correctness problem in Computer Science, J. Moore (ed.), Academic 
Press, New York (1981). 

w. Buxton, M. R. Lamb, D. Sherman, and K. C. Smith, "Toward a Comprehensive User 
Interface Management System," Computer Graphics, Vol. 17(3) pp. 35-42 (1983). 

R. G. Canning, "Developing Systems by Prototyping," EDP Analyzer, Vol. 19(9) pp. 
1-14 (1981). 

T. Carey, "User Differences in Interface Design," IEEE Computer, Vol. 15(3), pp. 14-20 
(1982). 

B. E. Casey and B. Dasarathy, "Modelling and Validating the Man-Machine Interface," 
Software-Practice and Experience, Vol. 12 pp. 557-569 (1982). 

T. E. Cheatham, G. H. Holloway and 1. A. Townley, "Symbolic Evaluation and 
Analysis of Programs," IEEE Trans. Software Engineering, Vol. 5(4) pp. 402-417 
(1979). 

T. E. Cheatham, 1. A. Townley and G. H. Holloway, "A System for Program 
Refmement," in Proc. 4th. Int. Conf. Software Engineering, pp. 53-62 (1979). 

T. E. Cheatham, "Reusability Through Program Transformations," IEEE Trans. Software 
Engineering, Vol. 10(5) pp. 589-594 (1984). 

T. T. Cheng, E. D. Lock, and N. S. Prywes, "Use of Very High Level Languages and 
Program Generation by Management Professionals," IEEE Trans. Software Engineering, 
Vol. 10(5) pp. 552-563 (1984). 

U. I. Chi, "Formal Specification of User Interface: A Comparison and Evaluation of Four 
Axiomatic Approaches," IEEE Trans. Software Engineering, Vol. 11(8) pp. 671-685 
(1985). 

N. Christensen and K. Kreplin, "Prototyping of User-Iterfaces," in Approaches to 
Prototyping, R. Budde et. al. (eds.), Springer-Verlag, pp. 58-67 (1984). 

I. A. Clark, "Software Simulation as a Tool For Usable Product Design," IBM System 
Journal, Vol. 20(3) pp. 272-293 (1981). 

F. Clark, P. Drake, M. Kapp and P. Wong, "User Acceptance of Information Technology 
Through Prototyping," in Proc. Interact'84 Conf, London, pp. 274-279 (1984) 

B. G. Claybrook, "A Specification Method for Specifying Data and Procedural 
Abstractions," IEEE Trans. Software Engineering, Vol. 8(5) pp. 449-459 (1982). 

W. E. Clocksin and C. S. Mellish, Programming in Prolog, Springer-Verlag, Berlin, 2nd 

edition (1984). 

D. Cohen, W. Swartout, and R. Balzer, "Using Symbolic Execution to Characterize 
Behaviour," ACM SIGSOFT Software Engineering Notes, Vol. 7(5) pp. 25-32 (1982). 

D. Comer, "The Ubiquitous B-Tree," Computing Surveys Vol. 11(2) pp. 121-137 

( 1979). 

M. E. Conway, "Design of a Separable Transition Diagram Compiler," Communications 
of the ACM, Vol. 6(7) pp. 396-408 (1963). 

S. Cook, "Modelling Generic User-Inlerface wilh Funclional Programs," in People and 



References ____________________________________________________________ ___ 
143 

[Cottam84] 

[Cristian84 ] 

[Dagwe1l83 ] 

{DahI72] 

[Dannenberg82] 

[Darlington 76] 

[Darlington81 a] 

[Darlington81 b] 

[Darlington82] 

[Darlington83 ] 

[Davis77] 

[Davis79] 

[Davis83] 

[Dearnley81 ] 

[Dearnley83] 

[Dcamley84 ] 

[Denert77] 

CompUiers: Designing for Usability, M. D. Harrison and A. I. Monk (eds.), Cambridge 
Univ. Press, London, pp. 368-385 (1986). 

I. Cottam. "Rigorous Development of a Version Control Program," IEEE Trans. 
Software Engineering, Vol. 10(2) pp. 143-154 (1984). 

F. Cristiano "Correct and Robust Programs," IEEE Trans. Software Engineering. Vol. 
10(2) pp. 163-174 (1984). 

R. Dagwell and R. Weber, "System Designers' User Models: A Comparative Study and 
Methodological Critique." Communications of the ACM, Vol. 26(11) pp. 987-997 
(1983). 

O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming, Academic 
Press. London (1972). 

R. B. Dannenberg and G. W. Ernst, "Formal Program Verification Using Symbolic 
Execution." IEEE Trans. Software Engineering. Vol. 10(1) pp. 43-52 (1982). 

J. Darlington and R. M. Burstall, "A System which Automatically Improves Programs," 
Acta Informatica, Vol. 6 pp. 41-60 (1976). 

J. Darlington, "An Experimental Program Transformation and Synthesis System," 
Artificial Intelligence. Vol. 16 pp. 1-46 (1981). 

J. Darlington, "The Structured Description of Algorithm Derivation." in Algorithmic 
Languages. J. W. De Bakker and J. C. Van Vliet (eds.), North-Holland, Amsterdam, pp. 
221-250 (1981). 

J. Darlington, P. Henderson, and D. A. Turner (eds.), Functional Programming and its 
Applications - an advanced course, Cambridge Univ. Press, Cambridge (1982). 

J. Darlington. "Validation Techniques for Software Specifications," in Microcomputers: 
Developments in Industry. Business and Education, C. J. van Spronsen (ed.), 
North-Holland, pp. 91-97 (1983). 

C. G. Davis and C. R. Vick, "The Software Development System," IEEE Trans. 
Software Engineering, Vol. 3(1) pp. 69-84 (1977). 

A. M. Davis, "Formal Techniques and Automatic Processing to Ensure Correctness in 
Requirements Specifications," in Proc. Con! Specification of Reliable Software, pp. 
15-35 (1979). 

R. Davis. "Task Analysis and User Errors: A Methodology for Assessing Interactions," 
Int. Journal of Man-Machine Studies, Vol. 19 pp. 561-574 (1983). 

P. A. Dearnley and P. Mayhew, "Experiments in Generating System Prototypes," in 
Proc. First European Workshop on In! Systems Teaching, Aix-en-Provence (1981). 

P. A. Deamley and P. J. Mayhew, "In Favour of System Prototypes and their Integration 
into the System Development Cycle," The Computer Journal, Vol. 26(1) pp. 36-42 

(1983). 

P. A. Dearnlcy and P. J. Mayhew, "On the Use of Software Development Tools in the 
Construction of Data Processing System Prototypes," in Approaches to Prototyping, R. 
Budde et. al. (cds.), Springer-Verlag, pp. 68-79 (1984). 

E. Denert, "Specification and Design of Dialogue Systems wirh State Diagrams," pp. 
417-424 in International Computing Symposium 1977, D. Ribhcns (cd.), North-Holland 



Refe~nces __________________________________________________________ ___ 
144 

[Deutsch69] 

[Dixon85] 

(Docker86] 

[Dodd80] 

[Draper85] 

[Drosten84 ] 

[Dyer80] 

[Earl78] 

[Edmonds81] 

[Edmonds82] 

[Edmonds84 ] 

[Farkas82] 

[Feather82a] 

[Feather82b] 

[Feyock77] 

[Fielding 80] 

[Fikes80] 

[Floyd84] 

[Foley82] 

(1977). 

L. P. Deutsch, An Interactive Program Verifier, PhD Thesis, University of California, 
Berkeley (1969). 

F. J. Dixon, "Simplifying Screen Specifications - the 'Full Screen Manager' Interface and 
'Screen Form' Generating Routines," The Computer Journal Vol. 28(2) pp. 117-127 
(1985). 

T. W. G. Docker anf G. Tate, "Executable data Flow Diagrams," in Software Engineering 
86, D. Barnes and P. Brown (eds.), Peter Peregrinus, Exeter, pp. 352-370 (1986). 

W. P. Dodd, "Prototype Programs," IEEE Computer, Vol. 13(2) p. 80 (Feb. 1980). 

S. W. Draper and D. A. Norman, "Software Engineering for User Interfaces," IEEE Trans. 
Software Engineering, Vol. 11(3) pp. 252-258 (1985). 

K. Drosten, "Towards Executable Specifications Using Conditional Axioms," in STACS 
84, Lecture Notes in Computer Science Vol. 166, Springer-Verlag, pp. 85-96 (1984). 

M. Dyer, "The Management of Software Engineering Part IV: Software Development 
Practices," IBM System Journal, No.4 pp. 458-459 (1980). 

M. J. Earl, "Prototype Systems for Accounting, Information and Control," Accounting, 
Organisation and Society, Vol 3(2) pp. 161-170 (1978). 

E. A. Edmonds, "Adaptive Man-Computer Interfaces," in Computing Skills and the User 
Interface, eds. M. J. Coombs and J. L. Alty, Academic Press, pp. 389-426 (1981). 

E. A. Edmonds, "The Man-Computer Interface: a note on concepts and design," Int. 
Journal of Man-Machine Studies, Vol. 16 pp. 231-236 (1982). 

E. A. Edmonds and S. Guest, "The SYNICS2 Interface Manager," in Proc. Interac 84,1 st 
IFIP Con! Human Computer Interaction, pp. 53-56 (1984). 

Z. Farkas, P. Szeredi and E. Santane-Toth, "LDM - A Program Specification Support 
System," in Proc. Logic Programming Workshop, Marcei-France, pp. 123-128 (1982). 

M. S. Feather, "Mappings for Rapid Prototyping," ACM SIGSOFT Software 
Engineering Notes, Vol. 7(5) pp. 17-24 (1982). 

M. S. Feather, "Program Specification Applied to a Text Formatter," IEEE Trans. 
Software Engineering, Vol. 8(5) pp. 490-498 (1982). 

S. Feyock, "Transition Diagram Based CAI/HELP Systems," Int. Journal of 
Man-Machine Studies, Vol. 9 pp. 399-413 (1977). 

E. Fielding, The Specification of Abstract Mappings and their Implementation as B+ 
trees, Msc Thesis, PRG, Oxfor University (1980). 

R. Fikes, "Odyssey: A Knowledge Based Assistant," Xerox Research Centre, Palo Alto 
CA (1980). 

C. Floyd, "A Systematic Look at Prototyping," in Approaches to Prototyping, R. Budde 
eL al. (eds.), Springer-Verlag, pp. 1-18 (1984). 

1. Foley and A. Van Dam, Fundamentals of Interactive Computer Graphics, 
Addison-Wesley, Reading MA (1982). 



Refe~nces __________________________________________________________ ___ 
145 

[Ford85] 

[Fox82] 

[Furtado85] 

[Gaines81] 

[Gannon81] 

[Gehani82a] 

[Gehani82b] 

{Gehani83] 

[German75] 

[Gilb81] 

{Gilb85] 

[Gill82] 

[Gittins84 ] 

(G ladden82] 

[Glass81] 

[Glass82] 

[Goguen79] 

[Goguen84] 

[Gomaa811 

R. Ford and K. Miller, "Abstract Data Type Development and Implementation," IEEE 
Trans. Software Engineering, Vol. 11(10) pp. 1033-1037 (1985). 

J. M. Fox, Software and its Development, Prentice-Hall, New Jersey (1982). 

A. L. Furtado and T. S. E. Maibaum, "An Informal Approach to Formal (Algebraic) 
Specifications," The Computer Journal, Vol. 28(1) pp. 59-67 (1985). 

B. R. Gaines, "The Technology of Interaction - dialogue programming rules," Int. Journal 
of Man-Machine Studies, Vol. 14 pp. 133-150 (1981). 

J. Gannon, P. McMullin, and R. Hamlet, "Data-Abstraction Implementation, 
Specification, and Testing," ACM Trans. Programming Languages and Systems, Vol. 
3(3) pp. 221-223 (1981). 

N. H. Gehani, "A Study in Prototyping," ACM SIGSOFT Software Engineering Notes, 
Vol. 7(5) pp. 71-75 (1982). 

N. H. Gehani, "The Potential of Forms in Office Automation," IEEE Trans. 
Communications, Vol. 30(1) pp. 120-125 (1982). 

N. H. Gehani, "High Level Form Definition in Office Information Systems," The 
Computer Journal, Vol. 26(1), pp. 52-59 (1983). 

S. M. German and B. Wegbreit, "A Synthesizer of Inductive Assertions," IEEE Trans. 
Software Engineering, Vol. 1(1), pp. 68-75 (1975). 

T. Gilb, "Evolutionary Development," ACM SIGSOFT Software Engineering Notes, 
Vol. 6(2) p. 17 (1981). 

T. Gilb, "Evolutionary Delivery versus the Waterfall Model," ACM SIGSOFT Software 
Engineering Notes, Vol. 10(3) pp. 49-62 (1985). 

H. Gill, R. Lindvall, O. Rosin, E. Sandewall, H. Sorensen, and O. Wigertz, "Experience 
from Computer Supported Prototyping for Information Flow in Hospitals," ACM 
SIGSOFT Software Engineering Notes, Vol. 7(5) pp. 67-70 (1982). 

D. T. Gittins, R. L. Winder, and H. E. Bez, "An Icon-Driven End-User Interface to 
UNIX," Int. Journal of Man-Machine Studies, Vol. 21 pp. 451-461 (1984). 

G. R. Gladden, "Stop the Life-Cycle, I Want to Get off," ACM SIGSOFT Software 
Engineering Notes, Vol. 7(2) pp. 35-39 (1982). 

R. L. Glass and R. A. Noiseux, Software Maintenance Guidebook, Prentice-Hall, New 

Jersey (1981). 

R. L. Glass, "Recommended: A minimum Standard Software Toolset," ACM SIGSOFT 
Software Engineering Notes, Vol. 7(4) pp. 3-13 (1982). 

J. A. Goguen and J. J. Tardo, "An Introduction to OBJ: A Language for Writing and 
Testing formal Algebraic Program Specifications," in Proc. Specification of Reliable 

Software, pp. 170-189 (1979). 

J. A. Goguen, "Parameterised Programming," IEEE Trans. Software Engineering, Vol. 

10(5) pp. 528-543 (1984). 

H. Gomaa and D. B. H. Scott, "Prototyping as a Tool in the Specification of User 
Requirements," in Proc. 5th Int. Conf. Software Engineering, pp. 333-342 (1981). 



References ---------------------------__ _ 146 

[Gomaa83] 

[Good84] 

[Goodwin81] 

[Gordon79] 

[Gould83] 

[Gray85] 

[Green81] 

[Green85] 

[Gregory84] 

[Griswold71] 

(Groner79] 

[Guest82] 

[Guttag77] 

[Guttag78] 

[Hagen80] 

[Hagen85] 

[Ha1l86] 

[Hanau80] 

(HansaI76] 

H. Gomaa, "The Impact of Rapid Prototyping on Specifying User Requirements," ACM 
SIGSOFf Software Engineering Notes, Vol. 8(2) pp. 17-28 (1983). 

D. Good, 1. A. Whiteside, D. R. Wixon, and S. J. Jones, "Building a User-Derived 
Interface," Communications of the ACM, Vol. 27(10) pp. 1032-1043 (1984). 

J. W. Goodwin, "Why Programming Environments Need Dynamic Data Types," IEEE 
Trans. Software Engineering, Vol. 7(5) pp. 451-457 (1981). 

M. J. Gordon, A. J. Milner and C. P. Wadsworth, Edinburgh LCF, Lecture Notes in 
Computer Science, Vol 78, Springer-Verlag, Berlin (1979). 

J. D. Gould, J. Conti, and T. Hovanyecz, "Composing Letters with a Simulated 
Listening Typewriter," Communications of the ACM, Vol. 26(4) pp. 295-308 (1983). 

D. Gray and A. Kilgour, "Guide: A UNIX-Based Dialogue Design System," in People and 
Computers: Designing the Interface, P. Johnson and S. Cook (eds.), Cambridge Univ. 
Press, Cambridge, pp. 148-160 (1985). 

M. Green, "A Methodology for the Specification of Graphics User Interface," CompUler 
Graphics, Vol. 15(3) pp. 99-108 (1981). 

M. Green, "Design Notations and User Interface Management Systems," in UIMS, G. E. 
Pfaff (ed.), Springer-Verlag, Berlin (1985). 

S. T. Gregory, "On Prototypes vs. Mockups," ACM SIGSOFT Software Engineering 
Notes, Vol. 9(5) p. 13 (1984). 

R. E. Griswold, J. F. Poage and I.P. Polonsky, The SNOBOLA Programming Language, 
Prentice-Hall, New Jersey (1971). 

C. Groner, M. D. Hopwood, N. A. Palley and W. Sibley, "Requirements Analysis in 
Clinical Research Information Processing - A Case Study," IEEE Computer, Vol. 12(9) 
pp. 100-108 (1979). 

S. P. Guest, "The Use of Software Tools for Dialogue Design," Int. Journal of 
Man-Machine Studies, Vol. 16 pp. 263-285 (1982). 

J. V. Guttag, "Abstract Data Types and the Development of Data Structures," 
Communications of the ACM, Vol. 20(6) pp. 396-404 (1977). 

1. V. Guttag and 1. 1. Homing, "The Algebraic Specifkation of Abstract Data Types," 
Acta Informatica, Vol. 10 pp. 27-52 (1978). 

P. J. W. Ten Hagen, "A Conceptual Basis for Graphical Input and Output Interaction," in 
Methodology of Interaction, R. A. Guedi et. al. (eds.), North-Holland, Amsterdam, pp. 

239-246 (1980). 

P. 1. W. Ten Hagen and 1. Dresken, "Parallel Input and Feedback in Dialogue Cells," in 
UIMS, G. E. Pfaff (ed.), Springer-Verlag, Berlin, pp. 109-124 (1985). 

P. A. V. Hall, "Reusable and Reconfigurable Software Using C," in Software 
Engineering 86, D. Barnes and P. Brown (cds.), Peter Peregrinus, pp. 164-174 (1986). 

P. R. Hanau and D. R. Lenorovitz, "Prototyping and Simulation Tools for 
User/Computer Dialogue Design," Computer Graphics, Vol. 1.t(2) pp. 271-278 (1980). 

A. Hansal, "A Formal Definilion of a Relational Database System," IBM UKSC ()()Sn 

Report (1976). 



References 147 

[Hartson84] H. R. Hartson. D. H. Hix and R. W. Ehrich. "A Human-Computer Dialogue 
Management System." in Proc. INTERACT '84. North-Holland. Amsterdam. pp. 
379-384 (1984). 

[Hawgood82] J. Hawgood (ed.). Evolutionary Information Systems. North-Holland, Amsterdam (1982). 

[Hayes81] P. J. Hayes. E. Ball. and R. Reddy. "Breaking the Man-Machine Communication 
Barrier." IEEE Computer. Vol. 14(3) pp. 19-30 (1981). 

[Hayes85] P. J. Hayes. P. A. Szekely and R. A. Lerner. "Design Alternatives for User Interface 
Management Systems Based on Experience with COUSIN." in Proc. CHI '85. San 
Fransisco. pp. 169-176 (1985). 

[Heitmeyer82] C. Heitmeyer. C. Landwehr. and M. Cornwell. "The Use of Quick Prototypes in the 
Secure Military Message Systems Project." ACM SIGSOFT Software Engineering 
Notes. Vol. 7(5) pp. 85-87 (1982). 

[Hekmatpour86] S. Hekmatpour. "EPROS: A Software Engineer's Manual." Tech. Report No. 8612. 
Mathematics Faculty. Open University (1986). 

[Hekmatpour87] S. Hekmatpour and D. C. Ince. Software Prototyping, Formal Methods and VDM. 
Addison-Wesley (to appear). 

[Henderson80] P. Henderson. Functional Programming - Application and Implementation. Prentice-Hall, 
London (1980). 

[Henderson82] J. C. Henderson and R. S. Ingraham. "Prototyping for DSS: A Critical Appraisal." in 
Decision Support Systems. E. A. Stohr (ed.). North-Holland. pp. 79-96 (1982). 

[Henderson84] P. Henderson. "me-too - A Language for Software Specification and Model Building -
preliminary report." Tech. Report FPN-9. Computing Dept.. Stirling University (1984). 

[Henderson85] P. Henderson and C. Minkowitz. "The me-too Method of Software Design." Tech. Report 
FPN-10. Computing Dept.. Stirling University (1985). 

[Henderson86a] P. Henderson. "Functional Programming. Formal Specification. and Rapid Prototyping." 
IEEE Trans. Software Engineering. Vol. 12(2) pp. 241-250 (1986). 

[Henderson86b] P. Henderson and C. Minkowitz. "Software Design Using Executable Formal 
Specifications - a Consideration of two Approaches." Tech. Report FPN-12, Computing 
Dept.. Stirling University (1986) 

[Hewett86] T. T. Hewett, "The Role of Interactive Evaluation in Designing Systems for Usability," 
in People and Computers: Designing for Usability, M. D. Harrison and A. I. Monk 
(eds.). Cambridge Univ. Press. London, pp. 196-214 (1986). 

[Hoare73] C. A. R. Hoare and N. Wirth, "An Axiomatic Definition of the Programming Language 
Pascal," Acta Informatica. Vol. 2 pp. 335-355 (1973). 

(Hoare 85] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, London (1985). 

(Hocve84] F. A. van Hoeve and R. Engmann, "The TUBA-Project: A Set of Tools for Application 
Development and Prototyping," in Approaches to Prototyping, R. Budde et. a1. (cds.), 
Springer-Verlag, pp. 202-213 (1984). 

[Hopgood80] F. R. Hopgood and D. A. Duce, "A Production Approach to Interactive Graphic Program 
Design," in Melhodology of Inleraction, R. A. Guedj et. a1. (cds.), pp. 247-263 (1980). 



References --________________________________________________________ ___ 
148 

[Hooper82] 

[Horowitz84] 

[Hutchins86] 

[livari84] 

[Inmos84] 

[Jackson85] 

[Jacob83] 

{James80] 

[Johnson68] 

[Johnson75] 

[Jones77] 

[Jones80a] 

[Jones80b] 

{Jones86] 

[Kant81] 

[Kasik82] 

[Keen81] 

[Kemmerer85] 

[Kenncdy75] 

[ Kennelh811 

J. W. Hooper and P. Hsia, "Scenario-Based Prototyping of Requirements Identification," 
ACM SIGSOFI Software Engineering Notes, Vol. 7(5) pp. 88-93 (1982). 

E. Horowitz and J. B. Munson, "An Expansive View of Reusable Software," IEEE Trans. 
Software Engineering, Vol. 10(5) pp. 477-487 (1984). 

E. L. Hutchins, J. D. Hollan and D. A. Norman, "Direct Manipulation Interfaces," in 
User Centred System Design, D. A. Norman and S. W. Draper (eds.), Lawrence Erlbaum, 
New Jersey (1986). 

J. Iivari, "Prototyping in the Context of Information Systems Design," in Approaches to 
Prototyping, R. Buddeet. al. (eds.), Springer-Verlag, pp. 261-277 (1984). 

Inmos Ltd., OCCAM Programming Manual, Prentice-Hall, London (1984). 

M. I. Jackson, "Developing Ada Programs Using the Vienna Development Method 
(VDM)," Software Practice and Experience, Vol. 15(3) pp. 305-318 (1985). 

R. J. K. Jacob, "Using Formal Specifications in The Design of a Human-Computer 
Interface," Communications of the ACM, Vol. 26(4) pp. 259-264 (1983). 

E. B. James, "The User Interface," The Computer Journal, Vol. 23(1) pp. 25-28 (1980). 

W. L. Johnson, "Automatic Generation of Efficient Lexical Processors Using Finite State 
Techniques," Communications of the ACM, Vol. 11(12) pp. 805-813 (1968). 

S. C. Johnson, "Yacc: Yet Another Compiler Compiler," Compo Sci. Tech. Report No. 
32, Bell Lab, Murray Hill NJ (1975). 

C. B. Jones, "Program Specification and Formal Development," in International 
Computing Symposium 1977, D. Ribbens (ed.), North-Holland, pp. 537-553 (1977). 

C. B. Jones, Software Development: A Rigorous Approach, Prentice-Hall, London 
(1980). 

C. B. Jones, "The Role of Formal Specification in Software Development," Life Cycle 
Management: Infotech State of the Art Report, Vol. 8(7) pp. 117-133 Infotech Ltd. 
(1980). 

C. B. Jones, Systematic Software Development using VDM, Prentice-Hall, London 

(1986). 

E. Kant and D. R. Barstow, "The Refinement Paradigm: The Interaction of Coding and 
Efficiency Knowledge in Program Synthesis," IEEE Trans. Software Engineering, Vol. 

7(5) pp. 458-471 (1981). 

D. J. Kasik, "A User Interface Management System," SIGGRAPH '82, p. 99 (1982). 

P. G. W. Keen, "Infonnation Systems and Organisational Change," Communications of 

the ACM, Vol. 24(1), pp. 24-33 (1981). 

R. A. Kemmerer, "Testing Formal Specifications to Detect Design Errors," IEEE Trans. 
Software Engineering, Vol. 11(1) pp. 32-43 (1985). 

K. Kennedy and J. Schwartz, "An Introduction to The Set Theoretical Language SETL," 
Compo & Maths with Applications, Vol. 1 pp. 97-119 (1975). 

C. R. C. Kenneth, "Screen Updating and Cursor Movement Optimization: :\ Library 
Package," Tech. Report, Dept. of Electrical Eng. and Compo Sci., Univ. of California, 



References _____________________________ _ 
149 

[Kernighan78a] 

[Kernighan78b] 

[Kernighan84 ] 

[Keus82] 

[Kieras83] 

[Knuth 74] 

[Kowalski79] 

[Kowalski85] 

[Kraushaar85] 

[Kruchten 84 ] 

[Kruesi83] 

[Lafuente78] 

[Lanergan84 ] 

[Latham85] 

[Leavenworth74] 

[Lee85] 

[Lchman85] 

[Lcibrandl84] 

Berkeley (1981). 

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, New 
Jersey (1978). 

B. W. Kernighan and W. Plauger, The Elements of Programming Style, McGraw-Hill 
(1978). 

B. W. Kernighan, "The UNIX System and Software Reusability," IEEE Trans. Software 
Engineering, Vol. 10(5) pp. 513-518 (1984). 

H. E. Keus, "Prototyping: A More Reasonable Approach to System Development," 
ACM SIGSOFT Software Engineering Notes, Vol. 7(5) pp. 94-95 (1982). 

D. Kieras and P. Polson, "A Generalized Transition Network Representation for 
Interactive Systems," in Proc. CH1'83, pp. 103-106 (1983). 

D. E. Knuth, "Structured Programming with goto Statements," Computing Surveys, 
Vol. 6(4) pp. 261-301 (1974). 

R. Kowalski, "Algorithm = Logic + Control," Communications of the ACM, Vol. 
22(7) pp. 424-436 (1979). 

R. Kowalski, "The Relation Between Logic Programming and Logic Specification," Int. 
Journal of Man-Machine Studies, Vol. 22(4) pp. 365-394 (1985). 

J. M. Kraushaar and L. E. Shirland, "A Prototyping Method for Applications 
Development by End Users and Infonnation Systems Specialists," MIS Quarterly, Vol. 
9(2), pp. 189-197 (1985). 

P. Kruchten and E. Schonberg, "The Ada/Ed System: A Large-scale Experiment in 
Software Prototyping Using SETL," in Approaches to Proto typing, R. Budde et. a1. 
(eds.), Springer-Verlag, pp. 398-415 (1984). 

E. Kruesi, "The Human Engineering Task Area," IEEE Computer, Vol. 16(1), pp. 86-93 
(Nov. 1983). 

J. M. Lafuente and D. Gries, "Language Facilities for Programming User-Computer 
Dialogues," IBM Journal of Research & Development, Vol. 22(2) pp. 145-158 (1978). 

R. G. Lanergan and C. A. Grasso, "Software Engineering with Reusable Designs and 
Code," IEEE Trans. Software Engineering, Vol. 10(5), pp. 498-501 (1984). 

J. T. Latham, Abstraction in Program Verification, PhD Thesis, Dept. of Computation, 

UMIST (1985). 

B. M. Leavenworth and J. E. Sammet, "Overview of Non-Procedural Languages," ACM 
SIGPLAN Notices, Vol. 9(2) pp. 98-103 (1974). 

S. Lee and S. Sluizer, "On Using Executable Specifications for High-Level Prototyping," 
in Proc. 3rd Int. Workshop Software Specification & Design, London, pp. 130-134 

(1985). 

1. D. Lehman and N. Yavneh, "The Total Life Cycle Model," in Proc. 3rd Int. Workshop 

Software Specification & Design, London, pp. 135-137 (1985). 

U. Lcibrandt and P. Schnupp, "An Evaluation of Prolog as a PrototypingSystem," in 
Approaches to ProlOtyping, R. Budde eL aI. (cds.), Springcr-Verlag, pp. 424-.+33 (1984). 



References ____________________________________________________________ ___ 
150 

[Lenorovitz77] 

[Levene82] 

[Levine80] 

[Levin83] 

[Lientz80] 

[Lientz83] 

[Liskov75] 

(Li tvintchouk84] 

[Loveman 77] 

[Luker86] 

[MacEwen82] 

[MacLennan83] 

[Mallgren82] 

[Manna81] 

[Martin82] 

[Mason82] 

[Mason83] 

[ Matsumoto841 

[Mayr84J 

D. R. Lenorovitz and H. R. Ramsey, "A Dialogue Simulation Tool for Use in the 
Design of Interactive Computer Systems," in Proc. 21st Annual Meeting of Human 
Computer Factors Society, Santa Monica CA, pp. 95-99 (1977). 

A. A. Levene and G. P. Mullery, "An Investigation of Requirements Specification 
Languages: Theory and Practice," IEEE CompUler, Vol. 15(1) pp. 50-59 (1982). 

J. Levine, "Why a Lisp-Based Command Language?," SIGPLAN Notices, Vol. 15(5) 
pp. 49-53 (1980). 

D. Levin, "Programming in SETL Environment," in Programming Languages and 
System Design, J. Bormann (ed.), North-Holland, pp. 129-137 (1983). 

B. P. Lientz and E. B. Swanson, Software Maintenance Management, Addison-Wesley, 
Reading MA (1980). 

B. P. Lientz, "Issues in Software Maintenance," Computing Surveys, Vol. 15(3) pp. 
271-278 (1983). 

B. H. Liskov and S. N. Zilles, "Specification Techniques for Data Abstractions," IEEE 
Trans. Software Engineering, Vol. 1(1), pp. 7-19 (Mar. 1975). 

S. D. Litvintchouk and A. S. Matsumoto, "Design of Ada Systems Using Reusable 
Components: An Approach Using Structured Algebraic Specification," IEEE Trans. 
Software Engineering, Vol. 10(5), pp. 544-551 (1984). 

D. B. Loveman, "Program Development by Source-to-Source Translation," Journal of the 
ACM, Vol. 24(1) pp. 121-145 (1977). 

P. A. Luker and A. Burns, "Program Generators and Generation Software," The Computer 
Journal, Vol. 29(4) pp. 315-321 (1986). 

G. H. MacEwen, "Specification Prototyping," ACM SIGSOFT Software Engineering 
Notes, Vol. 7(5) pp. 112-119 (1982). 

B. J. MacLennan, Principles of Programming Languages: Design. Evaluation. and 
Implementation, Holt Rinehart and Winston, New York (1983). 

W. R. Mallgren, "Formal Specification of Graphic Data Types," ACM Trans. 
Programming Languages and Systems, Vol. 4(4) pp. 687-710 (1982). 

Z. Manna and A. Pneuli, "Verification of Concurrent Programs: the Temporal Logic 
Framework," in The Correctness Problem in Computer Science, R. S. Boyer and J. S. 
Moore (eds.), Academic Press, London, pp. 215-273 (1981). 

J. Martin, Application Development Without Programmers, Prentice-HAll, New Jersey 

(1982). 

R. E. A. Mason and T. T. Carey, "ACT/I: A Tool for Information Systems," ACM 
SIGSOFJ Software Engineering Notes, Vol. 7(5) pp. 120-126 (1982). 

R. E. A. Mason and T. T. Carey, "Prototyping Interactive Information Systems," 
Communications of the ACM, Vol. 26(5) pp. 347-354 (1983). 

A. S. Matsumoto, "Some Experience in Promoting Reusable Software Presentation in 
Higher Abstract Levels," IEEE Trans. Software Engineering, Vol. 10(5) pp. 502-512 

(1984). 

H. C. Mayr, M. Bever, and P. C. Lockemann, "Prototyping Interactive Application 



References _____________________________ _ 
151 

(McCracken 82] 

[McGowan85] 

[McLean76] 

[McMullin83 ] 

[McN urlin81] 

[Meandzi ja86] 

[Meijer79] 

[Meurs77] 

[Meyer78] 

[Meyer82] 

[Mills85] 

[Milner80] 

[Minkowitz86] 

[Mittermeir82a] 

[Mittermeir82b] 

[Moran81] 

[Morgan84] 

lMumford78J 

Systems," in Approaches to Prototyping, Springer-Verlag, pp. 105-121 (1984). 

D. D. McCracken and M. A. Jackson, "Life Cycle Concept Considered Hannful," ACM 
SIGSOFT Software Engineering Notes, Vol. 7(2) pp. 29-32 (1982). 

C. L. McGowan, M. D. Feblowitz, and M. Chandrasekharan, "The Metafor Approach to 
Executable Specifications," in Proc. 3rd Int. Workshop Software Specification & Design, 
London, pp. 163-169 (1985). 

E. R. McLean, "The Use of APL for Production Applications: The Concept of 
'Throwaway Code'," in APL 76: Con! Proc., ACM (1976). 

P. R. McMullin and J. D. Gannon, "Combining Testing with Formal Specifications: A 
Case Study," IEEE Trans. Software Engineering, Vol. 9(3) pp. 328-334 (1983). 

B. C. McNurlin, "Developing Systems by Prototyping," EDP Analyzer, Vol. 19(10), 
pp. 1-12 (1981). 

B. Meandzija, "A Fonnal Method for Composing a Network Command Language," IEEE 
Trans. Software Engineering, Vol. 12(8) pp. 860-865 (1986). 

E. Meijer, "Application Simulation," in Proc. DESIGN'79 Symp., Monterey CA, pp. 
410-420 (1979). 

J. Van Meurs and E. L. Cardozo, "Interfacing the User," Software Practice and 
Experience, Vol. 7(1) pp. 85-93 (1977). 

G. J. Meyer, The Art of Software Testing, John Wiley & Sons, New York (1978). 

B. Meyer, "Principles of Package Design," Communications of the ACM, Vol. 25(7) 
pp. 419-428 (1982). 

J. A. Mills, "A Pragmatic View of The System Architect," Communications of the 
ACM, Vol. 28(7) pp. 708-717 (1985). 

R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science 
Vol. 92, Springer-Verlag, New York (1980). 

C. Minkowitz and P. Henderson, "A Formal Description of Object-Oriented 
Programming Using VDM," Tech. Report FPN-13, Computing Dept., Stirling 
University (1986). 

R. T. Mittermeir, "HIBOL, A Language for Fast Prototyping in Data Processing 
Environments," ACM SIGSOFT Software Engineering Notes Vol. 7(5) pp. 133-140 
(1982). 

R. T. Mittermeir, "Semantic Nets for Modelling the Requirements of Evolvable Systems 
- an Example," in Evolutionary Information Systems, J. Hawgood (ed.), North-Holland, 
pp. 193-216 (1982). 

T. P. Moran, "The Command Language Grammer: A representation for the user interface 
of interactive computer systems," Int. Journal of Man-Machine Studies, Vol. 15 pp. 3-50 
(1981). 

C. Morgan and B. Sufrin, "Specification of the UNIX Filing System," IEEE Trans. 
Software Engineering, Vol. 10(2) pp. 128-142 (1984). 

E. Mumford, F. Land, and J. Hawgood, "A Participative Approach to The Design of 
Computer Systems," Impact of Science on Society, Vol. 28(3) pp. 235-253 (1978). 



References _____________________________ _ 
152 

[Munson81] 

[Musser79] 

[Myers86] 

[Naumann82] 

[Naur63] 

[Neighbours81 ] 

[Neighbours84 ] 

[Nonnan83] 

[Nosek 84] 

[Olsen83] 

[Olsen84] 

[Olson85] 

[Pagan83] 

[Parnas69] 

[Parnas72] 

[Parnas79] 

[Parnas85] 

[Parnas86] 

[Palton83] 

J. B. Munson, "Software Maintainability: A Practical Concern for Life-Cycle Costs," 
IEEE Computer, Vol. 14(2) pp. 103-109 (1981). 

D. R. Musser, "Abstract Data Type Specification in the AFFIRM System," in Proc. 
Specification of Reliable Software, pp. 47-57 (1979). 

B. A. Myers and W. Buxton, "Creating Highly Interactive and Graphical Interfaces by 
Demonstration," SIGGRAPH, Vol. 20(4) pp. 249-258 (1986). 

J. D. Naumann and A. M. Jenkins, "Prototyping: The New Paradigm for Systems 
Development," MIS Quarterly, pp. 29-44 (Sep. 1982). 

P. Naur et al., "Revised Report on the Algorithmic Language Algol 60," Comm. of the 
ACM, Vol. 6(1), (1963). 

J. M. Neighbours, Software Construction Using Components, PhD Thesis, University of 
California, Irvine (1981). 

J. M. Neighbours, "The Draco Approach to Constructing Software From Reusable 
Components," IEEE Trans. Software Engineering, Vol. 10(5), pp. 564-578 (1984). 

D. A. Nonnan , "Design Rules Based on Analysis of Human Error," Communications of 
the ACM, Vol. 26(4) pp. 254-258 (1983). 

J. T. Nosek, "Organisation Design Choices to Facilitate Evolutionary Development of 
Prototype Information Systems," in Approaches to Prototyping, R. Budde et. a. (eds.), 
Springer-Verlag, pp. 341-355 (1984). 

D. R. Olsen, Jr., "Automatic Generation of Interactive Systems," ACM Computer 
Graphics, Vol. 17(1) pp. 53-57 (1983). 

D. R. Olsen, W. Buxton, R. Ehrich, D. J. Kasik, J. R. Rhyne and J. Silbert, "A Context 
for User Interface Management," IEEE Computer Graphics and Applications, Vol. 4 pp. 
33-42 (1984). 

C. Olson, W. Webb, and R. Wieland, "Code Generation from Data Flow Diagrams," in 
Proc. 3rd Int. Workshop Software Specification & Design, London, pp. 172-176 (1985). 

F. G. Pagan, "A Diagrammatic Notation for Abstract Syntax and Abstract Structured 
Objects," IEEE Trans. Software Engineering, Vol. 9(3) pp. 280-289 (1983). 

D. L. Parnas , "On The Use of Transition Diagrams in The Design of A User Interface for 
an Interactive Computer System," in Proc. 24th Nat. ACM Conf., pp. 379- 385 (1969). 

D. L. Parnas, "On the Criteria to be Used in Decomposing Systems into Modules," 
Communications of the ACM, Vol. 15(12) pp. 1053-1058 (1972). 

D. L. Pamas, "Designing Software for Ease of Extension and Contraction," IEEE Trans. 
Software Engineering, Vol. 5(2) pp. 128-137 (1979). 

D. L. Pamas, P. C. Clements, and D. M. Weiss, "The Modular Structure of Complex 
Systems," IEEE Trans. Software Engineering, Vol. 11(3) pp. 259-272 (1985). 

D. L. Parnas and P. C. Clements, "A Relational Design Process: How and \Vhy to Fake 
it," IEEE Trans. Software Engineering, Vol. 1:!(2) pp. 251-257 (1986). 

B. Patlon, "Prototyping - A Nomenclature Problem," ACM SIGSOFT Software 
Engineering Notes, Vol. 8(2) pp. 14-16 (1983). 



References _____________________________ _ 
153 

[podger79] 

[Polster86] 

[prywes83] 

D. N. Podger, "High-Level Languages - A Basis for Participative Design," in Design and 
Implementation of Computer-Based Information Systems, E. Grochla (ed.), Sijthoff & 
Noordhoff (1979). 

F. J. Polster, "Reuse of Software Through Generation of Partial Systems," IEEE Trans. 
Software Engineering, Vol. 12(3) pp. 402-416 (1986). 

N. S. Prywes and A. Pnueli, "Compilation of Nonprocedural Specifications into 
Computer Programs," IEEE Trans. Software Engineering, Vol. 9(3) pp. 267-279 (1983). 

[Ramamoorthy84] C. V. Ramamoorthy, A. Prakash, W. Tsai, and Y. Usuda, "Software Engineering: 
Problems and Perspectives," IEEE Computer, Vol. 17(2) pp. 191-209 (1984). 

[Ramamoorthy86] C. V. Ramamoorthy, V. Garg and A. Parkash, "Programming in the Large," IEEE Trans. 

[Read81] 

[Reader85] 

[Reisner81 ] 

[Reiss86] 

[Rice81] 

[Rich82] 

[Rich84] 

[Riddle84] 

[Ross77] 

[Rowe81] 

[Rowe83] 

[Rzevski84 ] 

[Salc85] 

[SandwaIl78] 

Software Engineering, Vol 12(7) pp. 769-783 (1986). 

N. S. Read and D. L. Harmon, "Assuring MIS Success," Datamation, Vol. 27(2), pp. 
109-120 (1981). 

G. Reader, "A Survey of Current Graphical Programming Techniques," IEEE Computer, 
Vol. 18(8) pp. 11-25 (1985). 

P. Reisner, "Formal Grammar and Human Factors Design of an Interactive Graphics 
System," IEEE Trans. Software Engineering, Vol. 7(2) pp. 229-240 (1981). 

S. P. Reiss, "An Object-Oriented Framework for Graphical Programming," ACM 
SIGPLAN Notices, Vol. 21(10) pp. 49-57 (1986). 

J. G. Rice, Build Program Techniques: A Practical Approach for the Development of 
Automatic Software Generation Systems, Wiley and Sons, New York (1981). 

C. Rich and R. C. Waters, "The Disciplined Use of Simplifying Assumptions," ACM 
SIGSOFT Software Engineering Notes, Vol. 7(5) pp. 150-154 (1982). 

E. Rich, "Natural-Language Interfaces," IEEE Computer, Vol. 17(6) pp. 39-47 (1984). 

W. E. Riddle, "Advancing the State of the Art in Software System Prototyping," in 
Approaches to Prototyping, R. Budde et al. (eds.), Springer-Verlag, pp. 19-26 (1984). 

D. T. Ross and K. E. Schoman, Jr., "Structured Analysis for Requirements Definition," 
IEEE Trans. Software Engineering, Vol. 3(1) pp. 6-15 (1977). 

L. A. Rowe, "Data Abstraction from a Programming Language Viewpoint," SIGPLAN 
Notices, Vol. 16(1) pp. 29-35 (1981). 

L. A. Rowe and K. Shoens, "Programming Language Constructs for Screen Definition," 
IEEE Trans. Software Engineering, Vol. 9(1) pp. 31-39 (1983). 

G. Rzevski, "Prototypes versus Pilot Systems: Strategies for Evolutionary Infonnation 
System Development," in Approaches to Prototyping, R. Budde et. al. (eds.). 

Springer-Verlag, pp. 356-367 (1984). 

A. E. Sale. "The Codasyl Proposal for a Screen Management Facility." Computer 

Bulletin, Vol. 1 (1) pp. 24-25 (1985). 

E. Sandewall, "Programming in an Interactive Environment: The Lisp Experience." AC\f 

Computing Surveys. Vol. lO( 1) pp. 35-71 (1978). 



Refe~nces __________________________________________________________ ___ 
154 

[Scott78] 

[Shannon75] 

[Shaw81] 

[Shaw83] 

[Shaw85] 

[Shaw86] 

[Shneiderman79] 

[Shneiderman82] 

[Shooman82] 

[Silverberg81] 

[Silbert86] 

[Smith76] 

[Smith82a] 

[Smith82b] 

[SoI84] 

[Sommerville82] 

[Somogyi81] 

(Spraguc80] 

{Stoy82] 

[Sufrin821 

J. H. Scott, "The management Science Opportunity: A Systems Development 
Management Viewpoinl," MIS Quarterly, Vol. 2(4) pp. 59-61 (1978). 

R. E. Shannon, System Simulation - the Art and Science, Prentice-Hall, Englewood 
Cliffs, New Jersey (1975). 

M. Shaw (ed.), Alphard: Form and Content, Springer-Verlag, New York (1981). 

M. Shaw, E. Boriston, M. Horowitz, T. Lane, D. Nichlos and R. Pausch, "Descartes: A 
Programming-Language Approach to Information Display Interfaces," SIGPLAN Notices, 
Vol 18(6), pp. 100-111 (1983). 

M. Shaw, "What Can We Specify? Issues in the Domains of Software Specifications," in 
Proc. 3rd Int. Workshop Software Specification & Design, London, pp. 214-215 (1985). 

M. Shaw, "An Input-Output Model for Interactive Systems," Proc. CH1'86, Boston MA, 
pp. 261-273 (1986). 

B. Shneiderman, "Human Factors Experiments in Designing Interactive Systems," IEEE 
Computer, Vol. 12(1) pp. 9-19 (Dec. 1979). 

B. Shneiderman, "Multiparty Grammars and Related Features for Defining Interactive 
Systems," IEEE Trans. Systems, Man & Cybernetics, Vol. 12(2) pp. 148-154 (1982). 

M. L. Shooman, Software Engineering: Design, Reliability, and Management, 
McGraw-Hili, New York (1982). 

B. A. Silverberg, "An Overview of the SRI Hierarchical Development Methodology," in 
Software Engineering Environments, R.Bunke (ed.) , North-Holland, pp. 235-252 (1981). 

J. L. Silbert, W. D. Hurley and T. W. Bleser, "An Object-Oriented User Interface 
Management System," SIGGRAPH, Vol. 20(4) pp. 259-268 (1986). 

H. R. Smith and C. Knuth, "A Computerised Approach to Systems Analysis: A 
Technique and its Application," in Proc. 8th. Annual Con! American Decision Sciences, 
pp. 549-551 (1976). 

D. C. Smith, C. Irby, R. Kimball and B. Verplank, "Designing the Star User Interface," 
BYTE, pp. 242-282 (1982). 

D. A. Smith, Rapid Software Prototyping, PhD Thesis, University of California, Irvine 
(1982). 

H. G. Sol, "Prototyping: A Methodological Assessment," in Approaches to Prototyping, 
R. Budde et. aI. (eds.), Springer-Verlag, pp. 368-382 (1984). 

I. Sommerville, Software Engineering, Addison-Wesley, London (1982). 

E. K. Somogyi, "Prototyping - A Method not to be Missed," EDP Analyser, Vol. 
19(10) pp. (1981). 

R. H. Sprague, "A Framework for the Development of Decision Support Systems," 
Management Inform. Systems Quarterly, Vol. 4(4) pp. 1-26 (1980). 

J. SLOy, "Some Mathematical Aspects of Functional Programming," in Functional 
Programming and its Applications, J. Darlington el. al. (cds.), Cambridge Univ. Press, 
Cambridge, pp. 217-252 (1982). 

B. Sufrin, "Formal Specification of a Display-Oriented Text Editor," Science oj 



References ____________________________________________________________ ___ 
155 

[Sufrin86] 

[Sunshine82] 

[Sutton78] 

[Swanson76] 

[Swartout82] 

[Taggart77] 

[Tamir80] 

[favendale85] 

[Tavolato84 ] 

[Teichroew77] 

[Tei telman 79] 

[Teitelbaum81] 

[Tomeski75] 

[Tseng86] 

[Tsichritzis79] 

[Tsichritzis80] 

[TsichrilZis82] 

[Turner79] 

Computer Programming, Vol. 1, pp. 157-202 (1982). 

B. Sufrin, "Formal Methods and the Design of Effective User Interfaces," in People and 
Computers: Designing for Usability, M. D. Harrison and A. I. Monk (eds.), Cambridge 
Univ. Press, London, pp. 24-43 (1986). 

C. A. Sunshine, D. H. Thompson, R. W. Erickson, S. L. Gerhart, and D. Schwabe, 
"Specification and Verification of Communication Protocols in AFFIRM Using State 
Transition Models," IEEE Trans. Software Engineering, Vol. 8(5) pp. 460-489 (1982). 

J. A. Sutton and R. H. Sprague, "A Study of Display Generation and Management in 
Interactive Business Applications," IBM Research Rep. RJ2392 (1978). 

E. B. Swanson, "The Dimensions of Maintenance," in Proc. 2nd Int. Con/. Software 
Engineering, pp. 492-497 (1976). 

W. Swartout and R. Balzer, "On the Inevitable Interwining of Specification and 
Implementation," Communications of the ACM, Vol. 25(7) pp. 438-440 (1982). 

W. M. Taggart, Jr. and M. O. Tharp, "A survey of Information Requirements Analysis 
Techniques," Computing Surveys, Vol. 9(4) pp. 271-289 (1977). 

M. Tamir, "ADI: Automatic Derivation of Invariants," IEEE Trans. Software 
Engineering, Vol. 6(1) pp. 40-48 (1980). 

R. D. Tavendale, "A Technique for Prototyping Directly from a Specification," in Proc. 
8th Int. Con/. Software Engineering, pp. 224-229 (1985). 

P. Tavolato and K. Vincena, "A Prototyping Methodology and its Tools," in Approaches 
to Prototyping, R. Budde et al. (eds.), Springer-Verlag, pp. 434-446 (1984). 

D. Teichroew and E. A. Hershey, III, "PSL/PSA: A Computer-Aided Technique for 
Structured Documentation and Analysis of Information Processing Systems," IEEE 
Trans. Software Engineering, Vol. 3(1) pp. 41-48 (1977). 

W. Teitelman, "A Display Oriented Programmer'a Assistant," Int. Journal of 
Man-Machine Studies, Vol. 11 pp. 157-187 (1979). 

T. Teitelbaum and T. Reps, "The Cornell Program Synthesizer: A Syntax Directed 
Programming Environment," Communications of the ACM, Vol. 24(9) pp. 563-573 
(1981). 

E. A. Tomeski and H. Lazarus, People-oriented Computer Systems, Van Nostrand 
Reinhold, New York (1975). 

J. S. Tseng, B. Szymanski, Y. Shi and N. S. Prywes, "Real-Time Software Life Cycle 
with the Model System," IEEE Trans. Software Engineering, Vol. 12(2) pp. 358-373 

(1986). 

D. Tsichritzis, "A Form Manipulation System," Tech. Report CSRG-I0l, University of 
Toronto, pp. 53-71 (1979). 

D. Tsichritzis, "OFS: An Integrated Form Management System," in Proc. ACM ConI 
Very Large Data Bases, pp. 190-194 (1980). 

D. Tsichritzis, "Form Management," Communications of the ACM, Vol. 25(7) pp. 

453-478 (1982). 

D. A. Turner, "A New Implementation Technique for Applicativc Langu3ges," Software 



References ____________________________________________________________ ___ 
156 

[Turner84] 

[Turner85] 

[Turoff82] 

[Urban82] 

[Urban85] 

[VanWyk82] 

[Venken84] 

[Walter84] 

[Wang70] 

[Wasserman 79] 

[Wasserman82a] 

[W asserman82b] 

[Wasserman 85] 

[Wasscrman86] 

(Waters79] 

[Webcr86] 

I\Vebslcr83] 

Practice and Experience, Vol 9(1), pp. 31-49 (1979). 

D. A. Turner, "Functional Programs as Executable Specifications," Phil. Trans. Royal 
Society of London, Vol. 312 pp. 363-388 (1984). 

D. A. Turner, Miranda: A Non-Strict Functional Language with Polymorphic Types, 
Lecture Notes in Computer Science Vol. 201, Springer-Verlag, Berlin (1985). 

M. Turoff, S. R. Hiltz, and E. B. Kerr, "Controversies in the Design of 
Computer-Mediated Communication Systems: A Delphi Study," in Proc. ConI. Human 
Factors in Compter Systems, Gaithersburg, Maryland, pp. 89-100 (1982). 

J. E. Urban, "Software Development with Executable Functional Specifications," in 
Proc. 6th. Int. Con! Software Engineering, Tokyo Japan, pp. 418-419 (1982). 

S. D. Urban, J. E. Urban, and W. D. Dominick, "Utilizing an Executable Specification 
Language for an Information System," IEEE Trans. Software Engineering, Vol. 11(7) 
pp. 598-605 (1985). 

C. J. Van Wyk, "A High-Level Language for Specifying Pictures," ACM Trans. 
Graphics, Vol. 1(2) pp. 163-182 (1982). 

R. Venken and M. Bruynooghe, "Prolog as a Language for Prototyping of Information 
Systems," in Approaches to Prototyping, R. Budde et. al. (eds.), Springer-Verlag, pp. 
447-458 (1984). 

C. Walter, "Control Software SpecifICation and Design: An Overview," IEEE Computer, 
Vol. 17(2) pp. 20-23 (Feb. 1984). 

M. D. Wang, "The Rule of Syntactic Complexity as a Determinator of 
Comprehensibility," Journal Verbal Learning and Verbal Behaviour, Vol. 9 pp. 398-404 
(1970). 

A. I. Wasserman and S. K. Stinson, "A Specification Method for Interactive Information 
Systems," in Proc. Con! Specification of Reliable Software, pp. 68-79 (1979). 

A. I. Wasserman and D. Shewmake, "Automating the Development and Evolution of 
User Dialogue in an Interactive Information System," in Evolutionary Information 
Systems, J. Hawgood (ed.), North-Holland, pp. 159-172 (1982). 

A. I. Wasserman and D. T. Shewmake, "Rapid Prototyping of Interactive Information 
Systems," ACM SIGSOFT Software Engineering Notes, Vol. 7(5) pp. 171-180 (1982). 

A. I. Wasserman, "Extending State Transition Diagrams for the Specification of 
Human-Computer Interaction," IEEE Trans. Software Engineering, Vol. 11(8) pp. 

699-713 (1985). 

A.I. Wasserman, P. A. Pircher, D. T. Shewmake and M. L. Kersten, "Developing 
Interactive Information Systems with the User Software Engineering Methodology," 
IEEE Trans. Software Engineering, Vol. 12(2) pp. 326-345 (1986). 

S. 1. Waters, "Towards Comprehensive Specifications," The Computer Journal, Vol. 
22(3) pp. 195-199 (1979). 

H. Weber and H. Ehrig, "Specification of Modular Systems," IEEE Trans. Sofn ... are 
Engineering, Vol. 12(7) pp. 784-798 (1986). 

R. Webster and M. Miner, "Apple Lisa," Personal Computer World, Vol. 6(7), pp. 

146-159 (1983). 



References _____________________________ _ 
157 

[Wegbreit76] 

[Weiser82] 

[Weyuker82] 

[Wilensky84] 

[Winston81] 

[Xerox81] 

[Yao84] 

[Young81] 

[Zave81] 

[Zave86] 

[Zelkowitz79] 

[Zelkowitz80] 

[Zelkowitz84 ] 

[Zloff81] 

B. Wegbreit, "Goal-Directed Program Transformation," IEEE Trans. Software 
Engineering, Vol. 2(2) pp. 69-80 (1976). 

M. Weiser, "Scale Models and Rapid Prototyping," ACM SIGSOFT Software 
Engineering Notes, Vol. 7(5) pp. 181-185 (1982). 

E. J. Weyuker, "On Testing Non-Testable Programs," Computer Journal, Vol. 25(4), pp. 
465-470 (1982). 

R. Wilensky, USPcraft, W.W. Norton & Company, New York (1984). 

P. H. Winston and B. K. P. Hom, Lisp, Addison-Wesley, Reading MA (1981). 

The Xerox Learning Research Group, "The Smalltalk-80 System," BYTE, pp. 36-48 
(Aug. 1981). 

S. B. Yao, A. R. Hevner, A. Shi and D. Luo, "FORMANAGER: An Office Forms 
Management System," ACM Trans. Office Information Systems, Vol. 2(3), pp. 235-262 
(1984). 

R. M. Young, "The Machine Inside the Machine: User's Models of Pocket Calculators," 
Int. Journal of Man-Machine Studies, Vol. IS, pp. 51-58 (1981). 

P. Zave and R. T. Yeh, "Executable Requirements for Embedded Systems," in Proc. 5th 
Int. Con! Software Engineering, pp. 295-304 (1981). 

P. Zave and W. Schell, "Salient Features of an Executable Specification Language and Its 
Environment," IEEE Trans. Software Engineering, Vol. 12(2) pp. 312-325 (1986). 

M. V. Zelkowitz, A. C. Shaw and J. D. Gannon, Principles of Software Engineering and 
Design, Prentice-Hall (1979). 

M. V. Zelkowitz, "A Case Study in Rapid Prototyping," Software Practice and 
Experience Vol. 10 pp. 1037-1042 (1980). 

M. V. Zelkowitz, "A Taxonomy of Prototype Designs," ACM SIGSOFT Software Eng. 
Notes, Vol. 9(5) pp. 11-12 (1984). 

M. M. Zloff, "QBE/OBE: A Language for Office and Business Automation," IEEE 
Computer, Vol 14(5) pp. 13-23 (1981). 



PrototYRe 

----r---+\ Con3t-det 

1----+1 D om-d ef 

I--~ Type-def 

I----.~ Adt-def 

1----+1 D e3i gn-d ef 

Const-def 

Dom-def 

L-_-----------------J 



r'f/vcnULA'" --------------- ---------- /59 

Adt-def 

I d entiti er ,...---,. 

D om-d ef t------.. 

1----+1 Typ e-d ef r-----.. 

1----+1 Aux-d ef 1------.. 

'-----+I 0 ps-d ef ~----

~----+I Identifier 

TYRe-def 

----+l~(TYPE)~-~-~_F_un_-t_y_pe_-_de_f~--~G)~~~ 

1 

Aux-def 

DRs-def 

F un-b 0 dy-d ef I------,,.-_+( 

Inv-b 0 dy-d ef 

__ ~{§)I---"""'2--tt~1 0 p eroli on-d ef 

lL--__ ------



rlV//CflUL.A r1 ------------------_____________ Hi) 

Fun-tYRe-def 

Identifier Do m a i n I------X...~ ~-4J Domain ~_~ 

Fun-body-def 

--~ I de nti fi e r 1----+1 Parameter-list Ex p ressi 0 n~---w 

Inv-body-def 

-----+l~~I-----+l~1 fun- body-def 1-1----.. 

OQerat j on-def 

---W Identifier I--~ )--~ Op-type-clause ~---+I 

}----+I Parameter-list ~--+( 
~--" 

1---41 Parameter-list ~~ 

\----+lparameter-list ~--M 

1---41 fun- body-defl-----+f 

-~ Identifier 

l--~ Ex p ressi 0 n 

-- Exep-list I--~ 

}'--'-+I Expression 



rlf/f/c.;flUL\. n ______________________________ 161 

OR-tYRe-clHuse 

ExeR-l i st 

------:.::----+1 Ex p r essi 0 n I--------f 

PflrHmeter-l i st 

Tree-RHr 

r--''-:r---y----+I Ide n ti fi e r 

'---4/ Tree - pa r 1-----' 

-~~CDr---J1~lldentifierl t---1==:·0_' _t-_~~=.I_ld_e_nt_if_ie_r _ _J1 {D 



Abs-syn-rul e 

-----+I Identifier 

Tree-domain 

---------------------------------------______ l~ 

___ S1 mple-domai n 

Domai n 

}---~ Tree - do mai n 

-----+l~1 S - do mai nl .---"'Tt-~~O}----+l.1 S - do mai nit----.------.. 

S-domain 

---+4~O}--~~1 I dent it i e r }-I --w~Ot----+l~1 D ornei n 

SimQle-domain 

}---,,.-------r--.t I nt - co nst I-----r--------r--+i 

I nt-const J..-----w J..--~ I nt-const J---41 

Char-const J..--+\ }----+i Char-const 



rlVI'CflULA n __________________ _ ----------- 163 

Domain 

-------r----------...t Ide nti fi e r 

I---------~ El e me nta r y - set 1-----------+1 

......--~ Domai n I------+f 

}---+t Do mai n I-----H 

1-----.... Tree-domai n 

~--rI Expression 

I-------H Identifier 

I------------+t Domai n 

El ementary set -
'\. Bool "\ 

\ Nat 

NatO 

I nt 

Real 

Char 



rlVV!:JIUIA J'1. --------- -- ------------___ 1()..J 

----~--~5imple-exprr_------------~--------------------------~--~ 

'------+I 5i m p 1 e - ex p r I----------~ 

Sl mRl e-exRr 

}----+I Identifier ~-+I Expre33ion Expre33ion ---



Appenatx A ----------------------_________ 165 

Term 

FHctor 

---r------------4I Consta nt 

1------------41 I dentifie r 

I----~ Identifier 

Expression I-----~ ) 

Qua nti fi cati 0 n 

,....-----+1 Set-enumeration 1----__.. 

I---------+----+i List- e nume rati 0 n I----~--------+I 

'---__ ~ Mappi ng-enumeration ~-~ 

~ _________ ---f1 Ma p-factor ~-----------~ 

I---------------fj Di st - facto r I--------------+j 

I 

L-____ ----------------------- ----' 



Appendix A ------------------------__ 1«> 

Dist-fnctor 

t---t-----H I de nti fi e r t-----+---w 

1---+4 Unary-operator t----+I 

~-+4 Bi nary-operator~----J 

)----y-----+I Ide n ti fi e r )------,,--.+-+1 

Bi nary-operator 

Bi nary-lambda 

)----+1 Expression t-----M 

Bi nnry-l nmbdn 

Ex p ressi 0 n t----+{ 

r-"""T'---+f I de nti fi e r t-----y~ 

Bi nary-operator 

Bi nary-lambda 

--+f{V~---M.lldentifierl""" --+l.0~---+{·lldentifier ~I --+1.1 Expression ...... 1 --+ 

Text 

Character 

~------------------~--------- -



f,!jJIMP}(P" 

AfJfJCnalX A ________ _ 
------------------ 167 

.Quant 1 f1 cat 1 on 

r-----+I I de nti fi e r t----+{ Ex p ressi 0 n I-r----------r--M 

}-----+I Ide n t i fi e r t---r---+f Expression Expression 

t---r-~ I de nti fi e r 

, 

let-exp-r 

}---1~---+! I de nti fi e r Expression 

Identifier Identifier 

""---+1 Expression }---+ 

If -exp-r 

---® Expression Expression Expression 1----+ 

Mac-exp-r 

)---,~--+I Ex p ressi 0 n ~-----i r-----+I Ex p ressi 0 n t-------i 

'----+I Ex pre s s ion t--------\ -.....----+1 Ex p reS3 ion t-----+f 



~1~V"")I{)ia£ (,2 

n AppenaLX A ________ _ --- -------- ---------------

CHSeS-e)q~r 

)---~ Expression 
'----' 

Expression t----+t }---_H Expression )-----+t 

t---_H Expression ""---+1 Expression ....----+1 

Set -enumerHt ion 

Ex p licit- set -enum 

I mplicit-set-enum 

EXRl i cit -set -enum 

{ )--.-------L-----r--+t Ex p ressi 0 n t---r---..L..------:z~ ) 1----4 

Ex p ressi 0 n .......-~ ""---+1 Expression 

I mRl i ci t -set-enum 

---~.C0}------+t~1 Ex p ressi 0 nl t----+l~O"""'---H~1 Ex p ressi 0 nl t---~~Q)t----+ 

16S 



AppendlX A _______________________________ 169 

List-enum 

,-----+l~l Explicit-li3t-enum 11-----. 

L--41~ I mplicit-li3t-enum ll----J 

EXR1 i ci t -1 i st -enum 

}--.I.--r-----41 Ex p re33i 0 n I------.....,........'~ 

ImR1icit-1ist-enum 

----+t~©~-~~I Ex p re33i 0 nl ~ ---+l~OJ---41~1 Ex pre33i 0 n 1t----+t{~81---~. 

MHI!Ri ng-eum 

r---_ Explicit- ma ppi ng-enum 

'---41 I mplicit- mappi ng-enum 

EXR1 i ci t -mHI!Ri ng-enum 

J--L--..--+f Ex p r e33i 0 n I----+f ~~ Expre33ion t--~-+( 

I mR1 i ci t -mHR.Ri ng-enum 

Expre33ion ~-+I Expre33ion Expre33ion 



AppendixA ___________________________ 170 

Design-def 

J-----+l1 function- head t----+( 
"'"----' 

I funct i on-heod 

J-oI-r1r-----:r-"+i I de nti fi e r 

Block 

Ifunction- body t----+ 



Appendix A __________________________________________________________ In 

Var-def 

1---..---.--+1 I de n t i fi e r ~-+I 

Forward-def 

-~ FORWARD ~---+I I~entifier 

Module-def 

----------.r----+l~ll fu ncti 0 n - def !I-----::Ir-------+ 

I----H~l D1 a log ue - def 11----+1 

1-----+l~1 For m - def \t----tt 
L----41~1 C1 uste r - def JI---~ 

I funct ion-body 

~-r---+1 state me nt 

Ex p ressi 0 n ~-.l 



AppendixA -----------------------------_172 

I funct i on-def 

---- I---~ Identifier ~---+l Ifunction- head 

I----~ Identifier ~---.. 

Dialogue-def 

DIALOGUE 1-----+1 Identifier I-----H 

..----+1 Do m - def 

1---41 Var-def 

I----..-~ forW'ard-def 

~--r~ Module-def 

'-------+I Di a log ue - bod y Identifier 

Di al ogue-body 

I--~ Identifier ~-+l ~~ Statement Dial-3tate 

l----+I Identifier ~41 Statement 

Expre33ion ~---+I State me nt 

Dial-3tate 



Appendix A -------------- 17~ 

Dial-state 

---~-------+I Ide nti fie r .---------.-------+ 

)-~ Expression 

Form-def 

)----+1 Identifier .....---~ 

),--+1 Field-def 

~-~ Identifier 1----+ 

Field-def 

--~ $identifier )-~ '------'"' Field-type Field-aHri bute 

Field-tYRe 

__ -+1.1 1 de nti fi e r ~--~<Df-----H.I Nat - co n3t 



Appendix A --------- 17-

F 1 e 1 d - H t t rl but e 

system "\ ~: Identifier I 

constrai nt :1 Expression 1 
i nitiall y )--

{computed '\ ;\ State me nt l 
r 

I 1 
after ( 1 ,1 $i de ntifie r } ) 

1 , 
/lock '\ 

requi red '\ 

permanent 

optional' 

noecho 

------- --
L ___________________________ ---------------- -----



Appendix A ____________________ _ 

Cluster 

--'"*CLUSTER Identifier Cl uster-scheme 

Cl uster- body I de ntifi e r 

C1 uster-scheme 

---+--t I de nti fi e r 

J----+t~1 Literal ~O----------+l 

Cl uste r-scheme I-r---------------+t. 

Cl uster-scheme t---L--4I I de ntifi e r 

..----+1 Cl uste r - sc he me ~--,"* Identifier 

Cl uster-scheme 1--4f I de nti fi e r 

L------+4 Nat-const 

Cluster-body 

~:L-....------ft State me nt ~-------:r----+I. 

'---+I State me nt 



Appendix A - ____________________________ _ 

stntement 

--.,--+1 Ide ntifi e r 

Expression State me nt )------+1 State me nt 

~-+I Mac-stat t-----------------------------H 

~~Cases-stat t---------------------------~ 

EHPressi on }-------+I State me nt 

Statement ~---+I Ex p ressi 0 n )-----------------+i 
"---

Identifier 1----"- ~--4I Expression )-------+i State me nt 

1--------+\ I de nti fi e r I-----+l ~.......--+I Ex p ressi 0 n t---r',,-+{ 

t----+i I de nti fi e r ~--.....-----------------::I:--+{ Expression 

Expression 

Expression 

Identifier ~---~ 

1-----+\ Cl uster-call ~------------------------~ 

~---+\ Expression ~------------------~ 

1------+1 Identifier 

\---~-+I Expression 

l-----------+j Compound-stat 

~ __________ --+j Put-stat 

l------------+j Get - stat 

l------------+j Me n u- stat 

L-__________ ~ S'w'itch-statL---------------...J 



1ppcndix A _________ _ /7: 

Mac-stat 

~--+I Expression statement 

Expression Statement 

Cases-stat 

Expression ~-+I Ex p ressi 0 n Statement 

Expression statement 

C1 uster-ca11 

_-+I Identifier ~-+l }--....L---l~-+t Ex p ressi 0 n 

~-+I Stete me nt 

Literal 

-----::1[""""-+1.[ C ha racte r }I----.------+. 



4ppendix A -------------- J
~\ 

Il 

ComRound-stat 

statement 

Put-stat 

~~ Identifier Expression 1--r....L..tl 

Get-stat 

}--~------------.....--.-.I Ide nti fi e r t---T---+I 

I--~ Identifier 

Menu-stat 

constrai nt Expression statement 



ippendix A ___________ ~ lJ"f: 

Swi tch-stat 

}---~ constrai nt Expression Ex p reSSl 0 n 

l----W co nst rai nt Expression l--~ state me nt 

Constant 
I nt-const 

,Real-const 

\. Char-const 

{ Str-const 

TRUE 

\.FALSE 

NIL 

Int-const 

----+----l--4 Nat - co nst 

Real-const 

-~.II nt-const [ 'O~lL~·' N_at-_co_nst:-'l.l~l-=-.®_E =:._/In_t-c_on_st ' ___ 1 



ppendix A ____________ _ 

~at-const 

t ~I Digit 

Char-const 

~O ~I Character I 

Str-const 

~() 1 I Character I- I 
Ident1f1er 

$1 dent 1 f1 er 

----W~CD}---4l~11 de nti fi e r 

· · · 

· · · 

~O • 

~O • 

Character 
Any visible character (te. Alpha, Digit, Space, Tab and special characters). 



Appe1ITldiix IBS COMPILATION EXAMPLE 

This appendix illustrates the use of the EPROL compiler by listing the compilation o~ a 
simple stack specification which contains some deliberate errors. User input is printed In 
italics. 

» ec -t stack /* compile file stack. e & produce compiler listing * / 
stack.e -ec-> stack.l, stack.t 

5 post(st,st') == st' := <>; 
*EPROL 1 

1: ERROR 097, pre/post condition must be boolean. 

9 post(st,e,st') = st' = 
*EPROL 

1 : ERROR 
2 : ERROR 

3 errors. 
no warnings. 

1 
100, '==' expected. 
115, identifier not 

<i> I I st; 
2 

bound. 

» ! cat stack. t /* list the compiler listing f He stack. t * / 
o ec -t stack 

1 ADT Stack 
2 DOM Stack = Int-list; 
3 OPS 
4 INIT: --> ; 
5 post(st,st') == st' := <>i 

*EPROL, _______________________________ l 
1: ERROR 097, pre/post condition must be boolean. 

6 END INIT 
7 
8 PUSH: Int --> i 

9 post(st,e,st') = st' = <i> II sti 
*EPROL 1 2 

» 

------------------------- --------
1: ERROR 100, '==' expected. 
2: ERROR 115, identifier not bound. 

10 END PUSH 
11 
12 POP: --> i 

13 pre(st) == st /= <>i 
14 post(st,st') == st' = tl st; 
15 END POP 
16 END Stack 

3 errors. 
no warnings. 



AppelTIldlix C STANDARD LIBRARIES 

Fi ve standard libraries of EPROL are described. The use of each library must be 
explicitly stated using a library directive (e.g. % library "ser".) 

C.I math 

exp: Real --> Real; 
exp (x) 

Returns the number e raised to the power of x. 

log: Real --> Real; 
log (x) 

Returns the (base e) logarithm of x. 

fix: Real --> Int; 
fix (x) 

Returns the integral part of x. 

float: Int --> Real; 
float (i) 

Converts i to a real number. 

abs: Int I Real --> Int I Real: 
abs(n) 

Returns the absolute value of n. 

sqrt: Int I Real --> Real: 
sqrt (n) 

Returns the square root of n. 

sin: Real --> Real: 
sin (x) 

Returns the sine of angle x. 

cos: Real --> Real: 
cos (x) 

Returns the cosine of angle x. 

evenp: Int --> Bool; 
evenp (i) 

Returns TRUE if i is an even number and FALSE otherwise. 

oddp: Int --> Bool: 
oddp(i) 

Returns TRUE if i is an odd number and FALSE otherwise. 

C.2 str 

st new: NatO --> Str; 
st new (i) 

Returns a new string which initially contains i blanks. 

st len: Str --> NatO; 
st len(s) 



AppendixC ------------------------------ 18. 

Returns the length (Le. the number of characters) of s. 

st_app: Str, Str --> Str; 
st app(sl,s2) 

- Returns a new string which is the result of appending s 2 to s 1. 

st_left: NatO, Str --> Str; 
st left(i,s) 

- Returns a new string which consists of the i leftmost characters of s. 

st_right: NatO, Str --> Str; 
st right(i,s) 

-Returns a new string which consists of the i rightmost characters of s. 

st_mid: NatO, NatO, Str --> Str; 
st mid(i,j,s) 

- Returns a new string which consists of the i -th through to the j -th character of s. 

st_mk: Char-list --> Str; 
st mk(cl) 

- Returns a new string which consists of the characters in list c 1. 

st unmk: Str --> Char-list; 
st unmk(s) 

- Returns a list of all characters in s. 

C.3 io 

f open (f: Str, m: Str): File; 
- Opens and returns a file with name f and mode ffi. m may be one of "r" (for reading), 

"w" (for writing), "r+w" (for reading & writing), or "a" (for appending). 

f close (f: File); 
Closes file f. 

f getc (f: File): Char; 
- Reads and returns the next character of file f. 

f getl (f: File): Str; 
- Reads and returns the next line of file f. 

f zap (file: File); 
- Reads and ignores to the end of the current line of file f. 

f copy (fl: Str, f2: Str); 
- Copies the contents of file f1 to file f2. 

unix(com: Str): Int; 
Executes com as a UNIX command and returns the status as an integer. 

inp standard input. 
outp - standard output. 
EOF - end of file o1arker. 

C.4 scr 

init scr (); 



AppenduC ----------------------------------------__________________ __ 184 

Initialises and clears the vdu screen and forces the tenninal into special modes for screen 
io. The cursor is moved to the top left hand corner of the screen. This function must be 
called before any other function in the scr library. 

tini scr (); 
Performs the reverse of in it _ s c r by restoring the original modes of the terminal. 

clear (); 
Clears the vdu screen. 

move (lin: Nat, eol: Nat); 
Moves the cursor to the coordinates (1 in, col) . If this lies outside the screen then it will 
be automatically adjusted to the nearest position inside the screen. 

wopen (lins: Nat, eols: Nat, titl: Str); 
- Opens a window with its origin positioned at the current position of the cursor. The 

window will be lins lines long and cols columns wide. The title titl will be 
displayed on top of the window. If the window, or part of it, lies outside the screen then 
its position will be automatically adjusted to the nearest suitable position. A window 
larger than the entire screen will be reduced to the size of the screen. 

w close (n: NatO); 
- Closes the n most recently opened windows in the reverse order of openning. The cursor 

will be moved back to its original position, i.e. where it was before the window was 
opened. 

w move (lin: Nat, eol: Nat); 
- Moves the cursor to the local coordinates (lin, col) inside the current window. If the 

position lies outside the window then it will be automatically adjusted to the nearest 
position inside the window. 

w clear (); 
- Clears the contents of the current window. The cursor will be moved to the top left hand 

corner of the window. 

w scroll (n: Int); 
- This function first awiats the press of a key (any key will do). It will then scroll the 

current window by n lines. A negative n specifies the number of lines of the old text to 
be kept after a scroll. If n is zero then the window will be scrolled h -1 lines where h is 
the height of the window. 

w text (lins: Nat, eols: Nat, titl: Str, tex: File I Str-list); 
This function first opens a window of the specified size and title (see w _ open), and then 
displays tex in the window. tex may be a text file or a string list. The window I?ay be 
scrolled as many times as necessary to accommodate the whole text. Once the enure text 
is displayed the window will be closed upon pressing any key. 

w spec (spec: Char): Int; .. 
- This function Inay be used to obtain the specification of current wmdow accordmg to the 

following values for spec: 
, L': Length of window. 
, C': Hight of window. 
, 1 ': Origin line of window. 
, c': Origin column of window. 

bell (); 
Rings the margin bell. 

keybd (); 



AppendixC ----------------------------__ 185 

Returns the next key stroke. 

wait (n: NatO); 
Waits for n seconds. 

t~ (t: Char): Int; 
Returns the current time according to the following values for t: 

'Y': Year 
'M': Month 
'0': Day 
'h': Hour 
'm': Minute 
's': Second 

fm new (f: Form *, titl: Str); 
Displays the fonn f in a window having the title tit 1. The user is then invited to fill the 
fonn interactively. 

fm view (f: Form *, titl: Str); 
-Displays the fonn f in a window having the title tit 1. The specification of the window 

is deduced from the form itself. 

fm drain (f: Form *); 
- Drains the image of the fonn f. 

fm-put (file: File, f: Form *); 
Writes the image of the fonn f to file. 

fm get (file: File, f: Form *); 
-Reads the image of the fonn f from file. 

c.s dbase 

db init (db: *-dbase); 
-Initialises the databse db. 

db size (db: *-dbase): NatO; 
-Returns the size (i.e. the number of records) of db. 

db insert (db: *-dbase, rec: *): Bool; 
- Inserts the record re c in database db provided it is not already there. A successful 

insertion will return TRUE; a failure will return FALSE. 

db delete (db: *-dbase, k: **): Bool; 
- Deletes the record whose key matches k from db provided it is already in the database. If 

successful it will return TRUE, otherwise it will return FALSE. 

db find (db: *-dbase, k: **): * I NIL; 
-Finds and returns the record in db whose key matches k. If no record with such key 

exists then NIL will be returned. 

db list (db: *-dbase): *-list; 
Returns a list of records in db. 



AJPJPell1ldlix JD) THE LIBRARY SYSTEM 

0.1 FUNCTIONAL SPECIFICATION 

DOM Id NatO; 

Code NatO; 

Name Str; 

Date NatO; 

Days Nat; 

Author Str; 

Title Str; 

Volume NatO; 

Recall NatO; 

AnT Lib 
DOM Lib .rds: Id -> Reader, /* registered readers */ 

.stk: Code -> Book, /* library stock */ 

.loan: Code -> Loan, /* current loans */ 

.top: Top; /* top indicators */ 

Reader .name: Name, /* reader's name */ 
.join: Date, /* joining date */ 
.leav: Date, /* leaving date */ 
.loan: Code-set; /* books borrowed */ 

Book .auth: Author, /* author's name */ 
.titl: Title, /* book title */ 
.vol: Volume; /* book volume no. */ 

Loan .date: Date, /* date of loan/renew/discharge */ 
.rd: (Id] , /* reader */ 
.res: Reserve-list, /* reservation list */ 
.rec: Recall; /* no. of recalls */ 

Reserve .date: Date, /* date of reservation */ 

.rd: Id, /* reader */ 

.till: (Date] ; /* reserved until */ 

Top .code: Code, /* last book code */ 

.id: Id, /* last reader id. */ 

.date: Date; /* current date */ 

Report .lvs: Id-set, /* leavers - with no loan */ 

.dis: Id-set, /* dishonoured readers */ 

.rcs: Code-set, /* recalled books */ 

.rss: Code-set, /* reserved books - now available 

TYPE 

AUX 

.lst: Code-set, /* lost books */ 

.rsf: Code -> Reserve-list; 
/* reserve failures due to loss */ 

del id: Reserve-list, Id --> Reserve-list; 

inv-Lib( (rds,stk,loan,top)) 

dam loan .S. dam stk & 
(.A id [ dam rds: 

let rd = rds (id) in 

(let ln = rd. loan in 

(.A cd [ In: cd [ dam loan & loan(cd) .rd = id) & 

*/ 

(let el = (cd: cd [ ln & top.date - loan(cd) .date > 200) in 

(rd.leav > top.date I 

(In /= {} & (.A cd [ In: loan(cd) .rec > 0))) & 

card ln <= 40 & (card ln = 0 I card ln > card ell))) & 



Appendix D 187 

OPS 

(.A cd £ dom loan: 

let (-,rd,rs,rc) = loan (cd) in 

(rd /= NIL I rs /= <> I rc > 0) & 

(rd NIL & rc = 0 & rs /= <> ==> 

«hd rs) .till /= NIL & (hd rs) .till > top.date)) & 

rc <= 4 
(rd = NIL (.E! rd £ rng rds: cd £ rd.loan) & 

cd £ rds(rd) .loan) 

(let rss = elems rs in 

(.A rz £ rss: rz.rd /= rd & 

del id(rs,id) mac { 

} ; 

rs = <> 

(hd rs) .rd 

TRUE 

/* initialise the library */ 
INIT: --> ; 

(rz.till = NIL I top.date > rz.till)))); 

=> <>, 

id => tl rs, 

=> <hd rs> I I del_id(tl rs,id), 

post (-, lib') 

END INIT 

lib' = mk-Lib([), [), [),mk-Top(O,O,O)); 

/* register a new reader */ 
NEW_READ: Name, Days --> Id; 

post«rds,stk,loan,top),name,days,lib',id) == lib' = 

mk-Lib(rds+ 

[top.id+l -> mk-Reader(name,top.date,top.date+days, (})), 

stk,loan, 

mk-Top{top.code,top.id+l,top.date)) & 
id = top.id+l; 

END NEW READ 

/* de-register a reader */ 
REM READ: Id --> Code-set; 

exep«rds,-,loan,-) ,id) 

- (id £ dom rds) 

rds (id) .loan /= {} 

=> "No such reader", 

=> "Has still books on loan"; 

post«rds,stk,loan,top),id,lib',cs) == 

(let In = [cd -> 1: cd £ dom loan & 
(let (dt,rd,rs,rc) = loan (cd) in 

1 mk-Loan(dt,rd,del id(rs,id),rc))) in 

cs = {cd: cd £ dom In & (let (-,rd,rs,rc) = In(cd) in 

rd = NIL & rs = <> & rc = O)} & 
lib' = mk-Lib(rds /- (id},stk,ln /- cs,top)); 

END REM READ 

/* add a new book to the library */ 

NEW BOOK: Author, Title, Volume --> Code; 

post«rds,stk,loan,top),auth,titl,vol,lib',code) 

lib' = mk-Lib(rds, 
stk + [top.code+l -> mk-Item(auth,titl,vol)), 

loan, 
mk-Top(top.code+l,top.id,top.date)) & 

code = top.code+l; 

END NEW BOOK 

/* remove a book from the library */ 
REM BOOK: Code --> Reserve-list; 

exep(lib, code) == 

-(code £. dam lib.stk) => "No such book"; 

post«rds,stk,loan,top),code,lLb',rsv) == 

rsv = loan (code) .res & 

lib' = mk-Lib(rds,stk /- {code},loan /- (code},top); 

& 

& 



AppendixD 

END REM BOOK 

/* issue a book for a reader */ 

ISSUE: Id, Code --> ; 
exep«rds,stk,loan,top),id,code) 

-(id £ dom rds) => "No such reader", 
-(code £ dom stk) => "No such book", 
code £ dom loan & 
(let In = loan(code) in 

In.rd /= NIL I In.rec /= 0 I 
(In.res /= <> & (hd In.res) .rd /= id)) 

=> "Already on loan", 
rds(id) .leav < top.date => "Reader's Reg. expired", 
card (cd: cd £ rds(id) .loan & loan (cd) .rd = id} >= 40 

=> "Borrow limit reached"; 

post«rds,stk,loan,top),id,code,lib') == lib' = 
mk-Lib(rds ++ rid -> let (nm,jn,lv,ln) = rds(id) in 

mk-Reader(nm, jn,lv,ln .U. (code})], 

END ISSUE 

stk, 
loan ++ [code -> mk-Loan(top.date,id, 

top) ; 

if code £ dom loan then 

tl loan (code) .res 
else <>, 
0) ], 

/* discharge a book */ 

DISCHARGE: Code --> [Id]; 
exep(lib,code) == 

-(code £ dom lib.stk) => "No such book", 
-(code £ dom lib. loan) => "Is not on loan"; 

post«rds,stk,loan,top),code,lib',id) 
let (-,rd,rs,rc) = loan(code) in 
let In = mk-Loan(top.date,NIL, 

if rs /= <> & rc = 0 then 

let (dt,rd,-) = hd rs in 

<mk-Reserve(dt,rd,top.date+14» II tl rs 
else rs, 
rc) in 

lib' mk-Lib(rds ++ (loan (code) .rd -> 
let (nm, jn,lv,ln)=rds(loan(code) .rd) in 

mk-Reader(nm,jn,lv,ln - {code})], 
stk,loan ++ (code -> In],top) & 

id = (if rs /= <> & rc = 0 then (hd rs) .rd 
else NIL); 

END DISCHARGE 

/* renew a book */ 

RENEW: Code --> 
exep«-,stk,loan,top) .code) 

-(code £ dom stk) => "No such book", 
-(code £ dom loan) => "Is not on loan", 
loan (code) .rec /= 0 => "Recalled - can't renew", 
loan (code) . res /= <> => "Reserved - can't renew"; 

post«rds,stk,loan,top),code,lib') == lib' = 

mk-Lib(rds,stk. 
loan ++ [code -> mk-Loan(top.date,loan(code) .rd,<>.O) 1. 

top) ; 
END RENEW 

183 



AppendixD 

/* reserve an book */ 

RESERVE: Id, Code --> 

exep«-,stk,loan,-),id,code) 

-(code £. dom stk) => "No such book", 

-(code £. dom loan) => "Is not on loan", 

loan (code) .rd = id => "You have the book - can't reserve", 
loan (code) .res /= <> & 
(.E rs £. elems loan(code) .res: rs.rd = id) 

=> "Already reserved for you"; 

post«rds,stk,loan,top),id,code,lib') 

let (dt,rd,rs,rc) = loan (code) in 
lib' = mk-Lib(rds,stk, 

END RESERVE 

loan ++ [code -> 

mk-Loan(dt,rd, 

top) ; 

rs I I <mk-Reserve(top.date, id,NIL) >, 
rc) I, 

/* check a recalled book which has been returned */ 
CHECKED: Code --> ; 

exep«-,-,loan,-),code) == 

-(code £. dom loan) => "Is not on loan", 

loan (code) .rec = 0 => "Was not recalled"; 

post«rds,stk,loan,top),code,lib') 

lib' = mk-Lib(rds,stk, 

END CHECKED 

loan ++ [code -> let (dt,rd,rs,-) = loan(code) in 
mk-Loan(dt,rd,rs,O) I, 

top) ; 

/* daily operation - to be performed once a day */ 

DAILY: --> Report; 

post«rds,stk,loan,top),lib',rep) 

let ex 

lon 

ls 

let dis 

let lvs 

res 

rss 

tid: id £. dom rds & rds(id) .leav < top.date}, 

[ed -> In: cd £. dom loan & 

ln (let (dt,rd,rs,re) = loan(ed) in 
if rd = NIL & rs /= <> & re = 0 & 

(hd rs) .till /= NIL & 

(hd rs) .till < top.date then 

mk-Loan(dt,rd,tl rs,rc) 

else loan (cd) ) I, 
(ed: ed £. dom loan & top.date - loan (ed) .date > 200} in 
(id: id £. dom rds & rds(id) .loan /= {} & 

rds (id) .loan .S. ls} in 

tid: id £. ex & rds(id) .loan = {», 

{cd: ed £. dom lon & 
(let (dt, rd, rs, re) = lon (ed) in 

rd /= NIL & re < 4 & 
lon(cd) .ree*30+14 <= top.date - dt)} .U. 

(union (rds(id) .loan: id £. ex) -
(ed: ed £. dam lon & lon(ed) .ree > O}), 

{ed: ed £. dom lon & (let (-,rd,rs,re) = lon(cd) in 
rd = NIL & rs /= <> & 
re = 0 & (hd rs) .till = NIL)}, 

1st {ed: ed £. ls & lon(ed) .rd £. dis} in 
let rsf [ed -> lon(ed} .res: ed £. 1st & lon(ed) .res /= <>J in 

rep mk-Report(lvs,dis,rcs,rss,lst,rsf) & 
lib' = mk-Lib(rds /- (lvs .0. dis), 

stk /- 1st, 

[ed -> In: 

ed £. (dam Ion - 1st) & 

159 



AppendixD 

END DAILY 
END Lib 

(let (dt, rd, rs, rc) = Ion (cd) in 

In = mk-Loan(dt,rd, 

it cd £. rss then 
<mk-Reserve((hd rs) .date, 

(hd rs).rd, 
top .date+14) > I I tl rs 

else rs, 
it cd £. rcs then rc+l else rc)) J, 

mk-Top(top.code,top.id,top.date+l)) ; 

1~ 



AppenduD ----------------__________________________________________ ___ 
191 

0.2 USER INTERFACE SPECIFICATION 

top level 
display 

system menu 
1 

start up counter desk 
reader menu book menu menu 

3 4 

counter desk menu 

issue books 

4.3 

discharge 
books 

4.4 

5 

display 
desk menu 

4.1 

renew books 

4.5 

6 

I repo~ menu I 
7 

9 

reserve books 

4.6 

shut down 

8 

close 
system menu 

close 
desk menu 



AppenmxD --------------------________________________________________ _ 

reader menu 

insert thing 

5.3 

book menu 

insert thing 

5.3 

display 
reader menu 

5.1 

remove thing find readers 

5.4 

display 
book menu 

5.5 

6.1 

remove thing find books 

5.4 6.3 

quit 

close 
reader menu 

A S
.
6 

close 
book menu 

A6.~ 

192 



AppenmxD --------------------______________________________________ _ 

reports menu 

do readers 
report 

7.3 

display 
reports menu 7.1 

do books 
report 

do loans 
report 

7.4 7.5 

do stock 
report 

7.6 

close 
reports men u 

193 



AppendixD 

insert thing create 
dialogue box 5.3.1 

,-------------------- -------------------~ , , , , , , , , , , 

report 
error 

5.3.3 

too many 
attempts 

correct password 

display 
warning 

5.3.4 

, , , , 

~----------------------------------------~ , , , , , , , , , , , , , , , , , , , 

display 
"ignored" 

5.3.6 

te---*--'1 

reader 

5.3.7 

addrcader& 
confirm 

5.3.5 

book 

5.3.8 

add book & 
confinn 

L _______________ -------- --------

, , , , , , , , 
display 
warning 

: 5.3.10 no 

r---yes----

, , , , , , , , , , , , , , , , , , , 
______ 1 

L ___________________ --------------------

5.3.11 close 
dialogue box 

194 



AppenduD ----------------------________________________________________ _ 

remove thing create 
dialogue box 5.4.1 

-------------------- ---------------------, , , , , , , , , 

report 
error 

too many 
attempts 

display 
warnmg 

5.4.4 , 5. 4 .3 correct password 

,-------------------- --------------------,-------------------- -------------------, , 
I , 
I , , 

report 
error 

quit _____ ~ confirm 
quit , , , , 

I 5.4.6 valid id/code 5.4.7 , , , , , , , , , 
I 5.4.8 reamove " 
I reader{book , , , , , , , , 
, confirm ' , 
, 5.4.9 removal , , , , , 
L ___________________ --------------------

close 
5.4.10 b 

dialogue ox 

195 



AppendixD 

issue books create 
dialogue box 4.3.1 

,- - - -- -- - - - - - - - - - - --- -------------------~ , , , , , , , , , , 

report 
error 

4.3.3 

quil--------~ 

valid id 

t-------------------- -------------------, , 
I , , , , , , , , 

report 
error 

4.3.5 valid id 

~-----------------

4.3.7 

4.3.8 

issue book & 
confirm 

close 
dialogue box 

book on 
loan 

gIve 
warnmg 

4.3.6 

I 

1% 



AppenduD --________________________________________________________ _ 

discharge books 
create 

dialogue box 4.4.1 
.... ________________ L.._-_-_"-r'--...J 

- - - - - - - - - --, , , , , , , , , , , 

give 
warning 

4.3.3 valid id 

, , , , 
quit--""'t--

L ________________ _ 

- -----------
4.3.5 

4.3.4 
discharge 

book 
close 

dialogue box 

renew books create 
dialogue box 4.5.1 

t----------------------------------------, ' , ' ~ , 
~ , 
, gIve I----quit--------,'..--__. 
, warning , , , 
~ , 
~ 4.5.3 , 
~ , 
~ ~OO , 
: 4.3.4 \ ,,4.3.5 4.3.6 : 
~ \ 

4.3.7 

~ gi ve gi ve renew \ 
~ , 
~ warnmg warning book \ 

close 
dialogue box 

~ \ , \ 

I ______ ----------------------------------~ 

197 



AppendixD 

reserve books 
create 

dialogue box 4.6.1 

-------------------- --------------------~ , , , , 
, report 
, error quit , , , , 
: 4.6.3 validid : L _______________________________________ , 

-------------------~ --------------------, , , , , , , , 
\ , 

report 
error 

4.6.5 , , 
, 4.6.6 , 
\ 
\ , , , 

warning 

* 

give 4.6.7 
warning 

L ___________________________ _ 

4.6.8 reserve & 
confinn 

close 
4 .6 .9 dialogue box 

, , , , 
quit-------. 

, , , , , , , 
\ , 
\ , , 

-----------, 

198 



AppendixD ------------------------------- 19J 

find readers 

fmd readers 

5.5.5 

create 
dialogue box 

empty empty 

name 

5.5.1 

id--.... 

5.5.3 

show next 
reader 

close 
dialogue box 

5.5.6 5.5.7 



AppendixD ------------------____________ 2m 

find books 

find books 

6.3.6 

create 
dialogue box 6.3.1 

show next 
book 

6.3.7 

* 

code 

6.3.3 

6.3.4 

6.3.5 

close 
dialogue box 

6.3.8 



AppendixD 

D.3 FINAL PROTOTYPE 

%library "scr" 

%library "str" 

%library "io" 

%library "dbase" 

/* screen management library */ 

/* string library */ 

/* 10 library * / 
/* database library */ 

CONST MONTHS < .. Jan ..... Feb ..... Mar ... "Apr" ... May ... "Jun .. , 

DOM 

.. Jul ..... Aug ... "Sep .. ,"Oct", .. Nov .. , .. Dec .. >; 

DEL PASS "r2d2"; 

INS PASS "x2y2"; 

ATTEMPT LIM 3; 

READER 'R'; 

BOOK 'B'; 

NOTE 'N' ; 

WARN 'W'; 

Id NatO; 

Code NatO; 

Author Str; 

Title Str; 

Date Nat; 

Day_no Nat; 

Recall {O:4}; 

Name Str; 

position NatO; 

What {READER. BOOK}; 

Message {NOTE, WARN} ; 

DESIGN library system(); 

DOM Reader :: .id: Id, 

.pos: position, 

.name: Name, 

.valid: Baal, 

.count: NatO, 

.loan: Code-list; 

Book .code: Code, 

.pos: position, 

.auth: Author, 

.titl: Title; 

Loan .code: Code, 

. rd: [Id] , 

.date: Date, 

.rec: Recall, 

.res: Reserve-list; 

Reserve .date: Date, 

. rd: Id, 

. till: (Date] ; 

TopDate :: .no: Nat, .y: 
Na t, . m: Na t, . d: Na t; 

ReadersDb Reader-dbase(key - id) ; 

BooksDb Book-dbase(key = code) ; 

LoansDb Loan-dbase(key = code) ; 

ReaderForm form ReaderReg; 

l3ookForm form BookRec; 

201 



AppendixD 

VAR rds db: ReadersDb; 

bks db: BooksDb; 

Ins db: LoansDb: 

rds_Iist: Reader-list := <>: 
bks_Iist: Book-list := <>: 

new rds: ReaderForm-list := 

rmv rds: Id-list := 

new bks: BookForm-list := 
rmv bks: Bool := TRUE: 

ins ok: Bool .- TRUE: -
del ok: Bool := TRUE: 

started: Bool := FALSE: 

<>: 

<>: 

<>: 

stock_rep_ready: Bool := FALSE: 

day_no: Nat: 

cur date: TopDate; 

FORM ReaderReg 

\ 

Surname: $sname 

Forenames: $fnamel 

position: $pos 

Faculty: $fac 

Home Address: $road 

$town 

$pcode 

Telephone No: $telno 

Date: Sdate 

Title: $title 

$fname2 

Extension: $ext 

Leaving date: $d/$m/$y \ 

$date: StreB), system(sdate); 

$sname: Str(20): 

$title: Str(4): 

$fnamel: Str(lS): 

$fname2: Str(lS), optional: 

$pos: Str(2), computed menu 

$fac: 

''''M Position "N" 

"Dean" => 

"Senior Lecturer" => 

"Lecturer" => 

"Visitor" => 

"Research Fellow" => 

"Reasearch Assistant" => 

"Research Student" => 

"Technician" => 

"Secretary" => 

} ; 

Str(ll), computed menu 
""M Faculty "N" 

{$pos := "DN"; exit}: 

{$pos := "SL"; exit}; 

{$pos := .. Le" i exit}; 

{$pos := "VS"; exit} ; 

{$pos := "RF": exit}; 

{$pos := "RA" ; exit}: 

{$pos := "RS"; exit}; 

{$pos := "TC" ; exit}; 

{$pos := "SC"; exit}: 

"Art" => { $fac . - itself; exit}; 

$ext: 

$road: 

} ; 

"Education" => 

"Geography" => 

"Mathematics" => 

"Sciences" => 

"Technology" => 

{Sfac 

{Sfac 

{Sfac 

{Sfac 

{Sfac 

Nat(4), constraint 1000 <= $ext <= 9999; 

Str(30); 

:= it sel f; exit}; 

:= itself; exi t}; 

. - i tsel f; ex it}: 

itself: exit}: 

.- itself: exit}; 

202 



AppendixD 

$town: Str (30) ; 

$pcode: Str (7) , optional; 

$telno: Nat (7) , optional; 

$d: Nat (2), constraint 

$m: Na t (2) , constraint 

$y: Nat (2), constraint 

END ReaderReg 

FORM BookRec 

\ 

Class: 

Author: 

Title: 

Volume: 

Publsh: 

L$cl.$cr 

$i. $auth 

$titl 

$vol 

$pub 

1 <= $d <= 

1 <= $m <= 

time (' Y') 

Sedate: Str(8) , system(sdate) ; 

31; 

12; 

<= $y <= 99; 

Date: 

Purchase Date: 

Year: 

Edition: 

ISBN: 

$cl: NatO(3) , constraint 0 <= $cl <= 799; 

$cr: NatO(3) ; 

Sedate 

$d/$m/$y 

$year 

$edtn 

0-$51-$52 

$d: Nat(2), 

$m: Nat(2), 

$y: Nat(2), 

constraint 1 <= $d <= 31, initially time( '0'); 

constraint 1 <= $m <= 12, initially time( 'M') ; 

initially time('Y'); 

$i: Str(2) ; 

$auth: Str(20) ; 

$year: Nat(4), after($y), constraint $year <= 1900 + $y; 

$titl: Str(60); 

$vol: NatO(2) , initially 0; 

initially 1; 

optional; 

$edtn: Nat(2), 

$pub: Str(30), 

$51: Nat(3) ; 

$52: Nat(5) ; 

$53: Nat(l); 

END BookRec 

FUNCTION init readers(); 

VAR rdf: File; 

rds cnt: Nata; 

id: Id; 

pos: position "= 0; 

valid: Bool; 

count: Nata; 

loan: Code; 

loans: Code-list := <>; 

rd fm: ReaderForm; 

BEGIN 
rdf := f open ("readers", "r"); 

db init(rds db); 

get(rdf,rds_cnt) ; 

f_zap(rdf) ; 

for i in {l:rds cnt} do { 

get(rdf,id,valid,count); 

for j in {I: count} do { 

get(rdf,loan); 

loans := loans I I <loan>; 

) ; 

fm gct(rdf,rd fm); 

-$53\ 

db~-insert (rds-db,mk-Reader (id, pas, rd~fm"Ssname,valid,count, loans»; 
-- -

203 



Appendix D 204 

pos := pos+l; 

} ; 

f_close(rdf) ; 

END init readers 

FUNCTION init_books(); 

VAR bkf: File; 

bks cnt: NatO; 

code: 

bk fm: 

Code; 

BookForm; 

pos: Position := 0; 

BEGIN 

bkf := f_open("books", "r"); 

db_init (bks_db); 

get(bkf,bks_cnt) ; 

f_zap(bkf) ; 

for i in (l:bks_cnt) do 

get(bkf,code); 

fm_get(bkf,bk_fm); 

db_insert (bks_db, mk-Book(code,pos,bk fm.$auth,bk fm.$titl)); 

pos := pos+l; 

} ; 

f_close(bkf) : 

END init books 

FUNCTION init loans (): Day_no; 

VAR lnf: File; 

lns_cnt,rs cnt: NatO; 

date,rs_date: 

rd,rs rd: 

code: 

rec: 

Code; 

Recall; 

rs till: (Date): 

Date; 

Id; 

res: Reserve-list := <>: 

day_no: Nat: 

BEGIN 

lnf := f open("loans", "r"); 

db init (lns db); - -
get(lnf,lns_cnt,day_no) ; 

f_zap(lnf) ; 

for i in {l:lns cnt} do ( 

get(lnf,code,rd,date,rec,rs cnt); 

for j in {l:rs_cnt} do ( 

get(lnf,rs_date,rs_rd,rs_till) ; 

res := res I I <mk-Reserve(rs date,rs rd, 

if rs till = 0 then NIL else rs_till»; 

} ; 

db insert(lns db,mk-Loan(code,if rd=O then NIL else rd,date,rec,res)); 

} ; 

f close(lnf); 

return(day_no+l) : 

END in it loans 

FUNCTION is element of(obj: Id I Code, objl: (Id I Code)-list): Baal; 

BEGIN 

while objl /= <> do { 

it obj '" hd objl then 



AppendixD 

} ; 

ret urn (TRUE) ; 

objl : = tl objl; 

return (FALSE) ; 

END is element of 

FUNCTION is_expired(y: Nat, m: Nat, d: Nat): Baal; 

BEGIN 

return(y*36S+m*30+d < cur_date.no); 

END is_expired 

205 

FUNCTION update_readers(rds_db: ReadersDb, new rds: ReaderForm-list, rmv rds: Id-list); 

VAR rdf,logf,tempf: File; 

valid, stays: Bool := FALSE; 

rds cnt, ins cnt: NatO; 

rd fm: 

id : 

ReaderForm; 

Id := 0; 

rds cnt': NatO := 0; 

code: 

rd: 

loans: 

loan: 

Code; 

Reader; 

Code-list; 

[Loan] ; 

BEGIN 

rdf := f_open("readers", "r"); 

logf := f_open("readers.log","w"); 

tempf : = f_ open ("temp", "w") ; 

get(rdf,rds_cnt); 

f_zap(rdf) ; 

put(tempf,"%OSd"n",rds_cnt') ; 

for i in {l:rds_cnt} do { 

get(rdf,id,valid,lns_cnt) ; 

for j in {l:lns_cnt} do 

get(rdf,code); 

fm_get(rdf,rd_fm); 

rd := db find(rds_db,id); 

loans := rd. loan; 

if is element_of(id,rmv_rds) then { 

put(logf,"* Reader Removed: %Sd %s Reg. on %02d-%02d-%02d "n", 

id, rd_fm.$sname, rd_fm.$d, rd_fm.$m, rd fm.$y); 

while loans /= <> do { 

loan := db_find(lns_db,hd loans); 

put (logf, "Lost Book: %06d by %OSd "n",loan.code,id); 

loans := tl loans; 

else if is_expired(rd_fm.$y,rd_fm.$m,rd_fm.$d) then { 

if (rd.count > 0) then { 

rd. valid := FALSE; 

while loans /= <> do ( 

} ; 

loan := db find(lns db,hd loans); 

if loan.rec = 0 then ( 

loan.rec := 1; 

put(logC"Recall Book: %06d from %OSd "n",loan.code, id); 

} ; 

loans := tl loans; 

stays := TRUE; 



AppendixD 

} ; 

else 

put (logf, "Reader Removed: %OSd %s Reg. on %02d-%02d-%02d "n", 

id, rd_fm.Ssname, rd_fm.Sd, rd_fm.Sm, rd_fm.Sy); 

else 

stays : = TRUE; 

if stays then ( 

put(tempf,"%d %s %d",id, 

} ; 

if rd.valid then "TRUE" else "FALSE",rd.count); 

loans := rd. loan; 

for i in {l:rd.count} do ( 

} ; 

put (tempf, "%d", hd loans); 

loans := tl loans; 

fm_put (tempf, rd_fm) ; 

rds cnt' := rds cnt'+1; 

while new rds /= <> do ( 

id := id + 1; 

} ; 

rd_fm := hd new_rds; 

put(tempf,"%d %s %d",id,"TRUE",O); 

fm_put (tempf, rd_fm) ; 

put(logf,"New Reader: %5d %20s on %d-%d-%d"n", 

id, rd_fm.Ssname, rd_fm.Sd, rd_fm.Sm, rd fm.Sd); 

rds_cnt' := rds_cnt'+1; 

new rds := tl new rds; 

f_close(rdf) ; 

f_close(tempf) ; 

f_close(logf) ; 

tempf := f_open("temp", "r+w"); 

put(tempf,"%05d"n",rds_cnt') ; 

f_ close (tempf) ; 

f_ copy ("temp", "readers") ; 

END update readers 

FUNCTION update_books (new_bks: BookForm-list, rmv bks: Code-list); 

VAR bkf,logf,tempf: File; 

bk fm: BookForm; 

id: rd; 

code Code := 0; 

pos position; 

stays: Bool := FALSE; 

bks cnt: Int; 

bks cnt' : Int := 0; 

bk: Book; 

BEGIN 
bkf := f open("books","r"); 

logf : = f_ open ("books. log", "w") ; 

tempf : = f_ open ("temp", "w") ; 

get(bkf,bks_cnt) ; 

(_zap(bkf) ; 

put(tempf,"%05d~n",bks_cnt') ; 

for i in {1:bks_cnt} do 

get(bkf,code) ; 

fm_ get (bk f, bk_tml ; 

2a5 



AppendixD 

if is_element_of(id.rmv_bks) then 

put (logE. "Book Removed: %06d %s-%4d Purch. on %02d-%02d-%02d "n" . 
code.bk_fm.$auth.bk_fm.$year.bk_fm.$d.bk_fm.$m.bk fm.$y) 

} ; 

else ( 

put(tempf."%d".code); 

fm_put(tempf.bk fm); 

bks cnt' .- bks cnt'+l; 

} ; 

while new bks /= <> do ( 

code := code + 1; 

} ; 

bk fm:= hd new_bks; 

put(tempf."%d".code) ; 

fm_put(tempf.bk fm); 

put(logf."New Book: %06d %s/%4d on %02d-%02d-%02d "n". 

code.bk_fm.$auth.bk_fm.$year.bk_fm.$d.bk_fm.$m.bk_fm.$d); 

bks_cnt' := bks_cnt'+l; 

new bks := tl new_bks; 

f_close(bkf) ; 

f_ close (tempf) ; 

f_close(logf) ; 

tempf : = f_ open ("temp". "r+w") ; 

put(tempf."%OSd"n".bks cnt'); 

f_close(tempf) ; 

f_copy("temp". "books"); 

END update_books 

FUNCTION update_loans (lns_db: LoansDb. rds_db: ReadersDb. VAR rmv rds: Id-list); 

VAR lnf.logf: File; 
lns list: Loan-list := db_list (lns_db) ; 

rds list: Reader-list := db list(rds db); 

lns cnt: NatO:= len lns list; 

loan: Loan; 

In: Code-list; 

resl: Reserve-list; 

res: Reserve; 

lost: 

reader: 

stays: 

BEGIN 

Code-list := <>; 

Reader; 

Bool : = TRUE; 

lnf := f open ("loans". "w"); 

logf := f_open( .. loans.log ..... w .. ); 

put(lnf."%d %d"n".lns_cnt.day_no); 

while lns list /= <> do { 

loan := hd lns list; 

resl := loan.res; 

if loan.rec = 0 then 

if loan. rd 

if resl 

NIL then 

<> then 

stays : = FALSE 
else if resl(l).till /= NIL & resl[l] .till < cur date.no then { 

loan.res := tl resl; 

if loan. res = <> then 

stays : = FALSE 

else ( 
loan.res[1] .till := cur date.no + 14; 
put(logf,"Heserved: %06d for %05d"n",loan.code.loan .r<'s[1].rd); 

207 



AppendixD 

} ; 

else 

stays : = FALSE; 

else if loan.date+14 > cur_date.no then ( 

loan.rec := 1; 

put(logC"Recall Book: %06d from %OSd "n",loan.code,loan.rd); 

else if loan.rd = NIL then 

stays := FALSE 

else if loan.rec<4 & loan.rec*30+14 <= cur_date.no - loan.date then ( 

loan.rec := loan.rec+l; 
put(logf,"Recall Book (%d) : %06d from %OSd"n",loan.rec,loan.code,loan.rd); 

else if loan.rec = 4 & loan.rec*30+14 > 200 then 

lost : = <loan. code> I I lost; 

if stays then ( 

20S 

put(lnf,"%d %d %d %d %d ··,loan.code, loan.rd, loan.date, loan.rec, len resl); 

while resl /= <> do ( 

res := hd resl; 
put(lnf,"%d %d %d" res.date, res.rd, 

resl := tl resl; 

} ; 

put (lnC ''''n''); 

} ; 

Ins list := tl Ins list; 

} ; 

while rds list /= <> do 

reader := hd rds list; 

In := reader.loan; 

while In /= <> do { 

if res.till = NIL then 0 else res.till); 

if -is element_of(hd In,lost) then 

} ; 

done; 

In := tl In; 

} ; 

if reader.loan /= <> & In /= <> then 

rmv rds := rmv_rds I I <reader.id>; 

rds list := tl rds list; 

f close(lnf); 

f_close(logf) ; 

END update_loans 

FUNCTION is reserved_for (id: Id, resl: Reserve-list): Bool; 

BEGIN 
while resl /= <> do 

if id = (hd resl) .rd then 

ret urn (TRUE) ; 

resl := tl resl; 

I ; 
return (FALSE) ; 

END is reserved_for 

FUNCTION message(line: Nat, kind: Message, message: Str); 

BEGIN 
jf kind = WARN then 



AppendixD 

bell () ; 

w move (line, 2) ; 

w_put ( "" R% s" , message) ; 

for i in {I : w_spec('C') - st_len(message) - 2} do 

w_put (" "); 

w_put (" "N") ; 

END message 

DIALOGUE remove_thing(what: What, VAR rmv list: (Id I Code)-list, VAR del ok: Bool); 

VAR width: Nat:= 30; 

passwd: Str; 

attempts: NatO := 0; 

ic: Id Code; 

BEGIN 

state box: { assert(del_ok); 

w_open(3,width, if what = READER then 

""M Remove Reader "Nil 

else ""M Remove Book "Nil); 

iap pass: 

message(3,NOTE,"") ; 
=> pass; 

w mo ve (1 , 1) ; 

w_get(" Password: ",passwd,8,noeeho); 

message (3, NOTE, ''''I; 

} ; 

passwd = DEL PASS 

attempts >= ATTEMPT_LIM, 

message(3,WARN,"Imposter!"I; 

wait (2) ; 

del ok : = FALSE; 

=> read; 

=> out; 

TRUE, attempts := attempts+l; 

message(3,WARN,"Wrong!"I; 
=> pass; 

iap read: { w move(2,11; 

if what = READER then 

w_get(II Reader Id: ",ie,SI 

else 
w_get(II Book Code: ",ie,61; 

} ; 

(if what = READER then db_find(rdS_db,iel 

else db_find(bks_db,iell /= NIL, 
rmv_list := rmv_list I I <ie>; 

message(3,NOTE,"Ok") ; 

ie = 0, message(3,NOTE,"Quited") 

TRUE, message(3,WARN,"Non-existant!") 

state out: w close(l) => return; 

END remove thing 

=> out; 

=> out; 

=> read; 

DIALOGUE insert thing(what: What, 
VAR new list: (ReaderForm I BookForm) -list. 

VAR ins ok: Boo1); 

VAR width: Nat:= 30; 

pass wd : St r; 

attempts: NatO := 0; 

ok: Boo1 ; 

2(f) 



AppendixD 

resp: 

rd fm: 

bk fm: 

BEGIN 

state 

Char; 

ReaderForm; 

BookForm; 

box: { assert (ins ok); 

w_open(3,width, if what = READER then 

"AM New Reader AN" 

else "AM New Book AN"); 

message(3,NOTE,""); 

=> pass; 

iap pass: w_move(l, 1); 

w_get(" Password: 

message(3,NOTE,""); 
",passwd,8,noecho); 

} ; 

passwd = INS_PASS 

attempts >= ATTEMPT LIM, 

message(3,WARN,"Imposter!"); 

wait(2); 

ins_ok := FALSE; 

=> read; 

=> out; 
TRUE, attempts := attempts+l; 

message(3,WARN,"Wrong!"); 

=> pass; 

iap read: ok := if what = READER then 

fm_new(rd_fm, "AM New Reader "N") 

else 

fm_new(bk_fm, ""M New Book "N"); 

ok & what = READER, 

new_list := new_list I I <rd_fm>; 

message(3,NOTE,"Registered"); 

ok & what = BOOK, 

new list : = new list I I <bk fm>; 

message(3,NOTE,"Recorded"); 

TRUE, message(3,NOTE,"Ignored") 

iap next: ( w move(2,1); 

w _pu t (" Mo r e [ y / n 1 : ") ; 
w move(2,14); 

resp : = keybd () ; 

) ; 

=> next; 

=> next; 

=> next; 

resp 'y' I resp = 'Y', w_put("yes") => read; 

resp 'n' I resp = 'N', w_put("no") => out; 

TRUE, message(3,WARN,"Yes or No please") => next; 

state out: w close(l) 

END insert_thing 

=> return; 

DIALOGUE issue books (rds db: ReadersDb, bks db: BooksDb. lns db: LoansDb); 

VAR width: Nat 30; 

id: Id; 

code: Code; 

BEGIN 

stdte box: w_open(3.width, .. AM Issue AN"); 

message(3.NOTE, .... ) ; 

=> reader; 

210 



Appendix D 211 

iap reader: ( w_move(l,l); 

w_get ( .. Reader Id: .. , id, 5) ; 

} ; 

id = 0 => out; 

db_find(rds_db,id) = NIL, 

message(3,WARN,"No such reader") => reader; 

TRUE => book; 

iap book: ( w_move(2,1); 

w_get ( .. Book Code: .. , code, 6) ; 

} ; 

code = 0 

db_find(bks_db,code) = NIL, 
message(3,WARN,"No such book") 

db_find(lns_db,code) /= NIL, 

message(3,WARN,"Is on loan") 

TRUE 

=> out; 

=> book; 

=> book; 

=> issue; 

state issue: db_insert(lns_db,mk-Loan(code,id,cur_date.no,O,<») ; 

message(3,NOTE,"Issued"); 

state out: w close(l) 

END issue books 

=> book; 

=> return; 

FUNCTION del_element (code: Code, codel: Code-list); 

VAR head: Code := hd codel; 

tail: Code-list := tl codel; 

idx: Nat: = 2; 

BEGIN 

if code /= head then 

while tail /= <> do 

else 

if code = hd tail then 

codel[idx] := head; 

codel := tl codel; 

done; 

} ; 

tail := tl tail; 

idx := idx+l; 

codel := tl codel; 

END del element 

DIALOGUE discharge books (rds_db: ReadersDb, Ins db: LoansDb); 

VAR width: Nat:= 30; 

code: Code; 

loan: [Loan]; 

reader: Reader: 

BEGIN 
state box: ( w_open(3,width, ...... M Discharge "N") ; 

message(2,NOTE, .... ) ; 

message (3, NOTE, ''''): 
=> book: 

iap book: ( w move(l,l); 
w_get(" Book Code: ",code, 6): 

} ; 

code = 0 => out: 

(loan :c db find(lns db,code)) NIL I loan.rd ,': 1 L, 



AppendixD 

message (2,WARN, "Is not on loan") 

TRUE 

=> book; 

=> disch; 

state disch: ( reader := db_find(rds_db,loan.rd); 

del_element(code,reader.loan); 

loan.rd := NIL; 

message(2,NOTE,"Discharged"); 

mac ( 

10an.rec>0 => message(3,WARN,"Goes to RECALLED shelf"); 

loan.res=<> => message(3,NOTE,"Goes to shelves"'); 

db_delete(lns_db,code) ; 

) ; 

TRUE => ( message (3,WARN, "Goes to RESERVE shelf"); 

loan.res[l) .till .- cur_date.no; 

} ; 

) ; 

=> book; 

state out: w close(l) 

END discharge_books 

=> return; 

DIALOGUE renew_books (lns_db: LoansDb); 

VAR width: Nat:= 30; 

code: 

loan: 

Code; 

[Loan); 

reader: Reader; 

BEGIN 

state box: w_open(2,width,""M Renew "N"); 

message(2,NOTE,""); 

iap book: ( w_move(l,l); 
w_get(" Book Code: ",code,6); 

) ; 

code = 0 

=> book; 

=> out; 

(loan := db_find(lns db,code)) = NIL I loan.rd = NIL, 
=> book; message(2,WARN,"Is not on loan") 

loan.rec > 0, 
message(2,WARN,"Recalled - can't renew") => book; 

loan.res /= <>, 
message(2,WARN,"Reserved - can't renew") => book; 

TRUE 

state renew: loan.date 

state out: w close(l) 

END renew books 

cur date.no 

=> renew; 

=> out; 

=> return; 

DIALOGUE reserve books (rds_db : ReadersDb, Ins db: LoansDb); 

VAR width: Nat := 30; 

id: Id; 

code: Code; 

loa n : [ Loa n J ; 

BEGIN 
. h "M R "Nit) ; 

state box: { w __ open(3,wldt ,"' eserve 

mes sage (3, NOTE, .... ) ; 
=> reader; 

iap r('ader: ( Iv move(l, 1); 

w_9ct ( .. Reade; Id: "', id, 5) ; 

) ; 

212 



AppendixD 

id = 0 

db_find(rds_db,id) = NIL, 

message(3,WARN,"No such reader") 

TRUE 

=> out; 

=> reader; 

=> book; 

iap book: ( w_move(2,1); 

w_get (" Book Code: ", code, 6) ; 

} ; 

code = 0 

(loan := db_find(lns_db,code)) = NIL, 

message(3,WARN,"Is not on loan") 

loan.rd = id, 
message (3,WARN, "Reader has the book") 

is reserved_for(id,loan.res), 

message(3,WARN,"Already reserved for reader") 

TRUE 

=> out; 

=> book; 

=> book; 

=> book; 

=> reserve; 

state reserve: ( loan.res := loan.res I I <mk-Reserve(cur_date.no,id,NIL»; 

message(3,NOTE,"Reserved"); 

state out: w close(l) 

END reserve books 

CLUSTER dial box { 

title:Const: Str 

=> book; 

=> return; 

'field' fld:Const: Str 
, , , fid:ldent: (Str lInt I Real) 

, ., fsz:Const: Nat 
'empty' emp:Const: (Str I Int I Real) 

'=>' 

}+fr 

'commands']co , .' , 

{ 'command' comnd:Const: Str '=>' action:Statm 

}+cr 

} ; 

VAR f len: NatO; 
lins: Nat := fr+3; 

cols: Nat; 

sum: Nat:= 2; 
max len, max siz: Nat := 1; 

com_pos: array[cr+l] Nat; 

id: Str I Int I Real; 

ch: 

op: 

BEGIN 

Char; 

Nat; 

[' =>. 'fields']fo 

for i in {1:fr} do { 
if (flen := st len(fld[i])) > max len then 

} ; 

max len := flen; 

if fsz[il > max_siz then 

max siz := fsz[i]; 

cols max len+max siz; 

for i in {l:cr} do { 

com pos[il := sum; 
sum := com pos[i]+st_len(comnd[i])+2; 

} ; 

if sum> cols then 

cols := sum; 

w open(lins,cols,title ); 

, .. , 

213 



AppendixD -----------------------------

for i in (l:fr} do 

w_put("%s"n",fld[i]) ; 

for i in (l:cr} do { 

w_move(fr+1,com_pos[i]+1); 

w_put(""R%s"N",comnd[i]); 

} ; 

message(lins,NOTE,""); 

while TRUE do ( 

for i in (l:fr} do ( 

w_move(i,max_len+1); 

w_get(id,fsz[i]) ; 

fid[i] := id; 

if f id [i] /= emp[i] 

done; 

} ; 

op := 1; 

& coli] 

while TRUE do ( 

w_move(fr+1,com_pos[op)+1) ; 

w_put (""M%s"N", comnd (op]) ; 

w_move(fr+1,com_pos[op]) ; 

cases (ch := keybd()) ( 

1 then 

'F1' => ( w_put(" "R%s"N",comnd[op]); 

op := if op = 1 then cr else op-1; 

} ; 

'F2' => ( w_put(" "R%s"N",comnd(op]); 

op := if op = cr then 1 else op+1; 

} ; 

'''r' => action [op] ; 

if fo[op) = 1 then ( 
w_put(" "R%s"N",comnd[op)); 

done; 

} ; 

} ; 

TRUE => bell () ; 

} ; 

} ; 

} ; 

on exit do 

w close (1) ; 

END dial box 

FUNCTION sort_by_pos(items: (Reader I Book)-list); 

VAR swap: Bool:= TRUE; 

length: NatO := len items; 

temp: (Reader I Book); 

BEGIN 

while swap do ( 

) ; 

swap : = FALSE; 

for i in {1:1ength-1) do 
if items[ij.pos > items[i+l].pos then ( 

) ; 

temp := items[i]; 

items [i J : = items I i + 1 J ; 

items(i+l] := temp; 

swap : = TRUE; 

214 



AppendixD 

FUNCTION find readers_dial(rds db: ReadersDb); 

VAR id: 

sname: 

readers: 

count: 

Id; 

Name; 

ReaderForm-list := <>; 

NatO := 0; 

FUNCTION find_readers (id: Id, sname: Name): ReaderForm-list; 

VAR rdf: File; 

rds cnt: NatO; 

rd: [Reader); 

rds list' : Reader-list; 

rds: Reader-list := <>; 

rd fm: ReaderForm; 

rd fms: ReaderForm-list := <>; 

valid: Bool; 

count: NatO; 

code: Code; 

from: position; 

BEGIN 
rdf := f_open("readers", "r"); 

get(rdf,rds_cnt); 

f_zap(rdf) ; 

if id /= 0 then { 
if (rd := db find(rds_db,id)) /= NIL then ( 

} ; 

else { 

for i in {l:rd.pos} do 

f_zap(rdf) ; 

get(rdf,id,valid,count); 

for i in {l:count} do 

get (rdL code) ; 

fm get (rdf,rd_fm) ; 

f close(rdf); 

rd fms := <rd fm>; 

rds list' := rds_list; 

while rds list' /= <> do 
if st sub(sname, (hd rds_list') .name) then 

rds := rds I I <hd rds list' >; 

rds list' := tl rds list'; 

) ; 

if rds /= <> then ( 

sort_by_pos(rds) ; 

from := 0; 

I ; 

while rds /= <> do 

) ; 

for i in {from: (hd rds) .pos-l) do 

f_zap(rdfl ; 

get(rdf,id,valid,count) ; 

for i in {l:count} do 

get (rdf, code) ; 

fm_get(rdf, rd_fm); 

rd fms := rd_fms II <rd tm>; 

from := (hd rds) .pos+l; 

rds := tl rds; 

215 



AppendixD 216 

} ; 

f_close(rdf) ; 

return (rd_fms) ; 

END find readers 

BEGIN 

dial_box { 

} ; 

""M Find Reader "N" 

field" Id Number:", 'd 5 1: , empty 0 => commands; 

field It Surname: ", sname: 20, empty .... ; 

command .. FIND It => 

} ; 

readers := find_readers (id,sname) ; 

count := 1; 

cases len readers 
o => message(S,WARN,"Can·t find reader"); 

1 => fm_view(hd readers, .... ); 

TRUE => message(S,NOTE, 
st_app(st_num(len readers)," hits")); 

} ; 

command It NEXT It => { if readers = <> then 

} ; 

message(S,WARN,"No reader found yet") 

else { 

} ; 

fm_view(hd readers, 
st_app(st_app(""M Item [",st num(count)), 

count := count+l; 

readers := tl readers; 

message(S,NOTE, 
st_app(st_num(len readers) ," remaining")); 

command II BACK II => message(S,NOTE,'''') => fields; 

command II QUIT II => exit; 

END find readers dial 

FUNCTION find_books_dial(bks db: BooksDb); 

VAR code: Code; 

auth: Author; 

title: Title; 

books: BookForm-list; 

count: NatO := 0; 

FUNCTION find books (code: Id, auth: Author, title: Title): BookForm-list; 

VAR bkf: File; 

rds cnt: NatO; 

bk: [Book]; 

bks list' : Book-list; 

bks: Book-list ,= <>; 

bk fm: BookForm; 

bk fms: BookForm-list "= <>; 

from: position; 

BEGIN 
bkf := f_open("books", "rn); 

get(bkf,rds_cnt) ; 

f_zap(bkf) ; 

if code /= 0 then 
if (bk := db find(bks db, code)) /= NIL then { 

for i in {l:bk,pos} do 

fJap(bkl); 



AppendixD 

} : 

get (bkf,code) : 

fm_get(bkf,bk fm): 

f_ close (bkf) ; 

bk fms := <bk fm>: 

else { 

} ; 

bks_list' := bks list; 

while bks_list· /= <> do 

} ; 

if st_sub(auth, (hd bks_list') .auth) & 

st_sub(title, (hd bks list'). titl) then 

bks := bks " <hd bks_list'>; 

bks_list· := tl bks_list'; 

if bks /= <> then { 

sort_by_pos(bks); 

from := 0: 

} ; 

while bks /= <> do 

} ; 

for i in {from: (hd bks) .pos-l} do 

f_zap(bkf) ; 

get (bkf,code) ; 

fm_get(bkf,bk_fm); 

bk_fms := bk_fms " <bk fm>; 

from := (hd bks) .pos+l; 

bks := tl bks; 

f_ close (bkf) ; 

return(bk_fms); 

END find books 

BEGIN 

dial_box { 

"AM Find Book AN" 

field II Code: II , 
field II Author: II 

field II Title: II 

code: 6, empty 0 => commands; 

auth: 20, empty ..... , , 

title: 25, empty ..... , 
command II FIND II => { books := find_books(code,auth,title); 

count := 1; 

cases len books { 

o => message(6,WARN,"Can't find book"); 

1 => fm view(hd books, ""); 

TRUE => message(6,NOTE, 

st_app(st_num(len books), II hits"»; 

} ; 

} ; 

command II NEXT .. => if books = <> then 

message(6,WARN,"No book found yet") 

else { 

fm view(hd books, 

st app(st app("AM Item f.", st_num(count», 

" ~N"»; 

count := count+l; 

books := tl books; 

217 

message (6, NOTE, st_app(st_num(len books), "remaining"»; 

} ; 

) ; 

command" BACK" => message(6.NOTE,"") => fields; 

command" QUIT" => exit; 



AppendixD 

} ; 

END find_books dial 

FUNCTION start up (); 

BEGIN 

move (24,2) ; 

put(""MPlease Wait"N"); 

init_readers(); 

init_books () ; 

rds list := db_list(rds db); 

bks_list := db_list(bks_db); 

day_no := init loans(); 

- p a e ,t~me(IYI),time(IMI),time(ID'»; cur_date := mk To D t (0 . 

cur_date.no := cur_date.Y*365 + cur_date.m*30 + cur_date.d; 

move (24,2) ; 

put (" "RDAY: %d 

move (24, 48) ; 

put(""RUP: at %02d:%02d:%02d, on %02d %3s %4d", 

time ( I h') , time ( I m ') , time ( I s I ) , 

cur_date.d,MONTHS[cur_date.mj,1900+cur date.y); 

END start_up 

FUNCTION counter desk menu (); 

BEGIN 

menu 

""M Counter Desk "N" 

"Issue" => issue books (rds 
-

db,bks db,lns db) ; - - -
"Discharge" => discharge books (rds _db,lns db) ; --
"Renew" => renew books(lns db) ; - -
"Reserve" => reserve books (rds db,lns db) ; 

- - -

"Quit" => exit; 

TRUE => exit; 

} ; 

END counter desk menu 

FUNCTION reader menu (); 

BEGIN 

menu 

} ; 

""M Reader "N" 
"New Reader", constraint ins ok => insert thing (READER, new_rds, ins_ok) ; 

"Remove Reader", constraint del ok => remove_thing(READER,rmv rds,del ok); 

"Find Reader" => find_readers_dial (rds_db); 

"Quit" => exit; 

TRUE => exi t; 

END reader menu 

FUNCTION book menu (); 

BEGIN 

menu 

""M Book "N" 
"New Book", constraint ins ok => insert thing(BOOK,new_bks,ins_okl; 

"Remove Book", constraint del ok => remove_thing(BOOK,rmv_bks,del_okl; 

" Fi n d Boo k " = > fi n d _ bo 0 k s _ d i a 1 (b k s _db I ; 

"Quit" => exit; 

TRUE => exit; 

) ; 

END book menu 

218 



AppendixD 

FUNCTION report_menu (); 

FUNCTION prepare_stock report (); 

VAR bkf, stkf: File; 

bks cnt: 

code: 
NatO; 

Code; 
bk fm: BookForm; 

BEGIN 

bkf :== f_open("books", "r"); 

stkf :== f_open("stock.log","W"); 

get(bkf,bks_cnt): 

f_zap(bkf) ; 

for i in {l:bks_cnt} do { 

get(bkf,code): 

fm_get(bkf,bk_fm): 

} ; 

put(stkf,"%06d %s %s --- L%03d.%03d /%d/ ISBN O-%03d-%05d-%d "n", 

code, bk_fm.$auth, bk_fm.$i, bk_fm.$cl, bk_fm.$cr, 

bk_fm.$year, bk fm.$sl, bk_fm.$s2, bk_fm.$s3); 

put(stkf," %s "n %s, %02d-%02d-%02d -- %d(%d) "n", 

bk_fm.$titl, bk_fm.$pub, bk_fm.$d, bk fm.$m, bk_fm.$y, 

bk_fm.$vol, bk fm.$edtn); 

f_ close (bkf) : 

f_close(stkf) : 

END prepare_stock_report 

BEGIN 

menu { 

} ; 

""M Reports "N" 

"Readers" => w_text(lO,60,""M Readers Log "N","readers.log"): 

"Books" => w_text(lO,60,""M Books Log "N","books.log"): 

"Loans" ==> w_text(lO,60,""M Loans Log "N","loans.log"); 

"Entire Stock" 

"Quit" 

TRUE 

==> { if -stock_rep_ready then 

w_open(2,27,"") ; 

} ; 

w_put(""BPlease Wait"N"nwhile I prepare the report"); 

prepare_stock_report() : 

stock_rep_ready := TRUE: 

,",_close(l) ; 

w_text(lO,60,""M Stock Log "N","stock.log"); 
} ; 

=> exit; 

=> exit; 

END report menu 

FUNCTION shut down (started: Bool); 

BEGIN 
if started then 

move(24,2) ; 

put(""MPlease Wait"N"): 
update_loans(lns_db,rds_db,rmv_rds); 

update readers(rds_db,new_rds,rmv_rds); 

update_books(new_bks,rmv_bks) ; 

} ; 

END shut down 

BEGIN /* design */ 

initsc 1 (); 

put(""R%26sL I BRA R Y s Y S T E M%?6s~N", .... , ''''j; 

219 



AppendixD 

move C 2 4, 1) ; 

put C""R%80s"N" .... ). , , 
move (3, 2); 

menu ( 

"" 

"Start Up", constraint 

"Counter Desk", constraint 

} ; 

"Reader" , 

"Book" , 

"Reports", 

"Shut Down" 

tini_scro; 

END library_system 

constraint 

constraint 

constraint 

-started => 

started => 

started => 

started => 

started => 

=> 

{start up (); started : = TRUE}; 

counter_desk_menu(); 

reader_menuC); 

book_menuC); 

report_menu(); 

( shut_downCstarted); 

exit; 

} ; 

220 


	376671_0001
	376671_0002
	376671_0003
	376671_0004
	376671_0005
	376671_0006
	376671_0007
	376671_0008
	376671_0009
	376671_0010
	376671_0011
	376671_0012
	376671_0013
	376671_0014
	376671_0015
	376671_0016
	376671_0017
	376671_0018
	376671_0019
	376671_0020
	376671_0021
	376671_0022
	376671_0023
	376671_0024
	376671_0025
	376671_0026
	376671_0027
	376671_0028
	376671_0029
	376671_0030
	376671_0031
	376671_0032
	376671_0033
	376671_0034
	376671_0035
	376671_0036
	376671_0037
	376671_0038
	376671_0039
	376671_0040
	376671_0041
	376671_0042
	376671_0043
	376671_0044
	376671_0045
	376671_0046
	376671_0047
	376671_0048
	376671_0049
	376671_0050
	376671_0051
	376671_0052
	376671_0053
	376671_0054
	376671_0055
	376671_0056
	376671_0057
	376671_0058
	376671_0059
	376671_0060
	376671_0061
	376671_0062
	376671_0063
	376671_0064
	376671_0065
	376671_0066
	376671_0067
	376671_0068
	376671_0069
	376671_0070
	376671_0071
	376671_0072
	376671_0073
	376671_0074
	376671_0075
	376671_0076
	376671_0077
	376671_0078
	376671_0079
	376671_0080
	376671_0081
	376671_0082
	376671_0083
	376671_0084
	376671_0085
	376671_0086
	376671_0087
	376671_0088
	376671_0089
	376671_0090
	376671_0091
	376671_0092
	376671_0093
	376671_0094
	376671_0095
	376671_0096
	376671_0097
	376671_0098
	376671_0099
	376671_0100
	376671_0101
	376671_0102
	376671_0103
	376671_0104
	376671_0105
	376671_0106
	376671_0107
	376671_0108
	376671_0109
	376671_0110
	376671_0111
	376671_0112
	376671_0113
	376671_0114
	376671_0115
	376671_0116
	376671_0117
	376671_0118
	376671_0119
	376671_0120
	376671_0121
	376671_0122
	376671_0123
	376671_0124
	376671_0125
	376671_0126
	376671_0127
	376671_0128
	376671_0129
	376671_0130
	376671_0131
	376671_0132
	376671_0133
	376671_0134
	376671_0135
	376671_0136
	376671_0137
	376671_0138
	376671_0139
	376671_0140
	376671_0141
	376671_0142
	376671_0143
	376671_0144
	376671_0145
	376671_0146
	376671_0147
	376671_0148
	376671_0149
	376671_0150
	376671_0151
	376671_0152
	376671_0153
	376671_0154
	376671_0155
	376671_0156
	376671_0157
	376671_0158
	376671_0159
	376671_0160
	376671_0161
	376671_0162
	376671_0163
	376671_0164
	376671_0165
	376671_0166
	376671_0167
	376671_0168
	376671_0169
	376671_0170
	376671_0171
	376671_0172
	376671_0173
	376671_0174
	376671_0175
	376671_0176
	376671_0177
	376671_0178
	376671_0179
	376671_0179a
	376671_0180
	376671_0181
	376671_0182
	376671_0183
	376671_0184
	376671_0185
	376671_0186
	376671_0187
	376671_0188
	376671_0189
	376671_0190
	376671_0191
	376671_0192
	376671_0193
	376671_0194
	376671_0195
	376671_0196
	376671_0197
	376671_0198
	376671_0199
	376671_0200
	376671_0201
	376671_0202
	376671_0203
	376671_0204
	376671_0205
	376671_0206
	376671_0207
	376671_0208
	376671_0209
	376671_0210
	376671_0211
	376671_0212
	376671_0213
	376671_0214
	376671_0215
	376671_0216
	376671_0217
	376671_0218
	376671_0219
	376671_0220
	376671_0221
	376671_0222
	376671_0223
	376671_0224
	376671_0225
	376671_0226
	376671_0227
	376671_0228
	376671_0229

