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Abstract 

This thesis describes an investigation of the problems involved in 

representing knowledge within the task area of elementary Chess 

endgames. Two major criteria are taken for the choice of a model of 

& 
the chessplayer's knowledge : firstly, that algorithms constructed 

using the model should be natural from the viewpoint of a chessplayer 

and commensurate with his, view of the complexity of the task, and 

secondlyl that the algorithms should be capableýof'refinement in the 

light of experience in a manner which preserves the previous property. 

Elementary chess endgames are studied as a field in which programs 

based on tree-searching and traditional evaluation functions have achieved 

poor results and where tree-searching seems to play little or no part 

for people. It is therefore possible to examine problems of knowledge 

representation and program refinement largely independently of the tree- 

searching paradigm. 

A long term aim of the research is to develop a representation suitable 

as the basis for a fully automatic system of algorithm refinement, 

whilst maintaining the criteria given above. 

A model is proposed and algorithms are given for two endgames, King and 

Rook against King (KRK) and King and Pawn against King (KPK) using this 

model. It is argued that both algorithms are reasonably natural and 

compact representations and experiments in refining these algorithms 

are described in detail. In both cases, the process of refinement is 

shown to be a reasonably straightforward one (for people) and one which 

maintains the properties of naturalness and compactness. The possibility 

of automating this process is considered. 
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1. Introduction 

The research to be described in this thesis, is a project in the general 

field of Artificial Intelligence, concerned-with the representation of 

knowledge for endgames in the game of Chess, with particular reference 

to the possibility of eventually developing a self-improving system to 

play such endgames. It is appropriate, therefore, to begin by discussing 

the meaning and significance of some of these terms and the reason for 

the choice of project. 

Artificial Intelligence 

In a recent paper, Howe et al (1975) describe Artificial Intelligence'as 

"the study of how to organize processes to exhibit intelligent behaviour" 

and give as a central theme the importance of the way knowledge is 

represented mid used. 

In the absence of a satisfactory definition of "intelligence", a reasonable 

operational definition of an intelligent program might be one which has 

a level of performance which if exhibited by a human would be generally 

considered to indicate the use of intelligent reasoning, as opposed to 

p owers of calculation alone. Thus programs to invert natrices, calculate 

square roots, etc. are excluded, but programs to play Chess at master 

level, discover new Mathematical theorems, recognize handwriting etc. 

are included. 

It is not required that the program use methods identical in every 

respect to those employed by its human counterparts but it is probable 

that in many cases a study of such human methods may prove to be the 

most fruitful line of investigation. 
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Chess-playing programs 

. 
Of the many tasks with which Artificial Intelligence has been concerned, 

constructing a chess-playing program to perform at the level of a human 

expert has been one of the most persistent and also one of the most 

elusive. 

The idea of a "Chess-playing machine" seems to have a particular 

fascination, pre-dating both Artificial Intelligence and the electronic 

c- omputer itself. Shannon's classic paper "PrograTming a computer for 

playing Chess" was published in 1950, but an electro-mechanical device* 

for playing the endgame King and Rook against King was demonstrited at 

the Paris World Fair of 1900. Indeed, an automatic chessplayer 7 a, 

lifesize figure dressed as a Turk and seated at a large box which 
I 

served as a playing table - was demonstrated to Empress Maria Theresa 

of Austria approximately two centuries ago and later h1so to Empress 

Catherine II of Russia. "Von Kempelen's Turk" was, in fact, a hoax 

I- operated by a human chessplayer inside the box but the idea was of 

sufficient public interest to attract large audiences throughout both 

Europe and America for almost seventy years (Lasker, 1959). Newell, 

Shaw and Simon (1958) justify their interest in Chess from the 

Artificial 1ntelligence viewpoint as follows. 

"Chess is the intellectual game' par excellence. Without a chance device 

to obscure the contest, it pits two intellects a gainst each other in a 

situation so complex that neither can hope to understand it completely, 

but sufficiently amenabl'e to analysis that each can hope to outthink his 

opponent. The game is sufficiently deep and subtle in its implications 

to have supported the rise of professional players, and to have allowed 

a deepening analysis through 200 years of intensive study and play 

without becoming exhausted or barren. Such characteristics mark Chess 
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as a natural area for attempts at mechanization. If one could devise 

a successful chess machines one would seem to have penetrated to the 

core of human intellectual endeavar" 

Compared with tasks such as proving theorems in predicate logicp 

Chess has the substantial advantage of an extensive culture, comprising 

thousands of published books and articles, centuries of theoretical 

development and possibly millions of active practitioners throughout 

the world. 

Without this background culture it is likely that existing chess-playing 

programs would be considered as outstanding examples of the success of 

Artificial Intelligence techniques. 

Instead, it is evident that a peak of performance is being approached, 

perhaps already reached, which is well short of expert by human terms. 

By including encyclopaedic knowledge of openings and making use of the 

computer's power of infallible calculation (without sudden lapses of 

memory or concentration) a level of performance can be achieved which 

at best is comparable to medium English club standard, with endgame 

play which would frequently be an embarrassment even to a beginner, 

where endgapes are drawn or even lost despite a large material advantage. 

The small improvement which has been achieved in the performance of the 

best programs over the last ten years suggests that valuable though 

the initial pioneering work has been, the . tournament performance of 

existing programs (see, for example, Hayes and Levy (1976)), should 

be looked at primarily in terms of providing a "benchmark". It would 

seem that for significant progress to be made, new techniques are now 

required. 
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Virtually all programs to play the complete game of Chess make use of 

the " tree-se arching and evaluation function" model, proposed by Shannon. 

This model is superficially attractive since chessplayers certainly do 

make use of analysis to a greater or lesser extent and it is easy to 

prove that given sufficient time (which Shannon calculates as at least 

10 90 
years in the initial position) the best move in every position 

can be found by analysis to "terminal positions" alone. 

For practical reasons, program improvements have generally been concerned 

with developing more powerful tree-searching techniques to allow an 

increasingly deep level of analysis to be performed. 

The problem of representing the strong player's knowledge of the game has 

frequently been greatly underestimated. When recognised, it has in- 

variably proved intractable. 

Perhaps inevitably, then, chess-playing programs provide an*example of 

a "solution" which has been developed to suit the overt capabilities of 

the computer, rather than the requirements of the problem itself. 

To give an illustration of the essential weakness of this. approach, an 

expert player may evaluate a position (either the "current" position or 

one which occurs at the end of an analysed variation) as favourable 

to himself because the opponent has a slightly vulnerable Queen side and 

a poorly placed dark-squared Bishop. Against this he may have a weak 

King pawn which he judges to be of lesser importance. The expert's 

judgement is based not on analysis, although it will often need to be 

supplemented by detailed analysis, but on a general understanding of the 

game derived from some combination of past experience and study. This 
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understandin-g is virtually unquantifiable by conventional means and could 

certainly not be replaced by'an improved power of analysis. 

Representation of Knowledge 

To make a significant improvement to the standard of chess-playing 

programs it is probably unnecessary to develop existing tree-searching 

techniques any further (since they may already be better than is really 

needed). The problem which remains to be solved is how can the expert 

chessplayerl. s Lnowledge of the game be effectively represented in a 

computer program. Although it may be expected to be an extremely 

complex one, this problem of the representation of knowledge is central 

not only in the context of Chess, but (as Howe et aL point out) to 

Artificial Intelligence research as a whole. 

For a given body of knowledge, there are, in principle, many different 

representations which can be chosen and embodied in computer programs* 

In one sense, all of these representations are equally valid. However, 

in practice, it is almost invariably the case for complex "intelligent" 

tasks such as playing Chess that the necessary knowledge required is not 

fully available to the programmer. There is then an important criterion 

for evaluating alternative representations: their capacity for 

modification. 

Just as human knowledge is not static,. but evolves in the light of 

experience, so should it be possible for the knowledge embodied in a 

computer program to be modified when deficiencies become apparent. 

All programs can, of course, be changed. What is important is the 

ease with uidch such changes can be made and the extent to which the 

program's performance indicates the nature of the change reqýired. 
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The more incomplete or incorrect the specific knowledge embodied in the 

program, the more crucial is the choice of representation. With a poor 

choice, it is likely that an improvement to one part of a program will 

result in errors arising elsewhere, whereas human learning is, in general, 

a process of continual improvement with occasional lapses due tq over- 

generalization, etc. 

A second criterion for evaluating alternative represent at ions is that the 

size and complexity of the corre-Tonding algorithms should be commensurate 

with the problem, as judged in human terms. Naturally, such judgements 

can only be made within broad limits. In order to satisfy this criterion 

for "intelligent" tasks, it would seem to be necessary to concentrate on 

general rules rather than specific instance. s. Thust in the case of Chess, 

it would not be satisfactory to treat each position in which the program 

performed badly as a "special case", since specific positions rarely recur 

in Chess games. It would seem to be necessary to treat each such position 

as a representative of some wider class of positions, sharing some com- 

mon feature, 

Self-impro-Ving progrwas 

In the previous discussion, it has been assumed that program improvements 

will be performed by the programmer in the usual ways 

In fact, however, it is clearly advantageous for a program to be able 

to improve its own performance on the basis of its experience. Thus 

the idea of an "intelligent" program could be extended to combine the 

performance of an intelligent task with the capacity for self-improvement. 

Learning programs have been written for the solution of a number of 

F. 

problems in Artificial Intelligence, the most successful of these 
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probably being Samuel's programs for playing Checkbrs (Samuel (1959) 

and (1967)). Learning programs for several other games have also 

been written, including partnership dominoes (Smith (1973)) and 

Go-'Moku (Murray and Elcock (1968)). The methods employed are 

in most cases-specific to the particular problem to. be solved and 

none of the techniques used would appear to be directly transferrable 

to the game of chess, except in very restricted situations, because 

of the much greater complexity of the game. 

Here again, the choice of-a representation is likely to be critically 

important. 

For self-improvement to be a practical possibility, it must be possible 

for the elements comprising the algorithm to be manipulable by a 

higher-level program. 

Endgames 

The research described in this thesis is concerned with representing 

the strong player's knowledge not of the middlegame but of the endgame, 

with particular examples taken from "elementary" endgames., There are 

a number of reasons why an investigation of endgames has been chosen 

in preference to middlegames. 

Firstly, it is in the endgame that the inadequacy of the "tree-searching 

and evaluation function" model becomes most apparent. 

As pointed out previously, programs written to play the full game of chess 

6 
almost invariably make use of this model and play extremely poorly in 

the endgame. This is itself a reflection of the greatly reduced part 

which analysis plays in the endgame compared with an awareness of the 
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significance of certain key patterns of pieces. For elementary 

endgames, detailed analysis seems to play little or no part at all. 

For more complicated endgames there is an inevitable trade-off 

between the number of patterns which are recognized and the amount 

of detailed analysis which needs to be performed, depending on the 

skill of the player, but the balance of importance is strongly in 

favour of the former and it is safe to say that-the grandmaster's 

superiority in endgame play over players of legser ability consists 

far more of a more extensive knowledge of significant patterns than 

of greater analytical powers. 

It was perhaps considerations of this sort which prompted Shannon 

to point out that a-Aifferent model would be necessary for the endgame, 

. than for-the middlegame, although this advice has almost invariably 

'been ignored in programs to play the full game of chess. 

A second advantage of investigating endgames rather than middlegames 

is that in many cases substantial theoretical knowledge is readily 

available in textbooks. Some endgames are even thought to be 

completely understood theoretically, for example King and Pawn against 

King, whereas middlegame theory is only partially understood and 

subject to change. Moreover it is possible to consider each endgame 

in isolation, whereas the different strategic features of a middlegame 

position will inevitably interact, with a corresponding increase in 

complexity. Thus an expert knowledge of the strengths and weaknesses 

associated with an isolated Queen Pawn in the middlegame will prove 

worthless unlesscombined with other knowledge. 

The existence of a substantial body of endgame knowledge not only 

provides a starting point for investigation but also provides a 
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background against whicl-L the performance of a given program can be 

evaluated. 

In the middlegame poor play will often escape attention and may still 

lead to a win. In the endgame poor play will usually be easily seen 

as such and will often prove disastrous. 

The net effect of the above considerations is that a study of the 

endgame offers the opportunity to investigate the problems involved 

in representing the experý's chess knowledip in a relatively simple 

context where they can be examined independently, or almost independently, 

of the problems associated with efficient tree-searching. 

Although the particular representations developed for the endgame may 

not be directly applicable to the middlegame, it is to be hoped that 

the general principles on which they are based may be transferrable 

to the middlegame and to other problems in the broader area of Artificial 

Intelligence. 

Michie (1976a) describes Artificial Intelligence. as seeking "general vethods 

of bringing -domaiii-specific aids to the_assistance of general algorithms". 
I 

From the viewpoint of generalizability, the domain-specific knowledge 

associated with a particular endgame is of little significance. 

What is important is the overall framework into which this knowledge 

is fitted. 

Endgame - playing programs: the state of the art 

Compared with the large nurber of computer programs which have been 

written to play a complete game of chess, relatively little attention 

has so far been devoted to investigating the problems of progrnmming 

the endgame. 
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It is some measure of the difficulty involved in programming the 

endgame that virtually all "purpose-built" programs have been written 

only for endgames which are elementary by human standards (in the sense 

that they are discussed only in textbooks intended for beginners or 

inexperienced players) and that a variety of different representations 

have been tried. Programs specifically for endganes have been written 

by Huberman (1968), Tan (1972,1974) and Zuidema (1974). In addition, 

a major project in this area is currently being pursued under the 

, directorship of Donald Michie of Edinburgh University. These approaches 

can be broadly classified as either "structural" or "procedural", 

depending on whether the domain - specific knowledge is held in the form 

of a database, independent of the general solution algorithm, or 

embedded in the procedures of the algorithm itself. The distinction 

between the two categories is not always clear cut and a combination of 

approaches is also possible; nevertheless the distinction is helpful. 

In general, a procedural algorithm is easier to construct and-is 

computationally more efficient, but is considerably more difficult to 

modify and to relate to the subject expert's own understanding of the 

task. Constructing a self-modifying system based on a procedural 

representation would seem to be irpossible. Since this research is 

concerned with representing knowledge of the endgame in a form which is 

meaningful to the chessplayer himself and which permits the underlying 

algorithm to be modified in a simple and natural way - ultimately by the 

computer system itself -a structural approachhas been adopted. 

As will be seen from the discussion in Section 3, the problem which 

has so far proved insurmountable in practice (using either approach) 

is to produce an algorithm for a particular endgame, which is remotely 

conmensurate with the complexity of that endgame, as'judged by the 

amount of explanatiori devoted to it in a typical chess textbook. This 

would seem to be an important criterion-for evaluating any proposed 

representation of the chassplayer's knowledge. 
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In most cases, the methods used do not appear to be capable of extension 

to other endgames and almost invariably the couponent elements of the 

algorithms themselves bear little overt resemblAnce to the features of the 

endgames which a chessplayer might consider'significant, with the result 

that it would not be possible for a chessplayer to determine the 

algorithms' moves or to judge the likely quality of their performance, 

except by examining the play produced over a series of games. 

These comments are, of course, a reflection of the difficulty associated 

with the problem. As is generally the case for game-playing programs, 

there is only a small amount of information available about the testing 

which has been applied to endgame-playing programs and an absence of 

quantifiable results concerning their performance. 

The aims of this research 

The preceding discussion provides the background to the research to 

be described in this thesis. 

The aims of this research can be summarized as follows. 

To devise a structural model for representing endgame knowledge 

which satisfies as well as possible the criteria developed above, 

that is, it should be applicable to a reasonably wide range of 

different endgames and should enable algorithms to be written 

which are commensurate in terms of size and complexity with 

the complexity of the corresponding endgames, as judged by the 

explanation devoted to them in standard chess textbooks. 

The algorithms should incorporate elements which can be closely 

related to the significant features of particular endgames, as they 

may be expected to be seen by chessplayers, thus enabling them to be 

examined and evaluated (and ultimately, perhaps, even written) by 

chessplayers themselves. The algorithms should be capable of 

relatively straightforward modification (by the programmer) in the 
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light of their own performance and the changes required should be 

indicated by the deficiencies observed in the performance. Program 

modification should generally involve a continual improvement to the 

overall performance without the necessity to introduce a 

large nuniber of "special cases". - 

The model should be such as to allow the possibility of the 

eventual development of a self -improving or learning system. 

Thus the elements of the algorithms produced should be capable 

of manipulation by a "higher-level" program. 

To demonstrate the applicability and use of the model by 

constructing algorithms for specific endgames. 

Since one aim is to investigate the problems of representing 

knowledge independently of the problems of efficient tree-searching, 

two "elementary" endgames are chosen as examples, for both of 

which it turns out that tree-searching seems to be unnecessary 

altogether. An example of the kind of algorithm which would be 

required for part of a more complex endgame is given as an 

appendix. 

(For this purpose it is irrelevant whether or not the algorithms 

produced are perfect or optimal in any sense, the correspondence 

between the algorithms and the textbook descriptions from which 

they are derived is of principal importance. ) 

To demonstrate the means by which the algorithms can be modified 

by the programmer in response to deficiencies in their play revealed 

by games against human opponents and the degree of difficulty 

involved' in this process. As mentioned in (1) above, the ease and 

- "naturalness" of program modification are major criteria when 

evaluating the overall imodel. 



- 13 - 

To investigate the problems involved in constiucting a. self- 

improving system. 

For this purpose, the task was chosen of improving (manually) a 

program for one specific endgame to play perfectly in every one of 

a subset of the possible positions in that endgame, with the 

intention of synthesizing some of the features which would be 

required in a self-improving system. Such a system was not 

itself constructed. 

Although this aim is of importance in itself, it also bears strongly 

on the question of evaluating the choice of model proposed. 

(5) As a subsidary-aimp to produce quantifiable results wherever 

possible. Here again, concentrating on elementary endgames is 

likely to be helpful. 

Outline of this Thesis 

The model itself is described in detail in Sect_ion 2, and those used 

in previous work in the area of chess endgames are discussed in 

Section 31 In Sections 4-7 an algorithm for the endgame King and 

Rook against King is developed and used as the basis for further 

investigation. An initial algorithm is given in Section 4, based on a- 

detailed analysis of the winning strategy for the stronger side. Some 

of the practical aspects of using the model are also considered at 

this stage, in particular the problems which arise from syminatry. 

Some of the conceptual problems associated with testing an algorithm of 

this type are discussed in'Section 5. To enable the algorithm to be 

1. 
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carefully evaluated in practice, a program was set up to play 

the endgame competitively against human opponents and a substantial 

number of games were played. This empirical testing is described 

in Section 6 with a discussion of the changes which were judged to 

be necessary to the original algorithm, and their rationale. The 

revised algorithm is given in tabular form followed by a discussion 

of its basic ccqaponents (primitives). 

The overall significance of the results of this testing and the changes 

found to be necessary to the original algorithm are considered in 

Section 7, together with an evaluation of the performance of the 

revised program and some illustrative games played against human 

. opponents. 

The second part of the thesis concentrates on an algorithm for a second 

endgame, King and Pawn against King, which is considered principally 

from a different viewpoint: what problems and techniques are involved 

in modifying an algorithm (based on the model described in Section 2) 

to play perfectly and what elements would be required in a self-improving 

program to perform such a process automatically. An initial form of the 

algorithm is given in Section 8, followed in Section 9 by a general 

description of the background to and the significance of the experimentation 

which is discussed in detail in Section 10. Section 11 summarizes some 

of the requirements for a self-improving program. 

Overall conclusions and possibilities for further research are presented 

in Section 12. 

A "non-technical" description of the first version of the King and Rook 

against King algorithm (as described in Section 4) is given in 
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Appendix 1, in a form designed to demonstrate the distinction between 

the overall model and the endgame - specific additional information 

which needs to be supplied. 

Some steps towards the development of an algorithm for a more complex 

ending, King, Rook and Pawn against King and Rook are described in 

Appendix 2. The final appendix contains a summary of the notation 

used in the text And is followed by the references. 

Lastlyt reprints are included of two technical reports on work 

tangential to that described in this thesis, which were issued by 

the Mathematics Faculty of the Open University. 

The f irst, "King and Pawn against King : Some quantitative data", 

gives a variety of technical data about that endgame. The second, 

"King and Pawn against King : using effective distance", contains 

an implementation of the predicate function "Pawn can run" 

(advance to the queening square without being captured) based on 

the idea of the "effective distance" (length of the shortest 

permissible route) between two squares. 
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2. The Model 

In this section a mdel for represeL. chess endgame knowledge, 

which has bcen designed to satisfy lose. '17-Az possible the 

criteria developed in Section* 1, is described and disu-ýýqed. 

This model is used as the basis for all the work subsequently described 

in this thesis. 

Since a major objective is to devise a representation of the chessplayer's 

endgame knowledge which is meaningful to the chess player himself,, 

it is appropriate to begin by considering the information presented 

%. o the reader of a typical chess textbook. Taking this information 

as a starting point is also likely to help ensure that any eventual 

computer program corresponds reasonably closely to the strategy 

chosen by the human chessplayer and is thus of commensurate complexity 

with the problem as judged in human terms. 
a- 

A textbook discussion of an "elementary" endgame generally occupies 

no more than two or three pages and comprises a few general "rules of 

play" accompanied by some example variations from diagrammed positions. 

The rules are normally only imprecisely worded and omit a number of 

important details which have to be inferred by the reader from the 

variations given. Nevertheless, this information is considered to be a 

complete and sufficient explanation for the reader and it is intended 

to have essentially the same meaning for every reader of the text. 

Clearly the interpretation put on the information given in the text 

by the reader serves to fill in the, gaps "between the lines" of what is 

written. It would appear that the reader has some overall "conceptual 

framework" in terms of which he interprets the material that he reads. 

An important element in-this framework is the ability to generalise 

from specific examples to general principles in accordance with some 
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unspecified series of rules. 

The basic unit of information given to the reader of the endgame text 

is the diagraiw. ed position and associ., ýted "best move". The reader 

is expected to generalize from each particular position given to a 

broader_set of positions which are equivalent in some way to the 

original. Equivalence may be defined in a number of ways. For 

instance, it may involve the movement of the total 

configuration of pieces, say, one or two ranks up or down the board. 

The reader not only has an awareness of what constitutes an equivalent 

position but also a corresponding awareness of what does not, that is, 

he is able to recognise exceptions to his generalizations. Thus, 

for example, a position which would otherwise be equivalent, except 

for an "accidental" stalemate, is recognised as a totally different 

situation. Iuq)licit in this is the idea of an "ordering" of 

objectives. in cases where an exception is difficult torecognise (e. g. 

the effect of a Rook Pawn in a Pawn endgame) it will generally be given 

as a separate example in its own right. When choosing a move in a 

given " initial" position, the primary consideration is what can best 

be achieved from that position rather than the specific configuration of the 

pieces themselves. Thus when choosing a move for White, it would seem 

to be necessary to make comparisons between the possible "successor 

positiong'with Black to move and vice versa.. 

The model to be described makes use of the idea of classes of equivalent 

positions with a particular side, say Black, to move which are 

employed when finding moves for the*other player (White). 

Following the preceding discussion it may be said that the iwdel 

corresponds to the underlying conceptual framework in terms of which 

the reader of a textbook comprehends and evaluates the material presented. 
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Looking at the situation in another way, the computer and the model 

together comprise an "endgame playing machine" which can be "programmed" 

for a particular ending by providing a relatively small amount of 

specific information. 

2.1 Defining the problem 

As a basis for the discussion which followsp it wi. 11 be assumed that 

the problem is to construct an algorithm to find the best move in any 

legal position (for a particular endgame) with one chosen side to move. 

For convenience this side will be referred to throughout as White. 

(Note that to find moves-for both sides would require two separate 

algorithms, one for finding White moves and one for Black. ) Although 

the discussion which follows is completely general, examples from the 

King and Rook against King endgame are used for illustration where 

necessary. In this case White is always taken to be the side with 

the Rook since this side has the more interesting and complex strategy. 

It should be noted in passing that no attempt has been made to *cater 

explicitly for. either the "three-fold repetition of position" drawing rule 

or the fifty-move rule. If either of these conditions were to arise 

in an endgame (such as King and Rook against King) where-a draw would be 

unacceptable to White, the move--finding algorithm should simply be 

considered to have failed. 

The following notation will be used throughout the remainder of this 

thesis: 

W- the set of all legal positions with White to move for a given endgame. 

B- the set of all legal positions wi-th Black to move for a given endgame. 

p- an 'initial' position, with White to move, in which the best move 

iý to be found (p c W). 
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Q(p) - the set of all i=ediate successors of p, that is 

the positions Mth Black to move) which arise after a 

legal White move in p (Q(p) c B). 

Q(p) is to be considered as an ordered set, although the 

particular ordering rule chosen is unimportant. 

A suitable rule is to take the order in which the positions 

are generated for some particular implementation. 
0 

qI (p), q2 (P), the successors of p themselves 

(ql(p) cB etc. ), 

where Q(p) = iql(p), q 2(P)' -) 

This notation will be simplified when no confusion can arise, thus 

p will often be abbreviated to Q and q, (p) to q, or q(without a 

subscript). 

Further notation will be introduced as and when necessary. A summary 

of all notatioh used will be given in Appendix 3. 

2.2 An overview of the mdel - equivalence classds of p6sitions 

and' class value. 

The fundamental principle underlying White's play can be summarised 

as "in any position p, choose the move which gives the most favourable 

successor position". 

This is to be interpreted as meaning that the successor positions are 

to be generated and compared with each other and the most favourable 

one (for White) chosen. 
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A general means of comparing positions with Black to move must 

therefore be available and since this is independent of the choice of 

any specific initial position p, it follows that the successor 

positions must be compared solely on their oum merits, without any 

reference to p. This point will be discussed further in Section 2.9. 

In the basic form of the model, which is described below, no tree- 

searching is performd below the level of the-i--nediate succesors of 

a given initial position. For the two elemeftary endgames discussed 

in this thesis, this form of the model seems to be sufficient, which 

accords with the observation that the chessplayer appears to make 

little or no use of analysis when playing elementary endgames, relying 

instead on his knowledge of significant patterns. 

Although the basic form of the model is of general applicability, a 

practical implementation of an algorithm for a complex endgame may 

f require a more or less substantial amount of tree-searching to supplement 

the pattern matching of the basic model. In Section 2.8, an extended 

form of the model is described which enables tree-searching to be 

incorporated in a readily controllable way. 

However, for the two basic algorithms discussed in this thesis, only 

the basic form of the model appears to be necessary, and this form is 

described in the rcmainder of this and the following five sections. 

Assuming that a complete ordering, or rankinE, can be placed on the 

set B (where the highest ranked position is the one most favourable 

to Vlhite), the nnve-finding algorithm for a given initial position p 

is as follows: 

(a) generate the setQ(p) of successor positions; 

(b) find the highest ranked member of Q(p), say qi(p); 
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(c) play the move for White correspopding to qi(p). 

For any endgame it will be meaningful to speak of a ranking of the 

men, bers of B, provided that some suitable (arbitrary) criteria are 

adopted for resolving ties between equally favourable positions 

(e. g. between two positions where Black is checkmated). 

As will be seen, the method used for ranking positions is essentially 

a two stage one. The basis of tha method is a division of the set 

B of legal positions with-Black to move into a nun-ber of subsets. 

All the positions in any subset are equivalent in the sense that they 

all satisfy the same membersýip criterion (a logical combination of 

predicate functions). The subsets are chosen to be disjoint and 

exhaustive, i. e. so that every position belongs to exactly one 

subset, and therefore constitute a partition of the set B 

into equivalence classes. 

In what follows, the equivalence classes will be denoted by . Class 1, 

Class 2, ... or C,, C 2' ..., as convenient. If there are N classes, 

then 

CIc: B (i = 1,2,..., N) 

CInci=0 (ij = 1,2,..., N ;ij j) 

CIuC2u... uCN-B. 

The class of which a given position b with Black to move (b c B*) is 

a member will be represented by C(b). 
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There are, of course, many different ways in which a partition of B into 

equivalence classes. can be made for any endgame. The essential point is 

that the classes must be specified in-a way which enables a unique ranking 

to be made between them. Thus, given two clas'ses, i and j, it must 

be possible to say either that every member of class i is better than 

every member of class j, or vice versa. In general this will only be 

possible when all the positions in a class share some common feature 

related to the endgame under consideration, such as the relative positions 

of two or more pieces (wlth suitable allowances for symmetry, board edge 

effects, etc., if necessary). The specifications of two typical 

equivalence classes might be "all positions where Black is stalemated" 

and "all positions where the Kings are in opposition and Black is 

not in check". 

It should be noted, in passing, that the conditions for a-position 

with Black to move to be a member of either of these classes can be 

defined without any forward analysis ("lookahead"), i.. e. solely 

in terms of its static features. 

Assuming that N equivalence classes have been defined, the integers 

1,2,..., N (or any N distinct integers) can be used to denote the 

ranking between them.; The integer corresponding to the ranking 

of a particular class is called its class value; the class most 

favourable from White's viewpoint has a class value of N, the least 

favourable has a class value of 1. 
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The notation V1 and V(b) will be used for the value of Class i and 

the value of C(b), bcB, respectively. In practice, V (i = 1,2,..., N) 

is held in the i th. 
row of the first column of a two-dimensional 

m. atrix known as a value table. The use of the remaining columns of 

this table will be described in Section Z. 5. 

I 

The three step move-finding algorithm given previously can now tentati-vely 

be expanded into the following: 

(al) generate the set Q(p) of successor positions, where Q(P) = 

{q 
I (p) ,q 2(P)l -1; 

(bl) determine the class to which each member of Q(p) belongs, 

i. e. C(qj(p)), C(q 2(P)), etc; 

find the. corresponding class values V(q, (p)), V(q2(p)) etc. 

(dI) play the move for White which leads to the successor 

position with the highest class value. 

The algorithm in this form takes no account, however, of the possibility 

of a tie at step (d 1) . This is an important point which will be taken 

up in Section 2.4. 

-. j 
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2.3 Specifying the equivalence classes 

Each equivalence class is specified by means of-a suitable'predicate. 

function. In the simplest form, if the function ig'true for a par- 

ticular position q then q is a men-ber. of the corresponding class. 

There is, however, an important consideration which makes it desirable 

to modify this simple scheme. 

It is essential to ensure that no position belongs to more than one 

class, and satisfying this condition often means that the 

definitions of the predicate functions become extremely complicated. 

As an example, consider the following series of predicate functions 

defining six equivalence classes for the King and Rook against 

King endgame. It will be assumed, for purposes of illustration only, 

that these classes are all that are required for that endgame. 

I 
The predicate functions will be referred to as properties of a given 

position q. 

, 
Table 1 Eguivalence classes : an example 

Clas§ Property of position q (Black to move) Class Value 

I 

2 

Black is 

Black is 

checkmated 

stalemated 

6 

2 

3 Black can immediately-capture 

White's Rook 

The Kings are in vertical opposition, with 

Black in check along the rank 

5 Black is not in check 

(To be specified) 
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Class I is the most favourable to White (class value 6); Classes 

2 and 3 are the least favourable (values 2 and 1, respectively). The 

final class should be ignored at present. As it stands, the 

specification of class 4 is incomplete. The property is intended 

to refer to positions where Black is checked by thq Rook and thus 

forced to retreat a rank, a commonly occuring situation in this 

ending. As the property is specified, however, it is possible for 

q to belong not only to Class 4 but also to Class I (Checkmate 

positions) or Class 3 (positions where Black can capture the Rook), 

thus violating the principle that no position may belong to more than 

one equivalence class. To avoid this possibility, it would appear 

that the specification of class 4 must be extended to ensure that Black 

is not checkmated and cannot immediately capture the Rook. For 

similar reasons, the specification of Class 5 would Inve to be 

extended to exclude stalemate positions (Class 2) and positions where 

the Rook can be captured (Class 3). 

In general, the specification of each class would need not only to 

describe some positive feature, such as those given in the 

table above, but actively to exclude the members of each of the 

other classes. For an endgame with any reasonably large number of 

classes this would inevitably ýead to a complex set of specifications 

in which the basic underlying concepts (the 'positive' features of 

the positions) would be submerged. Fortunately, this problem can be 

overcome by adopting the following convention. . 1b 

The classes are specified by means of their 'positive' features, as 
in the table above. The property corresponding to Class n is 

called rule n. The rules are arranged in the order in which they are 

to be evaluated and a given position q is said to belong to class n 
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if and only if rule n is satisfied by q and'nontý of 'the *preceding 'rules 

are satisfied. This convention automatically ensures that no 

position can belong to more than one class and enables the 

specification of each rule to be kept. as simple as possible. It 

does, however, require the rules to be specified in the order in 

which they are to be tested. (In practice, there will generally be 

a certain amount of freedom; thus rules I and 2 could be transposed 

in Table 1. There may then be some marginal advantage in, for 

example, testing first the fule which is more frequently satisfied. ) 

The basic procedure for finding the class of which a given position q 

is a member is then to evaluate each rule in turn (working downwards 

from rule 1) until the first true rule is found. This rule then 

gives the class corresponding to position q. No further evaluation of 

rules is necessary. From now on, whenever the definition of a 

. specific rule is discussed it will be assumed, ý unless otherwise 

stated, that the rule will only be applied to positions in which all 

the preceding rules are unsatisfied, i. e. false. This will, in turn, 

enable the detailed definitions of the rules themselves to be 

simplified in many cases. Thus, if classes I and 3 were transposed in 

Table 1, so that "Black can capture the Rook" were tested before 

"Black is checkmated" then in the definition of checkmate positions 

it would not be necessary to exclude the possibility of the Rook 

giving check from a square adjacent to Black's King. This could. never 

occur since "Black can capture the Rook" must have been false. 

The rules themselves are all predicate functions, the domain 

of each function being the set of all legal positions with Black 

to move in which all the preccding rules are false. "Rule" has been 

preferred to "predicate function" and other terms, such as 
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It pattern matching function" to avoid confusion with the associated 

I furidti6ns described in Section 2.4. 

The final rule in Table* I has not so far been specified. Since it is 

essential for every position q to belong to some equivalence class, it 

will often be desirable to define the final rule in such a way that it 

must inevitably be satisfied by any position for which all the previous 

rules are false. This can be achieved by defining the rule to be 

always true, regardless of the position. Although the final class 

contains "residual" positions it will not necessarily be the lowest 

ranked class. Taking the example of Table 1, it is certainly preferable 

to stalemate positions (Class 2) and positions where the Rook can be 

taken (Class 3). 

For some endgames it may even be that the final class will contain 

the large majority of positions, that is that the other classes will 

contain only a small number of relatively exceptional positions with the 

choice of the most favourable successor position being made between 

members of the final class. 

2.4 Choosing between positions in the same class 

As pointed out in Section 2.2, *the provisional algorithm given there 

ignores the possibility of a tie at step (dl) "play the move which 

leads to the position with the highest class value". 

In fact, however, if the number of classes is reasonably small ) such 

ties will frequently 9ccur. The method which is used to resolve 

them is important and play. 5 a significant-part in giving the 

algorithm "a sense of direction", as will be seen later in this section. 
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The class values specify a fixed ranking between equivalence classes; 

combining this with a procedure for ranking positions within the 
. 

same class produces a complete ranking of all the members of B in 

order of favourability (from 14hite's viewpoint). Thus it is 

possible not only to find the best move in position p, but to place 

all White's possible moves in order of preference. The procedure 

for ranking 'positions which are members of the same equivalence class 

'(Class Q requiresa number of associated functions or measures to 

be defined on the members of the class. 

'Whereas the rules defining class membership are predicate functions 

i. e. functions which take only the logical valueg'true and false, 

the associated functions take numerical values, 'related to the 

positioning of the pieces on the board, such as the distance between 

the Kings or the number of the rank on which the King stands (the 

distance from the bottom edge of the board). The funciions will, 

in general, vary from class to class. The number of associated 

functions for a particular class may be zero (since, for example, there 

is no non-arbitrary way of choosing between members of the class of 

positions "Black is checkmated"), but will generally be at 

least one. 

If the functions corresponding to class i are f 
lit 

f 
2i'f3 i etc., then 

positions in class i are ranked in the following manner. First, the 

value of function f1i is evaluated for each position. This value 

is then used to place the positions in order of merit, that i's, 

the positions. are ranked in the order given by ýthe values of f,, (the 

highest raAed position has the largest corresponding value of flit and 

so on). If there are any ties'then the value of f 2i is evaluated for 

the tied positions, the position with the largest value of f 2i being 

ranked highest, followed. by the position with the next largest value 



-29- 

etc. jas before. Any remaining ties are resolved using function f3i and 

so on 
. 

until no ties remain or all the functions are exhausted. In the 

latter case ties are finally resolved arbitrarily. 

A suitable means of making such a selection for members of Q(p) is to choose 

the first of the tied positions. It was for this reason that Q(p) was 

defined to be an ordered set. 

Such "residual" ties may arise either when two positions are "identical" 

due to symmetry or, more often, when there is no advantage in forcing 

the algorithm to choose one position rather than the other, for 

example when both are positions in which Black is stalemated. 

0 Given a complete ranking of all possible positions with Black 

to move and therefore. gf all-the successors, of any--position p, 

it is a simple matter to find White's best move - the move which 

leads to the highest ranked successor position. Note that in practice 

it is only necessary to rank the successor positions in the highest 

occu rring class, and to continue with the ranking procedure until 
.1 

the best position in that class is found. 

The first associated function for class i (fli. ) is called the primary 

function.. Subsequent functions*(f 2ilf3i' ... ) are called the 

secondary function, tertiary function, etc. 

As previously stated, the use of associated functions tends 'to give 

the, move-finding algorithm a "sense of direction". A situation which 

frequently occurs is that White has to make a choice between four or 

five moves each producing a. position in the same equivalence class i 

(all other moves being inferior).. Defining f1i to be the number of the 

rank on which the White. King stands and f 
2i to be the distance from the 

nearest vertical edge of the board, for class i, will then induce White 
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to move his King towards the eighth rank if possible and, subject to this, 

- towards the centre files of -the board. 

Although positions (in the same class) are 
'effectively 

ranked on the 

basis of choosing the values of certain functions to be as large as 

possible, a very common requirement is, for example, to make the 

distance between . the two Kings as'small as possible. This can easily 

be --rranged 
by defining the value 6f a function to be the negative 

of the distance between the-Kings and using this function in the 

normal way. (In practice, it is convenient to add a constant 

to this negative value to ensure that the value of the function 

always lies in a suitable pos, iti. ve range. ) 

The notation f,,, f 2L etc. will henceforth be abbreviated to f Vf2 etc. 

when no confusion can arise. 
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2.5 Specifying the associated functions 

In general, many of the functions defined for a particular endgame 

may be-associated with more than one class. If there are M functions 

altogether, then each is given an identifying index*number from I to M, 
I 

inclusive. In a practical implementation, index numbers of the functions 

associated with class i are held in row i of the value table, from 

column 2 onwards. If for some endgame the largest number of functions 

associated with any one class is m, then (m+1). columns are required 

in the value table. For any class with a smaller number of functions, 

the rightmost (i. e. highest subscripted) columns of the corresponding 

row of the table are filled with zeroes. These correspond, in fact, to 

the ý11 function described in Section 2.6. Lul 

Taking, for example, the case where m is 3, the entries 1,4 and 5 in 

columns 2,3 and 4 respectively of row 10 of the value table may be 

interpreted as "use function I for f,, function 4 for f2 and function 5 

for f with positions in. Class 10", or, more informally, "within Class 3 

10, first choose the largest value of function 1, followed by function 

followed by function 5". 
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2.6 ' C6mput itional considerations -I tindtion *'%jalu ,e and'position value 

The procedure for making a complete ranking of all successor positions of 

p in order of favourability can be viewed in terms of sorting. the members 

of Q(p) into order, where the sorting is on the basis of: 

class value 

(ii) the value of the first associated function 

(primary function) 

(iii) the value of the second associated function 

,ý (secondary function) 

and so on, with the lowest level of sorting arbitrary. 

, he procedure for finding only the most favourable position (: which is, 'r 

of course, the usual requirement in practice) corresponds to a number 

of consecutive series of comparisons: 

to find the largest class value 

to find the largest value of the first associated 

function amongst those positions tied at (i) 

to find the largest value of the second associated 

function amongst those positions tied at (ii) 

and so on, as necessary, any residual ties being resolved arbitrarily. 

A computationally more efficient method of implementing both these 

procedures, using no more than one series of comparisons, is as follows: 

ifthe associated functions for each equivalence class are specified in 

such a way that their values are always positive or zero integers less 

than some positive integer K (where K is chosen to be an upper bound 

for every class), then the function-Value of a position qcC. is defined 
3. 

as the following weighted sum of the values of the associated functions 

(evaluated at position q): 
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+ JýM7 2xf2++f 
Mi. 

where there are m associated functions for class 

The position value of qcCi is defined as the sum: 

0x class value + function value. 

It should be noted that this value can be decomposed uniquely to give 

the individual contributions of the class value and each of the 

associated functions. In practice, it will normally be possible to 

define all functions in such a way that they take only positive or 

zero integer values. A suitable value for K will normally (but not 

always) be ten, since most of the functions chosen will correspond to 

distances between pieces or between squares on the board. 

Providing that the value of m is thd'same for every class.. the ranking 

of the members of any given set of positions with Black to move is exactly 

mirrored by the numerical ordering of their corresponding position values 

(the larger the position value, the more favourable the position to 

I --j 
White). Thus the procedure for ranking all the positions in order 

of favourability is equivalent to simply a sorting of the pumerical 

position values into descending order of magnitude. (The particular 

algorithm used for sorting will automatically take care of residual 

ties. ) 

An algorithm to find only the most favourable successor position (and 

thus the best move for White) requires only one series of comparisons 

to-find the largest position value, again with the particular 

algorithm used automatically taking care of residual ties, rather 



-34- 

than up to m+I separate series of comparisons (one for the 

class values'and one for ea6b- of the associated functions). 

Using position values is therefore a convenient and efficient way 

of implementing both the move-finding and the full-ranking algorithms. 

It should be noted however, that the method has the minor 

disadvantage of requiring the value of every associated function 

to be calculated for all the successor positions, not just those 

involved in ties. 

Although the formula given for calculating the position value of 

q resembles a traditional evaluation function, it should be borne 

in mind that this is merely a computationally convenient method of 

representing the ranking process described in Sections 2.2 and 2.4. 

As noted aboveý the position value can be uniquely decomposed into 

. 
its component parts, the class value and the value of each 

associated function. 

Virtually any conceivable method of ranking positions could in principle 

be converted into some evaluation function (since the integers are. an 

ordered set). The important point is that in this case the component 

parts of the position value (evaluation function) are meaningful in 

themselves, the class value corresponding to'an ordering of priorities 

(goals) and the associated functions to geometrical properties of the 

position, such as distances to be made as large (or smal. 1) as possible, 

in turn. 

9ne important point has been omitted from the above discussion. It 

has been assumed that all the equivalence classes have the same 

number of associated functions. In general, however, this will not 

be the case. This problem can be overcome by the use of a null 
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function, which has value zero for every posLtion'q. If the largest 

number of functions associated with any class is m then for each 

class with a smaller number of functions, null functions are appended 

in the "least significant" positions to bring the total to m. 

Thus if the maximum number of functions for any class is 3, then 

if for some class there is only one associated function this is taken 

as the primary function, with two null functions appended for the 

two least significant functions. 

2.7 Summary of the basic model 

This section contains a summary of the method of creating the 

move-finding algorithm for a given endgame. 

For the endgame under consideration, it is necessary to devise 

a set of rules (predicate functions) for allocating each position 

with Black to move-to one of a number of equivalence classes of 

positions, together with a fixed ranking between the equivalence 

classes and a number of functions associated with each class, used 

to rank positions within that class. 

The ordering of the rules should be chosen so as to simplify their 

definitions wher. ever possible. The order of the class values corresponds 

to the relative favourability (from White's viewpoint) of the positions 

in each class. 

A computationally efficient algorithm for finding the best move in any 

position p with White to move is then as follows: 

(a) generate the set of (immediate) successor positions of p; 

(b) calculate the value of each. successor position using steps 

to (b4) 
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(bl). evaluate each of the rules in turn until the first true 

rule is found, this gives the corresponding equivalence 

class 

use colurn I of the value table to find the class value 

(b3) calculate the function value, from the functions asiociated 

with ýhe class (using colum 2 onwards of the value table) 

(b4) calculate the position value (using K, an upper bound for 

the value of every function, and m, the number of 

functions - including null functions - associated with 

each class); 

(c) find the successor position with the highest position value; 

(d) select the corresponding move for White. 

A detailed example of the use of this method in practice, for the end- 

game King and Rook against King., is given in Section 4. 

2.8 The extended model 

The basic form of the model, as described in Section 2.2, is in principle 

of general applicability. As will be seen in the following sections. 

this form of the model appears to be sufficient to produce algorithms 

performing at a high standard of play for the elementary endgames 

discussed in this. thesis. As the complexity of the endgame increases, 

however, it seems likely that a point will be reached where it becomes 

too coLTlicated in practice to specify the necessary classes for a 

reasonably high level of play, although it will always be possible to 

specify some initial form of algorithm even if only a rudimentary one. 

There are two possible solutions to this problem: firstly to make use 

of a process of continuous refinemenf along the lines developed for the 

two elementary endgames in the remainder of this thesis. For a complex 

endgame this may result in a large number of equivalence classes but 



-37- 

may still be a computationally efficient alternative. 

The second alternative is to extend the basic model to allow for 

searching below the level of the immediate successor positions. Changing 

the meaning of "position value" to include a backed-up value where 

necessary, the discussion in the previous sections'remains valid. 

The second possibility accords with the observation that complex end- 

james, which are not regarded as completely understood theoretically, 

are generally played by neans of a combination of pattern recognition 

and goal-directed analysis, although even for quite complex endgames 

the amount of analysis required would appear to be reasonably small. 

A suitable means of extending the model to allow tree-searching, which 

enables the amount of search to be carefully-controlled,, is as follows. 

In general, the equivalence classes can be divided into three cate8ories: 

"positive" classes - those with a value higher than that of the 

residual class; 

"negative" classes - those with a value lower than that of the 

residual class; 

(iii) the residual class itself. 

For complex endgames, the most-likeely source of difficulty lies in 

specifying a sufficiently large number of positive or negative classes, 

with the majority of positions thus falling into the residual class. 

There are four possibilities for a given set of successor positions: 

(a) at least one belongs to a positive class; 

(b) all belong to negative classes; 

(c) all belong to negative classes, except one which belongs to the 
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residual class; 

(d) two or more positions belong to the residual'class and no 

position belongs to a positive class. 

In cases (a), (b). and (c) the most favourable position-. -can be found 

statically using position values in the usual way. In case (d), 

either the -positions in the residual class can be taken as terminal 

and the associated functions used to calculate the position value 

statically) or an analysis tree can be generated from each of the 

residual class positions., with the negative class positions rejected 

altogether. Constructing an analysis tree (either depth-first or 

breadth-first) in this way has the effect of reducing-the amount of 

search by pruning all branches to positions in negative classes (unless 

there is no alternative) and defining terminal states of a given set 

of positions, with the second player to move, as a whole (cases (a), 

(bY and (c) above). Since a residual class position can, at any stage, 

be regarded as terminal, with the static position value (calculated 

using the associated functions) backed up the tree, the amount of 

analysis performed is subject to close control. For example, the 

maximum depth. of search or even the maximum number of individual 

positions to be considered might be specified. Any non-terminal set of 

successor positions remaining at that stage could then be compared 

statically by means of position values. If required, a heuristic 

pruning could be-applied to further restrict the volume of search, for 

example by searching from only'the three (or so) positions with the 

highest static position values, in case (d). 

In general, this form of the equivalence class model is distinguished 

from conventional models based on tree-searching in that search is 

intended to be used in a controlled way only as necessary to 

supplement the pattern-matching which it is believed is the fundamental 
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couiponent of the chessplayer's endgame knowledge; 

In view of the existing body of theory relating to tree-searching, 

such an extension of the basic form of the model does not appear to 

present any significant difficulties. 

2.9 Discussion 

In this section, a point raised in Section 2.2 is discussed further: 

a choice must be made between thd successors of a position p without 

any reference to p itself. This point is, in fact, fundamental to 

the model which has been described. White's move-finding algorithm 

is seen'essentially as a choice between the successor positions to 

which he may move. The chosen move is the one which leads to the best 

pocition. 1.7hen comparing positions with Black to move there is no 

logical justification for referring to any common antecedent the 

P ositions may have; they must inevitably be compared on their own 

merits alone. This approach is in accord with the large majority of 

programs which have been written to play the full game but not with 

the (relatively small) nurýber of programs written specifically for 

endgames, as will be seen in Section 3. In practice, concentrating 

solely on positions with Black to move appears to result in a substantial 

reduction in the number of patterns which need to be recognised, partly 

because considerations of whether or not White has improved his position 

by his move need not be taken into account and partly because applying 

pattern matching to positions with White to move is equivalent to 

placing the members of W into equivalence classes and the menbership 

of such equivalence classes would often be better defined in terms 
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of the most favourab. le successor position than by tbLe static features 

, gf the positions themselves. 

The following example is given as an illustration of this latter 

point. Figure I shows a position from the King and Rook against 

King endgame, in which White to move can force checkmate in two moves. 

Note that tfie following conventions have been adopted for diagrams 

and for recording moves. The figure number will generally be given 

to the top right of the diagram with the player to move (W or B) on 

the left. In all cases White's first rank is taken to be at the 

bottom of the board. In diagrams, the letters K and R are used to 

denote the White King and týe White Rook, respectively. The Black 

King is represented by k. The notation used for moves is based on 

the algebraic chess notation and is intended to be self-explanatory 

for those familiar with that notation. A full description is given 

in Appendix 3. 
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In Figure 1, White wins by I. R-F6. giving Figure 2. Black must now 

play 1. *** K-H8, whereupon' White checkmates by 2. R-F8. 

Now consider Figure 3. White wins by I. K-G6. again giving Figure 2 

with Black to move. 

In an intuitively obvious sense, Figures' I and 3 are equivalent. In 

each'case White's best play is to mate in two moves by first playing 

ILAN I 

I ul 
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to Figure 2. 

There are, ' in fact, many other positions equivalent to Figure' I in 

this sense. For example, with the two Kings as ixý Figure' 1, White's 

Rook could be on Fl. F2, F3, F4 or F5 instead of F7 (the first move 

being I. R-F6 in each case). Alternatively, with the Rook initially at 

F6 the White King could be at H6, F5 or G5 (the first move being J. K-G6). 

TLie number of equivalent positions can be further increased by noting 

that if White's Rook were on FI., say, in Figure 2, this would make 

no difference to the outcome. This modified form of Figure 2 will be 

called-Figure 2A (not di. agramed) The positions "White King on G6, 

Rook on GI" and "White King on F5. Rook on*Fl" are then also 

equivalent to Figure 1, since from each one White's best move is 

to play to Figure 2A (by I. R-FI and 1. K-G6, respectively). Proceding 

in this way, with different modified forms of Figure 2, a very large 

number of equivalent positions could be found. What is most apparent 

about all these positions is their lack of similarity in terms of 

th6 positions of the pieces. Defining the members of an equivalence 

class of positions (with White to move) equivalent. to Figure' 1. by 

means of the static features of the positions themselves, must 

inevitably require an extremely large number of separate and 

unrelated tests, as would implementing logic of the form if 

<mate-in-two position> then <play first move in sequence>, 

The real equivalence between all the positions lies not in their 

static features at all but in the fact that in each one, White's 

best move is to play to Figure 2 or a position effectively 

identical to it, such as Figure 2A. 
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By concentrating on specifying classes of equivalent'suce6saor 

positions, with Black to move, the problems of definition encountered 

above become trivial. The equivalence class of positions such that 

"Black to move cannot avoid mate in one" (of which Figures 2 and 2A 

are members) can be readily defined and the overall White strategy 

"select best available position" takes care of all the details. 

The above example can be extended to illustrate one further point. 

In Figure 4 White can play 1, R-F6. onceagain giving Figure 2., His 

best movep however, is to give checkmate immediately by . I. R-E8 mate. 

Figure 5 shows the resulting checkmate position. Thus Figure 4 

should not be a member of an equivalence class containing Figure I 

"White can checkmate in two moves" but of a second class "White 

can checkmate in one move". of which there are, of course, 'many other 

members. The first of these classes ib-then strictly "White can 

checkmate in two moves but not in one move". 

The allocation of a position p (with White to moveY to one equivalence 

class rather than another thus seems to need to be-based'on the most 

w Ot c 
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favourable successor position to. which White can move from p, with 

a corresponding increase in the complexity of the necessary defin- 

itions Again this problem can be overcome in a simple way by 

defining a class of positions'with*Black to'move equivalent to 
........... 

Figure 5, "Black is dheckmated". ranking this class higher than that 

containing Figures 2 and 2A and using the rule "select the 

highest ranked successor position". In summary, it would appear that 

a model based on a ranking of equivalence classes of successor 

positions, with Black t'O move only, offers a number of significant 

advantages over one which makes use of pattern matching applied to 

positions with White to move. 

In the following section, previous work in the area of Chess endgames 

is discussed and compared with the approach described in this thesis. 
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Discussion of previous work 

In this section the principal previous work in the area of endgame- 

playing programs is considered in detail in the context of the 

objectives set out in Section 1. 

Other related work on learniiýg programs, inductive generalization etc 

will be considered as necessary in Section 11. 

3.1 TorresImachine 

The first endgame mechanisation did not involve an electronic computer 

but a special-purpose (electro-mechanical) machine built by 

Torres y Quevedo in the late nineteenth century to play King and Rook 

against King, described by Vigneron (1914) and mentioned by Shannon 

(1950). 

The machine's "algorithd' was built entirely into its electrical 

circuitry. Only moves for the side with the Rook (referred to as 

White below) were generated. Michie (1976a) gives a reconstruction 

(making comon-sense interpretations where Vigneron's text is'unclear) 

in the form of a decision table with six rules, composed of combi- 

nations of eight cenditions, and five possible actions. The 

conditions are simple predicates such as "distance in ranks between 

White Rook and Black King is greater than one". The actions are of 

the form "move the Rook so as to maximize the file distance between 

it and the Black King" or "move the Rook horizontally one file, 

giving preference to the move away from the Black King". 

The machine only operated when the initial -position satisfied the 

pre-condition that the White Rook did not occupy either of the 

centre files and was between the ranks of the two Kings, with the 



-46- 11 
Black King on ahigher rank than the TIhite. The algorithm is compact 

and makes no use of tree-searching, however its performance looked 

at objectively can only be described as very poor. Michie reports 

that the machine takes as many as 62 moves to checkmate in the worst 

case, thus exceeding the maximum of 50 moves permitted by the laws of 

chess and allcwing the opponent to claim a draw. 

Ne-, ýertheless in the cases where the initial position satisfied the 

precondition, the machine always seems to find a move and ultimately 

arrive at a checkmate. 

Subsequent mechanizations of King and Rook against King have improved 

t. he overall quality of White's play but only at the expense of the 

conpactness of the algorithm and the certainty of winning from all 

possible starting positions or even, in some cases, of always finding 

a move - 

ldtý 

3.2 Huberman'sprograms 

The first computer programs to play chess endgames were written by 

Huberman (1968), who constructed programs for the three endgames King 

and Rook against King (KRK) , King and two Bishops against King (KBBK) , and 

King, Bishop and Knight against King (KBNK), the principal aim of this 

work being to study the process of translation from textbook 

descriptions of endgame play into computer programs. Huberman's work 

is an example of a structural, (as opposed to procedural) form of 

representation. All three programs are written in LISP and make use 

of the sare overall model and find moves for White(in each case the 

player with the additional materia: 1)only. The model is only intended 

9 
to be applied to positions in which 'White ha, sa forced win against 

any play by Black. If given any other position, it is unlikely that 

any move would be found. The model used by Huberman is a forcing tree. 

II 

Each program uses two predicate functions better and worse which take 
I 
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as arguments an initial position p with 14hite to move and a 

I successor position q (at some depth), with Black to move. A breadth 

first tree search is used with better positions as goals for White. 

Any variation which leads to a worse position against best play by 

Black is immediately rejected, thus no successors of a worse position 

are ever generated. 

A better or worse position is any position with Black to move for 

which the function better or worse is true. These two functions 
I 

are in no respect compl-emntary; better is used to define goals for* 

White and worse is used to avoid disastrous continuations such as 

stalemate. Both functions are also used for purposes of pruning the 

analysis tree. In the resulting "forcing tree", there-is one branch 

from each position with White to move. For positions with Black to 

move, there is one branch for each of Black's legal moves. The 

-terminal positions are all ones in which Black is to move and the 

predicate better is true. 

once a forcing tree has been constructed, all White's moves are taken 

from the tree until a terminal position (i. e. a better position) is 

reached. For White's next move a further forcing tree is constructed 

using the current position as p, when evaluating better and worse, 

and with no memory of the previous tree. The intention is that the 

predicates should be defined in such a way that White, can always 

force a better position q and'that, in some sense, q is closer to 

checkmate than p so that the process ultimately converges. 

To implement better and worse Huberman, defines a number of sta&es 

for each endgame, each corresponding to one book he4ristic. Each 

stage contains positions with both Black and White to move and in 

most cases there is a numerical measure (e. g. the distance between the 
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two Kings) associated with each stage. 

In general, the "higher" the stage and the smaller the value of the 

measure the more favourable the position to White. Function better 

is, roughly speaking, defined by the criterion that q should be in 

a higher stage than p or in the same stage with a smaller value of 

the measure. Function worse is defined essentially by the criterion 

that q is a member of stage 0. Clearly a simple three-stage program, 

consisting of positions such that 'Black is stalemated or can 

immediately capture a piece', 'Black is checkmated' and 'all positions 

not otherwise included" would perform perfectly, but at the expense 

of a prohibitively large amount of tree-searching. Introducing 

additional stages can ther. efore be seen as. a means of reducing the 

amount of searching required. Since Huberman's aim is that each stage 

should represent one textbook heuristic, the major burden of reducing 

the depth and breadth of the necessary search falls on fairly ad hoc 

extensions to better and worse, respectively. Other steps taken to 

reduce the quantity of searching required include a weakening of the 

definition of better given above (to allow q to be in the same stage 

as p with the same value of the measure) a "redundant branch cutoff" 

heuristic and a careful ordering of move generation. In fact, since 

the programs consider all better positions to be equally good and 

accept the first better position generated at any level, the order of 

move generation is a critical part. of the algorithm. 

Huberman gives definitions of better and worse for the three end- 

games previously mentioned. For KRK there are 4 stages (only I with 

a measure), for KBBK there are 5 stages (3 with measures) and for 

KBNK, 7 stages (2 with measures). 

However, the defini'tions of the stages and the necessary extensions 
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to better and worse to reduce the depth and breadth of search to 

manageable proportions are in each case extremely couplex combi- 

nations of predicates with little overt resemblance to the book 

heuristics remaining. Huberman comments "It is simple to decide 

roughly what the stages are, and what kind of heuristic each requires. 

This information is often stated in the books. It is difficultý to 

give the exact definition of the stages and measures, and generally 

it is even more difficult to define the additions to better and worse 

which make them practical". 

Positions taken from Fine (1944) and Capablanca, (1935) are used as 

starting positions for a small nuuber of exarples to illustrate 

program play. The play for KRK seems to be strong in the cases given, 

the play for the two more difficult endgames is less strong but still 

sufficient to win and is particularly effective in the final stages 

of the examples given. Program play is not optimal for any of the 

three endgames and this is not an objective of Huberman's work. In. 

one case a checkmating move (in KRK) is not played, a consequence of 

the principle that all, better positions are equally good and of the 

particular order of move generation. 

Unfortunately, no indication is given of the extent of any empirical 

testing which may have been performed other than the few examples 

of program play quoted. It is therefore impossible to judge the 

quality of program performance in general without access to the 

programs themselves. 
I 

Huberman states that her programs can be proved to be correct, in 

the sense that White eventually wins a&inst any defence by Black. 

However, such proofs do not indicate the level of search required 

I for White to force Black from one stage to the next. It would also 
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seem to be extremely difficult to ensure correctness for any more 

corplex endgames. 

In the examples given a maximum depth of analysis of 7-ply is 

required for KRK, 15-ply for, KBBK and 13-ply for KBNK, in examples of 

17,21 and 40 (White) moves, respectively. Despite the importance 

of Huberman's work as a structural and reasonably generalisable 

approach to programming the endgame, and her achievement in creating 

programs for three endgames, at least one of which is difficult by 

human standards (KBNK), there are a number of inherent weaknesses in 

her approach. 

Most significantly, the method is only applicable to starting positions 

where White has a forced win and the searching process will not 

terminate otherwise. Unfortunately, it is difficult to specify 

precisely the subset of positions in which White has a forced win, 

even in the case of KBNK. A second difficulty arises from the 

necessi'ty to treat all better positions as equal, which tends to 

produce inferior play and thus inevitably prolong the game. Compen- 

sating for this leads to more complex definitions of stages and the 

function better. There is little control over the depth and breadth 

of search required and, in fact, a very careful definition of stages 

and the extensions to better and worse is required to ensure that the 

program always teturns a move (whether or not the program is correct). 

Refinements to the program make this condition progressively more difficult 

to ensure. In addition the condition that better and worse are always 

defined by comparison between a position q with Black to move and the 

position p at the root of the tree seeras somewhat restrictive. The 

requirement that each stage should contain positions with both White 

and Black to move also leads to couplications in some cases, and in 

some instances to . different definitions with MAte and Black to move. 
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Huberrian's work has been described in detail here because it bears 

certain similarities to the equivalence class Model described in this 

thesis. In particular Huberman's stages and measures are similar to 

equivalence classes and associated functions. From the viewpoint of 

the equivalence class model, the principle differences are as follows. 

M Classes are defined with only one side to move-. 

(ii) Each class can have more than one associated function. 

The only coLVarison is between positions with Black to move, 

and the most favourable position (from White's viewpl-int) is 

chosen. 

A move is found from every initial position. 

(v) No tree-searching has been found to be necessary for the two 

endgames discussed in this thesis. For more couplex endgames 

it can be used in a controlled way, since at any point there is 

always the alternative of accepting a member of the "residual 

class" as a terminal position and making use of the associated 

functions. 

Refinemnts to the algorithm cannot affect the property that 

a move is always found from every initial position. 

There is no a prioril means of ensuring that the prograim-. *ill 

always win from positions where that is possible. 

3.3 Tan's Program 

Programs for the endgames King and Pawn against King (KPK) and King 

and Pawn against King and Bishop have been written by Tan (1972 and 

1974, respectively). The second program is not fully reported and 

only the first will be considered here. 

The principal aim of ýhe work is to illustrate a particular way in 

which "knowledge might be represented, organized and used". The 
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program's knowl! --dge is ený)edded directly in POP-2 procedures. 

Moves are found for both sides, making the siirplification that the 

game is over and won for White (always assumed to be the side with 

the Pawn) if the Pawn promotes and cannot immediately be captured. 

The 50-move and three-fold repetition of position. drawing rules are 

not implemented and the program does not explicitly avoid repetitions 

of position. 

Me overall organization of the program consists of an ordered I 

sequence. of conditional statements of the form: if condition then 

action scheme, organized to form a decision tree. Tan states that 

whereas the content of these statements can be obtained from textbooks, 

their ordering cannot and that "differences of strengtý of players ... 

are mainly due to organizational structure of their chess knowledge". 

In some cases action scheme includes the "value" of the resulting 

position (win for White or draw). Where it does not, the program will 

automatically play on, finding the "best" move for each side alter- 

nately until a position of known value is reached. This facility 

enables a simple linear plan to be stored corresponding to play 

considered best for both sides. In subsequent play, the program 

uses this plan to find its moves, as long as the opponent does not 

deviate. 

The decision tree has six main branches, depending on which side is 

to move and whether the Pawn is on the sixth rank, the seventh rank, 

or another rank. The main branches divide into sub-branches depending 

on the value of predicates such as "Rookpawn" and "the Pawn can 

advance without immediate capture". For each sub-branch, conditions 

are tested in order until one is. satis_fied, at which point a 
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corresponding action scheme is used to generate a move. Although 

some of the conditions are simply predicate . functions applied to the 

initial position, others are considerably more complicated. Thus 31 

one condition is effectively "can the player to move take up the 

following pattern of pieces by a King move? " Another requires 

"trying" the specified action, i. e. a move is found and the resulting 

hypothetical position is then considered for the other side. An 

action scheme is found for that side to move which may have a value 

(win or draw) associated. If not, the value is found by further 

analysis, as previously described. This value is then considered in 

the context of the original position. If it is a win, in the case of 

a position with White to move, or a draw, in the case of a position 

with Black to move, the "tried" action is accepted, otherwise the 

next conditional statement is considered, as usual. 

Since trying an action is included in the strategy for both sides, 

this type of condition may involve a depth-first tree sparch. There 

is no explicit control*on the size of this tree zind in a situation 

where the program played in such a way that the same cycle of 

positions was repeated continuously, without a win or draw value 

being assigned, the program would fail to terminate, and thus no 

decision on the action fried in the original position would be made. 

In general, the size of tree is only likely to be manageable if the 

set of positions for which known values are given is as large as 

possible. The method of "trying an action scheme" is only applicable 

in the case of a program which finds moves for both sides and where 

the values of positions are known or can be calculated reasonably 

simply. 

A final kind of condition, which oftlY occuri with White to move, is 

to test whether the White King can legally move to any one of an 

ordered list of "critical squares" which depend on the position of 
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the Pawn. If it canthe first such moýe in order is taken. 

There are eleven elementary conditions (defined by a combination of 

predicate functions or by pattern matching) applied to positions 

with White to move and 11 applied to positions with Black to move. 

The six main branches divide into a total of 19 sub-branches. 

There are. five elementary types of action scheme used by the program: 

to move either King to a specified square, to advance the Pawn 

either one or two squares "(with 1,7hite to move) or to make no move 

(used when either player is stalemated). One further action schere, 

for each side. is to riove the King as close as possible to the White 

Pawn. Three further action schemes defined with White to move involve 

a series of decisions used to select one of the elementary actions. 

In addition there are five "manoeuvres", 2 for White and three for 

Black, which involve using combinations of predicate functions and 

pattern matching to select an elementary action. For one manoeuvre, 

with White to move, the condition '. 'can White move his King to take up 

the following position? " is used six times, together with other tests. 

The most complicated action scheme consists of "trying" a succession 

of King movep in turn, in a way similar to the condition of "trying 

an action scheme" described previously. King moves are sorted so 

that those in the direction of "critical squares" (depending on the 

position of the Pawn) are tried first. The first move found which 

results in a win (if White is to move) or a draw (if Black. is to move) 

is accepted. This type of acHon scheme can occur with either side 

to move and can again result in depth-first tree searching not subject 

to direct control. 

In cases where White to move cannot win, or Black to move cannot 

draw, all King moves will be examined by the program. A total of 
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eleven action schemes (plus lookahead) are usecl-in the decision tree 

with White to rove, and twelve (plus lookahead) with Black to move. 

Tan states that his program solves all known cases, including all 

examples from Awerbach (1958) and Fine (1941) and that the program is 

believed to be correct or almost correct, in the s. ense of preserving 

the value (win or draw) of a position. This condition is not, of 

course, sufficient to guarantee that White wins wherever possible 

ssince, for example, cycling may occur. As pointed out previously, in 

such a case it is possible that in certain positions a move will not 

be found and the program will fail to terminate. 

Only onc single example is given where White wins in six moves using 

a four-move lookahead. 

Although Tan's program is applicable to all positions (in contrast to 

Huberman's where a winning position is required), the tree searching 

required makes it essential to know the values of as many non-terminal 

positions as possible (to reduce the amount of searching) and to 

construct the algorithm in such a way that the value of a position is 

always preserved and cycling never occur s (or the algorithm may not 

terminate in some positions). For more complicated endgames both these 

conditions may prove extremely difficult to satisfy. When playing 

White, the program accepts the first branch which leads to a win (just 

as Huberman accepts the first better position), although there may be 

better moves available. This leads inevitably to inferior play, which 

can only be improved at the expense of a further increase in complexity. 

Since the forri of Tan's decision tree is dependent-on the domain to 

which it is applied, his ýrogram is an exarple of a purely procedural 

representation. 
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Ilowever well the program. may play, the algorithm cannot be applied 

(except in the most general way) to any other endgames and is far 

too complex to make learning new Conditio-ns or action schemes a 

feasible possibility. These were not, however, goals of the 

research. 

3.4 Zuidema's program 

Two versions of a program for King and Rook against King (KRK) have 

been described by Zuidema (1974), an international chess master. 

King and Rook against King is used as a means of investigat. Ing the 

problems involved in programming the full game of chess, on a 

convenient scale. 

The traditional tree-searching and evaluation function model is used 

with a depth of only one ply, i. e. the immediate successors of an 

initial position are considered when finding a move. The problem of 

particular concern is whether it is possible to convert chess 

heuristics and non-material considerations into numerical evaluation 

. functions. Each program plays a corplete game as White (always 

assumed to be the side with the Rook) against a human opponent, from 

any legal starting position. Repetitions of position by the program 

are explicitly prevented by recording a "history" of positions which 

have previously occurred with Black to move. The fifty move drawing 

rule is not implpmenteds although the number hf moves played is 

available throughout the game, 

The second version of the program is a refined form of the first, 

within the same overall framework, intended not only to remedy' some 

of the weaknessot found in the play of the original version but also 

as a means of investigating the programming effort required to 

correct "exceptions". 
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The overall form of the algorithm used to find a move'for White in 

the first program is as follows. 

(i) , The position is transformed to a standard form (essentially 

one where the Black King is in the triangle E5-E8-H8) by a 

suitable combination of reflections about. axes of symmetry. 

A checkmate in one move or, in some cases, a checkmate in two 

or three moves is recognized directly and the corresponding 

move made. To recognize these the program uses the function 

measure, defined as the 'sum of the squares of the rank and 

file differences between the two King*s. 

If no move is found at stage (ii), and measure> 15 then a 

White King move towards the Black King is made-immediately, 

unless the Rook is. en prise. 

Uv) If no move is found at stage (iii), certain moves are 

imediately rejected without further investigation: 

(a) Rook moves to the third file or the third or fourth 

rank; 

Rook moves to the second file (or rank), unless it was 

previously on the first file (or rank). 

(v) The remaining moves are generated in turn in a prescribed 

order and the value of a function room is calculated, for 

each corresponding successor position, together with the new 

value of measure in the case of a King move. Any move which 

leads to a position in the "history" is'automatically rejected, 

as is any move which gives Room =I (i. e. a stalemate 

position), or which increases the value of measure by more 

than 1. For the iemaining moves, the values of the functions 

room and measure for the successor positions are combined into 
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an evaluation function in such a way that the position with 

the smallest value of room, and subject to that the smallest 

value of neasure, is found and the corresponding move is 

played. In the event of a tie the first generated move is 

taken. 

The value of room is essentially the number of squares in the 

quadrant to which the Black King is confined by the Rook, with four 

principal adjustments to allov, for the position of the White King 

and others to allow for situations such as those where the Black King 

is closer to the Rook than the White King or where Black is in check 

and can move into a larger area of the board. 

Zuidema states that this version of the program will always checkmate 

within the fifty moves permitted by the rules, however no indication 

is given of the extent to which the program has been t6sted. One of 

the two exan? les of corplete play given shows a checkmate in 27 moves 

(i. e. 53 ply). Michie (1976a) points out that the theoretical number 

of moves required to win from the initial position given is oýily 14 

(27 ply). To iuvrove the performance of the program, the following 

three changes are made in the second version. 

(a) The order in which King moves are generated is-modified. 

(b) A furthýr function distance is introduced, defined as the sum 

of the squares of the-rank and file distances between the 

Black King and the Rook. The definition of the evaluation 

function described in (v) above is changed so that any tie 

amongst successor positions, after taking the smallest values 

of room and measure, is resolved by choosing the position with 

the largest value of. distanýe. Only if. there is still a tie 

will the order of move generation be significant. 
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(c) The definition of room is considerably more complex. There 

are now fifteen possible-types of adjustment to the original 

definition, depending on the result of a series of tests. 

Some of these types of adjustment themselves require further 

series of tests to be applied to decide on the numeri-cal 

adjustment to make. In terms of lines of ALGOL 60 program 

text, the definition of room is increased from 45 lines to 

135. 

The overall improvement gained by these modifications is not easy to 

judge from Zuidema's accountq although several examples of improved 

-her play in specific positions. are given. However Zuidema, gives ot 

examples of positions where poor moves are still played. Correcting 

these would involve a further increase in conTlexity. 

on the basis of this work,. Zuidema's conclusions on the prospects for 

programming the full game of chess"are generally pessimistic. 

For his first program he states "Level of play is not high. For any 

rule given ifi the program one is able to construct exceptional 

situations. A more refined strategy is needed to elevate level of 

play. A small improvementq however, entails great deal of expense 

in programming effort and program length. The rules will have their 

exceptions too. Exceptions that will not even be noticed by human 

players. " 

On the subject of the refinements to the first version of the 

algorithm, he states that: 

"A small improvement entails a great deal of effort. The conclusion 

forces itself that refining the algorithm and exceptions to rules give 

rise to an overburdened program. " 
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Zuidema's work- is less readily classifiable than either Huberman's 

or Tan's. however as the use of functions r oom, measure and distance 

is unlikely to be applicable to more than a few other endgames, it is 

possibly best described as procedural. 

The use of these three functions by Zuidema is siralar in some 

respects to the use of associated functions in the model described in 

this thesis. From the point of view of the equivalence class model, 

the differences are that the predicates defining the different types 

of successor position are explicitly stored (as the rules defining 

equivalence classes), rather than used to determine the value of a 

single function (room). This enables different functions to be 

associated with each class, if required. The order of move generation 

is intended to be used as a means of making an arbitrary choice 

between positions, whereas in Zuidema's programs the order would seem 

to play an important part in the selection process. Zuidema describes 

briefly a further program to play King and Queen againrt King, which 

also uses the idea of room, with only one ply tr6e search. He 

suggests that a similar method could be applied to the endgames King 

and two Bishops against King, and King, Bishop and Knight against 

King, in both cases with a deeper tree search. 

It is not clear, however, how the rather ad hoc methods of pruning 

White moves initially and rejecting successor positions subsequently 

would carry over to such an extension to deeper seardhes. 

Certain features of Zuidema's method would also seem to make it 

unlikely to be readily applicable'to other endgames. Firstly the use 

of only one set of functions (such as, room. measure and distance) for 

any endgame is likely to require the definition of some of the functions 

to become excessively complex. Secondly, it is improbable that any 
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order of move generation will be entirely satisfactory for a given 

endgame, particularly because of the effect of possible reflections 

of a position about an axis of symmetry. Compensating for a poor 

order will involve an increase in complexity of function definition 

and possibly an increase in the amount of tree-searching required. 

Finally, Zuidema! s use of "history" to avoid repeating a (successor) 

position and of initial "pruning" of positions with White to move is 

considerably more significant than simply avoiding draws by repetition 

of position and reducing the number of moves to be considered. In 

fact, both of these are critical'parts of the algorithm. Examples are 

-ed only because an inferior. given which show a good-move being select 

move, which leads to a repetition of positioni is rejected. Without 

the pruning of positions with White to move and the recognition of 

checkmating positions etc.,, a further substantial increase in the 

complexity of the definition of room would be necessary and the 

original definition as the number of squares in the Rook's quadrant 

would almost certainly be completely lost. 

Unlike Huberman's and Tan's programs, Zuidema's programs do not make 

use of any tree-searching (below the level of the irmediate successors) 

in the form given and a move will always be found in any position 

regardless of the quality of the algorithm itself, except in the 

unlikely event that all moves are rejected entirely. 

3.5 michie's programs 

Ifichie (1976a and b) describes two approaches to programming the end- 

game King and Rook against King (KRK), the second being a completely 

revised and improved version of the first. His work is aimed at 

developing minirial - path algorithms using a structural approach to 

arbedding domain-speciffic endgame knowledge. For Michie, prograrning 

the gam of chess is not an end in itself (as it would appear to be 

for zuidema); he is concenied with developing a general algorithm to 
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make use of domain-specific bodies of knowledge. 

The principal requirements for a model are that the program modules 

and data elements should be few and simple and that the process of 

building and refining the strategy should be straightforward and not 

burdensome. A representation of knowledge in the form of patterns is 

considered, but the problem of modifying such patterns in the light of 

experience is not discussed. 

The model developed in the former paper corTrises a database of 

patterns together with a table of advice triples each with the three 

conponents: "pointer to condition pattern", "pattern specifying 

plausibility class" and "pointer to goal pattern (s)". For King and 

Rook against King, each pattern consists of a specification of the 

lowest and highest values permissible for the horizontal and vertical 

co-ordinates of each piece. A pattern thus corresponds to many 

positions, defined by all permissible combinations of the co-ordinates 

of the three pieces. The positions of the White King and Rook (White 

is assumed to have the Rook throughout) are given relative to the 

Black King. A co-ordinate may be left as "undefined" to indicate any 

(specific) value. The method of constructing suitable patterns from 

a given set of positions is not described. 

To find a move in a given position, it is first matched against each 

condition pattern in turn until a match is found. Legal moves 

permitted by the corresponding "plausibility class" are then made in 

a presc 
. ribed order, matching the result in each case against the goal 

pattern . or patterns specified by the advice triple. t. s soon as a 

match is found, the corresponding move is output. A "plausibility 

class" is simply h list of binary digits indicating whether or not each 

possible move of the King or the Rook is permissible. 
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From the description given it would seem that the advice table must 

be set up in such a way that some "condition-match" will always be 

found and such that some legal move permitted by the plausibility 

class will then always lead to one of the prescribed goal patterns. 

The order of legal move generation i. s fixed over all the plausibility 

classes and thus would seem to be an important part of the algorithm, 

as does the ordering of the advice triples in the table. Three 

examples of the use of this model are given and in the first two cases 

strategies for both White and Black are implemented. The first 

example concerns 'the problem of checkmating (in cases where this is 

possible only) on a board which is infinite but for a single edge. 

Elbven patterns are defined for this example, together with a table 

of eleven advice triples (8 with White to move and 3 with Black to 

move). For the second example, of checkmate on an infinite board with 

a corner (ftom which checkmate can always be forced), with some 

fairly minor restrictions on the starting position, a pattern-base of 

28 patterns is required, with 36 advice triples (21 with White to move, 

15 with Black to move); The third example is anirplementation of 

Torres' algorithm (see Section 3.1), for White only, which uses 8 

patterns and 6 advice triples (one of which has as many as four goal 

patterns). The strategies are implemented in POP-2 and informal mathe- 

matical arguments are used to demonstrate that the first two are 

optimal. 

In the second and third examples, however, there is an important 

extension to the facilities available in specifying a pattern. 

Instead of using an interval to specify unconditionally the smallest 

and largest possible values of a co-ordinate, a POP-2 predicate function 

may be used, for example "is piece in same zone as BK? ". 

For the second and third strategies. irnplemented, three and six such 
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function calls are required, respectively. 

Whatever the merits of the strategies given in the paper, the limited 

formalism available for specifying patterns by means of co-ordinate 

intervals and the restriction of a fixed move order throughout all 

plausibility classes suggests that the model in the form given is 

unlikely to be applicable to other endgames or perhaps even to an 

optimal strategy for King and Rook against King. The need to add the 

use of predicate functions to the original form of the model would 

seem to support this view. A serious additional limitation is that 

it is not clear how the-searching, which would inevitably be required 

for a more complex endgamet would be incorporated into the model. 

Michie states that whereas inglementing Torres' strategy was itself 

easy, "the limitation of descriptive form to conjunctions of predicates 

defined on individual co-ordinates was felt as distinctly cravving". 

He concludes that "more complex domains than KRK will require less 

restrictive formats" and that "more difficult problems - even KRK on 

the W board - will need means of automatically generating patterns", 

to remove the burden (and likely error) involved in constructing 

patterns and to enable the formal proof of a strategy's optimality to 

become a tractable problem. 

The second paper is a general report on the development and use of a 

rOP-2 package known as AM ("Advice Language I") by a graduate class 

at the University of Illinois, under Michie's direction. The package 

is a generalised and greatly extended form of the model described in 

the previous paper. The overall object of the package is "to 

facilitate the transfer of specialist knowledge about chess endgames 

into machine memory". However, the package is designed to be 

applicable to a variety of domains apart from chess. The package 
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comprises two main modules: an advice nodule,, which takes a position 

and returns an advice'list, and a search module which takes an advice 

list and returns a forcing tree strategy (in Huberman's sense of the 

term) to secure goals specified in the advice list. Only the move 

generation required in the second module is directly specific to 

chess. 

The advice module consists, in principle, of many different advice 

. 
tables, corresponding to a subdivision of the tash domain into sub- 

domains, with a master table xiseýd to select the advice table approp- 

riate to the input position. Thus a strategy for a particular end- 

game might require the use of one or more advice tables. 

The package is designed to enable a user to input his specialized 

knowledge of a particular domain in the form of advice tables, in as 

simple a way as possible, without any knowledge of computer 

programming. Thus emphasis is placed on the sirvlicity, transparency 

and case of modification of the knowledge structures used. Each 

advice table comprises a series of rules (in the form of a decision 

table), each rule consisting of a combination of predicate functions. 

For a given input position each rule is scanned in turn, until thý 

first match is found. The result of this match is not an action but 

an advice lists corresponding to one or more pieces of advice. Each 

piece of advice specifies "better goals", "holding goals", "move 

constraints" and a "depth-bound". The search module is then used to 

construct a forcing tree strategy to achieve a "better goal" 

(similar to a better position in Huberman's model), whilst at all times 

satisfying the "holding goals" (similar to avoiding worse p ositions 

in Huberman's terms). The tree of variations is further pruned by 

the use of move constrainis and a fixed maximum depth for each piece 

of advice. Thus the means of controlling the size of the search tree 
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is considerably -more simple in structure than in Huberman's model. 

Having selected a rule, the program tries to generate a forcing tree 

to satisfy the requirements of each piece of advice in the advice 

list in turn, until a tree is successfully constructed. It is intended 

that the advice table should be written in such a way that constructing 

such a tree should alwayp be possible for the first rule satisýfied. 

A special type of "piece of advice" uses an "empty" better goal, 

taking as a "default" being at the full depth-bound distance from the 

root node". This type of advice is used to ensure that the holding 

goal can be maintained for a specified number of moves. In this case, 

only the first move in the forcing tree is used in play, with further 

moves after the opponent's reply found from the table as before. In 

all other cases, the moves held in the forcing tree are u3ed for as 

long as possible. 

Although Ifichie's model is a general one, the work described is of 

an exploratory nature and was not completed at the end of the 

available period for the graduate class. Thus it is impossible to 

say at present how effective the model will prove in practice or to 

judge the numýer and complexity of the rules and "pieces of advice" 

required and the amount of searching necessary for endganes of varying 

degrees of cor. plexity. These considerations would be particularly 

important in conjunction with the aim of optimal algorithms expressed 

in the former paper. 

An. advice table is given for the endgame King and Rook against King, 

consisting of 10 rules formed from combinations of seven predicate 

functions. The ten advice lists refer to a total of 30 pieces of 

advice (24 different pieces), with between I and 5 pieces of advice 

in eacli advice list. 
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The table would seem to be for the side with the Rook only and 

details of four of the predicate functions are given, for exaWle 

"the Rook does not divide horizontally the two Kings". No details 

of the individual pieces of advice Are given. It is not clear from 

the description whether the table represents a complete strategy for 

the side with the Rook, or a strategy for all positions 

satisfying some pre-condition. The table is stated to be "error free" 

for-a uniform depth bound of two ply. This would seem to indicate 

that a forcing tree is always generated successfully, rather than 

indicating the quality of the pr6gram's performance. The program is, 

however, said to produce good play although the level of testing to 

which it has been subjected is not given. Significantly, the table is 

said to'represent only two student - days of work, which is a good 

indication of the potential value of such a structural approach. 

Further tables for King and Pawn against King and Rook (Pav. m on the 

seventh rank only), King and Queen against King and Rook, and King 0 

and Knight against King and Rook were constructed by the Braduate class. 

iiowever, these were not fully completed or tested by the end of the 

available period and no details are given. Work on automatic 

correction of a table in which an incorrect rule had been introduced 

is briefly =ntioned, but it is pointed out that this form of 

"concept learning" is relatively unirportant corpared with the 

automatic optimisation of the advice parts of rules. This latter 

problem was not itself addressed. 

Clearly Michie's approach in this paper has a number of features in 

common with the equivalence class model described in this thesis. In 

particular both are structural models, designed to be of general 

applicabilityg and botý make use of an ordered collection of rules 

(combinations of predicate functions) to classify positions. There 

are however considerable differences in the details of the two models. 
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In view of the -very general nature of Michie's advice lists,, his 

model is probably of potentially wider applicability. However, the 

practical effectiveness of an advice table approach cannot be deter- 

mined at the present time. The greater conglexity involved in 

specifying better goals, holding goals, move constraints and depth 

bounds may prove a disadvantage from the viewpoint of modifying the 

algorithm in the light of its experience in play, particularly so 

for automatic program modification. 

The requirement that whenever a rule is satisfied, a forcing tree can 

always be constructed for one of the corresponding pieces of advice 

may prove a severe constraint on the building of advice tables for 

more complex endgames than King and Rook against King. The use of a 

forcing tree to search for a better position rather than the best 

position available can lead to serious program inefficiencies, as 

discussed in connection with Huberman's work above. In cases where 

the time saved by looking up intermediate moves in a forcing tree, 

rather than finding them using the advice table, -is not significantly 

large, it may be better to find the best position to the available 

depth, perhaps by combining the definition of a "better goal" with the 

use of the equivalent of "associated functions". Retrieving moves from 

a forcing tree also raises the important theoretical problem of 

consistency, since it would be difficult to ensure that the same moves 

would be made if the advice table were used directly. This conside- 

ration is of particular importance if the aim is to implement an 

optimal strategy for any starting position, however no reference is 

made to the issue of consistency in the paper. A particularly signifi- 

cant difference between the advice table model and the equivalence 

class model described in this thesis is that the former uses the 

properties of an initial position as its prinary basis for classifi- 

cation of positions, whereas the latter uses the properties of 
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successor positions (the reisons for týis choice were given in 

Section 2.9 above). 

Neither of the two models could readily be modified to allow a 

corbination of these two approaches without changing its overall 

structure (although Huberman's, Tan's and Zuidema's do so). 
. 

Which decision is the more appropriate, as well as the other points 

raised above, can only be resolved by further experimentation. 

3.6 Conclusions 

The principal previous work in the area of chess endgame playing 

programs, together with Torres' machine and the contemporary and 

ongoing work of Michie, has been described above and discussed in 

detail. In each case there is little information available on the 

extent to which the algorithm has been tested and a detailed eval- 

uation of their relative performances is therefore not possible. 

The present work, however, is principally concerned with three parti- 

cular aspects of the algorithms described. 

How closely do the algorithms correspond to the chess- 

players understanding of the endgame? 

Only for Michie is this a major problem. His model would seem 

to be the only one which, at least potentially, is capable 

of taking "advice" from chessplayers and being applied as a 

general framework for a range of different endgames. Huberman's 

model is also intended to be generally applicable, but the 

resulting algorithms are extremely con4)lex and not amenable 

to an advice-giving approach. 
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All of 'the algorithms given are complex in relation to the 

descriptions and exanq)les given in standard textbooks. In 

general, textbooks make little or no mention of the need to 

_. perform detailed analysis for elenentary endgames and give 

only a small number of explicit general rules, with further 

rules and exceptions embedded in exanples%*. To enable ele- 

rentary. endgames to be represented in the same way by means 

of a small number of simple patterns with little or no tree- 

searching, the choice of model is critically irportant. 

How easily can the algorithms be refined to remove weaknesses 

and errors in their play? 

This problem has not been considered in any detail, although 

Michie gives ease of algorithm modification as one of the 

design aims of his model. Zuidema considers the difficulties 

involved in the refinement process as a serious obstacle, but 

does not relate this to the particular choice of model. 

(iii) How easily could the algorithm's performance be refined auto- 

matically? 

The only attempt at a self-modifying system was made by - 

Huberman as an extension of her general model. Her method is 

not described in detail but would seem to require a great deal 

of preliminary knowledge being given to the program and is 

probably not a practical possibility-in general. 0 

in the following section, an algorithm for the King and Rook against 

King endgame based on the equivalence class model given in Section 2 

is described in detail. 
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4. An alporithm for the endgame'King and Rook against King 

The endgame with King and Rook against King is one of the basic 

endgames given in chess textbooks (e. g. Golowbek (1954), Fine (1941)). 

It is considered elementary by experienced players in the sense that 

after only a small amount of study, White (the side with the R; ok) 

will invariably win without any difficulty against any defence by 

Black. The amount of space devoted to the endgame in a textbook 

will typically be only one or rwo pages, including examples. Most 

textbookst however, omit the ending altogether. All positions with 

White to move are a win as are virtually all positions with Black 

to move, the only exceptions being when Black is already stalemated 

or can immediately capture the Rook. White to move can always prevent 

these situations arising. Clarke (1975) has calculated that, with 

White to move initially, the number of moves needed to checkmate 

against best play by Black is only 16 (i. e. 31 plies) from the least 

favourable position. Finding this shortest win from every position 

is a difficult problem but, of course, an unnecessary one for the 

practical player. The small number of rules given in textbook. 

descriptions appears to suffice for near-optimal play, although no attempt 

made to cater hxhaustively for all possible situations which '6. ei 

occur. 

In view of the above it is perhaps not surprising that the ending 

is never played out in practice (except between beginners), Black 

invariably resigning before it is reached, with the result that 

there have been no practical examples in master play (nor probably 

in competitive amateur play) for hundreds of years. 

What may seem surprising, is that cofistructing an algorithm to solve 

such an apparently eletnentary problem should present any difficulties* 

In fact, however, as the discussion in Section 3 shows, the problem 
has proved very difficult to solve in a satisfactory manner. 
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In this section an algorithm for the King and Rook against King 

endgame is specified, using the model described and discussed in 

Section 2. 

King and Rook against King has been selected as an example 

principally because it is a relatively simple endgame, thus 

enabling the reader to make his own evaluation of the effectiveness 

of the algorithm. 

Since the stronger player has a forced win from every position in 

which ii is his own move initially, no awkward problems of determining 

what constitutes a good move or the best move in a "drawn's position 

can arise, as they may for other endgames. 

The side with the Rook is assumed to be White throughout and the 

algorithm finds moves for White only. 

The algorithm has been derived from an analysis of the information 

given in a nuuber of standard textbooks, together with some initial 

empirical testing and refinements. 

The principal aim for 'White (a checkmate position) and the types of 

position which must be avoided (stalemate positions and those 

in which the Rook is en prise are well known and textbooks 

indicate (by verbal description and examples) the general check- 

mating strategy which White should follow. 
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In interpreting this information with sufficient ýccuracy to 

incorporate it into a computer program, it is clear that a number 

of errors - major or minor - will occur. The process of finding 

and correcting these errors is essentially an iterative one. The 

form of the algorithm described in this section represents a. I 

relatively advanced stage in this process. It appeared to perform 

well in pilO't testing, but no large* scale systematic testing had 

been applied. An example of the initial stages of the analytical 

process for a more complex endg--me is given in Appendix 2. 

The algorithm given in this section has been written primarily as 

an example of bow the model described in Section 2 works out in 

practice, and in this context any considerations of program 

"optimality" or "correctness" in every possible situation are of 

secondary importance. The primary concern is the means by which 

information given in standard textbooks can be embodied in an 

algorithm. Just as different textbooks and different chessplayers 

may employ a variety of different strategies for White, so'there 

are many different but nevertheless valid algorithms which may be 

written using -the basic underlying model. It is largely a matter of 

subjective judgement which of these algorithms is the best. The 

problem of testing the correctness of any particular algorithm is 

a complex one, which will be discussed in Section 5. A. non- 

technical description of the algorithm, suitable for evaluation by 

chessplayers without any specialist knowledge, is given in Appendix 1. 
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4.1 Preliminary details 

Based on an analysis of the rules and examples given in a number of 

textbooks, the set of legal positions with Black to move for this 

endgame has been partitioned into eleven distinct equivalence 

classes. The rules defining these classes and theýr corresponding 

class values are given in Section 4.2, followed by a detailed 

discussion of the rationale for their choice and the configurations 

qf pieces required to satisfy each rule, in Section 4.3. The 

associated functions for each class are given in Section 4.4. A 

detailed example of the use of the move-finding algorithm applied 

to one particular position is given in Section 4.5. The number of 

functions associated with each class is 3, including null functions 

where necessary, and these are denoted by f 11f2 and f3 as in 

Section 2. 

1 

- 4.2 Specif): ing the equivalence classes 

The rules defining meubership of each of the eleven equivalence 

classes for this endgame and the corresponding class values (held 

in column I of the value table) are summarised in the table below. 

As explained in Section 2.3, the basic procedure for finding the 

class of which a given position q is a member is to evaluate each 

rule in turn until the first true rule is found. This rule gives the 

class corresponding to position q. 

. *Wfi6iiev6r the'definition of a specific rule is discussed- it will be 

a6stimed that it'will only'be applied to positions in which all the 

rules are false. ' * ThAs pri. nci. p. l. e will 
. 

be use 
.d 

to sirý). Iify the 

definitions themselves wherever possible. Formal definitions of all 

the rules are given in Section 4.3. 
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Table 2 Equivalence classes for King and Rook against King (initial 

, Llgorithm) 

Class Property of position q (Black to move) Class Value 

I White's Rook is en prise (i. e. may be 

immediately captured) 2 

2 Black is checkmated 11 

3 Black is stalemated 1 

4 Black cannot avoid checkmate in one move 10 

5 The Kings are in vertical opposition (i. e. 

they are two squares apart on the same 

file) and Black is in check along the rank 9 

The Kings are in výrtical opposition with the 

Rook on the rank between them, one file closer 

to the centre 8 

The Kings are two ranks apart with the Rook on 

the rank between them; the White King is one 

file closer to the centre than the Black 

King and the Rook is not precisely one file 

from the White King 

8 The Kings are in vertical opposition with the 

Rook one file closer to the centre 

The Kings are two ranks apart, with the Rook ori 

the rank between them, the Rook controls a 

"good" quadrant 5 

the Black King is confined to a quadrant 

of the board and cannot immediately escape 4 

(Always true) 3 
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From the above table it can be seen, inter alia, that positions 

where Black is checkmated (class 2) are ranked highest of all (all 

ranking takes place from White's point of view), followed by 

positions where Black cannot prevent mate in one move (class 4). 

Classes I and 3 (positions where the Rook is en prise and Black is 

stalemated, respectively) are ranked lowest. These are the only 

two classe's for which White does not have a forced win against any 

play by Black. Which of these two classes is ranked the higher is, 

of course, completely arbitrary. With the order given in the table 

above, stalemate positions are ranked higher and so White will always 

prefer to leave his Rook en prise rather than stalemate Black (it can 

be shown, however, that there will always be other moves preferable 

to both). Rule 11 has been included to ensure that every position q 

belongs to some class. Although the "residual" positions which 

satisfy rule 11 only are intended to be of little 

significance in this case, class 11 is not the lowqst ranked class 

since it is more favourable than either classes I or 3. 

It should be noted that there is nothing in the specification of rule 

7 to avoid the possibility of the Rook being en prise (as in Figure 

6) and nothing in Rule 8 to avoid the possibility of stalemate (as in 

Figure 7). This is taken care of automatically by the order in which 

the rules are tested. Thus Figures 6 and 7 are correctly assigned to 

classes I and 3 respectively. 
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'4,2. 'l' Svmmetrv Considerations 

In general, every King and Rook against King position has seven 

symmetrical equivalents, given by any combination of reflections 

in the four axes shown in the diagram below. 
axis I 

axis 2 

-axis 4 NaxIS3 

This symmetry,, rather than simplifying the definitions of the rules 

produces additional complications, since, for example, a tes t for 

D- 
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stalemate positionsneeds to take into account the possibility of 

stalemate with the Black King in any one of the four corners of the 

board. 

To allow directly for all such possibilities would make the detailed 

definitions of the rules unduly lengthy and the following alternative 

policy has been chosen. 

Each . rule, generally speaking, is specified and defined for one 

ýarticular orientation of the board only (such as "Black King on 

square AV), although the orientation chosen may vary from one. rule 

to another. Thus, for example, the specification of rule 8 is "the 

Kings- are in vertical opposition with the Rook one file closer to 

th , e'ceintre". Figure 8 is an example of a member of class 8. 

In order to ensure that other positions, such as Figure 9 (where 

the Kings are in horizontal opposition,, with the Rook one rank, closer 

to the centre) are included, the convention is made that a position q 

satisfies a givenrule if any of the positions equivalent to q by 

symnetry satisifes that rule. With this convention each class can be 

defined with a suitable ori6ntation of the board in'mind. Thus rule 8 

92 a Ra 
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is defined with the Kings in vertical opposition 'in the left-most 

four files of the board with the White King below the Black King. 

Other *symmetrically equivalent situations are catered for by the 

convention given above. With the rule defined in this standard form, 

its definition is, extremely straightforward and is given in 

Section 4.3.4. 

one important consequence of the symmetry convention is that applying 

any combination of reflections nbout axes of symmetry to a position 

has no effect on its class membership. -This fact is used in the 

algorithm to simplify the evaluation of the truth or falsity of many 

of the rules. The formal definitions in the next section are, in 

general, given in a suitable standard form. To test whether a rule 

given in this form is satisfied by a position q it is necessary, in 

principle, to generate all the positions symmetrically equivalent to 

q and test whether any one of these positions satisfies the rule. 

In practice, however, the amount of -processing involved can be 

g, reatly reduced by a suitable ad hoc combination of transformations 

a nd tests. It must be stressed that coubining transformations*and 

tests in this-way is for purposes of computational efficiency only. 

In principle, the method previously described is entirely sufficient. 

As an example, one way of evaluating rule 8 (table 2) in practice 

would be as foll6ws. 

1. If the Kings are on the same file go on to step 4. 

2o, - If the Kings are on the same rank, reflect the position about 

axis 3 (or 4) and go on to step 

Result is false (go on to next rule). 

If the King's file is in the right-hand half of the board, 

reflect the position about axis 
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5. If the White King is above the Black King, r6flect. the position 

about axis 2. 

6. If the Black King is two ranks above the White King and the 

Rook is one file to the right of the Kings, then the result is 

true, otherwise it is false. 

The transformations used in this sequence ensure that the standard 

form for rule 8, as previously described, is achieved. If the 

KiiLgs are on neither the same file nor the same rank, this will be 

detected at step 3. 

The idea of a standard orientation of the board seems to be one almost 

invariably (and tacitly) employed in chess textbooks. Thus a phrase 

such as "restrict the King to the eighth rank" will be used to mean 

"restrict the King to any edge of the board". The particular 

orientation chosen may vary from one rule to another. With the particular 

set-6f rules used in the algorithm, the number of transformations which 

need to be applied to any position is generally fairly small, since most 

of the rules share the same one or two standard orientations. 

4.3 Defining the rules 

'In 
this section the rules used. in the algorithm are formalized and a 

rationale is given for their choice. None of the definitions to be 

described makes any use of tree-searching. All the rules are defined 

solely in terms of the static features of a position. . 
(Once -again, 

-t 
must be emphasized that it is not claimed either that these rules 

are infallibly correct. or that they are the only possible choice which 

could be made. As will be seen in Section 6, testing the algorithm 

identified a number of points at which improvements could be made. ) 
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4.3.1 Notation 

The notation used for specifying the rules will be that of predicate 

-logic. Although the classes-of positions to be described are, it 

is believed, meaningful to human chess players, neither the 

vocabulary of the English language nor the notation of predicate logic 

is ideally suitable for representing them. Predicate logic has been 

used below since from this form the rules can be readily incoporated 

in a computer program. The most effective (although informal) form 

of rep resentation is a combination of diagrams and text and this is 

the form which is errploy'ed in Appendix 1. 

The co-ordinates WKI and WK2 will be used to represent the position 

of the White King, where WKI is the number of the file (counting from 

left to right) and WK2 is the number of the rank (counting from 

bottom to top) of the square on which the King stands. Thus, if 

the King is on square H2, then WKI and WK2 are 8 and 2, respectively. 

The co-ordinates BK1 and BK2 will be used for the Black King and WRI 

and WR2 for the Rook. (In all cases, the left-hand corner of White's 

first rank is used as the "origin" of co-ordinates. ) 

4.3.2 Rules 1,2 and 3 

Týe inclusion of these rules requires no justification. It should be 

noted, however, that they are defined entirely by pattern matching, 

that is, by considering all the possible situations in which "Rook 

en prise", checkmate or stalemate can occur. This is considerably 

more efficient than using tree-searching in this case. 
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Rule I 

To''test for the Rook being en prise the function dist is used. This 

function takes four arguments, the first and second arguments being 

the file and rank co-ordinates (from 1 to 8) of one square and the 

third and fourth arguments being the file and rank co-ordinates. of 

another. The value of the function is defined as the larger of the 

absolute value of the difference in files and the absolute value of 

the difference in ranks between the two squares. 

Tan (1972) calls this value the block distance. It is essentially 

just the number of King moves needed to move from one square to the 

other. Using this function, 
. 

rule 1 is defined by 

dist (BKI, BK2, WR1, WR2) =1 AND dist -(WKI, WK2, WR1, WR2) > 1. 

In-cases where the squares referred to are both occupied by pieces, 

the'notation will generally be abbreviated by using the names of the 

pieces as arguments, for convenience. Using this convention, rule I 

can be specified by 

dist (Black King, Rook) =I AND dist (White King, Rook) >; 1. 

Rule 2 

The definition of this rule and those of rules 3-9 all require the 

Kings to be exactly two ranks apart with the White-King on a lower 

rank than the Black, i. e. BK2 = WK2 + 2. 

if the Kings are two ranks apart with the White King above the Black, 

or if the Kings are two files apart, this orientation can be achieved 

by a reflection about axis 2,3 or 4.. If the orientation cannot be 

obtained, rules 2 to 9 must all be false and the next rule which 

needs to be considered is rule 10. If it can, an additional reflec- 
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tion about axis I is applied, if necessary, to ensure 
. 
that the Black 

King is to the left of or on the same file as the White King, 

i. e. BKI<_-_14KI, and that if both Kings are on the same file, this lies 

in the left-hand half of 
ýhe'board. 

The only one of the above conditions which will be used explicitly 

when specifying the definitions of rules 2-9 is BK2 = WK2 + 2; this 

is-the essential property of the positions which needs to be satisfied, 

the others are matters of orientation only. Once again it should be 

pointed out that the incorporation of specific transformations of the 

I given position into the algorithm is a matter of computational 

efficiency only. There is no theoretical requirement for it. 

Class 2 consists of positiohs in which Black is checkmated. It is 

clear that there is essentially only one kind of checkmate position, 

with the orientation chosen. The Black King must be in check on the 

eighth rank with the White King on the sixth rank. The two Kings 

must be on the same file, except when the Black King is on the Rook 

file, when a slight variation is possible and the White King can be 

on the adjacent Knight file instead. 

. The rule can therefore be written as: 

BK2 WR2 =8 AND WK2 6 

AND {WKI = BKI OR (BKI I AND WKI 2)) 

Rule 3 

Stalemate positions (again, with the chosen orientation) can occur 

only when the, Black King is on square A8. 
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BKI=l AND BK2=8 AND WK2=6 AND WR1=2 

AND {WK1-1 OR (WR2=7' AND WKI:! 53)} 

(Note that no tests have been included in either rule 2 or rule 3 

to ensure that the Rook is not next to the Black King on the eighth 

rank and thus en prise Testing for Rook en prise first makes this 

unnecessary. ) 

4.3.3 Rule 4 

Class 4 contains'positions where Black (to move) cannot prevent White 

from checkmating in one move. In practice, it seems to be helpfbl 

io, consider these positions as a class in their own right. In many 

cases White can only win by being specifically aware of the existence 

of. these positions. Thus, for example, Fine (1944) remarks of a 

White move. which leads to such a position "the final vanoeuvre, which 

involves-losing a tempo, or move,. should be remembered it is the 

key_. to this mate". 

Inspection reveals that there are only three types of position 

satisfying the rule, exemplified by Figures 10 to 12 below. 
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The rule can be defined by the following fairly complicated expression 

WK2-6 AND BK2-8 

AND QWKI-2 AND BKI-I AND WRI>3) 

OR (BKI-WKI-I AND WRI-BKI-I) 
z! 

OR (WKI-BKI-2 AND WRI-3)) 

(Notice that once again it is not necessary explicitly to rule out 

the cases where the Rook is en prise or Black is already check- 

mated. The ordering of the rules takes'care of such problems. ) 

4.3.4 Rules 5 to 10 

so 
_far, _only 

the three-mo, st fundamental types of position, (positions 

where Black is checkmated or stalemated or where the Rook is 

en prise) have been definedo together with positions where White can 

force checkmate in one-move. 
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The remaining rules, however, can only be justified on the basis 

of an analysis of the checkmating procedure which underlies them. 

This analysis is based on descriptions given in Chess. textbooks 

but the particular inte; rpretation given. to these descriptions can 

ultimately only be validated by empirical testing, such as that 

described in Section 6. 

Hu'Verman (1968) gives a number of general principles for playing the 

King and Rook against King endgame, mainly derived from Capabl=nca 

(1935) and Fine (1944). Part of Capablancals advice is reproduced 

below. 

"The principle is to drive the opposing King to the last line 

on any side of the board ... [With the Black King confined to 

the eighth rank, White should advance keeping] his King as much 

as possible on the same ... file as the opposing King. When 

the King has been brought to the sixth rank, it is bttter to 

place it not on the-same file but on the one next to it towards 

the centre". 

The first part of this advice can be rephrased, with a suitable orient- 

ation of the board, as "drive the Black King to the eighth rank". 

The remainder applies to positions where this has already been 

achieved. Generalising this method to positions where Black has not 

yet been forced on to the eighth rank gives an overall winning 

strategy which is summarised in the following informal series of 

steps. 
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Confine the Black King to a small number of ranks at the 

top of the board, using the Rook to set up a barrier 

along the rank. 

Advance the White King until it is two ranks below the 

Black King and one file closer to the centre. 

If Black "retreats" a rank, advance the Rook one rank and 

continue with step (ii). 

If Black remains on the same rank, but moves towards the 

edge of the board, move the White King one square towards* 

the edge also, still keeping tý7o ranks apart and one file 

closer to the centre. This will eventually force Black 

to choose either (iii) or (v). 

If Black takes the opposition (i. e. moves his King to the 

same file as the White King and two squares apart), force 

him to move back a rank by a check with the Rook and 

continue with step (ii). 

Rules 5 to 10 represent a formalisation of these steps. 

The class values for Classes 5 to 10 are chosen to reflect the order 

of priority of Vhite's goals. White's highest priority in the above 

, series of steps is to force Black's King back by a check where possible 

(step (v)). 

Step (i) on its own is the lowest priority. 

Rules 5,7 and 10 are directly related to the above steps. Rules 6, 

8 and 9 have been included to cater for some other important 

situations which can arise when implementing White's general strategy. 
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The most significant of these seems to be the importance for White 

of maintaining a position with the Kings two ranks apart, and the 

Rook on the rank between them (although this is not his highest 

priority). This point is not usually explicitly mentioned in text- 

books 
. 
(see for example Pine (1941 and 1944), Golombek (1954) and' 

Capablanca, (1935)). 

, Rule 5 

Rule 5 corresponds to step (v) of the above'description. Class 5 

consists of positions where the Kings are in vertical opposition and 

Black i*s in check along the rank (see Figure 13). 

When the Black King is on the Rook file, the White King can be on 

the adjacent Knight file instead, as in Figure 14. 

I") r% aA 
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The complete rule can thus be written as 

(BK2=WK2+2) AND (16YR2=BK2) 

AND {WKI=BKI OR (BKI=l AND WKI=2)1 

This rule is, in fact, identical to rule 2, except that the Black 

King and the Rook are not on the eighth rank. 

Rule 7 

Ignoring rule 6 at present, rule 7 corresponds to the "chasing" 

process in steps (ii) and (iv) of the description of White's strategy. 

The Kings must be two ranks apart with the Rook on the rank between 

them. For simplicity this condition (BK2=WK2+2 AND WR2=WK2+1) 

will be denoted by the predicate function chase. (This function will 

ýalso be used by some of the rules which follow. ) Apart from the 

function chase being true, the White King must be pne file away from 

the Black King and should be closer to the centre, since the intention 

is to chase Black towards the nearest (vertical) edge of the board. 

The case where the UNite King is on one centre file and the Black King 

is on the other will be included, since Black will then be "forced" 

to move towards an edge. This gives the further condition 

BKI: ý4 AND I? KI=BKI+l. 

Figure 15 is an example of a position in class 7. Black must now 

. give ground, for example by K-A5. If he plays to C5 instead, he 

will be forced back by a check (R-F5). 
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The definition of rule 7, is still incompletý, however. It is 

a fundamental requirement that if Black should play from the 

specified position on to the same file as the White King (still 

two ranks apart), White should be able to force him back with a 

check. For this reason it is necessary to exclude positions where 

the Rook is one file to the left or one file to the right of the 

White King. Thus, for exampleg Figure 16 must be excluded since, 

if Black now plays K-C7, White cannot force-him back by R-D7 ch, 

since then the Rook`isýen prise Putting all the above conside- 

ra I tions together, rule 7 can now be defined by 

chase AND BKI: 94 AND WKI-BKI+I 

AND abs (WKI-WRI)il 

where abs is'the absolute value (or modulus) function. 

(Note that on some occasions the Kings may be two files as well as 

two ranks apart with the Rook 6n the file between them. In this case, 

a reflection about axis 3 will make chase true and maintain the 

desired orientation as before. ) 



Rule 6 

Class 6 has beenincluded (ranked higher than class-7) to allow-for 

positions such as. Figure'17. - 

In this position White. 's boat move is probably K-B5 not R-H6, say.. 

which would. give &'posi'tion, in class 7. Class 6 contains positions, 

such'as Figýre 18, where chase is true and the two, Kings are on. the 

same file with thellook one file closor-to the. centre (including the 

case where the Kings'are an one-contre file and the Rook is on the 

other). 

Rule, 6 cin be defined as follow$ 

chase "AND (WimIKI) AND (WRI-WKI+I) 
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Rule 8 

Class 8 consists of positions similar to those in class 6, except that 

the Rook is not on theýrank between the two Kings. (If it were, 

the positions would be members of class 6 instead. ) 

Figure 19 is an example of a member of class 8. 

Rule 8 is defined as follows: 

(BK2-WK2+2) AND (WKI-BKI) AND (WRI-WKI+I). 

Rule 9 

Class 9 contains all the positions not in any of the previous classes 

where chase is true and the. Rook controls a "good" quadrant. The 

notion of a "good" quadrant used by theprogram I is based on ideas 

developed by Huberman (1968), with some, modificationse Huberman 

introduces the concept of the Rook controlling a 
-quadrant of the board 

in the following words: 

rlb In 
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"as long as the Black King is not in check it is held in some 

area of the board by the Rook [called a quadrant]. ... If the 

White King is not on the boundary of the area, the Black King 

can escape only by attacking the Rook. If the White King is 

outside of the area...., it is able to protect the Rook from 

such an attack if it is close enough. It can't be blocked 

from protecting the Rook by the Black King". 

Thus, in Figure 20, the Rook's quadrant comprises the 20 squares 

which lie in the area indicated (ranks A to E, files 5 to 8, inclusive). 

Following Huberman, a function squad is defined, the value of which 

t is the number of squares inside the quadrant (thus squad is 20 for 

Figure 20). This function will'be used in Section 4.4. 

20 

k 

K 
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For the purposes of the move-finding algorithm the Black King is 

restricted to being entirely inside the Rook's quadrant, that is, 

it must not be on the same rank or file as the Rook (Huberman's 

condition that Black should not be in check is somewhat weaker than 

this). The White King must be completely outside the quadrant. 

The quadrant will be called "good" provided that the Black King is not 

closer to the Rook than the White King (since otherwise it could 

attack the Rook and force it to move away). This condition will be 

denoted by the predicate. goodquad (again using Huberman's terminologyt* 

but with slight differences of definition). 

Rule 9 can now be defined by 

chase AND goodquad 

This rule ensures that *Black is restricted to a fairly small area of 

the board and that be cannot attack the Rook and force it away. 

(The associated functions described in Section 4.4 are used to ensure 

that the area is chosen to be as small as possible. ) 

All that remains is to define the predicate function goodquad 

Since the conditions defining chase must always be satisfied for this 

rule to be true, the White King can automatically be taken to be 

outside the Rook's quadrant and the definition of goodquad for this 

present purpose can thus be simplified accordingly. 
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To ensure that the Black King is actually inside a qua drant (i. e. 

not in check along the file) a standard orientation of the position 

with BK15WRI (i. e. with the Black King on the left of or on the same 

file as the Rook) is taken, applying a reflection about axis I if 

necessary. 

(After this reflection the White King need no longer beito the right 

of or on the same file as the Black, but this fact will not be 

significant. ) The King will then be inside the quadrant if BKI<WRI. 

The definition of goodquad can now be written as 

BKI<WR1 AND dist (Black King, Rook) ý: dist (Whiteý King, Rook) 

where dist is the"'block distance" function used for rule 

t; ons3. aer: Lng r-Lanisca w-J-9 4--l, L00 j La 8Lven Lne nignesc 

class value since it corresponds to the most important step (v) Of 

White's strategY. 
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The example in Figures 17-18 demonstrates the need for class 6 to 

be ranked above class 7, and Figures 21 and 22 are given here to 

illustrate the order of ranking chosen between classes 7,8 and 9 

as well as the significance of the inclusion of the two latter 

classes in the algorithm. 

In Figure 21, it would seem that White should play K-C5 giving a 

class 7 position, in preference to R-C5 (class 8). In Figure 22, 

Mite should probably choose K-G4. (class 8), not K-E4, E5 or E6 

(class 9). The overall prder of ranking between classes 5-9 is 

5(highest), 6,7,8,9 (lowest). 

Rule 10 

Class-10 contains all the significant positions not previously 
6 

ventioned. It corresponds to steps (i) and (iii) of the strategy 

. given aboveg i. e. "confine the Black King to a small number of ranks 

at the top of the board, using the Rook to set up a barrier along 

the rank". In fact, however, the rule and its associated functions 

serve to cause Black to be confined to a limited number of ranks or 

files, whichever is the smaller in any particular situation. 

The rule itself merely ensures that Black is confined to a quadrant, 

the associated functions are used to ensure that the number of ranks 

to which he is restricted (or the number of files, whichever is the 

smaller) is as small as possible. 

The rule permits the White King to be anywhere on the board with the 

sole exception that it may not be on the same rank or file as the 

Rook on the rare occasions-when this would enable the Black King to 

move on to the sam6 line, using the White King as a shield against 
ý. j 

the action of the Rookq and thus leave the quadrant. 
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Taking a standard orientation with BKI: 5URI and -BK2-zWR2 (i. e. the 

Black King not to the right of and not below the Rook), applying 

reflections about axes I and 2 if necessary, the rule can be defined 

as follows: 

WR1>BKI AND WR2<BK2 

AND NOT (WK2-WR2 AND BK2=WR2+1 AND BKI<WKI<WRI) 

AND NOT (WKI=WRI AND BKI=WRI-I AND BK2>WK2>6M) 

(Note that the condition-BK2=WK2+2 and the orientation described under 

rule 2 do not apply to this rule. ) 

4.3.5 Rule II 

Class 11 contains all the "residual" positions which do not belong 

to any of the other classes. In this case,. it is expected that the 

successor position selected as "best" by the algorithm will seldom or 

never belong to this class, since the definition oT rule 10 is so 

broad that it is likely that White will at worst always have some 

move at his disposal which gives a successor position in class 10. 

The definition of rule 11 is simply the logical value true. 

4.4 Defining the associated functions 

As described in Section 2.4, the ranking between positions in the 

same equivalence class is determined by means of the associated 

functions for each class. For this endgame, a total of five functions 

are defined, each having an index number in the range I to 5 

inclusive. The five functions are defined below. They are all 

relatively simple geometric properties of a position. 
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For convenience)the definitions 

simplified by assuming that the 

above . the rank of the Rook. Th 

definitions of the classes (7,9 

associated. Once again this is 

convenience. 

of functions 
.1 and 2 have been 

Black King is confined to a quadrant 

is condition is implied by the 

and 10) with which the functions are 

purely a matter of computational 

Function I is used to ensure that the number of ranks or files 

(whichever is the smaller) to which the Black 17, ing is restricted by 

the Rook is as small as possible, for class 10. It is defined by 

8- min ((WRI-1), (8-WR2)) 

Function 2 is used to ensure that the Black King is confined to as 

small a quadrant as possible, for. classes 7 and 9. It is defined by 

50 - squad 

where squad is the number of squares in the quadrant occupied by the 

Black King. 

Squad can be calculated by 

(8-WRO x (8-WR2) where WRI<BK1 

and (WRI-1) X (8-WR2) where WP, 1>BKI 

Function 3 is used to make the file difference between the Kings as 

small as possible, for class 9. It is defined by 

abs (WKI-BKI) 
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Function 4 is used to make the block distance b6tween the Kings, 

i. e. the larger of the file difference and the rank difference, as 

small'as possible, for class 10. It is defined by 

8- max fabs(WKI-BKI), abs(WK2-BK2)) 

Function 5 is used to make the smaller of the rank difference and 

the'file difference between the Kings as small as possible, for 

class 10. It is defined by 

tabs (LTKI-BKI), abs(WF, 2-BK2)) 

Thle'functions have been defined so that their values are all positive 

or zero integers. The value of function 2 is less than 100, the 

values of the others are less than 10. 'A suitable choice for the--i; 

constant K, introduced in Section 2.6, is therefore 100. 

4.4.1 The functions associated with each class 

ab 

For each equivalence class, the index numbers of the associated 

functions are held in thi corresponding row of the value table; 

functions fIIf2 and f3 being held in columns 2,3 and 4, respectively. 

The complete value table for this endgame is shown below. 
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Table 3 Value table for King and Rook against Krng (initial algorithm) 

Row/Column 1 2 3 4 

Class: Class value f1 f2 f3 

1 2 0 0 0 

2 1 0 0 0 

3 1 0 0 0 

10 0 0 0 
5 9 0 0 0 

6 8 0 0 0 

7 7 2 0 0 

8 6 0- 0 0 

9 5 2 3 0 

10 4 1 4 5 

11 3 0 0 0 

(A zero entry denotes a "null function", i. e. a function with value 

zero for any position. ) 

From the above table it can be seen that only three of the equivalence 

classes (classes 7,9 and 10) have associated functions, although for 

a more complicated endgame, it is possible that many or all of the 

classes will have associated functions. 

Functions fl, f2 and f3 are principally used to discriminate between 

two successor positions belonging to the same class. Since it can 

be proved that there are no positions'from which White has a choice 

of two different checkmating moves, no discrimination is needed for 

class 2. Similar considerations can be shown to apply for clasýes 5 

and 6. Although in some positions White can choose more than one way 
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to stalemate Black or leave his Rook en prise, there are always 

better moves available. Thus, a class 3 or class I position will 

never be chosen as best so there is no particular advantage in 

discriminating between positions in those classes. Similarly, there 

is little point in discriminating between class 4 positions (where 

Black cannot avoid mate in one). In Figure 23, for example, White 

can achieve a position in class 4 by any one of the five moves 

R-D6j, R-D5, R-D4, R-D3 or R-D2, since after any of these Black Bust 

play K-B8 whereupon White wins by R-D8 mate. All of these five 

initial moves are equally good, by any non-, 4rbitrary criterioli, 

however it would be possible to ensure that White played I. R-D6 not 

I. R-D5 (or D4, D3 or D2) simply by defining a-new function (function 6) 

with value WR2 (that is, the number of the rank on which the Rook 

stands)v and entering a6 in column 2 of the fourth row of the value 

table. 

A similar method could be used to discriminate between positions in 

classes 8 and 11, but no practical cases have so far been found 

in which such discrimination would be worthwhile. 

13 11 
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The functions used to discriminate between positions in classes 7, 

9 and 10 will be described-in detail in the following sections. 

4,4; 2 Class 7 

Discrimination between positions in class 7 is made on the basis of 

function 2 only, that is the position is chosen which gives the 

smallest value of squad (the number of squares in the quadrant to which 

the King is confined the definition of class 7 ensures that the 

King must be confined to a quadrant, not necessarily a "good" one). 

Using this function, %iie'will play I. R-D6 in Figure 24 (giving a 

quadrant of 6 squares), ' in preference to I. R-F6 (giving a quadrant 

of 10 squares). 

4.4.3 Class 9 

Discrimination, between positions in class 9 is made on the_, basis,, 

firstly,, of choosing the position with the smallest value of squad 

(function 2) and, if this is not sufficient to discriminate between 

the positions, secondly of choosing the position with the smallest 

value of the file difference between the two Kings (function 3). 

"w. 13A 
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Thus in Figure 25, white plays I. R-D5, restricting Black to a quadrant 

of 9 squares. Playin& I. R-E5,, P5 or R5 would give a larger value of 

squad. 

In Figure 26, White chooses 1. K-D4 not I. K-E4. Either move produces 

a position in class 9, with the same value of squad i. e. 9. For 

the move 1. K-D4, however, the file distance between the Kings is 2 

cbmpared with 3 for I. K-E4. Thus 1. K-D4 is chosen. 

4.4.4 Class 10, 

Discrimination between positions in Class 10 is made by choosing the 

position which has the smallest value of the following: 

(i) the number of ranks or files to which the Black King is 

confined by the Rook, whichever is the smaller (function 

the block distance between the two Kings, i. e. the file or 

rank difference between the Kings, whiý--hever is the larger 

(function 4); and 

IL, tAl 
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(iii) the file or rank difference between the Kings, whichever is 

the smaller (function 5). 

(14ote that (ji) is only used if (i) is insufficient to discriminate 

between the positions and (iii) is only used if both M and (ii) 

are insufficient. ) 

Using the two functions 4 and 5 in the above way is a means of making 

precise the idea "minimize the distance between the Kings". 

In Figure 27, White plays R-A7 restricting Black to only one rank at 

the top of the bbard. 

In Figure 28, White must choose between King moves'to A3, "A4, AS, B31, 

B5, C3, C4 and C5, any of which would give a position in class . 10 

with a value of 7 for function'l (since Black is restricted to one 

rank). Of these squares, A5, B5. and C5 all give equal values of the 

smallest block distance 
. 
(i. e. 3). Thus function 5 is finally used to 

distinguish betwee n these three remaining possibilities and K-C5 is 

choseng giving a value of 7 for function 5. 

"1 0312 &if 457 
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4.5 Exanple 

As a detailed example of'the use of class values and the associated 

functions in the move-finding algorithm, consider the position given 

as Figure 29 below. 

Whitets problem here is to make progress towards the checkmating 

position while preventing Black's King from "escaping! ' to the other 

side of the board. 

if White plays R-F6ch or R-G6 etc., then Black simply plays K-E7, 

If White instead plays R-E5. then Black plays &-G7 and White can do 

no better than move his Rook back to E6 allowing Black to repeat 

Figure 29 by K-F7* 

The winning manoeuvre is I. K-E5, and if Black replies K-G7, 'then 

2. R-F6 confining the King to a quadrant of only four squares. 

With this discussion in mind, a table of legal White moves from the 

position given in Figure 29 is set out belowq together with the class 

and position value of the successor position corresponding to each 

move. 

29 
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Table 4 Initial alEorithm: an exaTrple of move selection 

Move - 
class of 
successor 

Position value 
of successor 

Comments 

K-G5 1 2000000 Rook en prise 

K-G4 1 2000000 Rook en prise 

K-F4 1 2000000 Rook, en prise 

K-E4 1 2000000 Rook en prise 

K-E5 7 7440000 Squad is 6, so value of function 2 

is 44 

R-E7 1 2000000 Rook, en prise 

R-E8. 1 2000000 Rook. en prise 

R-F6 11 3000000 "Residual" position 

R-G6 9 5380800 Value of function Kings on same 

(50-squad)=38 file, so value 

R-H6 9 5360800 Value of function 2 of function 3 

is 36 
%0 

is 8. 

R-E5 8 6000000 he Kings are in vertical opposition 

R-E4 8 6000000 
with the Rook one file closer 

R-E3 8 6000000 to the centre - with no associated 

R-E2 8 6000000 functions. 

R-El 8 6000000 

R-D6 9 5420800 50-squad is 42 
Kings on same file 

R-C6 9 5400800 50-squad'is 40 
. '. so value of function 

R-B6 9 580800 5 50-squad is 38 
ý ' 3 is 8. 

R-A6 9 5360800 50-squad is 36 

White's move K-E5 leads to a position in the highest ranked class 

(class 7) and is accordingly chosen as best. 
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4.6 Discussion 

0 

In terms of the objectives set out in Section 1. this section has 

demonstrated that, at least for a relatively simple endgame, an 

algorithm can be constructed using the overall framework of the model 

described in Section 2, which relates directly to . the descriptions 

given in standard textbooks. 

Moreover, it is reasonable to say that the complexity of the algorithm 

is commensurate with the apparent complexity of the problem. 

Msapping a position with Black to move to cne of the eleven equivalence 

classes requires a maximum of ten tests and only one assignment. 

Finding the value of each associated function required involves only 

a sin? le arithmetical calculation. To find White's move in any given 

position, this process needs to be carried out once for each possible 

successor position (22 at the most) and the most favourable position 

- value chosen. The total amount of computation required is therefore 

very smal-I and an initial heuristic-pruning of White moves would 

reduce this still further. The algorithm given makes no use of tree- 

searching which fits in well with the observations made previously 

that the strong player's ability in endgame play is based'far more. 

on an extensive knowledge of significant patterns than on powers of 

deep analysis and that textbook descriptions of King and Rook against 

King make little or no mention of the need to perform detailed analysis. 

As was pointed out at the beginning of the section, the form of the 

algorithm given here was arrived at by ýn iterative pro. cess of 

successive refinement. 
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A small test file of positions derived from a number of textbooks 

was used to monitor the performance of the program at each stage. 

Since checkmate, stalemate and "Rook en prise" positions have been 

identified individually as equivalence classes, with suitable class 

values, it is safe Ito say that the program will never miss a check- 

mate and will never give stalemate or leave its Rook en prise, since 

it can easily be proved that there are always other better alter- 

natives available. 

libe inclusion of class 4 ensures that a checkmate in two moves is 

also never missed. 

The general strategy is embodied in rules 5 to 10, with class 11 

intended to contain only unimportant and insigidficant positions. 

Although it is expected that positions in classes 1,3 and 11 will never 

be selected as best by the program, the first two play an' important 

part in enabling the program to avoid disastrous corbinations and the 

third ensures that every position must belong to some class and thus 

ensures that the algorithm will always produce some valid move in any 

position irrespective of the choice of the other classes at any stage 

of the iterative process. 

The exact ordering of the rules given in the algorithm is to some 

extent arbitrary and has been chosen to simplify the definitions where 

possible (for exanple, by testing first whether the Rook is en prise 

By contrast, the order of class values is intended to be significant 

and to reflect the relative importance of each of the features of a 

position concerned. 
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Having demonstrated that the model can be used in this case to 

produce a reasonably good algorithm, what remains is to demonstrate 

that the model is also applicable to other endgames, 

to investigate how readily such algorithms can be improved in the 

light of testing and to examine the possibility of mechanizing this 

process. 

These aims are addressed in the following sections. 



Testing the algorithm: I- some problems of testing correctness 

. 
The discussion given in the previous section provides some justification 

for the choice of algorithm. However, the question naturally arises, 

how could a program embodying this algorithm (or any other similar 

program) be proved to be correct? The discussion here is confined to 

programs for King and Rook against King but the argument is equally 

applicable to other chess playing programs. 

My King and Rook. against King position with White to move is a 

theoretical win for White and any move which does not give stalemate 

or leave the Rook en prise maintains the win. Nevertheless, it is 

clear that White cannot win simply by playing a series of win-pre- 

serving moves; he must rake progress in some way, towards a checkmate 

position. Four qualitative levels of program can be identified in the 

case of King and Rook against King: 

optimal programs, where in any given position White always 

chooses the move leading to the most immediate checkmate 

against Black's best defence (the minimal path move); 

(ii) sub-optimal programs, where White always wins, but not 

always in the smallest possible number of moves; 

(iii) programs where White always plays win-preserving moves but 

fails to achieve checkmate from some positions; 

programs where in some positions White stalemates Black 

or leaves his Rook en prise. 

In the general case, these four levels can be classified as 
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optimal, 

sub-optimal (making progress towards the most favourable 

outcome from every position), 

resul t-pre serving' but failing-to-make progress -from at leapt 

one position, 

Uv) incorrect (failing to maintain the most favourable result in 

at least one position). 

4) and (ii) can be consideted corr Programs at levels (. L ect, those at 

levels (iii) and (iv) are incorrect. The! program described in 

Section 4 would appear to belong either to level (i), level (ii) or 

possibly level (iii). It certainly does not belong to level (iv), 

since a move which gives stalemate or leaves the Rook en prise will 

never be chosen, as noted-in the previous section. 

A conceptually simple approach to proving a program optimal (level 

(i)) would be to establish a look-up table containing the minimal path 

move in every legal position with White to move (assuming that these 

moves were known by some external means). To test whether a given 

program belonged to level W, it would then be necessary to generate 

its move in each legal position in turn and compare these moves with 

those in the table. 

Even for a relatively simple endgame, this kind of exhaustive testing 

would be a substantial computational task. An additional difficulty 

is-presented by the fact that there are a large number of positions in 

which White has a choice of equally. good "best" (i. e. minimal path) 

moves and hence there are a correspondingly large number of equally good 



-112- 

"optimal" programs belonging to level (i). In order for each of these 

programs to be verified and found correct, it is necessary for the 

look-up table to contain not only one, but all of the minimal path 

moves in each position. 

Even then it would not be possible to determine whether a program 

which occasionally played moves not present in the table belonged to 

level (ii) or level (iii), that is to distinguish between correct (but 

not perfect) play and incorrect play. 

Clarke (1975) has set up databases which enable all the minimal path 

moves in each legal position to be calculated for the two endgames 

King and Rook against King, and King and Pawn against King, and some 

experimentation based on the latter is described in the second part of 

this report. 

However, to test an algorithm fully. using even such relatively small 

databases is a substantial project. For more complex endgames, the 

number of positions to be stored will generally be much larger'and the 

time taken both to set up the database and to validate an algorithm 

using it is likely to become prohibitive. 

If the possibility of automatic proof of the absolute correctness of 

a program has in. general to be discounted, then the evaluation of a 

program must inevitably be based on the subjective opinions of expert 
C- 

chessplayers. 

This too presents a number of difficulties. 



It is virtually inconceivable that even the most expert of human 
IiI 

players could infallibly determine whether a given program belonged 

to level (i) or level (ii), even for King and Rook against King. 

(The discussion of Figure 51 in Section 7 is relevant here. ) 

To take an extreme case, it may be necessary to decide that a move 

generated by the program (which mates in 16 moves, say, against best 

play) is slightly inferior-to a single alternative*1 which leads to 

mate in 15. Such judgements are probably too fine even for expert 

chessplayers and are, of course, of no importance in actual play. 

Identifying a program as belonging to level (iv) is a relatively 

straightforward problem of searching for an example of a drawing 

move made' by White, but determining whether a program belongs to 

level (ii) or level (iii) is more complex. Consider, for example, 

Figure 29 (which is repeated below for convenience). 

As was shown in Section 4.5, the move played b'y, the program in this 

position is K-E5. If Black now plays K-G7, the resulting position 

ul 90 
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is given in Figure 30. The move the program chooses in this position 

is now, in fact, R-F6, restricting. Black to a quadrant of only four 

squares. 

There is no doubt, however, that any White move in this position will 

win (except R-G6 or R-H6). Suppose that for some program the moves 

played are k-E5 in Figure 29 but K-F5 in Figure 30. After this 

second move, White. still has a forced win against any play by Black, 

but it is Black's move and if he plays K-F7 the position is now 

identical to Figure 29. 'White would again play K-E5 and Black could 

choose to reply K-G7 returning to Figure 30 and the sequence would 

continue as before indefiniýely. 

What has gone wrong in this situation is not: that White has made any 

particularly bad moves (be has a forced win at every stage! ), but 

that he has failed to make any progress. 

As long as Black does not vary the sequence, White will cycle 

continuously between Figure 29 and Figure 30. (Whether or not the 

three-; -fold repetition of position drawing rule is implemented is 

irrelevant here. The program would evidently have failed. ) Although 

this is a fairly simple example, it would be possible to'create 

examples of longer cycles of seemingly plausible moves. This 

phenomenon of cycling is, in fact, a commonly occurring problem for 

this kind of endgame. Cycling and "failing to make progress", in 

general, produce difficulties when attempting to judge any move- 

finding algorithm. Each individual move in a sequence may be good 

but the result of the complete sequence may be that no progress has 
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been made. (Human chessplayers also find cycling'a problem, but are 

sufficiently flexible deliberately. to vary the sequence to break out 

of the cycle. ) 

To determine whether a given program belongs to level (ii) or 

level (iii) the human chessplayer must be able to detect such cycles. 

This can only be achieved by looking not at individual moves in 

isolation but at sequences of moves, with a corresponding increase 

in the complexity of testing. 

In practice, it would seem that to prove the absolute correctness of 

a program is prohibitively qifficult and the best that can be 

achieved is some approximation to this ideal. A variety of different 

empirical methods of program testing are employed in the sections 

which follow. 

I 
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Testing the algorithm: II - empirical investigations 

As an experiment, a program embodying the King and Rook against King 

algorithm described in Section*4 was made available to Open 

University students at Mathematics Faculty Summer Schools in July- 

September 1975. Students were allowed to set up an initial position 

either of their own choosing or generated at, random by the program, 

and to play on from that position until either they were checkmated 

or they terminated the game. The program had the Rook and made the 

first move in every case. Students were invited to report any 

interesting occurrences and all games played were automatically 

recorded on file for subsequent testing and inspection. The exercise 

was repeated a few months later at two "open days" attended by members 

of the council of the open University and the general public. 

The purpose of this testing was essentially twofold. Firstly, as 

an empirical test of the algoiithm. described in Section 4. Although 

the algorithm was created primarily as an example of the means by 

which information derived from textbook descriptions and examples 

could be incorporated into an algorithm within the framework of the 

model described in Section 2, it was hoped that the algorithm would 

be correct (in the sense of playing well by human standards) in the 

great majority of cases. 

As was-pointed out'in Section 4, in creating any algorithm of this 

kind it is inevitable that some errors, either major or minor, will 

be made and the second objective of this testing was to examine how 

easily any errors found in the program's play, cýould be corrected by 

changes to the algorithm. 
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one important criterion in the evaluation of the model was that it 

should be possible to make such corrections with only relatively minor 

changes to the algorithm. The poss ibility and the desirability of 

improving a program to play perfectly in all positions will be 

considered in later sections. At this stage the principal concern 

was to check and, if necessary, to improve the program's play such 

that it perf. ormed well, by human standards, in,. every position with 

which it was presented. 

Several hundred games were played Agains, t the program, by players of 

all levels of ability from beginners to national championship 

standard, comprising a total of 2486 positions with the program 

(White) to move. A fairly large number of examples of poor play by 

the program were identified, either by the human opponents themselves 

or by subsequent analysis of the games played. 

However, the changes needed to the algorithm to remedy these problems 

turned out to be very small, as a closer inspection revealed that 

almost all of the difficult positions could be grouped together-in a 

way which relaped directly to the equivalence classes used in the 

original algorithm. A number of small changes were made to the 

definitions of the equivalence classes or their associated functions 

and three new classes were added to cope with some particularly 

difficult situations and to produce significantly stronger play in 

others. 

A description of the problems encountered and the corresponding 

changes made 'is given below, followed by a summary of all the changes 

made to the original algorithm, the revised algorithm in tabular form 

and a description of the basic primitives of which the revised rules 

and associated functions are composed. 
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The changes made to the original algorithm and the revised version 

-are discussed further'In Section 7. 

. 
6.1 Týe problems identified and the solutions irVlemented 

(1) Specifying as mall quadrant 

one principle underlying the definition of class 9 is that Black 

should be restricted to a small quadrant of'the board. Towever, it 

became clear that the definition of rule 9 was insufficient to ensure 

this, as will be seen from the following examples. 

Figure 31 is typical of a large number of instances in which the 

program played a poor move. 

I The game continued from this position 

1. 'ý R-G5, K-E6; 2. R-F5. 

Both white's moves here are poor. They are played because the 

resulting positions are classified as members of'class 9 and there- 

fore better than the positions arising, after the alternative K-F4 on 
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either White's first or second move (both class 10). The principle 

behind the definition of class 9 is that Black should be restricted 

to a small quadrant of the board, but after 1. R-G5, for example, 

the quadrant consists of as many as six files. 

In Figure 32, White played 1. R-E2, again resulting in a Class 9 

position, thisýtime with Black restricted to six ranks of the board, 

the superior 1. R-H4 resulting only in a (lower ranked) class 10 

position. 

Figure 33 shows an extreme case where after l.. R-H2 Black is 

"restricted" to no fewer than 42 squares of the board! 

In all of these examples, the program merely played poorly but never- 

theless won in the end. However, there were a few instances in 

which it even led to a draw. Thus- in Figure 34 play continued 

w 33 02 
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1. K-B3, K-E-4; 2. K-C2 (Whitels'move in each case 'giving a Class 9 

position) and Black then returned to the original position by 

playing K-D5, with a repetition of moves following. In this case the 

program's play was not merely poor but incorrect, in the sense of 

failing to lead to a win. To improve the program's play the definition 

of Class 9 was altered to exclude the kind of position arising in the 

above variations. The additional restrictions were made that a 

position should only be included in Class 9 if-Black was restricted 

to a quadrant of no more than four ranks and four files. With the 

orientation adopted for the definition of this class, these conditions 

can be written as 

(WR1: 55) AND (BK22: 5). 

With this change, taking the example of Figure 31, the positions 

after 1. R-G5 and 1. K-F4 are now both members of Class 10 and will 

be decided between on the basis of the functions associated with that 

class (and in fact 1. K-F4 will be chosen). & 

(2)__ Restricting Black to the top half of the board 

Following the change described above to the definition of rule 9, it 

became clear that the definitions of rules 5 to 8 also needed 

refining. In each case the White King is (by definition) two ranks 

below the Black and it is White's aim steadily to force Black back 

towards the top of the board. This strategy is unlikely to be the 

most effective way of winning unless Black is already in the top 

half of the board. 
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Figure 35 shows a'typical example. Here White played the weak move 

1. R-H2 (giving a position in class 7), with the Black King 

! 'restricted" to the top six ranks of the board. To avoid such 

situations, an overall change was made to the definitions of 

classes 5 to 8, the following additional condition being added 

BK2Z: 5. 

Figure 35 is, in fact, typical of a number of positions which it is 

difficult to handle efficiently by the "chasing" process alone. 

S uch positions are discussed in (5) below where a different method 

of play is introduced. With the changes given there, White's move 

in Figure 35 will be 1. K-D2. 

(3) Keeping the Rook at a distance 

The three associated functions for class 10 proved to be insufficient 

in some situations and a fourth one was added. 

ul IN, 
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A draw by repetition of position occurred in the play arising from 

Figure 36. 

Here White had to choose between moving his Rook to D5, D4, D3 and 

D2. In each case the Black King is restricted to only 3 files 

(giving the largest available value of function 1), and the Kings 

, are the same distance ap'artý 

Thus'the values of functions 1,4 and 5 were the same and the 

program', s move was chosen 'arbitrarily '. by selecting the first of the 

,, tied 'best' moves to be generated (by the legal move-generator) as 

the one to be played. Rook moves are generated in the program in the 

following, order: 

moves forward alopg the file, 

(ii) moves to the right along the rank, 

moves backward along the file, 

(iv) moves to the left along the rank. 
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In each stage, moves of the smallest number of steps from the 

original position are generated first. 

In this case the first of the four Rook moves to be generated was 

R-D5 and this was accordingly White's move. Black now played K-C6 

giving Figure 37. i 

Again White had to choose'amongst four Rook moves, to D8, D4, D3 and 

D2, which led to tied Class 10 positions. In this case the first 

generated was R-D8 and this'=ve was played. 

Black now replied K-C7, returning to the original position, with 'a 

repetition of position to follow. 

A longer sequence of moves leading to repetition of position occurred 

in the play from Figure 38, which continued: 

Ut ft- 
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1. R-G4, K-113; 2. R-G5, K-H4; 3. R-G6, K-H5; 

4. R-G7, K-H6; 5. R-G8, K-H7; 6. R-G5, K-H6; 

R-G8, K-H7 etc. 

One possible solution to this problem which would avoid the need to 

introduce a further associated function for Class 10 would be t-o 

choose in the case of a tie, not the first generated but the last 

generated of the tied moves. However this solution, although avoiding 

repetition of position, still leads to weak play in some positions. 

For example, in Figure 39 the program will then play the weak first 

move 1. R-Gl, although after Black's -reply K-H2 it will choose the 

correct second move R-G8 and thus avoid the repetition of position 

which occurred'above. More. fundamentally, since any method of 

resolving ties is essentially arbitrary, such a method should be used 

only when the choice is genuinely arbitrary and not, as in this case, 

when one of the "tied" successor positions is much more favourable 

than another. Since the difficulty here arose in connection with 

resolving ties between successor posItions in Class 10, the solution 

adopted was to introduce a fourth associated function, with value 

the block distance between the Black King and the Rook, i. e. dist 

(Black King, Rook), rather than changing the definition of rule 10 

or any of the other three functions. With this change, the program 

plays correctly in the positions given, for example in Figure 39 the 

first move is 1. R-G8. Note that with this change it is also 

necessary to associate a fourth (null) function with each of the other 

equivalence classes. 
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The Black King in the corner 

, Difficulties arose in connection with stalemate possibilities in a 

, small number of cases similar to Figure 40. (The same effect would 

-occur with the Rook on anyýone of the squares Bl, B2ý-'B3, B4 or B5, 

ýand the positions symmetrically equivalent to these. ) 

'In this position White'sonaturall move K-A6 gives stalemate and play 

, continued instead 

R-B2 (class 10) K-A7 

2. R-B6 (class 6) K'A8 

followed by a further Rook move on the B- file by White, then K-A7 

by Black, whereupon White played R-B6 returning to the position after 

his second move, with an eventual draw by three - fold repetition of 

position.. This. pioblem only occurs with the Kings on the Rook file 

as*in Figure 40 and is a consequence of the stalemate rule which, in: 

aI sensep-introduces a 'discontinuity' into Whitels*strategy - it is 

necessary to restrict Black as much as possible but not to a 

W 
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position where he has no legal moves at all. 

White's best continuation in Figure 40 is, in fact, to play 1. K-B6 

with checkmate in three moves, after 

1 K-B8 

2. R-C 1 K-A8 

3. R-C8 Mate 

The simplest way to handle the complications which arise from 

Figure 40 would seem to be to recognize them as a special case which 

occur in a small number of situations only and to deal with them 

accordingly. 

In general, when making corrections and adjustments to an algorithm 

it is important not to introduce "special cases" indiscriminately 

but in this case there is a clear reason for their occurrence - 

stalemate possibilities with the Black King in the corner of the board.. 

The easiest solution is to introduce a further equivalence class, 

number 12, which consists of positions such as Figure 41, with Black 

to move. Since from these positions White mate s. - in two. moves whatever 

Black plays, the class is ranked between the exisýing classes 4 and 

5 and is tested for after rule 4. The corresponding rule is as 

follows (assuming the orientation already pertaining after rule 4): 

BKI -1 AND BK2 -8 AND WKJ -2 AND WK2 -6 AND WR1 - 2. 

No associated functions are needed. 

Although positions in class 12 can occur from other situations, the 

class will, in practice, be of interest almost exclusively in 

connection with the play from a position such as Figure 40. 
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(5) An, importantpattern 

Several cases were found in which the program's play could be 

considerably strengthened by recognising a further important con- 

figurati, an not explicitly discussed in Chess textbooks. 

InTigure 42 the program, using the original algorithm, described in 

Section 4, will play the move 1. R-H6 (producing a position in 

class 7). Although this is a good move, a much stronger one-is 

1. R-Bl, which gives Figure 43. 

Black is now in con I si4erabl -e difficulty.. '-,, if he plays K-CS, White 

roplies 2. K-D6 (repeating. the pattern) with mate in-one to follow. 

If he plays instead K-D7, -, then White can force him back to the last 

rank by 2. R-B7 ch. Finally, if he plays K-D8, ' White' can restrict him 

to one rank immediately by 2. R-B7. ' Similar situations occur frequently 

in practical play and to strengthen the program's play in these a 

42 a A3 
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further equivalence class, class 13 was introduced, containing 

positions such as Figure 43 where the White King and the Rook are two 

files apart, with the Black King on the file between t hem, two ranks 

above the White King (and positions equivalent to these by symmetry). 

An inspection of the play from Figure 42 shows that class 13 needs to 

be ranked above class 7 and, in fact, because the pattern represented 

is so important the class has been ranked between classes 12 and S. 

With the orientation used for class 4, the definition of the corre- 

sponding rule is: 

WK, 1=BKI+l AND BK2-WK2+2 AND BK1-WR1+1 

There is one associated function, with value 8-WR2 (pri-ori" is to be 

given to the position with the smallest value of WR2). Thus, in 

Figure 44, say, the program will 'lose a tempo' by 1. R-Bl, that is, it 

will keep the Rook as. close to the bottom edge of the board as 

possible. The alternative 1. R-B8 would be le. ss precise, as Black 

could then force the Rook to. move again by K-C7. 

II, -- 
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Black King on the edge of the board 

A number of difficulties arose in connection with the Black King 

restricted to the edge of the board by the Rook, which seemed to 

require small adjustments to the definitions of several of the classes. 

Unfortunately, these. adjustments. would have led to further problems 

in turn, and hence a new equivalence class was introduced to avoid 

the problems consequent on changing the definitions of existing 

classes. With the new class included in the algorithm all the 

difficult positions were handled satisfactorily. 

.. In Figure 45, White's best play is to lose. a 'tempo' by 1. R-B2 

(or B3, B4, B5). Then after Black's forced repl-y K-A8 White wins 

by K-B6 as in Figure 40. White should not. play 1. R-B6 from 

Figure 45, since'then after Black plays K-A8, White can now no 

longer reply K-B6. The B6 square is occupied by his own Rook. After 

2. R-Bl (or B2, B3, B4, B5) and Black's forced reply K-A7, a further 

move 3. R-B6 will result in a repetition of position, with an 

eventual draw to follow. It would appear that it is necessary 

actively to prevent the move R-B6 in a position such as Figure 45. 

-Since the positions arising after R-B2, B3, B4 or B5 frým Figure 45 are 
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members of class 10, it is necessary to ensure that the position after 

R-B6 is not a member of any higher - ranked class. This requires a 

change to the definition of Rule. 6 to rule out the case with both 

Kings on the Rook file., With this change the position would become a 

member not of class 6 but of class 8 and so the definition of rule 8 

would need, to be changed also and, similarly, the definition of rule 9. 

Unfortunately, however, there are further complications. - In the 

critical position Figure 46, -'White should': retreat his Rook along the 

B-f ile, giving a position in class 10, -as already mentioned, not' 

play K-B5. Consequently the poiition'ari'sing after'l. K-BS. must be 

el I iminated from the higher. ranked class 7. Changing the definition of 

this class requiree a further change to the definition of. class 9, to 

.7 eliminate-the position, from, that class also.,., 

In fact, however, even these changes are not sufficient for precise 

play in all situations. Four more of the Possible problems which 

can occur are described below. 

46 
- 
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In Figure' 47, White's most direct winning move is l. -R-Bl, not 

1. R-C5 ch. Thus, it would seem that positions with both Kings on 

the Rook file must be eliminated from class 5. Moreover, in 

Figure 48,1. K-F8 is better than 1. K-E6, so that positions with the 

Black King on the eighth rank would also need to be eliminated from 

class 7. (The position arising after K-E6 would otherwisebe a 

member of class 7. ) 

I&# 
Ut AC 

A 0% 
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In Figure 49, White should play 1. K-D8, not K-D6. so positions with 

the Black King on the eighth rank would also have to-be eliminated 

from class 9. 

Consider however Figure 50. Here it would be desirable to include 

the position arising after R-C5 ch in class 5 (since R-B6 simply 

loses the Rook), but this position would seem better excluded in the 

case where the Rook begins on C4 not C6 (since-R-B4 is then superior 

to R-C5 ch). 

From the above discussion, it should be clear that there are a large 

number of difficult situations which can occur with the Black King 

on the Rook file (or the first or eighth rank) and a correspondingly 

large number of cases in which the algorithm, as previously. given, 

will produce a poor or imprecise move. 

it is this kind of situation which it is important to detect when 

evaluating the effectiveness of a particular algorithm. If 

program correction and improvement entails a large number of piece- 

meal alterations, then the algorithm is probably suspect. Since the 

general performance of the algorithm under discussion is good, it 

should be possible to make the amendments required to handle the few 

difficult positions in an integrated and relatively simple manner. 

If this proves to be impossible, then the appropriateness of the 

underlying equivalence class model may itself be called into question. 
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In the case under discussion, all the difficulties described can be 

overcome simply by making none of the modifications suggested and 

introducing instead a single new equivalence class, clas s 14. The 

class is defined (with the same orientation as class 4) by the 

predicate. 

WKl=BK1 AND WKI=l AND BK2=WK2+2 AND WRIý2 

The class is ranked between classes 13 and 5 and has one associated 

function, with value 8- WR2 (that is, the Rook should be as far 

down the file as possible). With this one change to the program, a 

close inspection will show that all the difficult situations discussed 

above will be satisfactorily handled. Moreover the class has the 

advantage of being easily interpreted in terms familiar to chess 

players: "the Kings on the Rook file, two squares apart, with the 

Rook on the file next to them. " Once again, however, such positions 

are not explicitly mentioned in cbess textbooks. 

. 
6.2 Summary ýf changes made and, the revised algorithm 

The changes made to the original algorithm, as described in Section 4, 

are summarised below for convenience, followed by the revised 

algorithm in tabular form. 

(a) New Classes: 12,13,14, ranked (in that order) between classes 

4 and 5. With the orientation used for class 4, these are 

defined as follows. 
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Class 12 

BK1=1 AND BK2=8 AND WK1=2 AND WK2=6 AND WR1=2. (No associated 

functions. ) 

Class 13 

WKI=BK1+1 AND BK2=14F, 2+2 AND BK1=WRI+1, (One associated function, 

with value 8-WR2. ) 

Class 14 

WKI=BKJ AND BK2=WK2+2 AND WKI=l AND WRI=2. 

(One associated function, with value'8-kT, 2. ) 

(b) Changes to existing classes 

-Note that only additions to existing rules are given. In each 

case the full rule is the logical AND of the previously given 

rule and the addition stated below. 

Class 5 BK22: 5 

Class 6 BK22: 5 

Class 7 BM: 5 

Class 8 BM: 5 

Class 9 BK2ý6 AND WR1: 55 

Class 10 A fourth associated function has been added, with 

value dist (Black'King, Rook). 

i 
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Table 5 Equivalence classes for King and Rook against King (revised 

algorithm) 

Class Property of position q Class Associated Rmctions 
(Black to move) Value f1f2f3 f4 

I White's Rook is en prise 
(i. e. may be immediately 
captured). 2 

2 Black is checkmated. 14 

3 Black is stalemated. 1 

4 Black cannot avoid checkmate 
in one move. 13 

12, *. The Black King is in the 
corner of the board, the 
White King and Rook are on 
the Knight file with the 12 
King on the sixth rank. 

13 BliA King -is on fSe fifle 
between the White King and 
the Rook and two ranks above. 
the White King. 11 

14 The Kings are in opposition 
on the Rook file, with the 
Rook on the adjacent Knight 
file. 10 

5 The Kings are in vertical 
opposition (i. e. they are 
two squares apart on the same 
file) and Black is in check 
along the rank. Black is in 
the top half of the board. 9 

6 The Kings are in vertical 
opposition with the Rook on 
the -rank between them, one 
file closer, to the centre. 
Black is in the top half of 
the Board. 8 

7 The Kings are two ranks apart 
with the Rook on the rank 
between them; the White King 
is one file closer to the 
centre than the Black King 
and the Rook is not 
precisely one file from the 
White King. Black is in the 
top half of the board. 7 

0 0 0 0 

0 

0 

0 

0000 

7000 

7000 

0000 

0000 

2000 

continued overleaf 
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Table 5 (contirtued) 

I 

Class Property of position q Class Associated Functions 
(Black to move) Value f1 f2 f3 f4 

8 The Kings arc in vertical 
opposition'Fi. th the Rook one 
file closer to the centre. 
Black is in the top half 
of the board. 6 0 0 0 0 

9 The Kings ard two ranks 
apart, with the Rook on 
the rank between them; 
the Rook controls a "good" 
quadrant. Black is in the 
top half of the board and 
the Rook is pn the Queen's 
side or centre files. 5 2 3 0 0 

10 The Black King is confined 
to a quadrant of the board 
and cannot immediately 
escape. 4 1 4* 5 6 

11 Always true. 3 0 0 0 0 



-137- 

Table 6 Associated functions for King and Rook against 

King (revised algorithm) 

Function Value of Function 

min ((WRI-1), (8-WR2)) 

2 50 - sjuad 

where squad (8-WRI) x (8-WR2) WRI < BKI 

(WR1-1) x (8-WR2) WRI > BKI 

38- abs WKI-BKO 

48- max {abs(WKI-BKI), abs(WK2-BK2)) 

58- min {abs(WKI-BKI), abs(WK2-BK2)1 

6 max {abs(BKI-WRI), abs(BK2-WR2)) 

7 8-WR2 

C. 
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6.3 The basic primitives 

Rules 

Each of the predicate functions defining the 14 rules given in Table 5 

can be broken down into a number of simpler predicates, 'primiiives', 

joined by the logical operators AND, OR and NOT. 

6. 

These primitives all take the form 

term relational operator value 

where term is one of the following 

WKI, BKI, WRI, WK2, BK2, WR2, WKI - BKI, WRI - WKI, BKI - WRI, 

BK2 - WK2, WR2 - WK2, BK2 - WR2, abs (WKI - WRI), dist (Black King, Rook), 

dist (White King, Rook) and dist (Black King, Ro ok) - dist (White King, Rook); 

relational operator is =, t, >p <9 I or :5 

and value is an integer from 0 to 8 inclusive. 

Thus the definition of rule 8 can be written as 

(BK2 2t 5) AND (WKI - BKI 0) AND (WRI - WKI 

From the above list it will be seen that term is either one of the six 

possible co-ordinates of the three pieces, the difference between any 

pair of such values (or its modulus), the block distance between two 

pieces or the difference between two such distances. Although 

some possible combinations, such as abs (WK1 - BKI), have not been 

used the total number of possible combinations is clearly fairly 

small. In a self-modifying system of the kind discussed in 

A 
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subsequent sections it would be possible for all the possible terms 

to be available to th e system in advance. 

Associated functions 

Each. associated function is of the form 

expression 

or constant - expression 

depending on whether the largest or the smallest value of expression 

is to be taken. 

expression is in general either 

(i) a term of the kind described above (e. g. WR2 or dist., (Black King, Rook)). 

(ii) the distance between a piece and a specified edge (e. g. the distance 

between the Rook and the top of the board); -or 

the larger or smaller of two of the above. 

Exceptionally, when an 'area' such as the number of squares in a quadrant 

is required, expression may be the product of two distances. 

Thus, function I which is defined in Table 6 by 

min ((IqRl - 1), (8 - WR2)) 

is of the form constant expression, where expression is the smaller 

of WR1 I and 8- WR2. 

These are the distance of the Rook from the left-hand edge and the top 

edge of the board, respectively. 
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King and Rook against King : discussion of the changes raade 

and the revised algorithm 

In this section, the changes made to the original form of the algorithm 

and the significance of the testing carried out are discussed. The 

revised algorithm is then evaluated from a number of different 

viewpoints, in relation to (hess textbooks and some theoretical 

results of Clarke (1975). Some illustrative games played against 

human opponents are. also given, followed by a discussion of Sections 

5-7 in the light of the objectives set out in Section 1. 

7.1 The changes made to the original algorithm 

The 2486 positions in which moves were made by the original version of 

the program were stored on file, together with the program's move in 

each position. After the changes to the algorithm described above, 

the move played by the program in each of these positions was recalculated 

and compared with that originally made. 

The outcome was that the changes made to the algorithm resulted in a 

different move being'selected in 538 cases (22%). 

In as far as this can be judged by inspection, in each of the 538 

cases the new move is an improvement on the old, or one which appears 

equally good. 

Although there may, of course, still be errors remaining in the 

algorithm, it is reasonable to say that the program's play has been 

significantly improved in a large proportion of cases by making just 

the few amendments given in Section 6. 

It is also probably fair to say that the program now contains more 
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"knowledge" than is contained in a typical textbook description for 

this endgame. 

Most of the examples of difficulties arising from the first version 

of the algorithm were situations which might equally. well be 

mishandled by the average chessplayer with only the textbook 

information to guide him. 

An inspection of the descriptions given in Chess textbooks, such 

as Fine (1941) and qol(? mbek (1954), will show that no 

indication is given to the reader as to how to play in positions such 

as Figurds 40,42,44,45 or 46. 

The original algorithm's difficulties in these positions led to the 

introduction of classes 12 - 14. 

The ideas of "specifying a small quadrant", "restricting Black to 

the top half of the board" and "keeping the Rook at a distance", which 

led to changes in the definitions of classes 5-9 and an extra associated 

function being introduced for class 10, are not explicitly stated in the 

textbook descriptions, but are implicit in the examples given. For 

example, the Black King is always in such a position that any quadrant 

it is restricted to is a small one, etc. 

7.2 The significance of the testing 

The testing described in Section 6. although substantial, was both 

unsystematic and non-random: the human opponents generally chose their 

own initial positions and did not necessarily play the best moves for 

i 

Black in every case. 



-142-- 

It is therefore a posibility that some. parts of the algorithm 

may have been tested inadequately or not at all. As a check on this, 

the following table of "selection levels" was produced to provide 

an indication of the degree to which each of the rules and functions 

in the algorithm has been tested. 
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The column headed "Total No. of occurrences" gives a breakdown of 

the class membership of each of the'total of 47,055 successor 

positions (with Black to move) generated in the course of finding 

the "best" move for the 2486 initial positions (with White to move) 

presented to the program. 

For each initial position investigated, one successor position was 

selected by the program as "best" and the class membership of these 

positions is broken down in the "No. of times selected" column. 

The remaining six columns are derived from a comparison of the 

"best" and the "second best"' successor position in each of the 2486 

cases. 

Thus, taking the example of class 9, of the 362 occasions when the 

best successor position belonged to class 9, on 64 occasions the 

second best position belonged to a lower-ranked class (so the 

associated functions had no effect on the selection). 

In the remaining 298 (= 362 - 64) cases, the second best position was 

also a member of class 9, so one or more of the associated functions 

was needed to make a choice between them. In 127 cases the first 

function was sufficient to break the tie, but in 170 cases the 

second function was also needed. In one case both functions were 

insufficient and an "arbitrary" choice was made (a residual tie). 

The thick line shows the number of functions associated with each class. 

From an examination of the table, it can be seen that Positions in every 

class have occurred as possibilities at some stage of the testing 

but that, as previously suggested, positions in classes I (Rook en prise , 
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3 (Stalemate) and 11 (residual positions) have never been chosen 

as best. 

Nevertheless these three classes account for 10,945 successor 

positions (23% of the total) and it is useful to indlude them 

either so that they can be positively rejected by the algorithm 

(classes I and 3) or to ensure that all positions belong to some 

equivalence class (class 11). 

Checkmate positions (class 2) are selected whenever they occur 

(180 cases). It is, in fact, impossible for more than one of the 

successors of any position with White to move to be a member of 

class 

Positions in the second highest-ranked class, class 4 (where Black 

cannot prevent mate in one) occur frequently (1,059 times) but 

appear to be relatively seldom selected as best (167 times). 

The explanation is that these positions often occur in comparison 

either with checkmate positions (which will always be chosen in 

preference to them) or with each other. 

positions in class 5 occur relaýively seldom, but when they do they 

are usually important (selected 67 times out of 70 occurrences). 

positions in class 10 are by far the most frequent to occur (64%) 

and to be selected (40%). 

Together classes 1,3,10 and 11 account for a total of 40,968 

successor positions (87%) and_984 of those positions selected (40%). 

Although the other 10 classes represent only 13% of all successor 
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positions, they are selected as best in 60% of all cases. In many 

cases the venbership of these classes is small, but with a high 

rate of selection (for example, positions in class 5 were selected 

on 96% of the occasions on which they-occurred). Even class 4,, which 

for reasons previously explained is selected relatively infrequently 

has a selection rate of 15% and the other 9 classes (2,12 - 14 and 

5- 9) all have higher rates than this. By contrast, class 10 has 

a selection rate of only 3% and classes 1,3 4nd 11 all have rates of 

zero. This suggests that classes 2,4,12 - 14 and 5-9 may represent 

positions which although relatively infrequent in occurrence are 

in some respects crucial to White's strategy. 

The final five columns indicate the extent to which the choice of 

each of the associated functions for each class is reinforced by the testing 

carried out. Thus with a different choice for the fourth function 

associated with class 10, up to 352 (= 285 + 67) of the se'lected 

positions might not have ýeen chosen (they are all c'ases where the best 

two positions were members of class 10 and the first three functions 

were insufficient to choose between them). With a different choice for 

the third function, up to 719 (= 367 + 285 + 67) of the selections 

might have been different, and so on. It would seem, therefore, that 

*the choice of functions associated with class 10 is a very sensitive 

part of the overall algorithm. 

The occurrence of 62 arbitrarily resolved ties between positions belonging 

to class 4 simply reflects the decision not to associate any functions 

with that class (since there is no practical advantage in choosing 

any one of the positions rather than another). 

However the 67 ties for class 10 and, to a much lesser extent, the ties 
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for classes 7 and 9, may indicate that a further function or functions 

should be associated with these classes. In some cases it may be that 

the choice between tied positions was genuinely arbitrary; in others 

it may be that further discrimination was necessary for best possible 
I 

play. Naturally the need for such discrimination may not be either 

apparent to the chessplayer or indicated by textbook descriptions 

in many cases. 

Neverthelessp any further attempt to improve the algorithm might 

usefully begin by isolating these "tied" positions for further 

inspection. 

7.3 Class membership of all positions with Black to move 

For purposes of comparison, a table is g iven below showing the frequency 

of membership of each of the 14 equivalence classes in the revised 

algorithm, for a particular standard orientation of the board. 

The orientation is taken from Clarke (1975) and can be obtained from 

any given position by a suitable combination of reflections about 

axes of symmetrY. 

With this orientation, the Black King is restricted to the triangle of 

squares A], BI, CI, D1, B2, C2, D2, C3, D3, D4. The two White pieces 

can be anywhere on the board, except that when the Black King is on the 

diagonal At, B2, C3, D4 the White King is reflected to lie on or below 

the diagonal A] to H8, and when both Kings are on the diagonal the 

White Rook is reflected to lie on or below the diagonal. 

This gives 21,959 legal positions with White to move, 189 of which 

are checkmates in one move, 587 are checkmates in two moves and 121 

are checkmates in 16 moves, which is the maximum ever required. 
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White wins in all cases where it is his own move initially. 

With Black to move there are 28,056 legal positions, in 27 of which 

he is already checkmated. There are 9 positions where Black is 

stalemated and 2787 where the Rook is en prise,. Iri all other positions 

Black is lost. The above figures are those given by Clarke. 

The following table shows the membership of each equivalence class 

over all positions with Black to move, using Clarke's orientation, 

Table 8 Class membership for revised King and Rook against King 

algorithm 

Class Frequency 

1 2787 (10%) 

2 27 

3 9 

4 78 

12 5 

13 150 (1%) 

14 30 

5 81 

6 11 

7 78 

8 57 

9 145 (1%) 

10 19735 (70%) 

4863 (17%) 

Total_28056 positions 

Percentages of the total (28056), rounded to the nearest 1%, are given 

when 1% or greater. 
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It will be seen that the frequency of membership of class I (Rook 

en prise class 2 (Black is checkmated) and class 3 (Black is stalemated) 

agrees with Clarke's figures. 

The figures in the table would seem generally to su*pport the 

conclusions reached in Section 7.2, i. e. that class 5 etc. "represent 

positions which although relatively infrequent in occurrence are in 

s. ome respects crucial to White's strategy". 

However, it should be noted that the tables. are not strictly comparable 

since each successor position (with Black to move) can arise from 

many different initial positions. Hence the same position may be 

included more than once in Table 7. 

Clarke's orientation also introduces a bias into the percentage 

. frequencies, since not all of the 28,056 positions represent 8 

positions in the full set of positions with Black to move, although 

most do. It is unlikely, however, that this bias is of more than 

minor importance. 

7.4 The Choice of Algorithm 

The algorithm developed in Sectýon 4 and revised in Section 6 corresponds 

to a composite description of White's strategy derived from several 

textbooks and refined in the light of experience. 

In this section two examples where the play given in particular Pextbooks 

differs from that of the revised algorithm are briefly discussed in 

terms of the overall equivalence class model and the changes to the 

algorithm which would be necessary to produce the textbook moves. 



-150-. 

If the descriptions given in dif f erent textbooks- -are-, compared, it will be 

seen that there are often differences in the details of the 

advice given by one author and another. It might reasonably be 

expected that in certain positions the move played would vary from 

one author to another, that is that each author uses a slightly 

different algorithm, some of which will be more precise than others. 

However, within the framework of the equivalence class model, it is 

possible to construct an algorithm to play according to a variety 

of different strategies, that is to represent the knowledge given in 

any one of a number of different textbooks. 

Moreover, the model provides a "language" in which alternative 

strategies can be discussed and evaluated. 

As an example, consider. Figure. 51. Fine (1940. gives the following 

play from this position (in. modified algebraic' notation) 
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l. 'K - B2, K- D4; 

4. K- C4, K- E4; 

7. R- Flch, K- G5; 

IO. R - Glch, K- H4; 

13. r. - G39 K- Hl; ' 

16. R - H3 Mate. 

2. K- C2, K- E4; 

5. R- Elchi K- F5; 

8. K- E4, K- G6; 

II. K - F5, K- H3; 

14. K - F3, K- A2; 

3. K- C3 ' K- E5; 

6. K- D49 K-- F4; 

9. K- E5, K- G5; 

12. K F4, K H2; 

15. K F2, K Hl'; 

The final version of the algorithm as described in Section 6 finds the 

same moves 5- 16 as those given by Fine but its moves in each of the 

first four positions withý White to move would be different. The 

algorithm would, in fact, play R- El, R- El, R- DI, and R- DI 

respectively. (The program's second move is actually better than the 

book move, requiring one move less to checkmate, according to Clarke 

(1975). ) In each case, both the algorithm's move and Fine's move 

produce positions which are menbers of class 10. 

In the -terms of the algorithm, Fine is applying the following criteria 

to decide between positions in class 10: bring the Kings as close 

together as possible and, subject to thats restrict the Black King 

with the Rook. 

one simple way of modifying the algorithm to achieve thisý effect would 

be to change the first three associated functions from 1,4,5 (in that 

order) to 4,5,1. 

6. 
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Asa. second example, consider Figure 52. 

In this position Golombek (1954) gives the move R- E4 (R - K4 in descriptive 

notation): "cutting the Black King off from White's half of the board"'. 

The algorithm$ however,, evaluates the resulting Position as belonging 

to class 9'and sele . cts K- F4 in preference, giving a position'belonging 

to class 7. One way of modifying the algorithm to ensure that R- E4 is 

selected is simply to delete class 7 altogether. With this modification 

the algorithm plays-the book moves in every position of the main variation 

quoted by Goloijbekv with the exception of Figure 53 (White's eighth move). 

Here Golombek gives 8. R- C5Ch (8. R- B5ch in descriptive notation), 

whereas the algorithm assigns the resulting Position to the class of 

#; residual positions", class 111, and chooses 8. 'R D5 (giving a position 

in class 9). 

lag r, 
-, 
Z 

%am 13 
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To modify the algorithm to play 8. R- C5ch it wotild be necessary to 

define a new equivalence class, of which the position after that move had 

been played was a representative member, ranking higher than class 9. 

Whether the moves given by Golombek are better or worse than the 

program's moves is irrelevant here. The series of moves correspond 

to two different strategies, either of which could be represented 

within the overall framework of the model. 

In general, many (possibly all) textbook strategies can be implemented 

using the same model and any of these could then serve as the basis 

for further experimentation and subsequent refinement. 

7.5 Automatic progEam verification 

Clarke (1975) gives a table of the number of positions in which White 

needs 1,2,3, ..., 16 moves to checkmate from the 21959 positions with 

White to move using his standard orientation. Although, as has 

previously been pointed out, not all of Clarke's positions correspond 

to the same number of positions in the full set of positions with 

White to move, proportions calculated from this table are nevertheless 

likely to be a good estimate of the true proportions for all positions. 

As a further experiment in program verification, a system was set up to 

play a series of games against each of two set Black strategies A and B, 

described below. Two hundred "automatic" games were played against each 

Black strategy, taking (legal) starting positions generated at random 

from the full set of positions with White to move. The games were played 

out to completion (with a maximum of 25 moves permitted for each side). 

In each case, the game ended in checkmate in sixteen moves or less 

(as mentioned previously, Clarke has showm that sixteen is the largest 
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number of moves ever required by a perfect strategy). 

The two Black strategies, which were implemented using the 

equivalence class. model, were as follows: 

(A) take the Rook if possible, otherwise move towards the centre 

of the *board, and 

(B) take the Rook. if possible, otherwise move at random. 

The second part of strategy A required the maximization of the 

following two associated functions in turn: 

8- max i 
f5 - WRI) 

2 
(4 - WRI) 

.# 
(5 - WR2) 

2 
(4 - WR2) I 

and (ii) 8- min 
P- - WR') 

2 
(4 - WRI) 

v 
(5 - WR2) 

2 
(4 - WR2) I. 

The left-hand side of Table 9 shows the frequency (as a percentage) 

of games in which White checkmated in 1,2,3, o. o, 16 moves with each 

of the two strategies and the approximate theoretical frequencies, 

calculated froin Clarke's figures (to two places of decimals). The 

right-hand side of the table shows the cumulative frequencies 

(checkmate in n moves or less), which are likely to be of more significance 

since they are less affected by random fluctuations, 

It must be emphasized that each game played has been recorded only once. 

Thus a game in which White checkmated in seven moves, say, has been 

included as a checkmate in seven moves only, although there were, of 

course, necessarily intermediate positions in which White won in 

6p 5,4,3,2 and I moves. These latter Position do not, however, form 

a random sample from the set of all positions with White to move. 
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Table 9 Checkmate in n ruoves: _ 
strategies A and B and (apploximate) 

theoretical value, C 

n 

Frequencies 

ABC 

Cumulative 
Frequencies 

ABC 

1 0.5 0.0 0.86 0.5 0.0 0.86 

2 2.5 3.0 2.67 3.0 3.0 3.53 

3 200 2.5 2.20 5.0 5.5 5.73 

4 M 3.0 1.08 8.5 8.5 6.81 

5 6.5 5.0 2.76 15.0 13.5 9.57 

6 12.0 9.0 4.97 2.7.0 22.5 14.54 

7 16.0 17.5 6.46 43.0 40.0 21.0 

-8 
10.5 14.5 9.79 53.5 54.5 30.79 

9 

1 

8.5 9.5 11.45 62.0 64.0 42.24 

10 6.5 12.5 10.85 68.5 76.5 53.09 

11 9.5 10.0 11.68 78.0 86.5 64.77 

12 6.5 8.0 12.25 84.5 94.5 77.02 

13 10.0 3.5 10.17 94.5 98.0 87.19 

14 3.5 1.0 9.23 98.0 99.0 96.42 

15 1.0 0.5 3.01 99.0 99.5 99.43 

1.0 0.5 0.55 100.0 100.0 99.98 

A- Black Strategy A (move towards the centre) 

B- Black Strategy B (random) 

c- (approximate) theoretical values, calculated from Clarke (1975) 
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An inspection of this table s. u. ggests that the final form of the 

algorithm plays very well indeed. For example, 43% of games are 

won in seven moves or less against strategy A and 40% against 

strategy B, compared with 21% for the theoretical value. 94.5% of 

games against strategy A and 98% against strategy B are won, in -13 

moves or less, compared with a theoretical value of only 87.19%. 

Doubtless these figures partly reflect the fact that Black's play 

is not optimal, although strategy A would seem to be a strategy 

offering good practical chances in play. 

Four hundred games would alsp seem to be ample to detect any instances 

of infinite repetitions of position. However, none of these 

occurred. Indeed no case was found where more than the theoretical 

maximum of sixteen moves was needed to checkmate, although of course 

it is not certain-that the positions in which sixteen moves were taken are 

those in which that number of moves is required by theory. 

It would be interesting to obtain comparable figures for other 

King and Rook against King algorithms. 

However, it has not been possible to find any such inform*ation in the 

literature. 

7.6 Illustrativegames 

Some games played by the revised form of the program against 

human opponents are given below, to illustrate some of the most 

commonly occuring situations. The program finds moves for White 

(the side with the Rook) only, with BLack moves supplied by a human 

opponent. A complete endgame is played from any legal starting position, 

with White to move, chosen by the opponent. Alternatively the opponent 
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may choose a random (legall) starting position if hd wishes. 

The 50 - move drawing rule and the "three-fold repetition of 

position! ' drawing rule have not been implemented, as they present no 

problems of theoretical interest in this context. . 

No case has so far been found where the pro*gram takes more than the 

theoretical maximum necessary number of 16 moves before checkmate 

or where a particularly poor move has been made. 

Games are given both in the modified form of algebraic notation used 

in the pieceding sections and in the descriptive notation, which is 

the one most commonly used in English speaking countries. 

The figure in parentheses after each pair of moves is the equivalence 

class of the position resulting after Whi te's moves 
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Game 

I. R-A7 K-G8 

2. K-G2 K-F8 

3. K-F3 K-E 8 

4. K-E 4 K-D8 

5- K-D5 K-E 8 

6. K-D6 K-F8 

7. K-E6. K-G8 

8. K-F6. K-H8 

9. K-G6. K-G8 

IO. R-A8 Mate 

I. R-QR7 K-NI (10) 

2. K-N2 K-BI (10) 

3. K-B3 K-KI (10) 

4. K-K4 K-Ql (10) 

5. K-Q5 K-KI (10) 

6. K-Q6 K-BI (7) 

7. K-K6 K-NI (7) 

8. K-B6 K-RI (7) 

9. K-N6 K-NI (4) 

IO. R-R8 Mate (2) 

Game 2 

Starting from the previous position* Black deviates at move 5, 

playin Ig5... K-C8 (5 .... K-BI, in descriptive notation). The game 

continues from the diagrammed position 

6. K-D6 K-B8 

7. R-C7 K-A8 

8. K-C6 K-B8 

9. K-B6 K-A8 

IO. R-C8 Mate 

6. K-Q6 K-NI (7) 

7. R-QB7 K-RI (9) 

8. K-B6 K-NI (9) 

9. K-N6 K-RI (4) 

IO. R-B8 Mate (2) 
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Game 

I. K-D3 K-F2 I. K-Q3 K-B7 (8) 

2. R-E4 K-F3 2. R-K4 K-B6 (9) 

3. K-D4 K-F2 3. K-Q4 K-B7 (7) 

4. R-E3 K-G2 4. R-K3 K-N7 (9) 

5. K-E4 K-F2 5. K-K4 K-B7 (9) 

6. K-F4 K-G2 6. K-B4 K-N7 (6) 

7. R-F3 K-H2 7. R-B3 K-R7 (7) 

8. R-G3 K-HI 8. R-N3 K-R8 (9) 

9. K-F3 K-H2 9. K-B3 K-R7 (9) 

IO. K-F2 K-HI IO. K-B2 K-R8 (4) 

II. R-H3 Mate II. R-R3 Mate (2) 

Game 

I. R-G6ch K-H7 I. R-06ch K-KR2 (5) 

2. K-F7 K-H8 2. K-KB7 K-KRI (4) 

3. R-H6 Mate 3. R-KR6 Mate (2) 
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Game 

I. R-BI K-A I. R-QNI K-R5 (14) 

2. K-A2 K-ýý 2. K-R2 K-R4 (14) 

3. K-A3 K-A6 3. K-R3 K-R3 (14) 

4. K-A4 K-A7 4. K-R4 K-R2 (14) 

5. K-A5 K-A8 5. K-R5 K-RI (14) 

6. K-B6 K-B8 6. K-N6 K-N8 (12) 

7. R-Cl K-A8 7. R-QBI K-R8 (4) 

8. R-C8 Mate 8. R-B8 Mate (2) 

Game 

I. K-D2 K-B2 I. K-Q2 K-N7 (13) 

2. R-B4ch K-A3 2. R-N4ch K-R6 (5) 

3. K-C3 K-A2 3. K-B3 K-R7 (6) 

4. R-B3 K-Al 4. R-N3 K-R8 (7) 

S. K-C2 K-A2 5. K-B2 K-R7 (9) 

6. R-C3 K-Al 6. R-QB3 K-R8 (4) 

7. R-&3 Mate 7. R-R3 Mate (2) 
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Game 

I. R-A7 K-G8 I. R-QR7 K-KNI (10) 

2. R-E7 K-F8 2. R-K7 K-KBI (9) 

3. K-D7 K-G8 3. K-Q7 K-KNI (7) 

4. K-E8 K-H8 4. K-K8 K-KRI (14) 

5. K-F7 K-H7 5. K-KB7 K-KR2 (12) 

6. R-E6 K-H8 6. R-K6 K-KRI (4) 

7. R-H6 Mate 7. R-KR6 Mate (2) 
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7.7 Discussion 

This section continues the discussion of Section 4.6 in light of the material 

contained in Sections 5- 

The objective of the testing described in these sections was ta investigate 

how readily the algorithm &iven in Section 4 could be improved in response ' 

to weaknesses in its play identified during testing against human 

opponents. 

One of the criteria stated in Section I was that an algorithm: 

"should be capable of relatively straightforward modification ... and 

the changes required should be indicated by the deficiencies observed 

in [its] performance". 

The analysis in Section 6 would seem to establish that this criterion 

is satisfied in this case and gives a practical demonstration of the 

means by which such modifications can be performed. 

The changes made are entirely within the framework of the model described 

in Section 2, that is they consist simply of adding new equivalence classes 

and associated functions and modifying the definitions of some of the 

existing classes. 

The end result is still a "compact" algorithm with only 14 equivalence 

classes, and the evidence in Sections 6 and 7 suggests that its 

performance is now extremely good and superior in some positions to 

many textbooks. The complexity of the algorithm is still apparently 

commensurate with that of textbook descriptions and no tree-searching 1s 

used. 
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A further aim stated in Section I was "to produce-quantifiable 

- results wherever possible" and a number of tables and figures have 

accordingly been presented to enable. the revised algorithm t -o be 

compared with others in any subsequent work in this area and with the 

theoretical results of Clarke(1975). 

The rules defining the equivalence classes and the associated functions 

have been shoirn to be composed of. elementary primitives in simple 

ccmbinations. In the case of King and Rook against King it would not 

seem difficult to specify a list of all possible primitives which might 

occur and thus provide a basis for subsequent computer generation of 

combinations of primitives to form the rules defining equivalence 

classes. 

The question of program improvement forms the major theme of the 

remainder of this thesiswhere an algorithm for a more complex endgame, 

King and Pawn against King, is discussed. This endgame is used 

partly to demonstrate the applicability of the equivalence class model 

to other endgames and partly because the difficulties which occur 

in refining the algorithm - in this case to play perfectly in a given 

set of positions - are more severe than for King and Rook against King. 

The discussion is presented from the viewpoint of the possible future 

development of a fully automatic system to refine an initial algorithm 

within the framework of the equivalence class model, and some of the 

requirements for such a system are discussed. 

Ii 
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8. '* An'Al gori thm'f or 'thd'End game King'and Pawn'against King 

In the first part of this thesis an algorithm for the endgame King 

and Rook against King was discussedo firstly as a means of demonstrating 

the conversion of the playing rules given in chess textbooks into an 

algorithm, and secondly to investigate how easily errors and weaknesses 

in the algorithm found as the result of testing against human opponents 

could be rectified. Both these objectives can be considered to reflect 

on the question of the appropriateness or nattiralness of the 'equivalence 

class' model described in. Section 2 as a basis for producing algorithms 

for Chess endgames. The second part of the thesis is devoted to an 

analysis of an algorithm for a further endgame, King and Pawn against 

King, partly as a second illustration of the use of the model but 

principally to investigate the problems and techniques involved in 

modifying an algorithm of this kind to play'perfectly. Some of the 

problems inherent in such a task are discussed in Section 5. Although 
f 

in the experimentation described in Section 10, modifications were 

made simply by changing the program coding or entries in tables etc. 

"by hand", it is hoped that the results obtained will provide a 

starting point for subsequent research aimed at developing programs 

in this area which can improve their own performance substantially on 

the basis of their past experience (or other knowledge supplied to them, 

such as "illustrative games" etc. ) 

In Section 11 the results obtained are summarised from the viewpoint 

of self -improving programs . The experimentation to be *carried out is 

specified in Section 9 and the objectives are discussed further there. 

In this section an initial form of the King and Pawn against King 

algorithm is given, with some explanation and justification of the 

choices made. Essentially, however, this form of the algorithm is 
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to be considered as arising at an intermediate stage of development, 

that is there are some grounds for considering it is a reasonable 

algorithm, but it is still subject to errors or omissions. As will be 

seen in subsequent sections, there are a number of important 

4eficiencies in the algorithm as given. 

There are fiiteen equivalence classes defined for this version of the 

algorithm, with a total of seven different associated functions. As 

for the King and Rook against King algorithm, these are based on an 

analysis of the discussion' and examples given in a number of textbooks 

for this ending. 

An investigation of these descriptions shows that the difficult 

positions for this endgame arise when the Black King blocks the Pawn. 's 

advance. White's strategy then is to take the opposition and thus 

to force Black to either retreat or move to one side. In the latter case, 

the White King moves forward to the other side to support the Pawn's 

advance. The equivalence classes given represent a detailed working 

out of this general strategy, together with other more obvious objectives 

such as "promote the Pawn if you can do so safely" and "do not leave 

the Pawn en Prise', etc. 

For simplicitYs it is assumed that White wins (and the game is over) if 

he advances his pawn to the eighth rank and it is not then immediately 

capturable by the Black King. (The small number of instances in which C. 

the Pawn prom6ting to a Queen would give stalemate can be safely ignored; 

White can always choose to promote to a Rook instead. ) 
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8.1 The'equivalence dlasses 

The rules defining the fifteen equivalence classes are summarised 

in the table below, in the order in which they are to be evaluated, 

followed by an explanation of some of the terms used in the table 

and further discussion of some of the principal classes. 
0 

In iniplementing the rules (and those defined. subsequently in this thesis) 

it has been assumed that the Pawn is in one of the left-most four files 

of the board. Any position can be transformed into this form by at 

most one reflection about the (vertical) centre line of the board. 

The notation used for defining the rules and associated functions is the 

tame as for King and Rook against King except that WRI and WR2 do not, 

of course, occur and the pawn's file and rank are denoted by INI and WP2, 

respectively. 
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'TAble 10 King'and Paun, against'King_(initial'algorithm)_ 

.... 11 ......... ............. ............................. .... 

Class.. 
-Property of position. 2. (Black. to. move) ....... 

Class. value 

The pawn iS en prise (i. e. can be inmediately 

captured) 

2 Black is stalemated 2 

3 The pawn is on the eighth rank 15 

4 The pawn can 'run' 14 

5 The Black King is closer to the pawn than 3 
the White King 

6 The Black King can occupy the square in front 4 
of the Pawn 

7 The White King is on the square in front of the 5 
Pawn and Black can take the opposition 

8 The White King is two or more files closer to 13 
the Pawn than the Black King and not below the 
rank of the Pawn 

9 The position satisfies pattern A 12 

10 The position satisfies pattern B 11 

11 The White King is somewhere in front of the 10 
pawn, on the same f ile 

12 The Kings are in opposition and the White 9 
King is on a critical square, but not on the 
Pawn's file. 

13 The Kings are in opposition and the White 8 
King is not on a lower rank than the Pawn 

14 The White King is on a critical square. 7 

15 (Always true) 6 

e 
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(Positions in classes 1,2 and 3 are "terminal", i. e. the game is over, 

drawn in the first and second cases, won by White in the third. ) 

The form of the opposition referred to in rules 7,12 and 13 is the 

"direct vertical opposition" with the White King below the Black. 

This can be defined as: 

WKI - BKI AND BK2 - WK2 +2 

Pattern A and pattern B are shown in Figures 54 and 55, respectively, 

below. 

. -9- ' 55 

K, i k k4 

Ka k4 K4 

ka 

KZ k$ 

Ki 

p 

Here KI and kI are to be-taken as one possible position of the two kings, 

K2 and k2 as another, -etc. The Pawn'may be on any square of the board 

and the positions which are mirror images of those. shown (about the 

Pawn's file)-are also included. Figure 55 shows the two possibilities 

for pattern B; ý4 and k4 are only to be included when the Pawn is on 

the second rank' 

B 54 
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The term "critical square" is used here to mean one of the squares 

in the neighbourhood in front of the Pawn, as shown in Figure 56. 

56 

X x x xx xx xx 

x x x x x x 

x x x 

p x x x 

p 

Once again the Pawn may be on any square of the board and the two 

possibilities are shown; the fourth row of squares (marked XX) is 

included only when the Pawn is. on the second rank. It will be 

, seen from Table 10 that no. distinction has been made between a 

Rook Pawn and any other Pawn, although textbooks generally consider 

:a Rook Pawn to be a special*case in this ending. 

However, as the advice offered by textbooks seemed to be broadly 

similar in the two cases (subject to board edge, restrictions), with 

ýthe principal. difference being notýthe play but th e result of the 

game, it was decided to treat Rook Pawns in the same way as other 

Pawns at this stage. 

As will be seen in Section 10 this decision turned out *to be an error. 

(Classes 9 and 10 cannot, of course, occur in the case of a Rook Pawn. ) 



-170- 

Classes 4 to 14 are discussed below. 

Class 4 

This class contains positions (with Black to move) in which, against 

any play by Black, White can win simply by advancing his Pawn until 

it reaches the eighth rank (without making any King moves). Such 

positions include those where Black is outside and cannot imm diately 

enter the "queening square" of the Pawn (for further details see, for 

example, Golombek (1954)) positions such as Figure 57 where the 

White King "dominates" all the squares in front of the Pawn and the 

small but important set of positions such as Figure 58 with the 

Pawn on the seventh rank. All positions in this class are theoretical 

wins for White. 

The full def inition used' is as f ol lows: 

BK2 +I <'WP2* 

OR (abs (BKI-WPI)-1>8-WP2*) 

B 5_7__ - aAA 
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OR {abs (WKI-WPI)-l AND WP2-5 AND WK2-71 

OR {abs (WKI-WPI)=l AND WP2>5 AND WK2>6) 

OR {WP2=7 AND WK2=6 AND'abs (WKI-Wpl)<3 

AND [WKI=WPI OR (WKI<WPI AND BKI<WPI) OR (WKI>WPI AND BKI>WPI)II 

where WP2*=3 when WP2=2, and WP2 otherwise. 

Although this definition is complex, it should be noted that there 

are less obvious positions than those previously described in which 

the Pawn can 'run', which are not included. For example, in Figure 

59 Black to move cannot stop the Pawn. 

Including all such positions in the definition of rule 4 is awkward 

and necessitates -including a large number of "special cases" 

which do not appear to be particularly meaningful to the chess 

player,, and they have therefore been excluded from. membership of 

týe_class. 

This is therefore an example of an equivalence class which can be 

specified simply in general terms (the Pawn can 'run') but where in 

practice it may be preferable to implement an approximation to the 

complete definition. 

R 
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Class 5 

The class is defined in its simplest form by the predicate. 

dist (BKI, BK2, WPI, WP2) < dist (WKI, WK2, WPI, WP2) 

i. e. the block distance is less between the Black King and the Pawn 

than between the White King and the Pawn. The value of the left-hand 

side of this expression is increased by one when the Black King is 

diagonally ahead of the Pawn, since then an extra move is needed 

for Black. to reach the Pawn. When this condition is satisfied it 

is to be expected that Black will be able to capture the Pawn and 

draw the game. (Although such-a conclusion is justified in general, 

it will be seen in Section 10 that it is not invariably true when 

the Pawn is on the second rank and. that a modification to the 

definition is needed in this case. ) 

Note that cases where in addition Black is outside iýnd cannot immediately 

enter the queening square can be ignored here. These are handled by Class 

4. In passing, it may be worth pointing out that in positions where the 

two block distances are equal (with Black to move) the Pawn sometimes 

but not always can be saved. For example, with Pawn on D4 and Black 

King on D6, a White King on B6 cannot save the Pawn, but a White King 

on F4 can. 

Class 

class 6 contains positions where Black to move can immediately occupy 

the square in front of the Pawn, called by (1929) the 

". blockade" square. It can be proved fairly easily that in all such 

positions Black can draw the. game. 
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For example, from Figure 60 play may. continue 

K-D6; 

4. P-D6ch, K-D7 

2. K-D4, K-D7; 

5. K-D59 K-D8; 

3. K-E5, K-E7; 

6. -K-E6, K-E8; 

7. P-D7ch, K-D8; 8. K-D6 Stalemate. 

14imzowitsr-heills'the square two in front of the Pawn'the ! 'resetve 

blockade" square. Black should play to occupy the blockade square 

where possible and failing that the reserve blockade square or 

"opposition square". (two squares in front of the White King on the 

same file), in that order of preference. In the above example, 

the Black King's first three moves are toýthe blockade, *reserve 

blockade- and opposition squares respectively. 

An apparent exception to the statement above that all-positions in 

Class 6 are theoretical draws is provided by Figure 61 where Black 

to move loses (1 .... K-C7; 2. K-E7 wins). Howevers here Black's King 

already .. occupies- the blockade square and a simple analysis shows 
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that either White's last move was-P-D7, in which case when Black 

played to D8 it was'not the blockade. square, or the position must 

have arisen from an earlier position such as Figure 62 (after 

I .... K-D8; 2. K E6). However, in Figure 62 Black can, of course, 

capture the Pawn instead. The position is, in fact, a member of 

Class I not Class 6. 

Class 

Thisý class of positions where Whitels'King is on the s4uare 

and Black can take the opposition is included with a low class value 

in order to direct White's play. in certain critical situati I ons 

61 
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In Figure 63, White should not-play 1. K-D6 although this move maintains 

his winning advant 
- 
age. Black will then. play K-D8,, leaving White with 

no better than 2. K-C6. Black can then return to Figure 63 by K-C8. 

In order to convert his advantage to victory,, White should play 

1. P-D69 K-D8; 2. P-D7, K-E7; 3. K-C7 etc. 

Including Class 7 in the algorithm will ensure that White will reject 

the position arising after 1. K-D6 from consideration, as a member of a 

low ranked class. 

Class 8 

This class of positions where White is two or more files closer to the 

Pawn than Black (and not below the rank of the Pawn)*is also included to 

handle particular important situations which can occur, this time 

w 
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by specifying a class of extremely favourable positions, with a high 

class value. 

Figure 64 shows a fairly common situation. White should not now play 1. K-F5 

taking the opposition, since then'after Black's reply K-E7, he must 

play 2. K-E5, whereupon Black, if he-wishes. may return to Figure 64 

by K-F7. Figure 64 is the critical position at which White must 

break out of this cycle. He should play 1. K-D6j moving two files closer 

to the Pawn than Black and, winning easily. The. position arising after 

1. K-D6 is a member of-class 8 and its high class value ensures that 

K-D6 will be chosen by the move finding algorithm. 

Classes 9 and 10 

These two classes are included to handle positions similar to Figure 65. 

%A# ý 
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In this position (where Black will typically have just moved from C6 to D6) 

White should not take the opposition by K-D4, but "sidestep" with 

1. K-BS (the resulting position being a member oflClass 10). If Black 

now plays K-D7, White should reply K-B6 with a Class 10 position once 

again. 

instead choosesA... '. K-D5, White should play 2. P-Mch 

giving a position in Class 9 (pattern A). This example shows the 

significance of'including Clas's 9 as well as Class 10. Without it 

White would play 2. K-B4'once again attaining pattern B. 

Class 11- 

After 1. K-B5, K-C7 in Figure 65, White has only one move to win, 

2. K-C5. The existence of Class 11 ensures that'this move will be 

chosen, although such an objective could in this case be obtained 

by other means (e. g. using Class 13). 
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In general, White wins whenever his King is on the Pawn's file 

and in front of the Pawn simply by advancing the Pawn as rapidly 

as possible (assuming that Black is not close enough to capture the 

Pawn). The only difficulty is that he should avoid advancing the 

Pawn to immediately below the King when Black can take the opposition. 

Such cases are taken care of by Class 7, as has already been described. 

Classes 12 and 13 

All members of these classes are positions which are won for White 

except in the case of a Rook pawn and (for class 13 only) positions 

where the White King and Pawn are on the same rank. This latter type 

of position is only won when both pieces are on the sixth rank. For 

example, in Figure 66 White wins by 1. K-E6 (e-g- I .... K-D8; 2. K-D6, K-C8; 

3. P-C7 etc. ). The alternative 1. K-D6 only draws (e. g. I .... K-D8; 

2. P-C76h, K-C8; 3. K-C6 stalemate). In this case the position after 

1. K-E6 belongs to Class 13. 

w &a 67 
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Class 12 is included to ensure correct play in positions such as 

Figure 67. White here wins by 1. K-C5, K-B7; 2. K-B5. If Black 

now plays K-C7 then 3. K-A6 sidestepping as before (pattern B). 

The positions after White's three moves in this sequence are members 

of classes 12,11 and 10, respectively. 

Class '14 

All positions belonging to this class are won for White, except for 

some positions with a Rook Pawn and those where Black can iumediately 

take the opposition, with the White King on the fifth rank or below 

and only one rank in front of the Pawn. These positions are drawn. 

8.2 The associated functions 

There are seven different associated functions used for this form of the 

algorithm. 

Table 11 Associated functions 

Yunction Value 

I WP2 

2 8-dist (WKI, WK2, WPI, WP2) 

3 8-min {abs (WKI-WPI), abs (WK2-WP2)) 

4 8-abs (W-KI-WPI) 

5 abs (WKI-WPI) 

6 M-WP2 

WK2 

where dis t (WKI , WK2, - WP I, 14P2) is defined as max fabs (WKJ -Wp 1) p Lbs (I; K2-WP2) 
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8.3 Thd value'tAble 

The value table consists of 15 rows and 4 columns, the first 

column holding the class value and the remainder the associated 

functions f 11 f2 and f3 . There are no more than. three functions 

for any of the classes. 

Table 12 Value table 

Class Class Value fI f2 f3 

1 1 2 3 0 

2 2 0 0 0 

3 15 0 0 0 

4 14 1 0 0 

5 3 2 3 0 

6 4 1 2 3 

7 5 0 0 0 

8 B 1 4 7 

9 12 1 0 0 

10 11 1 0 0 

11 10 1 0 0 

12 9 0 0 0 

13 8 1 0 (Y 

14 7 1 6 5 

15 6 2 3. 
. 
7.. 

As in the case of King and Rook against King, the relative ordering of 

class values corresponds to an ordering Qf White's objectives, thus Class 10 

is more valuable to Ulhite then Class 12 since from such positions he 

controls the squares in front of the Pawn and thus ensures its advance. 
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. 
9. -Refining the'algorithm: I- background and raHonale 

The algorithm described in the previous section was used as the 

starting point for experimentation to determine how readily algorithms 

based on the "equivalence class" model could be modified to play 

perfectly, given external knowledge of the best move in every s: ituation 

for a particular endgame. 

In terms of the objectives given in Section 1, this experimentation was 

intended partly as a further demonstration of the use of the model 

described in Section 2, but primarily as an example of the modifiability 

of algorithms under a different kind of testing from that described in 

Section 6 and as a means of isolating some of the features which would 

be required in a self-inproving system capable of refining its own 

performance. 

The feasibility of constructing a self-improving system is discussed 

in Section 11 in the light of this experimentation. In general, perfect 

external knowledge is not available and the objective of perfect play 

must necessarily be modified accordingly. 

The usual situat ion is that a substantial amount of information is known 

hbout some specific endgame, for example analyses in textbooks and games 

played by expert players. The aim is then to produce a program giving the 

best "fit" to the available information, with the complication that 

in many cases even the strongest human players do not play optimally 

(in the sense of choosing the shortest winning move in every position, etc. ) 

and the strategies given in different textbooks or chosen by different 

players may be conflicting. The possibility of genuine mistakes also 
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cannot be ruled out. 

In sect ion 6 an example was given of improving the King and Rook against 

King algorithm against a background of imperfect knowledge, the skill 

of the human opponents being unknown (thus the program may on occasions 

have won despite playing badly). Such investigations are necessarily 

unsyýtematic. It is always possible that the next game played would 

have revealed new difficulties. 

One advantage of using a store of absolute knowledge of optimal play, 

in the few cases where this is available, is that it enables the 

performance of a program to be measured on an objective scale and thus 

be capable of comparison with both other programs and human chess players. 

Further, improving a program to play perfectly for a given set of 

positions may provide valuable information on the tools needed in the 
4. 

more general case of only-imperfect knowledge, when. the objective is 

play which, in some sense, is better than the knowledge available. 

The database to be used is one of two set up by Clarke (1975) for 

simple endgames, once again King and Rook against King and King and 13a; -ni 

against King. The method used is to back-up a tree of variations from 

terminal positions (for which the result, win or draw, is known "by 

definition") to earlier positions and thus to determine the result 

against best play by the opponent in each case and also the "depth" 

of each positon, defined as the number of moves from the nearest 

terminal position, given best play on both sides. Given these depths 

the best move, or all equally good "best" moves, in any position can 

be foundi since the depth of the resulting position will be reduced 

by one in each case with'the same overall result (win or draw). 

The order of testing of the rules has once again been chosen to 

simplify the definitions where possible but is otherwise arbitrary. 



-183- 

For. the experimentation to be described in the next section, use 

was made of the database for King and Pawn against King. This was 

chosen In preference to King and Rook against King because of its 

greater practical interest for chessplayers, in particular because 

of the large number of positions which exist where White (the side 

with the Pawn) can only win by a very precise sequence 9f play. The 

database contains only positions with the Pawn in the left-most 

four files of the b9ard. All other positions are, of course, equivalent 

to these by symmetry. 

Since the aim was to modify the original algorithm given in Section 8 

to play perfectly by "manual" changes only. a relatively small sample 

of significant positions was chosen for analysis. The positions chosen 

were all those for which White has one and only one winning move, 

against best play by Black. 

These positions can be identified by generating each of the possible 

successor positions with Black to move. One of these will be a loss 

for Black with a depth one less than in the original position, the others 

will all be draws. 

Cases in which White can win by advancing his Pawn and continuing to 

advance it every move until it reaches the eighth rank were excluded. 

(These positions can easily be determined since the depth is equal 

to the number of Pawn moves required to reach the eighth rank. ) 

Positions where the Black King was more than one rank or file outside the 

queening square were also excluded, since even in the worst case, where 

White blocks his own Paým, he can sinpýy move his King off the rawnts 

file and the Pawn can then 'run'. 
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There were 1733 positions remaining and these were set up as, a. test 

file, together with White's best move in each positionl,. in suitable 

coded form. 

It was felt that 1733 positions constituted a manageable sample from 

the full set of 81662 legal positions with White to move and the 

Pawn on files A to D, ranks 2 to 7 inclusive, held on the database. 

To improve the algorithm "manually" to play perfectly for all these 

positions is likely to be a much more lengthy process but would not 

necessarily provide any further insights. Of these 81662 legal 

positions, only 62,480 are theoretical wins for White (Bramer, 19779- 

Analysing these won positions further shows that 47223 of them 

are "trivial" in the sense that the Black King is outside the 

queening square and the White King is not in front of the Pawn. 

The presence of class 4 in the algorithm will certainly ensure that 

all these are handled correctly. 

There are therefore 6nly 15257 non-trivial won positions. Thus a 

sample of 1733 positions is a fairly large proportion of all the 

"interesting" won positions. 

In the description which follows, White's best move in each position 

on the test file will be referred to as the 'file move'. 7bus in 

every case the file move is the only one for White to win, all others 

leading only to draws against best play by Black. 

* Reprinted at the end of this thesis. 
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The method used to test the performance of the algorithm was 'exception 

reporting'. A program cabodying the algorithm described in Section 8 

was set up and for each position on the test file the move chosen by the 

program (the 'program move') was calculated and compared with the 

'file move'. Those cases where there was a difference were printed out 

in tabular form. These 'exceptions' were then inspected, an appropriate 

change made to the algorithm and a new table produced. 

With the initial version of the algorithm, there were 193 exceptions, 

which were completely eliminated after a fairly lengthy but straightforward 

series of amendments, which are described in detail in the following 

section. The final version of the algorithm therefore plays perfectly 

in all of the test positions on file, but since these are only a sample 

of all possible positions for the King and Pawn against King endgame, 

it cannot automatically be assumed that the program will play perfectly 

in all other cases. To modify the program further, if necessary, to 

play perfectly in every position might-involve a substantial amount 

of time to perform manually, but would be quite feasible if the 

processes involved could be automated along the lines suggested in 

Section I I. The overall level of performance of the final algorith: n will 

be discussed in Section 10.5. 

The process of program improvement involved some changes to'the 

associated functions used in the algorithm and more inportantly an 

increase in the numbdr of equivalence classes from 15 to 24. As will 

I be seen, however, the final number of classes can be reduced to as 

-0 lew as 14 if required, without any reduction in performance. 

The information p roduced by the exception reporting system enables 

possible simplifications to the algorithm. (such as the combination of 

two or more equivalence classes) to be readily detected (at any stage, 



-186- 

. not necessarily at the end of the development process), and gives 

an indication of the importance of each of the component parts, 

for example how many positions could possibly be affected by the 

deletion of an equivalence class. 

Moreover, the method of exception reporting enables simplifications, 

generalizations etc. which are not provably justified to be 

investigated on an empirical basis.. 

The experimentation is described in detail in the following section. 
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10. Refining the algorithm: II - experimentation 

This section consists of a description of the modifications which were 

made to the King and Pawn against King algorithm and the judgements 

and decisions on which these were based, together with some general 

discussion of the processes involved. 

10. -I-The initial algorithm 

7he table below shows the class value and associated functions for 

each of the 15 classes in the initial form of the algorithm 

described in Section 8. in this and subsequent similar tables the 

classes will be given in the order in which the corresponding rules 

are tested'(1.2,, 3,..., 15 initially). 

Table 13 The initial algorithm 

Class Value Associated functions 

1 10. 2,3,0 

2 20 0,0,0 

3 150 0,0,0 

4 140 1,0,0 

5 30 2,3,0 

6 40 1,2,3 

7 50 0,0,0 

8 130 1,4,7 

9 120 1,0,0 

10 110 19090 

11 100 1,0,0 

12 90 0,0,0 

13 80 1,0,0 

14 70 1,6,5 

15 60 2,3,7 

a- 

Note that the class values given in-Section 8 have all been 

multiplied by ten here; to allow for possible insertions. Of the 
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1733 test positions on file, 193 exceptions (11%) were identified 

with this form of the algorithm and these are given in Table 14. 

The entries in the table should be interpreted as follows 

(1) REF -a reference number from I to 1733. 

(2) POSITION - the initial position, in coded form. The six digits 

indicate, from left to right, the White King's file and rank 

co-ordinates-followed by those of the Black King and the 

White Pawn, i. e. WK1, WK2, BK19BK2, WPI and WP2, respectively. 

(3) MOVEF - the 'file move' in a given position with White to move, 

i. e. the best move as held on the test file. 

MOVEP - the 'program move' in a given position with White to 

move, i. e. the move selected by the current form of the 

algorithm. 

For both these moves the code used is to represent King moves by an 

integer from I to 8, according to the following scheme. 

2 

7 03 

4 

A single pawn move is represented by 9, and a double move by 10. 
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CLASSF - the equivalence class of which the position arising 

after playing MOVEF from a given initial position is a 

member. 

CLASSP - the equivalence class of which the position arising 

after playing MOVEP from a given initial position is a 

member. 

SEL - 'selection level'. This indicatds-the 'level' at 

which the program move was selected in preference to the one 

considered next most favourable. 

Selection by class value alone (i. e. the program move was the only 

one in the highest ranked class) is indicated by 1. Selection by 

means of the functions associated with the most favourable class 

is shown by 2, if only the first function is needed, 3 if the 

second function is needed and 4 if the third function is needed. 
a- 

The letter "T" indicates that an arbitrary choice was made, to 

re. solve a tie. 
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TABLE 14 EXCEPTIONS WITH THE INITIAL ALGORITHM 

MOVE CLASS MOVE CLASS 

REF POSITION F p F P SEL REF POSIT104 F P F P 
2 381742 6 10 15 15 2 10 271442 4 to 5 is 

16 672842 6 10 15 15 4 17 122742. 2 3 15 15 
26 772642 6 10 15 15 2 37 152342 3 to 5 5. 

44 873842 6 10 15 15 4 45 123742 2 3 15 15 

46 163742 4 to is 15 4 49 723742 8 7 15 15 
50 763742 6 10 15 15 4 74 674842 6 10 15 15 
75 124742 2 3 15 15 3 76 164742 4 10 15 is 
77 724742 a 7 15 15 3 78 764742 6 10 15 15 
92 875842 6 10 15 

, 
15 4 93 125742 2 3 15 15 

94 165742 4 10 15 15 '4 97 725742 8 7 15 15 
98 765742 6 10 15 IS A 122 876842 6 10 15 15 

125 416742 8 2 15 15 T 126 726742 8 7 15 15 
128 176642 A 10 15 15 2 129 416642 8 2 15 15 
135 416542 8 2 15 15 T 141 416442 8 2 15 15 
146 756342 7 10 5 5 3 151 827742 8 7 15 15 
161 677442 6 10 5 15 1 167 788542 6 10 5 15 
169 788442 6 10 5 15 1 170 788342 6 10 5 is 
199 132843 2 3 15 15 3 228 133843 2 3 15 15 
230 733843 6 7 15 15 3. 257 134843 2 3 15 15 
259 734843 G 7 15 15 3 276 135843 2 3 15 15 
278 735643 8 7 15 15 3 306 426843 8 2 15 15 
307 736843 8 7 15 15 3 310 426743 8 2 15 15 
316 426643 8 2 15 15 T 322 426543 8 2 15 15 
ý36 837843 8 7 15 15 3 470 436844 8 2 15 15 
476 4367411 8 2 15 15 T 462 4Zn644 8 2 15 15 
524 141745 2 1 15 13 1 537 252745 9 3 V5 15 
579 446845 6 2. 15 15 T 583 446745 8 2 

* 
15 15 

584 656745 9' 7 15 15 3 596 747745 8 1 15 13 
650 771832 6 10 15 15 4 657 671632 6 10 15 15 
671 772832 6 10 15 15 A 674 622732 8 7 15 15 

675 662732 6 10 15 15 4 699 773832 6 10 15 15 
700 623732 8 7 15 15 3 701 663732 6 10 15 15 
715 774832 6 to 15 is 4 7fS 624732 8 7 15 15 
719 664732 6 10 15 15 4 743 775832 6 10 15 15 
744 315732 8 2 15 15 T 745 625732 8 7 15 15 
746 315632 6 2 15 1 'S T 750 315532 8 2 15 15 
754 315432 8 2 15 15 T 757 655332 7 10 5 5 
762 726732 8 7 15 15 3 772 576432 6 10 5 is 

778 $27732 C 7 15 15 3 782 687532 6 10 5 Is 

786' 687432 6 10 5 15 1 787 687332 6 10 5 is 

815 632833 a 7 15 is 3 842 633833 
.8 

7 15 15 

859 634833 8 7 15 15 3 886 325833 8 2 15 15 

887 635833 8 7 15 15 3 ass 325733 8 2 15 15 

892 325633 8 2 15 15 T 896 325533 q 2 15 15 

906 73(033 8 7 15 IS 3 927 837833 8 7 15 15 

1021 335834 8 2 15 IS T 1025. 335734 a 2 15 15 

1029 335634 8 2 15 15 T 1071 151735 9 3 15 15 

1112 345835 8 2 15 15 T 1115 345735 8 2 15 15 

1116 555735 9 7 15 ls 3 1124 646735 a 1 15 13 

1173 671822 6 10 Is 15 4 1176 521722 8 7 15 15 

1177 561722 6 10 15 15 4 1198 672822 6 10 15 15 

1199 522722 8 7 15 15 3 1200 562722 6 10 15 15 

1212 673822 6 10 15 15 4 1214 523722 8 7 15 15 

1215 563722 6 10 15 15 A 1234 674822 6 10 15 15 

1236 214722 8 2 15 15 T 1237 
. 
524722 8 7 15 15 

1239 214622 6 2 15 15 T 1244 214522 8 2 15 15 

1249 214422 8 2 15 15 T 1253 554322 7 10 5 5 

1258 625722 8 7 15 15 3 1268 475422 6 10 5 15 

1274 726722 8 7 15 15 3 1278 586522 6 10 5 15 

1282 586422 6 to 5 15 1 1283 586322 6 10 5 is 

1287 827722 8 7 15 15 3 1295 531823 a 7 15 15 

1318 532823 8 7 15 15 3 1332 533823 8 7 15 15 

1352 224823 a 2 15 15 T 1353 534823 6 7 15 15 

1355 224723 8 2 15 15 T 1360 224623 8 2 15 15 

1365 224523 8 2 15 15 T 1376 635823 8 7 IS 15 

1397 736823 8 7 15 15 3 1413 837823 6 7 15 15 

1463 234824 8 2 15 15 T 1468 234724 8 2 15 15 

1473 234624 8 2 15 15 T 1538 244825 8 2 15 15 

1542 244725 8 2 16 15 T 1543 454725 9 7 15 15 

1552 545725 8 1 15 13 1 1591 143312 2 9 5 8 

1592 453312 7 10 5 5 3 1595 164812 2 10 a 8 

1596 264812 1 to 8 8 2 1598 164712 2 10 8 8 

1599 -174712 3 10 8 8 2 1600 184712 4 to 8 a 

1601 264712 1 10 8 8 2 1602 284712 5 10 8 8 

1603 154612 2 10 8 8 2 1604 164612 3 to 8 8 

1605 174612 4 10 8 3 2 1606 254612 1 10 8 8 

1607 144512 2 9 8 8 2 1608 174512. 4 10 8 8 

1609 244512 1 10 8 8 2 1611 134412 2 1 8 8 

1612 174412 4 10 5 8 1 1613 234412 1 9 8 8 

1614 374412 6 10 5 15 1 1615 224312 1 8 8 8 

1622 485512 6 10 5 15 1 1623 485412 6 10 5 15 

1624 485312 6 10 5 15 1 1641 143313 2 1 14 a 

1645 164813 2 9 8 8 2 1646 264813 1 9 8 8 

1648 1647-13 2 9 8 8 2 1649 174713 3 9 8 8 

1650 184713 A 9 8 8 2 1651 26-1713 1 9 8 8 

1652 284713 9 C a 2 1653 154613 2 9 8 8 

1654 164613 9 6 8 2 1655 174613 4 9 8 a 

1656 254613 1 9 8 8 2 1658 144513 2 1 a 6 

1659 174513 4 9 8 8 2 1660 244513 1 91 8 8 

1662 174413 4 9 8 8 2 1663 234413 1 6 8 8 

1689 153411, 2 1 14 8 1 1602 164814 2 9 8 8 

1693 264814 1 9 e 8' 2 1695' 164714 2 
' 

9 8 8 

1696 174714 3 9 8 8 2 IC97 164714 4 9 8 8 

1698 264714 1 9 8 8, 2 1699 154614 2 1 8 8 

1700 184614 4 9 8 8 2 1701 254614 ; 1 9 a 8 

1703 184514 4 9 S F 2 1704 2 4514 1 8 8 a 

1723 254615 1 6 a 8 3 

SEL 
1 
3 
3 
3 
3 
4 
4 
4 
3 
3 
4 
3 
T 
T 
3 

3 
3 
3 
T 
T 
T 
T 
T 
3 
T 
1 
2 
3 
4 
4 
3 
4 
3 
T 
3 

3 
T 
T 
T 
3 
T 
3 
T 
1 
3 
4 
A 
3 
A 
3 
T 
3 

3 
3 
3 
T 
3 
3 
T 
T 
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The complete set of exceptions is summarised in the table below. 

Table 15 Summary of exceptions: initial: algorithm 

CLASSP CLASSF 

Number of 
Exceptions 2 

Selection Level 
34 Ties 

5 5 5 0 50 0 

8 5 2 

8. 8 45 38 -7 0 0 

8 14 2 

13 15 4 

15 5 17 

15 15 118 4 49 26 39 

In this and subsequent similar tables, the selection level is only 

given in the cases where CLASSP and CLASSF are equal. In such cases, 

the "second best move" (as judged by the move-finding algorithm) must 

also give a position in the same equivalence class. 

The "second best move" may, in fact, be MOVEF. If'it is not, the 

only possibility is that the position arising after MOVEP was chosen 

from three or more positions in the same equivalence class, by means 

of associated functions. Positions where CLASSP and CLASSF are equal 

would seem to indicate that the program has made the correct choice of 

best available equivalence class but has failed to discriminate 

appropriately within that class. It is likely therefore that some 

change to the associated functions for that class is required. 

When CLASSP and CLASSF are different, there are a number of possibilities. 

It may be that the rankings of CLASSP and CLASSF should be inter- 

changed but It is more probable that the position arising after 

MOVI,: p is being ranked too high or, alternatively, that the position 
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arising af ter MOVEF is being ranked too - 
low. It may therefore be 

necessary to amend the definitions of CLASSP or CLASSF (or both) or 

to introduce a new equivalence class or classes. The selection 

level is of little significance in these cases and is therefore 

omitted from the tables. This brief analysis ignores possible 

inter-relations between the exceptions (e. g. in three rows of 

Table 15, CI_&SSP is 8) and the necessity to consider the exceptions 

in the context of the correctly handled positions, which provide 

support for the existing components of the algorithm to a greater 

or lesser extent. 

Table 16 below shows a complete breakdown for each equivalence class 

of the number of successor positions belonging to that class (note 

that there may be up to ten successor positions for each of the 

positions on the test file), the number of times a member of that 

class was selected as best (a total of 1733 for all classes) and the 

selection levels for this latter number of positions. In this and 

similar subsequent tables, only classes of which at least one 

successor position is a member (whether selected as best or otherwise) 

are included. Thus class 3 (Pawn on eighth rank, not subject to 

capture) will never be included. The selection criteria for the 

test file ensure that there are no cases where White can immediately 

promote his pawn and win. 
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Table 16 Selection Table : Initial Algorithm 

CLASS TOTAL SELECTED 1 

Selection Level 

234 TIES 

1 1367 0 0 0 0 0 0 

2 10 0 0 0 0 0 0 

4 179 179 179 0 0 0 0 

5 2448 15 0 0 5 0 10 

6 652 0 0 0 0 0 0 

7 84 0 0 0 0 0 0 

8 441 223 161 40 7 15 0 

9 45 45- 45 0 0 0 0 

10 62 62 62 0 or 0 0 

11 58 58 58 0 0 0 0 

12 88 88 88 0 0 0 0 

13 230 190 190 0 0 0 0 

14 342 208 178 0 30 0 0 

15 6428 665 135 44 374 47 65 

10.2 Analysis of exceptions and changes made 

Looking at Tables 15 and 16 together, the following deductions seem 

reasonable. 

The definition of class 5 is faulty. As was pointed out in 

Section 8, all the positions in this class are intended to be 

drawn, but in 15 cases such positions are chosen by the program 

and on ten occasionsp these are not exceptions. However, it is 

known that all of the stored file moves lead to wins for White. 

It is therefore necessary to change the definition of class 5 

to exclude the 15 positions currently "selected" from member- 

ship, whilst ensuring that in 10 cases the same move is 

cho . sen by the program, although for a different reason. 
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There are 49 exceptions for which CLASSP is 8, for 45 of which 

CLASSF is also 8. 

Either the functions associated with class 8 need to be 

altered, or some positions need to be excluded from it altogether 

(it is unlikely that the definition ot the class is faulty 

since members of the class have been correctly chosen 223-49 = 

174 times). 

(iii) There are 135 exceptions tor which CLASSP is 15, for 118 of 

which CLASSF is also 15. 

However, the large number of correctly selected positions 

corresponding to clasý 15 and their distribution throughout the 

various selection levels suggests týat it is not likely to be 

profitable to change the associated functions for that class, 

but rather to split the. class into two or more smaller classed 

each with its own class value and associated functions. 

These appear to be the major causes of the effects shown in the two 

tables, with other small problems concerned with class 13 and 14 

superimposed. 

A decision therefore needs to be made whether to begin by looking 

at class 5,8 or 15. 

As a general rule, when there are many exceptions to deal with ) it 

would seem to be a good idea to concentrate on the class which is 

evaluated earliest (5 rather than 8 or 15 in this case), since making 

changes to the algorithm at this level may cause some of the later 

exceptions to disappear altogether (by affecting the number of 
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positions belonging to each of the later classes). 

However, as there were so few exceptions involving class 5, it was 

decided to begin by looking at the exceptions associated with class 8. 

10.2.1 Problems with the Rook Pawn 

Looking at the 4§ positions with CLASSP =8 reveals one significant 

fact. In every one of these cases the Pawn is on the Rook file 

(WPI=1) in the initial position (and since the Pawn's file is a 

static feature of this endgame, this will also be true for all 

possible successors of those positions). -Most chess textbooks 

(e. g. Fine (1941)) suggest that positions with a Rook Pawn may be 

a "special case". (As stated in Section 8, this consideration was 

ignored when setting up the original form of the algorithm in the 

belief that the general rules embodied there catered for such 

positions also. ) 

Thus it would seem reasonable to isolate all initial positions with 

a Rook Pawn into a second test file and analyse these independently 

of the original file$, with the aim of isolating possible new classes 

which relate to that type of position only. Of the' 193 exceptions 

listed previously, 54 correspond to initial positions with a Rook 

Pawn, out of 148 such positioný altogether (37%). Recomputing the 

latter two tables above for Ro6k Pawn positions only gives the 

, following breakdown, firstly for exceptions only: 
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Table 17 Summary of exceptions: initial algorithi;, Rook Pawn only 

Number of Selection 
exceptions Level 

CLASSP CLASSF 234 Ties 

55 

85 2 

88 45 38 7 
8 14 2 

15 5 4 

and secondly for all positions: 

Table 18 Selection table: initial algorithm, R02k Pawn only 

I 

CLASS TOTAL SELECTED 1 

Selection Level 
234 TIES 

1 98 0 0 000 0 

4 34 34 34 000 0 

5 215 2 0 010 1 

8 302 84 22 40 7 15 0 

11 4 4 4 000 0 

13 13 0 0 000 0 

14 10 8 8 000 0 

1 15 210 16 6 370 01 

At this stage, the principal focus of attention was on the Rook Pawn 

positions where CLASSP = 8. Inspecting some of the Positions where 

CLASSP = CLASSF =8 suggested that many of the Positions played to 

by the program should not be members of Class 8 at all. They were 

poor positions which should be avoided by White. 



-197- 

Thus an attempt was made to specify one or more new equivalence 

classes to which these 'poor' successor positions - could be allocated. 

To be effective any such new classes should appear before Class 8 

in the testing order and have a lower class value,. so that the 

poor successor positions will be allocated to these classes rather 

than class 8 and be ranked below the position given by MOVEF (which 

will still belong to class 8). ' One rule, given in some textbooks in 

tbp case of a Rook Pawn (e. g. Fine (1941), is that if the Black King 

can reach square C8 then. the game is a draw (excluding situations 

where the Pawn can immediately move to the eighth rank, etc. ). 

To incorporate this rule into the algorithm a further equivalence 

class, class 16, was introduced with the definition 

Rook Pawn AND dist (BKI, BK2,3,8)<dist (WKI WK2,3,8). 

. (The second part of this definition is simply that the Black King 

is closer to C8 then the White. ) 

Note that for a Pawn on the H-file, the square C8 would need to be 

replaced by F8. For the positions under consideration, however, it 

can be assumed that a Rook Pawn. is always on the A-file and that the 

file two away from the Pawn is. therefore al*ays the C-file. No 

associated functions were defined for Class 16,. since the positions 

belonging to it were intended to be rejected and not accepted. It 

was decided to test rule 16 between the existing rules 5 and 6, both 

of which are also intended to correspond to draws, with a class 

value between those of these two classes. With this change the two 

tables were recomputed for all the initial positions with a Rook 

Pawn (since only these could be affected), and it was found that 16 
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ýositions which had previously produced "exception. s" were now 

correctly handled by the program (reference numbers 10,11,13,14,15, 

16,60,61,63,64,65,66,107,108,110 and 113). In all cases these were 

positions where previously CLASSP = CLASSF = 8, with a selection 

level of 2. 

No positionwhich was previously correctly treated now produced an 

exception, but some of those which still failed, now failed with a 

different "program move" (but still one for which CLASSP = 8). This 

was, in fact, a common feature in the subsequent experimentation. 

0 Clearly this change was successful since it corrected 30% of the'Rook 

Pawn exceptions (8% of the overall total) without introducing any 

new exceptions and it was therefore accepted. This kind of change - 

introducing a new low-ranked equivalence class - was the most 

common type of modification which occurred during this experiment- 

ation. Such a change can be used effectively to eliminate certain 

program moves from consideration, by specifying a low-ranked class to 

which all the corresponding successor positions will then belong. 

This class must be tested for before the class or classes of which 

the positions arising after the file moves are members and must have 

a lower class value than any of these. It is particularly appropriate 

when CLASSP and CLASSF are equal and a large number of correctly 

selected program moves with the same value of CLASSP suggests that 

the class itself. is generally well-chosen. It is assumed here that 

the definition of an equivalence class should be a, generalization of 

the characteristics of the positions which it is required should 

belong to that class. Thus it would not be satisfactory to take, say, 

the 45 cases previously referred to where CLASSF = CLASSP -8 and 

define a class containing all 45 of the positions after the file 

moves and no others. It is extremely unlikely that an algorithm 

These numbers refer to the 148 positions with a Rook Pawn only. Thcy 

can be related to the reference numbers in Table 14 by adding 1585 in 

each case. 
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developed in this way would perform well for positions other than 

those in the test file under investigation. Nevertheless, there 

may, ýe. some advantage in dealing with a small number of "special 

cases" in this way, as will be described later. 

From the form of the algorithm described above, with now 

54-16 = 38 Rook Pawn positions giving exceptions, the next stage was 

a further analysis of the remaining 29 positions for which CLASSP 

And CLASSF are both 8. One feature which appeared to be common to 

many of these was that the program move allowed Black to move into 

'horizontal opposition' (i. e. two files away from the White King on 

the same rank) with the White King on the Rook file, in front of the 

Pawn, in each case. Considering Black's best reply is often an 

important requirement when deciding why a program move. is inferior 

to the one held on file. 

Again, a low-ranked equivalence class, class 17, was defined to 

include positions which need to be avoided, namely all those where 

Black can take the horizontal opposition with the White King in 

front of the Pawn. In this case, these can be specified by the 

predicate function 

Rook Pawn AND WKI=WP1 AITD WK2>TAT2, AND dist (EKI pBK2,3, WK2)-I. 

As before, it was decided to test rule 17 between rule's 5 and 6, 

with a class value between those of these two classes and no associ- 

ated functions. 

With this change, the number of exceptions (in the case of a Rook 

Pawn) was reduced from 38 to 20 (positions 18,19,20,21,22924026,28,30, 

68,71,73,75,78,114,116,119'and 138 now being correctly handled and no 

new exceptims created). Once again the change was evidently 

Again these numbers can be related to those in Table 14 by adding 1585 
in each case. 
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successful and was accepted. 

Two further changes were now attempted, both of which were unsuccess- 

ful and were reversed. 

The first was to introduce an extra class, which was tested for 

immediately after 17. This was defined by 

Rook Pawn AND WKIOWPI 

with class value slightly better than the residual class 15, and the 

same associated functions as class 8. 

The second change was to assign all Rook Pawn positions which did not 

belong to class 17 (or any of those tested before 17) to the residual 

class, 15. Both these changes resulted in a large. number of new 

exceptions and were rejected. 

With the number of instances of CLASSP = CLASSF =8 now reduced to 

only 11, from 45 originally, it was decided to re-examine the full 

test file of 1733 positions, rather than the Rook Pawn cases alone. 

10.2.2 Problems with a Pawn on the second rank 

The-breakdown of exceptions for the full file was now as follows: 
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Table 19 Sumary of exce tions: revised algorithm I 

CLASSP CLASSF 

Number of 
exceptions 

Selection Level 

234 Ties 

55 5 050-0. 

85 2 

88 11 (45) 7 (38) 04 (7) 0 

8 14 2 

13 15 4 

15 5 17 

15 15 118 4 49 26 39 

(previous figures are in parentheses, where different) 

Attention was now focused on the 24 cases in which CLASSF. = 5, 

although class 5 was intended to contain only positions which are 

drawn (with the Black King closer-to the Pa7m than the White King). 

A co=on feature of all these positions was that the Pawn was on the 

second rank and this suggests that the precise way in which the 

distances of the Kings from the Pawn need to be compared may be 

different when the Pawn is on the second rank (and thus has the option 

of moving either-one or two squares initially). A number of attempts 

were now made to respecify the definition of rule 5. During the 

course of this, many of the previous exceptions became corrected, and 

at various stages a number of positions which had previously been 

correctly handled became exceptions, the definition being refined 

each time to deal with these. Eventually the definition was changed 

I so that the following additional condition had to be satisfied 

whenever the pawn was on the second rank 

dist (BKI, BK2, WPI, VIP2+1) < dist (WKI, WK2, WPI, WP2+1), 

i. e. the Black King must also be closer to the square in front of the 

Pawn than the White. 
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With this change, CLASSF was no longer 5 in any of the 24 cases 

under consideration: 22 of these positions were now correctly 

handle'd, however two positions (1591 and 1612) remained as 

exceptions but with CIASSF no longer 5. 

The full breakdown of exceptions was now the following: 

Table 20 Su=ary of exceptions : revised algorithm II 

Number of Selection Level 
exceptions 

CLASSP CLASSF 234 Ties 

88 12ý(11) 8(7) 040 

8 14 3 (2) 

13 15 4* 

15 15 118 4 49 26 39 

(The increase in the totals for the cases CLASSP = CLASSF =8 and 

CIASSP = 8, CLASSF 14 are accounted for by positions 1612 and 

1591, respectively* 

10.2.3 Problems with the residual class 

Attention was now focussed on class 15. The final rovi of the table 

above shows the selection level for the 118 cases of exceptions where 

CLASSP=CLASSF=15. The complete table of selection levels for class 15 

for all the 538 positions where a choice was made. between two 

successor positions in class 15 was now: 
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Table 21 - Selection Table: revised algorithm II, class 15 only 

Total Selection Level' 

234 Ties 

538 52 374 47 65 

As stated previously)the most appropriate course of action now 

seemed to be to split up class 15 into two or more smaller classes, 

each with its own associated functions. 

However, it was decided to investigate one further problem before 

taking this action. From Tables 20 and 21 it can be seen that 

there are 26 cases in which the correct move was played on the basis 

of an arbitrary resolution of a tie. Since the test file contained 

only positions where White has only one move to win, this situation 

is not satisfactory. and a tentative attempt was made at changing the 

associated functions for the residual class to solve this problem. 

Based on an analysis of some of the except-ions for which 

CLASSP=CLASSF=15, a further associated function (8) was defined with 

value 8- abs. (WK2-WP2) and the associated functions for CLASS 15 

were changed to 4,1 and 8 in that order. With this choice, the 

smallest value of the difference between the Pawn's file. and the 

White King's file would be chosen and subject to this the largest 

value of the Pawrf's rank and the smallest difference in ranks between 

the White King and the Pawn. Recomputing the table of exceptions 

with this change showed that there were now 174 exceptions against 

only 137 previously. 39 of the previous exceptions were now corrected, 

but there were 67 new exceptions, which were previously correctly 

handled. From this result it appeared that whilst the original 

I 

choice of functions-2,3,7 was appropriate in some situations, the 
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new choice of 4,1,8 was preferable in others.. It therefore 

seemed reasonable to split up class 15 into two new classes, one 

with each of these sets of associated functions. An examination of 

the 67 positions which had become exceptions despite being correctly 

handled previously, showed that in every case after White's move 

had been played, his King was on the Pawn's file, below the Pawn. 

This suggested that associated functions 4,1,8 should only be 

applied to positions where White's King is not below the rank of the 

Pawn (function 4 is used to choose the smallesý distance between the 

King's file and the Pawn's file, but this was not intended to lead 

I to the King moving behind the Pawn). On the basis of the above 

considerations, the algorithm was changed as follows: the original 

associated functions (2,3,7) for the residual class 15, were restored 

and a new class 18, was introduced with definition 

WK22! WP2. 

This class was placed irmediately before class 15 in orde-r of testing, 

with a value between that of class 15 and that of fhe next highest 

valued clasqq 14. With this change the 67 'new' exceptions disappeared 

again, leaving a total of 107 remaining. Successful though these 

changes appeared, ýan inspection of the full selection table (not given 

here) showed that the original problem of the 26 positions correctly 

handled only on the basis of resolving a tie was unaltered, except 

that the class concerned was now 18 not 15. 

The exception table is given below. One important difference from 

the previous table will be seen to be that where class 15 had 

previously appeared, class 18 now appeared in its place. The 

figures in parentheses take this change into account. 
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Table 22 Summary of exceptions : revised algorithm III 

Number of Selection Level 
exceptions 

CLASSP CLASSF 234 Ties 

88 12 8040 

8 14 3 

13 18 4 

18 18 8 00 44(26) 39 
3(11 

8 
1 

18 15 5 

An analysis of the 83 positions for which CLASSP=CLASSF = 18 now 

showed that in many cases the program move was to the same rank as 

the Pawn, whereas the file move was to the rank above. A change was 

therefore made to the definýtion of class 18 to be WK2>WPZ, i. e. 

the case of equality was removed from the. previous definition. After 

this change only 63 exceptions still remained. 

Table 23 Summary of exceptions : revised algorithm IV 

Number of Selection Level 
exceptions 

CLASSP CLASSF 234 Ties 

88 12 8040 

8 14 3 

13 15 4 

15 15 44 (83) 0 5(0) 0(44) 39 

It will be seen týat the majority of exceptions were now once again 

where CLASSP=CLASSF=15. The problem of the 26 ties still remained, 

except that the class involved was again 15. Of the 44 positions 

where CLASSP=CLASSF=15,39 were now of the following kind: 



-206- 

Here the only move to win (the file move) is K-C5, moving to the 

side of the Pawn the more distant from the Black King. A likely 

continuation would be I. K-C5, K-E7; 2. K-C6, K-D8; 3. K-D6, taking 

the opposition and winning. 

The program move, however, is K-E5 which leads only to a draw, e. g. 

I. K-E5, K-E7; 2. P-D6ch, K-D7; 3. K-D5, K-D8; 4. K-E6, K-E8; 

5. P-D7ch, K-D8; 6. K-D6 stalemate. Both these moves are equally 

valued by the algorithm with K-E5 chosen arbitrarily. For these 

positions to be handled correctly, it seems to be necessary either 

to introduce a new equivalence class, as for many of the previous 

changesq or to introduce a further associated function for class 15. 

The latter approach was chosen and a new function (number 9) was 

defined with value abs (WKI-BKI). Choosing the largest value of 

this function whenever there was a tie ensures that positions such as 

Figure 68 would be correctly handled. After this change only 24 

exceptions remained. 

w 
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Table 24 Summary of exceptions : revised algorithm V 

Number of Selection Level 
exceptions 

CLASSP CLASSF 234 Ties 

88 12 8040 

8 14 3 

13 15 4 

15' 15 5(44) 05 0(39)_ 

An inspection of the full selection table at this stage showed that 

the 26 positions previously discussed although still correctly chosen, 

were now selected by means of the associated functions not as the 

result of a tie. 

10.2.4 The remaining exceptions : catering for the special case 

A complete table of the remaining exceptions is given below. 

Table 25 Exceptions with revised algorithm V 

MOVE CLASS 
REF POSITION F p F P SEL 

524 141745 2 1 15 13 1 

537 252745 9 3 15 15ý 3 

584 656745 9 7 15 15 3 

596 747745 8 1 15 13 1 

1071 151735 9 3 15 15 3 

1116 555735 9 7 15 B 3 

1124 646735 8 1 15 13 1 

1543 454725 9 7 15 15 3 

1552 545725 8 1 15 13 1 

1591 143312 2 1 14 8 4 

1602 284712 5 10 8 8 2 

1608 174512 4 10 8 8 2 

1612 174412 4 10 8 8 2 

1641 143313 2 1 14 8 1 

1652 284713' 5 9 8 8 2 

1654 164613 3 2 8 8 4 

a- 
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RE-F POSITION F P 
CLASS 

F P SEL 

1655 174613 4 3- 8 8 4 

16-5.9 174513 4 9 8 8 2 

1662 174413 4 9 8 8 2 

1689 4153414 2 1 14 8 1 

1696 174714 3 2 8 8 4 

1697 184714 4 3 8 8 4 

1700 184614 4 9 8 8 2 

1703 184514 4 9 8 8 2 

The complete selection table is as follows. 

Table 26 Selection Table : Revised algorithm V 

CLASS TOTAL SELECTED 1 

Selection 

23 

Level 

4 5 Ties 

1 1367 0 0 0 0 0 0 u 

2 10 0 0 0 0 0 u 0 

4 179 179 179 0 0 0 0 0 

5 2367 0 0 0 0 0 0 0 

6 652 0 0 0 0 0 0 0 

7 84 0 0 0 0 0 0 0 

8 262 240 226 9 0 5 0 0 

9 45 45 45 0 0 0 0 0 

10 62 62 62 0 0 0 0 0 

11 58 58 58 0 0 0 0 0 

12 88 88 88 0 0 0 0 0 

13 222 190 190 0 0 0 0 0 

14 343 208 178 0 30 0 0 0 

15 4437 444 84 25 249 21 65 0 

16 255 0 0. 0 0 0 0 0 

17 82 0, 0 0 0 0 0 0 

18 1921 219 41 107 0 71 0 01 

It will be seen that no positions are now selected solely by arbitrary 

resolution of a tie. 
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(For convenience a fourth function has been assigned to each class, 

all of which are null except in the case of class 15. A selection 

level of 5 indicates that the fourth function was needed to choose 

MOVEP. ) 

Attention was now directed towards the five exceptions for which 

CLASSP=CLASSF=15g all of which have a selection level of 3. On 

considering the positions after the file moves in each of the five 

cases, a common pattern was apparent. The positions were all of this 

kind: 

4 

White has just played I. P-D6 and now winsp-for example by 1 .... K-C8; 

2. K-C6, K-D8; 3. P-D7, K-E7; 4. K-C7 etc. This manoeuvre only wins 

with the Pawn on the-sixth rank. With the Pawn on any lower rank 

Black has the alternative of moving his King back along the Pawn's 

file on move 3, and thus drawing. 

In aek 
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The common features of the five successor positions arising after 

the file moves were used to define another equivalence class, 19, 

with the definition 

WP2=6 AND WK2=5 AND BK2=7 

AND VKI=BKI AND abs(WKI-IRI)=2 

i. e. the two Kings are on the same file, two files away from the 

Pawn with the White King on the fifth rank, the Black King on the 

seventh rank and the Pawn on the sixth rank.. . 

Class 19 was placed immediately above the residual class, 15, in 

order of testing with a class value between those of classes 18 and 

15 (no associated functions). These choices were made to ensure that 

the file moves would be chosen for the five exceptions under 

consideration, but that no other positions would be affected. It 

should be noted that this is unlike the previous changes described, 

since its object wag essentially to upgrade the file moves rather 

than downgrade the program moves. 

This and the following changes to the algorithm were concerned with 

introducing equivalence classes specifically designed to cater for 

small numbers of "special cases". Although it was previously stated 

that such modifications are unlikely, in general, to lead to an 

algorithm which is correct for positions not on the test file, this 

consideration does not apply with the same force in the final stages 

of the experimentation, where: the number of positions involved is 

likely to be small. Given an algorithm which is correct in the 

great majority of cases tested, it is reasonable to suppose that 

those remaining are genuine "special cases", the special nature of 

which is a consequence of. the peculiarities of the endgame under 
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consideration, not of the structure imposed by the equivalence class 

model or the algorithm. 

In the case of Figure 69, for example, if the pieces were all moved 

down one rank, White would no longer win. The condition WK2=5 AND 

BK2-7 etc. is a requirement imposed by the stalemate rule and the 

effect of the edge of the board on the outcome of the game. The 

problem of the possible proliferation of equivalence classes, each 

dealing with a small number of special cases, will be taken up later. 

An examination of the four exceptions for which CLASSP-13 and 

CLASSF-15 showed that all the positions occurring after the file 

moves were similar to Figure 70. 

This position is a-win for White since Black must prevent White from 

playing to C6 by I .... K-D7. However, -White can now win by playing 

2. P-B6 giving a, position in class 19. Just as in the play from 

Figure 69, White only wins because the Pawn is on the sixth rank, 

so here the transposition to a member of class 19 depends on the 

7A 
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Pawn being on the fifth rank initially. To deal ý7ith these 

positions an additional equivalence class, 20, was defined to 

include the positions after the file moves in each case. The rule 

defining the class was as follows 

WK2=WP2=5 AND BK2=7 AND abs (WKI-Wrl)=2 AND 

abs (BKI-WPI)=3 AND sameside 

where sameside is true if both Kings are on the same side of the 

Pawn. Thus the rule specifies that the White IUng and the Pawn are 

both on the fifth rank with the Black King on the seventh rank, with 

the White and Black Kings respectively 2 and 3 files from the Pawn 

on the same side. 

The class was placed immediately above-class 15 in order of testing, 

below class 19 (although the order of these two classes is 

irrelevant). A class value was chosen so that class 20 would rank 

above class 13, but beloy the next highest ranked class, since 

CLASSP=13. No associated functions were defined. 

The remaining 15 exceptions all involved Rook Pawns and in each 

case CLASSP=8. It might therefore be expected that it would once 

again be necessary to define one or more low-valued new classes of 

"positions to be avoided". 

In fact, four such classes were defined, all placed for convenience between 

classes'16 and 6 in order of testing and with low class values (note 

that the classes must come before Class 8 in the testing order or 

CLASSP will still be 8). The classes were defined as follows 
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CLASS 21 Rook Pawn AND WKI=WPI LND WK2-; ->WP2+2 AND 

dist(BKI, BK2,3, WK2-1)=I. 

CLASS 22 Rook Pawn AND WP2>2 AND WK2=WP2+4 AIM 

dist(BKI, BK2,3, WP2+2)=I. 
_ 

CLASS 23 Rook Pawn AND WKI=WPI AND WK2=WP2+1 AND 

dist(BKI, BK2,3, WK2+1)=I. 

CLASS 24 Rook Pawn AND WKI =TAT I AND WK2=WP2+3 ABD 

dist(BKI, BK2,3, WK2-2)=I. 

In each case no associated functions were ýefined and class values 

between-those of classes 5 and 6 were chosen. It was expected that 

these classes would never be selected as best and so their relative 

class yalues and ordering were not significant. 

Classes 21-24 are'all examples of special cases where the Pawn is on 

the Rook file and Black to move can play to a suitable square on the 

Bishop file and thus draw. They are therefore all positions to be 

avoided by White. 

10.2.5 Conclusions 

With these new classes included, the program worked correctly for 

all 1733 positions on the test file. An analysis of the number of 

successor positions belonging to each equivalqnce class and those 

chosen at each selection level is given in the table below, with 

the classes arranged in testing order. 

For each equivalence class, the class value is also given. 
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Where the relative order of testing of two classeq has not previously 

been specified, the order given hqre is arbitrary. The class 

values. for the new classes have been chosen to lie in the ranges 

previously specified but are otherwise also arbitrary. 

Table 27 Selection Table : final alg rithm 

4- 

CLASS TOTAL SELECTED 

1 1367 0 

2 10 0 

4 179 179 

5 2367 0 

16 255 0 

17 82 0 

21 12 0 

22 7 0 

23 1 0 

24 3 0 

6 652 6 

7 84 0 

8 239 237 

9 45 45 

10 62 62 

11 58 58 

12 88 88 

13 222 186 

14 343 211 

18 1921 219 

19 13 '13 
20 4 4 

15 4420 431 

1 2 

Selection Level 

345 

0 0 0 0 0 

0 0 L 0 0 0 

179 0 0 0 0 

0 0 0 0 0 
0 0 0 0 *0 
6 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 10 0 0 
- 

0 

0. 0 0- - 
1 

-o- 
0 

0 f0 0 0 0 
237 0 0 0 0 

45 0 0 0 0 

62 0 0 0 0 

58 0 0 0 0 

88 
EO 

0 0 0 

186 0 0 0 0 

181 0 30 0 0 
41 107 0 71 0 

13 0 0 0 0 

4 0 0 0 0 

84 25 236 21 65 

TIES 

0 

0 

0 

0 

0 

Class 
Value 

V, 

10 

20 

140 

30 

34 

32 

31 

33 

35 

36 

40 

50 

130 

120 

110 

100 

90 

80 

70 

65 

64 

85 

60 

As for Table 7 in Section 7, the thick line is used to indicate the 

number of functions associated with each class, two for class 1, 

none for class 2 etc. 
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A number of conclusions can be drawn from a careful consideration of 

this table. 

The presence of zeros within the thick lines, for selection levels 

2.3 and 4, shows that several of the associated functions have 

played no significant part in the move-finding process. No positions 

in classes 1,5 or 6 have been selected by the program, and although 

many positions in classes 4,8,9,10,11 and 13 have been selected, in 

each case the selection was made qt level 1, i. e. by class value 

alone. For classes 14 and 18, the situation is more complicated. 

In 30 cases it has been necessary to make a choice between two or 

more positions in class 14, but in no case was it necessary to use 

the third associated function to make the choice. The-zero at 

selection level 2 indicates that in each of the 30 cases, the first 

associated function was insufficient on its own to resolve the tie. 

This does, in fact, provide some "negative" evidence in support of 

the use of this function, since a poorly chosen function is unlikely 

to prove innocuous. 

Similar considerations apply for the zero at selection level 3 for 

class 18. All the associated functions corresponding to zeros in 

the table could be removed from*the algorithm altogether without 

affecting the results obtained for the test file under consideration. 

It must be borne in mind, however, that this file contains a (non- 

I random) sample of all possible positions for the King and Pawn 

against King endgame. It would therefore be advisable to analyse 

a larger sample of positions before making a firm decision. 
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Considerations strictly unrelated to the choice of a correct 

algorithm may be relevant here. For example, in Figure 71, whatever 

move White makesthe position belongs to equivalence class 1, 

that is Black can immediately capture the Pawn and the game is 

drawn. Although White's move is strictly irrelevant, the associated 

functions for class I will ensure that the most sensible looking 

move K-E4 is chosen. In this respect, it would seem reasonable to 

retain the associated functions for that class although they are 

strictly unnecessary. 

On the positive side, the choices of the second function for class 14, 

the first and third functions for class 18 and all four functions 

for class 15 are well supported. Thus there are 65 "confirming 

instances" of the correctness of the fourth function for class 15 

and 347 (=25+236+21+65) for the first function for that class, etc, 

There are no cases of a position being chosen arbitrarily to resolve 

a tie and this is significant, because the test file was chosen so 

that in each position White had only one move to win. 

71 
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For other King and Pawn against King positions, however, it is 

possible for a tie to occur 'legitimately', for example in 

Figure 72, where White has two winning moves K-C6 and K-E6. Any 

attempt to choose between these is entirely artificial. 

Although the number of equivalence classes used by the algorithm has 

risen from the original 15 to 24, this number could be suhstantially 

reduced using the fact that if any. set of classes occur 

consecutively in testing order and have class values in a consecutive 

range (in any order), then provided no members of those classes are 

ever selected, they can be combined into one class. The defining 

rule for this new class is just the logical 'OR' of the rules for 

each of the component classes and any one of the class values can 

be taken for the new class. 

'701 



-218-. 

Thus, for the positions on the test file it ip potsible to combine 

classes I and 2 into a single class and also classes 5,16,17,21,22, 

23,249, .6 and 7. The class values of this latter group (30,34,32,31, 

33,35,36,40 and 50) form a "consecutive range" for this purpose, 

since there is no class with a value of 45, for example. By making 

both of these combinations the number of classes would be reduced 

again to 15. 

It must be borne in mindo however, that combining classes in this 

way does not, in general, reduce the complexity of testing required. 

In the case of classes I and 2, the ideas involved (Pawn en prise and 

stalemate) are logically distinct and there is no advantage in 

combining them except to reduce the overt size of the algorithm. 

Where there is one or more co=on predicate, however, combining the 

class definitions enables a simplification to be made. Thus 

classes 16,17,21,22,23 and 24 are all related by having a common 

predicate 'Rookpa-wm' and combining them enables this condition to be 

tested only once. Looking for such combinations would probably be 

even more valuable in the case of more complex endgames. 

In such cases, where classes share a common property, it is also 

more likely that the combined classes will still be valid for 

positions outside the test file. Nevertheless, without further 

analysis the correctness of such combinations cannot be conclusively 

demonstrated. 

A separate "robustness analysis" of the final algorithm reveals that 

deleting class 11 altogether would produce no exceptions for the test 

file. It would therefore be possible to reduce the final form of the 

algorithm to only 14 classes if required. Once again, without 
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analysing further positions, such a change cannot. be made, with 

absolute certainty that it is correct, for positions other than 

those tested. 

The summary that follows shows the final form of the algorithm, 

assuming that classes 16,17,21,22,23 and 24 are combined into one 

new class (which will be numbered 16), with a class value of 31, 

and that no other changes are made. There are 19 equivalence classes 

in this form of the algorithm. It would, of course, be possible to 

renumber the classes themselves from I to 19 (in order of testing) 

and their values from I to 19 also (in ascending order of favourability, 

from White's viewpoint). For clarity, no such renumbering has been 

carried out here. For completeness, class 3 (Pawn on eighth rank) has 

, gain been included in the summary. a 

Even after substantial development and testing there may still be a 

certain degree of arbitrariness in the algorithm as given here,, ' 

particularly in the testing order of certain classes. Once. again 

further testing is necessary before a final decision concerning. the 

appropriateness of all the possible changes can be made. Classes 19 

and 20 are examples of "special cases", classes with only a-small 

number of members. In both cases, however, the class has been 

included to deal with a small number of difficult situations of an 

exceptional nature. They may be said, therefore, to have been 

originated in response to the natural demands of the endgame itself, 

and in that sense they play a small but important part in the final 

algorithm. 
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10.3 Sumnary of the final algorithm 

The value table for the final King and Pawn against King algorithm with 

19 equivalence classes (i. e. after combining the previous classes 

16,17,21,22.23 and 24) is given below 

Table 28 The final algorithm (19 equivalence'classes) 

4 

Class 
(in order of testing) 

Value Associated 
functions 

10 2, i, 0.0 

2 20 0,0,0,0 

3 150 OS09060 

4 140 1,0,0,0 

5 30 2.3,0.0 

16 31 000.0,0 

6 40 1,2,3.0 

7 50 010.010 

8 130 1,4.7.0 

9 120 110.010 

10 110 1,0,0,0 

11 100 1,0,0,0 

12 90 0,0,0.0 

13 80 1,0,0,0 

14 70 1.6.5.0 
18 65 4,1,8,0 
19 64 0,0,0.0 
20 85 0.01010 

15 60 2,3,7.9 

The selection table for this form of the algorithm is the came 

as Table 27 in Section-10.2.5, with Classes 16,17,21,22,23 and 24 

combined. 
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The differences between the final 19 equivalence 'classes and those 

given in the initial form of the algorithm in Section 8 are as 

f ollows. 

New Classes 

Class 16, defined by: 

Rook Pawn AND {[WKI = UT I AND WK2 > WP2'AND dist (BKI vBK2,3, TWTK2) =II 

OR Edist (BKI, BK2,3,8) < dist (WKI, VIK2,3,8)] 

OR EWKI = WPI AND WK2 2: WP2+2 AND dist (BKI, BK2,3, WK2-1) 

OR [WP2 > 2 AND WK2 = WP2+4 AND dist (BKI, BK2,3, WP2+2) = 

OR [WKI = WPI AND WK2 = WP2+1 AND dist (BKI, BK2,3, WK2+1) 

OR [WKI = WPI AND WK2 = WP2+3 AND dist (BKI, BK2,3, WK2-2) 

(No associated functions. ) 

(ii) Class 18, -defined by: 

WK2 > WP2 

(Associated functions 4,1,8,0 in that order. ) 

(iii) Class 19, defined by: 

a- 

WP2 -6 AND WK2 -5 AND BK2 =7 AND WKI - BKI AND abs(WKI-TaTI) - A2 

(No associated functions. ) 

Class 20, def., &. ned by: 

WK2 = WP2 =5 AND BK2 7 AND abs(WKI-WPI) =2 

AND abs(BKI-WPI) =3 AND sameside 

(where 'sameside' is true if -both Kings are on the same side of 

the Pawn). 
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Changesto existing classes 

(i) Class 5: the additional condition 

'dist(BKI, BY, 2, WPI, IvT2+1) <'dist(WKI, WK2'), WPI, TWT2+1) 

was added in the case where WP2 - 2. 

(ii) A fourth associated function (9) was added to class 15. 

Associated functions 

Two new associated functions were defined: function 8 with value 

8- ab s (WK2 - WP 2) 

and function 9 with value 

abs(WKI - BKI). 

. 
Functions 1-7 were unchanged. 

10.4 Discussion 

In this section the iterative refinement of an initial algorithm for 

King and Pawn against King has been described in detail. 

In this case, refining the algorithm to play perfectly in all the 

positions in the test file under consideration proved possible with only 

a relatively small amount of iteration, Moreover, the process involved 

was one in which feedback from the computer system itself played a 

significant part. In Section 11, the process is considered from-the 

viewpoint of the facilities which would be required in a semi-automated 

system of program improvement, or an eventual fully automated system. 
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The initial algoiithm took as its basis the Icnowledge contained in 

typical chess textbooks and the formulation of the algorithm 

consisted of a relatively straightforward translation of this 

information. 

Since one of the criteria set out in Section I was that the algorithm 

should correspond fairly closely to the Chessplayer's understanding of 

the important features of the endgame, it is appropriate to consider 

the revised algorithm from this viewpoint. 

Although textbooks give general information in the case of a Rook Pawn, 

in particular that Black draws if he can reach square C8, the 

implications of this are not*worked out in detail. Class 16 contains 

descriptions of positions which White must avoid if he is to prevent 

Black from reaching C8 without allowing him to capture the Pawn. For 

example, White should not play his King on to the Pawn's file, three 

ranks ahead of the Pawn, if Black can then occupy the C file, one 

rank ahead of the Pawn. This result can be verified by inspection but 

is certainly not specifically given in textbooks. 

I The six original-rules which make up the final rule 16 provide an 

example of iterative refinement in the case of the Rook Pawn. Only the 

second component 

Rook Pawn AýD dist (BKI, BK2,3,8) < dist (WKI, WK2,3,8) 

is directly derivable from textbook descriptions, Given further 

experimentation it-may be that additional OR conditions would be added 

to rule 16 and that these could eventually be synthesised to form a 

4- 

new principle for the endgame. 
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The original for'M of rule 5 embodies a rule not explicitly given in 

textbooksq but intuitively obvious: if the Black King is closer to 

the Pawn than the White King, the 'result is a draw. The original 

form of this rule includes one refinement: if Black is diagonally ahead 

of the Pawn, the count. of his distance from the Pawn must be increased by one. 

As the analysis in Section 10.2.2 shows, a further refinement is 

necessary in the case oý a Pawn on the second rank. Here the Black King 

must also be closer to the square in front of the Pawn than the 1-31hite 

King (but no addition is made if it is diagonally ahead of that square). 

once again this is an extension of the info=ation given in the textbook. 

In thet case of the fourth associated function introduced for Class 15, it 

has been possible to introdtice an important new principle with very little 

change to the program: "all other considerations being equal, move the 

White King as many files away from the Black as possible". This 

modification not only enables White to play correctly in Figure 68, 

Section 10.2.3, but also in 38 oXher positions in the test file without 

in any way designating them as "special cases". These include the 

position WK on DI, BK on F8, WP on C3 which Clarke (1975) describes as 

causing all but the best players some trouble. The principle embodied 

in the use Of the fourth associated function is not given in textbooks. 

In these cases and those of the other modifications made, the original 

algorithm has been refined, not rejected. The modifications can be 

expressed in terms familiar to-chessplayers and could readily be 

incorporated as additions to existing textbooks. 

Thus, it appears that the process of refinement did not interfere with the 

property of the original algorithm that it could be closely related to 

the ches. splayer's knowledge of the game; rather it can be seen as 
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extending that knowledge. 

When deciding whether or not to combine two or more equivalence 

classes, as in Section 10.2.5, consideration should be given to 

the "naturalness" of the resulting class, as seen by the chessplayer. 

For this reason, it is probably only worthwhile to combine classes 

which have a significant common feature, such as a Rook Pawn, Pawn 

on the second rank, etc. 

Since it appears to have been possible to extend the information given 

in textbooks by iterative refinement, it may also be possible to 

begin with a much less sophisticated algorithm and develop such 

concepts as the opposition, or the importance of the C8 square with a 

Rook Pawn, by a process'of refinement and synthesis. However, this is 

likely to be a difficult task, just as it would be for a chessplayer 

who did not already know these concepts to discover them for himself. 

Whereas the computer is able to process a large amount of information 

very rapidly, the human is much better able to perceive relationships. 

A combination of these two facilities would therefore seem to offer the 

possibility of significant progress. 

Some of the requirements for a partially or fully automated system of 

program improvement are discussed in the next section. 
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10.5 Postscript the optimality of the final algorithm 

Producing an algoritlun which performs perfectly in'all legal positions 

with White to move (not just those on the test file) was not itself 

an aim of the experimentation describedin the preceding sections. However, 

it is believed that some information on the level of optimality of the 

final algorithm will be of general interest. 

For this reason a series of tests was arranged-to comýare the move 

played by the algorithm in each of the 62,480 positions where White 

to move has a forced win, with the theoretical best move or moves as 

derived from Clarke's database. a 

The outcome of this testing was that in 2601 positions the algorithm . 0-,; 

produced a non-optimal move for White. 

A cursory inspection of the corresponding exceptions reveated a 

straightforward omission in the definition of equivalence class 4 

(White Pawn can "run"), in which the condition that the White King 

was not somewhere on the file in front of the Pawn had not been included. 

Although it is unlikely that this omission will result in White failing 

to win in any instance, it does result in non-optimal play in many , 

positions such as WK : C7, BK : H1, WP : C6. Here any White move will 

win and all moves are equally good except K- C8. Unfortunately, since 

the algorithm considers all thepossible successor positions to be 

of equal value as members of class 4 and the first generated move is 

K- C8, that is the move which is chosen. Inserting a suitable additional 

test into the definition of class 4 reduced the total number of non- 

optimal moves to 2139 out of 62480, i. e. the algorithm played optimally 

in 96.6% of the positions. 
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Of these 2139, there were 921 cases (43.1%) where the algorithm failed to 

recognize a successor position from which the Pawn could "run" against 

any play by Black. As has previously been stated, class 4 was known to 

be only a partial implementation of the predicate "Pawn can run". 

Of the remaining 1218 "exceptions", there were 753 cases (61.8%) where 

White had a unique best winning move and 465 cases (38.2%) where there 

was a choice of equally good "best" moves. In 559 cases out of the 

1218 (45.9%) White's Pawn was on the D-file. 

Although the total number of non-optimal cases may seen surprising in 

view of the detailed analysis previously described, it is probably 

best viewed as an indication of the extreme precision required for 

optimal play in this endgame. In all of the cases inspected the 

algoritlmýs move still appeared to win and in many cases the previously 

expressed conclusion was reinforced that textbook descriptions are not 

sufficient to demonstrate(either explicitly or implicitly) a perfect 

winning strategy. It would seem likely, in fact, that an optimal strategy 

would appear extremely "unnatural" to the chessplayer. A controlled 

study of the chessplayers endgame knowledge would therefore appear to 

be a necessary preaursor of further-research into knowledge representation 

in this field. 

Using the methods of program refinement previously demonstrated, the final 

King and Pawn against King algorithm has been further modified until at 

the time of writing only 560 Positions remain in which a non-optimal 

move is made in a position where White can win. Thus 99.1% of such 

positions are now handled optimally. This modified form of the algorithm 

includes a provably correct implementation of the "Pawn can run" predicate 

(class 4), as described in the reprint of the technical report "King and, 

pawn against King : using effective distance" at the end of this thesis. 
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Of the 560 exceptions, 441 (78.75%) occur in positions where there 

is a single best move for White and the worst such cases are with 

the Pawn on the C and D-files (166 and 174 exceptions, respectively). 

In all cases inspected the algorithm's move appears to be a 

reasonable alternative to the "optimal" move stored on the database. 

Modifying the algorithm has resulted in a net increase of two in the 

number of equivalence classes used. This further refinement exercise 

tends to reinforce the conclusions reached in Sections 10 and 11 but 

does not itself demonstrate any new principles and will not therefore 

be discussed further. 



-229- 

Towards a 'self -irproving system 

In the previous section a description was given of the changes made 

to the. original King and Pawn against King algorithm as a result 0 

of experimentation with a test file of positions and associated best 

moves. 

Despite one or two points at which the program'3 performance actually 

worsened, in general the changes appeared to form part of a convergent 

process of iteration, reasonably easy to perform (for people) and 

which preserved the property of the original algorithm of being 

meaningful in terms of descriptions in chess textbooks and the chess- 

player's own knowledge of the endgame. This conclusion bears out in 

a more co-ntrolled form the results of the experimentation on the King 

and Rook- against Ying algorithm, discussed in the first part of this 

thesis. 

The procedure followed in Section 10 can be described as partially- 

automated. The computer was used to provide information in forms 

which helped to suggest possible improvements to the algorithm and 

which enabled the effectiveness of such improvements to be assessed. 

The computer did not, however, itself decide on changes to be made or 

modify its own algorithm. In this section. -following a brief summary 

of related work, the extent to which the. equivalence class model assists 

in the modifIcation process will be discussed and the possibility will 

be considered of imple=ntýng a fully-automateA self-improving system 

based on this model. and the mthods described in Section 10. 
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11.1 Related work 

Many learning programs have been written for a variety of games. The 

Al most common approach has been to modify the coefficients in an evaluation 

function or the entries in a table, for example Smith's (1973) program for 

partnership dominoes and Samuel's programs (1959 and 1967) for checkers. 

The methods employed are not, however)directly relevant to the present 

work in which, as will be seen in Sections 11.3 and 11.4 below, the 

major difficulty lies in constructihg a function describing the 

characteristics common to a set of positions (or a set of more specific 

functions) in an appropriate manner. This "function-building" problem 

also occurs in conjunction with automatic theorem proving, studies of 

concept formation and inductive generalization and automatic program 

improvement and verification. The most directly related work would 

seem to be that of Elcock and Murray and of Popplestone (1969) and 

Winston (1970). 

The former work is described in three papers, the first of which 

(Elcock and Murray (1967)) is concerned with the means by which 

descriptions of significant board patterns can be automatically generated 

by a game-playing program (for the game of Go-Moku), using backtrack 

analysis of its lost games to identify situations from which it sees 

itself as lost and adding descriptions of these to an ordered list 

of subgoals. The second paper (Murray and Elcock (1968)) extends the 

descriptive notation available and the third paper (Elcock (1968)) 

considers the problems involved in constructing descriptions in a wider 

context. Attention is focussed throughout on the problem of finding 

a minimal description of each subgoal, i. e. of combining and thereby 

simplifying combinations of descriptions where possible. 

The form of description used, however, is specific to games similar to 

Go-Moku and could not easily be extended to more complex situations 

such as chess positions. 
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Popplestone's paper describes an experiment in constructing an 

"induction engine" to take a sample of the input-output table for a 

function and generate from it a description of the property common 

to all members of the sample. An example is taken where the method 

is used to synthesise a partial description of what constitutes a 

won position at noughts and crosses. Again, it is not clear whether 

the method employed would cope satisfactorily with the more complex 

descriptions necessary for more difficult domains, such as chess end- 

games. 

Winston (1972) describes a program embodying a theory of concept 

learning based on a small number of carefully selected examples 

(Winston (1970)). 

The program is given a set of primitives together with examples of 

a concept to be learntq such as "an arch". and produces a corresponding 

description of the concept. Further examples are then given one at 

a time by a "teacher",, both of arches and of "near misses", i. e. 

structures which are similar to but slightly different from arches. 

After each example, the program makes a corresponding modification 

to its description. 

Winston stresses the importance of. the teacher in selecting examples 

aimed . at successively refining the program's descriptions. The 

program includes domain-specific knowledge which enables it to handle 

the important and commonly occurring case where there is more than 

one difference between its current description of the concept and the 

description of a "near-miss". Thus there is a ranking of possible 

differences in order of their likely significance. 
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There are a clearly a number of similarities between Winston's 

approach and the algorithm refinement described in this thesis. In 

particular,, the use of "near-misses" is similar to refinement by 

means of exception reporting. Examples have been given where specific 

ap. riori knowledgev such as that the Rook Pawn is likely to be a 

"special case", was used in deciding which of the many features 

distinguishing exceptions from correctly handled positions was most 

likely to be significant. 

The main difference is that in Winston's case the "teacher" has 

full knowledge of the concept involved and is thus able to direct 

the program's learning far more closely than would be possible for 

even the most elementary chess endgames where no simple description 

of a correct playing strategy is known. It is also likely that 

a considerably more sophisticated descriptive language would need 

to be developed in the case of Chess and the availability and power 

of this language plays a crucial part in applying Winston's method. 
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Production Systems 

The work referred to above is related to the content of the rules defining 

the equivalence classes (and the class values and associated functions). 

In contrast, the method described in Section 2.3 of testing the rules in 

order, with the first one satisfied being used to determine the class to 

which each position belongs, corresponds fairly closely to the organization 

of a condition-driven rule-ordered production system. ' In fact, the 

entire move selection process can readily be written in the form of such 

a production system, beginning with the iirst 
generated successor 

position in the database to be examined by the production rules. In 

this case the production rules include the rules defining membership of 

the classes and have a priority ordering of testing. The highest priority 

rule satisfied (i. e. the first in testing order) is taken in every case 

and the corresponding action is to calculate the position value (using 

suitable associated functions) and then to copy the next successor 

position into the database. The cyclic nature of a production system 

ensures that by this means all successor positions will be examined in 

turn and when no further positions remain an additional rule can be 

used to select the move corresponding to the position with highest value, 

play it, ask for the opponent's reply, etc. 

Production systems themselves have been used to model cognitive 

behaviour, e. g. by Young (1974). 

Waterman (1977) describes one of the advantages of this form of program 
I 

organization as that it offers a parsimonious way of modelling human 

cognition which, because the rules-represent independent components of 

behaviour, can be modified in an incremental way. In addition, repre- 

senting a large body of knowledge in rule form makes it easier to 

0 explaing, justify and analyieý the rationale used by the program to make 

its decisions. Finally, the simplicity of the control structure 

facilitates automatic program creation, debugging and verification. 
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These comments are closely related to those previously made about the 

equivalence class model described in this thesis. To continue the 

analogy further, the problem of iterative algorithm refinement discussed 

in the remainder of this section can be considered as a particular form 

of the problem of incremental updating of a given production system. 

If an automatic method were known of updating a given production 

systemo there would be a corresponding automatic method of updating 

move-selection algorithms based on the equivalence class model. 

However, since the basic operation of mapping a position to its value 

corresponds to only one pass through the production rules and co6ld 

thus be represented by a simpler control structure than a production 

system, it is likely that other simpler methods may exist for the 

latter problem. 



11.2 The processof algorithm refinement 

Given an initial. algorithm and a database of stored positions and the 

associated best moves, the basic procedure followed in Section 10 can 

be summarised as follows: 

Compute exceptions, by comparing the move generated by the 

algorithm with that held on the database, for each position. 

(2) If there are no exceptions, then stop, otherwise go on to 

step 

Make a tentative change to the algorithm. 

Recompute the exceptions with this change incorporated. 

(Decision stage ). Accept the modification and return to 

step (2), or reject the modification and return to step (3) to 

-make 
a different change, '2ir (undecided) make a further 

modification and return to (4). 

In most practical cases, only a sample of all possible positions in the 

endgame under consideration will be stored on the database and the 

best moves stored will generally be those played by expert players 

in specimen games. There will therefore usually be some likelihood 

ihat the stored moves are not invariably the best available. In some 

cases there may also be other moves equally good or roves which lead 

to the same. result either more oy less quickly. The objective of 

program improvement is then to obtain the best 'fit' to the positions 

on the database while bearing in mind that the. positions are only a 

sample (which may or may not be a random one) of all those which could 

have been chosen. 
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The two critical stages of the procedure described. above are steps 

(3) and (5), deciding on a tentative modification to the algorithm 

and evaluating the result of this change. 

The equivalence class model provides assistance at both these stages 

in a number of important ways. 

Firstly, the model is a structural (rather than a procedural) representation 

and one important advantage of such a representation is that it 

enables the mechanics of algorithm modification to be performed in a 

relatively simple way, each of the underlying elements of the algorithm Q 

being capable of manipulation independently of the others. 

secondly the use of equivalence classes and associated functions Y', 'j. 

enables a convenient summary of exceptions to be made in the form of 

a compact table (such as Table 15 in Section 10). Each row of this 

table c. orresponds to a group of exceptions with a particufar value of 

C'LASSP and CUSSF and the positions concerned can be obtained from 

a full list of exceptions (which can easily be tabulated together 

with their corresponding values of CLASSP, CLASSF and 'selection 

level'). A full "selection table" (such as Table 16 in Section 10) can 

be used to find the number of "confirming instances" of the choice of 

each equivalence class and associated function and thus to indicate 

those parts of the algorithm which may need modification. 

The experimentation described previously suggests that looking at 

exceptions split UP into groups -in this way is an effective means of 

isolating those exceptions which are genuinely related by some common 

. property, and that the essential independence of the rules defining 
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the e'quivalence classes and of the associated functions (in the sense 

that a change made to - me will -not- af f ect any of the others) helps 

when choosing possible modifications to the algbrithm. 

The order of evaluation of the rules and the order of precedence of the 

associated functions enable modifications to be made in' a controlled 

manner where the extent of possible changes to the list of exceptions 

can be known in advance. Thus, for example, inserting a new equiva! - 

lence class near the end in order of testing can have no effect on 

the value of positions (with Black to move) which belong to classes 

earlier in the testing order. 

When evaluating a modification to the algorithm, it is again helpful 

to consiýer the tables of exceptions, in combination with the full 

selection tables, as a means of breaking down the changes in the 

exceptions produced. 

- Although in the experimentation described in Section 10, the computer 

system supplied a great deal of valuable information, it took no 

direct part in the decision - making process. The possibility of 

developing a fully. automated system of algorithm refinement is now 

considered. 

... .I.... 
I J. T ... Dev6loping'a 'Self -improving rystem 

The principal requirements for a self-inproving 
. 
system can be summa- 

rized as follows: 

A control system to perform the basic cycle of operations 

described in Section 11.2 . 

(2) A database of stored positions and associated moves, known from 

some, external source.. 

(3) An algorith---i stored in a form suitable for modification. 
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In the case of the equivalence class model, -the ýxlgorithm consists of 

three principal elements: 

(a) a set of predicate functions (rules) defining equivalence 

classes of positions 

(b) a set of associated functions 

(c) a value table containing the class value and indices repre- 

sentifig phe associated functions for each class, each rule 

corresponding to one row of this table. U 

Further elements- may be added to this list to allow for future 

modifications to the algorithm, in particular a list giving the order 

of evaluation of the rules, a set of possible associated functions and 

a pool of "primitives" from which any new predicate functions can be 

formed in accordance with pre-determined rules. Provided that no new 

associated functions or primitives are required and that the rules for 

forming new predicates are adequateldesigning a control system to 

implement a given change to the algorithm presents no theoretical difficulty. 

In the case of the King and Pawn against King algorithm, both initial and 

revised versions, the primitives were the rank and file co-ordinates 

of each of the three pieces, i. e. WKI, BK2. etc. and with the 

exception of the residual class, all predicate functioAs (rules) were 

of the following form, using Backus-Naur notation: 

<Predicate>:: <predicate> AND <predicate> 

<predicate> OR <predicate>l NOT <predicate> 

where <expression>:: <item> <relational operator> <item 2> 

<item> <07im-itive> I* 4unction value> 

<item 2>:: =' ateml <constant> 

relational operator >Is12:. I= Ij 

constant 112131415161 718 
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and <function value> here means the value of a function taking an 

- appropriate number of arguments. 

The standard functions 'abs (one argument) 'max and min (two arguments) 

were used, plus the special function dist which gives the "block 

distance" in King moves between two squares. 

The predicates "Rookpawn" and "Sanneside" were introduced'during the 

experimentation stage, but these are only shorthand for <expression>s 

such as IIPI = I. With a suitable --set. of- primitives, these rules 

for forming predicate functions would appear to be sufficient for 

most or all endgames. 

All the associated functions were of the form <item> or'8-<item>. In 

general, all associated functions should be <item>s, together with an 

option to enable the largest or the smallest value of the function to 

be used to resolve ties, in each case. 

The basic iterative cycle of algorithm refinement described in 

Section 11.2 can be broken down into the following main components: 

select a "group of exceptions" using the tabulated summary of 

exceptions in conjunctioq with the full selection table; 

(ii) find a common property possessed by most or all of these 

exceptions; 

(iii) decide on and make a corresponding change in the algorithm; 

I 
examine the resulting 'change in the exceptions produced and 

decide whether to accept the change made, reject it or (if 

undecided)* try an additional change. 
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A number of detailed heuristics for these stages were given in 

Section 10. 

Stagc (i) , selecting a group of exceptions sharing the same values of 

CLASSP and CUSSF (and possibly the same selection level), is likely 

to prove reasonably easy to automate since in - principle any choice 

will suffice, although so: pe will probably help the process to converge 

more rapidly than others. For example, given several large groups of 

exceptions, the one involving the class or classes evaluated earliest 

should be examined first, since making changes to the definitions of 

such classes (or introducing new classes early in the testing order) ý 4, 

may cause some of the other exceptions (involving later evaluated 

classes) to disappear altogether. 

The existence of a priori knowledge may also be valuable here. For 

example in Section 10 it was known that no positions should be 

selected either by arbitrary resolution of a tie or with CLASSP=5. 

This knowledge proved valuable in pointing to significant groups of 

exceptions and in revealing that in some cases moves were being 

correctly selected for the wrong reasons. Such prior knowledge is 

likely to be less important with mor-e cornL lex endgames where there are 

. few knoxm theorems determining the outcome and where, in general, 

a reliable database of perfect play is not available. 
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The most difficult stage of the bntire process'is 'almost certainly 

stage (ii) - finding a common property shared by most or all of a 

group of exceptions under consideration. Once thi. s property is found 

it can, however, serve as the basis for a change to. *the algorithm. 

In searching for a common property, it will generally be necessary to 

look at both thý set of positions arising after MOVEF in each position 

i4 the group of exceptions under consideration and the set of positions 

arising after 14OVEP in each such position, on the as-sumption that 

either MOVEF is being consistently under-valued or MOVEP is being 

consistently over-valued. 

In practice it is unlikely that any such fully consistent under - or 
ý4 

over -'valuation will be found and the aim should be to find a 

predicate function satisfied by a large proportion of the positions 

in one or other of the sets. 

Although a suitable predicate, if it exists, may turn out to be any 

one of the possible values of <predicate: $ defined above, there may be 

- --a'pri . knowledge to suggest that some predicates are more likely ýo 

be useful than others. Thus for Pawn endings., "Pawn on Rook file" 

and "Pawn on second rank" are likely to be important, as is "Kings 

in opposition". Mora sophisticated knowledge may suggest other possible 
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interesting predicates such as "the Black King is closer to square 

C8 than the Mite". 

A particular problem at this stage is avoiding finding a common 

property which is either too general (e. g. Pawn not on second rank) 

or too specific (e. g. Pawn on third rank and White King immediately 

in front of the. Pawn, etc. ). In the first case, it may happen that 

most or all of the positions satisfy the property purely by chance; 

in the second, the property may be satisfied by only a small number, of 

positions out of the total group under consideration. 

To help avoid these possibilities a large group of exceptions sho4ld 

be considered whenever possible and the probabilitX of each predicate 

-aken or combination of predicates occurring simply by chance should be 1. 

into account. 

For example, with the initial form of the algorithm for King and Pawn 

against King, 57% of the sariple positions with a Rook Paim were 

exceptions, comparedwith anoverall level of exceptions of 11% for the 
I 

whole sample (Section 10.2.1). This was a strong indication that it 

would be worthwhile to look at positions with a Rook Pawn in isolation 

from the others. 

of the 24 exceptions for which CLASSP=CLASSF=5 with the first revised 

form of the algorithm (Section 10.2.2), each of the successor positions 

arising after the "file move" had 14P2=2, i. e. the Pa%m was on the second 

rank, a result extremely unlikely to occur by chance. A further example, 

involving only a small number of positions, occurred when considering 

the exceptions remaining with the fifth revised version of the algorithm 

(Section 10.2.4). For the five exceptions for which CLASSPIýCLISSF-15, 

the positions after each of the "file moves" are as follows, usir.,,,, the 
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notation of Table-25: 

252746 

656746 

151736 

555736 

454726 

The most striking feature of these simple co-ordinate representations 

of the positions is that the second, fourth and sixth co-ordinates 

are constant. This leads naturally to the description 

WP2=6 AND WK2=5 JAND BK2=7 

A slightly less obvious relationship is that the first and third 

co-ordinates are equal for each position, i. e. WKI-BKI. 

Finally, the difference between the first and fifth co-ordinates is 

always either 2 or -2 

(VII-WPI-2) OR (WKI-WPI-2) 

combining these gives trivially Abs(WFI-WPI) = 2. 

Taking the logical '. AND' of all five relationships gives the definition 

of equivalence class 19 in Section 10.2-4. A simple statistical analysis 

can be used to estimate the likelihood of a given predicate being true 

for a certain number of positions in a group purely by-chance. Thus, 

If it is assumed for simplicity that the positions on the test file 

are a random sample of all possible poS*itions,, then since 17KI varies 

from I to 8 and WPI varies from I to 4, the probability of the predicate 

abs(wKj-WP1)=2 being true by chance is 6/32 - 0.1875. The expectation 

from five positions would therefore be 0. '9375 occurrences and the observed 

frequency of five occurrences would seem likely to be significant. 
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Although the above exarple was chosen for siriplicity, a calculation 

of expectations is, of course, more likely to prove valuable in the 

case of a large group of positions, not all of which share the property 

under ex 'nation. 

In general, when only small groups of exceptions remain, it may become 

extremely difficult to identify significant common properties (as it 

is for people) and it nay then be unavoidable to introduce "special 

cases" to cater for only a few positions. 

Provided that a property has been found for a particular group of 

exceptions, the nature of the group indicates the type of change (Stage 

required to the algorithm. If the group contains positions with 

CLASSP - CLASSF at selection level 4, say, then a change to the third 

associated function is indicated. 

In most cases, however, a new equivalence class or a change in the 

definition of an existing class will be required. The former should 

normally be chosen unless the full selection table shows that there 

is little or no support (in terms of correctly handled cases) for the 

class as it stands. A class of "positions to be avoided" should be 

inserted before CLASSP in testing order, with a value less than that 

of CLASSF. A class of "positions to be achieved" should be inserted 

before CW-SSF in the testing order with a value greater than that of 

CLASSP. 

once a chaneye to the algorithm has been chosen, making the change is 0 

If., ,I 

fairly straightfomard as has been discussed previously. Deciding on 

whether or not a change should be accepted (stage (iv)) is non-trivial for peoplc 

although some heuristics can be applied, in particular the obvious 

one that if some exceptions have now vanished and no new ones have 

appeared (even if the details of NOVEP, CW-SSP etc. have changed), the 
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change should be accepted. The main area of diffipulty is undoubtedly 

the case where -one group of exceptions has disappeared, but another 

has appeaýed'and a furtheýr'modification is needed before deciding 

whether or not to accept the first. It remains to be seen how 

difficult it is to discover the heuristics which people use in 

evaluating such situations. 
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-Simplifying the algorithm 

In implementing the above, the most likely problem to arise is that 

of failing to introduce equivalencc classes at the right level of 

generality - with the effect that a large number of over-specific 

classes are defined. It would therefore be h&lpful to include a 

separate "simplif i cation stage" into the process of algorithm 

refinement, either at the end or at intermediate points in the process. 

The aim of this stage would primarily be to combine existing classes 

and to make the definition of existing classes more general. There 

are a number of rules which guarantee that classes can be safely 

combined (e. g. when they are consecutive in order of testing and none 

of their members are ever c hosen as best). However, the process can 

better be performed on a heuristic basis, using "exception reporting" 

to validate any tentative changes made. This allows for the 

possibility of "inductive jumps", such -as combining classes defined 

by 

14P2=4 AND IM=I, TP2+1 

(ii) WP2=6 MD WK2=1-TP2+1 

and 

(iii) WP2=3 JAND WK2=I7P2+1 

into a single class, with definition simply 

WK2=14P2+1. 

I& 

Such a simplification stage, if effective, could mitigate the effect 

of fairly substantial weaknesses in implementing the remainder of 

the refinement process* 
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11.5 Discussion 

In this section the possibility of implementing a fully-automated 

self-improving system of algorithm refinement has been considered. 

whilst the project as a whole remains an extremely substantial task, 

the components - looked at individually - do seem to be feasible. 

The most effective approach would no doubt be a process of gradual 

evolijtion from a partially-automated system of refinement such as that 

described in Section 10. 

The method of aljorithm simplification by synthesizing general rules 

from sets of more specific ones may have an inTortant part to play 

in this process, together with recognising properties of groups of 

exceptions on an essentially probabilistic basis. To the extent to 

which implementing a self-improving system is feasible, the choice of 

underlying model would appear to be crucial. It is only because 

algorithm refinement using the equivalence class model applears to be 

fairly straightforward for people that it is worthwhile even to 

consider the possibility of automating the process, and the analysis 

in this section makes use of the characteristics of the model at 

virtually every stage. 

one interesting possibility is that a self-refining system might builý 

UP . dn algorithm consisting of an efficient set of rules which were 

not at all natural from the viewpoint of a human chessplayer. Just 

as concepts such as "the opposition" were invented by chessplayers 

to summarise centuries of experience of playing endgames, and now 

A4 

I 
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appear "natural", 
* 

so there may be an entirely different set of concepts 

which could be derived from entirely different experience, by the 

process of rule synthesising described previously. However, the 

form of the final algorithm may be expected to depend critically on 

the initial algorithm provided, the basic primitives used for forming 

predicates and the rules governing the form of predicates. 

Assuming that these all reflect the chessplayer's knowledge, as 

illustrated by the descriptions in standard textbooks, it seems 

unlikely that any radically different interpretations of the game 

will arise. Neverthelessp there is a possibility of extending existing 

knowledge of more complex endgames by discovering important new 

predicates. The nature of the equivalence class model ass a structural 

rather than a procedural' representation of knowledge enables any 

new predicates formed to be isolated and examined independently of 

the rest of the algorithm. 

- Although the possibility of developing a self-improving system has 

only been considered briefly here, it would seem that the choice of 

model is crucially iLTortant for such a project and that the 

equivalence class model appears to offer reasonable prospects for 

further investigation in this area. 
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12. Summary and discussion 

This thesis began by describing a model which has been designed to 

facilitate the writing of algorithms which correspond reasonably closely 

to the human chessplayer's knowledge of the endgame, based on the 

descriptions given in textbooks. The algorithms have a simpler 

structure than those written using conventional models and can be 

described in a form meaningful to chessplayers themselves, with no 

specialist knowledge of computational techniques. An example of such a 

description is given in Appendix 1. As a means of illustrating some of 

the features of the model and of demonstrating its applicability in 

practice$ algorithms for two relatively simple endgames, King and Rook 

against King and King and Pawn against King have been developed and 

subjected . to substantial testing. 

In principle, the same model could be used to construct algorithms for 

a wide range of different endgames, given some initial body of theoretical 

knowledge such as that which already exists in textbook form for most 

common endgames. 

An example of the kind of algorithm which might be constructed for some 

of the situations which arise in a more complex endgame, King, Rook a. nd 

Pawn against King and Rook,. is given in Appendix 2. In cases where the 

basic form of the model proves inadequate, the extended form of the 

model described in Section 2.8 enables tree-searching to be included in 

a readily controllable manner. 

Since virtually all endgames are understood only imperfectly, it is to 

be expected that 'initial' algo rithms constructed from textbook 

descriptions will themselves contain inaccuracies and errors, to a 

greater or lesser extent. Irý addition, the translation of rules stated 

or implied in textbooks (including those given only implicitly, by 
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examples) into corresponding equivalence classes can at best be only 

an imprecise process. In order to construct powerf ul algorithms, it 

is necessary to combine the general model with some means of refining 

the initial a3gorithms produced. 

or this reason, Sections 9-11 are devoted to a detailed discussion 

of the process of refining an algorithm for the endgame King and Pawn 

against King to play perfectly in each position on a given test file. 

This refinement process led to a much improved af gorithm but one which 

retained the property of a close relationship to the chessplayer's 

endgame knowledge, within the framework of the equivalence class model. 

At each stage the form in which the exceptions were reported directly 

suggested the changes to be made. The final algorithm remained compact 

with no "special cases" of individuai positions, and classes with 

relatively few members (such'as class 19) were introduced only where 

there were insufficient exceptions remaining to enable more general 

specifications to be chosen. a- 

When attempting to devise a systematic and generalisable method of 

program improvement it would seem likely that the choice of underlying 

model is critically important. 

On the basis of the work described in Section 10 it appears that the 

equivalence class model lends itself-naturally to iterative algorithm 

refinement, particularly since it is a structural rather than a procedural 

representation and the component elements of the algorithms are 

relatively simple and readily manipulable either by the -programmer or 

an automatic system. 

Thus, for example, to change the order of the goals held by the 

algorithm, it is only necessary to re-order the class values held in 

the first column of the value table. Me possibility of extending ttle 
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tecbniques adopted. in Section 10 into a fully automatic system of 

algorithm refinement was considered in Section 11, iwhere the problem 

I was broken down into its constituent p-Arts. Once again it was found 

that the nature of the equivalence class model assisted at each stage 

of the refinement process and the principal outstanding problem was 

identified as that' of synthesising a new class definition from an 

identified group of related exceptions. An approach to this problem 

based on the use of probability was suggested. Although the outstanding 

problems are no doubt substantial, various lines of investigation have 

beer, suggested and in general it would seem that the model chosen is a 

suitable one for future research in this area. 

One interesting by-product of the work is that it calls into question 

the commonly held belief that endgame s such as King and Pa-Vm against 

King and King and Rook against King are completely understood theoretically 

and the knowledge contained (explicitly and impli6itly) in textbooks is 

sufficient for correct (i. e. perfect) play in all positions. In fact, 

however, the examples given in Sections 6,7 and 10 strongly suggest 

that this is not so. The process of algorithm refinement can therefore 

be considered as a possible means of extending existing knowledge within 

the same general framework. 

This in turn raises the possibility that an algorithm of the kind under 

consideration - that is, capable of being understood and tested by 

chessplayerS* and given advice in the form of additional equivalence 

classes'etc. - might be a superior alternative to the printed page as 

a medium for recording knowledge. The advantages of aiming for optimal 

play in a specified set of positions were stated in Section 10: - firstly 

that the results achieved can be evaluated objectively and secondly 

that the requirements of a self-improving system can be studied in 

isolation from any possible errors or inconsistencies in the source data. 
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However, since it would seem that even for' elementary endgames both 

chessplayers'. and textbook knowledge do not suffice for perfect play 

it may be that such a criterion is an inappropriate aim for future 

work on knowledge representation. Even for elementary endgames and 

certainly for more complex ones it may be that a complete optimal 

strategy would occupy many pages of a textbook and would be an 

"unnatural" one for a chessplayer, involving a great deal of memorisation 

of s pecific positions-s It would then be necessary to consider alternative 

definitions of an "optimal" algorithm)for example as one which is 

computationally efficient and finds a good movd-in every position and 

the best move in many cases. 

12.1 Directions for further research, 

some suggestions for further research have been given in previous 

sections. 

These fall into two main categories: those related to the problem of 
a- 

constructing algorithms to play other endgames, and those related to 

more general problems in Artificial Intelligence. 

With regard to the first of theseq further experimentation is'necessary 

with both the basic and the extended models to determine whether more 

complex endings and ultimately also middlegame positions can be 

satisfactorily handled. It remains to be seen whether or not the number 

of classes. required increases disproportionately with each increase in 

the complexity of the endgame under investigation. However, given that 

the number of classes required continues to correspond fairly closely to 

the number of different situations recognized by the human chessplay'er, 

there would seem to be no reason in principle why the same method should 

not be extended indefinitely. For enýgames with several pieces it may, 

howevert be necessary to-introduce an initial pre-processing stage to 

reduce the number of moves (and thus successor positions) considered. 

t. 
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The second direction for resear. ch is of moýe general interest. The 

most obvious extension of the present work concerns-the development 

of an automatic system for algorithm refinement, along the lines described 

in Section 11, in the case where a database of perfect knowledge is 

available. A further extension would then be to the rnore general case 

where only imperfect (and possibly conflicting or partly erroneous) 

knowledge is available. One possible way to extend the database of 

available knowledge would be to set up two algorithms, one for each side, 

and play them in competition to termination. A problem which falls 

somewhere between the two categories is to make a controlled study of 

the quality of human performance in s*imple. endgames to establish realistic 

performance criteria for future research in this field, particularly in 

the case of endgames for which no database of perfect knowledge is 

available. 

Finally, consideration should be given to applications of the equivalence 

class model to problem areas other than Chess to which state-space 

methods are normally applied. 
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#Tpendix 1. The move-finding algorithm*for King and Rock_against 

King: a non-technical description 

This appendix contains a description of the move - finding algorithm 

(for the side with the Rook only) presented in a form in which it 

might'be addressed to human chessplayers in a chess textbook, with 

the important difference that only the "recipe" for playing the end- 

game has been given, with no attempt at justification or explanation. 

The form of the algorithm to be -described is the initial version, 

as given in Section 4. 

The equivalence classes are represented by*a series of diagrams, each 

with a brief accompanying description. Where there are associated 

functions for a particular class they are represented by an additional 

comment in parentheses alongside the diagram. Positions where the Rook 

is en prise, checkmate positions and stalemate positions are mentioned 

first but no diagrams are given to illustrate them. Diagrams for 

these classes could, of course, be easily included if required. A 

diagram is given for every other class (two diagrams for class 4), 

- class 11 which contains only "residual" positions. The except 

number given to the top left of each diagram refers to the corre- 

sponding equivalence class and does not form part of the description 

itself. 

The description of the move-finding algorithm now follows- 
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The endgame King and Rook against King 

The winning strategy for White (the side with the Rook) can be 

summarised in the simple rule "always select the move which gives you 

the most favourable possible position! '. Since after any White move 

it is, of course, always Black's move in the res. ulting position, all 

that remains is to specify how to determine which is the best of a 

number of alternative possible positions with Black to move. 

Clearly positions where Black is already checkmated are the best and 

positions where Black is stalemated or the Rook is en prise are the 

wors t. 

The following diagrams show the other types of position for which ''I 

White should aim, arranged in descending order of preference. 

(If more than one diagr4m seems to apply to a position, the first 

one should be taken. ) 
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I 

N 

tlack cannot avoid mate in one. 

Black cannot avoid mate in one. 

Kings in opposition with Black 
in check. 

:4: 
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A 

7 

Kings in opposition with 
the Rook on the rank 
between them one file 
closer_to_the_centre. 

Kings two ranks apart, 
with White one file 
closer to the centre and 
the Rook 

' 
on the rank 

between them. The Rook 
must not be on el-ther of 
the files adjacent to 
White's King. 

(Try to restrict Black's 
Kinj. -. to as small a 
quadrant as possible. ) 

Kings in opposition with 
Rook one file closer to 
the centre. 

a 
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9 

Kings two ranks apart, with 
the Rook on the rank between 
them. 

' 
The Black7 King must 

not be closer to the Rook 
than the Ubite King 2. s* r- 

(Try to restrict Black's 
King to as small a 
quadrant as possible. Sub- 
ordinate to that, the two 
Kings should be as close 
together as possible. ) 

Black King inside a quad- 
rant set up by the action 
of the Rook. The White 
King can be anywhere except 
on the boundary of the 
quadrant when this would 
allow Black to esc3pe. 

(Try to restrict the Black 
King to the smallest 
possible number of ranks. 
Subordinate to that, the 
two Kings should be as 
close together as possible. ) 

-AO- 
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Appendix 2-. 

_ 
King, Rook and Pawn against King aLd Rook: 

Steps towards the development of an algorithm 

This endgame is considerably more complicated than the other two 

discussed in this thesis. Whereas Fine (1941) devotes less than a 

page to King and Rook against King, the description of King, Rook 

and Pawn against King and Rook occupies thirty pages. The aim of 

this appendix is to indicate the kind of initial form of algorithm 

which can be derived from the examples and analysis given by Fine. 

For this purpose two- short extracts will be considered, relating to 

two critical positions for this ending known as Philidor's position 

and the Lucena position. (Both extracts make use of the "descriptive" 

system of notation. ) In each case, a fairly simple set of equivalence 

classes is sufficient to produce the play given in the text. These 

are to be considered as part of two much larger sets of equivalence 

classes for this ending, one (of positions with Black tomove) to 

be used to play White's strategy and another (of p6sitions with White 

to move) to be used for Black's strategy. White is the side with 

the Pawn throughout. It should be noted that in both cases, equiva- 

lence classes such as "Black's Rook is en prisell and "Black Rook on 

the same square as the Pawn (i. e. has just taken the Pawn)VI are 

assumed to be included, with appropriate class values, early in the 

testing order. These will not be explicitly mentioned further. 

The notation TrAlpWK2, BKI, BK2,14RI, WRZ, BR19, BR2, WP1, WP2 is used to 

represent the file and rank co-ordinates of the White King, the Black 

Kings the White Rook, the Black Rook and the White Pawn, respectively. 
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1, Philidor's position 

ROOK AND PAWN VS. ROOK 

General rule: If the Black King can reach the queening square, 
the game is drawn; if not the game is lost. While this holds in 
most cases, it must be looked upon as a convenient rule of ' thumb and not adhered to too rigidly. In particular, the RP 
forms an exception to the second part. 

Since it is difficult to grasp the essence of this ending 
without knowing a number of examples, and since the ending is so 
basic in all R and P play, we shall give a fairly exhaustive 
analysis. To begin with, we shall give the ideal drawing 
position, according to our general rule. 

A. THE BLACK KING IS ON THE QUEENING SQUARE 

If the Pawn is not far advance'd, the King cannot be driven away. 
This has been known since the time of Philidor. No. 303 is the 
standard position. Black keeps his R on the third Rank until 
the P reaches the sixth, and then goes to the eighth. When the 
square K6 is no longer available for the White King he will not 
be able to occupy Q6 or KB6 and will be unable to drive the Black 
King out. The moves might be I P-K5; R-QR3; 2 P-K6, R-R8 
(2 .... R-Kt3?? vould be a bad blunder -3 K-B6, K-Ql; 4 R-R8ch, 
K-B2; 5 K-B7 wins); 3 K-B6. R-B8ch; 4 K-K5, R-K8ch; 5'K-Q6, 
R-Q8ch, etc. 

No. 303 

Dftw 

The following classes are sufficient to produce correct play for Black 
in the example given above. 'Since 

moves for'Black are to be found, 
these are all clas 

. 
ses of position with White tO'Move-. 
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The predicate "Philidor" is used to represent (BKI=TATI) AND (EK2=8) 

AND (WR2=7). 

First associated 
Class Definition (White to move) Value Function 

a Philidor AND (BR2=6) AND (WP2<6) 4 abs (UTKI-BRI) 

b Philidor AND (BRI=WPI) AND(BR2<WP2) 3 

AND dist (UTI, WK2, WPI, WP2)>2 

c Philidor AND (P2=6) AND (BRI=WKI) 2 

AND (BR2<WK2) 

Philidor 8-BR2 

With these classes and with White choosing the moves given by Fine, 

the main line from the diagrammed position is 

e P-K5 R-QR3 

2. P-K6 R-R8 (d) 

3. K-B6 R-B8ch (C) 

4. K-K5 R-K8ch (C) 

5. K-Q6 R-Q8ch (C) 

etc* 

With the figure in parentheses after each Black move giving the class 

of the position which results after that move (Uhite to move). 

Class t is included to allow for sequences such as 

6. K-B7 R-B8ch- (c) 

7. K-N6 R-K8 (b) 

winning the Pawn. 



-259- 

Some other possible variations are 

I. K-K5 R-QR3 (a) 

or 

I. PrK5 R-QR3 (a) 

2* P: --K6 R-R8 (d) 

3. K-B6 R-B8ch (c) 

49 K-N7 

here Black should play 4. ... K-K2. To ensure this. a further class 

(e) could be defined, with value 5 and definition BK1=WPI AND 

BK2>WP2 with associated functions 8-BK2 and abs (WKI-BRI) 

Including this class is equi valent to Black following the advice 

"occupy the file in front of the Pawn, with your King as close to 

the Pawn and yqur Rook as far from the White King as possible". 

A further possible variation would then be: 

1. R-RI K-K2 (e) 

2. R-KI R-QR3 (e) 

and White is clearly making no progress. 
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2. The Lucena Position 

THE LUCENA POSITION 

This is the key to all these endings. It was first discovered 
by Lucena, a Spanish author who wrote towards the end of the 
fifteenth century. The solution to No. 307 is I .... R-R6; 
2 R-B41 ("building a bridge" is an apt description of the winning 
method), R-R8; 3 R-K4ch, K-Q2; 4 K-B7, R-B8ch; 5K-Kt6, R-Kt8ch; 
6 K-B6, R-B8ch (if 6,... R-Kt7; 7 R-K5 followed by R-KKt5, while 
if 6.... K-Q3; 7 R-Q4 ch, K-B3; 8 R-Q8, R-B7ch; 9 K-70, R-K7ch; 
10 K-ýB40 etc.; 7 K-Kt5, R-Kt8ch; R-Kt4 and wins. 

If the Black R leaves the R file, say I.... R-K7, then 2 R-KRI 
allows the exit of the White K to KR8 or KR7, freeing the P. If 
the Black K goes to K2 and B3, the White K gets to B8, e. g. 
I .... K-K2; 2 R-Kich, K-B3 (2 .... K-Q3; 3 R-K4 as above); 
3 K-B8. 

Clearly, these lines are not applicable to a RP, since there the 
exit of the White K is blocked on the one side he can go to by 
both K and R. 

The Lucena Position 

No - 307 

White wins; win in all analogous 
positions except. with RP., 
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Here it is White's strategy which is of interest. - Clearly the position 

after his second move in the above sequence (with the Rook on the 

fourth*rank) is particularly important. The following equivalence 

classes include one defining this position explicitly. 

The predicate "Lucena" is used to represent (WK2=BK2=8) AND 

(WP2=7) AND -(WKI=WPI) AND (WK1=BKI+2) AND (BRI=WKI+I) AND (WR2=4). 

Class Definition (Black to move) Value Associated functions 

First Second 

A (BR1=WRI=WKI=WPI) AND (BR2<WR2< 4 

WK2<WP2) AND (WP2=7) AND 

dist (BKI, BK2, WPI, WP2)>2 

b (WRI=BKI+I) AND (WP12: BKI+3) AND 3 8-K2 8-abs 

WP2 -7 AND(WKI=WPI OR WKI=I-IPI'l) (WKI-WPI) 

C Lucena AND WRI=BKI 

d Lucena AND WRI=BKI+l 

(Note that it has been assumed throughout that BKI<WKI. - This can be 

thought of as a 
, 
standard orientation for these classes. ) 

Using these classes, the main variation given by Fine will be correctly 

treated. The figures in parentheses below show the class of which 

the position after each White move is a member. 

R-R6 

2. R-B4 (d) R-R8 

3. R-K4ch (c) K-Q2 

4. K-B7 (b) R-B8ch 

5. X-N6 (b) R-N8ch 
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6. K-B6 (b) R-B8ch 

7. K-N5 (b) R-N8ch 

8. 9-N4 (a) 

and yins.. 

On examin=g the two extracts from Fine, it. is clear that from the 

viewpoint of the human chessplayer, there seem- to be several 

different important positions and details given and that some of 

these appear to be highly specific to particular cases only. 

The equivalence classes given above are a reflection of this 

situation. Although the classes as defined appear to be an appro- 

priate choice for the examples given, they may ignore some important 

exceptional cases, or alternatively be themselves only specific 

instances of more general classes of positions. For example, in the 

definition of the predicate "Lucena", it may be that the,,, Rook could 

be on the fifth or sixth ranks instead of the fourth. 

Nevertheless, provided that an initial version of an algorithm can 

be set up, the exangles given in textbooks and occurring in master 

play can be used to refine it, either "by hand" or perhaps ultimately 

by a fully automatic method, as discussed in Section 11. 
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Appendix 3. Notation 

Squares are represented using algebraic notation. The files are 

designated by a letter A to H, from left to right, and the 

ranks are nuubered I to 8, from bottom to top of the board. 

Each square is then uniquely represented by a letter followed 

by a number, e. g. A8. (It is assumed that the board is 

arranged with White's first rank at the bottom. ) 

8 

7 

6 

5 

4 

3 

(2) Moves are denoted by a letterp representing the piece moved, 

followed by a hyPheng, followed by the destination square, 

e. g. R-E6. When it is necessary t6-'dis'tinguish between a 

White move-and a-Black move,, the latter is preceded by three 

dotsp e. g. ... K-A2. 

(3) WKI and WK2 'are used to denote the number of the rank and file 

of the square occupied by the White King. Thus, if the King 

is on square A6, WKI is. 1 and WK2 is 6. 

BK1 and BK2, WR1 and WR2 and WPI, and WP2 are used similarly 

for the Black King, the White Rook and the white Pawn. 

tl L, Ucrum 
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(4) In diagrarn, "K", "0, "M and "P" are used to represent the 

uhite King, the Black King, the White Rook and the I-Thite 

Paim, respectively. The player to move is indicated by the 

letter 11 or B to the top ldft of the diagram. 

(5) Function names are printed in lower case letters and underlined, 

except when they consist of only one letter. 

(i) abs - absolute value function; Abs (-3) - abs (3) - 

(ii) mx - "maximud' function; ira-ax (6, -4) - 

(iii) min - It minimumll function; min (6, -4) -4 

(iv) dist - the "block distance" between two squares 

e. g. diSt (wKn, TTK2, BKI, BK2) is given by max 

(Abs (IIKI-BKI), Abs (IIK2-BK2)). When both squares are 

occupied by pieces, the arguments of the function are 

generally replaced by the names of the two pieces, for 

convenience. Thus, the above would be written as dist 

(White King, Black King). 

AND9, OR and NOT are the customar .1 
logical connectives ('OR' is 

inclusive). 

The notation introduced in Section 2 is sunmarized below. 

W- the set of legal positionswith White to move for a given 

endgame 

the set of legal positions with Black to move for a given 

endgame 

p- an initial position with White to move 

Q(p) - the (ordered) set of immdiate successors of p (sometimes 

abbreviated. to Q) 
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qi(p) - the i'th imediate successor of p (sometives abbreviated 

to qi or q) 

the ith equivalence class of positions 

C(b) - the equivalence class of which position b is a merber, 

bcB. 

the value of class Ci 

V(b) - the value of class C(b) 

f 
JL - jIth associated function for class Ci (sometimes abbreviated 

to fj) 

N- the number of equivalence classes 

m- the number of associated functions for each class 

an integer value larger than the maximum value of any 

associated function for any class 

(8) MOVEP and MOVEF are the 'program move' and 'file move', 

respectively, in a given position, i. e. the move selected by 

the move-finding algorithm for a particular endgame and 

the move stored on a database of best (or believed best) moves. 
0 

(9) CLASSP and CLASSF are the equivalence classes of which the 

positions which arise after playing MOVEP and ? jOvEF in a 

given initial position are members. , 
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1. Introduction 

This report contains a number of tables giving quantitative 

data for the chess endgame King and Pawn against King, 

gathered mainly in the course of the work described in 

Bramer (1977)- 

Although this data is of some interest in itself, it is 

hoped that it will also prove useful to those involved in 

research based on this endgame and particularly in conjunction 

with work on the measurement of a program's "knowledge content". 

All the data has been obtained either by means of simple 

counting programs or by analysis of a database set up and 

made available by Michael Clarke of Queen Mary College, 

London. The database is described in detail in Clarke (1975). 

The data given here is by no means complete and the author 

will be grateful to receive any additional information or 

independent corroboration of any of the values given. 

Acknowledgments 

I should like to thank Michael Clarke for the use of his 

King and Pawn against King database and Don Beal, of Queen 

Mary College, for making an independent verification of some 

of the principal figures. 
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2. Standard board orientation and definition of terminal 
positions 

For convenience, the conventions followed in Clarke (1975) 

are also adopted here. 

The side with the Pawn will be assumed to be White throughout 

and for reasons of symmetry, the Pawn will be restricted to 

files A to D only (thus each position corresponds to two in 

the full state space). 

It is assumed that White wins by advancing his Pawn to the 

eighth rank, provided that it cannot immediately be captured. 

(This includes positions where promotion to a Rook is necessary 

to avoid stalemate). For this reason, positions with the Pawn 

on the eighth rank and White to move are excluded from 

consideration, as are positions where the Pawn is off the 

board (captured by Black). Positions where the Pawn is on 

the eighth rank with Black to move are includedghowever. 

The two positions where White to play is stalemated are 

excluded but the nine positions where Black to move is. stalemated 

are included. 

The following types of position are considered terminal, with 

Black to move in each case: 

(a) Win for White 

the Pawn is on the eighth rank and not en prise. 
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(ii) the"Pawn is en prise. 

(iii) Black can stalemate White in one move 
(there are seven such positions). 

2.1 Breakdown of all legal positions 

Number of legal positions 

White to move 
81662* 

Black to move 
97992** 

Number of wins for White 62480(76-5%) 61787(63-1%) 

Number of draws 19182*(23-5%) 36205** 

excluding 2 stalemates 

including 9 stalemates 

(b) Draw 

M Black is stalemated. 

In passing, it will be noted that all positions with the Pawn 

on the eighth rank (Black to move) are terminal. 

2.2 Breakdown of legal positions by Pawn's square 

Breakdown of'legal positions by Pawnts square 
WHITE TO MOVE 

7 
6 

5 
4 

3 

2 

3436 3384 3386 3386 

3441 3389 3392 3392 
3441 3389 3392 3392 

31*41 3389 3392 3392 

3441 3389 3392 3392 

3441 3389 3392 3392 

13592 

13614 

13614 

13614 

13614 

13614 
ABcD 

20641 20329 20346 20346 81662 
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Breakdown of legal positions by Pawn's square 
BLACK TO MOVE 

8 

7 
6 

31*92 3496 3496 3496 
34*96 3502 3502 3502 
31*96 3502 3502 3502 
3496 3502 3502 3502 
3496 3502 3502 3502 
3496 3502 3502 3502 
34-96 3502 3502 3502 

13980 

14002 

14002 

14*002 

14*002 

14002 

14002 

ABcD 

24468 '245o8 24508 24508 97992 

2-3 Breakdown of wins by Pawn's square 

WHITE TO MOVE 

7 3321 3229 321*0 3240 

3051* 2962 2894 2922 

2707 2639 2574 2558 
2308 2369 2352 2395 
1887 2186 2219 2337 
1840 2316 2395 2536 

13030. 

11832 

10478" 

9424 
8629 

9087 
ABCD 

15117 15701 15674 15988 62480 

BLACK TO MOVE 

8 

7 
6 

5 
4 

3 

3321 3218 3223 3223 

3052 2921* 2791* 2801* 

2690 2573 2446 2355. 
2260 2169 2029 1928 

1790 1835 1711 1663 
1307' 1569 1507 1456 r1214 1575 1570 1561 

,, 12985, 

-- 11574 

, 10064 

8386, ý 
6999 

5839 
5940 

ABcD 

15634 15863 1528o 15010 61787 
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2.4 

2.5 

Breakdown of draws by Pawn's square 

WHITE TO MOVE 

7 
6 

115 155 146 146 
387 4*27 498 470 

73/4 750 M 834 

1133 1020 1040 997 
1554 1203 1173 1055 
1601 1 1073 1 997 856 

562 

1782 

3136 
1*190 

1*985 

4527 
ABcD 

5524 4628 4672 4358 

BLACK TO MOVE 

8 

7 
6 

171 278 273 273 

444 578 708 698 

806 929 1056 1147 

1236 1333 1473 1574* 

1706 1667 1791 1839 

21819 1933 1995 2046 E 

2282 1927 1932 1921 

ABC 

8834 8645 9228 

Terminal positioýs (Black to move 

D 

9498 

only) 

Win for White 12985 
Pawn en prise 10093 

Stalemate 9 
Black can Stalemate White 7 

Total terminal positions 23094 

Total non-terminal positions 71*898 

Total positions 97992 

19182 

995 

2428 

3938 

5616 

7003 

8163 

8o62 

36205 

(23.6%) 

(76.4%) 

(100%) 
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2.6 Terminal v. non-terminal wins ýfor Wite (Black to move only) 

Terminal wins 12985 (2110%) 

Non-terminal wins 48802 (79-0%) 

Total wins , 
61787 (100%) 

2.7 Terminal v. non-terminal draws (Black to move onl 

Terminal draws 10109 (27-9%)' 

Non-terminal draws 26096' (72' 
, 1%) 

Total draws- 36205 (100%) 

2.8 Breakdown of legal positions with Pawn on eighth rank. 
(Black to move only) 

Pawn en prise (terminal draws) 995 (7-1%) 

Others (terminal'-'wins) 12985' (9'2.9%) 

Total 13980 '(100%) 

2.9 Breakdown of Pawn en prise positions"by'Pawnts'-square (Black 
to move only) 

8 

7 
6 

171 -278-, 273 273 
278 425 417 417 

273 417 408 408 

273 417 408 408 

273 417 408 408 

273 417 408 408 

278 425 F 417 417 

-- 995 

1537 

15o6 

15o6 

15o6 

1506 

1537 

A B c D 

1819 2796 2739 2739 10093 
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2.10 Stalemate positions (Black to move only) 

WK BK WP 

A6 A8 A7 

B6 p8 B7 

C6 C8 C7 
D6 D8 D7 

B6 A8 A7 

A6- A8 C7 
B6 A8 C7 

C7 A8 B6 

c8 A8 B6 

2.11 Positions from which Black to move can stalemate White 

WK on A8, WP on A7 and BK on B6, c6, C7, C8, D6, D7 or 
D8. 
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3* Classification of won positions with'White to move- 

Positions in which White to. 'play'has a forced_iýifi-_igain'st 

any defence by Black can be classified into the-following 

four disjoint and exhaustive types. 

Type 0 

Positions where the Black King is outside the queening square 

of the Pawn and the White King is not in front of the Pawn. 

In such cases the Pawn can 'run'. If it is on rank P2, then 

White wins in 8-P2 moves (24P2<8), or 5 moves (beginning with 

a double move) if P2 = 2. 

Note that a Pawn on the second rank is considered-to be on-the 

third rank for purposes of constructing the queening square. 

Type 1 

Positions not included in type 0, where the Pawn can still 

'run' (because the Black King's advance to cut off the Pawn 

is blocked or prevented in some way). As for type 0, White 

wins in 8-P2 moves (2020) or 5 moves (P2 = 2). 

Type 2 

Positions not included in types 0 or 1, where White has a 

single best winning move (i. e. one which wins at a shorter 

depth than any other against best play by Black). 

Type 3 

Positions where White has two or more equal 'best' winning 

moves. (Note that positions in types 0 or 1 cannot fall into 

this category). 

.i 
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3-1 Breakdown of positions, with White to move by Pawn's file 

A B c D TOTAL 

Type 0 wins 13519 12214 10978 10512 47223 

Type 1 wins 318 456 498 450 1722 

Type 2 wins 269 1111 1616 1837 4833 

Type 3 wins 1011 1920 2582 3189 8702 

Total wins 15117 15701 15674 15988 62480 

Draws 5524 4*628 4672 /*358 19182 

Total legal 
positions ,1 

2061*1 20329 1 2031*6 120346 1 81662 

3.2 Distribution of type 0 wins with White to move by Pawn's 

square 

7 
6 

3263 3155 3160 3160 
2937 2779 2620 2628 

2519 2313 2106 1899 
2015 1763 1510 121*3 

11+31 1135 821 821 

1354 1069 761 761 

A B cý D. 

13519 12214 10978. 10512 

0 4 4 4 

5 20 28 30 
23 46 60 86 

61 90 100 128 

115 148 154 102 

114 148 152 100 

3.3 Distribution of type I wins with White to move by Pawn's 
square 

7 
6 

12738 

10964 

8837 

6531 

42o8 

3945 

47223 

12 

83 

215 

379 

519 

514 

A B c D 

N8 456 498 450 1722 

No of moves 
to win 

1 

2 

No of moves 
to win 

1 

2 
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3.4 Distribution of type 2 wins with. White to move by Pawn's 
square 

7 
6 

5 
11: 

3 

2 

3 8 12 12 

4 34k 61 68 

14 77 113 146 
52 213 3011 391 
88 31+3 518 566 

L108 436 1 6o8 1 651* 

ABcD 

269 lill 1616 1837 

35 

167 

350 

960 

1515 

1806 

4833 

3-5 Distribution of type 3 wins with White to move by Pawn's 
square 

7 
6 

5 
Li 

3 

2 

55 6.2 64 64- 

F 

L 108 129 185 196 
1 L5 1 203- 295 1*27 

180 303 1*38 633 

253 560 726 848 

264 663 871* 1021 

245 

618 

1076 

15ý4 

2387 

2822 

ABcD 
I 

1011 1920 2582 3189 8702 

3.6 Number of positions with White to move with N'equai best 
winning moves 

N number of positionýs 

1 53778 (types 0, *, l and*2) 
2 4115 

3 2514 

4 879, 

5 507 type 3 

6 384 

7 312 

80 

90 

10 0 
1 TOTALI 62480 
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Classification of won positions with Black to move- 

Non-terminal positions In' which Black to move cannot, avoid 

defeat against best play by White can be classified into the' 

following three disjoint and exhaustive types. 

Type 0 

Positions where the Black King is outside the queening square 

of the Pawn by more thaýi one rank or file and the White-King 

is not in front of-the Pawn. In such cases, whatever move Black 

makes, . the Pawn can 'run'. 

Ifit is on rank. P2j, then White wins in 8-P2 moves (2020) 

or 5 moves (beginning with a double move) if P2 

Note that a Pawnýon the second rank is considered to beýon- 

the third rank for purposes of constructing the queening square.. 

Type 1 

Positions, not included in. type 0, where after any move by 

Black the Pawn can still 'run' (because the, Black King's 

advance to cut off-the Pawn is blocked or prevented in some way). 

As for type 09 White wins in 8-P2 moves 6<P2<8) or 5*moves 

(P2'='2). 

Type 2 

Positions not included in types 0 or 1. 

401 Breakdown of_positions_with Black to move by'Pawn's file 

A B c D TOTAL 

Type 0 wins 10519 8817 7868 7393, 34597 

Type 1 wins -555 71*0 585 482 2362 
Type 2 wins 4560 63o6 6827 7135 21*828 
Total wins 15631* 

I 

15863 15280 15010 61787 

Draws 8834 8645 9228 9498 620 

Total legal. 
positions 

24468 
1 

245o8, 
1 

24508- 2ý508 97992 
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4.2 Distribution ofItype O. wins with, Black,; tq., mq-ve-by Pawn's 
square 

Number of moves 

8 

7 
6 

5 
4 

3 

2 

0 ý 01-1 ý0 
'ý , ý> 0; 

2990 2828 2666 2674 

2565 2354 2143 1932 

2052 1794 1536 1264 

1457 1154 834 834 

786 420 420 420 

669 267 269 269 

White needs to win 
0, rý "o '' 

11158 

1 

1 
8994 2 

6646 '-'3* 
4279 A 

2046 5 

ý4714 5 

ABCD 

10519 8817 7868 7393 34597 

4.3 Distribution of type 1 wins with Black to move by Pawn's 
square 

Number of moves 
A-4. - 

8 

7 
6 

5 
Ii, 

3 
2 

0 0 0 0 

9 29 40 42 

24 51 6 90 

62 92 100 128 

116 . 150 154 102" 

171 208 57 

173 210 l16 61 

2Le neeU5 ýV W. LJIL 

0. 0 

120 1 

229 2- 

382 3 

522 

547 
5 

562 
ABCD 

555 740 585 482 2362 

4.4 Distribution of type 2 wins with Black to move by Pawnls* 
square 

8 3321 3218 3223 3223 

53 '67 -- 88 88 
101 168 239 333 
146 283 191 916 
217 531 723 727 
350 91+1 976 (M) '' I 

372 1 lo98 1185 
r1249 

12985 

296 

-841 

-1358 

--3246 
3904_ 

ABC.. D, 
21*828. 

456o 63o6 6827 7135 
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The number of wins and draws at each, depth 

The main column of each of the following four tables is 

based on values given by Clarke (1975), although they have 

0 
all been independently verified. A few minor printing 

errors in Clarke's paper are also corrected here. 

Positions which are won for White are classified by the number 

of moves, N, needed for White to win, either with White to move 

initially or, in the case of Black to move initially, after 

Black's best move. 

, Assuming that White plays to minimize the depth from the nearest 

terminal position and Black plays to maximize it, the values 

given are the number of wins at depth 2N-1 and 2N ply, with White 

and Black to move respectively. 

Positions which are drawn are similarly classified by the number 

of moves , N, taken by White to reach a terminal position, - either 

with White to move initially or, in the case of Black to move, 

after Black's best move. 

In this case, it is assumed that White plays to maximize the depth 

from the nearest terminal position and Black plays to minimize 

it. 

The values given are thus the number of draws at depth 2N-1 

and 2N ply, with White and Black to move, respectively. One 

further type of position, also tabulated, arises where the 

best play for both sides is a sequence of moves which eventually 
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repeats the original position. Such positions transform 

into one another in cycles of moves, indefinitely repeated. 

5-1 Breakdown of won positions by number of moves required 

WHITE TO MOVE 

N Number of positions in Type Type Others 

which White wins in N moves 0 1 

1 12750 12738 12 0 

2 11300 10964 83 253 

3 9624 8837 215 572 
4 7861* 6531 379 951* 

5 8153 1033 1325 
6 2564 

7 1416 
8 1457 

9 1122 

10 941 

11 685 

12 670 

13 586 

14 572 

15 307 

16 78 

17 22 

18 8 

19 3 

TOTAL 

162480 
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BLACK TO MOVE 

N #Number of positions in 

which White wins in N 
*moves 

Type 0 Type 1- Type 2 

0 12985* - 
1 -11278 11158 120 0 

2 9513 8994 229 290 

3 76o'* 6646 382 576 
4 5729 1*279 522 928 

5 5777 3520 1109 1148 

6 1982 

7 11*33 
8 1315 

9 
ý96ý 

10 795 

11 597 
12 560 
13 502 

14 481 

15 213 

16 36 

17 15 

18 4 

19 2 

TOTAL 61787 

Terminal positions 

(Note that twelve of these have no legal antecedents in the 
set of positions under-considerati on, e. g. WK: C8 BK: A8, 
WP: B8. 

The position could arise in play, however, as the result of 
a Pawn capture on B8). 
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5-2 Breakdown of drawn positions by number of moves required- 

WHITE TO MOVE I 'j, 4 

N Number of positions in which White 
draws in N moves 

1 2730 
2 3243 

3 2765 
4 1405 

5 504 
6 130 

Drawn by 8405 
repetition 

TOTAL 19182 

BLACK TO MOVE 

N Number of positions in which White 
draws in N moves 

0 10109* 

1 6156 

2 5454 
3 3172 

4 1396 
5 438 
6 59 

Drawn by 9421 
repetition 

TOTAL 36205 

Terminal positions 
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The critical positions (White to move) 

One particularly important set of positions with White t, o move 

consists of all positions where there is only one winning movel 

with 'trivial' cases excluded. 

In this contextj a reasonable definition of 'trivial cases' 

might be as follows: 

(a) all positions in type 0 (where. -the Pawn can 'run') 

(b) all positions in type I (where the Pawn can 'run') - 

(c) all positions where the White King is on the Pawn's file, 

somewhere ahead of the Pawn and Black is more than one 

rank or file outside the queening square of the Pawn 

(since then White can simply move the King off the Pawn's 

file and allow the Pawn-to 'run'). 

Note that a Pawn on the second rank is considered to be on the 

third rank for purposes of constructing the queening square. 

With such an exclusion the members of the set of 'critical 

positions 
I 

are all positions of type 2, as previously defined, and 

there are 1733 such positions in all. 

6.1 Distribution of critical posItions by Pawn's file 

A B c D TOTAL 

148 

1 

415 522 648 1733 
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The longdst games 

The longest possible game consists of a total of 38 ply and 

begins with Black to move in either of the positions 

(a) WK: H3, BK: H5, WP: B2 

(b) WK: H39 BK: H6, WP: B2 

After Black's best move (K95 in both positions), the following 

position is reached, WK: H3, BK: G59 WP: B2 

This is one of the three positions from which White needs 19 

moves (37 PlY) to win. The other two are 

WK: H29 BK: G5, WP: B2 

and WK: G2j BK: G5, WP: B2 

In each case White's best move, LK939 transposes to the. same 

position with Black to move. 

One of the many possiblellongest' variations is given below, 

with all possible deviations from-the main line indicated. 
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I. 00 0 Kf5 

2. Kf3 Ke5 

3- Ke3 Kd5 

4. Kd3 Kc5 

5- Kc3 Kb5 

6. Kb3 KC5 

(6. Ka5, Ka6, Kc6 are 
equally good alternatives) 

7- Ka4 Kb6 

8. - Kb4 Kari 

Ka7, Kc 
, 
6, KC7 are 

equally good) 

9. KC5 Kb7 

10. Kb5 Ka7 
(not 10. ... KC7) 

11. Kc6 Ka8f 

12. Kb6 
(12. b4 is equally good) 

12. .. Kb8 

13. b 1* 
(13. b3 is equally good) 

13. ... Ka8 
(Not 13- ... Kc8) 

14. b5 
(14. Ka6 is equally good) 

14. 000 Kb8 

15. Ka6j 
(Not Kc6) 

15. Ka8 
(15- KC7 and Kc8 are 
equally good) 

16. b6 Kb8 

17. b7 

18. Ka7 

19. b8 

Kc7 

any 

and wins. 
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11 Introduction 

This report is concerned with the effective distance between two 

squares on a (finite or infinite) chessboard$ that is, the shortest 
distance (measured in single-step King moves) between the two 

squares, allowing for any necessary detour around an inaccessible 

region of the board$ in particular a nine-square region centred 
on a given square. 

Formulae are given for both an infinite board and a board which 
is infinite except for a fixed edge. The formulae are then used 
as the basis for an implementation in a computer subroutine of a 
predicate function applicable to the King and Pawn against King endgame: 
'Pawn can run'$ i. e. the player with the Pawn can advance it 

and continue to do so until it reaches its promotion square on the 

eighth rank. The subroutine has been verified empirically using a 
database of information on King and Pawn against King and correctly 
classifies all positions with Black to move (where White is the 

side with the Pawn). The database is described further in Clarke (1975)- 

This report is presented both as a contribution to the several 
research projects currently in progress in the task area of Chess 

endgames (see, for example$ Bramer (1977))and in the hope of 
stimulating interest in the mathematical problems associated with the 

geometry of the chessboard and the equivalent (finite or infinite) 

two-dimensional lattices. 

In Section 2 the role of effective distance in implementing the 
'Pawn can run' predicate function for King and Pawn against King 
is shown. In Section 31 formulae are derived for effective distance 

for the general case of a board which is infinite in all directions 

and the case of a board which is infinite except for a single fixed 

edge. 

In the case of the 'Pawn can run' predicate for King and Pawn 

against King on a finite 8 by 8 board, a number of simplifications 
to the general formulae are possible and these are discussed in 
Section 4. A number of other considerations specific to King and 
Pawn against King, in particular the concept of effective queening 
square, are introduced here. A listing of a FORTRAN subroutine 
implementing 'Pawn can run' is given in Section 5- 

Notation and conventions 

In the King and Pawn against King diagrams which follow, White 
is assumed to be playing up the board in all cases and in each 
position it is Black to move. The White King, Black King and 
White Pawn are denoted by K, k and P, respectively. 

It is assumed that positions where Black to move is stalemated 
are excluded from consideration and that the Pawn stands on ranks 
2 to 71 inclusive. The horizontal and vertical co-ordinates of 
the White King (relative to White's bottom left-hand corner of 
the board) are denoted by WK1 and WK2, respectively. Similarly 
the co-ordinates of the Black King and the White Pawn are 
represented by BK1 and BK2 for the former and WP1 and WP2 for 
the latter. In this notation the position White King: QR29 Black 
King: QR5 (White's QR4), White Pawn: QR3 would be represented by 

11 



values of 1,2,19 41 1,3 for WKI, WK2, BK19 BK21 WP1 and WP2, 
respectively. WP3 is used to denote the 'effective rank' of 
the Pawn. It has the same value as WP2, except when WP2 = 2, 
in which case WP3 is 3- 

This value is used when calculating the number of moves needed 
for the Pawn to reach the eighth rank, to allow for an initial 
double move from the second rank (WP2 - 2). 

2. 
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2. Using effective distance for King and Pawn against King 

2.1 Definitions and the'rule of the square' 

In a position where the effect of the White King can be ignored, 
the shortest distance between the Black King and the Pawn's 
promotion square, measured in single-step King moves, is simply 

max 
labs(BKI-WPl), 8-BK2 ) 

This value will be called the block distance between the two 
squares. If it is greater than 9-WP3 (ie. one more than the 

number of moves taken by the Pawn to reach the promotion square 
- to allow for Black moving first), then the-Pawn can run. This 
is, in fact, a reformulation of the well-known 'rule of the 
square'. 

I 

F F. ] Tk 

Figure 1 (Black to move) 

If Black cannot enter the Iqueening square, (as in Figure 1), 
then he loses, assuming of course that White's own King does 
not block the Pawn. 

3. 



The effective distance between two squares is defined in 

general as the smallest number of King moves needed to travel 
from one square to the other allowing for detours around 
fixed 'holes' of inaccessible squares on the board. 

In the case of King and Pawn against King it is useful to 

consider a hypothetical hole of (up to) nine squares centred 
on the White King. These correspond, of course, to the squares 
the Black King may not legally occupy, adjacent to (or on the 

same square as) the White King. 

Provided the effective distance between the Black King and the 
Pawn's promotion square is greater than 9-WP31 the Pawn can 
run (assuming that it is not obstructed by the White King and 
subject to certain exceptions discussed in Section 4). This 
is, in fact, a generalized form of the 'rule of the square'* 

For convenience, the effective distance between any two squares 
can be written as 

effective distance = block distance + incval 

where block distance is the distance on a board without 'holes' 

and incval is a non-negative distance increment. Incval can be 

calculated using the values of two variables intbk and intqsqq 

where 

intbk abs (WKI-BK1), + BK2-WKZ 
and intqsq 8- abs (WKI-WPI) - WK2 

These are, in fact, the values of the intercepts on the White 
King's file of diagonal lines drawn through the Black King and 
the Pawn's promotion square, respectively (taking the White 
King to be at intercept zero). In general, incval is non-zero 
when both intbk and intqsq lie in the range -2 to +2 inclusive 

and the White King is closer to the promotion square than the 
Black. 

2.2 Examples 

Figures 2-9 below show some of the possible cases for King and 
Pawn against King. 

The nine-square 'hole' around the White King is marked in each 
case, together with the diagonal lines through the Black King 

and the Pawn's promotion square. 

From the examples given, it will be seen that incval is closely 
related to the smallest number of squares in the inaccessible 

region around the White King which lie on any of the Black King's 

shortest paths to the promotion square (in the block distance 

calculation). 

Figure 9 is an example of a special case for which an adjustment 
to the basic formula for incval is needed to allow for the effect 
of the upper edge of the board, since Black's quicAest route to 
the promotion square would involve moves off the board9 to the 
"ninth" rank. 

4. 



K 

p 

Figure 2 

block distance 
incval =I 
intbk =2 
intqsq =1 

p 

K 

Figure 3 

block distance 
incval =2 
intbk =I 
intqsq =1 

K 

p p 

K 

Figure 4 Figure 

block distance block distance 
incval =1 incval =1 
intbk =2 intbk = -1 
intqsq =2 intqsq =2 

5. 



I"k 

Figure 

block distance 
incval =0 
intbk =2 
intqsq =3 

N ý \Q 

Figure 8 

block distance 
incval =3 
intbk =0 
intqsq =0 

i i i i i 
- - - - - 

p 

Figure 

block distance 
incval =0 
intbk =I 
intqsq =3 

K 

II 

Figure 9 

block distance 
incval =1 
intbk 3 
intqsq = -2 



Calculating effective distance on an infinite board 

The general problem will be considered of calculating the effective 
distance (measured in single-step King moves) between two squares A 
and B on an infinite chessboard, subject to the presence of an 
inaccessible region of nine squares centred on square K. The horizontal 
and vertical co-ordinates of A, B and K will be denoted by (al, a2), (bl, b2) 
and (kilk2), respectively. It will be assumed that A, B and K are three 
distinct squares. If A or B is inside the inaccessible region around K, 
the effective distance between A and B will be considered infinite and 
such positions are excluded from the analysis which follows. 

As in Section 2, the effective distance between A and B will be written 
in the form 

block distance + incval 

where 'block distance' is the distance on a board with no inaccessible 
region, ie. max f2bs (a, -bl), abs (a2-b2)1 and incval is a non-negative 
distance increment. Formulae for effectiveýdistance will be given in 
terms of expressions for incval. 

In the remainder of this section it will be assumed without loss of . 
generality that kl)/-al and k2,4 a2l ie. that K is inside or on the edge 
of the quadrant which lies below and to the right of A. 

3-1 The case of a fully infinite board 

In the case of a board which is infinite in all directions, incval is 
zero unless K is at least as close to square A as B is, measured in both 
the horizontal and the vertical directions. That is, the conditions 

(i), bl7,, kl if kl>ai 

and(ii) b2 4ý_ k2 if k2 4a2 

must both be satisfied for a non-zero value of incval. 

It is convenient to assume that B satisfies the additional conditions 
bl>,, kl when kj = a, and b24 k2 when k2= a29 again without loss of 
generality. 

When these conditions are satisfied, the value of incval can most easily be 
calculated in terms of the intercepts on the file or rank through K of the 
diagonals through A and B. The intercepts on the file through K (the vertical 
intercepts) of the diagonals through A and B will be denoted by inta and 
intb, respectively. 

These are, in fact, the same both in magnitude and in sign as the 
corresponding horizontal intercepts on the rank through K, with the 
standard orientation (bl>, v, kl>,, a 1 and b24ýk2, < a2) chosen. Horizontal and 
vertical intercepts will not therefore usually need to be distinguished in 
what followse 

7. 



In Figure 10 the intercepts of A and B are +1 and +21 respectively, 
where K itself is at intercept zero. 

K 

B 

Figure 10. (The board is assumed to continue infinitely in all directions) 

In general, inta = (a, + a2) - (kj + k2) 

intb = 
(bl + b2) - (k 

I+ k2) 

With one important exception, discussed subsequently, incval is only 
non-zero when both inta and intb are in the range -2 to +21 inclusivel 
i. e. both A and B are no more than 2 "diagonal ranks" away from K. 

The following table shows the value of incval corresponding to each 
combination of values of inta and intb. 

abs Unta) abs (intb) ineval 

0 0 3 

0 1 2 

1 0 2 

11 1 

12 

0 2 

2 0 

1 2 

2 1 

2 2 

(Other values) 0 

8. 



Thus in figure 10, inta =1 and intb =2 so incval = 1, which is 
'correct since the effective distance from A to B is 6, whereas the block 

distance is onlY 5- 

The one exception mentioned previously occurs when either A or B is 
twoýsquares from K on the same rank or file. With the standard 
orientation of A, B and K adopted in this section, there are two 

positions of A and two of B for a given position of K where this 

condition is satisfied, of which Figure 11 is a typical example. 

17 1 2-1 

K 

Figure 11 (The board is assumed to continue infinitely in all directions) 

The number in each square shows the value of incval associated with the 
effective distance from B to that square. Only non-zero values are shown. 
A must lie to the left of or on the same file as K, so all incval values 
are zero for files to the right of that file. 

The four possible cases are: 

(i) kI=b1 and k2=b2+2 

incval =2 if a1=W1 and a2=k2+2 

incval =1 if inta : ý, -2 otherwise 

9. 



(ii) k1=b1-2 and k2=b2 

ineval =2 if a k, -2 and a=k, 2 

incval =I if inta 42 otherwise 

(iii) k1=a1 and k2=a2-2 

incval =2 if b1=k1 and b2ýk2 -2 

incval =I if intb 42 otherwise 

(iv) k1=aI+2 and k2=a2 

3.2 

C 

IJ 
. 

U. 

incval =2 if b1=k1 +2 and b2=k2 

incval =1 if intb 'ýt-2 otherwise 

An infinite board with a fixed edge 

A 

An adjustment to the formulae given in Section 3.1 needs to be 
made in certain cases when either A or B lies on a vertical 
(or horizontal) fixed edge of the board, with K on the adjacent 
file (or rank), since the shortest path between A and B would then 
involve moves off the edge of the board. 

Allowing more than one fixed edge produces no additional 
complications. 

Taking the example of A on the left-hand edge, with K on 
the adjacent file, only two cases need to be distinguished: 
those where K is either 2 or 3 ranks below A, as shown in 
Figures 12 and 13- 

A 

K 
- 2 

Q 2 2 2 

2 2 12 2 

2 2 2 2 2 12 

2 2 2 2 

Figure 12 

A 

LLI 

x 

LL 

Figure 13 
(The board is assumed to extend infinitely except for the fixed edge shown) 
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It will be seen that in this case the restrictions on the position of 
B which were necessary in Section 3-1 for non-zero incval do not fully 
apply and B can also be on the same edge as A. 

With the relative orientation of A and K adopted in this section, 
positions equivalent to Figures 12 and 13 can only arise with A on a 
top or a left-hand edge. B can either be on the same edge as A or 
on a bottom or right-hand edge (in which case A could not be on the 
same edge because of the orientation adopted). 

In each case there are 3 exceptional positions of B (or A) superimposed 
on a simple general pattern, thus in Figure 12 

incval =1 if intb 2 ý21 

if intb 2 

and in Figure 13 

incval =1 if intb_4 2 

with the exception of the three ringed squares in each case. 

All other board edge positions are handled correctly by the formulae 
given in Section 3-1. 

ii. 



Implementing 'Pawn can run' for King and Pawn against King 

The subroutine given in Section 5 makes use of the effective 
distance formulae developed in Section 3 in a complete 
implementation of the 'Pawn can run' predicate for King and 
Pawn against King. 

A number of additional considerations specific to the nature 
of the King and Pawn against King endgame have been incorporated 
in the subroutine, including the idea of effective queening square, 
and these are described in Sections 4-1 to 4-3 below. 

Positions where either King is ahead of the Pawn on the same file 
are excluded immediately by the subroutine since the Pawn certainly 
cannot 'run' in such cases. Similarly, in positions where the 
Black King is more than one rank or file outside the square of the 
Pawn (and the White King does not obstruct the Pawn), 'Pawn can 
run' is taken as true, without any calculation of effective distance 
being made (since it must be at least as great as the block distance 
of the Black King from the promotion square). 

In principle the formulae derived in Section 3 for the case of an 
infinite board with a single fixed edge can be applied directly 
to the present case of a finite 8 by 8 board, since it is never 
necessary to consider the effect of more than one edge of the board 
in any given position. 

In practice however, a number of simplifications can be made to 
the general formulae. For example, since it is known that the 
Pawn's promotion square is always on the eighth rank, there is no 
need to allow for the effect of a fixed edge at the bottom of the 
board. 

In the case of the adjustment to the general formula which 
theoretically is needed whenever the Black King (or the promotion 
square) is two squares away from the White King, on the same rank 
or file, it turns out that it is only necessary to make this 
refinement when the Black King is two ranks vertically below the 
White, or when the White King is on the seventh or eighth rank. 

The further adjustments to allow for the effect of a fixed edge 
of the board (given in Section 3.2) are only necessary in practice 
when the Black King is on a vertical edge of the board or when the 
White King is on the seventh rank. In the latter case it can easily 
be shown that positive values of intqsq can never occur. Further 
simplifications are also possible because it isknown that the 
Pawn takes at most 5 moves to reach the promotion square and thus 
all effective distances greater than 6 are equivalent for the 
purposes of the subroutine. It is therefore not necessary fully to 
implement the calculation of the values of incval ringed in 
Figures 12-13 in Section 3.2 and a number of ad hoc simplifications 
have been made in the subroutine in the interests of computational 
efficiency. 

12. 



/1.1 Effective queening square 

In positions where the White King is on the file adjacent 
to the Pawn and on the seventh or eighth rank (whether on the 
same side of the Pawn as the Black King or not), the effective 
distance of the Black King from the promotion square can be 
considered to be infinite. Howeverg it is not true that 'Pawn can 
run' in all such positions. In this case it is helpful to consider 
the concept of effective queening square, ie. the square on the 
Pawn's file two ranks below the White King. Provided the Pawn 
can reach this square without being immediately capturedg it can 
go on to reach the eighth rank and promote. 

K 

x 

p 

Figure I/* 

Thus in Figure 14, the Pawn's effective queening square is 

marked with a cross. 

The effective distance formulae given in Section 3 can also be 

used to calculate the number of moves needed by the Black King 
to reach the effective queening square andl in this case, the 
fixed relative position of the White King allows considerable 
simplifications to be madeo 

13. 



Figures 15 and 16 show the only non-zero values of incval for a 
White King on the seventh or eighth rank respectively. 
In each case, the Black King must be on the same side of the Pawn 
as the White King. 

2 

K 

x 

- - 

K 
V 

i i 
- 

x 

Figure 15 Figure 16 

4.2 Special cases: Allowing forthe checking power of the Pawn 

In the preceding analysis, the checking power of the Pawn has 

been entirely ignored. However, it plays an important part in 

two types of position. 

4.2.1. White King on the sixth rank 

In certain positions it is necessary to increase the 

value of incval (and thus the effective distance of the 
Black King from the promotion square) by one, to allow 
for the possibility of the Pawn itself preventing Black's 
King from reaching the queening square. Thus in 
Figure 179 play may continue: 

I... K97 
2. C5 Kf8 
3-c6 Ke8 
4-C7 

and now Black's move Kd8 is prevented by the Pawn and so 
White queens next move. 

14. 



F:, 

Figure 17 

block distance 
incval =2 
intbk =2 
intqsq =0 

The value of incval in Figure 17 should be counted as 2 not 1. Incval 
should be increased by one whenever the White King is on the sixth rank, 
no more than two files away from the Pawng and the Black King's shortest 
route to the promotion square involves a move to the eighth rank, two 
files from the Pawn (on the same side as the White King) immediately before 
the advancing Pawn reaches the seventh rank. 

The full implementation of this condition is fairly complex, but an 
adequate approximation (used in the subroutine) is as follows: 

WK2 .6 AND intbk ýýO AND abs, (WKI - WP1) Z,,. 2 AND abs (BKI - WPl) ';; Plo 

15. 



4.2.2 Other special cases 

Figures 18-20 below show 3 types of position in which the Pawn 
can run solely because of its checking power. Thus for example 
in Figure 20, Black could -otherwise draw by KC3- 

K 

k p 

Figure 18 

K 

P k 

Figure 19 

K 

k 

p 

Figure 20 
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The full specification of the three types of position is as follows; 

. 
(BKI =1 oR BK1 = 8) AND abs (BKI - WPI) 
AND abs (BKI - WK1) =2 AND WK2 ýý WP2 
AND WP2 = BK2 

WP2 =2 AND BK2 =2 AND sameside 
AND abs (BK1 - WPl) =2 
AND Tý-abs (WKI - WPl) =I AND WK2 

OR (iTI = BK1 AND WK2 5) 
OR (abs, (WKI - WPl) =3 AND WK2 

(iii) WP2 =2 AND BK2 =3 AND WK2 5 
AND WK1 = BK1 AND abs (WK1 WPl) =2 

where sameside-is true if both Kings are on the same side of the Pawn. 
It is not necessary in practice to distinguish any other types of 
position where the Pawn's checking power is significant (if any exist). 

4-3 Special cases: allowing for stalemate possibilities 

There are four positions which need to be treated separately 
where the Pawn cannot 'run' because of stalemate considerations, 
although all other criteria are satisfied. 

WK- -- BK WP 

C7 A8 B4 

C7 A7 B5 

F7 H8 G 1* 

F7 H7 G5 

Thus, for example, in the first position play might continue 

1 ..... Ka7 
2. Kb5 (giving the second positon) 
2 ..... Ka8 

and now 3. b6 gives stalemate* 
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c 
c 
c 

c 
c 
c 
c 

c 
c 
c 
c 

c 
c 

Listing of the 'Pawn can run' subroutine 

A listing of the subroutine, which is written in FORTRAN IV, is 
given below. 

Variable IPOS is used to 'pack' the six co-ordinates which 
specify each position, giving a simple way of testing for individual 
positions. 

Variable NSQ holds the rank of the 'effective queening square' of 
the Pawn. 

The remainder of the subroutine is intended to be self-explanatory 
in the light of the preceding discussion. 

SUBROUTINE CRUN(WKlYWK2vBlý1YBK2pWPIPWP2yIRES) 
INTEGER WKIYWK2vBl<lyBK2vWPIYWP2pWP3 
LOGICAL NEARERPSAMESD 
PAWN CAN RUN POSITIONS KPK BLACK TO MOVE 
IT IS ASSUMED THAT STALEMATE POSITIONS AND 
TERMINAL POSITIONS WITH PAWN ON THE EIGHTH RANK 
HAVE PREVIOUSLY BEEN TESTED FOR SEPARATELY. 

THE PAWN IS ASSUMED TO BE ON RANKS 2-7 ONLY 
----------------------------------------------- 

IPOS: = 100000*WK1+10000*WK2+1000*BK1+100*BK2+10*WF'1+WP2 
WF, 3=WP2 
IF' (WP2#EQ#2) WP3: =3 
NEARER= (WKI*GT#WP1 *AND# BK1#GE#WKI) 

+ #OR# (WK1. LT*WPI *AND# BKI#LE-WKI) 
+ #OR* (WK1+EQ#WPl) 

SAMESD= (WK1#GT*WPI *AND# BKI*GT#WPl) 
+ OR* (Wl<l,, LT#WPI #AND, EAKI. LT. WPI) 

SPECIAL CASES- EXCLUSIONS 
----------------------------- 

IF (IF'OS,, EQ#371024) GOTO 200 
IF (IF'US#EU#371725) GOTO 200 
IF (lP0S, EQ, 678E)74) Gom 200 
IF (IPDS#EU, 678775) GOTO 200 

EXCLUDE POSITIONS WHERE THE PAWN IS OBSTRUCTED 
---------------------------------------------- 

IF (WKI*EQ, WPI *AND* WK2*GT*WP2) GOTO 200 
IF (BK1. EQ*WPI *AND* BK2, GT*WP2) GOTO 200 

BK OUTSIDE THE SOUARE AND CANNOT ENTER IN ONE MOVE 
-------------------------------------------------- 

IF (MAXO(IABS(EiKI-WF'I)YB-BK2)#GT#9-WP3) GOTO 110 
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c 
C TEST FOR WK ADJACENT TO QUEENING SQUARE- IF SOP USE 
c ---------------------------------------------------- 
C EFFECTIVE QUEENING SQUARE (INCLUDING EFFECTIVE DISTANCE) 
c -------------------------------------------------------- 
c 

IF (IABS(WK1-WP1)#NE*l #OR* WK2*LT#7) GOTO 350 
NSQ=WK2-2 
IF (WP2, GT, NSQ) Go-ro lio 
INCVAL-. =O 
IF (#NOT# SAMESD) GOTO 233 
IF (WK2, EQElK2 AND. IABS(WKI-BK1)*EQ#2) INCVAL=l 
IF (WK2*EQ#7 *AND# BK2#EQ#8 #AND# 

+ IABS(WK1-BKI)#EQ*3) INCVAL=l 
IF (WK2*EQ#7 *AND# BI<2#EQ#8 *AND# 

+ IABS(WKI-BKI) -EQ*2) INCVAL=2 
233 IF (MAXO(IABS(BKI-WP1)YIABS(BK2-NSQ)) 

+ +INCVAL *GT* NSQ+I-WP3) GOTO 110 
GOTO 250 

C 
C EFFECTIVE DISTANCE OF BK FROM QUEENING SQUARE 
C ----------------------------------------------- 
C- CALCULATE INCREMENT 
c ---------------------- 
C 

350 INCVAL: =O 
INTQSQ=B-IABS(WK1-WPl)-WK2 
INTBK=IABS(Wl<l-BK1)+BK2-WK2 
IF (((BKl#EQ4,1 #ANDo Wl<l*EQ,. 2) #OR# (BK1*EU#B #AND, WKI*EQ*7)) 

+ *AND# WK2#EQ. BI<2-f2) GOTO 288 
IF (#NOT* NEARER) GOTO 290 
IF (WK2*EQ*7 #AND# IABS(WK1-WPI)#LE#3) GOTO 340 
IF (WK2*EQ*7 #AND# BK2#EQ#B *ANDo IABS(WKI-BKI). EQ*2) GOTO 345 
IF (BK2*GT#WK2) GOTO 310 
IF (BK2#EQ#WK2-2 #AND# Wl<l#EQ*BK1) GOTO 277 
IF (WK2. EQ. 8 *ANrl# IABS(WKl-WPl) *EQ#2) GOTO 330 
IF ((WK2#EQ. 7 #OR# WK2*EQ#B) #AND, BK2*EQ*WK2 

+ *AND# IABS(Wl<l-BK1)+EQ*2) GOTO 280 
IF (IABS(INTBK)#l-E+2 *AND# IABS(INTQSQ)#LE. 2) INCVAL=l 
IF (IABS(INTBK)#LE. 1 *AND# IABS(INTQSU)#LE*I) INCVAL=2 
IF (INTBK+EQ*0 #AND, INTUSO. EM) INCVAL=3 
GOTO 310 

C 
C DK ON (VERTICAL) EDGE OF BOARD 
C ------------------------------- 
C 

288 IF (INTQSQ#ELI#-2) INCVAL=l 
IF (INTQSU#GT. -2) INCVAL=2 
GOT[) 290 

c 
c WK ON SEVENTH RANK- TWO OR THREE FILES FROM THE PAWN 
c ------------------------------------------- 
c 

340 IF (IN-rBK, GE, -2) INCVAL=l 
IF (BK2, EQ#7 *AND# XABS(WKI-BKI)#EQ#2) INCVAL: =2 
IF (BK2#EG#B #AND# IABS(WKI-BK1)*EU*3) INCVAL=2 
IF (BK2#EQ*B *AND# IABS(WK1-BKI)#EU#2) INCVAL=3 
IF (IABS(WK1-WP1)#EQ*2 #AND# INTBK#GT+-2) INCVAL=INCVAL+l 
GOTO 290 
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c 
c WK ON SEVENTH RANK- TWO FILES FROM BK (ON THE EIGHTH RANK) 

------------------------------------------------------------- 

345 INCVAL=2 
IF (IABS(WKI-WPI)*EQ*3) INCVAL=3 
GOTO 290 

c 
c 
c 
c 

DK TWO RANKS VERTICALLY BELOW WK 
--------------------------------- 

277 IF (IN*rC4SQ#GE#--2) INCVAL=l 
GOTO 290 

c 
c 
c 
c 

WK ON EIGHTH'RANK- TWO FILES FROM THE PAWN 
------------------------------------------ 

330 IF (INTBKoGEo-2) INCVAL=l 
IF (BK2oEU, B ANDo IABS(WKl-BKl)oEQo2) INCVAL=2 
GOTO 290 

c 
c 
c 
c 

WK TWO FILES FROM DK ON THE SEVENTH OR EIGHTH RANK 
-------------------------------------------------- 

280 INCVAL=l 
GOTO 290 

c 
c 
c 
c 

ADJUSTMEN-r FOS, WK ON SIXTH RANK 
-------------------------------- 

310 IF (WK2#EO, 6 #AND# INTBK*GE#O #AND# IABS (WKI-WPI)*LE#2 
+ AND, IABS(BKl-WPl), o*r#i) INCVAL=INCVAL+l 

c 
c 
c 
c 
c 

TEST USING EFFECTIVE DISTANCE 

290 IF (MAXO(IABS(DKI-WF'1)PB-BK2)+INCVAL *OT* 9-WP3) GOTO 110 
c 
c 
c 
c 

SPECIAL CASES- INCLUSIONS 
---------------------------- 

250 IF ((BKI*EQ*l *OR* BUXOM *AND* IABS(BKI-WPI)*EQ, l 
+ *AND, IABS(BKI-WK1). EQe2 *AND* WK2*GEWWP2 *AND* WP2*EQ*BK2) 
+ GOTO 110 

IF (WP2*EQ, 2 *AND* BK2*EU*2 *AND* SAMESD *AND. IABS! BK1-Wpj)*E0t2 
+ *AND* ((IABS(WKI-WPI)*EQ*l #AND* WK2*EQ*6) 
+ #OR. (WK1, EQ*BKI *AND* WK2*EQ, 5) 
+ #OR* (IABS(WKI-WPI)*EQ*3 *AND, WK2*EQ*4))) GOTO 110 

IF (WP2, EQ. 2 *AND* BK2*EQ*3 WND. WK2*EQ*5 
+ *AND* WKI. EQ*BKI AND+ IABS(WK1-WPI)*EQ*2) GOTO 110 

c 
c 
c 
c 

PAWN CANNOT RUN 
----------------- 

200 IRES=O 
RETURN 

c 
c 
c 
c 

PAWN CAN RUN 
------------ 

110 IRES=l 
F%E-rURN 
END 
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