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ABSTRACT 

A time varying harmonically modulated flow method, analysed with a 

two rate constant surface reaction model, provides a series of 

permeation, Pm, diffusion, D, and surface rate coefficients, kj, k2, for 

hydrogen passing through 304 and 316 stainless steel. The method 

developed here allows the evaluation of a consistent set of bulk metal 

values of D and Pm, in the temperature range 502 < T/K < 963, 

despite wide ranging surface conditions, and are described by: 

D304=(1.22*0.06)x10-sexp{[-(6.596*0.049)x103/T]/K-1} m2s-1 

Pm3o4=(4.82*0.21)x10-7exp{[-(7.990±0.044)x103/T]/K-1} molm 1s-1Pä H 

D316=(7.28±0.94)x10-7exp{[-(6.296*0.109)x103/T]/K-1} m2s-1 

Pm316=(8.09*0.70)x10-7exp{[-(8.189*0.076)x103/T]/K-1} molm is-1Pä H 

When surfaces are treated to form a stable oxide layer, the surface 

reaction rate constants are found to be interpretable in terms of 

molecular flow of hydrogen through the oxide. The permeation 

coefficients, Pmox, describing this flow are as follows: 

Pmox3o4=(1.43t0.29)x10-ilexp([-7.661*0.081)x103/T)/K-1) molm-18-1Pa-1 

Pmox3ls=(5.36±2.68)x10-ilexp{[-6.967*0.228)x103/T)/K-1) molm-ls-lPa-1 
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CHAPTER 1: INTEREST OF THIS WORK 

Today when physically surrounded by gas pipes, canisters, cylinders 

and the like, it is natural to assume that the metals which convey or 

store gases are wholly impermeable to them. However gas does enter 

metals and pass through them. As early as 1866 Thomas Graham 

observed that hydrogen can permeate palladium membranes and he 

used this as a method to purify hydrogen. Other studies dating 

back to that time established that such physical properties as their 

electrical resistivity and magnetic susceptibility may be changed by 

absorption of hydrogen. 

It was a technological problem that drove early interest in the 

presence of hydrogen in metals, for hydrogen makes steels brittle. 

The same is true today. Suprisingly, after one hundred years there 

is still interest in the mechanisms by which hydrogen is transported 

through metals and the way the presence of hydrogen degrades 

certain physical properties. 

However, the centre of interest has changed. Problems tend to be 

concerned with hydrogen in the metal hydrides to be used in storage 

systems or in possible battery electrodes. In addition there is one 

problem that is a direct follow on from the traditional work in 

hydrogen embrittlement. Fusion reactor components are subject to 

irradiation which leaves hydrogen and its isotopes embedded in them. 

These must be released if the components are to have a working life 

of useful duration. It is this problem that prompts the present work 
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which is an investigation of hydrogen flow in two stainless steels 

which are of potential interest for the construction of fusion reactors. 
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CHAPTER 2: INTRODUCTION 

The diffusion of hydrogen and its isotopes in metals has been widely 

studied, but reviews such as that by Volkl and Alefeld (1) show 

notable anomalies. Data on some materials, nickel in particular, are 

consistent; data on other materials, notably iron and its alloys, are 

dispersed. Volkl and Alefeld, in describing diffusion in niobium, 

tantalum and vanadium were forced to accept data only from surface 

independent techniques: Gorsky effect, Mossbauer effect, quasi-elastic 

neutron scattering and relaxation of resistivity. They inferred that 

the macrosopic flow of diffusant across a surface causes data scatter 

in surface dependent techniques. While the surface independent 

approach may give a good estimate of rates of atomic motion, it is 

unhelpful for a number of technological problems, such as the design 

of hydrogen storage cells or of containment vessels for fusion 

reactor fuels and reaction products, since for these it is the 

macroscopic flow which is of consequence. There remains, therefore, 

a need for experimental techniques which will identify the individual 

processes which influence macroscopic diffusant flow. 

This thesis details an experimental study of the permeation of 

hydrogen through stainless steel foils with the objective of 

investigating and separating those surface effects which are 

responsible for the reduction of diffusion fluxes through bulk 

material. To explain in more detail why this investigation was 

thought necessary the following sections: 

2.1, review measurements of the diffusion coefficient in iron and 
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stainless steel using macroscopic methods; 2.2, review work with 

stainless steel on oxide inhibition of permeation, on surface rate 

coefficients and on the permeation power law index; 2.3, present a 

brief description of macroscopic methods, the experimental approach 

for the present work, and the objectives set; 2.4, presents a 

summary of the chapter. 
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2.1 A REVIEW OF HYDROGEN DIFFUSION DATA IN IRON AND STAINLESS 

STEEL 

Volkl and Alefeld (1) showed that the a-iron hydrogen diffusion data 

for forty-six separate investigations is scattered over an order of 

magnitude over the temperature range accessible to experiment. Yet 

the consistency for nickel, which, like iron, has a low solubility in 

comparison with highly soluble materials such as palladium, is 

extremely good. This is shown in their review of twenty-five 

investigations using comparable techniques to those used with u-iron. 

The difference led Volkl and Alefeld to the conclusion that 

imperfections such as impurities, grain boundaries and dislocation 

precipitates do not play an important part in the diffusion of 

hydrogen since it would be expected that nickel would show similar 

scatter if this was so. They suggested that surface effects are the 

prime cause of the error although they did not discount the 

possibility of internal trapping effects. 

The conclusion is supported in a more recent review on the solubility 

and diffusion of hydrogen in iron by Kiuchi and McLellan (2). This 

showed, from sixty-two investigations covering the range 300 - 1750K, 

that the "diffusivity D of hydrogen through b. c. c iron exibits a large 

degree of mutual inconsistancy" and that "statistical analysis of this 

large data mass has shown that only those data obtained by 

electro-chemical methods and H2-gas equilibration methods using ultra 

high vacuum techniques and palladium coated membranes are 

reliable". 
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For this reason macroscopic flow measurements are claimed to be 

acceptable only if surface independent methods are employed. 

Unfortunately such measurements sidestep the real problem, that of 

estimating macroscopic flow rates. Though diffusion and permeation 

coefficients may well be interesting for an oxideless iron, they are 

not useful in the real world without some estimate of surface reaction 

coefficients. 

The following sub-section reviews hydrogen diffusion data in 

stainless steel as estimated by macroscopic methods. This data might 

be expected, for the reasons detailed above, to be diverse by virtue 

of the very feature that it that provides its name; its protective 

oxide coat. 

2.1.2 The current interest in stainless steel and recent work 

One specific interest in hydrogen permeation through stainless steel 

is derived from the possibility of using this material in tho 

fabrication of the containment vessel of a fusion reactor. 

Recent work on the diffusion of hydrogen, deuterium and tritium in 

some of the stainless steels, (3) - (13), used macroscopic methods, the 

temperature covering the range 400 - 1100K. As in iron the data 

shows scatter with, typically, a band of values differing by an order 
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of magnitude. 

Work on the permeation coefficient, of hydrogen in stainless steel was 

recently reviewed by Le Claire (14) in a survey covering forty 

investigations. Although Le Claire found scatter to exceed an order 

of magnitude over the 400 - 1173K temperature range he showed that 

a majority of the data are quite consistent and so he was able to 

derive a mean value for the permeation based on an Arrhenius 

equation. 

In the following section, data on the variation of permeation flux 

caused by surface oxide inhibition is discussed as further evidence 

of the need for a macroscopic technique to separate surface reactions 

from bulk material permeation and to provide data on surface rate 

constants. 
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2.2 EVIDENCE OF THE EFFECT OF THE SURFACE OXIDE ON THE 

HYDROGEN PERMEATION OF STAINLESS STEELS 

This section details: 2.3.1, evidence of surface oxide inhibition in 

hydrogen permeation of stainless steel; 2.3.2, data incorporating 

surface rate coefficients; 2.3.3, variations of the permeation power law 

index from its expected value of one half. 

2.2.1 Surface oxide inhibition of hydrogen permeation of stainless 

steel 

Several authors have attributed reductions of the permeation of 

hydrogen and its isotopes through stainless steel to the surface 

oxide layer. Earwaker, Ross and Farr (15) investigated the oxidation 

of stainless steel AISI 321. They demonstrated a five-fold reduction 

in the permeation, for their particular specimen geometry, as the 

oxide thickness was increased from 0.2im to Mum. The experiment 

was repeated for AISI 316 and "the oxide was found to have only a 

very slight effect even though it was the same thickness". They 

attributed this difference in the properties of the oxides to the fact 

that titanium is not present in the AISI 316 steel. Their suggestion 

is that the titanium may form an oxide barrier which does not inhibit 

the growth of other oxides. 

Heubaum and Berkowitz (16) found an oxide surface to "have a 

considerable influence on hydrogen permeability" in 4130 steel. Their 
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comment typifies the view that surface oxides play a significant role 

in the hydrogen permeation of steels. Piggot and Siarkowski (17) 

showed the variation of hydrogen flux with increasing oxide 

thickness first to fall and then to rise for 302 and 307 stainless 

steels. The rise in flux was attributed to the oxide cracking. 

In response to this reduction of permeation due to surface 

conditions, several investigators sputter clean and then sputter coat 

their specimens with a thin ,z 100nm, film of palladium. The process 

is described by Kumnick and Johnson (18). Their view is that the 

palladium has a very high and reproducible hydrogen diffusivity and 

permeability which protects the freshly cleaned surface from 

oxidation and leads to high and reproducible coefficients from 

diffusion and permeation experiments. Swansiger and Bastasz (19) 

exemplify this approach and detail the reduction in permeation of 

hydrogen by 2-3 orders of magnitude between a 309S stainless steel 

specimen coated with palladium and a specimen with a thin, 4nm, 

oxide coat. Interestingly Swansiger et al (20), in an earlier report 

on the same steel, using similar specimens and thicker oxides, stated: 

"the oxides investigated were found to have only minor effects on 

the measured permeabilities". It should be noted, however, that this 

earlier report covered the differences in permeation for oxides in the 

range 10 - 250nm and suggested that the lack of variation of 

permeation with thickness of oxide was perhaps due to cracking of 

the oxide. 
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2.2.2 Surface rate coefficients 

The basic processes that together constitute permeation are the 

following: 

(1) adsorption of molecules onto a surface from the gas phase anth 

their desorption from that surface; 

(2) molecular dissociation on the surface to atoms and their 

recombination to molecules; 

(3) absorption of adsorbed atoms into solution in the surface layers 

of the the solid and their reverse passage out of solution. 

in some cases dissociation may occur simultaneously with adsorption 

so that processes (1) and (2) become a single process. There is then 

no identifiable molecular phase on the surface. This is known as 

direct dissociative chemisorption and is generally believed to occur 

for hydrogen adsorption on many transition metal surfaces. Le Claire 

in a recent review (21), described three investigations (8), (22) and 

(23) in which the rate constant associated with this direct 

dissociative chemisorption was obtained; two of them, (22) and (23), 

were interpreted by Le Claire from the flux-pressure data. He could 

only conclude from these sparse results that the experimental 

measurements of this rate constant: were always orders of magnitude 

from the maximum possible values; seem to increase with temperature; 

change with alloying; and, in 304 stainless steel, can yield values 

that differ from one another by many orders of magnitude from 

specimen to specimen. 



11 

In the reverse process to direct dissociative chemisorption, atoms 

recombine to form molecules out of solution and are then desorbed 

from the surface. It is known as recombination. This recombination 

rate was measured for deuterium in 304 stainless steel by Braun et al 

(24). The rate constant was determined by relating the near surface 

deuterium concentration, on a membrane, to the release rate of 

deuterium from the membrane. The surface concentration itself was 

determined by the D(3He+, p)4He reaction. The rate constant was seen 

to increase with increasing temperature but no Arrhenius relationship 

was found. There is some uncertainty about the experimental method 

in this work since measurements may be influenced by radiation 

damage, oxides, and the adsorption of deuterium gas from the 

downstream vessel. 

Clearly, direct information on surface rate coefficients is limited. For 

this reason the following sub-section reviews data on the permeation 

power law index as an alternative source of information on oxide 

permeation effects. 

2.2.3 Surface oxides and the permeation power law index 

Usually, experimental conditions are such that direct dissociative 

chemisorption is assumed to be infinitely fast. Permeation through a 

metal is then limited by Richardson's law, Richardson (25), with flux 
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proportional to the square root of the input gas pressure, p". 

However, if pressures are low or temperatures are high, dissociation 

at the surface of the metal may become the rate limiting process and 

the flux then becomes directly proportional to p. This change in the 

power index was estimated by Le Claire (21) to cover a range of 3- 

4 orders of magnitude in input gas pressure. 

Suprisingly few reports demonstate a power law index of one-half as 

confirmation of diffusion limited permeation. Those that do are 

varied in their interpretation of the value they measure. For 

example: Matsuama and Redman (26), for an index of 0.58, state "these 

data indicate that tritium permeation through 304L is half power 

dependent on the T2 pressure". A more cautious approach is 

provided by Katsuta and Furukawa (9), again on 304 stainless steel, 

who describe themselves as puzzled that they consistantly obtained a 

power index of 0.57 despite coating their specimens with palladium. 

This is in contrast to Kass and Andrzejewski (27) who measured ap 

dependence for a palladium coated stainless steel 309S. However, for 

the same pressure range, they claimed a pl dependence for uncoated 

specimens. This last variation is in agreement with Swansiger and 

Bastasz (19) who, for the same material, noted a reduction of 2-3 

orders of magnitude in permeation for a non-palladium coated 

specimen. Van Deventer and Maroni (28) also noted "a closer to first 

power dependence" at low pressures. 

Assesments of the power law index can be complicated further by 

considering oxides which may have cracked, as mentioned earlier. 
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Zarchy and Axtman (29) provided evidence for a model first proposed 

by Strehlow and Savage (30). This model requires that molecules 

impinging on the surface either: 

(1) diffuse through the oxide coating 

or 

(2) pass directly through the cracks or pores to the metal surface. 

This model predicts a half-order pressure dependence at high 

pressures. As the driving pressure is lowered the rate limiting step 

becomes transport through the oxide coating, with first order 

dependence. As the pressure is reduced further, transport through 

the cracks and pores becomes rate limiting and hence the pressure 

dependence should return to half-order. The ultimate low pressure 

limit is dissociative chemisorption and first order pressure 

dependence. 

It is clear that the problem of oxide inhibition of permeation is 

complex, so useful experiments must cover a wide range of 

temperatures, pressures and hydrogen impurity levels. Tanabe et al, 

(12) and (31), have done interesting work. They show that the 

stability of surface oxides is a crucial factor in the determination of 

permeation fluxes. In consequence of the above information, the 

following sec Lion includes a review of surface dependent 

experimental techniques with a view to finding a reliable method of 

measuring surface coefficients. 
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2.3 POSSIBLE MACROSCOPIC METHODS AND THE OBJECTIVES OF THIS 

WORK 

This section details: 

2.3.1, a brief description of macroscopic experimental methods and the 

method chosen to enable a separation of the surface coefficients from 

those of bulk permeation; 2.3.2, the materials to be investigated and 

the objectives of this work. 

2.3.1 Macroscopic experimental methods of interest 

As pointed out earlier, it is the macroscopic flow across a surface 

which is of experimental interest so consideration is limited to the 

methods which are affected by surface conditions. Conventional 

descriptions of macroscopic flow in the solid state relate 

phenomenological coefficients to two series of measurements: one is of 

the steady flows through a foil produced by specified pressures of 

gaseous diffusant; the other is of the time varying flows which follow 

a step change in diffusant pressure. 

The steady state permeation of hydrogen through a metal foil yields 

only the product of the diffusion and solubility coefficient, 

Richardson (25), Wang (32). Time varying flows are therefore studied 

to provide an estimate of the diffusion coefficient. Normally one of 

two surface dependent techniques is used. They depend on gaseous 
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permeation or on electrochemistry. These methods are described 

below along with a description of the recent variation using 

modulations which has been applied to them both. 

(1) Permeation method 

Time varying flows which follow a step change in the driving 

pressure were first described by Daynes (33), and by Barrer (34). 

Their experiment is known as the time lag method since the diffusion 

coefficient is deduced from the relaxation time to the steady state. 

Usually, two vacuum chambers are separated by an experimental 

membrane. Diffusant gas, admitted rapidly to one chamber, is 

detected in the second after a delay which is the subject of 

experimental measurement: in a complementary form of experiment, gas 

is removed rapidly from one chamber and the delay preceding the 

consequential drop in the second is measured. Delays are 

interpreted as dependent on the diffusion coefficient and the 

membrane thickness alone. 

Delays may in part be due to trapping or to slow surface reactions, 

but this is difficult to detect since such processes leave no strong 

and characteristic signature on the output trace. For this reason a 

detailed fit is rarely sought. A report by Shah et al (35), 

illustrates the use of a generalised time-lag method when phase 

boundary processes are rate limiting. 
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(2) Electrochemical method 

Electrochemical techniques are variations of the permeation methods 

with measurements derived from the passage of a hydrogen current 

through a cell. The time constants are measured for the 

redistribution of hydrogen in a specimen membrane separating two 

electrolytic cells. The electrochemical method has the advantage of 

versatility in the setting of its boundary conditions. For example: 

the entrance side can be polarised cathodically, by hydrogen 

precipitation, by a constant current, or by a short pulse. At the 

detection side, the time variation of the hydrogen potential can be 

followed directly, or it can be followed by the time variation of the 

compensating, anodic, current required to maintain 'the potential 

constant. 

(3) Variation by modulation. 

A recent variation common to both electrochemical and gaseous 

permeation methods, uses periodic modulation of the driving pressure 

or current, (36) - (41). 

This modulation method has much to commend it over the time lag 

method. The diffusion coefficient can be derived from the phase 

difference between the. input and output waveforms and the 

permeation constant can be determined from the relative amplitudes, 

Reuben, Cummings and Blackburn (40). Also, repeated modulations 
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using signal averaging enables accurate measurements of a kind not 

possible with the featureless time-lag curve. This makes it realistic 

to attempt an assessment of flux measurements in systems where 

permeation may be inhibited by surface reactions of some complexity. 

2.3.2 Objectives of this work 

Current interest lies in 304 and 316 stainless steel (42) and, as found 

in 2.2.1, in the effect of oxides on the permeation of hydrogen 

through these two materials. Therefore the objectives set in this 

work were to: investigate 304 and 316 stainless steel specimens in an 

industrial as received condition, with no special coating treatments; 

to develop an analysis for the separation of diffusion and permeation 

coefficients from the intrusive effects of surface inhibition of flows; 

to obtain data covering the widest possible range of pressure, 

temperature and surface conditions. The starting point for the work 

was to be the pressure modulation technique already in use, in a 

primitive form, at the Oxford Research Unit of the Open University. 
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2.4 SUMMARY 

Diffusion and permeation data on iron and stainless steels shows 

large anomalies. Scatter in the data is attributed to surface effects. 

There is substantial evidence to support the view that oxide layers 

impede bulk material permeation. Data on surface rate coefficients is 

limited and reports on the permeation power law index are diverse 

and show deviations from the expected value of one half. The recent 

underdeveloped pressure modulation method is thought to be capable 

of separating surface rate coefficients from bulk diffusion and 

permeation coefficients. 
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CHAPTER 3: EXPERIMENTAL EQUIPMENT AND METHOD 

The objectives of the experimental work were to measure permeation, 

diffusion and surface rate constants by measurements of macroscopic 

flow. In consequence the general requirements of the equipment 

were to: 

(1) deliver to one side of the specimen a range of time dependent 

pressures. 

(2) detect time dependent flows emerging from the other side of this 

specimen. 

Specific requirements were to: construct an ultra high vacuum system 

with input and output chamber separated by a foil specimen; to 

obtain a frequency range such that the diffusion time(42/D) would be 

an appreciable fraction of the period of oscillation over a wide range 

of temperatures and pressures, ensuring sufficient structure for a 

curve fit analysis; to devise a control system to modulate the input 

side pressure over the frequency and temperature range. 

The following sections provide a description of the experimental rigs 

designed to meet these requirements. Two rigs were constructed but 

in the interests of clarity only only one will be described in detail. 

Variations between their various parts will be brought to notice as 

seems appropriate. 

These sections describe: 

3.1, the vacuum system; 3.2, the control, modulation and measurement 
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of pressure in this system; 3.3, the specimen and furnace 

configuration, and temperature control; 3.4, the preparation of 

specimens and ion beam cleaning; 3.5, the system control of the 

complete rig, the waveform Fourier coefficients and the calibration of 

the equipment. The chapter is summarised in section 3.6 together 

with some comments on experimental limitations in the use of the 

equipment. The topic of experimental constraints is taken up again 

in 5.1 where the concept of an experimental phase space is 

introduced. 
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3.1 THE VACUUM SYSTEM 

It was essential to construct a vacuum system to meet requirements 

(1) and (2). The two experimental rigs constructed are shown in figs 

3.1a and 3.1b. Their common features are illustrated in fig 3.2 and 

are detailed below. 

Fig 3.2 illustrates the double ultra high vacuum system, in which a 

foil specimen separates two chambers. In this system the input 

chamber volume may be changed so providing a means to control the 

diffusant flux. The output chamber, of fixed volume, is continuously 

pumped into an ion pump via a calibrated leak (0.714 f 0.002 is-1), 

this leak acting as a choke to minimise pressure variations arising 

from ion pump fluctuations. 

The ultra high vacuum components were constructed of stainless steel 

and sealed with with copper ofc gaskets on conflat knife-edges. This 

ultra high vacuum system was outgassed by baking at 453K for 36 

hours. This is the maximum safe temperature for the ceramic 

feedthroughs. During bakeout, gas released from this system was 

taken through twin, (water and liquid N2)9 traps to a diffusion pump. 

After bakeout the input and output chambers were pumped by their 

separate 251x-1 ion pumps, the diffusion pump being shut off from 

the system. The residual partial pressure after bakeout was 

typically (1 - 5)x10-9 torr. 
C 

The positioning of the quadrupole mass spectrometer enabled gas 
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output chamber 
ion gauge 

T/C 
feedthrough 

B1 

Fig 3.1a Photograph of the early rig showing part of the vacuum 

system, section 3.1. Some of the more visible features are indicated 

and are referred to in the text. A schematic diagram of the whole 

vacuum system is shown in fig 3.2. 
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volume 
modulator 

transducer 

Fig 3.1b Photograph of the later rig showing part of the vacuum 

system. The vacuum system is supported by skyhooks enabling 

design to be truly three-dimensional. Some of the more visible 

features are referred to in the text. A schematic diagram of the 

whole vacuum system is shown in fig 3.2. 

I 
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purity checks to be made in either the input or the output chamber. 

Checks were made at experimental pressures and temperatures and 

with the equipment cold. The gas purity may be described in the 

following ways: 

(1) Checks cold give the output chamber impurity partial pressure to 

be in the range (1 - 10)x10-10torr. 

(2) At the optimum pressure of 10-4torr, the apparent impurity 

content is I- 10ppm. This seems a common method of impurity 

measurement. However, this is not particularly satisfactory since 

smaller signal pressures and experimental temperatures both increase 

the impurity level. 

(3) Other checks were made at experimental temperatures and 

pressures and the ratio of hydrogen to all other impurities was 

found not to fall below 500: 1. This does not seem to be particularly 

good, but when compared with other experimenters who checked at 

experimental temperatures, it compares favourably. For example, 

Sherman and Birnhaum (44) describe a ratio of 300: 1 for their 

apparatus. 

(4) The input chamber was thought to have significantly better 

purity ratio but this was not measured directly because mass 

spectrometers cannot operate at such high pressures. Indirect 

measurements were made of purities greater than 2000: 1 at 10-4torr 

of hydrogen and this ratio was expected to increase with increasing 

pressures. 

Components, such as the palladium diffuser, stainless steel bellows 
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and pressure meters, will be detailed with respect to the control, 

calibration and measurement of the partial pressure of hydrogen, in 

the following section. 

t 
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3.2 PRESSURE CONTROL, MODULATION AND MEASUREMENT 

This section has three sub-divisions. These are: 

3.2.1, the input of H2 gas, the maintenance of a steady base pressure 

of this gas and the measurement of the input chamber pressure; 

3.2.2, the modulation of the input chamber pressure by a deformable 

stainless steel bellows and the limitations of this method; 3.2.3, the 

measurement and calibration of the output chamber pressure meter. 

3.2.1 Measurement and control of input chamber base pressure 

The input chamber pressure was monitored using a Baratron 

capacitance manometer with full scale of either 1 Corr or 100 torr. 

The 100torr Baratron (B100) was readable to a precision of three and 

a half digits while the ltorr Baratron (B1) was readable to four and 

a half digits. Thus the B100 was used in the range 100 to 1 torr * 

0.05torr, while the B1 was used from 1 to '10-3torr t 5xlO storr. 

Both baratrons were calibrated against a NBS standard. 

To provide a diffusant of suitable purity, hydrogen was bled into the 

input chamber, fig 3.3b, from a supply reservoir, using a palladium 

diffuser. The diffuser was surrounded by a small thermocoax 

furnace and was heated to z 500K. Conductance at this temperature 

and for a supply pressure of 500 torr was z 10-41s-1. The analogue 

output voltage from either baratron was set up so that it simulated a 
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thermocouple and was fed into the palladium furnace temperature 

controller. This provided the feedback required for the maintenance 

of the base pressure. 

3.2.2 Modulation of the input chamber pressure 

Modulation of the input pressure was provided by harmonic variation 

of the chamber volume. A large stainless steel bellows fitted to the 

input chamber provided the means of change, fig 3.3a. To change 

the volume, an A. C. motor was used to drive a linear motion vacuum 

feedthrough. This feedthrough was connected to a transducer to 

provide a feedback signal for the control of the system. The bellows 

was contained within a low vacuum cylinder maintained at a pressure 

close to that inside the bellows thus reducing the power required of 

the motor. The transducer followed a sinusoidal, reference signal 

generated by the computer program and fed via a 12 bit digital to 

analogue converter. This signal was also inverted, floated and fed, 

at a suitable amplitude, to the palladium furnace control loop so that 

the palladium furnace controller would respond only to base pressure 

fluctuations, and would make no response to the imposed pressure 

modulations. 

Fig. 3.3. b is a schematic view of the input chamber. Here Cin is the 

input conductance of the palladium diffuser and Cout is that of the 

fine leak valve. Control of Cout was required to maintain the base 
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Fig 3.3a Schematic diagram of the stainless steel bellows, linear 

motion feedthrough, A. C. motor and transducer. 

Fig 3.3b Simplified diagram of the input chamber. Psup is the 

supply reservoir separated from the input chamber, P, by the 

palladium diffuser. Pout is maintained by the fine leak valve and the 

input chamber ion pump. Pout is not the pressure in the specimen 

output chamber. 
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pressure and purity of the gas by providing a dynamic flow through 

the chamber. 

The need to stream gas sets a lower limit on the experimental 

pressure. With the volume modulator described here, this may be 

estimated as follows: 

PV =nRT 

where n =- molar moles of gas. 

dV dP 
_ 

RTdn 
Vdt + Pdt PVdt 

dtRT - (Qin 
- 

Qout) 

where Q is throughput (torris''). 

1dV dP 
=I Vdt + Pdt FV{Qin + Qout) 

where: 

gin = Cin(Psup - P) Qout = Cout(P - Pout) 

If P and V are split into their respective steady state and oscillatory 

parts such that: 

P=Ps+Po and V= Vs + VO 

and defining: 

v : --0 = Av. exp(iwt) VS and = Ap. exp[i(wt-cD)) PS 

where 4) is the phase lag between the pressure and volume 

oscillations, then for Cin ( Cout and Pout - 0: 
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exp(im) = 
[_i. 

+ 
WV 

Ä [3.1) 
SJV 

For the amplitude: 

[]2 
=1+ (CoutTosc/21Vs)2 [3.2] 

P 

where Tosc is the period of oscillation. Imposing the restriction that 

the pressure amplitude must not fall to half of its maximum value, Ap 

Av/2, then: 

CoutTosc/2nVs t4 [3.3] 

Cout ( 1OVs/Tosc [3.4] 

Hence, for a2 litre system of maximum oscillation period 10000s, the 

corresponding maximum conductance is: 

Cout max = 2x10-31s1. [3.5] 

3.2.3 Measurement and calibration of the output chamber pressure. 

The output chamber pressure was monitored using an ion gauge. 

This gauge was calibrated for hydrogen against a Baratron by 

measurement of the rate of rise of pressure in a measured volume 

through a calibrated leak. The result was 3.1 t 0.1, and is in good 

agreement with the multiplier, 3.1, predicted by Dennis and 

Heppell(45). The gauge head was of a Bayard Alpert type, range 

(10-2 to 10-11torr), with a sensitivity 25 per torr and an X-ray limit 2 

of 2x10-11 torr. After amplification and signal averaging the true 

minimum detectable fluctuation due to background pressure and 

system noise was found to be z 10-10 torr. 
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3.3 SPECIMEN, FURNACE CONFIGURATION AND TEMPERATURE CONTROL 

This section deals with the design of specimen mounts and the 

arrangements for temperature measurement and control. Its 

sub-sections describe: 

3.3.1, the constraints on furnace and specimen and the resulting 

designs; 3.3.2, the system of temperature measurement-and furnace 

control; 3.3.3, the system of program control for temperature. 

3.3.1 Furnace and specimen mount design 

Criteria for the specimen mount and furnace design were: 

(1) to support a 2.54x10'2m diameter specimen disc. 

(2) to deliver greater than 600 watts to the specimen area over the 

required temperature range, 300 - 1200K. 

(3) to enable the ion gun to have a clear view of the specimen area 

for cleaning purposes. 

Figures 3.4a and 3.4b show the two designs used. Each met the 

above criteria. The sole difference is in the position of the furnace. 

Fig 3.4a shows a furnace located within the input chamber: internal 

configuration. Fig 3.4b shows a furnace external to the input 

chamber: external configuration. 

The furnace heating element took the form of 4m of 1mm diameter 
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Fig 3.4a Schematic diagram of the furnace located within the input 

chamber with the specimen mount: internal configuration. 

Fig 3.4b Schematic diagram of the furnace external to the input 

chamber: external configuration. 

Notice the modular furnace design. The water cooled clamps were to 

minimise outgassing of the chamber walls. 
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thermocoax cable -a nickel resistance wire surrounded by an 

insulant and enclosed within an inconel sheath - fitted with cold 

junctions at each end. This was wound onto the inside of a 

cylindrical holder. The design was capable of delivering z 1000 watts 

to the specimen region. Notice that the furnace design is modular so 

it could be used in either configuration. 

The thermocoax cable in the internal configuration was brazed into a 

double sided FC70 conflat flange. Welding the thermocoax cable to 

the flange was not possible because the inconel sheath is too thin. 

3.3.2 Temperature measurement and furnace control 

Temperatures were measured using chromel/alumel thermocouples, 

each calibrated against an NPL Pt/PtRh standard. Four 

thermocouples were used, all being insulated and sheathed in inconel, 

of 0.5mm or 1mm diameter. As with the thermocoax cable the 

thermocouples were brazed into a conflat flange, fig. 3.4a and 3.4b. 

The thermocouples were arranged as follows: 

2 on specimen to measure 

1 on specimen to control 

1 on furnace to check thermocoax specification 
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On later runs when the furnace design was proven the configuration 

was modified to: 

2 on specimen to measure 

1 on specimen to control 

1 on specimen as backup 

The reference junction for all thermocouples was a continuously 

maintained triple point cell (Delrister Icell). The control thermocouple 

was connected to a Viscount, three term controller; when adjusted 

this was able to control temperature to O. I. K. 

Temperature measurments were derived from two thermocouples. In 

normal operation these were consistent to less than 1K. 

Temperatures quoted for experimental runs were derived from the 

mean of these two experimental values. 

Stability of measurement was dependent on the following: 

(1) the temperature controller 

(2) the O' C cold cell 

(3) the reference signal to the controller 

A complete set of frequencies runs took typically six hours. Over 

this time drift from the reference signal corresponded to an error of 

less than 0.1K. Temperature fluctuations during a run were also less 

than 0.1K. Therefore, with the thermocouple differences, uncertainty 
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of absolute measurement can be statistically estimated as 0.55K. 

Fortunately hydrogen diffusivities in metals have a low activation 

energy so uncertainties of this magnitude are not intolerable. 

3.3.3 Temperature control program 

The requirements of temperature control were to: 

(1) ramp the temperature under computer control to any temperature 

in the range 300 - 1200K. 

(2) maintain the temperature precisely throughout each set of 

frequency modulation runs. 

These requirements were met by the use of a 12 bit digital to 

analogue converter to provide the reference signal for the specimen 

furnace temperature controller. This signal was floated, divided and 

sent to the furnace controller in such a way that 1 bit = 10NV. 

Therefore the temperature could be ramped in steps of 0.25K. Since 

a digital to analogue conversion took u 100ms the time increments 

were limited to the response of the furnace controller. This limit is 

in excess of 1Ks-1 but was never found since the prime concern was 

to limit the ramp rate to 0.1Ks-1 to avoid problems associated with 

rapid thermal expansion of vacuum seals. 

L 

The temperature control signal provided by the two specimen 

thermocouples, was measured with a six digit volt meter calibrated to 
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1u V. This voltage was interpreted as a temperature using a 

Lagrange interpolating polynomial of degree three with a stored 

calibrated table of values; accuracy by this method was better than 

O. 1K. The digital to analogue bit value was adjusted so that the set 

temperature was centred on the nearest bit value. 

L 
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3.4 SPECIMEN PREPARATION AND IN SITU ION BEAM CLEANING 

This section deals with the preparation and cleaning of the specimens 

and is sub-divided into: 3.4.1, the specimen materials and 

preparation; 3.4.2, the cleaning of the specimen in situ by an ion 

beam. 

3.4.1. Specimen materials and preparation 

Two specimen materials were used: 304 and 316 stainless steels. The 

specimens were checked for composition on a scanning electrode 

microscope with a 10 - 100amu, energy dispersive system, EDS, 

analysing head, and were within the suppliers stated composition 

tolerances. The analysis for specimens of supposedly similar steels 

were consistant to a degree that just two analyses are presented 

below, one for each type of stainles steel. 

(1) Stainless Steel AISI 316; annealed; thickness 1.0x10-4m, 5.0x10'Sm. 

Analysis: 

ELEMENT % ELEMENT 

Fe 71.3 

Cr 18.0 

Ni 8.8 

Mn 1.4 

C (less than 1200ppm, not measured) 
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(2) Stainless Steel AISI 304; thickness (3.0,2.5 and 1.25)x10-4m. 

Analysis: 

ELEMENT % ELEMENT 

Fe 65.8 

Cr 17.8 

Ni 11.9 

Mn 1.7 

Mo 2.1 

C (less than 800ppm, not measured) 

Small amounts of silicon were present, 0.3 '- 0.7%, but in varying 

amounts from sample to sample and were attributed to the 

preparation and handling of the specimens. No silicon was present 

according to the suppliers analysis. Thicknesses were checked with 

a micrometer screw gauge. 

All materials were cleaned using a method similar to that used for the 

ultra high vacuum components. That is: cleaned in detergent -+ 

ultrasonic bath(UB) in detergent -º UB in distilled water washed 

acetone -i UB acetone -º washed distilled water -º UB distilled water -+ 

blown dry. 

The specimen foil was then welded into the specimen mount and the 

above cleaning process repeated. 
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No mechanical cleaning of the specimen was undertaken but all were 

annealed in atmosphere of hydrogen in preparation for the 

experiment: typically the anneal was at 1000K for 24 hours at 

hydrogen pressures of 50 torr. This annealing process is known as 

the activation of a specimen. The purpose of this anneal was to 

condition the specimen to the flow of hydrogen. Just what this 

process entails is not known but it is thought to reduce the surface 

oxide on the steels and is certainly an established procedure among 

authors (5), (22), (23), (49) and (50). The grain sizes after such 

treatment were found to be in the region 5- 20um as exemplified by 

figs 3.5a and 3.5b. 

Unfortunately as pointed out in chapter 2, specimens prepared in 

this way are not particularily reproducable, so specimens were 

further cleaned by using a hydrogen ion beam, except for one 

specimen which was left activated as a control experiment to the 

effectiveness of this ion beam as a surface cleaning method. The 

topic of ion beam cleaning is detailed in the following section. 

3.4.2 Ion beam removal of surface oxides 

The primary function of the ion guns was in situ cleaning of the 

specimen surfaces. They were also used, section 5.5, for an 

interesting confirmatory experiment in which the input chamber ion 

beam was used to inject hydrogen into the specimen foils. 
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Fig 3.8 Scanning electron microscope photographs for 304 stainless 

steel, 3.0x10-4m' (a), and 316 stainless steel, 5.0x10-4m, (b), after 

annealing in the experimental rig. The marker represents l0Pm and 

114m for (a) and (b) respectively. 
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The guns used a saddle field source configuration, Franks (46) and 

Mcllraith (47) and were designed to satisfy the following 

requirements: 

(1) to be of ultra high vacuum construction using stainless steel and 

ceramic components only. 

(2) the beam divergence to be sufficient to cover the specimen area 

with reasonable uniformity. 

(3) surface oxides within to be removed within a reasonable length of 

time, less than one week. 

Requirements (1) and (2) were readily met by the design shown in 

fig 3.5. Typically a tube voltage of 4KV and a tube current of 5mA 

would produce > 1009A on the Faraday cup and > 259A on the 

specimen z 18cm away. Characteristics of a typical gun are shown in 

figs 3.6a, 3.6b and 3.6c for various pressures of hydrogen. Notice 

the ion current density is reasonably uniform over a distance 

approximately equal to the foil diameter. 

Requirement (3) was difficult to quantify in advance since no data is 

available on cutting rates for diffuse hydrogen beams on stainless 

steel oxides. A method of checking the effectiveness of the gun was 

clearly necessary. This was done as follows: 

L 

An AISI 316 1. Ox10'4m thick specimen was cleaned by exposure to the 

gun current for over 100 hours. Hydrogen permeation through that 
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Fig 3.5 Diagram of the basic features of the ion gun. All 

measurements are in mm. The gun is cylindical and the high voltage 

feedthrough and ceramic spacers are omitted for reasons of clarity. 

The symmetric nature of the gun enabled a Faraday cup to be used 

to monitor the ion current. Vacuum feedthroughs for the high 

voltage and Faraday cup were welded into a FC70 flange. 
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specimen was then measured; at an input pressure of 50torr and a 

temperature of 873K. Following this, 0.9torr of air was introduced to 

one chamber and the specimen was annealed at 973K for 12hrs. This 

produced a 48% reduction in the permeation. It was found that a 

futher 84Hrs exposure to the ion beam recovered the permeation to 

within 2% of its original value, the uncertainty in the measurement 

being due mainly to a badly positioned thermocouple which shadowed 

part of the specimen. 

Interestingly, the old method of activating a specimen produced a 

permeation approximately 10% down on that of the ion gunned 

specimen. This is presumably why, as shown in chapter 6, the final 

data on permeation is above Le Claire's reviewed values of 

permeations for steels(14). 

All specimens were ion beam cleaned on both sides in situ unless 

otherwise stated. 
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3.5 CONTROL SYSTEM 

Control of the equipment during an experiment was fully automated. 

Similar control programs were written for the two rigs, but there 

were differences in method and hardware. To illustrate the control 

system and data collection an experimental run will be detailed, 3.5.1. 

In sub-section 3.5.2 the method of obtaining the Fourier coefficients 

of the input and output waveform is described. Details of equipment 

calibration are given in 3.5.3. 

3.5.1. An experimental run 

The control system is illustrated in fig 3.7. For a specific pressure 

the variables of temperature range, number and ramp rate, frequency 

range and number and plateau time were fed into the program. The 

temperature was ramped up to the first set temperature using the 

digital to analogue converter described in section 3.3. The set 

temperature was held for a period of about 50 minutes, to allow the 

temperature, input and output pressures and gauges to stabilise. 

Measurements of the input and output gauges, for this steady state 

condition, were then taken using the 6-digit volt meter. 

For analysis of the time varying flux the signal from these gauges 

was offset, amplified and fed into a ±1V 12 bit analogue to digital 

converter. The reference signal for the first frequency was sent to 
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the motor drive unit of the volume modulator via a 12 bit digital to 

analogue converter as described in section 3.2. The computer 

controlled the frequency by using its own internal clock. After 10 

minutes, to allow transients to disappear, measurements of the 

pressure waveform in the input and output chambers were taken. A 

minimum of 1000 measurements was taken for each cycle. These were 

then signal averaged over several scans the number depending on 

the cycle time. The data was stored in the I/O buffer of the 

computer. 

In the ten minutes allowed for the next frequency to stabilise : 

(1) the buffer was read 

(2) the data was signal averaged if more than one scan was measured 

(3) a least squares fit was performed on the resulting waveforms, to 

give the Fourier coefficients and their standard errors. 

(4) the Fourier coefficients were converted into terms of phase lag, 

01 relative amplitude modulation ratio, At and amplitude modulation 

ratio J R-11 (chapter 4). 

(5) this data was then dumped to disc. 

(6) the signal averaged waveforms were plotted on the VDU. 

(7) a hard copy of the refined data and the VDU waveforms were 

dumped to the printer. 

(8) if the signal to noise ratio (S/N) was less than 2 an extra scan 

was called for the next frequency studied. 

Following analysis the I/O buffer was cleared and the sequence 
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repeated for a new frequency. After all the frequencies at a given 

temperature were run, the temperature was ramped to the next set 

value and the process repeated. 

The total time taken for an experiment using 6 pressures, each 

pressure run at 10 temperatures and each temperature run for 14 

frequencies was about 3 weeks (C. E. G. B permitting). 

There were minor differences between the control and data handling 

systems in the two experimental rigs. In the older rig the control 

system was more dispersed. For example, the alternative method 

used of generating a reference signal for the volume modulator was 

to store a harmonic signal on a 12 bit eprom and to call this signal 

by timed pulses from an internal clock. The central computer was 

used to select the pulse interval but the clock was left to play the 

eprom at the chosen frequency. This unit, with the clock and eprom, 

was known as an Eprom Player. The reference signal was sent to 

the motor drive unit and used as in the other rig. 

The corresponding method of data collection was to use a hardware 

-analogue to digital converter and signal averager (Datalab DL4000 

series). This provided an averaged waveform which was dumped to 

disc and analysed in the normal way. The advantage of this method 

is that data from a run at one frequency may be analysed while the 

rig is running at the 
, next frequency of the series since the 

computer is no longer tied up receiving data in the course of a run. 

Unfortunately, the disadvantages of this approach far outweigh the 

6 
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advantages since only a preset number of scans is available and the 

same number of measurements are taken in each scan whatever the 

frequency. In consequence useful measurement time is wasted. 

After an experimental run, the refined data for each frequency, 

temperature and pressure, was transferred to a graphics terminal for 

plotting of the data. This data was then sent to a mainframe 

computer , via a modem, for least squares fitting of the parameters 

of the model being used. 

3.5.2 The derivation of Fourier coefficients using a least squares 

method. 

Analytic expressions for the input and output waveforms were 

obtained by a least squares fit of the data to the equation: 

yj =a sinxi + bcosxi +c (3.6) 

It is useful to express this as: 

(yi -y) = a(sinxi-ý(sinxi)/N)+ b[cosxi ý(cosxi)/N] 

[3.7) 

where the bar, -, refers to mean value of y. In matrix notation for 

all i; i=1 to No [3.7] may be written: 

L 
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[ 
Hence: 

yi y= (sinxi -ý sinxi) 

a 

cosxi) 
b 

. iý a 

(cosxi -ý cosxi) 

Y=JP 
[3.8] 

4N 

JY = JJP [3.9] 

Therefore: 

P= (ii}-1 JY [3.10] 

Thus the parameter matrix P containing the Fourier coefficients a and 

b can be found. Also a variance co-variance matrix can be defined 

to obtain the standard error of a and b, such that: 

22 
a= (JJ)ii cy [3.111 

ob = (JJ)22 oy [3.12] 

where va and ab are the standard errors on a and b and aY2 is the 

residual sum of squares such that: 

y=ý ýyobs _ ycalc)2IN [3.13) 

By this method the Fourier coefficients a and b and their standard 

errors were found for both input and output waveforms. For further 

analysis the coefficients were put into phase and amplitude form. 

Notice that in addition to the coefficients a and b, this method 

obtains any offset, c, due to drift during a frequency run; this 

computed value of c wasp used for fine adjustment of the input and 

output base pressure measurements. 
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3.5.3 List of hardware and calibration of equipment 

To demonstrate the precision expected in the experimental work this 

section includes a short list of the equipment used and of the 

associated calibration procedures. 

Hardware 

(1) HP-86 scientific computer - with - HP-IB/IEEE 488 bus interface, 

RS232 serial interface, 192k byte memory, two 54 inch 

floppy disc drives and a 9x9 dot matrix printer connected via a 

Centronics interface. 

(2) Triton Trivector Z80 - with - simulated IEEE bus, RS232 serial 

interfaces, DLO and DLI, 20mA current loop, two 8 inch double aided 

floppy disc drives and a Texas 810 serial printer. 

(3) Datalab DL4000 - was set up to provide - two 512 channel, ±1V 12 

bit analogue to digital converters, signal averaged over a set number 

of cycle scans, typically 4, and advanced by an external trigger. 

(4) 3-D Inlab rack and modules. Both computers were connected to 

an Inlab rack on the IEEE interface. The rack itself was given a 

primary address and the following modules were identified with a 

secondary address. 

(1) 8-channel opto-isolators - function - enabling the 

auto-offset device, resetting the volume modulator to its 

central position and for various safety trips involved in the 
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bakeout program. 

(2) 8-channel relay unit - function - as for (1) 

(3) 4-channel 12 bit digital to analogue converters 

function - temperature ramping and reference signal for 

volume modulator. 

(4) 12 bit fast analogue to digital converter - function - to 

replace the Datalab hardware method of signal averaging. 

(5) 16-channel single ended analogue multiplexor card - 

function - to enable more than one signal to use (4). 

(5) Two Solatron digital volt meters were used and were linked by 

either the serial or 20mA loop interface. Both were 6 digit, calibrated 

to 11V. 

Calibration 

The aforementioned digital volt meters were traceable to NPL 

standards. They were used to calibrate the analogue to digital 

converters, digital to analogue converters, amplification for the 

auto-offset device, signal floaters and dividers as well as for 

zeroing pressure meters and controllers. 

The whole measurement system was checked from amplification to 

Fourier analysis using a measured sine wave signal which was 

substituted for both pressure signals into the auto-offset device. 

The cycle time of the dummy signal was that of the fastest frequency 

used in the experiment. Accuracy of the whole measurement system 
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was then found to be better than 0.5% of full scale, while comparison 

between the two identical input waveforms was better than 0.1% for 

phase lags and amplitudes. 

t 
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3.6 SUMMARY 

Two experimental rigs were designed and built. They were each 

capable of doing the following: 

(1) support experimental foils of thickness upwards of 5x10-Sm. 

(2) control temperatures in the range 300K-1200K. 

(3) control and monitor hydrogen gas pressure in the range 10-4 - 

5x102torr for the input chamber, 10-0 - 10-4torr for the output 

chamber. 

(4) modulate the input pressure up to *10% for a frequency range 

10-2 - 10-6 Hz. 

(5) detect fluctuations in the output chamber pressure, down to 10-10 

torr, corresponding to a flux of '10-10 torrls-1. 

(6) signal average and calculate the Fourier coefficients of the 

waveforms. 

(7) provide a total system accuracy of better than 0.5% from gauge 

head controller to Fourier coefficients. 

c 
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CHAPTER 4: THEORY 

This chapter details a theoretical model which describes the progress 

of a modulated diffusant flux from one side of a material to the 

other. The model is a general one, based on a linear approximation, 

which expresses the ratio of the vector representing the experimental 

output to that representing the input as a matrix product. Since a 

separate matrix is used for each of the elementary processes which 

together produce flow, the model is readily adapted to the 

description of a variety of experimental configurations. 

In the approach used here, this treatment is exemplified by using it 

to describe pressure modulations under circumstances of diffusion 

limited permeation. Having described this simplest of models, the 

approach is developed by consideration of the less tractable problem 

of how permeation is modified by surface processes of finite rate. 

Again the case treated is that of the pressure modulation. 

An alternative form of flux modulation, specifically ion beam injection, 

is described in a later section. This shows the versatility of the 

matrix method and the facility with which it may be modified to 

describe different sorts of experiment. Finally, the question of 

parallel diffusion, which may cause a systematic error in some 

measurements, is considered and methods to overcome this problem 

are discussed. L 

The chapter is presented in sections, their functions being to: 
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4.1, describe a mathematical model of the system and define its 

parameters; 4.2, demonstrate a matrix notation that succinctly 

describes a wide range of experimental conditions; 4.3, describe in 

detail diffusion limited, classical, permeation as it applies to a 

modulation experiment; 4.4, show how the diffusion limited model may 

be modified to include surface rate constants; 4.5, describe flows 

modulated by ion beam injection of diffusant; 4.6, assess parallel 

diffusion as a possible experimental complication; 4.6, summarise the 

principal features of the analysis presented. 

L 
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4.1 REPRESENTATION OF THE SYSTEM AND PARAMETERS USED 

4.1.1 System 

The experimental system to be modelled, is that described in chapter 

3. It comprises, fig 4.1, three sections; the input chamber, the 

experimental membrane and the output chamber. 

Consider the membrane to be a single solid phase of length 2 and 

uniform cross-section Y in the plane perpendicular to the flow of the 

diffusing species. Diffusant enters the input surface of the 

membrane and propagates by diffusion to the exit surface. This 

diffusant flux is subject to modulations of angular frequency w about 

a fixed central value. Diffusant leaves the membrane to enter the 

output chamber, of volume V, evacuated by a pump of constant speed 

S. Pressure within this chamber modulates with angular frequency to 

about a central value ps whose magnitude is not maintained but 

represents a balance between the diffusant flux from the membrane, 

outgassing of diffusant from the walls of the chamber at a rate Qog 

and the action of the pump. 

Analysis is restricted to a condition of quasi-steady state such that 

all transient flows are supposed to have disappeared; the sole 

perturbation is the input modulation and its consequential variations 

downstream. The presence of the modulation is supposed not to alter 

the established steady state. 
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Fig 4.1 Schematic diagram of the experimental system to 

be modelled. It comprises three sections; the input 

chamber, the specimen membrane and the output chamber. 
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chamber 
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4.1.2 Parameters 

Just two variables are required to specify the condition of each 

section. For a pressure modulation experiment these are, in the gas 

phases, the partial pressure and the flux of diffusant. Each of these 

variables is here split into a time-independent steady state term, 

denoted by the subscript s and an harmonic term denoted by the 

subscript o. At time t, the variables are defined as follows : 

(1)in the membrane (solid phase s) 

The concentration c(x, t), and the flux, J(x, t), of diffusant at position 

x, where 04x49 are: 

C(x, t) = CS(x) + Cnix, t) 

[4.1) 
J(x, t) = JS + J0(x, t) 

(2)in the input chamber (gas phase g) 

The diffusant partial pressure, p(t), and the flux, Jg'(t), from the 

chamber to the membrane are: 

P(t) = PS + P0(t) 

At) = JS + Je (t) 

(3)in the output chamber (gas phase g') 

[4.1) 

[4.21 

The diffusant partial pressure, p'(t), and the flux, J''(t) from the 

membrane to the chamber are: 

P, (t) = ps + po, (t) 

Jg(t) = Jýý+ Jg(t) 
r4.3) 
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The net throughput of the chamber, Qn(t), is: 

An(t) = Sp'(t) [4.4] 

It is useful to consider these modulated variables as the 

real parts of a complex quantity, so that, for example: 

p= IpleXP[i(wt)] ; p' = Ip'Iexp[i(wt-4)] 
[4.5] 

Thus: 

po(t) = Re(p) _ IpIcoswt [4.6] 

po(t) = Re(p') Ip'Icos(wt-4) (4.7] 

where Re(p) and Re(p') represent the real parts of the complex 

quantities p and p' and 0 represents the phase lag between 

the modulations of p and p'. 

In general any harmonically varying quantity yo(t) with 

arbitary phase lag Aýy will be written: 

y= IyIexp[i(ut-4y)]; YO(t) = Re(y) (4.8) 

The purpose of the following sections is to derive general 

expressions that relate the experimentally observable variables 

describing the input and output chamber in the general form of the 

ratio: 

R= y, 

and, for most work; 

[4.9] 

R=p, 

From this the phase lag 0 and the amplitude ratio I p' i/IPI 

may be evaluated using the following relationships: 
t 

= Arg(R) = tan i[Im(R)/Re(R)] [4.10] 

I_I -II 
IYI 
iP, l - IDI-1 [4.11) 
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4.2 MATRIX NOTATION 

A form of this matrix approach can be found in Carsiaw and Jaeger 

"Heat conduction in solids" (52). 

Classically it may be expected that the rate of entry to the solid of a 

diatomic diffusant gas will vary as p but other variations are 

conceivable. Whatever relationship holds, it is not inherently linear. 

Here, to simplify the mathematical description, all experimental 

modulations are assumed to be fractionally small. Specifically: 

po(t) < Ps cp(x, t) < cS(x) [4.13) 

With this restriction the system may be treated as linear. In 

consequence the quotient R= y/y' may be written as a matrix 

product with a separate matrix to describe each process occurring 

from input to output chamber. To do this, the variables are first 

expressed in vector form. 

In the solid phase the condition at any point, x, is defined by the 

concentration c(x) and flux J(x). The time dependent parts of these 

quantities are represented by a vector, the condition vector, N, 

where: 

ý-( c(x) 
L (x) 

[4.141 

Analogous vectors are defined for the input and output chamber gas 

phases: 
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Ng = 
[g] 

; Ngý= [ p'] (4.15] 

In this linear model, conditions in the gas phases can be linked to 

those in the solid phase by introducing the general interphase 

matrices Z and Z', which have the properties: 

O= ZN(O) ; N(9) = Z'Ng' [4.16] 

N(O) and N(4) are defined as the condition vectors just below the 

entry and exit surfaces of the solid phase. They are linked by a 

translation matrix, V, defined by: 

N(o) = VN(A) (4.17] 

To complete this matrix representation of the variables, the diffusant 

fluxes on the input and output surfaces of the membrane must be 

related to actual experimental observables. While p and p', for the 

input and output chamber, are readily measured, other combinations, 

for example Jg and p', are also of potential use. To preserve 

generality of treatment, the observables associated with the input 

and output chamber are designated y and y' respectively. This 

allows entry and exit matrices, 9 and Q', to be defined, such that: 

0 
Y= QNý i Ng= Q'y' 

It follows that: 

R=Y, = QZVZ'Q' 

[4.18] 

[4.19] 

In subsequent sections the matrix coefficients appropriate to 
s 

particular experimental variables, and models incorporating diffusion 
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and surface reactions, will be introduced. Above is the required 

linear relationship in general form. 
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4.3 DIFFUSION LIMITED PERMEATION 

The translation matrix describes flows in the region 0<x42 within 

the metal and, in particular, it provides a means to relate 

concentration and flux at the x=2 surface to that at the x=o 

surface. A model to describe N will be developed in sub-section 

4.3.1. The phase boundary matrices, Z and Z', and the entry and exit 

matrices Q and Q', introduced in the previous section, will be 

described in 4.3.2 and 4.3.3, for the simplest case of diffusion limited 

permeation. This will enable a solution to be evaluated, 4.3.4, for 

when surface reactions are very rapid and permeation is rate limited 

uniquely by the process of diffusion. The solution so obtained 

applies to any combination of input and output conditions. The 

particular solution for a system that is rapidly pumped, that is for 

ps'C ps , will then be discussed in detail, 4.3.5, since it is of primary 

experimental interest. 

4.3.1 The translation matrix N 

A modulation of diffusant concentration at one surface of the 

membrane will propagate by diffusion. For the region 0<x<2 Fick's 

laws are assumed to be valid, so that with the diffusion coefficient, 

D: 

ac(x, t) 
= Da2C(x t) (4.20] at aa ý 
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-, ax 
t 

J(x, t) 
ac 

Splitting into steady state and harmonic parts: 

(1) for the time independent part 

aDaý 
=0; Js = -T%==S a 

Using (4.1] gives: 

(4.21] 

[4.22] 

cs(x) = Cs(0) - 
ý[cq(0) - c8(9)] [4.23] 

and 

Js = 
D[cs(0) 

- c5(2)] [4.24] 

(2) for the harmonic part 

ac xt a2c xt 
at - ax 

and 

Jo(x, t) =- 
ac 

ax 
t 

(4.25] 

[4.26] 

which are contained in the following complex variable equations: 

ac 
= 

a2c ac 

at Dam ;J=- 
CIX 

For this last equation the general solution is: 

[4.27] 

c(x) = [Aea(2-x) + Bea(x-A)]eiwt [4.28] 

J(x) = Da[Aea(g-x) - Bea(x-Q)]eiwt [4.29] 

where: 

a= (1+i)(w/2D). 4 [4.30] 

and A and B are parameters determined by the boundary conditions. 

L 
The coefficients p and B can be eliminated. Using [4.14], [4.28] and 

(4.29] can be expressed in matrix notation as: 
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ea(4-x) ea(x-Q) A iwt 
N(x) - 

Dea(9-x)-Dea(x-9) 
B je (4.31] 

thus at x=2: 

N(R) = 
[Da 1 1/Da] 

LA 
]e'wt [4.32] 

Inverting shows: 
rA 2ý 

1 -1ýD 
JN(R)e'wt [4.33] 

Substituting back into [4.31] then gives: 

N(x) = 
rcosha(R-x) (1/Da)sinha(R-x)] N(R) 
Dasinha(2-x) cosha(R-x) 

[4.34] 

It is of primary interest to relate conditions at the input surface to 

Inverting shows: 

those at the output surface. Thus by putting x=0 and comparing 

with [4.17], the translation matrix V may be identified as: 

Y= (' coshaQ (1/Da)sinha4 'j [4.35] ` DasinhaQ coshaQ J 
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4.3.2 The phase boundary matrices, Z and Z', for diffusion limited 

permeation. 

The function of a phase-boundary matrix is to relate the condition 

vector just inside a solid to that of the adjacent gas. Since the 

model under discussion in this section is for diffusion limited 

permeation, calculations are subject to the following conditions: 

(1) The flux of diffusant entering or leaving the gas phase at all 

times equals the flux leaving or entering the adjacent solid phase; 

there is no surface accumulation. Thus at all times: 

Jg(t) = J(O, t) ; Jg(t) = J(A, t) [4.36] 

hence for the steady state part: 

Js = Js = JSs [4.371 

and for the harmonic part: 

Jo(t) = J0(O, t) ; J0(2, t) = Jp(t) [4.38) 

(2) The subsurface diffusant concentrations are those providing 

equilibrium with the adjacent gas. Following Sieverts' law this gives, 

for a diatomic gas: 

c(Ost) = Ksm[P(t))M [4.39] 

c(Q, t) = Ksm[p'(t)] [4.40] 

Ksm being the solubility coefficient. 

Splitting into steady and harmonic components [4.39] gives, for the 

x=0 surface: 
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[cs(0) + co(O, t)I2= xsm[PS + Po(t)I [4.41] 

Remembering that harmonic components are fractionally small, [4.13], 

the steady and harmonic components may be written: 

cs(o) = Ksm s 

2cs(0)co(O, t) = Itsýpo(t) 

Hence : 

co(O, t) = (Ksm/2�Ps)Po(t) 

(4.42] 

[4.43] 

Similarily for the x=2 exit surface , using [4.40]: 

co(Q, t) = (Ksm/2, 'ps)pp(t) [4.44] 

The above relationships are then contained in the following two 

matrix equations: 

lip9l F�po K8in 
1 

][C(O)] 
1(0) =Z c(O) 

J(0) 
[4.45] 

s1 
JL JgýJ LJ(2)J - 

[Ksm/21p 
o = Z'[p; '] 

[4.46] 

from which the phase boundary matrices Z and Z' may be identified. 

L 
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4.3.3. The entry and exit matices. 0 and Q', for diffusion limited 

permeation. 

(1) The entry matrix , Q: 

In an experiment driven by pressure modulations the input variable 

y is the specified pressure variation p. Thus from [4.18]: 

Y=P=Q[Jg, =ý10)I Jg, [4.47] 

which identifies the entry matrix Q. 

(2) The exit matrix Q': 

Pressure modulations in the output chamber are influenced in 

amplitude and phase by the chamber volume, the characteristics of the 

pump used and outgassing from the chamber walls. Changes of 

pressure are modelled by: 

Vd = aJg' +0 og - SP' [4.48] 

where a= )RT. 

Splitting [4.48] into steady state and harmonic parts as before gives: 

ps' =S (vJs + Qog) 

and: 

Vd oJg' Sp, 

so: 

Jg' = ä(S + iwV)p' 

[4.49] 

[4.50] 

[4.51] 
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Using the exit pressure p' as the detection variable, it follows from 

[4.18] that the exit matrix, Q', is defined by: 

l 
Ng' 

L (S + iwV)/a 
, (P') = Q' (P') [4.52] 

4.3.4 Solution for diffusion limited permeation. 

Using the results obtained above the quotient R can be evaluated to 

describe a pressure modulation experiment: 

R= P/P' 

_ [1 0]ps/Ksm 0 

[Ksm/2Ps 
00 

01fcosha4 (1/Da)sinhaQ 
1J LDasinhaQ cosha4 

, 
I[ 

(S +iwV ) /a J 

m 
= lý, 

m 
coshaSt + QDý(s + icaV )si äa4 

[4.53] 

This is a solution that applies for all pressures. Actual experiments 

will normally be conducted with p8 ) p8' and in the present work 

this condition is always observed. The following sub-section shows a 

simplification which may be used when this condition prevails. 
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4_3.5 Particular solution for transmission of pressure modulations with 

a rapidly pumped output chamber. 

When the output chamber pressure is low, that is when p8 < p8, the 

basic assumption of rapid surface reaction means that Richardson's 

law of permeation applies in the form: 

M 
Js =s ; Pm = DKsm [4.54] 

where Pm is the permeability. 

Together with the pumping equation [4.49], [4.53] may be written: 

R= [2fJ{cosha2 + 2[JJf[S +SiwV) 

j1 sinha41 
ti - QagISpý a4 J 

Since P8 > Ps, 

then: 

-L 4., tr. sinhcl + i)S .. r^, 

vP_ ", - "'i (1 i7 i4"DdJ 
.-- -iý au 

QaS -+ 0 

where the dimensionless frequency parameter S is introduced, such 

that: 

(4.55] 

the coshaß term remains negligible and if 

R=2-ý-ý. (s 

s= 9((j/2D)14 
The ratio R may then be written as: 

R 
rs + iwv R= DK 

4sl 
ö -)(1-i) 

[4.57] 

. (sinhscoss + isinCcoshl) [4.58] 
L 

This form of the equation will now be used, 4.3.5.1. and 4.3.5.2, for 

the interpretation of experimental data. 
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4.3.5.1 The variation of phase lag with frequency 

From [4.10] the phase lag is 40 = Arg(R) so from [4.58]: 

0= arctan[t 
]- IT + arc tan`- 

(4.59] 

The final term, c= arctan (wV/S), is an equipment response time 

correction. By making the output chamber volume small and the 

pump speed sufficiently fast it is possible to ensure, even at the 

highest frequencies, that WV < S. For example: Tmin = 100s; V 0.33 

1; and S=0.714 ls-1 gives WV a 0.02 C S. The conditions, c=0, is 

here referred to as the hard pumping approximation and it well 

describes the experimental conditions of the present work. In (4.59] 

it leads to: 

tangy = 
tanC - tanhC 
tan' + tanhC [4.60] 

This functional relationship is of potential experimental importance 

since it is independent of Kern and so allows direct experimental 

evaluation of a diffusion cofficient. The behaviour of the function in 

shown in fig 4.2, lower curve. Note that C has the value 0 when 

the periodic time of the modulation equals the time 22/D, 

characterizing diffusion through the foil. 

For higher frequencies, S> 3l to a good approximation [4.60] reduces 

to: 
L 

0=C-4= 2(w/2D)ý- 4 [4.611 
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1-6H 
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c 
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Fig 4.2 variation of phase lag with frequency factor C. 
Lower curve : diffusion limited permeation for ps > pet 
zero backflow and S) WV, for pressure modulations, 
[4.60]. The high frequency region extrapolates back to 

-n/4 on the 0-axis. 

Upper curve : ion injection modulation for rapid 

pumping, S2W, no 
c backflow and fast surface reactions. 

The or/4 phase shift, in comparison with the pressure 

modulatory case, at high frequencies, [4.128] and [4.60]. 
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Thus, the phase lag varies linearly with ww at high frequencies and 

if this linear region is extrapolated back, it gives an intercept of 

-ir/4 on the 0 axis. In the low frequency limit, expanding (4.60] in 

powers of 4 gives, to a good approximation, for values of C(W 

22 
03 6D [4.62] 

Therefore the phase lag, m, varies linearly with W for small phase 

angles. 

4.3.5.2 The variation of modulation amplitude with frequency. 

Measurement of pressure amplitudes also provides useful information 

about the permeation system. From (4.56]: 

IRI-s_ DK C0 1H sinha2sinha*Q-H 
2ý fS + (wV 

J (1 
+1-J 

[4.63] 

It follows, using the hard pumping approximation wV C S: 

IRS-1 DK C 
IP cosh2C - co C) 

(4.64) 
This result is of importance in two ways. First, it provides a 

separate way of evaluating the diffusion coefficient and hence, by 

comparison with the phase data, gives an internal consistency check. 

Second, it allows evaluation of the permeability independent of the 

outgassing effects which can modify the precision of estimates based 

on the steady state pressures pe and pr 
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Equation [4.641 can be simplified. Introducing the variable A to 

represent the relative modulation amplitude ratio, then for Qog f 0: 

.,. Pý C 
pi IPI cosh2C - cos2C 

(4.65 

This relationship is shown in fig 4.3: lower intercept. In the low 

frequency limit the right hand side of (4.66] reduces to J4 and this 

constant value is a good approximation to the true curve over the 

range 0<C( w/4 . In the high frequency limit, (4.65] approaches 

11 the curve: 

A= Ceý-ýý (a. ss1 
The low frequency limit of the relative modulation amplitude ratio 

(4.66) has particular significance. Consider the permeation pressure 

law in the exponential form: 

r 
Jg = kpn 

where the parameters k and n vary only slowly with pressure. On 

differentiating with respect to time, and taking the limit as w -. 0: 

6I 1dJ nde --- = 
Jdt p dt 

therefore for sufficiently small modulation amplitudes: 

1Jg1 
.1 nPL - s J8 PS 

Combining (4.49] and (4.51] in the limit Oog -+ 0, gives: 

A=n (for w 0) (4.67] 

The relative modulation amplitude ratio, extrapolated back to zero 

frequency, is simply the exponent n in the generalized permeation 

pressure law. Thus for diffusion limited flow at small background 
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c 
8 

Fig 4.3 Variation of relative amplitude modulation ratio, 
A= (I p' I p$)/(pBI pI), with frequency factor C. 

Lower intercept curve: diffusion limited permeation, rapid 

pumping, p8 2 ps', SD wV, no backflow, Qog -+ O, for 

pressure modulations [4.65]. The intercept A(w -+ 0) =H= 

n where n is the exponent in the generalized permeation 
L 

pressure law. Upper intercept curve: ion injection 

modulation for rapid pumping, SD wV, no backflow and 
fast surface reactions. 
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pressures, when Richardson's law of permeation applies, the 

extrapolation of A to the zero frequency axis should lead to the value 

3f. 

L 
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4.3.6 Summary of section 4.3. 

Subject to the requirement that Fick's laws apply, the translation 

matrix coefficients are: 

V_r cosha2 (1/Da)sinhaß 
-` DasinhaQ coshaSt 

A system in which the input pressure follows a specified harmonic 

pattern and surface reactions are so rapid that permeation is 

diffusion limited, may be described by the phase boundary matrices: 

Z= [2IPs/Ksm 

Z+= [Ksm/2JPs 
0 

01 

1, 

and by the entry and exit matrices: 

Q= (1 0) 

Q, _ (s +1 iwV)/a 

The solution of prime experimental interest is that for a rapidly 

pumped output chamber, where pg D pg. For this case the 

relationships between input and output pressures are: 

R= DK 
Qsl S +QiwV, (1-i) 

. (sinhScoss + isinScoshs) 

C 

tanO = 
tans - tanhC 
tans + tanhC 
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/1 =I pJ _s =c Ps IPI (cosh2C - costs) 

Points of interest which arise in considering these relationships are 

that: 

(1) the phase lag, , varies linearly with wl at high frequencies, C> 

3. Extrapolating this linear region to the zero frequency axis gives 

an intercept of -ir/4. 

(2) the frequency variation of the relative modulation amplitude ratio, 

A, provides a separate method of determining the diffusion 

coefficient, D. 

(3) the frequency variation of the amplitude ratio, IRI-1, provides a 

method of evaluating Pm, completely independent of the output 

chamber background pB and hence free fom any background pressure 

problems.. 

(4) for Qog -º 0, Alta -º 0) =n where n is the exponent in the 

generalized permeation pressure law. 

L 
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4.4 TWO RATE CONSTANT SURFACE MODEL 

The diffusion controlled permeation model described in the previous 

section owes its simplicity of analysis to the supposition that a 

continuing equilibrium exists between the solid and gas phase 

concentrations of diffusant; surface reactions are treated as having 

infinite speed. To incorporate the effect of finite reaction rates the 

following two rate constant model was devised. It has sufficient 

detail to describe deviations from equilibrium in the sub-surface 

concentrations and to describe the variation of permeation from a 

rate proportional to p8 at high pressures, to one proportional to p8 

at low pressures. However, it takes no account of any surface 

phase. 

In this model the possible surface processes - adsorption, desorption, 

dissociation, association, solution and de-solution - are all described 

by the single reversible reaction: 

k1p 
H2(gas phase) 2H(solid phase) (4.68] 

k2c2 

where hydrogen is taken to be the diffusant gas and ki and k2 are 

the rate constants. 

In the formulation of earlier sections, a change in surface properties 

calls for a change only in the phase boundary matrices, Z and Z'. 

The coefficients describing the translation, V, entry, Q, and exit, Q', 

matrices are retained. In consequence following subsections will 
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describe the construction of new phase boundary matrices Z and Z'. 

These will then be used to provide a new expression for the vector 

pressure ratio, R, and derivative expressions for the frequency 

variations of the phase lag, 4', the amplitude modulation ratio IRI"i, 

and the relative amplitude modulation, A. The calculation will be 

made in the limit ps/p8 -+ 0, which corresponds to the experimentally 

interesting condition of a rapidly pumped output chamber. 

4.4.1 The phase boundary matrices Z; and Z'. 

From [4.68] the rate constants ki, k2, ki, k2 are such that at the entry 

surface: 

Jg = k1p -k2c2(0) = J(0) [4.69] 

and at the exit surface: 

J(4) = k2c2(Q) - kip' = Jgo [4.70] 

the, prime, being used to indicate that the exit surface coefficients 

may differ from those of the input. 

At equilibrium, all fluxes are zero, p = p', and for all x: 

c(x) = Kamp; 'i 

specifically: 

C(O) = c(2) = Ksm 

so, using (4.69] and (4.70], the rate constants are related by: 

L 
Ksm = (ki/k2)3i = (ki/k2)ý [4.71] 

Since this model has only the two rate constants, it does not allow 
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surface accumulation. Therefore, in steady state flow, all the fluxes 

in [4.69] and [4.70] can be set equal to some particular value, Js, 

giving: 

cs(0) = Rsm(ps - Jp/ki)ý [4.72] 

cs(St) = Rsm(ps + Js/ki) [4.73] 

Assuming Fick's law to hold, the flux within the foil is: 

and so: 

Js = 
Q[cs(0) 

- cs(R)] [4.74] 

ý_ (Ps -Je/ki )M - (Ps' +J9, /ki)M [4.75] 

Consider now the flow equations [4.69], [4.70] modified by superposing 

a small modulation on the steady flow. Then with Ic(x) (C c8(x) and 

IJ(x) IC is splitting into steady state and harmonic parts gives: 

[Js + Jý] = ki(Ps + po) - k2[cs(0) + co(0)]2 
= (Js + Jo(0) 1 [4.76) 

IJS + Jp(f) ]= k=[ce(R) 
ý+co(s)ý 

- ki (pB +pö) 

_ [Js + Jp ] [4.77] 

These last equations can be linearised to give, for the time 

dependent fluxes: 

Jg = k1p - 2k2cs(0)c(0) = J(0) [4.78] 

J(Q) = 2k? c8(A)c(A) -kip' = Jgo [4.79] 

which, in matrix notation, is: 

1r [2k2c5(O)/ki 1i k11 IJ(0)1 [4.80J 

and: 
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P'' Cc(2) 1i/[2k2c3(2)] 1/[2kics(2)] 
J(2), -01 Jg 

[4.81) 

Hence, using [4.16] and, [4.72] and [4.73] to substitute for c8(0) and 

c8(9), the phase boundary matrices, Z and Z', may be identified as: 

Z= [(2'CsmPs - J9/ki1/k1] [4.82] 
01 

Zj=[(Ksm/2)(Ps +Js/kij (Ksm/2ki)(PO'' +Js�k) 
J 

(4.83] 

Using [4.35], [4.47], [4.52], [4.82] and [4.83] in [4.19] then, the solution 

for an input pressure modulated system with two surface rate 

constants is: 

R= QNZ' Q' 

R= [1 0] ý/Ksm(Os - Js/kl) .4 11k1'j 

, 
ýcosha4 (1/Da)sinhaQl 
Dasinha4 coshaA 

. 
r(Ksm/21(Ps +Js/ki )_14 (Ksm/2ki ) (PDs +Js/ki ) 

1 Lwal 
' (S + (4.84] 

Before multiplying out terms, it is prudent to obtain Z' in a simplified 

form. This is detailed in the next subsection. 

L 
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4.4.2 Pressure modulations when the output chamber is rapidly 

pumped and there is no backflow. 

In experiments where the output chamber is pumped so rapidly that 

p8 ( p8, it can be assumed that there is no significant backflow to 

the membrane from the diffusant in the output chamber. This allows 

[4.70] to be written as: 

J(Q) = k2c2(g) = Jg' (4.85] 

This no backflow approximation also allows [4.73] to be written : 

cs(9) = Hsm(JS, /ki ) [4.86] 

so the steady state flow is now : 

JsR/Pm = (Ps - Js/ks) - (JD/ki)m [4.87] 

therefore : 

ps = Jslki+ km 
Pm(Jýki)ý+ Js(Q/Pm)2 J 

[4.881 

Also (4.79] becomes : 

J(2) = 2k2cs(2)c(2) = go 

thus giving as the exit phase boundary matrix Z': 

'=r0 (Ksm/Z)ikiJs1 Z' = zz 
L 1 

(4.89] 

[4.90] 

where the suffix , z, is used to denote the zero backflow 

approximation. 

L 

To this approximation : 
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R= QpZiVZZQp' 

R= [l 0] ýZ/Ksm(POs - J, S/k1)R 1iki1 

rcoshaQ (1/Da)sinha41 
'LDasinhaQ coshaQ 

,r0 
(xsm/2)ik1JY 1r11 

L01 
.1 L(S + iwV)/aJ 

[4.91) 

Multiplying out terms shows R to have the general form: 

R= [(e+if)cosha4 + (g + ih)sinhaß]S + iwV 
aaQ 

[4.92] 

with 

e=f= (Ps - 
ki)'4(kiJ 

s) + 
Vi 

llKsmPS k) 
[4.93] 

2(DQk 
i) 

(kits)- 

Since a2 = (1+i)S, cosha9 and sinha4 can be expanded to give 

R= S +iwVj(e + if)(coshCcosC +i sinhSsinS) 
oaQ l+ (g + ih)(sinhScosC + isinScoshS) 

[4.94J 

Using [4.10] for the phase shift O, the above gives 

a-arctanjetanstanhs +f +gtanC +htanh4 +E _n le -ftanCtanhC +gtanhC -htanQ) 
[4.95] 

where c= arctan(wV/S) is the equipment response time lag. 

For the amplitude ratio, 14.941 gives: 

__ 
IS + iwVl (e2 + f2)IcoshaQl2 Y 

(g2 + h2)IsinhaQl2 + R 
aý�.. 2Reý(e+if)(g+ih)cosha9sinha*9] 

[4.96] 
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hence : 

(e2+f2+g2+h2)cosh2r. M 
IRI _ 

(S2 + (j2V2)'4 +(e2+f2-g2-h2)cos2s 
2as + 2(eg + fg)sinh2C 

+ 2(fg - eh)sin2C 
[4.97] 

Athough [4.95] and (4.97) with [4.93] are a complete description of 

the effect of surface rate constants on phases and amplitudes, they 

are not in a form which readily allows comparison. The difficulty is 

that, the coefficients e, f, g and h depend on both ps and J. 

To show how the transmitted modulation varies with pressure it is 

convenient to express the flux in dimensionless form and the rate 

constants in a form which describes those effects which vary with 

the symmetry of the foil surfaces. 

To do this, mean rates kl, k2 are formed with : 

ki = kiki/(k1 + ki) ; k2 = k2kZ/(k2 + ki) 
[4.98] 

and the symmetry of the surfaces is described by the dimensionless 

parameter, N, defined by the equivalent expressions: 

(ki - ki)/(kl + ki) = (k2 - k2)/(k2+k2) 
[4.99] 

In this formulation the condition m=0 corresponds to ki = ki, k2 _ 

k2 and identity in the properties of the surfaces of the foil. The 

condition m=1 corresponds to ki 3 ki, and a flux determined by the 

exit surface; 9= -1 corresponds to ki D ki and a flux determined by 
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the entry surface. 

The flux is most conveniently put into dimensionless form, j, by 

dividing the steady state flux, J8, by a reference flux, Jref, such 

that : 

J= 3s/Jref (4.100] 

To define Jref, note first that in [4.87] at high pressures, Js -+ co, the 

steady state equation reduces to: 

JS(p .' 00) = (Pm/Q)ps [4.101] 

that is, to Richardson's law. At low pressures J. -+ 0, and [4.87] 

becomes: 

Js(p f 0) = kips [4.102] 

Extrapolation of these two limiting curves (4.101], (4.102] shows them 

to intersect when p8 = (Pm/9)/kl. The corresponding flux value is 

taken as the reference flux. That is: 

Jref - (Pm/A)2/ki [4.103] 

hence: 

j= ki(2/Pm)2Js [4.104] 

Substitution into the steady state equation, enables the pressure to 

be written: 

Ps = j(Pm/ki4)2{1 +[2j(1 + 1j)]-4 + j} 
[4.105] 

and the parameters e, f, g, h become: 
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e=f= (C/2k1){2 + [2j(1 + 1j)]-4) 

g= (1/ki){2j + [2j(1 + u)1-41 [4.106] 

h= (r2/2k1)(1 - u)[(1 + u)/2j]-4 

Of experimental interest is how the modulation amplitude and phase 

vary with frequency. The simplification of this section allows this 

readily to be done. 

4.4.2.1 The variation of phase with frequency. 

The phase-frequency relationship of [4.95] is illustrated in figure 4.4 

for m=0 and various values of J. Here, the principal characteristic 

is the increase in phase lag that accompanies a reduction in flux or 

pressure. This is a direct consequence of the changeover from n=H 

to n=1 permeation. Analysis Qf the curves is simplified at high 

modulation frequencies for, with C>3, sinha2 s cosha4 s exp(a4). 

From [4.94] it follows that : 

R= [(e + g) + i(f+h)]expaQ S+ iWV 
(1 + i)cC 

[4.10? ] 

Since this is in product form it again follows immediately that: 

0= Arg[e +9 +i(f +g)] + Arg[expa4] +e-4 

= m$ +S+E-ý [4.108] 

where -Os represents phase changes within the surfaces at high 
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Fig 4.4 Variation of phase lag 0 with frequency factor C, 

[4.95], for the rapidly pumped two rate constant model. 

Curves are for symmetric surfaces, N=0, and specified 

values of the dimensionless flux factor J. The curves 

demonstrate the +n/2, phase shift, n/4 per surface, from 

high flux diffusion limited permeation to low flux surface 

limited permeation. 
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frequencies. This surface phase lag may be evaluated for any 

specified surface condition. 

To explore the pressure dependence of the surface phase, consider a 

flux limited by the input surface with u= -1. Then from [4.106] : 

arctan[s/(s + 23)] (4.109] 

so at high pressures, when ja1 and n= 34, ms = 0: and at low 

pressures when j<1 and n=1, Os = 9/4. Pressure reduction thus 

increases the phase lag by 7T/4. Other surface conditions result in 

other values for "s. The principal point of note is that a single 

surface can produce a maximum phase change of 7Y/4 on pressure 

variation whereas when both surfaces limit the flux a variation of n/2 

is possible. 

4.4.2.2 The variation of modulation amplitude with frequency. 

The variation of modulation amplitude with frequency is best 

described in relative terms using the ratio, A=IRI -1(ps/ps). 

Neglecting equipment effects, S) wV, and assuming outgassing to be 

negligible, Qog . O, it follows from [4.97] and [4.105] that : 

2ki{1 + [2j(1 + N) ]M + j} 
(e4+f+g +hý)cosh2C+(e£+fz=gý'-h )c134 ý+ 

2(eg + fh)sinh2C + 2(fg - eh)sin2C 1 

[4.110] 
L 

This variation of relative amplitude modulation ratio, A, with 

frequency is shown in figure 4.5 for m=0 and specified values of j. 
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C 

I 2 
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Fig 4.5 Variation of relative amplitude modulation ratio , 
A, with frequency factor C, [4.110], for the rapidly 

pumped two rate constant model. These curves are for 

symmetric surfaces, N= Of and specified values of the 

dimensionless flux factor j and demonstrate the 

changeover of the power law index, at w -º Of from 3i to 1 
L 

with decreasing flux. Notice the changeover in the low 

frequency region, where for increasing flux, A falls, while 
in the high frequency region A increases. 
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Fig. 4.6; k Variation of relative modulation amplitude 

A(w -º 0) with the dimensionless flux factor j, [4.104]. The 

curves are for specified N and illustrate the fall of the 

power law index, n, from 1 to 3i as the flux is increased; 

this represents tho approach to diffusion limited 

permeation. 
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Its characteristic feature is the changeover from a low frequency 

region where A falls with increasing pressure to a high frequency 

region when A increases with increasing pressure. 

The value of A as w -. 0 is an especially useful indicator of the 

permeation process and, as described in the previous section, A(w -º 

0) = n, where n is the power law index. This equality is subject to 

the condition that the outgassing terms can be ignored. 

From [4.107] then, when w -. 0, one finds: 

A(w f ý) =1+2 
1+N ý+ 

1+ 3/2) 2j(1+N) + 2j 
[4.1111 

The form of this variation is shown in figure 4.6 for N=0 and 

Lt =*1. It shows a gradual changeover in the power law index from 

the diffusion limited, high flux value of 3i, when ja1, . to the surface 

limited, low flux value of 1, when jC1. In passing it is of interest 

to note that when j=1, that is when the flux is equal to the 

reference flux, n= 2/3 for all values of W 

4.4.2 Summary of the two rate constant model. 

For the two rate constant model, subject to the requirements that 

Fick's laws apply, the translation matrix coefficients remain as 
c 

defined in section 4.3 and are : 
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- coshag (1/Da)sinhaQ V [Dasinha4 
coshaQ 

When surface reaction rates are described by the single reaction 

H2(gas phase) ý= 2H(solid phase) the phase boundary matrices 

become: 

2= r(g/Ksm) BPS - JS/ki)H 1/k11 
101 ,J 

Z+=Ksm/2(P0 s +JS/ki)-M Rsm/2ki(Pi +JIki) 

When the input pressure follows a specific harmonic modulation and 

the output chamber is pumped at a fixed rate the entry and exit 

matrices return to the form: 

Q= [1 0] 

Q'' C(S 
+ 

iwv)/oJ 

and the exit matrix may be simplified to : 

Q' _[ S/a] 

for S> wV. Under the conditions of zero backflow and rapid 

pumping the input and output pressures are related by: 

(e + if)(coshCcösC +i sinhCsinC) R-ý+ (g + ih)(sinhCcosC + isinCcoshC) 

0=arctan(etanCtanhC +f +gtanC +htanhC1 +E -n e -ftanCtanhC +gtanhC -htanC 4 

A= 2s/1 + (2j (l + N))4 + j) 
(ef+fý+g +h )cosh2C+(eý'-+f4-g -h)cös2S 14 ý+ 

2(eg + fh)sinh2s + 2(fg - eh)sin2C l 
It follows from these relationships that: 



96 

(1) for the phase lag, ä, the flux frequency dependence shows that 

pressure variations can produce a maximum phase shift of +n/4 for a 

single surface at high frequencies. Thus as p -º is, the model predicts 

the same flux independent, diffusion limited, permeation described in 

the previous section and a high frequency extrapolation to -n/4 on 

the 0-axis. At low pressures, p -º 0, when both surfaces limit flow, a 

+Tr/2 phase shift will occur and the high frequency variation 

extrapolates to +n/4 on the 0-axis. 

(2) for the relative amplitude modulation ratio A, the flux frequency 

dependence shows that A(w -r 0), hence the power law index, rises from 

34 to 1 with reduction of flux: the limit A(w -+ 0) = 34 corresponds to p 

-º oe and flux independent, diffusion limited, permeation; A(w -+ 0) =1 

corresponds to p -º 0 and surface dominated permeation. This change 

in the permeation law index is characterised by A falling with 

increased pressure in the low frequency region while A increases for 

increased pressure in the high frequency region. 

The model described clearly represents a simplification of the 

possible surface processes. It has sufficient detail to describe 

deviations from equilibrium in the subsurface concentrations and to 

describe the variation of permeation from a pH law at high pressures, 

to a pi law at low pressures. The model does not have sufficient 

structure to describe surface accumulation of diffusant and cannot be 

expanded to do so without a full re-evaluation of the interphase 

matrices with additional coefficients. 
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4.5 ION BEAM INJECTION 

Ion guns provide an interesting alternative to pressure modulation as 

a means of producing a modulating flux of diffusant through a 

specimen. The main feature of a flux having this origin, is that 

diffusant may be expected to enter the specimen at a rate which is 

independent of chemical reactions at the input surface. This opens 

up the possibility of determining the rates of surface reaction for a 

single surface. 

To model this possibility the following suppositions are made: 

(1) The beam injects diffusant past the input surface but to a depth 

that is small relative to the specimen thickness. 

(2) Ion injection does not affect the flow of diffusant inside the 

specimen or conditions on the exit surface. 

(3) The usual condition of zero backflow applies. 

In the following sub-sections, expressions are derived for 0 and A 

for an experiment in which the output surface rate coefficient is 

high; there are no surface hold ups. 
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4.5.1 The experimental values y, y'. 

With ion beam injection the input 'variable y is now chosen to be the 

ion current, I, instead of the input pressure, such that: 

y=I (4.121] 

The output variable remains as before, y' = p. 

4.5.2 The ion beam input matrix Qion. 

Since the beam is assumed to place diffusant straight into the body 

of the specimen, and provided that the input chamber pressure is 

sufficiently low, it is unnecessary to retain the usual input phase 

boundary matrix, Z. Instead: 

R=Y, = 
p, 

= QionVZ'Q' 

The matrix Qion+ 

[4.122] 

now links the modulated ion beam current directly to 

the subsurface condition vector W(0). That is: 

I= Qp c(0) 4.123j ion J(0) J 
To construct Qion it is assumed that the flux just below the surface 

of this model, J(0), is equal to sortie fraction, u, of the total beam 

hitting the surface. That is: 

Qion =101; 1011 A. 124] 

4.5.3 The matrices W, Z', Q' 

Since the injection conditions should not affect the flow of diffusant 
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inside the specimen or conditions at the exit surface, the matrices 

V, Z', Q' retain the coefficients found for the case of pressure 

modulation; [4.35], [4.46] and [4.52] respectively. This allows the 

quotient R to be evaluated as follows: 

R- [0 1/a]oshaQ (1/Da)sinhaQl 
LDasinhaQ cosha9 J 

sm/ (2p, 4) )01 
'r0 11[(S + iwV)/a, 

- äl2 
, Dasinha4 + 

ý(S 
+ iwV)cosha4 

[9.125) 

This expression will be considered in detail in the following 

subsection. 

4.5.4 The current-pressure ratio for a modulated ion in. iection 

experiment. 

The characteristics of an ion injection experiment are best explored 

by comparison with the expression derived earlier for pressure 

modulations. Since the subsurface diffusant concentrations are 

supposed to maintain equilibrium with the adjacent gas, it follows 

that c(4) = 0. Thus Z' is: 

r0 1 
00 

and the sinha9 term in [4.125] disappears. Hence, for S> wV: 

R=ý coshaQ 
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which in terms of S is: 

R=s ; a(coshCcosC + isinhCsinC) [4.126] 

4.5.4.1 Phase lag of output pressure with respect to gun current. 

From [4.126] and (4.10] it follows that that: 

-0 = arctan(tanhstans) [4.127] 

and since for C>3, tanhC f 1, then: 

0aC= 4(w/2D)m [4.128] 

At these high frequencies, therefore, m varies linearly with (ii, 

extrapolating back to 0 on the '-axis. Comparison with the pressure 

modulation case,. for diffusion limited permeation at high frequencies 

[4.61], shows that the ion injection experiment causes a +n/4 phase 

shift, at these frequencies. This is illustrated in figure 4.2. 

4.5.4.2 Ratio of output pressure to gun current. 

From [4.126] and [4.11] it follows that a relative modulation amplitude 

ratio, A', may be derived. It may be written: 

n+= lp" Is . 12 [4.129] 
pS III (cosh2s + cos2s)3i 

This curve is shown in figure 4.3 along with that from the pressure 

modulation, diffusion limitad, permeation curve. Notice that for w -º 0: 

A(w f 0) =1 [4.130] 
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4.5.5 Summary of the ion 
. gun injection section. 

Ion injection experiments have the potential to provide measurements 

of diffusion coefficients and exit surface rate constants. Points of 

note are: 

(1) The frequency variation of the phase lag and the modulation 

amplitude have characteristic forms that may be used to provide 

estimates of the diffusion coefficient which should be independent of 

input surface conditions. 

(2) The ion injection experiment produces a +17/4 phase shift for high 

frequencies relative to pressure modulation experiments. 

(3) The relative amplitude modulation ratio at zero frequency, A(u -+ 

0) has a value of 1 as opposed to the value li for the diffusion 

limited pressure modulation experiment. 



102 

4.6 PARALLEL DIFFUSION 

When specimens are mounted using the internal furnace configuration 

of section 3.3, there is inevitably a spurious diffusant flux, through 

the walls of the support tube, from the input to the output chamber. 

This flux is subject to modulation and so influences the observed 

phase and amplitude of the pressure in the output chamber. It is 

therefore prudent to calculate how such effects modify the measured 

values of 0 and A. 

To model this effect suppose that: 

(1) the flux passing through the support walls is confined to an area 

Y2 which is maintained by the furnace at a uniform temperature. 

(2) the thickness of the support walls is Q2, where the subscript, 21 

is used generally to denote variables related to the wall flux. 

(3) the walls are the same material as the specimen and are at the 

same temperature as the specimen, thus Pmi = Pmt" 

(4) permeation is diffusion limited. 

(5) conditions are such that pumping is rapid, p8 > p8, with no 

backflow; outgassing is at a low rate, Qog -º 0; and the equipment 

response time is negligible, S'W. 
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With these conditions the pumping equation is: 

a1Jigý+ v2J29 
ý= Sp' 

From [4.56], it is easily shown that, for i=1,2: 

(4.113) 

J'P 221P sinh(1+i)5; 1-1 4.114 ý= P mil is (1+i)Si Jý) 

Therefore: 

a, Pý, (1+i)s, aýPmý(1+i)s, pýý_ýýý _ P, 
[Qlsinh(1+i)S1 + Q2sinh(1+i)C2ý2ps -S 

[4.115] 

Rearranging and defining Ki ' °iPmi/(2SPs 9i) then: 

R 
1= (1+i)[K, C, (sinhCicosC, - isinC, coshC, ) 

cosh 11 - coszC, 

+ K, S, (sinhs, coss, -isinS, coshC )1 
cosh S2- cos S2 J 

4.6.1 Effect of parallel diffusion on the phase lair, -0. 

Using [4.10], supposition (5) gives for 0: 

[4.116] 

tan1 x, kP, sinCicoshCi +x q), sinC, coshC, 
- 

if [ 
x141lsinhCicosCl + x2Y2sinhC2cosC2 14 

[4.117J 

where ''i = si/(cosh2si - cos2Ci)" 

In terms of an experiment S1 is actually the conventional frequency 

parameter C, so if A and B are defined as: 

A= St=1 
ss ßs 

t 
0ýPm2Qi 

= 
C? Q+ 

B_ K2 
= 

K1 Q1PIDiQ2 01Q2 

[4.118] 

[4.119] 
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the frequency variation of the phase lag may be evaluated for given 

A and B. 

The variation of 4D with Si is plotted in figure 4.8 using parameters 

appropriate to the range of experimental conditions considered. A is 

set at 5.33 which corresponds to the worst possible case 

experimentally envisaged, that of a 0.3mm thick specimen supported 

by a 1.6mm thick wall. The maximum and minimum, of figure 4.7 are 

characteristic and obviously affect the curve fitting procedure from 

which the correct diffusion coefficients derived. A point to note is 

that the correction is only important at low frequencies: for 

frequencies above the minimum point, 4min, the curve returns to that 

of flow limited by the specimen alone. This can be seen in figure 4.7 

where, for A=5.33, the position of Cimin is close to 1.4 irrespective 

of the value of B. Therefore analysis of this high frequency region, 

once identified, provides the correct single diffusion coefficient D. 

4.6.2 Effect of parallel diffusion on A 

Amplitude data is also changed by parallel flows. Using [4.116] and 

supposition (5) gives for A: 

n= [(YlsinhSlcosSl+ßqj2sinhC2cosS)2 + 

(tP1sinSicoshS1+BtP2sin42coshS)2ýý. [1/(1+B)) 

[4.120) 
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Fig 4.7 Variation of phase lag G with the frequency 

factor C1, for specified values of B, in the parallel 

diffusion model, [4.117]. 

The parameter A is set at 5.33 typifying a 3x10-4m thick 

specimen supported by a 1.6x10-3m wall. The phase lag 

0 returns to simple diffusion values for C1 > 1.4. 
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Fig 4.7 Variation of relative amplitude modulation ratio , 

A, with the frequency factor S1, for specified values of 

B, in the parallel diffusion model, [4.120]. the parameter 

A is set at 5.33, typifying a 3x10-4m thick specimen 

supported by a 1.6x10-3m wall. 
L 
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For this case the indicator of parallel diffusion is the minimum in the 

curve, figure 4.8. 

An unfortunate effect of parallel diffusion is that the low frequency 

limit, A(w -+ 0) = n, deviates from its conventional extrapolated value 

except at frequencies too low for experimental investigation. The 

variation of IRI -1 with C1, however, is subject to simple diffusion 

limitation for Si > Cimin, and allows uncorrupted values of D and Pm 

to be obtained, for this high frequency region. 

4.6.3. Discussion of parallel diffusion. 

The clear characteristics of parallel diffusion enable it to be easily 

detected. The uncertainties of D and Pm, introduced by this effect, 

can be avoided by: 

(1) taking steps to increase A and lower B such that the effect can 

be treated as negligible; increasing the ratio of the specimen to wall 

hot zone surface area and/or increasing the ratio of wall to specimen 

thickness ratio. 

(2) conducting experiments within the high frequency region 

determined by C1 > Cimir;. 

Confirmation that the above parallel diffusion model correctly predicts 
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phase and amplitude deviations is provided in chapter 5 where a 

specimen in the internal configuration and A=5.33, with the 

cylindrical furnace displaced to create a large area, Y2 at the 

specimen temperature was investigated at low frequencies. It showed 

all the predicted phenomena. 
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4.6.3 Summary of parallel diffusion. 

Parallel diffusion processes may confuse data taken from modulation 

experiments. The characteristics of these processes allow 

experimental detection, and awareness of the phenomenon suggests 

how its effects may be reduced. Points of note are: 

(1) The variation of 0 with C1 produces a maximum and minimum in 

the low frequency region. The magnitude and frequency span of this 

effect depends on the parameters contained within A and B. This 

curve reverts to that for simple diffusion for C1 > Cimin" 

(2) The variation of A with Ci produces a characteristic curve with a 

maximimum and a minimum. The absolute value of A does not return 

to that for simple diffusion for high C but that for IRI'i does. 

(3) When a specimen is to be used in the internal furnace 

configuration precautions should be taken to ensure that the 

parameters A and B are set to produce only minor effects. Even 

when parallel diffusion is significant, it is still possible to obtain the 

parameters of permeation from the high frequency region of the 

phase and amplitude curves. 

L 
I 
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4.7 SUMMARY OF CHAPTER 4 

A matrix notation may be used to relate the input and output 

observables. It may be applied to the description of modulated 

fluxes generated by variations of pressure or ion beam bombardment. 

For the particular case of rapid pumping and no backflow, simple 

theoretical relationships exist between the modulation vectors of the 

input and output chambers when using models based on diffusion. 

limited flow, flows described by two surface rate constants and flows 

generated by ion injection. 

4.7.1 Summary of versus 4 

In the classical model of diffusion limited permeation the phase lag 

varies linearly with C at high frequencies and extrapolates to -n/4 on 

the 0 axis. The shapo of this curve is similar for ion injected flows 

and for flows described by a surface model; deviations in character 

occur at low frequencies. 

A two rate constant surface model gives a phase shift of up to +n/4 

per surface, in the high frequency region, as flux is reduced. Ion 

injection also provides a phase shift of +n/4, at high frequencies. 

Parallel diffusion processes modify the frequency variation of both 

phase and amplitude. The curves are highly characteristic with 

developed maxima and minima. They should allow the phenomena to 
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be detected in the course of a careful experiment. 

4.7.2 Summary of A and IRI-I versus i; 

The variation of A with S, provides a separate means to determine the 

diffusion coefficient D. The amplitude modulation ratio provides the 

permeation coefficient Pm, which can be evaluated independently of 

ps and ps by analysing (RI-1 versus S. This provides a useful 

measurement of Pm for comparison with that obtained by steady state 

measurements. 

The two rate constant model describes the shift from p, diffusion 

limited permeation, to pl, surface limited permeation, with reduction of 

flux. This is illustrated by A(w -º 0) =n, where n is the index of 

the input pressure in the permeation law. 
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CHAPTER 5: RESULTS 

This chapter is divided into nine sections. These comprise: an initial 

section, 5.1, dealing with the ranges of the physical variables within 

which effective measurements can be made; a section describing the 

features of the observed data, 5.2; two sections dealing with the the 

detailed analysis of data on 304 and 316 stainless steel, 5.3 and 5.4; a 

further section concerning the variation of phase lag with pressure, 

5.5; and sections describing ion beam modulation and parallel 

diffusion data, 5.6 and 5.7. In section 5.8 the oxide thickness 

determinations are described and the final section, 5.9, summarises 

this chapter. The results presented and assumptions made in the 

analysis are discussed in chapter 6. 

5.1 EXPERIMENTAL PHASE SPACE AND DATA PRESENTATION. 

Pressure, temperature, specimen geometry, pumping rate, data 

collection rates and available modulation drive rates all impose 

constraints on the measurement of flux to an acceptable ratio of 

signal to noise. To describe the capabilities of a particular 

equipment a useful concept is that of an experimental phase space 

within which an experiment must be conducted. Examination of this 

space can provide a useful guide to the range of conditions within 

which it is sensible to conduct experiments. A primary use of the 

concept in this work was to assess the accessible phase space for 
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specimens of defined geometry. 

To demonstrate the construction of such a phase space, the case of 

304 stainless steel is considerd. The suppositions for the 

mathematical model are: 

(1) Permeation is diffusion limited, that is, surface reactions are 

rapid and Richardson's law holds. 

(2) The diffusion and permeation coefficients are : 

D=1.2x10-6exp (-6.60x103/T)m2s-1 [5.1] 

Pm= 4.8x10-7exp (-7.99x103/T)mol m is-1Pä h 
[5.2] 

(3) The relative amplitude modulation ratio, A, is greater than 0.05. 

This imposes an upper limit on the frequency factor such that Smax = 

5.5. 

(4) The frequency factor C. must span a sufficient range to enable 

satisfactory curve fitting of the data. This was set at 1< A4. 

To this must be added the equipment contraints on the phase space, 

previously defined in chapter 3, which are : 

(1) Temperature range 300K - 1300K. 

(2) The useful frequency range is 10-2 - 10-4Hz. For cycle periods 

less than 100s the exit chamber phase lag and some instrumentation 

times become significant. For periods greater than 1000s the 
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experiment becomes too time consuming. 

(3) Input chamber pressure range 760 - 10-4 torr. 

(4) Output pressure range 10-0 - 10-4 torr. 

Clearly the various constraints interact. thus for example, good 

analysis calls for an appreciable experimental range for the 

frequency parameter, this change in r,, AC, was limited to greater 

than 1. At the high frequency end r. is limited by the need to have 

A large enough to preserve the signal to noise ratio and at the low 

frequency end by the time taken to collect data. For specimens of 

progressively increasing thickness these limits gradually approach 

until no useful data may be obtained and experiment becomes 

pointless. The series of such limitations together define the phase 

space within which experiments must be done. 

To determine the form of the surface surrounding the accessible 

phase space a three stage calculation was used : 

(1) The dimensionless frequency factor, C, can be expressed in terms 

of the cycle time, A, with : 

v2 6=ý [5.3] 

where 

- 9(17/n)4 . 
5.4] 

This awkward function, E, which has dimensions of [T]-4, is extremely 

useful in defining the phase space. A plot of the variation of cycle 

time 6 with frequency factor S for various E is shown in fig 5.1. 
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Fig 5.1 Variation of the cycle time 0 with frequency 

factor S. This illustrates the first stage of the 

accessible experimental phase space calculation in which 

the range of values of E are found. 

L 



116 

When the constraints on C are applied to this plot a range of 

accessible values for E are obtained. These are carried on to the 

next stage : 

(2) If the diffusion coefficients are now expressed in terms of E, 

using [5.1], then : 

T_6.60x103 1n[1.2x10' ---' /(n4 ) [5.5] 

This variation of temperature T with E for various thicknesses of 

specimen is shown in fig 5.2, using the constraints on ! defined in 

the above stage. This enables a suitable specimen thickness to be 

chosen to give an acceptable temperature span. For the case shown: 

Pmax " 5x10-4m, Qmin ~ 0.5x10'4m. 

(3) From Richardson's law of permeation with the coefficient defined 

in [5.2], and using (4.49] with negligible outgassing, then the steady 

state output pressure ps is : 

Ps = S-Qý4.8x10'7exp(-?. 99x103/T)Ya ; ý. 6J 

The variation of output chamber pressure ps with temperature T can 

now be found for a specified specimen thickness, Q, and input 

pressure, ps. This allows the envelope of input pressures set by the 

constraints of the output chamber pressure to be found for a given 

specimen. This is illustrated in fig 5.3 for a 1x10-4m thick specimen. 

Stages (1), (2) and (3) provide a means to map out the accessible 

phase space. This approach is a general one. It may be adapted to 
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Fig 5.2 Variation of temperature T with E for various 

thicknesses of foils of AISI 304. This illustrates the 

second stage in the calculation of the accessible 

experimental phase space. 
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Fig 5.3 Variation of the output chamber pressure p8, 

with temperature, T, for 4= 1x10-4m, 304 stainless steel 

and of cross-sectional area, y= 5x10-4m2. 
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describe any experimental material and could well be extended to 

cover the analysis of surface effects. In this case, the thin end of 

the range of specimens would be of increased interest. 

The accessible experimental value is illustrated in fig 5.4 as an 

isometric drawing. Shown in this way the relationships between the 

equipment constraints become clearer and in this way the sketch 

helps to show just where measurements should be concentrated. 

c 
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Fig 5.4 Sketch of the accessible experimental volume as 

an isometric drawing for a 1x10-4m thick, 304 stainless 

steel of cross-sectional area 5x10-4m2. 
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5.2 GENERAL FEATURES OF THE OBSERVED DATA PATTERNS AND DATA 

PRESENTATION 

The function of this section is to illustrate some general features of 

the experimental data obtained and describe the process by which it 

has been analysed in terms of diffusion, permeation and surface rate 

coefficients. 

Fourier coefficients obtained by the methods detailed in chapter 3, 

provide estimates of phase lag, -01 amplitude modulation ratio, IRI -1 = 

I p' I/Ip I) and relative amplitude modulation ratio, A= (I P' I ps/(I pI Pg), 

for specified combinations of frequency, V, temperature and pressure. 

Since S is proportional to t it is convenient to show data 

graphically by plotting against the square root frequency. 

The data are exemplified in figs 5.5 and 5.6. They show the 

variation of 0 and IR -1 with square root frequency 1M for a range 

of temperatures at a single pressure. The specimen was AISI 304, of 

thickness 3.0x10-4m. Notice the lack of structure at the high end of 

the temperature range. 

The iso-thermal variation of phase lag, 0, with square root frequency, 

v, for a range of pressures is typified in fig 5.7. The specimen was 

AISI 316, of thickness I. Ox10-4m, at 674K. Notice the deterioration of 

the data at the lowest pressure as the signal begins to approach the 

noise level of the equipment. 
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Fig 5.5 This graph typifies the variation of the phase 

lag 0 with square root frequency V for a range of 

temperatures, 699 - 923K, at a single pressure, 83.5torr. 

The foil was stainless steel AISI 304 of thickness 

3.0x10'4m. 
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Fig 5.6 This graph typifies the variation of the 

modulation amplitude ratio IRI-1 with square root 

frequency t for a for a range of temperatures, 699 - 

923K, at a single pressure, 83.5torr. The foil was 

stainless steel AISI 304 of thickness 3.0x10-4m. 
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Fig 5.7 This graph typifies the iso-thermal variation of 

phase lag, $, with square root frequency, v for a range 

of pressures, 63.6 - 0.0885torr, at 674K. Notice the 

deterioration of the data at the lowest pressure as the 

signal approaches the noise level of the equipment and 

the difficulty presenting data this way at high 

pressures. 
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The variation of A with ti A although monitored, was not used for 

curve fitting of the parameters. The reason for this is two-fold: 

(1) The A analysis requires the background pressure to approach 

zero which is not possible if a wide range of temperatures and 

pressures are to be investigated. 

(2) The independent evaluation of the permeation coefficient comes 

from the evaluation of 1R1' and not A. Also, since (R I -1 remains 

unaffected by the background pressure, it is the obvious choice for 

analysis. 

For these reasons the data for 0 and IRI'1 versus 0 were grouped 

together and used as the principal basis for analysis. 

A separate and interesting way of presenting the data is given in 

section 5.5. The figures in that section show the isothermal, 

iso-frequency variation of the phase lag 0 with pressure. They 

illustrate how surface reactions may produce an increase, of phase 

lag with reduction of pressure, corresponding to the changeover from 

p to p1 permeation. 

As over 3000 data points are available, complete graphical 

presentation would be cumbersome and un-informative. In 

presentation therefore it is assumed that the data shown above 

typify the body of available data on the variation of 4 and 1R1' 



126 

versus v and provide the basis for a numerical analysis in which 

the parameters D, Pm and ki are fitted to measurements of phase and 

amplitude at given frequencies. In the two sections which follow, a 

detailed analysis of D, Pm and k1, will be shown for the data from AISI 

304 and 316 specimens respectively. The data is separated to show 

first the flux through specimens with cleaned surfaces and then 

specimens with imposed oxide layers. 

t 
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5.3 STAINLESS STEEL : AISI 304 

This section is divided into descriptions of results from clean 

surfaces, 5.3.1, and oxidised surfaces, 5.3.2. All 304 foils were 

mounted in the internal furnace configuration. 

5.3.1. Clean surface results 

A series of temperature, pressure and frequency runs were 

conducted on AISI 304 2.5x10'4m and 3.0x10-4m foils. The main 

distinguishing feature of these specimens is that they were cleaned 

in situ by two completely different proceedures. The 2.5x10'4m foil 

was cleaned on both sides by an ion gun, while the 3.0x10-4m foil 

underwent the surface preparation of activation, typical of the 

method used by several authors (5), (22), (23), (49) and (50) to reduce 

the surface oxide. Both methods are described in detail in 3.4. 

The results are tabulated in tables 1 and 2. Figs 5.8,5.9,5.10 and 

5.11 show these tabulated variations of D and Pm with 1/T for the 

2.5x10'4m and 3. OxlO 4m foils respectively. The variation of ki with 

1/T for both foils is shown in fig 5.12. A least squares fit of these 

Arrhenius plots provides the following equations for D, Pm and ki for 

these two foils under clean surface conditions. 

t 

For the ion beam cleaned AISI 304,2.5x10'4m foil. 
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Table 5.1 AISI 304, thickness 2=2.5x10-4m, cross-sectional area y= 

5.0x10-4m2 and cleaned by an ion beam on both surfaces. Six 

pressures from 79.6 - 0.0886torr. Frequency range at each 

temperature and pressure, expressed as a cycle time e, was 160 - 

990s for typically fourteen frequencies. 

T/K D/m2s'1 Pm/molä lä 1Pä -4 ki/molm 2s'iPä i 

965 1. 49x10-9 1.24x10'10 *** 

915 9. 94x10'10 7.78x10-11 *** 

869 6. 17x10'10 5.03x10'11 2. 27x10'7 

829 4. 22x10'10 3.09x10'11 1. 67x10'7 

791 2. 92x10-10 1.95x10-11 8. 33x10'e 

758 1. 98x10'10 1.21x10-11 5. 11x10'8 

727 1. 39x10-10 7.55x10'12 2. 78x10'e 

697 9. 03x10'11 4.91x10'12 1. 87x10-8 

672 6. 29x10-11 *** 1. 06x10'e 

646 4. 83x10'11 2.02x10'12 5. 95x10-9 

c 
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Table 5.2 AISI 304, thickness 2=3.0x10-4m, cross-sectional area Y= 

5. Ox10-4m2 and activated on both surfaces. Pressures were 83.5 and 

9.20torr. Frequency range at each temperature and pressure, 

expressed as a cycle time 9, was 160 - 990s for typically fourteen 

frequencies. 

T/K D/m28-1 Pm/molm-ls 1Pä -4 ki/molm 2ä ipg i 

923 9. 40x10'10 9. 56x10'11 1.17x10'7 

877 6. 73x10'10 5. 56x10'll 5.44x10'8 

833 4. 71x10-10 3. 38x10'11 2.82x10'8 

795 3. 39x10-10 2. 07x10'11 1.13x10'e 

760 2. 20x10'10 1. 29x10-11 7.02x10'9 

728 1. 60x10-10 7. 05x10-12 2.27x10'9 

699 9. 91x10-11 5. 89x10-12 1.55x10'9 

L 
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which was cleaned by activation. 
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Fig 5.12 Variation of the rate constant ki with inverse 

temperature for AISI 304. 

Upper curve: 2.5x10-4m foil cleaned by an ion beam. 

Middle curve: 3. Ox10-4m foil cleaned by activation. 

Lower curve: 2.5x10-4m foil oxidised on input surface. 
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D=(1.59±0.08)x10-6exp{-[(6.789±0.049)x103/Tj/K-llm2s-1 
[5.7] 

Pm=(5.4610.14)x10-7exp{-[(8.102*0.024)x103/T]/K-1}molm is-1Pa-h 
[5.8] 

k1=(1.13±0.10)x10'2exp{-[(9.325±0.082)x103/T]/K'1}malm'2S-1pa-1 
[5.9j 

For the activated AISI 304,3.0x10'4m foil: 

D=(1.0910.06)x10-6exp{-[(6.474*0.054)x103/T]/K-1}m2s-1 
[5.10] 

Pm=(7.16±0.77)x10-7exp{-[(8.228±0.112)x103/T]/K-1)molm'1s-1Pä -4 
[5.11] 

k1=(1.17±0.20)x10-lexp{-[(12.76±0.17)x103/T]/K'1}molm 2s-1Pä 1 
[5.12] 

Clearly the rate constant It, is more rapid by an order of magnitude 

for the ion beam cleaned foil than the activated one, fig 5.12. This 

and the consistency of D and Pm is discussed in chapter 6. 

5.3.2 Oxidised surface results 

Having established a difference between an ion beamed specimen and 

an activated one, the next step was to oxidise the input side of the 

cleaned 2.5x10-4m foil. This was done by exposing the surface to 

0.9torr of air at 1023K for 36 hours and caused a reduction in the 

permeation of z 27%. 

The reason for this approach was two-fold. With just one surface 

oxidised it was possible to analyse for u*0, a case which had not 

been accessible till then. It. also provided on a single specimen both 

a clean and an oxidised surface for analysis of oxide composition and 
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depth. 

The data for the specimen given this single sided oxidation are 

tabulated in table 3. The oxide was assumed sufficiently thick that 

the parameter N could be set to -1 for purposes of analysis. Figs 

5.13,5.14 and 5.12 show the consequential values of D, Pm and ki 

and their variation with 1/T for this oxidised foil. A least squares 

fit of these Arrhenius plots provides the following equations for D, Pm 

and k1: 

For the single oxodised AISI 304,2.5x10-4m foil: 

D=(1.40*0.03)x10-6exp(-[(6.773*0.024)x103/T]/K-1}m2ä 1 
[5.13] 

Pm=(3.0910.07)x10'? exp(-[(7.648*0.023)x103/T]/K-l)molm is spa 3i 
[5.14] 

k1=(1.4310.11)x10'6exp{-[(7.661±0.081)x103/T]/K-1}molm 2s 1Pä 1 
[5.15] 

The value of kl is lower for this oxidised foil than for the ion beam 

or activated clean foils, fig 5.12. As stated earlier these values of 

ki and the consistency of D and Pm is discussed in chapter 6. 
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Table 5.3 AISI 304, thickness 2=2.5x10-4m, cross-sectional area y= 

5. Ox10-4m2 and oxidised on input surface. Four pressures from 83.6 

- 2.42torr. Frequency range at each temperature and pressure, 

expressed as a cycle time e, was 160 - 990s for typically fifteen 

frequencies. 

T/K D/m2s-1 Pm/molm-is'iPä 49 kl/molm 2s 1Pä 1 

915 8.63x10'10 7. 39x10'11 3. 66x10'9 

870 5.86x10-10 4. 63x10-11 2. 04x10'9 

830 3.95x10'10 3. 07x10-11 1. 32x10'9 

792 2.64x10-10 1. 9440'11 8. 77x10'10 

758- 1.80x10-10 1. 30x10'11 5. 64x10'10 

727 1.29x10-10 8. 18x10-12 3. 73x10'10 

699 8.69x10'11 5. 57x10-12 2. 67x10'10 
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5.4 STAINLESS STEEL : AISI 316 

As with the 304 stainless steel the descriptions of results for the 

AISI 316 specimens is divided into sections dealing with clean surface 

data, 5.4.1 and oxidised surface data, 5.4.2. The 1. Ox10-4m thick foil 

was run in the internal furnace configuration while the 5.0x10-5m foil 

was run in the external configuration. All 316 foils had a 

cross-sectional area of 5. Ox10-4m2. 

5.4.1. clean surface results 

Data from a comprehensive range of temperatures, pressures and 

frequencies were obtained for the 1. Ox10-4m and 5. OxlO 4m specimens. 

Each specimen was cleaned on both surfaces using an ion beam. 

Again, for purposes of analysis the parameter N was set equal to 

zero. The results of the analysis are tabulated in tables 5.4 and 5.5 

for the 1.0x10-4m and 5. OxlO 4m foils respectively. 

Figs 5.15,5.16,5.17 and 5.18 show the variation of D and Pm with 

1/T for the two foils. The variation of k1, with 1/T is shown in fig 

5.19. Notice that the variation of D and Pm remain unaffected by the 

external configuration. This provides further confirmation that the 

experimental range was outside the irrecoverable effects of parallel 

diffusion descibed in section 4.6. This point is taken up again in 

section 5.7. 
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Table 5.4 AISI 316, thickness Q=1.0x10-4m, cross-sectional area y= 

5.0x10-4m2 and ion beamed clean on both surfaces. Seven pressures 

from 63.6 - 0.0885torr. Frequency range at each temperature and 

pressure, expressed as a cycle time 0, was 160 - 990s for typically 

twelve frequencies. 

T/K D/m2s 1 Pm/molm71s 1Pä ýi ki/molm 2s'iPä 1 

863 7.70x10-10 7.66x10-11 2.76x10'0 

800 3.70x10-10 3.24x10'11 1.67x10'8 

759 2.48x10'10 1.64x10'11 8.15x10'9 

714 1.25x10-10 7.63x10'12 4.94x10'9 

674 7.77x10'11 3.89x10-12 2.36x10'9 

638 4.04x10-11 1.77x10-12 1.51x10'9 

606 2.54x10-11 1.15x10'12 6.74x10-10 

576 1.38x10-11 6.02x10-13 3.77x10'10 

549 9.01x10'12 2.24x10'13 2.16x10'10 
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Table 5.5 AISI 316, thickness 9=5.0x10-Gm, cross-sectional area Y= 

5.0x10-4m2 and ion beamed clean on both surfaces. Three pressures 

were investigated from 79.1 - 0.800torr. Frequency range at each 

temperature and pressure, expressed as a cycle time e, was 160 - 

990s for typically fourteen frequencies. 

T/K D/m2s'1 Pm/molm'is'iPä ,4 k1 /molm 2s 1Pä 1 

818 2.13x10-10 3.62x10'11 2.11x10'7 

776 1.50x10'10 2.08x10'11 1.41x10'7 

740 1.15x10-10 1.29x10-11 6.21x10'e 

706 8.85x10-11 8. O1x10'12 3.30x10`8 

675 5.96x10'11 4.77x10-12 1.82x10-8 

647 4.30x10'11 2.92x10'12 9.56x10'9 

621 3.33x10-11 2.01x10'12 4.54x10-9 

597 1.89x10-11 9.66x10-13 *** 

573 1.39x10-11 7.32x10-13 1.57x10-9 
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Fig 5.15 Variation of the diffusion coefficient D with 

inverse temperature 1/T for an AISI 316,1.0x10'4m, foil 

which was cleaned by an ion beam. 
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Fig 5.19 Variation of the rate constant k1 with inverse 

temperature 1/T for AISI 316. 

Upper curve: 5.0x10-Sm foil cleaned by an ion beam. 

Middle curve: 5.0x10'5m foil with symmetric oxide. 

Lower curve: 1.0x10-'Fm foil cleaned by an ion beam. 
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A least squares fit of these Arrhenius plots provides the following 

equations for D, Pm and ki for these clean AISI 316 foils. 

For the ion beam cleaned AISI 316,1.0x10-4m foil: 

D=(1.5110.11)x10-6exp{-[(6.665*0.062)x103/T]/K-1)m2s 1 
[5.16] 

Pm=(1.0610.12)x10'gexp{-[(8.39310.098)x103/T]/K'1}molm-is 1Pä 
[5.17] 

k1=(1.4210.09)x10-4exp{-[(7.376*0.057)x103/T]/K-1}molm 2s 1Pä 1 
(5.18] 

For the ion beam cleaned AISI 316,5.0x10'4m foil: 

D=(6.6910.11)x10-7exp{-[(6.29110.132)x103/T]/K-1}m2s 1 
[5.19] 

Pm=(6.69t0.65)x10-7exp{-[(8.118t0.093)x103/T]/K-1}molm is'iPä -4 
[5.20] 

k1=(1.34t0.32)xl0-4exp{-[(6.967f0.228)x103/T]/K-1}molm-2s-1Pä 1 
[5.21] 

Interestingly the values of ki are significantly smaller for the 

1.0x10'4m foil, fig 5.19. This and the values of D and Pm are 

discussed in chapter 6. 

5.4.2 Oxidised surfaces 

The 5.0x10-5m thick foil descibed in the above sub-section was the 

subjected to a two stage oxidation process. First, it was oxidised on 

both sides in 0.9 torr of air at 1023K for 24 hours. The surface 

conditions on both surfaces of the foil were thus assumed similar so 

that once again, analysis is base on the assumption of m-0. A 
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series of temperature , pressure and frequency runs were performed. 

For reference purposes this foil condition is referred to as the 

symmetric oxide. 

The results for the 5.0x10-4m foil symmetric oxide are tabulated in 

table 6. Figs 5.20 and 5.21 show the variation of D and Pm with 1/T 

for this symmetric oxide. The variation of ki with 1/T is shown in 

fig 5.19. 

A least squares fit of these Arrhenius plots provides the following 

equations for D, Pm and ki for the symmetric and asymmetric foil 

oxides repectively. 

For the symmetrically oxidised AISI 316,5x10-4m foil: 

D=(1.3410.10)x10-7exp{-[(5.227*0.070)x103/T]/K-i}m2ä 1 
[5.22] 

Pm=(3.73f0.27)x10-7exp{-[(7.590*0.067)x103/T]/K-1}molm is1Pä -4 
[5.23] 

k1=(3.2210.34)x10-2exp{-[(9.712*0.097)x103/T]/K-1}molm 2s 1pa 1 
[5.24] 

The reduction of ki after oxidation is considerably less dramatic than 

with stainless steel 304. This is in agreement with other work and is 

discussed more fully in chapter 6 along with the results for D and 

Pm. 
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Table 5.6 AISI 316, thickness 9=5.0x10-sm, cross-sectional area y= 

5.0x10-4m2 and oxidised on both surfaces. Three pressures were 

investigated from 80.8 - 0.804torr. Frequency range at each 

temperature and pressure, expressed as a cycle time e, was 160 - 

990s for typically twelve frequencies. 

T/K D/m2s'1 Pm/molm is'iPä J4 kl/molm 2s'iPä i 

793 *** 2. 20x10'11 2. 41x10'e 

746 1. 45x10'10 1. 34x10'12 1. 05x10-8 

704 8. 85x10-11 6. 28x10-12 *** 

667 4. 97x10-11 3. 18x10'12 4. 41x10-9 

633 4. 06x10-11 2. 05x10-12 1. 67x10'9 

602 1. 93x10-11 9. 78x10-13 1. 04x10'9 

574 1. 21x10-11 5. 33x10'13 6. 48x10-10 

548 5. 53x10-12 2. 22x10-13 7. 27x10-10 

524 3. 44x10-12 1. 47x10-13 2. 68x10-10 

502 3. 01x10-12 5. 20x10-14 9. 16x10-11 
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5.5 THE VARIATION OF PHASE LAG WITH PRESSURE 

This section is concerned with the iso-frequency, iso-thermal 

variation of phase lag with input pressure. Data are provided for all 

the AISI 304 and 316 specimens and surface conditions. Three 

frequencies are used in each figure and are, in terms of e, 160,280 

and 990s. Temperatures were chosen such that S, for the three 

frequencies, spanned the range 0.5 - 2. The precise values are 

given with each figure. 

The points to note about the variation of phase lag with pressure are 

that limitations at a single surface may cause a phase lag varying by 

up to 17/4 while limitations at the two surfaces has a limit of n/2. 

Examination of the data for the AISI 304,2.5x10-4m clean foil, fig 

5.22, shows the higher pressures reaching the low plateau of the 

curves. This indicates that at these higher pressures conditions 

approached those of diffusion limited p permeation. In contrast, the 

clean AISI 316 1.0x10'4m and 5.0x10-sm foils, fig 5.23 and 5.24, have 

clearly not reached the bottom plateau even at the highest pressure. 

The theoretical curves indicate it would take a multiplier of about 100 

in the pressure to bring the 316 foils to a condition of diffusion 

limited permeation. This may be because these specimens, being 

thinner, are less open to control by bulk diffusion. It should also 

be noted that the 2.5x10-4m foil had the largest ki of any foil and 

was in effect the cleanest. It was therefore the foil most open to 
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5.22 Iso-frequency, isothermal variation of the phase lag 

" with input pressure ps. Temperature was 791K for an 

AISI 304,2 = 2.5x10'4m, foil which was cleaned by an ion 

beam. 

The upper to lower theoretical curves are for C equal to 

2.050,1.550 and 0.8241 respectively. This corresponds to 

cycle times, e, of 160,280 and 990s. 
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5.23 Iso-frequency, isothermal variation of the phase lag 

4> with input pressure ps. Temperature was 674K for an 

AISI 316,4 = 1. Ox]0-4m, foil which was cleaned by an ion 

beam. 

The upper to lower theoretical curves are for equal to 

1.590,1.202 and 0.6391 respectively. This corresponds to 

cycle times a of 160,280 and 990s. 
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5.24 Iso-frequency, isothermal variation of the phase lag 

4 with input pressure ps. Temperature was 573K for an 

AISI 316,4 = 5x10-5m, foil which was cleaned by an ion 

beam. 

The upper to lower theoretical curves are for S equal to 

1.879,1.421 and 0.7555 respectively. This corresponds to 

cycle times, e, of 160,280 and 990s. 
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diffusion control. 

The results from the AISI304,3. Ox10'4m foil, fig 5.29, are a poor fit, 

in comparison with those from the other foils. In part this is 

because the data covered just two pressures. Also, though it was 

the thickest foil it did not reach the lower diffusion limited plateau 

at the highest pressure. This is indicative that cleaning by the ion 

beam is a necessary technique when attempting to establish just how 

the transition from diffusion to surface limited permeation takes 

place. 

A surface limited pi plateau was obtained for the lowest pressures 

using the 2.5x10'4m single surface oxidised foil, fig 5.26. Notice that 

the increase in 0 with decreasing pressure is limited to a +17/4 phase 

as expected with single surface oxidation and the condition, N= -1. 

The 5x10'5m symmetric oxide foil, fig 5.27, when compared with the 

5.0x10-Sm clean foil, fig 5.24, shows a small increase in the phase lag 

at the same temperature and demonstrates why there is such a small 

decrease in ki between these two foil conditions. 

Data taken at lower values of C are illustrated in fig 5.28 for the 

1.0x10-4tn foil using a higher temperature. Notice that hilk C curves 

are parallel since for high values of S the variation of phase lag <P 

with C becomes linear. 

All the figures above illustrate the excellant agreement between 
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5.25 Iso-frequency, isothermal variation of the phase lag 

@ with input pressure p8. Temperature was 833K for an 

AISI 304,2 = 3.0x10'4m, foil which was cleaned by 

activation. 

The upper to lower theoretical curves are for C equal to 

1.937,1.464 and 0.7787 respectively. This corresponds to 

cycle times, e, of 160,280 and 990s. 
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5.26 Iso-frequency, isothermal variation of the phase lag 

0 with input pressure pg. Temperature was 792K for an 

AISI 304,2 = 2.5x10'4m, foil which was oxidised on the 

input surface only. 

The upper to lower theoretical curves are for C equal to 

2.156,1.630 and 0.8668 respectively. This corresponds to 

cycle times, 0, of 160,280 and 990s. 



160 

3 
ý 
ý 

ý 

cci L 
` 

ý2 

I 

ý 

ei- 
-'2 

$ 

0 
lOg, 

o(2 ps/torrj 

5.27 Iso-frequency, isothermal variation of the phase lag 

0 with input pressure ps. Temperature was 574K for an 

AISI 316,2 = 5.0x10-ram, foil subjected to a symmetric 

oxidation. 

The upper to lower theoretical curves are for C equal to 

2.014,1.523 and 0.8097 respectively. This corresponds to 

cycle times, e, of 160,280 and 990s. 
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5.28 Iso-frequency, isothermal variation of the phase lag 

4) with input pressure ps. Temperature was 810K for an 

AISI 316,9 = I. Ox10-4m, foil which was cleaned by rin ion 

beans. 

The upper to lower theoretical curves are for (; equal to 

0.7280,0.5507 and 0.2929 respectively. This corresponds 

to cycle times 0 of 160,280 and 990s. 
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theoretical and experimental values. All data shows at least part of 

the characteristic changeover, from the p-4 to the p1 permeation 

region. The process of finding this changeover region is extremely 

important, since it is the structure in this information that allows 

evaluation of the rate constant k 1. 
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5.6 FLUX MODULATION BY ION INJECTION RESULTS 

To examine a different type of flux modulation one specimen was 

exposed to modulated current of hydrogen ions. The specimen of 

AISI 304, thickness 1.25x10-4m, was mounted in the external furnace 

configuration and cleaned by an ion beam. The observed variation of 

phase lag m, with square root frequency 1 at a temperature of 579K 

is plotted in fig 5.29 

Theoretical curves for ion modulation and the corresponding one for 

pressure modulation, calculated from the data of section 5.2, are 

shown on the same plot. Both. theoretical curves are calculated on 

the suppositions that surface reactions are fast and permeation is 

diffusion limited with zero backflow. 

This sort of experiment gives the right general variation but its 

noise level was too high for it to be an effective alternative to the 

pressure modulation method, for the current design of gun. 

5.7 PARALLEL DIFFUSION RESULTS 

One AISI 304 specimen mounted in the internal configuration was 

used to investigate the parallel diffusion calculation of 4.7. To 

provide a good signal the input pressure was set at 83.5torr. To 

enable the frequency factor, C, to be kept low the relatively high 

temperature of 918K was chosen. This allowed the characteristic 

maximum and minimum, of the phase lag curve and the minimum of 
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5.29 Variation of phase lag 0 with square root frequency 

V for flux that is modulated by ion beam injection. The 

foil was AISI 304,1.25x10-4m, which was cleaned by an 

ion beam. The theoretical curve was obtained from 

considering diffusion limited conditions and using D 

obtained from the pressure modulation results for 304. 
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the relative amplitude modulation ratio curve to be held within 

reasonable experimental limits. 

To map out these variations, fifty-eight frequency data points were 

run. The results are plotted on figs 5.30 and 5.31 with theoretical 

curves generated by a single parameter fit to the constant B 

introduced in 4.7. The other parameter A was set at 5.33 this being 

the known ratio of the specimen to tube wall thickness. The curves 

were derived subsequent to the assumptions that: permeation was 

diffusion limited, surface reactions were fast, and there was zero 

backflow. 

The curves fitted well considering the assumptions made in 4.7. The 

deviations from the theoretical curves were consistent for a 

calculation made with no surface limitations. 
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5.30 The variation of the phase lag 0 with square root 

frequency iM illustrating parallel diffusion. Notice the 

clear maximum and minimum characteristic of parallel 

diffusion. The parameters A and B for the theoretical 

curve, descibed in section 4.7, are 5.33 and 0.61 

respectively. 
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5.31 The variation of the relative amplitude modulation 

ratio A with square root frequency 0 illustrating parallel 

diffusion. Notice the characteristic minimum of the 

curve. The parameters A and B for the theoretical 

curve, described 'in section 4.7, are 5.33 and 0.61 respectively. 
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5.8 OXIDE THICKNESS 

To allow an interpretation of observed surface rates on oxidised foils, 

thickness measurements were made on two foils. The foils were AISI 

304,2.5x10-4m single surface oxide and AISI 316,5.0x10-6m symmetric 

surface oxide. The method used to measure the oxide thickness was 

secondary ion mass spectroscopy, SIMS. 

The SIMS instrument uses primary beam of oxygen or argon to give 

secondary ion emission from the sample surface. The resulting ionic 

species are identified by mass spectrometry and provides measures of 

the elemental composition. The progressive removal of the specimen 

during analysis allows the distribution in depth of a particular 

element in the specimen to be studied. 

In the above two specimens the intensity of the elements of 

Fe+, Mo+, Cr+ and Ni+, were measured for a primary beam of oxygen, 

against depth. Depth measurement was obtained by mechanically 

measuring the depth of the eroded hole, using a stylus technique, 

after the experiment and calibrating the measured erosion rate. From 

these ion intensity curves an estimate of the oxide thickness can be 

made. For the above specimens they were estimated as: 

(1) AISI 304,2.5x10-4m, single surface oxide depth = 1.0 * 0.2um 

(2) AISI 316,5.0x10-6m, symmetric surface oxide depth = 0.4*0.2um 

The large uncertainties were a product of the non-polished metal 

surfaces. 
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CHAPTER 6: DISCUSSION 

This chapter is divided into the following sections: 6.1, deals with the 

results themselves, makes comparisons with other work, and examines 

compatibility of the analytic model with observed data; 6.2, details the 

rate constant k1, presents a comparison with other work, discusses 

mechanisms of diffusant transport through oxide layers and describes 

diffusant flux in terms of the chemical potential; 6.3, discusses some 

alternative models for non-Richardson permeation; 6.4, details 

variations of the permeation power law index with diffusant flux and 

presents a means of adjusting reported non-half order permeation 

fluxes; 6.5, summarises the chapter. 
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6.1 DISCUSSION OF THE RESULTS PRESENTED IN CHAPTER 5 AND 

SUITABILITY OF ANALYSIS. 

The topics considered in this section are: 

6.1.1, the influence of surface reaction on flux, an assessment of the 

two rate constant model for the interpretation of data, the 

consistency of the data in terms of D, Pm, and the variation of the 

parameter ki with inverse temperature; 6.1.2, comparisons of D, Pm 

and kl with values reported elsewhere; 6.1.3, the sensitivity of 

interpretation of variations in the symmetry parameter U. 

6.1.1 Discussion of diffusion limited flux behaviour: an assessment of 

the two rate constant model for the interpretation of data. 

From figs 5.22 - 5.28, it is clear that the phase lag 09 increases as 

input pressure is reduced. When expressed in terms of the variation 

of phase lag with square root frequency, the extrapolated high 

frequency linear region intercepts the --axis above -w/4. This 

deviation from the diffusion limited intercept of -"r/4 increases with 

decreasing pressure. 

It is evident, that in the experimental pressure range chosen, 

deviation from diffusion limited behaviour does occur and that some 

form of surface model incorporating finite rates of flow is required 

for the evaluation of the data. Whether the two rate constant model 
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is adequate to perform this role will be discussed in the next 

sub-section. In passing, it is interesting to note here that, as can 

be seen from fig 5.22, the diffusion limited analysis is a good 

approximation in some circumstances. For this example, greater than 

100torr. This is a potential indicator in comparisons with other work 

since much of that depends on the time lag method which is 

relatively insensitive to the parameters of flux control and derives 

from a diffusion limited calculation. 

The evaluation of surface limited fluxes in chapter 5 uses a simple 

two rate constant model of surface reactions. The independent 

parameters to be fitted, using this model, are D, Pm, ki and m and they 

are expected to describe experimental data covering a pressure range 

of up to three decades. In question is whether the complexity 

provided by that model is adequate to describe the observed 

departure from diffusion limited behaviour. 

On the basis of the experimental data reported earlier the answer to 

the above question must be: yes. This is so for the following three 

reasons. 

(1) Despite differing surface conditions, imposed or otherwise, the 

diffusion and permeation coefficients obtained are reproducible to a 

high degree of consistency as shown by the aggregated results for 

304 figs 6.1 and 6.2 and 316, figs 6.3 and 6.4, stainless steels. 

These aggregated results when fitted by a least squares analysis to 

an Arrhenius relationship are: 
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Fig 6.1 The variation of diffusion coefficient with 

reciprocal temperature for all 304 stainless steel data. 

Key: 

Triangle - 2.5x10-4m, ion beam cleaned. 

Square - 2.5x10-4m, input surface oxidised. 

Diamond - 3.0x10-4m, cleaned by activation. 
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Fig 6.2 The variation of permeation coefficient with 

reciprocal temperature for all 304 stainless steel data. 

Key: 

Triangle - 2.5x10-4m, ion beam cleaned. 

Square - 2.5x10'4m, input surface oxidised. 

Diamond - 3. OxlO-4m, cleaned by activation. 
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Fig 6.3 The variation of diffusion coefficient with 

reciprocal temperature for all 316 stainless steel data. 

Key: 

Triangle - 1. Ox10-4m, ion beam cleaned. 

Square - 5. Ox1O-5m, ion beamed clean. 

Diamond - 5.0x10-6m, oxidised on both surfaces. 



175 

ze lOo 

1 cu 1 a- 

TI-c 
G 

4 (n 

dl 

a- 

21 id 

id 

iO I 

0. 

w 

i 

10 12 14 16 18 20 
(104/T)/K' 

Fig 6.4 The variation of permeation coefficient with 

reciprocal temperature for all 316 stainless steel data. 

Key: 

Triangle - 1.0x10-4m, ion beam cleaned. 

Square - 5.0x10-5m, ion beamed clean. 

Diamond - 5.0x10-sm, oxidised on both surfaces. 
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D304°(1.2210.06)x10-6exp{[-(6.596*0.049)x103/T]/K-1} M28-1 
[6.1] 

Pm304=(4.82*0.21)x10-7exp{[-(7.990*0.044)x103/T]/K-1} molm is 1Pä ,4 
[6.21 

D316=(7.28*0.94)x10-7exp{[-(6.296*0.109)x103/T]/K-1} m2s1 
[6.3] 

Pm316=(8.09*0.70)x10-7exp{[-(8.189t0.076)x103/T]/K-1} molmis1Pa H 
(6.4] 

The solubility Ksm is obtained by the simple product relationship, Pm 

DKsm, and is: 

Ksm3o4=(0.395t0.033)exp{[-(1.394t0.066)x103/T]/K-1} molm 3Pä -4 [6.5] 

Ksm318=(O. 81t0.08)exp{[-(1.9O2t0.133)x103/T]/K-1} molm-3Pä .4 [6.6] 

The data relate to the temperature domain 645 < T/K < 965, for 304 

stainless steel; 502 < T/K < 867, for stainless steel 316; and for fluxes 

generated by driving pressures in the range 1.07x10'6 < p. /Pa < 10.7 

for- both stainless steels. 

(2) The iso-thermal, isofrequency variation of phase lag with 

pressure follows the theoretical curves extremely well, as shown in 

figs 5.22 - 5.28. Notice for the 2.5x10-4m 304 stainless steel 

specimen, that the flux data derived from cleaned surfaces lies close 

to the pM variation, at the high end of the pressure range, 

characteristic of diffusion limited permeation. When the surface is 

oxidised the flux approaches the pi variation, at the low end of the 

pressure range, characteristic of surface limited permeation. 
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(3) That the two rate constant model is an adequate one, is confirmed 

by the close Arrhenius dependence of k1, for both clean and oxidised 

surfaces, over a large temperature range. This behavior is 

consistent with a model of surface reaction which involves a single 

activation energy. It indicates that the introduction of the further 

complication of a full six-rate constant surface reaction, which 

describes the adsorbed surface phase in a three stage mechanism, is 

not justified by the data taken from the accessible experimental 

phase space at the current signal to noise ratio. 

6.1.2 Comparisons of D, P,,,, and k, with other work 

The observed diffusion and permeation coefficients for 304 and 316 

stainless steel are extremely close. From equations [6.1], [6.3], [6.2] 

and [6.4] the ratio D304/D316 may be written 

1.676exp[(-0.: 1x103/T)/K-1] while that for Pm304/Pm316 may be written 

0.59Gexp[ (0.199x103/T)/K-1 ]. Therefore, over the experimental range 

549 - 965K the ratio for diffusion is 0.92 < D304/D316 < 1.23 while 

that for permeation is 0.89 < Pm3o4/Pm31s < 0.73. For this reason a 

single curve is used here as the basis for comparison of D with 

other work in stainless steel, as shown in fig 6.5. 

For the diffusion coefficient this work is in excellent agreement with 

Kass and Andrejewski (6), Katsuta and Furukawa (9) and Phillips and 

Dodge (7). It is interesting to note that Kass and Andrejewski and 
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Fig 6.5 The variation of diffusion coefficient with 

reciprocal temperature in comparison with other work. 

Key: H-hydrogen, D-deuterium, T-tritium, ()-reference 

number. 

A- 304T (3), B- 304H (4), C- 310H (5), D- 309H (6), 

E- 321H (7), F- 304D (8), G- 304H (9), H- 347H (10), 

J- 304T and 316T (11), K- various steels (13). 
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Katsuta and Furukawa both sputter cleaned their specimens before 

coating with a thin layer of palladium, while Quick and Johnson (5) 

cleaned their specimen simply by activating it in a reducing 

atmosphere of hydrogen before coating it with palladium. 

Phillips and Dodge used no more than mechanical polish to prepare 

their specimen but they made measurements at sufficiently high 

pressures, 100 - 8100torr, that diffusion was able to limit the 

permeation. This is confirmed by Earwaker et al who reported that 

an oxide thickness of 0.2um, on the same 321 steel, still maintained a 

permeation power law index of one half, for a similar pressure range. 

Both Quick and Johnson, and Outlaw and Peterson (10) present 

diffusion coefficients which agree with these of the present work at 

the high end of their respective temperature ranges. Their do, 

however, report lower activation energies. 

It can be argued that since surface effects hold up permeation 

through a foil, the highest reported diffusion coefficient, is likely to 

be the most precise. Nelson and Stein (4) report high values but are 

on their own with these. There is no obvious reason for this. 

Although it is not possible to verify from their report, their specimen 

configuration looks suspiciously susceptible to flux contamination 

through the support walls. The effect of this would be to generate a 

late flux and so seems likely to reduce the apparent diffusion 

coefficient. Their data does not fit well with that reported here and 

only unreasonable errors - such as overestimation of specimen 
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thickness - could bring it into line. 

Austin and Elleman (11) found that "types 304 and 316 stainless steel 

yield essentially identical results". This is confirmed in this work 

for D and to a lesser extent Pm, 

For the permeation coefficient, the beat source of comparative data is 

made with the recent report by Le Claire (14) who obtained a mean 

. curve from 40 Investigators for the bulk of the stainless steel data. 

Results published since that recent report do not change the curve 

dramatically. As can be seen from fig 6.6, the present data for 304 

and 316 stainless steel lies towards the upper limit of Le Claire's 

curve. His limits denote factors 1.5 and 1/1.5 from a mean and are 

shown by the dotted band. 

For 304, Pm3o4/1'mLeClaire = 1.475exp[(-0.09x103/T)/K-1]; for 316, 

Pm316/pmLeClaire = 2.476exp[(-0.289x103/T)/K-1]. Therefore, for the 

experimental temperature range, 1.25 < Pm3o4/PmLC < 1.34 and 1.39 < 

Pm3le/Pm3LC < 1.82. As expected this shows the permeation data to 

be relatively high. For comparable raw flux measurements this is 

inevitable since the present work is not evaluated in terms of 

diffusion limited permeation yet this is the basis for most evaluations 

reported elsewhere. 

The few reported permeabilities lying above Le Claire's mean band 

are shown in fig 6.6. Among them, those from Nelson and Stein (4), 

and Perkins and Noda are notable. The validity of the data from 



181 

10 )S 20(104/T) 
/K5 

Fig 6.6 The variation of permeation coefficient with 

reciprocal temperature in comparison with other work. 

Key: H-hydrogen, D-deuterium, T-tritium, ()-reference 

number. 

A- 310H (5), B- 309H (6), C- 321H (7), D- 304H (4), 

E- 304H (9), F- 304D (8). 

Dotted band - limits of Le Claire's mean curve. 
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Nelson and Stein was questioned earlier but the work of Perkins and 

Noda is even more curious. Their diffusion coefficients were almost 

an order of magnitude down from other reported values yet their 

permeation values are an order of magnitude high. Further suspicion 

is aroused, in their reported power law index of 0.4 for 304 stainless 

steel. Examination of their specimen mount configuration reveals 

support walls which allow flux permeation into the output chamber. 

A rough calculation, using the values of wall thicknesses quoted, 

reveals that only 2.5x10-2m of the length of the support tube would 

have to be at the the specimen temperature for the permeation to 

have doubled from its real value. Therefore the results from Perkins 

and Noda should be treated with some reserve. 

Also shown in fig 6.6 are the permeation curves matching the 

diffusion coefficients that agree well with this present work. Notice 

Kass and Andrejewski (6), Phillips and Dodge (7) and Katsuka and 

Furukawa (9) all lie below this work while Quick and Johnson (5) lie 

above. 

So far the data reported here shows excellent internal and external 

consistency in terms of diffusion and permeation coefficients for both 

304 and 316 stainless steel. There remains the question of whether 

the surface parameter k1, which was fitted simultaneously with D and 

Pm, can now provide interpretable data on the permeation 

characteristics of oxidised surfaces, data which have been hitherto 

largely unavailable. This question is treated in the next section 

following the sub-section below which concerns the symmetry 
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parameter, ýi. 

6.1.3 Sensitivity of the parameter N 

As stated earlier, the analysis of the variation of $ and 1R1' with 

frequency was fitted for the parameters D, Pm and k1. However the 

parameter N was set a priori. In all but one case 11 was set equal to 

0 as identical treatment of clean and oxidised surfaces should have 

resulted in foils of symmetric surface conditions. The sole non-zero 

case was for a specimen with oxide on the input side. For this case 

9 was set equal to -1. 

The purpose of this subsection is to demonstrate that this 

mathematical approach is a reasonable one and to asses whether it 

would be possible to add N to the set of parameters D, Pm and ki 

which are directly determined from the experimental data. 

The indicator of the quality of fit to the data is the normalised 

deviation, t, defined as: 

2 (fobs 'calc (IRlcälc IRlobs)2 

[ fobs 2[ IRlobs ]2 J[6.7] 

The variation of A with N is shown in fig 6.7 for data from the 

1.0x10'4m, stainless steel 316 specimen at 633K, which has an 
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Fig 6.7 Typical variation of the normalised deviation A 

with symmetry parameter M. Data is from the 1.0x10'4m, 

316 stainless steel at 633K for its range of pressures and 

frequencies. Notice the insensitivity of N for most of the 

plot in this bucket shaped curve. 
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expected 9 of 0. Notice the bucket shaped curve with greater than 

90% of the plot effectively on a plateau. 

It is clear that the fit is very insensitive to the parameter M. This 

provides a general increase in confidence in the analysis, since the 

rate constants at the two surfaces would have to differ by greater 

than 20: 1 before D, Pm and ki would be drastically affected. 

Specifically it shows the fixing of Na priori to be a safe and valid 

proceedure. 

Direct confirmation of N was acheived with the 2.5x10-4m stainless 

steel 304 foil. This foil was analysed with two surfaces clean, u=0, 

and then with a single oxide on the input surface, N= -1. Thus, the 

values of ki and ki can be determined, for this surface 

configuration, and since u= (ki-ki)/(ki+ki) then from the Arrhenius 

ki values it is found that g= -0.98. Hence, the assumption that was 

made in the analysis of a single-sided oxide, having aN being equal 

to -1, was a good one. Even more so in view of the insensitivity of 

u, as shown above. 
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6.2 THE RATE CONSTANT k1 AND ITS PHYSICAL PROPERTIES 

In sub-section 6.2.1 an internal and external comparison of ki data is 

made. To interpret the surface rate coefficient, k1, it is first 

necessary to develop a physical model of the process by which 

hydrogen goes from the gas phase to solution in the metal; 6.2.2. 

That model allows the description of both, cleaned surfaces and 

adherent oxides and enables kl to be related to the oxide permeation 

coefficeint, Pmox" Finally, in section 6.2.3, a pictorial model 

illustating the variation of chemical potential across an 

oxide-metal-oxide foil is discussed. 

6.2.1 Internal and external comparison of k, 

The Arrhenius plots of kl for the various surface conditions for both 

304 and 316 stainless steel are illustrated in fig 6.8. Since the data 

was also shown in chapter 5, for reasons of clarity only the lines 

showing the fundamental relationships are drawn. Also on the figure 

are other reported direct dissociative chemisorption rate constant. 

The pattern of the k1 results seems to indicate a clear Arrhenius 

relationship although there does not seem to be any common 

activation energy. 

In the present work a him single surface oxide layer on 304 stainless 
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Fig 6.8 The variation of surface rate constant ki with 

reciprocal temperature for this and other work. 
Key: H-hydrogen, D-deuterium, T-tritium, 0-reference 

number. This work 304: A-2.5x10-4m, ion beam cleaned; 
B-2.5x10-4m, input surface oxidised; C-3.0x10-4m, 

cleaned by activation. 316: D-5.0x10-6m, ion beam 

cleaned; E-5.0x10-6m, oxidised both surfaces; F- 

1.0x10-4m, ion beam cleaned. Other work: G- 347H and 

347T (23); H- 304H (22); J- 304D (8). 
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steel was shown to cause a fall in ki by two orders of magnitude, 

while a double surface oxide of thickness 0.4i m, on 316 stainless steel 

had a much less dramatic effect. This lack of surface holdup in the 

permeation of hydrogen in stainless steel 316 is confirmed by 

Earwaker et al in a permeation oxide-thickness study. 

Also of note is the foil cleaned by activation in a reducing 

atmosphere of hydrogen. This is a common practice used for example 

by the authors of (5), (22), (23), (49) and (50). The value of kl for 

this foil was an order of magnitude lower than that for the ion beam 

cleaned 2.5x10-4m, 304, and 5.0x10-5m, 316 stainless steel foils, 

indicative that ion beam cleaning is indeed a superior technique. 

Disappointingly, the 1. Ox10-4m 316 stainless steel was not ion cleaned 

for long enough to clear it of all oxide. This is attributable to 

inexperience this being the first specimen to be cleaned by such a 

technique. The specimen shows a low value of k1. 

In comparison with other work, the values obtained from Axtmann et 

al (22), and Randall and Salmon (23), agree with those given here for 

both activated and oxidised specimens. This is indicative again that 

ion beam cleaning provides higher rate coefficients and therefore 

implies that surfaces are cleaner. Since both investigators above 

report activation of their specimen prior to experiment the 

consistency with their data is reasonable. 

As noted earlier, there is some doubt on the validity of the data 

provided by Perkins and Noda (8). That their surface rate constants 
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are 2-3 orders of magnitude greater than those shown here and show 

non-Arrhenius dependence do not help to reverse this view. 

Especially as their data shows flows near the theoretical maximum 

limits calculated from the Herz-Knudsen equation (48). 

Braun et al (24) and Ali-Khan et a] (51) provided data on surface 

recombination rate of deuterium in 304 stainless steel. To compare 

this work with the values presented here, kl was converted into k2 

using Ksm = (ki/k2) . The results are presented in fig 6.9. As with 

the ki data, k2 for this work, from ion-beam cleaned foils, is larger 

than the other reported work indicating, probably, the effectiveness 

of in situ ion-beam cleaning. 

In conclusion, there is approximate agreement with the limited 

reported work on stainless steel surface rate coefficients. The good 

Arrhenius plots of this work cover a significantly larger temperature 

span than other reports. They also indicate, along with the excellent 

internal consistency of D and Pm, the adequacy of describing 

surface affects by a direct dissociative chemisorption model. To the 

precision of the present work a two rate constant model gives a good 

description of how surfaces limit permeation in stainless steels. 

There is no clear need for a more complex model, for example the six 

rate model of 6.3, incorporating such additional complexities of a 

surface phase. 

To interpret the ki data further, the next sub-section questions the 

mode of diffusant transport through the oxide layer with a view to 
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oxidised both surfaces; F-1.0x10-4m, ion beam cleaned. 

Other work: G- 304D (24) 
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identifying these ki coefficients with a permeation coefficient for the 

oxide. 

6.2.2 Molecular or atomic transport of hydrogen through oxide layers? 

Le Claire (21) suggests that the oxide is capable of "molecule 

dissolving", that is, transport through the oxide layer is molecular. 

Whether this is indeed so can in principle, be confirmed by 

examination of how diffusant flux varies with pressure. 

Following the line of argument developed in 4.4, it is easy to see that 

the effect on a surface layer may be described by: 

R= Q(ZVoxZ12)VmtZ'Q' [6.8] 

This may be written: 

R= QZeffVmtZ'Q' [6.9j 

where Zeff is an effective interphase matrix comparable with the 

matrix Z derived in the two rate constant model of section 4.4. 

Expressions for Zeff will now be derived for atomic and molecular 

transport. They are based on the assumption that permeation is 

diffusion limited within the oxide. That is gas-oxide and oxide-metal 

rate constants are assumed infinite. In consequence each model uses 

an equilibrium equation to describe the gas-oxide interface but they 

differ in the form of equation used. The schematic diagram, fig 6.10, 

clarifies the coefficients in the surface and oxide layer for the two 

models. 



192 

(a) 

oxide 
{1 

D1 

(b) 
Pmox 

Kox 

,"""""" "': ýýý: : M. h"Ä! I. M. ". MIýV. Y. 

; 
""ýL', 

" 
ýti 

............................... _. _r. k.: 
ýý' 

................................. ý 
:....... . ..... 

. l°. liný: '. ". ý... laý i`" ..: ::..: : ....... 
iý. 

": 
ý5cýrrtý": 

Fig 6.10 Schematic diagram clarifying coefficients used in 

determining two possible modes of transport through the 

oxide layer. (a) - atomic flow. (b) - molecular flow. 
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Mode (1): atomic transport 

At equilibrium: 

Cox Ksmoxr 

analogous with [4.45]. Then: 

Z 2�ps/Ksm0ox 

and, from equation [4.35): 

[s. 1o1 

01 

[s. ii] 

_r cosha141 (1/Dial)sinhai2s 1 
ox L DlalsinhalQl coshalQ1 J 

which for a thin oxide can be simplified to: 

1 91/D1I 
fox L iw41 1 

At equilibrium: 

Cmt - Ksmmtp" 

f6.12] 

[6.13] 

(6.14] 

where Ksmmt and Ksmox are the solubility coefficients of the metal 

and oxide respectively. Therefore: 

r KsmoxOKsmmt 01 a12 _L 
.l 

[s. i51 

By definition, Zeff is the product Z1VoxZ12 formed from [6.11], [6.13] 

and [6.15] and is: 

2p3i 2Stvp 

Zeff 7- 
Ksmmt Ymx s 

iwQiKsmox/Ksmmt 1 1WQsKsmox/Ksmmt 1 
(6.161 

where Pmx = DiKsmox. 

Comparing Zeff with [4.82], then: 
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This result specifies that atomic transport of hydrogen through the 

oxide will result in a particular variation of diffusant flux with 

pressure. 

Mode (2): molecular transport. 

When there is equilibrium, the oxide concentration is: 

cox = Koxp [6.18] 

where Kox is the solubility in the oxide, supposing equilibrium to 

hold, then: 

Z_r 1/ýox 01 1 [6.19] 

and 
Vox =C 11 w4 

Q1/11] 
[6.20] 

1 

Supposing conditions to be at equilibrium: 

22 
Cmt - Ksmmtcox/Kox [6.21J 

Therefore using boundary conditions then: 

2Kox/Ksmmt(ps - 2i39/Pmox). 4 0 Z12=C 0 1] 
[6.22) 

where Pmox is defined by Pmox = DjKox. An expression for Zeff may 

be derived by multiplying ZVoxZ12, [6.19], [6.20] and [6.22], to give: 

[2/Ksmmt(Pä9iJdPmox) ý9 Qs/Pmox 
J 

Zeff icj4i2Kox/Ksmmt(Ps QiJs/Pmox)M 1J 
[6.23) 

Using [4.82], this expression for molecular transport, gives: 
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ki = Pmox/4s [6.24] 

This is to be compared with the corresponding equation [6.17] for 

atomic transport. 

The models have separate predictions: atomic transport through an 

oxide layer provides a kl which is pressure dependent, [6.17], while 

with molecular flow kl which is pressure independent, [6.24]. 

Clearly, the excellent Arrhenius plots of kl and the good fits of the 

iso-frequency, isothermal variation of phase lag with pressure, over a 

large range of values suggests ki is pressure independent, 

indicating molecular flow through the oxide layer. 

The atomic and molecular transport models provide specific 

predictions about how flux varies with pressure. When a full 

analysis is made using [6.9] the molecular model provides estimates 

for Pmox which do not vary with pressure, while those derived for 

the atomic model, Pmx, are pressure dependent. On this basis it does 

seem that molecular flow takes place in the oxide. Using the SIMS 

analysis of the thickness of oxide on the oxidised 304 and 316 

stainless steel foils and their respective equations for ki, and Pmox = 

k121 then: 

Pmox3oa=(1.43t0.29)x10-llexp[[-7.661t0.081)x103/T)/li-1) molm-ls-lPa-1 

[6.25] 
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Pmoa316=(5.3612.68)x10-heap[[-6.967t0.228)x103/T)/K-1} molm-1s-iPa-1 

[6.26] 

These equations are shown in fig 6.11. Notice that Pmox for 316 is 

larger than 304. Again, this confirms that an oxide layer on 304 has 

a more dramatic affect on the bulk permeation than 316. 

The ability to describe flows within the oxide layers makes it 

interesting to reassess flows generally. To help in this the following 

sub-section views the whole permeation process from a different 

perspective; that of the chemical potential of the system. 
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Fig 6.11 The variation of oxide permeation coefficient for 

molecular flow, Pmox, with reciprocal temperature. 

Upper curve: 316 stainless steel. 

Lower curve: 304 stainless steel. 
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6.2.3. The chemical potential uc 

So far the gas-metal-gas system has been described by macroscopic 

flow rates. It may be interesting to briefly examine the 

thermodynamics of the system in terms of the chemical potential to 

obtain a different viewpoint on the process of permeation. 

The reaction is: 

Hz(gas)V- 2H(solid) i6.271 

In a closed system the free energy of the system is: G= r12µ2 + rj2j12 

where the subsript, 2, refers to hydrogen in the gas phase, 

molecular, and, II refers to hydrogen in the solid phase, atomic. 

Therefore at equilibrium: 

dG = u2dn2 + uidni =0 

Stoichiometry requires that: 

dni = -2dn2 

Therefore at equilibrium: 

M2 = 2ui 

Now: 

and 

u2 = N2 + RT ln(P/P0) 

[6.2a] 

[6.291 

[6.30] 

[6.31] 

N1 = u° 4 RT ln(c/c0) [6.32] 

where the superscript, 0, refers to any arbitary state. When surface 

reactions are infinite, surface egilibrium is maintained, c(O) = Ksmps , 
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c(P) = Ksmps Thus: 

2u1(0)-2N1(Q)= RT ln(p S1Ps) = N2(g)-u2(g') 
[6.33] 

This allows a sketch of chemical potential versus position co-ordinate 

can now be drawn for this diffusion limited case, fig 6.11a. 

By introducing surface rates which are finite, that is 

Js = kips - k2c2(0) = k2c2(4) - kips, the potential distribution is 

changed: 

(k J' 2u1(0)-2u1(Q)= RT in 
l(kis p' + Jss)k2l 

[6.341 

A sketch of chemical potential versus position co-ordinates using 

finite surface rates is shown in fig 6. llb. All possible differences in 

chemical potential including, to avoid repetition, some not derived in 

this text are shown on this figure. 

It is of interest to consider the x=0 boundary to see how large this 

chemical drop is, 92(g) - 2u(0) = RT[klps/(kips - Js)]. Therefore, 

for the oxidised 316 stainless steel specimen at 633K, u2(g) - ui (0) = 

3.6x102 Jmol-1; in comparison with u2(g) - u2(g') - 8x104 Jmol-1. 

Thus the chemical potential difference across the oxide layer is of 

the order of 0.5% of the total potential difference across the 

membrane. 
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6.3 SOME POSSIBLE ALTERNATIVE MODELS 

Slow surface reactions of a simple type or slow permeation through 

superficial layers are plausible causes of the observed hydrogen 

fluxes through stainless steel. There are other possibilities. These 

include the single reversible trap model and the six-reaction rate 

surface model. These are discussed in 6.3.1. and 6.3.2 respectively. 

6.3.1 The single reversible trap model 

Atoms of a species subject to trapping during diffusion may be 

supposed to follow random paths through the solid interrupted by 

occasional pauses in the locations which are traps. Traps which hold 

atoms of the diffusant species for long times relative to the time of 

an experiment are designated irreversible: traps which hold them for 

times comparable with the experiment time are designated reversible. 

Experiments using modulation methods are sensitive to trapping times 

comparable with the with period of the modulation, and it is this 

class of traps that is of interest. 

Diffusant atoms subject to trapping may be seen as belonging to one 

of two species: they are free and mobile and so are part of the usual 

diffusant concentration, c, or they are restricted and immobile and so 

part of a separate concentration, z. Movement between the species is 

here described by the reversible reaction: 



203 

kAc 

H(mobile) H(trapped) [6.35] 

kBz 

where kA and kB are rate constants. The corresponding rate 

equation is: 

dz 
dt = kAc - kgz [6.361 

Since conservation of mass requires: 

dc aJ dz [6.3? ] dt ax dt 

it follows from Fick's law that: 

dc+dz 
_D 

a2c 
dt dt axý [6.38] 

Cummings and Blackburn (52) developed these equations for a 

pressure modulation case and found the following equations for 0 and 

A: 

tanO _ 
£tanX -xtanh£ 
£tanh£ +xtanx 

n-4 r «2+x2) Ih 
l cosh29 - cos2X 

where 

nII - kAW2 +1W(W2_+; RR +kAkR) 

16.39) 

[6.40] 

[6.41) Li Lo -,... 

c. w` + xB"1 

and 

bQ = G: + ix [6.421 
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To examine how, in general , trapping modifies the amplitude and 

phase of the transmitted pressure modulation it is useful to replace 

the rate constants kA and kg by the dimensionless parameters: 

A= kA 92/2D ;B= kB22/2D [6.43] 

Figure 6.13 shows the variation of ID with C described by equation 

[6.45] for specified values of A and B, solid lines. There are two 

principal points of interest: the strong maxima which vary in position 

with B but are absent when B=0, dotted lines, and the values of -0 

at higher C which show the curves describing flow through traps 

giving lower phase values than that for diffusion limited flow when A 

=B=0. 

Figure 6.14 shows the variation of A with S described by equation 

[6.46]. General points to note are: A is greatest when A=B=0; 

when B is small, A drops sharply from the value of 34 at F. =0 to a 

plateau region before falling away again with increasing C; and 

curves having a common value of A converge as C increases. 

Of particular relevance to this work is the striking similarity 

between these trapping curves and parallel diffusion. This is 

perhaps not so suprising if trapping is considered as a parallel 

process to the diffusion limited permeation. Happily there are 

determining features which enable the identification of either process. 

For the variation of 0 with S, 0 recovers to simple diffusion limited 

curve for high C while the trapping curve does not. For the 

variation A with C parallel diffusion has a distinct minimum in the 
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values of A and B. 
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6.14 The variation of A with C for the reversible trap 

model, equation (6.46], and for specified values of A and 

B. 
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curve which does not exist in the trapping curve. In conclusion, 

although it cannot be said that trapping did not exist in the 

reported data, it certainly did not impart any great influence in the 

temperature and frequency range of the experiment. 

6.3.2 The six-reaction rate surface model 

The principal feature of the two-rate constant model used in this 

work is its ability to describe the changeover from high pressure, 

diffusion limited permeation, to low pressure, surface limited 

permeation. It takes no account, however, of any adsorbed surface 

phase of atoms or molecules. To investigate the possibility that such 

a surface layer might be detected in a modulation experiment a three 

stage process would have to be considered as shown in fig 6.14. 

In this model of the surface processes, there are six independent 

rate constants defined by the following flow equations: 

J(9) = kip - k2VM 

as m= J(g) - k3vm + k4va 

aät 
= k3vm - k4vý J(0) 

J(0) = k5va - k6c(O) 

[6.441 

[6.45] 

[6.46] 

[6.47] 

where Vm is the adsorbed molecules surface concentration and V. is 

the adsorbed atoms surface concentration. This set of relations 
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applies to the input surface; for the output surface, by analogy: 

J(4) = kgc(Q) - ksvä [6.48] 

2 ä J(R) - k4vä+ k3vm [6.49] at 

ýv M, ý2 ' . (ff') at - k4 vý k3vID J [6.50] 

J(g') = k4vm kip' [6.51] 

where, as usual, primes are used to distinguish exit surface rate 

constants. 

It is apparent that the solution for this model would contain a large 

number of terms. Without evaluation, three limiting cases are listed 

here, which could enable this problem to be experimentally tackled. 

They are: 

(1) Strongly bound molecules: the adsorbed molecules are supposed to 

lie in deep potential wells, requiring large activation energies either 

to evaporate, k2, or dissociate, k3; all other rate constants being fast 

relative to the diffusion process. 

(2) Strongly bound surface atoms: atoms are considered to be 

strongly chemisorbed to the surface, so that the process of re- 

association, k4, and solution in the bulk phase ks, are necessarily 

much slower than any of the other reactions. 

(3) Slow surface penetration: the transitions between the surface and 

solid phases, ks and ks, are considered slow relative to the other 
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reactions. 

There is effectively a fourth limiting case with kl, ki as dominant 

parameters thus reverting to the two rate constant model described 

in 4.4. It must be re-emphasised, for stainless steel oxides, and 

current experimental phase space and signal to noise ratios, that 

evaluation of any of the extra parameters present in a more 

complicated surface model such as this one should not be expected. 

This is because of the excellence of fit of the data to the three 

parameters D, Pm and k1, in the two rate constant model, noted 

earlier. 
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6.4 DISCUSSION OF THE FLUX AND THE POWER LAW INDEX 

In this section other reported work will be discussed in relation to 

the flux and the permeation power . law index. To do this a 

relationship between the permeation power law index n and the 

deviation from Richardson is derived in sub-section 6.4.1. This 

result is then used in 6.4.2. to assess reported deviations from the 

value of a half. 

6.4.1 Flux reduction and the power law index 

The steady state flow for a two-reaction rate surface model is given 

in [4.88] and is expressed in terms of j in [4.105]. Using [4.105] and 

defining the maximum possible flux as that corresponding to 

Richardson's permeation law, JR, it follows that: 

JR {1 +[2j(1+N)l + Ji [6.52] 

This can now be identified with n using [4.111]. This predicted 

variation of n with Js/JR was plotted for u= -1,0, +1 in fig 6.10. 

This graph will now be used to estimate reduction of flux that 

corresponds to a particular power law index n. Notice from the 

graph that the effect is an important one. A 20% reduction in flux 

corresponds to n=0.56. 
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6.4.2 Comparison of reported flux data. 

To illustrate the use of these curves, available reported non-half 

order values of the permeation power law index for 304 stainless 

steel were compared with equation [6.521. 

Matsuyama and Redman (26) measured a value for the permeation 

power law index, n, of 0.58. Comparing their permeation data with 

the present data, at 1000K, the calculated value should be » 0.62. 

Repeating the process with Katsuka and Furukawa (9), a value of n 

of 0.67 is obtained in comparison with their measured 0.57. 

It is not possible to justify a method of comparison on just two 

results but the good agreement with Matsuyama and Redman and to a 

lesser extent that with Katsuka and Furukawa, is encouraging and 

clearly suggests that their permeation data may be brought into line 

with the present work by making allowance for surface reactions of 

finite rate. 

The way in which measurements of background pressure of the 

output chamber are introduced into calculations of the power law 

index, when using time lag experiments for diffusion coefficients, 

results in uncertainties in the power law index. This uncertainty is 

in a direction favourable to the above flux corrections and also 

illustates the importance of a pressure modulation technique, since it 

removes the millstone of background pressure from experimenters 

necks. 
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6.5 SUMMARY OF CHAPTER 6 

All primary objectives of this work were met. The surface two 

reaction rate model developed in chapter 4, and the experimental rig 

described in chapter 3, provided internally and externally consistent 

data for the diffusion and permeation coefficients for 304 and 316 

stainless steel. Also obtained were the two surface rate coefficients. 

These showed clear Arrhenius dependence and compared favourably 

with the limited data available. 

From the ki coefficients a value for the permeability of the oxide, 

Pmox' describing molecular transport, on 304 and 316 stainless steel 

was obtained. As expected from surface inhibition of bulk material 

diffusion the value of Pmox for 304 was lower than that of 316. 

Models incorporating internal trapping and the, formation of a surface 

phase were considered as alternatives for the evaluation of data. 

That dealing with traps shows no interpretable effects within the 

range of the experiments. That using the more elaborate surface 

model was shown to be unnecessary for 304 and 316 stainless steels, 

at least to within the range and precision of the present work. 

Permeation data drawn from other work was brought into line with 

this work by incorporating surface effects using an expression 

describing the flux dependence of the permeation power law index. 
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