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· Abstract 

To each cell e in a matroid M we can associate a non-negative 

integer lIell called the freedom of e. Geometrically the value 

Ilell indicates how freely placed the cell ~s ~n the matroid. 

We see tha t II e II ~s equal to the degree of the modular cut 

generated by all the fully-dependent flats of M containing e . 

The relationship between freedom and basic matroid constructions, 

particularly one-point lifts and duality, is examined, and 

then applied to erections. We see that the number of times a 

matroid M can be erected is related to the degree of the modular 

cut generated by all the fully-dependent flats of W<. If Z;;(M) 

is the set of integer polymatroids with underlying matroid 

structure M, then we show that for any cell e of M 

II ell max f (e) • 
f E 1;; (M) 

We look at freedom in binary matroids and show that for a 

connected binary matroid M, II e II is the number of connec ted 

components of M\e. Finally the matroid join is examined and we 

are able to solve a conjecture of Lovasz and Recski that a connected 

binary matroid M is reducible if and only if there is a cell e 

of M with M\e disconnected. 
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Introduction 

The central idea of this work is that of the freedom of a cell in 

a matroid; to each cell e in a matroid M we can associate a non

negative integer lIell called the freedom of e. Geometrically 

the value lIell indicates how freely placed the cell is in the 

matroid. For example, if lIell = 0 then e is a loop, and as 

Ilell increases the more "loosely placed" is the ce11; if 

II e II = 00 then e is a coloop. 

In Chapter I we define this concept of freedom and show that Ilell 

is equal to the degree of the modular cut generated by all the 

fully-dependent flats of M containing e. 

In Chapter 2 we look at the relationship between freedom and the 

basic matroid constructions, particularly one-point lifts and 

duality. We show that a cell e is freely lifted by a one-point 

lift if and only if Ilell is increased by the lift. The relation

ship between Ilell and duality is applied to the problem of matroid 

erections, and we see that the number of times we can erect a 

matroid M is related to the degree of the modular cut generated 

by all the fully-dependent flats of M*. We also show that the 

construction of Las Vergnas [14] and Nguyen [23J of the 

hyperplanes of the free erection of M is just the expression in 

M of the completion in M* of the modular cut generated by all 

the fully-dependent flats of M*. 
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In Chapter 3 we look at the relationship between freedom and 

integer polymatroids. We show that if c: (M) is the set of 

integer polymatroids with underlying matroid structure M, then 

for any cell e in M we have "e II = max f(e). This result 

is applied to study amalgamations. 

Freedom in binary matroids is examined in Chapter 4. We show 

that if M is a binary connected matroid then M\e is connected 

if and only if Ilell = I. Indeed we prove that for e a cell 

ln a binary connected matroid M then Ilell is the number of 

connected components of M\e. 

In Chapter 5 we look at the matroid join and in particular at 

the problem of reducibility. We show that if M = MI \I M2 

then IlellM ~ IleilM + Ileli M • We also show that if M is 
1 2 

reducible then a subset of X = {e Ilell > I} must disconnect M. 

We prove that M can be reduced with one of the components a 

uniform matroid if and only if the modular cut generated by all 

the fully-dependent flats of M is non-trivial. For a connected 

binary matroid M we show that M can be reduced if and only if 

there is a cell e of M with II e II > I. This immediately enables 

us to solve a conjecture of Lovasz and Recski [16] that ~ 

connected binary matroid M is reducible if and only if there 1S 

a cell e of M with M\e disconnected. 
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Finally, in an appendix we give an alternative short proof of 

this last result using a theorem of Lucas [I8J on weak maps. 

Basic concepts and notations 

Below we establish some notational conventions that will be 

used throughout this work; other conventions will be introduced 

later when needed. We shall assume familiarity with the elements 

of matroid theory as given in the books by Crapo and Rota [5J, 

Welsh [30J and Brylawski and Kelly [2J where the basic matroid 

terms are defined. 

A matroid M on a finite set E is an independence structure 

satisfying an exchange property. E is the ground set of M. 

An element e E E is a cell of M. The rank function of M will be 

denoted by r~ (or just r when the context is clear). The rank 

of M is the integer r(E). A cell e is a loop if r(e) = 0; 

if r(e) = 1 then e is a point of M; if e 1,e2 are points and 

r({e
I
,e

2
}) = 1 then e 1 and e2 are parallel points of M. The 

closure in M of X~ E is denoted by ~ (abbreviated X when 

the context is clear). Closed subsets of E are flats of M; 

lines are flats of rank 2; hyperplanes are flats of rank r(E) - 1. 
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If A ~ E then MIA denotes the restriction of M to A. or 

equivalently the deletion of E - A from M. The restriction 

to A is also denoted by M\(E-A). The contraction of M by A is 

denoted by MIA. 

The uniform matroid of rank k on E 1S denoted by Uk(E) or 

occasionally Uk(n) when lEI = n. 

A modular cut is a collection~ of flats of M such that 

( I) if F E J.t and G '2 F is a flat then G (JL ; 

(2) if F,G E Jt and F and G are a modular pair. that 1S, 

reF) + reG) = reF u G) + reF n G), 

then F n G E",u. • 

The modular cut generated by flats F1,F2, ••• ,F
n 

of M is denoted 

by <F 1,F2 , ••• ,Fn>. If a modular cut is generated by one flat only 

it is called principal. 

An extension N of the matroid M is a matroid whose ground set E' 

contains E and such that NIE = M. Using the one-one correspondence 

between modular cuts and one-point extensions of M (see Crapo 

and Rota [5J). we say that e' ~ E has been added via J.t if J1. 

is the modular cut of M corresponding to the one-point 

extension M u e' of M. 
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The modular cut containing the empty set IS called trivial. 

A matroid M is disconnected if M = MI ~ M2 , the direct sum 

of M) and M2, where both M] and M2 have rank at least I. A 

connected matroid is one that is not disconnected. M] and M2 

are called components of M. A subset A c;;. E is said to disconnect 

M if M is connected but M\A is disconnected. 

If M is a matroid on E then M* will denote the dual matroid on 

E. An element e E E is a coloop of M if it is a loop of M*. 

A cocircuit of M is a circuit of M*. 

If M),M2 are matroids on E then there is a strong map from M) 

to M2 , written M)~M2' if every flat of M2 is a flat of M). 

We say then that M2 is a strong image of MI. There is a weak map 

from MI to M2, written MI --~M2' if every independent set of 

M2 is independent in MI. We say then that M2 is a weak image 

of M). 

A cell e E E is dependent in a set X ~ E if e E X and r(X) = r(X-e). 

A subset A~ E is fully-dependent in M if it is a union of 

circuits, or, equivalently, if every e E A is dependent In A. 

Ingleton [11] and Sims [29] have studied fully-dependent flats 

and shown that such flats characterize a matroid. 
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For any set X, GP(X) will denote the set of subsets of X; 

we shall use the standard set-theoretic notations, although 

often X u {x} etc will be abbreviated X u x. 

The symbol [J will denote the end of a proof or the end of 

an example. 
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I. Ideas of Freedom 

Consider the rank 3 matroid M on E = {a,b,c,d,e,f} whose 

affine diagram is given in Figure I. 

c 

Figure I 

Intuitively because f LS freely placed in the rank 3 flat E 

we can think of it as having freedom 3. Similarly b would have 

freedom 2 as it is free 1n the rank 2 flat {a,b,c}, and c 

would have freedom ) as it is uniquely placed in the rank 1 

flat {c} determined by the intersection of the flats {a,b,c} 

and {c,d,e}. In this chapter we wish to make these informal 

ideas more precise. 

Suppose that M is a matroid on E and that e
l
,e2 c E. 

Then we say that e
l 

and e2 are (matroidally) equivalent and 

write e) ~ e 2 if the bijection E + E which interchanges 

e
1 

and e 2 and is the identity on E - {e
l
,e2} induces an 

isomorphism of the matroid M. 
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ft is clear this g1VCS an equivalence relation on the 

elements of E. Indeed, by standard matroidal arguments it 

is easy to see that e) ~ e 2 if and only if they belong to 

precisely the same fully-dependent flats of M; this simple 

observation will be used frequently. Effectively, cells of a 

matroid are equivalent if theyare indistinguishable one from 

the other by any matroidal property. 

Let F be a flat of M and suppose e E F; then we say that e 

is free in the flat F if adding a cell e' via the principal 

modular cut (F) gives e "" e' in the one-point extension M u e'. 

For example, in the matroid M of Figure I , 

b is free In the flats {b} and {a,b,c} only; 

c 1S free in the flat {c} only; 

f IS free In any flat of M containing f. 

The flats of a matroid M in which c is free can be described 

precisely In terms of the fully-dependent flats of M containing 

e. 
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For any e E E define FR(e) (or FR(e;M) if we wish to emphasise 

the role of the ~atroid M) to be the intersection of all the 

fully-dependent flats of M containing e. That is 

FR(e) = nF 
FE 3 

where ~= {fully-dependent flats of M containing e}. 

In the special case when e is a coloop and there are no 

fully-dependent flats containing e then we shall take 

FR(e) to be E. Notice that FR(e) is a flat of M for any 

e E E. 

Proposition 1.1: A cell e E E is free in a flat F of M if 

and only if e E F and F~ FR(e). 

Proof: If e is a coloop then e is free in any flat containing 

e. As FR(e) = E then the result holds in this case. 

Suppose then that e is not a coloop and is free in a flat F. 

We shall show that F ~ FR(e). 

Let G be any fully-dependent flat containing e, and add a point 

e' ~ E via the modular cut <F) to get the one-point extension 

N=~ue'. 

Since G is a fully-dependent flat of M containing 
-N . 

e, G is a 

-N fully-dependent flat of N containing e; hence G is a fully-

dependent flat of N containing e' because e ~ e'. This is only 

possible if G E < F); therefore G ';2 F. 
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That is, F is a subflat of any fully-dependent flat of M 

containing e, and s(; E';; FR(e). 

On the other hand, suppose F ~FR(e) is any flat containing 

e; we shall prove that e is free in F. 

As before add a point e' via <F> to get the one-point 

extension N = M u e'. t>;ow because e E F and F ~ FR(e), 

G 1S a fully-dependent flat of N containing e if and only if 

G 1S fully-dependent and G '2 F. But these are precisely the 

fully-dependent flats of N containing e'. Hence e ~ e' in N 

and so by definition e is free in F. 

o 

This result implies that FR(e) is the unique largest flat of 

M in which e is free. 

Notice that e
l 
~ e

Z 
in M if and only if FR(e

l
) = FR(e

Z
) 

Lecause cells are equivalent if and only if they belong to 

precisely the same fully-dependent flats. 

In the matroid given in Figure I, for example, 

FR(a) = FR(b) 

FR(d) = FR(e) 

FR(c) = {c}; 

FR(f) = E. 

{a,b,c}; 

{c,d,e}; 
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Considering this example, it would seem reasonable to define 

the "freedom" of a cell e E E to be the rank of FR(e), as 

this number gives the rank of the largest flat in which e is 

freely placed. However, consider the rank 4 matroid M whose 

affine diagram is given in Figure 2. 

f 

b 

Figure 2 

In this matroid {a,b,c,d} and {d,e,f,g} are the only fully

dependent flats of rank 3. 

Notice that FR(d) = {d} and this has rank 1. However, consider 

the one-point extension Mud' whose affine diagram is given 

in Figure 3. 
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Figure 3 

In Mud' we have FR(d) = {d,d'} and this has rank 2. 

It would seem reasonable to assign a "freedom" of 2 to d 

1n M because matroidally d is freely placed on the line 

{d,d'} even if d' is absent from the matroid. With this 

example in mind we make the following definition. Let M be 

a matroid on E and let e E E. Then the freedom of e in M 

is defined to be 

max rN(FR(e;N» 
N:?M 

where the max1mum 1S taken over all matroids N extending M. 

We shall denote this number by II e II (or II e 11M if we wish to 

empasise the role of M). 
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That is, II e II is the ~ ~ og. ~ flat in which e is free, 

taken over all matroids extending M. 

In this chapter we shall be concerned with basic methods for 

calculating this number. Notice that if e is a loop then 
~~ 

II e II = Ok if e is a coloop then II e II = 00. If e is not a coloop 

then lIell ~ r(E), because E will contain a fully-dependent flat 

F containing e and FN ~s also a fully-dependent flat containing 

e for any extension N of M. Hence 

" e" ~ r (F) ~ r (E) • 

Of course, if e l 
~ e

2 in M then II elll = 
" e 2 1! 

but the converse 

~s certainly not true (lIbll = IIdll = 2 ~n the matroid in Figure 

but band d are not equivalent). 

In order to evaluate lIeli for a given e E E we need to look at 

the theory of modular cuts. 

If vNL is a modular cut of M and N is an extension of M define 

JL N to be the modular cut generated by all the flats FN of N 

where F E~. The next result shows that closure in N of 

IJ -N generators of ~gives generators of ~ • 
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Proposition 1.2: If v« = (F
I
,F

2
, ••• ,F

n
) is a modular cut of 

M and N is an extension of M then 

- N < -N -N -N> cAl = F I , F2 , "" Fn • 

Proof: We need only show that if F E~ then ---
-N -N -N 
F E: < F), F

2
, ... , F~> . The technique of the proof 1.S based 

on a method shown to me by Ingleton. 

Now if F E: JA, there is a sequence 

(I) 

of flats in~ such that each flat in this sequence either 

contains a flat earlier in the sequence or is the intersection 

of a modular pa1.r of flats earlier in the sequence. 

Consider then the sequence 

... , ... , (2) 

of flats in N. We need only show that each flat in sequence (2) 

< -N -N -N 
lies in F l , F2 , •.• , Fn>. 

Now if a flat H in sequence (I) contains a flat earlier in the 

sequence then HN will contain a flat earlier in sequence (2), 

so we need only 

(I) then H~ and 

show that if HI and H2 are a modular pair in 

-N 
H2 

-N -N 
are also a modular pair and HI n H2 

--N 
= HI n H2 • 
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If HI and H2 are a modular pair then 

-N -N r(H,) + r(H2) r(H
I
) + r(H

Z
) ::= 

= r(H, u H2) + r(H
I n H2) 

-N -N N = r(H) u HZ) + r(H, n H
2

) 

S 
-N 

r(H, 
-N 

u H2) -N 
+ r(H

I 
-N n H

2
) 

and the submodularity of the rank function implies that we 

must have equality; that is, -N 
and -N 

HI HZ are a modular pair. 

-N -N but e ~ HI n HZ' Let cM.' Now suppose e E HI n H2 , be the 

modular cut corresponding to the addition of e to M to give the 

one-point extension M \) e of M. 

Then HI 

HI n H2 
-N -N 
HI n H2 

and H2 are in .Mo', and as they are a modular pair then 

JJI ~--~N 
E~ and so e E HI n H2' This implies that 

----:-:N = HI n H2• 

o 

Notice that it follows from the definition that if ~I and 

J.i. 2 are modular cuts of M and cAll <;; Ji2 then eM. ~ G elL ~ for 

any extension N of M. 

N1tt-~ 
Cheung and Crapo [3J have defined the degree of aimodular cut~ 

to be the greatest possible rank of any set added "within" the 

fla ts in v«.. If we denote the degree of tM. by d (elO then it is 

easy to see from this definition that 
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N2M 

- 16 

where the maximum is taken over all matroids N extending M. 

. . . ii N 
Now from the deflnltlon of ~ 

and using Proposition 1.2, ifJ,.t=<F1,FZ, ••• ,Fn> then 

n 
G = n 

i=1 

-N 
F .• 

1. 

Our next result relates this idea of degree of a modular cut to 

our idea of freedom of a cell. For any subset A ~ E let J(A) 

(or j(A;M) if we wish to emphasise the role of M) be the 

modular cut of M generated by all the fully-dependent flats F of 

M for which FilA is not empty. Our main concern here will be 

with modular cutsJ(e) where e is a given cell of M; jL(e) is 

the modular cut of H generated by all the fully-dependent flats 

of M containing e. 

Theorem 1.3: \lell = d(.)t(e». 

Proof: If e is a coloop then ~(e) 1S empty and so both 

lIell and d(J(e» will be infinite; suppose then that e is not a 

coloop of M. 
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Firstly we shall show that lIeli ~ d(~(e». 

Suppose that d(~(e» = k and let N be an extension of M for 

which 

n 
k = r

N
( n 
i=l 

where F1,F2, ••. ,Fn are the fully-dependent flats of M containing 

e. Denote by F the flat given by 

n 

F = n 
i=! 

-N F. 
1 

and add new elements e),e 2,· •• ,ek freely to the flat F; that 

lS, successively via the principal modular cut <F) of N. Let 

N' be the restriction of this extension of N to the set 

E u {e 1,e2 , ••• ,ek } (recall that E 1S the ground set of M); then 

1n N' the cells el,eZ, ••• ,ek will be independent and e
i 

for any i,j. Also, 

e. 
J 

for any I $ 1 $ n. 

Now the fully-dependent flats of N' containing e are either 

-N' 
of the form F. for some i, or some flat not of this form but 

1 

containing one of the new points e .• 
J 
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But as these new points are all equivalent then such a flat 

illUSt contain all the ne~ points e
l
,e

2
, ••• ,e

k
• In any case, 

any fully-dependent flat of N' containing e must also contain 

these new points, in which case 

Hence Ilell ~ k. 

It remains only to prove that II ell::; d(.A,{(e». 

This time, let N be an extension of M fo~ which 

lIel! = rN(FR(e;N». 

n -N 
But FR(e ;N) s;. n F. so 

i=1 1 

II e II = rN(FR(e;N) ) 

n 
F~) s rN(.n 

1=1 
1. 

S d(.M(e» • 

0 

The methods used in this proof show that if II e II = k then we can 

add points e),e2 , ••• ,ek to M, each equivalent to e, and 

independent in the resulting extension. 
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This is the best we can achieve, in so far as if we add points 

XI' x2 ' ... , xm to M 80 that each added point 18 equivalent to 

e in the resulting extension, then 

r {x l' x
2

, ••• , x
m

} :::; k. 

There are several other observations worth making. Suppose 

/I e II = k and Ie t N be the extension of M obtained by adding 

the independent cells e l , e2 , ••• , ~ each equivalent to e. 

Then rN(FR(e;N» = k. 

n 
r N ( n 

i=1 

But 

where F1,F
2

, ••• , Fn are the fully-dependent flats of M containing 

e, because this intersection contains {e l , e
2

, ••• , e
k

} and 

by the last theorem its rank cannot exceed k. Hence 

n 

n 
i=l 

-N 
F. = FR(e;N) 

1 

because both flats have the Same basis. That is, 

FR(e;N) = FR(e;M) u {e l , e2 , ••• , e
k

}. 

Also, J«e)N is the principal modular cut <FR(e;N» , 

if it is not we would be able to add a new point e 
k+J 

via the modular cut cM,(e) 
N 

and in this extension all 

because 

to N 

the points 
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e
1

, e
2

, ••• , ek+
1 

would be independent giving 

dCcM(e» ~ k+1 

which is not possible. 

These remarks, together with the following result, will enable 

us to give a good theoretic description of how this matroid N 

1S constructed and how (theoretically) lIel! can be calculated. 

ProEosition I. 4: Suppose MI on E u e 1 1S a one-point 

extension of M via a modular cut.M. • Then e "" e 1 and 

FR(e;M l ) = FR(e;M) u {ell if and only if 

Proof: We shall use the fact that all the fully-dependent 

flats of MI containing e 1 are of the form Fuel for some 

F E J( , and indeed if F is minimal (with respect to inclusion) 

in Jl then F u e I is fully-dependent. This implies that 

regardless of any other structure that ~ might have. 

Now suppose e ~ e l and FR(e;M l ) = FR(ejM) u {ell. 

Because e and e l must lie in the same fully-dependent flats, 
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J,{(e) G J1.. 

Buc because e ~ e
j

, 

FR(e;M
1
) = FR(e I ;M 1) 

:: n (F u e) 
FEJ.( 

= [,n FJU {e
j 
}. 

FE.M, 

Hence 

n F = FR(ejM) 
FEcM. 

and this is only possible if J,{£. (FR(e» • 

Conversely, suppose Ji(e) c:; JJ.. ~ <FR(e» • 

Now because JU(e)~ ~ , any fully-dependent flat of M
J 

containing e certainly also contains e). On the other hand, 

if F u e) is a fully-dependent flat then F E ~and 

so F '2 FR(e) because J,t ~ <FR(e». Hence e E F and this implies 

Now 

FR(e;M) = F 
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and so by a sandwich argument, as J,lCe) ~ J,( ~ <FR(e» , 

FR(e;M) == n F. 
FE.).t 

Hence 

FR(e;M
1
) == FR(e\;M\) 

= n(F u e \) 
FeA 

= Gll F] u {e I} 

= FR(e;M) u {e 1 }. 

0 

Suppose e E E and lIel! = k, and let N be the extension of M 

by feJ,e2, ••• ,ekl discussed 1n the observations immediately 

before this last result. That is,fe
J
, e2, 

e~ 
... , 

independent in Nand eachlis equivalent to e. 

L M f 0 < t < k b h ,. f N E { e }; et t' or - - , e t e restr1ct10n 0 to u e 1,···, t 

that is, MO = M and ~ = N. LetJA t , for O:s t < k be the 

modular cut of M
t 

corresponding to the one-point extension 

of ~\ by e t +\, Then by repeated application of Proposition 1.4 

we know that 
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In general, 

although as soon as ~(e;Mt) is principal we must have 

(the central equality here following from a sandwich argument). 

Indeed, when ~(e;Mt) is a principal modular cut (as it must 

eventually be) then the addition of the remaining cells 

et+I,· •. ,ek is just via successive closures of the principal 

modular cut (FR(e;Mt », and so clearly 

II e II = r(FR(e;Mt »· 

That is, I/el/ is just the rank of FR(e;Mt ) for t sufficiently 

large where "sufficiently large" means precisely that A(e;M ) 
t 

is a principal modular cut. 

This observation can be "turned on its head", so to speak, to 

give a method for evaluating I/el/. The method is to 

progressively extend M by adding points e
l
,e

2
, ••• in turn to 

give matroids MO (= M) ~ M] ~ M2 •.• where at each stage we 

add e via some modular cut J,(t where t+) 
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We stop the process at the value of t when ~(e;Mt) first 

becomes principal. Then II e II is given as the maximum rank 

of FR(e;M ), the maximum being taken over all the possible 
t 

ways of performing this procedure. 

In trying to calculate lIell we have, of course, a range of 

possible modular cuts for the one-point extension at each 

stage and it is an open problem to determine which of the 

possible choices for ~~t is best. There seems no strategy 

for this, other, that is, than looking at each possibility 

for JAt at every stage and when we have done the whole 

process in all possible ways going back and selecting those 

modular cuts JUt which hindsight tells us will produce a 

maximum rank for the total extension. 

This difficulty associated with calculating Ilell is 

certainly a drawback to the considerations of the concept of 

freedom. However, we shall see later in this work that we 

can still make some progress theoretically in relating freedom 

to other concepts (see particularly Chapters 2 and 3) and 

for particular classes of matroids the calculations of freedom 

may be relatively easy (see Chapter 4). 

In one special case the freedom can be easily determined and 

as we shall refer to the case later it is worth stating it 

specifically. It is an immediate corollary of the above remarks. 
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Corollary 1.5: If vU(e) is principal then lIell :::: r(FR(e»; 

otherwise "e II > r(FR(e». In particular, 1/ e" == I if and 

only if J.{(e) is the principal modular cut < ~ > . 
o 

Returning to the general case, we can get an easily calculated 

es timate for II e /I by taking .A,{ t 

stage. That is, J{o = ~(e;M), 

c:U I = JA(e;M1), 

and so on. 

to be just ~(e;M ) at each 
t 

In this case MI is obtained from M by adding e' via c-U.(e) 
----M I 

so ~(e;MI) is just ~(e) I, and in general, 1n this case 

---M 
1'(eoM) = ILe,of\..ft t 

"'"' -, t ~ '-I) 

e3, .• , via ACe) and its successive 
-~-~--- M 

closures 1n M
I

, M2, Eventually Jt(e;M) t will be 

principal and we define daCe) to be the rank of the flat 

generating this principal modular cut. 
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The number do(e) is easily calculated (certainly a polynomial 

algorithm in n wh~:H' [1 is the number of flats of M). Clearly 

dO (e) s: II ell, but an example for which the inequality is strict 

was quite hard to find. 

Example 1,1: Let M be the rank 6 matroid on the set 

E = {a,b,c,d,e,f,g,h,i,j,k,~,m,n} 

where all the subsets of E with S1ze ~4 are independent and 

the only dependent hyperplanes are 

{a,b,c,f,g,j}, {a,b,c,h,i,k}, 

{a,d,e,f,g,~}, {a,d,e,h,i,m} 

and {a,f,g,h,i,n}. 

(This is an example of what Welsh [30J calls a paving matroid.) 

The modular cut cA..(a) consists of these five dependent hyperplanes 

together with the flat E itself, and FR(a) = {a}. 

If we add a point a' via J!(a) , direct calculation shows that 

--,--,---,..+1 u a ' 2 JA-(a) is the principal modular cut < {a,a'}), so dO(a.)'" • 

However, we can add a point a 1 to M via the modular cut 

).l(a) u [{a,b,c,d,e}} and direct calculation shows that if 

we call the extended matroid MI then 
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Now add a2 to H
J 

via this modular cut to get a matroid H2 

and vtt(a;H2) is the principal modular cut <{a,a
l 

,a
2
i). 

So lIal/ ~ 3 and indeed it is readily checked that Iiall :: 3. 

Hence 2 :: dO(a) < II al! == 3. 

o 
Now daCe) is a lower bound on II ell ; can we find an easily 

computed reasonable upper bound? 

'MY\-~ 
Define the number d) (JJ..), where dAis a~modular cut of M, by 

min [reF) + reG) - reF U G)] . 
F,GEJA. 

Here the minimum 1S taken over all F,G E~; in fact. we 

need only minimize over the ~ltm flats in J,( . 

Lemma 1.6: If ~ is a collection of flats in M and 

F F F are the minimal flats in ~ (minimal W1· th I' 2'···· n 

respect to inclusion) then 

min 
F ,GE ') 

[ r(F) + reG) reF U G)] 

min [rCF.) + r(F.) - reF. U F.)] . 
.. 1 J 1 J 
:l,] 
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Proof: If F, G E ~ then there exist i and j with F. ~ F 
~ 

and F j C;; G. Then by a standard matroidal argument 

reF) + reG) - reF u G) ~ r(F.) + r(F.) - reF. u F.). 
1 J 1. J 

e ",,*tl~) 
When the modular cut is c.M.(e),~we shall denote d1 ( J{ (e» 

by just diCe). rfY\.~CA4Il.w(~" 

Theorem 1. 7: 

Proof: We have already observed that daCe) ~ II ell • 

Let N be an extension of M such that 

Let F and G be flats in vUCe) such that 

dl(e) = reF) + reG) - reF v G). 

Taking closures in N will not affect the rank so 

-N -N -N-N = rN(F ) + rN(G ) - rN(F U G ) 

---N 
~ d 1 ( oM. (e ; M) ) 

-N -N N 
because the flats F and G are in ~(e;M) • 

o 
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But J,{{e;M)N = <FR(e;N» , and uHng Lemma 1.6 this implies 

·...,..,..-,----N 
d l ( ..M.(e;M) ) rN(FR(e;N» = II e II. 

That 1S, 

We saw in example 1.1 that it is possible for dO(e) to be 

strictly less than Ilell, and the same example illustrates 

that it is possible for llell to be strictly less than dl(e). 

That is, consider the rank 6 matroid M of Example 1.1. It 

is easy to see that for the point a E E, dl(a) ~ 4 whereas 

"all = 3, strictly less than d l (a). 

Theorem 1.7 can be generalized to arbitrary modular cuts in 

the following way. Let JL be a modular cut of M and define 

dO (cAt) to be the number obtained by adding cells 

e l ,e2 ,··· 

JJ..., that 

to be the 

successively to M via the successive closures of 
-Mue 

is, via J.{, J.l I, ... , and then taking dO (vU.) 

. -Mue j ue 2 ••· 
rank of the flat generat1ng JUL when 

it becomes a principal modular cut (as it must eventually 

do). Then 

and the proof is essentially the same as that for Theorem 1.7. 

(Of course, when JA. is just cAA (e) we get precisely 

Theorem 1.7.) 
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One might expect that for any matroid M and any modular cuts 

dAandc.H'of M, J.{Sr~...y- would imply that 

dO(~) ~ dOCJr). It can be shown that it would then follow 

that dO(eA!) = d(~) for any modular cut. So the difficulty 

with calculating d(JU) arises because we can find a matroid 

M and modular cuts cJ1,{ c:vY' of M with dO(J.() < dO(K). 

Example 1.2: Let M be the rank 5 uniform matroid USeE) 

where 

E = {a,b,c,d,e,f,g,h}, 

Let JA be the modular cut 

{EJ{a,b,e,f},{a,b,g,h},{c,d,e,f},{c,d,g,h},{e,£,g,h}} 

andvY' be the modular cut eM. u {{a, b ,c ,d}}. 

If we add e 1 to M via eM, direct calculation reveals 
-Mue 

thatA 1 =<{e
l
}> and so dO(J.{) = 1. 

If we add f1 to M via~ then, again by direct calculation, 

-Muf 
J( 1 =({fI,a,b},{f1,c,d},{fl,e,f},{fl,g,h}) • 

-Muf. - Muf1uf
Z Now adding f2 viak I g1ves tH" 

so dO(X) = 2. 

lienee vUeeN' but doCA) < dO<ck). 

o 
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This example illustrates an important and surprising idea. 

Because vU. c%, M U fl is a weak image of M U e
l 

and 

intuitive ideas about geometry would lead us to expect that 

the freedom of f] should be less than the freedom of e] 

(in some sense f] is "bound in more tightly" than e
l
). 

This example shows these intuitive ideas to be incorrect; 

and II fIll = 2. So it may well happen that 

binding a point in more tightly aligns flats in such a way 

that the freedom of the added point is actually increased. 
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2. Basic Properties of Freedom 

In this chapter we shall look at the relationship between 

freedom and other basic matroid constructions; for example, 

the relationship between the freedom of a point and extensions, 

lifts, duality, maps and so on. We shall begin by examining 

some of the structure of the flats FR(e) for e E E. 

Notice, firstly, that it is an immediate consequence of the 

definitions that if M 18 a matroid on E and e ~ E
J 

and 

if N is an extension of M, then 

That is, carrying out extensions can at best preserve the 

freedoms and in general will decrease them. 

Proposition Z.I: Let M be a matroid on E and suppose 

e 1 ,e 2 E. E are such that e 1 E: FR(e
Z
). Then FR(e 1) ~ FR(e2)· 

Proof: Because e 1 € FR(eZ) then any fully-dependent 

flat contJaining eZ must also contain e
1

• Hence cM.(e
2

) ~ J.{(e}) 

and so FR( e 1) C. FR(e
2
). 

o 
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We can define a partial order on E in the following way: 

Basic properties of this partial order can be easily 

determined. 

(a) If e
l 

~ e
2 

and e
2 

~ e3 then e l ~ e3 , because e
l 

( FR(e
2

) 

and e
2 

~ FR(e3) implies e l ( FR(e3) by Proposition 2. I. 

(b) If e
J 

~ e
2 

and e 2 ~ e 1 
then FR(e l ) = FR(e 2), aga1.n by 

* the last proposition. Hence e) ~ e
2 in this case. 

(c) If e l :$ eZ then 
" ell/ 

:$ "e2 /1· This property wi 11 follow 

as an immediate corollary of the following result. 

Define e
l 

< eZ if e l :$ e2 and e l is not equivalent to e
2

. 

Proof: The result is true if e2 is a coloop, for then e
l 

cannot be a coloop so lIe l " 1.S finite and "e2 " is infinite. 

Assume then that eZ 1.S not a coloop; e l will then also not be 

a coloop. Nowe
l 

< e2 and so e l ( FR(e2) but e2 ~ FR(e
l
); 

hence FR(e
l
) is a proper subset of FR(e2). Suppose that 

/I e III = k and let N be the extension of M obtained by adding 

cells al,aZ' •.• '~ each equivalent to e l and of total rank k. 

We saw in Chapter 1 that 

Any fully-dependent flat of N containing e2 is either of the 

-N 
form F where F is a fully-dependent flat of M containing e

2 



- 34 -

in which case e 1 E FN, or it is a flat G of N not of this 

form but containi ng ope of the new ce lIs a i ; but e 1 ,.... a i 

so in this case too e
l 

E G. This means that e 1 E FR(e2;N). 

the central equality being styict because FR(e];N) is a 

proper sub-flat of FR(e2 ;N). 

D 

This partial order on E induces a partial order on the 

equivalence classes of E (where cells are in the same class 

if and only if they are equivalent in M). If we construct 

the Hasse diagram for this partial order, as we move down a 

chain Theorem 2.2 tells us that the freedom of the 

corresponding cells must drop by at least one at each stage. 

Example 2.1: Let E be the rank 3 matrarl given in Figure 4. 

c 

05 

e 
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The equivalence classes of E are {b,c},{d,e},{a} and {f} 

and the Hasse diagram for the partial order, together with 

the associated freedoms, is as follows: 

o 
Suppose M is a matroid on E and let d,e E E. Then by 

MCe ~ d) we shall mean the matroid on E given by the one-

POint extension of M\e obtained by adding e via the principal 

modular cut < d). The notation is suggested by the geometrical 

interpretation of this as "shifting e onto d". By M(e t--+e) 

we shall mean just M again. 

!heorem 2.3: FR(e;M) = {d: M(e~ d) is a weak image of M}. 

Proof: Letvit be the modular cut of M\e corresponding to --
the one-point extension M of M\e. Then M(e~d) is 

a weak image of M if and only if vi<.. S < d"). But J..L 1.S 
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generated by flats F of M\e for which F u e is a fully

dependent flat of M. Hence J,(. ~ <. d > if and only if every 

fully-dependent flat of M containing e contains d as well; 

that is, if and only if d £ FR(e;M). 

o 
This theorem tells us that FR(e) consists precisely of those 

cells d for which shifting e onto d induces a weak map 

of M. It seem5natural, following this theorem, to define, 

* * for each e € E, a set FR (e;M) (abbreviated FR (e) when the 

context is clear) by 

FR*(e;M) = {d E E: M(d~ e) is a weak image of M}. 

For example, if we consider the matroid M given in Figure 4, 

* then FR(a) = {a} and FR (a) = E whilst FR(b) = {a,b,c } 

and FR* (b) = {b,c,f}. Notice that FR* (e) in a general matroid 

will not necessarily be a flat. The star notation suggests 

a link with duality and we shall confirm later in this chapter 

that this is the case. 

Extensions 

We know that if N is an extension of M and e E E then 
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but can we be more specific? For example, what effect does a 

one-point extension of M have upon the freedom of cells in M? 

If we consider the matroid M given ~n Figure 4, and let N be 

the one-point extension of M obtained by adding a new point 

f I via the principal modular cut < f), then II f II N = I 

compared with IIfllM = 3, but the freedom of every other point 

1S unaltered. Another important example illustrating the 

complex relationship between freedoms and extensions is the 

following. 

E:.xample 2.2: Let M be the matroid illustrated ~n Figure 5. 

c 

A B 
o. 

b J-

D 

Figure 5 
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Let A =: {a,b,c,d}, B = {p,q,n,m}, 

C = {d,e,f,g,h,p} and D = {d,i,j,k,l,p}. 

We take sets A and B to have rank 3, and sets C and D to have 

rank 5. The following sets are all of rank 6: A u B, A u C, 

A u D, B u C and BuD. The following sets are all of rank 7: 

A u B u C, A u BuD, CuD and the whole space itself. 

Restriction to any of A,B,C or D gives a uniform matroid of 

the corresponding rank. The matroid is fitted together as 

freely as possible, consistent with the ranks given to the 

specified sets above. Then Ildll = lip II =: 2. Let N be the 

one-point extension of M obtained by adding the new point 

d, via A(d) = <A,C,D). Then FR(d;N) = {d,d}} and has 

rank 2; but IIpliN = I. The.f:reedomof the remaining points 

remains unaltered. There is no way we could construct a 

matroid N extending M with rN(FR(d;N» = Ildll M = 2, without 

reducing the freedom of p. This example illustrates that in 

general, given a matroid M we cannot find an extension N 

such that· 

for all e E E. 

o 
The following technical result will be useful later. 
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Proposition 2.4: Let M be a matroid on E and suppose e f E, 

and let J.t be a moduLr cut of M. If N is the one-point 

extension of H obtained by adding a new cell p via uU. then 

FR(e;N) '= FR(e;H) lJ {pl. 

If in addition J.<. 1S generated by flats F1,F2, 

of which contain e and are minimal in c:1,{ then 

FR(e;M) ~ FR(e;N). 

..• , F , none 
n 

Proof: If F is a fully-dependent flat of M containing e 

-N 
then F is a fully-dependent flat of N containing e and so 

FR(e;N) <;;; FR(e;M) u {pl. 

Now supposeJ.( = <F 1 ,F2, ... , Fn > where e ~ Fi for each 1. 

Suppose d E FR(e;M); we shall show that d E FR(e;N). 

To do this we need only show that if F is a fully-dependent 

flat of N containing e and p then d E F as well, because d is 

certainly contained in any fully-dependent flat of N containing 

e but not p. 
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So let F be fully-dependent and e,p E F; as p E F then there is a 

flat F. for some i with F. ~ F, and of course e E F - F .• Hence 
1. 1- 1. 

there is a circuit c) in F containing p but not e, and so there 

must be a circuit C2 in F containing e but not p. (If every 

circuit in F containing e also contained p then by taking any such 

circuit C and performing strong circuit exchange with C, we get 

a circuit containing e and contained in (C
I 

U C) - {p}~which is a 

~M -N contradiction.) Now as d E FR(eiM) then dELi c;. C2 and so 

d E F as required. This implies 

FR(e;M) C FR(e;N). 

o 

Lifts and Duality 

We can dualize the one-point extension construction in the 

following way. Let M be a matroid on E and suppose p ~ E; 

then a one-point lift of M by p is a matroid L on E U P such 

that Lip = M. We call p the lift point. 

(In the literature a lift of M is any matroid L' on E for which 

L'--+M is a strong map (see Brylawski and Kelly [2]). If L 

is a one-point lift of M by P then L\p is a lift of M in this 

sense and in fact corresponds to the Higgs lift (see Higgs [IOJ) 

of the elementary strong map L\p --.M given by adding p to L\p 

to give L and then contracting out p.) 
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Because (L/p)* = L*\p, there is a one-one correspondence 

between the one-point lifts of H by p and the one-point 

extensions of H* by p. Indeed, the weak map order (that lS, 

M1 ~ M2 if there lS a weak map H2 - -7 HI) on the one-point 

extensions of H* induces a weak map order on the one-point 

lifts of M ln the following way. 

A weak map M1 --~M2 is said to be rank-preserving if the rank 

of M1 is the same as the rank of M2 . Rank-preserving weak 

maps have been studied by LLcas [18J. It is straightforward 
are 

to show (see [18J) that when M1 and M2 (matroids on E then 

M1-- 7 M2 is a rank-preserving weak map if and only if 

Mt--~ M~ is a rank-preserving weak map. A one-point lift L 

of M is called non-trivial if the lift point p is not a loop 

1n L; then it is clear that any two non-trivial one-point 

lifts of M have the samerank (namely one more than the rank of 

M). So for two non-trivial onc-point lifts LI and L2 of H 

But L1 and L~ are both one-point extensions of M* and L~ is 

a weak image of L1 if anu dnly if JL
1 
~ Jt 2 where J..t1 and 

~2 are the modular cuts of M* corresponding to the one-point 

extensions L1 and L~ respectively. That is, the weak map order 

on one-point lifts of M corresponds to the usual lattice of 

one-point extensions of H*, giving the following result. 
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Proposition 2.5: Under the weak map order the set of non-

trivial one-point lifts of M form a lattice. 

o 

We call the I of the lattice the free lift. It is the dual of the 

one-point extension of M* formed by adding p via the modular 

cut {E}. 

We can relate one-point lifts to the corresponding one-point 

extensions of the dual in a very precise way: 

Proposition 2.6: Let M be a matroid on E and p ~ E and let L 

be a one-point lift of M by p. Let vtt be the modular cut of 

M* corresponding to the one-point extension L* of M*. Then 

for any subset A of E, rL(A) = rM(A) + 1 if and only if 

M* II E - A ~~; otherwise rL(A) = rM(A). 

Proof: Because M = Lip it follows that for any A ~ E either 

or 

Now g~ven AGE we know that 

and 

where E' :::: E u p. But rM*(E) = rL*(E') because L* is a one-point 
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extension of M* and tbe rank is not increased. Hence 

Now 

if and only if the closure of E - A in M* 1S not in JU that 

1S, 

E - A
H* ~ J..( . 

o 
Suppose L is a one-point lift of M with lift point p. Then we 

say that e E E 1S !reely lifted if p E FR(e;L). Similarly 

a subset A~ E is said to be freely lifted if each e E A is 

freely lifted; also the matroid M is said to be freely lifted if 

E is freely lifted, that is, if p E FR(e;L) for each e E E. 

These definitions are adopted for geometric reasons: following 

Mason [19:1 we can repns(;l1t both M and the one-point lift L as 

disjoint sub-geometries of one large matroid L as illustrated in 

Figure 6. 
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Figure 6 

The ground set of L consists of p together with two disjoint 

copies of E. To construct L we start with L and place M = Lip 

on a hyperplane in general position as shown in Figure 6. 

If E 1 b h f' d h of e in M; e E , et eL e t e copy 0 e ~n L an ~ t e copy 

h . . and t en 1n L, when e is not a loop 1n M the three cells p, eL 

eM lie on a line. To say that a point e is freely lifted, that 

is, that p E FR(e;L), means geometrically that e is placed 
L 

freely on this line. That is, FR(eL;L) is the line determined 

by p, eL and eM' When e is a loop in M then e freely lifted 

means eL is parallel to p in L. 

In this section we shall see that the freedom of a cell in a 

one-point lift is related to whether or not the cell is freely 

lifted, and in the process discover the relationship between the 

flats FR(ejM) and FR(e;M*). 
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If L is a one-point Lift elf H and A C. E then we say that the 

lift has increased !:rl~ ___ Limk or A if r L (A) = rM(A) + 1. 

~oposi tion 2.7: A r,d 1. e E: E is freely lifted by a one-point 

lift L of M if and only if every circuit of M containing e has 

its rank increased hv the lift. 
-' 

Proof: -- Let p be the lift point. Because Lip = M then for 

any A <; E, r
L 

(A) l' . (A) + 1 if and only if AL contains p. 
t-1 

Now suppose that e E E is freely lifted and let C be any circuit 

of M containing e. If the rank of C is unaltered by the lift 

then p ~ (;L which would imply that p 1\ FR(e;L) and contradicts 

the fact that e is freely lifted; hence the lift must increase 

the rank f C o • 

Conversely, suppose every circuit of M containing e has its 

rank increased by the .l LEt. Let C be a circuit of L containing 

e; we wish to show that P E (;L as this would imply p E FR(e;L). 

So suppose p ).. -cL; 1 " t h th k· M d " t lell \.. mus ave e same ran 1n an 

indeed must be a circuit in M. Hence, by supposition C has its 

rank increased by the lift which is a contradiction. Hence 

lNe lUUS t have p E (?~. 

o 
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Corollary 2.8: A cell e E E is freely lifted by a one-point 

lift L of M if and only if e E FR(p;L*), where p is the 

lift point. 

Proof: Suppose e is freely lifted; then by Proposition 

2.7 every circuit of M containing e has its rank increased. 

Hence by Proposition 2.6, any circuit C of M containing e 

. h CM* ~ 1/ h 1/. h 1 ~s suc that E - ~ v~ , w ere~ ~s t e modu ar cut 

of M* corresponding to the one-point extension L* of M*. 

But E - C is a hyperplane of M* for any circuit C of M, 

and conversely, so this implies that only hyperplanes 

containing e are in JL . Hence 

e E () F = FR(p;L*). 
FEJJ.. 

Conversely, suppose e E FR(p;L*); then every flat in Jl must 

contain e. Let C be any circuit of M containing e; then 

E - C is a hyperplane of M* not containing e and so E - C k. A . 
Hence by Proposition 2.6 the set C must have its rank 

increased by the lift, and Propostion 2.7 implies that e must 

be freely lifted. 

o 

This corollary enables us to show a very interesting relation-

ship between flats of M in which points are free and flats of 

M* in which points are free. 
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.:£!1eorem 2.9: Let E
1

'€2 f: E. Then e j E FR(e 2;M) if and 

only if e
2 

( FR(e
1

; ,), 

Proof: Suppose e 1 i~(e2;M) and consider the matroid 

M\e2 · Now M* 1.S a one-point lift of (M\e2)* = M*/e2 with 

lift point e 2 and so by Corollary 2.8, e j E FR(e2;M) implies 

that e j must be freely lifted by the one-point lift M* of 

M*/e2 · That is, e2 E FR(ej;M*) because e2 is the lift point. 

Conversely, if e
2 

E FR(e 1;M*) then by the above argument 

e j E FR(e 2;(M*)*) = FR(e2;M). 

D 

This theorem enables us to g1.ve a complete description of 

FR(e;M*) for any e E E in terms of the matroid M, namely, 

FR(e;M*) = {d E E: e E FR(d;M)}. 

But We can say more: recall that we saw earlier 1.n this 

chapter that 

t-
e E FR(d;M) if anJ only if M(d~ e) is a weak image of M. 

Hence 

FR(e;M*) {d E E: M(d~ e) is a weak l.mage of M} 

and this is precisely what we previous called FR*(e;M). We 

summarize this in the following theorem: 

!heorem 2.10: FR(e;M*) FR*(e;M). 

D 
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Another corollary of Theorem 2.9 is the following: 

Theorem 2.1 I: Let e 1,e2 E E. Then M(el~ e2) is a weak 

image of M if and only if M*(e2~el) is a weak image of M*. 

Proof: Now M(e
1 
~ e

2
) is a weak image of M if and only if 

e
2 

E FR(e1;M) if and only if e 1 E FR(e 2;M*) if and only if 

M* (e
2 
~e 1) is a weak image of M*. 

o 

Thts theorem tells us that the operation of shifting e l onto 

e
2 

induces a weak map of M if and only if shifting e 2 onto e l 

induces a weak map of M*. This is interesting because the 

"direction" of the operation is reversed when we move over to the 

dual. (Compare this with the fact that M
l
--4 M2 is a rank 

preserving weak map if and only if So too is M~ - - ~ M~; the 

"direction" of the operation remains the same in the dual.) 

Looking at the partial order defined on the ground set E of M 

by 

then the partial order defined on E via the dual matroid M* 

is just the reverse of this one. That is, using Theorem 2.9 

we know that e 1 ~ e2 in M if and only if e
2 

~ e
t 

in M* 

(technically perhaps we should write e < to 1 -M e 2 
emphasise.. 

that the order on E is relative to a matroid M; however no 

confusion should arise with the simpler notation). Hence 

the Hasse diagram for the partial order is simply turned 

upside-down when we move over to the dual. 
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!.xample 2.1 revisited: Taking M to be the matroid of 

Example 2.1 (see F1 6 L1CE: 4), we saw that the Hasse diagram and 

the associated freedoms was: 

So the Hasse diagram for the partial order induced by M* must 

be: 

and we do not need to find M* to be sure of this. However, 

M* is given in Figure 7 from which the freedom of each point 

can be calculated. M* has rank equal to 3. 

:f 

e 

Figure 7 
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In M*, \I b II = \I c 1\ = \I d 1\ ::: II e \I = 2, II f II = 1 and 

Ilall ::: 3. 

o 
In a general matroid M, given a chain 

by Theorem 2.2 we know that 

Moving over to the dual we will get en < ••• < e 2 < e 1 in M* 

and so 

In the last example, a < b < f in M and the associated freedoms 

are 1,2 and 3 respectively. In M* we have a > b > f and the 

freedoms are 3, 2 and 1 respectively. Roughly speaking, inside 

chains the large and small freedoms are interchanged when we 

move over to the dual. 

For example, if a matroid M has a loop e} and a coloop e Z then 

e I is the minimum element and e 2 the maximal element in the 

partial order. As we observed earlier, Ilell~ = 0 and Il e 211M"" ()D. 
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In the dual, e
l 

becomes a coloop and e2 a loop so 

O. The above remarks therefore 

give a natural ger'lf·ralization of the fact that loops and 

coloops are interchanged when mov1ng over to the dual. 

Let us give one more example, to illustrate that the 
~ 

1ncrease 1n freedom between successive elements in alchain may 

exceed and be unrelated to the freedom increases in the 

dual. 

Example 2.3: In Figure 8 we have illustrated a matroid 

M and its dual M*, both of rank 4. 

c 

ob 5-

M 

Figure 8 

The Hasse diagrams for the associated partial orders are: 

M 
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Notice that freedom increases by 2 along any edge of the Hasse 

diagram for M, but only by 1 in the diagram for M*. 

o 
While discussing duality it is worthwhile to g1ve a 

description of FR(e;M*) in terms of fully-dependent flats. 

Recall that 

FR(e ;M) n F 
FE Jt 

where j, is the set of fully-dependent flats in M containing 

e. Hence 

FR(e;M*) = n F 
FE :;* 

where ~* is the set of fully-dependent flats in M* containing 

e. Now a subset F ~E is a fully dependent flat in M* if 

and only if E - F is a fully-dependent flat 1n M. This 

result is not difficult to prove (see Ingleton and Piff [12J); 

a set F c;;. E is a fully-dependent flat of M* if and only if it 

is the union of circuits of M* and the addition of any point 

to F increases its rank in M*. That is, if and only if E - F 

is the intersection of hyperplanes of M such that the 

removal of any point from E - F does not alter its rank in M. 

But these are precisely necessary and sufficient conditions 

for E - F to be a fully-dependent flat in M. Applying this, 
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FR(e;M*) n F = E - U (E - F) 

FE: 'J* FE: ~* 

E - U G 

GE ~ 

where ~ is the set of all fully-dependent flats of M 

not containing e. By Theorem 2.10, this also gives a 

description of FR*(e;M) and we get 

{d E E M(d 1----4 e) 1S a weak image of M} 

E - U G. 

GE 1 
We can apply this description of FR(e;M*) to give: 

Proposition 2.12: Let M be a matroid on E without loops. 

Then FR(e;M) = {e} for all e E E if and only if 

FR(e;M*) = {e} for all e E E. 

Proof: If lEI = 1 then the result 1S trivial so we may 

as well suppose that lEI> I. Suppose FR(e;M) = {e} 

for all e E E. Then because M has no loops, M can have no 

rank 1 flats containing more than one point. Hence any fully-

dependent flat must have rank at least 2. But 

FR(e;M) = n F 
FE Jo 

where ~is the set of all fully-dependent flats of M containing 

e. Hence given any two distinct points d, e E E there must be 

a fully-dependent flat containing d but not e. For any 
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given e E E consider 

where ~ is the set of all fully-dependent flats of M not 

containing e. By the remark above 

U G = E - e. 
GE~ 

Hence 

FR(e;M*) = E - LJ G 
GE ~ 

E - (E - e) = {e}. 

The converse follows by duality. 

D 

Now we have clarified the relationship between freedom and 

duality we shall return to our study of one-point lifts. 

Proposition 2.13: Let L be a one-point lift of M with lift 

point p. Then L is the free lift of M if and only if every 

cell e E E is freely lifted; that is, if and only if 

P E FR(e;L) for each e E E. 

Proof: Let L be the free lift of M; that is, L is the 1 

in the lattice of one-point lifts of M. Hence L* is the 

I in the lattice of one-point extensions of M* and so the 

associated modular cut for this one-point extension is {E}. 

This gives 

FR(p;L*) = E u p. 
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That is, for each e E E, e E FR(p;L*), so by Theorem 2.9 

P E FR(e;L) for each e E E. 

Conversely, if p E FR(e;L) for each e E E then 

FR(p;L*) = E u P 

and so L* must be the I in the lattice of one-point extensions 

of M*. Hence L is the free lift of M. 

D 

The machinery now at our disposal enables us to answer the 

following question about one-point lifts. Given a subset 

A ~ E, can we find a one-point lift of M such that A is 

freely lifted but the rest of M is unaltered, in so far 

as a circuit of M has its rank increased by the lift if 

and only if it contains some element from A? 

Proposition 2.14: Let M be a matroid on E. If A ~ E is 

a flat in M* then there is a one-point lift of M which 

freely lifts A and leaves the rest of M unaltered. 

Conversely, if L is a one-point lift of M and 

A = {e E E: e is freely lifted} then A is a flat in M*. 

Proof: Suppose that A is a flat in M* and let L* be the one-

point extension of M* obtained by adding a new point to M* 

via the modular cut <A). Let C be any circuit of M; then 

E - C is a hyperplane in M* and by Proposition 2.6, C has its 

rank increased by the lift from M to L if and only if 

(E - C) ~ (A); that is, if and only if A ~E:-C. 
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But this is so if and only if C contains an element from A. 

Hence the lift L freely lifts A and leaves the rest of M 

unaltered. 

Conversely, suppose L is a one-point lift of M wi th lift point 

p and let A be the set of all freely lifted cells of M. 

Let C be a circuit of M; then E - C is a hyperplane of M* 

and, again by Proposition 2.6, C has its rank increased by 

the lift if and only if (E - C) >i. J,.l , where J). is the 

modular cut corresponding to the one-point extension L* 

of M*. But C has its rank increased whenever C contains 

an element from A, so if (E - C) €. JL then A c: (E - C). 

That is, if H is a hyperplane in Jl then A ~ H. 

Consider then (l H where the intersection is taken over all 
HE J.t. 

hyperplanes inJ!. (If ~ contains no hyperplanes then we 

take this intersection to be E.) Clearly A is a subset of 

this intersection. ;;'if'~')se 

e E n H but e ~ A. 
HEJl 

Then certainly e E FR(p;L*) and so, by Cor~lary 2.8, e 

is freely lifted by the lift from M to L. But A was the 

complete set of freely lifted points and so e E A, a 

contradiction. Hence we must have 

A = () H 
HE.J.t 

and so A must be a flat in M*. 

o 
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Finally in this section we want to look at how freedom is 

affected by one-point lifts. In general, under a one-point 

lift freedoms may increase, decrease, or rema1n the same, as 

illustrated in the following example. 

Examp]~~: In Figure 9 we have g1ven affine diagrams 

of a rank 2 matroid M and a one-point lift L of M with lift 

point p; L has rank 3 of course. 

e 0 0 0 0 0 0 
~ a.. b c d. e So 3 

M c 

L 

Figure 9 

The lift point p as well as the point h are free in the rank 

3 flat E U P where E ={ a,b, •.• ,h} is the ground set of M. 

(Notice that Lip = M so L is indeed a one-point lift of M.) 

Comparing M and L we see that 

2 > If a /I L = I, so the freedom of a has decreased; 

" g" M = 2 = If g /I L' so the freedom of g remains unaltered; 

"h /I M 2 < "h /I L = 3, so the freedom of h has increased. 

D 
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Despite the complexities illustrated by this example we can 

still detcrnline precisely when and how freedom is increased by 

a lift. We need 4 lemmas before stating the main result. 

Lemma 2.15: Let L be a one-point lift of M with lift point 

p. Then e ~ E is freely lifted if and only if 

FR(e;L) = FR(e;M) u {p}. 

Proof: It is clear that given this identity for FR(e;L) then 

p € FR(e;L) and so e is freely lifted. 

Conversely, suppose that e is freely lifted. 

Now circuits in M and L fall into the following cases. 

If A is a circuit in M then either A or A u p is a circuit 

l.n L. 

If A u p is a circui t l.n L then A is a circui t l.n M. 

If A is a circuit in Land p ~ A then A is a union of 

circuits in M. 

All circuits of M and L belong to one of these cases. 

Suppose F is a fully-dependent flat of L containing e; 

then because e is freely lifted, p € F. Now F is the union 

of circuits in L and for any circuit C ~ F either p ~ C 

in which case C is a union of circuits in M, or p € C in 
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which case C - P is a circuit 1n M. Hence F - p is a union 

of circuits in M and so is a fully-dependent flat of M 

containing e. On the other hand, if K is a fully-dependent 

flat of M containing e then it is a un10n of circuits in M; 

if C ~K is a circuit in M then either C or Cup is a 

circuit in L. This means that either K or K u p is a union 

of circuits in L; but it cannot be K because K would then be 

a fully-dependent flat of L containing e and not p and this 

is impossible. Hence K u p is a fully-dependent flat of L 

containing e. 

Let ~ be the set of all fully-dependent flats of M containing 

e. Then 

FR(e; L) n (K u p) 
KE :1 

= G,Q KJ u {p} 

FR(e;H) u {p }. 

0 
Lermna 2. 16: Let L be a one-point lift of M with lift point 

p and suppose e E E 1S freely lifted. Let M' be an extension 

of M. Then there exists an extension L' of L such that 

L'/p = M' and e is still freely lifted in the one-point lift 

L' of M'. 

Proof: The following construction is just one of the many 

ways that such an extension can be realized. Without loss of 

generality we can assume that M' is a one-point extension of 

M by the cell e' ~ E u p. SupposeJtis the modular cut 
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of M corresponding to this one-point extension. Then it is 

eas ily seen (see Kennedy [13 J) that J( = {F up: F E: J,(.} 

is a modular cut of L, and if L' is the corresponding one

point extension of L obtained by adding e' via ~then 

L'/p=M'. 

Let G be any fully dependent flat of L' containing e. 

If e' ~ G: then p E: G because p E: FR(e;L); 

if e' E: G then G ( vt and so pEG. Hence p E FR(e;L') 

and e is freely lifted. 

o 
This construction of L' can be given a geometric interpretation, 

as illustrated in Figure 10. 

L 
~ ....... 

____ The new pojrrts acld~d +0 M 10 

~Ive M' dr\! ther! .freely ,.fW ~ 

~Ive the cxten5l0" L of L. 

Figure 10 
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Figure 10 shows the large matroid L' containing copies of both 

L' and M', as introduced in Figure 6. 

Lemma 2.17: Let L be a one-point lift of M with lift point p 

and suppose e £ E is freely lifted. Then 

Proof: If e is a coloop of M then e ~s also a coloop of L, 

so the result holds. Suppose then that e is not a coloop of 

M. Let L' be an extension of L such that 

rL,(FR(e;L'». 

We saw in Chapter 1 that L' can be chosen so that 

FR(e;L) ~ FR(e;L') and because p E FR(e;L) (as e is freely 

lifted) then we can have p E FR(e;L'). Hence M' = L'/p 

is an extension of M and e is freely lifted in the one-point 

lift L' of M'. By Lemma 2.15 

FR (e ; L' ) FR ( e ; M') u { P }. 

Hence 

II e liM 
~ II e 11M' ~ r

M
, (FR(e ;M'» 

= rL,(FR(e;L'» - 1 

= IIeil L - 1. 
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To get an inequality going the other way, let Mil be an 

extension of M such that 

By Lenma 2.16 the lift L of M can be extended to a lift L" 

of Mil with the same lift point p and such that e is still 

freely lifted. Now using Lemma 2.15 again we have 

FR(e;LIf
) = FR(e;M") u {p}. 

Hence 

= rM,,(FR(e;M"» + 1 

Combining this with the previous inequality gives 

D 
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Lemma 2.18: Let L be a one-point lift of M with lift point p 

and suppose e E E is not freely lifted. Then 

Proof: As e is not freely lifted, e cannot be a coloop in 

either M or L. Suppose IlellL = k and let L' be the extension 

of L obtained by adding cells e
l

, e 2 , .•• ,ek to L each equivalent 

to e and with total rank k. We saw in Chapter that 

lI e ll L = r L, (FR(e;L'» and 

FR(e;L') = FR(e;L) u {e
l
,e2, ..• ,ek }. 

As P ~ FR(e;L) this implies p ~ FR(e;L') and so if we let 

M' = L' /p then 

r
L

, (FR(e;L')) rM,(FR(e;L') = k; 

1n particular 

But M' is a m1nor of L' and so as e ~ e. 1n L' then e ~ e. 
1 1 

in M' for each i. Hence 

and it follows that, because M' 1S an extension of M, 
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= k = Ilell v 

o 
These last 4 lemmas immediately give us our main result. 

Theorem 2.19: Let L be a one-point lift of M and suppose 

e E E, the ground set of M. Then lIellL > lIellM if and 

only if e 1S freely lifted; furthermore, if e is freely lifted 

then lIellL = lIell M+ 1. 

D 

Erections 

If M is a matroid on E then the truncation of M, denoted by 

T(M), is the strong image of M obtained by adding a new point 

via the modular cut {E} and then contracting out this new point. 

The rank of T(M) is one less than that of M. Reversing this 

process, an erection of M is any matroid R' whose truncation 

is M; that is, the rank of R' is one greater than the rank 

of M and T(R') = M. Now suppose we let R be the one-point 

extension of R' obtained by adding a new point p via the 

modular cut {E} of R'. Then T(R') = RIp = M and we see that 

R is a one-point lift of M with the property that the lift 

point p is in general position in R, that is 

FR(p;R) = E u p. 
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So for the purposes of this section we shall define an erection 

of M to be anyone-point lift R of H whose lift point p 

satisfies FR(p;R) = E u p. That is, our erections correspond 

to the classical erections of the literature but with one extra 

point added in general position. 

Crapo [4J has shown that under the weak map order the set of 

all erections of H form a lattice, and both Las Vergnas [14] 

and Nguyen [23] have given constructions for the 1 in this 

Lattice, called the free erection. The zero in this lattice 

lS just M itself with the extra point p added as a coloop; 

we call this the trivial erection. 

We can use the duality relationship between one-point lifts and 

one-point extensions to get a description of this lattice of 

erections. 

_Proposition 2.20: A one-point lift L of M is an erection of 

M if and only i f tht~ modular cut of M* corresponding to the 

one-point extension L* of M* contains every fully-dependent 

flat of M*. 

Proof: L is an erection if and only if FR(p:L) = E u P 

where p is the lift point; that is, by Theorem 2.9, if and 

only if 

P E FR(e;L*) for each e E E. 
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But this is possible if and only if every fully-dependent flat 

of L* contains p; that is, if and only if the modular cut of 

M* corresponding to the one-point extension L* contains every 

fully dependent flat of M*. 

D 

Following the notation introduced in Chapter I, we denote 

by J[(E;M) (abbreviated )leE) when the context is clear) 

the modular cut of M generated by all the fully-dependent 

flats of M. Then this last proposition tells us that M has 

a non-trivial erection if and only if ~(E;M*) is a non

trivial modular cut (that is, ~(E;M*) does not contain 

the empty set). 

In fact it tells us more, namely, that the lattice of 

erections of M is isomorphic to the interval [O,U«(E;M*}] 

in the lattice of modular cuts of M*, where 0 is the trivial 

modular cut and cAlI < )1 2 in the lattice if JL I d Jl2• 

Indeed this gives an a1 ternative proof that the set of 

erections has a lattice structure. 

One question of some interest is the following: how many 

times maya matroid be non-trivially erected? That is, 

given a matroid M on E find a non-trivial erection RI of M 

with lift point PI' Next find a non-trivial erection R2 

of R] with lift point P2' and so on. (We call Ri an ith 

erection of M.) Continue until we reach a kth erection ~ 

which has no non-trivial erections but which is itself a 
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non-trivial erection of ~-l with lift point Pk. Because 

each erection is non-trivial then p. is not a coloop ~n R. 
~ ~ 

so each p. ~s ~n the closure of the set E. That is, 
~ 

rank ~ rank M + k $ lEI, so 

k ~ lEI - rank M = rank M* 

and so k must be finite. The question above asks for the 

maximum possible value of k. Consider the following example. 

Example 2.5: Let M be the rank 3 matroid given in Figure 11. 

e 

Figure II 
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Each dependent line of M contains three points. The free 

erection R of M is given in Figure 12; the dependent lines of 

R have been drawn dotted so as to render the diagram 

comprehensible, and sufficient other lines have been drawn so 

that all the dependent hyperplanes (in this case, rank 3 flats) 

can be seen. The lift point p has been deleted from the diagram. 

Figure 12 

R\p 
(r/lnk 4-) 

Notice that in R the seL {e,f,g,h} has rank 4; the points do 

not lie in a plane. (The restriction of R to the set 

{a,b,c,d,e,f,g,h} gives the Vamos matroid.) Now R has no 

non-trivial erection: if R' were an erection of R then 

(deleting the lift point) the diagram for R' would look like 
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Figure 12 but have rank 5. In that case the sets 

A {a,b,e,f,g,h,i.~} and B {c,d,e,f,g,h,j,m} 

would both be rank 4 in R', A u B would be rank 5 and 

A n B = {e,f,g,h} would be rank 4, and this contradicts the 

submodularity of the proposed rank function on R'. 

However, let Q be the erection of M which is identical to R 

except that the set {e,f,g,h} has rank 3 in Q. Then Q has a 

non-trivial erection Q' of rank 5 and its diagram (deleting 

the lift points) would be like Figure ]2 except that it would 

be rank 5 and have {e,f,g,h} a rank 3 plane. This is the 

best we can do 1n so far as Q' can not be non-trivially 

erected and it is not possible to non-trivially erect M more 

than twice. 

o 
Notice that this example illustrates an important idea: M 

can be erected twice but it cannot be freely erected twice 

because the free erection of M has no non-trivial erection. 

That is, if we erect M, but not as freely as possible, then 

certain flats align and we are able to continue erecting 

into rank 5. Compare this with Example 1.2 in Chapter I. 

This 1S essentially the dual of that example, in a manner 

shortly to be made precise. This example shows that in general 

there need not be a free-est k-th erection of a matroid M, 

and answers negatively a suggestion by Las Vergnas [14J 
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that a free-est k-th erection might exist. An example similar 

to ours was discovered independently by Nguyen [24J. 

Let M be a matroid on E and denote by a(M) the max1mum number 

of times that M can be non-trivially erected. 

Theorem 2.21 : a(M) = d(~(E;M*». 

Proof: Here dCJl(E;M*» is the degree of the modular cut 

JlCE;M*) (abbreviated JA. for the remainder of this proof) as 

defined in Chapter I. Assume JL is non-trivial else the 

theorem is trivial. Suppose that deJA) = k; then we can extend 

M* to L* by adding points e 1,e2, ••• ,ek all equivalent to 

-L* each other and of total rank k in L* and with {el,e2, ••• ,ek}~G 

for all G E ~. Let e E E; if F is a fully-dependent flat 

-L* of L* containing e then either F is of the form G for some 

G E~, or F contains one (andhence all) of the new points 

In any case F mus t "I)',';dn e. for all i and so 
1 

e. E FR(e;L*) for all 1 and any e E E. 
1 

e .• 
1 

Hence dualizing, e E FR(e.:L) for all i and any e, so each e. 
1 1 

is in general position in L (none are coloops) and as 

rank L ; rank M + k 

then M is just the k-th truncation of L\{e l ,e2,···,ek } 

because M = L/{el,eZ, ••• ,ek}. Hence a(M) ~ k. 
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On the other hand, suppose a(M) = n; then we can find a 

matroid L on E u {e 1,e2 , ... ,en } such that e1,eZ, ... ,e
n 

are 

each in general pcsition in Land L/{e1,e Z" .. ,e
n

} = M. 

furthermore, each c. is in the closure of E in L, so if we 
1. 

dualize we get that {eJ,eZ, •.. ,e
n } has rank n in the extension 

L* of M*. Reversing the arguments above it is clear that 

-L* JJ {e 1,e2 , ... ,en } ~ G for each G E~, and so d(~) ? n. 

Altogether this implies (:t(M) = dcJ1). 

D 

If M is a matroid on E let aO(M) denote the number of times 

that M can be freely erected. That is, starting with M we 

freely erect M to get R
I

, then freely erect Rl to get RZ and 

so on, stopping when the only possible erection is the trivial 

erection. For example, for the matroid M in Example 2.5 we 

have UO(M) = 1 because M can be freely erected to R but R 

has no non-trivial erection. 

Theorem 2.Z2: 

Proof: Again we sheill abbreviate .At(E;M*) to just J)... 

throughout this proof; dO(J[) is defined ~n Chapter I. 

The proof of this theorem is essentially the same as that for 

Theorem 2.21. We need only show that the dual of carrying 

out successive free erections of M is to add points to M* via 
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the successive closure of cJJ.. in M* and its extensions. 

Let us be more precise: if Jl is trivial then so also ~s 

the theorem, so suppose J,( is non-trivial. Forming the free 

erection R1 of M with lift point P1 is equivalent to adding 

PI to M* via the modular cut~(see the remarks following 

Proposition 2.20). Then forming the free erection R2 of R} 

with lift point P2 is equivalent to adding P2 to R1 via 

the modular cut J1.(E u PI ;R1). All we need to show is that 

-R* 
Jt(E U PI; R1) = ,)A. 1. 

But if F is a fully-dependent flat of R1 then it must be of 

the form G u p I where G E JJ.. because P I is added via J.L and 

J( contains all the fully-dependent flats of M*, so 

* R
J 

On the other hand, Jl is generated by flats cl the form 

G U P I where G is i Lllly-dependent in M*, so the inclusion 

goes the other way as well. 

Hence we can carry out successive non-trivial free erections 

just so long as the corresponding closures ofJ(are non-trivial 

modular cuts, giving aO(M) = d (~). 
o o 
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Let us illustrate this last theorem with an example. If 

we carry out an erection of M and then delete the lift point p 

the effect in the dual to add p to M* and then contract pout. 

Example 2.6: Suppose we wish to calculate aOeM) where M is 

the rank 3 matroid whose affine diagram is given in Figure 13. 

Figure 13 

Then M can be freely erected to R1 whose diagram (without 

the left point PI) is again the same as Figure 13 but now in 

rank +. R) can then be freely erected to R2 and again the 

diagram (now without the lift points PI and P2) is as in 

Figure 13 but now in rank 5. R2 has only the trivial erection 

so aO(M) = 2. The dual of M is given in Figure 14. It is 

rank 4. 
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e 

c 

Figure 14 

The modular cutJ!<E;M*) is<{a,b,c,d}, {a,e,f,g}). 

The process of adding PI v~a this modular cut and then 

contracting out p] is shown in Figure 15. Notice that the 

result is just (R 1\Pl)*. 

M~u p. 
I 

e 

(.ot\tf"OC.+ 

01.1+ r. , 

Figure 15 

) 
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Now J(E;(R 1\PI)*) =<{a,b,c,d},{a,e,f,g})= <{a}). 

The effect of adding Pz via this modular cut and contracting 

out Pz is shown in .Figure 16. The result is (RZ\{P1,P
Z

})*. 

Figure 16 

This timeJ.{(E; (R
2 \ 

{PI'PZ})*) is trivial and the process stops. 

Theorem 2.21 reduces the problem of finding a(M) to that of 

calculating the degree of a modular cut and, as we saw in 

Chapter I, that can be quite difficult. However, the 

evaluation of aO(M) amounts to calculating dO(Jl(E;M*») 

and that is much easier. In fact, Theorem 2.22 enables us to 

give a precise description of the hyperplanes of R\p where R 

is the free erection of M with lift point p. 

D 
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Theorem 2.23: A subset H ~ E is a hyperplane of R\p if and 

only if 

E7"Ir'1* f. JA,CE;H*), but for any e '" E - ~ 

-=~--:-=------:M* 
(E - H) - e ~ vUCE ;M*) . 

Proof: H is a hyperplane of R\p if and only if H is a 

maximal subset of E with respect to the property that its rank 

is not increased by th0 lift from M to R. Now R is the free 

erection, so by Theorem 2.22 and Proposition 2.6, H has 

such a property if and only if E - H is minimal with respect 

to the property that 

E - H
t1* € JU(E;M*). 

o 
Compare this result with the description of the hyperplanes 

of the free erection given by Las Vergnas [14J and Nguyen [23J. 

Their determinination c.r the hyperplanes involves an iterative 

procedure, whereas Tlleorem 2.23 involves simply checking 

whether certain flats lie 1.n a given modular cut. However, 

this simplistic view hides what is really happening. The 

modular cut ~E;M*) 1.S generated by all the fully-dependent 

flats of M*, and straightforward checking reveals that the 

determination of this modular cut from these fully-dependent 

flats is itself an iterative procedure precisely the dual of the 
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procedure described by Las Vergnas and Nguyen. Put another 

way, Theorem 2.23 ; Jlustrates that the procedure of Las Vergnas 

and Nguyen is just !:L;:: completion of the modular cutJ.4E;M*), 

but expressed in the language of the dual matroid M. 

Maps and Minors 

Because one-point lifts are the reverse of elementary strong 

maps (see Higgs [10]), the earlier sections on extensions 

and lifts give information about how freedom relates to strong 

maps and the forming of minors. Theorems in those sections 

convert to results about strong maps and the forming of minors, 

and the details are omitted. 

Weak maps, being more general than strong maps, do not seem 

to be related directly to freedom (although in Chapter 5 we shall 

see that more can be said in special cases). In Example 2.4 

(see Figure 9) M is a weak image of L\p and freedoms rise, 

fall or remain unalt2rf.;, depending upon the particular point 

considered. Consider also Example 1.2. 

The following two results about minors will be needed in later 

chapters. 

Proposition 2.24: Let M be a matroid on E and suppose A~ E 

contains the cell e; suppose also that A ~ FR(e;M). Let M' be 

a minor of M whose ground set E' contains A. Then 

A ~ FR(e;M'). 
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Proof: -M Because A ~ FR(e;M) and contains e then e is free in 

this flat. Suppose rM(A) = k; then add points 

e
l
,e

2
, ••• ,e

k 
to M via the principal modular cut < AM>. Now 

___ ---- M 
A E {e I ' • • • , e k } and because e. is free in AM then e. ~ e for 

1 1 

each i. Let N be this extension of M on the set E u {e
l
,e2 , •••• e

k 1• 

Now the minor M' is formed by carrying out a sequence of one 

point deletions and contractions. Perform the same sequence 

on N to get a minor N' of N with the property that the 

ground set of N' is E' u {e l ,e2, ••• ,ek } and N' IE' = M'. 

But e. ~ e in N' for each i because equivalence will be 
1 

.-------------~N' preserved when we form minors, so {e
l
,e2 , ••• ,ek} ~ FR(ejN'). 

~------------~N' But A~ {e
l
,e2 , ••• ,ek} and so A ~ FR(e;N'). Restricting 

to E' gives A S FR(e~M'). 

o 
In this last proposition the minor M' on E' can be extended to 

a matroid on E by adding the elements of E not in E' as loops 

of M'. With this interpretation we can take A to be 

FR(e;M) in the last prop08iton and conclude that if M' 

18 a minor of M where the cell e is not one of the cells deleted 

or contracted out, then 

FR(e;M) ~ FR(e;M'). 

Proposition 2.25: Let M be a matroid on E and let e
l
,e2 E E, 

and suppose e
l 

E 
-....,......---~M 
FR(e2;M\e

l
). Then e

l 
E FR(e2;M). 
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Proof: ff F )S Cl i_;]ly-dependent flat of M\e) containing e
2 

-M 
then e) f F. Henet- every fully-dependent flat of M containing 

e
2 

must also contain e
1

, 

o 
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3. Freedom and Integer Polymatroids 

For a finite set E, a function 

from the set of subsets of E to the non-negative integers is an 

(integer) pOlymatroid if it satisfies 

(a) f(~) = 0 (normalized); 

(b) A S B S E implies f(A) ~ feB) (increasing); 

(c) for any A, B S E 

f(A) + feB) ~ f(A u B) + f(A n B) (submodular). 

The collection of all integer polymatroids on E will be 

denoted by ~(E). These functions have been extensively 

studied (see Crapo and Rota [5J. Pym and Perfect [25J, 

Edmonds [8J and McDiarmid [21]). Edmonds [8] showed that these 

functions give rise to matroids in the following way: for 

any given f E ~(E) let Mef) be the matroid on E whose 

independent sets are:-h subsets I of E for which 

IJI $ f(J) for all J ~ I. 

(Equivalently, the circuits of M(f) are the minimal subsets C 

of E for which Ici > f(C).) The rank function on M(f) is 

given by 

rCA) min (f(X) + IA - xl) ~ for AS E. 
XEA 
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For a matroid M on E let ~(M) denote the set of functions 

f E: ~(E) for which the associated matroid M(£) is just M. 

~(M) is not empty because it certainly contains the rank 

function of M. In this chapter we shall show that there is 

a strong connection between the freedom of points in M and 

maximal functions in ~(M). 

The set ~(M) is endowed with a natural partial order given by 

The first thing we need to do is to establish some basic facts 

about functions in ~(M). 

Lemma 3.1: Let C be a circuit of M and f E ~(M). Then 

fCC) lei - I. 

Proof: Because C IS a circuit then fCC) < lei, so 

f(C) :<; lei - I. 

But C IS minimal with l'eSrect to this property, so for any 

e E C 

f(e - e) 2 je - el lei - I. 

The result now follows by the increasing property. 

o 
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Lemma 3.2: Let 0 be a dependent set of M. Then there exists 

a cell e £ 0 such that for any f f C(M) 

f(D) = feD - e). 

Proof: If D is a circuit then let e be any cell in D and the 

result follows by Lemma 3.1. When D is not a circuit then 

it must contain a circuit C; let e be any cell in C. By sub-

modularity, for any f ( ~(M) 

fCC) + feD - e) ~ feD) + fCC - e) 

and we know from Lemma 3.1 that fCC) = fCC - e) so 

feD - e) ~ feD). 

The result now follows by the increasing property. 

o 
An immediate corollary of this last lemma is that if f} and f2 

are distinct functi(ln~ 1.n r;(M) then any minimal set A '= E 

with fleA) 1 f 2(A) must be independent. This in turn implies 

the following result implicit in Crapo and Rota [5J. 

Lemma 3.3: Let f ( sCM) be distinct from the rank function r 

of M. Then a minimal subset A <:; E on which f (A) 1- r(A) 

must be a point. 
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Proof: We know that A must be independent: suppose IAI ? 2 

and let e
l
,e

2 
( A be distinct points. Because of the 

minimal i ty and ind('pcnd,>n ce of A, 

IA I - 2; 

IAI - I. 

By the submodularity of f, 

f(A - e
l
) + f(A - e

2
) ~ f(A) + f(A - {e

J
,e

2
}) 

i . e • I A I - 1 + I A I - J ~ f (A) + I AI - 2 

~ . e . f (A) ~ I A I . 

But A is independent so f(A) = IAI which in turn is just rCA), 

and this contradicts the minimality of A. Hence IAI < 2 and 

so M must be a point. 

o 

yroposition 3.4: Let £ c ~(M) and A ~ E. Then 

f(A) == f(A). 

Proof: If A IS closed then it is obvious, so assume there is 

-a cell e ( A-A. Nuw A u e must be dependent so let C be a 

circuit contained in A u e and containing e. By Lemma 3.1 

fCC) = fCC - e) and by submodularity 
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f(A) + fCC) ? f(A u e) + fCC - e) 

so f (A) .::: f (A u e); hence by the increasing property f (A) = f (A u e). 

We can now repeat the argument replacing A by A u e because 

A = A u e, and so by adding a cell at a time we eventually 

get f(A) = f(A). o 

Notice that the rank function r of M is a minimum In ~(M), 

for if A ~ E is independent in M then 

f (A) 2 IAI rCA) for any f E ~(M), 

whilst if A IS dependent then taking a basis B for A we have 

f (A) f (B) (by Proposition 3.4) 

;:: I B I = r(A). 

We shall now show a connection between the flats FR(e) for e E E 

and functions in ~(M). 

Denote by ~(E) the set of functions 

cp: E~ cr(E) 

with the property that e c cp(e) for each e c E. For any 

¢ E ~(E) and A ~ E denote by CP(A) the image of A under cp; that 

IS 

q,(A) U cP (e) . 
ecA 
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Theorem 3.5: Le t I'. r,(M) and ¢ ~ ¢(E) and define 

f e(E)---jZ~ by tCA) = g(¢(A» for each A.;cE. Then 

f ( r,(M) if and onJy if cfl(e) c;, FR(e) for E~ach e ( E. 

Proof: Let f . 1", (!vi) and suppose we can find an e c E for 

which ¢(e) ~ FR(e); we shall see this leads to a contradiction. 

As fee) ~ FRee) then there must be apE <pee) such that 

p ~ FR(e); hence there is a fully-dependent flat containing e 

but not p, that is, we can tind a cireui t C wi th e EO: C but 

-
p ~ C. Now <p(C) '2 e u p (because P E <p(e) and e E C) and so 

fCC) = g(¢(C» ~ g(C u p) ~ r(e u p) 

= lei - I + I = /el; 

that is, fCC) ~ lei and 45 £ E ~(M) this IS impossible. 

On the other hand, suppose ¢(e) Si FR(e) for each e f E; we 

shall show that this implies f f. z;:(M). 

To show that f t & I I,' we need to show it is normalized, 

increasing and submodular. 

(a) From the defi~-.it:;on, f IS zero on the empty set, and 

hence normalized. 

(b) For A c: B C;; E clearly ¢(A) ~ <1>(B) C;; E so 

f(A) = g(1)(A)) s g(1)(B)) f (B) • 
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(c) For any subsets A. B of E notice that 

A c.; ¢(A): 

4>(A) u ¢(B) = ¢ (A ,~ B); 

HA) n <PCB) ;;> ¢I(A (1 B). 

Using the submodularity and increasing properties of g 

f(A) + feB) g(¢(A» + g(¢(B» 

2 g(¢(A) u ¢(B» + g(¢(A) n ¢(B» 

~ g(¢(A u B» + g(¢(A n B» 

f(A u B) + f(A n B). 

Hence f [ ~(E); it only remains to prove that M(f) is M. 

Suppose I is independent in M; then for any J C. I 

f(J) = g(¢(J» 2 g(J) 

because g r ~(M). 

Hence I 1S also independent in M(f). 

-M 
Suppose C is a circuit in M; for any e !: C we have FR(e) ~ C • 

But ¢(e) C;; FR(e) for each e " E, so He) C; eM for each e E C. 

-M whence ¢ (C) ~ C . 

Then f(C) = g(¢(C» ~ g(C
M

) 

gee) by Proposition 3.4 

< lei because g!: ~(M). 

Hence C is also dependent in M(f). 

Altogether this implies M(f) and M are identical matroids. 

o 
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We can define a new partial order on sCM) In the following way: 

f '(? g if there lS a function ¢ t !p(E) such that 

fCA) g(¢(A») for all A £ E. 

Notice that the ¢ chosen depends upon f and g. It is straight

forward to see that this does define a partial order. For 

example, f ~ f for any f c z:(M) by taking <p(e) = e for all 

erE. Also, if f I ~ f 2 and f 2 )K f3 then there exist functions 

<P12 and ~23 in ¢(E) such that 

so 

f I (A) f2(~J2(A» = f 3 (¢23(¢12(A») 

= f 3 ([¢Z3 0 ¢12JeA». 

Hence f J ~ £3 because (V
23 

0 4>12 ;: !p(E) , as is ead ly checked. 

Because A~ <p(A) for any ¢ E ~(E) and any A ~E then 

f'):= g implies t ~ g, but the converse is not true. 

Indeed, we saw ear lj e r tlial f ~ r for any f E Co (H) where r 1S 

the rank function of M. For which functions f ( ~(M) is it true 

that f"> r? In general it is not true for all fEZ; (M). 

Example 3. I: Let M be the rank 4 matroid whose affine diagram 

is given in Figure 17. 
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b 
DC. 

Figure 17 

The only fully-dependent rank 3 flats are {a,b,c,d} and {d,e,f,g}. 

Let f : (5)(a,b,c,d,e,f,g)~Z~ be defined as follows: 

fed) = 2; 

f{d,x} 3 where x c {a,b,c,e,f,g}; 

f{d,x,y} == 4 where x € {a,b,c} and y ( {e,f,g}; 

f(A) = rCA) for nIl other subsets A. 

It is straightforward to verify that f f ~(M). But by Theorem 3.5, 

if there is a function ~ ~(E) such that 

fCA) = r(~(A» for all A ~E 

then <P(d) <;'FR(d) == {d} and so fed) would equal r(</>(d» = red) = 1, 

which is certainly not true. Hence f ~ r. 

o 
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The next theorem, however, shows that if f E C(M) then we can always 

find an extension N of M such that, loosely speaking, f;': r
N

• 
, 

To be more precise. we l~,ill ~iild a function f .- dN) with 

f ~ rN and f I (?(E) := f. 

This theorem was proposed independently by Nguyen [221; see 

also Lovasz [151. 

Theorem 3.6: Let M be a matroid on E andsuppose f E ~(M). 

Then there exists an extension N of H with ground set E', and 

a function ¢ ( ¢(E'), such that 

for all A ~ E. 

Proof: For each point e E E define X(e) to be the set 

where e 1 ,e
2

, ••• ,c
k 

are distinct elements not In E and where 

k = fee) - I. That is, IX(e)' = fee) and if a,b, ( E are 

distinct then X(a) n X(b) =~. If e is a loop take X(e) = {e}. 

We define the set E' lJy 

E' = U X(e). 
e,E 

For- any set B ~ E' let B c;;;: E be the set 

{e E: X(e) (I B t ~}. 

We can now define a function f (;,(E')--4 Z+ by o 

f (B) feB) for any B C E'. 
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We shall prove that f· rg (E') • Notice that 

B <;; D G E' impliet; B ~ D; 

----BuD == BuD; ---B n D ;; B n D. 

(a) f ~s obviously zero on the empty set, so it is normalized. 

(b) For B C;; D G E' 

feB) = feB) ~ feD) = feD) 

so f 1S increasing. 

(c) For any subsets B, D of E' 

£(B) + £ (D) = feB) + f (D) 

2 f (B u D) + £(B n D) 
~ 

2 f(B u D) 
.-..... 

+ feB n D) 

= f(B u D) + feB n D) 

so £ is subrnodu 1 dr. 

Having es tab lished that f E (g (E') we now define N to be the 

matroid M(f). 

Let ~ ~ ~(E') be the function given by 

~ 

~(b) = X(b) for each b ( E', 

where bEE ~s the unique element with b E X(b). 
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We shall now prove that 

f(A) = r N(<P(A)) for all A <;; E. 

By the submodularity of f, for any A £ E 

f (A) S; 

Now because 

B<;;E' 

/ 
etA 

rN 1S 

m1n 
Y~B 

f(e) ~~: I I X( e) ! 
ecA 

the rank function 

(f (Y) + I B - Y I) 

mln (f(Y) + IB - yl). 
YSB 

I ¢(A) I· 

of M(f) then for any 

In the special case when A ~ E this formula becomes 

rN (CP(A» m1n (f(Y) + I <p (A) - Y I) . 
y~¢ (A) 

Now fCY) + I <P(A) - yl ? fCY) + I<P<A) - <P(y) I 

fey) + I<pc A - Y)! 
fey) + f(A - Y) uS1ng (I) above. 

But Y S E so the above fTI1n1mUm becomes 

mln ,... (f(Y) + f(A - Y». 
YGA 

By submodularity, [CAl fCY) + £(A - Y) so this minimum 1S 

A 

obtained by Y = A giving 

( I) 
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But 

f (I\) f(X(A» 

These two inequalities imply 

f (A). 

o 
Following Nguyen [22J we call the extension N of M constructed 

in this proof the expansion of M relative to f. Looking at 

the set X(e) = {e,e
J
,e2 , ••• ,ek } where k = fee) - 1 for a 

point e E E, we see that for any subset Y ~ X(e) 

fey) fey) fCe) = k+J ~ Iyl. 

Hence X(e) is independent 1n N. Also, the cells e. are each 
1. 

matroidally equivalent to e because the function f in no way 

differentiates between them. That is, N is an extension of M 

obtained by adding fCe) - 1 cells equivalent to e for each 

point e E E. Hence 

X(e) <;; FR(e;N) for each e E E. 

This observation leads to the main theorem of this chapter. 

Theorem 3.7: Let M be a matroid on E and e (E. Then 

II e II = max 
ff:: r; (M) 

f (e) . 
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~: Suppose f ( s(M) and let N be the expansion of M 

relative to f. Using the same notation as in Theorem 3.6, by 

the observations above 

k+J f(e). 

If e is a loop then t(e) = 0 for all f ( s(M) so the result is 

true. Now suppose e is a coloop in M. Let K be any positive 

integer and define f : (?(E)~ z; by 

f(A) r(A - e) + K when e E: AS: E 

f(A) rCA) when e ~ A c:; E • 

It is straightforward to show that f E: sCM). 

Now fee) = K, and as K WClS any positive integer we get 

max fee) CD II ell· 
f (/:; (M) 

So Suppose e IS not .:1 L"'lJ or coloop of M. \.Je need only show 

that there IS an f , dr-I) with fee) = IIeli. 

Suppose Ilell = k and let N be the extension of M obtained by 

adding cells e ,e
2

, ... ,e to M so that each is equivalent to 
1 k-) 

e in Nand 

(We saw In Chapter I that this IS possible.) The ground set of 
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Define ¢ ( ~(E') by 

for any pEE' distinct from e and e .. 
~ 

Then ¢(p) ~ FR(p;N) for each pEE' and so by Theorem 3.5 

definining f by 

for each B <; E' 

gives f E seN). Now define f (f(E) ~ z; by f = f I @(E). 

Clearly f E c;(E) and in fact f E Z;(M) (for observe that 

the minimal subsets C of E for which fCC) < Ici are precisely 

the minimal subsets of E for which f(C) < lei and this implies 

such sets C are precisely the circuits of M, because N is 

an extension of M). 

Now f (e) 

o 
From the proof of this theorem we see that if e is not a coloop 

then there is an f ( ~(M) with fee) = Ileli. Given a matroid M 

without coloops is it possible to find a function f E Z;(M) so 

that 

fee) = Ilell for all e E E? 
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Suppose such an f existed; then the expanSion N of M relative 

to f would be such that 

for all e ( E. 

However, if M is the matroid in Example 2.2 of Chapter 2, then, 

as we saw in that example, no such extension N of M can exist. 
ouJ.-

Hence in general~a function f r ~(M) will not exist. 

This also illustrates the fact that in general ~(M) will not 

have a maximum £ unc t ion. If f E: ~ (M) is a maximum then it 

must be a maximum on cells of M, so it must satisfy fCe) Ilell 

f or all e ( E. So taking M to be the matroid in Example 2.2, 

the above argument shows that ~(M) has no maXimum. Suppose, 

for a given matroid M, f £ ~(M) was such that 

fee) II e II for all e ( E. 

Would this imply that f was a maximum in sCM)? In general 

the answer is no: (c'I1S ider the following example. 

Example 3.2: This lS based upon Example 1.1 of Chapter I. 

Let M be the rank h marroid OIl {a,b,c, ... ,m,n} given in 

that '3 x amp le and let M' be the extension of M obtained by 

adding b ' parallc1 t" b, c' parallel to c, ... , n' parallel 

to n. In M' we have Ilbl! /I c II = = II n" = I, bu t 

II all = 3. We can find a function £ E: ~(M') with tea) 3 
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and f(p) = I for every other cell p of M'. For such a function 

it would be necessary for:f{a,b,c,d.e} = 5. 

However we can find a function g E s(M') with g(a) = 2 and 

g(p) = I for all other cells p of M' and with g{a,b,c,d,e} = 6. 

So f 1S not a maximum in s(M) despite the fact that it is 

maximal on each point; in fact s(M) does not have a maximum. 

The function f is constructed by adding a
l
,a

2 
equivalent to a 

and independent, as explained in Chapter I, and then defining 

¢ by 

Hp) = FR(p) for each p in this extension. 

Then f is given by f(A) = r(~(A» for each subset A. 

Function g is constructed by adding a' equivalent to a and 

independent, as also explained in Chapter I, and then 

defining cp' by 

<p' (p) FR(p) for each p 1n this extension. 

Then g is g1ven by g(A) r(~(A» for each subset A. 

D 

We shall complete this chapter by giving three applications 

of Theorems 3.6 and 3.7. 
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We remarked earlier that there may exist functions f E Z;;(M) 

with f 'tf- r. The L,:xl'c,,;tdl describes those functions for 

which f 'ir r. 

Proposition 3.8: Let M be a matroid on E and suppose f f ~(M). 

For there to be a function ¢ r ¢(E) such that 

f(A) r (HA») for al1 A S E 

it is necessary that for each e \. E there exists a mlnlmum 

flat F containing e for which 

f(F) reF), 

and it is sufficient that for each e E E there exists a flat 

F containing e for which 

f(F) reF) f (e) • 

Proof: - Necessity: ~~unpose such a function </> exists. Now 

suppose F is any flat Ii!:'" which f(F) = reF); then 

reF) f (1:') '": t (F) 

and because F is a flat this implies F </>(F). 

Now HE) = r( HE» = r(~') so for any e ( E there is a flat 

containing e and satisfying the condition reF) f (F): simply 

take F to be the flat E. Hence all we need to do is show 

that there is a minimal flat F containing e with reF) = f(F). 
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Now suppose F) and F2 are flats, e E F) n F2 and 

r(F. ) 
1. 

f (F.) 
1. 

for i ) ,2. 

Then F. = ~(F.) for i = ),2 and consequently 
1. 1. 

~(F) n F2) £ ¢(Fi ) = Fi 

~(F) n F2) ~ F) n F2 

for 1 = ),2, so 

and this implies ~(F) n F2) = F) n F2• Hence 

and so F) n F2 1.S another flat containing e with 

r(F) n F 2) • 

Taking F to be the intersection of all such flats we shall have 

the minimum flat required. 

Sufficiency: Suppose that for each e E E we can choose a flat 

F containing e for which reF ) = f(F ) = fee). We shall show 
e e e 

that this implies the existence of a suitable function 

¢E4>(E). Indeed, let ~ be defined by fee) = F whe~F is the e e 

flat containing e chosen above. 

Now let N be the expansion of M relative to f, and suppose E' 

is the ground set of N. Then we can find a function W E ~(E') 

with 
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f (A) for all A~ E. 

by ~(e) 

for any A ~ E 

f(A) 

Similarly we can define ~ by ¢(e) 

We shall show that ¢ = ~. 

Nowe f F so ~(e) C ,II(F ); hut 
e - 't' e 

so He) 

feF ) 
e 

Hence ~(e) 

Hence ~ = ~ and so 

f (A) 

---N 
~(e) for each e ~ E then 

-N 
F for each e E E. 

e 

¢(e) for each e E E. 

The following example illustrates that neither condition of 

this proposition is both necessary and sufficient. 
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Example 3.3: Let M be the matroid U3(3) on {a,b,c}. In 

Figure 18 we have illustrated functions fl and f2 in S(M). 

3 

VCl'~ of f. 

Figure 18 

2. 

2. 

.3 
val Vt$ of fz. 

The integers g1ven in this figure correspond to the values of 

f. for i = 1,2 on subsets of {a,b,c}. For example, 
1 

fl(a) = 2; fl{a,b} = 3, and so on; 

f 2 (a) = 2; f 2(b) = 2, and so on. 

For f l , {a,b,c} is a minimal flat containing a with 

f
1
{a,b,c} = r{a,b,c} (=3). 

Also fl(b) = reb) = I and fl(c) = r(c) = I, and these are 

obviously minimal. 
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But it is easily checked that no suitable function ~ (in the 

sense of this last f't"C"o>it,Ott exists. So the necessary condition 

of the pf"()p~i+,o" is not sufficient. 

For f2 we again have that {a,b,c} 1S the only flat containing 

a with r{a,b,c} f 2{a,b.c}, and for this flat 

However, we can find a function ~ determining f 2 ; take ~ to be 

Ha) = {a,b}; ~(b) {b,c} and ~(c) {c} 

and it is easily checked that f
2

(A) = r(~(a» for any 

A C;; {a,b,c}. So the sufficient condition of the prol'asltioW' is 

not necessary. 

o 
The second application answers a question posed by Murty at 

the 1976 Combinatorics Conference at Orsay. France. He asked 

for: conditions on the matroid M so as to ensure that r;(M) 

contained only the rank function of M. 

Proposition 3.9: jr;(M)1 = I if and only if Ilell ~ I for all e E E. 

Proof: Suppose Ilell 5 I for all e E E and let f E r;(M). Then 

by Theorem 3.7 f(e) ~ I for all e E E; indeed if f(e) = 0 then 
l 

e must be a loop, so on points of M. f(e) = I. Hence by 

Lemma 3.3 f must be the rank function of M. 
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On the other hand, suppose I~(M) I = 1. Then for any e E E 

II e 1\ = max f (e) 
f E ~ (M) 

r(e) $; I. 

o 
Geometrically, if a point has freedom I it means that the 

point is fixed in position relative to the other points. This 

proposition tells us that I~(M) I = ) if each point is 

geometrically fixed in this sense. For example, in Figure ]9 

two matroids MI and M2 are show, in both of which each point has 

freedom 1. 

M, 
M'3. (",~k 2.) 

Figure 19 

Amalgamations 

The final application is to a problem in amalgamations. If MI 

and M2 are matroids on E\ and EZ respectively then an amalgam 

M of M) and MZ is any matroid M on El U E2 such that MIE\ = M\ 

and MIE2 = MZ• In some sense MI and M2 are glued together along 
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the conunon matroid M I~ I n E
2

) (see Mason [20 J) • In this section 

we shall look at a multiple amalgam of the following type: 

let M be a matroid on the set E = {e
l 
,e

2
, ••• ,e

n
} and for each 

I ~ i ~ n let M. be a matroid on a set E. where the sets 
1 1 

E),E2,···,En are disjoint. Then can we construct a matroid N 
n 

on E' = U E. such that NIE. = M. for each i, whilst if A is 
. I 1 1 1 1= 

any transversal of the collection {E.}, that is, IA n E.I = 
1 1 

for all i, then N I A ::: M, the isomorphism being given by the 

bijection E ---7 A where e. ~ A n E.? 
1 1 

In other words, can we "replace" each element e. by the matroid 
1 

Mi to form a larger matroid so that taking anyone cell from 

each set E. gives us, essentially, the matroid M? We have 
1 

already met a special example of this. If f E ~(M) then the 

expansion of M relative to f can be thought of as a matroid 

in which each point e E E is replaced by the free matroid on 

f(p} points (and the loops are left untouched). 

Before stating the theorem we need the following construction. 

Suppose that M is a matroid on E and that F is a rank k flat 

of M; let M) be a matroid on a set E) disjoint from E and 

with rank k) ~ k. We 

freely to the flat F. 

shall give a construction for adding M) 
k 

Consider the matroid T J (M[F ® M) on 
k) 

F u E1 where T is the kith truncation obtained by truncating 

k1 times. Now M can be reconstructed from MIF by a sequence of 

one-point extensions of MIF by adding the elements of E - F one 

at a time. We can carry out the same sequence of one-point 
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k 
extensions starting with T I(MIF ~ M\) except that if G is a 

Hat in the modular cut for the addi tion of the next point in the 

sequence defining M from MIF and G contains F, then replace G by 

G U E); this process will still leave us with a modular cut 

because M} is freely placed in F. The sequence of one-point 

extensions so defined will give a matroid N on E u EI such that 

NIE = M and NIEI = MI' Also, for any e EEl' e will be free 

in the flat F u e of N I (E u e). 

Theorem 3.10: Let M be a matroid on E = {e l ,e2 , ••• ,en} and 

for each 1 ~ i :s; n let M. be a matroid on the disjoint sets 
1 n 

Then there exists a matroid N on E' = U E. such that 
i=l 1 

NIE. = M. for all 1, aI\d for any transversal A of {E. } 
1 1 1 

N IA ~ M (the isomorphism being induced by ei ~ A n Ei ) if 

and only if there is a function f E ~(M) such that 

f(e.) ~ rank M. 
1 1 

for all 1. 

Proof: Suppose that there exists a function f t ~(M) with 

f (e.) ~ rank M. 
1 1 

for all I :s; i s n. 

E •• 
1-

Let N on the ground set E be the expansion of M relative to f; 

then for each i 

f( e .) ~ rank M. 
1 1 
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so to each flat FR(e.;N) freely add the matroid M. (as explained 
1 1 

above) to form the extension N of N. Define N to be the 

matroid N!E'. Clearly N!E. = M. for each i. Let A be a 
1 1 

_ A 

tram'versal of {E.} and consider N! (E u A); if a. = A n E. 
111 

then a. ~ e. in this matroid because both cells are free in 
1 1 

the closure of FR(e.;N) u {a.}. Hence NIA is just 
1 1 

- -
N!A~NiE = M. 

On the other hand, suppose the matr,oid N exists; we shall 

construct f E ~(M) with f(e.) ~ rank M. for all i. Now if 
1 1 

A is any transversal of {E.} then N IA ~ M, so if for each i 
1 

we add e to N via the modular cut < E~ > to get the extension 
i 1 

" 
N of N, then N!E = M. Also E.CFR(e.;N) for each e. E E. 

1 - 1 1 

Now define a function ~ E ~(E' u E) by 

.... 
He) = FR(e;N) f or each e E E' u E 

and a function f G\E' u E) --4 z~ by 

for each B ~ E' u E. 

~ A 

Then by Theorem 3.5, f ( 1:; (N) and as N IE 

f = f !(?(E) gives f E dM). 

lienee for any e. E E 
1 

f(e i ) = rN(~(ei» = rN(FR(ei;N» 

~ rN (E i ) 

rank M .• 
1 D 

M, defining 
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4. Freedom and Binary Matroids 

A matroid M on ~ is binary if it is representable over the 

field GF(2); that is, if there is a vector space V over GF(2) 

and a function a : E ---+ V such that A c: E is independent in 
~ IJ.(A)I :r IR/ 

M if and only if a(A) is an independent set of vectors in ~. 

Notice that if e is a loop in M then a(e) must be the zero 

vector in V; if e) and eZ are parallel points in M then a(e
t
) 

and a(e2) must be the same vector in V. Despite the fact 

that a is not one-one we shall make the usual abuse of 

notation and when given a binary representation of M think 

of the vectors in a(E) as cells of the matroid M. 

In this chapter we shall look at the freedom of cells in 

binary matroids and give a simple method for calculating their 

freedom. For a binary matroid M on E the binary freedom 

b(e;M) (abbreviated b(e) when no confusion can arise) of 

a cell e E E is defined by 

b(e) = max rN(FR(e;N» 
binNiM 

where the maximum is taken over all binary matroids N which Bre 

extensions of M. It is certainly the case that extensions of a 

binary matroid need not be binary, so in general~~~ 

b(e) < Ileli. 

The main result of this chapter ~s that b(e) = Ilell for any 

binary matroid M and any e E E. 
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This result is more suprising than it may at first appear. For 

a modular cut A of a binary matroid M define the binary 

degree b(sAL ;M) of ..AA.. (abbreviated b(J.() when there is no 

ambiguity) to be 

b(»') = max 
binN~M 

where the maximum is taken over all binary matroids N extending 

M. We shall see later that for any e E E 

b ( e ) = b ( JL( e» = d ( ..«.< e» = 1/ e II . 

It is certainly true that for any modular cut J1 of M, 

b(Jl) s d(~); in fact the inequality can be strict. 

Example 4.1: Bixby [I] introduced the matroid RIO which has 

the fo llowing binary representation (each colunnrepresents a 

point in RIO)· 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 
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For J ~ i ~ 5 let Hi be the hyperplane of RlO consisting of 

the four points in RIO whose i-th coordinate is zero. Let~ 

be the modular cut of RIO generated by these hyperplanes; 

it is easy to see that J( is non-trivial. and so 

d(J,{) > o. 

Let N be any binary 
JiJ>tt~oG~~tU 

extension of RIO;iwe can extend the 

above coordinate representation of RIO to give a binary 

representation of N (we may be forced to augment the coordinates 

of points in RIO with a string of zeros added to the end of 

each point (when the rank of N exceeds 5). Now if there is 

a cell of N in each flat iN for F E A it must have a zero in 

each coordinate position because the cell must be in each 

-N flat H .• That is, 
1. 

for any binary N 2 M. 

Hence b(jL) must be zero, which is strictly less than d~). 

D 
We need a series of lemmas before reaching the main theorem. 

Lermna 4, J: Let M be a matroid on E and suppose A c; E is 

such that M\A = MIE I @MIE2 • Let MJ = M/E2 and M2 = M/E I , 

Then for any subset B c; A 

$ r
M 

(B) + r M (B). 
J 2 
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Proof: Notice that E 1S the disjoint un10n E) u E2 u A. The -
matroids MIE)~ MIE 2, MiE) and MIE2 can each be extended by A 

to give M, M) and M2 respectively. 

Let Q be the large matroid whose diagram is given 1n Figure 20. 

Q 

.. -, , , , \ 

, , 
,_ .1 

Figure 20 

Q is constructed by starting with M and then adding the 

projection of A away from £2 onto a flat of rank equal to 

rank M - rank MIE2 and containing MIE), but otherwise in general 

position. Let A) be the image of A under this projection 

(see Figure 20). This gives an isomorphic copy of M) embedded 

in Q. Finally, onto the closure of MIE2 is added the projection 

of A away from M) to give a matroid Mi embedded in Q. Let 

A2 be the image of A under this second projection. The 

ground set of Q ~s E u A] u A
2

• For any set B C;;; A let B) ~ A
J 

* rr~~rxJtk~htM06~~: 
t, (B)+fM~ (5) : 1~ (BUE2.)-fjV1(£.J +7,-, (SUE,)--r,.,,(E',) 

= "M (SuE,) +',v1 (SVE:z,) -1M (E, V E1 ) 

4 'fr1 (B) +1"fY1 (BVE,vF2)-i"yv1(E,V£2) 

), ~ (£s), 
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and B2~ A2 be the corresponding images of B under the above 

projections. From the construction of Q it follows that B is 

in the closure in Q of BI U B2 and rQ(B) 

because B2 is the projection away from M1 

matroid of M) then 

= r M (B). Also, 
1 

and MfE) is a sub-

Hence 

rM(B) = rQ(B) ~ rQ(B 1) + r
Q

(B
2

) 

~ r M (B) + r
M 

(B). 
) 2 

0 

This lennna has been formulated for any B c;. A, but it can be 

extended to any B<';E in the following way. Matroid M) is 

defined on E1 u A but it can be extended to E by taking each 

element of E not in E) u A (that lS, element8 of Ea.) to be 

loops in M
I

, Similarly M2 can be extended to E by taking each 

eiement of E) to be loops in M
2

, With these extensions in mind 

we can assert that for any subset B ~ E 

r M (B) + r (B). 
1 M2 

The proof of this is identical to the last lellJlla; we just 

interpret B as a subset of E instead of necessarily a subset 

of A, 
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Lemma 4.2: Let M be a connected matroid on E and suppose e E E 

is such that Ilell = I. Then M\e is connected. 

~: Suppose that M\e = MIEI~MIE2 where both MIE) and 

MIE2 have rank at least I; that is, suppose that M\e is 

disconnected. Now e is not a coloop in M and so M can be 

embedded in the matroid Q illustrated in Figure 21. 

n---------~o~----~---O 
e e~ 

£,ue, 

Figure 21 

Q is constructed by starting with M on E and then adding to 

MIEI the point e
l 

given by the projection of e away from E2 , 

and adding to MIE2 the point e2 given by the projection of e 

aways from E
1

• Then the set {e
l
,e,e2} has rank 2 in Q and this 

set is just FR(e;Q). But Q is an extension of M, so 

2 

and this contradicts thefact that IIeil = I. Hence M\e must be 

fo connected. 

o 
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Lemma 4.3: Let M be a connected binary matroid on E and Suppose 

e E E is such that bee) = I. Then M\e is connected. 

Proof: The proof is essentially the same as in the last lemma; 

we need only observe that if M is binary then so also is Q. To 

be more specific, if M, MIEI and MIE2 have ranks k, k
J 

and k2 

respectively then k = k] + k2 and we can give each cell in M 

coordinates of length k so that each cell in MIE] is of the form 

(a l ,a2 , ••• ,a
k 

,0, ••• ,0) and each cell in MIE2 is of the form 
I 

(O •.•.• O.ak +l' •••• ak). Then e has coordinates (a],a2 , ••• ,ak) 
I 

where at least one a. for I $ 1 $ k, and at least one a. for 
1 J 

k1+1 $ j $ k is non-zero. To extend this binary representation 

to Q simply take e l to be (a 1,a2 , ••• ,a
k 

,0, ••• ,0) and e2 to be 
I 

(O, ••• ,O,ak +I, ••• ,ak). Then b(e;M) ~ b(e;Q) = 2 
I 

giving the same contradiction as in the last lemma. 

D 

Lemma 4.4: Let M be a connected binary matroid on E and suppose 

e E E is a point of M such that M\e is connected. 

Then II e II = I. 

Proof: If e is parallel to some other point of M then clearly 

Ilell = I so we may as well assume that {e} is just {e}. The 

method of proof is to look at the modular cut ~e) generated 

by all the fully-dependent flats of M containing e. By a process 

of taking modular intersections we shall show that 
~ 

a flat of rank m > ] in cALce) then ~ cam.. /.. a.. flat of rank m-I 
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ill J,{.(c). This will imply t-hat Ji.(C') IS Illl' principal lI10dular 

cut<{e}) and so Ilell = 1. 

As M is binary and connected, we can find a basis not containing 

e and get a representation like this: 

0 . . . . . 0 1 . 
0 0 1 . 
0 0 . 

0 
k where k rows, 

0 f--
is the rank of M 

0 

1 . . . . . 
0 . . . 

0 0 . . 1 . 
'- ~ 

.J '- ~ 

j 
, 

basis remaining points 
vectors e of M 

In such tables of coordinate representations the points are written 

as columns; in future the basis vectors will be omitted with 

an understanding they are to be placed at the left end of 

any such table. As e is not a basis vector then it has at 

least two non-zero entries in its vector representation, and 

by re-arranging and re-labelling _the basis vectors (a trick we 

shall often use) we can ensure that all the zero entries in e 

fall together somewhere in the middle of the column, as in the 
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last table. (It is not important that this 1S done; it helps 

clarify the following argument.) Because e does not disconnect 

M upon its removal then either there exists a (non-basis) point 

p like this: 

x . .. .. .. • • . 

x 
lines for.! 

0 x 
guidance 

\ 
0 x 

of the 
0 x 

eye 
x 

x .. .. • .. r 

+ + '--y-----J 
e p rest of M 

where the symbol "x" indicates there can be either 0 or ) in that 

position, or there exists a "staircase" set S c;;. E, all non-

basis points, like this: 
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0 0 0 x . 

0 0 0 

0 0 0 x 

0 x x x x 

0 x x x x 

0 x x x x If the structure 

0 0 0 here were 

0 0 0 ~ 
different we could 

get away with a 
0 0 0 smaller staircase. 

x 0 0 0 

0 0 0 

x 0 0 0 . . . 
t '---v----' \.... .J 

Y 

e S rest of M 

The reasoning here is that if a point such as p or a set such as 

S did not exist then upon removing e the remaining points would 

fall into coordinate blocks making M\e disconnected. The 

calculations in ~(e) reduce to four cases. 

Case I (first starting case): Suppose a point such as p 

exists, giving the following coordinate representation: 
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x 

n} ones t-- t} zeros of p 
of e )-

x 

0 x 

0 x f-- t3 ones of p 

0 x 

x 

nZ ones (-- t2 zeros of p 

of e 
~ 

x 

x 

t t 

e p 

Notice that t) < n} and t2 < n2' Let C(e) be the fundamental 

circuit of e with respect to the given basis, Then 

C(e) = {e} u {n
1 

basis vectors corresponding to the n 1 ones 

at the top of the column for e} u {n2 basis vectors 

corresponding to the n2 ones at the bottom of the 

column for e}. 

Hence r(C(e») = n
t 

+ nZ' 

Let C(e,p) be the circuit 
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C(e,p) = {e,p} u {t
l 

basis vectors corresponding to the t] 

zeros at the top of the column for p} IJ {t2 basis 

vectors corresponding to the t2 zeros at the bottom 

of the column for p} u {t
3 

basis vectors corresponding 

to the t3 ones in the middle of the column for p}. 

C(e,p) is a circuit because it is dependent (writing the 

vectors in C(e,p) as columns then each row sums to zero, 

modulo 2) but any subset is independent. 

Then r(C(e,p» = t] + t z + t3 + ]. 

Now consider the sets C(e) u C(e,p) and C(e) n C(e,p). 

Clearly r(C(e) u C(e,p» = n] + n2 + t3. 

The set C(e) n C(e,p) has t] + t z basis vectors In it together 

with the point e, and e is not spanned by these basis vectors. 

Hence r(C(e) n C(e,p» = t] 

Then r(C(e» + r(C(e,p» = 

+ t z + I. 

(n
I 

+ nZ) + (t 1 + t2 + t3 + I) 

(n
l 

+ n2 + t 3) + (t] + t z + 1) 

= r(C(e) u C(e,p» + r(C(e) n C(e,p». 

Hence the flats C(e) and C(e,p) are a modular pair. But C(e) 

and C(e,p) are obviously both fully-dependent flats in M 

containing e, so they belong toJ((e); so by modularity 

C(e) n C(e,p) E ~(e). Now because tl < n l and t z < nZ 
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r(C(e) n C(e,p» < r(C(e». 

So we have found a flat in ~e) with rank strictly less than 

that of the flat C(e). We shall use this fact shortly. 

Case 2 (second starting case): Suppose a point such as p 

does not exist but instead a set such as S exists, giving a 

coordinate representation like this: 

0 0 0 x 

n
l 

ones 0 0 0 < t) rows of S ~~ 
of e ~ 

0 0 0 x 

0 x x x x 

0 x x x x ( t3 rows of S sum to I (mod 2) 

0 x x x x 

0 0 0 

0 0 0 ( lsi - I rows 

0 0 0 

x 0 0 0 

112 ones I 
of e ~ 

0 0 0 < t2 rows of S 011 ~ 
) x 0 0 0 

t '----y----' 

e S 
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Again t} < n} and t2 < n2 . The argument is much as in Case I. 

Let C(e) be the fundamental circuit of e with respect to the 

given basis. Then, once again, 

Let C(e,S) be the circuit 

C(e,S) = {e} u S u {t l basis vectors corresponding to the tl 

rows at the top of S summing to O(mod 2)} u {t2 basis 

vectors corresponding to the t2 rows at the bottom of 

S summing to O(mod 2)} u {t3 basis vectors corresponding 

to the t3 rows in the middle of S summing to I(mod 2)}. 

Then C(e,S) is a circuit because it 1S dependent but any 

subset is independent. It has 

r(C(e,S» = tl + t2 + t3 + lSI· 

Because C(e) u C(e,S) contains n l + n2 + t3 basis vectors and 

requires only lsI - 1 to span to set S (because of the 

structure of the staircase portion of S) then 

r(C(e) u C(e,S» = n l + n2 + t3 + /sl - I. 

Also, as in Case I, 

r(C(e) n C(e,S» = tl + t2 + I. 
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r(C(e» + r(C(e,S» = (n 1+n2) + (t 1+t
2
+t

3
+ lSi) 

= (n 1+n2+t3+lsl-l) + (t
l
+t

2
+1) 

= reC(e) u C(e,S» + r(C(e) n C(e,S» 

so the flats C(e) and C(e,S) are a modular pair. As before, 

the flats C(e) and C(e,S) are obviously in ~(e) and so by 

modularity Cee) n cee,S) E ~(e). But 

r(C(e) n C(e,S» = t] + t2 + ] 

so once again we have found a flat in ~(e) whose rank is 

strictly less than C(e). Indeed rather more than this has 

been done. In both Cases ] and 2 we have managed to find a 

set A of rank m containing only the point e and m-] basis 

vectors and such that A E JA(e). Also m is strictly less than 

the number of non-zero entries in the column representing e, 

and the m-l basis vectors all correspond to non-zeros in the 

column for e; that is, if q is one of these m-I basis vectors 

and its (unique) non-zero entry is in the ith position of its 

column vector then e will have a non-zero ~n the i-th position 

of its column vector as well. Of course, so far A is either 

Cee) n C(e,p) (as in Case I) or C(e) n C(e,S) (as in Case 2) 

but the construction of A is important because in Cases 3 and 

4 following, a new set in ~(e) will be constructed which 

has the same structure as A but with strictly smaller rank. 
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Now Suppose that r(i\) = m = I; then i\ = f e! and as A ~ .){(e) 

this would imply that J..(.(e) = <le! > and II e II I, proving 

the result we want. Suppose, however, that m > I; then we 

can rearrange and relabel the basis vectors (if necessary) so 

that the coordinate representation of e looks like 

(I, I, •.• , 1,0,0, ••• ,0, I , I, ..• , I) 

m-I 

where the m-I non-zero entries of e corresponding to the m-I 

basis vectors in A all fall at the end of the vector, and the 

remaining non-zero entries (of which there must be at least one) 

fall at the beginning of the vector. 

There are now two more cases to consider. 

Case 3: Suppose there exists a point p giving a coordinate 

representation like thIs: 

x 

( tl zeros of p 

x 

0 x 

0 x ( t3 ones of p 

0 x 

x 

m-I ones f-- t2 zeros of p 
of e ~ 

x 

t t 

e p 
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Notice that we must have t2 < m-l. This case is similar 

to Case 1 only now C(e) is replaced by the set A of rank m, 

('ontaining only the point e and m-I basis vectors. 

Let C(e,p) be the circuit defined as in Case 1; as before 

it is clear this set is a circuit and 

r(C(e,p» = t1 + t2 + t3 + I. 

Similarly the set A u C(e,p) has rank given by 

rCA u C(e,p» = m + t1 + t3' 

]Iinally, because A n C(e,p) contains t2 basis vectors and the 

point e then 

Hence 

rCA n C(e,p» = t2 + 1. 

rCA) + r(C(e,p» = m + Ctl + t z + t3 + I) 

= (m + tl + t 3) + (t
2 

+ I) 

= rCA u C(e,p» + rCA n C(e,p». 

This implies that A and C(e,p) are a modular pair; but we have 

already shown that A ( J,t(e) , and (as in Case I) C(e.p) is 

,·ertainly in J.(e). Hence by modularity A n C(e,p) E J,(. (e) as 

,,·ell. But 

rCA n C(e,p» = t2 + 1 < m 
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so A n C(e,p) has rank strictly less than the rank of A. and 

A n C(e,p) has the same structure as A (that is, its closure is 

in~e) and it consists of the point e together with basis 

points corresponding to non-zero positions in the column for e). 

Case 4: If a point such as p in Case 3 does not exist then there 

must be a set S giving a coordinate structure like this: 

0 0 0 x 

0 0 0 ( tl rows of S eM.!fHJ 

0 0 0 x 

0 x x x x 

0 x x x x ( t3 rows of S sum to 1 (mod 2) 

0 x x x x 

0 0 0 

0 0 0 < lsi - 1 rows 

0 0 0 

x 0 0 0 

oi r 
m-} 0 0 0 (. t2 rows of S).: JZ't<T 
ones~ 
of e 1 x 0 0 0 

t '--y--' 

e S 

Again notice that t2 < m-1. This case is similar to Case 2 

only now C(e) is replaced by the set A of rank m. Let C(e,S) 

be the circuit as defined in Case 2; then 
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By arguments similar to those used in the earlier cases we have 

Hence 

rCA u C(e,S» = m + tl + t3 + lSi - 1; 

rCA n C(e,S» = t2 + 1. 

rCA) + r(CCe,S» = m + (t) + t2 + t3 + lsi) 

= (m + tl + t3 + lsi - 1) + (t2 + 1) 

= rCA u C(e,S» + rCA n C(e,S». 

Once again this gives a modular intersection and as A and 

C(e,S) are both in ~e) then A n C(e,S) E J(e) as well. 

As in Case 3 this new set A n C(e,S) has the same basic 

structure as A but has a rank strictly less than that of A. 

From both of Cases 3 and 4 we get a new set of smaller rank 

whose closure is inj1(e). If t2 = 0 then rCA n C(e,p» (or 

rCA n C(e,S» as the case may be) is equal to and it follows 

that JL(e) = < {e}) and II ell = ). If t2 > 0 then we simply 

take this intersection and apply Cases 3 or 4 again. As we 

strictly decrease the rank each time eventually we shall be 

ab Ie to get t2 = 0 and II e II = I. 

o 
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An immediate corollary of this lemma and Lemma 4.2 is the 

following important result. (We shall apply this result in 

Chapter 5.) 

Theorem 4.5: Let M be a binary connected matroid on E and let 

e E E. Then /lell > I if and only if M\e is disconnected. 

o 
Because Lemma 4.4 is essentially a converse to Lemma 4.3 

we get the following result. 

Lemma 4.6: If M is a binary matroid on E then for any e E E 

bee) = if and only if II e /I = 1. 

Proof: Clearly lIell = 1 implies that bee) = I. On the other 

hand, suppose b(e) = I and let M' be the connected component of 

M containing e. Because e is not a coloop then M' contains 

more points than just e; hence by Lemma 4.~M'\e is connected 

and So by Lemma 4.4, /lell = I. 
M' 

Hen ce 1/ e II M = I . 

D 
We wish to generalize this last lemma and prove that rlell = bee) 

for any cell in a binary matroid. We need three technical lemmas. 

Lemma 4.7: Let M be a binary matroid on E and suppose e E E 

is not a coloop. Then there is a binary matroid N extending M 

such that b(e;M) = rN(FR(e;N» and e is dependent in FR(e;N). 
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Proof: It follows from the definition of binary freedom that 

there exists a binary extension N of M with b(e;M) = rN(FR(e;N»; 

it remains to be shown that N can be so chosen that e is 

dependent in FR(e;N) as well: that is, 

b,-
(It is not enough just to throw a binary element inlFR(e;N) 

because the freedom of e might then go down.) 

We shall work by induction on lEI. When lEI = 1 then e must 

be a coloop, so this case doesn't arise. When lEI = 2 then as 
~ 

e ista coloop it follows that both cells in E must be parallel 

points; in this case FR(e;M) = E and clearly e is dependent 

in this set. Now suppose that there is an integer m > 2 such 

that whenever lEI < m and e is not a coloop of M then there 

exists a binary extension N of M with b(e;M) = rN(FR(e;N» 

and with e dependent in FR(e;N). 

Let M be a binary matroid on E where lEI = m, and suppose 

e E E is not a coloop of M. Observe that if b(e) = 1 we can 

take N to be the pne-point extension of M obtained by adding 

a new point e 1 via the modular cut < e>. By giving e I the same 

coordinates as e we see that N is binary; also 

1 = b(e;M) = rN(FR(ejN» and e is dependent in FR(e;N). 

Now suppose that bee) > I; we can assume without loss of 

generality that M is connected (for if not, restrict attention 

to the connected component of M containing e; because e is not 

a co loop this connected component must contain more than just 

e) • 



- 127 -

Now because b(e) > I it follows that /Ie/! > 1 and by Theorem 4.5 

M\e must be disconnected; suppose M\e = MIEI ® MIE2 where both 

these components have rank at least 1. Because E = E1 u E2 u {e} 

and this is a union of disjoint sets then IE. I $ /EI - 2 
~ 

for both i = 1,2. Suppose M/E] has rank k] and MIE2 has rank 

k2; then k) + k2 = k where k is the rank of M. We can give M 

a binary coordinate structure in the following way: take kl 

independent points as a basis for M/E} and then k2 independent 

points as a basis for M/E
2 

and give these k points the coordinates 

(),O, ••• ,O), (O,I,O, ••• ,O), ••• ,(O, ••• ,O,}), the first k} such 

vectors going to the basis points in E} and the last k2 such 

vectors going to the basis points in E2 • This coordinate 

structure can be extended uniquely to all of E giving a 

coordinatization of M; any cell in MIE} will have the last k2 

coordinate positions zero; any cell in MIE2 will have the first 

k) coordinate positions zero. Let (a),a2 , ••• ,ak ) be the 

coordinates of e; at least one a i for 1 ~ i ~ k,and at least one 

a j for k) + ) ~ j ~ k must be non-zero. Let M) ~ M/E2 be the 

one-point extension of M/E) obtained by adding the point 

e) = (a),a2 , ••• ,ak ,0, ... ,0) to M/E) (the isomorphism with M/EZ 
] 

is the obvious one). Similarly let M2~ M/E) be the one-point 

extension of M/E
2 

obtained by adding the point 

eZ = (O, ... ,o,akl+], ••• ,ak ) to M/E2 • 
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Now M) has ground set E 
) LJ e) and as IE)I ~ IE I - 2 then 

IE) u e) I $ IE I - < m; similarly M2 has ground set E2 u e2 

and IEz u ezl < m. Also e) is not a co loop of M) and e
2 

is 

not a co loop of M2 because e is not a coloop of M. Hence by 

induction there exists a binary extension N) of M] such that 

b(e);M\) = rN (FR(e);N))) and e) is dependent in FR(e);N)). 
) 

Similarly there exists a binary extension N2 of M2 such that 

b(e2 ;MZ) = rN (FR(e2 ;N 2)) and e
Z 

1S dependent in FR(eZ;NZ). 
2 

The coordinate representation of M) can be extended to N) and 

similarly the representation of M2 can be extended to N
Z

• Let 

E; and Ei be the ground sets of N) and NZ respectively and let 

W be the binary extension of N)~ NZ on Ej u E; u {e} obtained 

by adding e so that {e),e,e
2

} is a dependent line. W is 

illustrated 1n Figure 22. 

o 
e 

Figure 22 
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Let N be the matroid W\{e
l
,e2}; then N is a binary extension 

of M. Consider the set 

because {e l ,e,e2} is a circuit and e i is dependent 1n FR(ei;Ni ) 

for i = 1,2 it follows that e is dependent in this set T. If 

we Can show that T is FR(e;N) and b(e;M) = rN(T) then we shall 

have managed to prove the result we want. 

Now from the geometry it is clear that Wee ~ e l ) is a weak 

image of W; also, if b E FR(el;N I ) then NI(e l ~ b) is a 

weak image of NI (by Theorem 2.3). Hence N(e 1----4 b) must be 

a weak image of N. Similarly N(e ~ d) is a weak image of 

N for any d E FR(e
2

;N
2
). So (again by Theorem 2.3) T ~FR(e;N); 

hence b(e;M) ~'rN(T). Notice that 

rN(FR(el;N
I
) - {el}) + rN(FR(e2 ;NZ) - {eZ}) 

rN (FR(el;N 1» + rN (FR(eZ;N2» 
I 2 

= b(eJ;M I) + b(e2 ;MZ) 

= b(e;M/E2) + b(e;M/E I)· 

We shall now get another estimate for b(e;M). Let N' be a binary 

extension of M such that b(e;M) = rN,(FR(e;N'». Now N'/E2 is 

a binary extension of M/E
2

, and by Proposition 2.Z4 (and the remarks 

following it) FR(e;N') C;; FR(e;N'/EZ); similarly N' IEI is a 
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binary extension of M/E] and FR(ejN') S FR(e;N'/E]). 

Applying Lemma 4.] (and the remarks following it) gives 

b(e;M) = rN,(FR(e;N'» 

~ rN'/E (FR(e;N'» + rN'/E (FR(e;N'» 
2 ] 

(see above). 

Hence b(e;M) = rN(T); but we saw earlier that T~ FR(e;N), so 

this now implies that T = FR(e;N). 

o 
In the course of proving this lemma we also proved the following 

result: 

Lemma 4.8: Let M be a binary connected matroid on E and suppose 

e E E is such that M\e = M/E] Ge M/E 2. Let M] = M/E2 and 

M2 = M/E]. Then b(e;M) = b(e;M]) + b(e;M2). 

o 
Lemma 4.8 has a non-binary analogue. 

Lemma 4.9: Let M be any connected matroid on E and suppose e E E 

is such that M\e = M/E J <±> MIE2• Let M] = M/E2 and M2 = M/E J • 

Then IIell M= IIell + IIell . 
M] M2 



- 13} -

~: The proof is similar to that of Lemma 4.7, only easier: 

now we no longer need to insist upon all matroids and their 

extensions being binary. Let N be an extension of M such that 

I/el/M = rN(FR(e;N». Then using Proposition Z.Z4 and Lennna 4.1 

(and the remarks following them) 

~ r N/ E (FR(e;N» + rN/E (FR(e;N» 
Z 1 

~ r N/ E (FR(e;N/EZ» 
2 

~ II e ll M + llell M ) Z 

using the fact that N/EZ ~s an extension of M} and N/E) ~s an 

extension of M
Z

. 

We shall show that the inequality involving I/ell also goes the 

other way, and hence equality must hold, proving the result. 

Suppose lIeliM = t) and ileUM = t 2 • Then to MI add cells 
1 2 

b),b2, ••• ,b t each equivalent to e 
) 

such that IlellM = rN (FR(e;N
1
». 

) ) 

d},d2 , ••• ,d each equivalent to e 
t2 

such that II e 11M = rN (FR(e;N2»· 
2 2 

illustrated in Figure 23: 

in M}, giving an extension 

Similarly, to M2 add cells 

in M2 , giving an extension 

Let W be the extension of M 

NI 

N2 
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o 
e 

Figure 23 

(The cell e in N) has been relabelled e); the cell e in N2 has 

been relabelled e
2
.) So W is constructed by adding e

l 
and 

{b], ••• ,b t } to MIEI to give an isomorphic copy of NI , and 
I 

adding e2 and {d1, ••• ,d } to MIE2 to give an isomorphic copy 
t2 

of N2; then to NI <±> N2 we add e freely to ({e] ,e2 } >. 
Let N be the matroid W - {e

l
,e

2
}. Now Wee ~ e l ) is a weak 

image of Wand N) (e
l 
~ b i ) for any i is a weak image of N]; 

hence N(e ~ b.) is a weak image of N. Similarly 
1. 

N(l' ~d.) for any j is a weak image of N. Hence 
J 

{ e • b] , .. • , b t ' d I ' .. • , d t } <; FR ( e ; N), so 
] 2 
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We can now state and prove the ma1.n theorem of this chapter. 

Theorem 4. 10: Let M be a binary matroid on E and let e ~ E. 

Then b(e) = lie II· 

~: When e is a loop then clearly b(e) = /Iell = 0; when e 

is a coloop then it is also easy to see that bee) and lIell are 

both infinite. Suppose then that e is not a loop or a coloop: 

we shall work by induction on Ileli. In Lemma 4.6 we saw that 

b(e) = I if and only if lIell = 1. Suppose there is an m> 

sUl~h that for any t < m, lIell = t if and only if b(e) = t. 

(a) Now suppose /lell = m. We can assume without loss of 

generality that M is connected (else just restrict 

attention to the connected component of M containing e; 

as e is not a coloop this component must contain points 

other than just e). Now bee) $ lIel! and this inequality 

cannot be strict, for if it were then it would imply that 

bee) = t < m and hence by induction !lell = t. Hence 

/lell = m implies that bee) = m. 

(b) Now suppose that b(e) = m. Because Ilell 2 bee) = m > I, 

by Lemma 4.5 M\e is disconnected. Suppose 

where both MIEI and MIE2 have rank at least 1. Then by 

Lemma 4.8 
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where MI = M/E2 and M2 = M/EI' But because M is connected 

then both b(e;M I) and b(e;M2) must be at least J; hence 

they must both be strictly less than m, so by induction 

b (e ; M) = II e II M + II e II M 
I 2 

(by Lemna 4.9). 

o 
In Chapter I we observed that Ilell = d(J.{(e». Using Theorem 4.10 

we can show that the binary analogue holds, namely, that if M 

is a binary matroid and e E E then bee) = b(~e». Notice that 

b(J.t(e» $ d(JL(e» = II ell , 

so if we can show that bee) ~ b(~e», because bee) = lIel! it 

would imply bee) = b(Ji(e». 

So let N be a binary extension of M such that 

b(e;M) = rN-(FR(e;N». 

Let a ( FR(e ;N) and F be a flat in J.4e ;M); then ctE G, N ~ ~ 

fully-dependent flat G 06 M ~ e. BLl-f c.l{(ej /",1) ~~~ ~ 

c&.i ~G;) so a E "FN
, implying that 

a E n 
FE Jl(e) 

-N F , 

Hence b(eAl(e» ~ rN(FR(e;N» = b(e;~, as required. 
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Using Theorem 4.5 and Lemma 4.9 we can get a complete description 

of the freedom of points in a binary matroid. 

Theorem 4.1 I: Let M be a connected binary matroid on E and suppose 

e E E is not a loop. Then Ilell is the number of connected 

components of M\e. 

~: When lIell 1 then M\e is connected, and conversely (by 

Theorem 4.5). We shall work by induction on Ileli. Suppose there 

is an m > 1 such that for any t < m, when M is connected then 

lIell = t if and only if M\e has t connected components. 

Now Suppose that lIell = m. By Theorem 4.5, M\e is disconnected, 

so suppose M\e = MIEI ~ MIE2 where both MIEI and MIE2 have 

rank at least I. Let MI = M/E2 and M2 = M/E 1; both MI and M2 

are binary and because M is connected, both of these matroids 

must be connected. Now by Lemma 4.9 

and as both of lIeli
M 

and Ilell are at least] then they must both 
1 M2 

be strictly less than m. Hence by induction M1\e has lIeli M 
1 

connected components and M
2
\e has lIell connected components. 

M2 
But M1\e = MIE] and M

2
\e = MIE

2
• Hence M\e, which is the direct 

StuD of MIE] and MIE , must have lIeil + IIeli connected 
2 M] M2 

components; but this is just IIeIiM. 

o 
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This last theorem enables us to give a "structure" theorem for 

those connected binary matroids not having any cells of freedom 

° or 1, which will be useful in the next chapter. 

But first we need some hypergraph notation. A hypergraph is a 

finite set V of vertices together with a collection of non-empty 

subsets of V called edges. A path (of length n) is a sequence 

of distinct vertices vi and distinct edges Xi with vi,v i + I E Xi' 

Such a sequence with n > 1 and vI = vn+I is called a cycle. A 

hypergraph is connected if there is a path between any two vertices. 

The de~ree of a vertex is the number of distinct edges containing 

that vertex. A boundary vertex ~s a vertex with degree I; a 

vertex with degree greater than I is called an internal vertex. 

Theorder of an edge X is just IXI. 

By a special hypergraph tree we shall mean a connected hypergraph 

containing no cycles and with Ixi ~ 2 for each edge X. Notice 

that the condition of there being no cycles implies IX. n X. I $ 
1 J 

for distinct edges X. and X .• 
~ J 

Given a special hypergraph tree H we can associate with it a 

binary matroid MH on the edges and boundary vertices of H as 

follows. If {vl'v2 •.• .,v
n

} is the set of vertices of H then give 

them coordinates 

(1,0, ••• ,0),(0,1,0, ••• ,0), ••• , (0,0 •••. ,0,1) 
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respectively, where each vector has length n. Then an edge X is 

given the coordinates (0,1,0, •.. ,1, .•. ,0) where there is an 

in position i if and only if v. E X. With this binary structure, 
1 

the matroid MH given by restricting to the edges and boundary 

vertices of H is called the matroid associated with H. 

Notice that if v is a boundary vertex of H and v E X) an 

edge of H,then v and X are matroidally equivalent in MH. Also, 

if an edge X is removed from H then the resulting hypergraph 

consists of IXI connected components, each component being 

itself a special hypergraph tree (on the appropriate subset of 

the vertices and edges of H) tit" Qt\ i50\ated vet"+e~. 

Theorem 4.12: Suppose M is a connected binary matroid on E and 

suppose Ilel! ~ 2 for all e E E. Then there is a special hypergraph 

tree H such that M ~ MH. 

Proof: The hypergraph H is constructed in the following way. 

Let A1,A
2

, ••• ,An be the equivalence classes of E under the relation 

of matroidal equivalence in M, and let e] E AI' e2 E A2,.··,en E An 

be one representative from each class. These points of M will 

correspond to the edges of H. For each 1 sis n in turn, 

consider M\e .• 
~ 

Suppose II ~II = k.; then by Theorem 4.11 
1. 

M\ei = MIEI <±) MIE2 (t) ... @ M1Ek. 
1 

where E1,E2, ••• ,E
k

. 1S a partition of E - e i and for each I 
1. 

MIE. is a connected matroid of rank at least I. 
J 

s j s k. 
1 
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C) For each J s j s k. let e. J be the projection of e. onto MIE., 
1 1 1 J 

away from (E e) - E .• Now suppose that M has been g1ven 
J 

a binary coordinate structure; then each point e~j) can be glven 
1 

a unique binary coordinate induced by this structure. 

Then we take the set of vertices of H to be 

v = {e ~j) : 
1 

sis n, 1 s J s k. } 
1 

where points with the same coordinates have been identified. The 

edges of H are then taken to be subsets of V of the form 

x. = {e~j): 
1 1 

k. }. 
1 

We shall show that H is a special hypergraph tree and M ~ MH; 

to be more precise we shall show that for each ) sis n the 

edge X. has exactly IA. - e. I boundary vertices and the injection 
1 1 1 

of E onto the edges and boundary vertices of H given by 

e.~X. 
1 1 

for each lsi s n 

CA. - e.) ~ boundary vertices in 
1 1 

induces an isomorphism M ~ MH. We shall work by induction on the 

rank of M. Let us first look at some special cases. When M 

has rank 1 then the theorem is trivial. If M has rank 2 then 

M must be U2(3); both M and the hypergraph H constructed using 

the above procedure are illustrated in Figure 24. 
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Figure 24 

Clearly H is a special hypergraph tree and M ~ MH. Now suppose 

the above construction gives a special hypergraph tree H with 

M ~ MIl whenever the rank of M is less than m, and consider the 

case when the rank of M is m. 

If Ilell = 2 for each e ( E and IAI = 2 for each equivalence 

class A under matroidal equivalence, then it is straightforward 

to see that the matroid M must be of the type shown in Figure 25. 

\ 
\ 

M 

\ 
\ 
\ 
\ 
\ 

(.-.W\k k+1 w~ k>21~ t"'e 

nu",be~ o.f sr0ke5) 

Figure 25 

H 

, 
\ , , 

\ , 
\ 

(k e~9~) eo~~ ""+\, D~ 
b6U11dCIY'I ~+eK .rJ one iratew-f'04\ ~) 
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The hypergraph H constructed by the given method is also shown 

in Figure 25 and clearly H is a special hypergraph tree and 

M ~MH. This last observation leaves two cases to consider. 

Case 1: Suppose there is an e E E with II e II = 2 such that 

where both MIEI and MIE2 have rank at least 2 (see Figure 26). 

M 

, .. , ~ , .. , 
' ......... ----"-----f':vT-----:---~\.· 

e. etl.) 

M I E'1.. 

Figure 26 

The points e(l) and e(2) are not in E, because if they were then 

of necessity they would each have freedom 1, contradicting the 

fact that Ilell ~ 2 for each e E E. Consider the two binary connected 
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matroids N1 and N2 illustrated 1n Figure 27. 

------~O~----~O 

e ~ 
o~--~09-------

eID e 

Figure 27 

Both N1 and N2 are such that each point in them has freedom at 

least 2, and both have rank strictly less than m. Hence by 

induction the given hypergraph construction gives special hyper-

graph trees H} and H2 with N} ~ MH} and N2 ~ MH 2. If in 

N} we take e as the representative of the equivalence class 

{e,e(2)} we get HI as illustrated in Figure 28(a); similarly, 

if in N2 we take e as the representative of the equivalence 

class {e,e(})} we get H2 as illustrated in Figure 28(b). 



XI o-------I'Jb 

H. 

(0..) 
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Figure 28 

c 

Under the isomorphism NI ~ MIl 1 we get eHX 1 and e (2)~ b. 

Similarly, under the isomorphism N2~ MH2 we get e ~ X2 and 

e (l)~ c. Notice that a and d are internal vertices while 

band c are boundary vertices. It is now straightforward to 

observe that we can amalgamate HI and HZ to give the special 

hypergraph tree H illustrated in Figure 29. 
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With e ~ X we can reconstruct an isomorphism M~ MH. 

Case 2: Here Case 1 does not apply but there exists an e E E with 

II e II ~ 3. To illustrate this case we shall assume II ell = 3; the 

generalization to Ilell = k > 3 will be obvious. As Ilell = 3 then M 

is as illustrated ~n Figure 30. 

o c« 
M 

Figure 30 

The matroids MIE. are each connected with rank at least 1, and 
~ 

(i) 'f d 1 'f I h k I e E E, ~ an on y ~ M E, as ran , 
~ ~ 

be the matroids illustrated in Figure 31, 
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Q "3 
e 

MIE, 

PI 

OM/Ea 
Nt N2. N3 

Figure 31 

U e (i), { (i) } Notice that in N. e ,e,p. has rank 2. 
1 1 

For each i, N. is a connected binary matroid each of whose points 
1 

has freedom at least 2, and with rank strictly less than m. 

The induction follows just as in Case 1. For each i we can 

construct a special hypergraph tree H. with N. ~ MR. (see 
1 1 1 

Figure 32). 

b 

H, 

Figure 32 
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Under the isomorphism e ~ X. for each ~ respectively. If 
J ~ 

M1Ei has rank 1 then the "cloud" is just a single vertex. We 

can now amalgamate these hypergraphs to get the special hyper-

graph tree H illustrated in Figure 33. 

Figure 33 

That is, the edge X contains precisely the vertices a,d and f. 

With e~ X we can construct an isomorphism Me!MH. 

o 
From the proof of this last theorem we see that H can be 

constructed in such a way that for each edge X of H, IIX II 
(the freedom of X in MH) equals the order of X in H. Further-

more it is not difficult to show that for the construction of 

H given in the proof, the degree of every internal vertex is 

at least 3. 
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There is one final application of Theorem 4.11 worth mentioning. 

Suppose M is a connected binary matroid and lIell = k for some 

e E E. Then by Theorem 4. I I 

and if we add to Mthepoints e(I),e(2), ... ,e(k) where e(i) is 

the projection of e onto MIE., away from (E - e) - E .• It 
1 1 

is not difficult to see that adding these points gives a new 

binary matroid in which the elements of E have the same freedom 

as in M. We can add these extra points for each element of E 

in turn and so obtain a binary extension N of M for which 

IleliM = Ileil N = rN(FR(ejN», for each e E E. 

The following result follows immediately from this observation. 

Theorem 4.13: Let M be a binary connected matroid on E. Then 

there is an f E ~ (M) such that 

f(e) = lIeli 

for all e E E. 
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Proof: Suppose F is the ground set of N. Then, using the 

notation of Chapter 3, define ~ t ~(F) by 

~(e) - FR(ejN) for each e € F. 

Now define f by 

for A ~ E 

and by Theorem 3.5, because N is an extension of M, f € ~(M). 

For any e E E it follows 

f(e) = rN(He» = rN(FR(e;N» = lIellM• 

o 
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5. Matroid Join 

Let MI and M2 be matroids on the same ground set E. Then the 

joi~ of HI and HZ is denoted by MI v M2 and defined to be the 

matroid on E whose rank function is given by 

for A.E. 

When both MI and M2 have rank at least I then the join M
J 

v M2 

is said to be non-trivial. 

The independent sets of MJ v M2 are precisely the subsets of E of 

the form II U 12 where II is independent in MI and 12 is 

independent in H2 • 

Matroid join has been extensively studied (see Welsh [30J, 

Chapter 8). Welsh describes MI v M2 as the union of M] and H2, 

and some other authors (see Recski [26]) use the term matroid 

~ Following Mason [19J, we adopt the term "join" for geometric 

reasons, as we shall see shortly. 

Another description of the rank function for the matroid join 

Ml v H2 was given by Edmonds and Fulkerson [9], namely 

for A .. E. 

This formula follows from the observation that r
M 1 

+ r is an 
MZ 

integer polymatroid on E and M(r
M 

+ r ) is just MI v M2• 
1 HZ 

ThE' join of two matroids has an obvious generalization to several 
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matroids in the following way: let MI,M2' ••. '~ be matroids 

on E;kthen their join is denoted by M] v M2 v ••• v ~ 

(or \I M.) and is the matroid on E whose rank function r is 
i=) 1 

given by 

k 
rCA) = min (L rM• (X) + IA - Xl) 

Xc&A i=) to 

Equivalently, the independent sets of 

k 

V 
i=1 

for A C;; E. 

M. are subsets of E 
1 

of the form I] u 12 u ••• u Ik where Ii is independent in Mi 

for each i. 

In this chapter we shall be looking at the relationship between 

matroid join and the freedom of cells, and then applying these 

ideas to a study of reducibility. A matroid M on E is said to be 

reducible if there exists matroids M) and M2 on E, both with rank 

at least I, such that M = M) v M2 • If no such matroids M) and M2 

exist then M is said to be irreducible. 

The Large Join 

Mason [19J has given a geometric realization of matroid join. Let 

M) and M2 be matroids on E and let El and E2 be two disjoint copies 

of E. An element e E E will be denoted by e
l 

in the copy E] and 

by e2 in the copy E2• Let M)~ M) be a matroid on E1, the 

isomorphism with M) being induced by the identification of E1 with 

E. Similarly let M2~ M2 be a matroid defined on E2• 
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Let MJ, the Mason join of M} and M2, be the matroid defined on 

the disjoint union E u E} U E2 and illustrated in Figure 34. 

M'J 

r- ..... , \ 
• 0 

\ 

0 I , 
I ! e,Q 'e oea. Ie t , 

J \ 

-... C-' 
M.vMz. 
onE 

Figure 34 

MJ is constructed by starting with N} ~ M2 on E} u E2 and adding 

in turn each element e E E to Ml~ M2 via the principal modular 

cut< {e 1 ,e2}) • Mason showed that MJIE = M
J 

v M2' We shall 

generalize this construction. 

Using the notation above, the starting point is once agaln the 

matroid N} ~ M2 on E} U EZ' Then LJ, the large join of M) 

and M2 is obtained by adding in turn each element e E E via the 

principal modular cut (FR(e} ;M}) u FR(eZ ;M2». The large join 

LJ is non-trivial if both M} and M2 have rank at least 1. LJ 

is illustrated in Figure 35, 
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~,- ... 

I '. 

I 0 • 
, , 
I De 

M. v M" 
OF\ £ 

Figure 35 

, 
\ 
\ , . 
• , , 
• I , 

Similarly as for the matroid MJ, LJIE = M] v M2, which we shall 

now prove. 

Theorem 5. 1 : 

Proof: From the construction of LJ it is clear that MJ is a weak 

image of LJ, and so LJIE --~ MJIE = MI v M2" We shall show that 

the arrow also goes the other way, that is, that LJIE is a weak 

image of MI v M
2

; this will prove our result. 

Let I ~E be independent in LJ and let K be any subset of I. 

Define N) z LJ/E
2 

and N2 = LJ/E 1; then as K is independent in 

LJ we can assert, by Lemma 4.1, that 

rN (K) + rN (K). 
1 2 

( I ) 
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Now N} can be described as the extension of M} obtained by 

adding in turn each element e € E via the modular cut <FR(e} ;M}) > 
and so e ~ e} in N}o Similarly e ~ e2 in N2 0 Hence defining 

K} = {e}: e € K} and K2 = {e2: e € K} 
) 

• 

rN (K) = rN (K}) = rg (K}) = r
M 

(K) and 
} 1 } } 

rN (K) = rN (K2) = rM (K2) = r
M 

(K). 
2 2 2 2 

Substituting this into the inequality ( 1 ) gives 

r
M 

(K) + r
M 

(K) ~ IKlo 
} 2 

As this is true for any K C; I then I must be independent in 

M} v M2 implying that M} v M2 ---iI LJ lEo 

D 
The method of this proof shows essentially that if each cell e E E 

is added to M}® M2 via a principal modular cut <Fe> where 

then the restriction to E of the large matroid so constructed will 

give M} v M2 • This idea gives an easy alternative proof of a 
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theorem due to Pym and Perfect [25J (see also McDiarmid [2IJ). 

Theorem 5.2 (Pym and Perfect): Let M) and M2 be matroids on E 

and suppose f] E r;;(M) ) and f2 E s (M2) • Then f) + f2 E r;;(M) v M
2
). 

Proof: Let M]~ M] be defined on a disjoint copy E} of E and 

"" 
M2~ M2 on a disjoint copy E2 of E. For each e E E let e} and 

e2 be the copies of e in E] and E2 respectively; similarly, for 

any A C;; E let A) <;; E] and A2 c;. E2 be the corresponding copies of 

A. Abusing notation we can think of f) as a function in s(M) 
,.., 

and £2 as a function in r;;(M2). Let N) be the expansion of M) 

relative to f], and if Ei is the ground set of N) then let 

~) E HE) be such that for any A c:;; E 

,.., 
Similarly let N2 be the expanS10n of M2 relative to f2 and if 

Ei is the ground set of N2 then let ~2 E ~(Ei) be such that for 

any A ~ E 

For each e E E in turn, add e to N]Ge N2 via the principal modular 

cut (~) (A) u ~2 (A2) > to give a matroid T. Then TIE = M) v M2 

because 
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Define a function ~ with domain E by 

(e E E); 

clearlye E ~(e) and ~(e) ~FR(e;T). Then define f E ~(TIE) by 

A C;; E; 

clearly f E ~(MI v M2) because TIE = M) v M2 . Now 

f(A) = rT(~(A) ) 

= rT(~)(AI) u ~2(A2) u A) 

= rN (~I(AI» + rN (~2(A2» 
1 2 

= (f
l 

+ f 2)(A) 

This last result enables us to see how freedom is related to 

joins. Essentially, taking the join of two matroids greatly 

increases the freedom of the points, as the construction of the 

large join suggests. 

Theorem 5.3: Let M
J 

and M2 be matroids on E and let M MI v M2• 

Then for each e E E 
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Proof: When e is a coloop in either of M} or M2 then e 

a coloop of M, so I/el/ M is infinite and theresult holds 

case. So suppose e is not a co loop in either MI or MZ. 

Theorem 3.7 there exist func tions f} and f2 such that 

and 

and 

= II e 11 M ; 
I 

= IleilM • 
2 

will be 

in this 

By 

Now by the last theorem fl + £2 E ~(Mlv M2) and so applying 

Theorem 3.7 again 

= II ellM + IleilM • 
I 2 

D 
It is possible for this inequality to be strict. 

Example 5.1: Let both MI and M2 be the rank 2 matroid on 

E = {a,b,c,d,e} illustrated in Figure 36. 

Figure 36 
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The Mason join of M) and MZ is g1ven 1n Figure 37; it is rank 4 • 

.-- -
I ~ "', .... CIa I \ 

( 
, 

I \ 
I Co 

, 
I , 

r1 I 
I 
I 

\ 
\ I 
\ I , 

\ , rv " ....... , 
M. ....-~, 

M -= M, vMa. 

Figure 37 

In this case the join M of M] and M2 1S U4(5). 

Now /lallM 
) 

= //aIi
M 

=) but //aIi
M 

= 4 so 
2 

//aU M > //a// M + //a// M • ) 2 

o 

,-..;. 

M~ 

Despite this example we shall see shortly that quite often equality 

holds. 

So far the join of M) and M2 has only been defined when the matroids 

have the same ground set. However, it is easy to extend the 

construction so that M) v M2 is defined in general. Suppose M) 
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is defined on E' and M2 is defined on E". Extend MI to a matroid 

on E = E' u E" by adding those elements 1n E" but not in E' as 

loops of MI' Similarly extend M2 to a matroid on E by adding 

elements in E' - E" as loops of M
2

• With this interpretation 

M) V M2 is a well defined matroid on E. For the remainder of this 

section, when taking the join of matroids defined on different 

ground sets we shall assume the above extension has been performed. 

Notice that if E' and E" are disjoint then MI v M2 is just the 

direct sum MI~ M2 • Hence any disconnected matroid is certainly 

reducible. 

The large matroid LJ of MI and M2 can itself be r~alized as an 

ordinary join. Let NI = LJ/E2 and N2 = LJ/E); then LJ"= N] v N2• 

To see this, simply take the Mason join of N] and N2 and observe 

that restricting to E u E] u E2 gives LJ. Hence any non-trivial 

large join is always reducible. 

Because of this natvra1 way in which LJ is reducible it leads to 

a more general question. Let M be a matroid on E and suppose 

A~ E is such that M\A = M/E}G9 M/E2 where both of M/E] and MIE2 

have rank at least I. If in addition the rank of M\A equals the 

rank of M then we say that A disconnects M without loss of rank. 

Let MI = M/E2 and M2 = M/E I ; then when can M be reconstructed from 

MI and M2 in the sense that M = MI v M2? 
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Theorem 5.4: Suppose that A disconnects M without loss of rank. 

Then (using the above notation) M = M1 v M2 if and only if for 

all e E A 

Proof: (a) Suppose that M = M] v M2. Let e E A and suppose 

/I e 11M = k. Let N be an extension of M obtained by adding cells 

al,a2""'~ each equivalent to e in N and with total rank k. 

Then for all i,ai ~ e in N1 = N/E2 and similarly in N2 = N/E 1• 

Hence 

{a 1 ,a2 ' •• ., ~} ~ FR (e; N ] ) j 

{a 1 ,a2,··· ,ak} C;; FR(ejN2)· 

Notice that N] and N2 are extensions of M] and M2 respectively. 

Now by Lermna 4.] 

$ rN (FR(ejN
J
» + rN (FR(ejN2» 

] 2 

But by Theorem 5.3, ~ /I e II + /I e II and so we 
MJ M2 

get the equality we want. 
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(b) Suppose that Ileil M = /lell + Ilell for each e E A. 
M) M2 

Let e E A be given and let Q be the matroid on E u {e),e
2

} 

illustrated in Figure 38. 

Q 

Figure 38 

Q is constructed by starting with M and then e), the image of e 

under the projection of A away from E2, is added to MI E) • 

Similarly e2 ' the image of e under the projection of A away from 

E) is added to MIE2• To show that M = M) v M2 it is sufficient 

to show that e is free in the flat {e) ,e,e
2

} of Q, that is, 

that {e) ,eZ} c:; FR(e;Q), for then M can be realized (essentially) 

as the restriction to E of the Mason join of M) and M2 • Now 

suppose I/ellM = k; following the notation of part(a) of this 

proof let N be the extension of M obtained by adding a),a2 •••. ,ak 

to M each equivalent to e and with total rank k. Let 

Nt = N/E2 and N2 - N/E); then as we saw in part (a) 
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$ rN (FR(e;N J») + rN (FR(e;NZ» 
I Z 

$ lI e llM + Ilell M • 
} Z 

+ Ileil M by supposition, whence 
2 

= rN (FR(e;N J» + rN (FR(e;NZ»· 
] 2 

Let Q' be the extension of Q illustrated in Figure 39. 

Q' 

0 
( 

0 0 

Qe I oe2, e. o 
I 0 I 

0 0 

L/ 
A v fa.u~··) ttl! 

N1.= N/E. 

Figure 39 

Q' is constructed by starting with N and then adding to NIEJ 

the projection of A u {a
l
,a

2
, ••• ,ak } away from EZ to get N1, and 

similarly adding to NIE2 the projection of A u {aJ,aZ, ••• ,ak } 

away from E} to get N
2

• So as to help distinguish elements 

(and see Q' as a genuine extension of Q) label by e J and eZ the 
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images of e 1n N) and N2 respectively. In Q', FR(e;N) is 

contained in the closure of FR(e);N) u FR(e2;N2). But this 

union has the same rank as FR(e;N), hence in Q' the closure of 

contains e
l 

and e
2

• Now consider the matroid N u e
l 

as a 

sub-matroid of Q'; then e) is in the closure in N u e) of 

FR(e;N). Hence by Proposition 2.25 

Thinking of M u e
1 

as a sub-matroid of N u e 1 this gives 

-Q But e
2 

E {e,e
1

} and so e2 is in the closure in Q of FR(e;M u e). 

Hence again by Proposition 2.25 

e 2 E FR(e;Q). 

By symmetry e} E FR(e;Q) whence {e
1 
,e2} ~ FR(e;Q). 

o 
As an application of this theorem, consider the large join LJ 

of M} and M
2

• By the construction for LJ it follows that 
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Letting N} = LJ/E2 and N2 = LJ/E} then by the last theorem, 

because W N} v N2 we have, for each e E E, 

But e ~ e} in N} and e ~ e2 in N2 for each e E E, so 

Ilell LJ 
== Ile}IIN + IIe2 11N I 2 

~ IleIII ... + Il e2ll .... 
M} M2 

= lI ell M + IlellM . 
I 2 

To summarize, if M = MI v M2 and LJ is the large J01n of M} and 

M2 then 

Reducibility 

In this section we shall be interested in looking at the reducibility 

of matroids in general, and in the next section look at the 

special case of binary matroids. The problem of determining 

whether or not a given matroid is reducible is not easy (see 

the survey by Recski [27]). We have already observed that a 

disconnected matroid is reducible, so we shall be concerned with 

the reducibility of connected matroids. Out first result is 

well-known (see Cunningham [6]) and is easy to prove directly, 
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although we shall give a proof based upon Theorem 5.4. 

Proposition 5.5: Let M be a connected matroid on E and suppose 

e E E is such that M\e is disconnected. Then M is reducible. 

Proof: Suppose M\e = MIE]a9 MIEZ; let M] = M/E
Z 

and M
Z 

= M/E
1

• 

Then by Lemma 4.9 we know 

Hence by Theorem 5.4, M = MI V M
Z

' 

o 
Now Suppose that M is connected and M = MI v MZ' Then the 

function f = r + r is in ~CM) and so there must be an 
MI MZ 

element e E E with fCe) > I; hence 1/ ell
M 

> I. That is, M 

connected and reducible implies that some point in M must 

have freedom at least 2. We can sharpen this observation 

somewhat. 

Theorem 5.6: Suppose that M is connected and reducible, and 

let X <; E be defined by 

X = {e E E: /lell > I}, 

Then some subset of X disconnects M. 

Proof: Let MI and M2 be matroids on E, each with rank at 

least I, and such that M = M] v M2• Let LJ be the large 

join of M] and M2 • Now suppose e E E is not a loop in either 

then rM (e) + r
M 

(e) > I and so /I e 11M > I. 
I Z 
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Now X contains all such points wheneeLJ\X must be a subset of 

- LJ - LJ 
MI ~ M2 and so 1S disconnected. Hence M\X must either be 

disconnected or have rank strictly less than the rank of M. In 

either case there must exist a subset of X which disconnects M. 

o 
The converse of this theorem is not true; indeed there exist 

irreducible matroids with every cell having freedom at least 2. 

Example 5.2: Let M be the matroid whose affine diagram is 

given in Figure 40. M has rank 4 and is defined to be 

8 
T (MI~ M2~M3) where MI ,M2 and M3 are the rank 4 matroids 

illustrated in Figure 40. That is, M] consists of three 

dependent rank 3 hyperplanes with a dependent line in common, 

and M2 and M3 are identical copies of MI. 

M 

Figure 40 
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Direct calculation shows that /le/l > ) for each cell e of M and 

that M is irreducible. 

D 
Suppose M = M1 v M2; then because r

M 
] 

+ r E s(M), any point 
M2 

e of M wi th "e" M I must be a loop in either M} or M2 • But 

even when /I e "M > for all e E E then it is possible that e is 

a loop in either M1 or M2• Indeed, Lovasz and Recski [17] 

conjectured that if M is reducible then there exist matroids MI 

and M2 such that both contain loops and M = M) v M2 • The 

following example shows that this is not always so. 

Example 5.3: Let M be the matroid of rank 3 whose affine 

diagram is given in Figure 41. 

Figure 41 
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There are several ways of reducing M, but they all amount to One of 

thefollowing two types, shown in Figures 42(a) and 42(b). 

~~c 
" ~ ,r. 

3- 00 i ~cp 
. 
.(, 

ll,{b) 

M, f'Il'2. M, M'2, 
(a,) (b) 

Figure 42 

Neither types has loops 1n both M) and M
2

, 

D 
There is a natural relationship between the free lifts of 

Chapter 2 and reducibility. 

Theorem 5.7: Let M be a matroid on E and let L be the free lift 

of M with lift point p. Then L\p is reducible; indeed 

L\p = M v U) (E) • 

Proof: The construction of the large matroid L for the free 

lift of M (see Chapter 2 for details) is just the construction of 

the Mason join of M and U)(E) except that the lift point p has 

been replaced by the matroid U)(E), c==J 



- 167 -

SUppose we perform k successive free lifts of M with lift points 

PI,P2,···,Pk to get a matroid L'on E u {Pl,P2, •.• ,Pk J• Then 

from this last theorem (applied k times) we get 

M v U} (E) v U} (E) v ••• v U} (E) 

~ -----------~ "Y" 
k terms 

= M v Uk (E). 

(Here we are supposing that k does not exceed lEI.) 

This observation leads to the following result. 

Theorem 5.8: Let M be a matroid on E and k be any positive 

integer less than or equal to lEI. Then there is a matroid M} 

(depending upon the value of k) such that M = M} v Uk(E) if and 

only if k ~ d(~E;M». In particular, M is reducible if 

d(J!(E;M)) > 0, that is, if JL(E) is a non-trivial modular cut 

of M. 

Proof: In the special case when M contains no fully-dependent 

flats, that is, when M is Un(E) where lEI = n, then we can think 

of d(~E» as being infinite. Given' $ lEI then clearly 

and so the theorem holds in this case. So assume M is not 

U (E). 
n 
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(a) Suppose M = HI v Uk(E); for notational convenience let 

M2 = Uk(E). Let LJ be the large join of M\ and ~L\ on the 
.... 

disjoint un1.on E u E
J 

E . Then because rR(e;~L» = E for 
" 
~ 

each e " E, the construction of LJ implies that 

E2 c:;;; FR(e;LJ) for each e , E, where E2 is the ground set of 

(recall J{(E;M) 1.S the modular cut generated by all the fully-

dependent flats of M). Hence 

(b) On the other hand, suppose k .: d(j,l(E;M»; then extend M 

to a matroid N by adding cells Pl,P2" "'Pk with total rank k 

in N and such that p. - p. for all i,j and 
1 J 

It is clear that {P
j
,P2, ... ,Pk} C;;; FR(e;~') for each e t, E. Now 

let Mj = 'Nj {P\.P2 .... 'Pkr; then ~ is tht: k-th free lift of HJ 

with successive lift points P
J 

,PZ •... ,P
k

' Hence, as remarked 

earlier, 

M == N\{PI,P2""'P k ' == HI v'rkIE). 

o 
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This last theorem describes precisely when a reducible matriod 

can be expressed as a join involving a uniform matroid. A 

near-uniform matroid on E is defined to be a matroid of the 

form 

where A<';;;E and k ~ IAI. That is, a near-uniform matroid is 

essentially a uniform matroid together with some loops. Now 

recall that for A~ E, ~A;M) denotes the modular cut of M 

generated by all fully-dependent flats of M containing at least 

one element of A. 

Theorem 5.9: A matroid M on E can be expressed as a join 

M) v M2 where M2 is a near-uniform matroid on E if and only if 

there exists a cocircuit S of M such that d( ~(S;M» > O. 

Proof: Suppose that M = Mt v M2 where M2 is the near-uniform 

matroid Uk(A)~ UO(E - A) for some A ~E. Let LJ be the 

large join of M} and M2 . By the same type of argument as in 

part (a) of the proof of Theorem 5.8 we can assert that 

d(~A;M» > O. Now the set A disconnects LJ, and indeed 

-LJ 
E - A E E1 ' and so rM(E - A) < rM(E). Hence E - A must lie 

co-
in a hyperplane of M and so A must contain a!circuit S; then 

d ("t{(S;M» > o. 
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Suppose on the other hand, there exists a cocircuit S of M with 

d(~S;M» > O. Add a point p to M via the modular cut 

~S;M) to get a one-point extension N of M. Now because E - S 

is a hyperplane of M then the matroid M] = NIp can be thought 

of as an extension of the matroid MKE - S~ 

Let M2 = U](S)~ UO(E - S); then M2 is a near-uniform matroid. 

It is now a straightforward geometrical application of lifts 

and large joins to see that M = M
J 

v M
2

• 

o 
Binary Reducibility 

Lovasz and Recski [16] (see also Recski [26J) conjectured that 

a connected binary matroid is reducible if and only if there is 

a point e of M for which M\e is disconnected. With the 

machinery now at our disposal we are able to verify this 

conjecture immediately. 

Theorem 5.10: Let M be a connected binary matroid on E. Then 

M is reducible if and only if there is an e £ E with lIeli > 1. 

Proof: Suppose M is reducible; then certainly an e E E must 

exist with Ilell > 1. (Indeed this is true without the 

restriction that M be binary.) 

On the other hand, suppose there 1S an e E E with lIell > 1. 

Then by Theorem 4.5)M\e is disconnected and so by Proposition 

5.S
J

M is reducible. 

D 
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Theorem 5. 1 1 : Let M be a connected binary matroid on E. Then 

M is reducible if and only if there is an e E E with M\e 

disconnected. 

Proof: By the above theorem, M is reducible if and only if there 

is an e E E with /lell > 1, and by Theorem 4.5 this happens if and 

only if M\e is disconnected. o 
This theorem was proved independently by Cunningham [7J by 

methods completely different to those employed here. Lovasz 

and Recski [16] (see also Recski [26J and [28J) proved this 

theorem in the special case when M is graphic. Our proof, 

of course, is heavily dependent upon results from Chapter 4; 

in the appendix we give a short proof based upon a result of 

Lucas [IB] on weak maps. This last theorem can be 

strengthened slightly. 

Theorem 5.12: Let M be a connected binary matroid on E. 

Then there exist matroids MI,M2""'~ on E and an element 

e E E such that e is not a loop in M. for each i and 
~ 

M = M] v M2 v ••• v ~ 

if and only if there is an e E E with IleilM ~ k. 
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Proof: Suppose e c E is such that IleilM ~ k. Then by 

Theorem 4.}} 

where for each 1, MIE. has rank at least I. 
1 

For each i let M. = M/(E - (E. u e». It is straightforward 
1 1 

to verify that M = M} v MZ V ••• v ~ and that e is not a loop 

1n M. for any 1. 
1 

On the other hand, suppose matroids MI,M2' ••. '~ exist with 

together with an e E E not a loop in any M .• Let r. be the rank 
k 1 1 

function of M.; then L r. E ~(M) (by an inductive argument 
1 i=l 1 

based upon Theorem 5.2) and so 

k 

I 
i=l 

r.(e) =k. 
1 

o 
If M = M) v M2 and both M} and M2 are loop less matroids on E 

then for any e E E, IlellM?: IlellM + IleliM ?: 2. However, 
1 2 

we observed earlier that II e II > 1 for all e E E did not imply 

the reducibility of M. More can be said in the binary case. 
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Theorem 5.13: A binary matroid M on E can be realized as a join 

M = M} v M2 where M) and M2 are loop1e5s matroids on E if 

and only if "e 11M > J for each e € E. 

Proof: As we have observed above, if M can be so realized then 

Ilell > 1 for each e € E. 

On the other hand, suppose M is a binary matroid with lIell > ) 

for each e E E; we shall construct loopless matroids M1 and M2 

with 

Without loss of generality we can suppose that M is connected. 

Let H be the special hypergraph tree wi th M ~ MH as cons truc ted 

in the proof of Theorem 4.12. We shall partition the vertices 

of H into classes A and B as follows. Take any vertex v at 

random and place it 1n class A. Now by the structure of H, 

given any other vertex u in H there is a unique path in 

H from v to u. A vertex u I v is in class A if the path from v 

to u has even length, and is in class B if the path from v to u 

has odd length. 

This partition of the vertices of H has the property that for 

any edge X precisely one vertex of X will be in one class and 

all the other vertices of X will be in the other class. Let 

NA and NB be th~atroidS on the vertices in A and B respectively. 

To show how MH can be expressed as a join suppose X 15 a 

typical edge of H; we can suppose that 

X = {a. b 1 ' b 2 ' ••. ,bk } 



- 174 -

where a E A and b. E B for each i. (If only one vertex of X is 
1 

1n B and all the others are in A, then the roles of A and B 

in the following construction are reversed.) Suppose X contains 

m boundary vertices of H. Then we add new points X
1

,X2"",Xm+1 

to both NA and NB in the following way: to NA add each Xi 

V1a the modular cut ({a}) ; to NB add each Xi via the modular 

cut < {b 1 ,b2, ••• , bk } > . 
We carry out this construction for each edge of H in turn; let 

NA and NB be the resulting extensions of NA and NB respectively. 

Finally let M] and M2 be the restrictions of NA and NB 
respectively to just these new points {X.: X is an edge of H}. 

1 

Then M) and M2 are loopless matroids and it is easily checked 
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Appendix 

Alternative proof of binary reducibility 

In this appendix we give a short alternative proof of Theorem 5.11 

based upon the following result of Lucas (see (18]) which we 

state without proof. 

Theorem (Lucas): Suppose M) and M2 are loop less matroids 

on E and Ml--~M2 is a proper rank-preserving weak map. Then 

if M) is binary, M2 is disconnected. o 
Here a proper weak map is one which is not an isomorphism. 

Theorem (5.11): Let M be a connected binary matroid on E. 

Then M is reducible if and only if there is an e E E with M\e 

disconnected. 

Proof: Without loss of generality we can assume there are no 

loops in M. We observed in Chapter 5 (see Proposition 5.5) 

that it is easily proved that if M\e is disconnected then M is 

reducible, so we need only show that the implication also 

goes the other way. 

Suppose then that M = M
J 

v M2 where M) and M2 are matroids on E 

each with rank at least 1. Let MJ be the Mason join of MI and 

M2 as illustrated in Figure 43. (Recall that E1,E2 are copies 

of E and MI~ MI , M2~ M2 • For any e E E, e),e2 denote the 

copies of e in EI ,E2 respectively; similarly if A~E then 
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A1,A
Z 

denote the coples of A 1n E1,E2 respectively.) 

MJ""" 

,. ~ ~ 
~ \ 

I \ 

0 
, 

0 
, 

0 I , eO ~,o , oez • 0 , 
0 

\ , , , 
,-" 

M=M,vMa. rv 

on E M'1. 
01'\. E'J.. 

Figure 43 

Now 

= max (r
M 

(X) + r (E - X» 
XtaE] MZ 

so we can find a partition {A,B} of E such that 

r
M 

(A) + r
M 

(B). 
] Z 

As M contains no loops, we can ensure that A contains no loops 

of M
J 

and B contains no loops of M
2

, Let 

(J) (2) (n) 
a ,a "",a where n = IAI 

be the elements of A, and 

where m 
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be the elements of B. We can perform a sequence of weak maps 

of MJ by shifting each cell a E A in turn onto a l and each cell 

b E B in turn onto b2, as illustrated in Figure 44. 

,"', 
f ~ ..... 

I n "\ 
I . 0 \ 

I \ 
~--~------~:----O 

. Oa. \ I .. ___ .. ___ ... __ .... ~ 

~" o----~,------~--~ , O~~:~----~----~' 

\ bO ; 
I 

B " 
\ 

\ , " ..... -.. 

Figure 44 

(1) (]) (2) (2) 
That is, we shift a onto a] , a onto a

l 
' and so on, and 

shift b(l) onto b~I), b(2) onto bi2), and so on. Hence we get 

the sequence of weak maps 

and so on. These are weak maps because for any e E E 

If we take the restriction to E of each of these matroids we get 

the following sequence of weak maps, 
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That is, M = MJIE, N} = MJ(a(]~ail) jE, and so on. 

Now as MI IAI~ M2 jB2 contains no loops, is disconnected and has 

the same rank as M then each of the matroids 1n this latter 

sequence contains no loops and each weak map is rank preserving. 

Also at least one of these weak maps must be proper. 

Suppose N. __ +N. 1 is the first proper weak map in this sequence. 
1 1+ 

Then N.~ M and by Lucas's theore~ N. 1 must be disconnected. 
1 1+ 

But N. 1 is obtained from N. by the shifting of the element 
1+ 1 

e E E, say. Then as shifting e disconnects M we must have 

that M\e is disconnected. 

o 
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Index of notation and terminology 

Basic matroid terms not defined in this work are not included 

in this index. Items are arranged in the order in which they 

first appear in the text. 

ground set; 3 

cell; 3 

r or r. • 3 
M' 

loop; 3 

point, parallel points; 3 

X or ~; 3 

flat; 3 

line; 3 

hyperplane; 3 

MIA; 4 

M\A; 4 

MIA; 4 

modular cut; 4 

modular pair; 4 

principal modular cut; 4 

extension; 4 

point added via..lA..; 4 

trivial modular cut; 5 

connected, disconnected; 5 

component; 5 

A disconnect M; 5 

M*; 5 

coloop; 5 

cocircuit; 5 

MJ~M2' strong map; 5 

Mr- iM2' weak map; 5 

strong image; 5 

weak image; 5 

dependent in; 5 

fully-dependent; 5 

tt(X); 6 

e
l 
~ e

2
, matroidal equivalence; 7 

free in a flat; 8 

FR(e) or FR(e;M); 9 

Ilell or IlellM, freedom of e; 12 

d(Jl), degree of a modular 

cut; 15 

J.4A) or "u(A; M); 16 



d] (J,l.); 27 

d, (e); 28 

dO (J.,l); 29 

e
l 

~ e
2

; 33 

e < e . 33 
1 2' 

M(e~ d); 35 

FR*(e) or FR*(e;M); 36 

one-point lift; 40 

lift point; 40 

rank preserving weak map; 4] 

- ISO -

non-trivial one-point lift; 41 

free lift; 42 

freely lifted; 43 

rank increased by a lift; 45 

reM), truncation; 64 

erec tion; 65 

free erection; 65 

trivial erection; 65 

CL(M); 70 

CL
O 

(M); 71 

z~, non-negative integers; 80 

(integer) po1ymatroid; 80 

normalized; 80 

increasing; 80 

submodular; SO 

(;> (E); 80 

M(f); 80 

r; (M); 8 J 

fl~f2;81 

¢(E); 84 

<p(A); 84 

f ~ g; 87 

expansion of M relative to f; 92 

amalgam; ] 02 

rk(M), kth truncation; 103 

binary; 106 

bee) or b(e;M), binary 

freedom of e; 106 

b(J(..) or b(JL;M) , binary 

degree of eM; 107 

R) 0; 107 

hypergraph; 136 

vertices; 136 

edges; 136 

path (of length n); ]36 

cycle; 136 

connected; 136 

degree of a vertex; 136 

boundary vertex; 136 

internal vertex; ]36 

order of an edge; ]36 

special hypergraph tree; ]36 

MH, associated matriod; 137 

M) v MZ' join of matroids; 148 



non-trivial join; 148 
k 

V M.; 149 
i=1 1 

reducible, irreducible; 

MJ, Mason join; ISO 

LJ, large join; 150 

non-trivial large join; 

disconnect without loss 
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149 

150 

of rank; 157 

near-uniform matroid; 169 

proper weak map; 175 



- 182 -

References 

(J) Bixby, R.E. Kuratowski's and Wagner's theorem for matroids. 

J. Combinatorial Theory B 22 (1977), 31-53. 

(2) Brylawski, T. and Kelly, D. "Matroids and Combinatorial 

Theory" Carolina Lecture Series, Chapel Hill (1980). 

(3) Cheung, A. and Crapo, H. On relative position in 

extensions of combinatorial geometries. (preprint) 

Waterloo (1973). 

(4) Crapo, H.H. Erecting geometries. Proceedings of the 2nd 

Chapel Hill Conference on Combinatorial Math. (1970),74-99. 

(5) Crapo, H.H. and Rota, G:C. "On the Foundations of 

Combinatorial Theory: Combinatorial Geometries" 

M.I.T. Press, Cambridge, Mass. (1970). 

(6) Cunningham, W.B. Chords and disjoint paths in matroids. 

Discrete Math. 19(1977), 7-15. 

(7) Cunningham, W.B. Binary matroid sums. Quart. J. Math. 

Oxford (2), 30(1979), 271-281. 

(8) Edmonds, J. Submodular functions, matroids and certain 

polyhedra. Proc. Int. Conf. on Combinatorics (Calgary), 

Gordon and Breach (New York) (IQ70), 69-87. 

(9) Edmonds, J. and Fulkerson, D.R. Transversals and matroid 

partition. J. Res. Nat. Bur. Stand. 69B (1965), 147-153. 

(10) Higgs, D.A. Strong maps of geometries. J. Combinatorial 

Theory 5 (1968), 185-191. 

(II) Ingleton, A.W. Transversal matroids and related structures. 

"Higher Combinatorics" (Aig ner, M. ed) D. Reidel, 

Dordrecht, Holland (1977), 117-131. 



- 183 -

(12) Ingleton, A.W. and Piff, M.J. Gammoids and transversal 

matroids. J. Combinatorial Theory 15(1973), 51-68. 

(13) Kennedy, D. Majors of geometric strong maps. Discrete 

Math. 12 (1975), 309-340. 

(14) Las Vergnas, M. On certain constructions concerning 

combinatorial geometries. Proc. 5th British Conf. on 
Mdkl 

Combinatorics, Utilitas~(1976), 395-404. 

(15) Lovasz, L. Flats in matroids and geometric lattices. 

"Combinatorial Surveys" (Cameron, P.J. ed) Academic 

Press, London (1977), 45-86. 

(16) Lovasz, L. and Recski, A. On the sum of matroids. Acta 

Math. Acad. Sci. Hungar. 24 (1973), 329-333. 

(17) Lovasz, L. and Recski, A. Open problems. 5th British 

Conf. on Combinatorics, Aberdeen, 1975. 

(18) Lucas, D. Properties of rank preserving weak maps. Bull. 

Amer. Math. Soc. 80(1974), 127-131. 

(J9) Mason, J.H. Matroids as the study of geometrical 

configurations. "Higher Combinatorics" (Aigner, M. ed) 

D. Reidel, Dordrecht, Holland (J977), 133-176. 

(20) Mason,;r .14. Amalgamations. "Combinatorial Geometry (The 

Theory of Matroids)" (Crapo, H.H., Rota, G.-C and 

White, N.L. ed) (to appear), 

(21) McDiarmid, C.J.H. Rado's theorem for polymatroids. Math. 

Proc. Camb. Phil. Soc. 78(1975), 263-281, 

(22) Nguyen, H.Q. Semimodular functions and combinatorial 

geometries. Trans. Amer. Math. Soc. 238 (1978), 

355-383. 



- 184 -

(23) Nguyen, H.Q. Constructing the free erection of a geometry. 

J. Combinatorial Theory B 27 (1979), 216-224. 

(24) Nguyen, H.Q. Weak cuts of combinatorial geometries. Trans. 

Amer. Math. Soc. 250 (1979), 247-262. 

(25) Pym, J. S. and Perfect, H. Submodular functions and 

independence structures. J. Math. Analysis Appl. 30 

(1970), 1-31. 

(26) Recski, A. On the sum of matroids II. Proc. 5th British 
I"la& 

Conf. on Combinatorics, Utilitas~(1976), 515-520. 

(27) Recski, A. Decompositions of a graphic matroid. ColI. Math. 

Discretes: Codes et Hypergraphs, Bruxelles. Cahiers 

C.E.R.O. 20(1978), 437-442. 

(28) Recski, A. On the sum of matroids III. Discrete Math. 

(to appear). 

(29) Sims, J. Some problems ~n matroid theory. D. Phil. Thesis, 

University of Oxford, 1980. 

(30) Welsh, D.J .A. "Matroid Theory" (London Math Soc. Monograph 

8) Academic Press, New York and London (1976). 


	354270_001
	354270_002
	354270_003
	354270_004
	354270_005
	354270_006
	354270_007
	354270_008
	354270_009
	354270_010
	354270_011
	354270_012
	354270_013
	354270_014
	354270_015
	354270_016
	354270_017
	354270_018
	354270_019
	354270_020
	354270_021
	354270_022
	354270_023
	354270_024
	354270_025
	354270_026
	354270_027
	354270_028
	354270_029
	354270_030
	354270_031
	354270_032
	354270_033
	354270_034
	354270_035
	354270_036
	354270_037
	354270_038
	354270_039
	354270_040
	354270_041
	354270_042
	354270_043
	354270_044
	354270_045
	354270_046
	354270_047
	354270_048
	354270_049
	354270_050
	354270_051
	354270_052
	354270_053
	354270_054
	354270_055
	354270_056
	354270_057
	354270_058
	354270_059
	354270_060
	354270_061
	354270_062
	354270_063
	354270_064
	354270_065
	354270_066
	354270_067
	354270_068
	354270_069
	354270_070
	354270_071
	354270_072
	354270_073
	354270_074
	354270_075
	354270_076
	354270_077
	354270_078
	354270_079
	354270_080
	354270_081
	354270_082
	354270_083
	354270_084
	354270_085
	354270_086
	354270_087
	354270_088
	354270_089
	354270_090
	354270_091
	354270_092
	354270_093
	354270_094
	354270_095
	354270_096
	354270_097
	354270_098
	354270_099
	354270_100
	354270_101
	354270_102
	354270_103
	354270_104
	354270_105
	354270_106
	354270_107
	354270_108
	354270_109
	354270_110
	354270_111
	354270_112
	354270_113
	354270_114
	354270_115
	354270_116
	354270_117
	354270_118
	354270_119
	354270_120
	354270_121
	354270_122
	354270_123
	354270_124
	354270_125
	354270_126
	354270_127
	354270_128
	354270_129
	354270_130
	354270_131
	354270_132
	354270_133
	354270_134
	354270_135
	354270_136
	354270_137
	354270_138
	354270_139
	354270_140
	354270_141
	354270_142
	354270_143
	354270_144
	354270_145
	354270_146
	354270_147
	354270_148
	354270_149
	354270_150
	354270_151
	354270_152
	354270_153
	354270_154
	354270_155
	354270_156
	354270_157
	354270_158
	354270_159
	354270_160
	354270_161
	354270_162
	354270_163
	354270_164
	354270_165
	354270_166
	354270_167
	354270_168
	354270_169
	354270_170
	354270_171
	354270_172
	354270_173
	354270_174
	354270_175
	354270_176
	354270_177
	354270_178
	354270_179
	354270_180
	354270_181
	354270_182
	354270_183
	354270_184
	354270_185
	354270_186
	354270_187
	354270_188
	354270_189
	354270_190

