
Open Research Online
The Open University’s repository of research publications
and other research outputs

The safety of industrially-based controllers
incorporating software
Thesis
How to cite:

Bennett, Philip Anthony (1985). The safety of industrially-based controllers incorporating software. PhD thesis The
Open University.

For guidance on citations see FAQs.

c© 1985 The Authors

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

o`

D 5-702 +-j -.
UNR6Sr2icrEb

THE SAFETY OF INDUSTRIALLY-BASED CONTROLLERS

INCORPORATING SOFTWARE

A thesis submitted for the degree of

Doctor of Philosophy

in the Electronics Discipline,

Faculty of Technology, The Open University

Milton Keynes

by

PHILIP ANTHONY BENNETT

September, 1984

Awaori r"m, bt : HZ" 2o7.5

`ýaýa. oý sub, ni cen iýºh" : S¢, fýr. ý- 1ý184-

ýaCe, 4 award : 24 Tatrute" 19 S5

ABSTRACT

This thesis is concerned with the safety of industrial

controllers which incorporate software. Software safety is compared

with software reliability as a means of discussing the special

concerns of safety. Definitions are given for the terms hazard,

risk, danger and safe. A relationship between these terms has been

attempted and the philosophy of safety is discussed. A formal

definition of software safety is given. The factors influencing the

development of software are examined. The subjectivity of safety is

discussed in the context of safety measurement being a conjoint

measurement. Methods of assessing the risk resulting from the use

of software are described along with a discussion on the

impracticability of using state transition diagrams to isolate

catastrophic failure conditions. Categories of danger are discussed

and three categories are advanced. The structuring of the software

for safety is discussed and the principle of using safety modules and

integrity locks is proposed. In discussing the reasons for errors

remaining present in the software after testing two methods of

measurement are suggested; Plexus and Fallibility Index. The need

to declare variables is discussed.

An experiment involving 119 volunteers was conducted to examine

the influence of the length of variable names'on the correct usage.

It was found that variables with a character length of 7 have a

better probability of correct interpretation than others.

The methods of assessing safety are discussed and the

measurements proposed were applied to a commercially available

product in the form of a Software Safety Audit.

It is concluded that some aspects of the safety of controllers

incorporating software can be quantified and that further research is

needed.

i

CONTENTS

CHAPTER 1 Introduction

1.1 Problem Definition 3
1.2 Safety 6
1.3 Software Reliability 10
1.4 Software Safety 11
1.5 References 15

CHAPTER 2 Factors Affecting Software Safety

2.1 The Subjectivity of Safety 17
2.2 Specification and Design 30
2.3 Programming Language and Programming Structure ... 34
2.4 Support Environment and Testing Strategy 42
2.5 Operational and Psychological Factors 48
2.6 Conclusion 52
2.7 References

..................... 53

CHAPTER 3 The Structural View

3.1 The Risk Analysis of Software 59
3.2 The Use of State Transition Diagrams

78
3.3 Categorisation of Dangers 89
3.4 The Structuring of Software Modules for Safety ... 97
3.5 References 113

CHAPTER 4 The Influence of the Development Process
on the Safety of Software

4.1 The Feedback Model of Software Production 119
4.2. Single Character Errors in Programs 126
4.3 The Need to Declare Variable and Constant Names ... 139
4.4 A Measure of Syntactic Structure

and Error-Proneness for Application Programs 147
4.5 References 170

CHAPTER 5A Method of Conducting a Safety Audit on Software

5.1 The Software Safety Audit 172
5.2 An Example Software Safety Audit 177
5.3 Analysis of the Example Application 180
5.4 Discussion 193
5.5 References 195

CHAPTER 6 Conclusions

APPENDIX 1 Database Program 200

APPENDIX 2 Program Analyses 202

APPENDIX 3 BASIC Program
205

APPENDIX 4 Graphs

Graph 1 Fallibility Index against the Number

of Characters (Nc) to write a Program 208

I

11

Graph 2 The Probability of a Correct Interpretation
of a Variable for Varying Numbers of Characters . 208

Graph 3 The Plexus Metric and Halsteads Volume Metric
against the Number of Characters (Nc)
to write a Program 209

Graph 4 Comparison of the Plexus Metric and
Halsteads Volume Metric 209

Graph 5 The Plexus Metric and Error-Proneness 210

Graph 6 The Plexus Metric and Halstead's Volume Metric
plotted against the Number of Characters to write
a Program - Declaration Part Included 210

Graph 7 Halstead's Volume Metric and the Plexus Metric

against the Number of Characters to write
a Program - Declaration Part Omitted 211

Graph 8 Plexus Metric plotted against Error-Proneness
where the Declaration Parts are Included
and Omitted 211

Graph 9 The Plexus Metric plotted against
the Fallibility Index 212

APPENDIX 5 Tables

Table 1. Analysis of the Literature Survey 213

Table 2. Analysis of Data Gathered from the Experiment . 214

Table 3. Data Used in the Plexus Calculations 217

FIGURES

Figure 1.2.1 Venn Diagrams for Computer-Controlled
Machinery .8

Figure 2.1.1 Relationship between the parties in
the Certification Process . 17

Figure 2.1.2 Failure Density and Hazard Rate 21

Figure 2.1.3 Mean Time To Failure 22

Figure 2.1.4 The Measurement of Safety 26

Figure 3.1.1.1 FTA Symbols 60

Figure 3.1.1.2 SFTA for IF.. THEN.. ELSE.. 62

Figure 3.1.1.3 Example of SFTA 63

Figure 3.1.2.1 Program Statements using Petri Nets . .. 67

Figure 3.1.3.1 ETA Analysis of a Pumping System 69

Figure 3.1.3.2 Program Statements using SETA 70

iii

Figure 3.1.3.3 SETA of the Example Program rY

Figure 3.1.3.4 SETA of the Example Program with
Probabilities Assigned . 75

Figure 3.2.0.1 The State Diagram for the Example Machine . 79

Figure 3.2.0.2 State Transition Diagram for
the Example Machine 80

Figure 3.2.0.3 Example Process 80

Figure 3.2.0.4 State Transition Diagram for the Example . 82

Figure 3.3.1.1 Software Control Element 89

Figure 3.3.2.1 Error Points 91

Figure 3.4.3.1 Safety and Control Software Integrated .. 102

Figure 3.4.3.2 Configuration of Safety and Control ... 103

Figure 3.4.3.3 Safety and Control Modules Operating
Sequentially . 105

Figure 3.4.3.4 Safety and Control Modules Operating
in Parallel . 105

Figure 3.4.3.5 The Arbitrator Module 108

Figure 4.0.1 Software Development Cycle
116

Figure 4.1.1.1 Production Process 119

Figure 4.1.1.2 Manufacture and Test within
a Process Stage .. 119

Figure 4.1.1.3 Rejection Feedback in a Process Stage .. 120

Figure 4.1.1.4 Test Coverage
120

Figure 4.1.1.6 Repair Mechanism 121

Figure 4.1.2.1 Software Feedback Model 123

Figure 4.1.3.1 Software Edit Stages 124

Figure 4.1.3.2 Edit Process 125

Figure 4.4.3.1 BNF Syntax for the Example Language .. . 152

Figure 4.4.3.2 Syntax Diagram for the Example Language 152

Figure 4.4.3.3 Revised Syntax Diagram for
the Example Language . 153

Figure 4.4.3.4 Syntactic Items of Sample Program 154

Figure 4.4.3.5 Syntax Diagram of the Declarations 154

I
iv

Figure 4.4.3.6 Revised Syntax Diagram of
the Declarations . 154

Figure 4.4.4.1 A Method of Assigning a Probability
of Occurrence to Three Numbers . 156

Figure 4.4.4.2 Another Method of Assigning

a Probability . 156

Figure 4.4.6.1 Comparison of Fallibility Index
and Plexus . 169

Figure 5.3.3.1.1 SFTA of the Product's Functional Alarm . 188

Figure 5.3.3.2.1 SETA of the Product's Functional Alarm . 190

V

Acknowledgements

The original idea for this research came whilst working for the

British Steel Corporation. It was as a result of discussions with

my colleagues that the idea of entering University to conduct the

research came about.

The research project has only been made possible through the

generosity of many people whom I wish to thank; Professor A. S. Douglas

of the London School of Economics and Political Science, Professor

I. C. Pyle of the University of York and the manufacturer of the

medical product assessed as part of the research. Special thanks

are due to Professor J. Monk of The Open University for being generous

with his time and guiding me through the research and, of course, to

my family.

The research was only made possible because of the facilities

provided by The Open University.

vi

CHAPTER 1

Introduction

Previous research has attempted to isolate those factors of

software production which influence the incidence of software errors.

However, previous research was reviewed for this thesis and it was

found not to be concerned with the safety of industrial-based

systems. Previous research has been mainly concerned with the non-

industrial applications of computing though some has relevance to

this thesis.

The research for this thesis was concerned with studying the

safety of industrial-based controllers which also incorporate

software. The. study was concerned with the development cycle of the

software from the specification and the development environment to

the programming language, testing and maintenance. As a part of the

research a set of metrics for assessing various features of the

software have been developed to give some guidance on the structuring

of such systems. The metrics are intended to allow comparisons to

be made between different software development procedures.

Since errors in the software can be considered as a risk and the

combination of a risk and a hazard implies danger then it is asserted

that software errors are dangerous.

In this thesis an attempt has been made at providing guidelines

for the production of safe software based on the research.

In Chapter 2a survey is made of the current state of knowledge

of various factors considered to influence software.

Chapter 3 examines the difficulty of assessing safety from the

basis of structural elements and develops some methods of

quantification based on certain features of the software.

Chapter 4 discusses the reasons for it being impracticable to

I

remove all errors and indicates where some of the errors arise.

Chapter 5 reports on work undertaken on a real product to assess

the safety of the product and makes observations as to where the

difficulties lay in conducting such a safety assessment.

Chapter 6 includes the conclusions and recommendations for

further work. It is concluded that no ultimate solution was found

during the research and there is a considerable amount of work left

to done.

2

1.1 Problem Definition

The reduction in the cost of computers has meant a corresponding

increase in the use of computers for industrial-based control

engineering applications. In such applications the consequences of

an error are reflected in new risks to capital equipment, human life

and the natural environment. The new risks are a consequence of

implementing the control strategy in software when replacing existing

technologies. In particular, microprocessors introduce new kinds of

risk.

The application of microprocessors in industrial-based control

systems makes it necessary to be able to assess application programs

according to some specified safety standards, though no method of

measuring safety exists and a safety standard has not been

formulated.

In Great Britain there are legal considerations when applying

industrial controllers to hazard-related processes; there is a

contractual obligation of the User to inform the Supplier of safety

requirements and, conversely, the Supplier has an obligation to

inform the User of any safety related issues that have been

identified in the controller. Within the framework of commercial

activity due regard must also be given to the statutory instruments,

such as the "Health and Safety at Work etc Act, 1974".

The Health and Safety at Work Act is administered by the Health

and Safety Commission through its Health and Safety Executive (HSE)

which has six Inspectorates, three of which are directly relevant to

this thesis; the Nuclear Installations Inspectorate, the Mines and

Quarries Inspectorate and the Factory Inspectorate.

In hazard-related industrial control systems there is still a

need to establish a method for assessing the safety of software once

it has been developed and before it becomes operational with respect

3

to the plant that it will control. Some software test procedures

check the software for correct operation within a limited range of,

test data sets. These checks may be unsatisfactory for industrial

controllers incorporating software and which may be used in a

hazardous application. No standard testing method exists to

demonstrate the safety of software in such a situation. Yet a

complete industrial control system may comprise software packages

from different sources of supply and sometimes developed for a

different range of computers to the target computer under test.

Safety of industrial control software should consider the

software, the run-time environment that the software is expected to

work in and the function of the software. Measurement of the

software safety should indicate the extent to which the software can

be confidently expected to work safely: both safe and consistent in

operation when controlling equipment.

Since software errors are hazardous, the containment of the

hazard within acceptable limits is called software safety in this

thesis.

The safety of software is an area of research where there is

little published evidence of research.

1.1.1 Definitions

Throughout the thesis the terms 'hazard', 'risk', 'dangerous'

and 'safe' are used and to avoid confusion over the terms a

definition has been placed on each of the terms;

- 'Hazard' describes a condition with the potential to cause

harm; to capital equipment. people or the natural environment

- 'Risk' is used to describe the probability of a hazard

materialising

- 'Dangerous' is used to describe a situation where the level of

risk of a particular hazard is considered to be unacceptable

4

- 'Safe' is used to describe a situation where the level of risk

is judged to be acceptable.

In all cases people need-to be present to transform a hazard into a

dangerous state.

Additionally, the term 'software' is used to refer to computer

programs written to meet a specific industrial control application.

5

1.2 Safety

'Reliability' and 'safety' are sometimes considered to be

synonymous but in this thesis they are held to be related subjects

with different goals.

Reliability is often associated with the term 'reliance' to mean

the dependence a user places on a system, when reliability is a

measure of the success of achieving a desired operation.

Safety is an emotive topic and the assessment of safety is a

subjective judgement but 'safe' intuitively suggests some absolute

measure that the risk is 'acceptable' or does not exist. The use of

the term 'acceptable' must consider costs, benefits and to whom the

risk is considered acceptable; the supplier, the procurer or the

user. Therefore, acceptable should be used sparingly to express

some agreement between the parties exposed to the risk of the costs

and benefits.

Since hazard is used to describe a condition with the potential

to cause harm then it follows that for a hazard to materialise then

the risk needs to approach unity. As the risk increases the

threshold of acceptability will be crossed at a cusp point and the

state will be considered to be unsafe which implies, if people are

present, that the state is dangerous.

Individual thresholds of danger will vary but it is possible to

postulate a set of thresholds which categorise danger according to

three levels of danger; serious, major and minor. Placing any state

into one of these categories suggests that the level of danger can be

expressed by such a term as

Level of Danger = P(r) . Hn

where P(r) is the probability of the hazard materialising, risk

Hn is some subjectively assessed number associated with

the hazard.

6

P(r) is the sum of all the events in the event space which can

cause the hazard and P(r) is made up of a number of sets of events.

The relationship of these sets of events to P(r) can be shown by

using Venn diagrams. As an example, consider some computer-

controlled machinery.

In the simplest case, Figure 1.2.1. a), the set of events

associated with the machinery alone being a hazard are given as P1

and the event space is considered to be the universe of events

unbounded. Since no people are present then, by definition, there

is no danger.

When people are involved then there is a set of events

associated only with the environment being the hazard, P2'. The set

of states intersecting P1' and P2', given as P12', are those events

associated with the machinery and the environment. When the

machinery is being operated by an Operator without the aid of a

computer then the event space can be considered to be bounded to

include only those events associated with the operation of the

machinery, Figure 1.2.1. b).

When the control of the machinery includes some form of computer

control the boundary event space changes to include a set of events

associated with the computer control alone being the hazard, P3''.

The intersection of P1'', P2'' and P3'' is given as P123'' and is the

set of events associated with the machinery and the environment and

the computer control causing the hazard, Figure 1.2.1. c).

The probability of events in the intersection of P2" and P3''

causing a hazard is low and the set of events in the intersection of

P1'' and P3- does not involve people so, by definition, cannot be

considered as dangerous.

By including computer control on the machinery new risks are

introduced. However, the introduction of computer control, P3''',

"1

may also reduce the set of events associated with the machinery

alone, PI''', and so distort the boundary of the event space, Figure

1.2.1. d).

Figure 1.2.1 Venn Diagrams for Computer-Controlled Machinery

a)

b)

r- ---ý
ýýi

P12'

event space
boundary

bl'

- ý. - _;

P(r) = Pt' + P2' + P12'

C)

P123' '

-

P2� I

Iý

P(r) = P1" + P2'' + P3" + P123"

6-

d)

P(r) = P1... + P2' + P3.,. + P123'' - P13'''

9

1.3 Software Reliability

Having established what is meant by the term safety and that

software errors can affect safety then it is necessary to appreciate

the concepts of software reliability before discussing what is meant

by software safety.

Definitions of software reliability range from an assessment of

the correctness of a program with respect to the requirements

specification through to a count of the number of programming errors

in sample programs.

The assessment of a program's reliability necessitates some

knowledge of the programs requirements but the requirements

specification can only be regarded as a necessary design document.

A requirement specification will state what the software is required

to do and may not include statements on safety although it may be the

case that safety is to be maintained even when the software is

abused. A requirement specification is insufficient to instil

confidence in the correct and safe working of a program or to ensure

that the program satisfies the requirements.

10

1.4 Software Safety

The published material on software reliability presented models

for indicating the number of software errors found and aimed to

predict how many errors still existed. The models also consider

that all errors present have the same hazard. The concern of this

thesis is the extent to which a risk exists when an error is

experienced. The Oxford English Dictionary defines safety as being

the noun of the adjective safe: out of danger: not involving risk:

cautious:
". The concern was with the maintenance of an

operational condition which, whilst being reliable, is also free from

danger, therefore, it is conjectured that the research for this

thesis was on Software Safety.

Though the terms 'reliability' and 'safety' are frequently

interchanged they have different interpretations. An item of

software may perform in an unintended manner and yet be safe in

operation. Equally, software can be unsafe whilst functioning as

intended in the specification. Reliability is concerned with all

failures. Safety is concerned with the consequences of failures

which may result in human or economic cost. Some failures incur

more economic-social costs than others and so some errors are

considered to be more serious than others.

There has been much research into Software Reliability concerned

with the intended function of the software but little specifically on

Software Safety.

Current software reliability theory attempts to quantify errors

by predicting the number of errors expected to exist. The theories

give equal weight to each error predicted to exist. By contrast, in

safety assessment it is the intention to qualify errors by weighting

them according to the resultant economic-social cost.

Safety and reliability have different goals due to the differing

11

emphasis. Decision making in a safety-related system involves

moral, ethical and economic factors and requires a knowledge of the

difference in emphasis between reliability and safety. If this

difference is not taken into account then less information will be

available on which to base the decision. Therefore, software safety

should be dealt with as a related but separate issue from software

reliability.

In this thesis software safety'is defined as:

The confidence that a given program will, for a given run-time

environment, perform its function in a controlled and

reproducible manner within an acceptable evaluation of risk. "

The term 'acceptable evaluation of risk' in the definition

recognises that safety is a subjective judgement of which software is

safe and which is unsafe. The subjectiveness in evaluating risk is

a value judgement on the damage that could arise in possible

situations and was reflected in the Report of the Court of Inquiry

into the Flixborough Disaster Ell, Para. 197.

Using propositional logic it is possible to formally state the

definition of software safety such that there are three conditions to

be satisfied;

1. When the current state, si, is contained in a set of safe

states S, there is a function F that will transform the current state

to the next state, sj, which is also contained in the set of safe

states,

Vs E S, (F(s)=ss S)
iijj

2. When the current state is contained in a set of unsafe

states, U, there is a function that will transform the current state

to the next state, which is contained in the set of safe states,

Vs E U, Ms)=sDs S)
iijj

12

3. When the current state is contained in a set of unsafe states

and there does not exist a set of safe states for the current state

to be transformed to, then there is a function that will transform

the current state to the next state with the lowest risk

Vs E U. if
IsES

such that F(s)=s then
ijij

F(s)=sJ Risk < Risk
ik (sk) (sj)

where S is a set of states judged to be 'safe'

U is a set of states judged to be 'unsafe',

V is the universal quantifier

is the existential operator

In asserting that Risk < Risk consideration needs to be
(sk) (sj)

given to the time taken for the system to achieve state sk.

There at least two strategies that can be adopted when

considering the consequences of time. If Risk is considered to
(sk)

be lower than Risk , yet more time is required for the system to
(sl)

achieve state sk than state sl, a judgement can be made whether

safety is best served by achieving state sk with a low risk in a

longer time than state sl. State sl has a higher risk than state sk

but a lower risk than state sj and can be achieved in a short time.

Therefore, condition 3 can be qualified;

3a. Vs E U. if IsES
such that F(s s then

ijij

F(s)=sJ Risk < Risk
ik (sk) (sj)

iff Risk T<TA(Risk < Risk > Risk
(sk) (sk) (sl) (sk) (sj) (sl)

where T is the time required to achieve a particular state from

the current state, si. This strategy is appropriate to those

instances when it is only possible to one state ahead.

If it is possible to look ahead more than one state an

alternative strategy might be to achieve a state with a higher risk

13

for a short time in the knowledge that a state with a lower risk will

be achieved ultimately. In this strategy safety could be expressed

as the integral of the level of danger against time

Safety =f P(r) . Hn dt

The value of Hn is subjectively judged and could influence which

strategy to adopt due to the level of confidence in the judgement.

The definition of safety can be formally stated but what is

considered to be a set of 'safe' states or 'unsafe' states depends on

a subjective judgement based on knowledge, experience, emotion and

legislation of what is acceptable at the time.

14

1.5 References

[1] Dept. of Employment, The Flixborough Disaster: Report of the
Court of Inquiry, H. M. S. O., 1975

15

CHAPTER 2

Factors Affecting Software Safety

In this chapter an argument is advanced that the assessment of

safety is subjective and will remain so until some method of

measurement can be found which is not a conjoint measurement.

Factors found during a literature survey, which have been considered

by other researchers to influence software, are also examined in the

context of each stage of the software development process before

implementation and following implementation.

There has been a substantial amount of material published

attempting to establish those factors having an influence on the

production of software. Since there has been a substantial amount

of relevant material published only selected material has been

identified and referenced.

16

2.1 The Subjectivity of Safety

Software can be adversely affected by certain factors and it

follows that the safety of an industrial process resulting from the

use of the software can also be affected by these same factors. The

factors considered in this chapter are those asserted by the

respective researchers to have an undesirable influence on software.

These factors are considered with the emphasis being on the safety of

the software. The term 'safety of the software' is used to mean the

safety of the system as a result of using software rather than to

mean an assurance that the software is itself 'safe' from errors.

To confidentally install a controller incorporating software it

is necessary for some checks to be carried out leading to

certification of the software for use in safety-related systems. In

a safety-conscious industry it will be normal practice for these

checks to be undertaken by a third party, separate from the User or

Supplier, who is also aware of the requirements imposed through

legislation or common by 'best world practice'. The relationships

between the Supplier, the User, the Certification Authority and the

Health and Safety Executive are represented diagramatically in Figure

2.1.1 with the solidity of the line reflecting the strength of the

relationship.

Figure 2.1.1 Relationship between the parties in the
certification process.

Certification
Authority

User Supplier

HSE

The form that the certification takes will depend on the

experience and knowledge of the User, of the Supplier, of the

17

Certification Authority and on the current legal requirements. The

form of the certification will also be influenced by the state of

knowledge of the certification methods.

The certification of the design of any equipment needs to be

comprehensive. The difficulty of undertaking a comprehensive design

study was raised in the Court of Inquiry into the Flixborough

Disaster, [14] paras. 191-193, when it discussed in general terms the

probabilities of the "8-inch hypothesis" and the "20-inch

hypothesis". The Court decided to refer to a special committee,

paras. 217-219, the concern of a major disaster resulting from the

design of process plant and equipment.

The Danish organisation Elektronik Centralen, [17], have issued

a draft directive on the testing of software used in control and

surveillance systems. The level of safety is determined by

assessing observable actions called 'qualities' which are considered

to influence the safety of software. It is difficult to use the

assessment as a comparison between two dissimilar systems since there

are no quantitative measurements. Since these qualities are

subjective observations made by the assessor of the software at the

end of the whole development they have not been used as the framework

for this Chapter.

Software production factors such as the choice of programming

language and data structures, programming methodology, quality

assurance and project standards are sometimes asserted to influence

software production.

One researcher, Rault [59], surveyed the published work on the

production of high quality software and concluded that there was a

need for research into what he called "quality control" and listed

some of the factors to be considered; 'complexity, comprehensibility,

usability, modularity, reusability, adaptability, testability,

18

sortability, linkability, robustness wit!

operations, and so forth, ' and suggested

these factors. These factors are vague

the end-product, the software, against a

not observable.

At each stage of the development of

h respect to user mis-

some methods of measuring

and concerned with assessing

set of qualities which are

software there is a choice

to be made between competing methods and techniques and in each case

there are some good and some bad ones. The choice of method or

technique to use will influence the safety of the software but, as

the literature survey will show, there has been competing assertions.

Following the literature survey, the factors in this thesis have

been grouped into four sections covering the stages of the

development process before implementation and after implementation.

The sections are:

Specification and Design

Programming Language and Programming Structure

Support Environment and Testing Strategy

Operational and Psychological Factors

Table 1 contains an analysis of the frequency of occurrence of

these factors (and their subsets) by application area. The totals

are for each set of factors found in the surveyed works.

The sections of the survey assume that undesirable influences

can introduce unsafety at each stage of the software development

process and that each factor can affect the outcome. For safety to

be assessed according to any one factor, the factor must be

observable and quantifiable and not subjective which implies that it

is possible to attach a numerical value to safety and that safety can

be absolute. It is the desire to quantify safety that has led many

people to relate safety and reliability, when reliability is a

quantitative measure and a method has not yet been found of

19

quantifying safety.

Calculations of software reliability related to the coding of a

program do not constitute a definition of software reliability but

can be categorised as a software metric. The assumption is that a

well structured program will be more reliable than a badly structured

one due to the clarity of expression of the logic in the program.

The assumption takes account of the possibility that the logic could

be incomplete and also assumes that good structuring is always

possible.

One definition based on error rates, from Rault and Bouissou

[60] states that software reliability is;

"the probability that a program works without error during a

given time span on the machine for which it has been intended

and under specified conditions".

Here the concern is with a statistical probability of failure

calculated from a count of the number of errors detected and

corrected over a specified period of time. A problem arises in the

use of elapsed time as a parameter since failure to function reliably

is dependent on the occurrence of a specific condition. The history

of the rate of reduction of programming errors will influence over-

confidence in the software if it shows a rapid reduction.

Conversely, if the number of outstanding errors is reduced at a slow

rate, the confidence in that software would be accordingly low.

If it is assumed that the failure density reduces exponentially

then as the failure density reduces so will the hazard rate

accordingly and demonstrate a steady state operational life. The

effects of wear and aging of mechanical equipment causes random

failures to be seen in the failure density giving a corresponding

change in the hazard rate. The hazard rate will then be reminiscent

of a bath-tub, which is where the term "bath-tub curve" comes from.

20

In software reliability it is assumed that the detection and

correction of software errors reflects an exponential function and

that a point can be reached where an 'acceptable' number of errors

are considered to exist and after which time continued stable

operation can be expected since software is not affected by aging or

wear-out.

Many industrial control systems will not be changed from their

initial operating status during the life of the system. Many will

be subjected to change after some period of stability to reflect the

revised operational requirements. The changes may cause some new

errors to be introduced causing a transient increase in the failure

density and a consequent rise in the hazard rate. Modelling of the

failure rate of software using the bath-tub curve is useful if

changes to the system are anticipated.

Figure 2.1.2 Failure Density and Hazard Rate

F(V

L

vo

t

Failure Density

Hazard Rate

When the failed unit is repaired and returned to service, a

measure of the reliability of a unit is the term Mean Time Between

Failure, and when the failed unit is not repaired the term Mean Time

To Failure is used. It has become accepted practice to use MTTF

when measuring software reliability since any correction applied to

21

the program will change its characteristics and can therefore be

regarded as a new instance of the program rather than the erroneous

one being returned to service after repair.

In using MTTF it is assumed that an exponential reliability

function with a constant hazard rate, %, applies. However, MTTF

equates to the reciprocal of /I and the number of failures experienced

will be at least half of all failures, Figure 2.1.3.

Reliability models can be grouped into two main types:

Deterministic and Bayesian.

Figure 2.1.3 Mean Time To Failure

a) in terms of reliability

R(t)

1
e

b) in terms of failure rate

F(t)
1-1

e

In the Deterministic group of models the Jelinski-Moranda and

Musa models dominate the published material, [49]. The assumption

in these models is that the times between detection of errors, T, are

independent random variables, V, and that time, t, is conditionally

exponential, so

-At
pdf(t I V) = ýe

and

k. =(N+ 1)'

22

t 9`

1t

where N= initial number of faults

= contribution to failure rate from each fault

The execution time model of Musa is becoming more widely evident

in published literature and is based on the Jelinski-Moranda Model.

In the Musa model the expected number of errors, n, is given by

n= No [1- exp(-Ct/NoTo)]

where No is the inherent number of errors

To is the MTTF at start of testing

C is the 'testing compression factor' and. a ratio of equivalent

operating time in the target environment to the actual

operating time in the test environment.

The present MTTF is given by

Ct
T= To exp(NoTo 1

giving

-t R(t) = Pr{ no failure in (t, t«1)} a exp(T

To improve the MTTF from T to T'

1_I
An = NoTo (T T')

and the execution time to achieve this change is

MoTo T'
At =C Ln (T)

Littlewood (41] discounts the use of Mean Time To Failure (MTTF)

and Mean Time Between Failure (MTBF) in the context of software as

elapsed time can only be used when a regular pattern of use can be

demonstrated.

The Littlewood-Verrall model, [421, dominates the Bayesian group

of models in the published material and also assumes exponential

reliability growth;

- it Of (t 1 1) = 11 e

23

where / is the program failure rate with a gamma distribution:

that the failures do not occur at a constant rate but depends upon

program usage.

The model also assumes that different program errors have

different probabilities of failure. The failure rate is given as

a a-I - ? (i)71
PDF(X)=[1(i)] Le

r (a)

where a= a-th failure

7. = failure rate

r (a) = gamma function

V= linear function

giving

a
F(t) t+ fli))]

a
R(t) =[('P(i))/(t+ Y(i))]

and

MTTF = Y(i) / a-1

The models discussed above are concerned with the operational

performance of the software, the amount of testing needed and the

software error-rate. There is no indication of the seriousness of

the errors estimated to exist or which errors would create a

catastrophic operational malfunction. The rate of detection and

correction of errors does not indicate the risk associated with the

usage of the software.

In chemical plant design studies it is common practice for the

design to be subjected to a range of techniques known by the generic

term 'Risk Analysis', [3], in order to determine the risk associated

with the design. The approach is to examine product flow routes and

to ask the question 'would it be nasty if ...
'. Probabilities of

24

component failure in each route are assessed and submitted to

probabilistic analysis to establish the risk for the total plant.

An analogy between the risks in a chemical plant and the risks

in software is to be seen by viewing the data flow of the software in

a similar manner to the material flow of an chemical plant. An

assumption is made that the risk from the software is independent of

the risk from the supporting hardware. Such an assumption is

similar to that applied to other industrial plant when it is assumed

that the risk from each nut and bolt or individual component is

acceptable. In both instances, the resulting risk analysis is

subject to external events on each component.

Once a risk analysis has been done then it is a simple task to

repeat the original risk analysis following modifications. The

investigations reported by Taylor, (66], indicate that it may be

possible to apply some risk analysis techniques to software following

detailed examination of the functional specification.

In the Report of the Court of Inquiry into the Flixborough

Disaster, (14], the following comment is made in para. 196;

"No plant can be made absolutely safe any more than a car,

aeroplane, or home can be made absolutely safe. It is important

that this is recognised for if it is not, plant, which complies with

whatever may be the requirements of the day tends to be regarded as

absolutely safe and the measure of alertness to risk is thereby

reduced".

Both 'risk' and 'hazard' can be quantified and the combination

of risk and hazard is called 'danger'. Since 'safe' has been

defined as being a situation where the level of risk is judged to be

acceptable then it is desirable that safety should also be expressed

quantitatively. The word 'safety' is often associated in peoples

minds with the word 'dangerous' which describes a situation which,

25

though safe to one observer, may be considered to be unsafe to

another. Dangerous has been defined in this thesis to mean a

situation where the level of risk of a hazard materialising is

unacceptable and will have an undesirable consequence on either

capital equipment or people.

Safety refers to the subjective judgement of potential hazards

within the safety criteria and is based on personal experience

supported by limited measurements of measurable parameters. This is

currently not possible.

To understand why safety cannot be expressed in terms of a

quantitative measurement the epistemological and logical foundations

of measurements need to be examined. But before examining the

principles of measurements it is necessary to have a picture of the

problem of fitting any scale of measurement to safety.

On the one side of the picture there is a notion of safety

comprising a conception of what is 'safe' and what is 'unsafe', a

model of how safety relates to the world and a definition based on

both of these. On the other side of the picture there is some

method of instrumentation providing a measure which, through

pragmatism, is ordered in to some index. The ordering of the index

is not influenced by pragmatism alone but is also subject to

influence by the model and the concept.

Figure 2.1.4 The Measurement of Safety.

Model
Pragmatism Instrumentation

Definition '- -' Index Measure

Concept

26

To be able to have some measurement of safety according to the

definition it is necessary to have a mapping function between the

definition and the index. Finkelstein, [19], formally defines

measurement as being a set of mathematical entities 0 and a set

numbers N with a mapping function M between the sets such that M maps

the mathematical entities 0 onto the set of numbers, M: Q -> N. A

scale of measurement S is given as the triplet S= {Q, N, M}.

If the class of entities 0 is considered to be the definition of

safety shown in Figure 2.1.4 and the set of numbers N as being the

index, then in order for safety to be expressed in terms of a

measurement a mapping function M which maps the definition D into the

index I, M: D -> I, is needed. Such a mapping function may be

considered as a conjoint measurement which, according to Finkelstein,

relates to a set of measurements having the capacity to assign a

measure to the object and order the measure in a set of measures.

Conjoint measurements, then, are some form of ordering according to

empirical observations (subjective judgement) not rankings which

Finkelstein describes as a comparison against defined standards.

Since defined standards do not exist for the safety of software it is

asserted that the safety assessment of software is a subjective

assessment.

Safety, then, is some subjective judgement about the risk of a

hazard materialising and that the risk is acceptable in the social

climate prevailing at the time of the judgement. The Flixborough

Inquiry, [14] para. 197, comments on the acceptability of risks;

"When Mr Marshall refers to risks exceeding a specific value we

understand him to refer to risks which exceed what at a given time is

regarded as socially tolerable, for what is or is not acceptable

depends in the end upon current social tolerance and what is regarded

as tolerable at one time may well be regarded as intolerable at

2?

another. Nowhere perhaps is this more apparent than in the field of

road transport where the construction and use regulations have, over

the years, become even more stringent".

The acceptability of risk is dependant on personal experience

and an appreciation of the probability issues involved. For example

Knox, [37], has suggested that a probability of 100,000: 1 is

considered to be safe whilst Starr and colleagues, [64], found that

risks between 10,000,000: 1 and 10,000: 1 are considered by the general

public as being acceptable since "their likelihood are no more than

being struck by lightning". Caution must be expressed when thinking

of acceptable risks in terms of ratios otherwise the wrong inferrence

may be drawn.

If it is subjectively assessed that activity X is "safer" than

activity Y then the judgement may accurately reflect a comparison of

some characteristic of the entities. However, the utility of the

safeness of entity Y may be greater than that for entity X, since the

social-economic consequences of entity Y being unsafe may be greater

than for entity X. Therefore an assessment of safety must not be

considered in isolation from the economic-social costs of being

unsafe.

As an example of the subjective nature of safety it can be said

that the accumulation of explosive materials above that licensed by

the Local Authority is not safe. Yet at the Inquiry into the

Flixborough Disaster it emerged that the site had a licence under the

Petroleum (Consolidation) Act 1928 to hold 8,500 gallons of explosive

material yet the management, including the Safety Officer, had

allowed 367,850 gallons of explosive material to be stock-piled.

The storage of explosive material at a level of 43 times that

licensed was not considered by the Court of Inquiry as unsafe. To

the contrary, the Report commends the management in three paragraphs

28

(paras 201,202 and 206) for being "safety conscious".

29

2.2 Specification and Design

The earliest stage of the development of software is the

specification and design. A specification should be an unambiguous

statement of the intended properties (characteristics) of a program.

The unambiguous property of the specification applies whether it is a

formal requirements specification or an informal functional

specification and is a guide to the designer about the requirements

of the system. The designer undertakes the design according to his

understanding of the specification.

The produced design is the designer's interpretation of the

specification which he will consider to have understood in detail and

yet may have produced a design which does not satisfy the

specification. Such a design may be unsafe in operation due to the

designer not having appreciated the safety requirements contained in

the specification.

Basili and Perricone, [4], examined two large software systems.

One of the systems was for satellite planning studies and comprised

approximately 90,000 lines of Fortran. The second system, a

'ground-support' system, was programmed by the same organisation as

the first but the length of the code and the programming language

used were not reported. After analysis Basili and Perricone

reported that on the 'ground-support' system only 81 of errors were

attributed to specification errors yet on the satellite system 48Z of

all errors were "... attributed to incorrect or misinterpreted

functional specifications or requirements".

2.2.1 Formal Methods

Formal Methods of specification have been developed using Finite

State Machines, Directed Graph, Control Flow Graphs, Modal Maths and

Denotational Semantics. The published works have been largely

concerned with the description of formal methods rather than specific

30

application examples.

Berg et al, [5], suggest that formal methods are an aid to

software production by stating precisely the requirements and

objectives that the program is to satisfy.

When a formal specification is used the designer may consider

there to be minimal specification ambiguities. Acts of faith by the

designer in the infallibility of the specification may lead to a

lower awareness by the Programmer of the requirements and a

consequential increase in human error during the software production.

2.2.2 Functional Specifications

A functional specification is a statement to the customer about

the way the software is expected to react on a given input sequence.

However, the action to be taken following an unanticipated and

unspecified combination of inputs or events is not specified. A

consequence of failing to make a statement about actions following

unexpected events may mean that the designer fails to establish the

unsafe conditions.

Functional specifications have become common in many industrial

installations over the years and are sufficiently detailed for many

purposes according to Kopetz, [38]. The format of a Functional

Specification varies according to the project standards in use within

the organisation and no standard approach to its compilation exists.

Non-standardisation of a specification format may create a situation

where a specification is misinterpreted by a designer who is familiar

with one format of specification and is being requested to prepare a

design against an unfamiliar specification format. Consequently the

designer may overlook some of the safety features of the design.

Pyle, [57], suggests that the requesting authority for the

design may be a Plant Manager who has a deep understanding of his

process requirements but may not have a similar grasp of formal

31

specification methods. In such a situation functional

specifications aid the requesting authority to have confidence that

the overall safety of his plant will be maintained and aids him to

appreciate complex concepts, particularly about the scope of the

proposed solution.

When Functional Specifications are used decisions on algorithms

and their implementation are deliberately not taken at an early stage

in the design process so that unnecessary constraints are not imposed

on the designer. Henry, [28], warns of the dangers of

"overspecification" hindering the conception process through limiting

the set of possible solutions.

With functional specifications a confusion may arise about the

precise nature of the function to be performed and lead to the

omission of some aspect of the design aimed at ensuring safety.

Some functional specifications include a separate section on the

safety aspects of the system.

2.2.3 Specification Languages

Ramamoorthy and Ho, [58], state that there is an urgent need for

specification languages in which system requirements can be

unambiguously stated and validated.

The belief that specification languages can improve the

consistency of the software design has led to the use of program-like

languages to specify the design. A program written in a high level

programming language describes the means of achieving a given

transitional state without explicitly expressing the effect of the

transition. For a specification to be meaningful to the requesting

authority the effect of the transition needs to be expressed not the

means. Pyle, (57], rejects the use of a specification language to

formally specify a design since it is usual for such a specification

to be useful solely to the designer and not understandable to the

32

requesting authority.

Software specified by a specification language can be submitted

for verification using formal methods but the use of a specification

language does not implicitly ensure safety. Berg et al, [5], report

that no major systems have been specified or verified using'a

specification language.

2.2.4 Structured Design

Structured design is a software interpretation of the

specification.

Structured design is the arrangement of functional modules into

a conceptual hierarchy of modules comprising the system. To

construct the hierarchy a technique known as stepwise refinement,

Wirth (69], can be used to develop a description of the system and

its data structures. At each step in the refinement process a

consistency check is made to ensure adherence by the design to the

specification and that each development stage reflects the

specification of the previous stage plus revisions.

In order to construct the hierarchy two approaches are common;

bottom-up design and top-down design.

Bottom-up design is a method used by many designers when

designing individual modules and arranging the interconnection of the

modules until they meet the requirement. Top-down design examines

the requirement and divides it into designs which are definable

portions of the total requirement. The designs can be further

divided until a number of modules have been identified.

Step-wise refinement can induce errors when following either a

purely top-down or purely bottom-up design because of the oversight

of common functions. There is a secondary effect, that of creating

a poor design because of the design being fragmented. These effects

can be assessed qualitatively but not quantitatively.

33

2.3 Programming Language and Programming Structure

2.3.1 Programming Language

Whilst the design method influences the system structure and

interactions, the main production tool in software development is the

programming language. The choice of programming language influences

the amount that errors can be introduced into the resulting code.

Young, [71], gives a comprehensive review of languages for

industrial control systems and makes recommendations on those

languages he considers to be suited for the purpose. Young sets out

six basic criteria for the design of a real-time language; "security,

readability, flexibility, simplicity, portability and efficiency".

Security of a language is some measure of the extent to which

errors in the program will be detected by either the compiler or the

run-time support system. Readability concerns the choice of

variable names and legibility such that a conceptual understanding of

the software can be gained by reading the program listing without

recourse to further documentation. Flexibility of a language is the

richness of choice available to a programmer using the language.

Simplicity reflects the time and cost required to train a

programmer in the language and also the reduction of programming

errors caused by misinterpretation of the language. Portability is

the ease with which a program written in a particular language is

able to be moved from one computer to another computer without being

dependent on the supporting hardware of either computer. Efficiency

is some measure of the computational throughput compared with the

constraints imposed by the control system and some measure of the

predictable overheads, such as data manipulation. Young suggests

that of the six criteria security and readability are vital in

safety-related systems.

It was found during the survey of published literature that some

34

languages are considered to be more secure than others, due to their

syntax. Horning, [31], gives an insight into some of the problems

of using particular languages.

For high-level programming languages there are fewer errors for

a given function then would be the case with a low-level programming

language. Therefore, the programming language has an effect on

software safety.

Comments have been made by Young, [71], and Horning, [31], about

the type of language to be used for different tasks. Rzevski, [61],

reported on experiments which he asserts show that expert FORTRAN

programmers write equally reliable and safe programs as expert PASCAL

programmers. Rzevski also reported that he has found it easier for

novices to learn to write reliable programs in PASCAL than in FORTRAN

and attributed the findings to the structuring of the language.

Gannon, [21], suggested that a programming language for real-

time use needs to be secure and cites the implementation of data

typing as an example of language security. A data type specifies

the set of operations that can be applied to objects of that type and

the range of values an object of that type may have. The method

that a programmer adopts to ensure the security of data is a safety

concern since data corruption can lead to incorrect functioning of

programs.

Another aspect of programming languages which Horning, [31],

considers to be unsafe regardless of the task, is the control

structure. The control structure is influenced by the amount of

code indentation and in an experiment conducted to examine the

effects of the indentation of code Miara et al, [47], found that

indentation significantly influences'the comprehension of the program

by programmers and concluded that the experiment coincided with the

earlier work of Kerninghan and Plauger, (36].

35

Reference was found to faulty instructions not being detected

during testing and resulting in unsafe operation. One such report

concerned the early termination of a French meteorological experiment

caused by a controlling satellite issuing the 'abort' command instead

of the 'read' command and destroying 72 of the 114 weather balloons,

Anderson and Lee [21, and Myers, [50].

In some languages, notably BASIC and FORTRAN, the declaration of

variables is not required and new variables can be implicitly

declared within the body of the program. The alternative strategy

is to require that all variables be defined in a declaration block at

the beginning of a program. Languages which do not require

declarations may be considered as unsafe when used for industrial

control since the declaration of variables within the body of the

program promotes ambiguity.

An example of the risks of not requiring declarations of

variables is the reported loss of a space mission to Venus, Mariner

I, Myers (50], which was reportedly due to an error in a program

written in FORTRAN of the type: -

DO 31=1.3

Because Fortran is a context-dependent language, the statement

was treated as an assignment of the value 1.3 to a variable and

allocated D031 to that variable rather than correctly executing a DO

loop.

Reported losses of equipment through software errors have caused

expensive losses of equipment. There have been no published reports

of incidents endangering human life. Reports such as these

demonstrate the risk of not declaring variables.

The ability to handle non-standard input-output devices such as

Analogue-Digital Convertors and Digital-Analogue Convertors. is

important to the control strategy and needs to be considered when

36

selecting a particular language for control. In industrial control

systems programs need to be able to control low-level devices and

problems have been recorded with low-level languages, Pyle [56]. It

is considered by Pyle to be preferrable to use a high-level language

for such occasions yet there needs to be a capability of programming

low-level device hardware, without needing to resort to machine code.

The language 'C' has many low-level features as part of the language.

In industrial control systems it is common for an external

stimulus to execute more than one program simultaneously whilst

maintaining synchronism. Such a requirement is called concurrency

and with the development of multi-tasking languages like Ada, [11],

it will be possible to operate concurrent tasks at the program level

rather than through the Operating System. With multi-tasking

languages special problems arise in validating the software for

safety but no evidence of these problems has yet been published.

The mechanism for handling exception conditions in high-level

languages in a safe way is important and with the development of the

language Ada exception handling is becoming a feature incorporated

within the language rather than being a feature of the operating

system.

2.3.2 Program Structure

According to Ramamoorthy and Ho, [581, safety of the software

can be improved by using a high-level language and structured

programming techniques.

Understanding the problem that the program is attempting to

satisfy is important in reducing the extent of errors and may also

ease the task of testing. If each module specification states the

internal and external program interfaces the possibility of a

mismatch between, and with, other modules is reduced.

Modularisation of the system allows the programmer to become

37

familiar with the module to be worked on and to comprehend the

detail. But if the program is badly modularised it is probable that

the programmer will not be able to appraise the objective of the

program. However, with modularisation there is the need to maintain

standard inter-module interfaces and dependencies.

Unless the programmer has an intimate knowledge of the program

he will not be adequately equipped to test it. If the program is

not tested to the best of the programmer's ability then only a

limited amount of reliance can be placed on the program.

Structured programming was defined by Dijkstra, (16], as being a

set of rules for programming to meet just such a requirement. Since

Dijkstra's initial paper on structured programming there have been

many definitions including the definition by Myers, [50] p. 130, where

structured programming is defined as "the attitude of writing code

with the intent of communicating with people instead of machines".

The Infotech Report, [341, singles out one definition of structured

programming as; "the task of organising one's thoughts in a way that

leads, in a reasonable time, to an understandable and correct

expression of a computing task".

In structured programming functions are structured into distinct

units which may be subsequently interpretted into program blocks,

procedures or function calls depending on their purpose within the

program, Young, [71]. Statements are arranged in a manner that will

reflect the logical execution of the program. An example is the

interpretation of the general statement if x obtains then do y

otherwise do z" into the program statement "IF x THEN y ELSE z".

Reduction of abstract function statements into a structured program

removes the need to use GOTO statements but makes use of the basic

control statements; sequence. IF.. THEN.. ELSE.., WHILE.. DO..,

REPEAT.. UNTIL.. and CASE.. OF...

38

Pyle, (55], suggests that structured programming techniques are

not sufficient for industrial control systems without improving on

existing techniques. Pyle bases his argument on the significant

differences he has observed between control software and conventional

sequential programs. The main difference being the need for control

software to respond to external stimulii and for the control software

to be not only correct but also safe. Pyle's argument is more

significant as concurrent software becomes accepted in control

systems.

Structuring of the total system, which may consist of many

programs, influences safety in a positive way according to Allworth.

[1]. If a computer has the facility for interrupts and priority

levels then the commonly used structure in industrial control

computing is to put the frequently run and time-critical programs,

like alarms, on the higher priority levels and the less critical

programs, like reports, on the lower priority levels. The interrupt

facility can then be retained for activating those programs which

must be run without delay from the scheduler of the run-time support

system.

The language chosen for the given task, the style of programming

used and the availability of programming constructs which reflect the

problem structure can result in errors in interpreting a

specification of a program.

2.3.3 Programming Methodologies

As part of the extensive range of work being undertaken on the

language Ada two comprehensive studies have been made into

programming methodologies for embedded computer systems.

In the first study, Pickett et al, [10], a range of formalised

methods of programming methodologies were examined. The study aimed

to determine which, if any, existing programming methodologies would

39

be most appropriate for British Industry when programming embedded

systems using the language Ada. The complete study described 21

methodologies and outlined a further 15. In the analysis of

methodological features Pickett observed the difficulty of supplying

a reliable system when the requirements may change between the

inception of the project and its completion. Further, the study

determined that the objectives of a programming methodology suitable

for embedded systems are rigorous checking of the requirements with

the produced system, formality of specification, rapid prototyping of

the system and automation of as many parts of the software production

cycle as practical, without a reference to ensuring safe operation of

the software developed on the methodology.

The study concluded that whilst many of the methodologies

provided some of the required features none of the methodologies

fully met the study objectives. Methodologies such as CCS, HDM,

JSD, SARA and VDM were considered to provide most features.

The second study. Wasserman and Freeman, [67]. examined 24

methodologies. The study, known as "Methodman" complemented the

earlier "Steelman" [13], and "Stoneman", [12], documents. The

emphasis was on the software issues rather than on the more general

issues of systems engineering. Concern was expressed by the authors

of the study that inadequate analysis is "virtually certain to lead

to project failure" because of a resulting poor specification.

In support of functional specifications the "Methodman" study

asserts that functional specifications are "the basis against which

validation is performed whether by acceptance testing or through

formal proof of program correctness. "

Twelve requirements are listed, p.?, as being essential for a

methodology but none specifically refers to the need to ensure a safe

software product. However, in the constraints, p. 9, the effects of

40

the program on the development cycle are acknowledged as coming from

the severe constraints often placed on embedded systems, for instance

real-time responses and memory usage.

The 'technical characteristics' of a methodology, p. 13, for

embedded systems are considered to include "reliability - the absence

of errors that lead to system failure" and "safety - the avoidance of

run-time failures which could lead to the loss of life or the

occurrence of other catastrophic consequences". Yet these two

issues were not addressed either in the questionnaire or the

evaluations of the responses to the questionnaire.

Both studies, [10], and, [67], acknowledge the requirement to

ensure safe and reliable programs but failed to determine which, if

any, methodology addressed the requirement of safety and the

developers of the methodologies failed to indicate that the safety

requirement had been addressed in their methodology.

41

2.4 Support Environment and Testing Strategy

The provision of software tools, compilers and editors, is the

role of the programming support environment. The programming

support environment may also be an aid to the programmer in the

production of programs by maintaining a single project database of

approved interface standards. common modules and standard testing

facilities.

2.4.1 Support Environment

Some published material conflicted on precisely what was the

correct view of a programming support environment but Lehman, [40],

makes a contribution to this conflict of views when he declared that

the programming process is "the transformation of a computer-

application concept into an operational system and the subsequent

evolution of that system to maintain it satisfactory and effective in

its changing operational environment".

Degano and Levi, in [8] pp. 251-264, assert that by making full

use of the resources of the programming support environment the

programmer is able to construct a program compatible with those of

the rest of the project and the programmer is able to test his

program in a consistent manner. Although the production of software

with a programming support environment is more efficient in terms of

costs, has a more consistent structure and it is more probable that

testing will have been conducted within a better framework, there is

no evidence to suggest that the safety of resulting programs is any

better.

No published material was found to demonstrate how a programming

support environment will influence a program's ability to meet the

required safety criteria.

42

2.4.2 Test Strategy

Rushby, in Meek [46] p. 87, states that "it is program testing,

rather than debugging, which is the central feature of the final

stage in the creation of a program. The objective of testing is to

verify that the program functions as it should, that it conforms with

its specification, and solves the right problem in the real world".

Rushby developed his argument until concluding that it is reasonable

"to stop error hunting when only a relatively small number of errors

are left and the costs of finding any more are not justified".

Assuming that a program contains any number of errors without some

method of measuring the number of errors remaining, or their effect,

infers that the remaining errors are benign.

Zweben, in [B] pp. 3-12, states that no single test strategy is

sufficient to satisfy all test conditions and recommends that a good

testing strategy should be capable of determining that errors exist.

Miller, in [33] pp. 4-16, lists some of the benefits of program

testing as being better user acceptance because the software is more

reliable, demonstrable history of high-quality performance and

confidence in the software product.

The testing strategy adopted is considered by Rushby, in [46],

as influencing the production of the software and as a consequence

the safety of the software.

In recognition of the need to approach a uniform testing

strategy national regulatory bodies are examining ways of assessing

various factors concerned with testing, Elektronik Centralen, [17].

2.4.3 Program Proving and Correctness Methods

Ramamoorthy and Ho, [58], demonstrate how a program with only

nine paths can have an extremely large number of execution sequences

thus making exhaustive testing impractical.

Proofs of correctness decompose the software logic into

43

axiomatic statements using mathematical notation to develop a

mathematical proof. Program proving is a specialised and protracted

activity with little evidence of what can be formally proved other

than the absence of certain specific hazards, like the output from a

variable which has not been assigned following initialisation.

Criticism has been expressed by Cho, [7], as to whether a proof can

itself be proved to be correct.

According with the view of Cho, (7], is that of Good and London,

[23]. when they observed that a 433 statement program required 46

pages of formal proof.

Validation and verification techniques abound but there is

difficulty in establishing a general definition of the terms.

Myers, [50], asserts that validation and verification are similar to

correctness proofs, except that validation aims to find errors by

running the program in a real environment, whilst verification aims

to find errors by running the program in a test environment. Other

definitions, Bologna, [6], and Dahll et al, [9], suggest that

verification is the testing of a subset of the total program suite

and that validation is the testing of the total program suite.

The idea that a software module can be analysed for

structuredness by measuring topological features without

consideration of the logic it portrays is given in the work of

Hennell, [27], on LCSAJ (Linear Code Sequence and Jump) and Tai,

[65]. Essentially, the technique relates to the number of crossings

of flow or control paths within the program code. Such a measure is

called 'knot complexity'. Woodward, [70], compares the knot

complexity of 26 programs with McCabe's cyclomatic complexity, V(G),

for the same set of programs and found a close correlation.

Huang, [32], gives a comprehensive overview of the most commonly

used testing methods.

44

2.4.4 Software Metrics

Lord Kelvin, [44], is often quoted as having said;

When you can measure what you are speaking about, and express

it in numbers, you know something about it; but when you cannot

measure it, when you cannot express it in numbers, your

knowledge is of a meagre and unsatisfactory kind: it may be the

beginning of knowledge, but you have scarcely in your thoughts

advanced to the stage of science. "

The view of Lord Kelvin summarises the objective of the work on

software metrics.

Testing of software is an aimless task unless some measure is

used to indicate the effectiveness of such testing. Software

Metrics aim to establish methods of measurement relating to the

software.

Halstead, [25], introduced the phrase 'software science' to

describe a set of empirically derived measures of the software based

on phenomanological aspects of the software. There have been many

other researchers in software metrics, notably McCabe, [45], who

defined a measure based on a graph theoretic approach and known as

the 'cyclomatic number'. Many metrics have been developed and

Perlis et al. [54], considered some of these metrics and recommended

research into software metrics.

Gilb, [22], presented a set of metrics but little material has

been published regarding their derivation or application. Harrison

et al, [26], reviewed many metrics concerned with complexity and

found that their experiments supported Gilb's assumption that the

degree of decision-making logic in the program can be correlated to

characteristics of a program such as error proneness, development

costs and time. Findings similar to these are reported by Farr and

Zagorski, [18], and Sime et al, [63].

45

Shen et al, [62], critically examined the work of Halstead and

the experimental results published by other authors in support of

Halstead and concluded that the theory of software science was still

evolving. Further, they resolved that researchers should continue to

refine Halstead's metrics as there is a need for such measures.

2.4.5 Simulation

The use of software or hardware simulations, designed to test

the control software prior to implementation, is not common due to

the high costs involved in the development of a simulator.

The method commonly used in Industry is to construct a panel of

switches and knobs to allow simulation of the anticipated normal

input-output sequence and, to a lesser extent, the known exception

paths from a restricted data set. The disadvantages of a hardware

simulation are the high costs involved, the time to produce the

simulator, the need for manual operation of the simulation and the

need for a protracted and accurate repetition of the test causes

doubt to be cast on the effectiveness of such simulation tests.

Software simulation has been shown by Nunns, [51], and others to

overcome many of the drawbacks experienced by the hardware approach

but the cost of developing a software simulator is still high.

Using a software simulation it is possible to establish a detailed

simulation of the expected plant input sequences that will exercise

either separate programs or complete systems. With a software

simulator it is possible to run these simulation sequences for

protracted periods of time and often at a rate of input sequences

greater than or less than those to be expected in real-time

operation.

A development of software simulation is the use of simulation

monitors which log data from specific application areas, such that

when a malfunction occurs in plant operation a simulation model is

46

available to the Plant Engineer who can in turn request further

controlled testing from the Programmer.

One major difficulty with software simulations is ensuring the

faithfulness and accuracy of the simulator.

47

2.5 Operational and Psychological Factors

At all stages of the software production cycle people are

involved. Since people are fallible the effects of their failings

can be seen in the errors introduced into the software.

Hirsgh, [303, reported that in an experiment to determine the

error rate of humans operating a typewriter keyboard a total error

rate of 6.1751 was encountered out of a sample of 5 million key

depressions. An error rate of this magnitude infers that on average

one in every 16 keys depressed will be in error and with most

programs containing many hundreds of characters a considerable number

of characters can be expected to be in error.

2.5.1 Psychological Factors

Green et al, [24], suggest that software production is a design

activity and dependent on the mental agility of the programmer.

Errors can, therefore, be induced into a program due to psychological

factors.

Kopetz. [38], cites Per Brinch Hansen as having said;

"If the intellectual effort required to understand and test a

system increases more than linearly with the size of the

system, we shall never be able to build reliable systems beyond

a certain complexity. "

In the works of Mohanty, [48], and Fitzsimmons and Love, [20],

there are references to a Stroud number which is derived from the

definition of a 'moment' given by J. M. Stroud;

"The time required by the human brain to perform the most

elementary mental discrimination. "

The number of mental discriminations required to understand a

software module influences the production of software according to

the amount of effort required.

Estimates of an individual's Stroud number (the number of

48

'moments' in a second) range from 5 to 28 and have been used in

experiments concerned with programming rates. Halstead, [25], used

a Stroud number of 18 to indicate what he considered to be a

reasonable level of mental activity for a concentrating person. The

usefulness of measures based on the Stroud number is supported by

easili, in [54], yet discounted by Curtis, in [54]. Researchers

such as Mohanty. [48], and Sime, [63], hold the view that the greater

the effort required, the more the risk of inducing errors yet there

is no consensus view on the usefulness of psychological measures.

Wasserman and Freeman, [67], acknowledged that there is a

psychological factor affecting the development of software as a

result of what they have called the "physical workplace", that is to

say the actual place where the developer undertakes the development.

The factors that they refer to include "access to computers, privacy

and noise levels. ergonomic considerations of terminals, and

availability of reference materials including books and journals".

They further suggest that there is little doubt that these factors

are significant.

None of the references suggested ways of restricting the

influence of the psychological factors which affect the programmer

other than methods of detecting and measuring the extent to which

there is an effect. Research into the psychology of programming

continues but few applications of the findings of such research have

been reported.

2.5.2 Operational Factors

The operational factors include the industrial equipment and the

process or the plant being controlled by the software.

The safety of control systems incorporating software is

influenced by the activities of external factors, for example, the

need for safe operation of the software to be maintained when the

49

equipment malfunctions. In such cases the equipment will provide

erroneous information for the software to interpret but the software

should be designed to cater for such events. Though the particular

event may have been considered improbable.

Hardware failures may suggest to the observer that the software

malfunctioned instead of the equipment whilst the software may have

reached a reasonable interpretation of the information. The

software may be considered to have failed to meet the safety

requirement yet in reality it was the equipment reliability that was

suspect.

The operation of the software should not compromise safety

because of operational difficulties. Low reliability of equipment

will cause an initial low confidence in the safety of the software

since the equipment and software are frequently viewed as one.

Longbottom, [43], and Williams, [68], have suggested that

hardware failures influence the production of software. Suggestions

such as these have led to software reliability being measured in such

terms as 'errors per 1,000 hours'.

Anderson and Lee, [2], have investigated the effects of hardware

failure on software and the outcome of their investigations are ideas

such as fault-tolerant computing. Fault-tolerant computing is an

extremely large field of study and in general is more concerned with

equipment reliability than safety.

At the final stage of testing many errors will remain in the

software. So the provision of satisfactory documentation to enable

comprehensive testing should be mandatory for all software projects

according to Hewitt, [29].

Hewitt, [29], and Johnson, [35], have suggested that

documentation should be built up as the project progresses. They

suggest that a poorly documented project will also be subjected to a

50

restricted set of tests and if the test set is limited by the

documentation then it is held that documentation influences software

safety.

It is important to document changes to the software. Lawley,

[39], developed a scheme, known as HAZOP, for documenting the

desirable and undersirable effects of changes proposed for chemical

plants. Nunns, [52], and, [53], has shown that a modified HAZOP

procedure can be implemented for software.

51

2.6 Conclusion

Many factors have been advocated as those influencing software

but none were found which were claimed to specifically influence the

safety of software.

It may be that factors affecting the safety of software can be

identified but then there needs to be a knowledge of how to

manipulate them. how to measure them and what such measurements mean.

Any set of measurements of factors will need to address three

points of issue for each measurement;

1. the relative criticality

2. the relative importance

3. can it be assessed

From the current state of the art consistent opinion is that

there are factors influencing software and there is a consensus on

their likely effects but there is no evidence to isolate which

features these are.

52

2.7 References

[1] Allworth, S. T., Introduction to Real-Time Software Design,
MacMillan, 1981

[2] Anderson, T., & Lee, P. A., Fault Tolerance; Principles and
Practice. Prentice-Hall, 1981

[3] Andow, P. K., The Numerical Analysis of Hazards & Failures, in
Proceedings of the Institution of Chemical Engineers
Symposium Number 63

[4] Basili, V. R. & Perricone, B. T., Software Errors and Complexity:
An Empirical Investigation, Communications of the ACM,
Volume 27, Number 1, January 1984, pp. 42-52

[5] Berg, H. K. et al, Formal Methods of Program Verification and
Specification, Prentice-Hall, 1982

[6] Bologna, S.. Guidelines for Verification and Validation of Safety
Related Software, European Workshop on Industrial
Computing, Technical Committee Number 7, Paper 287,1982

[71 Cho, C-K., Software Quality Control, Wiley, 1980

[8] Chandrasekaran, B. & Radicchi, S. editors, Computer Program
Testing, North-Holland, 1981,

[9] Dahil, G. et al, Techniques for Verification and Validation of
Safety Related Software, European Workshop on Industrial
Computing, Technical Committee Number 7, Paper 267,1983

[10] Dept. of Industry, ADA-Based System Development Methodology
Study Report, Dept. of Industry, London, 1981

[11] Dept. of Defense, Reference Manual for the Ada Programming
Language - Proposed Standard Document, United States
Department of Defense, November 1980

[12] Dept. of Defense, Stoneman: Requirements for an Ada Programming
Support Environment. February 1980

[13] Dept. of Defense, Steelman: Requirements for a High-Order
Language, June 1978

[14] Dept. of Employment, The Flixborough Disaster: Report of the
Court of Inquiry, H. M. S. O., 1975

[15] Dijkstra, E. W., Go To Statement Considered Harmful,
Communications of the ACM, Volume 11, Number 3, March 1968,
pp. 147-148

[16] Dijkstra, E. W., Structured Programming, in Software Engineering
Techniques, NATO Science Committee, 1969, pp. 84-88

[17] Elekronik Centralen, Directive for Testing Software Quality in
Control and Surveillance Systems, Denmark, 1983

53

[18] Farr, L. & Zagorski, H. J., Quantitative Analysis of Programming
Cost Factors: A Progress Report, in Economics of Auto Data
Processing, Proceedings of ICC Symposium, North Holland, 1965

[19] Finkelstein, L., Fundamental Concepts of Measurement: Definition

and Scales, Measurement and Control, Volume 8, March 1975,

pp. 105 - 111

[20] Fitzsimmons, A. & Love, T., A Review and Evaluation of Software
Science, Association of Computing Machinery Computing
Surveys, Volume 10. Number 1, March, 1978, pp. 3-18

[213 Gannon, J., An Experimental Evaluation of Data Type Conventions,
Communications of the ACM, August 1977

[22] Gilb. T., Software Metrics, Studentlitteratur, Sweden, 1980

(23] Good, D. I. & London. R. L., Computer Interval Arithmetic:
Definition and Proof of Correct Implementation, Journal of
the ACM, Volume 17, October 1970, pp. 603-612

[24] Green, T. R. G. et al, The Problems The Programmer Faces,
Ergonomics, Volume 23, Number 9,1980, pp. 893-907

[25] Halstead, M., Elements of Software Science, North-Holland, 1977

[26] Harrison, W. et al, Applying Software Complexity Metrics to
Program Maintenance, IEEE Computer, September 1982

(27] Hennell, M. A., Systematic Software Validation: The First Ten
Years, University of Liverpool Report

(28] Henry, B., Some Remarks about Systems Requirements for
Industrial Programmed Equipment, European Workshop on
Industrial Computing, Technical Committee Number 7,
Paper 277,1982

[29] Hewitt, D. J., Editor, Guide to the Quality Assurance of
Software, Electronic Engineering Association, 1978

[30] Hirsgh, R. S. Human Factors in Man-Computer Interfaces, IBM Human
Factors Centre, USA, 1976

[31) Horning, J. J., Programming Languages in Computing Systems
Reliability, Cambridge University Press, 1978, pp. 109-152

[32] Huang, J. C., An Approach to Program Testing, Association of
Computing Machinery Computing Surveys, Volume 7, Number 3,
September, 1975, pp. 113 - 128

[33] IEEE. Tutorial: Software Testing & Validation Techniques,
Institute of Electrical and Electronic Engineers, USA, 1981

[34) Infotech, Structured Programming, Infotech State of the Art
Report on Structured Programming, 1976

[35] Johnson, K. S.. Editor, Establishing a Quality Assurance Function
for Software, Electronic Engineering Association, 1981

54

[36] Kernighan, B. W. & Plauger, P. J., Programming Style: Examples and
Counter Examples, Association of Computing Machinery
Computer Surveys, Volume 6, Number 4,1974

[37] Knox, E. G., Negligible Risks to Health, Community Health,
Number 6,1975, pp. 244-251

[38] Kopetz, H., Software Reliability, MacMillan, 1979

[39] Lawley, H. G., Operability Studies and Hazard Analysis, Chemical
Engineering Progress, Volume 70, Number 4, April 1974,
pp. 45-56

[40] Lehman, M. M., Research Proposal to Study the Role of Executable
Metric Models in the Programming Process, ACM Software
Engineering Notes, Volume 7, Number 5, December 1982,
pp. 106

[41] Littlewood, 8., How to Measure Software Reliability and How Not
To, Proceedings of the 3rd International Conference on
Software Engineering, 1978, pp. 37-45

[42] Littlewood, B. & Verrall, J. L., Likelihood Function of a
Debugging Model for Computer Software Reliability, IEEE
Transactions on Reliability, Volume R-30, Number 2,
June 1981, pp. 145-148

[43] Longbottom, R., Computer System Reliability, Wiley, 1980

[44] Lord Kelvin, Popular Lectures and Addresses, 1891-1894

[45] McCabe, T., A Complexity Measure, IEEE Transactions on Software
Engineering, Volume SE-2, December 1976, pp. 308-320

[46] Meek, B. et al, Guide to Good Programming Practice,
Ellis Harwood, 1983

[47] Miara, R. J. et al, Program Indentation and Comprehensibility,
Communications of the ACM, Volume 26, Number 1,
November 1983, pp. 861-867

[48] Mohanty, S. N., Models & Measurements for Quality Assessment of
Software, Association of Computing Computer Surveys,
Volume 11, Number 3, September 1979, pp. 251-275

[49] Musa, J. D., Software Reliability Measurement, Journal of Systems
and Software, Volume 1. Part 3, North-Holland, 1980,
pp. 223-241

[50] Myers, G. J., Software Reliability: Principles & Practices,
Wiley, 1976

[51] Nunns, S. R., A Software Simulator - an Aid to Plant
Commissioning, European Workshop on Industrial Computing,
Technical Committee Number 7, Paper 313,1982

[52] Nunns, S. R., A Formal Approach to Software Change Control,
European Workshop on Industrial Computing, Technical
Committee Number 7, Paper 316,1982

55

[53] Nunns, S. R., Some Further Examples of Software Change Control,
European Workshop on Industrial Computing, Technical
Committee Number 7, Paper 328,1982

[54] Perlis, A. J., et al, Software Metrics, The MIT Press, 1981

[55] Pyle, I. C.. Methods of the Design of Control Software,
Department of Computer Science Report YCS. 12, University of
York, 1978

[56] Pyle, I. C., Review of Standards in Software for Real-Time
Computing, Real-Time Data Handling a Process Control,
North-Holland, 1980

[57] Pyle, I. C., Towards Specifying and Information System,
Department of Computer Science Report YCS. 431 University of
York, 1981

(58]. Rammamoorthy, C. V. & Ho, S. F. Testing Large Software with
Automated Software Evaluation Systems, IEEE Transactions on
Software Engineering, Volume SE-1, Number 1,1975,
pp. 46-58

[59] Rault, J-C., The Many Facets of Quantitative Assessment of
Software Reliability, IEEE Workshop on Quantitative
Software Models, Kiamesha Lake, New York, October, 1979,
pp. 224 - 231

[60] Rault, J-C. & Bouissou, Quantitative Measure for Software
Reliability: A Survey, in State of the Art Report on
Software Testing. Infotech, 1978, pp. 215 - 229

[61] Rzevski, G., Identification of Factors which cause Software
Failure, Proceedings of the Annual Reliability and
Maintainability Symposium, Los Angeles, 1982

[62] Shen, V. Y. et al, Software Science Revisited: A Critical
Analysis of the Theory and its Empirical Support, IEEE
Transactions on Software Engineering, Volume SE-9,
Number 2, March 1983, pp. 155 - 165

[63] Sime, M. E. et al, Structuring the Programmer's Task, Journal of
Occupational Psychology, Volume 50,1977, pp. 205 - 216

[64] Starr, C., Rudman, R., & Whipple, C., Philosophical Basis for
Risk Analysis, Annual Review of Energy. Number 1, Annual
Reviews Inc., USA. 1976

[65] Tai, K-C., Program Testing Complexity & Test Criteria. IEEE
Transactions on Software Engineering, Volume SE-6,
Number 6, November 1980, pp. 531-538

[66] Taylor, J. R., Logical Validation of Safety & Control
Specifications Against Plant Models, Report RISO-M-2292,
RISO National Laboratory, Denmark, 1981

E671 Wasserman, A. I. & Freeman, P., Ada Methodologies: Concepts and
Requirements, Department of Defense, ACM Software
Engineering Notes, Volume 8. Number 1, pp. 33 - 50

56

[68] Williams, J. R., Reliability in a Process Control System, in
State of the Art Report on Computer System Reliability.
Infotech, 1974, pp. 373 - 388

[691 Wirth, N., Program Development by Stepwise Refinement.
Communications of the ACM, Volume 14, Number 4, April 1971,

pp. 221 - 227

[701 Woodward, M. R. et al, A Measure of Control Flow Complexity in
Program Test, IEEE Transactions on Software Engineering,
Volume SE-5, Number 1, January 1977

E713 Young, S. J., Real-Time Languages: Design and Development, Ellis
Norwood, 1982

57

CHAPTER 3

The Structural View

The structure of the software has an influence on the safety of

the software. In this Chapter the ways that the software can be

structured to ensure a safe operation and methods of analysing that

safety will be examined.

The Chapter begins by examining the use of a set of techniques

known, generically, by the term Risk Analysis. In particular, the

applicability to software of Fault Tree Analysis and Event Tree

Analysis is explored.

State Transition Diagrams are sometimes considered to be the

means of identifying all possible fault conditions. State

Transition Diagrams are examined with particular reference to the

interaction between software, the hardware and the system.

Having examined methods that may be, applicable in isolating a

fault condition an argument is advanced for weighting errors

according to three categories of danger.

Finally, the structuring of the software for safety according to

the control flow is examined. It is recommended that in safety-

related systems the software should be structured into Control

Modules, Safety Modules and Arbitrators. It is also suggested that

a system of Integrity Locks should be used.

58

3.1 The Risk Analysis of Software

'Risk Analysis'. is a generic term used by Engineers to describe

a group of methods used to determine the conditions that will cause a

hazardous state to exist and the associated risk. There is a need

to assess the risk resulting from the use of computers as controllers

in safety-related processes. The principal cause for concern is the

possible number of software errors that can exist and the effects of

these errors on the system. Since these techniques are used to

analyse the risk associated with industrial processes and its

hardware, it follows that control software should also be subject to

similar analysis.

Risk Analysis comprises a collection of analytical techniques

used to examine the design of complex items of equipment within a

safety context. The principle risk analysis techniques are Fault

Tree Analysis (FTA) and Event Tree Analysis (ETA), [12]. The

application of both these risk analysis techniques to software will

be discussed in this Chapter.

3.1.1 Fault Tree Analysis

Chelson, [4], has shown that fault-trees are constructed by

first listing all the possible hazards considered to be present in

the system. Once the hazards have been listed the construction of a

fault tree begins by assuming that a particular event has caused one

of the hazards and then to trace backwards through the logic of the.

system to find which events could lead to the hazard. Since

preceeding events may be the logical combination of other events a

set of symbols is used to represent the logical sequence of possible

events. As each node in the tree is encountered a decision is made

whether further investigation is required. As the investigation

continues more symbols are included in the tree until a node is

reached where either no further investigation is necessary, called a

59

Failure Event, or a Terminal Event, also called a Basic event, is

encountered. These symbols are shown in Figure 3.1.1.1.

Figure 3.1.1.1 FTA Symbols

Top Event

Terminal or Basic event
requiring no further investigation

OR gate

AND gate

Failure event, not a basic
fault event but one which
requires no further
investigation

Leveson and Harvey have shown, [8], that Fault Tree Analysis

can be applied to software provided that the catastrophic event which

is to be considered can be defined in a precise manner. Since FTA

was developed for hardware and has now been applied to software, it

is possible to link the two sets of analyses to form a complete set

60

for the total system. Fault Tree Analysis applied to software has

been renamed by Leveson and Harvey as Software Fault Tree Analysis

(SFTA).

SFTAI in common with hardware FTA. examines the potentially

dangerous conditions that could occur. called 'catastrophic events',

as a result of 'top events' or 'loss events', and considers all

possible actions that could cause the dangerous condition to exist

using diagrams which are a variation of those used for hardware FTA.

Leveson and Harvey, [8], have also shown that SFTA can be

performed at various levels and stages of software development. The

highest level of analysis is the functional description. At the

lowest level of investigation SFTA analyses the program code.

Leveson and Harvey also suggest that it is possible to construct

fault trees from a program design language and that the information

derived from the tree during the software development phase can be

used. However. SFTA does not cater for the effect of one part of a

program influencing another.

In SFTA it is assumed that for a dangerous condition to exist it

is necessary for there to be a related output from the computer.

Therefore, the starting point for SFTA, when working at the program

level, is the section of code responsible for effecting an output.

The analysis then proceeds backwards through the code determining

both how the program arrived at the section of code and what are the

current states of the variables.

Standard forms of symbolism have been proposed by Leveson and

Harvey for Pascal-like program statements. The general form for the

IF.. THEN.. ELSE.. statement is shown in Figure 3.1.1.2 (a). The

statement " IF a>b THEN x := f(x) ELSE x := 10 " is shown in Figure

3.1.1.2 (b) below when analysed for the event "x> 100 ".

61

Figure 3.1.1.2 SFTA for IF.. THEN.. ELSE..

(a)

condition true
'then-part'

causes event

cond. true then-part'
prior to causes event
statement

(b)

a>b, x :: f(x) I

causes x> 100

if-then-else

condition false
'else-part'
causes event

cond. false 'else-part'

prior to causes event
statement

x> 1001

a>bx:: f(x)
prior to causes x> 100
statement

a <= b. x := 10
causes x> 100

a<= bI Icauses x := 10
prior to x> 100

Since the right-most node, stating that x: =10 causes x>100, is

clearly nonsense the node can be assigned a zero probability and

removed from the tree. Analysing for the top event of x>100 could

stop at this point and assertions placed in the code or the

proceeding code could be analysed for the events "a >b" and "f(x) >

100 ".

Figure 3.1.1.3 (a) shows the suggested general format for

62

analysing a WHILE.. DO statement and Figure 3.1.1.3 (b) shows the

analysis for the loop

WHILE b>x DO
BEGIN b: = b-1;

z: - z+ 10;
END

analysed for the top event "z> 100 ".

Figure 3.1.1.3 Example of SFTA

(a) WHILE statement
causes event

stat. notl
executed

event prior
to WHILE

(b)

cond. false
prior to WHILE

stat. executed

cond. true
prior to WHILE

n-th iteration
causes event

WHILE statement
causes z> 100

stat. not
executed

Istat. executed

6

z> 100 prior b<=x prio
to WHILE to WHILE

b>x prior z+10, b-1
causes z>100

Leveson and Stolzy, [9], have suggested that real-time features,

like concurrency found in the language Ada, can also be analysed

63

using SFTA.

A disadvantage with SFTA is the difficulty in determining all

possible top events that may arise and assessing their preceeding

events. called cut sets, and basic failure events, called minimum cut

sets. SFTA is not exhaustive and relies upon the person analysing

the system to identify the "top events". Also there is no check to

indicate that the analysis is complete.

In the software context, tracing through the data flow of a

program and analysing for failure events will identify some hazard

situations which can be further analysed using SFTA. One method of

tracing the data flow is to use Petri Nets or Event Tree Analysis.

3.1.2 Petri Nets

Petri Nets, [10], are formal methods of representing information

flow and can be used to illustrate information flow in a program

statement. Petri Nets can be used to represent the information flow

at the level of the specification or at the level of the actual

program.

Petri Nets are bipartite directed graphs consisting of two basic

components; a set of places, P, and a set of transitions, T. In

addition two functions are created to link transitions to places: the

input function, I, and the output function, 0. For each transition,

tj, there is a set of input places, I(tj) and for each transition,

tj, there is a set of output places 0(tj). Formally, a Petri Net is

made up of a quadruple C=(P, T, I, O). Since each Petri Net has. an

initial condition,, uo, the initial condition needs to be included in

the structure giving a quintuple (P, T, I, O,)I). Defining the initial

condition of the Petri Net is called "marking" a Petri Net.

Diagramatically the places in a Petri Net are represented by

circles and the transitions are represtened by a line crossing the

arc joining two places. A transition is said to be enabled to

64

"fire" if and only if all the input tokens for that transition,

markings, are satisfied and which allow the token at an input place

to be transferred to an output place. The transition of the token

is, in the abstract, the transfer of information from one place to

another place.

When the statement IF x THEN y ELSE z is executed the control

will pass to either y or z according to the truth of x. A Petri Net

can be represented graphically for such a statement;

where Pi is the initial input place which fires transition t1.

Transition t2 will only be fired and pass a token to y when tl has

fired and place x has a token (x is true). Transition t3 will fire

and pass a token to z when tt has fired and x bar has a token (x is

false). For the IF x THEN y ELSE z statement places y and z would

be the input places for the following statements.

The firing of transition tt enables the firing of either t2 or

t3 dependent on the logical state of x. However, when considering a

programming statement according to a failure criteria it must be

considered that the conditional expression, x, may also fail. If

the possibility of the conditional statement, c, failing in the

statement, IF x THEN y ELSE z, is included then the Petri Net becomes

65

0

The transitions tl and t4 will fire according to the status of

the conditional statement, c, and transitions t2 and t3 will fire

according to the logical truth of the conditional expression, x.

The failure of the conditional statement is called the conditional

failure and the logical truth of the conditional expression is called

the temporal switch.

Figure 3.1.2.1 shows the general form for some Pascal-like

programming language statements using Petri Net diagrams.

Petri Nets of complete programs become unmanageable and need

simplification. One method for simplifying the representation of

failure events is to use a Risk Analysis technique called Event Tree

Analysis.

For a graphical representation of an abstract model of

information flow to be useful in identifying risks the probabilities

of failure for components of the model need to be added. The

addition of such probability data to a Petri Net will detract from

its function of representing the logical sequence.

66

Figure 3.1.2.1 Program Statements using Petri Nets

a) assignment'

i

O

Pf Po

b) IF.. THEN.. ELSE..

D

c) WHILE x DO y

67

3.1.3 Event Tree Analysis

Event Tree Analysis (ETA) is less common than FTA but is

becoming more commonly used in Industry, [2] and [3].

Hardware ETA attempts to identify those events which may cause a

sequence of events leading to a dangerous condition and can be

considered as an approach to the task of identifying risks from the

lowest event towards the 'top event'. FTA starts with the 'top

event' and traces back to the lowest event in the sequence examining

the causes of events. ETA examines the consequences of possible

failures. The use of 'event trees' provides a graphical method of

presenting the results of the analysis.

To construct an event tree of failures, each probable failure is

considered from the start of the process being analysed to the

finish. The first stage of the ETA construction is to consider the

outcome of each component failure and to represent the outcome as a

decision branch. For each outcome of the first stage consideration

is given to the outcome of each subsequent component failing. The

analysis of each subsequent stage is then added to the decision

branch of the preceeding outcome. The analysis continues until each

component in the process has been considered, its outcomes determined

and added to the evolving tree structure. Probabilities of failure

can then be attached to each outcome of the complete event tree. It

is possible to determine the probability of success/failure at any

given point in the process.

Figure 3.1.3.1 shows an event tree drawn for a parallel pump

system employing two water pumps. The failure probabilities are

included on the drawing as an example of the calculations.

The application of ETA to software is given the name Software

Event Tree Analysis (SETA).

68

Figure 3.1.3.1 ETA Analysis of a Pumping System

Pump A

Pump A fails

Pump B fails Outcomes

Pump A working
System works

P(1 - a) P(1-a)
Pump B working

System working
P(a) . P(1-b)

Pump A fail

P(a) Pump B fail
System fails

P(b) P(a) . P(b)

Each programming statement in a high-level language is executed

according to a set of rules governing the logic of the statement, for

instance the statement IF x THEN y ELSE z will execute y or z

according to the logical condition of x. Further, the sequence in

which the statements are executed is determined according to the

logical relationship of one statement to another.

By convention the failure branch in an ETA diagram is drawn to

the left and the success branch is drawn to the right. From a

single entry to a complete program there are only two possible exits:

success and failure. So for each statement within the program there

are also two exits from a single entry. Within the statement the

branching strategy continues to a lower level of detail but the

respective exits are connected to maintain the higher strategy of the

statement. The respective exits from the statements are connected

in order to maintain the strategy of the complete program. Pascal-

like programming statements represented in SETA format are shown in

69

Figure 3.1.3.2.

Figure 3.1.3.2 Program Statements using SETA

a) assignment

success branch
failure
point

statement
on entry

failure branch

where the symbol '*' denotes a terminal failure which would

cause an irrecoverable failure to exist. The failure branch can

occur on other statements but has been labelled only on this one.

b) IF.. THEN.. ELSE..

THEN part

Temporal ELSE part
switch

*

N. B. The temporal switch, , permits the flow to take

whichever path is relevant according to the conditional

expression assuming that it has not failed. Since it is

the data flow that is the concern and not the control flow

the format collapses to

THEN part

ELSE part

where the reduced statement, IF.. THEN.., is used the diagram

becomes

70

THEN part

since the else-part is implied as being the following statement.

c) WHILE x DO y

y-Statement part

*

Conditional part
x

removal of the temporal switch causes the format to collapse to

y-Statement part

Conditional part

d) REPEAT x UNTIL y

Conditional part

x-Statement part

*

*

*

removal of the temporal switch causes the format to collapse to

Conditional part

x-Statement part

e) FOR x TO x DO y
i

y-Statement type

Conditional xi part

Conditional x part
*

71

f) CASE x OF yl .. yn

yl-Statement type

yn-Statement type

Conditional x part
*

It is possible to apply SETA to program design languages in the

same way that Leveson and Harvey have applied SFTA to design

languages but the maximum benefit is to be gained by applying SETA to

the source code, assuming that the compiler and other software

development tools are dependable. This is the lowest level of

abstraction needed for a meaningful representation of the program.

SETA, like ETA, has the probabilities added to the diagrammatic

representation and will be demonstrated by means of an example.

To show how SETA can be applied to a simple program consider the

program below taken from Jensen and Wirth, [7].

PROGRAM fcount(input, output);
VAR ch: CHAR;

count: ARRAY['a'.. 'z'] of INTEGER;
letter: SET OF 'a'.. 'z';

BEGIN
letter ['a'.. 'z'];
FOR ch :: 'a' TO 'z' DO

count[ch] :=0.;
WHILE NOT eof DO
BEGIN

WHILE NOT eoln DO
BEGIN

read(ch);
write(ch);
IF ch IN letter

THEN count[ch] :: count[ch] +1
END;

writeln;
readln;
END

END.

The declaration part of the program adds little to the

72

information flow of the program and is not included in the analysis.

In the example that follows the omission of the declaration part

presents the first line of the analysis as being an assignment

statement.

The next statement is FOR ch := 'a' TO 'z' DO whose SETA,

statement format is added to the success branch of the preceeding

assignment statement.

The analysis continues until the tree includes all the

statements in the program. The structure is shown in Figure 3.1.3.3

with the tree orientated through 90 degrees. The success branch has

been aligned vertically to prevent the tree tending towards the

right.

Three significant items of information can now be deduced from

this tree; those statements whose failure will cause a terminal

failure, the probability of successful execution and the probability

of particular terminal failures. To be able to extract information

from the event tree the probability of successful and unsuccessful

execution of each statement needs to be added to the tree as in

Figure 3.1.3.4. To avoid presenting too much information at the

expense of clarity the programming statement has been substituted by

a probability of successful execution.

73

Figure 3.1.3.3 SETA of the Example Program

entry

letter := ['a'.. 'z']
failure branch success branch

FOR ch :: 'a'

TO ch :: 'z'

count[ch] :=0

WHILE NOT eof

NOT eoln

read(ch)

write(ch)

IF ch IN letter

count[ch] := count[chl +t

writeln
*

*
readln

II successful exits
eeee

4321

74

Figure 3.1.3.4 SETA of the Example Program with Probabilities
Assigned

entry

Pr(a)
1- Pr(a)

x
1- Pr(b) Pr(b)

x
1- Pr(c) Pr(c)

x
1- Pr(d)

771 Pr(d)
x

Pr(e)

Pr(f)

1- Pr(g) Pr(g)
x

1- Pr(h) Pr(h)

Pr(i)

t- Pr(j) Pr(j)

1- Pr(k) Pr(k)
t

1- Pr(1) Pr(1)

successful exits
eeee

4321

Each possible successful exit, ei, has an individual probability.

Assuming s-independent events, the exit probabilities are

Pr(el) = Pr(a). Pr(b). Pr(c). Pr(d). Pr(e). Pr(f). Pr(g)

. Pr(h). Pr(i). Pr(j). Pr(k). Pr(l)

Pr(e2) = Pr(a). Pr(b). Pr(c). Pr(d). Pr(e). Pr(f). Pr(g)

. Pr(h). (1 - Pr(i)). Pr(k). Pr(l)

Pr(e3) = Pr(a). Pr(b). Pr(c). Pr(d). Pr(e). (1 - Pr(f)). Pr(k). Pr(1)

Pr(e6) = Pr(a). Pr(b). Pr(c). Pr(d). (1 - Pr(e)). Pr(k). Pr(l)

There are four possible successful exits. The probability of a

75

successful exit from the program is the sum of individual

probabilities and given as

Pr(S) = Pr(el) + Pr(e2) + Pr(e3) + Pr(e4)

The probability of an unsuccessful exit is given as

Pr(F) =t- Pr(S)

=1-[Pr(el) + Pr(e2) + Pr(e3) + Pr(e4)]

As the number of statements increases so the probability of a

successful exit is reduced. There are two issues to be considered;

1) the probability of failure of a statement is related to

the syntactic and semantic complexity of that statement.

The resulting probability of failure of the function

being performed by that program statement is influenced

by the programmers choice of statement. Therefore

consideration has to be given to the trade-off between

the number of statements and the probability of failure

for particular statement types.

2) in Chapter 3.4 it was postulated that the

probability of failure of a module is related to

its length and that from a safety point of view

a larger number of small modules is preferable

to a small number of large modules. So a

reduction in the length of a module will also

influence the probability outcome.

3.1.4 Discussion

Leveson and Harvey, [8], observed that SFTA can be combined with

FTA to provide a comprehensive analysis of a total system including

hardware and software. The application of ETA to the hardware

associated with a computer system can continue to a point where the

software element needs to be considered. To consider the software,

SETA can be used to provide a comprehensive analysis.

76

As an example of how ETA proceeds to the point where SETA can be

used consider the case where plant sensors are used to pass data to a

computer on the functioning of a critical plant area so that optimal

control of the plant can be maintained. Using ETA the sensors, the

instrumentation, the Analogue-Digital Converter and the computer

input-output mechanisms are considered. However, once the analysis

has reached the point where data is requested by the software making

a request to the operating system, device driver or control software

then SETA can be used. SETA can be used to assess the software in

the context of programs or programming statements.

A complete ETA/SETA analysis is then possible to identify

particular items of concern and to seek to reduce the probability of

a failure. Assuming an item of concern can be described in terms

suitable for analysis using SETA and that the risk is assessed to be

such that further detailed analysis is necessary, then additional

SFTA can be undertaken.

Summarising. the approach is to identify potential failures

using ETA/SETA and then to further examine the concerns using SFTA.

The application of existing Event Tree Analysis (ETA) to

software (SETA) is possible and provides useful information to the

analyst on failure probabilities. By careful identification of the

issues raised with SETA further analysis can be undertaken using what

Leveson and Harvey have called Software Fault Tree Analysis (SFTA) in

order to isolate the concerns. Once these concerns have been

isolated then suitable remedial action can be taken to eradicate

them.

77

3.2 The Use of State Transition Diagrams

The internal state of a process can be modelled in the abstract

at any moment using graph theoretic methods such as the State

Transition Diagram which is a special case of the Finite State

Machine. The State Transition Diagram is commonly used by engineers

to assess the behaviour of a system, whether that system is an

industrial process or the internal function of a computer.

A Finite State Machine consists of a finite set of input symbols

A, a finite set of internal states S, a finite set of output symbols

Z. a next-state function f and an output function g. The machine M

is denoted by M= {A, S, Z, f, g}. Additionally an initial state qO may

be included, when the machine M will be denoted by M= {A, S, Z, gO, f, g}.

An example Finite State Machine could be one with three input

symbols, three internal states and three output symbols as

A= {a, b, c}

S= {gO, ql, q2}

Z= {x, Y, z}

the next-state function f could be defined as

f(gO, a) = q1 f(ql, a) = q2 f(g2, a) = qO

f(g0. b) = q2 f(gl, b) = qt f(g2, b) = q1

f(qO, c) = qO f(ql, c) = q0 f(g2, c) = q2

the output function g could be defined as

g(qO, a) =x g(ql, a) =x g(q2, a) =z

g(gO, b) =y g(ql, b) =z g(g2. b) =y

g(gO. c) =z g(ql, c) =Y g(q2, c) =x

A state diagram is one way of representing the machine M. A

state diagram is a labelled directed graph with the vertices being

the states S of M such that an arc can be drawn between state qO and

q1 and labelled with the pair a, x representing the next-state

function f(gO, a) = q1 and the output function g(qO, a) = x.

78

Figure 3.2.0.1 The State Diagram for the Example Machine M.

z

Another way of representing machine M is to use a state table

which tabulates the next-state and output for each combination of

current state and input. A state table for machine M would be

Current Input Input Input
State abc

qO ql, x q2. y qO, z

q1 q2, x ql, z qO, y

q2 qO. z ql, y ql, x

A State Transition Diagram consists of a set of states S. a set

of events E and a transition function, t.

The state transitions for Finite State Machine M can be

represented as

S= {gO. q11q2}

E= {x. Y, z}

and the transition functions are

t(gO, x) = ql t(ql, x) = q2 t(q2, x) = q2

t(qO, y) = q2 t(gl, y) = qO t(g2. Y) = ql

t(gO, z) = qO t(gl, z) = ql t(q2, z) = qO

79

the State Transition Diagram would be that shown in Figure 3.2.0.2.

Figure 3.2.0.2 State Transition Diagram for the Example Machine

Industrial control systems can be modelled using both Finite

State Machines (FSM) and State Transition Diagrams (STD) but the use

of STD is more common. .

As an example of the use of STD, take a simple control system

consisting of a fluid pump, P. under the control of a fluid level

float, F. whose aim it is to maintain the level of a liquid within a

certain vessel by turning the pump 'on' to lower the level of the

liquid when the level is indicated as 'high' by the float. Assuming

that the liquid flow into the vessel is constant and not under the

control of the system being modelled, the process scheme is shown in

Figure 3.2.0.3.

Figure 3.2.0.3. Example Process

The objective of the control system is to ensure that none of

80

the liquid flows over the top of the vessel. If any liquid flows

over the top of the vessel the condition is considered to be a

catastrophic event.

To keep the model simple it is assumed that both the float F and

the pump P work correctly even though there is a probability that the

control signals may not. It is also assumed that no such failure of

control signals exist.

The pump P is switched on when the float F is indicating 'high'

and the pump is switched off when the float indicates 'low'.

The set of states S are

S= {gO, ql, q2, q3}

where qO = level low, pump off

q1 = level low, pump on

q2 = level high, pump off

q3 = level high, pump on

the set of events E are

E= {a, b, c, d}

where a= Float high

b= Float low

c as Pump on

d= Pump off

and the transitions functions t are

t(g0, a) = q2 t(gl, a) = q3 t(g2, b) = qO t(q3, b) = qt

t(qO, c) = q1 t(gl, d) = qO t(g2, c) = q3 t(g3, d) = q2

The state transition diagram for the control system is shown in

Figure 3.2.0.4. With the transition T being T= {S, E, t} and the

initial state qO being included to give T= {S, E, gO, t}.

81

Figure 3.2.0.4 State Transition Diagram for the Example
Control System

4

The transition functions can also be represented by a table

called a transition table. Such a transition table for the control

system being considered is

State Float Pump

qO low (0) off (0)

q1 low (0) on (1)

q2 high (1) off (0)

q3 high (1) on (1)

State Transition Diagrams are deterministic and exhaustive. To

demonstrate the exhaustive nature of STDs consider the control system

to have been extended to ignore transient inputs from the float by

requiring the float to indicate high for two successive observations

before switching the pump on. The control algorithm is expressed as

Po = (Fs A Fi A NOT Poi) v (Fs v Fi) v Poi

where Po is the pump output value according to the logic

Poi is the initial or currently stores value for the pump

output.

Fs is the stored value for the float

Fi is the input value for the float

assuming no errors experienced the transition table becomes

82

Poi fs fi Po
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0

1 0 1 1
1 1 0 1
1 1 1 1

In this thesis the concern is the identification of catastrophic

failures/conditions and such a condition could arise in the control

system if the level was high and the pump failed to operate causing

the liquid to overflow. From the transition diagram and the

transition table a catastrophic failure condition can be seen not to

occur when all the equipment functions correctly.

So far the concern has been with representing the state

transitions when all the equipment is working correctly and with no

errors. When the control system has the same control algorithm but

uses an industrial controller incorporating software to implement

that algorithm then a catastrophic failure/condition can arise due to

the failure of components of the controller, even though the electro-

mechanical equipment may work correctly.

The transition tables for the control system using software

considers three error types: stuck at 0, stuck at 1 and inversion.

The conditions underlined are those which are considered to satisfy

the criteria of a catastrophic failure/condition; fluid flowing into

the vessel, float fluid level high and pump not on.

83

1) Error caused by Po being inverted when stored in Ps

Poi fsi fit fsl Pol Psi fit fs2 Pot Pst fi3 fs3 Po3 Ps3
0 0 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 1 1 1 0 1 1 1 0
0 0 1 1 0 1 0 0 1 0 0 0 0 1
0 0 1 1 0 1 1 1 1 0 1 1 1 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 1 1 1 0 1 1 1 0
0 1 1 1 0 1 0 0 1 0 0 0 0 1
0 1 1 1 0 1 1 1 1 0 1 1 1 0
1 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 1 1 1 0 1 1 1 0
1 0 1 1 1 0 0 0 0 1 0 0 0 1
1 0 1 1 1 0 1 1 1 0 1 1 1 0
1 1 0 0 0 1 0 0 0 1 0 0 0 1
1 1 0 0 0 1 1 1 1 0 1 1 1 0
1 1 1 1 1 0 0 0 0 1 0 0 0 1
1 1 1 1 1 0 1 1 1 0 1 1 1 0

2) Error caused by Ps being stuck at 1 (on)

Poi fsi fit fs1 Pol Psi fit fs2 Pot Pst fi3 fs3 Po3 Ps3
0 0 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 1 1 0 1 0 0 1 1 0 0 0 1
0 0 1 1 0 1 1 1 1 1 1 1 1 1
0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 1 1 1 1 1 1. 1 1
0 1 1 1 0 1 0 0 1 1 0 0 0 1
0 1 1 1 0 1 1 1 1 1 1 1 1 1
1 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 0 0 1 1 0 0 0 1
1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 1 0 0 0 1 0 0 0 1
1 1 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 1 1 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

3) Error caused by Ps being stuck at 0 (off)

Poi fsi fit fsl Pol Psi fi2 fs2 Pot Pst fi3 fs3 P03 P53
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 1 1 1 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 1 0 1 1 1 0
o 1 0 0 0 0 0 0 0 0 0 0 0 0
o 1 0 0 0 0 1 1 0 0 1 1 1 0
o 1 1 1 0 0 0 0 0 0 0 0 0 0
o 1 1 1 0 0 1 1 1 0 1 1 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 0 0 1 1 1 0
1 0 1 1 1 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1 1 0 1 1 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 1 0 0 1 1 1 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 1 1 1 0 1 1 1 0

84

4) Error caused by Po being inverted on output, Ps is true value of Po

Poi fsi fit fs1 Pol Psi fit fs2 Pot Ps2 fi3 fs3 Poi Psi
0 0 0 0 10 0 0 1 0 0 0 1 0
0 0 0 0 10 1 1 1 0 1 1 0 1
0 0 1 1 10 0 0 1 0 0 0 1 0
0 0 1 1 10 1 1 0 1 1 1 0 1
0 1 0 0 10 0 0 1 0 0 0 1 0
0 1 0 0 10 1 1 1 0 1 1

Q
1

0 1 1 1 01 0 0 0 1 0 0 1 0
0 1 1 1 01 1 1 0 1 1 1 0 1
1 0 0 0 10 0 0 1 0 0 0 1 0
1 0 0 0 10 1 1 1 0 1 1 0 1
1 0 1 1 01 0 0 0 1 0 0 1 0
1 0 1 1 01 1 1 0 1 1 1 0 1
1 1 0 0 01 0 0 1 0 0 0 1 0
1 1 0 0 01 1 1

IL
1 1 1 Q_ 1

1 1 1 1 01 0 0 0 1 0 0 1 0
1 1 1 1 01 1 1 0 1 1 1 0 1

5) Error caused by Po being stuck at 1 (on)

Poi fsi fit fsl Pol Pst fi2 fs2 Po2 Pst fi3 fs3 Po3 Psi
0 0 0 0 11 0 0 1 1 0 0 1 1
0 0 0 0 11 1 1 1 1 1 1 1 1
0 0 1 1 11 0 0 1 1 0 0 1 1
0 0 1 1 11 1 1 1 1 1 1 1 1
0 1 0 0 11 0 0 1 1 0 0 1 1
0 1 0 0 11 1 1 1 1 1 1 1 1
0 1 1 1 11 0 0 1 1 0 0 1 1
0 1 1 1 11 1 1 1 1 1 1 1 1
1 0 0 0 11 0 0 1 1 0 0 1 1
1 0 0 0 11 1 1 1 1 1 1 1 1
1 0 1 1 11 0 0 1 1 0 0 1 1
1 0 1 1 11 1 1 1 1

,1
1 1 1

1 1 0 0 11 0 0 1 1 0 0 1 1
1 1 0 0 11 1 1 1 1 1 1 1 1
1 1 1 1 11 0 0 1 1 0 0 1 1
1 1 1 1 11 1 1 1 1 1 1 1 1

6) Error caused by Po being stuck at 0 toff)

Poi fsi fit fsl Pol Psi fit fs2 Po2 Pst fi3 fs3 Po3 Ps3
0 0 0 0 0 0 0 0 0 0 0 0 0 0
o 0 0 0 0 o t t o o t t _Q_ o
0 0 1 t o 0 0 0 0 0 0 0 0 0
o o t 1 0 o t 1

Q
0 1 1 L, 0

o 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 1 0 0 t 1 g 0
o 1 1 t o 0 0 0 0 0 0 0 0 0
o 1 1 1

_ .Q
0 1 1 0 1 1

_,
Q_ 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 0 0 1 1 0 0
1 0 1 1 o 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 t 0 0 0 0 1 1 0 0 1 t Q 0
1 1 t 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1

Q
0 1 1

_
Q.

_
0 1 1

_Q, _
o

85

7) Error caused by Fi being inverted when stored in Fs

Poi fsi fit fs1
0001
0001
0010
0010
0101
0101
0110
0110
1001
1001
1010
1010
1101
1101
1110
1110

8) Error caused by

Poi fsi fit fsl
0001
0001
0011
0011
0101
0101
0111
0111
1001
1001
1011
1011
1101
1101
1111
1111

Pot
0
0
0
0
0
0
1
1
0
0

1
1
1
1
1

Fs b

Pol
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1

Psi fi2 fs2
001
010
001
010
001
010
101
110
001
010
101
110
101
110
101
110

eing stuck at 1

Pst fit fs2
001
011
001
011
001
011
001
011
001
011
101
111
001
011
101
111

Pot Ps2
00
11
00
00
00
11
00
11
00
11
00
11
11
11
00
11

(high)

Pot Ps2
00
11
00
11
00
11
00
11
00
11
11
11
00
11
11
11

fi3
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

fi3
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

fs3

0
1
0

0

0

0

0

0
1
0

fs3

1

Poi Ps3
00
11
00
00
00
11
00
11
00
11
00
11
11
11
00
11

Poi Psi
00
11
00
11
00
11
00
11
00
11
11
11
00
11
11
11

9) Error caused by Fs being stuck at 0 (low)

Poi fsi fit fst Pol Pst fit fs2 P02 Pst fi3 fs3 P03 Ps3
o 0 0 0 0 0 0 0 0 0 0 0 0 0
o o 0 0 0 0 o 0 0 o _Q, _ o
o 0 o 0 0 0 0 0 0 0 0 0 0
o o 1 a o o 1 o _Q o 1 o o
o 1 o 0 0 0 0 0 0 0 0 0 0 0
o 1 o 0 0 0 1 o 0 0 1 o ý_ o
o 1 1 o 0 0 0 0 0 0 0 0 0 0
o 1 1 0 ý_ o o _ Q- o t o o
1 o 0 0 0 0 0 0 0 0 0 0 0 0
1 o 0 0 0 0 1 o 0 0 1 o 0 0
1 o 1 o > > o 0 0 0 0 0 0 0
1 o 1 o > > > o 1 1 1 o 1 1
> > o 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 o t o 0 o t o o

> > > o t 1 o 0 0 0 0 0 0 0
1 1 1 0 1 t 1 o t t 1 0 1 t

86

10) Error caused by Fi being inverted on input

Poi fsi fit fsl Pol Pst fi2 fs2 Pot Ps2 fi3 fs3 Po3 Ps3
0 0 1 1 0 0 1 1 1 1 1 1 1 1
o 0 1 1 0 0 0 0 0 0 0 0 0 0
o 0 0 0 0 0 1 1 0 0 1 1 1 1

o 0 0 0 0 0 0 0 _Q_ 0 0 0 0 0
o 1 1 1 1 1 1 1 1 1 1 1 1 1
o 1 1 1 1 1 0 0 1 1 0 0 0 0
o 1 0 0 0 0 1 1 0 0 1 1 1 1
o 1 0 0 Q 0 0 0 0 0 0 0

Q
0

1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 0 0 1 1 0 0 0 0
1 0 0 0 0 0 1 1 0 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 1 1 0 0 0_ 0

1 1 0 0 1 1 1 1 1 1 1 1 1 1
1 1 0 0 1 1 0 0

_,
0 0 0 0

_,
0 0

11) Error caused by Fi being stuck at 1 (high)

Poi fsi fit fsl Pol Pst fit fs2 Po2 Pst fi3 fs3 P03 Ps3
0 0 1 1 0 0 1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 0 0 1 1 1 1 1 1 1 1
0 1 1 1 0 0 1 1 1 1 1 1 1 1
0 1 1 1 0 0 1 1 1 1 1 1 1 1
1 0 1. 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

12) Error caused by Fi being stuck at 0 (low)

Poi fsi fit fs1 Pol Pst fi2 fs2 Po2 Pst fi3 fs3 Poi Psi
0 0 0 0 0 00 000 0 0 0 0
0 0 0 0 0 00 000 0 0 0 0
0 0 0 0 0 00 000 0 0 0 0
0 0 0 0 0 00 000 0 0 0 0
0 1 0 0 0 00 000 0 0 0 0
0 1 0 0 0 00 000 0 0 0 0
0 1 0 0 0 00 000 0 0 0 0
0 1 0 0 0 00 000 0 0 0 0
1 0 0 0 0 00 000 0 0 0 0
1 0 0 0 0 00 000 0 0 0 0
1 0 0 0 0 00 000 0 0 0 0
1 0 0 0 0 00 000 0 0 0 0
1 1 0 0 0 00 000 0 0 0 0
1 1 0 0 0 00 000 0 0 0 0
1 1 0 0 0 00 000 0 0 0 0
1 1 0 0 0 00 000 0 0 0 0

N. B. All occas ions are potential catastrophes.

87

The example process modelled for the discussion has been a

trivial control system and yet many error conditions have been

identified. If the control system was more complex with many more

parameters to consider then the dimensions of the state diagram would

become unmanageable. The number of instances where an error can

exist and create a catastrophic failure/condition becomes

proportionately greater as the number of parameters increases making

the use of state transition diagrams difficult to use for isolating

potential hazards.

In many industrial control systems the number of states would be

so great that exhaustive checking of all conditions would not be

practicable.

88

3.3 Categorisation of Dangers

Examination of the risk arising from the use of software in an

industrial process control system requires the dangers to be

categorised. An argument for three categories of danger called

minor, Major and Serious is presented.

3.3.1 The Software Control Element

The flow of information through a control system is dependent on

the control strategy adopted for that industrial process. A general

structure for various routes that the information can take through

the software element of the control system, depending on whether it

is a fully automatic control system, a system with manual

intervention or a simple data logger is shown in Figure 3.3.1.1.

Each route through the software has its own unique function and

potential for error. Each of the points at which an error can occur

are called 'error points' and assigned a number.

Figure 3.3.1.1 Software Control Element

Process
input output

"`-r
", r

State
Memory

.-'-

Output Input
Operator

software

The Health & Safety Executive, [6) p. 3, has suggested that there

are three typical modes of operation:

'Mode 1

The computer receives signals from the plant or machine to

89

which it is linked and then processes this information and

transmits or displays it. The computer does not send

control signals to the plant or machine. The operator

controls the plant without recourse to the computer except

for information, and thus retains the power of both,

decision and control.

Mode 2

The computer acts as a link between the person, who is

monitoring the process, and the control elements (e. g.

valves or contactors). This role may involve the feedback

of signals from the plant or machine to the computer but

the computer's scope for plant alteration is limited

essentially to carrying out the instructions of the person

in control of the process. In this mode, therefore. the

decision is made by the person but control is exercised by

the computer.

Mode 3

The computer, without human intervention. makes significant

changes to, or puts significant restrictions on, the plant

or machine operating conditions in accordance with its

program. The computer therefore retains the power of both

decision and control".

Because of the reduction in the cost of automation and the

economic pressure for more industrial efficiency there is a tendency

to make greater use of industrial controllers operating in Mode 3.

Principally, there are two ways that an Industrial Controller

can reduce the safety of the process it controls or create a

dangerous condition; by abnormal operation of the program or by

aberrant behaviour of the controller. In all modes there will be

occasions when the Industrial Controller can exhibit aberrant

90

behaviour and produce dangerous situations.

3.3.2 Potential for Errors

Mode 1 operation, data logging, would cause process inputs to

enter the software and pass via the state memory to the Operator

output port which may have a computer monitor attached for use by the

Operator. There will be no response from the Operator entered to

the software, in response to the output.

Mode 2 operation would be as Mode 1 but in addition the Operator

responses would be input to the software and pass to the process

outputs via the state memory. The Operator responses would be

reflected back to the Operator via the operator output port and the

computer monitor.

Mode 3 operation would be as Mode 1 but instead of the response

coming from the Operator, as in Mode 2, the input will be routed to

some decision making procedure which will effect the response through

the process outputs. Knowledge of the response may only be

available to the Operator by observing the process status displayed

on a computer monitor.

From Figure 3.3.1.1 eight points of potential error can be

identified, called 'Error Points'. These error points are shown in

Figure 3.3.2.1.

Figure 3.3.2.1 Error Points

16

8
25

7

34

91

Where single extreme errors can occur and their effect will now

be examined. It is assumed that extreme errors are those where the

information contained in the data is completely wrong in a permanent

way and not transient, which have special characteristics.

Error point 1 would cause the information on the process state

to be corrupted. The corruption of data on input would cause

erroneous information to be presented to the Operator and to the

decision module. Information available to the Operator and any

decision module would not represent the true process state.

At error point 2, an error in the input data which was correct

on entering the software, would be corrupted. The effect of the

error would be to cause the Operator to be misinformed on the process

state. Any subsequent action by the Operator would be correctly

conveyed to the process. Since the process state is incorrectly

displayed the Operator would have some indication that an error had

occurred from the observable plant status.

At error point 3, the introduction of an error would cause the

process state information and the Operat

incorrectly displayed to the Operator.

alerted to the error by noting the error

and also by monitoring the process state

observed.

If an error occurred at error point

or input commands to be

The Operator would be

shown in his input commands

displayed compared with that

4 the Operator input

commands would be corrupted causing the wrong actions to be conveyed

to the process and the commands displayed to the Operator would also

be corrupted. The Operator would only become aware of an error by

monitoring the response of the process state and monitoring his

reflected commands. In a slow industrial process the risk would be

limited by the Operators actions. In a fast industrial process the

risk would be greater.

92

At error point 5, the existence of an error would cause commands

from the Operator to be incorrectly interpreted by the control

software and as a consequence convey the wrong actions to the

process. Error point 5 has a greater risk than that of error points

2&7. In a process which is not time-critical the error would not

cause an increase in the risk since the process state would still be

displayed correctly. But the error is more dangerous in a time-

critical process. Also the Operator is able to compare his commands

with the resulting process reaction, which corresponds to an

unexpected plant state being corrected by the feedback control

mechanism.

A potentially great risk exists when an error occurs at error

point 6; the Operator input commands or the decision module commands

are corrupted on output. In either case the wrong actions are

conveyed to the process. The result may be a situation with a high

risk, without the Operator being aware of the danger.

Error point 7 has the potential to incorrectly display the

commands of the Operator but the error will be identified as an error

by the Operator noting the disturbance.

Error point 8 has a potentially great risk when the control

strategy permits control actions to be taken directly by the

software. The actions may also be monitored by the Operator, if

there is one. An error at error point 8 in the software would cause

the decision module to issue wrong commands which, though founded on

correct process inputs, would then pass to the process undetected.

3.3.3 Categories of Danger

From the discussion above the effects of errors existing at

various points in the software have been proposed. Whilst all

errors have some effect there are some which present a much greater

risk than others. Therefore, some weighting needs tobe applied to

93

isolate the error and to place it in the appropriate category. The

weighting used here is a subjective assessment of the degree of

danger resulting from the occurrence of that error.

Three categories of danger resulting from errors in software

used in control applications have been distinguished as;

minor - errors which are undesirable and inconsistent with the

specification but do not cause a hazardous condition to

exist. For instance, mis-spelled warning messages and

file corruption.

Major - errors which cause a hazardous condition to exist but

which allow correction by an Operator. For example,

failure to check correct outputs by re-input, output

action differing from that commanded and reported,

corruption of command with resulting incorrect action

(input or output). The effects of errors in this

category are observable by the Operators.

Serious - errors which cause a high level of risk to exist;

erroneous output on a fast or time-critical process,

overriding of protection mechanisms like watch-dogs,

uninformed bridging of safety checks, corrupted limit

checks, wrong logical deduction from inputs resulting

in a wrong output.

The category of minor is placed on a set of errors which, though

undesirable and inconsistent with the specification, do not cause a

hazard to materialise. As an example, consider an error in a module

whose function is to log data. An error in the module might cause

the correct output message `alarm 99" to be displayed incorrectly as

"alm 99", where the number indicates an alarm number and not a

sequence number. Such an error might cause the Operator to suspect

a fault in the software but would not prevent him from understanding

94

the message. The ability to understand the corrupted word in a

message is due to the message having in-built redundancy allowing the

message 'alm' to be recognizable as 'alarm'. Message Redundancy is

also known as the 'richness' of the language. The context of the

message is contained in a descriptor which contains information.

However, if the corruption had been that the alarm point "99" was

corrupted to "9" then it is possible that the Operator would not

recognise the correct message from this limited information.

Alternatively, had the Operator input the command "Open valve 6"

which was corrupted to "Open valve 4" by the command input module

then the error would no longer be in the minor category since the

intended message cannot be determined. If the corruption was such

that the erroneous command was displayed as "Open valve 4" and also

effected the action on valve 6, then the Operator would be aware of

the error and react accordingly. There is little redundancy in the

message since the valve has been identified by a single character and

not a descriptor containing more information. Therefore the message

is considered to be unsafe. Errors of this type have been put in

the set of errors called the Major category of errors and refers to a

set of errors that cause a hazard to exist but which are not too

great for the Operator to correct.

Taking the above example of the Operator inputting the command

"Open valve 6", if an error occurs in the process output module and

corrupts the command to "Open valve 4" then the error is in the set

of errors called the Serious category of errors. The error is in

the Serious category of error because the command will have been

correctly displayed to the Operator, who now expects an action, but

the output to the process is not as commanded; the Operator may be

unaware of the potentially dangerous situation for some time, by

which time a disaster may have occurred. The Serious category of

95

error refers to a group of errors which present a, high level of risk.

Only single permanent failures have been considered so far but

it is possible for there to be combinations of permanent errors and

transient errors. Both types of error have severe implications to

the safe working of the system.

Combinations of errors are many and varied. The consequence of

combinations of errors is that individual single permanent errors may

be masked by the accompanying permanent error and create a confused

view of the problem. The category of danger for a combination of

errors is the category of the higher single permanent error included

in the combination. For example, a combination of a permanent minor

error and a permanent Major error is considered to be a Major error.

Transient errors, however, present an error condition which may

be short lived and infrequent. The consequence of which may be that

an unsafe condition applies for the duration of the error and it is

improbable that the error will be isolated immediately. The full

effect of a transient error cannot be appreciated until the transient

error is identified and safety requires that maximum caution should

be exercised where uncertainty exists. A transient error is placed

in the category of Serious until such time as the error is isolated.

Due to transient errors being in the Serious category a combination

made of permanent and transient errors is considered to be in the

Serious category.

96

3.4 The Structuring of Software Modules for Safety

Software modules are discrete units of computer programming

collectively providing a sphere of"influence within a system. The

software modules can be structured, or configured, in many different

ways to achieve the same sphere of influence. The term "sphere of

influence" refers to the extent to which the actions of a specific

module are influential within a system and is not limited to first-

order effects. The structuring of the system affects the amount of

confidence the designer is justified in vesting in the system.

Using robust programming techniques, such as N-Version Programming

and Recovery Blocks, influences the safe execution of a program.

Some of the structural options available to software designers

are considered in this Chapter and it is postulated that the use of a

structuring technique called 'Safety Modules' improves the safe

operation of control modules without an increase in either the run-

time resources or the complication of the system.

3.4.1 N-Version Programming

Hardware fault tolerant systems commonly use a strategy called

N-Modular Redundancy (NMR), involving an odd number, say three or

five, redundant versions of the same hardware with a voting system.

N-Version Programming is a software implementation of the NMR

strategy for hardware and was first proposed by Chen and Avizienis,

[5].

In N-Version Programming a number of similar programs. N, are

written to perform identical functions using different programming

techniques to perform the same function or using different source

languages. To add diversity the programs may be written by

different teams of programmers, even in different locations.

In N-Version programming structuring of the system is such that

the N-versions of the program are usually placed under the control of

97

a driver program within the run-time environment. The driver

program invokes each version of the program, awaits completion of the

respective execution, compares the results and takes action

accordingly.

The driver program synchronises the execution of the versions

and maintains a record of those versions which take longer time to

execute. Once the versions have all reached completion and have

been synchronised then a voting mechanism compares the respective

results. If it is not possible for all the versions to return the

same result then 'inexact voting' is used when small discrepancies in

the results are tolerated. In industrial systems the accumulation

of such discrepancies, accumulated over a period of operation, cannot

be disregarded as the error may become too severe to permit safe

operation. Therefore N-Version Programming cannot be recommended in

safety-related systems.

3.4.2 Software Fault Tolerance

Errors in the program itself can demonstrate the characteristic

of having 'failed' in many ways; suspect inputs, inadequate inter-

program communication, hardware malfunctions or loss of

synchronisation with other programs with which it corresponds. For

a system to continue operation whilst overcoming these 'faults' a

technique known as fault tolerance is required.

One fault-tolerant technique is Recovery Blocks, [1] and [11].

Recovery block design makes use of one or more redundant programs in

addition to the original program. The original program is called a

'primary block' and is tested for failure by an 'acceptance block'.

On detecting a failure the acceptance block will cause one or more of

the redundant blocks, called 'alternate blocks', to be executed until

either all 'alternate blocks' have failed or one has functioned

correctly.

98

The recovery block strategy is

1) the primary block is executed

2) the acceptance block tests 'for a satisfactory result

3) if the result is acceptable then the next primary block in

the sequence is executed. If the result is not acceptable

then the system is said to 'recover' to a point where the

system state is restored to that existing before the failed

primary block was executed and one of the alternate blocks is

executed,

4) the execution of alternate blocks is repeated until an

acceptable result is achieved,

5) if an acceptable result cannot be achieved then the system is

said to have failed.

To implement the recovery block strategy requires two special

procedures;

RECOVER - which keeps account of whether it is the primary

block or one of the alternate blocks being executed

and maintains a copy of the state of the system

prior to the block being entered,

ACCEPTANCE - performs the acceptance test and causes a system

recovery if a failure is detected. The procedure

also has a record of whether it is the primary

block or an alternate block being executed.

In a multi-processing environment where shared data is used to

pass data between programs it is possible for there to be an overlap

when two or more competing blocks are recovering. Randell, [11],

called this situation the 'domino effect and observed that whilst

only one block may have failed the failure of more blocks may be

indicated thus causing a system shut-down. To limit the domino

effect additional facilities need to be provided, [t], which further

99

increases the amount of resources committed to the strategy.

Whilst the Recovery Block strategy is simple in its concept the

implementation is more involved. It does allow alternate control

strategies to be attempted on detection of a failure. The major

disadvantages in using the recovery block strategy for industrial

control systems are;

- the difficulty of restoring the system to a known state

without causing a 'domino effect' where alternate blocks force

other blocks to restore

- the time taken to restore the system to a known state may mean

that the restored system state no longer reflects the current

plant state

- considerable resources are required to implement multiple

copies of the primary block

- if the system is safety-related then the personnel maintaining

the system operationally need to be made especially aware of

the nuances of such a strategy.

These difficulties could create a situation where the system actively

seeks to restore itself without maintaining a safe plant status.

3.4.3 Safety Modules

If, due to the increased probability of an undetected error

being present, it is assumed that the probability of failure of a

program module is related to the number of characters forming the

program then the probability of failure of a system is similarly

related to the structure existing between the modules. In the case

where the module effects control over some critical item of plant it

is desirable to maintain a low failure probability which suggests

that the module lengths need to be correspondingly short.

There are two ways of reducing the length of a module; dividing

the module still further into a number of sub-modules or reducing the

100

length, usually by using advanced programming-techniques.

A satisfactory division of the roles of the original module is

normally possible without a consequent increase in the complexity of

the software other than in the interconnection coupling between

modules. The outcome of the division of the module is that low

probabilities of failure can be achieved for individual sub-modules

and the software retains a simple internal structure which allows the

sub-modules to be understood. The internal simplicity is important

to allow changes to the function of the sub-module to be effected

without disturbance to any safety checks in the module.

Length reduction using advanced programming techniques has an

immediate disadvantage in the resulting program becoming so esoteric

that only the originating programmer is able to fully understand its

function which in turn means that it is only the originating

programmer who can safely make changes arising out of testing.

Such practices are undesirable from many points of view. Most

significantly, from a safety view, is that the safety checks within

the program may have been installed by the programmer and these can

be unintentionally by-passed when changes are made by another

programmer who is unfamiliar with the program.

Since modularisation of the software does not substitute

convenience for safety, the principle of module sub-division is to be

preferred to length reduction.

A control module will probably have safety checks built into the

software. In which case the structure could conceptually be as in

Figure 3.4.3.1 with the control part of the module intimately co-

operating with the safety part of the module.

101

Figure 3.4.3.1 Safety and Control Software Integrated

where S= Safety Part

C= Control Part

It is assumed that the probability of failure of a sphere of

influence, P(F), is related to the length of the modules. The

relationship between the length of a module and its probability of

failure may be exponential, linear or differential or any of the

relationships below;

Pf

It is assumed in this thesis that as the length of the module

increases it is more probable that errors will be introduced and that

the relationship exhibits an exponential characteristic.

If the modules are structured as in Figure 3.4.3.1 then the

failure probability for such a structure is

P(F) = P(S) + P(C)

where P(S) and P(C) are the failure probabilities for the Safety Part

and Control Part, respectively and P(F) is the probability of

failure.

If the safety part is seperated from the control part into a

seperate Safety Module whose primary role is to ensure that the

Control Module continues to function safely there will be distinct

102

Length of Module

flows of data between them. The flow of data is considered to be

between each module and the run-time environment of the computer,

with channels to each.

Communication between the safety module and the control module

may be such that before control of the plant is effected by the

control module the safety module will check that the action is

reasonable given the plant status. The safety module may have

exclusive access to data concerning the operation of the item of

plant it is concerned with, for example equipment design limits and

rates of change of plant parameters. Plant data could be stored in

a read only file. The control module may have access to a limited

sub-set of plant data in order for it to be able to perform all the

logical and mathematical functions necessary to maintain control.

The control can be effected either by the control module or the

safety module. If the action is taken by the control module as in

Figure 3.4.3.2 a), b) and c) then there exists a probability that the

action approved by the safety module will be corrupted in some way

before being effected. Also a probability exists that corruption of

the control action may occur if it is effected by the safety module,

Figure 3.4.3.2 d) and e). though it is probable that the safety

module will detect the corruption and take the necessary corrective

action. Therefore the risk of an unsafe control action being

effected is lower when the action is undertaken by the safety module.

Figure 3.4.3.2 Configuration of Safety and Control
Modules

a)
IS()C

EE= Run-time
Environment

103

b)

C)

dI

e)

When the two modules are seperated in the way discussed they can

be structured to operate either sequentially or concurrently.

The conceptual structure for the Safety and Control modules

operating sequentially is shown in Figure 3.4.3.3.

104

Figure 3.4.3.3 Safety and Control Modules Operating Sequentially

where
S= Safety Module
C= Control Module

The operation of the modules involves the two modules functioning in

a serial manner. It is assumed that the probability of failure is

related to length such that L(C) and L(S) combined gives L(C) + L(S)

then the probability of failure is given as

P(F) = P(C) + P(S)

Providing the run-time operating system orders the

synchronisation of tasks, the safety module can also be configured to

execute concurrently with the control module, Figure 3.4.3.4, and

maintain a safe operation with respect to the control module through

the linking mechanism. Since the run-time environment is required

to schedule both modules the probability of failure of each module

also needs to include the effect of the run-time environment on the

outcome.

Figure 3.4.3.4 Safety and Control Modules Operating in Parallel

_

C]

If 1
Each module can fail to execute its role in distinct ways;

abnormal execution as a result of the other module. non-execution as

a result of the other module, corrupt data as a result of the other

105

module and the run-time environment, corrupt instruction as a result

of the other module, failure to communicate as a result of the other

module and the run-time environment.

The module can fail as a result of any of these independent

reasons. The probability of a failure in this configuration is

P=CP (Lc)+P (Lc)+P (Lc, E)+P (Lc)+P (Lc, E)]
FS Sp Sn Scd Sci Sfc

P=[P (Ls)+P (Ls1. P (Ls, E)+P (Ls)+P (Ls, E)
FC Cp Cn Ccd Cci Cfc

where

P, P= prob. of failure of the Safety/Control Module
FS FC

P, P= failure of safety/control module
Sp Cp

P, P= non-execution of safety/control module
Sn Cn

P, P= corrupt data of safety/control module
Scd Ccd

P, P= corrupt instruction of safety/control module
Sci Cci

P, P= communication failure of safety/control module
Sfc Sfc

Ls = length of safety module in characters

Lc = length of control module in characters

E= run-time environment

The failure of the safety module can be caused by a failure of

the control module and prejudice safety by allowing unjustified

freedom of action to the control module. Therefore a mechanism is

required to maintain the safe operation of the safety module. The

paradox is not new and was noted almost 2000 years ago in the phrase

"Sed quis custodiet ipsos custodes? "
Juvenal, 'Satires' c60-130 A. D.

The probability of failure of the safety module can be reduced

by placing a restriction on the ability of the control modules to

106

corrupt either data or instructions when communicating with the

safety module. For the safety module to effect the actions

requested by the control module it is necessary for the control

information to be made available to the safety module through some

secure communication mechanism such as parameter passing or sharing

of data space. If parameter passing is used then there is a

probability that errors will be induced by the run-time environment,

which can itself cause data corruption. The option of using shared

data space is subject to a lower probability of error because of the

linking procedures used within the compiling system for declaring

global data references.

A module whose sole function is to maintain an ultimate safe

working condition by monitoring the safety modules within a system

needs to be inviolate and must be allowed to make some judgement on

the safety modules operational capability. The module would have a

connection to the run-time environment but not with any other item of

software. Connection with the run-time environment is exclusively

for the purpose of checking that the version of the safety module to

be executed by the run-time environment has not changed in any way

from that considered to be safe when the module was first made

operational, or that the execution of the safety module is not

overdue in time with respect to the previous instance. If changes

have been made to the safety module which is now considered to be

'suspect' or it is considered to be overdue the ultimate safety

module will inform the responsible plant authority of the suspicion

and effect a predefined safe control operation on that plant area.

Changes to the safety module can come about by another module

causing corruption to the safety module or by functional changes to

the safety module requested by the plant authority. Functional

changes to safety modules have a probability that the implications to

107

safe working of such changes may not be appreciated by those making

the changes.

In most industrial plants it is a proscribed activity for an

Engineer to override an ultimate safety limit without permission

being granted on the authority of the Plant Engineer. Such

authority may take the form of the possession, by Authorised

Engineers, of the necessary key to physically unlock the safety

protection system surrounding the limit. The safety limits proposed

for the safety modules should be regarded in the same way. Access

permission to the ultimate safety module should be restricted by

managerial action of, say, the Plant Engineer. Such an ultimate

safety module is called the Arbitrator Module.

To maintain the inviolate nature of the Arbitrator Module it

could be located in a Read Only part of the main memory of the

computer. The Arbitrator Module could use a strategy of checking

the unique identity of a safety module in order to monitor the safe

working of the safety modules. Conceptually the Arbitrator Module

can be viewed as in Figure 3.4.3.5.

Figure 3.4.3.5 The Arbitrator Module

(a)

Data flow between
modules

(b)
Communication line

SC between modules

108

Cc)
Functional
relationship between
modules

where A= Arbitrator Module
S= Safety Module
C= Control Module
E= Run-Time Environment

3.4.4 A Mechanism for Ensuring the Integrity of Software

The role of the Arbitrator Module and its relationship with the

Safety Modules have been discussed on the assumption that the modules

have not been corrupted as a result of software errors, incorrectly

installed modifications to the system or deliberate sabotage. If

the system has been corrupted in some way it cannot be said to be

complete. The Oxford English Dictionary defines completeness as a

synonym of integrity. It is in the context of completeness that the

word integrity is used in this thesis. A mechanism to restrict the

probability of corruption not being detected is called an Integrity

Lock.

When the system is put into operational use it is reasonable for

the Functional Authority to assume that all the modules are

considered to be safe. If at this point a unique identity is given

to each module such that safe operation is only possible when the

identity is shown to be valid, then a strict regime of managerial

control can be exercised on the installation of any changes to the

system.

To create a unique identity some form of encryption based on the

run-time code of the module can be used. 'A similar requirement is

found in data communication systems where a unique code, such as a

cyclic redundancy check or Hamming code, is generated to assist the

receiver in determining whether an erroneous message has been

received. The unique identity may be corrupted by a single error or

109

by multiple errors. Hamming codes have been developed to cater for

at least one error and so could be the immediate choice for creating

the unique identity. The creation of the unique identity ought to

be done under the strictest controls, for instance under the

authority of a Senior Engineer, to maintain security. The unique

identity could be generated by a module called the Security Module.

The Security Module needs to be capable of reading the

particular control or safety module as an ordered set of characters

forming a message and generating the identity according to a

specified algorithm. Having generated the identity the Security

Module could then place it in an area of storage, called the Key

Area, which could then be declared to the system as "Read Only".

The Key Area may contain many identities each mapped to a

particular module by the module name. The correct functioning of

the Integrity Lock would require that strict administrative controls

existed and the location of the Key Area would not be commonly known,

possibly only to the Plant Engineer since he is ultimately

responsible for the safe working of equipment. It is a managerial

decision on who would have the necessary information on how to run

the Security Module in mode 1, generation mode.

When a control or safety module is called by the Operating

System to be executed mode 2 of the Security Module, check mode,

would read the control module as a message and generate the identity

for that control module. As a function of the Safety or Arbitrator

module the current identity would be compared with the stored

identity. If the identities did not match then alarm conditions

would be raised. However, when the identities match the Operating

System would be allowed to execute the module. The procedure

described is shown in Figure 3.4.4.1.

The function of the Security Module in mode 1, generation mode,

110

is the highest level of integrity, Integrity Level 1. Integrity

Level 1 is only executed when a satisfactory password has been

entered.

When the Security Module is executing in mode 2, checking mode,

the level of integrity is less than mode 1 but higher than the level

occupied by the control module, safety module, arbitrator module and

the operating system which are all at Integrity Level 3. The level

associated with Security Module mode 2 is the Integrity Level 2.

By using a technique such as the Integrity Lock there is a

probability of executing a control module, or a Safety/Arbitrator

Module, which has previously been categorised as safe.

Figure 3.4.4.1 Integrity Levels

Integrity Level 1
Password

All Modules Security Module Key Area
Mode 1

Integrity Level 2

Security Module
Mode 2

Integrity Level 3

Module to Operating Safety or
be executed System Arbitrator

Modulo

3.4.5 Discussion

There exists methods for tolerating faults arising in the

software.

The technique known as Recovery Blocks allows the system to

retrace, or back track, to the last known point where safe

computation took place and to re-establish a safe working attitude.

111

But back tracking can cause a 'domino effect' where the system

retraces back so far that meaningful control actions are difficult to

achieve given that the plant status may have changed significantly

since the recovery began. Time can be important in maintaining

effective control of an industrial process and if a recovery system

cannot roll-back to a satisfactory point in a given time then

decisive action will have to be taken, possibly by the Operator.

Recovery Blocks have been used in systems not having a plant

status responsibility, such as Command and Control Systems, but in

industrial control systems the speed at which the plant status

changes may mean that some method is required which will maintain

plant safety whilst the fault is investigated. Though Recovery

Blocks may serve to protect the safety of the plant in some part they

are not sufficient in themselves and require additional features,

such as the strategy of using Safety Modules.

The use of Safety Modules is a strategy for seperating the

software into control modules, which would determine the necessary

control, and into safety modules which would be dedicated to ensuring

safe control actions on industrial plant. There would also be an

ultimate safety module, the Arbitrator Module, monitoring the safety

modules. Such a strategy permits the plant designer/manager to

specify or change the safe working limits for the particular plant

areas without modifying the control module. The strategy also

prohibits the main body of the system from effecting control outside

the limits. The strategy is not a fault tolerant technique but it

does ensure that safe control can be maintained.

112

3.5 References

Ell Anderson. T.. & Lee, P. A., Fault Tolerance: Principles and
Practice, Prentice-Hall, 1981

E23 Andow, P. K., The Numerical Analysis of Hazards and Failures, '
Proceedings of the Institution of Chemical Engineers
Symposium Number 63

131 Andow, P. K., Real Time Analysis for Process Plant Alarms using a
Mini-Computer, Computers and Chemical Engineering,
Volume 4,1980

E43 Chelson, P. O., Reliability Computation using Fault Tree Analysis,
NASA-CR-124740, Jet Propulsion Laboratory, 1971

[51 Chen, L., & Avizienis, A., N-Version Programming: A Fault-
Tolerance Approach to Reliability of Software Operation,
FTCS-8 Eighth International Conference on Fault Tolerant
Computing, 1978

E63 Health and Safety Executive, Microprocessors in'Industry, HSE
Occasional Paper Series: OP2, H. H. S. O., 1981

[71 Jensen, K., & Wirth, N.. Pascal: User Manual and Report,
Springer-Verlag, 1974

[81 Leveson, N. G., & Harvey, P. R., Analyzing Software Safety, IEEE
Transactions on Software Engineering, Volume SE-9,
Number 5, September 1983

[93 Leveson, N. G., & Stolzy, J., Private Communication

[101 Peterson, J. L., Petri Nets, ACM Computing Surveys, Volume 9,
Number 3, September, 1977

[111 Randell. B., System Structure for Software Fault Tolerance, ACM
SIGPLAN Notices, Volume 10, Number 6, June 1975

E121 Rasmussen, J., WASH 1400 Reactor Safety Study, USAEC,
Washington, USA, 1974

113

CHAPTER 4

The Influence of the Development Process
on the Safety of Software

Chapter 3 examined the safe operation of the system through the

interactions of the software and the hardware with the emphasis being

on the control flow.

In this Chapter the emphasis will be on the control flow of the

software.

It is held in this Chapter that errors in the software affect

safety and so the Chapter examines the occasions where errors can be

introduced into the software, why it is not practicable to remove all

errors from the software and introduces a basis for measuring certain

features of the software. It is suggested that these measures,

though not rigorously proved, do give some indication of the scope

for error in an individual item of software.

The development and production of 'safe' software systems has

five distinct stages, each having a quality assessment part;

requirements specification, system specification, program

specification, program production and system test and integration.

Before the software development can begin the originator of the

development, the Requesting Authority. needs to obtain a concise

understanding of the requirements. Once the software has been

implemented and is in operation the Requesting Authority may identify

what are considered to be short-comings in the produced system which

may necessitate the requirements specification to be recompiled.

The requirements specification may have been prepared by a

collection of people from differing disciplines and functions within

the organisation, including the end-users. It is, therefore,

necessary for the requirements specification to be unambiguous to all

those. people involved in its preparation. The ambiguity of the

114

requirements specification is a research topic using established

formal mathematical methods to formulate the requirements

specification but the use of such formal methods presents a paradox;

to make the statements unambiguous the axiomatic methods used require

a considerable degree of understanding of mathematical logic which

may not present a problem to computer scientists but may to the

Requesting Authority, who may not then understand the requirements

specification. If written natural language is used for the

specification then the computer scientist may find the specification

to be imprecise, whereas the Requesting Authority may claim to

understand it. At the state of the art there is a risk that

ambiguity will persist in requirements specifications for industrial-

based control systems.

The system specification, which follows from the requirements

specification, is concerned with the design of the total system

against the requirements specification.

Program specifications are concerned with the design of specific

programs and the interfaces between them to meet the system

specification. How the software is structured into a system

influences the extent to which the system will conform to the

requirements specification, as conjectured in Chapter 3. ' If the

structuring of the software does not conform to the requirements

specification then the software may need to be redesigned. To

ensure that the software is structured in conformity with the

requirements specification, an iterative process is called for

involving all those personnel involved in the requirements

specification and system specification. The process described is

sometimes called the 'design process'.

Once the design process has been satisfactorily achieved the

'program development' can begin. During program development the

115

program is written in accordance with the previously agreed program

specification. At the end of program development, the program is

tested in isolation from the other programs forming the system.

Following program development is a set of procedures called

'system test and integration' when the individually tested programs

are tested as a complete system and integrated into a target

implementation.

The multi-stage iterative process which describes the

development process can be viewed as a directed graph, Figure 4.0.1,

where the nodes represent stages of development, each having an

associated activity;

Figure 4.0.1 Software Development Cycle

1- Requirements Specification
2- System Specification
3- Program Specification
4- Program Production
5- System Test & Integration
6- Implementation
7- Operation

Nodes 1 to 5 in the directed graph of Figure 4.0.1 have an arc

from that node and returning to that node to show that progress to

the next stage (represented by a node) is not permitted until some

form of quality assessment process has been satisfied for that stage.

Each normal path between stages, except 7 to 1. has a forward and

reverse arc indicating that when the quality assessment cannot be

satisfied at a particular node it is necessary to return to the

preceeding node and examine the transformation that took place. The

arc between stage 7 and stage 1 is uni-directional since the logical

116

progression from node 1 is to node 2.

To account for the occasion when the quality assessment process

has shown discrepancies from the specification such that a radical

consideration of the design or structure is required some nodes have

additional arcs to nodes other than the succeeding or preceeding

node. As an example, if the Requirements Specification cannot be

met in the Program Specification it may be necessary to follow the

arc from node 3 to node 1.

There is a need in all the stages of the development process to

analyse errors and to take the appropriate action. Error analysis

takes three forms; error prevention, error detection and error

correction.

Error prevention implies the use of good programming practice;

the use of the best known methods of software production. for

example, the selection of meaningful variable and constant names,

structured programming and other methods of programming.

Finding and removing the cause of errors is an intensive and

prolonged activity. Though it is important to correct an error it

is equally as important to ensure that the knowledge of the error.

its original cause and the correction is recorded in the guide to

good programming practice being used by the programmer, possibly by

some recording mechanism. Error detection and error correction will

be carried out by the programmer in the most efficient way as part of

his function.

The work in this Chapter on the determination of errors had the

following concepts in mind

1 that the software compiles satisfactorily

2 that the Programmer has completed the test-set provided for

the purpose and is satisfied that the tests were as exhaustive

as one can make them given the restraints of time, effort and

117

possibly commercial urgency for the software

3 that the development stage when metrics will be used is that

stage immediately preceeding the commissioning of the software

into operational use, possibly during acceptance testing

4 that satisfactory test limits will have to be determined for

the proposed metrics before the application of these metrics

to Industry

5 that the test limits and the metrics presented will provide a

pass/fail criteria for a Certification Authority seeking to

approve the software.

The Chapter starts by examining the reasons for errors remaining

in software, even after extensive testing. Having discussed the

software development process in terms of a feedback model a method is

developed to indicate the potential that exists within the software

for perturbing the software through single character errors, followed

by a discussion on the need to declare variable and constant names

and a report on an experiment conducted to examine the probability of

error through incorrect interpretation of mneomonics.

The final section of the Chapter is concerned with the

development of a measure called Plexus which measures the syntactic

complexity of software.

118

4.1 The Feedback Model of Software Production

The development of software involves a number of stages. The

exact number of stages and their relationship is largely dependent on

the organisation under which the development is done, the extent of

the project and the development methodology used. Many authors, for

example Sommerville, [12], Kopetz, [6], Peters, [8], have all tried

to model the development process in varying degrees of detail. At

the level of the gross model there is a consensus of opinion that

five stages exist; requirements specification, system specification,

program specification, coding and acceptance testing. Errors can be

created, detected and corrected at each of these stages but there

will still be residual errors which are not detectable until after

the software has been commissioned. This section of the Chapter

will demonstrate the enormity of the task required to eliminate all

software errors (if that was possible) prior to commissioning.

4.1.1 Process Model

The process of developing software can be compared to the

production processes of a manufacturing line and it is this analogy

that has been used in this Chapter to develop a model.

Figure 4.1.1.1 Production Process

Raw Process Process Process Process Dispatch
Materials 1234

Each process in the model has an input and an output with

rejects, from that process, being rejected at that process.

Inside each process stage there are two sub-processes, namely,

manufacture and test, Figure 4.1.1.2.

Figure 4.1.1.2 Manufacture and Test within a Process Stage

Process Stage

i
Manufacture Test

L--- --- --- -- ---J

119

Since testing will cause some corrective action to be taken on

the rejects detected then these actions can be considered as feedback

loops, Figure 4.1.1.3. Ideally testing will be such that no errors

are passed to the next stage and all errors are fed-back to the

preceeding manufacture sub-process or sub-processes for correction.

However, the model must consider that errors can be created at both

the manufacture and test stages and that the test coverage is

limited, Figure 4.1.1.4.

Figure 4.1.1.3 Rejection Feedback in a Process Stage

Process Stage

1
Manufacture Test

Figure 4.1.1.4 Test Coverage

Process Stage

ý-- -----ý e-- - -- ---
to

1

`f Manufacture) 01 Test

I

where e is related to the errors introduced during manufacture

and to is related to the errors undetected or allowed to pass

as a consequence of the testing practice.

The input to the test stage will be a duple (quantity 0,

probability of error P) and the output will be (failed, failed by

mistake, passed by mistake, satisfactory). The model is now shown

in Figure 4.1.1.5.

120

Figure 4.1.1.5 Test Stage

PC
iT

satisfactory

a, P
assed by mistake

ed by mistake

The test coverage (normally less than 100X) is shown by C and

the probability of testing determining the error shown by PT. The

quantity considered to be satisfactory, as, is given as

Os = Q. Pr((1-PT). (1-C)) + Q. (1-P). (1-C)

The test stage will have an output leading to the input of the

next manufacturing process and an output corresponding to the

erroneous components detected, either correctly or by mistake. The

detected erroneous components will be subjected to some form of

repair mechanism before being re-submitted to the test stage. The

repair mechanism has been added to the test stage model shown in

Figure 4.1.1.6.

Figure 4.1.1.6 Repair Mechanism

efficiency p

where res. is the residual error

ß is the effectiveness of repair

If it is assumed that the detection of errors by the model shows

a reduction in errors according to some exponential function then the

residual errors, res, is given as

121

res. efficiency

res = f(t) = exp (-at)

From control theory the testing stage can be given as a first

order loop whose transfer function is given using Z-transformation

Z
op = -at

t-e

where Op = quantity produced

Since the repair mechanism forms a feedback loop from the test

stage to the input of the manufacturing stage the residual error can

be viewed using a first order feedback model

Op
res = 0r Or = quantity

repaired

1+ ßZ

since Or = -at
Z-e

z
-at -at

res =2-eZ-e
1+ p2 2

-at
Z-e

-at
=Z-e

-at
Z-e+ ßZ

-at
=Z-e

-at
Z(1 + ý) -e

-at
=12-e

1+ß -at
t-e

1+ß

To reduce the residual errors requires a level of test

efficiency and test coverage above that attainable. Therefore, it

is concluded that there will always be a number of residual errors.

122

4.1.2. Software Model

Taking the model above and substituting the five stages of

software development for the procýss stages, the model becomes that

shown in Figure 4.1.2.1.

It has been suggested by some researchers, notably Boehm Ell,

that the majority of error-detection effort should be committed to

the requirements specification stage and so reduce the number of

errors needing to be detected at the following stages, especially at

the acceptance tests. Whilst such a strategy may be intuitively

sound it should not be assumed to be sufficient in itself since an

extreme amount of effort at the requirements specification stage

could cause a bottle-neck in the development process and be counter-

productive to achieving the project time-scales.

Figure 4.1.2.1 Software Feedback Model

e te e te

User o PrsI- 4 Vrsl- RS APssI X VssL- SS -iý

SA system

4-

where Pi

Vi

RS

ss

PS

C

SA

Production of stage i

Validation of stage i

Requirements Specification

System Specification

Program Specification

Code

Accepted system

123

4.1.3 Macro Model

The software development model can be applied to varying levels

of detail. For instance, the process of producing the program code

can be considered to consist of the following stages; typing the

original program, review of the program, program compilation,

execution of the code, testing of the code and editing stages,

forming a model like that in Figure 4.1.3.1.

The edit process itself can be further modelled, Figure 4.1.3.2.

where e is the probability of introducing errors

It is conjectured that each stage of development is prone to

errors and the process of correcting errors is itself prone to

further errors. It cannot be assumed that the use of extreme

amounts of effort at the requirements specification stage will

produce significant improvements in error reduction. It is

suggested that all items of non-trivial software contain some

erroneous feature.

If all software has at least one erroneous feature then the

criteria in testing hazard-related systems should be to identify

those classes of errors which could cause a dangerous state to exist.

12

Figure 4.1.3.1 Software Edit Stages

Figure 4.1.3.2 Edit Process

or

Source
I

i(review
no errors

source
in

errors
edit

execute commands

out

125

4.2. Single Character Errors in Programs

In writing even the simplest program there is a probability of a

character being typed in error. When the program is submitted to

the compiler a considerable number of these mistakes will be detected

but it is not practically possible to remove all errors. There are

occasions when the compiler is not able to detect the mistake.

The simple program below forms the basis of the discussion that

follows;

PROGRAM name (FILE);
VAR XY, XZ: REAL;
BEGIN

XY 2;
XZ 3;

END.

If the initial letter of the keyword BEGIN, "B", was mistakenly

typed as the letter, "N", the compiler would be able to detect that

NEGIN is not included in the list of reserved words for that

language, also that NEGIN is not a declared variable and so reject

the line as being in error. The rejection of the line would cause

the compilation to fail since BEGIN indicates the start of a

procedure block.

Errors in program variables are not always so obvious. Take.

as an example, a language which requires all variables to be

declared. In a program, like that above, written in such a language

the effect of typing X2: =2 instead of the correct XY: z2 would be

easily detected since X2 has not been declared as a variable. Had

the error been that XZ: =2 had been typed instead of XY: z2 then the

error could not be detected by the compiler unless it checked for

unused variables, XY being unused. If the language did not require

all variables to be declared, as for example with the language BASIC.

then neither of these example errors would have been detectable by

the compiler or interpreter, but they should have been detected by

the tests of the programmer, (concept 2).

126

When a single character is omitted or altered to another

character. or when there is a single additional character there are

similar opportunities for undetected errors.

4.2.1 Theory

There are three error classes of mistakenly typed programs;

- omitted single character (Po)

- additional single character (Pi)

- altered single character (Pa), which can also be

considered as a combination of Po and Pi

To examine the effects of each of these error classes the

following assumptions have been made;

- that individual errors are independent and no

account is taken of complimentary errors since the

probability of such is considered to be low

- that each character has an equal probability of error.

If it is assumed that errors can be introduced as a result of a

mistakenly typed character and remain undetected the expectation of

such a mistake*is given as Elmistake) and the number of characters is

given as Nc, then the expectation of the number of mistakes on

initial input of the program is

E{No. of mistakes} = E{mistake} . Nc

If the probability of making an undetected mistake is given as

Pm then the expectation of the number of undetected errors is given

as

E{No. undetected errors) = E{No. of mistakes} . Pm

which can be expanded to

E{No. undetected errors} = E{mistake} . Nc . Pm

There are three classes of error influencing the number of

undetected errors which are related to

- the expectation of the number of undetected alterations, E{a}.

127

- the expectation of the number of undetected omissions. E{o},

- the expectation of the number of undetected additions, E(ij.
I

The number of undetected errors is given as

E(No. undetected errorsl = E(uj = E{aj + E(ol + Eji)

The expectation of an undetected altered character, Ejaj, is

given by

E{a} = Pa . Nc . Pm
Cs -1

where Pa is the probability of a character in a certain character

position being altered and remaining undetected, Nc is the number of

characters in the program, Pm is the probability of making an error

in typing a character and Cs is the number of characters in the

character set permitted in the language.

The Expectation of undetected altered characters in a program is

given by

E(a) = (Pal + Pa2 + .. Pan) Nc . Pm
Cs -1

= Na . Nc . Pm
Cs-1

where Pan is the probability of a character being altered in the n-th

position of an ordered set of characters by each admissible character

from the set of characters in the character set and being undetected.

The number of altered and undetected characters is Na.

The expectation of the number of undetected omissions, Efol, is

given by

E{o} = No . Nc . Pm

where No is the number of occasions an omitted character will be

undetected.

The expectation of the number of undetected additional

characters, Efil, is given by

E{i} = (Ni / Cs) . Nc . Pm

128

where Ni is the number of occasions an additional character..

The total number of possible errors is determined by;

No. possible omissi6ns = Npo = Nc

No. possible alterations = Npa z Nc . Cs-1

No. possible insertions = Npi = (Nc + 1) . Cs

= Nc . Cs + Cs

giving

Max. possible errors = Npe = Npo + Npa + Npi

=2 (Nc . Cs) + Cs

since No. Na. Ni and Npe will vary with the size of the program the

normalised ratio between these is given by the ratio

F= (Na + No + Ni) . Pm
Npe

which is called the Fallibility Index of a program and expresses some

measure of the extent that undetected errors are possible. Since

all errors contain a risk and the risk increases in relation to the

number of errors, the Fallibility Index indicates the scope for

undetected errors and gives some indication to the risk. As the

scope for errors remaining undetected increases so does the

probability that there will be at least one error which has the

characteristics of creating a catastrophe.

4.2.2 Example Programs

The hypothesis above can be demonstrated by analysis of two

simple programs. First, the Pascal-like program used earlier with

line numbers added for clarity of discussion;

I PROGRAM NAME (FILE);
2 VAR XY. XZ; REAL;
3 BEGIN
4 XY: =2;
5 XZ: =3;
6 END.

Although the program header "PROGRAM NAME(FILE): " is required in

some languages it is not included in these calculations since it only

129

adds to the length of the program without constraining it in any way

and FILE is only used by the compiler to signal the input/output

requirements. I

To determine the expectation of undetected altered errors, E{a),

an examination shows that alteration of the keywords PROGRAM, VAR,

REAL, BEGIN and END will be detected by the compiler. Similarly. if

an alteration caused either of the declared variables to have the

same identity the similarity would be detected. If the altered

character caused the variable to have an identity different from

those in lines 4&5, then the error would be detected. There are

only 4 instances where an alteration would remain undetected;

- P(Y=>Z)

- P(2 => 0,1,3.. 9)

- P(Z => Y)

- P(3 => 0.. 2,4.. 9)

from line 4 [alternates =1]

[9]

from line 5[1]

[9]

The number of undetected alternate characters, Na. is 20.

Counting the number of characters (including Newline as a

terminating character but excluding leading Spaces and the program

header as being unnecessary to the calculation) gives Nc = 41. The

permissible character set Cs for the Pascal-like language is 96. So

E(al can be calculated as

E{a} = Na . Nc . Pm
Cs-1

which becomes

E{a} = 8.6 . Pm

To calculate Ejol. the expectation of undetected omissions, the

program is analysed for instances where an omitted character would be

undetected by the compiler. In the example program the only

instance where an omission would be undetected is in the program

header which has been omitted. So

E{o} =0 and No =0

130

The expectation of undetected additions, Eli), requires the

analysis of the program to determine the instances where an

additional character could be inserted and undetected. The integer

assignments could have additional characters before (+, -,., 0.. 91 or

after (., 0.. 9) and be undetected. Since the piýogram header is being

ignored Ni a 46, Eli) can now be calculated as

E{i} = Ni . Nc . Pm
Cs

= 20.5 . Pm

The sum of E(al, E(o) and EW is the expectation of the number

of undetected errors and for the example program

E(No. undetected errorsj = E{u) z E(al + Efol + E{ij

= 29.1 . Pm

No. possible errors = Npe = 2(Nc . Cs) t Cs

= 7968

giving a Fallibility Index of

F= (Na + No + Ni) . Pm
Npe

0.0085 . Pm

As a comparison an equivalent FORTRAN-like program is analysed

in the same way. The program is

XY: 2
XZ=3
END

In the Fortran-like example Nc = 14 and Cs = 48.

There are 6 possibilities for an undetected alteration;

P(X * A.. W, Y, Z) E 25 alternates

P(Y 0 A.. X, Z#O.. g) C 35 1

P(2 => 0.1,3.. g, A.. Z) 35

P(X * A.. W, Y, Z) 25

- PIZ => A.. Y, O.. 9) [35]

- P(3 0 0.. 2.4.. 9, A.. Z) [35 1

131

thus Na = 190 and E{a} becomes

E{a} = Na . Nc . Pm
Cs-1

= 56.6 . Pm

There are 4 possibilities of undetected omissions: X or Y in the

case of XY and X or Z in the case of XZ being omitted individually,

No = 4. So E{o} is given by

E{o} = No . Nc . Pm

=4.14 . Pm = 56 . Pm

Additional characters can be introduced, without being detected

as errors. The notation used to demonstrate these instances uses

the symbol '=>* to indicate "may be perturbed to" and the symbol 'I'

to read "a character or set of characters preceeding a character or

set of characters% In the example program the instances are:

- PIX => A.. ZIX) 26 additions

- P(X => XIA.. Z. O.. 9) C 36 1

- P(y Z> YIA.. Z. O.. 9) [36 1

- P(2 => .. +. -, O.. 9. A.. ZI2) C 39 1

- P(2 => 210.. 9..) c 11 1

- P(x => A.. ZIX) C 26 1

- P(X => XIA.. Z. O.. 9) [36

- P(z --> ZIA.. Z. O.. 9) [36

- P(3 => .. +, -. O.. 9. A.. ZI3) [39 1

- P(3 => 310.. 9..) c 11 1

Thus Ni = 296 and E{i} becomes

Eli) = Ni . Nc. Pm
Cs

= 86.3 . Pm

The expectation of the number of undetected errors is

E{u} = E{a} + E{o} + E{i}

= 198.9 . Pm

132

The number of possible errors, Npe, is given as

Npe = 2(14 , 48) + 48 = 1392

Thus the Fallibility Index is

F= 490 Pm = 0.352 . Pm
1392

If Pm is assumed to be equi-probable for both the Pascal-like
10

language and Fortran-like language then a comparison can be made

between the two trivial programs analysed. In the Pascal-like

program the Fallibility Index was 0.851 whereas in the Fortran-like

program the Fallibility Index was 35.21 suggesting that in the simple

examples the Pascal-like program can be considered to be less

fallible and having a lower risk of error.

The mandatory use of the declaration of variables has at least

one disadvantage; that declarations can be mistaken for other similar

but unique identifiers because of a single character error within the

body of the program. These errors can result from the omission,

insertion or deletion of a single character. Perturbations to the

program resulting from single character errors are an indication of

the scope for undetected errors existing in software which, when in

use, could be in control of potentially hazardous equipment.

A realistic program taken from Jensen and Wirth, [51 p. 38.

written in Pascal. FORTRAN and BASIC will now analyse. To

illustrate the analysis each program has 4 columns; number of

characters on the line, number of undetectable alternate characters

Na. number of undetectable character omissions No and the number of

undetectable character additions Ni.

133

4.2.3 Pascal Version

The program has been compiled using UCSD PASCAL.

Nc Na No Ni
PROGRAM graph2 (output)-,

16 CONST d=0.0625; 45 6 72
6 s=32; 18 2 35
7 hIa34; 18 2 35
7 h2=68 -, 18 2 35

11 c: 6.28318; 54 7 82
8 lim=32; 18 2 35

21 VAR i, j, k, n: INTEGER; 0 0 0
10 x, y: REAL; 0 0 0
24 a: ARRAYEI.. h2l OF CHAR; 10 1 0

6 BEGIN 0 0 0
29 FOR j: zl TO h2 DO aEjl: z' 94 1 153
19 FOR i: =O TO lim DO 17 0 le

6 BEGIN 0 0 0
8 x: =d*i; 45 0 0

23 Y: =EXPI-x) * SIN(c*x); 68 1 is
12 a[hll: =': *; 74 1 128
20 n: =ROUND(s*y) + hl; 68 1 0
11 a[nl: ='*'; 77 0 128
21 IF n(hl THEN k: zhl 47 2 2
11 ELSE k: =n; 13 0 0
30 FOR j: zl TO k DO WRITE(a[jl); 34 0 25

9 WRITELN; 0 0 0
10 a[nl: --' 77 0 0
4 END 0 0 0
5 END. 0 0 0

Nc = 334 Cs = 64 Na = 795 No = 28 Ni = 767

Substituting, the Expectation of an undetected error for this

version is:

E(a) = Na Nc . Pm
CS-1

= 4215 . Pm

E{ol x No Nc . Pm

= 9352 . Pm

E{i) = Ni . Nc . Pm
Cs

= 4003 Pm

Efu) = Val E(a) + Efi)

= 17570 Pm

Npe = 2(Nc Cs) + CS

= 42816

134

giving a Fallibility Index of

F= (Na + No + Ni) . Pm
Npe

1590 . Pm = 0.037 = 3.71
42816

4.2. 4 BAS IC Version

This program has been prepared usin g Microsoft BASIC-80.
.I

Nc Na No Ni
11 10 DIM A$[681 43 0 30
14 20 FOR J=l TO 68 79 2 113
is 30 A$CJI=CHRS(32) 81 2 94

7 40 NEXT J a 1 0
14 50 FOR I=O TO 32 79 2 113
10 60 X=I*. 0625 124 6 229
25 70 Y=EXP(-X)*SIN(6.28318*X) 191 8 336
16 80 AS[34]: CHRS(58) 93 4 63
11 90 NX=32*Y+34 157 6 243
16 100 A$ENXI=CHR$(42) 76 3 94
29 110 IF NX<34 THEN K=34 ELSE K=N1 200 6 369
13 120 FOR J=l TO K 70 0 ill
13 130 PRINT AS[J]; 38 1 98

7 140 NEXT J 0 1 0
6 150 PRINT 0 0 2

16 160 A$CNj1=CHR$(32) 76 3 94
7 170 NEXT 1 0 1 0
4 180 END 0 a 0

Nc = 234 Cs = 68 Na = 1307 No = 46 Ni 1989

E{a} = Na N c. Pm
CS-1

= 4565 . PM

Efo) = No . Nc . Pm

= 10764 . Pm

Eli) = Ni . Nc . Pm
Cs

= 6845 . Pm

Therefore

E(ul = E(a) + E(o)+ EW

= 22174 Pm

Npe = 2(Nc Cs) + Cs

= 31892

giving aF allibility Index of

135

Fz (Na + No + Ni) . Pm
Npe

3342ý. Pm z 0.105
31892

4.2.5 FORTRAN Version

This program has been tested usi ng the Mic rosoft Fortran-80.

Nc Na No Ni
PROGRAM GRAPH2 10

14 LOGICAL M(68) 18 2 0
10 DOIJ=1.68 76 3 92
11 1 M(J)--* , 62 1 156
10 D021=0.32 75 3 89
11 X=I*0.0625 106 6 194
25 Y=EXP(-X)*SIN(6. 28318*X) 165 8 302
10 M(34)=*: ' 71 3 120
10 N=32*Y+34 160 5 216

9 M(N)=**' 62 1 156
16 IF(N. LT. 34)K=34 150 4 216
15 IF(N. GE. 34)K=N 142 3 232
12 WRITE(1,3)M 36 1 0
19 3 FORMAMH . 68Al) 78 5 30
11 2 M(N)--* 62 1 156

4 END 0 0 0

Nc 187 Cs 48 Na = 1263 No = 46 Ni 1959

Eta) = Na Nc . Pm
CS-1

= 5025 . Pm

Efol = No . Nc . Pm

- 8602 . Pm

Efil = Ni . Nc . Pm
CS

= 7632 . Pm

Therefore

E(u) = E(al + Efol + EM

= 21259 Pm

NPe = 2(Nc Cs) + Cs

= 18000

136

giving a FallibilitY Index of

F -- (Na + No + Ni) . Pm
Npe

0.182 = 18.2Z

Although the language Fortran requires the first six characters

of each line of a program to be spaces, continuation markers or

labels, the analysis has only consildered the effect of an erroneous

label because any additional labels will not introduce an error and

also any label which is not numeric will be rejected by the compiler.

4.2.6 Discussion

An increase in the number of characters to write a program

causes a corresponding improvement in the Fallibility Index (Figure

4.2.6.1 and Graph 1). One possible reason for such an improvement

is the increase in characters causing an increase in the useful

redundancy.

Figure 4.2.6.1.

Language Nc FZ

Fortran 187 18.2
Basic 234 10.5
Pascal 334 3.7

The analysis of programs is tedious and time-consuming and can

be eased if automatic analysis techniques are used to analyse

programming languages that have a publicly available syntax.

As part of the research a suite of programs was developed to

analyse programs. Since the algorithm. used perturbed each character

position in the program with each character from the allowable

character set for each class of error the computer time needed was

considerable. The analysis was performed using a DEC VAX 11/750

computer with programs written in the language Pascal and C supported

by the YACC and LEX tools of UNIX. An analysis typically took 30

minutes of computer time to execute. Refinement of the algorithm

used would, no doubt, cause the analysis to be executed with less

137

computer time but the current algorithm has established the principle

that the analysis can be automated.

10

138

4.3 The Need to Declare Variable and Constant Names

High-level programming languages, like FORTRAN and BASIC, do not

require the declaration of variabie and constant names at the

beginning of a program. With the introduction of the so-called

structured languages, like ALGOL and PASCAL, which require variable

names to be declared there has been some discussion on the need for

declaring variables and constants, how many characters should be used

in a name and also how representative such names should be.

Chapter 4.2 considered the influence that variables have on the

resulting Fallibility Index. It is hypothesised that the

declaration of variables based on the uniqueness of a name gives the

variable security from misinterpretation and the number of instances

of names is large before unique names contribute to the

misunderstanding of the objects.

4.3.1 Variables in Declarative Languages

If no range checks are in force and no account is taken of

omissions or additions in the symbol the probability of an error in

the variable Pwv is

Pwv =I. m. Pm . Nd
N

where I is the number of instances

m is the number of characters forming the variable

Nd is the number of permissible positions

N is the size of the permissible character set

To calculate the probability of an error in the symbol consider

the occasion where the symbol is wrong (Ps) and the occasion when the

symbol is correct but the value is wrong (I-Ps), giving the

probability of using the wrong variable, Pwrong, as

Pwrong = I. Ps + Ps + (i-Ps). m. Pm. Nd + ps(I-ps). m. Pm. Nd
NT

139

putting the expression in terms of Ps. it becomes

2Ps. m. Pm. Nd a I+l - m. Pm. Nd + m. Pm. Nd

Ps -- N. 1+1
2 Nd. Pm. m

which suggests that declarations in the local context increase the

redundancy, yet in practice highly secure programs are not infinitely

10
large.

4.3.2 Constants in Declarative Languages

Constant declarations are generally of the form

C C -- D D
In1m

for numbers only the probability of using the wrong value Pwrong is

given as

Pwrong I. Pd

for numbers and declarations, Pwrong I. Ps + Ps + Pd

which optimises when

I. Pd > I. Ps + Ps + Pd

and Ps < Pd (1-1) - Pd

n
where Ps = S-1 / (Nc-1) . Pm . Nc

N

S No. Symbols

Nc character set

m no. of digits

I no. of instances

n no. of character

positions

and Pd =m. Pm . Nd
N

In terms of the number of instances, 1, the equation becomes
n

(S-1 / (Nc-1) Pm . Nc = m. Pm. Nd . I-1
F7 1+1

140

n
which reduces to (S-1 . NO (Nc-1) m. Nd. 1-1

I+l
n

substituting A for Nc / (Nc-1) and B for m. Nd the expression

becomes

(S-1). A B 1-1
1+1

10
1. (S-1). A + (S-II. A B. I

I. ((S-1). A-B) -(S-1). A-B

-(S-1 + B/Al
(S-1 - B/A)

So if Nc = 26 , Nd z 10 and m, n 8

n8
A= Nc / (Nc-1) 26 8 M. 10 B/A = (m. 10.25

258 26

when is I>2

((S-1) + (B/A))
(B/A - (S-1))

giving B
A

2C - 2S -2=C+S-1

C-I= 3S

So the number of symbols at which the declaration of constants

reduces the useful redundancy is given by

S= (C-1)
3

n
Substituting for Cm- Nd (Nc

S Ný-

The expression above demonstrates that the number of symbols is a

controlling influence in the use of declarations.

4.3.3 Errors in Variable and Constant Names

Declaring variable names protects the program from randomly

distributed errors in the naming of variables and constants, with the

resulting misinterpretation of the object being referenced.

141

The stream of characters forming the variable or constant is

regarded as a message having

a) an equal probabilitylof error in each character

position, p, and

b) the errors in the character positions are independent.

Since typing errors can be introduced in the preparation of the

program, conditions a) and b) above apply.

The probability of no errors in n-positions is given by

n
(1 - p)

and the probability of a single error in the n-positions is given by

n-1
np(I - p)

The probability of k errors is given by the k-th term in the binomial

expansion:

nn n-I
P) + PI (I - P) + np(l - p)

2 n-2 n
pn(n - I)p (I - p) p

2

so the probability of exactly two errors, Pe2, is

2 n-2
Pe2 = n(n - 1)p (i - p)

2

4.3.4 Error-Protection of Variable and Constant Names

Hamming, [41, defined the concept of the 'Hamming distance* of a

message as being 'the number of digit positions by which two states

differ from each other'.

Hamming, [41, considers a message string of O's and 1's as a

point-in a vector space of n-dimension where each digit is a value

giving a co-ordinate in the space. Each vertex is a string of n O's
n

and n I's. The space will therefore consist of 2 vertices.

Since each vertex is a received message a single error moves the

142

message pointer along one edge of the space to an adjacent point.

Hamming speculates that if every originating message was required to

be a 'distance' of at least two edges away from any other message

then any single error will move the message pointer along only one

edge and thus indicate that the received message is illegal.

Assuming independent errors a minimum 'distance' of one
11

character in the name makes the name unique. Whilst a name with a

minimum 'distance' of two allows single errors to be detected.

The use of 'Hamming Distance' in variable and constant names

suggests that each name varies from each other name by at least two

characters then a single error would be detectable by the compiler

when the name is referenced and would not transfer the context to

another similar name.

The use of two-character names does not provide a sufficiently

rich choice of names. Whereas, names of greater than two characters

provide a rich choice of names and gives protection against single

character errors.

From the argument presented the hypothesis is that variables and

constants should be declared. However, when the number of symbols

is extremely large the gross choice will add to the programmer's

misunderstanding of the program. Since such a number of symbols is

large it is concluded that the names of variables and constants

should always be declared.

A controlling influence in the declaration of variables is the

number of symbols used to declare the identifier. Recognisable

identifiers can normally be constructed using the 26 letters of the

English alphabet and the numerals O. A. When each identifier

consists of upto eight characters, then the number of non-repetitive

permutations is P(36,8), which yields a large number of choices for

the programmer so uniqueness is assured.

143

Since most languages allow the use of letters and numerals, each

identifier in a program can vary from each other identifier by at

least two characters and be protected against the effects of single

typographical errors.

Shneiderman, [111, found that a typical typing error-rate

amounted to 6.175Z, or about 1 error in every 16 characters typed,

suggesting that there is a 0.5 probability of an error in character

streams of 16 characters or more, on initial input of the program.

It follows that to limit the probability for error in a name, each

name should be no longer than 15 characters and no less than two; the

median value being eight characters which restricts the incidence of

typing errors, provides a rich choice of uniqueness in the name

whilst giving scope for a 'distance' of two.

4.3.5 An Experiment on the Use of Mnemonics

As part of the research for this thesis an experiment was

conducted to examine the hypothesis that;

*In recognising the significance of a variable name the

probability of an error is lower when the number of characters used

to represent the name is at least two and less than 16".

The experiment was conducted at the 1983 Open University Summer

Schools at the Universities of Warwick, Bath and York with 119

students taking part distributed as 23.63 and 33 respectively. The

participating students were volunteers mainly from the Technology

Foundation Courses, though some volunteers came from a Second Level

Technology Course. The experiment used a Superbrain OD

microcomputer running a database package, dBase II.

The experiment required each volunteer to suggest eight

mnemonics in response to eight descriptive texts presented on the

computer screen seperately. After the eight mnemonics had been

input by the volunteer, the volunteer was asked to repeat the

144

mnemonics for the same eight descriptions which were presented in a

different order. Finally, the eight mnemonics suggested originally

by the volunteer were displayed sýperately to the volunteer who was

asked to provide a description. A record was kept of each

volunteer's name, venue, date, original mnemonic, second mnemonic and

the description provided by the volunteer.

To maintain independence of results the volunteers were only

permitted to ask questions regarding the purpose of the experiment

and were not told their accuracy.

A correct answer was one where the description supplied by the

volunteer conveyed the same information as the description supplied

by the experimenter. Each volunteer took approximately 12 minutes

to participate in the experiment.

The descriptive texts supplied to the volunteer were;

TIME OF DAY

LIQUID FLOW IN LITRES/MINUTE

WEIGHT OF PRODUCT IN TONNES

VALVE 8 POSITION

PERCENTAGE OF SULPHUR DIOXIDE IN THE ATMOSPHERE

AMBIENT TEMPERATURE

DISTANCE FROM THE VALVE CONTROLLER TO THE VALVE IN METRES

MOTOR SPEED IN R. P. M.

The database program is listed in Appendix 1 and the analysis is

in Graph 2 and Table 2.

Table 2 contains the analysis of correct answers, incorrect

answers and all answers by mnemonic length and mnemonic number with

the frequency of the type of answer. The responses to the

experiment were analysed and it was found that 701 of all answers

were correct.

From the analysis the conclusion is that:

145

mnemonics of one character in length are prone to

misinterpretation. All single character mnemonics were

I found to be incorrectly interpretted.

2. The mean character length for correct mnemonic usage was 7.88

characters with a standard deviation of 3.83.

3. The probability of a correct interpretation of a variable was
10

found to be greatest when seven characters were used, with a

probability of 0.125. The probability of a correct

interpretation fell significantly when more than seven

characters were used. The probability of a correct

interpretation of less than 0.01 was found for variables of

15 characters or more.

It is concluded that the hypothesis was proved with one

observation; that the ordering of the construction of the mnemonic

may place a context on it. The context of a mnemonic may not be

apparent to everyone using it and an experiment could be conducted to

examine the optimum construction of mnemonics in order to reduce the

risk of misinterpretation. So that the context could be

recognisable to all users, a system of significant character

positions could be used.

146

4.4 A Measure of Syntactic Structure and Error-Proneness
for Application Programs

In an optimally encoded program there will be no information
I

beyond that necessary to encode the program but in all computer

programs there is additional information. The additional

information is redundant to the main body of the program but serves

to establish the programs context. ' The redundant information is

called useful redundancy. Decision Content, Information Content and

Redundancy are all properties of Information which have been explored

in the context of error detection in computer programs. The method

of calculating these properties is discussed and simple examples

given. Example programs are analysed to illustrate the usefulness

of Information Theory as an indicator of the amount of information

required to declare a program.

Information Theory has its origin in the work of C. E. Shannon,

[91, who published a paper in the Bell Systems Technical Journal

concerning the communication of information through symbols.

Information Theory can be used to indicate the amount of useful

redundancy but from a safety aspect the concern is with the inverse

of redundancy called Error-Proneness.

4.4.1 Halstead's Software Science Metrics
and McCabe's Cyclomatic Number

Halstead's work on Software Science, [31, put the emphasis on

quantitative measures of programs using a count of the number of

operators and operands in the program.

Halstead's work presents a set of metrics which are derived from

a basic set of measures. These measures are

n number of unique operators
1

n number of unique operands
2

N= total occurrences of operators
1

N= total occurrences of operands
2

141

Halstead's Vocabulary metric is given as

nn"n
12

and the Length metric by

N=N+N
12

which is intuitively apparent.
.4

The Volume metric uses the Vocabulary and the Length metrics

to estimate the size of a program and uses bits as its dimension

assuming a uniform binary encoding. The metric is given as

Volume, V= (N +N)Log (n +nN Log n
1212

The Volume will vary with the amount of coding required for the

program but does not take any account of the frequency of occurrence

of individual operators or operands.

The estimated length of the program is given as

n Log n+n Log n
112

The results of Halstead's work has found criticism, [101, principally

because of the empirical foundation of the work. One problem with

the work is that Halstead's measure of length remains constant

regardless of the number of times individual operators or operands

are used. Halstead's 'length' refers to the number of symbols being

used and is not a measure of linear expansion.

McCabe, (71, suggested a measure of complexity based on Euler's

formula for planar graphs given as

V(G) = edges(e) - nodes(n) * no. of connected components(p)

McCabe suggested that each node was a branch point in a program and

the edges were the lines of flow between branches. McCabe stated

that in a strongly connected graph of a program control network the

value of p will be 2 and so reducing the equation to

V(G) =e-n+2

148

The measure can be considered as a count of the number of branch

points plus one. McCabe reduces the vocabulary of the program to

branch points (nodes) and terminals with linear code sequences

forming links (edges) between each node. The method corresponds to

a measure of the number of choices presented at each branch point.

Each branch point being represented by Log 2 bits and one terminator
10

represented by Log 2 bits. McCabe's Complexity can be represented

by nLog 2+Iz n+1 bits, where n is the number of branch points.

There is similarity between Halstead and McCabe in the way that

a programs' complexity is regarded as a number of mental

discriminations and represented by sums involving the expression

nLog 2.

4.4.2 Information Theory

Information Theory measures information relating to the number

of symbols in a message and the richness of choice of those symbols.

In programs the amount of coding required depends on the problem, the

programmer and the language used.

The symbols of a program are syntactic elements and the richness

of choice depends on the syntax of the language being used, the

constraints placed on the programmer through organisational

standards. style or inexperience and the context in which the symbols

are to be used within the program. Although McCabe, [71, and

Halstead, [3]. did not explicitly invoke Information Theory their

results have a form similar to results involving Information Theory.

However, McCabes work whilst well founded refers only to control

structures. Halstead's work, based on empirical measures, neglects a

number of features of programs and has been criticised for this by

Shen and colleagues, [10].

Decision Content of a message, is defined in E23, also called

the Maximum Information, H, is a logarithmic measure of the total

149

vocabulary from which a statement is chosen, assuming each event has

an equal probability of being chosen.

Information Content of a message, defined in [2]. given by I. is

a logarithmic measure of the actual amount of coding required to

represent the choice. Since the syntax of the language restricts

the choice of symbols in certain character positions, there are two
10

different measures.

Once the Decision Content and Information Content have been

calculated it is possible to determine the Relative Redundancy.

Relative Redundancy is the measure of the amount of information

available but not required to represent the program. Relative

Redundancy, r, is given by

r (H - I) IH

and converted to a percentage.

4.4.3 Calculation of Plexus and Error-Proneness

When an object, whether it is a program, a calculation or

whatever, is considered to be "complex* some assessment is made of

what is commonly termed "complexity". In order to assess complexity

account needs to be taken of two factors; the syntactic content and

the semantic content, which combine in some way to give an individual

view of complexity based on the individual's knowledge. If the

object is a computer program then the syntactic content is a function

of the language syntax whilst the semantic content is some function

of the 'meaning' or function of the program. Though there are many

expressions for software complexity none consider the semantics of

the program and cannot, therefore, justifiably be called measures of

complexity.

For any measure to be useful it must be finite and not

subjective. Since the measures of complexity use only the syntactic

element of an individual's view of complexity then these measures are

150

subjective judgements. Information Theory can be used to measure

the syntactic features of a program but cannot assess the semantic

content. In order to express a ýeasurement of the syntactic element

some term is needed, other than complexity.

When developing a program the syntactic choice available to the

programmer can be considered as being a multi-nodal network with each
10

node representing a choice. The network of nerves in the human body

is greater than the network being discussed here for software, but

the function of such a neural network is described by the term

0 plexus'. A network such as the McCullock-Pitts neural network,

where the primitive units are called neurons, was the network

structure Von Neumann used to demonstrate that reliable machines can

be built from unreliable components, [131.

The term 'Plexus' has been used in this thesis to refer to a

measure of the syntactic choice being made from a network of choices

to express a program.

A program written in a high-level language is constructed of two

parts; the declarative part and the procedural part. The procedural

part is influenced in its richness of choice by the syntax of the

language. The declarative part of a program further restrains the

vocabulary in addition to that. already existing in the syntax. Both

Halstead and McCabe excluded the declarative part from their

calculations. Any measure of the syntactic structure of the program

is influenced by the declarations. In the research for this thesis

it was concluded that where declarations exist they should be

included in the calculations concerned with choice.

The syntax of a simple language in the form of a BNF forma! lism

is shown in Figure 4.4.3.1.

151

Figure 4.4.3.1 BNF Syntax for the Example Language

(program> PROGRAM <declare>
BEGIN <body>
END

<declare> <declare statement> I <declare> <declare statement>

<declare statement> :: = VAR: (variable>

<variable> :: = <letter>
d

<letter> :: = A.. Z

(body> :: = <procedure> <body> <procedure)

(procedure> :: = (print> <assign> I <add>

<print> :: = PRINT: <variable> ;

<add> :: = <variable> := Oariable> + <variable>

(assign> (variable> <integer> ;

<integer> knumeral> <numeral> <numeral>

<numeral> O. A

The diagrammatic style of presentation of a syntax was modified

by Jensen & Wirth, [51, in the syntax description of the language

Pascal. The procedure part of the BNF syntax can be drawn as a

syntax diagram and expanded, after [51, as shown in Figure 4.4.3.2.

Figure 4.4.3.2 Syntax Diagram for the Example Language

PRINT: - variable

variable - variable +- variable

variable - integer

The amount of choice available in the selection of a message

from a restricted range of allowable variables is 26, (a.. z), giving

a set of symbols of 26. Integers are selected from a range of 0 to

the maximum integer permissible for the implementation (MAXINT).

Taking these restrictions into account the syntax diagram in Figure

4.4.3.2 can be mapped onto Figure 4.4.3.3 to reflect the range of

choice available.

152

Figure 4.4.3.3 Revised Syntax Diagram for the Example Language

var 26
PRINT: -[

var 1

- var var 26
var 1: =

var var I

var 26 var 26

var 26: = -1
var var

int.
var 1:

0

int.
var 26: -E*o

-
Measures based on the diagram, Figure 4.4.3.3, reflect

properties of the language and not a particular program as there is

nothing in the diagram to illustrate the structure of a particular

program.

A particular instance of a program represents an ordered

selection of items from the syntax diagram. An example of such a

program (Program 1) written in the language is

PROGRAM
VAR: x;
VAR: y;
BEGIN

x: =2;
Y: =95;
X: zx+y;
PRINT: x;

END

If the syntax diagram of Figure 4.4.3.3 is redrawn to reflect

only the syntactic items used in the sample program, the syntax

reduces to the diagram shown in Figure 4.4.3.4.

153

Figure 4.4.3.4 Syntactic Items of Sample Program

II PRINT: -

-2

y: = - 95

-x-+-y

END

The declarations are considereb in a similar way with a seperate

syntax diagram being required. In the language being used the

options available within the syntax for declarations can be

represented diagrammatically, Figure 4.4.3.5.

Figure 4.4.3.5 Syntax Diagram of the Declarations

a

PROGRAM -- VAR: BEGIN

z

Keywords are syntactic necessities to the language and because

of their certainty can be considered to have a probability of

occurrence of one. Whilst keywords contribute to the Decision

Content and Relative Redundancy they contribute nothing to the

Plexus. Therefore when the diagram is redrawn to take account of

the declarations used in the program it becomes that shown in Figure

4.4.3.6.

Figure 4.4.3.6 Revised Syntax Diagram of the Declarations

VAR: x;

VAR: y

4.4.4 Method

Program 1 can be regarded as a message transmitted as a stream

of symbols to the compiler (or to a person reading it), where a

symbol is one or more characters in a defined syntactic group.

There is a probability of occurrence associated with each individual

154

symbol and each symbol pair. Each symbol is assigned an information

value according to the choice available and the constraints of the

syntax. The method used concerns the syntactic structure and takes

no account of the intended computation of the program, that is to say

its semantic context.

once a statement type is encountered in the message there are

only three possibilities within the syntax of Figure 4.4.3.2; PRINT,

assignment or addition. The positioning of the character P

immediately identifies that a PRINT statement is to occur and the

characters 'RINT' add no more information. Therefore the group of

characters 'PRINT' can be treated as a single symbol. Similar to

the keyword PRINT, the pair of characters ': =' and the group of

characters forming the ordered set ': = are considered to be

single symbols forming a set of three statement types. From an

information viewpoint Plexus represents the choice available.

The numbers 2 and 95 might be viewed as three numerals and a

probability of 1/3 could be equally assigned to the numerals 2,9 and

5 suggesting that 2 has a probability of 1/3 and that 95 has a

probability of 1/3 * 1/3. The syntax diagram of Figure 4.4.4.1 is

implied and allows for numbers other than 2 and 95. The choice is

wider than the program allows.

Another view is that if 2 is chosen there are no further options

and if 9 is chosen the only option is S. Since there are only two

options the probability of occurrence that can be assigned to the

value 2 and 95 is 1/2., Figure 4.4.4.2.

I

155

Figure 4.4.4.1 A Method of Assigning a Probability
of Occurrence to Three Numbers

S

5.

2

9

5

Figure 4.4.4.2 Another Method of Assigning a Probability
of Occurrence to Three Numbers

---E-9 , --5: 1-
There are many ways of viewing how the numbers can be

represented and also any collection of syntactic elements. The

selection is dependant on the view of what constitutes a syntactic

entity. Ultimately the selection is a subjective judgement.

However the syntax descriptions of languages are based on the

designers views of syntactic entities and these form a basis for

analysis.

In Program I the PROGRAM statement has a probability of one.

PROGRAM is followed by the declarative part of the program. In the

declarative part the choice exists between a VAR declaration of a

variable and a BEGIN statement which punctuates the recursive

declarations and signals the start of the procedural part. In the

language only single letter variables. in the range a.. z, are

allowed. Therefore as each variable is declared the remaining

choice is reduced by one.

From the program the following probability of each symbol being

used on a line can be determined:

for declarations

P(VAR:) z 1/2

156

P(BEGIN) z 1/2

P(x) = 1/26

P(Y), = 1/25

for statements, assuming all statements are equally probable

P(PRINT) = P(assignment) = P(addition) = 1/3

for variables
10

P(x) = 6/9 P(Y) = 3/9

for values

P(2) = P(95) = 1/2

The probable occurrence of each line of the program is given by

P(PROGRAM) =1

P(VAR: x) = 1/2 * 1/26

P(VAR: y) = 1/2 * 1/25

P(BEGIN) = 1/2

P(x: =2) = 1/4 * 4/6 * 1/2

P(Y: =95) 2 1/4 * 3/6 * 1/2

P(X: 2x+y) z 1/4 * 4/6 * 4/6 * 2/6

P(PRINT: x) = 1/4 * 4/6

P(END) = 1/4

Since PROGRAM has a probability of unity it conveys no

information and is omitted from the calculations. Each line of code

has an Information Content expressed by the term

Log P
i

assuming equal probabilities of occurrence of each statement type.

Since the program is influenced by the number of changes that can be

made a measure is required of the number of possibilities for change

to be made to the program. If there was only one way to declare a

program then the number of possible changes would be low but as the

number of alternatives increases so does the number of possible

changes. Therefore, the number of different ways that a program can

157

be declared must be reflected in some measure. Information Content

measures a program's potential perturbations and in this context the

principals of Information Content are regarded as the measure of

Plexus. Plexus is given by P, so

for VAR: x; P= Log 2 + Log 26

for VAR: y; p= Log 2 + Ldg 25

for BEGIN P= Log 2

for x:: 2; p= Log 4 + Log (6/4) + Log 2

for Y: =95; p= Log 4 + Log (G/2) + Log 2

for X: zx+y; P = Log 4 + 2Log (6/4) + Log (6/2)

for PRINT: x; p= Log 4 + Log (6/4)

for END P= Log 4

The Plexus of Program I is given by the sum of the individual

expressions as

P= 5Log 2+ 5Log 4+ Log 26 + Log 25

+ 4LOg (6/4) + 2Log (6/2)

= 29.8 bits

Decision Content, from 4.4.2, is given by

H= NLog Cs

= 53Log 40

= 282.1 bits

where N -- no. of characters required to express the procedure

part

Cs = the size of the available character set

giving a Relative Redundancy for the whole program of

r= 89.4Z.

The amount of information contained in the program and which is

not required for optimal encoding is given as the Relative

Redundancy. The scope that exists within the program for errors to

be introduced is given as the Error-proneness, E. and is the inverse

158

of relative redundancy.

the probability that the

E

Applying Halstead's

Program 1 the following

n3n=4
2

The lower the error-proneness, the lower

program can be perturbed without detection.

1001 -r

10.6Z

Estimatý*d Length and Volume metrics to

measures are arrived at

N5N=8
2

V= 36.49 bits

N4 a 12.75

As another example. the program can be linearly expanded to give

Program 2

PROGRAM
VAR: x;
VAR: y-,
BEGIN

x: =2;
y: =95*,
X: zx+y;
X: zx*y;
PRINT: x

END

using the method discussed above the values for Program 2 become

H= 313.3 bits

P= 34.54 bits

r 88.98Z

E 11.02Z

Halstead's measures for Program 2 are

n3n=4N=7N= 11
212

so the Volume is

and the Estimated Length

50.58

0= 12.75

Linear expansion of Program I and Program 2 has been included in

iss

I Appendix 2 along with comparison measures of Length, Volume. Decision

Content, Plexus and Error-proneness. The measures have been plotted

graphically and these are containeý in Graph 3 to Graph 5.

In the method described the recursive declarations are

punctuated by a BEGIN. The declarative part comprises two elements;

the declaration statement and the variable used. The Plexus of the

declarative part includes the number of permissible declaration

statements from which a choice is made Nsd, the number of

declarations used, D, plus the BEGIN statement and the amount of

choice represented by each variable declared.

Assuming equiprobable choice, the Plexus of the declaration

statements is the product of the number of statements used, D, and

the Plexus of each statement, Log Nsd. The Plexus of the variables

declared is the sum of the Plexus of a reducing set of available and

undeclared variables, Vs - i.

The Plexus of the statements and the variables is summed to give

the expression

(b- I)
D. Log Nsd +fb Log (Vs-i)

i=O

where D= number of declarative statements used (including BEGIN)

Nsd = number of choices of declarative statements

Vs = number of possible variables

b= number of variables declared

The procedure part comprises control statements, variables and

values. The Plexus of the procedural part takes account of the

number of lines of control statements and the number of permissible

control statements from which a choice is made. The frequency of

occurrence of variables and values is summed giving the expression

bd
Sc. Log Nsc +E Fvi Log (Nv/Fvi) +4 Fdi Log (Nd/Fdi)

i=l 1=1

160

where Sc = number of control statements used (lines of code)

Nsc = number of types of control statements

Fvi = number of occurrences of variable (i) within the
procedure part

Nv = number of occurrences of all variables in the procedure
part

Fdi = number of occurrences of value i within the procedure part

Nd = number of occurrences of all values in the procedure part

d= number of values

The Plexus of the whole program can be considered as being the

sum of the plexus of the declarative part and the procedural part,

given as

(b-1)b
P=D. Log Nsd +jb Log (Vs-i) + Sc. Log Nsc +f Fvi Log (Nv/Fvi)

imo iml

d
Fdi Log (Nd/Fdi)

izl

Conventional programming languages, unlike the example language

used so far, include relational operators and allow the use of

external routines called procedures and functions. Procedures and

functions are one type of external call which are implicitly declared

and handled in the same way as any other declaration, that is to say

by considering their frequency of occurrence.

Considering the frequency of external calls, pc, and relational

operators, op, in the same way as values adds the term

pq
Fpci Log (Np/Fpci) + J'Fopi Log (Nap/Fopi)

i=l i=l

where Fpc = number of occurrences of external calls (i) within the
procedure part

Np = number of all external calls in the procedure part

Fop = number of occurrences of relational operator (i) in
the procedure part

Nap = number of all relational operators used

161

number of individual external calls

q= number of individual relational operators

The expression for the Plexus'of the whole program is the sum of

each of the terms combines to give the expression

(b-1)b
P=D. Log Nsd +rb Log (Vs-i) + SC. Log Nsc +r Fvi Log (Nv/Fvi)

i=O icl

dpq
Fdi Log (Nd/Fdi) +I Fpci Log (NP/Fpci) +f Fopi Log (Nop/Fopi)

i=1 i--l icl

The term for variables, values, external calls and relational

operators is the same so the expression can be simplified to

(b-1)
PaD. Log Nsd +b Log (Vs-i) + Sc. Log Nsc

i=O

mn
I Fi. j Log (Ni/Fvi, j)

i=l j=l

where i= symbol type: variable, digit, procedure and relational
operator

j= symbol

i. j = symbol (j) of type (i)

By using the above equation on sample programs written in trivial

languages the method can be examined further.

Language 1.

The first simple program has been written in a Pascal-like

language;

PROCEDURE product (x: REAL, y: REAL)
VAR i: INTEGER;
BEGIN

FOR i=I TO 5 DO
BEGIN

x: =x*y;
END

END.

Various measures can be calculated using the expressions

developed. Figures for Decision Content, Plexus, Relative

Redundancy and Error-proneness for the whole program are;

162

H= 8BLog 64 = 528
t

p= 41.8
t

r=0.934 92.1Z
t

E=7.9Z
t

The actual calculations are giver7 in Table 3.

Language 2.

The second program is written in a FORTRAN-like language.

SUBROUTINE (X, Y)
DO 20 1a1,5
20 X=X*Y
RETURN

and for the whole program the measures are

H= 43Log 64 = 258
t

p= 38.0
t

r=0.853 = 85.3Z
t

E= 14.7X
t

These trivial examples show that whilst Language I has a Plexus

of 41.8 and an Error-Proneness of 7.9Z, Language 2 has a Plexus of

38.0 and an Error-Proneness of 14.71. These measures are absolute

for each language and comparisons are not easily made between

languages.

Having seen the method applied to simple programs written in

trivial languages the method can be applied to non-trivial languages,

like Pascal, Basic and Fortran, using example programs.

163

4.4.6 Example Programs

Pascal Version

I The program has been compiled using UCSD PASCAL. The program

and syntax rules have been taken from Jensen & Wirth, [5].

PROGRAM graph2 (output);
CONST d=0.0625;

s=32;
hl=34;
h2=GB-,

czG. 28318;
lim=32;

VAR i, j, k, n: INTEGER;
x, y: REAL;
a: ARRAY[l.. h2l OF CHAR;

BEGIN
FOR j: =l TO h2 DO a[jl: z'
FOR i: =O TO lim DO
BEGIN

x: zd*i;
Y: =EXP(-x) * SIN(c*x);
a[hll: =': ';
n: =ROUND(s*y) + hl;
aCnl: --'*';
IF n< hl THEN k: chl

ELSE k: zn;
FOR j: zl TO k DO WRITE(a[jl);
WRITELN;
a[nl: ='

END
END.

Using the expression developed and the data contained in Table 3 the

Plexus for the wh. ole program is calculated as

H= 312Log 96 = 2054.5
t

P= 483.0
t

r=0.769 z 76.5Z
t

E=0.235 = 23.5Z
t

If the measures are to be used for comparison with similar

programs written in languages not requiring declarations, then the

calculations should omit the declaration part. The figures for the

program become

H= l6lLog 96 = 1060.2
t

p= 248.2
t

164

r=0.766 = 76.6Z
t

E=0.234 = 23.4Z
t

BASIC Version

A program written as a BASIC equivalent of the Pascal program

used, using Microsoft BASIC-80, could be

10 DIM AS[G83
20 FOR J=1 TO G8
30 A$[J]=CHRS(32)
40 NEXT J
50 FOR I=O TO 32
60 X=I*. 0625
70 Y=EXP(-X)*SIN(6.28318*X)
80 A$[34]=CHRS(58)
90 NZ=32*Y+34

100 A$ENXI: CHR$(42)
110 IF NZ<34 THEN K=34 ELSE K=NZ
120 FOR J=l TO K
130 PRINT ASCJI;
140 NEXT J
150 PRINT
160 A$ENXI: CHR$(32)
170 NEXT I
180 END

for the whole program

H= 21SLog 68 = 1314.9
t

p= 283.7
t

r=0.784 = 78.41
t

E=0.216 = 21.6Z
t

If the declaration part is not included in the calculations the

figures become

H= 20BLog 68 = 1254.0
t

p= 248.9
t

r=0.802 = 80.21
t

Ez0.198 = 19.8Z
t

165

FORTRAN Version

The following program is a FORTRAN version of the Pascal program

and has been prepared using Microsoft FORTRAN-80.

PROGRAM GRAPH2
LOGICAL M168)
D01J=1.68

I M(J)X' I
D021=0.32
X=I*0.0625
Y=EXP(-X)*SIN(6.28318*X)
M(34)=*: '
N=32*Y+34
M(N)=**'
IF(N. LT. 34)K=34
IF(N. GE. 34)K=N
WRITE(1,3)M

3 FORMAMH 68Al)
2 M(N)='

END

for the whole program

H= l8lLog 68 = 1101.8
t

P= 304.1
t

r=0.724 = 72.4%
t

E=0.276 = 27.6Z
t

and omitting the declarations

H= 15BLog 68 = 949.6
t

P= 269.3
t

r=0.716 = 71.6Z
t

E=0.284 = 28.4%
t

It was stated earlier that the metric, Plexus, cannot be used to

compare programs written in different languages unless a measurement

is available to take account of the richness of vocabulary within the

languages. However, a meaningful comparison can be made if the

declarative part is omitted from the Plexus equation.

iss

4.4.7 System Plexus

Having addressed the problem of measuring the Plexus of single

programs the expression for the Plexus of two or more programs

coupled together in some way, whose individual Plexus is known, can

be addressed. Assuming that eacb module will be activated through

some kind of operating system, then any communication between the

modules is equally probable. Therefore the effects of uni-

directional communications between modules is ignored.

As an example of how the Plexus of two modules can be combined

to give the System Plexus, take two modules, A and B, whose Plexus is

known.

The combining rule for two measures of information relating to

two equally probable entities m and n, is

- Log (m + n)

and the combined value for A and 8 is

- Log (A + 8)

however. A and B are logarithmic values so the expression for System

Plexus, Ps, becomes
8A

Ps Log (2 +2

A-B
B- Log (I +2

As an approximation the Log series is expanded to

23
In (I + x) =x-x+x

T7
for logarithms of base 2 the expression is

Log (1 +x) zln(l+x)
ln 2

A-B
2
In 2

167

sustituting, an aproximation is
A-B

System Plexus, Ps B-2
ln 2

Assuming module A has a Plexus of and module B has a Plexus of

3. then the actual value of the System Plexus, Ps, is

BA
Ps Log (2 +23.32

and as an approximation, ^Ps, is

-2
"Ps 3-23.36

ln 2

Combining th'ree modules A. 8 and C whose Plexus figures are

individually given as 1,3 and 5 respectively, then the System

Plexus, Ps, is

cBA
Ps Log (2 +2+2

Log (35)

5.13

The general rule for combining two or more modules into a system

when the individual Plexus is known can be expressed as;

np
Ps = Log 12

P=j

where Ps is the System Plexus

p is the individual module Plexus

n is the number of modules being combined.

4.4.8 Discussion

The concern in this section of Chapter 4 has been the amount of

information required to prepare a program and developing a method of

measuring syntactic complexity, called Plexus. If the Plexus for

each of the example programs is compared, omitting declarations to

allow comparison, with the Fallibility Index from Chapter 4.2 and the

number of characters in the program, it can be shown that as the

number of characters increases so the Plexus and Fallibility Index

168

decreases, Figure 4.4.6.1. A comparison of the values derived from

the proposed metric, Plexus, and those of Halstead for the same
I

programs is contained in the Graphs 6 to 9.

Figure 4.4.6.1 Comparison of Fallibility Index and Plexus

Language Nc Fallibility Plexus
Index (1)

FORTRAN 187 18.5 304.1

(omitting the declarations)

174 19.4 269.3

BASIC 234 10.5 283.7

(omitting the declarations)

197 12.2 248.9

PASCAL 334 3.7 483.0

(omitting the declarations)

233 3.7 248.2

169

4.5 References

[11 Boehm, B. W., Software and Its Impact: A Quantitative Assessment,
Datamation, May, 1973

[21 B. S. I., Glossary of Terms in Data Processing, BS3527, Part 16

[31 Halstead, M., Elements of Software Science, North-Holland, 1977

[41 Hamming, R., Coding and Information Theory, Prentice Hall, 1980

[51 Jensen. K.. & Wirth, N., Pascal: User Manual and Report,
Springer-Verlag, 1979

[61 Kopetz. H.. Software Reliability, MacMillan Computer Science
Series, 1979

[71 McCabe, T. J., A Complexity Measure, IEEE Transactions on Software
Engineering, Volume SE-2 Number 4, December, 1976,
pp. 308 - 320

E81 Peters, LA., Software Design: Methods & Techniques, Yourdon
Press. 1981

[91 Shannon, C. E., A Mathematical Theory of Communication, Bell
System Technical Journal, 1948

[101 Shen, -V. Y., Conte, S. D. & Dunsmore, H. E., Software Science
Revisited: A Critical Analysis of the Theory and Its
Empirical Support, IEEE Transactions on Software
Engineering, Volume SE-9, Number 2, March 1983, pp. 155-165

[111 Shneiderman, Software Psychology, Winthrop, 1980

[121 Sommerville, I., Software Engineering, Wiley, 1982

E131 Von Neumann, J., Probabilistic Logics and the Synthesis of
Reliable Organisms from Unreliable Components, in Automata
Studies, Princeton University Press, 1956, pp. 43 - 98

170

CHAPTER 5

A Method of Conducting a Safety Audit on Software

The assessment of the level of risk resulting from the use of

software as a control element has been advanced in previous Chapters.

The possibility of introducing errors at each stage of the

development of the software has been discussed along with a basis for

measuring the possibility for such errors.

As part of the research for this thesis a commercially available

product was examined and the methods and measures discussed earlier

in this thesis were applied in an attempt to determine the

applicability of such techniques.

Based on the research for this thesis, this Chapter presents an

argument for using a set of procedures called Software Safety Audits

to assess the software used in industrial-based control systems.

Such a Software Safety Audit would normally be conducted against a

set of criteria considered to be acceptable by the designer and by

the User but presently there is no standard criteria, so the

assessment undertaken has to stand alone. The Chapter discusses

certain aspects of the Software Safety Audit carried out on the

product examined.

The analysis of the product can only be discussed briefly as the

commercial confidence of the company, and of the product, must be

maintained.

171

5.1 The Software Safety Audit

There is a probability of errors being created at each stage of

the software development cycle. It is not practicable to remove all

these errors from the software before the software is considered by

the designer to be ready for operational use in a safety-related

process or product. Since all software will have errors remaining

after the testing stages have been completed then there needs to be

some form of final check aiming to identify any unsafe aspects of the

software. Such a set of checks on the software is called a Software

Safety Audit.

The purpose of a Software Safety Audit is to give some measure

of the operational safety when using the software and to make some

subjective judgement whether the software is, or can be made,

operationally safe, given the safety criteria being used. If the

software is not, or cannot be made. operationally safe then the

software should not be used until the software has been modified to

meet the criteria or the User is prepared to acknowledge and accept

the features identified as being unsafe.

In assessing the operational safety of the software it must be

remembered that the software is only one component of a total system

which includes the software, the computer hardware, the plant and

associated hardware and the Operating Personnel. Once an assessment

has been made of the software then the software should be maintained

at the same safe state to which it was assessed.

There are three elements to analyse in the Software Safety

Audit; the software, the system and the integrity of the system.

The three elements form three levels of assessment in which the

software element is the lowest level.

A Software Safety Audit could be developed starting with the

software, followed by the system and its integrity. The safety

172

assessment of the software element can be considered to assist the

person conducting the audit of the whole system. However, the

I
assessment of the whole system assists the person conducting the

audit of the software element and provides an insight into the

functioning of the whole system.

An approach to Software Safety Audit needs to consider the

software and the whole system and once the Software Safety Audit has

assessed the software to be safe a mechanism of ensuring the

continued integrity of the system should follow.

5.1.1 The Need and Form of a Software Safety Audit

The Health and Safety at Work etc Act 1974, (21, Section 6 (1).

states "It shall be the duty of any person who designs, manufactures,

imports or supplies any article" to meet certain requirements towards

safety and, specifically, towards the testing of the article.

Section 7 of the Act requires *every employee while at work' to take

due regard for health and safety of himself and of others. Section

8 states "No person shall intentionally or recklessly interfere with

or misuse anything provided in the interests of health, safety or

welfare". The Act, therefore, makes all parties involved in the

design, manufacture, installation and operation of safety-related

equipment responsible for ensuring the health and safety of those

affected by its operation.

The aim of a Software Safety Audit is to give a measure of the

operational safety involved in using the software in the system being

audited and to assist in rendering as impotent any errors detected in

the software or the system which might otherwise jeopardise safety.

In accordance with Sections 6,7 and 8 of the Health and Safety at

Work Act the interpretation is that a Software Safety Audit may be

requested by

-a manufacturer of a new product at the design stage or before

173

it is offered for sale

- by the supplier of a product before it is supplied to the end-

user

- by an end-user who requires a Software Safety Audit to be

carried out an each stage of the development of a contracted

system or

- by an end-user before the contracted system is permitted to

become operational.

Whoever requests the Software Safety Audit is called the

Requesting Authority and those undertaking the Safety Audit are

called the Auditors.

The fact that an item of software and its system has been

assessed for safety before becoming operational can afford the

designer some measure of confidence in its use. If the designer has

the knowledge that the software was ultimately found to be safe then

the confidence will be high. When the designer has the knowledge

that a number of iterations were necessary before a safe assessment

was achieved then confidence in the software may be reduced.

The user's knowledge of a Software Safety Audit will influence

confidence in the software. When a Software Safety Audit is carried

out on the software before it becomes operational then the user's

confidence will be high even though a number of iterations may have

been necessary before being assessed as safe. When a Software

Safety Audit of the software is undertaken retrospectively after

being operational, even though the software has been assessed to be

safe, then the user's confidence in the software and its system will

be less since the inference is that there is cause for concern by the

manufacturer or supplier. The confidence of the designer and the

user in the software is influenced by knowledge of the Software

Safety Audit having been carried out and this knowledge may have

174

commercial consequences. Therefore, a Software Safety Audit ought

to be conducted in confidence with the control of the knowledge of a

Software Safety Audit being conducted and the use of the results of

the Software Safety Audit resting in the hands of the Requesting

Authority. If the Requesting Authority is a commercial concern then

the information on the Software Safety Audit may be suppressed.

Alternatively. if the Requesting Authority is not a commercial

concern, for instance a Trade Union or a group representing the

public-interest, then the information may be made public in order to

cause some action to be taken, for example a public inquiry.

The ordering of the assessment procedures used for the Software

Safety Audit can be fixed by legislation, but the order should be

changeable such that the assessment procedures can take account of

research developments.

On finding an error or inconsistency in the software or the

system a change may be made. The change may alter some feature

which had been checked previously. To retain credibility the

Software Safety Audit should repeat the preceeding procedures. To

do any other may lower the credibility of the Software Safety Audit

in the view of the Requesting Authority. The number of instances

where it is necessary to repeat a number of the earlier procedures

can be minimised by the ordering of the Software Safety Audit.

The ordering of the proced ures used in the assessment for this

research was considered to give an increased probability of finding

errors early in the assessment process and to reduce the number of

revisions required as a result of finding errors.

The structuring of the software has been shown to influence

safety, so before any other assessment can be carried out the

structuring of the software should be examined.

The Software Safety Audit proposed in this Chapter starts with

175

an assessment of the structure of the software. Software Fault Tree

Analysis and Software Event Tree Analysis methods are used later in

the Audit to examine for particular failure conditions. Once the

software has been assessed at the system level by means of Fault Tree

Analysis and Event Tree Analysis, the software is assessed for the

perturbation of variable and constant names, followed by a

calculation of the Fallibility Index and the Plexus. The final

activity of the Software Safety Audit would normally be to assign an

Integrity Lack to each program. 'ýThis was not possible in the

assessment for this thesis as only the listings were available for

the assessment and not the actual programs.

The ordering of the assessment procedures used in the Software

Safety Audit for this thesis was:

Software Structural Analysis

Fault Tree Analysis

Event Tree Analysis

Perturbation of Variable Names

Calculation of the Fallibility Index

Calculation of the Plexus

176

5.2 An Example Software Safety Audit

To demonstrate the method of conducting a Software Safety Audit

a genuine industrial-based application needed to be tested rather

than one artificially created for the purpose. It was considered

necessary to approach a manufacturer or supplier of electronic

products who was known to incorporate a computer with some

application software into a commercially available product which was

intended for use in a safety-related control application.

There is a wide range of products on the market which can be

shown to meet the criteria. A major manufacturer of medical

electronic products was approached and it was agreed with the

manufacturer that a particular product could be assessed provided

that confidentiality was maintained at all times regarding the

identity of the company, the product and the outcome of the

assessment.

For reasons of commercial confidence the manufacturer must

remain anonymous in this thesis. So that a description can be given

of the product assessed, the product will continue to be referred to

simply as 'the product' meaning the commercial product and 'device'

to mean particular components of the product.

5.2.1 The Product

The product is used extensively in the medical service.

particularly where hospitalisation of the patient is necessary, for

instance Intensive Care Units and Surgical Wards. Earlier versions

of the product have been in use for many years in the United Kingdom

and abroad employing hard-wired logic to monitor and control the

products function. Due to market pressures the company chose to

develop the product further and to incorporate a microprocessor into

the product to take over the control functions from the hard-wired

logic. The product's principle function is to monitor and control

177

flow'rates of drugs at a desired value within a medically acceptable

tolerance level. The product was suitable for the trial application

of a Software Safety Audit as it i6corporated a microprocessor, it

was used in a safety-related situation and the amount of application

software involved was not too large for assessment by manual methods;

approximately 4000 bytes of computer memory.

A full description of the product is not possible without

breaking the confidence of the company. However, a brief summary

can be given.

The product is used to monitor and control the flow rate of

drugs to a patient and is made operational by an action, on the part

of the nursing staff, indicating to the product the desired fl. ow

rate. The flow rate is indicated by means of a set of thumb-wheel

switches and is input to the microprocessor when the 'START' button

is pressed. A device then adjusts the flow rate to the desired flow

rate value. Once the desired flow rate is reached a device monitors

the flow rate to ensure that it remains within the medically accepted

tolerance. If at any time during the operation of the product an

alarm condition is reached then a set of actions are available to the

microprocessor ranging from the sounding of alarm buzzers to rapidly

closing off the flow. The product can be stopped or reset by

pressing the 'STOP/RESET' button. The flow rate sensor is an

optical device placed in the drug supply line.

Physically the product contains two decade thumb-wheel switches,

'START' and 'STOP/RESET' buttons and four status indicators all

mounted on the front facia panel. Extending from the device are the

mains electricity supply cable and the monitoring sensors. Within

the product there is an electro-mechanical device designed to rapidly

close off the flow rate in the case of a particular alarm.

The product uses a commonly available 6-bit microprocessor with

178

the application software being written in the Assembler language for

that microprocessor, though the initial development of the software

was written in Pascal. The use of Pascal was abandoned as the

management of the company felt that Assembler language would yield a

more compact object code and would have greater speed of operation.

The software development was done on a microprocessor development

system.

In discussion with the company it emerged that the software had

been developed by competent electronic engineers. who had no formal

training in software engineering, without the benefit of any form of

design specification. Software modules were written as it was felt

necessary to meet the overall design objectives set by the Designer.

Testing was limited to testing what the company called the

"functionality of the modules and inter-module communication".

179

5.3 Analysis of the Example Application

In discussion with the company, the company suggested that the

criteria for the Software Safety Audit should be to examine the

system for the catastrophic failure "an excessive flow rate without

an alarm being raised such that life could be put at risk". It was

the view of the company that this was the maximum credible incident

for the product and this failure condition was used as the basis for

the assessment.

5.3.1 Input Mechanism

The product assessed relied upon the medical staff, most likely

a nurse, dialling the desired flow rate on a pair of decade thumb-

wheel switches. The flow rate was to be in the range 1 to 99 with

no display of the value read by the microprocessor from the thumb-

wheel switches.

The absence of a microprocessor-driven display showing the value

read by the microprocessor may be considered to be unsafe as there is

a probability that the system will incorrectly read the desired

value. As a means of entering the desired flow rate a number of

options were available to the designer in addition to thumb-wheel

switches. Two such options were thumb-wheel switches with some

display or a display counter. Considering the three methods of

input mentioned as being available to the designer it can be assumed

that the probability of an error caused by the nursing staff

incorrectly reading the displayed value and the probability of error

in computing the value read, does not change. As an exercise the

use of thumb-wheel switches, or one of the two options mentioned, has

been studied to see how a Software Safety Audit can be carried out on

the equipment. The exercise also shows how the inter-relationships

between the software, the hardware and people is considered in a

Software Safety Audit.

180

a) Thumb-wheels alone

In this scheme the nurse enters the desired value on the thumb-

wheel switches which are then read by the microprocessor. If the

nurse has dialled the wrong value then it is expected that the error

will be noticed by the nurse and corrected by entering the correct

value. The scheme can be represented diagrammatically as

Thumb-wheels Thumb-wheels

Per

Microprocessor

Pec

where Per is the probability of an error in the thumb-

wheel switches when the input is read

and Pec is the probability of an error in the

microprocessor when computing the

value read

The reliability of the system is therefore influenced by the

probability of an error when the value is read by the microprocessor

from the thumb-wheel switches.

b) Thumb-wheels with display

In this scheme the nurse enters the desired value on the thumb-

wheel switches which are then read by the microprocessor. The

microprocessor interprets the value and displays it to the nurse by.

say, a Liquid Crystal Display. Any errors are observed by the nurse

noting a differance between the thumb-wheel switches and the

displayed value. The correction is made by the nurse altering the

dials on the thumb-wheel switches accordingly. The scheme can be

181

represented as:

Thumb-wheels

Per

Microprocessor

Pec

where Ped is the probability of an error in displaying

the value read by the microprocessor

c) Display Counter

A display counter would work by the nurse pressing a button

according to the desired value. The number of times the button was

been pressed would be accumulated by some internal electronics which

would display the accumulated value to the nurse by, say, a Liquid

Crystal Display. Once the desired value was reached an 'Accept'

button would be pressed by the nurse causing the microprocessor to

Display

read the value. Such a scheme can be represented as

Per
Pei

Counter

Pec

Display

18 2

where Pei is the probability of an error in the

internal electronics.

If it is assumed that when the microprocessor reads the desired

value the probability of an error is the same for each of the three

options discussed, then the use of thumb-wheels alone has the lower

risk attached to it. In the context of a man-machine interface, the

scheme could leave the user, in this instance a nurse, in doubt

whether the value shown an the thumb-wheels was the value that the

computer had read and was using in its calculations.

The use of a display counter is less reliable than thumb-wheels

but would engender, in the user. a greater sense of safety since the

desired value is only input to the microprocessor when the

accumulated value is seen to be the same as the desired value.

In the context of human confidence the use of thumb-wheel

switches with some display would seem to be desirable since the nurse

can observe any differences between the value set on the thumb-wheel

switches and that displayed. However. before taking up this option

it is necessary to examine the likelihood of the nurse noting the

error. Consideration must also be given to the probability that the

microprocessor refreshes the display more than once and that the

value-displayed remains the one being used in calculations. If the

microprocessor creates the display value only at the time of reading

the thumb-wheel switches then there is the additional probability of

an error due to data corruption of the internal value being used.

The controlling influence on safety is the desire to achieve a

particular function with a low risk. In the case of the product the

probability of an error when the microprocessor reads the value is

influential to the safety of the control function. The use of

thumb-wheel switches alone has the lowest probability of error, given

that there are fewer components contributing to the probability of

183

error. Therefore, given the options examined, the use on the

product of thumb-wheel switches alone can be considered to be the

safer option.

5.3.2 Software Structural Analysis

The software in the product comprised three main modules;

Standby, Start-up and Background with a fourth module being concerned

with interrupt handling. Shared data was the method used for

passing values between modules. Other routines were included in the

system as function calls.

The structure of the Assembler code was such that the interrupt

handler determined which entry point of the code to use dependent

upon the interrupt being raised.

The software catered for two alarm conditions; 'System Alarm'

and 'Functional Alarm'. The mechanisms concerned with ensuring

safety were incorporated into the control modules such that the

failure of the control module could result in the failure of the

system to maintain safety.

Beizer, Ell, p. 237, recounts that a contributory factor to the

disaster at Three Mile Island was the belief of the Operators that an

actuator's real position could not be at variance with its position'

reported by the computer system.

In the case of the product's functional alarm, the alarm

condition required the software to command the microprocessor

hardware to release a mechanical device to rapidly close the flow.

It is not reasonable to assume that once the release command, which

is a safety procedure, has been sent to the output port that the

action will be effected as requested, since there is a probability

that the output port will not function as commanded. A checking

mechanism could be implemented in such cases to determine that the

action has actually been effected. If the required action has not

184

been effected then some alternative procedure should be adopted, such

as sounding an additional alarm buzzer. When assessing the safety

of the product it was found that no checking mechanism existed to

ensure that this, or any other, safety actions had been effected once

initiated. In the product assessed, a release command could be

issued and the software would assume that the mechanism had been

released even though, in fact, it had not. If the reason for the

release of the mechanism was to prevent an unsafe condition from

existing then, without some form of mechanism ýo check that the

action had effected, the unsafe condition would persist.

A similar situation was found in the case of an alarm condition

requiring movement from a pinch-wheel via a stepping motor; once the

command had been issued by the software to the output port requesting

the movement to the 'home' position there was no checking mechanism

within the software to ensure that the motor was actually in motion,

in the direction requested. Also when the motor was being used as

part of the control system there was three independent routines

called to effect movement of the motor, rather than just one. if

just one motor control module had been used then the possibility of

'deadlock' would have been greatly reduced.

From the analysis undertaken it was apparent that features such

as the motor control and release mechanism, which are essentially

safety modules, were incorporated into seperate modules. As

discussed in Chapter 3, the system is a more safe construction when

the software is seperated into safety modules and control modules.

A recommendation to the company, therefore, could be that both the

alarm modules should be extended to incorporate checks that the

requested actions had been effected, rather than allowing the

software to make an assumption on the operation.

185

5.3.3 Risk Analysis of the Product

The application of Software Fault Tree Analysis and Software

Event Tree Analysis was discussed in Chapter 3 in the context of

high-level languages. However, the product assessed had been

written in an Assembler language so it was helpful to this research

to code the software into a Pascal-like language from the Assembler

before applying Fault Tree Analysis and Event Tree Analysis.

complete SFTAISETA of the system would undoubtedly reveal the

product's identity and as the analysis was only possible provided

confidentiality was maintained only a small part, the Functional

Alarm Module FALARM, will be illustrated.

5.3.3.1 Software Fault Tree Analysis

The assembler code for the Functional Alarm Module (FALARM) was:

FALARM: DI
POP IY
LD SP, RAMTOP+l
LD A. 11110100B

OUT (PORTC), A

FALRLP: -CALL STOPRD
JP Z. STDBYE

LD A. 111001008

OUT (PORTC), A
CALL DELAY3
CALL STOPRD
JP Z, STDBYE

LD A. 111100008

OUT (PORTC), A
CALL DELAY3
JR FALRLP
CALL SALARM

, disable_maskable_interrupts
; save address of calling_module in IY
; reinit. stack_pointer
; reset RT_latch
; release pull_in_solenoid
; visual_run OFF
; audible-alarm ON
; visual_alarm ON
; visual_stdbye OFF
; wdog OFF
; stop/reset pressed ?
; IF_YES go to standbye_mode
; ELSE flash visual_alarm and
; pulse audible_alarm
; audible_alarm OFF
; visual_alarm ON
; visual_stdbye OFF
; wdog OFF

; stop/reset pressed ?
: IF_YES go to standbye
; ELSE
; audible_alarm ON
; visual_alarm OFF
; visual_stdbye OFF
; wdog OFF

; loop till stop/reset pressed
; slw trap

186

which was recoded into a Pascal-like language for analysis:

solenoid FALSE;
audible TRUE;
visual TRUE;
WHILE NOT stopped DO

BEGIN
audible FALSE;
visual TRUE;
delay3;
IF NOT stopped THEN

BEGIN
audible :z TRUE;
visual :x FALSE;
delay3;

END;
END;

standby;

where STANDBY, STOPPED and DELAY3 are predefined functions.

When the module was analysed for the failure "failure to stop

the flow" the SFTA diagram, summarised in Figure 5.3.3.1.1. was

developed.

From the analysis it was observed that a failure of Port C,

which controls both the alarms and the solenoid release mechanism,

would cause the flow to continue uninterrupted without an alarm

condition being signalled to the nursing staff. Using the knowledge

of the probability of a failure of Port C, recommendations could be

made to the company to put the solenoid release mechanism onto a

different output port from the one which contained the alarms and

also to include a check that the solenoid had actually been released

when requested.

187

Following the recommendations, the Functional Alarm Module could

be altered to the following program:

188

Figure 5.3.3.1.1 SFTA of the Product's Functional Alarm

solenoid := FALSE;
delay3;
IF NOT (solenoid) AND NOT (solenoid_released)

THEN klaxon;
audible TRUE;
visual TRUE;
WHILE NOT stopped DO

BEGIN
audible FALSE;
visual TRUE;
delay3;
IF NOT stopped THEN

BEGIN
audible TRUE;
visual FALSE;
delay3;

END;
END;

standby;

where KLAXON is a function call to initiate some additional alarm

action.

5.3.3.2 Software Event Tree Analysis

The Software Event Tree Analysis, SETA, of the whole of the

software was also done as a Pascal-like version of the Assembler code

and produced an event tree which took many sheets of paper. The

event tree did, however, demonstrate that SETA could be used.

As an illustration of how SETA was applied to the whole of the

software. the FALARM Module used for SFTA will be used with statement

numbers added;

I solenoid FALSE;
2 audible TRUE;
3 visual TRUE;
4 WHILE NOT stopped DO
5 BEGIN
6 audible FALSE;
7 visual TRUE;
8 delay3;
9 JF NOT stopped THEN

10 BEGIN
11 audible TRUE;
12 visual FALSE;
13 delay3;
14 END-,
is END;
16 standby;

In SETA the emphasis is on the control flow and the BEGIN and

END statements form bounds. to statement blocks and only indirectly

189

control the flow, so they are not considered.

The SETA for the module FALARM is;
I

Figure 5.3.3.2.1 SETA of the Product's Functional Alarm

11 12 13

not stoppey

9 789 stopped

not stop ed \\ '*\ N

234 stopped

"* * _*

To the SETA would normally be applied the probabilities of

success, which at present have not been determined. If the

probabilities were attached then the failure of the solenoid and Port

C would be taken into account in the probability calculations

associated with the procedure SOLENOID. In which case, the failure

branch from node I would be correspondingly large and so be

noticeable as a cause for further examination and concern.

It was apparent during the assessment that some research needs

to be undertaken to determine typical failure probabilities for

programming statements as these were difficult to obtain for the

current analysis.

5.3.4 Application of Metrics

The manual application of the metrics developed in Chapter 4 was

found to be time consuming. It would have been more efficient if

some software tools had existed so that the actual Assembler code

could have been mounted onto a computer for automatic analysis. The

development of software tools to analyse the assembler code would

reduce the time needed to conduct an assessment and would also

provide more scope for analysis. Using the few tools that had been

190

developed as part of the research and, in the case of Fallibility

Index, some manual calculation the following analysis was obtained:

a) Perturbation of Names I

Number of Variable Names = 51

Total Number of Variable References z 388

Number of Variables with a Hamming Distance of one = 10

Number of Undetectable Alternates = 298

Number of Undetectable Omissions =3

Number of Undetectable Insertions z 57

b) Fallibility Index

Number of Alternates, Na = 95616

Number of Omissions, No 1016

Number of Insertions, Ni 19676

Number of Poss. Errors, Npe a 2271168

Fallibility Index z 5.12Z

c) Plexus

Number of Characters = 17743

Number of control statements a 1819

Plexus = 11024

Decision Content = 106458

Relative Redundancy = 89.65Z

Error-Proneness = 10.35Z

The interpretation of the analyses supports the hypothesis that

any measurement of safety is conjoint and dependent upon empirical

observations. To place the analysis in context it can be compared

with the values determined for the example program in Chapter 4.

Such a comparison shows that the product's Fallibility Index and

Error-proneness could be considered as being reasonable given that it

has a large Plexus value.

From the analysis of the perturbation of names it can be noted

191

that variables with a Hamming distance of one, 10 in number, had a

high frequency of usage. This high frequency of usage influenced

the number of undetectable alternates. If those variables with a

Hamming distance of one were changed to have a Hamming distance of

two or more, then for a relatively small change a large response

would be achieved in the number of undetectable alternates. The

change would also be reflected in a favourable change in the

Fallibility Index.

It may be possible to automate the procedures for detecting

variables with a Hamming distance of one prior to compilation and to

recommend to the prpgrammer the necessary changes. The advantage of

such automation would be to reduce the time needed for testing the

software and also to reduce the Fallibility Index.

5.3.5 Integrity of the Product

The creation of a unique identity, Integrity Lock, for the

product's software was not practicable since it was only possible to

have access to the program listings and not to the actual Assembler

code. To generate an Integrity Lock manually from the listings was

considered to be too time-consuming for the research. The

generation of an Integrity Lock is more efficiently achieved by

automation using the internal representation of the software as it is

this representation which needs to be protected and checked at run-

time.

192

a Safety Audit could be considerably reduced by the removal of the

constraints experienced and priority being given to the development

of software tools. It was also apparent that access to design

documents, test records and design personnel would have made a

Software Safety Audit more comprehensive.

In order for the product to be certified as safe the lack of

checking mechanisms within the software on initiated actions and the

assumption on the correct working of devices would need to be re-

examined by the company.

It is not possible to place any importance on the metric values

obtained as little is known about the relationship between the values

and safety. In order to place the values on a scale of values some

research is needed to calibrate values obtained for a number of real

systems. However, the form that a calibration exercise would take

is difficult to envisage without returning to the use of a subjective

judgement on the ordering of the values within the scale of values.

This subjectivity endorses the view that safety will remain

subjective until some mapping function is found to relate the

definition of safety and the set of scales of values. Until such a

mapping function is found the use of procedures, like those

illustrated, are needed to guide the Auditor towards a judgement on

the safety of the software or the system.

The use of non-quantitative procedures to guide judgement based

an experience and what is called 'best world practice' are found in

other engineering fields, for example shipping insurance. The

analysis of the product has shown that such procedures can also be

aplied to the analysis of software.

194

5.4 Discussion

The reason for conducting the Software Safety Audit was to

examine the practicability of the ýrocedures and not simply to derive

some values for a system. To this end it has been possible to show

that the procedures are practicable and incidentally to derive some

values from a real system.

The Software Safety Audit was carried out over a period of

approximately five weeks which was longer than originally

anticipated, mainly because of the manual calculation of the

Fallibility Index. The effort required to conduct the Software

Safety Audit was influenced by many constraints, principally,

unfamiliarity with the programming language, lack of knowledge of the

system being assessed, the lack of appropriate software tools and

very limited access to the design personnel. The most significant

of these was the lack of familiarity with the language and this

needed to be addressed with care.

The effort expended on the assessment could be reduced by the

development of software tools and with more experience in the

application of the procedures. The problem of familiarity with the

programming language used in the system being assessed could be

minimised if the software toolset included tools for analysing a

language syntax and which could be generated relatively easily for

uncommon languages. Such a tool could be created wit6 the aid of

tools such as YACC, which is part of the UNIX Operating System.

It was evident during the Software Safety Audit that whilst it

is possible to apply SETA to application software there was a need

for further research into SETA before it could be considered to be as

useful as SFTA.

The method of conducting a Software Safety Audit worked well

given the constraints mentioned above. The time taken to carry out

193

5.5 References

1. Beizer, B., Software Testing Techniques, Van Nostrand. Reinhold,
1983

2. H. M. S. O., The Health and Safety at Work etc. Act 1974, Her
Majesty's Stationery Office, London

195

CHAPTER 6

Conclusions

The control of industrial processes by computer has new risks

associated with it. One of the new risks is the incorporation of

software into the control system of a controller.

It has been shown in this thesis that measurements of software

reliability and measurements of software safety do not have the same

goals. Software reliability and software safety have been shown to

be related subjects and that software safety is a seperate and

distinct subject.

The terms hazard. risk. danger and safe have been defined in

terms of industrial control and a relationship between these terms

has been postulated. Though an attempt has been made to discuss the

philosophy of safety it is evident that there is considerable scope

for further work. A formal definition of software safety has been

proposed and the terms 'safe' and 'unsafe' have been shown to be

subjective judgements.

It is the hypothesis of this thesis that software influences the

safe operation of industrial-based controllers incorporating software

and that the risk can be assessed and quantified.

The subjectivity of safety has been examined and it is suggested

that an assessment of safety is a conjoint measurement.

An examination of the factors affecting the software development

process and the metrics available for measuring the influence of

these factors has shown that there are many influences affecting

software but that there are few metrics available.

The research for this thesis found that the software

incorporated into industrial-based controllers has an influence on

the safety of the control system and that there are many aspects to

assessing the safety of software used for industrial control. it

196

has been shown that some of these aspects can be quantified but there

is no evidence that metrics have yet been proved to measure the

safety of software used for industtial control.

The research for this thesis applied analytical methods, taken

from other engineering disciplines, to assess the risk of using an

item of software. It was found that the structure of the software

can be examined using Software Fault Tree Analysis and Software Event

Tree Analysis but that further research is needed into Software Event

Tree Analysis before its usefulness can be exploited.

The research also examined the use of State Transition Diagrams

as a method of determining erroneous states and found that the number

of such states can become unmanageable when all the possible failure

conditions are considered, even for relatively simple control

systems.

Three categories of danger have been proposed for the ocassions

when software is used in industrial-based control systems; minor,

Major and Serious. The structuring of the software for safety has

also been examined and a suggestion has been made on the use of

Safety Modules and a mechanism called an Integrity Lock.

The research for this thesis has shown that software errors'can

be introduced at each stage of the development of the software and

two methods of measuring the possibility for error have been

proposed; Plexus and Fallibility Index. Further rigorous

development of the Plexus metric and the Fallibility Index is

required before the meaning of the measurements is known.

It was found from an experiment that variables declare. d with

seven characters had a significantly better probability of correct

interpretation than for variables declared with more than or less

than seven characters.

The combination of the risk analysis, structural analysis and

197

software analysis into a set of assessment procedures has been called

a Software Safety Audit. A Software Safety Audit was done on a

commercial product and it was founo that further development of the

assessment method is needed.

'Loss Containment' is a term often used in the Process

Industries to describe procedures for containing the consequences of

the loss of safe-working within acceptable criteria. The loss

containment of software requires requires a judgbment to be made on

the course of action to take when the software or the system becomes

. unsafe'. Such a judgement will need to consider both the economic

and the social consequences of the action, the practicability of such

action and the time needed for the action to achieve a state which is

considered to be 'more safe*.

In some systems it may be possible to dýtermine the possible

unsafe states and make a prior judgement on the appropriate action to

take for each unsafe state.

In some systems it will not be possible to determine the

possible unsafe states as the number may be unmanageable.

Similarly, it may not be possible to make a judgement on the

appropriate actions to take as these may be too numerous, may be

subject to a large number of variables or may be indeterminate. In

such systems some method is required which will allow a judgement to

be made based on the current safety practice, the current unsafe

state, available states, time available to respond to the current

unsafe state and possibly many other variables. The development of

what are called Intelligent Knowledge-Based Systems may be applicable

and research could be conducted into the use of these systems as

monitors of safety-related systems.

The research for this thesis has made a start on the subject of

assessing and quantifying the safety of software used for industrial

198

control. The research has identified subject areas which, with more

research, could produce methods and metrics to quantify the safety of

software.

199

APPENDIX I

Database Program

The following dBase II prograro was used in the experiment

reported in Chapter 4.3.

SET TALK OFF
SET FORMAT TO SCREEN
USE B: PSYCHO. DBF
ERASE
DO WHILE T

V ARE YOU PREPARED TO HELP A RESEARCH STUDENT
V WITH A SIMPLE EXPERIMENTV

If so, then press any key.

WAIT TO ACTION
ERASE
DO WHILE T

7' Thank you-for agreeing to assist in this simple experiment to*
Vtry and determine the level of difficulty people experience in the'
Vuse of mnemonics in the place of lines of text. '

7' You are asked to suggest a suitable mnemonic for each line of'
Vtext presented to you. As an example you might suggest that a'
Vsuitable mnemonic for the text LENGTH OF STRING IN METRES could be'
VMETRELENGTHS. Please limit your suggested mnemonic to no more
Vthan 20 characters. You will be asked to suggest eight such
Vmnemonics. '

76 After which the screen will clear and you will be asked to
Vrestate the mnemonics from memory. Finally, you will be asked to'
Vinput your understanding of the mnemonics. '

V Terminate each input with a RETURN before starting the next'
Vquestion. '

When you are happy that you understand what is to happen,
Vsignal your readiness by pressing any key'

WAIT TO ACTION
ERASE

ACCEPT "What is your SURNAME? " to d: name
ACCEPT " and your INITIALS " to d: inits
ACCEPT " State which OU Summer School " to d: venue
ACCEPT " Please enter todays date " to d: date

200

Please suggest a mnemonic for the following: *

ACCEPT "TIME OF DAY * to M: 1
ACCEPT "VALVE 8 POSITION " to m: 2
ACCEPT "AMBIENT TEMPERATURE" to m: 3
ACCEPT *LIQUID FLOW IN LITRES/MINUTE* to m: 4
ACCEPT "MOTOR SPEED IN R. P. M" to m: 5
ACCEPT 'WEIGHT OF PRODUCT IN TONNES" to m: 6
ACCEPT 'DISTANCE FROM THE VALVE CONTROLLER TO THE VALVE IN METRES" to

m: 7
ACCEPT *PERCENTAGE OF SULPHUR DIOXIDE IN THE ATMOSPHERE" to m: 8
ERASE

Ca n you now re-enter the mnemonic you suggested for'

ACCEPT "TIME OF DAY" to, t: l
ACCEPT *LIQUID FLOW IN LITRES/MINUTE* to t: 4
ACCEPT "WEIGHT OF PRODUCT IN TONNES" to t: 6
ACCEPT *VALVE 8 POSITION" to t: 2
ACCEPT "PERCENTAGE OF SULPHUR DIOXIDE IN THE ATMOSPHERE* to t: 8
ACCEPT *AMBIENT TEMPERATURE* to t: 3
ACCEPT *DISTANCE FROM THE VALVE CONTROLLER TO THE VALVE IN METRES" to

t7
ACCEPT *MOTOR SPEED IN R. P. M. * to t: 5
ERASE
APPEND BLANK
REPLACE SURNAME with d: name, INITIALS with d: inits
REPLACE DATE with d: date, VENUE with d: venue
REPLACE MNEMONICI with m: 1, MNEMONIC2 with m: 2
REPLACE MNEMONIC3 with m: 3, MNEMONIC4 with m: 4
REPLACE MNEMONICS with m: 5. MNEMONIC4 with m: 4
REPLACE MNEMONICS with m: 5, MNEMONIC6 with m: 6
REPLACE MNEMONIC7 with m: 7, MNEMONIC8 with m: 8
REPLACE TEXT1 with t: 1, TEXT2 with t: 2, TEXT3 with t: 3
REPLACE TEXT4 with t: 4, TEXT5 with t: 5, TEXT6 with t: 6
REPLACE TEXT? with t: 7, TEXT8 with t: 8
7

?. C an you now try and give a short description for the following'
Vmnemo nic you suggested-. '

2 12.5 SAY MNEMONIC1 GET ANSWER1
@ 13.5 SAY MNEMONIC2 GET ANSWER2
@ 14.5 SAY MNEMONIC3 GET ANSWER3

15.5 SAY MNEMONIC4 GET ANSWER4
16.5 SAY MNEMONICS GET ANSWERS
17.5 SAY MNEMONIC6 GET ANSWERG

@ 18.5 SAY MNEMONIC7 GET ANSWER7
@ 19.5 SAY MNEMONIC8 GET ANSWER8
READ
USE
DO A: PS YCHO

201

APPENDIX 2

Program Analyses

The programs analysed below are linear expansions of those

referred to in Chapter 4.4. A comparison of the measures is plotted

in Graph 3 to Graph 5. The values were calculated using the program

given in Appendix 3.

Program 1

PROGRAM Halsteads Length, N4 = 12.75
VAR: x, Halsteads Volume, V z 36.49
VAR: y;
BEGIN Decision Content, H = 282.1

x: =2; Plexus, P z 29.8
y: =95; Error Proneness, Ez 10.6z
X: =X+Y; Number Characters. Nc z 53
PRINT: x;

END

Program 2

PROGRAM Halsteads Length, NA= 12.75
VAR: x; Halsteads Volume, V z 50.53
VAR: y;
BEGIN Decision Content, H = 319.3

x: =2-, Plexus, P a 34.6
y: =95; Error Proneness, E = 10.8X
x: zx+y; Number Characters, Nc z 60
x: =X+Y;
PRINT: x;

END

Program 3

PROGRAM Halsteads Length, N4 = 12.75
VAR: x; Halsteads Volume, V 2 64.57
VAR: y-,
BEGIN Decision Content, Ha 356.57

x: =2; Plexus, P = 39.4
y: =95; Error Proneness, E= 11.0Z
x: zx+y; Number Characters, Nc 2 67
x: =X+Y;
x: =x+y;
PRINT: x;

END

202

Program 4

PROGRAM Halsteads Length, NA = 12.75
VAR: x; Halsteads Volume, V= 78.61
VAR: y;
BEGIN Decision Content, Ha 393.8

x: =2; Plexus, P2 44.1
y: =95*, Error Proneness. E= 11.21
X: =X+Y; Number Characters, Nc = 74
x: =X+Y;
X: zx+y;
x: =X+Y;
PRINT: x;

END

Program 5

PROGRAM Halsteads Length, NA = 12.75
VAR: x; Halsteads Volume, Va 92.64
VAR: y;
BEGIN Decision Content, H= 431.1

x: --2; Plexus, P2 48.9
y: =95-, Error Proneness, Ea 11.31
x: zx+y; Number Characters, Nc = 81
x: =X+Y;
x: =X+Y;
x: =x+y;
X: zx+y;
PRINT: x;

END

Program a

PROGRAM Halsteads Length, N4 = 12.75
VAR: x; Halsteads Volume, V= 50.5
VAR: y-,
BEGIN Decision Content, Hz 319.3

x: =2; Plexus, PC 34.6
y: =95; Error Proneness, Ez 10.8z
X: =X+Y; Number Characters, Nc = 60
y: =x+y;
PRINT: y;

END

Program b

PROGRAM Halsteads Length, V= 16.36
VAR: x; Halsteads Volume, V2 54.0
VAR: y;
VAR: p;
BEGIN Decision Content, H= 351.25

x: =2; Plexus, P : 43.2
y: =95; Error Proneness, E a 12.3Z
x: =x*y; Number Characters. Nc : 66
p: =x+y;
PRINT: p;

END

203

I

Program c

PROGRAM
VAR-. a;
VAR: x;
VAR: y;
BEGIN

x: =2 -,
Y: =95;
X: =X+Y;

a: =x+y;
PRINT: a;
a: =x+a;
x: =1025;
X: =y+x;
y: za+x;
PRINT: y;

END

Program d

PROGRAM
VAR: a;
VAR: b;
VAR: x;
VAR: y-,
VAR: p-,
BEGIN

x: --2;
y: =95;
x: zy+yI
P: =X+Y;
PRINT: p;
a: =x+p;
b: cl 025;
x: =y+b;
y: --a+x;
PRINT: y;

END

Halsteads Length, V 20.3
Halsteads Volume, V 120.5

Decision Content, H= 548.2
Plexus, Pz 70.9

Error Proneness, E= 12.9Z
Number Characters, Nc a 103

Halsteads Length, N4 = 28.75
Halsteads Volume, V= 131.46

Decision Content, Hz 612.0
Plexus, Pz 95.7

Error Proneness, E= 15. GZ
Number Characters, Nc = 115

204

APPENDIX 3

BASIC Program

The BASIC Program that follow, s was written to enable the

analysis of the example programs given in Chapter 4.4 and also to

provide the data included in Appendix 2 and Table 3.

10 DIM VARFREQ(25)
20 DIM DIGFREQ(25)
30 DIM PROCFREQ(25)
40 REM
50 REM -------------------- Inputs for Halstead ---------
60 REM ---------- Variables are: N1, N2, NNI, NN2 --------
70 REM
80 INPUT "Halsteads Number of Unique Operators, ni *; N1
90 INPUT 'Halsteads Number of Unique Operands, n2 *; N2
100 INPUT "Halsteads Number of Operators, N1 *; NNI
110 INPUT "Halsteads Number of Operands, N2 "; NN2
120 REM
130 REM ------- Inputs for Decision Content L Complexity ----
140 REM ----- are: LOD, LOP, NC, NV, NP, NO, NSC, NSD, VS ---
150 REM
160 INPUT "Number of Characters in Character Set, Cs z *; CS
170 INPUT "Number of Declarations, Dz"; LOD
180 INPUT "Number of Control Statements, Sc z "; LOP
190 INPUT "Number of Characters in the Program, Nc z "; NC
200 INPUT "Tot. No. of Unique Variables, Nv = "; NV
210 INPUT "Tot. No. of Digit Values, Nd a '; ND
220 INPUT "Tot. No. of Relational Ops + Procedures, Np = "; NP
230 INPUT "No. of Available Control Statements, Nsc z '; NSC
240 INPUT "No. of Avail. Declarative Statements. Nsd z *; NSD
250 INPUT 'No. of Possibilities for Variables, Vs a *; VS
260 REM
270 REM -------- Calculate Halsteads Length L Volume --------
280 REM -- Variables are: LENGTH, VOLUME, N1, N2, NNI, NN2 --
290 REM
300 LENGTH =(N1 * (LOG(Nl)/LOG(2))) + (N2 * (LOG(N2)/LOG(2)))
310 VOLUME = (NN1 + NN2) * (LOG (N1 + N2)/LOG (2))
320 REM
330 REM ---------- Input Frequency of Variables -------------
340 REM ----- Variables used are: NOVAR, NV, VARFREQ(I) -----
350 REM
360 NOVAR z0
370 FOR I=1 TO NV
380 INPUT "Input Frequency of Variable "; VARFREG(l)
390 NOVAR = NOVAR + VARFREQ(I)
400 NEXT I
410 REM
420 REM ------ Input Frequency of Digital Values ------------
430 REM ----- Variables used are: NODIGS, ND, DIGFREQ(I) -----
440 REM
450 NODIGS 0
460 FOR 11 TO ND
470 INPUT "Input Frequency of Digit *; DIGFREQ(I)
480 NODIGS = NODIGS + DIGFREQ(I)
490 NEXT I
500 REM

205

510 REM - Input Frequency of Relational Ops and Procedures --
520 REM --- Variables used are: NOPROCS, NP, PROCFREOH) ----
530 REM
540 NOPROCS =0
550 FOR I=I TO NP
560 INPUT "Input Frequency of Operator/Procedure"; PROCFREO(I)
570 NOPROCS = NOPROCS + PROCFREG(l)
580 NEXT 1
590 REM ------------------ Clear Screen ---------------------
600 PRINT CHR$(12)
610 REM
620 REM --------- Calculate for the Declaration Part --------
630 REM Var's used are: TEMP, LOD, NSO, NY, VS, 1, IDEC

640 REM
650 TEMP 0
660 PRINT *Plexus, P
670 IDEC 0
680 IF LOD =0 OR NSD 0 THEN GOTO 830
690 PRINT LOD; *Log"; NSD; "+";

700 FOR 11 TO NY
710 TEMP TEMP * (LOG (VS - (I - IMLOG (2))

720 PRINT "Log"; VS-(I-1);
730 IF I< NY THEN PRINT "+*; ELSE PRINT
740 NEXT I
750 IDEC = LOD * (LOG (NSD)/LOG (2)) + TEMP
760 REM
770 REM ----------- Calculate for the Procedure Part --------
780 REM Var's are: TEMPI, NY, VARFREQ(I), NOVAR, TEMP2 ---
790 REM TEMP3. NP. PROCFREQM, NOPROCS, NO, L, NSC, LOP -
800 REM ------- and DIGFREQ(I), NODIGS ----------------------
810 REM
820 REM
830 TEMPI 0
840 PRINT +"; LOP; "Log'; NSC; "+";
850 FOR 11 TO NY
860 TEMPI TEMPI + VARFREO(I)*(LOG(NOVAR/VARFREO(I))/LOG(2))
870 PRINT VARFREO(l); "Log"; NOVAR; "/"; VARFREO(I);
880 IF I< NY THEN PRINT "+"; ELSE PRINT
890 NEXT I
900 TEMP2 0
910 PRINT +.
920 FOR 11 TO ND
930 TEMP2 TEMP2+DIGFREO(I)*(LOG(NODIGS/DIGFREO(I))/LOG(2))
940 PRINT DIGFREO(I); "Log"; NODIGS; */*; DIGFREO(l);
950 IF I< ND THEN PRINT "+"; ELSE PRINT
960 NEXT 1
970 TEMP3 0
980 PRINT +.
990 FOR 11 TO NP
1000 TEMP3=TEMP3+PROCFREQ(I)*(LOG(NOPROCS/PROCFREO(l))/LOG(2))
1010 PRINT PROCFREQ(I): "Log'; NOPROCS; */*; PROCFREO(l);
1020 IF I(NP THEN PRINT "+"; ELSE PRINT
1030 NEXT 1
1040 REM
1050 REM ------- Calculate the Plexus as a Sum ----------
1060 REM Var's used: INFO, LOP, NSC, TEMPI, TEMP2, IDEC --
1070 REM
1080 INFO LOP * (LOG(NSC)/LOG(2))+TEMP1+TEMP2+TEMP3+IDEC
1090 REM
1100 REM -------- Calculates the Decision Content -----------

206

1110 REM -------- Variables used are: DECISION, NC ----------
1120 REM
1130 DECISION = NC * (LOG (CS)/LOG (2))
1140 REM ------------ Clear Screen --------------------------
1150 REM PRINT CHR$112)
1160 REM
1170 REM ---------- Display the Results ---------------------
1180 REM -- Var's used: INFO, DECISION, REDUNDANCY. ERRORS
1190 REM --------- and N1, N2. NN1, NN2, VOLUME, LENGTH -----
1200 REM
1210 PRINT
1220 PRINT " Plexus, P =*; INFO
1230 PRINT " Decision Content =*; DECISION
1240 REDUNDANCY = (DECISION - INFO) / DECISION * 100
1250 PRINT "Relative Redundancy a*; REDUNDANCY; *X"
1260 ERRORS 100 - REDUNDANCY
1270 PRINT Error-Proneness z"; ERRORS; "Z*
1280 PRINT
1290 PRINT
1300 PRINT "Halsteads Length. N* =*; N1; "Log'; N1; " + '; N2;
1310 PRINT *Log"; N2; " z *; LENGTH
1320 PRINT "Halsteads Volume, V z*; NN1+NN2; *Log"; N1+N2;
1330 PRINT "z"; VOLUME
1340 PRINT
1350 PRINT
1360 PRINT
1370 GOTO 80

207

APPENDIX 4

Graph I

Fallibility Index against the Number of Characters (Nc) to write

a Program

[Source: Chapter 4.21

20-

Iß-

16-

14-

12-

10-

8-

6-

4-

2-

0-,
1

F

Fortran

Basic

Pascal

so 100 150 200 250 300 350 400

Number of Characters (NO

Graph 2

The Probability of a Correct Interpretation of a Variable for

Varying Numbers of Characters

[Source: Chapter 4.3 and Table 23

0.14-

0.12- 1
1

0.10-1
0.08-

0.06-1
1

0.04- 1
1

0.02-1
1

0-+-
0

p
r
0
b
a

208

5 10 15 20
Number of Characters

Graph 3

The Plexus Metric and Halsteads Volume Metric against the Number

of Characters (Nc) -to write a Program.

[Source: Chapter 4.4 and Appendix 23

130-1
120-1
110-1

80-1
70-1
60- 1
so- Volume
40-1 Plexus
30-1
20- 1 4

10-1
0 --

40 50 60 70 80 90 100 110 120
Number of Characters (NO

v

Graph 4

Comparison of the Plexus Metric and Halsteads Volume Metric.

[Source: Chapter 4.4 and Appendix 21

140- 1
130-1
120-1
110-1
100-1

90- 1
80- 1

70- 1
60- 1
50-1
40- 1

30- 1
20- 1
10-1

0 --
20 30 40 50 60 70 80 90 100

Plexus

v

209

Graph 5

The Plexus Metric and Error-Proneness

[Source: Chapter 4'. 4 and Appendix 23

70-1
PI
1 60-1
e
x
u
s 40-

30-1 #

20-1

0 --
89 10 11 12 13 14 15 16

Error-Proneness (Z)

Graph 6

The Plexus Metric and Halstead's Volume Metric Plotted against

the Number of Characters to write a Program

- Declaration Part Included.

[Source: Chapter 4.4 and Table 31

v 480-1
0
1 420-

u
m 360-1
e1

300-1
&1

240-
p
1
e
x
U
S

Volume ---- Plexus

- --.

IF
180-1 0p

IrBa
120-1 taS

Irsc
60-1 aia

Inc1
0 --

0 40 80 120 160 200 240 280 320
Number of Characters (Nc)

210

Graph 7

v

Halstead's Volume Metric and the Plexus Metric against the

Number of Characters'to write a Program

- Declaration Part Omitted.

[Source: Chapter 4.4 and Table 33

Volume ---- Plexus

300-1
1

240-1
F
oP
ra

180-1 tsa
IrcS
Iaai
In1c

120 ---------------------------------- ------------
100 110 120 160 200 240

Number of Characters (Nc)

Graph 8

Plexus Metric plotted against Error-Proneness where the

Declaration Parts are Included and Omitted.

[Source: Chapter 4.4-and Table 31
with Declarations (w) without Declarations'(.)

480-1 XP

420-1

p 360-1
1
e
x
u 300-
s

240-

x

180 --
0 10 20 30 40

Error-Proneness (Z)

211

B= Basic

P= Pascal

Fa Fortran

I

Graph 9

The Plexus Metric plotted against the Fallibility Index

[Source: Chapter 4.41

with Declarations W without Declarations

480-

p 420-
1
e
x
u 360-
s

300-1 Fortran

240 --
0 10 20 30 40

Fallibility Index (%)

212

APPENDIX 5

Table 1. Analysis of the Literature Survey

1%

----------- ---- AppLication by ----------- Scientific ------ ----------- ----------- ------- -------- ------ ------- --------
Risk Level. inc. Infra Indust. High Sub-

Factors
- -

Academic
- --

DP
- --

structure Control
-

Risk

Total

Def.

Metric
- -------

Totat
- ------ --- ---

1. Specification/Design
-------- -
(2)

- --
(M

(7)

(6) (11) (40) (11) (6) (57)

1.1 Formal. 2 a 5 3 7 25, 5 2 32
1.2 Functional. 2 1 2 2 7 3 2 12
1.3 Language 1 2 3 2 2 7
1.4 Structure 4 1 5 1 - 6

2. Languages (10) (17) (10) (8) (21) (66) (5) (3) (74)
2.1 ADA 1 3 4 4
2.2 RTL12 L CORAL I I
2.3 BASIC I I
2.4 PASCAL 1 1 1 4 7 7
2.5 FORTRAN 3 3 1 4 it it
2.6 AssembLer 1 1 2 2
2.7 Structured 4 9 3 3 3 22 3 25

Programming
2.6 S/W Redundancy I 1 1 3 6 6
2.9 S/W Metrics 1 4 3 4 12 2 3 17

3. Support Environment
and Testing (10) (17) (5) (9) 115) Q (66) (6) (8) (80)

3.1 Most Systems 3 1 4 4
3.2 TooLsets 4 1 1 6 6
3.3 Test MadeLs 5 6 1 8 20 4 7 31
3.4 Correctness Proo l's I 1 1 8 11 2 1 14
3.5 Validation L I 1 2 2 6 6

Verifications
3.6 Path L Program 3 1 3 7 7

Proving
3.7 Simulation 1 6 2 3 12 12

4. Operational.
Env't & PersonneL (5) (5) (2) (5) (5) (22) (3) (4) (29)
4.1 PsychoLogicaL 3 2 2 1 3 11 11
4.2 Personal 1 1 2 4 4

Environment
4.3 Hardware Failure 1 2 3 3 4 to
4.4 Documentation 2 2 4 4

----------------------- TOTALS

------------ (27)

------ (53)

----------- (24)

----------- (28)

------- (62)

-------- (194,

------- (25)

-------- (21)

------- (240)

213

Table 2. Analysis of Data Gathered from the Experiment

Analysis of CORRECT Answers

No. ChaNcters 1234567a9 10 11 12 13 t4 15 16 17 18 19 20 TotaL

--- -- -- ---- - ------ Mneikonici
I- Frequency 03 33 20 14 6 18 6212001100000 107

-- --------- -....... ft
--- -- - ------ ------------------------------- ft

2- Frequency 0256 16 6 20 10 a4501100a000 64

-- - ---- - -- ----- w ---- - ----- - ----- --
-- --------------- -- a--aa - ------ w-a--a

3- Frequency 05558 12 43 24 020100000000 105

-- -- -------- --- - -- -- ----------- - --------- ft ft ---------------- - --- ft
------- - -- a ------------- - ---------------- ft ft -------

4- Frequency 00343 11 76965961221000 75

-- ----- -- ----- - ------ - --- - ------------------------- a ----------- ftft -----------------------------
-- ---------- - ---------------_- a -------------------------- - ------------------------- --
5- Frequency 00 12 6 10 10 it 6 10 75642011001 92

__. _w -- -------------------- - ------------ a ------------------------ - ---------
-- --- - --- - ----- --- ---------- ------------------------------ ft ---------------------- --w -------

6- Frequency 00055642648143110110 52

------ w- --- - ------- ft --- - ------------- w ----------- ft-a ------------ aa a.
-- - ---- --- --------------- - ------- ft ---------------------- ---- ft -------- ft--ft -------- ft ---------

7- Frequency 0111165017966131A255 64

------------------- ft -------------- --------------------------
--- - ------- a w W-wa ------- ft--w-.

8- Frequency 002 10 6 It 11 27aa8251112? 2 B9

w. - --- --------- - -------- a --------------------------------- --- - -- - ---------- ft ----- ft --------- ft ----------- w--ft w.
ALL - Frequency 0 It 61 57 63 68 19 56 43 39 42 31 23 14 a&658a 668

- -- - --- ---- - --- ww ------ - ----- --- - -- - ------ ------- ft ------------------------------- a ---------------------- W-

214

Analysis of INCORRECT Answers

No. Characters 0123456789 10 It 12 U t4 15 16 17 IS 19 20 Tot.

-- --- - ---- ------ - -- - ---------------- - -- ------------ --- ------- - ------- - -- Mnemonict
I- Frequency a00431021100000000000 12

-- -------- - -------- -- -- - ---------- -
- -- --- ---- -

2- Frequency 0029a5563300101000000 35

- ------ - ---- --------
3- Frequency 2a1142030100000000000 14

--- -- - -- - -- ------
4- Frequency 0004114 10 544231320a000 44

- ---- -- ------- - -- ----- -- ------- - ------------ -- ------------------- - ------- ---
5- Frequency a015453223010001000a0 27

-- ---------- -- ---------- -- ---- - ----- - --- - -- - ------ --- -----
6- Frequency 102367 20 54534142a00000 67

- ----- - ---- - ------------ - ------------ - ----- ----- ---- - --- ------ ---------- ---------
7- Frequency 310331375517321011125 55

------ --- - ------ - -- -- --------- - -- - --- - --- - -- - ----- - --------------------- - -------------------
8- Frequency 210154013630110020000 30

- -- ------ -- - -- - ---- - -- --- - ----------------- - --------------- - --- - -- - -------------
ALL - Frequency a26 30 26 26 35 36 23 28 It 14 987331125 284

---- -------------- - --------------------- - ------------------------------ - -- --- ---------- - ------ --------- --- ---- - ----- ---

215

Analysis of ALL Answers

No. Characters 01234567a9 10 11 12 13 14 15 16 17 IS 19 20 Tot.

---------------------- ---------------------------- Mnemonic;
I- Frequency 003 37 23 15 6 20 7312001100a00 119

---- - ----- ----- ---- --- --------
-- -- -------------- - -- - --------- - ---- -- ------

2- Frequency 004 14 6 21 It 26 13 11 45112000000 119

--- - ---- --------- --
3- Frequency 20669 10 12 46 24 120100000000 119

4- Frequency 00a754 15 17 It 13 10 7 12 74421000 119

5- Frequency 001 17 10 15 13 13 S 13 76642111001 119

-- --------

6- Frequency 1023 It 12 26 96 11 7 12 285110110 119

- -- - --------
7- Frequency 3114429 12 568 16 98232437 10 119

--
- ----- - -------- - -- - ------ -

8- Frequency 2103 15 10 11 12 5 13 It 8935131222 119

----- --------------- - -- - ----- - ----------------------- - -------- - ---------- ---
ALL - Frequency 82 17 91 83 89 103 155 79 71 50 56 40 31 21 It 976 10 13 951,

-- ---- --- ----- - ---- - ------ - --- - ------ - ----------------------------------- - --------- ----
- --------- - ---------- - ----------------------------- - --- --- -----

The Probability of the Correct Interpretation of a Variable

Nc PC Nc PC Nc PC Nc PC

1 0.000 6 0.071 11 0.044 16 0.006
2 0.012 7 0.125 12 0.033 17 0.006
3 0.064 a 0.059 13 0.024 18 0.005
4 0.060 9 0.045 14 0.015 19 0.008
5 0.066 10 0.041 15 0.008 20 0.008

where Ne is the number of characters in the variable and

Pc is the probability of a correct interpretation of the
variable.

216

Table 3. Data Used in the Plexus Calculations

nt n2 NJ N, l Cs D Sc Nc mv Nd Np Nsc Nsd Vs Fvi Fdi Fpi N' vHprE

Lang. 3546 64 25 88 321 12 2 26 211 16.36 30.0 528.0 41.8 92.1 7.9

MIt
I

Lang. 3647 64 13 43 33103 26 211 20.26 34.1 258.0 38.0 85.3 14.7

(2)

Pascat 5M 19 38 96 14 t4 312 13 5 10 26 7 33696 21 12 86.70 257.8 2054.5 483.0 76.5 23.5

(1) 424
311
521
311
2t
41
11
t1
31
1
1
1

(2) 161 (Dedarations not incLuded) 86.70 257.8 1060.2 248.2 76.6 23.4

BASIC 5 16 19 39 68 1 14 216 799 36 9 26 514 75.60 254.7 1314.9 283.7 78.4 2t. 6
M421

241
312
2t 12
514
331

11
t1

(2) 206 (Dedarations not incLuded) 75.60 254.7 1254 248.9 80.2 t9.8

FORTRAN 6 19 19 48 68 1 14 181 7 12 10 29 9 26 521 96.22 31t. 1 1101.8 304.1 72.4 27.6

M26t
221
321
214
611

It
51
21
1 it
2
1

(2) 156 (Dedarations not incLuded) 96.22 311.1 949.6 269.3 71.6 26.4

Note: The definition of the column headers is to be found in

Chapter 4.4.

217

