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ABSTRACT

This thesis is concerned with the safety of industrial

controllers which incorporate software. Software safety is compared
with software reliability as a means of discussing the special
concerns of safety. Definitions are given for the terms hazard,
risk, danger and safe. A relationship between these terms has been
attempted and the philosophy of safety 1s discussed. A formal
definition of software safety 1is gilven. The factors influencing the

development of software are examined. The subjectivity of safety 1s

discussed in the context of safety measurement being a conjoint
measurement. Methods of assessing the risk resulting from the use
of software are described along with a discussion on the
impracticability of using state transition diagrams to isolate
catastrophic fallure conditions. Categories of danger are discussed
and three categories are advanced. The structuring of the software
for safety is discussed and the principle of using safety modules and
integrity locks is proposed. In discussing the reasons for errors
remaining present in the software after testing two methods of
measurement are suggested; Plexus and Fallibility Index. The need
to declare variables is discussed.

An experiment involving 119 volunteers was conducted to examine
the influence of the length of variable names on the correct usage.
It was found that variables with a character length of T have a
better probability of correct interpretation than others.

The methods of assessing safety are discussed and the
measurements proposed were applied to a commercially avallable
product in the form of a Software Safety Audit.

It 1s concluded that some aspects of the safety of controllers
incorporating software can be quantified and that further research is

needed.
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CHAPTER 1

Introduction

Previous research has attempted to isolate those factors of
software production which influence the incidence of software errors.
However, previous research was reviewed for this thesis and it was
found not to be concerned with the safety of industrial-based
systems., Previous research has been mainly concerned with the non-
industrial applications of computing though some has relevance to
this thesis.

The research for this thesis was concerned with studying the
safety of industrial-based controllers which also incorporate
software. The study was concerned with the development cycle of the
software from the specification and the development environment to
the programming language, testing and maintenance. As a part of the
research a set of metrics for assessing various features of the
software have been developed to give some guidance on the structuring
of such systems. The metrics are intended to allow comparisons to
be made between different software development procedures.

Since errors in the software can be considered as a risk and the
combination of a risk and a hazard implies danger then it is asserted

that software errors are dangerous.

In this thesis an attempt has been made at providing guidelines
for the production of safe software based on the research,
In Chapter 2 a survey 1is made of the current state of knowledge

of various factors considered to influence software.
Chapter 3 examines the difficulty of assessing safety from the

basis of structural elements and develops some methods of
quantification based on certain features of the software.

Chapter & discusses the reasons for it being impracticable to



remove all errors and indicates where some of the errors arise.
Chapter 5 reports on work undertaken on a real product to assess
the safety of the product and makes observations as to where the
difficulties lay in conducting such a safety assessment.
Chapter 6 includes the conclusions and recommendations for

further work. It 1is concluded that no ultimate solution was found

during the research and there is a considerable amount of work left

to done.



1.1 Problem Definition

The reduction in the cost of computers has meant a corresponding
increase in the use of computers for industrial-based control
engineering applications. In such applications the consequences of
an error are reflected in new risks to capital equipment, human life
and the natural environment, The new risks are a consequence of
implementing the control strategy in software when replacing ?xisting

technologies. In particular, microprocessors introduce new kinds of

risk.

The application of microprocessors in industrial-based control

systems makes it necessary to be able to assess application programs

according to some specified safety standards, though no method of

measuring safety exists and a safety standard has not been

formulated.

In Great Britain there are legal considerations when applying
industrial controllers to hazard-related processes; there 1s a
contractual obligation of the User to inform the Supplier of safety
requirements and, conversely, the Supplier has én obligation to

inform the User of any safety related issues that have been

identified in the controller. Within the framework of commercial
activity due regard must also be given to the statutory instruments,

such as the "Health and Safety at Work etc Act, 1974°.

The Health and Safety at Work Act 'is administered by the Health
and Safety Commission through its Health and Safety Executive (HSE)
which has six Inspectorates, three of which are directly relevant to

this thesis: the Nuclear Installations Inspectorate, the Mines and

Quarries Inspectorate and the Factory Inspectorate.

In hazard-related industrial control systems there 1is still a
need to establish a method for assessing the safety of software once

it has been developed and before it becomes coperational with respect



to the plant that it will control. Some software test procedures
check the software for correct operation within a limited range of.
test data sets,. These checks may be unsatisfactory for industrial
controllers incorporating software and which may be used in a
hazardous application., No standard testing method exists to
demonstrate the safety of software in such a situation. Yet a
complete industrial control system may comprise software packages
from different sources of supply and sometimes developed for a
different range of computers to the target computer under test.

Safety of industrial control software should consider the
software, the run-time environment that the software is expected to
work in and the function of the software. Measurement of the
software safety should indicate the extent to which the software can
be confidently expected to work safely: both safe and consistent in
operation when controlling equipment.

Since software errors are hazardous, the containment of the

hazard within acceptable limits is called software safety in this

thesis.

The safety of software is an area of research where there is

little published evidence of research.
1.1.1 Definitions
Throughout the thesis the terms ‘hazard', ‘risk', 'dangerous’
and "safe' are used and to avoid confusion over the terms a
definition has been placed on each of the terms:
- 'Hazard®' describes a condition with the potential to cause
harm; to capital equipment, people or the natural environment
- 'Risk’ is used to describe the probability of a hazard
materialising

- 'Dangerous’ is used to describe a situation where the level of

risk of a particular hazard is considered to be unacceptable



- "Safe’ is used to describe a situation where the level of risk
is judged to be acceptable,
In all cases people need-to be present to transform a hazard into a
dangerous state.
Additionally, the term ‘software' is used to refer to computer

programs written to meet a specific industrial control application.



1.2 Safety

"Reliability’ and 'safety’ are sometimes considered to be

synonymous but in this thesis they are held to be related subjects
with different goals.

Reliability is often associated with the term 'reliance’ to mean
the dependence a user places on a system, when reliability is a
measure of the success of achieving a desired operation.

Safety is an emotive topic and the assessment of safety is a
subjective judgement but 'safe' intuitively suggests some absolute
measure that the risk is 'acceptable’ or does not exist. The use of
the term "acceptable’ must consider costs, benefits and to whom the
risk is considered acceptable: the supplier, the procurer or the
user. Therefore, acceptable should be used sparingly to express
some agreement hetween the parties exposed to the risk of the costs
and benefits.

Since hazard is used to describe a condition with the potential
to cause harm then it follows that for a hazard to materialise then
the risk needs to approach unity. As the risk increases the

threshold of acceptability will be crossed at a cusp point and the
state will be considered to be unsafe which implies, if people are
present, that the state is dangerous.

Individual thresholds of danger will vary but it is possible to
postulate a set of thresholds which categorise danger according to
three levels of danger; serious, major and minor. Placing any state
into one of these categories suggests that the level of danger can be

expressed by such a term as
Level of Danger = P(r) . Hn
where P{r) is the probability of the hazard materialising, risk

Hn is some subjectively assessed number associated with

the hazard.



P(r) is the sum of all the events in the event space which can
cause the hazard and P{r) is made up of a number of sets of events.
The relationship of these sets of events to P(r) can be shown by
using Venn diagrams. As an example, consider some computer-
controlled machinery.

In the simplest case, Figure 1.2.1. a), the set of events
associated with the machinery alone being a hazard are given as P1
and the event space is consldered to be the universe of events
unbounded. Since no people are present then, by definition, there
1s no danger.

When people are involved then there is a set of events
associated only with the environment being the hazard, P2°. The set
of states intersecting P1’' and P2', given as P12', are those events
assoclated with the machinery and the environment. When the
machinery is being operated by an Operator without the aid of a
~ computer then the event space can be considered to be bounded to
include only those events associated with the operation of the
machinery, Figure 1.2.1. b),

When the control of the machinery includes some form of computer
control the boundary event space changes to include a set of events

associated with the computer control alone being the hazard, P3'°.
The intersection of P1'', P2'' and P3'’' is given as P123'' and is the
set of events associated with the machinery and the environment and
the computer control causing the hazard, Figure 1.2.1. c).

The probability of events in the intersection of P2'"' and P3"°
causing a hazard is low and the set of events in the intersection of
P1°" and P3'' does not involve people sO., by definition, cannot be
considered as dangerous.

By including computer control on the machinery new risks are

introduced. However, the introduction of computer control, P3'"°,



may also reduce the set of events associated with the machilnery

alone, P1''', and so distort the boundary of the event space, Figure

1.2.1, d).

Figure 1.2.1 Venn Diagrams for Computer-Controlled Machinery
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1.3 Software Reliability

Having established what is meant by the term safety and that
software errors can affect safety then it is necessary to appreciate
the concepts of software reliability before discussing what is meant
by software safety.

Definitions of software reliability range from an assessment of
the correctness of a program with respect to the requirements
specification through to a count of the number of programming errors
1ln sample programs.

The assessment of a program's reliability necessitates some
knowledge of the programs requirements but the requirements
specification can only be regarded as a necessary design document.

A requirement specification will state what the software 1s required
to do and may not include statements on safety although 1t may be the
case that safety is to be maintained even when the software 1is
abused. A requirement specification 1s insufficient to 1nstil
confidence in the correct and safe working of a program or to ensure

that the program satisfies the requirements.

10



1.4 Software Safety
The published material on software reliability presented models

for indicating the number of software errors found and aimed to
predict how many errors still existed. The models also consider
that all errors present have the same hazard. The concern of this
thesis is the extent to which a risk exists when an error 1is
experienced. The Oxford English Dictionary defines safety as being
the noun of the adjective safe: "out of danger: not involving risk:
cautious: .....". The concern was with the maintenance of an
operational condition which, whilst being reliable, 1s also free from
danger, therefore, it is conjectured that the research for this
thesis was on Software Safety.

Though the terms ‘reliability’ and 'safety’' are frequently
interchanged they have different interpretations. An item of
software may perform in an unintended manner and yet be safe in
operation. Equally, software can be unsafe whilst functioning as
intended in the specification. Reliability is concerned with all
fallures., Safety 1s concerned with the consequences of failures
which may result in human or economic cost. Some failures incur
more economic-soclal costs than others and so some errors are
considered to be more serious than others.

There has been much research into Software Reliability concerned
with the intended function of the software but little specifically on
Software Safety.

Current software reliability theory attempts to quantify errors
by predicting the number of errors expected to exist,. The theories
give equal wgight to each error predicted to exist. By contrast, 1in
safety assessment it is the intention to qualify errors by weighting

them according to the resultant economic-soclal cost.

Safety and reliability have different goals due to the differing

11



emphasis, Decision making in a safety-related system involves

moral, ethical and economic factors and requires a knowledge of the

difference in emphasis between reliability and safety. If this

difference is not taken into account then less information will be
avallable on which to base the decision. Therefore, software safety
should be dealt with as a related but separate issue from software
reliability.

In this thesis software safety is defined as:

"The confidence that a given program will, for a given run-time
environment, perform its function in a controlled and
reproducible manner within an acceptable evaluation of risk."”

The term ‘'acceptable evaluation of risk' in the definition

recognises that safety 1s a subjective judgement of which software is
safe and which is unsafe. The subjectiveness in evaluating risk is
a value judgement on the damage that could arise in possible
situations and was reflected in the Report of the Court of Inquiry

into the Flixborough Disaster [1], Para. 197.

Using propositional logic it is possible to formally state the
definition of software safety such that there are three conditions to

be satisfied:
1. When the current state, si, 1s contained in a set of safe
states S, there 1s a function F that will transform the current state

to the next state, s3, which 1s also contained in the set of safe

states,

Vs € S, (Fls ) = s T s S)
1 1 J 3

2. When the current state is contained in a set of unsafe
states, U, there is a function that will transform the current state

to the next state, which is contained in the set of safe states,

Ys € U, (Fls ) =5 ) s S)
i i 3 J

12



3. When the current state 1s contained in a set of unsafe states

and there does not exist a set of safe states for the current state

to be transformed to, then there is a function that will transform

the current state to the next state with the lowest risk

Ys € U, if; s € S such that F(s ) s then
1 J i 3

Fls ) = s _) Risk ¢ Risk
i K (sk) (sJ) |
where S is a set of states judged to be "safe’

U is a set of states judged to be ‘unsafe’,

Y is the universal quantifier
4 is the existential operator
In asserting that Risk ¢ Risk consideration needs to be

{sk) (s9)
given to the time taken for the system to achieve state sk.

There at least two strategies that can be adopted when

considering the consequences of time. If Risk 1s considered to

[sk)
be lower than Risk , yet more time is required for the system to

(sl)
achieve state sk than state sl, a judgement can be made whether

safety 1s best served by achieving state sk with a low risk in a
longer time than state sl. State sl has a higher risk than state sk
but a lower risk than state sj and can be achieved in a short time.

Therefore, condition 3 can be qualified:

Ja. vs € U, if} s € S such that Fl{s ) = s ¢then
1 ] 1 "
F{s ) = s T) Risk < Risk .
i K {sk) {s3)
iff Risk 7 < T A { Risk ¢ Risk > Risk )
{sk) (sk) (sl) (sk) {s9) (sl)

where T 1s the time required to achieve a particular state from
the current state, si. This strategy is appropriate to those

instances when it is only possible to one state ahead.
If 1t is possible to look ahead more than one state an

alternative strategy might be to achieve a state with a higher risk

13



for a short time in the knowledge that a state with a lower risk will

be achieved ultimately. In this strategy safety could be expressed
as the integral of the level of danger against time
Safety = fP(rl . Hn dt

The value of Hn is subjectively judged and could influence which
strategy to adopt due to the level of confidence in the judgement.

The definition of safety can be formally stated but what 1is
considered to be a set of "safe’ states or 'unsafe' states depends on
a subjective judgement based on knowledge, experience, emotion and

legislation of what is acceptable at the time.

14
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CHAPTER 2

Factors Affecting Software Safety

In this chapter an argument is advanced that the assessment of
safety is subjective and will remain so until some method of
measurement can be found which 1s not a conjoint measurement.

Factors found during a literature survey, which have been considered
by other researchers to influence software, are also examined in the
context of each stage of the software development process before
implementation and following implementation.

There has been a substantial amount of material published
attempting to establish those factors having an influence on the
production of software. Since there has been a substantial amount
of relevant material published only selected material has been

ldentified and referenced.

16



2.1 The Subjectivity of Safety

Software can be adversely affected by certain factors and it
follows that the safety of an industrial process resulting from the
use of the software can also be affected by these same factors. The
factors considered in this chapter are those asserted by the
respective researchers to have an undesirable influence on software.
These factors are considered with the emphasis being on the safety of
the goftware. The term 'safety of the software' is used to mean the
safety of the system as a result of using software rather than to
mean an assurance that the software is itself 'safe’ from errors.

To confidentally install a controller incorporating software it
1s necessary for some checks to be carried out leading to
certification of the software for use in safety-related systems. In
a safety—conscious industry 1t will be normal practice for these
checks to be undertaken by a third party, separate from the User or
Supplier, who 1s also aware of the requirements imposed through
legislation or common by "best world practice’. The relationships

between the Supplier, the User, the Certification Authority and the

Health and Safety Executive are represented diagramatically in Figure

2.1.1 with the solidity of the line reflecting the strength of the

relationship.

Figure 2.1.1 Relationship between the parties in the
certification process.

Certification
- Authority
/ N
~ ™~ \
s
User Supplier
" HSE ©

The form that the certification takes will depend on the

experience and knowledge of the User, of the Supplier, of the

117
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Certification Authority and on Lhe current legal requirements. The
form of the certification will also be influenced by the state of
knowledge of the certification methods.

The certification of the design of any equipment needs to be
comprehensive. The difficulty of undertaking a comprehensive design

study was raised in the Court of Inquiry into the Flixborough
Disaster, [14] paras. 191-193, when it discussed in general terms the
probabilities of the "8~inch hypothesis” and the "20-inch
hypothesis”. The Court decided to refer to a special committee,
paras. 217-219, the concern of a major disaster resulting from the
design of process plant and equipment.

The Danish organisation Elektronik Centralen, [17], have issued

a draft directive on the testing of software used in control and

surveillance systems. The level of safety is determined by

assessing observable actions called ‘qualities’' which are considered

to influence the safety of software. It is difficult to use the

assessment as a comparison between two dissimilar systems since there

are no quantitative measurements. Since these qualities are
subjective observations made by the assessor of the software at the

end of the whole development they have not been used as the framework
for this Chapter.

Software production factors such as the choice of programming
language and data structures, programming methodology, quality

assurance and project standards are sometimes asserted to influence

software production.

One researcher, Rault [59), surveyed the published work on the

production of high quality software and concluded that there was a
need for research into what he called “quality control® and listed

some of the factors to be considered:; ‘'complexity, comprehensibility,

usability, modularity, reusability, adaptability, testability,

18



sortability, linkability, robustness with respect to user mis-
operations, and so forth, ' and suggested some methods of measuring
these factors. These factors are vague and concerned with assessing
the end-product, the software, against a set of qualities which are
not observable.

At each stage of the development of software there i1s a choice
to he made between competing methods and techniques and in each case
there are some good and some bad ones. The choice of method or'
technique to use will influence the safety of the software but, as
the literature survey will show, there has been competing assertions.

Following the literature survey, the factors in this thesis have
been grouped into four sections covering the stages of the
development process before implementation and after implementation.
The sections are:

Specification and Design

Programming Language and Programming Structure
Support Environment and Testing Strategy
Operational and Psychological Factors

Table 1 contains an analysis of the frequency of occurrence of
these factors (and their subsets) by application area. The totals

are for each set of factors found in the surveyed works.
The sections of the survey assume that undesirable influences

can introduce unsafety at each stage of the software development

process and that each factor can affect the outcome. for safety to

be assessed according to any one factor, the factor must be

observable and quantifiable and not subjective which implies that it
ls possible to attach a numerical value to safety and that safety can

be absolute. It is the desire to quantify safety that has led many
people to relate safety and reliability, when reliability 1s a

quantitative measure and a method has not vet been found of
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quantifying safety.

Calculations of software reliability related to the coding of a
program do not constitute a definition of software reliability but
can be categorised as a software metric,. The assumption i1s that a
well structured program will be more reliable than a badly structured
one due to the clarity of expression of the logic in the program.

The assumption takes account of the possibility that the logic could
be incomplete and also assumes that good structuring 1s always
possible,

One definition based on error rates, from Rault and Boulssou
[60] states that software reliability is;

“the probability that a program works without error during a
given time span on the machine for which it has been intended
and under specified conditions”.

Here the concern is with a statistical probability of faillure
Calculated from a count of the number of errors detected and
corrected over a specified period of time. A problem arises in the
use of elapsed time as a parameter since fallure to function reliably

1s dependent on the occurrence of a specific condition. The history
of the rate of reduction of programming errors will influence over-

confidence in the software if it shows a rapid reduction.

Conversely, if the number of outstanding errors is reduced at a slow
rate, the confidence in that software would be accordingly low.

If 1t 1s assumed that the failure density reduces exponentially

then as the failure density reduces so will the hazard rate

accordingly and demonstrate a steady state operational life. The

effects of wear and aging of mechanical equipment causes random
faillures to be seen in the failure density giving a corresponding

change in the hazard rate. The hazard rate will then be reminlscent

of a bath-tub, which is where the term "bath-tub curve" comes from.
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In software reliability it is assumed that the detection and
correction of software errors reflects an exponential function and
that a point can be reached where an 'acceptable’ number of errors

are considered to exist and after which time continued stable

operation can be expected since software is not affected by aging or

wear-out.

Many industrial control systems will not be changed from theilr
initial operating status during the life of the system. Many will
be subjected to change after some period of stability to reflect the
”revised oﬁerational requlrements. The changes may cause some new
errors to be introduced causing a transient increase in the failure
density and a consequent rise in the hazard rate. Modelling of the
fallure rate of software using the bath-tub curve is useful if

changes to the system are anticipated.

Figure 2.1.2 Failure Density and Hazard Rate
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F(e)

Hazard Rate

16,

E

When the failed unit is repaired and returned to service, a

measure of the reliability of a unit is the term Mean Time Between
Failure, and when the failed unit is not repaired the term Mean Time

To Failure 1s used. It has become accepted practice to use MTTF

when measuring software reliability since any correction applied to
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the program will change its characteristics and can therefore be
regarded as a new instance of the program rather than the erroneous
one being returned to service after repair.

In using MTTF it 1is assumed that an exponential reliability
function with a constant hazard rate, A, applies. However, MTTF
equates to the reciprocal of ?sand the number of failures experilenced
wlll be at least half of all failures, Figure 2.1.3.

Reliability models can be grouped into two maln types:
Deterministic and Bayesian.

Figure 2.1.3 Mean Time To Failure
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In the Deterministic group of models the Jelinski-Moranda and
Musa models dominate the published material, [49]. The assumption
in these models is that the times between detection of errors, T, are

independent random variables, V, and that time, t, 1s conditionally

exponential, so

- At
pdf{t | V) = Ae

and

K= (N+1)¢
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where N initial number of faults

d = contribution to failure rate from each fault

The execution time model of Musa is becoming more widely evident
in published literature and is based on the Jelinski-Moranda Model.
In the Musa model the expected number of errors, n, is given by

n = No [ 1 - expl -Ct/NoTo )]

where No 1s the inherent number of errors

To is the MTTF at start of testing

C is the ‘testing compression factor’' and a ratio of equivalent
operating time in the target environment to the actual

operating time in the test environment.

The present MTTF is given by

Ct

Sraesa——

T = To exp( NoTo )

gilving

. -t
R{t) = Pr{ no failure in (t,t+1)} = exp( T )

To improve the MTTF from T to T°

1 1

= NoTo ( T T°)

8p
and the execution time to achieve this change 1s

MoTo _I_'
At = ( Ln ( T )

Littlewood [41) discounts the use of Mean Time To Failure {(MTTF)
and Mean Time Between Fallure (MTBF) in the context of software as
elapsed time can only be used when a regqular pattern of use can be

demonstrated.

The Littlewood-Verrall model, [42), dominates the Bayeslian group

of models in the published material and also assumes expdnential

reliability growth:

-t
pdf(t | A) = A e
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where / 1s the program failure rate with a gamma distribution:
that the failures do not occur at a constant rate but depends upon
program usage.
The model also assumes that different program errors have

different probabilities of failure. The failure rate is given as

a a-1 = Y(i)A

POF( A ) = L Wi)I L e

r (a)

where a = a-th failure

A

fallure rate

F (a)

gamma function
Y = linear function
giving

a
Flt) = 1 = [ (Y(1i) ) /7 ( t « Y(i) ) ]

d
R(t) = [ (Y(L) ) /7 ( t + ¥(i) ) ]

and
MTTF = Y(i) / a-1
The models discussed above are concerned with the operational

performance of the software, the amount of testing needed and the

software error-rate, There 1s no indication of the seriousness of
the errors estimated to exist or which errors would create a
catastrophic operational malfunction. The rate of detection and

correction of errors does not indicate the risk associated with the
usage of the software.

In chemical plant design studies it is common practice for the
design to be subjected to a range of techniques known by the generic
term "Risk Analysis', [3], in order to determine the risk associated

with the design. The approach is to examine product flow routes and

to ask the question 'would it be nasty if ...'. Probabilities of
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component failure in each route are assessed and submitted to
probabilistic analysis to establish the risk for the total plant.

An analogy between the risks in a chemical plant and the risks
in software is to be seen by viewing the data flow of the software 1in
a similar manner to the material flow of an chemical plant, An
assumption is made that the risk from the software is independent of
the risk from the supporting hardware. Such an assumption is
similar to that applied to other industrial plant when it is assumed
that the risk from each nut and bolt or individual component 1is
acceptable. In both instances, the resulting risk analysis is
subject to external events on each component.

Once a risk analysis has been done then it is a simple task to
repeat the original risk analysis following modifications. The
lnvestigations reported by Taylor, [66), indicate that it may be
possible to apply some risk analysis techniques to software following

detailed examination of the functional specification,

In the Report of the Court of Inquiry into the Flixborough

Disaster, [14]), the following comment is made in para. 196;

"No plant can be made absolutely safe any more than a car,

aeroplane, or home can be made absolutely safe. [t is important
that this is recognised for if it is not, plant, which complies with

whatever may be the requirements of the day tends to be regarded as

absolutely safe and the measure of alertness to risk is thereby

reduced”.

Both 'risk' and 'hazard' can be quantified and the combination
of risk and hazard is called 'danger’'. Since 'safe' has been
defined as being a situation where the level of risk is judged to be

acceptable then it 1s desirable that safety should also be expressed
quantitatively. The word ‘safety’ is often associated in peoples

minds with the word ‘'dangerous' which describes a situation which,

2%



though safe to one observer, may be considered to be unsafe to
another. Dangerous has been defined in this thesis to mean a
situation where the level of risk of a hazard materialising is

unacceptable and will have an undesirable consequence on either
capital equipment or people.
Safety refers to the subjective judgement of potential hazards

within the safety criteria and is based on personal experience

supported by limited measurements of measurable parameters. This 1s
currently not possible.

To understand why safety cannot be expressed in terms of a
quantitative measurement the epistemological and logical foundations
of measurements need to be examined. But before examining the
principles of measurements it i1s necessary to have a picture of the
problem of fitting any scale of measurement to safety.

On the one side of the plcture there is a notion of safety
comprising a conception of what is "safe’ and what is ‘unsafe’', a
model of how safety relates to the world and a definition based on
both of these. On the other side of the picture there is some
method of instrumentation providing a measure which, through
pragmatism, is ordered in to some index. The ordering of the index
1s not influenced by pragmatism alone but is also subject to

influence by the model and the concept.

Figure 2.1.4 The Measurement of Safety.

Pragmatism Instrumentation
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To be able to have some measurement of safety according to the
definition it is necessary to have a mapping function between the
definition and the index. Finkelstein, [19])], formally defines

measurement as being a set of mathematical entitlies Q and a set

numbers N with a mapping function M between the sets such that M maps

the mathematical entities Q@ onto the set of numbers, M:Q -> N. A
scale of measurement S is given as the triplet S = {Q,N,M!}.

If the class of entities Q is considered to be the definition of
safety shown in Figure 2.1.4 and the set of numbers N as being the
index, then in order for safety to be expressed in terms of a
measurement a mapping function M which maps the definition D into the
index I, M:D -> I, 1s needed. Such a mapping function may be

considered as a conjoint measurement which, according to Finkelstein,

relates to a set of measurements having the capacity to assign a
measure to the object and order the measure in a set of measures.
Conjoint measurements, then, are some form of ordering according to
empirical observations (subjective judgement) not rankings which
Finkelstein describes as a comparison against defined standards.
Since defined standards do not exist for the safety of software it 1s
asserted that the safety assessment of software is a subjective
assessment.,

Safety, then, 1s some subjective judgement about the risk of a

hazard materialising and that the risk is acceptable in the social

climate prevailing at the time of the judgement. The Flixborough

Inquiry, [14] para. 197, comments on the acceptability of risks;

“"When Mr Marshall refers to risks exceeding a specific value we

understand him to refer to risks which exceed what at a given time 1s
regarded as socially tolerable, for what is or is not acceptable

depends in the end upon current social tolerance and what 1s regarded

as tolerable at one time may well be regarded as intolerable at
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another. Nowhere perhaps is this more apparent than in the field of
road transport where the construction and use regqulations have, over
the years, become even more stringent”.

The acceptabllity of risk 1s dependant on personal experience
and an appreciation of the probability issues involved. For example
Knox, [37], has suggested that a probability of 100,000:1 is
considered to be safe whilst Starr and colleagues, [64], found that
risks between 10,000,000:1 and 10,000:1 are considered by the general
public as being acceptable since "their likelihood are no more than
belng struck by lightning”. Caution must be expressed when thinklng
of acceptable risks in terms of ratios otherwise the wrong inferrence
may be drawn,

If 1t 1s subjectively assessed that activity X is "safer” than
activity Y then the judgement may accurately reflect a comparison of
some characteristic of the entities. However, the utility of the
safeness of entity Y may be greater than that for entity X, since the
soclal-economic consequences of entity Y being unsafe may be greater
than for entity X. Therefore an assessment of safety must not be
considered in i1solation from the economic-social costs of being
unsafe.

As an example of the subjective nature of safety it can be said
that the accumulation of explosive materials above that licensed by
the Local Authority is not safe. Yet at the lnquiry into the
Flixbofough Disaster it emerged that the site had a licence under the
Petroleum (Consolidation) Act 1928 to hold 8,500 gallons of explosive
material yet the management, including the Safety Officer, had
allowed 367,850 gallons of explosive material to be stock-piled.

The storage of explosive material at a level of 43 times that
licensed was not considered by the Court of Inquiry as unsafe. To

the contrary, the Report commends the management i1n three paragraphs
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(paras 201, 202 and 206) for being “"safety conscious".
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2.2 Specification and Design

The earliest stage of the development of software is the
specification and design. A specification should be an unambiguous
statement of the intended properties (characteristics) of a program.
The unambiguous property of the specification applies whether it 1s a
formal requirements specification or an informal functional
specification and is a guide to the designer about the requirements
of the system. The designer undertakes the design according to his
understanding of the specification.

The produced design is the designer’'s interpretation of the
specification which he will consider to have understood in detail and
vet may have produced a design which does not satisfy the
specification, Such a design may be unsafe in operation due to the
deéigner not having appreciated the safety requirements contained in
the specification,.

Basili and Perricone, [4]), examined two large software systems.
One of the systems was for satellite planning studies and comprised

approximately 90,000 lines of Fortran. The second system, a

"ground-support’ system, was programmed by the same organisation as
the first but the length of the code and the programming language
used were not reported. After analysis Basili and Perricone
reported that on the ‘ground-support’ system only 8% of errors were

attributed to specification errors yet on the satellite system 48] of

all errors were ",.. attributed to incorrect or misinterpreted

functional specifications or requirements”.
2.2.1 Formal Methods

Formal Methods of specification have been developed using Finite

State Machines, Directed Graph, Control Flow Graphs, Modal Maths and
Denotational Semantics. The published works have been largely

concerned with the description of formal methods rather than specifilc
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application examples.

Berg et al, [5], suggest that formal methods are an aid to

software production by stating precisely the requirements and
objectives that the program 1is to satisfy.

When a formal specification is used the designer may consider
there to be minimal specification ambiguities. Acts of faith by the
designer in the infallibility of the specification may lead to a
lower awareness by the Programmer of the requirements and a
consequential increase in human error during the software production.
2.2.2 Functional Specifications

A functional specification is a statement to the customer about
the way the software is expected to react on a given input sequence.
However, the action to be taken following an unanticipated and
unspecified combination of inputs or events is not specified. A
consequence of failing to make a statement about actions following
unexpected events may mean that the designer fails to establish the
unsafe conditions.

Functional specifications have become common in many industrial

lnstallations over the years and are sufficiently detailed for many

purposes according to Kopetz, [38]. The format of a Functional

Specification varies according to the project standards in use within
the organisation and no standard approach to its compilation exists.
Non-standardisation of a specification format may create a situation

where a specification is misinterpreted by a designer who is familiar

with one format of specification and is being requested to prepare a

design against an unfamiliar specification format. Consequently the

designer may overlook some of the safety features of the design.
Pyle, [57], suggests that the requesting authority for the

design may be a Plant Manager who has a deep understanding of his

process requirements but may not have a similar grasp of formal
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specification methods. In such a situation functional
speclfications aid the requesting authority to have confidence that
the overall safety of his plant will be maintained and aids him to
appreciate complex concepts, particularly about the scope of the
proposed solution.

When Functional Specifications are used decisions on algorithms
and their implementation are deliberately not taken at an early stage
in the design process so that unnecessary constraints are not imposed
on the designer. Henry, (28], warns of the dangers of
“overspecification” h?ndering the conception process through limiting
the set of possible solutions.

With functional specifications a confusion may arise about the
precise nature of the function to be performed and lead to the
omission of some aspect of the design aimed at ensuring safety,

Some functional specifications include a separate section on the
safety aspects of the system.
2.2.3 Specification Languages

Ramamoorthy and Ho, [58), state that there is an urgent need for
specification languages l1n which system requirements can be

unambiguously stated and validated.

The belief that specification languages can improve the
consistency of the software design has led to the use of program-like
languages to specify the design. A program written in a high level

programming language describes the means of achieving a given

transitional state without explicitly expressing the effect of the

transition. For a specification to be meaningful to the requesting

authority the effect of the transition needs to be expressed not the
means. Pyle, [57), rejects the use of a specification language to

formally specify a design since it is usual for such a specification

to be useful solely to the designer and not understandable to the
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requesting authority.

Software specified by a specification language can be submitted
for verification using formal methods but the use of a specification
language does not implicitly ensure safety. Berg et al, [5], report
that no major systems have been specified or verified using a
specification language.

2.2.4 Structured Design

Structured design is a software interpretation of the
specification.

Structured design is the arrangement of functional modules into
a conceptual hierarchy of modules comprising the system. To
construct the hierarchy a technique known as stepwise refinement,
Wirth (69), can be used to develop a description of the system and
its data structures. At each step in the refinement process a
consistency check is made to ensure adherence by the design to the
specification and that each development stage reflects the
specification of the previous stage plus revisions.

In order to construct the hierarchy two approaches are common:

bottom-up design and top-down design.

Bottom-up design 1s a method used by many designers when
designing individual modules and arranging the interconnection of the
modules until they meet the requirement. ' Top-down design examines
the requirement and divides it into designs which are definable
portions of the total requirement. The designs can be further
divided until a number of modules have been identified.

Step-wise refinement can induce errors when following either a
purely top-down or purely bottom-up design because of the oversight
of common functions. There is a secondary effect, that of creating

a poor design because of the design being fragmented. These effects

can be assessed qualitatively but not quantitatively.
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2.3 Programming Language and Programming Structure

2.3.1 Programming Language

Whilst the design method influences the system structure and
interactions, the main production tool in software development is the
programming language. The choice of programming language influences
the amount that errors can be introduced into the resulting code,

Young, [71]), gives a comprehensive review of languages for
industrial control systems and makes recommendations on those
languages he considers to be suited for the purpose. Young sets out
six basic criteria for the design of a real-time language; “"security,
readability, flexibility, simplicity, portability and efficiency"”.

Security of a language 1s some measure of the extent to which
errors in the program will be detected by either the compiler or the
run-time support system. Readability concerns the choice of
variable names and legibility such that a conceptual understanding of
the software can be gained by reading the program listing without

recourse to further documentation. Flexibility of a language is the

richness of choice available to a programmer using the language.
Simplicity reflects the time and cost required to train a

programmer in the language and also the reduction of programming

errors caused by misinterpretation of the language. Portability 1is

the ease with which a program written in a particular language is

able to be moved from one computer to another computer without being

dependent on the supporting hardware of either computer. Efficlency

1s some measure of the computational throughput compared with the
constraints imposed by the control system and some measure of the
predictable overheads, such as data manipulation. Young suggests
that of the six criteria security and readability are vital in

safety-related systems.

It was found during the survey of published literature that some
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languages are considered to be more secure than others, due to their
syntax. Horning, [31], gives an insight into some of the problems
of using particular languages.

For high-level programming languages there are fewer errors for
a given function then would be the case with a low-level programming
language. Therefore, the programming langquage has an effect on
software safety.

Comments have been made by Young, [71], and Horning, [31]), about
the type of language to be used for different tasks. Rzevski, [61],
reported on experiments which he asserts show that expert FORTRAN '
programmers write equally reliable and safe programs as expert PASCAL
programmers. Rzevski also reported that he has found it easier for
novices to learn to write reliable programs in PASCAL than in FORTRAN
and attributed the findings to the structuring of the language.

Gannon, [21], suggested that a programming language for real-
time use needs to be secure and cites the implementation of data
typing as an example of language security. A data type specifies
the set of operations that can be applied to objects of that type and
the range of values an object of that type may have, The method
that a programmer adopts to ensure the security of data is a safety
concern since data corruption can lead to incorrect functioning of
programs.

Another aspect of programming languages which Horning, [(31],
considers to be unsafe regardless of the task, is the control
structure. The control structure is influenced by the amount of
code indentation and in an experiment conducted to examine the
effects of the indentation of code Miara et al, [47]), found that
indentation significantly influences the comprehension of the program

by programmers and concluded that the experiment coincided with the

earlier work of Kerninghan and Plauger, [36].
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Reference was found to faulty instructions not being detected
during testing and resulting in unsafe operation. One such report
concerned the early termination of a French meteorological experiment

caused by a controlling satellite issuing the 'abort' command instead
of the 'read’ command and destroying 72 of the 114 weather balloons,
Anderson and Lee (2], and Myers, ([50].

In some languages, notably BASIC and FORTRAN, the declaration of
variables is not required and new variables can be implicitly
declared within the body of the program. The alternative strategy
1s to require that all variables be defined in a declaration block at
the beginning of a program. Languages which do not require
declarations may be considered as unsafe when used for industrial
control since the declaration of variables within the body of the
program promotes ambigulity.

An example of the risks of not requiring declarations of
varlables is the reported loss of a space mission to Venus, Mariner

1, Myers [50], which was reportedly due to an error in a program

written in FORTRAN of the type:
DO 3 I = 1.3

Because Fortran 1s a context-dependent language, the statement
was'treated as an assignment of the value 1.3 to a variable and
allocated DO3I to that variable rather than correctly executing a DO
loop.

Reported losses of equipment through software errors have caused
expensive losses of equipment, There have been no published reports
of i1ncidents endangering human life. Reports such as these
demonstrate the risk of not declaring variables.

The ability to handle non-standard input-output devices such as

Analogue-Digital Convertors and Digital-Analogue Convertors, is

lmportant to the control strategy and needs to be considered when
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selecting a particular language for control. In industrial control
systems programs need to be able to control low-level devices and

problems have been recorded with low-level languages, Pyle [56]. It
1s considered by Pyle to be preferrable to use a high-level language
for such occasions yet there needs to be a capability of programming
low-level device hardware, without needing to resort to machine code.
The language 'C’' has many low-level features as part of the language.

In industrial control systems it is common for an external
stimulus to execute more than one program simultaneously whilst
maintaining synchronism. Such a requirement is called concurrency
and with the development of multi-tasking languages like Ada, [11],
it will be possible to operate concurrent tasks at the program level
rather than through the Operating System. With multi-tasking
languages special problems arise in validating the software for
safety but no evidence of these problems has yet been published.

The mechanism for handling exception conditions in high-level

languages in a safe way 18 important and with the deﬁelopment of the

language Ada exception handling is becoming a feature incorporated

within the language rather than being a feature of the operating

system,

2.3.2 Program Structure

According to Ramamoorthy and Ho, [58], safety of the software

can be improved by using a high-level language and structured

programming techniques,

Understanding the problem that the program 1is attempting to

satisfy 1s important in reducing the extent of errors and may also
ease the task of testing. I1f each module specification states the

internal and external program interfaces the possibility of a
mismatch between, and with, other modules is reduced.

Modularisation of the system allows the programmer to become
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familiar with the module to be worked on and to comprehend the

detalil. But if the program is badly modularised it 1s probable that
the programmer will not be able to appraise the objective of the
program. However, with modularisation there is the need to maintain
standard inter-module interfaces and dependencles.

Unless the programmer has an intimate knowledge of the program
he will not be adequately equipped to test it. If the program 1s
not tested to the best of the programmer’'s ability then only a
limited amount of reliance can be placed on the program.

Structured programming was defined by Dijkstra, (16]), as being a
set of rules for programming to meet just such a requirement. Since
Dijkstra's initial paper on structured programming there have been
many definitions including the definition by Myers, [50) p.130, where
structured programming is defined as “"the attitude of writing code
with the intent of communicating with people instead of machines”.
The Infotech Report, [34]), singles out one definition of structured

programming as; “the task of organising one's thoughts in a way that
leads, in a reasonable time, to an understandable and correct

expression of a computing task".

In structured programming functions are structured into distinct
units which may be subsequently interpretted into program blocks,
procedures or function calls depending on their purpose within the
program, Young, [T1). Statements are arranged in a manner that will
reflect the logical execution of the program, An example is the
interpretation of the general statement "if x obtains then do y
otherwise do 2" into the program statement “IF x THEN y ELSE 2°.
Reduction of abstract function statements into a structured program
removes the need to use GOTO statements but makes use of the basic
control statements; sequence, IF..THEN..ELSE.., WHILE..DO..,

REPEAT..UNTIL.. and CASE..OF...
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Pyle, [55), suggests that structured programming techniques are

not sufficient for industrial control systems without improving on

existing techniques. Pyle bases his argument on the significant

differences he has observed between control software and conventional

sequential programs. The main difference being the need for control

software to respond to external stimulii and for the control software
to be not only correct but also safe. Pyle's argument is more
significant as concurrent software becomes accepted in control
systems.

Structuring of the total system, which may consist of many
programs, influences safety in a positive way according to Allworth,

[1]. If a computer has the facility for interrupts and priority

levels then the commonly used structure in industrial control
computing is to put the frequently run and time-critical programs,
like alarms, on the higher priority levels and the less critical

programs, like reports, on the lower priority levels, The interrupt
facility can then be retained for activating those programs which

must be run without delay from the scheduler of the run-time support

system.

The language chosen for the given task, the style of programming
used and the availability of programming constructs which reflect the
problem structure can result in errors in interpreting a
specification of a program,

2.3.3 Programming Methodologies

As part of the extensive range of work being undertaken on the

language Ada two comprehensive studies have been made into

programming methodologies for embedded computer systems,

In the first study, Pickett et al, [10], a range of formalised
methods of programming methodologies were examined. The study almed

to determine which, if any, existing programming methodologies would
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be most appropriate for British Industry when programming embedded
systems using the language Ada. The complete study described 21
methodologies and outlined a further 15. In the analysis of
methodological features Pickett observed the difficulty of supplying
a reliable system when the requirements may change between the
lnception of the project and its completion. Further, the study
determined that the objectives of a programming methodology suitable
for embedded systems are rigorous checking of the requirements with
the produced system, formality of specification, rapid prototyping of
the system and automation of as many parts of the software production
CyCle as'practical. without a reference to ensuring safe operation of
the software developed on the methodology.

The study concluded that whilst many of the methodologies
provided some of the required features none of the methodologies
fully met the study objectives. Methodologies such as CCS, HDM,
JSD, SARA and VDM were considered to provide most features.

The second study, Wasserman and Freeman, [67), examined 24
methodologies. The study, known as “"Methodman” complemented the
earlier "Steelman” [13], and “Stoneman™, [12), documents., The
emphaslis was on the software issues rather than on the more general
i1ssues of systems engineering. Concern was expressed by the authors
of the study that inadequate analysis is “virtually certain to lead
to project failure” because of a resulting poor specification.

In support of functional specifications the "Methodman® study
asserts that functional specifications are "the basis against which
validation is performed .... whether by acceptance testing or through
formal proof of program correctness.”

Twelve requirements are listed, p.7, as being essential for a

methodology but none specifically refers to the need to ensure a safe

software product. However, in the constraints, p.9, the effects of
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the program on the development cycle are acknowledged as coming from
the severe constraints often placed on embedded systems, for instance
real-time responses and memory usage.

The 'technical characteristics' of a methodology, p.13, for
embedded systems are consldered to include “"reliability - the absence

of errors that lead to system failure®™ and "safety - the avolidance of
run-time failures which could lead to the loss of life or the
occurrence of other catastrophic consequences”. Yet these two
issues were not addressed eilther in the questionnaire or the
evaluations of the responses to the questionnaire.

Both studies, [10]), and, [67), acknowledge the requirement to
ensure safe and reliable programs but failed to determine which, if
any, methodology addressed the requirement of safety and the
developers of the methodologies failed to indicate that the safety

requirement had been addressed in their methodology.
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2.4 Support Environment and Testing Strategy

The provision of software tools, compilers and editors, 1s the
role of the programming support environment., The programming
support environment may also be an aid to the programmer in the
production of programs by maintaining a single project database of
approved interface standards, common modules and standard testing
facilities.
2.4.1 Support Environment

Some published material conflicted on precisely what was the
correct view of a programming support environment but Lehman, [40],
makes a contribution to this conflict of views when he declared that
the programming process is "the transformation of a computer-
application concept into an operational system and the subsequent
evolution of that system to maintain it satisfactory and effective in
its changing operational environment®.

Degano and Levi, in (8] pp.251-264, assert that by making full
use of the resources of the programming support environment the
programmer 1s able to construct a program compatible with those of

the rest of the project and the programmer is able to test his

program in a consistent manner. Although the production of software
with a programming support environment is more efficient in terms of

costs, has a more consistent structure and it is more probable that

testing will have been conducted within a better framework, there 1is

no evidence to suggest that the safety of resulting programs is any

better.

No published material was found to demonstrate how a programming
support environment will influence a program's ability to meet the

required safety criteria.
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2.4.2 Test Strategy

Rushby, in Meek [46] p.87, states that "it is program testing,
rather than debugging, which is the central feature of the final
stage in the creation of a program. The objective of testing 1s to
verify that the program functions as it should, that it conforms with
its specification, and solves the right problem in the real world”,
Rushby developed his argument until concluding that it is reasonable
“"to stop error hunting when only a relatively small number of errors
are left and the costs of finding any more are not Jjustified”.
Assuming that a program contains any number of errors without some
method of measuring the number of errors remaining, or their effect,
infers that the remaining errors are benign.

Zweben, in (B8] pp.3-12, states that no single test strategy 1is
sufficient to satisfy all test conditions and recommends that a good
testing strategy should be capable of determining that errors exist.
Miller, in [33] pp.4-16, lists some of the benefits of program
testing as being better user acceptance because the software 1is more

reliable, demonstrable history of high-quality performance and

confidence in the software product.

The testing strategy adopted is considered by Rushby, in [46],

as influencing the production of the software and as a consequence
the safety of the softwa;e.

In recognition of the need to approach a uniform testing
strategy national regulatory bodies are examining ways of assessing
various factors concerned with testing, Elektronik Centralen, ([17].
2.4.3 Program Proving and Correctness Methods

Ramamoorthy and Ho, [58], demonstrate how a program with only
nine paths can have an extremely large number of execution sequences
thus making exhaustive testing impractical.

Proofs of correctness decompose the software logic into
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axiomatic statements using mathematical notation to develop a
mathematical proof. Program proving is a specialised and protracted
activity with little evidence of what can be formally proved other
than the absence of certain specific hazards, like the output from a
variable which has not been assigned following initialisation,
Criticism has been expressed by Cho, (7], as to whether a proof can
itself be proved to be correct.

According with the view of Cho, [7], is that of Good and London,
(23], when they observed that a 433 statement program required 46
pages of formal proof.

Validation and verification techniques abound but there 1is
difficulty in establishing a general definition of the terms.

Myers, [50], asserts that validation and verification are similar to
correctness proofs, except that validation aims to find errors by
running the program in a real environment, whilst verification aims
to find errors by running the program in a test environment. Other

definitions, Bologna, [6)], and Dahll et al, [9), suggest that

verification is the testing of a subset of the total program suite

and that validation 1s the testing of the total program suilite.

The idea that a software module can be analysed for
structuredness by measuring topological features without
conslderation of the logic it portrays is given in the work of
Hennell, [27), on LCSAJ (Linear Code Sequence and Jump) and Tai,
[65]). Essentially, the technique.relates to the number of crossings
of flow or control paths within the program code. Such a measure 1S
called 'knot complexity’. Woodward, [70], compares the knot
complexity of 26 programs with McCabe's cyclomatic complexity, V{(G),
for the same set of programs and found a close correlation.

Huang, [32], gives a comprehensive overview of the most commonly

used testing methods.
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2.4.4 Software Metrics
Lord Kelvin, [44], is often quoted as having said;

"When you can measure what you are speaking about, and express
it in numbers, you know something about it; but when you cannot
measure it, when you cannot express it in numbers, your
knowledge is of a meagre and unsatisfactory kind: it may be the

beginning of knowledge, but you have scarcely in your thoughts

advanced to the stage of science.”
The view of Lord Kelvin summarises the objective of the work on
software metrics.

Testing of software is an aimless task unless some measure 1S
used to indicate the effectiveness of such testing. Software
Metrics aim to establish methods of measurement relating to the
software.

Halstead, [25].'introduced the phrase 'software science' to
describe a set of empirically derived measures of the software based

on phenomanological aspects of the software. There have been many

other researchers in software metrics, notably McCabe, [45]), who
defined a measure based on a graph theoretic approach and known as
the ‘cyclomatic number’. Many metrics have been developed and
Perlis et al, [54), considered some of these metrics and recommended
research into software metrics,

Gilb, [22), presented a set of metrics but little material has
been published regarding their derivation or application, Harrison
et al, [26), reviewed many metrics concerned with complexity and
found that their experiments supported Gilb's assumption that the
degree of decision-making logic in the program can be correlated to
characteristics of a program such as error proneness, development

costs and time, Findings similar to these are reported by Farr anc

Zagorski, [18), and Sime et al, ([63].
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Shen et al, [(62), critically examined the work of Halstead and
the experimental results published by other authors in support of
Halstead and concluded that the theory of software science was still
evolving. Further, they resolved that researchers should continue to
refine Halstead's metrics as there is a need for such measures.
2.4.9 Simulation

The use of software or hardware simulations, designed to test
the control software prior to implementation, 1s not common due to
the high costs involved in the development of a simulator.

The method commonly used in Industry is to construct a panel of
switches and knobs to allow simulation of the anticipated normal
lnput-output sequence and, to a lesser extent, the known exception
paths from a restricted data set. The disadvantages of a hardware
simulation are the high costs involved, the time to produce the
simulator, the need ?or manual operation of the simulation and the
need for a protracted and accurate repetition of the test causes

doubt to be cast on the effectiveness of such simulation tests.

Software simulation has been shown by Nunns, [51], and others to
overcome many of the drawbacks experienced by the hardware approach
but the cost of developing a software simulator is still high.
Using a software simulation it is possible to establish a detailed
simulation of the expected plant input sequences that will exerci;e
elther separate programs or complete systems. With a software
simulator it is possible to run these simulation sequences for
protracted periods of time and often at a rate of input sequences
greater than or less than those to be expected in real-time
operation.

A development of software simulation is the use of simulation

monitors which log data from specific application areas, such that

when a malfunction occurs in plant operation a simulation model 1s
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available to the Plant Engineer who can in turn request further

controlled testing from the Programmer.

One major difficulty with software simulations is ensuring the

faithfulness and accuracy of the simulator.
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2.5 Operational and Psychological Factors

At all stages of the software production cycle people are

involved. Since people are fallible the effects of their failings
can be seen in the errors introduced into the software.

Hirsgh, [30]), reported that in an experiment to determine the
error rate of humans operating a typewriter keyboard a total error
rate of 6.175% was encountered out of a sample of 5 million key
depressions. An error rate of this magnitude infers that on average
one in every 16 keys depressed will be in error and with most
programs containing many hundreds of characters a considerable number
of characters can be expected to be 1n error.

2.5.1 Psychological Factors

Green et al, [24], suggest that software production is a design
activity and dependent on the mental agility of the programmer.
Errors can, therefore, be induced into a program due to psychological
factors.

Kopetz, [38], cites Per Brinch Hansen as having said:

“I1f the intellectual effort required to understand and test a

system increases more than linearly with the size of the

system, we shall never be able to build reliable systems beyond
a certain complexity.”

In the works of Mohanty, [48), and Fitzsimmons and Love, [20],
there are references to a Stroud number which is derived from the
definition of a 'moment’ given by J.M. Stroud:

“The time required by the human brain to perform the most
elementary mental discrimination."”

The number of mental discriminations required to understand a
software module influences the production of software according to

the amount of effort required.

Estimates of an individual's Stroud number {(the number of
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"moments’ in a second) range from 5 to 28 and have been used in
experiments concerned with programming rates. Halstead, [25], used
a Stroud number of 18 to indicate what he considered to be a
reasonable level of mental activity for a concentrating person. The
usefulness of measures based on the Stroud number is supported by
Basili, in [54], yet discounted by Curtis, in (54]. Researchers
such as Mohanty, [48], and Sime, {63)], hold the view that the greater
the effort required, the more the risk of inducing errors yet there
is no consensus view on the usefulness of psychological measures.
Wasserman and Freeman, [67], acknowledged that there 1s a
psychological factor affecting the development of software as a
result of what they have called the "physical workplace”, that is to

say the actual place where the developer undertakes the development.

The factors that they refer to 1lnclude "access to computers, privacy
and noise levels, ergonomic considerations of terminals, and
avallability of reference materials including books and journals”.

They further suggest that there is little doubt that these factors

are significant.

None of the references suggested ways of restricting the
influence of the psychological factors which affect the programmer
other than methods of detecting and measuring the extent to which
there is an effect. Research into the psychology of programming

continues but few applications of the findings of such research have

been reported.

2.5.2 Operational Factors

The operational factors include the industrial equipment and the

process or the plant being controlled by the software,
The safety of control systems incorporating software 1is

influenced by the activities of external factors, for example, the

need for safe operation of the software to be maintained when the
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equipment malfunctions. In such cases the equipment will provide
erroneous information for the software to interpret but the software
should be designed to cater for such events, Though the particular
event may have been considered improbable.

Hardware failures may suggest to the observer that the software
malfunctioned instead of the equipment whilst the software may have
reached a reasonable interpretation of the information. The
software may be considered to have failed to meet the safety
requirement vet in reality it was the equipment reliability that was
suspect.

The operation of the software should not compromise safety
because of operational difficulties. Low reliability of equipment
will cause an initial low confidence in the safety of the software
since the equipment and software are frequently viewed as one.

Longbottom, [43), and Williams, [68], have suggested that
hardware failures influence the production of software. Suggestions

such as these have led to software reliability being measured in such

terms as 'errors per 1,000 hours’.

Anderson and Lee, [2], have investigated the effects of hardware
failure on software and the outcome of their investigations are ideas
such as fault-tolerant computing. Fault-tolerant computing is an
extremely large field of study and in general is more concerned with
equipment reliability than safety.

At the final stage of testing many errors will remain in the
software. So the provision of satisfactory documentation to enable

comprehensive testing should be mandatory for all software projects

according to Hewitt, [29].
Hewitt, (23], and Johnson, [35], have suggested that

documentation should be built up as the project progresses. They

suggest that a poorly documented project will also be subjected to a
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restricted set of tests and 1f the test set is limited by the
documentation then it is held that documentation influences software
safety.

It is important to document changes to the software. Lawley,
[(39]), developed a scheme, known as HAZOP, for documentiné the
desirable and undersirable effects of changes proposed for chemical

plants. Nunns, (52], and, (53], has shown that a modified HAZOP

procedure can be implemented for software.
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2.6 Conclusion

Many factors have been advocated as those influencing software

but none were found which were claimed to specifically influence the

safety of software.

It may be that factors affecting the safety of software can be

identified but then there needs to be a knowledge of how to
manipulate them, how to measure them and what such measurements mean,

Any set of measurements of factors will need to address three
points of issue for each measurement;

1. the relative criticality

2. the relative importance

3. can it be assessed

From the current state of the art consistent opinion 1s that

there are factors influencing software and there 1s a consensus on

their likely effects but there is no evidence to isolate which

features these are.
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CHAPTER 3

The Structural View

The structure of the software has an influence on the safety of
the software. In this Chapter the ways that the software can be

structured to ensure a safe operation and methods of analysing that

safety will be examined.

The Chapter begins by examining the use of a set of techniques
known, generically, by the term Risk Analysis. In particular, the
applicability to software of Fault Tree Analysis and Event Tree

Analyslis 1s explored.

State Transition Diagrams are sometimes considered to be the
means of identifying all possible fault conditions. State
Transition Diagrams are examined with particular reference to the
interaction between software, the hardware and the system.

Having examined methods that may be .applicable in 1isolating a
fault condition an argument 1s advanced for'weighting errors

according to three categories of danger.

Finally, the structuring of the software for safety according to
the control flow is examined. It is recommended that in safety-

related systems the software should be structured into Control
Modules, Safety Modules and Arbitrators. It 1s also suggested that

a system of Integrity Locks should be used.

58



3.1 The Risk Analysis of Software
'Risk Analysis' is a generic term used by Engineers to describe

a group of methods used to determine the conditions that will cause a
hazardous state to exist and the associated risk. There 1s a need
to assess the risk resulting from the use of computers as controllers
in safety-related processes. The principal cause for concern 1is the
possible number of software errors that can exist and the effects of
these errors on the system. Since these techniques are used to
analyse the risk associated with industrial processes and its
hardware, it follows that control software should also be subject to
similar analysis.

Risk Analysis comprises a collection of analytical techniques
used to examine the design of complex items of equipment within a
safety context. The principle risk analysis techniques are Fault
Tree Analysis (FTA) and Event Tree Analysis (ETA), [12]. The
application of both these risk analysis techniques to software will
be discussed in this Chapter.
3.1.1 Fault Tree Analysis

Chelson, [4]), has shown that fault-trees are constructed by
first listing all the possible hazards considered to be present in
the system, Once the hazards have been listed the construction of a
fault tree begins by assuming that a particular event has caused one
of the hazards and then to trace backwards through the logic of the,
system to find which events could lead to the hazard. Since
preceeding events may be the logical combination of other events a
set of symbols is used to represent the logical sequence of posslible
events. As each node in the tree is encountered a decision 1s made
whether further investigation is required. As the investigation

continues more symbols are included in the tree until a node 1is

reached where either no further investigation is necessary, called a
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Failure Event, or a Terminal Event, also called a Basic event, 1s

encountered. These symbols are shown in Figure 3.1.1.1.

Figure 3.1.1.1 FTA Symbols

Top Event

Terminal or Basic event
requiring no further investigation

OR gate

.
O

Faillure event, not a basic

fault event but one which
requires no further
investigation

Leveson and Harvey have shown, [8], that Fault Tree Analysis
can be applied to software provided that the catastrophic event which

1s to be considered can be defined in a precise manner. Since FTA
was developed for hardware and has now heen applied to software, it

1s possible to link the two sets of analyses to form a complete set
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for the total system. Fault Tree Analysis applied to software has
been renamed by Leveson and Harvey as Software Fault Tree Analysis

(SFTA).

SFTA, in common with hardware FTA, examines the potentially
dangerous conditions that could occur, called 'catastrophic events',
as a result of ‘top events' or 'loss events', and considers all
possible actions that could cause the dangerous condition to exist
using diagrams which are a variation of those used for hardware FTA.

Leveson and Harvey, (8], have also shown that SFTA can be
performed at various levels and stages of software development. The
highest level of analysis 1s the functional description. At the
lowest level of investigation SFTA analyses the program code.
Leveson and Harvey also suggest that it is possible to construct
fault trees from a program design language and that the information
derived from the tree during the software development phase can be

used. However, SFTA does not cater for the effect of one part of a

program influencing another.

In SFTA 1t 1s assumed that for a dangerous condition to exist it
i1s necessary for there to be a related output from the computer.
Therefore, the starting point for SFTA, when working at the program
level, 1is the section of code responsible for effecting an output.
The analysis then proceeds backwards through the code determining

both how the program arrived at the section of code and what are the

current states of the variables.

Standard forms of symholism have been proposed by Leveson and

Harvey for Pascal-like program statements. The general form for the

IF..THEN..ELSE., statement is shown in Figure 3.1.1.2 (a). The
statement " IF a > b THEN x := f{x) ELSE x := 10 " is shown in Figure

J.1.1.2 (b) below when analysed for the event “ x > 100 ",
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Figure 3.1.1.2 SFTA for IF..THEN..ELSE..
(a) VT
if-then-else

condition false
'else-part’
causes esvent

condition true
'then-part’
causes event

‘else-part’
causes event

cond. false

prior to
statement

o

'then-part’
causes event

cond. true
prior to
statement

a > b, x := f{x} a <= b, x = 10
causes x > 100 causes x > 100

a > b

prior to
statement

a < = b
prior to
gstatement

x = fix) X = 10

causes x > 100 causes X > 100

Since the right-most nodé. stating that x:=10 causes x>100, 1s
clearly nonsense the node can be assigned a zero probabllity and
removed from the tree. Analy;ing for the top event of x>100 could
stop at this point and assertions placed in the code or the
preceeding code could be analysed for the events "a > b " and "f(x) ?

100 °.

Figure 3.1.1.3 (a) shows the suggested general format for
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analysing a WHILE..DO statement and Figure 3.1.1.3 (b) shows the

analysis for the loop

WHILE b > x DO
BEGIN b:= b - 1
z2:= 2 + 10;
END

analysed for the top event " z > 100 ".

Figure 3.1.1.3 Example of SFTA

(a) WHILE statement
causes event

stat. not stat, executed

executed

event prior cond. false cond., true n-th iteration
to WHILE prior to WHILE prior to WHILE causes eavent
{b) WHILE statement
causes z > 100

stat. not stat. executed

executed
z > 100 prior b{=x prio z+10, b-1
to WHILE to WHILE to WHILE causes 2>100

Leveson and Stolzy, [9], have suggested that real-time features,

like concurrency found in the language Ada, can also be analysed
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using SFTA.
A disadvantage with SFTA is the difficulty in determining all

possible top events that may arise and assessing their preceeding
events, called cut sets, and basic failure events, called minimum cut
sets, SFTA is not exhaustive and relies upon the person analysing
the system to identify the "top events”. Also there 18 no check to
indicate that the analysis 1s complete.

In the software context, tracing through the data flow of a
program and analysing for failure events will identify some hazard
situations which can be further analysed using SFTA. One method of
tracing the data flow is to use Petri Nets or Event Tree Analysis.
3.1.2 Petri Nets

Petri Nets, [10], are formal methods of representing information
flow and can be used to illustrate information flow in a program
statement. Petri Nets can be used to represent the information flow
at the level of the specification or at the level of the actual

program.
Petri Nets are bipartite directed graphs consisting of two basic

components; a set of places, P, and a set of transitions, T. In
addition two functions are created to link transitions to places: the
input function, I, and the output function, O. For each transition,
tj, there is a set of input places, I{tj) and for each transition,
tj, there is a set of output places 0{t3). Formally, a Petri Net 1is
made up of a quadruple C={(P,T,1,0). Since each Petri Net has .an
initial condition, uo, the initial condition needs to be 1included in
the structure giving a quintuple (P.T.I.Ozy). Defining the initial
condition of the Petri Net is called “"marking” a Petri Net.
Diagramatically the places in a Petri Net are represented by

circles and the transitions are represtened by a line crossing the

arc joining two places. A transition is said to be enabled to
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"fire” 1f and only if all the input tokens for that transition,
markings, are satisfied and which allow the token at an input place
to be transferred to an output place. The transition of the token

1s, in the abstract, the transfer of information from one place to

another place.

When the statement IF x THEN y ELSE z is executed the control

will pass to either y or z according to the truth of X, A Petri Net

can be represented graphically for such a statement;

@

t1

t2 t3

O 2

where Pi is the initial input place which fires transition t1i.

Transition t2 will only be fired and pass a token to y when t1 has

fired and place x has a token {(x is true). Transition t3 will fire

and pass a token to z when t1 has fired and x bar has a token (x is

false). For the IF x THEN vy ELSE 2 statement places v and z would

be the input places for the following statements.

The firing of transition t1 enables the firing of either t2 or
t3 dependent on the loglical state of x. However, when considering a
programming statement according to a failure criteria it must be
considered that the conditional expression, x, may also fail. If
the possibility of the conditional statement, c, failing in the

statement, IF x THEN y ELSE 2, is included then the Petri Net becomes
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to

th @ t1 @
D t2 t3
Yy @

The transitions t1 and té will fire according to the status of
the conditional statement, ¢, and transitions t2 and t3 will fire
according to the logical truth of the conditional expression, X,

The failure of the conditional statement is called the conditional
faillure and'the'logical truth of the conditional expression 1s called
the temporal switch.

Figure 3.1.2.1 shows the general form for some Pascal-like
programming language statements using Petri Net diagrams.

Petri Nets of complete programs become unmanageable and need
simplification. One method for simplifying the representation of
failure events is to use a Risk Analysis technique called Event Tree
Analysis.

For a graphical representation of an abstract model of
information flow to be useful in identifying risks the probabilities
of fallure for components of the model need to be added. The
addition of such probability data to a Petri Net will detract from

1ts function of representing the logical sequence.
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Figure 3.1.2.1 Program Statements using Petri Nets

a) assignment

D
® ‘ ®

es @

b) IF..THEN,.ELSE..

@

¢) WHILE x DO v
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3.1.3 Event Tree Analysis

Event Tree Analysis (ETA) is less common than FTA but 1is
becoming more commonly used in Industry, [2) and (3].

Hardware ETA attempts to identify those events which may cause a
sequence of events leading to a dangerous condition and can be

considered as an approach to the task of identifying risks from the

lowest event towards the 'top event’, FTA starts with the top

event' and traces back to the lowest event in the sequence examining
the causes of events. ETA examines the consequences of possible
failures. The use of ‘'event trees’ provides a graphical method of
presenting the results of the analysis.,

To construct an event tree of failures, each probable failure 1is
considered from the start of the process being analysed to the
finish. The first stage of the ETA construction is to consider the
outcome of each component failure and to represent the outcome as a
decision branch., For each outcome of the first stage consideration
1s given to the outcome of each subsequent component failing. The
analysis of each subsequent stage is then added to the decision
branch of the preceeding outcome, The analysis continues until each
component in the process has been considered, its outcomes determined
and added to the evolving tree structure. Probabllities of failure
can then be attached to each outcome of the complete event tree. It
1s possible to determine the probability of success/failure at any
gilven point in the process.

Figure 3.1.3.1 shows an event tree drawn for a parallel pump
system employing two water pumps. The failure probabilities are
included on the drawing as an example of the calculations.

The application of ETA to software is given the name Software

Event Tree Analysis (SETA}.
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Figure 3.1.3.1 ETA Analysis of a Pumping System

Pump A

Pump B
Pump A falls
Pump B fa1lls OQutcomes

Pump A working

System works
P(1 - a) P(1~a)

Pump B working

System working
P{1 - b) P(a) . P(1-b)
Pump A falil
P(a) Pump B fail
System faills
P(b) P{a) . P(b)

Each programming statement in a high-level language 1s executed
according to a set of rules governing the logic of the statement, for
instance the statement IF x THEN yv ELSE z will execute y or 2
according to the logilcal condition of x. Further, the sequence in
which the statements are executed is determined according to the
logical relationship of one statement to another.

By convention the failure branch in an ETA diagram is drawn-to
the left and the success branch is drawn to the right. From a
single entry to a complete program there are only two possible exits:
success and failure. So for each statement within the program there
are also two exits from a single entry. Within the statement the
branching strategy continues to a lower level of detail but the
respective exits are connected to maintain the higher strategy of the
statement. The respective exits from the statements are connected
1n order to maintain the strategy of the complete program. Pascal-

like programming statements represented in SETA format are shown 1n
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Figure 3.1.3.2.
Figure 3.1.3.2 Program Statements using SETA

a) assignment

success branch
failure

point
statement
on entry

fallure branch

where the symbol '*' denotes a terminal failure which would

cause an irrecoverable failure to exist. The failure branch can

occur on other statements but has been labelled only on this one.

THEN part
X
H
Temporal ELSE part
switch X

N.8. The temporal switch,# , permits the flow to take

b) IF..THEN..ELSE..

whichever path is relevant according to the conditional

expression assuming that it has not failed. Since it 1is

the data flow that is the concern and not the control flow

the format collapses to

o THEN part
x

o{ ELSE part

where the reduced statement, IF..THEN.., is used the diagram

becomes
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THEN part
: X

since the else-part is implied as being the following statement,

c) WHILE x DO vy

v-Statement part
X

Conditional part

removal of the temporal switch causes the format to collapse to

€ y-Statement part

o{ Conditional part

(O

o4 Conditional part

d) REPEAT x UNTIL vy

sty X-Statement part
%X

removal of the temporal switch causes the format to collapse to

> Conditional part
x

C X-Statement part

e} FOR x T0O x DO vy
i

r{ y-Statement type
X

0{ Conditional xi part
x

C Conditional x part
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f) CASE x OF y1 .. yn

r¢( y1-Statement type
x

a% b8 & 2 & 500

> yn-Statement type

%

C Conditional x part

It is possible to apply SETA to program design languages in the
same way that Leveson and Harvey have applied SFTA to design
languages but the maximum benefit is to be gained by applying SETA to

the source code, assuming that the compiler and other software

development tools are dependable. This is the lowest level of

abstraction needed for a meaningful representation of the program.
SETA, like ETA, has the probabilities added to the diagrammatic

representation and will be demonstrated by means of an example,
To show how SETA can be applied to a simple program consider the
program below taken from Jensen and Wirth, [7].

PROGRAM fcount(input,output);
YAR ch:CHAR;
count:ARRAY['a'..'2'] of INTEGER:
letter:SET OF 'a’'..'2":
BEGIN
letter := ["a'..'2']):
FOR ch := 'a’' TO '

‘2’ DO
countf{ch] := 0
WHILE NOT eof DO
BEGIN
WHILE NOT eoln DO
BEGIN

read(ch);
write(ch}):
IF ch IN letter
THEN count{ch]l := countlch] + 1
END:
writeln:
readln:
END
END,

The declaration part of the program adds little to the
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information flow of the program and is not included in the analysis.
In the example that follows the omission of the declaration part
presents the first line of the analysis as being an assignment
statement.

The next statement is FOR ch := 'a' TO 'z’ DO whose SETA®
statement format is added to the success branch of the preceeding
assignment statement.

The analysis continues until the tree includes all the
statements in the program, The structure i1s shown in Figure 3.1.3.3
with the tree orientated through 90 degrees, The success branch has
been aligned vertically to prevent the tree tending towards the
right,

Three significant 1tems of information can now be deduced from
this tree; those statements whose failure will cause a terminal
failure, the probability of successful execution and the probability
of particular terminal fallures. To be able to extract information
from the event tree the probability of successful and unsuccessful
execution of each statement needs to be added to the tree as in
Figure 3.1.3.4%. To avold presenting too much information at the
expense of clarity the programming statement has been substituted by

a probability of successful execution.
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Figure 3.1.3.3 SETA of the Example Program
entry

5y letter := [‘a’'.."'2’']
failure branch success branch

> FOR ¢ch := 'a°
0 TO ¢ch := ‘2’

p countlch)] := O

) WHILE NOT eof

9> NOT eoln

) read(ch)

) write(ch)

iF ch IN letter

countlchl] := countich] + 1

*__-_

. c writeln
4

- readln
%
successful exits
e e e e
A 3 2 1

(X



Figure 3.1.3.4 SETA of the Example Program with Probabilities

Assigned
entry
5 Pr(a)
1 - Prila)
{ « Prib) > Prib)
1
{1 - Pric) 3 Pr(c)
%
1 - Pr(d) > Prid)
X
0 Prie)
0 Pr(f)
Pr(g) 0 Pr{g)
* e
Pr{h) b Prih)
* PR
5 Pr{i)
Pri{sj} 5 Pr(3)
* R |
Pr(k) . Prik)
4
Pr(l} ¢ Pr{l)

successful exits

 J 1

Each possible successful exit, ei, has an individual probability.

Assuming s~-independent events, the exit probabilities are

Pr(et) = Pr(a).Pr{b).Pr{c).Prid).Prle).Pr{(f).Pr(g)
Pr{h).Pr(i).Pri{j).Prik).Pr(l)

Pr{e2) Pr(a).Pr{b).Pr{c).Pr(d).Pr(e).Pr{f).Pr(g)

Pr(h).{1 -« Pri{i)).Pr(k).Pr(l)
Pr{e3d) = Pr(a).Pri(b).Pr{c).Pr(d).Pr(e).(1 - Pr{f)).Pri(k).Pr(l)

Pried4) = Pr{a).Pri(b).Pr(c).Pr(d).{1 - Pr{e)).Pri(k).Pr(l)
There are four possible successful exits. The probability of a
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successful exit from the program is the sum of individual
probabilities and given as
Pr{S) = Pr(et) + Pr(e2) + Pr(e3d) + Prlet)
The probability of an unsuccessful exit 1s given as
Pr(F) = 1 - Pr(S)
=1 - [ Pr(el) + Pr{e2) + Pr(e3) + Prleé) 1
As the numher of statements increases so the probability oé a
successful exit is reduced. There are two issues to be considered;
1) the probability of failure of a statement is related to
the syntactic and semantic complexity of that statement.
The resulting probability of failure of the function
being performed by that program statement is influenced
by the programmers choice of statement. Therefore
consideration has to be given to the trade-off between
the number of statements and the probability of failure
for particular statement types.
2) in Chapter 3.4 it was postulated that the
probability of failure of a module is related to
its length and that from a safety point of view
a larger number of small modules is preferable

to a small number of large modules. S0 a

reduction in the length of a module will also

influence the probability outcome.

3.1.4 Discussion

Leveson and Harvey, [8]), observed that SFTA can be combined with

FTA to provide a comprehensive analysis of a total system including

hardware and software. The application of ETA to the hardware

assocliated with a computer system can continue to a point where the
software element needs to be considered. To consider the software,

SETA can be used to provide a comprehensive analysis.
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As an example of how ETA proceeds to the point where SETA can be
used consider the case where plant sensors are used to pass data to a
computer on the functioning of a critical plant area so that optimal
control of the plant can be maintained. Using ETA the sensors, the
instrumentation, the Analogue-Digital Converter and the computer
input-output mechanisms are considered. However, once the analysis
has reached the point where data is requested by the software making
a request to the operating system, device driver or control software
then SETA can be used. SETA can be used to assess the software 1in
the context of programs or programming statements,

A complete ETA/SETA analysis is then possible to identify
particular items of concern and to seek to reduce the probability of
a fallure. Assuming an 1item of concern can be described in terms
suitable for analysis using SETA and that the risk is assessed to be
such that further detailed analysis is necessary, then additional
SFTA can be undertaken,

Summarising, the approach is to identify potential failures
using ETA/SETA and then to further examine the concerns using SFTA.

The application of existing Event Tree Analysis (ETA) to
software (SETA) is possible and provides useful information to the
analyst on failure probabilities. By careful identification of the
lssues raised with SETA further analysis can be undertaken using what
Leveson and Harvey have called Software Fault Tree Analysis (SFTA)} 1in
order to isolate the concerns. Once these concerns have been

i1solated then suitable remedial action can be taken to eradicate

them,
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7.2 The Use of State Transition Diagrams

The internal state of a process can be modelled in the abstract

at any moment using graph theoretic methods such as the State
Tran;ition Diagram which 1is a special case of the Finite State
Machine. The State Transition Diagram is commonly used by engineers
to assess the behaviour of a system, whether that system 1s an
industrial process or the internal function of a computer.

A Finite State Machine consists of a finite set of input symbols
A, a finite set of internal states S, a finite set of output symbols
2., a next-state function f and an output function g. The machine M
is denoted by M = {A,S,Z2,f,g}. Additionally an initial state q0 may
be included, when the machine M will be denoted by M = {A,S,2,q0,f,al.

An example Finite State Machine could be one with three input

symbols, three internal states and three output symbols as

A = {a,b,c}
S = {q0,q1,q2}
2 = {x,y,z}

the next-state function f could be defined as

f(q0,a) = q1 flq1,a) q2 f{q2,a)

"
L0
O

f(q0,b)

q2 f(q1,b) q1 f(q2,b)

"
L
—t

f(q0,c) = qO0 flqt,c) qD f{q2,c) = q2
the output function g could be defined as

glql0,a) = x glgt,a) = x glq2,a)

L
N

g{q0,b) Z glq2,b)

Y g{qtl,b)

Yy

gl{q0,c) = 2 gl{qt,c) = vy g{q2,c) = X

A state diagram is one way of representing the machine M. A
state dlagram is a labelled directed graph with the vertices being
the states S of M such that an arc can be drawn between state g0 and

q! and labelled with the pair a,x representing the next-state

function f(q0,a) = q1 and the output function g(q0,a) = x.
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Figure 3.2.0.1 The State Diagram for the Example Machine M.

[
e
Another way of representing machine M is to use a state table

which tabulates the next-state and output for each combination of

current state and input. A state table for machine M would be

Current Input Input Input

State a b C
q0 ql, X qQ2,Y q0, 2
qf Q2, % qt,z q0,y
q2 qo0, 2 ql,y ql,x

A State Transition Diagram consists of a set of states S, a set

of events E and a transition function, t.

The state transitions for Finite State Machine M can be
represented as
S = {q0,q1,q2}

E = {x,y,2}

and the transition functions are

t{q0,x) = q1 t{ql,x) = q2 t(g2,x) = g2
t(q0,y) = q2 t(qtl,y) = g0 tiq2,y) = qt
t(q0,z) = qO0 t{q1,z) = q1 t{g2,z} = qO0

[



the State Transition Diagram would be that shown in Figure 3.2.0.2.

Figure 3.2.0.2 State Transition Diagram for the Example Machine

Industrial control systems can be modelled using both Finite
State Machines (FSM) and State Transition Diagrams (STD) but the use

of STD 1s more common.

As an example of the use of STD, take a simple control system

consisting of a fluid pump, P, under the control of a fluid level
float, F, whose aim 1t is to maintain the level of a liquid within a

certain vessel by turning the pump 'on’' to lower the level of the
liquid when the level is indicated as 'high' by the float. Assuming
that the liquid flow into the vessel is constant and not under the

control of the system being modelled, the process scheme is shown 1n

Figure 3.2.0.3.

Figure 3.2.0.3. Example Process
'ﬁ\
\ i

— >

The pbjective of the control system is to ensure that none of
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the liquid flows over the top of the vessel. If any liquid flows

over the top of the vessel the condition 1is considered to be a

catastrophic event.

To keep the model simple it is assumed that both the float F and
the pump P work correctly even though there is a probability that the

control signals may not. It is also assumed that no such failure of

control signals exist,

The pump P is switched on when the float F is indicating ‘'high’
and the pump 1s swiltched off when the float indicates 'low’.

The set of states S are

S = {q0,q91,q92,q3}

where q0 level low, pump off

ql = level low, pump on

L
N
"

level high, pump off

L
)
"

level high, pump on

the set of events E are
E= {a,b,c,d}

where a = Float high

b = Float low
C = Pump on
d = Pump off

and the transitions functions t are

t(q0,a)

q2 t(qt,a) = q3 t(g2,b) = q0 t(gq3.b) = qt

t(q0,c)

qt t(q1,d) = q0 t(g2,¢c) = @3 t(q3,d}

q2

The state transition diagram for the control system is shown in
Figure 3.2.0.4. With the transition T being T = {S,E,t} and the

initial state q0 being included to give T = {S,E,q0,t}.
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Figure 3.2.0.4 State Transition Diagram for the Example
Control System

The transition functions can also be represented by a table

called a transition taﬁie. Such a transition table for the control

system being considered 1is

State Float Pump
qO0 low (0) off (0)
q) low (0) on (1)
Q2 high (1) off (0)
q3 high (1) on (1)

State Transition Diagrams are deterministic and exhaustive. To

demonstrate the exhaustive nature of STDs consider the control system
to have been extended to ignore transient inputs from the float by
requiring the float to indicate high for two successive observations

before switching the pump on. The control algorithm 1s expressed as
Po = (Fs A Fi A NOT Poi) v (Fs v Fi) v Poi
where Po is the pump output value according to the logic
Pol is the initial or currently stores value for the pump

output.

Fs 1s the stored value for the float
F1 is the input value for the float

assuming no errors experienced the transition table becomes
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Poi fs fi Po
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 i
1 D 0 0
1 0 1 1
1 1 0 1
1 1 1 1

In this thesis the concern is the identification of catastrophic
failures/conditions and such a condition could arise in the control
system if the level was high and the pump failed to operate causing
the liquid to overflow. From the transition diagram and the
transition table a catastrophic failure condition can be seen not to
occur when all the equipment functions correctly.

So far the concern has been with representing the state
transitions when all the equipment is working correctly and with no
errors. When the control system has the same control algorithm but
uses an industrial controller incorporating software to implement
that algorithm then a catastrophic failure/condition can arise due to

the failure of components of the controller, even though the electro-

mechanical equipment may work correctly.

The transition tables for the control system using software
considers three error types: stuck at 0, stuck at 1 and inversion.
The conditions underlined are those which are considered to satisfy

the criteria of a catastrophic failure/condition; fluid flowing into

the vessel, float fluid level high and pump not on.
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1) Error caused by Po being inverted when stored in Ps

fsi fi1 fst Pol Ps1 fi2 fs2 Po2 Ps2 fi13 +¥s3 Po3 Ps3

Poi

- O O ™ O v O e O

2) Error caused by Ps being stuck at 1

(on)

fsi fi1 fs1 Pol Ps1 fi2 fs2 Po2 Ps2 fi3 fs3 Po3 Ps3

Poil

&2

1

1

3) Error caused by Ps being stuck at 0 (off)

fsi fi1 fs1 Potl Ps1 fi2 fs2 Po2 Ps2 fi3 fs3 Po3 Ps3

Pol

-

OO0 000 00 a o
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Ps3
0
1
0
1
0
1
0
1
0
i
0
]
0
j
0
1
Ps3

Po3

4) Error caused by Po being inverted on output, Ps is true value of Po
fsi fi1 fs1 Potl Pst fi2 fs2 Po2 Ps2 fi3 fs3

Pol
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7) Error caused by Fi being inverted when stored in Fs

fs1 f11 fs1 Potl Pst1 fi12 fs2 Po2 Ps2 f1i3 fs3 Po3 Ps3

Pol

8) Error caused by Fs being stuck at 1

(high)

fsi fi11 fs1 Pol1 Pst fi2 +fs2 Po2 Ps2 fi3 fs3 Po3 Ps3

Poi

8) Error caused by Fs being stuck at 0 {low)

fsi fi1 fs1 Potl Ps1 fi2 fs2 Po2 Ps2 i3 fs3 Po3 Ps3

Pol

OO OO0 00 ~0 0O O v

o= =

o O O O
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10) Error caused by Fi being inverted on input

fsi fitl fs1 Pot Pst1 fi2 fs2 Po2 Ps2 €13 fs3 Pold Ps3

Pol

11) Error caused by F1 being stuck at 1

(high)

fsi fi1t fst Pol Pst fi2 fs2 Po2 Ps2 i3 fs3 Po3 Ps3

Poil

12) Error caused by Fi being stuck at 0 (low)

fsi f11 fs1 Pol Pst fi2 fs2 Po2 Ps2 i3 fs3 Po3 Ps3

Poi

O

-

O OO 00O 0 0O 0 O

N.B8. All occasions are potential catastrophes.
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The example process modelled for the discussion has been a
trivial control system and yet many error conditions have been
identified. If the control system was mare complex with many more
parameters to consider then the dimensions of the state diagram would
become unmanageable. The number of instances where an error can
exist and create a catastrophic failure/condition becomes
proportionately greater as the number of parameters increases making
the use of state transition diagrams difficult to use for isolating
potential hazards.

In many i1ndustrial control systems the number of states would bhe
s0 great that exhaustive checking of all conditions would not be

practicable.
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3.3 Categorisation of Dangers
Examination of the risk arising from the use of software in an

industrial process control system requires the dangers to be
categorised. An argument for three categories of danger called
minor, Major and Serious is presented.
3J.3.1 The Software Control Element

The flow of information through a control system is dependent on
the control strategy adopted for that industrial process. A general
structure for various routes that the information can take through
the software element of the control system, depending on whether 1t
is a fully automatic control system, a system with manual
intervention or a simple data logger is shown in Figure 3.3.1.1.
Each route through the software has its own unique function and
paotential for error. Each of the points at which an error can occur
are called 'error points' and assigned a number.

Figure 3.3.1.1 Software Control Element

Process
input output

software

Output Input
OCperator

The Health & Safety Executive, (6] p.3, has suggested that there

are three typical modes of operation:

"Mode 1

The computer receives signals from the plant or machine to
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Mode

Mode

which it is linked and then processes this information and
transmits or displays it. The computer does not send
control signals to the plant or machine. The operator
controls the plant without recourse to the computer except
for information, and thus retains the power of both,
decision and control.

2

The computer acts as a link between the person, who 1s
monitoring the process, and the control elements (e.g.
valves or contactors). This role may involve the feedback
of signals from the plant or machine to the computer but
the computer's scope for plant alteration is limited
essentially to carrying out the instructions of the person
in control of the process. In this mode, therefore, the
decision is made by the person but control is exercised by
the computer.

3

The computer, without human intervention, makes significant
changes to, or puts significant restrictions on, the plant
or machine operating conditions in accordance with its
program. The computer therefore retains the power of both

decision and control”.

Because of the reduction in the cost of automation and the

economic pressure for more industrial efficiency there 1s a tendency

to make greater use of industrial controllers operating in Mode 3.

Principally, there are two ways that an Industrial Controller

can reduce the safety of the process it controls or create a

dangerous

condition; by abnormal operation of the program or by

aberrant behaviour of the controller. In all modes there will be

occasions

when the Industrial Controller can exhibit aberrant
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behaviour and produce dangerous situations.

3.3.2 Potential for Errors

Mode 1 operation, data logging, would cause process inputs to
enter the software and pass via the state memory to the Operator
output port which may have a computer monitor attached for use by the
Operator. There wlll be no response from the Operator entered to
the software, in response to the output,

Mode 2 operation would be as Mode 1 but in addition the Operator
responses would be input to the software and pass to the process
outputs via the state memory. The Operator responses would be
reflected back to the Operator via the operator output port and the
computer monitor.

Mode 3 operation would be as Mode 1 but instead of the response
coming from the Operator, as in Mode 2, the input will be routed to
some decision making procedure which will effect the response through
the process outputs. Knowledge of the response may only be
avallable to the Operator by observing the process status displayed
on a computer monitor.

From Figure 3.3.1.1 elght points of potential error can be
identified, called 'Error Points'. These error points are shown in

Figure 3.3.2.1.

Figure 3.3.2.1 Error Points
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Where single extreme errors can occur and their effect will now
be examined. It is assumed that extreme errors are those where the
information contained in the data i1s completely wrong in a permanent
way and not transient, which have special characteristics.

Error point 1 would cause the information on the process state
to be corrupted. The corruption of data on input would cause
erroneous information to be presented to the Operator and to the
decision module, Information available to the Operator and any
decision module would not represent the true process state.

At error point 2, an error in the input data which was correct
on entering the software, would be corrupted. The effect of the

error would be to cause the Operator to be misinformed on the process

state. Any subsequent action by the Operator would be correctly

conveyed to the process. Since the process state is incorrectly
displayed the Operator would have some indication that an error had

occurred from the observable plant status.

At error point 3, the introduction of an error would cause the
process state information and the Operator input commands to be
incorrectly displayed to the Operator. The Operator would be

alerted to the error by noting the error shown in his input commands
and also by monitoring the process state displayed compared with that
observed.

If an error occurred at error point & the Operator input
commands would be corrupted causing the wrong actions to be conveyed

to the process and the commands displayed to the Operator would also
be corrupted., The Operator would only become aware of an error by
monitoring the response of the process state and monitoring his

reflected commands. In a slow industrial process the risk would be

limited by the Operators actions. In a fast industrial process the

risk would be greater.
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At error point 5, the existence of an error would cause commands
from the Operator to be incorrectly interpreted by the control
software and as a consequence convey the wrong actions to the
process. Error point 5 has a ﬁreater risk than that of error points
2 & 1. In a process which is not time-critical the error would not
cause an increase in the risk since the process state would still be
displayed correctly. But the error is more dangerous in a time-
critical process. Also the Operator is able to compare his commands
with the resulting process reaction, which corresponds to an
unexpecfed plant state being corrected by the feedback control
mechanlsm.

A potentially great risk exists when an error occurs at error
point 6; the Operator input commands or the decision module commands
are corrupted on output,. In either case the wrong actions are
conveyed to the process. The result may be a situation with a high
risk, without the Operator being aware of the danger.

Error point 7 has the potential to incorrectly display the
commands of the Operator but the error will be identified as an error
by the Operator noting the disturbance.

Error point 8 has a potentially great risk when the control

strategy permits control actions to be taken directly by the
software. The actions may also be monitored by the Operator, if
there 1s one. An error at error point 8 in the software would cause

the decision module to 1ssue wrong commands which, though founded on

correct process inputs, would then pass to the process undetected.

3.3.3 Categories of Danger

From the discussion above the effects of errors existing at

various points in the software have been proposed. Whilst all

errors have some effect there are some which present a much greater

risk than others. Therefore, some weighting needs to .be applied to
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isolate the error and to place it in the appropriate category. The
weighting used here is a subjective assessment of the degree of
danger resulting from the occurrence of that error.

Three categories of danger resulting from errors 1n software

used in control applications have been distinguished as;

minor =~ errors which are undesirable and inconsistent with the
specification but do not cause a hazardous condition to
exist. For instance, mis~spelled warning messages and
file corruption.

Major =~ errors which cause a hazardous condition to exist but
which allow correction by an QOperator,. For example,
failure to check correct outputs by re-input, output
action differing from that commanded and reported,
corruption of command with resulting incorrect action
(input or output). The effects of errors in this
category are observable by the Operators.

Serious - errors which cause a high level of risk to exist:
erroneous output on a fast or time-critical process,
overriding of protection mechanisms like watch-dogs,
uninformed bridging of safety checks, corrupted limit
checks, wrong logical deduction from inputs resulting

in a wrong output.

The category of minor is placed on a set of errors which, though
undesirable and inconsistent with the specification, do not cause a
hazard to materialise. As an example, consider an error in a module
whose function is to log data. An error in the module might cause
the correct output message “"alarm 99" to he displayed incorrectly as
“alm 99°, where the number indicates an alarm number and not a
sequence number. Such an error might cause the Operator to suspect

a fault in the software but would not prevent him from understanding
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the message. The ability to understand the corrupted word 1in a
message is due to the message having in-built redundancy allowing the

message 'alm' to be recognizable as ‘alarm’. Message Redundancy 1S

also known as the ‘richness’ of the language. The context of the
message is contained in a descriptor which contains information.
However, if the corruption had been that the alarm point "99" was
corrupted to "9" then it is possible that the Operator would not
recognise the correct message from this limited information.
Alternatively, had the Operator input the command "Open valve 6°
which was corrupted to “Open valve 4" by the command input module
then the error would no longer be in the minor category since the
intended message cannot be determined. If the corruption was such
that the erroneous command was displayed as “Open valve 4" and also
effected the action on valve 6, then the Operator would be aware of
the error and react accordingly. There is little redundancy in the
message since the valve has been identified by a single character and

not a descriptor containing more information. Therefore the message
1s considered to be unsafe. Errors of this type have been put in
the set of errors called the Major category of errors and refers to a
set of errors that cause a hazard to exist but which are not too

great for the Operator to correct.

Taking the above example of the Operator inputting the command
"Open valve 6", if an error occurs in the process output module and
corrupts the command to "Open valve 4" then the error 1s in the set
of errors called the Serious category of errors. The error is 1in

the Serious category of error because the command will have been
correctly displayed to the Operator, who now expects an action, but

the output to the process is not as commanded; the Operator may be
unaware of the potentially dangerous situation for some time, by

which time a disaster may have occurred. The Serious category of
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error refers to a group of errors which present a high level of risk.
Only single permanent failures have been considered so far but

it is possible for there to be combinations of permanent errors and

transient errors. Both types of error have severe implications to
the safe working of the system,

Combinations of errors are many and varied, The consequence of
combinations of errors 1s that individual single permanent errors may
be masked by the accompanying permanent error and create a confused
view of the problem. The category of danger for a combination of
errors is the category of the higher single permanent error included
in the combination. For example, a combination of a permanent minor
error and a permanent Major error is considered to be a Major error.

Transient errors, however, present an error condition which may
be short lived and infrequent. The consequence of which may be that
an unsafe condition applies for the duration of the error and it 1is
improbable that the error will be isolated immediately. The full
effect of a transient error cannot be appreciated until the transient
error is identified and safety requires that maximum caution should
be exercised where uncertalnty exists. A transient error 1is placed
in the category of Serious until such time as the error is isolated.
Due to transient errors being in the Serious category a combination
made of permanent and transient errors is considered to be in the

Serious category.
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3.4 The Structuring of Software Modules for Safety

Software modules are discrete units of computer programming
collectively providing a sphere of .influence within a system, The
software modules can be structured, or configured, in many different
ways to achieve the same sphere of influence., The term "sphere of
influence” refers to the extent to which the actions of a specific
module are influential within a system and is not limited to first-
order effects. The structuring of the system affects the amount of
confidence the designer is justified in vesting Ln the system,
Using robust programming techniques, such as N-Version Programming
and Recovery Blocks, influences the safe execution of a program,

Some of the structural options available to software designers
are considered in this Chapter and it is postulated that the use of a
structuring technique called ’'Safety Modules  improves the safe
operation of control modules without an increase in either the run-
time resources or the complication of the system.
3.4.1 N-Version Programming

Hardware fault tolerant systems commonly use a strategy called
N-Modular Redundancy {(NMR), involving an odd number, say three or
five, redundant versions of the same hardware with a voting system.

N-Version Programming 1s a software implementation of the NMR

strategy for hardware and was first proposed by Chen and Avizienis,
[5].

In N-Version Programming a number of similar programs, N, are
written to perform identical functions using different programming

techniques to perform the same function or using different source

languages, To add diversity the programs may be written by
different teams of programmers, even in different locations.

In N-Version programming structuring of the system is such that

the N-versions of the program are usually placed under the control of
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a driver program within the run-time environment. The driver
program invokes each version of the program, awaits completion of the
respective execution, compares the'results and takes action
accordingly.

The driver program synchronises the execution of the versions
and maintains a record of those versions which take longer time to
execute. Once the versions have all reached completion and have
been synchronised then a voting mechanism compares the respective
results. If it is not possible for all the versiaons to return the

same result then "inexact voting 1is used when small discrepancies in

the results are tolerated. In industrial systems the accumulation
of such discrepancies, accumulated over a period of operation, cannot

be disregarded as the error may become too severe to permit safe

operation. Therefore N-Version Programming cannot be recommended 1in
safety-related systems.
J.4.2 Software Fault Tolerance

Errors in the program itself can demonstrate the characteristic
of having 'failed' in many ways; suspect inputs, inadequate inter-
program communication, hardware malfunctions or loss of
synchronisation with other programs with which it corresponds. For
a system to continue operation whilst overcoming these ‘'faults' a
technique known as fault tolerance is required.

One fault-tolerant technique is Recovery Blocks, [1] and ([11].
Recovery block design makes use of one or more redundant programs in
addition to the original program. The original program is called a
‘primary block' and is tested for failure by an 'acceptance block'.
On detecting a failure the acceptance block will cause one or more of
the redundant blocks, called 'alternate blocks', to be executed until

elther all "alternate blocks' have failed or one has functioned

correctly.
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The recovery block strategy is

1) the primary block is executed

2) the acceptance block tests 'for a satisfactory result

3) 1if the result i1s acceptable then the next primary block in

the sequence is executed. If the result 1s not acceptable

then the system 1is

said to 'recover’' to a point where the

system state 1s restored to that existing before the failed

primary block was executed and one of the alternate blocks 1is

executed,

k) the execution of alternate blocks is repeated until an

acceptable result is achieved,

5) 1f an acceptable result cannot be achieved then the system 1is

sald to have failed.

To implement the recovery block strategy requires two special

procedures:

RECOVER - which keeps account of whether it is the primary

block or

one of the alternate blocks being executed

and maintains a copy of the state of the system

prior to
ACCEPTANCE - performs
recovery
also has
block or

In a multi-processing

pass data between programs

when two or more competing

called this situation the °

the block being entered,

the acceptance test and causes a system

if a failure is detected. The procedure
a record of whether it is the primary
an alternate block being executed.

environment where shared data is used to
i1t is possible for there to be an overlap
blocks are recovering. Randell, [11],

domino effect' and observed that whilst

only one block may have failed the failure of more blocks may be

indicated thus causing a system shut-down. To limit the domino

effect additional facilities need to be provided, [1], which further
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increases the amount of resources committed to the strategy.

Whilst the Recovery Block strategy is simple 1n 1ts concept the
implementation is more involved. It does allow alternate control
strategies to be attempted on detection of a fallure. The major

disadvantages in using the recovery block strategy for industrial

control systems are;:

- the difficulty of restoring the system to a known state
without causing a 'domino effect' where alternate blocks force
other blocks to restore

- the time taken to restore the system to a known state may mean
that the restored system state no longer reflects the current
plant state

- considerable resources are required to implement multiple
coples of the primary block

- if the system is safety-related then the personnel maintaining
the system operationally need to be made especially aware of
the nuances of such a strategy.

These difficultlies could create a situation where the system actively
seeks to restore itself without maintaining a safe plant status.
3.4.3 Safety Modules

If, due to the increased probability of an undetected error

being present, 1t 1s assumed that the probability of failure of a

program module is related to the number of characters forming the
program then the probability of failure of a system is similarly
related to the structure existing between the modules, In the case
where the module effects control over some critical item of plant it
1s desirable to maintain a low failure probability which suggests
that the module lengths need to be correspondingly short.

There are two ways of reducing the length of a module; dividing

the module still further into a number of sub-modules or reducing the
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length, usually by using advanced programming techniques.
A satisfactory division of the roles of the original module 1is
normally possible without a consequent increase in the complexity of

the software other than in the interconnection coupling between

modules. The outcome of the division of the module is that low

probabilities of failure can be achieved for individual sub-modules
and the software retains a simple internal structure which allows the
sub-modules to be understood. The internal simplicity is important
to allow changes to the function of the sub-module to be effected
without disturbance to any safety checks in the module.

Length reduction using advanced programming techniques has an
immediate disadvantage in the resulting program becoming so esoteric
that only the originating programmer is able to fully understand its
function which in turn means that it is only the originating
programmer who can safely make changes arising out of testing.

Such practices are undesirable from many points of view. Most
significantly, from a safety view, is that the safety checks within
the program may have been installed by the programmer and these can
be unintentionally by-passed when changes are made by another
programmer who 1s unfamiliar with the program.

Since modularisation of the software does not substitute
convenlence for safety, the principle of module sub-division is to be
preferred to length reduction.

A control module will probably have safety checks built into the
software. In which case the structure could conceptually be as in

Figure 3.4.3.1 with the control part of the module intimately co-

operating with the safety part of the module.
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Figure 3.4.3.1 Safety and Control Software Integrated

. where S = Safety Part

C = Control Part

It is assumed that the probability of failure of a sphere of

influence, P(F), is related to the length of the modules. The
relationship between the length of a module and its probability of
failure may be exponential, linear or differential or any of the

relationships below;

Pf

Length of Module
It is assumed in this theslis that as the length of the module

increases 1t 1s more probable that errors will be introduced and that
the relationship exhibits an exponential characteristic,
[f the modules are structured as in Figure 3.4.3.1 then the
failure probability for such a structure is
P(F}) = P(S) ¢+ P(C)
where P{S) and P(C) are the failure probabilities for the Safety Part

and Control Part, respectively and P{F) is the probability of

falilure.

If the safety part is seperated from the control part into a

seperate Safety Module whose primary role is to ensure that the

Control Module continues to function safely there will be distinct
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flows of data between them. The flow of data is considered to be
between each module and the run-time environment of the computer,
with channels to each.

Communication between the safety module and the control module
may be such that before control of the plant 1is effected by the

control module the safety module will check that the action 1s

reasonable given the plant status. The safety module may have
exclusive access to data concerning the operation of the item of
plant it is concerned with, for example equipment design limits and
rates of change of plant parameters. Plant data could be stored in
a read only_file. The control module may have access to a limited
sub-set of plant data in order for it to be able to perform all the
logical and mathematical functions necessary to maintain control.
The control can be effected either by the control module or the
safety module, If the action is taken by the control module as in
Figure 3.4.3.2 a), b) and c) then there exists a probability that the
action approved by the safety module will be corrupted in some way

before being effected. Also a probability exists that corruption of

the control action may occur if it is effected by the safety module,

Figure 3.4.3.2 d) and e), though it is probable that the safety

module will detect the corruption and take the necessary corrective
action. Therefore the risk of an unsafe control action being
effected is lower when the action is undertaken by the safety module.

Figure 3.4.3.2 Configuration of Safety and Control

Modules
M'
EJ E = Run-time
Environment

a )

103



c)
III!'ll\I"!!II

d
IIII

)
e}
IIII

When the two modules are seperated in the way discussed they can

be structured to operate either sequentially or concurrently.

The conceptual structure for the Safety and Control modules

operating sequentially is shown in Figure 3.4.3.3.
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Figure 3.4.3.3 Safety and Control Modules Operating Sequentially

where
S Safety Module
Control Module

The operation of the modules involves the two modules functioning 1in

O
" n

a serial manner, It is assumed that the probability of failure is
related to length such that L(C) and L(S) combined gives L{C) + L{(S)
then the probability of failure 1s given as
P(F) = P(C) +« P(S)
Providing the run-time operating system orders the
synchronisation of tasks, the safety module can also be configured to

execute concurrently with the control module, Figure 3.4.3.4, and
maintain a safe operation with respect to the control module through
the linking mechanism. Since the run-time environment is required

to schedule both modules the probability of failure of each module

also needs to include the effect of the run-time environment on the

outcome.

Figure 3.4,3.4 Safety and Control Modules Operating in Parallel

Each module can fail to execute its role in distinct ways:

abnormal execution as a result of the other module, non-executlon as

a result of the other module, corrupt data as a result of the other
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module and the run-time environment, corrupt instruction as a result
of the other module, failure to communicate as a result of the other
module and the run-time environment.

The module c¢an fall as a result of any of these 1lndependent
reasons. The probability of a failure in this configuration is

P = [ P (Lec)+P (Lc)eP (Lc,E)+P (Lc)+P (Lc,E) ]

FS Sp Sn Scd Scl Sfc
P =[P (Ls)+P (Ls)eP  (Ls,E)+P  (Ls)eP (Ls,E) ]
FC Cp Cn Ccd Ccl Cfc
where
P , P = prob., of failure of the Safety/Control Module
FS FC
P , P = failure of safety/control module
Sp Cp
P , P = non-execution of safety/control module
Sn Cn
P , P = corrupt data of safety/control module
Scd Ccd
P , P = corrupt instruction of safety/control module
Sci Cci
p , P = communication failure of safety/control module
Sfc Sfc
Ls = length of safety module in characters
Lc = length of control module in characters
E = run-time environment

The failure of the safety module can be caused by a failure of

the control module and prejudice safety by allowing unjustified

freedom of action to the control module. Therefore a mechanism 1is

required to maintain the safe operation of the safety module. The

paradox 1s not new and was noted almost 2000 years ago in the phrase

“Sed quis custodiet ipsos custodes?"
Juvenal, ‘Satires’ c80-130 A.D.

The probabllity of failure of the safety module can be reduced

by placing a restriction on the ability of the control modules to
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corrupt either data or instructions when communicating with the
safety module. For the safety module to effect the actions
requested by the control module it is necessary for the control
information to be made available to the safety module through some
secure communication mechanism such as parameter passing or sharing
of data space. [f parameter passing is used then there 1is a
probability that errors will be induced by the run-time environment,
which can itself cause data corruption. The option of using shared
data space 1s subject to a lower probability of error because of the
linking procedures used within the compiling system for declaring
global data references.

A module whose sole function is to maintain an ultimate safe
working condition by monitoring the safety.modules'within a system
needs to be inviolate and must be allowed to make some judgement on
the safety modules operational capability, The module would have a
connection to the run-time environment but not with any other item of
software. Connection with the run-time environment is exclusively
for the purpose of checking that the version of the safety module to
be executed by the run-time environment has not changed in any way
from that considered to be safe when the module was first made
operational, or that the execution of the safety module is not
overdue in time with respect to the previous instance. I1f changes
have been made to the safety module which is now considered to be
"suspect’' or it is considered to be overdue the ultimate safety
module will inform the responsible plant authority of the suspicion
and effect a predefined safe control operation on that plant area.

Changes to the safety module can come about by another module
causing corruption to the safety module or by functional changes to

the safety module requested by the plant authority. Functional

changes to safety modules have a probability that the implications to
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safe working of such changes may not be appreciated by those making

the changes.

In most i1industrial plants it 1s a proscribed activity for an
Engineer to override an ultimate safety limit without permission
being granted on the authority of the Plant Engineer. Such
authority may take the form of the possession, by Authorised
Engineers, of the necessary key to physically unlock the safety
protection system surrounding the limit. The safety limits proposed
for the safety modules should be regarded in the same way. AcCcCess
permission to the ultimate safety module should be restricted by
managerial action of, say, the Plant Engineer. Such an ultimate

safety module is called the Arbitrator Module.

To maintain the inviolate nature of the Arbitrator Module it
could be located 1n a Read Only part of the main memory of the
computer, The Arbitrator Module could use a strategy of checking
the unique identity of a safety module in order to monitor the safe

working of the safety modules. Conceptually the Arbitrator Module

can be viewed as in Figure 3.4.3.5.

Figure 3.4.3.5 The Arbitrator Module

(a)

Data flow between
modules

(b)

Communication line
C between modules

108



(c)

' ' Functional
relationship between
modules

where A

D

C
E

3.4.4 A Mechanism for Ensuring the Integrity of Software

Arbitrator Module
Safety Module

qutrol Module
Run-Time Environment

The role of the Arbitrator Module and its relationship with the
Safety Modules have been discussed on the assumption that the modules
have'not been corrupted as a result of software errors, incorrectly
installed modifications to the system or deliberate sabotage. If
the system has been corrupted in some way it cannot be said to be
complete. The Oxford English Dictionary defines completeness as a
synonym of integrity. It 1s in the context of completeness that the
word integrity 1is used in this thesis. A mechanism to restrict the

probability of corruption not being detected is called an Integrity

Lock.,
When the system 1s put into operational use it is reasonable for
the Functional Authority to assume that all the modules are

consldered to be safe. If at this point a unique identity is given

to each module such that safe operation is only possible when the
1dentity 1s shown to be valid, then a strict regime of managerial

control can be exercised on the installation of any changes to the

system,

To create a unique identity some form of encryption based on the
run-time code of the module can be used. ' A similar requirement is
found 1in data communication systems where a unique code, such as a

cyclic redundancy check or Hamming code, is generated to assist the
receiver in determining whether an erroneous message has been

received. The unique identity may be corrupted by a single error or
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by multiple errors. Hamming codes have been developed to cater for

at least one error and so could be the immediate choice for creating

the unique identity. The creation of the unique identity ought to

be done under the strictest controls, for instance under the
authority of a Senior Engineer, to maintain security. The unique
identity could be generated by a module called the Security Module.

The Security Module needs to be capable of reading the
particular control or safety module as an ordered set of characters
forming a message and generating the identity according to a
specified algorithm. Having generated the identity the Security
Module could then place it in an area of storage, called the Key
Area, which could then be declared to the system as “"Read Only".

The Key Area may contain many identities each mapped to a
particular module by the module name. The correct functioning of
the Integrity Lock would require that strict administrative controls
existed and the location of the Key Area would not be commonly known,

possibly only to the Plant Engineer since he 1s ultimately

responslible for the safe working of equipment. It is a managerial
decision on who would have the necessary information on how to run
the Security Module in mode 1, generation mode.

When a control or safety module is called by the Operating
System to be executed mode 2 of the Security Module, check mode,
would read the control module as a message and generate the identity

for that control module. As a function of the Safety or Arbitrator

module the current identity would be compared with the stored
identity. If the identities did not match then alarm conditions

would be raised. However, when the identities match the Operating
System would be allowed to execute the module. The procedure

described is shown in Figure 3.4.4.1.

The function of the Security Module in mode 1, generation mode,
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is the highest level of integrity, Integrity Level 1, Integrity
Level 1 is only executed when a satisfactory password has been
entered,

When the Security Module is executing in mode 2, checking mode,
the level of integrity is less than mode 1 but higher than the level
occcupied by the control module, safety module, arbitrator module and

the operating system which are all at Integrity Level 3. The level
associated with Security Module mode 2 is the Integrity Level 2.

By using a technique such as the Integrity Lock there is a
probability of executing a control module, or a Safety/Arbitrator

Module, which has previously been categorised as safe.

Figure 3.4.4.1 Integrity Levels

Integrity Level 1

Password

All Modules Security Module IHHMIHHHH'
Mode 1

Integrity Level 2

Security Module
Mode 2

Integrity Level 3

Module to __ | Operating Safety or
be executed System Arbitrator

Module

3.4.5 Discussion

There exists methods for tolerating faults arising in the

software.

The technique known as Recovery Blocks allows the system to

retrace, or back track, to the last known point where safe

computation took place and to re-establish a safe working attitude.
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But back tracking can cause a 'domino effect' where the system
retraces back so far that meaningful control actions are difficult to
achieve given that the plant status may have changed significantly
since the recovery began. Time can be important in maintaining
effective control of an industrial process and 1f a recovery system
cannot roll-back to a satisfactory point in a given time then
decisive action will have to be taken, possibly by the Operator.

Recovery Blocks have been used in systems not having a plant
status responsibility.‘such as Command and Control Systems, but in
industrial control systems the speed at which the plant status
changes may mean that some method is required which will maintain
plant safety whilst the fault is investigated. Though Recovery
Blocks may serve to protect the safety of the plant in some part they
are not sufficient in themselves and require additional features,
such as the strategy of using Safety Modules.

The use of Safety Modules is a strategy for seperating the

software into control modules, which would determine the necessary

control, and into safety modules which would be dedicated to ensuring
safe control actions on industrial plant. There would also be an
ultimate safety module, the Arbitrator Module, monitoring the safety
modules. Such a strategy permits the plant designer/manager to
specify or change the safe working limits for the particular plant
areas without modifying the control module. The strategy also
prohibits the mﬁin body of the system from effecting control outside

the limits, The strategy is not a fault tolerant technique but it

does ensure that safe control can be maintained.
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CHAPTER &

The Influence of the Development Process
on the Safety of Software

Chapter 3 examined the safe operation of the system through the
interactions of the software and the hardware with the emphasis belng
on the control flow.

In this Chapter the emphasis will be on the control flow of the
software.

It is held in this Chapter that errors in the software affect
safety and so the Chapter examines the occasions where errors can be
introduced into the software, why it is not practicable to remove all
errors from the software and introd;ces a basis for measuring certain
features of the software. It is suggested that these measures,
though not rigorously proved, do give some indication of the scope
for error in an individual item of software.

The development and production of 'safe’ software systems has

five distinct stages, each having a quality assessment part;

requirements specification, system specification, program
specification, program production and system test and integration.

Before the software development can begin the originator of the
development, the Requesting Authority, needs to obtain a concise
understanding of the requirements. Once the software has been
implemented and is in operation the Requesting Authority may identify
what are considered to be short-comings in the produced system which

may necessitate the requirements specification to be recompiled.

The requirements specification may have been prepared by a

collection of people from differing disciplines and functions within

the organisation, including the end-users. It 1s, therefore,
necessary for the requirements specification to be unambiguous to all

those people 1nvolved in its preparation. The ambiguity of the
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requirements specification is a research topic using established
formal mathematical methods to formulate the requirements

specification but the use of such formal methods presents a paradox;

to make the statements unambiguous the axiomatic methods used require

a conslderable degree of understanding of mathematical logic which

may not present a problem to computer scientists but may to the
Requesting Authority, who may not then understand the requirements
specification. [f written natural language 1s used for the
specification then the computer scientist may find the specification
to be imprecise, whereas the Requesting Authority may claim to
understand it. At the state of the art there is a risk that
ambiguity will persist 1n requirements specifications for industrial-
based control systems.

The system specification, which follows from the requirements
specification, 1is cogcerned with the design of the total system
against the requirements specification.

Program specifications are concerned with the design of specific

programs and the interfaces between them to meet the system

specification. How the software is structured into a system
influences the extent to which the system will conform to the
requlrements specification, as conjectured in Chapter 3. If the
structuring of the software does not conform to the requirements
specification then the software may need to be redesigned. To

ensure that the software is structured in conformity with the

requirements specification, an iterative process is called for

involving all those personnel involved in the requirements
specification and system specification. The process described 1s

sometimes called the 'design process'.

Once the design process has been satisfactorily achieved the

"program development' can begin. During program development the
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program is written in accordance with the previously agreed program
specification. At the end of program development, the program 1s
tested in 1solation from the other programs forming the system.
Following program development i1s a set of procedures cailed
'system test and integration’ when the individually tested programs

are tested as a complete system and integrated into a target

implementation.

The multi-stage iterative process which describes the
development process can be viewed as a directed graph, Figu}e 6.0.1,
where the nodes represent stages of development, each having an
assoclated activity;

Figure 4.0.1 Software Development Cycle

- Requirements Specification
- System Specification

- Program Speciflication
Program Production

- System Test & Integration
- Implementation

- Operation

-~ N N & I N -
'

Nodes 1 to § in the directed graph of Figure 4.0.1 have an arc
from that node and returning to that node to show that progress to
the next stage (represented by a node) is not permitted until some
form of quality assessment process has been satisfied for that stage.

Each normal path between stages, except 7 to 1, has a forward and

reverse arc indicating that when the quality assessment cannot be
satisfied at a particular node it is necessary to return to the

preceeding node and examine the transformation that took place. The

arc between stage 7 and stage 1 is uni-directional since the logical
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progression from node 1 1s to node 2.
To account for the occasion w