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ABSTRACT 

This thesis is concerned with the safety of industrial 

controllers which incorporate software. Software safety is compared 

with software reliability as a means of discussing the special 

concerns of safety. Definitions are given for the terms hazard, 

risk, danger and safe. A relationship between these terms has been 

attempted and the philosophy of safety is discussed. A formal 

definition of software safety is given. The factors influencing the 

development of software are examined. The subjectivity of safety is 

discussed in the context of safety measurement being a conjoint 

measurement. Methods of assessing the risk resulting from the use 

of software are described along with a discussion on the 

impracticability of using state transition diagrams to isolate 

catastrophic failure conditions. Categories of danger are discussed 

and three categories are advanced. The structuring of the software 

for safety is discussed and the principle of using safety modules and 

integrity locks is proposed. In discussing the reasons for errors 

remaining present in the software after testing two methods of 

measurement are suggested; Plexus and Fallibility Index. The need 

to declare variables is discussed. 

An experiment involving 119 volunteers was conducted to examine 

the influence of the length of variable names'on the correct usage. 

It was found that variables with a character length of 7 have a 

better probability of correct interpretation than others. 

The methods of assessing safety are discussed and the 

measurements proposed were applied to a commercially available 

product in the form of a Software Safety Audit. 

It is concluded that some aspects of the safety of controllers 

incorporating software can be quantified and that further research is 

needed. 
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CHAPTER 1 

Introduction 

Previous research has attempted to isolate those factors of 

software production which influence the incidence of software errors. 

However, previous research was reviewed for this thesis and it was 

found not to be concerned with the safety of industrial-based 

systems. Previous research has been mainly concerned with the non- 

industrial applications of computing though some has relevance to 

this thesis. 

The research for this thesis was concerned with studying the 

safety of industrial-based controllers which also incorporate 

software. The. study was concerned with the development cycle of the 

software from the specification and the development environment to 

the programming language, testing and maintenance. As a part of the 

research a set of metrics for assessing various features of the 

software have been developed to give some guidance on the structuring 

of such systems. The metrics are intended to allow comparisons to 

be made between different software development procedures. 

Since errors in the software can be considered as a risk and the 

combination of a risk and a hazard implies danger then it is asserted 

that software errors are dangerous. 

In this thesis an attempt has been made at providing guidelines 

for the production of safe software based on the research. 

In Chapter 2a survey is made of the current state of knowledge 

of various factors considered to influence software. 

Chapter 3 examines the difficulty of assessing safety from the 

basis of structural elements and develops some methods of 

quantification based on certain features of the software. 

Chapter 4 discusses the reasons for it being impracticable to 
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remove all errors and indicates where some of the errors arise. 

Chapter 5 reports on work undertaken on a real product to assess 

the safety of the product and makes observations as to where the 

difficulties lay in conducting such a safety assessment. 

Chapter 6 includes the conclusions and recommendations for 

further work. It is concluded that no ultimate solution was found 

during the research and there is a considerable amount of work left 

to done. 
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1.1 Problem Definition 

The reduction in the cost of computers has meant a corresponding 

increase in the use of computers for industrial-based control 

engineering applications. In such applications the consequences of 

an error are reflected in new risks to capital equipment, human life 

and the natural environment. The new risks are a consequence of 

implementing the control strategy in software when replacing existing 

technologies. In particular, microprocessors introduce new kinds of 

risk. 

The application of microprocessors in industrial-based control 

systems makes it necessary to be able to assess application programs 

according to some specified safety standards, though no method of 

measuring safety exists and a safety standard has not been 

formulated. 

In Great Britain there are legal considerations when applying 

industrial controllers to hazard-related processes; there is a 

contractual obligation of the User to inform the Supplier of safety 

requirements and, conversely, the Supplier has an obligation to 

inform the User of any safety related issues that have been 

identified in the controller. Within the framework of commercial 

activity due regard must also be given to the statutory instruments, 

such as the "Health and Safety at Work etc Act, 1974". 

The Health and Safety at Work Act is administered by the Health 

and Safety Commission through its Health and Safety Executive (HSE) 

which has six Inspectorates, three of which are directly relevant to 

this thesis; the Nuclear Installations Inspectorate, the Mines and 

Quarries Inspectorate and the Factory Inspectorate. 

In hazard-related industrial control systems there is still a 

need to establish a method for assessing the safety of software once 

it has been developed and before it becomes operational with respect 
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to the plant that it will control. Some software test procedures 

check the software for correct operation within a limited range of, 

test data sets. These checks may be unsatisfactory for industrial 

controllers incorporating software and which may be used in a 

hazardous application. No standard testing method exists to 

demonstrate the safety of software in such a situation. Yet a 

complete industrial control system may comprise software packages 

from different sources of supply and sometimes developed for a 

different range of computers to the target computer under test. 

Safety of industrial control software should consider the 

software, the run-time environment that the software is expected to 

work in and the function of the software. Measurement of the 

software safety should indicate the extent to which the software can 

be confidently expected to work safely: both safe and consistent in 

operation when controlling equipment. 

Since software errors are hazardous, the containment of the 

hazard within acceptable limits is called software safety in this 

thesis. 

The safety of software is an area of research where there is 

little published evidence of research. 

1.1.1 Definitions 

Throughout the thesis the terms 'hazard', 'risk', 'dangerous' 

and 'safe' are used and to avoid confusion over the terms a 

definition has been placed on each of the terms; 

- 'Hazard' describes a condition with the potential to cause 

harm; to capital equipment. people or the natural environment 

- 'Risk' is used to describe the probability of a hazard 

materialising 

- 'Dangerous' is used to describe a situation where the level of 

risk of a particular hazard is considered to be unacceptable 

4 



- 'Safe' is used to describe a situation where the level of risk 

is judged to be acceptable. 

In all cases people need-to be present to transform a hazard into a 

dangerous state. 

Additionally, the term 'software' is used to refer to computer 

programs written to meet a specific industrial control application. 
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1.2 Safety 

'Reliability' and 'safety' are sometimes considered to be 

synonymous but in this thesis they are held to be related subjects 

with different goals. 

Reliability is often associated with the term 'reliance' to mean 

the dependence a user places on a system, when reliability is a 

measure of the success of achieving a desired operation. 

Safety is an emotive topic and the assessment of safety is a 

subjective judgement but 'safe' intuitively suggests some absolute 

measure that the risk is 'acceptable' or does not exist. The use of 

the term 'acceptable' must consider costs, benefits and to whom the 

risk is considered acceptable; the supplier, the procurer or the 

user. Therefore, acceptable should be used sparingly to express 

some agreement between the parties exposed to the risk of the costs 

and benefits. 

Since hazard is used to describe a condition with the potential 

to cause harm then it follows that for a hazard to materialise then 

the risk needs to approach unity. As the risk increases the 

threshold of acceptability will be crossed at a cusp point and the 

state will be considered to be unsafe which implies, if people are 

present, that the state is dangerous. 

Individual thresholds of danger will vary but it is possible to 

postulate a set of thresholds which categorise danger according to 

three levels of danger; serious, major and minor. Placing any state 

into one of these categories suggests that the level of danger can be 

expressed by such a term as 

Level of Danger = P(r) . Hn 

where P(r) is the probability of the hazard materialising, risk 

Hn is some subjectively assessed number associated with 

the hazard. 
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P(r) is the sum of all the events in the event space which can 

cause the hazard and P(r) is made up of a number of sets of events. 

The relationship of these sets of events to P(r) can be shown by 

using Venn diagrams. As an example, consider some computer- 

controlled machinery. 

In the simplest case, Figure 1.2.1. a), the set of events 

associated with the machinery alone being a hazard are given as P1 

and the event space is considered to be the universe of events 

unbounded. Since no people are present then, by definition, there 

is no danger. 

When people are involved then there is a set of events 

associated only with the environment being the hazard, P2'. The set 

of states intersecting P1' and P2', given as P12', are those events 

associated with the machinery and the environment. When the 

machinery is being operated by an Operator without the aid of a 

computer then the event space can be considered to be bounded to 

include only those events associated with the operation of the 

machinery, Figure 1.2.1. b). 

When the control of the machinery includes some form of computer 

control the boundary event space changes to include a set of events 

associated with the computer control alone being the hazard, P3''. 

The intersection of P1'', P2'' and P3'' is given as P123'' and is the 

set of events associated with the machinery and the environment and 

the computer control causing the hazard, Figure 1.2.1. c). 

The probability of events in the intersection of P2" and P3'' 

causing a hazard is low and the set of events in the intersection of 

P1'' and P3- does not involve people so, by definition, cannot be 

considered as dangerous. 

By including computer control on the machinery new risks are 

introduced. However, the introduction of computer control, P3''', 
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may also reduce the set of events associated with the machinery 

alone, PI''', and so distort the boundary of the event space, Figure 

1.2.1. d). 

Figure 1.2.1 Venn Diagrams for Computer-Controlled Machinery 

a) 

b) 

r- ---ý 
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d) 

P(r) = P1... + P2' + P3.,. + P123'' - P13''' 
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1.3 Software Reliability 

Having established what is meant by the term safety and that 

software errors can affect safety then it is necessary to appreciate 

the concepts of software reliability before discussing what is meant 

by software safety. 

Definitions of software reliability range from an assessment of 

the correctness of a program with respect to the requirements 

specification through to a count of the number of programming errors 

in sample programs. 

The assessment of a program's reliability necessitates some 

knowledge of the programs requirements but the requirements 

specification can only be regarded as a necessary design document. 

A requirement specification will state what the software is required 

to do and may not include statements on safety although it may be the 

case that safety is to be maintained even when the software is 

abused. A requirement specification is insufficient to instil 

confidence in the correct and safe working of a program or to ensure 

that the program satisfies the requirements. 
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1.4 Software Safety 

The published material on software reliability presented models 

for indicating the number of software errors found and aimed to 

predict how many errors still existed. The models also consider 

that all errors present have the same hazard. The concern of this 

thesis is the extent to which a risk exists when an error is 

experienced. The Oxford English Dictionary defines safety as being 

the noun of the adjective safe: out of danger: not involving risk: 

cautious: ..... 
". The concern was with the maintenance of an 

operational condition which, whilst being reliable, is also free from 

danger, therefore, it is conjectured that the research for this 

thesis was on Software Safety. 

Though the terms 'reliability' and 'safety' are frequently 

interchanged they have different interpretations. An item of 

software may perform in an unintended manner and yet be safe in 

operation. Equally, software can be unsafe whilst functioning as 

intended in the specification. Reliability is concerned with all 

failures. Safety is concerned with the consequences of failures 

which may result in human or economic cost. Some failures incur 

more economic-social costs than others and so some errors are 

considered to be more serious than others. 

There has been much research into Software Reliability concerned 

with the intended function of the software but little specifically on 

Software Safety. 

Current software reliability theory attempts to quantify errors 

by predicting the number of errors expected to exist. The theories 

give equal weight to each error predicted to exist. By contrast, in 

safety assessment it is the intention to qualify errors by weighting 

them according to the resultant economic-social cost. 

Safety and reliability have different goals due to the differing 
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emphasis. Decision making in a safety-related system involves 

moral, ethical and economic factors and requires a knowledge of the 

difference in emphasis between reliability and safety. If this 

difference is not taken into account then less information will be 

available on which to base the decision. Therefore, software safety 

should be dealt with as a related but separate issue from software 

reliability. 

In this thesis software safety'is defined as: 

The confidence that a given program will, for a given run-time 

environment, perform its function in a controlled and 

reproducible manner within an acceptable evaluation of risk. " 

The term 'acceptable evaluation of risk' in the definition 

recognises that safety is a subjective judgement of which software is 

safe and which is unsafe. The subjectiveness in evaluating risk is 

a value judgement on the damage that could arise in possible 

situations and was reflected in the Report of the Court of Inquiry 

into the Flixborough Disaster Ell, Para. 197. 

Using propositional logic it is possible to formally state the 

definition of software safety such that there are three conditions to 

be satisfied; 

1. When the current state, si, is contained in a set of safe 

states S, there is a function F that will transform the current state 

to the next state, sj, which is also contained in the set of safe 

states, 

Vs E S, (F(s )=ss S) 
iijj 

2. When the current state is contained in a set of unsafe 

states, U, there is a function that will transform the current state 

to the next state, which is contained in the set of safe states, 

Vs E U, Ms )=sDs S) 
iijj 
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3. When the current state is contained in a set of unsafe states 

and there does not exist a set of safe states for the current state 

to be transformed to, then there is a function that will transform 

the current state to the next state with the lowest risk 

Vs E U. if 
IsES 

such that F(s )=s then 
ijij 

F(s )=sJ Risk < Risk 
ik (sk) (sj) 

where S is a set of states judged to be 'safe' 

U is a set of states judged to be 'unsafe', 

V is the universal quantifier 

is the existential operator 

In asserting that Risk < Risk consideration needs to be 
(sk) (sj) 

given to the time taken for the system to achieve state sk. 

There at least two strategies that can be adopted when 

considering the consequences of time. If Risk is considered to 
(sk) 

be lower than Risk , yet more time is required for the system to 
(sl) 

achieve state sk than state sl, a judgement can be made whether 

safety is best served by achieving state sk with a low risk in a 

longer time than state sl. State sl has a higher risk than state sk 

but a lower risk than state sj and can be achieved in a short time. 

Therefore, condition 3 can be qualified; 

3a. Vs E U. if IsES 
such that F(s s then 

ijij 

F(s )=sJ Risk < Risk 
ik (sk) (sj) 

iff Risk T<TA( Risk < Risk > Risk 
(sk) (sk) (sl) (sk) (sj) (sl) 

where T is the time required to achieve a particular state from 

the current state, si. This strategy is appropriate to those 

instances when it is only possible to one state ahead. 

If it is possible to look ahead more than one state an 

alternative strategy might be to achieve a state with a higher risk 
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for a short time in the knowledge that a state with a lower risk will 

be achieved ultimately. In this strategy safety could be expressed 

as the integral of the level of danger against time 

Safety =f P(r) . Hn dt 

The value of Hn is subjectively judged and could influence which 

strategy to adopt due to the level of confidence in the judgement. 

The definition of safety can be formally stated but what is 

considered to be a set of 'safe' states or 'unsafe' states depends on 

a subjective judgement based on knowledge, experience, emotion and 

legislation of what is acceptable at the time. 
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CHAPTER 2 

Factors Affecting Software Safety 

In this chapter an argument is advanced that the assessment of 

safety is subjective and will remain so until some method of 

measurement can be found which is not a conjoint measurement. 

Factors found during a literature survey, which have been considered 

by other researchers to influence software, are also examined in the 

context of each stage of the software development process before 

implementation and following implementation. 

There has been a substantial amount of material published 

attempting to establish those factors having an influence on the 

production of software. Since there has been a substantial amount 

of relevant material published only selected material has been 

identified and referenced. 
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2.1 The Subjectivity of Safety 

Software can be adversely affected by certain factors and it 

follows that the safety of an industrial process resulting from the 

use of the software can also be affected by these same factors. The 

factors considered in this chapter are those asserted by the 

respective researchers to have an undesirable influence on software. 

These factors are considered with the emphasis being on the safety of 

the software. The term 'safety of the software' is used to mean the 

safety of the system as a result of using software rather than to 

mean an assurance that the software is itself 'safe' from errors. 

To confidentally install a controller incorporating software it 

is necessary for some checks to be carried out leading to 

certification of the software for use in safety-related systems. In 

a safety-conscious industry it will be normal practice for these 

checks to be undertaken by a third party, separate from the User or 

Supplier, who is also aware of the requirements imposed through 

legislation or common by 'best world practice'. The relationships 

between the Supplier, the User, the Certification Authority and the 

Health and Safety Executive are represented diagramatically in Figure 

2.1.1 with the solidity of the line reflecting the strength of the 

relationship. 

Figure 2.1.1 Relationship between the parties in the 
certification process. 

Certification 
Authority 

User Supplier 

HSE 

The form that the certification takes will depend on the 

experience and knowledge of the User, of the Supplier, of the 
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Certification Authority and on the current legal requirements. The 

form of the certification will also be influenced by the state of 

knowledge of the certification methods. 

The certification of the design of any equipment needs to be 

comprehensive. The difficulty of undertaking a comprehensive design 

study was raised in the Court of Inquiry into the Flixborough 

Disaster, [14] paras. 191-193, when it discussed in general terms the 

probabilities of the "8-inch hypothesis" and the "20-inch 

hypothesis". The Court decided to refer to a special committee, 

paras. 217-219, the concern of a major disaster resulting from the 

design of process plant and equipment. 

The Danish organisation Elektronik Centralen, [17], have issued 

a draft directive on the testing of software used in control and 

surveillance systems. The level of safety is determined by 

assessing observable actions called 'qualities' which are considered 

to influence the safety of software. It is difficult to use the 

assessment as a comparison between two dissimilar systems since there 

are no quantitative measurements. Since these qualities are 

subjective observations made by the assessor of the software at the 

end of the whole development they have not been used as the framework 

for this Chapter. 

Software production factors such as the choice of programming 

language and data structures, programming methodology, quality 

assurance and project standards are sometimes asserted to influence 

software production. 

One researcher, Rault [59], surveyed the published work on the 

production of high quality software and concluded that there was a 

need for research into what he called "quality control" and listed 

some of the factors to be considered; 'complexity, comprehensibility, 

usability, modularity, reusability, adaptability, testability, 
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sortability, linkability, robustness wit! 

operations, and so forth, ' and suggested 

these factors. These factors are vague 

the end-product, the software, against a 

not observable. 

At each stage of the development of 

h respect to user mis- 

some methods of measuring 

and concerned with assessing 

set of qualities which are 

software there is a choice 

to be made between competing methods and techniques and in each case 

there are some good and some bad ones. The choice of method or 

technique to use will influence the safety of the software but, as 

the literature survey will show, there has been competing assertions. 

Following the literature survey, the factors in this thesis have 

been grouped into four sections covering the stages of the 

development process before implementation and after implementation. 

The sections are: 

Specification and Design 

Programming Language and Programming Structure 

Support Environment and Testing Strategy 

Operational and Psychological Factors 

Table 1 contains an analysis of the frequency of occurrence of 

these factors (and their subsets) by application area. The totals 

are for each set of factors found in the surveyed works. 

The sections of the survey assume that undesirable influences 

can introduce unsafety at each stage of the software development 

process and that each factor can affect the outcome. For safety to 

be assessed according to any one factor, the factor must be 

observable and quantifiable and not subjective which implies that it 

is possible to attach a numerical value to safety and that safety can 

be absolute. It is the desire to quantify safety that has led many 

people to relate safety and reliability, when reliability is a 

quantitative measure and a method has not yet been found of 
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quantifying safety. 

Calculations of software reliability related to the coding of a 

program do not constitute a definition of software reliability but 

can be categorised as a software metric. The assumption is that a 

well structured program will be more reliable than a badly structured 

one due to the clarity of expression of the logic in the program. 

The assumption takes account of the possibility that the logic could 

be incomplete and also assumes that good structuring is always 

possible. 

One definition based on error rates, from Rault and Bouissou 

[60] states that software reliability is; 

"the probability that a program works without error during a 

given time span on the machine for which it has been intended 

and under specified conditions". 

Here the concern is with a statistical probability of failure 

calculated from a count of the number of errors detected and 

corrected over a specified period of time. A problem arises in the 

use of elapsed time as a parameter since failure to function reliably 

is dependent on the occurrence of a specific condition. The history 

of the rate of reduction of programming errors will influence over- 

confidence in the software if it shows a rapid reduction. 

Conversely, if the number of outstanding errors is reduced at a slow 

rate, the confidence in that software would be accordingly low. 

If it is assumed that the failure density reduces exponentially 

then as the failure density reduces so will the hazard rate 

accordingly and demonstrate a steady state operational life. The 

effects of wear and aging of mechanical equipment causes random 

failures to be seen in the failure density giving a corresponding 

change in the hazard rate. The hazard rate will then be reminiscent 

of a bath-tub, which is where the term "bath-tub curve" comes from. 
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In software reliability it is assumed that the detection and 

correction of software errors reflects an exponential function and 

that a point can be reached where an 'acceptable' number of errors 

are considered to exist and after which time continued stable 

operation can be expected since software is not affected by aging or 

wear-out. 

Many industrial control systems will not be changed from their 

initial operating status during the life of the system. Many will 

be subjected to change after some period of stability to reflect the 

revised operational requirements. The changes may cause some new 

errors to be introduced causing a transient increase in the failure 

density and a consequent rise in the hazard rate. Modelling of the 

failure rate of software using the bath-tub curve is useful if 

changes to the system are anticipated. 

Figure 2.1.2 Failure Density and Hazard Rate 
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When the failed unit is repaired and returned to service, a 

measure of the reliability of a unit is the term Mean Time Between 

Failure, and when the failed unit is not repaired the term Mean Time 

To Failure is used. It has become accepted practice to use MTTF 

when measuring software reliability since any correction applied to 
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the program will change its characteristics and can therefore be 

regarded as a new instance of the program rather than the erroneous 

one being returned to service after repair. 

In using MTTF it is assumed that an exponential reliability 

function with a constant hazard rate, %, applies. However, MTTF 

equates to the reciprocal of /I and the number of failures experienced 

will be at least half of all failures, Figure 2.1.3. 

Reliability models can be grouped into two main types: 

Deterministic and Bayesian. 

Figure 2.1.3 Mean Time To Failure 

a) in terms of reliability 

R(t) 

1 
e 

b) in terms of failure rate 

F(t) 
1-1 

e 

In the Deterministic group of models the Jelinski-Moranda and 

Musa models dominate the published material, [49]. The assumption 

in these models is that the times between detection of errors, T, are 

independent random variables, V, and that time, t, is conditionally 

exponential, so 

-At 
pdf(t I V) = ýe 

and 

k. =( N+ 1 )' 
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where N= initial number of faults 

= contribution to failure rate from each fault 

The execution time model of Musa is becoming more widely evident 

in published literature and is based on the Jelinski-Moranda Model. 

In the Musa model the expected number of errors, n, is given by 

n= No [1- exp( -Ct/NoTo )] 

where No is the inherent number of errors 

To is the MTTF at start of testing 

C is the 'testing compression factor' and. a ratio of equivalent 

operating time in the target environment to the actual 

operating time in the test environment. 

The present MTTF is given by 

Ct 
T= To exp( NoTo 1 

giving 

-t R(t) = Pr{ no failure in (t, t«1)} a exp( T 

To improve the MTTF from T to T' 

1_I 
An = NoTo (T T') 

and the execution time to achieve this change is 

MoTo T' 
At =C Ln (T) 

Littlewood (41] discounts the use of Mean Time To Failure (MTTF) 

and Mean Time Between Failure (MTBF) in the context of software as 

elapsed time can only be used when a regular pattern of use can be 

demonstrated. 

The Littlewood-Verrall model, [421, dominates the Bayesian group 

of models in the published material and also assumes exponential 

reliability growth; 

- it Of (t 1 1) = 11 e 
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where / is the program failure rate with a gamma distribution: 

that the failures do not occur at a constant rate but depends upon 

program usage. 

The model also assumes that different program errors have 

different probabilities of failure. The failure rate is given as 

a a-I - ? (i)71 
PDF( X)=[ 1(i)] Le 

r (a) 

where a= a-th failure 

7. = failure rate 

r (a) = gamma function 

V= linear function 

giving 

a 
F(t) t+ fli) )] 

a 
R(t) =[ ('P(i) )/(t+ Y(i) )] 

and 

MTTF = Y(i) / a-1 

The models discussed above are concerned with the operational 

performance of the software, the amount of testing needed and the 

software error-rate. There is no indication of the seriousness of 

the errors estimated to exist or which errors would create a 

catastrophic operational malfunction. The rate of detection and 

correction of errors does not indicate the risk associated with the 

usage of the software. 

In chemical plant design studies it is common practice for the 

design to be subjected to a range of techniques known by the generic 

term 'Risk Analysis', [3], in order to determine the risk associated 

with the design. The approach is to examine product flow routes and 

to ask the question 'would it be nasty if ... 
'. Probabilities of 
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component failure in each route are assessed and submitted to 

probabilistic analysis to establish the risk for the total plant. 

An analogy between the risks in a chemical plant and the risks 

in software is to be seen by viewing the data flow of the software in 

a similar manner to the material flow of an chemical plant. An 

assumption is made that the risk from the software is independent of 

the risk from the supporting hardware. Such an assumption is 

similar to that applied to other industrial plant when it is assumed 

that the risk from each nut and bolt or individual component is 

acceptable. In both instances, the resulting risk analysis is 

subject to external events on each component. 

Once a risk analysis has been done then it is a simple task to 

repeat the original risk analysis following modifications. The 

investigations reported by Taylor, (66], indicate that it may be 

possible to apply some risk analysis techniques to software following 

detailed examination of the functional specification. 

In the Report of the Court of Inquiry into the Flixborough 

Disaster, (14], the following comment is made in para. 196; 

"No plant can be made absolutely safe any more than a car, 

aeroplane, or home can be made absolutely safe. It is important 

that this is recognised for if it is not, plant, which complies with 

whatever may be the requirements of the day tends to be regarded as 

absolutely safe and the measure of alertness to risk is thereby 

reduced". 

Both 'risk' and 'hazard' can be quantified and the combination 

of risk and hazard is called 'danger'. Since 'safe' has been 

defined as being a situation where the level of risk is judged to be 

acceptable then it is desirable that safety should also be expressed 

quantitatively. The word 'safety' is often associated in peoples 

minds with the word 'dangerous' which describes a situation which, 
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though safe to one observer, may be considered to be unsafe to 

another. Dangerous has been defined in this thesis to mean a 

situation where the level of risk of a hazard materialising is 

unacceptable and will have an undesirable consequence on either 

capital equipment or people. 

Safety refers to the subjective judgement of potential hazards 

within the safety criteria and is based on personal experience 

supported by limited measurements of measurable parameters. This is 

currently not possible. 

To understand why safety cannot be expressed in terms of a 

quantitative measurement the epistemological and logical foundations 

of measurements need to be examined. But before examining the 

principles of measurements it is necessary to have a picture of the 

problem of fitting any scale of measurement to safety. 

On the one side of the picture there is a notion of safety 

comprising a conception of what is 'safe' and what is 'unsafe', a 

model of how safety relates to the world and a definition based on 

both of these. On the other side of the picture there is some 

method of instrumentation providing a measure which, through 

pragmatism, is ordered in to some index. The ordering of the index 

is not influenced by pragmatism alone but is also subject to 

influence by the model and the concept. 

Figure 2.1.4 The Measurement of Safety. 
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To be able to have some measurement of safety according to the 

definition it is necessary to have a mapping function between the 

definition and the index. Finkelstein, [19], formally defines 

measurement as being a set of mathematical entities 0 and a set 

numbers N with a mapping function M between the sets such that M maps 

the mathematical entities 0 onto the set of numbers, M: Q -> N. A 

scale of measurement S is given as the triplet S= {Q, N, M}. 

If the class of entities 0 is considered to be the definition of 

safety shown in Figure 2.1.4 and the set of numbers N as being the 

index, then in order for safety to be expressed in terms of a 

measurement a mapping function M which maps the definition D into the 

index I, M: D -> I, is needed. Such a mapping function may be 

considered as a conjoint measurement which, according to Finkelstein, 

relates to a set of measurements having the capacity to assign a 

measure to the object and order the measure in a set of measures. 

Conjoint measurements, then, are some form of ordering according to 

empirical observations (subjective judgement) not rankings which 

Finkelstein describes as a comparison against defined standards. 

Since defined standards do not exist for the safety of software it is 

asserted that the safety assessment of software is a subjective 

assessment. 

Safety, then, is some subjective judgement about the risk of a 

hazard materialising and that the risk is acceptable in the social 

climate prevailing at the time of the judgement. The Flixborough 

Inquiry, [14] para. 197, comments on the acceptability of risks; 

"When Mr Marshall refers to risks exceeding a specific value we 

understand him to refer to risks which exceed what at a given time is 

regarded as socially tolerable, for what is or is not acceptable 

depends in the end upon current social tolerance and what is regarded 

as tolerable at one time may well be regarded as intolerable at 
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another. Nowhere perhaps is this more apparent than in the field of 

road transport where the construction and use regulations have, over 

the years, become even more stringent". 

The acceptability of risk is dependant on personal experience 

and an appreciation of the probability issues involved. For example 

Knox, [37], has suggested that a probability of 100,000: 1 is 

considered to be safe whilst Starr and colleagues, [64], found that 

risks between 10,000,000: 1 and 10,000: 1 are considered by the general 

public as being acceptable since "their likelihood are no more than 

being struck by lightning". Caution must be expressed when thinking 

of acceptable risks in terms of ratios otherwise the wrong inferrence 

may be drawn. 

If it is subjectively assessed that activity X is "safer" than 

activity Y then the judgement may accurately reflect a comparison of 

some characteristic of the entities. However, the utility of the 

safeness of entity Y may be greater than that for entity X, since the 

social-economic consequences of entity Y being unsafe may be greater 

than for entity X. Therefore an assessment of safety must not be 

considered in isolation from the economic-social costs of being 

unsafe. 

As an example of the subjective nature of safety it can be said 

that the accumulation of explosive materials above that licensed by 

the Local Authority is not safe. Yet at the Inquiry into the 

Flixborough Disaster it emerged that the site had a licence under the 

Petroleum (Consolidation) Act 1928 to hold 8,500 gallons of explosive 

material yet the management, including the Safety Officer, had 

allowed 367,850 gallons of explosive material to be stock-piled. 

The storage of explosive material at a level of 43 times that 

licensed was not considered by the Court of Inquiry as unsafe. To 

the contrary, the Report commends the management in three paragraphs 
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(paras 201,202 and 206) for being "safety conscious". 
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2.2 Specification and Design 

The earliest stage of the development of software is the 

specification and design. A specification should be an unambiguous 

statement of the intended properties (characteristics) of a program. 

The unambiguous property of the specification applies whether it is a 

formal requirements specification or an informal functional 

specification and is a guide to the designer about the requirements 

of the system. The designer undertakes the design according to his 

understanding of the specification. 

The produced design is the designer's interpretation of the 

specification which he will consider to have understood in detail and 

yet may have produced a design which does not satisfy the 

specification. Such a design may be unsafe in operation due to the 

designer not having appreciated the safety requirements contained in 

the specification. 

Basili and Perricone, [4], examined two large software systems. 

One of the systems was for satellite planning studies and comprised 

approximately 90,000 lines of Fortran. The second system, a 

'ground-support' system, was programmed by the same organisation as 

the first but the length of the code and the programming language 

used were not reported. After analysis Basili and Perricone 

reported that on the 'ground-support' system only 81 of errors were 

attributed to specification errors yet on the satellite system 48Z of 

all errors were "... attributed to incorrect or misinterpreted 

functional specifications or requirements". 

2.2.1 Formal Methods 

Formal Methods of specification have been developed using Finite 

State Machines, Directed Graph, Control Flow Graphs, Modal Maths and 

Denotational Semantics. The published works have been largely 

concerned with the description of formal methods rather than specific 
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application examples. 

Berg et al, [5], suggest that formal methods are an aid to 

software production by stating precisely the requirements and 

objectives that the program is to satisfy. 

When a formal specification is used the designer may consider 

there to be minimal specification ambiguities. Acts of faith by the 

designer in the infallibility of the specification may lead to a 

lower awareness by the Programmer of the requirements and a 

consequential increase in human error during the software production. 

2.2.2 Functional Specifications 

A functional specification is a statement to the customer about 

the way the software is expected to react on a given input sequence. 

However, the action to be taken following an unanticipated and 

unspecified combination of inputs or events is not specified. A 

consequence of failing to make a statement about actions following 

unexpected events may mean that the designer fails to establish the 

unsafe conditions. 

Functional specifications have become common in many industrial 

installations over the years and are sufficiently detailed for many 

purposes according to Kopetz, [38]. The format of a Functional 

Specification varies according to the project standards in use within 

the organisation and no standard approach to its compilation exists. 

Non-standardisation of a specification format may create a situation 

where a specification is misinterpreted by a designer who is familiar 

with one format of specification and is being requested to prepare a 

design against an unfamiliar specification format. Consequently the 

designer may overlook some of the safety features of the design. 

Pyle, [57], suggests that the requesting authority for the 

design may be a Plant Manager who has a deep understanding of his 

process requirements but may not have a similar grasp of formal 
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specification methods. In such a situation functional 

specifications aid the requesting authority to have confidence that 

the overall safety of his plant will be maintained and aids him to 

appreciate complex concepts, particularly about the scope of the 

proposed solution. 

When Functional Specifications are used decisions on algorithms 

and their implementation are deliberately not taken at an early stage 

in the design process so that unnecessary constraints are not imposed 

on the designer. Henry, [28], warns of the dangers of 

"overspecification" hindering the conception process through limiting 

the set of possible solutions. 

With functional specifications a confusion may arise about the 

precise nature of the function to be performed and lead to the 

omission of some aspect of the design aimed at ensuring safety. 

Some functional specifications include a separate section on the 

safety aspects of the system. 

2.2.3 Specification Languages 

Ramamoorthy and Ho, [58], state that there is an urgent need for 

specification languages in which system requirements can be 

unambiguously stated and validated. 

The belief that specification languages can improve the 

consistency of the software design has led to the use of program-like 

languages to specify the design. A program written in a high level 

programming language describes the means of achieving a given 

transitional state without explicitly expressing the effect of the 

transition. For a specification to be meaningful to the requesting 

authority the effect of the transition needs to be expressed not the 

means. Pyle, (57], rejects the use of a specification language to 

formally specify a design since it is usual for such a specification 

to be useful solely to the designer and not understandable to the 
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requesting authority. 

Software specified by a specification language can be submitted 

for verification using formal methods but the use of a specification 

language does not implicitly ensure safety. Berg et al, [5], report 

that no major systems have been specified or verified using'a 

specification language. 

2.2.4 Structured Design 

Structured design is a software interpretation of the 

specification. 

Structured design is the arrangement of functional modules into 

a conceptual hierarchy of modules comprising the system. To 

construct the hierarchy a technique known as stepwise refinement, 

Wirth (69], can be used to develop a description of the system and 

its data structures. At each step in the refinement process a 

consistency check is made to ensure adherence by the design to the 

specification and that each development stage reflects the 

specification of the previous stage plus revisions. 

In order to construct the hierarchy two approaches are common; 

bottom-up design and top-down design. 

Bottom-up design is a method used by many designers when 

designing individual modules and arranging the interconnection of the 

modules until they meet the requirement. Top-down design examines 

the requirement and divides it into designs which are definable 

portions of the total requirement. The designs can be further 

divided until a number of modules have been identified. 

Step-wise refinement can induce errors when following either a 

purely top-down or purely bottom-up design because of the oversight 

of common functions. There is a secondary effect, that of creating 

a poor design because of the design being fragmented. These effects 

can be assessed qualitatively but not quantitatively. 
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2.3 Programming Language and Programming Structure 

2.3.1 Programming Language 

Whilst the design method influences the system structure and 

interactions, the main production tool in software development is the 

programming language. The choice of programming language influences 

the amount that errors can be introduced into the resulting code. 

Young, [71], gives a comprehensive review of languages for 

industrial control systems and makes recommendations on those 

languages he considers to be suited for the purpose. Young sets out 

six basic criteria for the design of a real-time language; "security, 

readability, flexibility, simplicity, portability and efficiency". 

Security of a language is some measure of the extent to which 

errors in the program will be detected by either the compiler or the 

run-time support system. Readability concerns the choice of 

variable names and legibility such that a conceptual understanding of 

the software can be gained by reading the program listing without 

recourse to further documentation. Flexibility of a language is the 

richness of choice available to a programmer using the language. 

Simplicity reflects the time and cost required to train a 

programmer in the language and also the reduction of programming 

errors caused by misinterpretation of the language. Portability is 

the ease with which a program written in a particular language is 

able to be moved from one computer to another computer without being 

dependent on the supporting hardware of either computer. Efficiency 

is some measure of the computational throughput compared with the 

constraints imposed by the control system and some measure of the 

predictable overheads, such as data manipulation. Young suggests 

that of the six criteria security and readability are vital in 

safety-related systems. 

It was found during the survey of published literature that some 
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languages are considered to be more secure than others, due to their 

syntax. Horning, [31], gives an insight into some of the problems 

of using particular languages. 

For high-level programming languages there are fewer errors for 

a given function then would be the case with a low-level programming 

language. Therefore, the programming language has an effect on 

software safety. 

Comments have been made by Young, [71], and Horning, [31], about 

the type of language to be used for different tasks. Rzevski, [61], 

reported on experiments which he asserts show that expert FORTRAN 

programmers write equally reliable and safe programs as expert PASCAL 

programmers. Rzevski also reported that he has found it easier for 

novices to learn to write reliable programs in PASCAL than in FORTRAN 

and attributed the findings to the structuring of the language. 

Gannon, [21], suggested that a programming language for real- 

time use needs to be secure and cites the implementation of data 

typing as an example of language security. A data type specifies 

the set of operations that can be applied to objects of that type and 

the range of values an object of that type may have. The method 

that a programmer adopts to ensure the security of data is a safety 

concern since data corruption can lead to incorrect functioning of 

programs. 

Another aspect of programming languages which Horning, [31], 

considers to be unsafe regardless of the task, is the control 

structure. The control structure is influenced by the amount of 

code indentation and in an experiment conducted to examine the 

effects of the indentation of code Miara et al, [47], found that 

indentation significantly influences'the comprehension of the program 

by programmers and concluded that the experiment coincided with the 

earlier work of Kerninghan and Plauger, (36]. 
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Reference was found to faulty instructions not being detected 

during testing and resulting in unsafe operation. One such report 

concerned the early termination of a French meteorological experiment 

caused by a controlling satellite issuing the 'abort' command instead 

of the 'read' command and destroying 72 of the 114 weather balloons, 

Anderson and Lee [21, and Myers, [50]. 

In some languages, notably BASIC and FORTRAN, the declaration of 

variables is not required and new variables can be implicitly 

declared within the body of the program. The alternative strategy 

is to require that all variables be defined in a declaration block at 

the beginning of a program. Languages which do not require 

declarations may be considered as unsafe when used for industrial 

control since the declaration of variables within the body of the 

program promotes ambiguity. 

An example of the risks of not requiring declarations of 

variables is the reported loss of a space mission to Venus, Mariner 

I, Myers (50], which was reportedly due to an error in a program 

written in FORTRAN of the type: - 

DO 31=1.3 

Because Fortran is a context-dependent language, the statement 

was treated as an assignment of the value 1.3 to a variable and 

allocated D031 to that variable rather than correctly executing a DO 

loop. 

Reported losses of equipment through software errors have caused 

expensive losses of equipment. There have been no published reports 

of incidents endangering human life. Reports such as these 

demonstrate the risk of not declaring variables. 

The ability to handle non-standard input-output devices such as 

Analogue-Digital Convertors and Digital-Analogue Convertors. is 

important to the control strategy and needs to be considered when 
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selecting a particular language for control. In industrial control 

systems programs need to be able to control low-level devices and 

problems have been recorded with low-level languages, Pyle [56]. It 

is considered by Pyle to be preferrable to use a high-level language 

for such occasions yet there needs to be a capability of programming 

low-level device hardware, without needing to resort to machine code. 

The language 'C' has many low-level features as part of the language. 

In industrial control systems it is common for an external 

stimulus to execute more than one program simultaneously whilst 

maintaining synchronism. Such a requirement is called concurrency 

and with the development of multi-tasking languages like Ada, [11], 

it will be possible to operate concurrent tasks at the program level 

rather than through the Operating System. With multi-tasking 

languages special problems arise in validating the software for 

safety but no evidence of these problems has yet been published. 

The mechanism for handling exception conditions in high-level 

languages in a safe way is important and with the development of the 

language Ada exception handling is becoming a feature incorporated 

within the language rather than being a feature of the operating 

system. 

2.3.2 Program Structure 

According to Ramamoorthy and Ho, [581, safety of the software 

can be improved by using a high-level language and structured 

programming techniques. 

Understanding the problem that the program is attempting to 

satisfy is important in reducing the extent of errors and may also 

ease the task of testing. If each module specification states the 

internal and external program interfaces the possibility of a 

mismatch between, and with, other modules is reduced. 

Modularisation of the system allows the programmer to become 
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familiar with the module to be worked on and to comprehend the 

detail. But if the program is badly modularised it is probable that 

the programmer will not be able to appraise the objective of the 

program. However, with modularisation there is the need to maintain 

standard inter-module interfaces and dependencies. 

Unless the programmer has an intimate knowledge of the program 

he will not be adequately equipped to test it. If the program is 

not tested to the best of the programmer's ability then only a 

limited amount of reliance can be placed on the program. 

Structured programming was defined by Dijkstra, (16], as being a 

set of rules for programming to meet just such a requirement. Since 

Dijkstra's initial paper on structured programming there have been 

many definitions including the definition by Myers, [50] p. 130, where 

structured programming is defined as "the attitude of writing code 

with the intent of communicating with people instead of machines". 

The Infotech Report, [341, singles out one definition of structured 

programming as; "the task of organising one's thoughts in a way that 

leads, in a reasonable time, to an understandable and correct 

expression of a computing task". 

In structured programming functions are structured into distinct 

units which may be subsequently interpretted into program blocks, 

procedures or function calls depending on their purpose within the 

program, Young, [71]. Statements are arranged in a manner that will 

reflect the logical execution of the program. An example is the 

interpretation of the general statement if x obtains then do y 

otherwise do z" into the program statement "IF x THEN y ELSE z". 

Reduction of abstract function statements into a structured program 

removes the need to use GOTO statements but makes use of the basic 

control statements; sequence. IF.. THEN.. ELSE.., WHILE.. DO.., 

REPEAT.. UNTIL.. and CASE.. OF... 
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Pyle, (55], suggests that structured programming techniques are 

not sufficient for industrial control systems without improving on 

existing techniques. Pyle bases his argument on the significant 

differences he has observed between control software and conventional 

sequential programs. The main difference being the need for control 

software to respond to external stimulii and for the control software 

to be not only correct but also safe. Pyle's argument is more 

significant as concurrent software becomes accepted in control 

systems. 

Structuring of the total system, which may consist of many 

programs, influences safety in a positive way according to Allworth. 

[1]. If a computer has the facility for interrupts and priority 

levels then the commonly used structure in industrial control 

computing is to put the frequently run and time-critical programs, 

like alarms, on the higher priority levels and the less critical 

programs, like reports, on the lower priority levels. The interrupt 

facility can then be retained for activating those programs which 

must be run without delay from the scheduler of the run-time support 

system. 

The language chosen for the given task, the style of programming 

used and the availability of programming constructs which reflect the 

problem structure can result in errors in interpreting a 

specification of a program. 

2.3.3 Programming Methodologies 

As part of the extensive range of work being undertaken on the 

language Ada two comprehensive studies have been made into 

programming methodologies for embedded computer systems. 

In the first study, Pickett et al, [10], a range of formalised 

methods of programming methodologies were examined. The study aimed 

to determine which, if any, existing programming methodologies would 
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be most appropriate for British Industry when programming embedded 

systems using the language Ada. The complete study described 21 

methodologies and outlined a further 15. In the analysis of 

methodological features Pickett observed the difficulty of supplying 

a reliable system when the requirements may change between the 

inception of the project and its completion. Further, the study 

determined that the objectives of a programming methodology suitable 

for embedded systems are rigorous checking of the requirements with 

the produced system, formality of specification, rapid prototyping of 

the system and automation of as many parts of the software production 

cycle as practical, without a reference to ensuring safe operation of 

the software developed on the methodology. 

The study concluded that whilst many of the methodologies 

provided some of the required features none of the methodologies 

fully met the study objectives. Methodologies such as CCS, HDM, 

JSD, SARA and VDM were considered to provide most features. 

The second study. Wasserman and Freeman, [67]. examined 24 

methodologies. The study, known as "Methodman" complemented the 

earlier "Steelman" [13], and "Stoneman", [12], documents. The 

emphasis was on the software issues rather than on the more general 

issues of systems engineering. Concern was expressed by the authors 

of the study that inadequate analysis is "virtually certain to lead 

to project failure" because of a resulting poor specification. 

In support of functional specifications the "Methodman" study 

asserts that functional specifications are "the basis against which 

validation is performed .... whether by acceptance testing or through 

formal proof of program correctness. " 

Twelve requirements are listed, p.?, as being essential for a 

methodology but none specifically refers to the need to ensure a safe 

software product. However, in the constraints, p. 9, the effects of 
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the program on the development cycle are acknowledged as coming from 

the severe constraints often placed on embedded systems, for instance 

real-time responses and memory usage. 

The 'technical characteristics' of a methodology, p. 13, for 

embedded systems are considered to include "reliability - the absence 

of errors that lead to system failure" and "safety - the avoidance of 

run-time failures which could lead to the loss of life or the 

occurrence of other catastrophic consequences". Yet these two 

issues were not addressed either in the questionnaire or the 

evaluations of the responses to the questionnaire. 

Both studies, [10], and, [67], acknowledge the requirement to 

ensure safe and reliable programs but failed to determine which, if 

any, methodology addressed the requirement of safety and the 

developers of the methodologies failed to indicate that the safety 

requirement had been addressed in their methodology. 
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2.4 Support Environment and Testing Strategy 

The provision of software tools, compilers and editors, is the 

role of the programming support environment. The programming 

support environment may also be an aid to the programmer in the 

production of programs by maintaining a single project database of 

approved interface standards. common modules and standard testing 

facilities. 

2.4.1 Support Environment 

Some published material conflicted on precisely what was the 

correct view of a programming support environment but Lehman, [40], 

makes a contribution to this conflict of views when he declared that 

the programming process is "the transformation of a computer- 

application concept into an operational system and the subsequent 

evolution of that system to maintain it satisfactory and effective in 

its changing operational environment". 

Degano and Levi, in [8] pp. 251-264, assert that by making full 

use of the resources of the programming support environment the 

programmer is able to construct a program compatible with those of 

the rest of the project and the programmer is able to test his 

program in a consistent manner. Although the production of software 

with a programming support environment is more efficient in terms of 

costs, has a more consistent structure and it is more probable that 

testing will have been conducted within a better framework, there is 

no evidence to suggest that the safety of resulting programs is any 

better. 

No published material was found to demonstrate how a programming 

support environment will influence a program's ability to meet the 

required safety criteria. 
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2.4.2 Test Strategy 

Rushby, in Meek [46] p. 87, states that "it is program testing, 

rather than debugging, which is the central feature of the final 

stage in the creation of a program. The objective of testing is to 

verify that the program functions as it should, that it conforms with 

its specification, and solves the right problem in the real world". 

Rushby developed his argument until concluding that it is reasonable 

"to stop error hunting when only a relatively small number of errors 

are left and the costs of finding any more are not justified". 

Assuming that a program contains any number of errors without some 

method of measuring the number of errors remaining, or their effect, 

infers that the remaining errors are benign. 

Zweben, in [B] pp. 3-12, states that no single test strategy is 

sufficient to satisfy all test conditions and recommends that a good 

testing strategy should be capable of determining that errors exist. 

Miller, in [33] pp. 4-16, lists some of the benefits of program 

testing as being better user acceptance because the software is more 

reliable, demonstrable history of high-quality performance and 

confidence in the software product. 

The testing strategy adopted is considered by Rushby, in [46], 

as influencing the production of the software and as a consequence 

the safety of the software. 

In recognition of the need to approach a uniform testing 

strategy national regulatory bodies are examining ways of assessing 

various factors concerned with testing, Elektronik Centralen, [17]. 

2.4.3 Program Proving and Correctness Methods 

Ramamoorthy and Ho, [58], demonstrate how a program with only 

nine paths can have an extremely large number of execution sequences 

thus making exhaustive testing impractical. 

Proofs of correctness decompose the software logic into 
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axiomatic statements using mathematical notation to develop a 

mathematical proof. Program proving is a specialised and protracted 

activity with little evidence of what can be formally proved other 

than the absence of certain specific hazards, like the output from a 

variable which has not been assigned following initialisation. 

Criticism has been expressed by Cho, [7], as to whether a proof can 

itself be proved to be correct. 

According with the view of Cho, (7], is that of Good and London, 

[23]. when they observed that a 433 statement program required 46 

pages of formal proof. 

Validation and verification techniques abound but there is 

difficulty in establishing a general definition of the terms. 

Myers, [50], asserts that validation and verification are similar to 

correctness proofs, except that validation aims to find errors by 

running the program in a real environment, whilst verification aims 

to find errors by running the program in a test environment. Other 

definitions, Bologna, [6], and Dahll et al, [9], suggest that 

verification is the testing of a subset of the total program suite 

and that validation is the testing of the total program suite. 

The idea that a software module can be analysed for 

structuredness by measuring topological features without 

consideration of the logic it portrays is given in the work of 

Hennell, [27], on LCSAJ (Linear Code Sequence and Jump) and Tai, 

[65]. Essentially, the technique relates to the number of crossings 

of flow or control paths within the program code. Such a measure is 

called 'knot complexity'. Woodward, [70], compares the knot 

complexity of 26 programs with McCabe's cyclomatic complexity, V(G), 

for the same set of programs and found a close correlation. 

Huang, [32], gives a comprehensive overview of the most commonly 

used testing methods. 
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2.4.4 Software Metrics 

Lord Kelvin, [44], is often quoted as having said; 

When you can measure what you are speaking about, and express 

it in numbers, you know something about it; but when you cannot 

measure it, when you cannot express it in numbers, your 

knowledge is of a meagre and unsatisfactory kind: it may be the 

beginning of knowledge, but you have scarcely in your thoughts 

advanced to the stage of science. " 

The view of Lord Kelvin summarises the objective of the work on 

software metrics. 

Testing of software is an aimless task unless some measure is 

used to indicate the effectiveness of such testing. Software 

Metrics aim to establish methods of measurement relating to the 

software. 

Halstead, [25], introduced the phrase 'software science' to 

describe a set of empirically derived measures of the software based 

on phenomanological aspects of the software. There have been many 

other researchers in software metrics, notably McCabe, [45], who 

defined a measure based on a graph theoretic approach and known as 

the 'cyclomatic number'. Many metrics have been developed and 

Perlis et al. [54], considered some of these metrics and recommended 

research into software metrics. 

Gilb, [22], presented a set of metrics but little material has 

been published regarding their derivation or application. Harrison 

et al, [26], reviewed many metrics concerned with complexity and 

found that their experiments supported Gilb's assumption that the 

degree of decision-making logic in the program can be correlated to 

characteristics of a program such as error proneness, development 

costs and time. Findings similar to these are reported by Farr and 

Zagorski, [18], and Sime et al, [63]. 
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Shen et al, [62], critically examined the work of Halstead and 

the experimental results published by other authors in support of 

Halstead and concluded that the theory of software science was still 

evolving. Further, they resolved that researchers should continue to 

refine Halstead's metrics as there is a need for such measures. 

2.4.5 Simulation 

The use of software or hardware simulations, designed to test 

the control software prior to implementation, is not common due to 

the high costs involved in the development of a simulator. 

The method commonly used in Industry is to construct a panel of 

switches and knobs to allow simulation of the anticipated normal 

input-output sequence and, to a lesser extent, the known exception 

paths from a restricted data set. The disadvantages of a hardware 

simulation are the high costs involved, the time to produce the 

simulator, the need for manual operation of the simulation and the 

need for a protracted and accurate repetition of the test causes 

doubt to be cast on the effectiveness of such simulation tests. 

Software simulation has been shown by Nunns, [51], and others to 

overcome many of the drawbacks experienced by the hardware approach 

but the cost of developing a software simulator is still high. 

Using a software simulation it is possible to establish a detailed 

simulation of the expected plant input sequences that will exercise 

either separate programs or complete systems. With a software 

simulator it is possible to run these simulation sequences for 

protracted periods of time and often at a rate of input sequences 

greater than or less than those to be expected in real-time 

operation. 

A development of software simulation is the use of simulation 

monitors which log data from specific application areas, such that 

when a malfunction occurs in plant operation a simulation model is 
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available to the Plant Engineer who can in turn request further 

controlled testing from the Programmer. 

One major difficulty with software simulations is ensuring the 

faithfulness and accuracy of the simulator. 
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2.5 Operational and Psychological Factors 

At all stages of the software production cycle people are 

involved. Since people are fallible the effects of their failings 

can be seen in the errors introduced into the software. 

Hirsgh, [303, reported that in an experiment to determine the 

error rate of humans operating a typewriter keyboard a total error 

rate of 6.1751 was encountered out of a sample of 5 million key 

depressions. An error rate of this magnitude infers that on average 

one in every 16 keys depressed will be in error and with most 

programs containing many hundreds of characters a considerable number 

of characters can be expected to be in error. 

2.5.1 Psychological Factors 

Green et al, [24], suggest that software production is a design 

activity and dependent on the mental agility of the programmer. 

Errors can, therefore, be induced into a program due to psychological 

factors. 

Kopetz. [38], cites Per Brinch Hansen as having said; 

"If the intellectual effort required to understand and test a 

system increases more than linearly with the size of the 

system, we shall never be able to build reliable systems beyond 

a certain complexity. " 

In the works of Mohanty, [48], and Fitzsimmons and Love, [20], 

there are references to a Stroud number which is derived from the 

definition of a 'moment' given by J. M. Stroud; 

"The time required by the human brain to perform the most 

elementary mental discrimination. " 

The number of mental discriminations required to understand a 

software module influences the production of software according to 

the amount of effort required. 

Estimates of an individual's Stroud number (the number of 
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'moments' in a second) range from 5 to 28 and have been used in 

experiments concerned with programming rates. Halstead, [25], used 

a Stroud number of 18 to indicate what he considered to be a 

reasonable level of mental activity for a concentrating person. The 

usefulness of measures based on the Stroud number is supported by 

easili, in [54], yet discounted by Curtis, in [54]. Researchers 

such as Mohanty. [48], and Sime, [63], hold the view that the greater 

the effort required, the more the risk of inducing errors yet there 

is no consensus view on the usefulness of psychological measures. 

Wasserman and Freeman, [67], acknowledged that there is a 

psychological factor affecting the development of software as a 

result of what they have called the "physical workplace", that is to 

say the actual place where the developer undertakes the development. 

The factors that they refer to include "access to computers, privacy 

and noise levels. ergonomic considerations of terminals, and 

availability of reference materials including books and journals". 

They further suggest that there is little doubt that these factors 

are significant. 

None of the references suggested ways of restricting the 

influence of the psychological factors which affect the programmer 

other than methods of detecting and measuring the extent to which 

there is an effect. Research into the psychology of programming 

continues but few applications of the findings of such research have 

been reported. 

2.5.2 Operational Factors 

The operational factors include the industrial equipment and the 

process or the plant being controlled by the software. 

The safety of control systems incorporating software is 

influenced by the activities of external factors, for example, the 

need for safe operation of the software to be maintained when the 
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equipment malfunctions. In such cases the equipment will provide 

erroneous information for the software to interpret but the software 

should be designed to cater for such events. Though the particular 

event may have been considered improbable. 

Hardware failures may suggest to the observer that the software 

malfunctioned instead of the equipment whilst the software may have 

reached a reasonable interpretation of the information. The 

software may be considered to have failed to meet the safety 

requirement yet in reality it was the equipment reliability that was 

suspect. 

The operation of the software should not compromise safety 

because of operational difficulties. Low reliability of equipment 

will cause an initial low confidence in the safety of the software 

since the equipment and software are frequently viewed as one. 

Longbottom, [43], and Williams, [68], have suggested that 

hardware failures influence the production of software. Suggestions 

such as these have led to software reliability being measured in such 

terms as 'errors per 1,000 hours'. 

Anderson and Lee, [2], have investigated the effects of hardware 

failure on software and the outcome of their investigations are ideas 

such as fault-tolerant computing. Fault-tolerant computing is an 

extremely large field of study and in general is more concerned with 

equipment reliability than safety. 

At the final stage of testing many errors will remain in the 

software. So the provision of satisfactory documentation to enable 

comprehensive testing should be mandatory for all software projects 

according to Hewitt, [29]. 

Hewitt, [29], and Johnson, [35], have suggested that 

documentation should be built up as the project progresses. They 

suggest that a poorly documented project will also be subjected to a 

50 



restricted set of tests and if the test set is limited by the 

documentation then it is held that documentation influences software 

safety. 

It is important to document changes to the software. Lawley, 

[39], developed a scheme, known as HAZOP, for documenting the 

desirable and undersirable effects of changes proposed for chemical 

plants. Nunns, [52], and, [53], has shown that a modified HAZOP 

procedure can be implemented for software. 

51 



2.6 Conclusion 

Many factors have been advocated as those influencing software 

but none were found which were claimed to specifically influence the 

safety of software. 

It may be that factors affecting the safety of software can be 

identified but then there needs to be a knowledge of how to 

manipulate them. how to measure them and what such measurements mean. 

Any set of measurements of factors will need to address three 

points of issue for each measurement; 

1. the relative criticality 

2. the relative importance 

3. can it be assessed 

From the current state of the art consistent opinion is that 

there are factors influencing software and there is a consensus on 

their likely effects but there is no evidence to isolate which 

features these are. 
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CHAPTER 3 

The Structural View 

The structure of the software has an influence on the safety of 

the software. In this Chapter the ways that the software can be 

structured to ensure a safe operation and methods of analysing that 

safety will be examined. 

The Chapter begins by examining the use of a set of techniques 

known, generically, by the term Risk Analysis. In particular, the 

applicability to software of Fault Tree Analysis and Event Tree 

Analysis is explored. 

State Transition Diagrams are sometimes considered to be the 

means of identifying all possible fault conditions. State 

Transition Diagrams are examined with particular reference to the 

interaction between software, the hardware and the system. 

Having examined methods that may be, applicable in isolating a 

fault condition an argument is advanced for weighting errors 

according to three categories of danger. 

Finally, the structuring of the software for safety according to 

the control flow is examined. It is recommended that in safety- 

related systems the software should be structured into Control 

Modules, Safety Modules and Arbitrators. It is also suggested that 

a system of Integrity Locks should be used. 

58 



3.1 The Risk Analysis of Software 

'Risk Analysis'. is a generic term used by Engineers to describe 

a group of methods used to determine the conditions that will cause a 

hazardous state to exist and the associated risk. There is a need 

to assess the risk resulting from the use of computers as controllers 

in safety-related processes. The principal cause for concern is the 

possible number of software errors that can exist and the effects of 

these errors on the system. Since these techniques are used to 

analyse the risk associated with industrial processes and its 

hardware, it follows that control software should also be subject to 

similar analysis. 

Risk Analysis comprises a collection of analytical techniques 

used to examine the design of complex items of equipment within a 

safety context. The principle risk analysis techniques are Fault 

Tree Analysis (FTA) and Event Tree Analysis (ETA), [12]. The 

application of both these risk analysis techniques to software will 

be discussed in this Chapter. 

3.1.1 Fault Tree Analysis 

Chelson, [4], has shown that fault-trees are constructed by 

first listing all the possible hazards considered to be present in 

the system. Once the hazards have been listed the construction of a 

fault tree begins by assuming that a particular event has caused one 

of the hazards and then to trace backwards through the logic of the. 

system to find which events could lead to the hazard. Since 

preceeding events may be the logical combination of other events a 

set of symbols is used to represent the logical sequence of possible 

events. As each node in the tree is encountered a decision is made 

whether further investigation is required. As the investigation 

continues more symbols are included in the tree until a node is 

reached where either no further investigation is necessary, called a 
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Failure Event, or a Terminal Event, also called a Basic event, is 

encountered. These symbols are shown in Figure 3.1.1.1. 

Figure 3.1.1.1 FTA Symbols 

Top Event 

Terminal or Basic event 
requiring no further investigation 

OR gate 

AND gate 

Failure event, not a basic 
fault event but one which 
requires no further 
investigation 

Leveson and Harvey have shown, [8], that Fault Tree Analysis 

can be applied to software provided that the catastrophic event which 

is to be considered can be defined in a precise manner. Since FTA 

was developed for hardware and has now been applied to software, it 

is possible to link the two sets of analyses to form a complete set 
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for the total system. Fault Tree Analysis applied to software has 

been renamed by Leveson and Harvey as Software Fault Tree Analysis 

(SFTA). 

SFTAI in common with hardware FTA. examines the potentially 

dangerous conditions that could occur. called 'catastrophic events', 

as a result of 'top events' or 'loss events', and considers all 

possible actions that could cause the dangerous condition to exist 

using diagrams which are a variation of those used for hardware FTA. 

Leveson and Harvey, [8], have also shown that SFTA can be 

performed at various levels and stages of software development. The 

highest level of analysis is the functional description. At the 

lowest level of investigation SFTA analyses the program code. 

Leveson and Harvey also suggest that it is possible to construct 

fault trees from a program design language and that the information 

derived from the tree during the software development phase can be 

used. However. SFTA does not cater for the effect of one part of a 

program influencing another. 

In SFTA it is assumed that for a dangerous condition to exist it 

is necessary for there to be a related output from the computer. 

Therefore, the starting point for SFTA, when working at the program 

level, is the section of code responsible for effecting an output. 

The analysis then proceeds backwards through the code determining 

both how the program arrived at the section of code and what are the 

current states of the variables. 

Standard forms of symbolism have been proposed by Leveson and 

Harvey for Pascal-like program statements. The general form for the 

IF.. THEN.. ELSE.. statement is shown in Figure 3.1.1.2 (a). The 

statement " IF a>b THEN x := f(x) ELSE x := 10 " is shown in Figure 

3.1.1.2 (b) below when analysed for the event "x> 100 ". 
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Figure 3.1.1.2 SFTA for IF.. THEN.. ELSE.. 

(a) 

condition true 
'then-part' 

causes event 

cond. true then-part' 
prior to causes event 
statement 

(b) 

a>b, x :: f(x) I 

causes x> 100 

if-then-else 

condition false 
'else-part' 
causes event 

cond. false 'else-part' 

prior to causes event 
statement 

x> 1001 

a>bx:: f(x) 
prior to causes x> 100 
statement 

a <= b. x := 10 
causes x> 100 

a<= bI Icauses x := 10 
prior to x> 100 

Since the right-most node, stating that x: =10 causes x>100, is 

clearly nonsense the node can be assigned a zero probability and 

removed from the tree. Analysing for the top event of x>100 could 

stop at this point and assertions placed in the code or the 

proceeding code could be analysed for the events "a >b" and "f(x) > 

100 ". 

Figure 3.1.1.3 (a) shows the suggested general format for 
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analysing a WHILE.. DO statement and Figure 3.1.1.3 (b) shows the 

analysis for the loop 

WHILE b>x DO 
BEGIN b: = b-1; 

z: - z+ 10; 
END 

analysed for the top event "z> 100 ". 

Figure 3.1.1.3 Example of SFTA 

(a) WHILE statement 
causes event 

stat. notl 
executed 

event prior 
to WHILE 

(b) 

cond. false 
prior to WHILE 

stat. executed 

cond. true 
prior to WHILE 

n-th iteration 
causes event 

WHILE statement 
causes z> 100 

stat. not 
executed 

Istat. executed 

6 

z> 100 prior b<=x prio 
to WHILE to WHILE 

b>x prior z+10, b-1 
causes z>100 

Leveson and Stolzy, [9], have suggested that real-time features, 

like concurrency found in the language Ada, can also be analysed 
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using SFTA. 

A disadvantage with SFTA is the difficulty in determining all 

possible top events that may arise and assessing their preceeding 

events. called cut sets, and basic failure events, called minimum cut 

sets. SFTA is not exhaustive and relies upon the person analysing 

the system to identify the "top events". Also there is no check to 

indicate that the analysis is complete. 

In the software context, tracing through the data flow of a 

program and analysing for failure events will identify some hazard 

situations which can be further analysed using SFTA. One method of 

tracing the data flow is to use Petri Nets or Event Tree Analysis. 

3.1.2 Petri Nets 

Petri Nets, [10], are formal methods of representing information 

flow and can be used to illustrate information flow in a program 

statement. Petri Nets can be used to represent the information flow 

at the level of the specification or at the level of the actual 

program. 

Petri Nets are bipartite directed graphs consisting of two basic 

components; a set of places, P, and a set of transitions, T. In 

addition two functions are created to link transitions to places: the 

input function, I, and the output function, 0. For each transition, 

tj, there is a set of input places, I(tj) and for each transition, 

tj, there is a set of output places 0(tj). Formally, a Petri Net is 

made up of a quadruple C=(P, T, I, O). Since each Petri Net has. an 

initial condition,, uo, the initial condition needs to be included in 

the structure giving a quintuple (P, T, I, O, )I). Defining the initial 

condition of the Petri Net is called "marking" a Petri Net. 

Diagramatically the places in a Petri Net are represented by 

circles and the transitions are represtened by a line crossing the 

arc joining two places. A transition is said to be enabled to 
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"fire" if and only if all the input tokens for that transition, 

markings, are satisfied and which allow the token at an input place 

to be transferred to an output place. The transition of the token 

is, in the abstract, the transfer of information from one place to 

another place. 

When the statement IF x THEN y ELSE z is executed the control 

will pass to either y or z according to the truth of x. A Petri Net 

can be represented graphically for such a statement; 

where Pi is the initial input place which fires transition t1. 

Transition t2 will only be fired and pass a token to y when tl has 

fired and place x has a token (x is true). Transition t3 will fire 

and pass a token to z when tt has fired and x bar has a token (x is 

false). For the IF x THEN y ELSE z statement places y and z would 

be the input places for the following statements. 

The firing of transition tt enables the firing of either t2 or 

t3 dependent on the logical state of x. However, when considering a 

programming statement according to a failure criteria it must be 

considered that the conditional expression, x, may also fail. If 

the possibility of the conditional statement, c, failing in the 

statement, IF x THEN y ELSE z, is included then the Petri Net becomes 
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0 

The transitions tl and t4 will fire according to the status of 

the conditional statement, c, and transitions t2 and t3 will fire 

according to the logical truth of the conditional expression, x. 

The failure of the conditional statement is called the conditional 

failure and the logical truth of the conditional expression is called 

the temporal switch. 

Figure 3.1.2.1 shows the general form for some Pascal-like 

programming language statements using Petri Net diagrams. 

Petri Nets of complete programs become unmanageable and need 

simplification. One method for simplifying the representation of 

failure events is to use a Risk Analysis technique called Event Tree 

Analysis. 

For a graphical representation of an abstract model of 

information flow to be useful in identifying risks the probabilities 

of failure for components of the model need to be added. The 

addition of such probability data to a Petri Net will detract from 

its function of representing the logical sequence. 
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Figure 3.1.2.1 Program Statements using Petri Nets 

a) assignment' 

i 

O 

Pf Po 

b) IF.. THEN.. ELSE.. 

D 

c) WHILE x DO y 
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3.1.3 Event Tree Analysis 

Event Tree Analysis (ETA) is less common than FTA but is 

becoming more commonly used in Industry, [2] and [3]. 

Hardware ETA attempts to identify those events which may cause a 

sequence of events leading to a dangerous condition and can be 

considered as an approach to the task of identifying risks from the 

lowest event towards the 'top event'. FTA starts with the 'top 

event' and traces back to the lowest event in the sequence examining 

the causes of events. ETA examines the consequences of possible 

failures. The use of 'event trees' provides a graphical method of 

presenting the results of the analysis. 

To construct an event tree of failures, each probable failure is 

considered from the start of the process being analysed to the 

finish. The first stage of the ETA construction is to consider the 

outcome of each component failure and to represent the outcome as a 

decision branch. For each outcome of the first stage consideration 

is given to the outcome of each subsequent component failing. The 

analysis of each subsequent stage is then added to the decision 

branch of the preceeding outcome. The analysis continues until each 

component in the process has been considered, its outcomes determined 

and added to the evolving tree structure. Probabilities of failure 

can then be attached to each outcome of the complete event tree. It 

is possible to determine the probability of success/failure at any 

given point in the process. 

Figure 3.1.3.1 shows an event tree drawn for a parallel pump 

system employing two water pumps. The failure probabilities are 

included on the drawing as an example of the calculations. 

The application of ETA to software is given the name Software 

Event Tree Analysis (SETA). 
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Figure 3.1.3.1 ETA Analysis of a Pumping System 

Pump A 

Pump A fails 

Pump B fails Outcomes 

Pump A working 
System works 

P(1 - a) P(1-a) 
Pump B working 

System working 
P(a) . P(1-b) 

Pump A fail 

P(a) Pump B fail 
System fails 

P(b) P(a) . P(b) 

Each programming statement in a high-level language is executed 

according to a set of rules governing the logic of the statement, for 

instance the statement IF x THEN y ELSE z will execute y or z 

according to the logical condition of x. Further, the sequence in 

which the statements are executed is determined according to the 

logical relationship of one statement to another. 

By convention the failure branch in an ETA diagram is drawn to 

the left and the success branch is drawn to the right. From a 

single entry to a complete program there are only two possible exits: 

success and failure. So for each statement within the program there 

are also two exits from a single entry. Within the statement the 

branching strategy continues to a lower level of detail but the 

respective exits are connected to maintain the higher strategy of the 

statement. The respective exits from the statements are connected 

in order to maintain the strategy of the complete program. Pascal- 

like programming statements represented in SETA format are shown in 
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Figure 3.1.3.2. 

Figure 3.1.3.2 Program Statements using SETA 

a) assignment 

success branch 
failure 
point 

statement 
on entry 

failure branch 

where the symbol '*' denotes a terminal failure which would 

cause an irrecoverable failure to exist. The failure branch can 

occur on other statements but has been labelled only on this one. 

b) IF.. THEN.. ELSE.. 

THEN part 

Temporal ELSE part 
switch 

* 

N. B. The temporal switch, , permits the flow to take 

whichever path is relevant according to the conditional 

expression assuming that it has not failed. Since it is 

the data flow that is the concern and not the control flow 

the format collapses to 

THEN part 

ELSE part 

where the reduced statement, IF.. THEN.., is used the diagram 

becomes 
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THEN part 

since the else-part is implied as being the following statement. 

c) WHILE x DO y 

y-Statement part 

* 

Conditional part 
x 

removal of the temporal switch causes the format to collapse to 

y-Statement part 

Conditional part 

d) REPEAT x UNTIL y 

Conditional part 

x-Statement part 

* 

* 

* 

removal of the temporal switch causes the format to collapse to 

Conditional part 

x-Statement part 

e) FOR x TO x DO y 
i 

y-Statement type 

Conditional xi part 

Conditional x part 
* 
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f) CASE x OF yl .. yn 

yl-Statement type 

yn-Statement type 

Conditional x part 
* 

It is possible to apply SETA to program design languages in the 

same way that Leveson and Harvey have applied SFTA to design 

languages but the maximum benefit is to be gained by applying SETA to 

the source code, assuming that the compiler and other software 

development tools are dependable. This is the lowest level of 

abstraction needed for a meaningful representation of the program. 

SETA, like ETA, has the probabilities added to the diagrammatic 

representation and will be demonstrated by means of an example. 

To show how SETA can be applied to a simple program consider the 

program below taken from Jensen and Wirth, [7]. 

PROGRAM fcount(input, output); 
VAR ch: CHAR; 

count: ARRAY['a'.. 'z'] of INTEGER; 
letter: SET OF 'a'.. 'z'; 

BEGIN 
letter ['a'.. 'z']; 
FOR ch :: 'a' TO 'z' DO 

count[ch] :=0.; 
WHILE NOT eof DO 
BEGIN 

WHILE NOT eoln DO 
BEGIN 

read(ch); 
write(ch); 
IF ch IN letter 

THEN count[ch] :: count[ch] +1 
END; 

writeln; 
readln; 
END 

END. 

The declaration part of the program adds little to the 
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information flow of the program and is not included in the analysis. 

In the example that follows the omission of the declaration part 

presents the first line of the analysis as being an assignment 

statement. 

The next statement is FOR ch := 'a' TO 'z' DO whose SETA, 

statement format is added to the success branch of the preceeding 

assignment statement. 

The analysis continues until the tree includes all the 

statements in the program. The structure is shown in Figure 3.1.3.3 

with the tree orientated through 90 degrees. The success branch has 

been aligned vertically to prevent the tree tending towards the 

right. 

Three significant items of information can now be deduced from 

this tree; those statements whose failure will cause a terminal 

failure, the probability of successful execution and the probability 

of particular terminal failures. To be able to extract information 

from the event tree the probability of successful and unsuccessful 

execution of each statement needs to be added to the tree as in 

Figure 3.1.3.4. To avoid presenting too much information at the 

expense of clarity the programming statement has been substituted by 

a probability of successful execution. 
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Figure 3.1.3.3 SETA of the Example Program 

entry 

letter := ['a'.. 'z'] 
failure branch success branch 

FOR ch :: 'a' 

TO ch :: 'z' 

count[ch] :=0 

WHILE NOT eof 

NOT eoln 

read(ch) 

write(ch) 

IF ch IN letter 

count[ch] := count[chl +t 

writeln 
* 

* 
readln 

II successful exits 
eeee 

4321 
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Figure 3.1.3.4 SETA of the Example Program with Probabilities 
Assigned 

entry 

Pr(a) 
1- Pr(a) 

x 
1- Pr(b) Pr(b) 

x 
1- Pr(c) Pr(c) 

x 
1- Pr(d) 

771 Pr(d) 
x 

Pr(e) 

Pr(f) 

1- Pr(g) Pr(g) 
x 

1- Pr(h) Pr(h) 

Pr(i) 

t- Pr(j) Pr(j) 

1- Pr(k) Pr(k) 
t 

1- Pr(1) Pr(1) 

successful exits 
eeee 

4321 

Each possible successful exit, ei, has an individual probability. 

Assuming s-independent events, the exit probabilities are 

Pr(el) = Pr(a). Pr(b). Pr(c). Pr(d). Pr(e). Pr(f). Pr(g) 

. Pr(h). Pr(i). Pr(j). Pr(k). Pr(l) 

Pr(e2) = Pr(a). Pr(b). Pr(c). Pr(d). Pr(e). Pr(f). Pr(g) 

. Pr(h). (1 - Pr(i)). Pr(k). Pr(l) 

Pr(e3) = Pr(a). Pr(b). Pr(c). Pr(d). Pr(e). (1 - Pr(f)). Pr(k). Pr(1) 

Pr(e6) = Pr(a). Pr(b). Pr(c). Pr(d). (1 - Pr(e)). Pr(k). Pr(l) 

There are four possible successful exits. The probability of a 
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successful exit from the program is the sum of individual 

probabilities and given as 

Pr(S) = Pr(el) + Pr(e2) + Pr(e3) + Pr(e4) 

The probability of an unsuccessful exit is given as 

Pr(F) =t- Pr(S) 

=1-[ Pr(el) + Pr(e2) + Pr(e3) + Pr(e4) ] 

As the number of statements increases so the probability of a 

successful exit is reduced. There are two issues to be considered; 

1) the probability of failure of a statement is related to 

the syntactic and semantic complexity of that statement. 

The resulting probability of failure of the function 

being performed by that program statement is influenced 

by the programmers choice of statement. Therefore 

consideration has to be given to the trade-off between 

the number of statements and the probability of failure 

for particular statement types. 

2) in Chapter 3.4 it was postulated that the 

probability of failure of a module is related to 

its length and that from a safety point of view 

a larger number of small modules is preferable 

to a small number of large modules. So a 

reduction in the length of a module will also 

influence the probability outcome. 

3.1.4 Discussion 

Leveson and Harvey, [8], observed that SFTA can be combined with 

FTA to provide a comprehensive analysis of a total system including 

hardware and software. The application of ETA to the hardware 

associated with a computer system can continue to a point where the 

software element needs to be considered. To consider the software, 

SETA can be used to provide a comprehensive analysis. 
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As an example of how ETA proceeds to the point where SETA can be 

used consider the case where plant sensors are used to pass data to a 

computer on the functioning of a critical plant area so that optimal 

control of the plant can be maintained. Using ETA the sensors, the 

instrumentation, the Analogue-Digital Converter and the computer 

input-output mechanisms are considered. However, once the analysis 

has reached the point where data is requested by the software making 

a request to the operating system, device driver or control software 

then SETA can be used. SETA can be used to assess the software in 

the context of programs or programming statements. 

A complete ETA/SETA analysis is then possible to identify 

particular items of concern and to seek to reduce the probability of 

a failure. Assuming an item of concern can be described in terms 

suitable for analysis using SETA and that the risk is assessed to be 

such that further detailed analysis is necessary, then additional 

SFTA can be undertaken. 

Summarising. the approach is to identify potential failures 

using ETA/SETA and then to further examine the concerns using SFTA. 

The application of existing Event Tree Analysis (ETA) to 

software (SETA) is possible and provides useful information to the 

analyst on failure probabilities. By careful identification of the 

issues raised with SETA further analysis can be undertaken using what 

Leveson and Harvey have called Software Fault Tree Analysis (SFTA) in 

order to isolate the concerns. Once these concerns have been 

isolated then suitable remedial action can be taken to eradicate 

them. 
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3.2 The Use of State Transition Diagrams 

The internal state of a process can be modelled in the abstract 

at any moment using graph theoretic methods such as the State 

Transition Diagram which is a special case of the Finite State 

Machine. The State Transition Diagram is commonly used by engineers 

to assess the behaviour of a system, whether that system is an 

industrial process or the internal function of a computer. 

A Finite State Machine consists of a finite set of input symbols 

A, a finite set of internal states S, a finite set of output symbols 

Z. a next-state function f and an output function g. The machine M 

is denoted by M= {A, S, Z, f, g}. Additionally an initial state qO may 

be included, when the machine M will be denoted by M= {A, S, Z, gO, f, g}. 

An example Finite State Machine could be one with three input 

symbols, three internal states and three output symbols as 

A= {a, b, c} 

S= {gO, ql, q2} 

Z= {x, Y, z} 

the next-state function f could be defined as 

f(gO, a) = q1 f(ql, a) = q2 f(g2, a) = qO 

f(g0. b) = q2 f(gl, b) = qt f(g2, b) = q1 

f(qO, c) = qO f(ql, c) = q0 f(g2, c) = q2 

the output function g could be defined as 

g(qO, a) =x g(ql, a) =x g(q2, a) =z 

g(gO, b) =y g(ql, b) =z g(g2. b) =y 

g(gO. c) =z g(ql, c) =Y g(q2, c) =x 

A state diagram is one way of representing the machine M. A 

state diagram is a labelled directed graph with the vertices being 

the states S of M such that an arc can be drawn between state qO and 

q1 and labelled with the pair a, x representing the next-state 

function f(gO, a) = q1 and the output function g(qO, a) = x. 
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Figure 3.2.0.1 The State Diagram for the Example Machine M. 

z 

Another way of representing machine M is to use a state table 

which tabulates the next-state and output for each combination of 

current state and input. A state table for machine M would be 

Current Input Input Input 
State abc 

qO ql, x q2. y qO, z 

q1 q2, x ql, z qO, y 

q2 qO. z ql, y ql, x 

A State Transition Diagram consists of a set of states S. a set 

of events E and a transition function, t. 

The state transitions for Finite State Machine M can be 

represented as 

S= {gO. q11q2} 

E= {x. Y, z} 

and the transition functions are 

t(gO, x) = ql t(ql, x) = q2 t(q2, x) = q2 

t(qO, y) = q2 t(gl, y) = qO t(g2. Y) = ql 

t(gO, z) = qO t(gl, z) = ql t(q2, z) = qO 
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the State Transition Diagram would be that shown in Figure 3.2.0.2. 

Figure 3.2.0.2 State Transition Diagram for the Example Machine 

Industrial control systems can be modelled using both Finite 

State Machines (FSM) and State Transition Diagrams (STD) but the use 

of STD is more common. . 

As an example of the use of STD, take a simple control system 

consisting of a fluid pump, P. under the control of a fluid level 

float, F. whose aim it is to maintain the level of a liquid within a 

certain vessel by turning the pump 'on' to lower the level of the 

liquid when the level is indicated as 'high' by the float. Assuming 

that the liquid flow into the vessel is constant and not under the 

control of the system being modelled, the process scheme is shown in 

Figure 3.2.0.3. 

Figure 3.2.0.3. Example Process 

The objective of the control system is to ensure that none of 
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the liquid flows over the top of the vessel. If any liquid flows 

over the top of the vessel the condition is considered to be a 

catastrophic event. 

To keep the model simple it is assumed that both the float F and 

the pump P work correctly even though there is a probability that the 

control signals may not. It is also assumed that no such failure of 

control signals exist. 

The pump P is switched on when the float F is indicating 'high' 

and the pump is switched off when the float indicates 'low'. 

The set of states S are 

S= {gO, ql, q2, q3} 

where qO = level low, pump off 

q1 = level low, pump on 

q2 = level high, pump off 

q3 = level high, pump on 

the set of events E are 

E= {a, b, c, d} 

where a= Float high 

b= Float low 

c as Pump on 

d= Pump off 

and the transitions functions t are 

t(g0, a) = q2 t(gl, a) = q3 t(g2, b) = qO t(q3, b) = qt 

t(qO, c) = q1 t(gl, d) = qO t(g2, c) = q3 t(g3, d) = q2 

The state transition diagram for the control system is shown in 

Figure 3.2.0.4. With the transition T being T= {S, E, t} and the 

initial state qO being included to give T= {S, E, gO, t}. 
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Figure 3.2.0.4 State Transition Diagram for the Example 
Control System 

4 

The transition functions can also be represented by a table 

called a transition table. Such a transition table for the control 

system being considered is 

State Float Pump 

qO low (0) off (0) 

q1 low (0) on (1) 

q2 high (1) off (0) 

q3 high (1) on (1) 

State Transition Diagrams are deterministic and exhaustive. To 

demonstrate the exhaustive nature of STDs consider the control system 

to have been extended to ignore transient inputs from the float by 

requiring the float to indicate high for two successive observations 

before switching the pump on. The control algorithm is expressed as 

Po = (Fs A Fi A NOT Poi) v (Fs v Fi) v Poi 

where Po is the pump output value according to the logic 

Poi is the initial or currently stores value for the pump 

output. 

Fs is the stored value for the float 

Fi is the input value for the float 

assuming no errors experienced the transition table becomes 
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Poi fs fi Po 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 

1 0 1 1 
1 1 0 1 
1 1 1 1 

In this thesis the concern is the identification of catastrophic 

failures/conditions and such a condition could arise in the control 

system if the level was high and the pump failed to operate causing 

the liquid to overflow. From the transition diagram and the 

transition table a catastrophic failure condition can be seen not to 

occur when all the equipment functions correctly. 

So far the concern has been with representing the state 

transitions when all the equipment is working correctly and with no 

errors. When the control system has the same control algorithm but 

uses an industrial controller incorporating software to implement 

that algorithm then a catastrophic failure/condition can arise due to 

the failure of components of the controller, even though the electro- 

mechanical equipment may work correctly. 

The transition tables for the control system using software 

considers three error types: stuck at 0, stuck at 1 and inversion. 

The conditions underlined are those which are considered to satisfy 

the criteria of a catastrophic failure/condition; fluid flowing into 

the vessel, float fluid level high and pump not on. 
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1) Error caused by Po being inverted when stored in Ps 

Poi fsi fit fsl Pol Psi fit fs2 Pot Pst fi3 fs3 Po3 Ps3 
0 0 0 0 0 1 0 0 0 1 0 0 0 1 
0 0 0 0 0 1 1 1 1 0 1 1 1 0 
0 0 1 1 0 1 0 0 1 0 0 0 0 1 
0 0 1 1 0 1 1 1 1 0 1 1 1 0 
0 1 0 0 0 1 0 0 0 1 0 0 0 1 
0 1 0 0 0 1 1 1 1 0 1 1 1 0 
0 1 1 1 0 1 0 0 1 0 0 0 0 1 
0 1 1 1 0 1 1 1 1 0 1 1 1 0 
1 0 0 0 0 1 0 0 0 1 0 0 0 1 
1 0 0 0 0 1 1 1 1 0 1 1 1 0 
1 0 1 1 1 0 0 0 0 1 0 0 0 1 
1 0 1 1 1 0 1 1 1 0 1 1 1 0 
1 1 0 0 0 1 0 0 0 1 0 0 0 1 
1 1 0 0 0 1 1 1 1 0 1 1 1 0 
1 1 1 1 1 0 0 0 0 1 0 0 0 1 
1 1 1 1 1 0 1 1 1 0 1 1 1 0 

2) Error caused by Ps being stuck at 1 (on) 

Poi fsi fit fs1 Pol Psi fit fs2 Pot Pst fi3 fs3 Po3 Ps3 
0 0 0 0 0 1 0 0 0 1 0 0 0 1 
0 0 0 0 0 1 1 1 1 1 1 1 1 1 
0 0 1 1 0 1 0 0 1 1 0 0 0 1 
0 0 1 1 0 1 1 1 1 1 1 1 1 1 
0 1 0 0 0 1 0 0 0 1 0 0 0 1 
0 1 0 0 0 1 1 1 1 1 1 1. 1 1 
0 1 1 1 0 1 0 0 1 1 0 0 0 1 
0 1 1 1 0 1 1 1 1 1 1 1 1 1 
1 0 0 0 0 1 0 0 0 1 0 0 0 1 
1 0 0 0 0 1 1 1 1 1 1 1 1 1 
1 0 1 1 1 1 0 0 1 1 0 0 0 1 
1 0 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 0 0 0 1 0 0 0 1 0 0 0 1 
1 1 0 0 0 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 0 0 1 1 0 0 0 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 

3) Error caused by Ps being stuck at 0 (off) 

Poi fsi fit fsl Pol Psi fi2 fs2 Pot Pst fi3 fs3 P03 P53 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 1 0 0 1 1 1 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 1 1 1 0 1 1 1 0 
o 1 0 0 0 0 0 0 0 0 0 0 0 0 
o 1 0 0 0 0 1 1 0 0 1 1 1 0 
o 1 1 1 0 0 0 0 0 0 0 0 0 0 
o 1 1 1 0 0 1 1 1 0 1 1 1 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 1 1 0 0 1 1 1 0 
1 0 1 1 1 0 0 0 0 0 0 0 0 0 
1 0 1 1 1 0 1 1 1 0 1 1 1 0 
1 1 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 0 0 0 0 1 1 0 0 1 1 1 0 
1 1 1 1 1 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 0 1 1 1 0 1 1 1 0 
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4) Error caused by Po being inverted on output, Ps is true value of Po 

Poi fsi fit fs1 Pol Psi fit fs2 Pot Ps2 fi3 fs3 Poi Psi 
0 0 0 0 10 0 0 1 0 0 0 1 0 
0 0 0 0 10 1 1 1 0 1 1 0 1 
0 0 1 1 10 0 0 1 0 0 0 1 0 
0 0 1 1 10 1 1 0 1 1 1 0 1 
0 1 0 0 10 0 0 1 0 0 0 1 0 
0 1 0 0 10 1 1 1 0 1 1 

_Q_ 
1 

0 1 1 1 01 0 0 0 1 0 0 1 0 
0 1 1 1 01 1 1 0 1 1 1 0 1 
1 0 0 0 10 0 0 1 0 0 0 1 0 
1 0 0 0 10 1 1 1 0 1 1 0 1 
1 0 1 1 01 0 0 0 1 0 0 1 0 
1 0 1 1 01 1 1 0 1 1 1 0 1 
1 1 0 0 01 0 0 1 0 0 0 1 0 
1 1 0 0 01 1 1 

_IL_ 
1 1 1 Q_ 1 

1 1 1 1 01 0 0 0 1 0 0 1 0 
1 1 1 1 01 1 1 0 1 1 1 0 1 

5) Error caused by Po being stuck at 1 (on) 

Poi fsi fit fsl Pol Pst fi2 fs2 Po2 Pst fi3 fs3 Po3 Psi 
0 0 0 0 11 0 0 1 1 0 0 1 1 
0 0 0 0 11 1 1 1 1 1 1 1 1 
0 0 1 1 11 0 0 1 1 0 0 1 1 
0 0 1 1 11 1 1 1 1 1 1 1 1 
0 1 0 0 11 0 0 1 1 0 0 1 1 
0 1 0 0 11 1 1 1 1 1 1 1 1 
0 1 1 1 11 0 0 1 1 0 0 1 1 
0 1 1 1 11 1 1 1 1 1 1 1 1 
1 0 0 0 11 0 0 1 1 0 0 1 1 
1 0 0 0 11 1 1 1 1 1 1 1 1 
1 0 1 1 11 0 0 1 1 0 0 1 1 
1 0 1 1 11 1 1 1 1 

,1 
1 1 1 

1 1 0 0 11 0 0 1 1 0 0 1 1 
1 1 0 0 11 1 1 1 1 1 1 1 1 
1 1 1 1 11 0 0 1 1 0 0 1 1 
1 1 1 1 11 1 1 1 1 1 1 1 1 

6) Error caused by Po being stuck at 0 toff) 

Poi fsi fit fsl Pol Psi fit fs2 Po2 Pst fi3 fs3 Po3 Ps3 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 o t t o o t t _Q_ o 
0 0 1 t o 0 0 0 0 0 0 0 0 0 
o o t 1 0 o t 1 

_Q_ 
0 1 1 L, 0 

o 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 1 1 0 0 t 1 g 0 
o 1 1 t o 0 0 0 0 0 0 0 0 0 
o 1 1 1 

_ .Q 
0 1 1 0 1 1 

_, 
Q_ 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 1 1 0 0 1 1 0 0 
1 0 1 1 o 0 0 0 0 0 0 0 0 0 
1 0 1 1 0 0 1 1 0 1 1 0 
1 1 0 0 0 0 0 0 0 0 0 0 0 0 
1 t 0 0 0 0 1 1 0 0 1 t Q 0 
1 1 t 1 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 

_Q_ 
0 1 1 

_ 
Q. 

_ 
0 1 1 

_Q, _ 
o 
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7) Error caused by Fi being inverted when stored in Fs 

Poi fsi fit fs1 
0001 
0001 
0010 
0010 
0101 
0101 
0110 
0110 
1001 
1001 
1010 
1010 
1101 
1101 
1110 
1110 

8) Error caused by 

Poi fsi fit fsl 
0001 
0001 
0011 
0011 
0101 
0101 
0111 
0111 
1001 
1001 
1011 
1011 
1101 
1101 
1111 
1111 

Pot 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 

1 
1 
1 
1 
1 

Fs b 

Pol 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 
1 
1 

Psi fi2 fs2 
001 
010 
001 
010 
001 
010 
101 
110 
001 
010 
101 
110 
101 
110 
101 
110 

eing stuck at 1 

Pst fit fs2 
001 
011 
001 
011 
001 
011 
001 
011 
001 
011 
101 
111 
001 
011 
101 
111 

Pot Ps2 
00 
11 
00 
00 
00 
11 
00 
11 
00 
11 
00 
11 
11 
11 
00 
11 

(high) 

Pot Ps2 
00 
11 
00 
11 
00 
11 
00 
11 
00 
11 
11 
11 
00 
11 
11 
11 

fi3 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

fi3 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

fs3 

0 
1 
0 

0 

0 

0 

0 

0 
1 
0 

fs3 

1 

Poi Ps3 
00 
11 
00 
00 
00 
11 
00 
11 
00 
11 
00 
11 
11 
11 
00 
11 

Poi Psi 
00 
11 
00 
11 
00 
11 
00 
11 
00 
11 
11 
11 
00 
11 
11 
11 

9) Error caused by Fs being stuck at 0 (low) 

Poi fsi fit fst Pol Pst fit fs2 P02 Pst fi3 fs3 P03 Ps3 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 
o o 0 0 0 0 o 0 0 o _Q, _ o 
o 0 o 0 0 0 0 0 0 0 0 0 0 
o o 1 a o o 1 o _Q o 1 o o 
o 1 o 0 0 0 0 0 0 0 0 0 0 0 
o 1 o 0 0 0 1 o 0 0 1 o ý_ o 
o 1 1 o 0 0 0 0 0 0 0 0 0 0 
o 1 1 0 ý_ o o _ Q- o t o o 
1 o 0 0 0 0 0 0 0 0 0 0 0 0 
1 o 0 0 0 0 1 o 0 0 1 o 0 0 
1 o 1 o > > o 0 0 0 0 0 0 0 
1 o 1 o > > > o 1 1 1 o 1 1 
> > o 0 0 0 0 0 0 0 0 0 0 0 
1 1 0 0 0 o t o 0 o t o o 

> > > o t 1 o 0 0 0 0 0 0 0 
1 1 1 0 1 t 1 o t t 1 0 1 t 
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10) Error caused by Fi being inverted on input 

Poi fsi fit fsl Pol Pst fi2 fs2 Pot Ps2 fi3 fs3 Po3 Ps3 
0 0 1 1 0 0 1 1 1 1 1 1 1 1 
o 0 1 1 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 0 0 1 1 0 0 1 1 1 1 

o 0 0 0 0 0 0 0 _Q_ 0 0 0 0 0 
o 1 1 1 1 1 1 1 1 1 1 1 1 1 
o 1 1 1 1 1 0 0 1 1 0 0 0 0 
o 1 0 0 0 0 1 1 0 0 1 1 1 1 
o 1 0 0 Q 0 0 0 0 0 0 0 

_Q_ 
0 

1 0 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 1 1 1 1 0 0 1 1 0 0 0 0 
1 0 0 0 0 0 1 1 0 0 1 1 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 0 0 1 1 0 0 0_ 0 

1 1 0 0 1 1 1 1 1 1 1 1 1 1 
1 1 0 0 1 1 0 0 

_, 
0 0 0 0 

_, 
0 0 

11) Error caused by Fi being stuck at 1 (high) 

Poi fsi fit fsl Pol Pst fit fs2 Po2 Pst fi3 fs3 P03 Ps3 
0 0 1 1 0 0 1 1 1 1 1 1 1 1 
0 0 1 1 0 0 1 1 1 1 1 1 1 1 
0 0 1 1 0 0 1 1 1 1 1 1 1 1 
0 0 1 1 0 0 1 1 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 1 1 1 0 0 1 1 1 1 1 1 1 1 
0 1 1 1 0 0 1 1 1 1 1 1 1 1 
0 1 1 1 0 0 1 1 1 1 1 1 1 1 
1 0 1. 1 1 1 1 1 1 1 1 1 1 1 
1 0 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 

12) Error caused by Fi being stuck at 0 (low) 

Poi fsi fit fs1 Pol Pst fi2 fs2 Po2 Pst fi3 fs3 Poi Psi 
0 0 0 0 0 00 000 0 0 0 0 
0 0 0 0 0 00 000 0 0 0 0 
0 0 0 0 0 00 000 0 0 0 0 
0 0 0 0 0 00 000 0 0 0 0 
0 1 0 0 0 00 000 0 0 0 0 
0 1 0 0 0 00 000 0 0 0 0 
0 1 0 0 0 00 000 0 0 0 0 
0 1 0 0 0 00 000 0 0 0 0 
1 0 0 0 0 00 000 0 0 0 0 
1 0 0 0 0 00 000 0 0 0 0 
1 0 0 0 0 00 000 0 0 0 0 
1 0 0 0 0 00 000 0 0 0 0 
1 1 0 0 0 00 000 0 0 0 0 
1 1 0 0 0 00 000 0 0 0 0 
1 1 0 0 0 00 000 0 0 0 0 
1 1 0 0 0 00 000 0 0 0 0 

N. B. All occas ions are potential catastrophes. 
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The example process modelled for the discussion has been a 

trivial control system and yet many error conditions have been 

identified. If the control system was more complex with many more 

parameters to consider then the dimensions of the state diagram would 

become unmanageable. The number of instances where an error can 

exist and create a catastrophic failure/condition becomes 

proportionately greater as the number of parameters increases making 

the use of state transition diagrams difficult to use for isolating 

potential hazards. 

In many industrial control systems the number of states would be 

so great that exhaustive checking of all conditions would not be 

practicable. 
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3.3 Categorisation of Dangers 

Examination of the risk arising from the use of software in an 

industrial process control system requires the dangers to be 

categorised. An argument for three categories of danger called 

minor, Major and Serious is presented. 

3.3.1 The Software Control Element 

The flow of information through a control system is dependent on 

the control strategy adopted for that industrial process. A general 

structure for various routes that the information can take through 

the software element of the control system, depending on whether it 

is a fully automatic control system, a system with manual 

intervention or a simple data logger is shown in Figure 3.3.1.1. 

Each route through the software has its own unique function and 

potential for error. Each of the points at which an error can occur 

are called 'error points' and assigned a number. 

Figure 3.3.1.1 Software Control Element 

Process 
input output 

"`-r 
", r 

State 
Memory 

.-'- 

Output Input 
Operator 

software 

The Health & Safety Executive, [6) p. 3, has suggested that there 

are three typical modes of operation: 

'Mode 1 

The computer receives signals from the plant or machine to 
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which it is linked and then processes this information and 

transmits or displays it. The computer does not send 

control signals to the plant or machine. The operator 

controls the plant without recourse to the computer except 

for information, and thus retains the power of both, 

decision and control. 

Mode 2 

The computer acts as a link between the person, who is 

monitoring the process, and the control elements (e. g. 

valves or contactors). This role may involve the feedback 

of signals from the plant or machine to the computer but 

the computer's scope for plant alteration is limited 

essentially to carrying out the instructions of the person 

in control of the process. In this mode, therefore. the 

decision is made by the person but control is exercised by 

the computer. 

Mode 3 

The computer, without human intervention. makes significant 

changes to, or puts significant restrictions on, the plant 

or machine operating conditions in accordance with its 

program. The computer therefore retains the power of both 

decision and control". 

Because of the reduction in the cost of automation and the 

economic pressure for more industrial efficiency there is a tendency 

to make greater use of industrial controllers operating in Mode 3. 

Principally, there are two ways that an Industrial Controller 

can reduce the safety of the process it controls or create a 

dangerous condition; by abnormal operation of the program or by 

aberrant behaviour of the controller. In all modes there will be 

occasions when the Industrial Controller can exhibit aberrant 
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behaviour and produce dangerous situations. 

3.3.2 Potential for Errors 

Mode 1 operation, data logging, would cause process inputs to 

enter the software and pass via the state memory to the Operator 

output port which may have a computer monitor attached for use by the 

Operator. There will be no response from the Operator entered to 

the software, in response to the output. 

Mode 2 operation would be as Mode 1 but in addition the Operator 

responses would be input to the software and pass to the process 

outputs via the state memory. The Operator responses would be 

reflected back to the Operator via the operator output port and the 

computer monitor. 

Mode 3 operation would be as Mode 1 but instead of the response 

coming from the Operator, as in Mode 2, the input will be routed to 

some decision making procedure which will effect the response through 

the process outputs. Knowledge of the response may only be 

available to the Operator by observing the process status displayed 

on a computer monitor. 

From Figure 3.3.1.1 eight points of potential error can be 

identified, called 'Error Points'. These error points are shown in 

Figure 3.3.2.1. 

Figure 3.3.2.1 Error Points 

16 

8 
25 

7 

34 
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Where single extreme errors can occur and their effect will now 

be examined. It is assumed that extreme errors are those where the 

information contained in the data is completely wrong in a permanent 

way and not transient, which have special characteristics. 

Error point 1 would cause the information on the process state 

to be corrupted. The corruption of data on input would cause 

erroneous information to be presented to the Operator and to the 

decision module. Information available to the Operator and any 

decision module would not represent the true process state. 

At error point 2, an error in the input data which was correct 

on entering the software, would be corrupted. The effect of the 

error would be to cause the Operator to be misinformed on the process 

state. Any subsequent action by the Operator would be correctly 

conveyed to the process. Since the process state is incorrectly 

displayed the Operator would have some indication that an error had 

occurred from the observable plant status. 

At error point 3, the introduction of an error would cause the 

process state information and the Operat 

incorrectly displayed to the Operator. 

alerted to the error by noting the error 

and also by monitoring the process state 

observed. 

If an error occurred at error point 

or input commands to be 

The Operator would be 

shown in his input commands 

displayed compared with that 

4 the Operator input 

commands would be corrupted causing the wrong actions to be conveyed 

to the process and the commands displayed to the Operator would also 

be corrupted. The Operator would only become aware of an error by 

monitoring the response of the process state and monitoring his 

reflected commands. In a slow industrial process the risk would be 

limited by the Operators actions. In a fast industrial process the 

risk would be greater. 
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At error point 5, the existence of an error would cause commands 

from the Operator to be incorrectly interpreted by the control 

software and as a consequence convey the wrong actions to the 

process. Error point 5 has a greater risk than that of error points 

2&7. In a process which is not time-critical the error would not 

cause an increase in the risk since the process state would still be 

displayed correctly. But the error is more dangerous in a time- 

critical process. Also the Operator is able to compare his commands 

with the resulting process reaction, which corresponds to an 

unexpected plant state being corrected by the feedback control 

mechanism. 

A potentially great risk exists when an error occurs at error 

point 6; the Operator input commands or the decision module commands 

are corrupted on output. In either case the wrong actions are 

conveyed to the process. The result may be a situation with a high 

risk, without the Operator being aware of the danger. 

Error point 7 has the potential to incorrectly display the 

commands of the Operator but the error will be identified as an error 

by the Operator noting the disturbance. 

Error point 8 has a potentially great risk when the control 

strategy permits control actions to be taken directly by the 

software. The actions may also be monitored by the Operator, if 

there is one. An error at error point 8 in the software would cause 

the decision module to issue wrong commands which, though founded on 

correct process inputs, would then pass to the process undetected. 

3.3.3 Categories of Danger 

From the discussion above the effects of errors existing at 

various points in the software have been proposed. Whilst all 

errors have some effect there are some which present a much greater 

risk than others. Therefore, some weighting needs tobe applied to 

93 



isolate the error and to place it in the appropriate category. The 

weighting used here is a subjective assessment of the degree of 

danger resulting from the occurrence of that error. 

Three categories of danger resulting from errors in software 

used in control applications have been distinguished as; 

minor - errors which are undesirable and inconsistent with the 

specification but do not cause a hazardous condition to 

exist. For instance, mis-spelled warning messages and 

file corruption. 

Major - errors which cause a hazardous condition to exist but 

which allow correction by an Operator. For example, 

failure to check correct outputs by re-input, output 

action differing from that commanded and reported, 

corruption of command with resulting incorrect action 

(input or output). The effects of errors in this 

category are observable by the Operators. 

Serious - errors which cause a high level of risk to exist; 

erroneous output on a fast or time-critical process, 

overriding of protection mechanisms like watch-dogs, 

uninformed bridging of safety checks, corrupted limit 

checks, wrong logical deduction from inputs resulting 

in a wrong output. 

The category of minor is placed on a set of errors which, though 

undesirable and inconsistent with the specification, do not cause a 

hazard to materialise. As an example, consider an error in a module 

whose function is to log data. An error in the module might cause 

the correct output message `alarm 99" to be displayed incorrectly as 

"alm 99", where the number indicates an alarm number and not a 

sequence number. Such an error might cause the Operator to suspect 

a fault in the software but would not prevent him from understanding 
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the message. The ability to understand the corrupted word in a 

message is due to the message having in-built redundancy allowing the 

message 'alm' to be recognizable as 'alarm'. Message Redundancy is 

also known as the 'richness' of the language. The context of the 

message is contained in a descriptor which contains information. 

However, if the corruption had been that the alarm point "99" was 

corrupted to "9" then it is possible that the Operator would not 

recognise the correct message from this limited information. 

Alternatively, had the Operator input the command "Open valve 6" 

which was corrupted to "Open valve 4" by the command input module 

then the error would no longer be in the minor category since the 

intended message cannot be determined. If the corruption was such 

that the erroneous command was displayed as "Open valve 4" and also 

effected the action on valve 6, then the Operator would be aware of 

the error and react accordingly. There is little redundancy in the 

message since the valve has been identified by a single character and 

not a descriptor containing more information. Therefore the message 

is considered to be unsafe. Errors of this type have been put in 

the set of errors called the Major category of errors and refers to a 

set of errors that cause a hazard to exist but which are not too 

great for the Operator to correct. 

Taking the above example of the Operator inputting the command 

"Open valve 6", if an error occurs in the process output module and 

corrupts the command to "Open valve 4" then the error is in the set 

of errors called the Serious category of errors. The error is in 

the Serious category of error because the command will have been 

correctly displayed to the Operator, who now expects an action, but 

the output to the process is not as commanded; the Operator may be 

unaware of the potentially dangerous situation for some time, by 

which time a disaster may have occurred. The Serious category of 
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error refers to a group of errors which present a, high level of risk. 

Only single permanent failures have been considered so far but 

it is possible for there to be combinations of permanent errors and 

transient errors. Both types of error have severe implications to 

the safe working of the system. 

Combinations of errors are many and varied. The consequence of 

combinations of errors is that individual single permanent errors may 

be masked by the accompanying permanent error and create a confused 

view of the problem. The category of danger for a combination of 

errors is the category of the higher single permanent error included 

in the combination. For example, a combination of a permanent minor 

error and a permanent Major error is considered to be a Major error. 

Transient errors, however, present an error condition which may 

be short lived and infrequent. The consequence of which may be that 

an unsafe condition applies for the duration of the error and it is 

improbable that the error will be isolated immediately. The full 

effect of a transient error cannot be appreciated until the transient 

error is identified and safety requires that maximum caution should 

be exercised where uncertainty exists. A transient error is placed 

in the category of Serious until such time as the error is isolated. 

Due to transient errors being in the Serious category a combination 

made of permanent and transient errors is considered to be in the 

Serious category. 
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3.4 The Structuring of Software Modules for Safety 

Software modules are discrete units of computer programming 

collectively providing a sphere of"influence within a system. The 

software modules can be structured, or configured, in many different 

ways to achieve the same sphere of influence. The term "sphere of 

influence" refers to the extent to which the actions of a specific 

module are influential within a system and is not limited to first- 

order effects. The structuring of the system affects the amount of 

confidence the designer is justified in vesting in the system. 

Using robust programming techniques, such as N-Version Programming 

and Recovery Blocks, influences the safe execution of a program. 

Some of the structural options available to software designers 

are considered in this Chapter and it is postulated that the use of a 

structuring technique called 'Safety Modules' improves the safe 

operation of control modules without an increase in either the run- 

time resources or the complication of the system. 

3.4.1 N-Version Programming 

Hardware fault tolerant systems commonly use a strategy called 

N-Modular Redundancy (NMR), involving an odd number, say three or 

five, redundant versions of the same hardware with a voting system. 

N-Version Programming is a software implementation of the NMR 

strategy for hardware and was first proposed by Chen and Avizienis, 

[5]. 

In N-Version Programming a number of similar programs. N, are 

written to perform identical functions using different programming 

techniques to perform the same function or using different source 

languages. To add diversity the programs may be written by 

different teams of programmers, even in different locations. 

In N-Version programming structuring of the system is such that 

the N-versions of the program are usually placed under the control of 
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a driver program within the run-time environment. The driver 

program invokes each version of the program, awaits completion of the 

respective execution, compares the results and takes action 

accordingly. 

The driver program synchronises the execution of the versions 

and maintains a record of those versions which take longer time to 

execute. Once the versions have all reached completion and have 

been synchronised then a voting mechanism compares the respective 

results. If it is not possible for all the versions to return the 

same result then 'inexact voting' is used when small discrepancies in 

the results are tolerated. In industrial systems the accumulation 

of such discrepancies, accumulated over a period of operation, cannot 

be disregarded as the error may become too severe to permit safe 

operation. Therefore N-Version Programming cannot be recommended in 

safety-related systems. 

3.4.2 Software Fault Tolerance 

Errors in the program itself can demonstrate the characteristic 

of having 'failed' in many ways; suspect inputs, inadequate inter- 

program communication, hardware malfunctions or loss of 

synchronisation with other programs with which it corresponds. For 

a system to continue operation whilst overcoming these 'faults' a 

technique known as fault tolerance is required. 

One fault-tolerant technique is Recovery Blocks, [1] and [11]. 

Recovery block design makes use of one or more redundant programs in 

addition to the original program. The original program is called a 

'primary block' and is tested for failure by an 'acceptance block'. 

On detecting a failure the acceptance block will cause one or more of 

the redundant blocks, called 'alternate blocks', to be executed until 

either all 'alternate blocks' have failed or one has functioned 

correctly. 
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The recovery block strategy is 

1) the primary block is executed 

2) the acceptance block tests 'for a satisfactory result 

3) if the result is acceptable then the next primary block in 

the sequence is executed. If the result is not acceptable 

then the system is said to 'recover' to a point where the 

system state is restored to that existing before the failed 

primary block was executed and one of the alternate blocks is 

executed, 

4) the execution of alternate blocks is repeated until an 

acceptable result is achieved, 

5) if an acceptable result cannot be achieved then the system is 

said to have failed. 

To implement the recovery block strategy requires two special 

procedures; 

RECOVER - which keeps account of whether it is the primary 

block or one of the alternate blocks being executed 

and maintains a copy of the state of the system 

prior to the block being entered, 

ACCEPTANCE - performs the acceptance test and causes a system 

recovery if a failure is detected. The procedure 

also has a record of whether it is the primary 

block or an alternate block being executed. 

In a multi-processing environment where shared data is used to 

pass data between programs it is possible for there to be an overlap 

when two or more competing blocks are recovering. Randell, [11], 

called this situation the 'domino effect and observed that whilst 

only one block may have failed the failure of more blocks may be 

indicated thus causing a system shut-down. To limit the domino 

effect additional facilities need to be provided, [t], which further 
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increases the amount of resources committed to the strategy. 

Whilst the Recovery Block strategy is simple in its concept the 

implementation is more involved. It does allow alternate control 

strategies to be attempted on detection of a failure. The major 

disadvantages in using the recovery block strategy for industrial 

control systems are; 

- the difficulty of restoring the system to a known state 

without causing a 'domino effect' where alternate blocks force 

other blocks to restore 

- the time taken to restore the system to a known state may mean 

that the restored system state no longer reflects the current 

plant state 

- considerable resources are required to implement multiple 

copies of the primary block 

- if the system is safety-related then the personnel maintaining 

the system operationally need to be made especially aware of 

the nuances of such a strategy. 

These difficulties could create a situation where the system actively 

seeks to restore itself without maintaining a safe plant status. 

3.4.3 Safety Modules 

If, due to the increased probability of an undetected error 

being present, it is assumed that the probability of failure of a 

program module is related to the number of characters forming the 

program then the probability of failure of a system is similarly 

related to the structure existing between the modules. In the case 

where the module effects control over some critical item of plant it 

is desirable to maintain a low failure probability which suggests 

that the module lengths need to be correspondingly short. 

There are two ways of reducing the length of a module; dividing 

the module still further into a number of sub-modules or reducing the 
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length, usually by using advanced programming-techniques. 

A satisfactory division of the roles of the original module is 

normally possible without a consequent increase in the complexity of 

the software other than in the interconnection coupling between 

modules. The outcome of the division of the module is that low 

probabilities of failure can be achieved for individual sub-modules 

and the software retains a simple internal structure which allows the 

sub-modules to be understood. The internal simplicity is important 

to allow changes to the function of the sub-module to be effected 

without disturbance to any safety checks in the module. 

Length reduction using advanced programming techniques has an 

immediate disadvantage in the resulting program becoming so esoteric 

that only the originating programmer is able to fully understand its 

function which in turn means that it is only the originating 

programmer who can safely make changes arising out of testing. 

Such practices are undesirable from many points of view. Most 

significantly, from a safety view, is that the safety checks within 

the program may have been installed by the programmer and these can 

be unintentionally by-passed when changes are made by another 

programmer who is unfamiliar with the program. 

Since modularisation of the software does not substitute 

convenience for safety, the principle of module sub-division is to be 

preferred to length reduction. 

A control module will probably have safety checks built into the 

software. In which case the structure could conceptually be as in 

Figure 3.4.3.1 with the control part of the module intimately co- 

operating with the safety part of the module. 
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Figure 3.4.3.1 Safety and Control Software Integrated 

where S= Safety Part 

C= Control Part 

It is assumed that the probability of failure of a sphere of 

influence, P(F), is related to the length of the modules. The 

relationship between the length of a module and its probability of 

failure may be exponential, linear or differential or any of the 

relationships below; 

Pf 

It is assumed in this thesis that as the length of the module 

increases it is more probable that errors will be introduced and that 

the relationship exhibits an exponential characteristic. 

If the modules are structured as in Figure 3.4.3.1 then the 

failure probability for such a structure is 

P(F) = P(S) + P(C) 

where P(S) and P(C) are the failure probabilities for the Safety Part 

and Control Part, respectively and P(F) is the probability of 

failure. 

If the safety part is seperated from the control part into a 

seperate Safety Module whose primary role is to ensure that the 

Control Module continues to function safely there will be distinct 
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flows of data between them. The flow of data is considered to be 

between each module and the run-time environment of the computer, 

with channels to each. 

Communication between the safety module and the control module 

may be such that before control of the plant is effected by the 

control module the safety module will check that the action is 

reasonable given the plant status. The safety module may have 

exclusive access to data concerning the operation of the item of 

plant it is concerned with, for example equipment design limits and 

rates of change of plant parameters. Plant data could be stored in 

a read only file. The control module may have access to a limited 

sub-set of plant data in order for it to be able to perform all the 

logical and mathematical functions necessary to maintain control. 

The control can be effected either by the control module or the 

safety module. If the action is taken by the control module as in 

Figure 3.4.3.2 a), b) and c) then there exists a probability that the 

action approved by the safety module will be corrupted in some way 

before being effected. Also a probability exists that corruption of 

the control action may occur if it is effected by the safety module, 

Figure 3.4.3.2 d) and e). though it is probable that the safety 

module will detect the corruption and take the necessary corrective 

action. Therefore the risk of an unsafe control action being 

effected is lower when the action is undertaken by the safety module. 

Figure 3.4.3.2 Configuration of Safety and Control 
Modules 

a) 
IS()C 

EE= Run-time 
Environment 
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b) 

C) 

dI 

e) 

When the two modules are seperated in the way discussed they can 

be structured to operate either sequentially or concurrently. 

The conceptual structure for the Safety and Control modules 

operating sequentially is shown in Figure 3.4.3.3. 
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Figure 3.4.3.3 Safety and Control Modules Operating Sequentially 

where 
S= Safety Module 
C= Control Module 

The operation of the modules involves the two modules functioning in 

a serial manner. It is assumed that the probability of failure is 

related to length such that L(C) and L(S) combined gives L(C) + L(S) 

then the probability of failure is given as 

P(F) = P(C) + P(S) 

Providing the run-time operating system orders the 

synchronisation of tasks, the safety module can also be configured to 

execute concurrently with the control module, Figure 3.4.3.4, and 

maintain a safe operation with respect to the control module through 

the linking mechanism. Since the run-time environment is required 

to schedule both modules the probability of failure of each module 

also needs to include the effect of the run-time environment on the 

outcome. 

Figure 3.4.3.4 Safety and Control Modules Operating in Parallel 

_ 

C] 

If 1 
Each module can fail to execute its role in distinct ways; 

abnormal execution as a result of the other module. non-execution as 

a result of the other module, corrupt data as a result of the other 

105 



module and the run-time environment, corrupt instruction as a result 

of the other module, failure to communicate as a result of the other 

module and the run-time environment. 

The module can fail as a result of any of these independent 

reasons. The probability of a failure in this configuration is 

P=CP (Lc)+P (Lc)+P (Lc, E)+P (Lc)+P (Lc, E) ] 
FS Sp Sn Scd Sci Sfc 

P=[P (Ls)+P (Ls1. P (Ls, E)+P (Ls)+P (Ls, E) 
FC Cp Cn Ccd Cci Cfc 

where 

P, P= prob. of failure of the Safety/Control Module 
FS FC 

P, P= failure of safety/control module 
Sp Cp 

P, P= non-execution of safety/control module 
Sn Cn 

P, P= corrupt data of safety/control module 
Scd Ccd 

P, P= corrupt instruction of safety/control module 
Sci Cci 

P, P= communication failure of safety/control module 
Sfc Sfc 

Ls = length of safety module in characters 

Lc = length of control module in characters 

E= run-time environment 

The failure of the safety module can be caused by a failure of 

the control module and prejudice safety by allowing unjustified 

freedom of action to the control module. Therefore a mechanism is 

required to maintain the safe operation of the safety module. The 

paradox is not new and was noted almost 2000 years ago in the phrase 

"Sed quis custodiet ipsos custodes? " 
Juvenal, 'Satires' c60-130 A. D. 

The probability of failure of the safety module can be reduced 

by placing a restriction on the ability of the control modules to 
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corrupt either data or instructions when communicating with the 

safety module. For the safety module to effect the actions 

requested by the control module it is necessary for the control 

information to be made available to the safety module through some 

secure communication mechanism such as parameter passing or sharing 

of data space. If parameter passing is used then there is a 

probability that errors will be induced by the run-time environment, 

which can itself cause data corruption. The option of using shared 

data space is subject to a lower probability of error because of the 

linking procedures used within the compiling system for declaring 

global data references. 

A module whose sole function is to maintain an ultimate safe 

working condition by monitoring the safety modules within a system 

needs to be inviolate and must be allowed to make some judgement on 

the safety modules operational capability. The module would have a 

connection to the run-time environment but not with any other item of 

software. Connection with the run-time environment is exclusively 

for the purpose of checking that the version of the safety module to 

be executed by the run-time environment has not changed in any way 

from that considered to be safe when the module was first made 

operational, or that the execution of the safety module is not 

overdue in time with respect to the previous instance. If changes 

have been made to the safety module which is now considered to be 

'suspect' or it is considered to be overdue the ultimate safety 

module will inform the responsible plant authority of the suspicion 

and effect a predefined safe control operation on that plant area. 

Changes to the safety module can come about by another module 

causing corruption to the safety module or by functional changes to 

the safety module requested by the plant authority. Functional 

changes to safety modules have a probability that the implications to 
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safe working of such changes may not be appreciated by those making 

the changes. 

In most industrial plants it is a proscribed activity for an 

Engineer to override an ultimate safety limit without permission 

being granted on the authority of the Plant Engineer. Such 

authority may take the form of the possession, by Authorised 

Engineers, of the necessary key to physically unlock the safety 

protection system surrounding the limit. The safety limits proposed 

for the safety modules should be regarded in the same way. Access 

permission to the ultimate safety module should be restricted by 

managerial action of, say, the Plant Engineer. Such an ultimate 

safety module is called the Arbitrator Module. 

To maintain the inviolate nature of the Arbitrator Module it 

could be located in a Read Only part of the main memory of the 

computer. The Arbitrator Module could use a strategy of checking 

the unique identity of a safety module in order to monitor the safe 

working of the safety modules. Conceptually the Arbitrator Module 

can be viewed as in Figure 3.4.3.5. 

Figure 3.4.3.5 The Arbitrator Module 

(a) 

Data flow between 
modules 

(b) 
Communication line 

SC between modules 
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Cc) 
Functional 
relationship between 
modules 

where A= Arbitrator Module 
S= Safety Module 
C= Control Module 
E= Run-Time Environment 

3.4.4 A Mechanism for Ensuring the Integrity of Software 

The role of the Arbitrator Module and its relationship with the 

Safety Modules have been discussed on the assumption that the modules 

have not been corrupted as a result of software errors, incorrectly 

installed modifications to the system or deliberate sabotage. If 

the system has been corrupted in some way it cannot be said to be 

complete. The Oxford English Dictionary defines completeness as a 

synonym of integrity. It is in the context of completeness that the 

word integrity is used in this thesis. A mechanism to restrict the 

probability of corruption not being detected is called an Integrity 

Lock. 

When the system is put into operational use it is reasonable for 

the Functional Authority to assume that all the modules are 

considered to be safe. If at this point a unique identity is given 

to each module such that safe operation is only possible when the 

identity is shown to be valid, then a strict regime of managerial 

control can be exercised on the installation of any changes to the 

system. 

To create a unique identity some form of encryption based on the 

run-time code of the module can be used. 'A similar requirement is 

found in data communication systems where a unique code, such as a 

cyclic redundancy check or Hamming code, is generated to assist the 

receiver in determining whether an erroneous message has been 

received. The unique identity may be corrupted by a single error or 
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by multiple errors. Hamming codes have been developed to cater for 

at least one error and so could be the immediate choice for creating 

the unique identity. The creation of the unique identity ought to 

be done under the strictest controls, for instance under the 

authority of a Senior Engineer, to maintain security. The unique 

identity could be generated by a module called the Security Module. 

The Security Module needs to be capable of reading the 

particular control or safety module as an ordered set of characters 

forming a message and generating the identity according to a 

specified algorithm. Having generated the identity the Security 

Module could then place it in an area of storage, called the Key 

Area, which could then be declared to the system as "Read Only". 

The Key Area may contain many identities each mapped to a 

particular module by the module name. The correct functioning of 

the Integrity Lock would require that strict administrative controls 

existed and the location of the Key Area would not be commonly known, 

possibly only to the Plant Engineer since he is ultimately 

responsible for the safe working of equipment. It is a managerial 

decision on who would have the necessary information on how to run 

the Security Module in mode 1, generation mode. 

When a control or safety module is called by the Operating 

System to be executed mode 2 of the Security Module, check mode, 

would read the control module as a message and generate the identity 

for that control module. As a function of the Safety or Arbitrator 

module the current identity would be compared with the stored 

identity. If the identities did not match then alarm conditions 

would be raised. However, when the identities match the Operating 

System would be allowed to execute the module. The procedure 

described is shown in Figure 3.4.4.1. 

The function of the Security Module in mode 1, generation mode, 
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is the highest level of integrity, Integrity Level 1. Integrity 

Level 1 is only executed when a satisfactory password has been 

entered. 

When the Security Module is executing in mode 2, checking mode, 

the level of integrity is less than mode 1 but higher than the level 

occupied by the control module, safety module, arbitrator module and 

the operating system which are all at Integrity Level 3. The level 

associated with Security Module mode 2 is the Integrity Level 2. 

By using a technique such as the Integrity Lock there is a 

probability of executing a control module, or a Safety/Arbitrator 

Module, which has previously been categorised as safe. 

Figure 3.4.4.1 Integrity Levels 

Integrity Level 1 
Password 

All Modules Security Module Key Area 
Mode 1 

Integrity Level 2 

Security Module 
Mode 2 

Integrity Level 3 

Module to Operating Safety or 
be executed System Arbitrator 

Modulo 

3.4.5 Discussion 

There exists methods for tolerating faults arising in the 

software. 

The technique known as Recovery Blocks allows the system to 

retrace, or back track, to the last known point where safe 

computation took place and to re-establish a safe working attitude. 
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But back tracking can cause a 'domino effect' where the system 

retraces back so far that meaningful control actions are difficult to 

achieve given that the plant status may have changed significantly 

since the recovery began. Time can be important in maintaining 

effective control of an industrial process and if a recovery system 

cannot roll-back to a satisfactory point in a given time then 

decisive action will have to be taken, possibly by the Operator. 

Recovery Blocks have been used in systems not having a plant 

status responsibility, such as Command and Control Systems, but in 

industrial control systems the speed at which the plant status 

changes may mean that some method is required which will maintain 

plant safety whilst the fault is investigated. Though Recovery 

Blocks may serve to protect the safety of the plant in some part they 

are not sufficient in themselves and require additional features, 

such as the strategy of using Safety Modules. 

The use of Safety Modules is a strategy for seperating the 

software into control modules, which would determine the necessary 

control, and into safety modules which would be dedicated to ensuring 

safe control actions on industrial plant. There would also be an 

ultimate safety module, the Arbitrator Module, monitoring the safety 

modules. Such a strategy permits the plant designer/manager to 

specify or change the safe working limits for the particular plant 

areas without modifying the control module. The strategy also 

prohibits the main body of the system from effecting control outside 

the limits. The strategy is not a fault tolerant technique but it 

does ensure that safe control can be maintained. 
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CHAPTER 4 

The Influence of the Development Process 
on the Safety of Software 

Chapter 3 examined the safe operation of the system through the 

interactions of the software and the hardware with the emphasis being 

on the control flow. 

In this Chapter the emphasis will be on the control flow of the 

software. 

It is held in this Chapter that errors in the software affect 

safety and so the Chapter examines the occasions where errors can be 

introduced into the software, why it is not practicable to remove all 

errors from the software and introduces a basis for measuring certain 

features of the software. It is suggested that these measures, 

though not rigorously proved, do give some indication of the scope 

for error in an individual item of software. 

The development and production of 'safe' software systems has 

five distinct stages, each having a quality assessment part; 

requirements specification, system specification, program 

specification, program production and system test and integration. 

Before the software development can begin the originator of the 

development, the Requesting Authority. needs to obtain a concise 

understanding of the requirements. Once the software has been 

implemented and is in operation the Requesting Authority may identify 

what are considered to be short-comings in the produced system which 

may necessitate the requirements specification to be recompiled. 

The requirements specification may have been prepared by a 

collection of people from differing disciplines and functions within 

the organisation, including the end-users. It is, therefore, 

necessary for the requirements specification to be unambiguous to all 

those. people involved in its preparation. The ambiguity of the 
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requirements specification is a research topic using established 

formal mathematical methods to formulate the requirements 

specification but the use of such formal methods presents a paradox; 

to make the statements unambiguous the axiomatic methods used require 

a considerable degree of understanding of mathematical logic which 

may not present a problem to computer scientists but may to the 

Requesting Authority, who may not then understand the requirements 

specification. If written natural language is used for the 

specification then the computer scientist may find the specification 

to be imprecise, whereas the Requesting Authority may claim to 

understand it. At the state of the art there is a risk that 

ambiguity will persist in requirements specifications for industrial- 

based control systems. 

The system specification, which follows from the requirements 

specification, is concerned with the design of the total system 

against the requirements specification. 

Program specifications are concerned with the design of specific 

programs and the interfaces between them to meet the system 

specification. How the software is structured into a system 

influences the extent to which the system will conform to the 

requirements specification, as conjectured in Chapter 3. ' If the 

structuring of the software does not conform to the requirements 

specification then the software may need to be redesigned. To 

ensure that the software is structured in conformity with the 

requirements specification, an iterative process is called for 

involving all those personnel involved in the requirements 

specification and system specification. The process described is 

sometimes called the 'design process'. 

Once the design process has been satisfactorily achieved the 

'program development' can begin. During program development the 
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program is written in accordance with the previously agreed program 

specification. At the end of program development, the program is 

tested in isolation from the other programs forming the system. 

Following program development is a set of procedures called 

'system test and integration' when the individually tested programs 

are tested as a complete system and integrated into a target 

implementation. 

The multi-stage iterative process which describes the 

development process can be viewed as a directed graph, Figure 4.0.1, 

where the nodes represent stages of development, each having an 

associated activity; 

Figure 4.0.1 Software Development Cycle 

1- Requirements Specification 
2- System Specification 
3- Program Specification 
4- Program Production 
5- System Test & Integration 
6- Implementation 
7- Operation 

Nodes 1 to 5 in the directed graph of Figure 4.0.1 have an arc 

from that node and returning to that node to show that progress to 

the next stage (represented by a node) is not permitted until some 

form of quality assessment process has been satisfied for that stage. 

Each normal path between stages, except 7 to 1. has a forward and 

reverse arc indicating that when the quality assessment cannot be 

satisfied at a particular node it is necessary to return to the 

preceeding node and examine the transformation that took place. The 

arc between stage 7 and stage 1 is uni-directional since the logical 
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progression from node 1 is to node 2. 

To account for the occasion when the quality assessment process 

has shown discrepancies from the specification such that a radical 

consideration of the design or structure is required some nodes have 

additional arcs to nodes other than the succeeding or preceeding 

node. As an example, if the Requirements Specification cannot be 

met in the Program Specification it may be necessary to follow the 

arc from node 3 to node 1. 

There is a need in all the stages of the development process to 

analyse errors and to take the appropriate action. Error analysis 

takes three forms; error prevention, error detection and error 

correction. 

Error prevention implies the use of good programming practice; 

the use of the best known methods of software production. for 

example, the selection of meaningful variable and constant names, 

structured programming and other methods of programming. 

Finding and removing the cause of errors is an intensive and 

prolonged activity. Though it is important to correct an error it 

is equally as important to ensure that the knowledge of the error. 

its original cause and the correction is recorded in the guide to 

good programming practice being used by the programmer, possibly by 

some recording mechanism. Error detection and error correction will 

be carried out by the programmer in the most efficient way as part of 

his function. 

The work in this Chapter on the determination of errors had the 

following concepts in mind 

1 that the software compiles satisfactorily 

2 that the Programmer has completed the test-set provided for 

the purpose and is satisfied that the tests were as exhaustive 

as one can make them given the restraints of time, effort and 
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possibly commercial urgency for the software 

3 that the development stage when metrics will be used is that 

stage immediately preceeding the commissioning of the software 

into operational use, possibly during acceptance testing 

4 that satisfactory test limits will have to be determined for 

the proposed metrics before the application of these metrics 

to Industry 

5 that the test limits and the metrics presented will provide a 

pass/fail criteria for a Certification Authority seeking to 

approve the software. 

The Chapter starts by examining the reasons for errors remaining 

in software, even after extensive testing. Having discussed the 

software development process in terms of a feedback model a method is 

developed to indicate the potential that exists within the software 

for perturbing the software through single character errors, followed 

by a discussion on the need to declare variable and constant names 

and a report on an experiment conducted to examine the probability of 

error through incorrect interpretation of mneomonics. 

The final section of the Chapter is concerned with the 

development of a measure called Plexus which measures the syntactic 

complexity of software. 
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4.1 The Feedback Model of Software Production 

The development of software involves a number of stages. The 

exact number of stages and their relationship is largely dependent on 

the organisation under which the development is done, the extent of 

the project and the development methodology used. Many authors, for 

example Sommerville, [12], Kopetz, [6], Peters, [8], have all tried 

to model the development process in varying degrees of detail. At 

the level of the gross model there is a consensus of opinion that 

five stages exist; requirements specification, system specification, 

program specification, coding and acceptance testing. Errors can be 

created, detected and corrected at each of these stages but there 

will still be residual errors which are not detectable until after 

the software has been commissioned. This section of the Chapter 

will demonstrate the enormity of the task required to eliminate all 

software errors (if that was possible) prior to commissioning. 

4.1.1 Process Model 

The process of developing software can be compared to the 

production processes of a manufacturing line and it is this analogy 

that has been used in this Chapter to develop a model. 

Figure 4.1.1.1 Production Process 

Raw Process Process Process Process Dispatch 
Materials 1234 

Each process in the model has an input and an output with 

rejects, from that process, being rejected at that process. 

Inside each process stage there are two sub-processes, namely, 

manufacture and test, Figure 4.1.1.2. 

Figure 4.1.1.2 Manufacture and Test within a Process Stage 

Process Stage 

i 
Manufacture Test 

L--- --- --- -- ---J 
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Since testing will cause some corrective action to be taken on 

the rejects detected then these actions can be considered as feedback 

loops, Figure 4.1.1.3. Ideally testing will be such that no errors 

are passed to the next stage and all errors are fed-back to the 

preceeding manufacture sub-process or sub-processes for correction. 

However, the model must consider that errors can be created at both 

the manufacture and test stages and that the test coverage is 

limited, Figure 4.1.1.4. 

Figure 4.1.1.3 Rejection Feedback in a Process Stage 

Process Stage 

1 
Manufacture Test 

Figure 4.1.1.4 Test Coverage 

Process Stage 

ý-- -----ý e-- - -- --- 
to 

1 

`f Manufacture) 01 Test 

I 

where e is related to the errors introduced during manufacture 

and to is related to the errors undetected or allowed to pass 

as a consequence of the testing practice. 

The input to the test stage will be a duple (quantity 0, 

probability of error P) and the output will be (failed, failed by 

mistake, passed by mistake, satisfactory). The model is now shown 

in Figure 4.1.1.5. 
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Figure 4.1.1.5 Test Stage 

PC 
iT 

satisfactory 

a, P 
assed by mistake 

ed by mistake 

The test coverage (normally less than 100X) is shown by C and 

the probability of testing determining the error shown by PT. The 

quantity considered to be satisfactory, as, is given as 

Os = Q. Pr((1-PT). (1-C)) + Q. (1-P). (1-C) 

The test stage will have an output leading to the input of the 

next manufacturing process and an output corresponding to the 

erroneous components detected, either correctly or by mistake. The 

detected erroneous components will be subjected to some form of 

repair mechanism before being re-submitted to the test stage. The 

repair mechanism has been added to the test stage model shown in 

Figure 4.1.1.6. 

Figure 4.1.1.6 Repair Mechanism 

efficiency p 

where res. is the residual error 

ß is the effectiveness of repair 

If it is assumed that the detection of errors by the model shows 

a reduction in errors according to some exponential function then the 

residual errors, res, is given as 
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res = f(t) = exp (-at) 

From control theory the testing stage can be given as a first 

order loop whose transfer function is given using Z-transformation 

Z 
op = -at 

t-e 

where Op = quantity produced 

Since the repair mechanism forms a feedback loop from the test 

stage to the input of the manufacturing stage the residual error can 

be viewed using a first order feedback model 

Op 
res = 0r Or = quantity 

repaired 

1+ ßZ 

since Or = -at 
Z-e 

z 
-at -at 

res =2-eZ-e 
1+ p2 2 

-at 
Z-e 

-at 
=Z-e 

-at 
Z-e+ ßZ 

-at 
=Z-e 

-at 
Z(1 + ý) -e 

-at 
=12-e 

1+ß -at 
t-e 

1+ß 

To reduce the residual errors requires a level of test 

efficiency and test coverage above that attainable. Therefore, it 

is concluded that there will always be a number of residual errors. 
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4.1.2. Software Model 

Taking the model above and substituting the five stages of 

software development for the procýss stages, the model becomes that 

shown in Figure 4.1.2.1. 

It has been suggested by some researchers, notably Boehm Ell, 

that the majority of error-detection effort should be committed to 

the requirements specification stage and so reduce the number of 

errors needing to be detected at the following stages, especially at 

the acceptance tests. Whilst such a strategy may be intuitively 

sound it should not be assumed to be sufficient in itself since an 

extreme amount of effort at the requirements specification stage 

could cause a bottle-neck in the development process and be counter- 

productive to achieving the project time-scales. 

Figure 4.1.2.1 Software Feedback Model 
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4.1.3 Macro Model 

The software development model can be applied to varying levels 

of detail. For instance, the process of producing the program code 

can be considered to consist of the following stages; typing the 

original program, review of the program, program compilation, 

execution of the code, testing of the code and editing stages, 

forming a model like that in Figure 4.1.3.1. 

The edit process itself can be further modelled, Figure 4.1.3.2. 

where e is the probability of introducing errors 

It is conjectured that each stage of development is prone to 

errors and the process of correcting errors is itself prone to 

further errors. It cannot be assumed that the use of extreme 

amounts of effort at the requirements specification stage will 

produce significant improvements in error reduction. It is 

suggested that all items of non-trivial software contain some 

erroneous feature. 

If all software has at least one erroneous feature then the 

criteria in testing hazard-related systems should be to identify 

those classes of errors which could cause a dangerous state to exist. 

12 

Figure 4.1.3.1 Software Edit Stages 



Figure 4.1.3.2 Edit Process 
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4.2. Single Character Errors in Programs 

In writing even the simplest program there is a probability of a 

character being typed in error. When the program is submitted to 

the compiler a considerable number of these mistakes will be detected 

but it is not practically possible to remove all errors. There are 

occasions when the compiler is not able to detect the mistake. 

The simple program below forms the basis of the discussion that 

follows; 

PROGRAM name (FILE); 
VAR XY, XZ: REAL; 
BEGIN 

XY 2; 
XZ 3; 

END. 

If the initial letter of the keyword BEGIN, "B", was mistakenly 

typed as the letter, "N", the compiler would be able to detect that 

NEGIN is not included in the list of reserved words for that 

language, also that NEGIN is not a declared variable and so reject 

the line as being in error. The rejection of the line would cause 

the compilation to fail since BEGIN indicates the start of a 

procedure block. 

Errors in program variables are not always so obvious. Take. 

as an example, a language which requires all variables to be 

declared. In a program, like that above, written in such a language 

the effect of typing X2: =2 instead of the correct XY: z2 would be 

easily detected since X2 has not been declared as a variable. Had 

the error been that XZ: =2 had been typed instead of XY: z2 then the 

error could not be detected by the compiler unless it checked for 

unused variables, XY being unused. If the language did not require 

all variables to be declared, as for example with the language BASIC. 

then neither of these example errors would have been detectable by 

the compiler or interpreter, but they should have been detected by 

the tests of the programmer, (concept 2). 
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When a single character is omitted or altered to another 

character. or when there is a single additional character there are 

similar opportunities for undetected errors. 

4.2.1 Theory 

There are three error classes of mistakenly typed programs; 

- omitted single character (Po) 

- additional single character (Pi) 

- altered single character (Pa), which can also be 

considered as a combination of Po and Pi 

To examine the effects of each of these error classes the 

following assumptions have been made; 

- that individual errors are independent and no 

account is taken of complimentary errors since the 

probability of such is considered to be low 

- that each character has an equal probability of error. 

If it is assumed that errors can be introduced as a result of a 

mistakenly typed character and remain undetected the expectation of 

such a mistake*is given as Elmistake) and the number of characters is 

given as Nc, then the expectation of the number of mistakes on 

initial input of the program is 

E{No. of mistakes} = E{mistake} . Nc 

If the probability of making an undetected mistake is given as 

Pm then the expectation of the number of undetected errors is given 

as 

E{No. undetected errors) = E{No. of mistakes} . Pm 

which can be expanded to 

E{No. undetected errors} = E{mistake} . Nc . Pm 

There are three classes of error influencing the number of 

undetected errors which are related to 

- the expectation of the number of undetected alterations, E{a}. 
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- the expectation of the number of undetected omissions. E{o}, 

- the expectation of the number of undetected additions, E(ij. 
I 

The number of undetected errors is given as 

E(No. undetected errorsl = E(uj = E{aj + E(ol + Eji) 

The expectation of an undetected altered character, Ejaj, is 

given by 

E{a} = Pa . Nc . Pm 
Cs -1 

where Pa is the probability of a character in a certain character 

position being altered and remaining undetected, Nc is the number of 

characters in the program, Pm is the probability of making an error 

in typing a character and Cs is the number of characters in the 

character set permitted in the language. 

The Expectation of undetected altered characters in a program is 

given by 

E(a) = (Pal + Pa2 + .. Pan) Nc . Pm 
Cs -1 

= Na . Nc . Pm 
Cs-1 

where Pan is the probability of a character being altered in the n-th 

position of an ordered set of characters by each admissible character 

from the set of characters in the character set and being undetected. 

The number of altered and undetected characters is Na. 

The expectation of the number of undetected omissions, Efol, is 

given by 

E{o} = No . Nc . Pm 

where No is the number of occasions an omitted character will be 

undetected. 

The expectation of the number of undetected additional 

characters, Efil, is given by 

E{i} = (Ni / Cs) . Nc . Pm 
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where Ni is the number of occasions an additional character.. 

The total number of possible errors is determined by; 

No. possible omissi6ns = Npo = Nc 

No. possible alterations = Npa z Nc . Cs-1 

No. possible insertions = Npi = (Nc + 1) . Cs 

= Nc . Cs + Cs 

giving 

Max. possible errors = Npe = Npo + Npa + Npi 

=2 (Nc . Cs) + Cs 

since No. Na. Ni and Npe will vary with the size of the program the 

normalised ratio between these is given by the ratio 

F= (Na + No + Ni) . Pm 
Npe 

which is called the Fallibility Index of a program and expresses some 

measure of the extent that undetected errors are possible. Since 

all errors contain a risk and the risk increases in relation to the 

number of errors, the Fallibility Index indicates the scope for 

undetected errors and gives some indication to the risk. As the 

scope for errors remaining undetected increases so does the 

probability that there will be at least one error which has the 

characteristics of creating a catastrophe. 

4.2.2 Example Programs 

The hypothesis above can be demonstrated by analysis of two 

simple programs. First, the Pascal-like program used earlier with 

line numbers added for clarity of discussion; 

I PROGRAM NAME (FILE); 
2 VAR XY. XZ; REAL; 
3 BEGIN 
4 XY: =2; 
5 XZ: =3; 
6 END. 

Although the program header "PROGRAM NAME(FILE): " is required in 

some languages it is not included in these calculations since it only 
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adds to the length of the program without constraining it in any way 

and FILE is only used by the compiler to signal the input/output 

requirements. I 

To determine the expectation of undetected altered errors, E{a), 

an examination shows that alteration of the keywords PROGRAM, VAR, 

REAL, BEGIN and END will be detected by the compiler. Similarly. if 

an alteration caused either of the declared variables to have the 

same identity the similarity would be detected. If the altered 

character caused the variable to have an identity different from 

those in lines 4&5, then the error would be detected. There are 

only 4 instances where an alteration would remain undetected; 

- P(Y=>Z) 

- P(2 => 0,1,3.. 9) 

- P(Z => Y) 

- P(3 => 0.. 2,4.. 9) 

from line 4 [alternates =1] 

[9] 

from line 5[1] 

[9] 

The number of undetected alternate characters, Na. is 20. 

Counting the number of characters ( including Newline as a 

terminating character but excluding leading Spaces and the program 

header as being unnecessary to the calculation) gives Nc = 41. The 

permissible character set Cs for the Pascal-like language is 96. So 

E(al can be calculated as 

E{a} = Na . Nc . Pm 
Cs-1 

which becomes 

E{a} = 8.6 . Pm 

To calculate Ejol. the expectation of undetected omissions, the 

program is analysed for instances where an omitted character would be 

undetected by the compiler. In the example program the only 

instance where an omission would be undetected is in the program 

header which has been omitted. So 

E{o} =0 and No =0 
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The expectation of undetected additions, Eli), requires the 

analysis of the program to determine the instances where an 

additional character could be inserted and undetected. The integer 

assignments could have additional characters before (+, -,., 0.. 91 or 

after (., 0.. 9) and be undetected. Since the piýogram header is being 

ignored Ni a 46, Eli) can now be calculated as 

E{i} = Ni . Nc . Pm 
Cs 

= 20.5 . Pm 

The sum of E(al, E(o) and EW is the expectation of the number 

of undetected errors and for the example program 

E(No. undetected errorsj = E{u) z E(al + Efol + E{ij 

= 29.1 . Pm 

No. possible errors = Npe = 2(Nc . Cs) t Cs 

= 7968 

giving a Fallibility Index of 

F= (Na + No + Ni) . Pm 
Npe 

0.0085 . Pm 

As a comparison an equivalent FORTRAN-like program is analysed 

in the same way. The program is 

XY: 2 
XZ=3 
END 

In the Fortran-like example Nc = 14 and Cs = 48. 

There are 6 possibilities for an undetected alteration; 

P(X * A.. W, Y, Z) E 25 alternates 

P(Y 0 A.. X, Z#O.. g) C 35 1 

P(2 => 0.1,3.. g, A.. Z) 35 

P(X * A.. W, Y, Z) 25 

- PIZ => A.. Y, O.. 9) [ 35 ] 

- P(3 0 0.. 2.4.. 9, A.. Z) [ 35 1 
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thus Na = 190 and E{a} becomes 

E{a} = Na . Nc . Pm 
Cs-1 

= 56.6 . Pm 

There are 4 possibilities of undetected omissions: X or Y in the 

case of XY and X or Z in the case of XZ being omitted individually, 

No = 4. So E{o} is given by 

E{o} = No . Nc . Pm 

=4.14 . Pm = 56 . Pm 

Additional characters can be introduced, without being detected 

as errors. The notation used to demonstrate these instances uses 

the symbol '=>* to indicate "may be perturbed to" and the symbol 'I' 

to read "a character or set of characters preceeding a character or 

set of characters% In the example program the instances are: 

- PIX => A.. ZIX) 26 additions 

- P(X => XIA.. Z. O.. 9) C 36 1 

- P(y Z> YIA.. Z. O.. 9) [ 36 1 

- P(2 => .. +. -, O.. 9. A.. ZI2) C 39 1 

- P(2 => 210.. 9.. ) c 11 1 

- P(x => A.. ZIX) C 26 1 

- P(X => XIA.. Z. O.. 9) [ 36 

- P(z --> ZIA.. Z. O.. 9) [ 36 

- P(3 => .. +, -. O.. 9. A.. ZI3) [ 39 1 

- P(3 => 310.. 9.. ) c 11 1 

Thus Ni = 296 and E{i} becomes 

Eli) = Ni . Nc. Pm 
Cs 

= 86.3 . Pm 

The expectation of the number of undetected errors is 

E{u} = E{a} + E{o} + E{i} 

= 198.9 . Pm 
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The number of possible errors, Npe, is given as 

Npe = 2(14 , 48) + 48 = 1392 

Thus the Fallibility Index is 

F= 490 Pm = 0.352 . Pm 
1392 

If Pm is assumed to be equi-probable for both the Pascal-like 
10 

language and Fortran-like language then a comparison can be made 

between the two trivial programs analysed. In the Pascal-like 

program the Fallibility Index was 0.851 whereas in the Fortran-like 

program the Fallibility Index was 35.21 suggesting that in the simple 

examples the Pascal-like program can be considered to be less 

fallible and having a lower risk of error. 

The mandatory use of the declaration of variables has at least 

one disadvantage; that declarations can be mistaken for other similar 

but unique identifiers because of a single character error within the 

body of the program. These errors can result from the omission, 

insertion or deletion of a single character. Perturbations to the 

program resulting from single character errors are an indication of 

the scope for undetected errors existing in software which, when in 

use, could be in control of potentially hazardous equipment. 

A realistic program taken from Jensen and Wirth, [51 p. 38. 

written in Pascal. FORTRAN and BASIC will now analyse. To 

illustrate the analysis each program has 4 columns; number of 

characters on the line, number of undetectable alternate characters 

Na. number of undetectable character omissions No and the number of 

undetectable character additions Ni. 
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4.2.3 Pascal Version 

The program has been compiled using UCSD PASCAL. 

Nc Na No Ni 
PROGRAM graph2 (output)-, 

16 CONST d=0.0625; 45 6 72 
6 s=32; 18 2 35 
7 hIa34; 18 2 35 
7 h2=68 -, 18 2 35 

11 c: 6.28318; 54 7 82 
8 lim=32; 18 2 35 

21 VAR i, j, k, n: INTEGER; 0 0 0 
10 x, y: REAL; 0 0 0 
24 a: ARRAYEI.. h2l OF CHAR; 10 1 0 

6 BEGIN 0 0 0 
29 FOR j: zl TO h2 DO aEjl: z' 94 1 153 
19 FOR i: =O TO lim DO 17 0 le 

6 BEGIN 0 0 0 
8 x: =d*i; 45 0 0 

23 Y: =EXPI-x) * SIN(c*x); 68 1 is 
12 a[hll: =': *; 74 1 128 
20 n: =ROUND(s*y) + hl; 68 1 0 
11 a[nl: ='*'; 77 0 128 
21 IF n( hl THEN k: zhl 47 2 2 
11 ELSE k: =n; 13 0 0 
30 FOR j: zl TO k DO WRITE(a[jl); 34 0 25 

9 WRITELN; 0 0 0 
10 a[nl: --' 77 0 0 
4 END 0 0 0 
5 END. 0 0 0 

Nc = 334 Cs = 64 Na = 795 No = 28 Ni = 767 

Substituting, the Expectation of an undetected error for this 

version is: 

E(a) = Na Nc . Pm 
CS-1 

= 4215 . Pm 

E{ol x No Nc . Pm 

= 9352 . Pm 

E{i) = Ni . Nc . Pm 
Cs 

= 4003 Pm 

Efu) = Val E(a) + Efi) 

= 17570 Pm 

Npe = 2(Nc Cs) + CS 

= 42816 
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giving a Fallibility Index of 

F= (Na + No + Ni) . Pm 
Npe 

1590 . Pm = 0.037 = 3.71 
42816 

4.2. 4 BAS IC Version 

This program has been prepared usin g Microsoft BASIC-80. 
.I 

Nc Na No Ni 
11 10 DIM A$[681 43 0 30 
14 20 FOR J=l TO 68 79 2 113 
is 30 A$CJI=CHRS(32) 81 2 94 

7 40 NEXT J a 1 0 
14 50 FOR I=O TO 32 79 2 113 
10 60 X=I*. 0625 124 6 229 
25 70 Y=EXP(-X)*SIN(6.28318*X) 191 8 336 
16 80 AS[34]: CHRS(58) 93 4 63 
11 90 NX=32*Y+34 157 6 243 
16 100 A$ENXI=CHR$(42) 76 3 94 
29 110 IF NX<34 THEN K=34 ELSE K=N1 200 6 369 
13 120 FOR J=l TO K 70 0 ill 
13 130 PRINT AS[J]; 38 1 98 

7 140 NEXT J 0 1 0 
6 150 PRINT 0 0 2 

16 160 A$CNj1=CHR$(32) 76 3 94 
7 170 NEXT 1 0 1 0 
4 180 END 0 a 0 

Nc = 234 Cs = 68 Na = 1307 No = 46 Ni 1989 

E{a} = Na N c. Pm 
CS-1 

= 4565 . PM 

Efo) = No . Nc . Pm 

= 10764 . Pm 

Eli) = Ni . Nc . Pm 
Cs 

= 6845 . Pm 

Therefore 

E(ul = E(a) + E(o )+ EW 

= 22174 Pm 

Npe = 2(Nc Cs) + Cs 

= 31892 

giving aF allibility Index of 
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Fz (Na + No + Ni) . Pm 
Npe 

3342ý. Pm z 0.105 
31892 

4.2.5 FORTRAN Version 

This program has been tested usi ng the Mic rosoft Fortran-80. 

Nc Na No Ni 
PROGRAM GRAPH2 10 

14 LOGICAL M(68) 18 2 0 
10 DOIJ=1.68 76 3 92 
11 1 M(J)--* , 62 1 156 
10 D021=0.32 75 3 89 
11 X=I*0.0625 106 6 194 
25 Y=EXP(-X)*SIN(6. 28318*X) 165 8 302 
10 M(34)=*: ' 71 3 120 
10 N=32*Y+34 160 5 216 

9 M(N)=**' 62 1 156 
16 IF(N. LT. 34)K=34 150 4 216 
15 IF(N. GE. 34)K=N 142 3 232 
12 WRITE(1,3)M 36 1 0 
19 3 FORMAMH . 68Al) 78 5 30 
11 2 M(N)--* 62 1 156 

4 END 0 0 0 

Nc 187 Cs 48 Na = 1263 No = 46 Ni 1959 

Eta) = Na Nc . Pm 
CS-1 

= 5025 . Pm 

Efol = No . Nc . Pm 

- 8602 . Pm 

Efil = Ni . Nc . Pm 
CS 

= 7632 . Pm 

Therefore 

E(u) = E(al + Efol + EM 

= 21259 Pm 

NPe = 2(Nc Cs) + Cs 

= 18000 
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giving a FallibilitY Index of 

F -- (Na + No + Ni) . Pm 
Npe 

0.182 = 18.2Z 

Although the language Fortran requires the first six characters 

of each line of a program to be spaces, continuation markers or 

labels, the analysis has only consildered the effect of an erroneous 

label because any additional labels will not introduce an error and 

also any label which is not numeric will be rejected by the compiler. 

4.2.6 Discussion 

An increase in the number of characters to write a program 

causes a corresponding improvement in the Fallibility Index (Figure 

4.2.6.1 and Graph 1). One possible reason for such an improvement 

is the increase in characters causing an increase in the useful 

redundancy. 

Figure 4.2.6.1. 

Language Nc FZ 

Fortran 187 18.2 
Basic 234 10.5 
Pascal 334 3.7 

The analysis of programs is tedious and time-consuming and can 

be eased if automatic analysis techniques are used to analyse 

programming languages that have a publicly available syntax. 

As part of the research a suite of programs was developed to 

analyse programs. Since the algorithm. used perturbed each character 

position in the program with each character from the allowable 

character set for each class of error the computer time needed was 

considerable. The analysis was performed using a DEC VAX 11/750 

computer with programs written in the language Pascal and C supported 

by the YACC and LEX tools of UNIX. An analysis typically took 30 

minutes of computer time to execute. Refinement of the algorithm 

used would, no doubt, cause the analysis to be executed with less 
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computer time but the current algorithm has established the principle 

that the analysis can be automated. 

10 
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4.3 The Need to Declare Variable and Constant Names 

High-level programming languages, like FORTRAN and BASIC, do not 

require the declaration of variabie and constant names at the 

beginning of a program. With the introduction of the so-called 

structured languages, like ALGOL and PASCAL, which require variable 

names to be declared there has been some discussion on the need for 

declaring variables and constants, how many characters should be used 

in a name and also how representative such names should be. 

Chapter 4.2 considered the influence that variables have on the 

resulting Fallibility Index. It is hypothesised that the 

declaration of variables based on the uniqueness of a name gives the 

variable security from misinterpretation and the number of instances 

of names is large before unique names contribute to the 

misunderstanding of the objects. 

4.3.1 Variables in Declarative Languages 

If no range checks are in force and no account is taken of 

omissions or additions in the symbol the probability of an error in 

the variable Pwv is 

Pwv =I. m. Pm . Nd 
N 

where I is the number of instances 

m is the number of characters forming the variable 

Nd is the number of permissible positions 

N is the size of the permissible character set 

To calculate the probability of an error in the symbol consider 

the occasion where the symbol is wrong (Ps) and the occasion when the 

symbol is correct but the value is wrong (I-Ps), giving the 

probability of using the wrong variable, Pwrong, as 

Pwrong = I. Ps + Ps + (i-Ps). m. Pm. Nd + ps(I-ps). m. Pm. Nd 
NT 
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putting the expression in terms of Ps. it becomes 

2Ps. m. Pm. Nd a I+l - m. Pm. Nd + m. Pm. Nd 

Ps -- N. 1+1 
2 Nd. Pm. m 

which suggests that declarations in the local context increase the 

redundancy, yet in practice highly secure programs are not infinitely 

10 
large. 

4.3.2 Constants in Declarative Languages 

Constant declarations are generally of the form 

C ..... C -- D ....... D 
In1m 

for numbers only the probability of using the wrong value Pwrong is 

given as 

Pwrong I. Pd 

for numbers and declarations, Pwrong I. Ps + Ps + Pd 

which optimises when 

I. Pd > I. Ps + Ps + Pd 

and Ps < Pd (1-1) - Pd 

n 
where Ps = S-1 / (Nc-1) . Pm . Nc 

N 

S No. Symbols 

Nc character set 

m no. of digits 

I no. of instances 

n no. of character 

positions 

and Pd =m. Pm . Nd 
N 

In terms of the number of instances, 1, the equation becomes 
n 

(S-1 / (Nc-1) Pm . Nc = m. Pm. Nd . I-1 
F7 1+1 
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n 
which reduces to (S-1 . NO (Nc-1) m. Nd. 1-1 

I+l 
n 

substituting A for Nc / (Nc-1) and B for m. Nd the expression 

becomes 

(S-1). A B 1-1 
1+1 

10 
1. (S-1). A + (S-II. A B. I 

I. ((S-1). A-B) -(S-1). A-B 

-(S-1 + B/Al 
(S-1 - B/A) 

So if Nc = 26 , Nd z 10 and m, n 8 

n8 
A= Nc / (Nc-1) 26 8 M. 10 B/A = (m. 10.25 

258 26 

when is I>2 

((S-1) + (B/A)) 
(B/A - (S-1)) 

giving B 
A 

2C - 2S -2=C+S-1 

C-I= 3S 

So the number of symbols at which the declaration of constants 

reduces the useful redundancy is given by 

S= (C-1) 
3 

n 
Substituting for Cm- Nd (Nc 

S Ný- 

The expression above demonstrates that the number of symbols is a 

controlling influence in the use of declarations. 

4.3.3 Errors in Variable and Constant Names 

Declaring variable names protects the program from randomly 

distributed errors in the naming of variables and constants, with the 

resulting misinterpretation of the object being referenced. 
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The stream of characters forming the variable or constant is 

regarded as a message having 

a) an equal probabilitylof error in each character 

position, p, and 

b) the errors in the character positions are independent. 

Since typing errors can be introduced in the preparation of the 

program, conditions a) and b) above apply. 

The probability of no errors in n-positions is given by 

n 
(1 - p) 

and the probability of a single error in the n-positions is given by 

n-1 
np(I - p) 

The probability of k errors is given by the k-th term in the binomial 

expansion: 

nn n-I 
P) + PI (I - P) + np(l - p) 

2 n-2 n 
pn(n - I)p (I - p) p 

2 

so the probability of exactly two errors, Pe2, is 

2 n-2 
Pe2 = n(n - 1)p (i - p) 

2 

4.3.4 Error-Protection of Variable and Constant Names 

Hamming, [41, defined the concept of the 'Hamming distance* of a 

message as being 'the number of digit positions by which two states 

differ from each other'. 

Hamming, [41, considers a message string of O's and 1's as a 

point-in a vector space of n-dimension where each digit is a value 

giving a co-ordinate in the space. Each vertex is a string of n O's 
n 

and n I's. The space will therefore consist of 2 vertices. 

Since each vertex is a received message a single error moves the 
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message pointer along one edge of the space to an adjacent point. 

Hamming speculates that if every originating message was required to 

be a 'distance' of at least two edges away from any other message 

then any single error will move the message pointer along only one 

edge and thus indicate that the received message is illegal. 

Assuming independent errors a minimum 'distance' of one 
11 

character in the name makes the name unique. Whilst a name with a 

minimum 'distance' of two allows single errors to be detected. 

The use of 'Hamming Distance' in variable and constant names 

suggests that each name varies from each other name by at least two 

characters then a single error would be detectable by the compiler 

when the name is referenced and would not transfer the context to 

another similar name. 

The use of two-character names does not provide a sufficiently 

rich choice of names. Whereas, names of greater than two characters 

provide a rich choice of names and gives protection against single 

character errors. 

From the argument presented the hypothesis is that variables and 

constants should be declared. However, when the number of symbols 

is extremely large the gross choice will add to the programmer's 

misunderstanding of the program. Since such a number of symbols is 

large it is concluded that the names of variables and constants 

should always be declared. 

A controlling influence in the declaration of variables is the 

number of symbols used to declare the identifier. Recognisable 

identifiers can normally be constructed using the 26 letters of the 

English alphabet and the numerals O. A. When each identifier 

consists of upto eight characters, then the number of non-repetitive 

permutations is P(36,8), which yields a large number of choices for 

the programmer so uniqueness is assured. 
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Since most languages allow the use of letters and numerals, each 

identifier in a program can vary from each other identifier by at 

least two characters and be protected against the effects of single 

typographical errors. 

Shneiderman, [111, found that a typical typing error-rate 

amounted to 6.175Z, or about 1 error in every 16 characters typed, 

suggesting that there is a 0.5 probability of an error in character 

streams of 16 characters or more, on initial input of the program. 

It follows that to limit the probability for error in a name, each 

name should be no longer than 15 characters and no less than two; the 

median value being eight characters which restricts the incidence of 

typing errors, provides a rich choice of uniqueness in the name 

whilst giving scope for a 'distance' of two. 

4.3.5 An Experiment on the Use of Mnemonics 

As part of the research for this thesis an experiment was 

conducted to examine the hypothesis that; 

*In recognising the significance of a variable name the 

probability of an error is lower when the number of characters used 

to represent the name is at least two and less than 16". 

The experiment was conducted at the 1983 Open University Summer 

Schools at the Universities of Warwick, Bath and York with 119 

students taking part distributed as 23.63 and 33 respectively. The 

participating students were volunteers mainly from the Technology 

Foundation Courses, though some volunteers came from a Second Level 

Technology Course. The experiment used a Superbrain OD 

microcomputer running a database package, dBase II. 

The experiment required each volunteer to suggest eight 

mnemonics in response to eight descriptive texts presented on the 

computer screen seperately. After the eight mnemonics had been 

input by the volunteer, the volunteer was asked to repeat the 
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mnemonics for the same eight descriptions which were presented in a 

different order. Finally, the eight mnemonics suggested originally 

by the volunteer were displayed sýperately to the volunteer who was 

asked to provide a description. A record was kept of each 

volunteer's name, venue, date, original mnemonic, second mnemonic and 

the description provided by the volunteer. 

To maintain independence of results the volunteers were only 

permitted to ask questions regarding the purpose of the experiment 

and were not told their accuracy. 

A correct answer was one where the description supplied by the 

volunteer conveyed the same information as the description supplied 

by the experimenter. Each volunteer took approximately 12 minutes 

to participate in the experiment. 

The descriptive texts supplied to the volunteer were; 

TIME OF DAY 

LIQUID FLOW IN LITRES/MINUTE 

WEIGHT OF PRODUCT IN TONNES 

VALVE 8 POSITION 

PERCENTAGE OF SULPHUR DIOXIDE IN THE ATMOSPHERE 

AMBIENT TEMPERATURE 

DISTANCE FROM THE VALVE CONTROLLER TO THE VALVE IN METRES 

MOTOR SPEED IN R. P. M. 

The database program is listed in Appendix 1 and the analysis is 

in Graph 2 and Table 2. 

Table 2 contains the analysis of correct answers, incorrect 

answers and all answers by mnemonic length and mnemonic number with 

the frequency of the type of answer. The responses to the 

experiment were analysed and it was found that 701 of all answers 

were correct. 

From the analysis the conclusion is that: 

145 



mnemonics of one character in length are prone to 

misinterpretation. All single character mnemonics were 

I found to be incorrectly interpretted. 

2. The mean character length for correct mnemonic usage was 7.88 

characters with a standard deviation of 3.83. 

3. The probability of a correct interpretation of a variable was 
10 

found to be greatest when seven characters were used, with a 

probability of 0.125. The probability of a correct 

interpretation fell significantly when more than seven 

characters were used. The probability of a correct 

interpretation of less than 0.01 was found for variables of 

15 characters or more. 

It is concluded that the hypothesis was proved with one 

observation; that the ordering of the construction of the mnemonic 

may place a context on it. The context of a mnemonic may not be 

apparent to everyone using it and an experiment could be conducted to 

examine the optimum construction of mnemonics in order to reduce the 

risk of misinterpretation. So that the context could be 

recognisable to all users, a system of significant character 

positions could be used. 
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4.4 A Measure of Syntactic Structure and Error-Proneness 
for Application Programs 

In an optimally encoded program there will be no information 
I 

beyond that necessary to encode the program but in all computer 

programs there is additional information. The additional 

information is redundant to the main body of the program but serves 

to establish the programs context. ' The redundant information is 

called useful redundancy. Decision Content, Information Content and 

Redundancy are all properties of Information which have been explored 

in the context of error detection in computer programs. The method 

of calculating these properties is discussed and simple examples 

given. Example programs are analysed to illustrate the usefulness 

of Information Theory as an indicator of the amount of information 

required to declare a program. 

Information Theory has its origin in the work of C. E. Shannon, 

[91, who published a paper in the Bell Systems Technical Journal 

concerning the communication of information through symbols. 

Information Theory can be used to indicate the amount of useful 

redundancy but from a safety aspect the concern is with the inverse 

of redundancy called Error-Proneness. 

4.4.1 Halstead's Software Science Metrics 
and McCabe's Cyclomatic Number 

Halstead's work on Software Science, [31, put the emphasis on 

quantitative measures of programs using a count of the number of 

operators and operands in the program. 

Halstead's work presents a set of metrics which are derived from 

a basic set of measures. These measures are 

n number of unique operators 
1 

n number of unique operands 
2 

N= total occurrences of operators 
1 

N= total occurrences of operands 
2 
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Halstead's Vocabulary metric is given as 

nn"n 
12 

and the Length metric by 

N=N+N 
12 

which is intuitively apparent. 
.4 

The Volume metric uses the Vocabulary and the Length metrics 

to estimate the size of a program and uses bits as its dimension 

assuming a uniform binary encoding. The metric is given as 

Volume, V= (N +N )Log (n +nN Log n 
1212 

The Volume will vary with the amount of coding required for the 

program but does not take any account of the frequency of occurrence 

of individual operators or operands. 

The estimated length of the program is given as 

n Log n+n Log n 
112 

The results of Halstead's work has found criticism, [101, principally 

because of the empirical foundation of the work. One problem with 

the work is that Halstead's measure of length remains constant 

regardless of the number of times individual operators or operands 

are used. Halstead's 'length' refers to the number of symbols being 

used and is not a measure of linear expansion. 

McCabe, (71, suggested a measure of complexity based on Euler's 

formula for planar graphs given as 

V(G) = edges(e) - nodes(n) * no. of connected components(p) 

McCabe suggested that each node was a branch point in a program and 

the edges were the lines of flow between branches. McCabe stated 

that in a strongly connected graph of a program control network the 

value of p will be 2 and so reducing the equation to 

V(G) =e-n+2 
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The measure can be considered as a count of the number of branch 

points plus one. McCabe reduces the vocabulary of the program to 

branch points (nodes) and terminals with linear code sequences 

forming links (edges) between each node. The method corresponds to 

a measure of the number of choices presented at each branch point. 

Each branch point being represented by Log 2 bits and one terminator 
10 

represented by Log 2 bits. McCabe's Complexity can be represented 

by nLog 2+Iz n+1 bits, where n is the number of branch points. 

There is similarity between Halstead and McCabe in the way that 

a programs' complexity is regarded as a number of mental 

discriminations and represented by sums involving the expression 

nLog 2. 

4.4.2 Information Theory 

Information Theory measures information relating to the number 

of symbols in a message and the richness of choice of those symbols. 

In programs the amount of coding required depends on the problem, the 

programmer and the language used. 

The symbols of a program are syntactic elements and the richness 

of choice depends on the syntax of the language being used, the 

constraints placed on the programmer through organisational 

standards. style or inexperience and the context in which the symbols 

are to be used within the program. Although McCabe, [71, and 

Halstead, [3]. did not explicitly invoke Information Theory their 

results have a form similar to results involving Information Theory. 

However, McCabes work whilst well founded refers only to control 

structures. Halstead's work, based on empirical measures, neglects a 

number of features of programs and has been criticised for this by 

Shen and colleagues, [10]. 

Decision Content of a message, is defined in E23, also called 

the Maximum Information, H, is a logarithmic measure of the total 
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vocabulary from which a statement is chosen, assuming each event has 

an equal probability of being chosen. 

Information Content of a message, defined in [2]. given by I. is 

a logarithmic measure of the actual amount of coding required to 

represent the choice. Since the syntax of the language restricts 

the choice of symbols in certain character positions, there are two 
10 

different measures. 

Once the Decision Content and Information Content have been 

calculated it is possible to determine the Relative Redundancy. 

Relative Redundancy is the measure of the amount of information 

available but not required to represent the program. Relative 

Redundancy, r, is given by 

r (H - I) IH 

and converted to a percentage. 

4.4.3 Calculation of Plexus and Error-Proneness 

When an object, whether it is a program, a calculation or 

whatever, is considered to be "complex* some assessment is made of 

what is commonly termed "complexity". In order to assess complexity 

account needs to be taken of two factors; the syntactic content and 

the semantic content, which combine in some way to give an individual 

view of complexity based on the individual's knowledge. If the 

object is a computer program then the syntactic content is a function 

of the language syntax whilst the semantic content is some function 

of the 'meaning' or function of the program. Though there are many 

expressions for software complexity none consider the semantics of 

the program and cannot, therefore, justifiably be called measures of 

complexity. 

For any measure to be useful it must be finite and not 

subjective. Since the measures of complexity use only the syntactic 

element of an individual's view of complexity then these measures are 
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subjective judgements. Information Theory can be used to measure 

the syntactic features of a program but cannot assess the semantic 

content. In order to express a ýeasurement of the syntactic element 

some term is needed, other than complexity. 

When developing a program the syntactic choice available to the 

programmer can be considered as being a multi-nodal network with each 
10 

node representing a choice. The network of nerves in the human body 

is greater than the network being discussed here for software, but 

the function of such a neural network is described by the term 

0 plexus'. A network such as the McCullock-Pitts neural network, 

where the primitive units are called neurons, was the network 

structure Von Neumann used to demonstrate that reliable machines can 

be built from unreliable components, [131. 

The term 'Plexus' has been used in this thesis to refer to a 

measure of the syntactic choice being made from a network of choices 

to express a program. 

A program written in a high-level language is constructed of two 

parts; the declarative part and the procedural part. The procedural 

part is influenced in its richness of choice by the syntax of the 

language. The declarative part of a program further restrains the 

vocabulary in addition to that. already existing in the syntax. Both 

Halstead and McCabe excluded the declarative part from their 

calculations. Any measure of the syntactic structure of the program 

is influenced by the declarations. In the research for this thesis 

it was concluded that where declarations exist they should be 

included in the calculations concerned with choice. 

The syntax of a simple language in the form of a BNF forma! lism 

is shown in Figure 4.4.3.1. 

151 



Figure 4.4.3.1 BNF Syntax for the Example Language 

(program> PROGRAM <declare> 
BEGIN <body> 
END 

<declare> <declare statement> I <declare> <declare statement> 

<declare statement> :: = VAR: (variable> 

<variable> :: = <letter> 
d 

<letter> :: = A.. Z 

(body> :: = <procedure> <body> <procedure) 

(procedure> :: = (print> <assign> I <add> 

<print> :: = PRINT: <variable> ; 

<add> :: = <variable> := Oariable> + <variable> 

(assign> (variable> <integer> ; 

<integer> knumeral> <numeral> <numeral> 

<numeral> O. A 

The diagrammatic style of presentation of a syntax was modified 

by Jensen & Wirth, [51, in the syntax description of the language 

Pascal. The procedure part of the BNF syntax can be drawn as a 

syntax diagram and expanded, after [51, as shown in Figure 4.4.3.2. 

Figure 4.4.3.2 Syntax Diagram for the Example Language 

PRINT: - variable 

variable - variable +- variable 

variable - integer 

The amount of choice available in the selection of a message 

from a restricted range of allowable variables is 26, (a.. z), giving 

a set of symbols of 26. Integers are selected from a range of 0 to 

the maximum integer permissible for the implementation (MAXINT). 

Taking these restrictions into account the syntax diagram in Figure 

4.4.3.2 can be mapped onto Figure 4.4.3.3 to reflect the range of 

choice available. 
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Figure 4.4.3.3 Revised Syntax Diagram for the Example Language 

var 26 
PRINT: -[ 

var 1 

- var var 26 
var 1: = 

var var I 

var 26 var 26 

var 26: = -1 
var var 

int. 
var 1: 

0 

int. 
var 26: -E*o 

- 
Measures based on the diagram, Figure 4.4.3.3, reflect 

properties of the language and not a particular program as there is 

nothing in the diagram to illustrate the structure of a particular 

program. 

A particular instance of a program represents an ordered 

selection of items from the syntax diagram. An example of such a 

program (Program 1) written in the language is 

PROGRAM 
VAR: x; 
VAR: y; 
BEGIN 

x: =2; 
Y: =95; 
X: zx+y; 
PRINT: x; 

END 

If the syntax diagram of Figure 4.4.3.3 is redrawn to reflect 

only the syntactic items used in the sample program, the syntax 

reduces to the diagram shown in Figure 4.4.3.4. 
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Figure 4.4.3.4 Syntactic Items of Sample Program 

II PRINT: - 

-2 

y: = - 95 

-x-+-y 

END 

The declarations are considereb in a similar way with a seperate 

syntax diagram being required. In the language being used the 

options available within the syntax for declarations can be 

represented diagrammatically, Figure 4.4.3.5. 

Figure 4.4.3.5 Syntax Diagram of the Declarations 

a 

PROGRAM -- VAR: BEGIN 

z 

Keywords are syntactic necessities to the language and because 

of their certainty can be considered to have a probability of 

occurrence of one. Whilst keywords contribute to the Decision 

Content and Relative Redundancy they contribute nothing to the 

Plexus. Therefore when the diagram is redrawn to take account of 

the declarations used in the program it becomes that shown in Figure 

4.4.3.6. 

Figure 4.4.3.6 Revised Syntax Diagram of the Declarations 

VAR: x; 

VAR: y 

4.4.4 Method 

Program 1 can be regarded as a message transmitted as a stream 

of symbols to the compiler (or to a person reading it), where a 

symbol is one or more characters in a defined syntactic group. 

There is a probability of occurrence associated with each individual 
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symbol and each symbol pair. Each symbol is assigned an information 

value according to the choice available and the constraints of the 

syntax. The method used concerns the syntactic structure and takes 

no account of the intended computation of the program, that is to say 

its semantic context. 

once a statement type is encountered in the message there are 

only three possibilities within the syntax of Figure 4.4.3.2; PRINT, 

assignment or addition. The positioning of the character P 

immediately identifies that a PRINT statement is to occur and the 

characters 'RINT' add no more information. Therefore the group of 

characters 'PRINT' can be treated as a single symbol. Similar to 

the keyword PRINT, the pair of characters ': =' and the group of 

characters forming the ordered set ': = ....... are considered to be 

single symbols forming a set of three statement types. From an 

information viewpoint Plexus represents the choice available. 

The numbers 2 and 95 might be viewed as three numerals and a 

probability of 1/3 could be equally assigned to the numerals 2,9 and 

5 suggesting that 2 has a probability of 1/3 and that 95 has a 

probability of 1/3 * 1/3. The syntax diagram of Figure 4.4.4.1 is 

implied and allows for numbers other than 2 and 95. The choice is 

wider than the program allows. 

Another view is that if 2 is chosen there are no further options 

and if 9 is chosen the only option is S. Since there are only two 

options the probability of occurrence that can be assigned to the 

value 2 and 95 is 1/2., Figure 4.4.4.2. 

I 
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Figure 4.4.4.1 A Method of Assigning a Probability 
of Occurrence to Three Numbers 

S 

5. 

2 

9 

5 

Figure 4.4.4.2 Another Method of Assigning a Probability 
of Occurrence to Three Numbers 

---E-9 , --5: 1- 
There are many ways of viewing how the numbers can be 

represented and also any collection of syntactic elements. The 

selection is dependant on the view of what constitutes a syntactic 

entity. Ultimately the selection is a subjective judgement. 

However the syntax descriptions of languages are based on the 

designers views of syntactic entities and these form a basis for 

analysis. 

In Program I the PROGRAM statement has a probability of one. 

PROGRAM is followed by the declarative part of the program. In the 

declarative part the choice exists between a VAR declaration of a 

variable and a BEGIN statement which punctuates the recursive 

declarations and signals the start of the procedural part. In the 

language only single letter variables. in the range a.. z, are 

allowed. Therefore as each variable is declared the remaining 

choice is reduced by one. 

From the program the following probability of each symbol being 

used on a line can be determined: 

for declarations 

P(VAR: ) z 1/2 
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P(BEGIN) z 1/2 

P(x) = 1/26 

P(Y), = 1/25 

for statements, assuming all statements are equally probable 

P(PRINT) = P(assignment) = P(addition) = 1/3 

for variables 
10 

P(x) = 6/9 P(Y) = 3/9 

for values 

P(2) = P(95) = 1/2 

The probable occurrence of each line of the program is given by 

P(PROGRAM) =1 

P(VAR: x) = 1/2 * 1/26 

P(VAR: y) = 1/2 * 1/25 

P(BEGIN) = 1/2 

P(x: =2) = 1/4 * 4/6 * 1/2 

P(Y: =95) 2 1/4 * 3/6 * 1/2 

P(X: 2x+y) z 1/4 * 4/6 * 4/6 * 2/6 

P(PRINT: x) = 1/4 * 4/6 

P(END) = 1/4 

Since PROGRAM has a probability of unity it conveys no 

information and is omitted from the calculations. Each line of code 

has an Information Content expressed by the term 

Log P 
i 

assuming equal probabilities of occurrence of each statement type. 

Since the program is influenced by the number of changes that can be 

made a measure is required of the number of possibilities for change 

to be made to the program. If there was only one way to declare a 

program then the number of possible changes would be low but as the 

number of alternatives increases so does the number of possible 

changes. Therefore, the number of different ways that a program can 
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be declared must be reflected in some measure. Information Content 

measures a program's potential perturbations and in this context the 

principals of Information Content are regarded as the measure of 

Plexus. Plexus is given by P, so 

for VAR: x; P= Log 2 + Log 26 

for VAR: y; p= Log 2 + Ldg 25 

for BEGIN P= Log 2 

for x:: 2; p= Log 4 + Log (6/4) + Log 2 

for Y: =95; p= Log 4 + Log (G/2) + Log 2 

for X: zx+y; P = Log 4 + 2Log (6/4) + Log (6/2) 

for PRINT: x; p= Log 4 + Log (6/4) 

for END P= Log 4 

The Plexus of Program I is given by the sum of the individual 

expressions as 

P= 5Log 2+ 5Log 4+ Log 26 + Log 25 

+ 4LOg (6/4) + 2Log (6/2) 

= 29.8 bits 

Decision Content, from 4.4.2, is given by 

H= NLog Cs 

= 53Log 40 

= 282.1 bits 

where N -- no. of characters required to express the procedure 

part 

Cs = the size of the available character set 

giving a Relative Redundancy for the whole program of 

r= 89.4Z. 

The amount of information contained in the program and which is 

not required for optimal encoding is given as the Relative 

Redundancy. The scope that exists within the program for errors to 

be introduced is given as the Error-proneness, E. and is the inverse 
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of relative redundancy. 

the probability that the 

E 

Applying Halstead's 

Program 1 the following 

n3n=4 
2 

The lower the error-proneness, the lower 

program can be perturbed without detection. 

1001 -r 

10.6Z 

Estimatý*d Length and Volume metrics to 

measures are arrived at 

N5N=8 
2 

V= 36.49 bits 

N4 a 12.75 

As another example. the program can be linearly expanded to give 

Program 2 

PROGRAM 
VAR: x; 
VAR: y-, 
BEGIN 

x: =2; 
y: =95*, 
X: zx+y; 
X: zx*y; 
PRINT: x 

END 

using the method discussed above the values for Program 2 become 

H= 313.3 bits 

P= 34.54 bits 

r 88.98Z 

E 11.02Z 

Halstead's measures for Program 2 are 

n3n=4N=7N= 11 
212 

so the Volume is 

and the Estimated Length 

50.58 

0= 12.75 

Linear expansion of Program I and Program 2 has been included in 
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I Appendix 2 along with comparison measures of Length, Volume. Decision 

Content, Plexus and Error-proneness. The measures have been plotted 

graphically and these are containeý in Graph 3 to Graph 5. 

In the method described the recursive declarations are 

punctuated by a BEGIN. The declarative part comprises two elements; 

the declaration statement and the variable used. The Plexus of the 

declarative part includes the number of permissible declaration 

statements from which a choice is made Nsd, the number of 

declarations used, D, plus the BEGIN statement and the amount of 

choice represented by each variable declared. 

Assuming equiprobable choice, the Plexus of the declaration 

statements is the product of the number of statements used, D, and 

the Plexus of each statement, Log Nsd. The Plexus of the variables 

declared is the sum of the Plexus of a reducing set of available and 

undeclared variables, Vs - i. 

The Plexus of the statements and the variables is summed to give 

the expression 

(b- I) 
D. Log Nsd +fb Log (Vs-i) 

i=O 

where D= number of declarative statements used (including BEGIN) 

Nsd = number of choices of declarative statements 

Vs = number of possible variables 

b= number of variables declared 

The procedure part comprises control statements, variables and 

values. The Plexus of the procedural part takes account of the 

number of lines of control statements and the number of permissible 

control statements from which a choice is made. The frequency of 

occurrence of variables and values is summed giving the expression 

bd 
Sc. Log Nsc +E Fvi Log (Nv/Fvi) +4 Fdi Log (Nd/Fdi) 

i=l 1=1 
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where Sc = number of control statements used (lines of code) 

Nsc = number of types of control statements 

Fvi = number of occurrences of variable (i) within the 
procedure part 

Nv = number of occurrences of all variables in the procedure 
part 

Fdi = number of occurrences of value i within the procedure part 

Nd = number of occurrences of all values in the procedure part 

d= number of values 

The Plexus of the whole program can be considered as being the 

sum of the plexus of the declarative part and the procedural part, 

given as 

(b-1 )b 
P=D. Log Nsd +jb Log (Vs-i) + Sc. Log Nsc +f Fvi Log (Nv/Fvi) 

imo iml 

d 
Fdi Log (Nd/Fdi) 

izl 

Conventional programming languages, unlike the example language 

used so far, include relational operators and allow the use of 

external routines called procedures and functions. Procedures and 

functions are one type of external call which are implicitly declared 

and handled in the same way as any other declaration, that is to say 

by considering their frequency of occurrence. 

Considering the frequency of external calls, pc, and relational 

operators, op, in the same way as values adds the term 

pq 
Fpci Log (Np/Fpci) + J'Fopi Log (Nap/Fopi) 

i=l i=l 

where Fpc = number of occurrences of external calls (i) within the 
procedure part 

Np = number of all external calls in the procedure part 

Fop = number of occurrences of relational operator (i) in 
the procedure part 

Nap = number of all relational operators used 
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number of individual external calls 

q= number of individual relational operators 

The expression for the Plexus'of the whole program is the sum of 

each of the terms combines to give the expression 

(b-1 )b 
P=D. Log Nsd +rb Log (Vs-i) + SC. Log Nsc +r Fvi Log (Nv/Fvi) 

i=O icl 

dpq 
Fdi Log (Nd/Fdi) +I Fpci Log (NP/Fpci) +f Fopi Log (Nop/Fopi) 

i=1 i--l icl 

The term for variables, values, external calls and relational 

operators is the same so the expression can be simplified to 

(b-1 ) 
PaD. Log Nsd +b Log (Vs-i) + Sc. Log Nsc 

i=O 

mn 
I Fi. j Log (Ni/Fvi, j) 

i=l j=l 

where i= symbol type: variable, digit, procedure and relational 
operator 

j= symbol 

i. j = symbol (j) of type (i) 

By using the above equation on sample programs written in trivial 

languages the method can be examined further. 

Language 1. 

The first simple program has been written in a Pascal-like 

language; 

PROCEDURE product (x: REAL, y: REAL) 
VAR i: INTEGER; 
BEGIN 

FOR i=I TO 5 DO 
BEGIN 

x: =x*y; 
END 

END. 

Various measures can be calculated using the expressions 

developed. Figures for Decision Content, Plexus, Relative 

Redundancy and Error-proneness for the whole program are; 
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H= 8BLog 64 = 528 
t 

p= 41.8 
t 

r=0.934 92.1Z 
t 

E=7.9Z 
t 

The actual calculations are giver7 in Table 3. 

Language 2. 

The second program is written in a FORTRAN-like language. 

SUBROUTINE (X, Y) 
DO 20 1a1,5 
20 X=X*Y 
RETURN 

and for the whole program the measures are 

H= 43Log 64 = 258 
t 

p= 38.0 
t 

r=0.853 = 85.3Z 
t 

E= 14.7X 
t 

These trivial examples show that whilst Language I has a Plexus 

of 41.8 and an Error-Proneness of 7.9Z, Language 2 has a Plexus of 

38.0 and an Error-Proneness of 14.71. These measures are absolute 

for each language and comparisons are not easily made between 

languages. 

Having seen the method applied to simple programs written in 

trivial languages the method can be applied to non-trivial languages, 

like Pascal, Basic and Fortran, using example programs. 
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4.4.6 Example Programs 

Pascal Version 

I The program has been compiled using UCSD PASCAL. The program 

and syntax rules have been taken from Jensen & Wirth, [5]. 

PROGRAM graph2 (output); 
CONST d=0.0625; 

s=32; 
hl=34; 
h2=GB-, 

czG. 28318; 
lim=32; 

VAR i, j, k, n: INTEGER; 
x, y: REAL; 
a: ARRAY[l.. h2l OF CHAR; 

BEGIN 
FOR j: =l TO h2 DO a[jl: z' 
FOR i: =O TO lim DO 
BEGIN 

x: zd*i; 
Y: =EXP(-x) * SIN(c*x); 
a[hll: =': '; 
n: =ROUND(s*y) + hl; 
aCnl: --'*'; 
IF n< hl THEN k: chl 

ELSE k: zn; 
FOR j: zl TO k DO WRITE(a[jl); 
WRITELN; 
a[nl: =' 

END 
END. 

Using the expression developed and the data contained in Table 3 the 

Plexus for the wh. ole program is calculated as 

H= 312Log 96 = 2054.5 
t 

P= 483.0 
t 

r=0.769 z 76.5Z 
t 

E=0.235 = 23.5Z 
t 

If the measures are to be used for comparison with similar 

programs written in languages not requiring declarations, then the 

calculations should omit the declaration part. The figures for the 

program become 

H= l6lLog 96 = 1060.2 
t 

p= 248.2 
t 
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r=0.766 = 76.6Z 
t 

E=0.234 = 23.4Z 
t 

BASIC Version 

A program written as a BASIC equivalent of the Pascal program 

used, using Microsoft BASIC-80, could be 

10 DIM AS[G83 
20 FOR J=1 TO G8 
30 A$[J]=CHRS(32) 
40 NEXT J 
50 FOR I=O TO 32 
60 X=I*. 0625 
70 Y=EXP(-X)*SIN(6.28318*X) 
80 A$[34]=CHRS(58) 
90 NZ=32*Y+34 

100 A$ENXI: CHR$(42) 
110 IF NZ<34 THEN K=34 ELSE K=NZ 
120 FOR J=l TO K 
130 PRINT ASCJI; 
140 NEXT J 
150 PRINT 
160 A$ENXI: CHR$(32) 
170 NEXT I 
180 END 

for the whole program 

H= 21SLog 68 = 1314.9 
t 

p= 283.7 
t 

r=0.784 = 78.41 
t 

E=0.216 = 21.6Z 
t 

If the declaration part is not included in the calculations the 

figures become 

H= 20BLog 68 = 1254.0 
t 

p= 248.9 
t 

r=0.802 = 80.21 
t 

Ez0.198 = 19.8Z 
t 
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FORTRAN Version 

The following program is a FORTRAN version of the Pascal program 

and has been prepared using Microsoft FORTRAN-80. 

PROGRAM GRAPH2 
LOGICAL M168) 
D01J=1.68 

I M(J)X' I 
D021=0.32 
X=I*0.0625 
Y=EXP(-X)*SIN(6.28318*X) 
M(34)=*: ' 
N=32*Y+34 
M(N)=**' 
IF(N. LT. 34)K=34 
IF(N. GE. 34)K=N 
WRITE(1,3)M 

3 FORMAMH 68Al) 
2 M(N)=' 

END 

for the whole program 

H= l8lLog 68 = 1101.8 
t 

P= 304.1 
t 

r=0.724 = 72.4% 
t 

E=0.276 = 27.6Z 
t 

and omitting the declarations 

H= 15BLog 68 = 949.6 
t 

P= 269.3 
t 

r=0.716 = 71.6Z 
t 

E=0.284 = 28.4% 
t 

It was stated earlier that the metric, Plexus, cannot be used to 

compare programs written in different languages unless a measurement 

is available to take account of the richness of vocabulary within the 

languages. However, a meaningful comparison can be made if the 

declarative part is omitted from the Plexus equation. 
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4.4.7 System Plexus 

Having addressed the problem of measuring the Plexus of single 

programs the expression for the Plexus of two or more programs 

coupled together in some way, whose individual Plexus is known, can 

be addressed. Assuming that eacb module will be activated through 

some kind of operating system, then any communication between the 

modules is equally probable. Therefore the effects of uni- 

directional communications between modules is ignored. 

As an example of how the Plexus of two modules can be combined 

to give the System Plexus, take two modules, A and B, whose Plexus is 

known. 

The combining rule for two measures of information relating to 

two equally probable entities m and n, is 

- Log (m + n) 

and the combined value for A and 8 is 

- Log (A + 8) 

however. A and B are logarithmic values so the expression for System 

Plexus, Ps, becomes 
8A 

Ps Log (2 +2 

A-B 
B- Log (I +2 

As an approximation the Log series is expanded to 

23 
In (I + x) =x-x+x 

T7 
for logarithms of base 2 the expression is 

Log (1 +x) zln(l+x) 
ln 2 

A-B 
2 
In 2 
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sustituting, an aproximation is 
A-B 

System Plexus, Ps B-2 
ln 2 

Assuming module A has a Plexus of and module B has a Plexus of 

3. then the actual value of the System Plexus, Ps, is 

BA 
Ps Log (2 +23.32 

and as an approximation, ^Ps, is 

-2 
"Ps 3-23.36 

ln 2 

Combining th'ree modules A. 8 and C whose Plexus figures are 

individually given as 1,3 and 5 respectively, then the System 

Plexus, Ps, is 

cBA 
Ps Log (2 +2+2 

Log (35) 

5.13 

The general rule for combining two or more modules into a system 

when the individual Plexus is known can be expressed as; 

np 
Ps = Log 12 

P=j 

where Ps is the System Plexus 

p is the individual module Plexus 

n is the number of modules being combined. 

4.4.8 Discussion 

The concern in this section of Chapter 4 has been the amount of 

information required to prepare a program and developing a method of 

measuring syntactic complexity, called Plexus. If the Plexus for 

each of the example programs is compared, omitting declarations to 

allow comparison, with the Fallibility Index from Chapter 4.2 and the 

number of characters in the program, it can be shown that as the 

number of characters increases so the Plexus and Fallibility Index 
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decreases, Figure 4.4.6.1. A comparison of the values derived from 

the proposed metric, Plexus, and those of Halstead for the same 
I 

programs is contained in the Graphs 6 to 9. 

Figure 4.4.6.1 Comparison of Fallibility Index and Plexus 

Language Nc Fallibility Plexus 
Index (1) 

FORTRAN 187 18.5 304.1 

(omitting the declarations) 

174 19.4 269.3 

BASIC 234 10.5 283.7 

(omitting the declarations) 

197 12.2 248.9 

PASCAL 334 3.7 483.0 

(omitting the declarations) 

233 3.7 248.2 
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CHAPTER 5 

A Method of Conducting a Safety Audit on Software 

The assessment of the level of risk resulting from the use of 

software as a control element has been advanced in previous Chapters. 

The possibility of introducing errors at each stage of the 

development of the software has been discussed along with a basis for 

measuring the possibility for such errors. 

As part of the research for this thesis a commercially available 

product was examined and the methods and measures discussed earlier 

in this thesis were applied in an attempt to determine the 

applicability of such techniques. 

Based on the research for this thesis, this Chapter presents an 

argument for using a set of procedures called Software Safety Audits 

to assess the software used in industrial-based control systems. 

Such a Software Safety Audit would normally be conducted against a 

set of criteria considered to be acceptable by the designer and by 

the User but presently there is no standard criteria, so the 

assessment undertaken has to stand alone. The Chapter discusses 

certain aspects of the Software Safety Audit carried out on the 

product examined. 

The analysis of the product can only be discussed briefly as the 

commercial confidence of the company, and of the product, must be 

maintained. 
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5.1 The Software Safety Audit 

There is a probability of errors being created at each stage of 

the software development cycle. It is not practicable to remove all 

these errors from the software before the software is considered by 

the designer to be ready for operational use in a safety-related 

process or product. Since all software will have errors remaining 

after the testing stages have been completed then there needs to be 

some form of final check aiming to identify any unsafe aspects of the 

software. Such a set of checks on the software is called a Software 

Safety Audit. 

The purpose of a Software Safety Audit is to give some measure 

of the operational safety when using the software and to make some 

subjective judgement whether the software is, or can be made, 

operationally safe, given the safety criteria being used. If the 

software is not, or cannot be made. operationally safe then the 

software should not be used until the software has been modified to 

meet the criteria or the User is prepared to acknowledge and accept 

the features identified as being unsafe. 

In assessing the operational safety of the software it must be 

remembered that the software is only one component of a total system 

which includes the software, the computer hardware, the plant and 

associated hardware and the Operating Personnel. Once an assessment 

has been made of the software then the software should be maintained 

at the same safe state to which it was assessed. 

There are three elements to analyse in the Software Safety 

Audit; the software, the system and the integrity of the system. 

The three elements form three levels of assessment in which the 

software element is the lowest level. 

A Software Safety Audit could be developed starting with the 

software, followed by the system and its integrity. The safety 
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assessment of the software element can be considered to assist the 

person conducting the audit of the whole system. However, the 

I 
assessment of the whole system assists the person conducting the 

audit of the software element and provides an insight into the 

functioning of the whole system. 

An approach to Software Safety Audit needs to consider the 

software and the whole system and once the Software Safety Audit has 

assessed the software to be safe a mechanism of ensuring the 

continued integrity of the system should follow. 

5.1.1 The Need and Form of a Software Safety Audit 

The Health and Safety at Work etc Act 1974, (21, Section 6 (1). 

states "It shall be the duty of any person who designs, manufactures, 

imports or supplies any article" to meet certain requirements towards 

safety and, specifically, towards the testing of the article. 

Section 7 of the Act requires *every employee while at work' to take 

due regard for health and safety of himself and of others. Section 

8 states "No person shall intentionally or recklessly interfere with 

or misuse anything provided in the interests of health, safety or 

welfare". The Act, therefore, makes all parties involved in the 

design, manufacture, installation and operation of safety-related 

equipment responsible for ensuring the health and safety of those 

affected by its operation. 

The aim of a Software Safety Audit is to give a measure of the 

operational safety involved in using the software in the system being 

audited and to assist in rendering as impotent any errors detected in 

the software or the system which might otherwise jeopardise safety. 

In accordance with Sections 6,7 and 8 of the Health and Safety at 

Work Act the interpretation is that a Software Safety Audit may be 

requested by 

-a manufacturer of a new product at the design stage or before 
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it is offered for sale 

- by the supplier of a product before it is supplied to the end- 

user 

- by an end-user who requires a Software Safety Audit to be 

carried out an each stage of the development of a contracted 

system or 

- by an end-user before the contracted system is permitted to 

become operational. 

Whoever requests the Software Safety Audit is called the 

Requesting Authority and those undertaking the Safety Audit are 

called the Auditors. 

The fact that an item of software and its system has been 

assessed for safety before becoming operational can afford the 

designer some measure of confidence in its use. If the designer has 

the knowledge that the software was ultimately found to be safe then 

the confidence will be high. When the designer has the knowledge 

that a number of iterations were necessary before a safe assessment 

was achieved then confidence in the software may be reduced. 

The user's knowledge of a Software Safety Audit will influence 

confidence in the software. When a Software Safety Audit is carried 

out on the software before it becomes operational then the user's 

confidence will be high even though a number of iterations may have 

been necessary before being assessed as safe. When a Software 

Safety Audit of the software is undertaken retrospectively after 

being operational, even though the software has been assessed to be 

safe, then the user's confidence in the software and its system will 

be less since the inference is that there is cause for concern by the 

manufacturer or supplier. The confidence of the designer and the 

user in the software is influenced by knowledge of the Software 

Safety Audit having been carried out and this knowledge may have 
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commercial consequences. Therefore, a Software Safety Audit ought 

to be conducted in confidence with the control of the knowledge of a 

Software Safety Audit being conducted and the use of the results of 

the Software Safety Audit resting in the hands of the Requesting 

Authority. If the Requesting Authority is a commercial concern then 

the information on the Software Safety Audit may be suppressed. 

Alternatively. if the Requesting Authority is not a commercial 

concern, for instance a Trade Union or a group representing the 

public-interest, then the information may be made public in order to 

cause some action to be taken, for example a public inquiry. 

The ordering of the assessment procedures used for the Software 

Safety Audit can be fixed by legislation, but the order should be 

changeable such that the assessment procedures can take account of 

research developments. 

On finding an error or inconsistency in the software or the 

system a change may be made. The change may alter some feature 

which had been checked previously. To retain credibility the 

Software Safety Audit should repeat the preceeding procedures. To 

do any other may lower the credibility of the Software Safety Audit 

in the view of the Requesting Authority. The number of instances 

where it is necessary to repeat a number of the earlier procedures 

can be minimised by the ordering of the Software Safety Audit. 

The ordering of the proced ures used in the assessment for this 

research was considered to give an increased probability of finding 

errors early in the assessment process and to reduce the number of 

revisions required as a result of finding errors. 

The structuring of the software has been shown to influence 

safety, so before any other assessment can be carried out the 

structuring of the software should be examined. 

The Software Safety Audit proposed in this Chapter starts with 
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an assessment of the structure of the software. Software Fault Tree 

Analysis and Software Event Tree Analysis methods are used later in 

the Audit to examine for particular failure conditions. Once the 

software has been assessed at the system level by means of Fault Tree 

Analysis and Event Tree Analysis, the software is assessed for the 

perturbation of variable and constant names, followed by a 

calculation of the Fallibility Index and the Plexus. The final 

activity of the Software Safety Audit would normally be to assign an 

Integrity Lack to each program. 'ýThis was not possible in the 

assessment for this thesis as only the listings were available for 

the assessment and not the actual programs. 

The ordering of the assessment procedures used in the Software 

Safety Audit for this thesis was: 

Software Structural Analysis 

Fault Tree Analysis 

Event Tree Analysis 

Perturbation of Variable Names 

Calculation of the Fallibility Index 

Calculation of the Plexus 
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5.2 An Example Software Safety Audit 

To demonstrate the method of conducting a Software Safety Audit 

a genuine industrial-based application needed to be tested rather 

than one artificially created for the purpose. It was considered 

necessary to approach a manufacturer or supplier of electronic 

products who was known to incorporate a computer with some 

application software into a commercially available product which was 

intended for use in a safety-related control application. 

There is a wide range of products on the market which can be 

shown to meet the criteria. A major manufacturer of medical 

electronic products was approached and it was agreed with the 

manufacturer that a particular product could be assessed provided 

that confidentiality was maintained at all times regarding the 

identity of the company, the product and the outcome of the 

assessment. 

For reasons of commercial confidence the manufacturer must 

remain anonymous in this thesis. So that a description can be given 

of the product assessed, the product will continue to be referred to 

simply as 'the product' meaning the commercial product and 'device' 

to mean particular components of the product. 

5.2.1 The Product 

The product is used extensively in the medical service. 

particularly where hospitalisation of the patient is necessary, for 

instance Intensive Care Units and Surgical Wards. Earlier versions 

of the product have been in use for many years in the United Kingdom 

and abroad employing hard-wired logic to monitor and control the 

products function. Due to market pressures the company chose to 

develop the product further and to incorporate a microprocessor into 

the product to take over the control functions from the hard-wired 

logic. The product's principle function is to monitor and control 
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flow'rates of drugs at a desired value within a medically acceptable 

tolerance level. The product was suitable for the trial application 

of a Software Safety Audit as it i6corporated a microprocessor, it 

was used in a safety-related situation and the amount of application 

software involved was not too large for assessment by manual methods; 

approximately 4000 bytes of computer memory. 

A full description of the product is not possible without 

breaking the confidence of the company. However, a brief summary 

can be given. 

The product is used to monitor and control the flow rate of 

drugs to a patient and is made operational by an action, on the part 

of the nursing staff, indicating to the product the desired fl. ow 

rate. The flow rate is indicated by means of a set of thumb-wheel 

switches and is input to the microprocessor when the 'START' button 

is pressed. A device then adjusts the flow rate to the desired flow 

rate value. Once the desired flow rate is reached a device monitors 

the flow rate to ensure that it remains within the medically accepted 

tolerance. If at any time during the operation of the product an 

alarm condition is reached then a set of actions are available to the 

microprocessor ranging from the sounding of alarm buzzers to rapidly 

closing off the flow. The product can be stopped or reset by 

pressing the 'STOP/RESET' button. The flow rate sensor is an 

optical device placed in the drug supply line. 

Physically the product contains two decade thumb-wheel switches, 

'START' and 'STOP/RESET' buttons and four status indicators all 

mounted on the front facia panel. Extending from the device are the 

mains electricity supply cable and the monitoring sensors. Within 

the product there is an electro-mechanical device designed to rapidly 

close off the flow rate in the case of a particular alarm. 

The product uses a commonly available 6-bit microprocessor with 
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the application software being written in the Assembler language for 

that microprocessor, though the initial development of the software 

was written in Pascal. The use of Pascal was abandoned as the 

management of the company felt that Assembler language would yield a 

more compact object code and would have greater speed of operation. 

The software development was done on a microprocessor development 

system. 

In discussion with the company it emerged that the software had 

been developed by competent electronic engineers. who had no formal 

training in software engineering, without the benefit of any form of 

design specification. Software modules were written as it was felt 

necessary to meet the overall design objectives set by the Designer. 

Testing was limited to testing what the company called the 

"functionality of the modules and inter-module communication". 
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5.3 Analysis of the Example Application 

In discussion with the company, the company suggested that the 

criteria for the Software Safety Audit should be to examine the 

system for the catastrophic failure "an excessive flow rate without 

an alarm being raised such that life could be put at risk". It was 

the view of the company that this was the maximum credible incident 

for the product and this failure condition was used as the basis for 

the assessment. 

5.3.1 Input Mechanism 

The product assessed relied upon the medical staff, most likely 

a nurse, dialling the desired flow rate on a pair of decade thumb- 

wheel switches. The flow rate was to be in the range 1 to 99 with 

no display of the value read by the microprocessor from the thumb- 

wheel switches. 

The absence of a microprocessor-driven display showing the value 

read by the microprocessor may be considered to be unsafe as there is 

a probability that the system will incorrectly read the desired 

value. As a means of entering the desired flow rate a number of 

options were available to the designer in addition to thumb-wheel 

switches. Two such options were thumb-wheel switches with some 

display or a display counter. Considering the three methods of 

input mentioned as being available to the designer it can be assumed 

that the probability of an error caused by the nursing staff 

incorrectly reading the displayed value and the probability of error 

in computing the value read, does not change. As an exercise the 

use of thumb-wheel switches, or one of the two options mentioned, has 

been studied to see how a Software Safety Audit can be carried out on 

the equipment. The exercise also shows how the inter-relationships 

between the software, the hardware and people is considered in a 

Software Safety Audit. 
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a) Thumb-wheels alone 

In this scheme the nurse enters the desired value on the thumb- 

wheel switches which are then read by the microprocessor. If the 

nurse has dialled the wrong value then it is expected that the error 

will be noticed by the nurse and corrected by entering the correct 

value. The scheme can be represented diagrammatically as 

Thumb-wheels Thumb-wheels 

Per 

Microprocessor 

Pec 

where Per is the probability of an error in the thumb- 

wheel switches when the input is read 

and Pec is the probability of an error in the 

microprocessor when computing the 

value read 

The reliability of the system is therefore influenced by the 

probability of an error when the value is read by the microprocessor 

from the thumb-wheel switches. 

b) Thumb-wheels with display 

In this scheme the nurse enters the desired value on the thumb- 

wheel switches which are then read by the microprocessor. The 

microprocessor interprets the value and displays it to the nurse by. 

say, a Liquid Crystal Display. Any errors are observed by the nurse 

noting a differance between the thumb-wheel switches and the 

displayed value. The correction is made by the nurse altering the 

dials on the thumb-wheel switches accordingly. The scheme can be 
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represented as: 

Thumb-wheels 

Per 

Microprocessor 

Pec 

where Ped is the probability of an error in displaying 

the value read by the microprocessor 

c) Display Counter 

A display counter would work by the nurse pressing a button 

according to the desired value. The number of times the button was 

been pressed would be accumulated by some internal electronics which 

would display the accumulated value to the nurse by, say, a Liquid 

Crystal Display. Once the desired value was reached an 'Accept' 

button would be pressed by the nurse causing the microprocessor to 

Display 

read the value. Such a scheme can be represented as 

Per 
Pei 

Counter 

Pec 

Display 

18 2 



where Pei is the probability of an error in the 

internal electronics. 

If it is assumed that when the microprocessor reads the desired 

value the probability of an error is the same for each of the three 

options discussed, then the use of thumb-wheels alone has the lower 

risk attached to it. In the context of a man-machine interface, the 

scheme could leave the user, in this instance a nurse, in doubt 

whether the value shown an the thumb-wheels was the value that the 

computer had read and was using in its calculations. 

The use of a display counter is less reliable than thumb-wheels 

but would engender, in the user. a greater sense of safety since the 

desired value is only input to the microprocessor when the 

accumulated value is seen to be the same as the desired value. 

In the context of human confidence the use of thumb-wheel 

switches with some display would seem to be desirable since the nurse 

can observe any differences between the value set on the thumb-wheel 

switches and that displayed. However. before taking up this option 

it is necessary to examine the likelihood of the nurse noting the 

error. Consideration must also be given to the probability that the 

microprocessor refreshes the display more than once and that the 

value-displayed remains the one being used in calculations. If the 

microprocessor creates the display value only at the time of reading 

the thumb-wheel switches then there is the additional probability of 

an error due to data corruption of the internal value being used. 

The controlling influence on safety is the desire to achieve a 

particular function with a low risk. In the case of the product the 

probability of an error when the microprocessor reads the value is 

influential to the safety of the control function. The use of 

thumb-wheel switches alone has the lowest probability of error, given 

that there are fewer components contributing to the probability of 
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error. Therefore, given the options examined, the use on the 

product of thumb-wheel switches alone can be considered to be the 

safer option. 

5.3.2 Software Structural Analysis 

The software in the product comprised three main modules; 

Standby, Start-up and Background with a fourth module being concerned 

with interrupt handling. Shared data was the method used for 

passing values between modules. Other routines were included in the 

system as function calls. 

The structure of the Assembler code was such that the interrupt 

handler determined which entry point of the code to use dependent 

upon the interrupt being raised. 

The software catered for two alarm conditions; 'System Alarm' 

and 'Functional Alarm'. The mechanisms concerned with ensuring 

safety were incorporated into the control modules such that the 

failure of the control module could result in the failure of the 

system to maintain safety. 

Beizer, Ell, p. 237, recounts that a contributory factor to the 

disaster at Three Mile Island was the belief of the Operators that an 

actuator's real position could not be at variance with its position' 

reported by the computer system. 

In the case of the product's functional alarm, the alarm 

condition required the software to command the microprocessor 

hardware to release a mechanical device to rapidly close the flow. 

It is not reasonable to assume that once the release command, which 

is a safety procedure, has been sent to the output port that the 

action will be effected as requested, since there is a probability 

that the output port will not function as commanded. A checking 

mechanism could be implemented in such cases to determine that the 

action has actually been effected. If the required action has not 

184 



been effected then some alternative procedure should be adopted, such 

as sounding an additional alarm buzzer. When assessing the safety 

of the product it was found that no checking mechanism existed to 

ensure that this, or any other, safety actions had been effected once 

initiated. In the product assessed, a release command could be 

issued and the software would assume that the mechanism had been 

released even though, in fact, it had not. If the reason for the 

release of the mechanism was to prevent an unsafe condition from 

existing then, without some form of mechanism ýo check that the 

action had effected, the unsafe condition would persist. 

A similar situation was found in the case of an alarm condition 

requiring movement from a pinch-wheel via a stepping motor; once the 

command had been issued by the software to the output port requesting 

the movement to the 'home' position there was no checking mechanism 

within the software to ensure that the motor was actually in motion, 

in the direction requested. Also when the motor was being used as 

part of the control system there was three independent routines 

called to effect movement of the motor, rather than just one. if 

just one motor control module had been used then the possibility of 

'deadlock' would have been greatly reduced. 

From the analysis undertaken it was apparent that features such 

as the motor control and release mechanism, which are essentially 

safety modules, were incorporated into seperate modules. As 

discussed in Chapter 3, the system is a more safe construction when 

the software is seperated into safety modules and control modules. 

A recommendation to the company, therefore, could be that both the 

alarm modules should be extended to incorporate checks that the 

requested actions had been effected, rather than allowing the 

software to make an assumption on the operation. 
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5.3.3 Risk Analysis of the Product 

The application of Software Fault Tree Analysis and Software 

Event Tree Analysis was discussed in Chapter 3 in the context of 

high-level languages. However, the product assessed had been 

written in an Assembler language so it was helpful to this research 

to code the software into a Pascal-like language from the Assembler 

before applying Fault Tree Analysis and Event Tree Analysis. 

complete SFTAISETA of the system would undoubtedly reveal the 

product's identity and as the analysis was only possible provided 

confidentiality was maintained only a small part, the Functional 

Alarm Module FALARM, will be illustrated. 

5.3.3.1 Software Fault Tree Analysis 

The assembler code for the Functional Alarm Module (FALARM) was: 

FALARM: DI 
POP IY 
LD SP, RAMTOP+l 
LD A. 11110100B 

OUT (PORTC), A 

FALRLP: -CALL STOPRD 
JP Z. STDBYE 

LD A. 111001008 

OUT (PORTC), A 
CALL DELAY3 
CALL STOPRD 
JP Z, STDBYE 

LD A. 111100008 

OUT (PORTC), A 
CALL DELAY3 
JR FALRLP 
CALL SALARM 

, disable_maskable_interrupts 
; save address of calling_module in IY 
; reinit. stack_pointer 
; reset RT_latch 
; release pull_in_solenoid 
; visual_run OFF 
; audible-alarm ON 
; visual_alarm ON 
; visual_stdbye OFF 
; wdog OFF 
; stop/reset pressed ? 
; IF_YES go to standbye_mode 
; ELSE flash visual_alarm and 
; pulse audible_alarm 
; audible_alarm OFF 
; visual_alarm ON 
; visual_stdbye OFF 
; wdog OFF 

; stop/reset pressed ? 
: IF_YES go to standbye 
; ELSE 
; audible_alarm ON 
; visual_alarm OFF 
; visual_stdbye OFF 
; wdog OFF 

; loop till stop/reset pressed 
; slw trap 
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which was recoded into a Pascal-like language for analysis: 

solenoid FALSE; 
audible TRUE; 
visual TRUE; 
WHILE NOT stopped DO 

BEGIN 
audible FALSE; 
visual TRUE; 
delay3; 
IF NOT stopped THEN 

BEGIN 
audible :z TRUE; 
visual :x FALSE; 
delay3; 

END; 
END; 

standby; 

where STANDBY, STOPPED and DELAY3 are predefined functions. 

When the module was analysed for the failure "failure to stop 

the flow" the SFTA diagram, summarised in Figure 5.3.3.1.1. was 

developed. 

From the analysis it was observed that a failure of Port C, 

which controls both the alarms and the solenoid release mechanism, 

would cause the flow to continue uninterrupted without an alarm 

condition being signalled to the nursing staff. Using the knowledge 

of the probability of a failure of Port C, recommendations could be 

made to the company to put the solenoid release mechanism onto a 

different output port from the one which contained the alarms and 

also to include a check that the solenoid had actually been released 

when requested. 
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Following the recommendations, the Functional Alarm Module could 

be altered to the following program: 
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solenoid := FALSE; 
delay3; 
IF NOT (solenoid) AND NOT (solenoid_released) 

THEN klaxon; 
audible TRUE; 
visual TRUE; 
WHILE NOT stopped DO 

BEGIN 
audible FALSE; 
visual TRUE; 
delay3; 
IF NOT stopped THEN 

BEGIN 
audible TRUE; 
visual FALSE; 
delay3; 

END; 
END; 

standby; 

where KLAXON is a function call to initiate some additional alarm 

action. 

5.3.3.2 Software Event Tree Analysis 

The Software Event Tree Analysis, SETA, of the whole of the 

software was also done as a Pascal-like version of the Assembler code 

and produced an event tree which took many sheets of paper. The 

event tree did, however, demonstrate that SETA could be used. 

As an illustration of how SETA was applied to the whole of the 

software. the FALARM Module used for SFTA will be used with statement 

numbers added; 

I solenoid FALSE; 
2 audible TRUE; 
3 visual TRUE; 
4 WHILE NOT stopped DO 
5 BEGIN 
6 audible FALSE; 
7 visual TRUE; 
8 delay3; 
9 JF NOT stopped THEN 

10 BEGIN 
11 audible TRUE; 
12 visual FALSE; 
13 delay3; 
14 END-, 
is END; 
16 standby; 

In SETA the emphasis is on the control flow and the BEGIN and 

END statements form bounds. to statement blocks and only indirectly 
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control the flow, so they are not considered. 

The SETA for the module FALARM is; 
I 

Figure 5.3.3.2.1 SETA of the Product's Functional Alarm 

11 12 13 

not stoppey 

9 789 stopped 

not stop ed \\ '*\ N 

234 stopped 

"* * _* 

To the SETA would normally be applied the probabilities of 

success, which at present have not been determined. If the 

probabilities were attached then the failure of the solenoid and Port 

C would be taken into account in the probability calculations 

associated with the procedure SOLENOID. In which case, the failure 

branch from node I would be correspondingly large and so be 

noticeable as a cause for further examination and concern. 

It was apparent during the assessment that some research needs 

to be undertaken to determine typical failure probabilities for 

programming statements as these were difficult to obtain for the 

current analysis. 

5.3.4 Application of Metrics 

The manual application of the metrics developed in Chapter 4 was 

found to be time consuming. It would have been more efficient if 

some software tools had existed so that the actual Assembler code 

could have been mounted onto a computer for automatic analysis. The 

development of software tools to analyse the assembler code would 

reduce the time needed to conduct an assessment and would also 

provide more scope for analysis. Using the few tools that had been 
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developed as part of the research and, in the case of Fallibility 

Index, some manual calculation the following analysis was obtained: 

a) Perturbation of Names I 

Number of Variable Names = 51 

Total Number of Variable References z 388 

Number of Variables with a Hamming Distance of one = 10 

Number of Undetectable Alternates = 298 

Number of Undetectable Omissions =3 

Number of Undetectable Insertions z 57 

b) Fallibility Index 

Number of Alternates, Na = 95616 

Number of Omissions, No 1016 

Number of Insertions, Ni 19676 

Number of Poss. Errors, Npe a 2271168 

Fallibility Index z 5.12Z 

c) Plexus 

Number of Characters = 17743 

Number of control statements a 1819 

Plexus = 11024 

Decision Content = 106458 

Relative Redundancy = 89.65Z 

Error-Proneness = 10.35Z 

The interpretation of the analyses supports the hypothesis that 

any measurement of safety is conjoint and dependent upon empirical 

observations. To place the analysis in context it can be compared 

with the values determined for the example program in Chapter 4. 

Such a comparison shows that the product's Fallibility Index and 

Error-proneness could be considered as being reasonable given that it 

has a large Plexus value. 

From the analysis of the perturbation of names it can be noted 
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that variables with a Hamming distance of one, 10 in number, had a 

high frequency of usage. This high frequency of usage influenced 

the number of undetectable alternates. If those variables with a 

Hamming distance of one were changed to have a Hamming distance of 

two or more, then for a relatively small change a large response 

would be achieved in the number of undetectable alternates. The 

change would also be reflected in a favourable change in the 

Fallibility Index. 

It may be possible to automate the procedures for detecting 

variables with a Hamming distance of one prior to compilation and to 

recommend to the prpgrammer the necessary changes. The advantage of 

such automation would be to reduce the time needed for testing the 

software and also to reduce the Fallibility Index. 

5.3.5 Integrity of the Product 

The creation of a unique identity, Integrity Lock, for the 

product's software was not practicable since it was only possible to 

have access to the program listings and not to the actual Assembler 

code. To generate an Integrity Lock manually from the listings was 

considered to be too time-consuming for the research. The 

generation of an Integrity Lock is more efficiently achieved by 

automation using the internal representation of the software as it is 

this representation which needs to be protected and checked at run- 

time. 
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a Safety Audit could be considerably reduced by the removal of the 

constraints experienced and priority being given to the development 

of software tools. It was also apparent that access to design 

documents, test records and design personnel would have made a 

Software Safety Audit more comprehensive. 

In order for the product to be certified as safe the lack of 

checking mechanisms within the software on initiated actions and the 

assumption on the correct working of devices would need to be re- 

examined by the company. 

It is not possible to place any importance on the metric values 

obtained as little is known about the relationship between the values 

and safety. In order to place the values on a scale of values some 

research is needed to calibrate values obtained for a number of real 

systems. However, the form that a calibration exercise would take 

is difficult to envisage without returning to the use of a subjective 

judgement on the ordering of the values within the scale of values. 

This subjectivity endorses the view that safety will remain 

subjective until some mapping function is found to relate the 

definition of safety and the set of scales of values. Until such a 

mapping function is found the use of procedures, like those 

illustrated, are needed to guide the Auditor towards a judgement on 

the safety of the software or the system. 

The use of non-quantitative procedures to guide judgement based 

an experience and what is called 'best world practice' are found in 

other engineering fields, for example shipping insurance. The 

analysis of the product has shown that such procedures can also be 

aplied to the analysis of software. 
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5.4 Discussion 

The reason for conducting the Software Safety Audit was to 

examine the practicability of the ýrocedures and not simply to derive 

some values for a system. To this end it has been possible to show 

that the procedures are practicable and incidentally to derive some 

values from a real system. 

The Software Safety Audit was carried out over a period of 

approximately five weeks which was longer than originally 

anticipated, mainly because of the manual calculation of the 

Fallibility Index. The effort required to conduct the Software 

Safety Audit was influenced by many constraints, principally, 

unfamiliarity with the programming language, lack of knowledge of the 

system being assessed, the lack of appropriate software tools and 

very limited access to the design personnel. The most significant 

of these was the lack of familiarity with the language and this 

needed to be addressed with care. 

The effort expended on the assessment could be reduced by the 

development of software tools and with more experience in the 

application of the procedures. The problem of familiarity with the 

programming language used in the system being assessed could be 

minimised if the software toolset included tools for analysing a 

language syntax and which could be generated relatively easily for 

uncommon languages. Such a tool could be created wit6 the aid of 

tools such as YACC, which is part of the UNIX Operating System. 

It was evident during the Software Safety Audit that whilst it 

is possible to apply SETA to application software there was a need 

for further research into SETA before it could be considered to be as 

useful as SFTA. 

The method of conducting a Software Safety Audit worked well 

given the constraints mentioned above. The time taken to carry out 
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CHAPTER 6 

Conclusions 

The control of industrial processes by computer has new risks 

associated with it. One of the new risks is the incorporation of 

software into the control system of a controller. 

It has been shown in this thesis that measurements of software 

reliability and measurements of software safety do not have the same 

goals. Software reliability and software safety have been shown to 

be related subjects and that software safety is a seperate and 

distinct subject. 

The terms hazard. risk. danger and safe have been defined in 

terms of industrial control and a relationship between these terms 

has been postulated. Though an attempt has been made to discuss the 

philosophy of safety it is evident that there is considerable scope 

for further work. A formal definition of software safety has been 

proposed and the terms 'safe' and 'unsafe' have been shown to be 

subjective judgements. 

It is the hypothesis of this thesis that software influences the 

safe operation of industrial-based controllers incorporating software 

and that the risk can be assessed and quantified. 

The subjectivity of safety has been examined and it is suggested 

that an assessment of safety is a conjoint measurement. 

An examination of the factors affecting the software development 

process and the metrics available for measuring the influence of 

these factors has shown that there are many influences affecting 

software but that there are few metrics available. 

The research for this thesis found that the software 

incorporated into industrial-based controllers has an influence on 

the safety of the control system and that there are many aspects to 

assessing the safety of software used for industrial control. it 
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has been shown that some of these aspects can be quantified but there 

is no evidence that metrics have yet been proved to measure the 

safety of software used for industtial control. 

The research for this thesis applied analytical methods, taken 

from other engineering disciplines, to assess the risk of using an 

item of software. It was found that the structure of the software 

can be examined using Software Fault Tree Analysis and Software Event 

Tree Analysis but that further research is needed into Software Event 

Tree Analysis before its usefulness can be exploited. 

The research also examined the use of State Transition Diagrams 

as a method of determining erroneous states and found that the number 

of such states can become unmanageable when all the possible failure 

conditions are considered, even for relatively simple control 

systems. 

Three categories of danger have been proposed for the ocassions 

when software is used in industrial-based control systems; minor, 

Major and Serious. The structuring of the software for safety has 

also been examined and a suggestion has been made on the use of 

Safety Modules and a mechanism called an Integrity Lock. 

The research for this thesis has shown that software errors'can 

be introduced at each stage of the development of the software and 

two methods of measuring the possibility for error have been 

proposed; Plexus and Fallibility Index. Further rigorous 

development of the Plexus metric and the Fallibility Index is 

required before the meaning of the measurements is known. 

It was found from an experiment that variables declare. d with 

seven characters had a significantly better probability of correct 

interpretation than for variables declared with more than or less 

than seven characters. 

The combination of the risk analysis, structural analysis and 
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software analysis into a set of assessment procedures has been called 

a Software Safety Audit. A Software Safety Audit was done on a 

commercial product and it was founo that further development of the 

assessment method is needed. 

'Loss Containment' is a term often used in the Process 

Industries to describe procedures for containing the consequences of 

the loss of safe-working within acceptable criteria. The loss 

containment of software requires requires a judgbment to be made on 

the course of action to take when the software or the system becomes 

. unsafe'. Such a judgement will need to consider both the economic 

and the social consequences of the action, the practicability of such 

action and the time needed for the action to achieve a state which is 

considered to be 'more safe*. 

In some systems it may be possible to dýtermine the possible 

unsafe states and make a prior judgement on the appropriate action to 

take for each unsafe state. 

In some systems it will not be possible to determine the 

possible unsafe states as the number may be unmanageable. 

Similarly, it may not be possible to make a judgement on the 

appropriate actions to take as these may be too numerous, may be 

subject to a large number of variables or may be indeterminate. In 

such systems some method is required which will allow a judgement to 

be made based on the current safety practice, the current unsafe 

state, available states, time available to respond to the current 

unsafe state and possibly many other variables. The development of 

what are called Intelligent Knowledge-Based Systems may be applicable 

and research could be conducted into the use of these systems as 

monitors of safety-related systems. 

The research for this thesis has made a start on the subject of 

assessing and quantifying the safety of software used for industrial 
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control. The research has identified subject areas which, with more 

research, could produce methods and metrics to quantify the safety of 

software. 
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APPENDIX I 

Database Program 

The following dBase II prograro was used in the experiment 

reported in Chapter 4.3. 

SET TALK OFF 
SET FORMAT TO SCREEN 
USE B: PSYCHO. DBF 
ERASE 
DO WHILE T 

V ARE YOU PREPARED TO HELP A RESEARCH STUDENT 
V WITH A SIMPLE EXPERIMENTV 

If so, then press any key. 

WAIT TO ACTION 
ERASE 
DO WHILE T 

7' Thank you-for agreeing to assist in this simple experiment to* 
Vtry and determine the level of difficulty people experience in the' 
Vuse of mnemonics in the place of lines of text. ' 

7' You are asked to suggest a suitable mnemonic for each line of' 
Vtext presented to you. As an example you might suggest that a' 
Vsuitable mnemonic for the text LENGTH OF STRING IN METRES could be' 
VMETRELENGTHS. Please limit your suggested mnemonic to no more 
Vthan 20 characters. You will be asked to suggest eight such 
Vmnemonics. ' 

76 After which the screen will clear and you will be asked to 
Vrestate the mnemonics from memory. Finally, you will be asked to' 
Vinput your understanding of the mnemonics. ' 

V Terminate each input with a RETURN before starting the next' 
Vquestion. ' 

When you are happy that you understand what is to happen, 
Vsignal your readiness by pressing any key' 

WAIT TO ACTION 
ERASE 

ACCEPT "What is your SURNAME? " to d: name 
ACCEPT " and your INITIALS " to d: inits 
ACCEPT " State which OU Summer School " to d: venue 
ACCEPT " Please enter todays date " to d: date 
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Please suggest a mnemonic for the following: * 

ACCEPT "TIME OF DAY * to M: 1 
ACCEPT "VALVE 8 POSITION " to m: 2 
ACCEPT "AMBIENT TEMPERATURE" to m: 3 
ACCEPT *LIQUID FLOW IN LITRES/MINUTE* to m: 4 
ACCEPT "MOTOR SPEED IN R. P. M" to m: 5 
ACCEPT 'WEIGHT OF PRODUCT IN TONNES" to m: 6 
ACCEPT 'DISTANCE FROM THE VALVE CONTROLLER TO THE VALVE IN METRES" to 

m: 7 
ACCEPT *PERCENTAGE OF SULPHUR DIOXIDE IN THE ATMOSPHERE" to m: 8 
ERASE 

Ca n you now re-enter the mnemonic you suggested for' 

ACCEPT "TIME OF DAY" to, t: l 
ACCEPT *LIQUID FLOW IN LITRES/MINUTE* to t: 4 
ACCEPT "WEIGHT OF PRODUCT IN TONNES" to t: 6 
ACCEPT *VALVE 8 POSITION" to t: 2 
ACCEPT "PERCENTAGE OF SULPHUR DIOXIDE IN THE ATMOSPHERE* to t: 8 
ACCEPT *AMBIENT TEMPERATURE* to t: 3 
ACCEPT *DISTANCE FROM THE VALVE CONTROLLER TO THE VALVE IN METRES" to 

t7 
ACCEPT *MOTOR SPEED IN R. P. M. * to t: 5 
ERASE 
APPEND BLANK 
REPLACE SURNAME with d: name, INITIALS with d: inits 
REPLACE DATE with d: date, VENUE with d: venue 
REPLACE MNEMONICI with m: 1, MNEMONIC2 with m: 2 
REPLACE MNEMONIC3 with m: 3, MNEMONIC4 with m: 4 
REPLACE MNEMONICS with m: 5. MNEMONIC4 with m: 4 
REPLACE MNEMONICS with m: 5, MNEMONIC6 with m: 6 
REPLACE MNEMONIC7 with m: 7, MNEMONIC8 with m: 8 
REPLACE TEXT1 with t: 1, TEXT2 with t: 2, TEXT3 with t: 3 
REPLACE TEXT4 with t: 4, TEXT5 with t: 5, TEXT6 with t: 6 
REPLACE TEXT? with t: 7, TEXT8 with t: 8 
7 

?. C an you now try and give a short description for the following' 
Vmnemo nic you suggested-. ' 

2 12.5 SAY MNEMONIC1 GET ANSWER1 
@ 13.5 SAY MNEMONIC2 GET ANSWER2 
@ 14.5 SAY MNEMONIC3 GET ANSWER3 

15.5 SAY MNEMONIC4 GET ANSWER4 
16.5 SAY MNEMONICS GET ANSWERS 
17.5 SAY MNEMONIC6 GET ANSWERG 

@ 18.5 SAY MNEMONIC7 GET ANSWER7 
@ 19.5 SAY MNEMONIC8 GET ANSWER8 
READ 
USE 
DO A: PS YCHO 
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APPENDIX 2 

Program Analyses 

The programs analysed below are linear expansions of those 

referred to in Chapter 4.4. A comparison of the measures is plotted 

in Graph 3 to Graph 5. The values were calculated using the program 

given in Appendix 3. 

Program 1 

PROGRAM Halsteads Length, N4 = 12.75 
VAR: x, Halsteads Volume, V z 36.49 
VAR: y; 
BEGIN Decision Content, H = 282.1 

x: =2; Plexus, P z 29.8 
y: =95; Error Proneness, Ez 10.6z 
X: =X+Y; Number Characters. Nc z 53 
PRINT: x; 

END 

Program 2 

PROGRAM Halsteads Length, NA= 12.75 
VAR: x; Halsteads Volume, V z 50.53 
VAR: y; 
BEGIN Decision Content, H = 319.3 

x: =2-, Plexus, P a 34.6 
y: =95; Error Proneness, E = 10.8X 
x: zx+y; Number Characters, Nc z 60 
x: =X+Y; 
PRINT: x; 

END 

Program 3 

PROGRAM Halsteads Length, N4 = 12.75 
VAR: x; Halsteads Volume, V 2 64.57 
VAR: y-, 
BEGIN Decision Content, Ha 356.57 

x: =2; Plexus, P = 39.4 
y: =95; Error Proneness, E= 11.0Z 
x: zx+y; Number Characters, Nc 2 67 
x: =X+Y; 
x: =x+y; 
PRINT: x; 

END 
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Program 4 

PROGRAM Halsteads Length, NA = 12.75 
VAR: x; Halsteads Volume, V= 78.61 
VAR: y; 
BEGIN Decision Content, Ha 393.8 

x: =2; Plexus, P2 44.1 
y: =95*, Error Proneness. E= 11.21 
X: =X+Y; Number Characters, Nc = 74 
x: =X+Y; 
X: zx+y; 
x: =X+Y; 
PRINT: x; 

END 

Program 5 

PROGRAM Halsteads Length, NA = 12.75 
VAR: x; Halsteads Volume, Va 92.64 
VAR: y; 
BEGIN Decision Content, H= 431.1 

x: --2; Plexus, P2 48.9 
y: =95-, Error Proneness, Ea 11.31 
x: zx+y; Number Characters, Nc = 81 
x: =X+Y; 
x: =X+Y; 
x: =x+y; 
X: zx+y; 
PRINT: x; 

END 

Program a 

PROGRAM Halsteads Length, N4 = 12.75 
VAR: x; Halsteads Volume, V= 50.5 
VAR: y-, 
BEGIN Decision Content, Hz 319.3 

x: =2; Plexus, PC 34.6 
y: =95; Error Proneness, Ez 10.8z 
X: =X+Y; Number Characters, Nc = 60 
y: =x+y; 
PRINT: y; 

END 

Program b 

PROGRAM Halsteads Length, V= 16.36 
VAR: x; Halsteads Volume, V2 54.0 
VAR: y; 
VAR: p; 
BEGIN Decision Content, H= 351.25 

x: =2; Plexus, P : 43.2 
y: =95; Error Proneness, E a 12.3Z 
x: =x*y; Number Characters. Nc : 66 
p: =x+y; 
PRINT: p; 

END 
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I 

Program c 

PROGRAM 
VAR-. a; 
VAR: x; 
VAR: y; 
BEGIN 

x: =2 -, 
Y: =95; 
X: =X+Y; 

a: =x+y; 
PRINT: a; 
a: =x+a; 
x: =1025; 
X: =y+x; 
y: za+x; 
PRINT: y; 

END 

Program d 

PROGRAM 
VAR: a; 
VAR: b; 
VAR: x; 
VAR: y-, 
VAR: p-, 
BEGIN 

x: --2; 
y: =95; 
x: zy+yI 
P: =X+Y; 
PRINT: p; 
a: =x+p; 
b: cl 025; 
x: =y+b; 
y: --a+x; 
PRINT: y; 

END 

Halsteads Length, V 20.3 
Halsteads Volume, V 120.5 

Decision Content, H= 548.2 
Plexus, Pz 70.9 

Error Proneness, E= 12.9Z 
Number Characters, Nc a 103 

Halsteads Length, N4 = 28.75 
Halsteads Volume, V= 131.46 

Decision Content, Hz 612.0 
Plexus, Pz 95.7 

Error Proneness, E= 15. GZ 
Number Characters, Nc = 115 
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APPENDIX 3 

BASIC Program 

The BASIC Program that follow, s was written to enable the 

analysis of the example programs given in Chapter 4.4 and also to 

provide the data included in Appendix 2 and Table 3. 

10 DIM VARFREQ(25) 
20 DIM DIGFREQ(25) 
30 DIM PROCFREQ(25) 
40 REM 
50 REM -------------------- Inputs for Halstead --------- 
60 REM ---------- Variables are: N1, N2, NNI, NN2 -------- 
70 REM 
80 INPUT "Halsteads Number of Unique Operators, ni *; N1 
90 INPUT 'Halsteads Number of Unique Operands, n2 *; N2 
100 INPUT "Halsteads Number of Operators, N1 *; NNI 
110 INPUT "Halsteads Number of Operands, N2 "; NN2 
120 REM 
130 REM ------- Inputs for Decision Content L Complexity ---- 
140 REM ----- are: LOD, LOP, NC, NV, NP, NO, NSC, NSD, VS --- 
150 REM 
160 INPUT "Number of Characters in Character Set, Cs z *; CS 
170 INPUT "Number of Declarations, Dz"; LOD 
180 INPUT "Number of Control Statements, Sc z "; LOP 
190 INPUT "Number of Characters in the Program, Nc z "; NC 
200 INPUT "Tot. No. of Unique Variables, Nv = "; NV 
210 INPUT "Tot. No. of Digit Values, Nd a '; ND 
220 INPUT "Tot. No. of Relational Ops + Procedures, Np = "; NP 
230 INPUT "No. of Available Control Statements, Nsc z '; NSC 
240 INPUT "No. of Avail. Declarative Statements. Nsd z *; NSD 
250 INPUT 'No. of Possibilities for Variables, Vs a *; VS 
260 REM 
270 REM -------- Calculate Halsteads Length L Volume -------- 
280 REM -- Variables are: LENGTH, VOLUME, N1, N2, NNI, NN2 -- 
290 REM 
300 LENGTH =(N1 * (LOG(Nl)/LOG(2))) + (N2 * (LOG(N2)/LOG(2))) 
310 VOLUME = (NN1 + NN2) * (LOG (N1 + N2)/LOG (2)) 
320 REM 
330 REM ---------- Input Frequency of Variables ------------- 
340 REM ----- Variables used are: NOVAR, NV, VARFREQ(I) ----- 
350 REM 
360 NOVAR z0 
370 FOR I=1 TO NV 
380 INPUT "Input Frequency of Variable "; VARFREG(l) 
390 NOVAR = NOVAR + VARFREQ(I) 
400 NEXT I 
410 REM 
420 REM ------ Input Frequency of Digital Values ------------ 
430 REM ----- Variables used are: NODIGS, ND, DIGFREQ(I) ----- 
440 REM 
450 NODIGS 0 
460 FOR 11 TO ND 
470 INPUT "Input Frequency of Digit *; DIGFREQ(I) 
480 NODIGS = NODIGS + DIGFREQ(I) 
490 NEXT I 
500 REM 
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510 REM - Input Frequency of Relational Ops and Procedures -- 
520 REM --- Variables used are: NOPROCS, NP, PROCFREOH) ---- 
530 REM 
540 NOPROCS =0 
550 FOR I=I TO NP 
560 INPUT "Input Frequency of Operator/Procedure"; PROCFREO(I) 
570 NOPROCS = NOPROCS + PROCFREG(l) 
580 NEXT 1 
590 REM ------------------ Clear Screen --------------------- 
600 PRINT CHR$(12) 
610 REM 
620 REM --------- Calculate for the Declaration Part -------- 
630 REM Var's used are: TEMP, LOD, NSO, NY, VS, 1, IDEC 

640 REM 
650 TEMP 0 
660 PRINT *Plexus, P 
670 IDEC 0 
680 IF LOD =0 OR NSD 0 THEN GOTO 830 
690 PRINT LOD; *Log"; NSD; "+"; 

700 FOR 11 TO NY 
710 TEMP TEMP * (LOG (VS - (I - IMLOG (2)) 

720 PRINT "Log"; VS-(I-1); 
730 IF I< NY THEN PRINT "+*; ELSE PRINT 
740 NEXT I 
750 IDEC = LOD * (LOG (NSD)/LOG (2)) + TEMP 
760 REM 
770 REM ----------- Calculate for the Procedure Part -------- 
780 REM Var's are: TEMPI, NY, VARFREQ(I), NOVAR, TEMP2 --- 
790 REM TEMP3. NP. PROCFREQM, NOPROCS, NO, L, NSC, LOP - 
800 REM ------- and DIGFREQ(I), NODIGS ---------------------- 
810 REM 
820 REM 
830 TEMPI 0 
840 PRINT +"; LOP; "Log'; NSC; "+"; 
850 FOR 11 TO NY 
860 TEMPI TEMPI + VARFREO(I)*(LOG(NOVAR/VARFREO(I))/LOG(2)) 
870 PRINT VARFREO(l); "Log"; NOVAR; "/"; VARFREO(I); 
880 IF I< NY THEN PRINT "+"; ELSE PRINT 
890 NEXT I 
900 TEMP2 0 
910 PRINT +. 
920 FOR 11 TO ND 
930 TEMP2 TEMP2+DIGFREO(I)*(LOG(NODIGS/DIGFREO(I))/LOG(2)) 
940 PRINT DIGFREO(I); "Log"; NODIGS; */*; DIGFREO(l); 
950 IF I< ND THEN PRINT "+"; ELSE PRINT 
960 NEXT 1 
970 TEMP3 0 
980 PRINT +. 
990 FOR 11 TO NP 
1000 TEMP3=TEMP3+PROCFREQ(I)*(LOG(NOPROCS/PROCFREO(l))/LOG(2)) 
1010 PRINT PROCFREQ(I): "Log'; NOPROCS; */*; PROCFREO(l); 
1020 IF I( NP THEN PRINT "+"; ELSE PRINT 
1030 NEXT 1 
1040 REM 
1050 REM ------- Calculate the Plexus as a Sum ---------- 
1060 REM Var's used: INFO, LOP, NSC, TEMPI, TEMP2, IDEC -- 
1070 REM 
1080 INFO LOP * (LOG(NSC)/LOG(2))+TEMP1+TEMP2+TEMP3+IDEC 
1090 REM 
1100 REM -------- Calculates the Decision Content ----------- 
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1110 REM -------- Variables used are: DECISION, NC ---------- 
1120 REM 
1130 DECISION = NC * (LOG (CS)/LOG (2)) 
1140 REM ------------ Clear Screen -------------------------- 
1150 REM PRINT CHR$112) 
1160 REM 
1170 REM ---------- Display the Results --------------------- 
1180 REM -- Var's used: INFO, DECISION, REDUNDANCY. ERRORS 
1190 REM --------- and N1, N2. NN1, NN2, VOLUME, LENGTH ----- 
1200 REM 
1210 PRINT 
1220 PRINT " Plexus, P =*; INFO 
1230 PRINT " Decision Content =*; DECISION 
1240 REDUNDANCY = (DECISION - INFO) / DECISION * 100 
1250 PRINT "Relative Redundancy a*; REDUNDANCY; *X" 
1260 ERRORS 100 - REDUNDANCY 
1270 PRINT Error-Proneness z"; ERRORS; "Z* 
1280 PRINT 
1290 PRINT 
1300 PRINT "Halsteads Length. N* =*; N1; "Log'; N1; " + '; N2; 
1310 PRINT *Log"; N2; " z *; LENGTH 
1320 PRINT "Halsteads Volume, V z*; NN1+NN2; *Log"; N1+N2; 
1330 PRINT "z"; VOLUME 
1340 PRINT 
1350 PRINT 
1360 PRINT 
1370 GOTO 80 

207 



APPENDIX 4 

Graph I 

Fallibility Index against the Number of Characters (Nc) to write 

a Program 

[Source: Chapter 4.21 
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Graph 3 

The Plexus Metric and Halsteads Volume Metric against the Number 

of Characters (Nc) -to write a Program. 

[Source: Chapter 4.4 and Appendix 23 
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Graph 5 

The Plexus Metric and Error-Proneness 

[Source: Chapter 4'. 4 and Appendix 23 
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The Plexus Metric and Halstead's Volume Metric Plotted against 

the Number of Characters to write a Program 

- Declaration Part Included. 

[Source: Chapter 4.4 and Table 31 
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Graph 7 

v 

Halstead's Volume Metric and the Plexus Metric against the 

Number of Characters'to write a Program 

- Declaration Part Omitted. 

[Source: Chapter 4.4 and Table 33 
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Graph 8 

Plexus Metric plotted against Error-Proneness where the 

Declaration Parts are Included and Omitted. 

[Source: Chapter 4.4-and Table 31 
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Graph 9 

The Plexus Metric plotted against the Fallibility Index 

[Source: Chapter 4.41 

with Declarations W without Declarations 
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APPENDIX 5 

Table 1. Analysis of the Literature Survey 

1% 

----------- ---- AppLication by ----------- Scientific ------ ----------- ----------- ------- -------- ------ ------- -------- 
Risk Level. inc. Infra Indust. High Sub- 

Factors 
- - 

Academic 
- -- 

DP 
- -- 

structure Control 
- 

Risk 
------- 

Total 
-------- 

Def. 
------ 

Metric 
- ------- 

Totat 
- ------ --- --- 

1. Specification/Design 
-------- - 
(2) 

- -- 
(M 

----------- 
(7) 

---------- 
(6) (11) (40) (11) (6) (57) 

1.1 Formal. 2 a 5 3 7 25, 5 2 32 
1.2 Functional. 2 1 2 2 7 3 2 12 
1.3 Language 1 2 3 2 2 7 
1.4 Structure 4 1 5 1 - 6 

2. Languages (10) (17) (10) (8) (21) (66) (5) (3) (74) 
2.1 ADA 1 3 4 4 
2.2 RTL12 L CORAL I I 
2.3 BASIC I I 
2.4 PASCAL 1 1 1 4 7 7 
2.5 FORTRAN 3 3 1 4 it it 
2.6 AssembLer 1 1 2 2 
2.7 Structured 4 9 3 3 3 22 3 25 

Programming 
2.6 S/W Redundancy I 1 1 3 6 6 
2.9 S/W Metrics 1 4 3 4 12 2 3 17 

3. Support Environment 
and Testing (10) (17) (5) (9) 115) Q (66) (6) (8) (80) 

3.1 Most Systems 3 1 4 4 
3.2 TooLsets 4 1 1 6 6 
3.3 Test MadeLs 5 6 1 8 20 4 7 31 
3.4 Correctness Proo l's I 1 1 8 11 2 1 14 
3.5 Validation L I 1 2 2 6 6 

Verifications 
3.6 Path L Program 3 1 3 7 7 

Proving 
3.7 Simulation 1 6 2 3 12 12 

4. Operational. 
Env't & PersonneL (5) (5) (2) (5) (5) (22) (3) (4) (29) 
4.1 PsychoLogicaL 3 2 2 1 3 11 11 
4.2 Personal 1 1 2 4 4 

Environment 
4.3 Hardware Failure 1 2 3 3 4 to 
4.4 Documentation 2 2 4 4 

----------------------- TOTALS 

---------------------- 

------------ (27) 

----------- 

------ (53) 

------ 

----------- (24) 

----------- 

----------- (28) 

----------- 

------- (62) 

------- 

-------- (194, 

--------- 

------- (25) 

------- 

-------- (21) 

-------- 

------- (240) 

------- 
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Table 2. Analysis of Data Gathered from the Experiment 

Analysis of CORRECT Answers 

No. ChaNcters 1234567a9 10 11 12 13 t4 15 16 17 18 19 20 TotaL 

--- ---------------------------------------------------------- -- ---- - ------ Mneikonici 
I- Frequency 03 33 20 14 6 18 6212001100000 107 

-- --------- -....... . ....... ................................... . ....................... ft ........ 
--- -- - ------ ------------------------------- ft ................................. 

2- Frequency 0256 16 6 20 10 a4501100a000 64 

-- - ---- - -- ----- w ---- - ----- - ----- -- 
-- --------------- -- a--aa - ------ w-a--a ......... .... 

3- Frequency 05558 12 43 24 020100000000 105 

-- -- -------- --- - -- -- ----------- - --------- ft .............. ft ---------------- - --- .... ft ...... 
------- - -- a ------------- - ---------------- ft ...... ft ------- 

4- Frequency 00343 11 76965961221000 75 

-- ----- -- ----- - ------ - --- - ------------------------- a ----------- ftft ----------------------------- 
-- ---------- - ---------------_- a -------------------------- - ------------------------- -- 
5- Frequency 00 12 6 10 10 it 6 10 75642011001 92 

__. _w -- -------------------- - ------------ a ------------------------ - --------- 
-- --- - --- - ----- --- ---------- ------------------------------ ft ---------------------- --w ------- 

6- Frequency 00055642648143110110 52 

------ w- --- - ------- .... ft --- - ------------- w ----------- ft-a ------------ aa ........... a. 
-- - ---- --- --------------- - ------- ft ---------------------- ---- ft -------- ft--ft -------- ft --------- 

7- Frequency 0111165017966131A255 64 

------------------- ft -------------- -------------------------- 
--- - ------- a .......... w .................... .. W-wa ------- ft--w-. 

8- Frequency 002 10 6 It 11 27aa8251112? 2 B9 

w. - --- --------- - -------- a --------------------------------- --- - -- - ---------- ...................... ft ----- ft --------- ft ----------- w--ft ......... ... w. 
ALL - Frequency 0 It 61 57 63 68 19 56 43 39 42 31 23 14 a&658a 668 

- -- - --- ---- - ------------------------------------------------------- ww ......... ------ - ----- --- - -- - ------ ------- ft ------------------------------- a ---------------------- W- ...... 
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Analysis of INCORRECT Answers 

No. Characters 0123456789 10 It 12 U t4 15 16 17 IS 19 20 Tot. 

-- --- - ---- ------ - -- - ---------------- - -- ------------ --- ------- - ------- - -- Mnemonict 
I- Frequency a00431021100000000000 12 

-- -------- - -------- -- -- - ---------- - 
- -- --- ---- - 

2- Frequency 0029a5563300101000000 35 

- ------ - ---- -------- 
3- Frequency 2a1142030100000000000 14 

--- -- - -- - -- ------ 
4- Frequency 0004114 10 544231320a000 44 

- ---- -- ------- - -- ----- -- ------- - ------------ -- ------------------- - ------- --- 
5- Frequency a015453223010001000a0 27 

-- ---------- -- ---------- -- ---- - ----- - --- - -- - ------ --- ----- 
6- Frequency 102367 20 54534142a00000 67 

- ----- - ---- - ------------ - ------------ - ----- ----- ---- - --- ------ ---------- --------- 
7- Frequency 310331375517321011125 55 

------ --- - ------ - -- -- --------- - ---------------------------------------------------------- - --- - --- - -- - ----- - --------------------- - ------------------- 
8- Frequency 210154013630110020000 30 

- -- ------ -------------------------------------------------------- - -- - ---- - -- --- - ----------------- - --------------- - ------------------------------------------- - -- - ------------- 
ALL - Frequency a26 30 26 26 35 36 23 28 It 14 987331125 284 

---- -------------- - --------------------- - ------------------------------ - -- --- ---------- - ------ --------- --- ---- - ----- --- 
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Analysis of ALL Answers 

No. Characters 01234567a9 10 11 12 13 14 15 16 17 IS 19 20 Tot. 

---------------------- ---------------------------- Mnemonic; 
I- Frequency 003 37 23 15 6 20 7312001100a00 119 

---- - ----- ----- ---- --- -------- 
-- -- -------------- - -- - --------- - ---- -- ------ 

2- Frequency 004 14 6 21 It 26 13 11 45112000000 119 

--- - ---- --------- -- 
3- Frequency 20669 10 12 46 24 120100000000 119 

4- Frequency 00a754 15 17 It 13 10 7 12 74421000 119 

5- Frequency 001 17 10 15 13 13 S 13 76642111001 119 

-- -------- 

6- Frequency 1023 It 12 26 96 11 7 12 285110110 119 

- -- - -------- 
7- Frequency 3114429 12 568 16 98232437 10 119 

-------------------------------------------------------------- 
- ----- - -------- - -- - ------ - 

8- Frequency 2103 15 10 11 12 5 13 It 8935131222 119 

----- --------------- - -- - ----- - ----------------------- - -------- - ---------- --- 
ALL - Frequency 82 17 91 83 89 103 155 79 71 50 56 40 31 21 It 976 10 13 951, 

-- ---- --- ----- - ---- - ------ - --- - ------ - ----------------------------------- - --------- ---- 
- --------- - ---------- - ----------------------------- - --- --- ----- 

The Probability of the Correct Interpretation of a Variable 

Nc PC Nc PC Nc PC Nc PC 

1 0.000 6 0.071 11 0.044 16 0.006 
2 0.012 7 0.125 12 0.033 17 0.006 
3 0.064 a 0.059 13 0.024 18 0.005 
4 0.060 9 0.045 14 0.015 19 0.008 
5 0.066 10 0.041 15 0.008 20 0.008 

where Ne is the number of characters in the variable and 

Pc is the probability of a correct interpretation of the 
variable. 
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Table 3. Data Used in the Plexus Calculations 

nt n2 NJ N, l Cs D Sc Nc mv Nd Np Nsc Nsd Vs Fvi Fdi Fpi N' vHprE 

Lang. 3546 64 25 88 321 12 2 26 211 16.36 30.0 528.0 41.8 92.1 7.9 

MIt 
I 

Lang. 3647 64 13 43 33103 26 211 20.26 34.1 258.0 38.0 85.3 14.7 

(2) 

Pascat 5M 19 38 96 14 t4 312 13 5 10 26 7 33696 21 12 86.70 257.8 2054.5 483.0 76.5 23.5 

(1) 424 
311 
521 
311 
2t 
41 
11 
t1 
31 
1 
1 
1 

(2) 161 (Dedarations not incLuded) 86.70 257.8 1060.2 248.2 76.6 23.4 

BASIC 5 16 19 39 68 1 14 216 799 36 9 26 514 75.60 254.7 1314.9 283.7 78.4 2t. 6 
M421 

241 
312 
2t 12 
514 
331 

11 
t1 

(2) 206 (Dedarations not incLuded) 75.60 254.7 1254 248.9 80.2 t9.8 

FORTRAN 6 19 19 48 68 1 14 181 7 12 10 29 9 26 521 96.22 31t. 1 1101.8 304.1 72.4 27.6 

M26t 
221 
321 
214 
611 

It 
51 
21 
1 it 
2 
1 

(2) 156 (Dedarations not incLuded) 96.22 311.1 949.6 269.3 71.6 26.4 

Note: The definition of the column headers is to be found in 

Chapter 4.4. 
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