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Abstract 

The purpose of the thesis is to assess the mathematical 

achievements of Bernard Bolzano on the basis of the five early published 

works. The material is divided into the areas of the foundations of 

mathematics, geometry and analysis. In making this assessment there 

have been two principal considerations. Firstly, any judgement of the 

significance of Bolzano's work should be made in the light of the historical 

context, so considerable space is devoted to the relevant 18th century 

sources. Secondly, as a general framework to the thesis there is the 

question of how Bolzano's general views about mathematical proofs and 

concepts are related to his achievements. The main claim and conclusion 

of the thesis is that this relationship was unusually clear and significant 

in the case of Bolzano's work. 

There is an Appendix containing the first English translation of 

all five of Bolzano's works as well as the German texts of their first 

editions. 
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Chapter 1: Introduction 

1,1 The Aims, Scope and Organisation of he Thesis 

The rain purpose of the thesis is to investigate, in one particular 

case, the way in which views about the nature of mathematics have been 

related to the L'evelopment of important new mathematical concepts and 

methods. The case we shall examine is that of the early work of Pernard 

Bolzano as this is exemplified in his five mathematical works published 

between 1804 and 1817. These works are concerned with the foundations 

of mathematics and with geometry and analysis. The papers of 1816 and 

1817 contain a number of substantial and original contributions to analysis. 

Bolzano was also especially interested in exdmining the concepts and proofs 

of mathematics in a philosophical spirit. As a Professor of Theology at the 

University of Prague he was relatively isolated In his mathematical work; 

he lacked immediate criticism and influence from contemporaries and he 

was most forthcoming in his writing about the general approach and motiva- 

tion behind his work. These factors combine to make a study o. ' his work 

particularly witable for our purpose. 

The relationship of general views to particular results in the work of 

C 



an individual is liable to be a rather vague matter. Nevertheless the question 

of such a relationship offers a useful backgrocnd for certain preliminary 

studies which are worthwhile in their own right. 'I htse are: 

(a) to state as clearly rs possible Bolzano's views on the nature 

of mathematics, particularly its concepts and proofs. 

(b) to describe and assess Bolzano's early mathematical work in 

the light of his own time. 

Most of the thesis is concerned with achievZag these two goals, but as an 

overall framework we shall make various references to, and finally draw 

some 'conclusions about, the wider question of the relationship of (a) to 

(b). As a general aid to these purposes and for the sake of promoting a 

wider app': eciation of Bolzano's work we have added, in an Appendix, both 

the texts and full English translations of the five mathematical works con- ' 

cerned. 

Any assessment of Bolzanc's mathematical work i squires some pre- 

liminary account of the use and meaning of various terms and concepts at 

the beginning of the nineteenth century. It Is very difficult even to describe 

any achievement of this period direc%'ly In modern terms without thereby 

giving a misleading Impression of the achievement. For this reason we 

have devoted considerable space to the discussion of important works which 

would be known to ßolzano. This is particularly necessary for the chapters 

3 
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on analysis. 

The primary source materials for the thesis, those referred to in 

the title, are the following five works: 

Betrachtungen Über einige Gegenstände der Elementargeometrie. 

(Considerations on some objects of elementary geometry. ) 

Prague 1804 X+ 63 pp. (BG) 

Beyträge zu einer begründeteren Darstellung der Mathematik 

(Contributions to a more well-founded Presentation of Mathematics. ) 

Prague 1810 X VI + 152 pp. (BD) 

Der binomische Lehrsatz, und als Folgerung aus ihm der polynomisehe, 

und die Reihen, die zur Berechnung des Logarithmen und Exponential- 

grossen dienen, genauer als bisher erwiesen. 

(The binomial theorem, and as a consequence from it the polynomial 

theorem, and the series which serve for the calculation of logarithmic 

and exponential quantities, proved more strictly than before. ) 
0 

Prague 1816 XVI + 144 pp. (BL) 

Rein analytischer Beweis des Lehrsatzes, dass zwischen je zwey Werthen, 

die ein ent7egengesetztes Resultat gewähren, wenigstens eine reele 

Wurzel der Gleichung liege. 

(Purely analytic proof of the theorem, that between any two values, which 
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give results of opposite sign, there lies at least one real root of the 

equation. ) 

Prague 1817 60 pp. (RB) 

Die Drey Probleme der Rectification, der Complanation und der 

Cubirung, ohne Betrachtung des unendlich Kleinen, ohne die Annahmen 

des Archimedes, und ohne irgend eine nicht streng erweisliche Vorausset- 

zung gelöst zugleich als Probe einer gänzlichen Umstaltung der Raumwiss- 

enschaft, allen Mathematikern zur Prüfung vorgelegt. 

(The three problems of rectification, complanation and cubature, solved 

without consideration of the infinitely small, without the hypotheses of 

Archimedes, and without any assumption which is not strictly provable; 

at the-same time being presented for the scrutiny of all mathematicians as 

a sample of a complete reorganisation of tie science of space. ) 

Leipzig 1817 XXIV + 80 pp. (DP) 

These five works will be referred to throughout the thesis by the abbrov- 

Cations BG, BD, BL, RB, DP respectively. Further bibliographical 

information and background to the works is given in 1.3. The full text of 

their first editions, together with English translations and notes, comprise 

the Appendix to the thesis. 

There is a large amount of other mathematical material : 'hlch was 

written by D 1zano during the period we are considering. He kept a kind 

of mathematical diary containing notes, drafts of articles, cLc., but these 
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remained unpublished until very recently. The first two volumes of this 

material (covering the years 1803 to 1811) have now appeared in the 

series Miscellanea. Matheinatica (edited by Prof. Bob van Rootselaar 

and Anna van der Lugt) wf. ich is currently being published as part of the 

Bolzano Gesamtausgabe (Complete works) (Bolzano [1]) by Frommann 

Verlag of Stuttgart. However, although some reference will be made to 

this material it has not been studied or taken into account here in detail. 

It would be essential for a thorough understanding of the development of 

Bolzano's thought in this period but this has not been our first priority. 

The published works represent Bolzano's most significant mathematical 

work. during the first part of his life and they therefore represent anatural 

and reasonaNe way to restrict the material for this thesis. 

The organisation of material In the main thesis has already been 

summarised in the Contents pages. There is a separate page of Contents 

in the Appendix for details of the arrangement of the translations and their 

notes. Thy: references are arranged alphabetically by author, the works 

of each author being numbered in square brackets. Thus specific refer- 

ences will be given in the form "Kant [2] p. 57", unless the work 

concerned is referred to only once when the page reference may be given in 

the List of References. When the date of a work is particularly relevant 

this may be included with the reference thus "Kant [1 (1800) p. 57". 

Because of the special place of the five works listed already. (p. 9) their 

I 
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bibliographic details appear in 1.3 and will not be repeated In the main 

List of References. 

References to the main thesis will be by page number or, if more 

appropriate, by section number, as in the previous sentence. References 

to th3 texts of the five main works will be given in two ways: the page in 

the Appendix which has the translation of the relevant passage, and the 

standard abbreviation for the text followed by the page or paragraph number 

in the first German edition. The Appendix has been separately paginated 

with the prefix A to the page numbers. For brevity we shall omit the 

abbreviation 'r,. ' In all references to the Appendix. Since the Prefaces of 

the five German texts have separate Roman numeral paginations every page 

of these texts has a unique dual reference.. Thus the beginning of the main 

text of BD has reference: (A108; BD, 1). 

Many of the quotations made throughout the thesis are from works 

originally published in German, French or Latin. For the most important 

of these the quotation has been given in the original language and In trans- 

lation but often quotations have simply been given in an English version. 

All such translations, as well as translations of titles and headings etc., 

are by the present author unless they have been otherwise ascribed. 

a 
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1.2 Biographical Remarks on Bolzano 

The outline of the first half of Bolzano's life and work which is 

given here is brief and only Intended to provide the context and background 

for the five mathematical works. The principal sources used are the 

biography Winter [l]and the autobiography Bolzano [2]. 

Bernard Bolzano was born on the 5th October 1781 in Prague where 

he lived an i worked for most of his life. He died there in 1848. Thus the 

background to his childhood and early career was the state of almost un- 

interrupted wax which existed over most of Europe between 1789 and 1015. 

Pra; ue was the main town of Bohemia which at this time was part of the 

Habsburg Empire controlled by the Kaiser in Vienna. 

Bolzano's father, an Italian art-dealer, had emigrated to Prague In 

th3 1760's and then married Cecilia Maurer. Of their twelve children only 

tcw survived to adulthood. " Bolzano himself was not a strong child but in 

spite of headaches and a weak heart he says; "I was a very lively boy who 

never rested for a moment" (Bolzano [2] p. 56). This disposition to 

Incessant activity did not abate as he grew older and is manifest in the huge 

amount of manuscript material which he worked at continually throughout, 

his life. 

At ; Lrst the young Bolzano was educated at home by a tutor. Then at 

the age of tca he attended the nearby Pianist Gymnasium where his progress 

was good but not outstanding, In 1796 he entered the Philciuphy Faculty in 
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Prague University and for four years he followed courses mainly in 

philosophy and mathematics. Although, on his own account, he found 

both subjects initially rather difficult he discovered that in pure mathem- 

atics there was ample scope for the fundamental, purely c"inceptual 

Investigations which appealed to him so strongly. Ile refers specifically 

to Kästner's important textbook (Kastner [1]) 
where he, 

proved what is generally passed over because everyone already 

knows it, I. e. he sought to make the reader clearly aware of the 

basis [Grund) on which his judgement3 rest. That was what I 

liked most of all. My special pleasure in mathematics rested 

therefore particularly on its purely speculative parts, in other 

words I prized only that part of mathematics which was at the 

same time philosophy. (Bolzano [2] p. 64) 

This particular interest in mathematics see-. ns to have been awakened 

soon after he started attending the mathematics class of Prof. S. Wydra. 

The first of Bolzano's mathematical works Is dcdicat-, d to Wydra (see 

Note [2]on A87). In the academic year 1799-1800 he attended two classes 

in "higher mathematics" taught by Prof. F. J. Gerstner. After an out- 

standing, performance in the examination on these course Bolzano was 

granted permission to borrow an unlimited number of books from the 

University library and a stipend of sixty Gulden a year. 

In philosophy Bolzanos first Important study was of Baumgarten's 

c 
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Metaphysik (Baumgarten Cl] ). This was a standard university text of 

the eighteenth century and was largely an exposition of Wolff's philosophy. 

Although Bolzano speaks in his autobiography of his criticisms of the work 

he remained generally sympathetic to the rationalist methods and outlook 

of Leibniz and Wolff. Many of his fellow students at this time were under 

the spell of Kant. The first 
, 
edition of the Pritik der reinen Vernunft 

(Critique of Pure Reason) (Kant[], ]) had appeared in the year of Bolzano's 

birth 1781, and during the 1790's in Prague there was a group of students 

who spent several hours each day In communal reading of Kant's works. 

Bolzano studied the Kritik in 1798 and from the outset he disagreed with 

Kant's central claims concerning knowledge. In particular he regarded 

Kant's notion of a pure a prior[ Intuition as unintelligible. In the case of 

mathematical propositions he therefore opposed the view that the synthetic 

a priori judgements of mathematics are based on the pure intuitions of 

space and time. He pointed out (presumably referring to preliminary 

work on BG) that he had already proved several synthetic propositions of 

geometry "purely from'concepts". This is discussed further in Chapter 2. 

Independence of thought was something to which Bolzano attached great 

value. It was characteristic of his work on any subject to read the works 

of his pr:, Jecessors very carefully but always to proceed with his own 

Independent (and often original) ideas. 

In the autumn of 1800 he began three years of theologici. 1 study. He 



16 

was thinking a great deal at this time of whether or not to commit himself 

to the Church and possibly to take vows in one of the religious orders in 

Prague. He even a lly decided against the exclusively religious life for at 

least two reasons. Althc:. gh he was basically a perfectly orthodox Catholic 

he did not find his rationalist inclinations fitting as comfortably as he had 

hoped with his theological studies. Secondly, he came to realise that his 

real vocation and gift was as a teacher and educator, rather than as a 

pastor. During this time he read numerous works on education, making a 

particular'_j close study of Parizek's Lehrmethode (Parizek [1] ). This 

Interest in education, in practice as well as theory, undoubtedly influenced 

all his work. For example, his general and overriding concern for the 

clarity and correct ordering of concepts is likely to have been reinforced by 

the obvious educational value of ensuring that Ideas are introduced clearly 

and systematically. There are various references, even in the mathemat- 

Ical works, to particular difficulties likely to be experienced by students 

learning about an idea for the first time. 

Education was, however, only subsidiary to the main motive force in 

Bolzano's life which was not so much a matter of religion as morality. He 

laid great emphasis on his conception of the "highest moral law" which was 

always to choose in a given situation that aý`ion which was most conducive 

to the well-being of the whole. An example of the subservience of even 

religion to morality is the remark made by his teacher and friend Prof. Mika 

I 
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(quoted in Bolzano [2] p. 67) that,. "a doctrine is justified as soon as it can 

be shown that faith in it assures us of a certaibb moral benefit". This 

principle was clearly very significant to Bolzano. I i'r example, with ref- 

erence to the concept of divine revelation he says that it was not so much a 

matter of what, "the facts actually were in themselves but rather what 

kind of ides. of them Is the most edifying for us". (Bolzano's emphasis In 

Bolzano [2] p. 67). 

There thus arises an interesting tension in Bolzano's thinking. The 

religious principle just stated seems highly pragmatic and subjective. The 

mathematical ideal of always proving and presenting the true basis or 

ground for theorems and definitions seems to be based on a desire to conform 

to an objective truth or state of affairs. It is unlikely that both principles 

could co-exist in harmony in Bolzano's thought, at least as we should under- 

stand them today. It is perhaps the second one, the objectivity and truth of 

mathematics which is likely to be misunderstood. We should not regard 

Bolzano's research in pure mathematics as ultimately boing done for the 

sake of truth or for perfecting mathematics: rather it is an interesting, but 

serious, exercise in correct thinking. This value and purpose of mathe- 

matics is stressed at the opening of the Preface to BG (A12; BG, V). At 

least part of Bolzano's motivation here was probably that correct thinking 

should promote correct morality and correct action, I p. virtue. 

While pursuing his thec'ogical studies Bolzano was also preparing his 

c 
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doctoral thesis on geometry. This was accepted and published in 1804 as 

BG. He was awarded the degree of Doctor of Philosophy on 5th April 

1804. On the 7th April he was ordained and on the 19th April he was 

appointed (provisionally) to the newly-formed professorship in theology at 

the University of Prague. Such a position had been formed at all the univer- 

sities in the Empire by the Kaiser, then Franz I, for mainly political 

reasons. The purpose was ostensibly to curtail the current wave of 

liberalism and free-thinking. In addition to courses of lectures Eolzano 

was required to give twice-weekly sermons to the students and citizens"of 

Prague. He performed these duties with great seriousness and enthusiasm 

and he soon became highly respected and popular in Prague. 

However, Bolzano's appointment was viewed from the start with 

criticism and suspicion by the authorities h Vienna, the main reasons for 

this being his relatively liberal and supposedly unorthodox views in both 

theology and politics, and his refusal to use the authorised textbook written 

by Frint, the chief Chaplain in Vienna. His appointment was eventually 

only confirmed in 1807. Ills relations with the authorities were always 

uneasy and he was finally dismissed by imperial order in 1819, and after 

much wrangling he went Into retirement from 1821 with a State pensicn but 

with orders not to teach or publish in any way. Although these publication 

restrictions were relaxed later it is true to say that the five mathematical 
e 

works published in the early period of his life (1804 - 1817) v: are the only 

e 
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mathematical works published in Bolzano's lifetime. 

We conclude these remarks on the first part of Bolzano's life with 

some comment on his personal afflictions which testify to his remarkable 

powers of concentration -. -id industry. In tae period from 1813 while his 

teaching position was in constant jeopardy, he suffered the losses of his 

fifteen-year-old sister Franziska, his father (in 1816) and his younger 

brother Peter, a successful medical student (in 1818). In the preceding 

years he had devoted much time and attention to the education of both his 

brother and sister. Franziska's death brought on tubercular attacks In 

Bolzano himself which left him unable to lecture for the years 1813 - 1816. 

It was during this same period that three of the main works discussed here, 

BL, RB and DP were written and published. This was in addition to num- 

erous other unpublished works and notes on mathematics, logic, theology, 

ethics, politics and philosophy. 

r 
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1.3 The Primary Sources 

The primary source materials for the thesis. are the five works 

listed in 1.1. In this section we shall add some background and biblio- 

graphic details on these works. It will be useful first to indicate how the 

works are related to the thesis chapters in terms of their content. 

The subjects, or problems, which ßolzano deals with divide up 

fairly clemly into three areas: the foundations of mathematics, geometry 

and analysis. Accordingly these are the subjects of our main chapters. 

All the works have some significance for Bolzano's views on foundationll 

queo ions but it is BD that is specifically devoted to this subject. The 

works RB and BL are clearly on analysts and BG Is almost entirely on 

geometry. The rectification problem, considered in DP, involves analysis 

applied to geometry and although it is therefore mainly a contribution to 

analysis Bolzano uses it as an excuse to include various geometrical 

definitions and ideas. Thus BD and BG are the main subjects of Chapters 2 

and 3 respectively. Both BL and RB are dealt with in Chapters 4 and 5 

while AP is treated in each of Chapters 3 and 5. 

In the case of each of the five works Bolzano himself believed he had 

made an important and original contribution to a contemporary problem, 

and to cciumunicate this to the academic world was the immediate purpose 

of the publication. Ills first work, BG, which must have been written while 

Bolzano was completing his theological studies, presented air original 

r 
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approach to elementary geometry in which the correct arrangement of 

concepts and theorems was all-important. On the basis of this work, which 

was warmly commAnded by Prof. Gerstner, he was awarded the degree of 

Doctor of Philosophy. Th'; re were at least three quite favourable reviews 

of the work in the contemporary journals but it did not attract the attention 

for which Bolzano had hoped (see 1.4). Criticism and interest in his work 

from other mathematicians is something Bolzano particularly desired and 

never really experienced. 

On the title page of BD are the words "Erste Lieferung" ('Tirst Issue"). 

It was to be the first part of many in what Bolzaao intended as a complete 

re-organisation of all mathematical theories In accordance with his 

principles for the correct introduction of concepts and proofs. However, 

this grand project never materialised, apparently because he was so discou: '- 

aged at the poor response to BD. He explains in RB that BD, 

had the misfortune, with all the importance of its contents, of 

not even being an. iounced and reviewed in some learned journals, 

and in others only very superficially. This forced me to postpone 

the continuation of these contributions to a later time and meanwhile 

just to attempt to make myself better known to the learned world by 

publishing some papers which, by thei.: titles, would be more suited 

to arouse attention. (A455; RB, 27) 

r 
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He goes on to explain that this purpose of arousing attention to his work was 

to be served by the publication of BL, RB and "some other papers" (ho 

mentioned DP) but that these were waiting for a pubPsher. The problem 

of finding a publisher was clearly a difficult one: Bolzano ! ý. s a different 

publisher for each of the five works. Although never published (until 

recently) his manuscripts show that he had prepared drafts of the second 

issue of BD .... as early as 1810. (See Bolzano [1] Vol. 2A/5 Einleitung. ) 

It is difficult to date the writing of the works precisely but it is likely that 

each of the works BL, RB and DP had been prepared by about 1815. A 

footnote in BL (A312; BL, 32) refers to his discovery of a proof of the 

Intermediate value theorem, "It is already sketched out in a special paper 

and should soon be printed. " This, of course, was RB which was published 

In the Abh. - ndlungen der königlichen böhmischen Gesellschaft dc; r Wissen- 

schaften 5th Volume (Prague 1818). In 1817 it had been printed separately 

although the present author has never seen a copy of this printing. Bolzano 

was elected as ordinary member of the Royal Bohemian Society of Sciences 

in 1815. It is remarkable that though RB is brief, very well-presented and 

highly significant, as well as enjoying the circulation of the Abhandlungen..., 

there seem to be no contemporary reviews of the work. 

The work DP, which we have put last, was published in 1817 In 

Leipzig. This was the only on:; of the five not to appear in Prague and 

possibly its publication iri Leipzig contributed to its receiving at least two 

i 
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reviews in the contemporary journals. It Is Impossible to be certain, but 

it seems likely that this was written before 1816 and perhaps before RB was 

written, but published after the publication of RB. On A589; DP, 76 we read, 

"The foregoing work [i. c. DPI had been ready for printing for a long time 

when the paper of Dr. A. L. Crelle .... appeared, .... 1816, ... ". In all 

the Prefaces of his five works Bolzano follows a methodical and character- 

istic pattern of tracing the previous work on the particular problem con- 

cerned, showing its inadequacy and outlining his own procedure. In RB 

this Is foil jived, rather conspicuously, by a personal section mentioning all 

his other four mathematical works and his hopes for recognition and critic- 

Ism (Ä451-456; RB, 23-29). It is plausible, but only a conjecture, that this 

section was added, perhaps by way of advertisement for his other works, 

when he was assured of publication in the Abhandlungen... It is in this 

section that he says DP Is still waiting for a publisher. This is the only 

evidence we have, and It Is clearly far from conclusive even if this conjec-. 

ture were -, rue, that Dp was published after th3 first appearance of RB. 

Each of the five works, except for BL, has had a second edition pro- 

duced during this century. These editioas are as follows. 

94 ya Bolzana/Oevres do BG and DP both appear in Vol. 5 of §y Bern 

Bernard Bolzano/Bernard Bolzano's Schriften (Bolzano[3]) edited with notes 

by Dr. Jan Vojtdch, Prague 1948; BG Is on pp. 5-49 and DP is on pp. 67-138. 

It should be noted that both these second editions, although much clearer and 

easier to read than the first editions, contain errors or misprints which do 

' not occur in the respective first edition,;. D: the case of EG this is 
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compensated by the greater number of first edition errors that are corrected 

by Vojtdch. The first edition of DP has very few errors and is more reliable 

than Vojt6ch's edition. However, these are almost all fairly minor mis- 

prints which are easily detectable. Vojthch's notes are particulary useful 

for tue details of all the authors mentioned by Bolzano in these works. 

BD appeared in a second edition under the title, Philosophie der 

Mathematik oder Beiträge zu einer begründeteren Darstellung der Mathem- 

atik, edited with an Introduction and notes by Dr. Heinrich Fels. This was 

published by Ferdinand SchönIngh in Paderborn In 1926. There is also , an 

unaltered reprint of the first edition, with a new introduction by Dr. Hans 

Wussing, published by Wissenschaftliche Buchgesellschaft in Darmstadt 

in 1974. 

The second edition of RB appeared ißt the series Ostwalds Klassiker 

der exakten Wissenschaften Nr. 153 published in Leipzig in 1905. It was 

edited and supplied with notes by P. E. B. Jourdain. Again, although clearly 

laid out, ther9 are more misprints introduced in this edition than those 

corrected from the first edition. RB has been translated into French by 

J. Sebestik in Bernard Bolzano et son M6molre sur le th6orbme fonda- 

mental de l'Analyse in Revue d'histoire des Sciences 17 (1964) p. 12g. 

The authc: 's translation of RB which is given here on A430-489 has been 

published in Iiistoria Mathematica Vol. 7(2) (1980) pp. 156-185. There 

have also been translations in Czechoslovakian and Russian f6r details of 

which see f3olzano[l] Vol. E2/1p. 86. 
{ 
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1.4 Reviews of Bolzano's Works 

We shall list here the references to the contemporary reviews that 

we know about, together "ith brief summaries of their contents. 

For BG: 

(1) Neue Leipziger Literaturzeitung Dritter Band 95. Stück 

(1805) 
This is just half a page summarising the contents of BG 

with very little comment from the reviewer. 

(2) Allgemeine Literatur-Zeitung (Halle and Leipzig) Erster 

Band Nr. 26 Feb. 1806. 

A very brief and rather patronising review which is unfair 

in that It fails to Indicate the contents of the work and just 

states the reviewer's lack of sympathy for studying the 

basic cov-opts of any science. He disagrees with Bolzano 

that motion Is alien to geometry since it need not presuppose 

an empirical object. 

(3) HeidelbergischeJahrbücher der Literatur Erster Jahrgang 

Vierte Abtheilung pp. 156-158. Hiidelberg 1808. 

The reviewer gives a brief but fair summary of Bolzano's 
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distinctive approach to elementary geometry but then devotes 

half the review to the difference between theorems and 

problems. He criticises Bolzano's clay? ification of theoretical 

and practical geometry and his claim that all tha problems in 

Euclid really belong to the latter. The reviewer wrongly 

regards Dolzano's proof of Pythagoras' theorem (by similarity) 

as original and fails to see the errors in what he describes as 

the "very easy" theory of parallel lines which Bolzano gives. 

He commends the work as desPr ving attention and further study. 

For BD: 

Revision der Literatur Zweyter TEeil Vierter Band p. 313 

Heidelberg 1810 

This is only one small page and does no justice to Bolzai, o's - 

work. The reviewer quotes the definition of mathematics and 

some of the subsequent classifications aid explains why he 

believes Boizano has misunderstood Kant's distinction between 

intuition and concept. 

For BL and RB: 

No reviews known. 
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For DP: 

(1) Allgemeine Literatur-Zeitung Band 3 Col. 180-184 

Jena 1819 

This is a fairly detailed summary of the method Bolzano 

adopts to prove the formula for the rectification of a simple 

curve. The reviewer's account closely follows Bolzano's 

own summary in the Preface of DP. However, the review 

concludes by denying, with virtually no argument, Bolzano's 

two principle claims for the work that he avoids the use of 

infisitesirals and that it is a perfectly strict proof. 

(2) Leipziger Literatur-Zeitung No. 175,176 Col. 1392-1403 

1822 

This review is substantial but erratic in style and most unfav- 
r 

ourable to Bolzano. It begins with a faithful summary of the 

first part of the Preface of DP but then proceeds to deal at 

length (and with obvious sarcasm) with the geometrical defint- 

tions which are really Incidental to the main purpose of the work. 

Although there are several lengthy verbatim quotations from DP 

these are mixed up with the reviewer's own summaries without 

any indication of when a passage is actually quoted f. om DP. 

:, jme of the criticismsof the procedure Bolzano adopts for the 
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main proofs are fair and useful but the sweeping conclusions 

which deny the paper any mathematical value at all are quite 

unjustified and represent either a wilful attack or else a com- 

plete failure to appreciate Bolzano's purpose. Certainly this 

review could have damaged any mathematical reputation or 

attention Bolzano might have been gaining from his recent 

publications. 
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Chapter 2: Foundations of Mathematics 

2.1 Introduct[on 

At the opening of the nineteenth century in Europe it was normal for 

anyone pursuing an academic interest in mathematics or philosophy to be 

quite well acquainted with the methods and achievements of both these 
. 

fields of knowledge. Philosophers have generally held mathematics and 

its methods in high regard: both as a model of argument and as a body of 

knowledge of a kind which merits particular attention. And in the wake 

of the rationalist philosophers and of KanVs Critique of Pure Reason this 

was particularly true when Bolzano was studying mathematics and phil- 

osophy at the University of Prague. However, mathematics was certainly 

not free from criticism. Bishop Berkeley's attack (The Analyst Cif 1734) 

on the use of fluxions and their ratios in the calculus was fully justified. 

Although Euler, Lagrange and the Bernoullis (among others). were producing 

a vast amount of mathematics throughout the eighteenth century it was the 

widespre :. 1, successful applications of mathematics (in mechanics, astron- 

omy, military and civil "engineering") which maintained its hign reputation 

and sense of progress, and which justified its methods. In the second half 
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of the century there were only a few significant new branches of mathematics 

emerging: the study of differential equations, differential geometry, des- 

criptive geometry and the calculus of variations. Also in this period there 

were a number of disquietingly pessimistic remarks being riade about. the 

future of mathematics. Lagrange wrote to d'Alembert in 1781, "It appears 

to me that also the mine [of mathematics] Is already very deep and that 

unless one discovers new veins it will be necessary sooner or later to 

abandon it. " (Lagrange [11p. 368) In a report on the progress of mathem- 

atics since 1789 Delambre, secretary of the mathematics section of the . 

Institut de France, was able to write In 1810, 

It would be difficult and rash to analyse the chances which the 

future offers to the advancement of mathematics; in almost all 

its branches one is blocked by insurmountable difficulties; per- 

fection of detail seems to be the only thing which remains to be 

done. (Delambre [1], translation as In Kline L1] p. 623) 

Whether establishing secure foundations for mathematics was a 

matter of the "perfection of detail" has doubtless always been a matter of 

debate among mathematicians. But in the last two centuries there are 

many examples of what were foundational studies for one generation 

becoming a well established branch of mathematics for the next generation. 

Around 1800 the status of 'Euclid's parallel postulate, the summation of 

infinite series and the nature of the continuity of a function were among 
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many "details" which had still not been properly clarified. (It Is salutary to 

consider with hindsight the power and fruitfulness that such fundamental 

clarifications would unleash in the nineteenth century. ) Now the mathematical 

and philosophical aspects of these problems could really not be separated. 

As long as there was no notion of primitive and undefined concepts governed 

only by an axiom system, the clarification and definition of the fundamental 

concepts (such as line, surface, solid, the nature of infinity or of an infinite 

sum), was something which had to be done whether it looks to us now like 

mathematics or not. Consequently the philoo. ophical remarks in a mathem- 

atical work of this period may not always be regarded merely as customary. 

reflections, or speculations, on the mathematics. They may, on occasion, 

be no more than that, but on the other hand the; ' may be intended as an 

Integral part of the work and essential both for understanding the general 

development of the theory and for following particular proofs. This --; plies .. 

very much to Bolzano's work because as we have seen from Chapter 1 he was 

especially interested in this philosophical aspect of mathematics and believed 

that it was defects in this area that were the source of the difficulties and 

confusion in the geometry and analysis of his time. His overall purpose 

was to render mathematical theories clear and correct. This was seen as 

a worth-while work in itself, an excellent exercise for the mind which 

would be of great benefit for th'dse learning mathematics and as facilitating 

the further development of the subject. 
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To achieve this aim of clarity and correctness Bolzano embarks 

in the first period of his career on working out a programme of the system- 

atic analysis of proofs and concepts. In all the five published works with 

which we are concerned here this analysis begins with the critic! sm of all the 

previQQus work on a particular problem with which Bolzano was acquainted. 

This criticism is usually against method, e. g. the choice and definition of 

the concepts used or the arrangement and status of the theorems, rather than 

against defects in logical deduction. It generally leads to a refinement and 

development of the relevant concepts, such as those of angle and congruence 

in BG (see 3.2.1,3 ), or of continuity and convergence in BL and RB (see 4.3 

and 4.4). Sometimes the analysis of concepts seems to lead Bolzano to 

entirely new definitions, for example his distinction of distance and length 

and the neighbourhood definitions of line, surface and solid in DP (see 3.4.2). 

This programme of conceptual refinement and enrichment is explained 

and applied in general terms in BD. Here Bolzano discusses the nature of 

mathematics itself, its classifications and concepts, and the general require- 

ments for a correct proof. It is therefore the first published work devoted 

to what we should now describe as foundational aspects of mathematics. 

Some of the main ideas of BD have already been expressed (albeit more 

briefly and in application to geometry) in the earlier work BG. Thus it 

will be these two works which are our main sources for describ'ag and 

assessing Bolzano's views on the foundations of mathematics. The particular 
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concepts which arose in the light of these views in geometry and analysis 

are only mentioned here by way of example and illustration; the details and 

difficulties of their use are discussed in Lice appropriate later chapter. 

i 
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2.2 The Nature of Mathematics 

2.2.1 The Science of Quantity 

Although we might describe the leading mathematicians of the 

eighteenth century as analysts, the majority of those learning mathematics 

at this time would have regarded pure mathematics as more or less identical 

with geometry. We say here "pure mathematics" because it was normal In 

the mathematics textbooks to include subjects such as mechanics, optics, 

astronomy, geography, surveying, navigation, hydrodynamics, chronology. 

gnomonics etc. There would be a little arithmetic and algebra in the pi're 

mathematics, but the great contemporary adventures in analysis would be 

incomprehensible to all but the most devoted scholars. It was therefore 

geometry that was the cornerstone of mathematics and most "applied mathe- 

matics" was really applied geometry. In France mathematicians were 

generally referred to, even in the nineteenth century, as "les-geombtres". 

Geometry had for long been regarded as the "science of magnitude" 

(Mercator [1] 1678) or of "extended quantity" (Wolff [1] 1713, Ch. 1 Def. 1). 

Thus it was natural for the mathematicians who reflected on the nature of 

their subject to believe that all its various divisions would be covered by the 

general definition of mathematics as the "science of quantity" or "science 

of quantit! ;; s". For example, J. Schultz (an author to whom Belzano made 

frequent reference, see p. 87) gives the definition: 

Die Mathesis oder Mathematik heisst die Wissenschaft der 

C 
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Grüssen (scientia quantorum). 

(The science of quantities (scientia quantorum) is called 

mathesis or mathematics. ) (Schultz [I] p. 2) 

One of the principal German textbooks was a collection c. " ten volumes 

under the general title, Die Mathematische Anfangsgründe by A. G. K. stner, 

the first volume of which went through six editions between 1758 and 1801. 

Among the "Vorinnerungen" (Preliminaries) of this first volume we read: 

Die Mathematik enthalt eigentlich solche Lehren, vermittelst 

derer die Grossen sich durch Schlosse vergleichen lassen... 

! Mathematics properly contains those theories by means of which 

quantities can be calculated by deductions. ) (Kästner [i] p. 3) 

By far the most popular university text in French was Bezout's Cou rrs do 

mwtthdmatigue (1764 with many later editions) which opens as follows: 

1. On appelle, en g6nd'ral, guantit6, tout cc qui est susceptible 

d'augmentation ou de diminution.... Tout ce qui est quantit6 est 

de 1'objet des Mathdmatiques... 

(1. In general, everything that is capable of increase or decrease 

is called quantity.... Everything that is quantity is the object of 

mz. Thematics... ) (B6zout [1] p. 1) 

In his survey of algebra in the period 1758 - 1799 F. Cajori writes 

with regard to this kind of definition of mathematics that, "jr. ". io textbook 
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do we meet with an essentially different definition... It was almost universal 

with mathematicians"(M. Cantor [1) p. 76). 

It was thus natural that Bolzano should begin his consideration of the 

nature of mathematics with criticism of this definition. HA '; oncentrates on 

what is to be understood by the word "quantity". The distinction of discrete 

and continuous quantities, of what is countable and what is in some sense 

measurable, had already been made frequently. For example, in The Math- 

ematical Dictionary of Thomas Walter (1762) mathematics is defined as, 

"that science which considers magnitudes eitler as they are computable or 

measurable" (Walter [1] ). However, Eolzano does not discuss this distinc- 

tion nor do most of the authors from which he quotes or with which he was 

familiar. With A. G. Kästner (and, as we have seen, B6zout) quantity is 

defined abstractly as, "whatever is capable of increase or decrease" 

(Kästner [1]p. 1). In his Anfangsgrunde J. Schultz first defines quantity- as a 

kind of predicate of an object, "The determination of how many times an 

object must be combined with itself in order to prodc^e a similar object is 

called the magnitude or quantity" (Schultz [1] p. 2). Then he continues, 

"An object in which quantity occurs is called a magnitude or quantity' 

(Quantum). " In contrast to such abstract definitions there is the definition 
N 

quoted by Bolzano from an anonymous work, "A quantity is something that 

exists and can be perceived thr'. ugh some sense" (Anon. [1] ). Bolzano 

himself says he appeals to the ordinary use of language for his definition: 
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"a whole insofar as it consists of several equal parts, or still more generally, 

something which can be determined by numbers" (4111; DD, 4). This brings 

out both the substar-tive and predicative a. pects of the concept of quantity. 

It is not a predicate but, by directing our attention to a certain view-point, 

It makes way for a predicate. We shcald not speak of a "larger or smaller 

quantity", of a "known or unknown quantity" (in English or German) unless 

we had first used and understood these expressions with reference to a 

quantity of something. On the other hand, we are also in the habit of using 

such expressions abstractly, as though "something" actually was "determined 

by numbers". Bolzano finds fault with the definition of mathematics as a 

"science of quantity" on both of these interpretations of "quantity". Quantity, 

he says is considered 

in abstracto In pure general mathesis, I. e. logistics or arithmetic 

but it does not exhaust the content of even this science. The concept 

of quantity or of number does not even appear in many problems of 

the theory of combinations... For example, if one puts the question: 

which permutations - not how many - of the given things a, b, c, .. 

are possible? "(A111; BD, 4; on the terms "mathesis" and "logistics" 

see Notes[9], j101on A261, A262). 

Furthermore, in the applied parts :, 1 mathematics which consist of 

the application of quantity, for example to time and space, there will be 

axioms or theorems which concern only the object of the theory. For 
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example, there are the propositions that all moments, or that all points, are 

similar. Perhaps then, what is really meant, or should be meant, by the 

"science of quantit; " is, "the science of those objects to which the concept 

of quantity is especially a; pllcable" (A113; BD, 6). But of course this is 

hardly satisfactory. If the criterion is simply that quantity can be applied 

to an object for the theory of that object to be part of mathematics, then 

almost everything becomes mathematics. If it Is that such applicability 

should be frequent and occur in many ways the criterion is subjective and 

vague. 

So far, Bolzano's criticisms are very reasonable and even under- 

stated with respect to 18th century mathematics. The "science of quantity" 

definition car. never in fact have been a successful way to delineate the 

domain of mathematics. (Cajori remarks on the non-quantitative Greek 

problem of determining whether four given points lie in a plane(MJantör[l] 

p. 76). It Is much more like a rough working definition supplying what Is 

given by etymology in the case of subjects like philosophy, theology and 

metaphysics, but is lacking in the case of mathematics. 

2.2.2 Bolzano and Kant 

It has in the past often been regarded as a proper task of philosophy 

to determine and distinguish the true subject-matter of the particular' 
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branches of knowledge. Bolzano certainly believed this can and should be 

done not only for mathematics (and other subjects) as a whole but also for the 

classification of its various parts. He quotes approvingly Kant's criticism 

on the contemporary custom of distinguishing mathematics from philosophy 

by making their objects quantity and quality respectively: "by this the effect 

is mistaken for the cause" (A109; BD, 2). Bolzano thus maintains that it is 

not part of the essence of mathematics that it deals with quantity, this is 

merely a cunsequence of its true nature. Although this is as far as Bolzano's 

approval of Kant goes on this matter he adds an Appendix to BD (A242; BD, 13, ) 

which is devoted to Kant's account of mathematics. ' However, it appears 

, from this more detailed study that Bolzano fundamentally misunderstood 

Kant, so we shall now give a brief outline of Kant's definition of mathematics. 

Our purpose here is not to describe the full extent of Bolzano's misunder- 

standing or account for its reasons but only to indicate the specific influence 

Kant had on Bolzano's thought on the nature of mathematics. 

Kant's account of the nature of mathematics is a highly specialised 

account in terms of the epistemology extensively elaborated in the Critique 

of Pure. Reason. Mathematics is said to be the science of the construction 

of concepts. To construct a concept means to exhibit a priori the intuition 

which corresponds to the concept. Intuitions arise through our sensibility 

and are characterised by their immediacy in relation to their object. 

They may be empirical (arising through sensation) or pure and a priori 
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(representing the form of our sensibility). Concepts, on the other hand, 

arise from the understanding and are things which are thought. Intuitions 

and concepts constitute the elements of all our knowledge, so that neither 

concepts without intuition; In some way corresponding to them, nor intui- 

tions without concepts, can yield knowledge. Both may be either pure or 

empirical. Now Kant claims that mathematics and philosophy are the two 

fields where reason achieves genuine synthetic a priori knowledge and his 

main concern (in the passages to which Bolzano refers in BD, I. §1, §5 (A109) 

Is to distiz. guish these fields of knowledge from one another rather than to 

give a complete definition of either; The distinction does not so much lie 

in their objects (these overlap to some extent) but exists by virtue of "the 

mode in which reason handles that object" (Kant (11 p. 578). Philosophy 

confines itself to universal concepts; mathematics proceeds essentially 

to Intuition in which It considers th3 concept In concreto, "in an intuition 

which it presents a priori, that is, which it has constructed, and in which 

whatever fellows : Mom the universal conditions of the construction must 

be universally valid of the object of the concept thus constructed" (Kant [1) 

p. 578). 

Bolzano rejects the Kantian definition of mathematics on the 

grounds that he believes the concept of a p''re a priori intuition is con- 

tradictory (A116; BD, 9). But he nowhere explains why he believes this. 

It might be reasonable to doubt the existence of pure intuitions In Kant's 
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sense (he himself, of course, argued that there are two such, space and 

time), but to claim that they are contradictory suggests either a wilful mis- 

interpretation or cn1y a cursory study of Kant's work. It is extraordinary 

that in BD Appendix 02 (A'1145) Bolzano writes: 

If we then ask what a pure intuition is meant to be, then it seems 

to me at least that no other answer is possible than: an intuition 

which is combined with the necessity that it must be so and not 

otherwise. 

This is aa invention of Bolzano's and it does not, as suggested, arise from 

an omission on Kant's part. On the contrary, Kant repeatedly offers in 

the Critique of Pure Reason the explanation that a pure intuition is the form 

of our sensibility by virtue of which appearances (I. e. empirical intuitions 

arising through sensation) can be ordered in certain relations, for example, 

in spatial and temporal relations (Kant [i] p. 66,67,92). However, the 

source of Bolzano's misunderstanding in this respect seems to be in the 

basic idea of an intuition. Again in BD Appendix §2, (A245), he answers 

the question of what intuitions are by quoting the distinction made in the 

Logik (Kant, [2] (1800)p. 96) between intuitions and concepts; these are con- 

trasted as singular ideas (repraesentio sin lams and general or discursive 

Ideas (repraesentio discursiva). This is simply a logical distinction with 

respect to quantity and, though it may also be found implicitly in the other 

main passages describing intuitions and concepts in the Critique of Pure 
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Reason, It Is completely Inadequate as a proper characterisation of these 

central kinds of Ideas. A contemporary reviewer of BD (see 1.4 for 

reference) made the point (perhaps with considerable restraint) that Bolzano 

would not have mistaken the intuitive nature of mathematical knowledge if 

he had considered not just one of Kant's explanations of the difference 

between int'zition and concept but had taken all his references on this matter 

into account. Indeed to interpret an intuition simply as a singular idea or 

an idea of an Individual is fraught with confusion. This is explained with 

specific reference to mathematics by Hartmann and Schwarz in the Intro-' 

duction to their translation of the Logik. They write as follows: 

In general the uniqueness or singularity of the object of a con- 

struction has nothing whatsoever to do with the singular or 

particular aspect of an abstracted or analytic concept; .... 

It is thus false to say, as It is sometimes done, that the 

individual In a mathematical Intuition has anything to do with 

the individual of an abstract concept.... or that, 'in a math- 

ematical argument general concepts are considered by means 

of their representatives. ' For what Kant does say is that to 

construct a concept is the same as to exhibit, that is, show up 

in space and time, darstellen, a priori an intuition which 

corresponds to the concept; that this is the construction of a 

schema.... (Kant [2] n, ci. ). 
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It seems to have been exactly the confusion referred to here that Bolzano 

makes when he disputes that the certainty of mathematical knowledge can 

possibly be based on Intuitions. He writes in BD Appendix 07 (A251): 

Kant seems to want to say, If I combine the general concc; nt, 

e. g. of a pointy or of a direction or distance, with an Intuition, 

I. e. present to myself a single point, a single direction or 

distance, then I find that this or that predicate belongs to these 

single objects and feel at the same time that this is also th3 

case with all other objects which belong under this concept. 

Bolzann then claims that this feeling cannot arise from what is single and 

individual in the object (the intuition) but from what is general in it (the 

concept). Possibly this is why he claims at BD, I§6 (A116) that the concept 

of a pure a priori intuition is contradictory: that it purports to give univer- 

sal and necessary knowledge on the basis of an individual. However, it is 

sufficiently proved that this is based on an inadequate understanding of 

Kant's notion of intuition from the quotation from the Critique of -ure 

Reason given on p. 40 and from the quotation of Hartmann and Schwarz above. 

In spite of this somewhat cavalier treatment of Kant, it is clear that 

In composing BD Bolzano was often influenced by him and that this was not 

always In tVrms of opposition. The two examples which are most relevant 

here are the problem of explaining the certainty of mathematical knowledge 

and the task of correctly separating mathematics from philoso; )hy. It is 
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quite clear even in the earlier work BG that for Bolzano the purpose or 

existence of a proof of a proposition is not to assure as of the certainly of 

that proposition. We do not (or should not) become --V more sure of the 

truth of a proposition the "better" It Is proved. There are %any elementary 

propositions for which we are certain of their truth before we consider how, 

if at all, they may be- proved. It is reasonable to expect some explanation of 

such unusual certainty In our knowledge. Kant had this explanation available 

in the a priori nature of the intuitions used in the construction of concepts in 

mathematics. But since this had been misunderstood and rejected by Bolzano 

he had to seek elsewhere. Instead of resorting, like Descartes, to the 

clarity and distinctness of mathematical ideas, he appeals to our (supposed) 

capacity to test mathematics. Fie says that certainty and obviousness arise 

because one can very easily test the results of mathematics by 

intuition and experience. For example, that the straight line 

really is the shortest one between two points is proved by every- 

body by innumerable experiments a long time before we can prove 

it by deductions. Also the well-known obviousness of mathematics 

gradually disappears where the experience Is lacking. (A257; BD, 150). 

This makes It sound as though there is no difference In kind between math- 

erratical knowledge and that of the natural sciences, that it Is just a matter 

of degree and that mathematics has been particularly well confirmed. The 

certainty of pure or abstract mathematics seems to derive from its 
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applications or "results" being confirmed. But it would be an anachronism 

to make Bolzano a thorough-going inductive empiricist. He did not believe 

the truth of a mathematical proposition is established by any sort of induction, 

though our confidence In such a proposition may be strengthened by wide- 

spread and frequent confirmation. Nor did he regard the "experience" by 

which mathematical results can be tested to be confined to sense experience. 

He speaks of "intuition and experience" and by "intuition" Bolzano means (at 

this stage in his thought, see A255; BD, 148) something like a mental 

image (albeit of an individual) which need not have its origin in sensation. 

In principle an a priori "thought experiment" could falsify a mathematicd 

1. result . 

Bolzano agrees with Kant that mathematics and philosophy (or, for 

Bolzano metaphysics) are the "two main parts of our a priori knowledge" 

(A120; BD, 13). It Is therefore important in defining mathematics to disting- 

uish it as carefully as possible from philosophy. In doing so Bolzano Is 

led to develop his definition into an original and logical characterisation 

of mathematics which is the forerunner of modern views on mathematics. 

We shall now consider Bolzano's own definition of mathematics which he 

presents and discusses in BD, I3§7-10(A117-123). 

r 
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2.2.3 Bolzano's Definition of Mathematics 

Bolzano claims that the main outline of his definition and the sub- 

sequent classification of mathematics is original but he acknowledges the 

influence of a review which he quotes from as follows: 

Quantity is only an. object of mathematics because it is the most 

general form, to be finite, but in its nature mathematics is a 

general theory of forms. Thus, for ; xample, is arithmetic, ' 

insofar as it considers quantity as the general form of finite 

-things; geometry insofar as it considers space as the general ' 

form of Nature; the theory of time insofar as it considers the 

general theory of forces; the theory of motion Insofar as It 

considers the general form of forces acting in space. (A117; BD, 10) 

(The reference Bolzano gives for this review is "Leipz. Litteratur-Zeitung 

(1808 Jul. St. 81)" but the title of th' journal should be, Neue Leipziger 

Literatur-Zeitung. It Is a vigorous and interesting review but there is no 

indication of the iden4lty of the author. ) Bolzano's definition of mathem-, 

atics is: "a science which deals with the general laws (forms) according to 

which things are regulated in their existence" (A118; BD, 11). By "things" 

he includes anything "which can be an object of our perception" and he 

explains in the same passage that this reftrs to intuitions and concepts as 

well as things with "objective existence". In speaking of "the laws regulating 

their existence " he means to Indicate that it Is not for mathematics to prove 

C (. 
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the actual existence of anything, it is only concerned with "the conditions 

of the possibility" (A119; BD, 12) of anything. Such laws are general because 

t 
they always concern whole classes of things and never particular individuals. 

Thus there emerges her_, with the reviewer quoted above and with Bolzano, 

possibly the first printed statement of something like the modern conception 

of mathematics as being primarily concerned with structure, with the most 

general features that hold for classes of possible entities. 

It is too wide a definition because although recognising that math- 

ematics caamot be confined to quantity Bolzaao has admitted, quite deliber- 

atcly, subjects (such as the theory of causation) which have never been 

generally accepted as part of mathematics. We must agree with Menninger 

that this concept of mathematics takes the subject "into the areas of phil- 

osophy, metaphysics or epistemology according to our interpretation of the 

expression 'conditions of the possitflity'. " (Menninger [11 p. 8). The 

weakness of the definition, and indeed his whole philosophy of mathematics 

is traced by MennLiger to two main sources (Ibid pp. 7-15). Firstly, Menninger 

says that the boundaries of mathematics can only been seen clearly and 

defined from within mathematics itself; r3olzano's view and definition of 

mathematics were "from outside". This Is obscure. Secondly, he claims 

it is the lack of attention on Bolzano's part to any proper consideration of 

epistemology that leads to his various errors. This is surely a sound and 

important criticism. Bolzano avoids most of the problems Kant is seeking 

C. 
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to answer in his Critique of Pure Reason by assuming our knowledge 

a. priori of conceptual truths which describe the logical structure governing 

the reality of things outside us. However, Bolzano was not purporting to 

write a treatise on philosophy in BD and Menninger is wrong to attribute to 

him the idea that our knowledge of these conceptual truths is "beyond question". 

The task of proving, from a priori concepts the real existence of cer- 

tain objects is relegated by Bolzano to metaphysics. He makes the distinction 

clear: 

mathematics concerns itself with the question, how must things 

be made in order that they should be possible? Metaphysics 

raises the question, which things are real - and indeed (because 

it is to be answered a priori) - necessarily real? Or still more 

briefly, mathematics would deal with hypothetical necessity, 

metaphysics with absolute necessity (A121; BD, 14). 

It is explained that this hypothetical form Is not always conspicuous because 

the premisses, or conditions, are often common to the whole subject - for 

example in geometry - and they are "tacitly assumed". Here then Is a 

logical counterpart of the "structural" definition of mathematics. We are 

reminded of Benjamin Peirce's definition, "mathematics is the science 

which dra;; s necessary conclusions" (Peirce [1] ), and Russell's definition, 

"pure mathematics is the class of all propositions of the form, 'p implies 

q'. " (Russell, [11 ) 

C 
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Ironically Bolzano now includes Kant among those whose views 

support and confirm this account of mathematics. He quotes Kant's definition 

of pure natural science as a science of the laws which govern the existence 

of things (phenomena); and claims that this easily leads to h'. s definition of 

mathematics. The point is that pure natural science Is virtually mechanics, 

or at least, as Kant used to call it, "pure mechanics", and this is a part of 

mathematics. Now if we treat the other parts of mathematics as Kant here 

treats mechanics, the general features of the resulting definitions are 

summed up in Bolzano's first definition, thii-j: 

Time and space are also two conditions which govern the existence 

of appearances, chronometry and geometry which consider the 

properties of these two forms in 6bstra3to deal likewise, though 

only indirectly, with the laws which govern the existence of things 

(I. e. things perceivable by the senses). Finally arithmetic, which 

deals with the laws of countability, thereby develops the most 

general laws according to which things must bA regulated in their 

existence, even in their ideal existence. (A122; BD, 15). 

C 
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2.3 The Classification of Mathematics 

As th; subject has developed the classification of the various branches 

of mathematics has ; become increasingly difficult and intractable and yet it is 

not regarded today as a serious problem, except possibly by librarians and 

publishers. It is a matter of practical, rather than theoretical, significance. 

However, for Bolzano and many of his contemporaries such as KRstner and 

Schultz it was a central Issue. For they regarded it as the business of 

science, and mathematics in particular, not only to discover new truths but 

to arrange them in a "true and natural order". This classification was not 

simply a matter of organising existing mathematical theories, rather It' was 

to represent faithfully the true divisions of mathematics. A definition which 

Is intended to express the essential nature of mathematics now assumes an 

important and determinative role in that It can be used to produce a sort of 

"ideal" or theoretical classification with which existing theories should 

match, at least approximately. 

The obvious response to an attempted definition of mathematics is 

to look at various branches of mathematics and their theories to see In 

what way, and how closely, they conform to the given definition. This is 

what, the reviewer quoted above (from BD, I, §7(A117))attempts to do, albeit 

In a very rough and ready way. It Is an apps each which starts from the 

actual parts of mathematics and compares them with the definition. 

Bolzano's approach is in the opposite direction; starting from the general 

C. 
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definition he applies subsidiary concepts and logical processes to descend 

to what the particular branches of mathematics should be. 

He first distinguishes between classifications which are made on 

"a scientific basis" and those which are simply practical or conventional. 

Also there is the distinction to be made between a classification of math- 

ematics as a whole and the classification of a particular discipline such as 

geometry. It is with the latter in mind that he explains in BD, II, §9(A120) 

what he means by a "proper classification", but there Is no reason to 

suppose that there is any difference in princi? le between the two kinds of 

classification. He claims that every genuine classification is a dichotomy. 

So for a classification of a concept A we require some concept B which can 

be consistently adjoined to, or excluded from, A to produce a classification 

of the form (IA cum B), (A sine B)]. 

The use of classification is one means to aid the achievement of 

Bolzano's [deal of each part of mathematics being presented in its correct 

order. He remarks that this is particularly difficult because for a proper 

classification it is necessary to be clear about the simple concepts and 

axioms for each part of mathematics. 

To obtain the first two main divisions of mathematics Bolzano does 

proceed exactly as described above by means of dichotomies. However, 

this is not made very clear In b. s account in BD, I, §11-13(A123-129) and so 

we shall summarise It here from this point of view. 

C 
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Mathematics is the science of the laws which govern the existence 

of things. The laws which apply to all things of whatever sort will form 

general mathesis (and Include arithmetic, theory of combinations etc. ). 

Those laws which apply nn'. y to some things will then be gathered together 

into appropriate classes according to the kinds of things to which they apply. 

These theories are parts of particular mathesis and are all subordinate (as 

species to genus) to the general mathesis. The next division is between 

things which are necessary in their existence or being and those that are 

not (I. e. tP ose which are free and not subject to the laws of causality). The 

latter sort of thing produces no new parts of mathematics because they are 

subject to no laws except the most general, e. g. concerning number, which 

are already L-icluded in the general mathesis. The things which are nec- 

essary maybe so simply and In themselves (I. e. God, a. subject of meta- 

physics), or conditionally, presupposing something else (e. g. the speed of 

a moving body). This conditional, or hypothetical necessity is the occasion 

for the introductiofl of Bolzano's very general concept of a "ground" (Grund). 

A cause (Ursache) Is a ground which acts in time. The objective relation- 

ship of ground and consequence (Grund und Folge) is one holding between 

(timeless) propositions. (See later 2.4.2. ) The general conditions govern- 

Ing the becoming or being of everything which Is produced through some 

ground is the first part of particular mathesis and Is called the theory of 

grounds or aetiology. (See Bolzano [1] Vol. 2A/5 (1977) for the previously 

( 
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unpublished work on thispart of mathematics which Bolzano intended for the 

second instalment of BD. ) 

At this stage Boizano breaks off the sequence of dichotomies concern- 

Ing things considered objectively and introduces the notion 4 our perception 

of things. Anything we perceive as real is perceived in time and if it is also 

perceived a. s outside ourselves It is perceived In space. Time and space are 

conditions governing all appearances of things, and therefore, says Bolzano, 

indirectly governing things themselves. Their properties when they are con- 

sidered in abstracto produce the second ar_%, third parts of particular mathe- 

sis, chronometry and geometry. When considered not in abstracto but as 

containing actual things their properties give rise to the theory of causes 

(temporal aetiology) and mechanics respectively. The resulting classifica- 

tion appears in a table on BD, 37(A144) which may be summarised as follows. 

We have added the subjects corresponding to each division In square brackets. 

A. General mathesis (things In general) 
arithmetic, 

combinations, 

algebra, analysl3 

B. Particular mathesis (particular things) 

I. Aetiology (necessary things) [probability] 

H. (necessary things perceivable by the 

senses) 

a. (their form in ibstracto) 

a. theory of time ß. theory of space 
[geometry] 

b. (things perceivable by the sense in concreto 

a. temporal aetiology ß. pure natural science mechanics] 
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The Introduction of time and space as the forms or conditions of 

appearances might seem to be taken over from Kant but the origin of intro- 

ducing time and space in this way goes back at least to Leibniz (for example, 

in his Metaphysical Foundations of Mathematics, Leibniz ft]). Under 

general mathesis Bolzano himself only specifies "arithmetic, theory of 

combinations and several other branches", presumably algebra and analysis 

should also be included here. 

This classification hardly seems to have been a great success. It 

falls to distinguish - In the general mathesIR - between major areas of 

mathematics which, while perhaps not distinct are regarded as distinguish- 

able, and it introduces subjects such as aetiology and the theory of time 

which have not yet contributed very significantij to mathematics. There 

seems little advantage here and considerable complication, compared with 

the classification of quantity into discrete and continous, producing ai ith- 

metic and allied subjects from the former and geometry and analysis from 

the latter. Thus it can hardly be claimed (as Bolzana suggests, A123; BD, 16) 

that his classification of mathematics vindicates his definition. 

Finally Bolzano considers various other proposals for classifying 

mathematics. One of his most interesting suggestions here is that the best 

procedure to distinguish an elementary mathematics from a higher math- 

ematics might be to Include In tae latter the theories containing the concept 

of infinity (whether great or small) or that of a differential. These were, 

f 
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of course, concepts which were then ill-defined and poorly understood. 

Bolzano explains, 

If in the future it should be decided that the i'finite or the 

differential is nothing bißt a symbolic expression ju°'. like 

and such like, and if also it turns out that the method 

of proving truths by merely symbolic inventions is a method 

of proof which (although quite special) Is always correct and 

logically admissable, then I believe It would be most 

expedient to continue to include the c )ncept of Infinity and- 

other equally symbolic concepts In the domain of higher 

mathematics. Elementary mathesis would then be that which 

accepts only real concepts or express cs In its exposition - 

higher mathesis that which also accepts merely symboli3 

ones. (A137, BD, 30). 

Here for the first time a definite procedure is suggested for just- 

ifying the inclusion in a mathemtical theory of symbols which could not be 

interpreted as denoting. It bears a striking similarity to Hilbert's pro- 

gramme for dealing with infinite number symbols as ideal elements in 

theories whose consistency would be-proved by means of strictly finite 

methods. 
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2.4 The Concepts and Proofs of Mathematics 

2.4.1 Conceptual Correctness 

In spite of the prevailing interest in the classification of the various 

branches of mathematics its effect was to be seen mainly in the organisation 

of the many branches of applied mathematics. For example, Montucla lists 

about twenty topics under the general division of "physico-mathematics" In 

his Histoire des math6matiques (Montucla [1] ). Classification in this context 

was essentially a cataloguing exercise which was carried out successfully 

when theorems and results could be grouped according to their "object"' 

e. g. optics, astronomy, hydrodynamics etc. In pure mathematics this was 

not so easy and only geometry could clearly be distinguished from the 

"arithmetic family". Now Bolzano's chief concern and criticism of the pure 

mathematics of his time was its disorder and confusion. This was not a 

matter which simply required a better sorting of results into compartments. 

Bolzano believed that a mathematical theory was not just a collection of 

associated theorems, it was the representation of "hypothetical necessity". 

That is, every theorem or true proposition should be presented with its 

correct ground , which may itself consist of a finite sequence'(or "tree") 

of ground-consequence relations. Therefore a theory consisted essentially 

of finite praof-sequences which could be broken off at any point to produce 

theorems. The disorder and confusion referred to above was in these 

proof-sequences; concepts and methods from one theory were äeing employed 

C, 
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in another theory. The obvious and most far-reaching example of this was 

the use of geometrical ideas in analysis. Certainly with Newton, and then 

for much of the eighteenth century, a function of one variable was Identified 

with a plane curve. The concept of motion, often used in arometry at. this 

time, produced what might be called aNdynamic limit concept which did . iot 

favour the development of an arithmetic concept of limit. Ever since Euclid 

many algebraic results had been interpreted, proved and developed in purely 

geometrical terms. Such confusions could, of course, never occur in a 

formal system or even such a system consI tently interpreted according to 

given rules. But such an idea was not clear to Bolzano, however much we 

can now, with hindsight, see It Inherent in the notion of "hypothetical 

necessity". For Bolzano the starting points, cr axioms, of the proof- 

sequences in a theory are the propositions containing simple, but always 

meaningful, concepts. And they are true by virtue of these meanings. In 

order to claim that the disorder of proofs was not just an aesthetic dcstre 

for the uniformity of proof and conclusion, It was th'refore necessary to 

assume that there are genuine conceptual divisions of knowledge, or of 

truths, rather like the sharp divisions into species that were believed to 

exist in the organic world. This assumption was central and essential to 

Bolzano's early mathematical work. The Immediate consequence for 

mathematics was summed up early in the first work, BG, as follows: 

I could not be satisfied with a completely strict proof if it were 

C is 
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not even derived from concepts which the thesis to be proved 

contained, but rather made use of some fortuitous, alien, 

Intermediate concept [Mittelbegriff], which Is always an 

erroneous /Aezaßacts Ecs äo ao Yevos [transition to 

another genus) (A15, BG, VIII) 

Thf re are really two ideas conflated here: that of a correct proof and 

that of a correct concept, the correctness in each case being relative to a 

given conclusion or theory. The correctness of a concept therefore depends 

on its context which is often a proof, and the correctness of a proof tray 

depend on the concepts it involves. We shall therefore discuss these Ideas 

together. 

According to Bolzano logical or formal correctness is not the sole 

criterion of an adequate or correct proof: the concepts involved in the 

deduction are to be appropriate, in some sense, to the conclusion. For 

example, with respect to the elementary theory of the triangle and parallel 

lines the concepts of straight lino and direction are appropriate, while those 

of motion and the plane are deemed inappropriate. By considering these 

last two examples we can distinguish several ways in which concepts can be 

inappropriate. First, the concept of motion essentially belongs to a 

different subject from geometry; It requires the empirical concept of an 

object which occupies different positions in space and this is alien to the 

science which only studies space. To-employ the idea of motion Ina 

4' 
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geometry proof Is an example of a Eta ßa ots Et,; -A\ o yevoc 

(transition to another genus). Bolzano uses tL e phrase again in RB(A434; RB, 6) 

when distinguishing within mathematics between geowctry and analysis. But 

in the present case of the concept of motion there Is a further, related reaso"L 

for its rejection in geometry: It is conceptually out of order. We are not here 

concerned with a deductive or logical ordering of propositions but rather an 

ordering of concepts whereby, if on analysis of concept A It is found to con- 

taro a concept B as an essential Component, then B is prior to A. This 

relationship of containment between concepts is metaphorical and ambiguous, 

we discuss it further later in this section (p. 6 7). But in the sense evidently 

intended here the concept of space is prior to that of motion and so the use 

of motion is not merely out of place in geometry In the sense of being alien, 

it is strictly circular. Any attempt to prove a geometrical proposition In 

this way requires a proof of the possibility of a suitable motion and this in 

turn will depend on the truth of the original geometrical proposition to be 

proved. Now it may be asked here,, why should the proof of the possibility 

of a certain motion motion be required? It is not (at least in many cases) 

that intuitive clarity is lacking, nor even that intuition Is inadmissable In 

geometry; rather it Is that where-ever possible it is the mathematician's 

duty to uncover the basis or ground for every judgement occurring in a 

proof. In this case, it would be claimed, the true ground for the possibility 

of the motion lies not in the :. -ituition, but in the geometrical proposition. 

C 
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Bolzann is primarily concerned in BG to find, as he believesfor the first 

time, the correct proofs for elementary geometry, and it is a necessary 

condition for such proofs that they employ only concepts which are appro- 

priate to the theorems concerned. 

The other concept which is rejected as inappropriate is that of the, 

plane. This may appear surprising when nanny of the results which Bolzano 

proves are found gathered together into a subject which has usually been 

referred to as "plane geometry". It is not, of course, that the plane is not 

a geometric concept; It is just that it is premature to employ the concept of 

plane when proving theorems which only concern angles, straight lines, 

triangles and parallels. The claim this time is not that a logical circularity 

would be involved in using the notion of plane but that- through analysis of 

these concepts and their development from the simpler to the more complex, 

the plane comes later than all those others just mentioned. Bolzano seems 

to have in mind here a kind of hierarchy of concepts which proceeds from the, 

simpler to the more complex and whose structure is reflected in the defini- 

tions. Then the principle being used here is that for the proof of a result 

involving concepts at a certain level in the hierarchy we should not pre- 

suppose any concepts from a higher level in the hierarchy. To presuppose 

a concept :, i a proof or method means to proceed In any way which requires 

us to think, or to have, the given concept. For example, the use of Euclid's 

parallel postulate presupposes the plane and so does the trea: nent of angle 

I 
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as a quantity (see 3. Z. 1 ). It may be noted that while a system of two 

intersecting straight lines, required for the concept of angle itself, undoubt- 

edly determines a plane this fact is irrelevant to the question of the priority 

of the concepts. It is unnecessary to have or to use the concept of the plane 

in order to understand what is meant by the system of lines. There are, 

for example, many surfaces other than the. 'lane which pass through, though 

are not determined by, a pair of intersecting lines. 

Proofs which ignore this hierarchical principle will, of coarse, often 

succeed in the sense that they are logically correct and perfectly convincing, 

but the point of adhering to this principle is that the proof should then follow 

and reflect the objective dependence between truths. It is this purpose which 

is Bolzano's central motive in the early mathematical works. 

Thus to summarise what we might call the "principle of conceptual 

correctness", there are three ways in which the introduction of a concept 

into a proof may be Incorrect. Firstly, it may be of an alien kind not belong- 

ing to the subject concerned and not being involved in the conclusi"cn to be 

proved, e. g. motion In geometry. Secondly, it may be "out of order" and 

this itself can occur in two ways. The introduction of the concept may lead 

to a proof which is logically circular (again motion is an example). Or the 

concept rMy have been drawn from a higher level than any concepts in the 

conclusion (according to some hierarchical development of concepts in order 

of increasing complexity), and thus it would be premature, e.:,,. the plane 

in elementary geometry. 

ý, 
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2.4.2. Ground and Consequence 

Now we shall consider in more detail the nature of the "objective 

dependence" which, according to Bolzano, mathematical proofs should 

follow and . epresent. The crucial idea is the relationship of gruund and 

consequence Grund und FolgeJalready mentioned briefly in Sec. 2.3. 

Bolzano does not argue for the existence or need of such a relationship. 

He writes at the beginning of the second main section of BD: 

this much seems to me certain: in the realm of truth, i. e. in the 

sum total of all true judgements, a certain objective connection 

prevails which is Independent of our accidental and subjective 

recognition of it. As a consequence of this some of these 

judgements are the grounds of others and the latter are the 

consequences of the former. To represent this objective 

connection of judgements, I. e. to choose a set of judgements 

and arrange them one after another so that a consequence is 

represented as such and conversely, seems to me the proper 

purpose to pursue in a scientific exposition. (A146; BD, 39) 

Throughout BD Bolzano says very little about the nature of this 

objective connection between truths. Possibly he thought it obvious and 

generally acknowledged. In the Wissenschaftslehre of 1837 he remarks 

in a note (Bolzano[4], Vol. 11,95198) that he was confirmed in this view of, the 

existence of a real relationship of consequence between truth because. 11 so 

C,. 
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many others had been of the same opinion". He mentions there also the 

Aristotelian distinction between truths which show that something Is the case, 

and those that show why it Is the case. However, the distinction made by 

Aristotle, and what would be "generally acknowledged; is that w"a can 

, 
recognise 

,a 
difference between a fact and an explanation for that fact. 

Bolzano's claim regarding an objective com. ection between truths or judge- 

ments seems more like a theory to account for this general recognition, 

much as we might postulate physical objects to account for certain groups of 

sensations. It is not at all clear that we have any direct apprehension of 

such an "objective connection" or "objective dependence" between truths. 

Furthermore, an important criticism which Bolzano nowhere deals with 

would be that even :, what Is recognised in the above distinctions of "that" and 

"why", or a fact and Its explanation, is not so much a connection between 

truths but rather a connection between the circumstances or objects referred 

to by those truths. The only answer we can give to this is to consider now 

Bolzano's remarks on the difference between the ground-consequence 

relation and a cause. 

The standard example used in the Wissenschaftslehre to explain the 

ground-consequence relation is the following. Consider the propositions: 

(1) It is warmer at X than at Y. 

(2) The thermometer Is higher at X than at Y. 

If we know either (1) or (2) then we also know the other, or at least it Is a 
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basis for knowing [Erkenntnisgrund) the other. But objectively (1) is the 

ground for the consequence. (2) and not conversely. We have already men- 

tioned Bolzano's explanation of a cause as a ground which acts in time. It 

appears that he intends a ground as a kind of propositional counterpart of a 

cause in the material realm. Now we are quite accustomed to saying with 

regard to the above propositions, "{1) is the cause of (2)" when what we 

really mean is that the circumstance described by (1) is the cause of the cir- 

cumstance c escribed by (2). There is therefore a kind of derived connection 

between the propositions (1) and (2) by virtue of the connection between the 

circumstances to which they refer and which Is objective in the same de.: Ivcd 

sense. It might even be useful to give this secondary connection a name like 

"ground". However, this was certainly not how Bolzano was thinking. His 

claim is that the ground-consequence relation Is a relation sui generis which 

holds objectively between truths, i. e. it holds whether or not we happen to 

recognise it, though in at least some instanceswe do recognise it. It might 

be thought that a much better example than that given above by Bolzano in 

J 
the Wissenschaftslehre would be the connection which we apprehend easily 

enough between the premisses of a valid syllogism and its conclusion. It is 

true that this is anexample of ground (the two premisses) and consequence 

(the conclusion), but we now have to be very careful to distinguish this from 

the formal relationship between propositions of derivability [Abl eitbarkeit] 

which also holds here. The latter consists in the fact that every substitution 

f 
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for the terms involved which yields true premisses will also yield a true 

conclusion. The ground-consequence relation is one which is more substan- 

tial than the purely formal relation of derivability br+. Is less substantial or 

"material" than that of a cause. Thus it is hardly someth! n,; which should 

have been passed over as being well known or beyond doubt as Bolzano seems 

to do in BD. However, it must be remembered that in order to gain a better 

understanding of Bolzano's intention we have used a source (the Wissenschafts- 

lehre) that only appeared twenty-seven years later than BD. At the time of 

BD, In the draft for the second Issue of the }, eyträge..., Bolzano could do 

no more to explain the terms "ground" and "consequence" than to declare 

they were Incapable of-definition and to state four axioms which they would 

satisfy (see Bolzano [1] Vol. 2A 5, p. 78). 

The relationship of ground to consequence does make more sense In 

the overall context of the later "an sich" realm: that is, the collection of 

objective propositions, truths and ideas in themselves tan sich] which is 

elaborated in the Wissenschaftslehre. There is how^ver no mention of the 

an sich realm in Bolzano's writing up to 1817. So It is the ground-consequ- 

ence relation that takes priority in Bolzano's thought and it may have been to 

give a better account of this relation that the an sich objects were eventually 

postulated. 

C. 
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2.4.3. The Nature of Proof 

In describing proofs Bolzano often uses the term "wissenschaftlich" 

(or "unwissenschaftlich") which we have translated "scientific" in concession 

to modern usage but it does not imply a special kind of proof for "scientific" 

statements. It would probably be more accurately rendered "rigorous" or 

"rational". The nature of a proof is stated very clearly in BD, If, §12(A171): 

by the scientific proof of a truth we understand the represen- 

tation of the objective dependence of tt on other truths, i. e. the 

derivation of it from such truths which are to be considered as 

the grounds for it - not fortuitously - but in themselves and 

necessarily, while the truth itself must be considered as the 

consequence. 

Now even if the nature of this dependence is difficult to explain, in order to 

recognise it and use it, it must be possible to characterise its occurrence 

among propositions In some way. The question Is r'L. sed in the same para-- 

graph as before as to, "how many simple, and essentially different, kinds 

of inference (Schlussarten) there are, i. e. how many ways there are that 

a truth can be dependent on other truths. " This is answered immediately in 

terms of four purely formal proof patterns and then in later sections there 

are four conceptual criteria for a correct proof. 

The first formal proof structure is the Barbara form of syllogism: 

<. 
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All men are mortal. 

Calus is a man. 

Therefore, Caius is mortal. 

Bolzano remarks that he would prefer to interchange the pr; misses so that the 

terms proceeded from the particular to the general in their order of introduc- 

tion. And'he claims, as was quite usual, that every other figure and form of 

syllogism is either not essentially different from Barbara or else is not simple. 

The other kinds of proof which Bolzano lists are given in terms of pro- 

positions of the form, "A is (or contains) R". -The expression "A contains B" 

needs some explanation. In a note to BD, II§29(A217) he admits that the state- 

ment, "a concept A is contained in another concept B" is ambiguous and can 

mean that either A or B is the narrower of the two. (The terms "narrower" 

and wider" are used In their natural extensional sense as applied to concepts) 

Thus In the active form "A contains B", A is the wider when understood exten- 

sionally (the extension of concept A contains the ext 3nsion of concept B), but A is 

the narrower if it is Interpreted intensionally (the concept B Is either part of 

the meaning of the concept A or as a matter fact belon; s to concept A). It is 

clear from BT. II@26(A208 211) that Bolzano uses the expression to the latter 

Intensional sense. We shall here abbreviate "A is (or contains) B" to "A is B". 

The following three schemas are given as valid patterns of proof: 

(a) AIsB 
A Is C 

A is (B et C) 

(b) A Is M 
B Is M 

(A et B) Is M 

(c) A Is M 
(A cum B) is possible 

(A cum B) is M 
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For further clarification of the ground-consequence relation it is worth con- 

sidering a case where it does not occur. The suggestion of another schema: 

A Is (B cum C) 

A Is B 

A Is C 

is rejected by Bolzano because although we can recognise the truth of the two 

conclusions from the truth of the premiss, th3 latter cannot objectively be 

the ground for the former. This is not explained at the time, but in a later 

section Bolzano says that, "in the proposition, S contains (P cumlr), the 

proposition, S contains P, is presupposed In such a way that one definitely 

has to think the latter before the former" (A211; BD, 105). A similar kind 

of argument would show that in each of the cases (a), (b), (c) above the con- 

verse inferences from conclusion to premisses, though possible subjectively, 

(i. e. as grounds for knowledge) could not be objective. It is evidently 

regarded as a necessary condition of the ground-consequence relation that 

it should not be symmetric. All correct proofs are therefore regarded as 

being formed from combinations of the four simple types of inference listed 

above. 

In BD, U 26-29(A208-225) there are four conceptual criteria enunciated 

which are to apply to all proofs occurring .ua "scientific system". In fact 

the first two do not just apply to proofs but to the general organisation of all 
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propositions in a theory. They are not original but are put forward because - 

Bolzano regards them as not being sufficiently carefully followed. The first 

Is the principle that one should always proceed from the general to the part- 

icular. Or more formally, "If several propositions ..... have the same 

predi.; ate, then the proposition with the narrower subject must follow that with a 

wider subject, and not conversely" (A209 ; B. 7), 102). The second criterion 

(A211-213; BD, 104-106) has already been mentioned and is to the effect that 

among propositions with the same subject one with a more compound pre- 

dicate should follow one with a simpler predicate, and not conversely. This 

can be expressed Informally by saying that in a scientific exposition one 

should prove more, not less, as one proceeds. Here the criterion has 

deliberately been put in terms of the complexity of the predicate (more 

compound or simpler) rather than its extension (wider or narrower). It 

would not work in terms of extension because in the syllogism: S contains 

M, M contains P, therefore S contains P, M must be narrower than P for 

otherwise, "M contains P' could not be true. 

The other two rules are specifically for proofs and are still useful 

today for improving the economy and strength of mathematical theorems. 

They are: 

1. If the subject of a proposition Is as wide as it can be so that. 

the predicate can be applied to it, then all characteristics 

of the subject must be used in any correct proof (A213-217; BD, 

106-110). 
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2. For an affirmative proposition any Intermediate concepts 

which are introduced, apart from characteristics of the 

subject, sh^uld not be narrower than the subject and not be 

wider than the pr-r`icate. For a negative proposition they 

should only be wider than the eabject or wider than the predicate 

(A217-255; BD, 110-118). 

To illustrate the use and importance of the first of these criteria 

Bolzano mentions that sometimes a proof is sought without looking for how 

all the conditions of the conclusion will be used. For example, the parallel 

postulate only holds If both lines lie in the same plane but, Bolzano adds, 

few people have considered how this condition Is to be used In the proof. 

And he quotes a proof of K'astner's about the lever which seems to succeed 

without making use of an essential condition for the conclusion (Kästner E2ý 

I. Abth. (16) and (18)). The proof is therefore clearly false, Bolzano says, 

because it proves too much. 

The second criterion is demonstrated exhaustively by considering 

each of the four possible simple inferences which could give rise to the 

conclusion and analysing the relative extents of the intermediate concepts 

(A217-255; BD, 110-118). Thus it is shown that any proof that is formally 

correct will also satisfy this conceptual crit 3rion. These forms and 

criteria for correct proofs are therefore not Independent, nor are they 

sufficient conditions for correctness, but they are necessary conditions and 
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can easily be used to indicate incorrect proofs. Many proofs ruled out 

by the principle of conceptual correctness described earlier (p. 61) would. _. 

also be ruled out by the last-mentioned criterion. For example, an analytic 

result whose subject would concern all quantities in general should not have a 

geometric concept, such as a curve, introduced in its proof because this 

concerns only quantities occurring in space and is therefore narrower than 

the subject of the conclusion. Generally, though, this sort of diagnosis caz 

only be made after a detailed analysis of the whole proof into its simple 

Inferences and by dividing all Its concepts into their simple components. 

The notion of a simple concept is important so we shall now summarise 

Bolzarto's remarks on it. 

2.4.4 Simple Concepts and the Nature of Definition 

The distinction of simple and compound concepts is discussed In 

the context of explaining what a definition should be in BD, 1193-5 (A149-157). 

By a simple concept Bolzano means one which is incapable of further 

analysis, or as a result, It is one which cannot be produced by combining 

any two other concepts. A definition is an analysis of a concept, "a state- 

ment of t: 41. most immediate components out of which a given concept is 

compounded" (A149; BD, 42). We come to know which concepts are simple 

and which are compound through the result of our attempt to , nalyse them. 

I 
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If when we think of an object e inevitably think of it as compound, then it is so. 

Thus the concepts of the straight line and the plane cannot be simple - we are 

Immediately aware of the multiplicity of points In these objects and their 

special arrangement. It is a matter of experience however, that not all con- 

cepts are compound, for example the concept of a point is simple. 

In Ws later work Bolzano clearly distinguishes the idea-in-itself 

(an objective concept existing independently of our thinking it) and the idea 

which Is present in someone's mind at a given time (e. g. Bolzano[4]I, §48). 

Although it is not clearly formulated here in 3D this distinction seems . 

essential to Bolzano's understanding of simple concepts and his subsequent 

arguments for unique definitions and unique proofs. Simply because we can, 

or cannot, analyse a given concept into compon3nts does not thereby make, it 

compound or simple, this is only how we come to know its nature, and we can 

make mistakes. Bolzano evidently believes that our apprehension mid 

analysis of concepts will enjoy the same sort of widespread agreement that 

generally holds for our perception of physical. object:. The result of ana- 

lysing a compound concept Is embodied in Its definition: 

In general If one wishes to ascertain whether a certain concept 

Is simple or divisible then one assumes a genus proximum for 

it and tries to think of some differentia spec [flea to add to it 

which is not Itself already identical with the concept to be 

defined. If this cannot be done in any way, the concept con- 

cerned is a simple one. (A155; BD, 48). 
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Furthermore, If the analysis of a compound concept is continued until all Its 

components are simple then these ultimate components and their relationship 

in the given compound concept are uniquely determined. "Really nothing is 

arbitrary in definitions but the word which le chosen for the denotation of the 

new compound concept. " (A159; BD, 52). Thus a correct definition Is a true 

proposition which is not simply about the meanings of words, it describes 

the structure of a conceptual reality. A mathematical work should not 

begin with definitions (Euclid is mentioned here as being in error) because 

they must bs seen as introducing "new and genuine concepts" (A160; BD, 53). 

What needs to come first is the indication of the meaning of the simple con- 

cepts of a theory. This is to be done by giving various statements which 

implicitly def. -ne the simple concept by showing its characteristic usago. 

For example: 

from the propositions: the point Is the simple object in space, 

It is the boundary of a line and itself no part of the line, It has 

neither extension to length, breadth, nor depth, etc. anyone 

can derive which concept is denoted by the word "point". " 

(A162; BD, 55) 

To distinguish this way of indicating the meaning of a concept from a proper 

definition Boizano calls these statements den)tations or descriptions: they 

may or may not happen to be axioms, they belong to what we should now 

call the informal metatheory of a particular theory. 
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2.4.5. Axioms and a Theory of Judgements 

It waz normal in the eighteenth century to regard as an axiom any 

proposition which w&s so intuitively clear or obvious as not to require a 

proof. Of course, the failure to find a proof, would sometimes lead to finding 

quite obscure propositions. "intuitively clear". This attitude was convenient, 

(even if abused) and it was consiztent with the view that the purpose of proof 

was to convince or persuade of the truth of a proposition. Where the truth 

of a proposition could be recognised immediately from its meaning, a proof 

would be redundant and to seek one simply pedantic. However, what Is 

regarded as intuitive, obvious or clear is to a large extent subjective and 

dependent on experience and insight. If a proof is to represent some kind 

of reality in the structure of concepts or things then its starting point, an 

axiom, should represent some objectively fundamental state of affairs. This 

was ßolzano's position. An axiom is not an axiom because we. cannot prove 

it, nor because we see no need to prove it, it is so because it is absolutely 

unprovable. The point had already been made emphatically at the beginning 

of BG: 

Firstly, I stipulate the rule that the obviousness of a proposition 

does not absolve me from the obligation still to look for a proof 

of it, at least until I clearly realise v by absolutely no proof 

could ever be required. (A13; BG, VI) 
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It is claimed that for every simple concept there is an axiom con- 

taining that concept (A196; BD, 89) but the arguments for the existence of 

axioms in his sense are notably unsuccessful (A176; BD, 69). Instead of 

saying, as in the mediev-1 theological arguments, that an infinite regress of 

causes or explanations is impossible (which has a certain plausibility) he 

says, quite wrongly, that assuming an infinite series does not remove the 

contradiction that there Is in denying a first term to a finite series. He backs 

this up with some play on the words "ground" and "consequence" and a com- 

pletely Irrolevant allusion to the paradox of Achilles and the tortoise! 

The major problem now arises of how we can recognise whether a 

particular proposition really is unprovable. In order to state the character- 

istics of an axiom Bolzano first gives, in BD, II, §§14-19(A178-193), a 

summary of his theory of propositions or judgements. (The word "judgement" 

[Urteil] begins to be used at §13 where previously "proposition" [Satz] had 

been used. It Is the word Kant used, but In BD, If, F18(A183) Boizano says a 

judgement Is a proposition which teaches us something new, I. e. a synthetic 

judgement In Kant's sense. ) There is a basic, undefinaI le act of the mind 

by which two concepts can be combined to form a compound concept. It is 

another, different, kind of such act which combines two concepts, a subject 

and predicate, to yield knowledge in the form of a judgement. In Aristotelian 

logic this combination was expressed by the copula"is" or "are". Bolzano 

regards the manner of combining the subject and predicate to be "the most 
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substantial distinction between judgements" (A180; BD, 73) and accordingly 

he classifies judgements by means of five possible kinds of combination. 

These are: 

1. Necessity judgements. This is the inclusion of a th; '. g as 

individual or kind in a genus. They have the form: 

"S Is a kind of P; or what amounts to the same "S contains 

the concept P or the concept P belongs to the thing S. " 

(A181; BU, 74). Most mathematical propositions are of this 

type, an example given is: two lines which cut the arms of an 

angle in disproportional parts meet when sufficiently pro- 

duced. This is interpreted as: the concept of two lines which 

cut the arms of an angle in disproporticnal parts (=S), is a 

kind of the concept of two lines which have a point in common 

(=P). 

2. Possibility judgements, with the form: "A can be a kind of B". 

Bolzano gives the example: "There are equilcteral triangles. " 

This isproperly expressed, he says, as: "The concept of a 

triangle (=A) can be a kind of the concept of a figure with equal 

sides (=B). " (A182; BD, 75). 

3. Practical judgements of duty or obligation, with the form: 

"N should do X. " 
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4. Empirical judgements, with the form: "I perceive X. " 

5. Probability judgements, for which no examples are given; Bolzano 

says he is not clear about their proper nature. 

The purpose of classifying judgements in terms of five kinds of 

copula or ways of combining subject with predicate (each presumably corres- 

ponding to primitive modes of combination b- the mind) is to avoid the 

necessity of compound concepts in the subject or predicäte in, for example, 

possibility judgements. In BD, II, §20(A193-199) Bolzano shows that all 

judgements with compound subject or predicate are provable, but since he 

is convinced that there are unprovable judgements of possibility and oblig- 

ation (on the grounds of avoiding an infinite . regress within each type) he 

believesit to be more correct to reorganise a proposition like "(A cum B) is 

possible" with compound subject into, "A can be a kind of B". 

The proof given in BD, If, §20(A193-196) is to the effect that if either 

the subject or predicate of a judgement are compound then its truth will 

depend on judgements Involving the simple components of that compound and 

will therefore be derivable or provable. This means that no analytic judge- 

ment in Kant's sense can be an axiom because the subject must be a compound 

concept. 

We row reach an answer to the question of how we can recognise an 

axiom. It is a necessary condition that an axiom should contain only simple 

concepts (A195; BD, 88). It is a sufficient condition for a propo:: ition "A Is B", 
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with A, B simple, to be an axiom that there are no two propositions of thr" 

form "A Is X" and "X Is B" from which it couli be inferred. (This essential 

sufficient condition Is over-looked by Bergmann in hin detailed discussion of 

this part of BD, see Bergmann [? ] p. 165). Now to show that this Is the case 

for any particular proposition will require what Bolzano calls, 

a special consideration to which, to distinguish it from a 

proper proof (or a demonstration)I give the definite name of 

a derivation (or deduction . Axioms will therefore not be 

rp oved, but they will be deduced and these deductions are 

an essential part of a scientific exposition because without 

them we should never be certain whether those propositions 

which are used as axioms really are axioms. (A200; BD, 93) 

Unfortunately Bolzano gives no examples (at least in BD) of how these 

deductions could ever be made. 

There Is a clear analogy In Bolzano's thought between simple con- 

cepts and definable compound concepts on the one hand, and axioms and 

provable propositions on the other hand. "The domain of the axioms 

stretches as far as that of the pure simple concepts: where the latter ends 

and the definitions begin, there also the axioms cease and the theorems 

begin" '(A203; BD, 96). There Is an obvious similarity between the role of 

simple concepts in Bolzano's axioms and primitive concepts in a formal 

logical theory. However, a pr; mitive concept In the modern sense Is a 
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somewhat arbitrary thing; a simple concept for Bolzano was not arbitrary 

at all. It was determined, In some sense, by reality and its meaning 

determined the course of proofs in which it was invc: -'ed. For an interesting 

discussion of the relationship between simple and primitive zoncepts see 

Bergmann [1] p. 174. 

2.4. G. The Uniqueness of Proof 

The objectivity throughout Bolzano's approach raises the interesting 

question of whether there can be essentially different, correct proofs of a. 

theorem. This was first mentioned in analogy with definable concepts: 

The question arises here of whether one and the same concept 

may admit of several definitions. We believe this must be 

denied in the same way as we deny below (§30) the similar 

question of whether there are several proofs for one truth. 

(A156; BD, 49) 

Naturally proofs may differ In the precise order of premisses and 

even in which premisses are explicitly expressed. These are not "the 
, 

essential matter" of a proof. The essence of a proof for a certain theorem 

consists In which judgements the conclusion Is based on, In the sense that a 

consequence is based on Its ground. Though there may be several different 

ways we can come to know a certain truth, there Is objectively only one 
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unique ground for that truth and so essentially only a single unique proof. 

(This is the answer given in the discussion beg inning on A225; BD, 113) 

Yet It has often been characteristic of mathematiciz: i that they have sought 

to find different proofs of a particular (especially a major) - esult. The 

enormous variety of proofs for Pythagoras' theorem or the law of quadratic 

reciprocity are well known... Sometimes the reasons for producing such 

different proofs are clear (economy, greater generality, or to avoid some 

"suspect" principle); sometimes it just seems to be satisfying that a major 

result may be reached by many different pat!. ways and from intuitively 

different starting-points. The status of many proofs and what exactly con- 

stitutes "different" proofs are still matters of debate. 

Bolzano's claim is however quite clear, there are unique grounds, 

and there ore proofs, for mathematical theorems and so it is the mathemat- 

Iclan's duty not only to prove new theorems but also to critically exai--ine 

established proofs and bring them ever closer to their true pattern, i. e. 

to correspond exactly with the objective, conceptual reality. This Is not 

just a matter of re-arranging previous proofs: It acts as a programme for 

new mathematics and was the inspiration and motive behind the works BG 

and RB. Euclidean geometry needed complete re-organisation and this 

produced the fruitful refinement and development of the fundamental con- 

cepts of distance and equality. Analysis required putting on its own feet 

rather than continuing to lean on geometric Intuitions for support. This 

f 



81 

demand was substantially satisfied by the Important new clarifications given 

by Bolzano of the concepts of function, convergence and continuity. 

An obvious problem with the Idea of an objective ground for all math- 

ematical theorems is the rrevalence of the method of reductio ad absurdum 

or indirect proof. Is there to be an objective, universal contradiction as 

ground for all such results? Bclzano takes the standard indirect proof, 

or "apogogic proof" as it used to be called, to be of the following form. To 

prove that A Is B, assume A Is not B and derive from this a contradiction 

with a proposition A Is C which has already been proved. Now It Is claimed 

(A230; BD, 123) that for affirmative propositions this Indirect method can 

always be avoided by rearranging the argument thus: whatever Is C is 

always B, A :sC so therefore A is B. But of course this analysis breaks 

down when C is actually the same as B, and why should the contradiction be 

made with a proposition of the form A Is C? In many actual proofs the 

argument is not of this form nor Is It easily reducible to this form. For 

example, c'. )nstder'he Euclidean proof that a tangent to a circle Is perpen- 

dicular to the radius. Only negative propositions are regarded as essentially 

requiring an Indirect proof. This is because their direct formulation 

involves premisses of the form, "what Is not M is not N" and Bolzano seems 

to regard these as peculiarly intractable sir. ̂ e they are not' the same as, 

nor derivable from (in the ground-consequence sense) their converse "N is 

M". It Is a major omission In any such objective theory as Bolzano's not 

to give some special account of negative propositions. 
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2.4.7. A Note on the Analogy between Concepts and Propositions 

Theras are numerous scattered remarks In BD on the analogy In 

development betwee1i concepts and a certain class of propositions (namely, 

in a mathematical theory, the axioms and theorems). We gather these 

together as follows (the paragraph numbers refer to Part II of BD): 

Concepts 

May be simple (undefinable) 

or compound (definable). 

(34, A150) 

Propositions 

There are axioms (umprovablo) 

and theorems (provable). 

(§11,4159). 

The simple concepts may not The axioms may not be the most 

be the most vivid or clear ones, obvious or Intuitive propositions. 

(98, A161) (921 Note, A200) 

Definitions represent. the true Proofs represent the true pos- 

analysis of a concept into Its Ition of a theorem as based on 

proper simpler parts. Its proper grounds. 

(§3, A149) (§512, A170) 

Definitions are essentially unique. Proofs are essentially unique. 

(§95, A151) (930, A225) 
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2.5 The Origins and Significance of Bolzano's Views 

In Chapter 1 we referred to the Important general influence in the 

academic world during the eighteenth century of the Leibniz-Wolff school of 

philosophy. The rigorous and rationalist outlook of this suiiool was by no 

means universally accepted; it was often the subject of virulent theological 

attack. H.. wever, for one who admired mathematics there was an inevitable 

attraction in a philosophy which prized this discipline so highly and had been 

developed by men who in many c«ses had been very able mathematicians. 

Rationalism focussed such great attention-6 I.: mathematics not so much for 

the sake of the subject itself as for its method. Mathematics was seen to be 

successfully producing certain knowledge by a method so general that it 

invited universal application to all areas of knowledge. (See BD, II, §1(A145)). 

For Wolft the goal of mathematics was the cultivation of*the intellect and the 

preparation of the mind for the study of all other sciences. Each of the 

great rationalist philosophers modelled at least parts of their philosophy on 

mathematics. For example, consider Spinoza's Ethºc_developed in iinita- 

tion of Euclid's Elements, and Leibniz's impossibly ambitious plan for a 

universal characteristic whereby concepts would be association with charac- 

teristic numbers and all argument reduced to computation. 

It Is hard to point to direct influences on Bolzano's early work from 

the writings of Leibniz. These writings are notoriously fragmentary with 

remarks on all sorts of subJects scattered throughout his papers and ' 
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correspondence. It is therefore difficult to know to what extent Bolzano 

had access to these sources. Furthermore, most of the important phil- 

osophical work of Leibniz was published posthumously and a substantial 

amount was still unpublished when Bolzano was writing. There are no ref- 

erencesto Leibniz in the five mathematical works up to 1817. (Though there 

are many such references in the Wissenschaftslehre 1837) 

On the other hand, it is clear from the references in BG that Bolzano 

had read the most important mathematical and philosophical works of 

Christian Wolff (1679-1754). Wolff was a disciple of Leibniz and had 

extensive correspondence with him over the last twelve years of Leibnib's 

life. We shall mention here two themes which were likely to have influenced 

Bolzano directly. They occur repeatedly in the works of Leibniz and were 

certainly espoused by Wolff. 

Firstly there Is the emphasis on logic and foundational studies. If 

mathematical method Is so fruitful then it becomes essential to understand 

It and its application thoroughly and correctly. Where better to start than 

in mathematics itself? Thus Leibniz writes: 

But It is very Important to make explicit all the assumptions 

which are needed without taking the liberty of accepting them 

tacitly for granted on the excuse that the thing Is self-evident 

just by an Inspection of the diagram or by the contemplation of 

the Idea. In this respect I find that Euclid with all his exactness 

has sometimes been deficient... " (Leibniz [21) 
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And again on the question of axioms:. 

The late Roberval planned a new Elements of Geometry in 

which he was going to demonstrate rigorously several prop- 

ositions which Euclid took or assumed without proof.... I 

know that many people ridiculed it, if they had known Its 

Importance they would have judged otherwise...... In order 

to advance the sciences and to pass beyond the columns of 

Hercules, there is nothing more necessary. (Leibniz [3] ). 

Thus mathematics should not only be developed deductively by enlarging 

the theories from appropriate axioms but the foundations should also be 

developed by analysing and refining the basic concepts and axioms Into 

absolutely simple forms. This was clearly one of Bolzano's chief alms. 

We see it in practice In BG where having reorganised elementary geometry 

on the basis only of the properties of the straight line, he proceeds in the 

second part to attempt to deduce the theory of the straight line from even 

simpler concepts such as distance and direction. 

Secondly, and related to this theme of foundational study, Is the 

principle of systematically analysing compound concepts into simple con- 

cepts on which an entire theory can then be based. 
. 
To some extent sich 

analysis wIs, of course, nothing new. It Is inherent in the Aristotelian 

theory of definition in terms of genus and species. What Leibniz brought 

to the idea was (a) the combinatorial aspect, that all combinations of 

t 

.ý 



86 

I 

concepts are permissible subject only to the resulting compound being 

possible, 1. e. not logically contradictory; and (b) that there are naturally 

occurring irreducible simple concepts (these are likened to prime numbers, 

the compound concepts to composite numbers). Both these features are 

important to Bolzano's account of mathematical method: the first in the 

systematic hierarchy of concepts presupposed in the principle of conceptual' 

correctness, and in Bolzano's requirement of every defined concept that it 

should be proved to be possible; the second because all and only simple 

concepts are components of true axioms. 

It is perhaps tempting to suggest a connection between Bolzano's 

ground-consequence relation and the Leibnizian principle of sufficient 

reason. They are not, in fact, directly comparable but to maintain any 

kind of direct influence of the one notion on the other would be misguided. 

For Bolzano the ground-consequence relation pervades all mathematical and 

scientific theories. Leibniz specifically says that his principle of sufficient 

reason is not required in arithmetic or geometry (Leibniz[4] ). Then 

again the principle of sufficient reason depends on the predicate-In-notion 

principle that even In a contingent truth. such as, " Caesar crossed the 

Rubicon", the predicate "crossed the Rubican" is actually contained in the 

complete notion of the subject "Caesar". This is explicitly denied in 

Bolzano'b theory of judgement In BD, 11f15(A180-183). The underlying 

reason for this lack of contact between these notions is a fundamental 
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difference In the account of mathematical truth. For Bolzano a theorem 

is true because it represents an objective dependenceor state of affairs 

correctly. For Leibniz it is true because its denial is contradictory. 

Wolff developed Le, bniz's philosophy into a more coherent and 

systematic form but there does not seem to be anything In his writing which 

corresponds clearly to Bolzano's relation of ground-consequence. Perhaps 

the best we can say is that it was a relationship developed In the spirit of 

rationalism but original to Bolzano and pri:: arily in response to the peculiar- 

ly object! -. -., - nature of mathematical truth. 

Some remarks have already been made (1.2) on three works which 

it Is known that Bolzano studied particularly carefully. These were Baum- 

garten's Netaphysica (Baumgarten [1] ) which he read critically at the age 

of sixteen and which must have been his first serious introduction to the 

Leibniz-Wolff philosophy. Then there was Kastner's great compendium of 

ten volumes Die mathematische Anfangsgrinde (K . stner [1] ) which Bolzano 

annotated extensively and which clearly Inspired his Interest In method and 

rigour. While agrec. ng with Kdstner's -intention Boizano soon believed he 

had surpassed him since most of the references in our five worksare critical 

of Kastner for not being sufficiently rigorous. Finally there was the ped- 

agogic work Parizek El]. 

An author whose influence has been rather neglected so far in the 

literature on Bolzano Is Johann Schultz (1739-1805). In some of his works 
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there are some striking parallels to be found with Bolzano's foundational 

aims. Schultz was a Professor of mathematics at Königsberg and a friend 

of Kant. His large work on pure mathematics, the Anfangsgrunde der 

reinen Mathesis (published 1790), was written "in response '. o the needs 

of our critical-philosophical age" (Schultz [1] Preface). He is intent on 

being as systematic, general and rigorous as possible and his model Is 

Euclid's Elements In that definitions are duly followed by axioms, postulates, 

theorems and problems. We quote here some passages from the Preface: 

Therefore I have nottreated arithmetic merely as the science 

of numbers but, as its status re4utres, as the foundation of 

all special mathesis, also as a general theory of quantity. 

Geometry I have treated according to the strict Euclidean method 

purified from all alien concepts and presented In its character- 

istic form. 

In a science which is to be completely demonstrative the demon- 

strations must proceed with as much Strictness as possible. 

The eye has no voice here. A proposition may already appear 

very clear in itself but as long as a higher reason [Grund] for 

Its correctness can be conceived this must be sought out and 

stated. This is not pedantry or empty conceit but a considered 

necessity because the kr. owledge of mathematical propositions 

Is not a mere mechanism but actual Insight. 

........... 0 
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It seems to me that great care is required in the correcting 

of the basic concepts. It is clear how detrimental any con- 

fusions in these are for science. 

............ 

Finally one of my most desirable, and most difficult, efforts 

has been to present the material In Its true natural order. 

Pure mathematics has always been criticised because theories 

of completely different kinds are mixed up with one another 

and it therefore does not seem capably of any orderly class- 

ification. I hope this objection has now been fully removed so 

making the study of mathematics easier. (Schultz [la 
; Preface) 

Most of the basic aims of Bolzano's foundational work are expressed 

In these extracts. There Is the importance of a proper classification, the 

fundamental nature of arithmetic, the need to remove alien concepts and In 

the interests of absolute strictness the need to avoid empirical Intuition 

("The eye has no voice here. "). Then, most typical of Bolzano himself, 

there Is the emphasis on correcting the basic concepts and presenting math- 

ematics In Its true natural order. 

Instead of developing these id3as theoretically as Bolzano does, 

Schultz says no more about them and seeks, in the main work, to put them 

into practice immediately. We do not know when Bolzano first read Schultz's 

work but it was presumably ; ion after he entered Prague University in 1796. 

(. 
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His several references in BG to the geometrical work of the Anfangsgrünc1e 

show he was certainly familiar with it by 1804. In BD, I§5(A116) he says 

that Schultz, "deserves much credit for the foundat: c: i of pure mathematics 

in his Anfangsgrunde". 

We have emphasised this work of Schultz not to suggest that Boizano 

borrowed his ideas from it (in fact there is little more in Schultz's brief 

Preface than the bald statements we have quoted), but rather to point out 

that though Bolzano was rather Isolated In Prague he was certainly not alone 

in the spirit and aims of his foundational wo! k. 

Finally, it is important to keep in mind that the views outlined in this 

chapter were not simply a static description of an ideal of mathematics. 

They represented In Bolzano's mind a practical programme for the trans- 

formation and redevelopment of all mathematical theories. The works 

considered In this thesis are only a fragment of what he hoped and Intended 

to produce. They can only be understood properly In the light of this larger 

project to which they belong and as products of the a, tcmpt to approach more 

closely to Bolzano's Idea of the uniquely correct definitions and proofs of 

mathematics. 

In the paper Johnson [1] (wh[rh contains an excellent survey of Bol- 

zano's early geometric work) there is clear: y a tension felt between "Bolzac: 's 

old-fashioned essentialist theory of definition" and the fruitfulness of many of 

his ideas. In reference to the geometrical definitions of DP he writes: 
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The surprising feature of Bolzano's work is that he was 

able to obtain topologically interesting Insights and results 

inspite of his restrictive theory of definitions. 

(Original emphasis in Johnson [1] p. 295). 

It Is part of the purpose of this thesis to discuss how surprising (if 

at all) we should find this feature of Bolzanc's work. On the one hand there 

are many rnmarkably good mathematical Ideas (especially in analysis) 

worked out In detail by someone who was never professionally a mathematician. 

On the other hand he whole-heartedly espoused a philosophy which emphasised 

the static and unchangeable aspects of conceptual knowledge. Many of' 

Bolzano's views were restrictive but this Is not Incompatible with insight and 

progress. Restricting development in many directions may be highly con- 

ducive to development in the few remaining directions. It all depends on a 

wise choice of restrictions. 

Naturally Bolzano himself found his "success" (the little that he knew 

of it) to be entirely expected since it followed from the working out of what 

he regarded as true and essential general principles. The cynic will say he 

was just very lucky. It would be foolish to isolate any one factor (such as a 

philosophy) in the manifold of contributions to Intellectual creativity in an 

individual is the cause of his success. Nevertheless, what we hope to show 

in the next three chapters is that the general views outlined here actually 

contributed to his various specific mathematical achievements rather than 

detracting from them or being Irrelevant. 
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Cb ter 3: Geometry 

3.1 Introduction 

3.1.1. Outline of the Geometrical Work 

The geometrical work of the early period of Bolzano's life was pub- 

lashed in BG (1804) and DP (1817). The former Is entirely concerned with 

geometry although It contains a fair amount of what would nowbe regarded as 

philosophical remarks on the kinds of concepts and proofs to be permitted in 

geometry. The latter work has the purpose of giving strict proofs for the 

analytic formulae for the three general mensuration problems of length, area 

and volume. The geometrical material in DP (which mainly consists of 

definitions) appears it rather disjointed instalments which are logically un- 

necessary to the proofs but are nonetheless relevant to the main subject. 

These two published works span the period covered by this thesis but they by 

no means represent the total of Bolzano's work on geometry at that time. 

From the mathematical diaries which havc been published in Bolzano [1] 

(Vol. 2B 2/1,2 which cover the years 1803-1811) It is clear that he was 

giving considerable attention to geometry throughout this period. There is 

f, 
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extensive detailed revision and development of material in BG as well as 

preliminary Ideas for DP. But It Is also fair to say the main outlines and 

achievements of thA. early work are contained in the contemporary publications 

which are our primary snu': ces for this chapter. Our purpose here Is to 

present the broad themes of Bolzano's general views and geometrical achieve- 

ments with due regard to their historical context. 

Geometry was a natural subject for Bolzano's first study. Many of 

the concepts were difficult and easily susceptible to philosophical discussion 

and criticia m. But the structure of proofs was relatively simple, so it was 

a good area for seeking perfectly rigorous proofs. Moreover, Euclid's 

parallel postulate had defied all attempts at proof so what better way to 

vindicate a ncwv approach to geometry than by showing that it led to a "com- 

plete theory of parallels" (A35; BG, 13)? 

It is clear from the first few pages of BG that, whatever other reasons 

there may have been, Bolzano's primary purpose is methodological. We have 

already see. a in 2.4 that Bolzano excluded the concept of motion altogether 

and, more dramatically, he postponed the use of the plane for all the elem- 

entary results on triangles and parallels. 

The material of BG is divided into two parts. Part I Is a complete 

reorganisation of Euclidean geometry. Most of the main theorems of Book I 

of the Elements are proved, but the definitions, axioms and proofs are in 

most cases changed out of all recognition. These changes arise chiefly, as 
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we shall show In detail in 3.2, from various requirements and refinements of 

geometrical concepts. Part II is logically presupposed for Part I and con- 

tains the "theory of the straight line"; It Is very incomplete but contains some 

Interesting Ideas on defining a straight line rnd the concept of distance which 

are developed further in the results of DP. From the point of view of the 

geometry the main content of DP Is a remarkable series of set-theoretic 

definitions of line, surface and solid which pre-figure the recursive definitions 

of dimension given very much later in the century by Polncare and Brouwer. 

As F. prelude to assessing the achievements of BG, and to provide 

some perspective from which to judge the radical conceptual requirements 

made there, we shall consider the treatment in geometry of the concepts of 

motion. and of the plane by authors before and after Bolzano. Far from 

attempting a comprehensive survey of the subjects the intention here Is 

simply to provide sufficient historical context to understand clearly what 

Bolzano achieved in BG. Consequently our references are mainly to authors 

quoted or studied by Bolzano himself and to those authors mentioned In 

Heath [1] and Enriques [1] as having made major contributions to the sub- 

sequent history of the concepts of motion and the plane., 

c 
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3.1.2. The Concept of Motion 

Although the concept of motion has been an ever-present component 

of geometrical thoughtthere seems to have been no time at which Its use 

has gained universal approval. It was accepted, perhaps reluctaitly, by 

Euclid In his method of superposition while It was rejected by Aristotle as 

having nothing to do with mathematical objects (Aristotle [1] ). Throughout 

the nineteenth century It was still being accepted by some authors and 

rejected by others. Helmholtz regarded it as essential to geometry (Helm- 

holtz [1]) which for him thereby became dependent on mechanics, and it 

was adopted in Peano (1] as a primitive notion in Peano's axiomatic geometry, 

On the other hand, Veronese gives clear and conclusive objections to the 

intuitive use of "motion without deformation" in elementary geometry (Veron- 

ese[1]). 

Euclid's method of superposition is well known. It arises from his 

common notion 4: Things which coincide with one another are equal to one 

another. The phrase, "things which coincide" seems to mean, "things which 

can be moved so as to coincide". Thus the two notions of motion and coin- 

cidence are at the basis of the fundamental criterion of equality between 

geometric objects. It is fundamental because It Is used to prove Elements 

I, 4) that triangles with two sides and their included angles equal, are them- 

selves equal. This proposition Is referred to frequently for proofs In the 

remainder of Book I. It is Heath's view that Euclid disliked the method and 
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avoided it when possible (Heath, [1] p. 225). Be that as it may, we have no 

knowledge of why he may have disliked it, nor has there survived any doubt 

In the writings of ancient geometers as to its legitimacy. The precise and 

substantial objection to thiF use of the concept of motion is clearly formulated 

by Veronese, but we shall quote here from Heath's summary of the argument: 

We must distinguish the Intuitive principle of motion in itself 

from that of motion without deformation. Every point of a 

figure which moves is transferred to another point in space. 

"W&`hout deformation" means that the mutual relations between 

the points of the figure do not change, but the relations between 
0 

them and other figures do change (for if they did not the figure 

could not move). Now consider what we mean by saying that, 

when the figure A has moved from the position A1 to the pos- 

ition A2 the relations between the points of A in the position 

A2 are unaltered from what they were in the position Al, 

are the same in fact as if A had not moved but remained at 

Al. We can only say that judging of the figure (or the body with 

its physical qualities eliminated) by the Impressions It produces 

in us during this movement, the Impressions produced in us in 

the two different positions (which are distinct In time) are egualt. 

In fact, we are making use of the notion of equality between two 

distinct figures. Thus, if we say that two bodies are equal when 
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they can be superposed by means of motion without deformation, 

we are committing a petitio principii. The notion of the equality 

of spaces is really prior to that of rigid bodies or of motion without 

deformation.... The method of superposition, depending on motion 

without deformation, Is only of use as a practical test; it has 

nothing to do with the theory of geometry. (original emphasis 

In Heath [1] p. 227) 

This expresses, though more clearly and to greater detail, one of 

Bolzano's objections to the use of motion in proving a geometrical theorem: 

... If. one had to prove the possibility of a certain motion which 

had been assumed with reference to a geometrical theorem, 

then one would have to have recourse to just this geometrical 

proposition. (A18; BG, X'I). 

If the notions of congruence or coincidence are to be used to a 

criterion of equality for geometric objections they can only be justified by 

an Implicit appeal to some kind of motion. In this connection Heath des- 

cribes the following as an "acute observation" of Schopenhauer: 

I am surprised that, Instead of the eleventh axiom, the- Parallel 

Postulate, the eighth is not rather attacked: Figures which coincide 

(sicli decken) are equal to one another. For coincidence (das 

Sichdecken) Is either mere tautology or something entirely empir- 

ical, which belong not to pure intuition (Anschauung), bit to 

r 
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external sensuous experience. It presupposes In fact the mobility 

of figures; but that which is movable In space is matter and nothing 

else. Thus this appeal to coincidence means leaving pure space, the 

sole element of geometry, in order to pass over to the material and 

empirical. (Schopenhauer[1]). 

How strikingly similar this is to what Bolzen had said regarding congru- 

ence exactly forty years earlier: 

... the concept of congruence Itself is both empirical and superfluous. 

Empirical: for if I say A is congruent to B, I think of A as an object, 

which I distinguish from B by the space which it occupies. Super- 

fluous: one uses the concept of covering (Decken) to deduce the 

equality of two things if they are shown to cover each other (sich 

decken) in a certain position, according to the axiom, "spatial things 

which cover each other are equal to each other" .... Now one could 

never conclude that-two things are congruent, I. e. that their bound- 

aries are Identical, until one had shown that all their determining 

pieces are Identical. But if one proves this, one can also deduce 

without covering that these determining things are identical. 

(A51; BG, 29). 

- This concept of motion has been used In geometry In many ways and 

for several purposes. So far we have considered its most important role: 

In relation to congruence for the establishment+of a criterion of equality. It 
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I 

was also used in definitions of geometric objects such as the line and angle. 

For example, Christian Wolff In 1717 defines a line thus: 

If a point A moves to another B, It describes a line. (Wolff [1] Def. 5). 

In his discussion of angle Bolzano quotes from an anonymous work of 1796 as 

follows: 

Angle is the concept of the relationship of a uniform motion of a 

straight line about one of Its points to a complete turn. (Anon. [2]), 

In 1812 Bezout defines an angle as: 

The amount of rotation which brings one of its arms into the position 

of the other. (Bezout [11) 

Naturally Bolzano's strictures on what concepts are allowed in a 

theory would prohibit such definitions from appearing in geometry. But 

many mathematicians of the eighteenth and early nineteenth centuries clearly 

preferred a "physical" approach and supplied definitions which are primarily 

guides to the Intuition rather than logical compositions of primitive concepts 

or analyses of the essence of the object concerned. These three views of a 

definition are not of course mutually exclusive and although Bolzano constant- 

ly sought for the "essential" definition of all mathematical concepts, he 

thoroughly approved of providing (for heuristic and illustrative reasons) 

guidance fer the intuition and he certainly acknowledged that one had to 

adopt some concepts as undefined (the simple concepts of 2.4.4). The 
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modern axiomatic geometries dating from the late nineteenth century with 

their success, efficiency and invulnerability have perhaps madcus unduly sat- 

Isfied with the conceptual agnosticism in which they rejoice. With regard to 

the concept of motion we can hardly Imagine Bolzano's purism allowing him 

to do anything but condemn the adoption by Peano (1889) of motion as a prim- 

itive concept in his axiomatic presentation of Euclidean geometry. On the 

other hand, a modern view of this Is that of Kline: 

The Inclusion of motion seems somewhat surprising In view of the 

criticism of Euclid's use of superposition: however, the basic objec- 

tion Is not to the concept of motion but to the lack of a proper axiom- 

atic basis if it is to be used. (Kline [1] p. 1010). 

Bolzano would doubtless have wanted to object to both the concept of motion 

and to any lack of a proper basis. The modern view, so often associated 

with the axiomatic method, but certainly no part of that method, is that it 

is largely a matter of taste, or at best expediency, which concepts are 

chosen as primitive. But because two concepts cannot be distinguished 

within a theory (e, g. ordinary straight lines and great circles of a sphere 

In the theory determined by Euclid's axioms 1- 4), this does not mean there 

may be no good reasons for preferring one to the other. 

,, 
As , ar as the Influences on Bolzano are concerned In respect of his 

repudiation of motion in geometry, we must first consider those authors 

whom Bolzano refers to himself in BG. Among these, Johann Schultz is 

. ý, 
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perhaps the most significant. His Anfangsgründe der reinen Mathesis (Schultz, 

[1]) Is referred to three times (A18,26,52; BG, XI, 4,30); and his Entdekto 

der Theorie Parallellinienen ... (Schultz [2]) is mentioned on A64; BG, 42. 
, 

In addition there are references to Gensichen [1] 
, Bestätigung der Schultz- 

fischen Theorie ... and the anonymous work, Bemerkungen über die Theorien 

der Parallelen des Hr. Hofpr. Schultz ... (1796) . Although the works by 

Schultz follow the Euclidean model of definitions being followed by axioms, 

postulates, theorems and problems, we have seen in 2.5 that he shared many 

of the genes al views and principles adopted by Bolzano. But the Interpret- 

ation of these principles is widely different in the two authors, at least in 

geometry. For example, Schultz adopts the use of the plane at the outset 

and defines azg1e in terms of the infinite surface between two intersecting 

lines (see 3.2.1). Even when Bolzano appeals to Schultz as being in support 

of some of his Ideas he seems apt tc overstate the case. This Is true In part- 

Icular of his views on motion and congruence. 

In he Preface to BG Bolzano claims (Al8; BG, XI) that Schultz must 

have agreed with the repudiation of motion because he assumes no idea of 

motion in the Anfangsgründe. It Is true that motion Is not involved at all In 

the definitions of line or angle where they were, as we have seen, not un- 

common at this time. But in a Note Anfangs rüg nde p. 246) we read: 

The solid things which occur in space can, as experience shows, 

change their place in space, 1. e. move, but not the space itself In 

ý. 
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which they are. If one therefore thinks of a part or boundary of space 

as movable this Is merely something Imaginary. 

It is not clear whether the consideration of such "imaginary motion" Is to be 

allowed in geometry or not. Such motion would be similar to the sort of 

motion implied by the common use of congruence mentioned earlier. Bolzano 

is wrong in BG I§49(A52) to say the concept of "covering" is omitted through- 

out the Anfangsgründe. In fact, Schultz ackrowledges that the usual German 

expression for congruence is in terms of "covering" or "fitting" and he does 

not, like Lolzano, condemn such terms. Whether his understanding of them 

implies motion of any sort is left obscure by the explanation: "congruent 

extended quantities ... are different merely In their place, so If one wanted 

to Imagine them In the same place at the same time they would be one and 

the same thing. " (Schultz[1] p. 251), 

We conclude that although Schultz makes little or no use of the con- 

cept of motion and that this seems to be deliberate restraint on his part, 

there is not the categorical exclusion of the concept that we find in Bolzano's 

geometrical work (3.2.3). 

In the Anfangsgründe of A. G. K'Astner which, as mentioned in Chapter 

1, was a major influence on Bolzano, we again find considerable reserve in 

the use or implication of motion In geometry. He gives the "boundary" 

definitions of solid, surface and line (see next section) which he attributes 

to Occam, but seems to tolerate the expression "a line arises from the 
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motion of a point" as an appropriate facon de parler to the effect that a line 

does not consist of points next to one another but that everywhere on a line 

there is a point (Kastner[1] p. 347). However, he does not escape Bolzano's 

criticism (A18; BG, XI) which Is directed to his use of rotation in the following 

axiom: 

Axiom of the plane. A straight line of which two points are in a plane, 

is completely in this plane .... But since the plane which contains the 

straight line can turn about It as an axis, three points determine the 

position of a plane; and therefore every triangle and every plane 

angle is in a plane. (Kastner [11 p. 350) 

The other two authors mentioned by Bolzano in connection with the use 

of motion are N. Mercator and Kant. For Mercator (whose work, Mercatoif i] 

is not specified but certainly Intended), geometry is the study of magnitude 

abstracted from all matter. The three principles which constitute magnitude 

are infinity, point and motion. A point which is set in motion describes a 

line, and similarly a line in motion describes a surface. Now the motion 

which Mercator refers to here is perhaps not the motion of physical matter, 

I, e. not empirical. It Is motion apprehended by the mind, motion abstracted 

from that of a physical particle. If a concept of point can be formed from 

the spatial material approximations which we call particles, then a concept 

of motion (of a point) can be formed from the spatio-temporal approximation. 

we call the motion of a particle. This motion has no separate word for its"'_ 
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designation but its distinction from empirical motion corresponds exactly to 

(and may be understood by means of) the distinction of point and particle. 

Certainly it is correct to say that Mercator took motion as "an 

essential concept" (A16; Br, IX) but since Bo! zano's objection to motion is 

partly based on the empirical nature of the concept it appears that it may, to 

this extent, be misplaced. We are not concerned here with whether Mercator 

had such a non-empirical concept of motion as we have outlined above, but 

only whether such a concept makes sense. If It does, then the wholesale 

rejection of motion in geometry is misguided, at least the rejection on 

empirical grounds. 

In the Critique of Pure Reason Kant makes the following distinction: 

Motion of an object in space does not belong to a pure science and con- 

sequently not to geometry. For the fact that something is movable 

cannot be known a priori, but only through experience. Motion, how- 

ever, considered as the describing of a space, is a pure act of the 

succassive synthesis of the manifold in outer intuition, in general by 

means of the productive Imagination, and belongs not only to geom- 

ctry, but even to transcendental philosophy. (Kant [1] p. 167 note). 

Without knowing precisely what Kant meant by "a pure act of the 

successive synthesis of the manifold in outer intuition", it is at least clear 

that he believed in the possibility of motion as a pure concept free of 

empirical characteristics and so properly belonging to geometry. However, 
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although Bolzano actually refers to the note just quoted, he has no patience 

with the alleged distinction and insists that all motion either presupposes an 

empirical object distinguished from space, or at least, "a thing distinguished, 

from space", and this Is "alien to a subject which merely deals with space 

Itself" (A17; BG, X), 

It would be rash to conclude that In these various criticisms Bolzano 

was simply being naive or obstinate. He may even have acknowledged the 

soundness of an abstract concept of motion and of its possible use !n geometry. 

We have already seen (2.4 and earlier this section) Bolzano'. rejection of 

motion in geometry was actually based on two claims: (1) It was empirical; 

(i[) it was logically out of place because any use of motion In a proof would 

require a proof of the possibility of the motion. The second of these object- 

ions Is the more fundamental: it Is independent of whether the motion concern-. 

ed Is empirical or not. It is also narrower because It really only applies to 

axioms. It offers no objection to first proving (without motion) the possibility 

of a certain motion and then using this motion later on for proving some other 

theorem. An example of such a legitimate introduction of motion might be 

the definition of a curve (having proved Its possibility) by means of the class- 

[cal notion of locus: the motion of a point following a specified (conceptual) 

rule. The Lise of motion here evidently has no empirical implication so long 

as It is strictly equivalent to the definition as a set of points which satisfy the 

rule. However, although the introduction of an abstract, concPotual kind of 

S 
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motion may be logically permissible the danger is obvious. Our mind may 

revert to interpreting such motion as empirical motion and make inferences 

relying on experience since our intuition of such motion Is much stronger and 

more accessible than that of the conceptual variety. This is surely exactly 

what happens in the process of understanding and giving our assent to Kästner 's 

"Axiom of the plane" which we quoted above. In this situation it is entirely 

consistent with Bolzano's heuristic and pedagogic interests that he condemns, 

on empirical grounds, these various uses of motion in geometry by previous 

authors. It does not mean he believed all motion to be empirical, it only 

means he condemns the empirical misuse of motion In geometry. Some : nath- 

emati, --I=s of the late eighteenth century, like Kästner and Schultz, had, out. 

of concern for the strictness of proofs, been showing a marked restraint In 

their use of motion In geometry. But perhaps no one before Bolzano had shown 

such exceptional thoroughness in searching out, removing and replacing 

every instance and implication of motion in elementary geometry. 

/7 

3.1.3. The Concept of the Plane 

It seems to have been an original idea of Bolzano's to develop the 

elementary geometry of triangles and parallels without any use of the concept 

of the plane. His reasons for doing so have already been explained In 2.4.1. 

It is a bold Idea because It prevents him adding or subtracting angles which 
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naturally causes fundamental changes from the Euclidean methods. In fact, 

Bolzano denies that angle is a quantity at all and so angles cannot be greater 

than each other, or even equal in a quantitative sense. Heath points out that 

there has always been great difficulty with the definition and development of 

the plane and Its properties (Heath [1] p. 172,173). Bolzano and Euclid 

avoided this difficulty in almost opposite ways. While Euclid assumes the 

existence of the plane from the outset of the Elements, along with points and 

lines, Bolza. no puts his definition of the plane as the final paragraph in 

BG(A85; BG, 53), The only other published work which seems to have anything 

in common with Bolzano's approach is Ingrami[i]in which the theory of the 

plane is developed from that of a triangle considered simply as a "frame" 

or "3-side". 

The postponement of the concept of plane as this is done in BG raises 

several questions. In what sense is the concept of surface (in particular, the 

plane) "higher" or more complex than that of line or curve (in particular, 

straight line)? In order to treat angle as a quantity is it in fact necessary to 

presuppose the concept of plane? What exactly is meant by "presupposing" 

the concept of plane? 

We have considered the third of these questions to some extent in 

2.4.1 and the second question is dealt with in 3.2.1. It is the first question 

that Is really central to the organisation of BG. We have referrfd to an 

ordering of concepts through their analysis and development from the simpler 
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to the more complex (2.4). Bolzano seems to have had in mind a hierarchical 

arrangement of concepts partly described by his definitions. In this ordering 

the concept of space. for example, is prior to that of motion because it is 

contained in the latter as ar. essential compcnent. It Is by no means clear 

that the concept of a straight line is an essential component of the concept of 

the plane. This would be the case if a plane is defined as a surface generated 

by the uniform motion of a straight line but this was not an option for Bolzano. 

In the Preface to BG(A20; BG, XIII) he says that if the plane is used for the 

elementary theory of triangles It will require axioms of the plane, and as he 

quaintly puts It, "if one had to prove them [it] would require just that theory 

of triangles". (Regarding the "proof" of an axiom see 2.4.5). So to be precise 

It is not the theory of the straight line but'the theory of triangles that Bolzano 

claims to have priority over that of the plane. 

The definitions of straight line and plane are given in terms of certain 

collections of points: 

The plane of the an lg e ras is that object which contains all and only 

those points which can be determined by their relationship (their 

angles and distances) to the two directions R, S. (A85; BG, 63) 

An object which contains all and only those points which are between 

the two points a and b Is called a straight line between a and b. 

(A79; BG, 57) 
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A point m has been defined to be between a and b if the directions ma, 

mb are opposite directions, a term which again has been defined in an earlier 

paragraph (see 3.3.1). Hence the definition of plane does not explicitly con- 

tatn the concept of straight line but it contains the same components of point 

and direction as the straight line. Thus there is certainly a partial ordering 

of the concepts in which point and direction are each prior to plane and 

straight line. But merely on this criterion of "containment in definition" it 

is not conclusive how the straight line and the plane should themselves be 

related, If at all. The development of Part B of BG suggests, however, that 

increasing complexity of definition corr:; sponds to increasing dimension. 

(This becomes perfectly clear in the recursive and general definitions ci DP. 

see section 3.4.2). Possibly the Increase In dimension was sufficient In 

Bolzano's view to ensure the priority of line over surface. This ordering of 

the geometric objects was perhaps not so natural In Bolzano's time as It is 

today. It was a common practice then to define the notions of solid, surface, 

line and point in that order, each being the boundary of the previous one, 

I 

except for solid which was given to the intuition in material objects. Priority 

was therefore given to sensory perception, the geometrical point being the 

ultimate abstract concept. For example, Klstner gives the mediaeval 

definitions: 

a geometrical solid (solidum, corpus) is an extension that exists 

Inside Its boundaries, surrounded on all sides. The extension of a 

f 
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I 

solid at its boundaries is called a surface (superficies), and the extension of 

a surface at its boundaries is a line (linea). (Kästner [1] p. 178) 

The same, or similar, definitions are given i. n Schultz [1] p. 246. 

Bolzano says they are improper because we can, and do, prrfectly well 

imagine a surface, line or point without a solid which they bound. Noncthe- 

less he retains the idea that the concept of a solid is special because it can 

be "given adequately" as something In Intuition; lines and surfaces are both 

"pure objects of thought". (A70; BG, 48) 

It is worth noting that at this stage [r Boizano's work lie makes no 

attempt to give general definitions of line and surface. In BG he only defines 

straight line and plane. It is with the later general definitions in DP that 

there is clear justification, on the grounds of the definitions, for the priority 

of the theory of straight lines and triangles over the concept of the plane. 

3.1.4 Summary of BG Part I 

Part I of BG contains the elementary results about triangles and 

parallel lines; it is intended to presuppose only one axiom (A32; Bq§19) and 

the "theory of the straight line". In the second part there is an attempt to 

derive this theory of the straight line from simpler concepts such as point, 

distance and direction. 'This part is tentative and unfinished; Bolzano 

says of it that he has not reached "the proper basis" and that he regards 
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this as the most difficult part of geometry. 

The general development of Part I may be seen from the following 

summary: 

Paragraphs of BG Part I Contents 

01-6 (A23-27) Definition of angle, principle that 

things which are determined In the 

same way are equal. Adjacent and 

vertically opposite angles. Errors of 

Euclid and discussion of angle as 

quantity. 

07-15 (A27-31) Definition of triangle, equality of 

triangles. Equality and Identity. SAS 

determines a triangle. 

9916-24 (A31-39) Similarity of triangles. Things which 

are determined by similar parts are 

similar. Axiom about distance. Two 

proportional sides with equal included 

angles give similar triangles. Dis- 

cussion of Wolff and Kant on similarity 

and the motivation for the axiom. 

f, 
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X25-49 (A39-52) Isosceles triangles. Possibility of 

right angles. Existence and construc- 

tion. Perpendiculars in isosceles 

triangles. ASA determines triangle. 

Equal angles simply similar triangles, 

Pythagoras' theorem, SSS determines 

triangle, discussion of coincidence and 

congruence. 

§50-67 (A52-65) Intercepts, rectangles, parallels, 

corresponding and alternate angles. 

The parallel postulate, parallelograms, 

discussion of various geometers. 

We have seen that Bolzano rejects, for various reasons, the introduc- 

tion of the concept: of motion and of the plane into elementary geometry. 

This has far-reaching consequences for his treatment of the subject. The 

concept of angle is completely revised; - congruence is replaced by a general 

concept of equality between geometric objects based on the Lclbnizian notion 

of "determination" which also serves to support a generalisation of the con- 

cept of similarity; finally. there is a proof of the parallel postulate. We shall 

now discuss these geometric consequences in detail. 
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3.2 Main Topics of BG Part I 

3.2.1. The Concept of Angle 

Where definitions of the concept of angle have not h:. en tautologous 

they have generally involved the concepts of the plane or of motion. 

According to Schotten (Schotten, [1] p. 94ff) the definitions of angle may be 

divided, with few exceptions, into three groups: 

(i) angle is the difference of direction between two straight 

lines. 

(it) angle is the quantity or amount (cr measure) of the rotation 

necessary to bring one of Its aides from Its own position 

to that of the other side without Its moving out of the plane 

containing both, 

(iii) angle Is the portion of the plane Included between two 

straight lines in the plane which meet in a point (or two 

rays Issuing from the point). 
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We shall give some examples of these t-. 'pes of definition. The def- 

initionealready quoted on p. 99 are obviously of type (ii). 

Euclid: A plane angle is the inclination of two lines 

to one another in a plane which meet together 

but are- not in the same direction. (Elements I 

Def. 8). (This is exactly the definition given in 

Kästner Cl]). 

Legendre: Lorsque deux lines droites AB, AC, so 
(1794) 

rencontrent, la quantite plus ou moins grande 

dont alles sont cartes Puna de lautre, s'appeile 

angle. [28 ý. 

(When two straight lines AB, AC meet each other, 

the quantity, of greater or lesser magnitude, by 

which they are spread apart, the one from the 

other, is called the angle). (Legendro [1] 

Def. IX). 
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The ideas of "inclination" and "spread" either already contain the concept 

of angle making the definitions tautologous, or else they Indicate the difference 

of direction of Schotten's group (i). As an example of the group (iii) there is: 

Bertrand: C. 'aand deux droites AB, CD so coupent un plan, elles 
(1778) 

le partagent : es quatre parties ASD, DSB, BSC, 

CSA dont chacune s'appelle un angle: Enforte qu'un 

angle est une portion de superficle plane contenue 

entre deux lignes droites qui se coupent, et sont 

terminees a leur point de section. 

(When two straight lines AB, CD cut each other on 

the plane, they divide it into four parts ASD, DSB, 

BSC, CSA each of which is called an angle: more 

precisely an angle is a region of the plane surface 

contained between two straight lines which inter- 

sect and which end at their point of intersection. ) 

(Bertrand. [1] ) 

The discussion by Heath on the concept of angle is impressively com- 

prehensive but contains a strange comment on Schotten's classification. On 

p. 179 of Heath[1]he says that when a definition Is given which does not come 

under the group (Ii) mentioned above some nc. te is usually added to Indicate 

the connection between angle and rotation. This Is claimed to be "remarkable" 

and a "striking indication that the essential nature of angle is closely 
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connected with rotation". (It would surely be remarkable if this obvious 

and natural connection was not usually pointed out. ) But why should such a 

connection be an indication of the essential nature of angle rather than that 

of rotat[on? For Bolzano it would be the case that to unders' and or use the 

concept of rotation we must already have the concept of angle, and not con- 

versely. 

Naturally the definitions of both groups (ii) and (ii[) Involving the 

notions of the plane and motion are rejected by Boizano. In a note toBG, 

IO6(A25-27) he explains what he regards as ti. e two major defects In the trad- 

itional Euclidean treatment of angle. Firstly, angles can only be added on the 

assumption that they are in the same plane, so the concept of plane Is I; npitc- 

itly required for this operation. Secondly, such arithmetic operations also 

make the assumption that angles are quantities. A quantity is understood to 

be something measurable by a number of units. The objection to angles as 

quantities is itself twofold. It again requires the concept of the plane for the 

addition of single unit angles. Also Bolzano tteems to believe that the con- 

cept of angle as quantity involves the concept of the area between the arms of 

the angle. This is a somewhat confused section (A26; BG, 4) and there follows 

a comment that, "the true origin of all Ideas of angles as quantities is the 

empirical concept of motion". However, though he may not be clear exactly 

why angle Is not a quantity there; Is no doubt at all In his mind that, "angle 

In Its essence Is not a quantity" (A27, BG, 5). This seems ultimately to be 
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based on the fact that we can conceive a system of two intersecting lines 

without necessarily Involving or assuming any other concept at all. 

Accordingly Bolzano begins BG with his own original definition: 

Angle is that predicate of two straight lines ca, cb (Fig. 1) which 

have one of their extreme points c in common, which belongs jointly 

to every other system of two lines ct , cß which are parts of the 

former with the same initial point c. (A23; BG, 1, Fig. 1 Is on A86). 

In Part II the definition Is refined In two ways: (i) angle is said to be really 

a predicate of the directions of two lines, (ii) angle is identified with the 

system of intersecting directions (A74; BGH§12). Thus the definition becomes 

remarkably sophisticated for the time. It Is very similar to the one in 

Hilbert's Grundlagen der Geometrie nearly one hundred years later: 

Definition: Let a be a plane and h, k 
. 
any two distinct rays emanating 

from 0 Ina and lying on distinct lines. The pair of rays h, k is 

called an angle and is denoted by 4 (h, k) or by 4(k, h). (Hilbert[1] p. 11). 

In Hilbert's work this is soon followed by a theorem to establish the quantita- 

tive comparison of angles. But this Is not, of course, ' done by Bolzano who 

Is deliberately avoiding the quantitative aspect. Naturally such a procedure 

Involves fundamental changes in the usual development of geometry. Angles 

can be equal or unequal but not greater or smaller. And here uiuality cannot 

be determined numerically as quantities but requires a new criterion. This 

appears in the following form: "Things which are determined in the same 
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way are equal. "(A25; BG, 3). This is simply quoted as though it was a well 

known and self-evident principle. It is rather similar to the Leibnizlan 

criterion for congruent structures (see the next two cnctions). It is applied 

throughout BG to various geometrical objects but particular! j to angles and 

triangles. As an example of its use, and as introduction to the next section 

on the concept of "determination", we shall consider the proof that vertically 

opposite angles are equal (IG5, A25). It is first proved as follows that any 

angle determines Its adjacent angle (A24B G, 2). From the definition, an 

angle Is determined when Its arms are deter nined and the arms of an adja- 

cent angle consist of one of the arms of the given angle and an extension of 

the other arm of the given angle. Thus assuming, from what Bolzano would 

call "the theory of the straight line" that every straight line can be extended 

uniquely, then certainly any angle determines Its adjacent angle. 

Then acA is an adjacent angle to acb 

and bca is an ac;; a: ent angle to boa. 

So if acb = boa then acß _ boo(. 

Bolzano himself was dissatisfied at 

not having a proof that acb bca, 

see II§14(A75). 
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In IJ6(A25) it is said that the "usual" way of proving the equality of two 

things is to deduce from the given information the equality of their "determ- 

fining pieces". It fig clearly regarded as a major defect in method that Euclid 

does not do so to his prop; of this theorem (Elements I Prop. 15). The 

Euclidean proof is as follows (using the lettering of the above diagram). The 

angles acA and acb are equal to two right angles (I, 13), also angle acb and 

bca are equal to two right angles. So ac(! and acb are equal to acb and bca , 

(Post. 4 and Common notion 1), subtract acb from each and the remaining 

angles acE. and bca are equal (Common notion 3). 

In Euclid's proof, treating angles as quantities has led to a kind of 

"arithmetisation" of the argument which Bolzano wholly rejects. He avoids 

It by means of his purely conceptual use of "determination". If we were to 

say that vertically opposite angles are equal because they are both equal to 

(180 - 0) where 0 Is one of the other angles, this would be more in the spirit 

of Bolzano's method than that of Euclid but with the notion of determination 

translated into arithmetic terms. 

3.2.2. Determination 

From the comparison of the methow of proof indicated at the end of 

the previous section we can make two observations which will help to analyse 

Bolzano's method In the later work. Using the notion of "determining pieces" 
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or "determining parts" can contribute to our understanding of a result. We 

are forced, in the above, to think of how the vertically opposite angles arise 

and we thereby gain insight into the structure of their relationship. To be 

precise, Instead of simply finding by arithmetical manipulation that two 

quantities are numerically equal, we ire led to understand how this equality 

arises from having a common adjacent angle, which in turn arises from the 

particular arrangement of angles, L. c. that each arm of each angle is an 

extension of an arm of the other angle. 

On the other hand the use of "determine" in a non-quantitative sense 

raises considerable problems. In Bolzano's principle, "things which are 

determined In the same way are equal' it Is not clear what "in the same way" 

means. The ' omparable principle for Leibniz raises the same problem: "if 

the determining elements are congruent then also the things determined from 

them in the same way will be congruent. 11 (Si determinantia sunt congrua, talcs 

erunt etiam determinata posito scilicet codem determinandi modo. ) The 

phrase "in . he saris way" could refer to the sources, the manner, or the 

result of the determination. If it Is the result.. the principle is a tautology. 

If the same components can determine (c ijects) In different ways, I. e. the 

determining process can take place to different ways with different results, 

either all the components (determining pieces) have not been given or else 

"determine" is being used In such a peculiar sense that It is not the correct 

word. Also it seems clear that unequal objects, e. g. straight lines of 
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different lengths, are-determined In the same sort of way. This leaves the 

conclusion that "in the same way" refers to the equality (or identity) of the 

determining pieces. Equality In this respect would then have to be taken as 

a primitive or "given" con : ept. 

In the geometrical example abrve the vertically opposite angles are 

Indeed determined by the angle acb between them. But It is not so clear that 

they are determined in the same way. Bolzano believed that he should prove 

that acb and bca are equal but he could surety not have been pressed far on 

what equality means in this context. The angles have Identical parts but are 

"thought of" differently. However,. since the angle definition of I§1 (A23) 

takes no account of the order of spe cification of the two arms we shall regard 

their equality as part of the definition and the proof as sound. We shall here 

regard equality as an undefined relation and being determined In the same 

way as meaning being determined by equal parts. 

The idea of determination can be interpreted in a logical way as a 

uniqueness statement. So to say that SAS determines a triangle means that 

given a certain SAS there Is a unique triangle containing that data. This Is 

how the Idea or the term Is usually used now and It Is at least Implied by any 

reasonable meaning. However, when we consider some other Important 

occurrences such as the principles that the equality of determining parts 

Implies equality of objects (A25; BG, I§6), and the similarity of determining 

parts Implies the similarity of objects (A31; BG, I317 ), It appears that the 
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Intention is to identify components which are essential to the existence or 

being of the total object in a sense which other components are not. I`. is 

this essential, or existential, sense of determine which was likely to be most 

Important to Leibniz and Bolzano and which is perhaps moat difficult for us to 

grasp today. The Idea Is not that the components will, in themselves, ciet- 

ermine a particular object of a particular kind. The kind of object to be 

determined must already be known and specified. Two points determine a 

straight line but they also determine a parabola through a third given point 

and infinitely many other totalities or kinds cf object. Furthermore, there 

is no question of the determining parts being unique to a particular object; - 

there are many sets of determining parts for a particular triangle. So the 

determining parts are not special in themselves, but only a combination of 

two or more parts may have this property of determining a whole of some 

kind. 

Determination may thus be considered in a dynamic sense as an act 

which, like cause and effect in thephysical world, Inc-Atably reaches a con- 

elusion whether we happen to consider the result or not. For example, the 

two-point system can be considered, as Bolzano does in II§6(A70), in Itself 

alone with its properties of distance and direction. Now in this dynamic 

sense determine means something like "produce". A certain line can be 

produced or generated in this w'. y. It does not depend however, for Us 

existence on those points. The "movement" In this sense of determine Is 

i 
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psychological: the two points indicate a possible route for our minds to reach 

the concept of a particular line. But the determining is not a psychological 

matter because there Is at the same time a static sense of determine which 

concerns both existence and uniqueness. There actually is, as a matter of 

fact, a unique straight line through the two points. These geometric objects 

are, for Aolzano, neither physical representations, nor mind-dependent 

ideas, nor abstractions. They have an objective existence as conceptual 1 

objects. The relation of determining is sui generis, a relation between con- 

ceptual obi ; cts, It may be compared to the relation of ground to consequence 

betwean propositions in themselves developed in BD and in much greater 

detail in Bolzano [4] 
. The logical consequence of a statement Involving 

"determine" Is a uniqueness statement, but it is at the same time more than 

that. It tells us about the composition and existence of the whole being dot- 

ermined. And we have already Indicated (p. 120) how this kind of information 

can be valuable In mathematical proof, both for discovering a proof and for 

making it clear. 

3.2,3. Equality and Congruence 

In the Elements Euclid used the not; cn of equality in a quantitative 

sense; (I, 4) Is exceptional for the phrase, "the triangles are equal". Only 

in the solid geometry of Books XII and XIII did he use the expression "equal 
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and similar" for congruent structures, I. e. ones which would occupy the 

same space. This term "equal and similar" is used for congruence in the 

eighteenth century German writings (for example in Schultz [11 p. 251 and 

Kästner [1lp. 177). The verb "sich decken" (literally "to cover itself") was 

still used for congruence well Into the nineteenth century (see BG I§49(A51) 

and the quotation of Schopenhauer above (p. 97 ). In Latin works "congruere" 

was used, and "Kongruenz" and cognates became common in German in the 

early nineteenth century. 

The basic congruence theorems are usually expressed in terms of 

two triangles each with sufficient data respectively equal for the concluzton 

to be drawn that the remaining sides or angles are equal. This use of con- 

gruence has doubtless been strongly influenced by the superposition method 

of Euclid adopted by him for I, 4 In the case of two triangles with two sides 

and their included angles equal (SAS). The corresponding sides are placed 

over each other and then the other parts of the triangles "must" also coincide 

and so be equal. But this Is a theoretical "must" which would not be refuted 

by the failure of any practical test. The claim that they must coincide vit- 

Tates the need for any superposition. The point Is that the data given In 

either triangle is sufficient to determine its other sides and angles. Both 

the method of superposition and the notion of congruence arc redundant for 

the proof of the conclusion: they merely illustrate the conclusIor: with ref- 

orence to two triangles. Now it is entirely consistent with Bolzano's views 
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on geometry considered so far that he should regard the concept of congru- 

ence, and the various associated terms and methods, as alien and superfluous. 

(We have already quoted the passage in I§49 (A51) rejecting congruence on 

p. 98. ), His own proof of . he SAS criterion for equality is obtained by proving 

that the data are sufficient to determine a triangle (A30: BG, I§12). This comes 

directly from the definitions (A23; BG, 191) and (A27; BG, I37). The "congru- 

ence" theorem (A30; BG, I§14) then follows since two triangles with SAS equal 

have equal determining parts. This is surcLy the essence of the purely geo- 

metrical result concerned here: that certain.. conceptual objects determine, 

through their relationships, certain other conceptual objects. For Bolzano 

then the crucial relationship Is the many-one relation of determination between 

several instances of physical or conceptual triangles and their one abstract 

counterpart. This is in contrast to the view of congruence as a binary relation 

on the field of physical or conceptual triangles. 

In reference to the use made of the Leibnizian criterion for the 

equality of geometric objects Vojt'ch suggests that it represents a purely 

logical standpoint add is therefore insufficient (Vojthch [1] p. 188, Note 11), 

By "Insufficient" Vojtdch was evidently meaning "lacking in modern axiom-, 

atic rigour" and in this sense he is certainly right. But two points need to 

be made in this connection, On the one hand we must remember Bolzano's 

purpose - to provide conceptually correct and correctly ordered proofs of 

elementary geometry, The axiomatic model of the time was still the 

Elements and this work was, in Bolzano's view, conceptually chaotic and 
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Insufficient to provide a sound foundation for geometry. Equally Insufficient 

to him would appear the clinical modern ideal of a complete and consistent 

theory with minimal Independent sets of axioms and primitive concepts. The 

meaning of "sufficiency"-with regard to a mathematical principle or theory 

has changed profoundly since Boizano's time. 

On the other hand (and now as a corollary to the above) It would be a 

complete mistake to regard Bolzano's use of the equality criterion, things 

whose determining pieces are equal are themselves equal, as representing 

a purely "logical standpoint". It could be no such thing. The concepts of 

"determining pieces" and "equality" may be undefined butthey have a geo- 

metrical significance. The objects of geometry are viewed as laid out in a 

definite progression of complexity: points, the straight line, configurations 

of lines (triangles and parallels), the plane. For each stage correct defin- 

Itions are sought which to some extent take the place of axioms. When the 

terms "determine" and "equal" occur in such definitions or axioms they are 

to be understood b; their geometrical context. It is contrary to the whole 

spirit of Bolzano's approach to regard these terms as entirely formal or 

logical. They would have a different meaning and role when used In analysis. 
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3.2.4. Similarity 

Similarity is a weaker or restricted form of equality which has been 

used in geometry to Identify properties of shape and ratio In contrast to prop- 

ertles of magnitude, Equality is a general relationship which was taken into 

elementary geometry through the notion of congruence and applied to objects 

such as triangles. Bolzano believed that such a transition, or special applic- 

ation, of a general concept to a particular subject was necessary and useful, 

but he objected fundamentally, for the varioaa reasons we have examined, to 

how this rad been achieved in the Euclidean trandition. It is not hard to see 

why B: )lzano would also be dissatisfied with Euclid's treatment of similarity. 

It is defined in Book 6 of the Elements (Definitionl): 

Similar rectilinear figures are such as have their angles severally 

equal and the sides about the equal angles proportional. 

Apart from using equality of angles in a quantitative sense this has simply [so- 

lated, in an ad hoc manner, sufficient properties to ensure that geometrical 

figures satisfying the definition will be similar in the general sense of having 

the same shape, Arid mathematically this is perfectly adequate and is justified 

by its usefulness. However, Bolzano prefers to try and embed the mathematical 

notion of similarity directly into a more general notion of similarity. This 

Is not just to satisfy some metaphysical principle, he believes the definition 

will thereby be more useful because It will have greater mathematical gen- 

erality (see end of A38; BG. I§24). Also, being more "correct" It should 

render the elementary theory more complete; in particular his hope is 
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"to complete the known gaps in the theory of parallels by means of the theory 

of the similarity of triangles" (A35; BG, 13 . ). Bolzano's definition Is as 

follows : 

Two spatial things ire called similar if all characteristics which 

arise from the comparison among themselves of the parts of each 

one of them, are equal In both, or If by every possible comparison 

among themselves of the parts of each, no unequal characteristic can 

be observed. (A31; BG, 016) 

The princirle (A31; BG, 017) that, "objects whose determining pieces are 

similar are themselves similar" is "proved" by use of the meaning of the 

word "determining", and so should better be regarded as an axiom governing 

the use of this concept. The Idea is to relate similarity and determination In 

the natural way and to provide an analogy with the equality principle (I34; A24). 

The definition itself is a kind of compromise between the specific proportion- 

ality of sides in Euclid, and the very general intrinsic quality defined by 

Leibniz: those things are similar In which it is not possible to discover, by 

consideration of themselves alone, whether they are to be distinguished 

(similia sunt, In quibus per se singulatim consideratis inveniri non potest, 

quo discernantur). In BG, I§24(A34) Bolzano comments at length on his work 

on similarity. He feels obliged to stress th;, originality of his treatment 

because he says Wolff "already sets forth in detail the same theory in his 

Philosophia prima seu Ontologia Sect. III Cap. I de Identitate et Similitudine. 
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and also In the Elementfis Matheseos Universae". This is rather an 

exaggeration. Wolff Is definition of similarity In the Philosophia Is almost 

the same as that of Leibniz; "those things are similar in which the things by 

which they should be distinguished from one another are equal... " (Wolff [2] 

3195). He makes no mathematical application of the concept but elsewhere 

he says it "conforms to the practice of mathematicians, ' (Wolff [310222). In 

the Elementas again there is little that could be called a theory of similarity. 

There Is the general definition in the Elementa Arith. (Definition 12) and 

then its application in the Elements Geometriae where he ac: laims "the 

most ingenious Leibniz" for using the notion of similarity to facilitate many 

proofs for which Euclid used only congruence. However, there are very few 

examples of such mathematical Improvements actually produced; the proofs 

are mostly very crude. For example, for the congruence of triangles the 

SAS condition is deduced as a corollary to the corresponding construction 

problem and the proof of the SSS condition consists of the comment, "one 

being laid on another, they will perfectly agree" (Wolff [1] ). Bolzano's 

treatment Is vastly superior from a modern (and from a Greek) point of view. 

The references to Wolff may be therefor two reasons. He was a well-known 

and respected scholar in the eighteenth century German-speaking world 

with whom it might be beneficial to be associated and Bolzano was particul- 

any attracted by the idea that two or more Independent discoveries of a 

theory was strong evidence for its veracity. (See DP§31, A55F. ) Secondly, 
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"however insubstantial the mathematical resemblance of their work Bolzano 

was undoubtedly strongly influenced by the general ideas about similarity 

originating from Leibniz and Wolff. 

We shall give one further definition of similarity, due to Wolff, which 

while not quoted in I§24(A34) would probably be known to Bolzano and Is part- 

Icularly helpful for understanding his axiom I§19(A32). It is to be found In 

Wolff's Anfangsgründe aller mathematischen Wissenschaften: 

Similarity Is the correspondence by wnich things are distinguished 

froil one another by the mind, and further, similar things cannot be 

distinguished from one another without, for example, the help of a 

measure. (Wolff [3] ) 

The ona explicit axiom of BG appears near the beginning of the section 

on similarity, I§19(A32), and is as follows: 

There is no special Idea-given to us a priori of any determinate dist- 

ance or absolute length of a line), i. e. of a determinate kind of 

separation u_° two points. 

This Is the beginning of a closely connected sequence of five paragraphs 

ending with the important result (A34; BG, I§23) that In similar triangles 

corresponding angles are equal. The Immediate use of the axiom Is to 

prove that all straight lines are similar and +rom this that triangles with 

proportional sides around equal included angles are also similar. One might 

attempt to prove that all straight lines are similar directly from the definition 
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as follows. The two end-points are determining parts of a straight line and 

these afford no comparison between them so no "unequal characteristics" 

can arise and so, by I§17(A31), the straight lines themselves are similar. 

It depends on what is to be counted as a "comparison" of "parts". If it simply 

refers to ratios of distances then our direct proof without the axiom would 

surely hold. This is evidently too much of a modern and technical interpret- 

ation of "comparison". By simply comparing the two points of a two-point 

system the only characteristic that can arise, or that the mind can perceive, 

Is that of apartness or separation. And although we understand that separate- 

ness admits of degrees, greater or less, the mind alone cannot distinguish 

or compare degrees of separateness. This is what the axiom says. " Another 

way to put the matter would be to say that the distance associated with a 

two-point system is not an intrinsic property of the system, I. e. there Is no 

way to measure or compare it without going outside the system. This Is 

perhaps even clearer If we compare distance with angle In the usual quantit- 

ative sense. There Is a natural "absolute" it easure of angle, namely a 

complete revolution, to which there is nothing comparable for distance. 

It is clear from the quotations above that by the term "similar" the 

Leibniz-Wolff school wished to indicate the equality of the Intrinsic, struc- 

tural properties of any system. The concept of distance can be understood 

a priori, but the comparison of arbitrary distances Is an essentially empir- 

Ical matter and not part of pure geometry. Thus Bolzano's axiom is being 

I 
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applied here to supplement his definition of similarity and to preserve Its 

domain among those things which can be known a priori. Indeed, rather than 

an axiom in the modern sense It is more like a principle that prescribes the 

a priori character of geometrical knowledge. It is not Inclaued in the def- 

Inition of similarity because, "it applies usefully In all parts of mathematics" 

(A38; BG, 16). In this section its function is to make a very general concept 

of similarity applicable to geometry. 

These philosophical surroundings to the concept of similarity should 

not obscure the considerable significance of i; s early introduction In this 

account of elementary geometry. From a modern point of view this is perhaps 

the most worthwhile and lasting achievement of BG Part I. One of Bolzano's 

pupils, R. Zimmermann, points out that this is what makes Bolzano's presen- 

tation of geometry so very different from the usual ones: 

The Important concept of the similarity of spatial figures appears, tn. 

Euclid's exposition, much later than the theory of parallels, but In 

Bolzano's exposition it Is among the first concepts of geometry. 

(Zimmermann [11 p. 170) 

From a pedagogic point of view this change certainly makes for. an easier 

grasp of the main outlines of the subject (e. g. the similarity proof of Pythag- 

oras' Theorem (A48; BG, I§45) is simple and instructive). This aspect of 

Bolzano's reorganisation of Euclid is still vindicated by the way elementary 

geometry Is taught today. 

f 
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3.2.5. The Theory of Parallels 

There is some confusion in the literature on the significance of 

Bolzano's work on parallels in BG. In BG, IJ59(A57) there occurs the. theorený 

"Through Vie same point o outside the straight line xy there is only one para- 

llel to xy. 11 This has the appearance of the Playfair equivalent of Euclid's 

fifth postulate, the parallel postulate, and has led some writers to claim that 

Bol zano had erroneously proved this postulate while not realising (like Wallis) 

that It was equivalent to his earlier assumption of the existence of unequal 

similar figures. (Examples of this are found In Folta [1]p. 93, Folta [2] and 

Kolmari [i] p. 44, ) Others deem the proof a highly significant application of 

Bolzano's concept of similarity and recount It in detail (e. g. Bergmann [1] 

p. 190). Perhaps the most appropriate reaction (as we shall show In this 

section) Is that of van Rootselaar In his excellent detailed commentary on BG 

In the Introduction to Bolzano [1] Vol. 2B 2/2(p. 13) where he makes little 

more comment than "that Bolzano, almost Incidentally, proved the parallel 

axiom". 

There can be no doubt that Bolzano never intended to "prove" Euclid's 

parallel postulate In the sense that this is usually meant, 1. e. to prove it 

from the other four postulates. As we have already sufficiently shown, 

Bolzano's whole approach to elementary geometry was totally different from 

that of Euclid. There Is no reference anywhere in BG to Euclid's form of 

his fifth postulate. When Bolzano does refer to it In BD, 108(, N. 215) he says 

4ý 
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that, "it only holds under the condition that both lines lie in the same plane". 

His final comment on his own work (A63; BG, 41) is that, "These are perhaps 

the most important propositions of the theory of parallels which are here 

expressed without the concept of the plane, " Thus Bolzano did not intend in 

BG, ut any stage, to solve this rather notorious problem of Euclidean geom- 

etry although it was topical at this time. The answer to Folta's question of 

"Why Bolzano did not try to get acquainted with Klügel's thesis ?" (Folta [1] 

p. 96 referring to the important work KlUgel [1] which had been Inspired by 

Kästner) is that he was probably just not Interested In Investigating further 

a system in which he believed he had diagnosed far deeper errors than this 

mere symptom of the unproved parallel postulate. Bolzano was busy devel- 

oping his own kind of "non-Euclidean" geometry for which he could deduce 

the theory of parallels which appears in BG, I§§50-66(A52-65). 

In another sense, however, Bolzano's BG was more "Euclidean" 

than Euclid's Elements. And this was because of the assumptions made in 

BG Part II on the "theory of the straight line" on which Part I of BG was 

based. In Part I Bolzano assumes several results which are equivalent, In 

the plane, to Euclid's parallel postulate. For example, In BG, I§22(A34) 

there is the existence of similar unequal triangles, and In the definition of 

parallel lines (A55; BG, I§34) there is the assumption that all points equid- 

istant from the straight line do themselves form a straight line. Now it 

would be Bolzano's claim that these can all be proved from his definition and 

t 
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theory of the straight line In Part U. This is a deeper reason why EG cannot 

be compared with the Elements. Euclid did not incorporate the Intuitive idea 

of the "straightness" of his straight lines into his first four postulates. Nor is 

his attempted definition of straight line used anywhere in a. cºaal proofs. Eol- 

zano's definition of straight line in BG, II§26(A79) is stronger than Euclid's 

postulatesl and 2 and could, if developed further, have been axiomatised to 

provide a rigorous foundation for BG Part I, If not, with suitable modification, 

for most of Euclidean geometry. In fact, van Rootselaar has shown in some 

detail how this might have been done in the aanove-mentioned Introduction . 

(Bolzano [1] Vol. 2B, 2/2) where there Is also detailed reference to the various 

revisions and further efforts to complete work started In BG which are con- 

tained In the volume Itself. 

Bolzano's references to the theory of parallels are rather obscure, 

they are to Schultz, Gensichen, Bendavid and Langsdorf (A64; BG, 42). 

Schultz seemed to believe he was the first to prove the postulate in Schultz [21 

where he mentioned the work Klügel[11. Tb ere is ro mention In BG of 

Important contributions such as those of Saccheri, Klügel and Lambert but 

this Is possibly because of their Euclidean stand-point. 

There is an interesting connection between Lambert's work on para- 

llels and Bolzano's axiom I§19(A32). In the main work Lambert[l]he uses 

a quadrilateral with three. right angles and considers the three hypotheses on 

the nature of the fourth angle, it may be: (L) a right angle, (ii) an obtuse 
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angle, or (iii) an acute angle. Assuming the infinite extent of the straight 

line disproves (ii). But on (iii) we can consistently adopt an absolute measure 

for line segments*. Consequently if we deny the existence of an absolute unit 

for distance we can reject the third hypothesis. Now Bolzan3 does assume the 

Infinite extent of the straight line (e. g. I§30(A41)- and I@39(A46)) and in the 

axiom I§19(A32) he denies, for philosophical reasons, the existence of an 

absolute measure. (Evidently in the belief that a priori knowledge of spatial 

things requires this denial) So the way would have been open to him, had he 

wished, to deduce the parallel postulate In aclidean terms. Legecidre g(ves 

a proof of the postulate much later using this discovery by Lambert (see 

Legendre[2] } Lambert himself did not deny an absolute measure and pro- 

ceeded further to seek a contradiction. 

The theory of parallels which appears in BG remained very important 

in Bolzano's estimation throughout this early period. Given the assumptions 

% of BG Part I the main results are correctly deduced and, because of the 

originality of his approach, it represents ac rnsiderable achievement. On 

BD, XIV(A105) he explains why he feels BG received such little attention, 

the small extent of the pamphlet, its uninformative title, the far too 

laconic style, the anonymity of the author and many other circum- 

stances were certainly not favourable for securing attention. 

He also refers on the same page to, "an obvious mistake in the theory of 

parallels". As we say In Note[4]on A260 this probably refers to the 

. *For details of this see Bonola [1] 
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theorem BG, IS30 (A41) where "gleich" (equal) occurs instead of "ähnlich" 

(similar). Although it isnatin the main body of results on parallels It is an 

Important theorem used for those results. A further reason for supposing 

he was referring to such a trivial error is that in a later reference to BG In 

RB, 22(A455) he claims that one reason why his "new theory of parallels" 

deserves attention is precisely that, "no obvious error has been detected" 

The second reason given there for the Importance of his theory is that he 

regards Legendre (in Legendre [1]) as having "hit upon just the same view 

of things quite independently of me". And'it is true that in Book I of that 

work Legendre develops a thory of parallels on the basis of similarity but 

he assumes the plane and Is very much is the Euclidean tradition. (See 

further on this Zimmermann [1] and Bergmann [1] p. 196. ) Also relevant 

here Is a short fragment written by Bolzano In 1813 entitled Neue Theorie dAr 

Parallelen (New Theory of Parallels) which Is reproduced In Bolzano [1] 

Vol. 2A5, p. 135. 

i 
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3.3. BG Part Ti and Assumptions of BG 

3.3.1. General Outline of BG Part U 

The title of BG Part II is an accurate description: Thoughts concerning 

a prospective theory of the Straight Line. It is a rather disorganised jumble 

of ideas about the assumptions made in Part I concerning the properties of 

the straight line. It is incomplete and tentative - just a sketch put forward, 

"to find out whether I should continue on this path" (A21; BG, XV). The 

quality and significance of these ideas are very mixed but there are some 

which make Important distinctions and are üeveloped usefully later In DP. 

The material divides roughly into the following three sections: 

Identity and equality. Determination 

(A66 - 70) and possibility. Definitions and nature 

of geometric objects. _ 

§6- 24 The system of two points, distance and 

(A70 - 79) direction. Various properties, concept 

of opposite direction. 

§ 25 - 43 Definition of straight line. Relations of 

(A79 - 85) order. Mid-point and definition of plane. 

C. 
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We shall comment on the first of these sections here and on the re- 

mainder in 3.3.2. It is inthese paragraphs *1 -5 that Bolzano most justifies 

the title "champion of rationalism In geometry" which Kerry confers equally 

on Bolzano and Leibniz (Kerry [1Ip. 476). He discusses the purely concep- 

tual nature of geometric objects, emphasises the necessity of proving tho 

possibility of any spatial object (in contrast to proving constructibility in 

Euclid), and rejects the traditional definition of geometric objects which gives 

priority to the concept of solid. 

The Msumption that points exist, or ihat they are possible is not 

considered. The concept of point is said to be indispensable to geometry and 

Is defined as a "characteristic of space (aJ, me . ov ) that is itself no part of 

space" (A69; BG, 47). In the same passage we read that a point Is "a purely 

imaginary object" (ein bloss imaginärer Gegenstand). Presumably this 

means it is an object which can be conceived by the mind but of which wo 

have no direct intuition or sense experience. This does not Imply that it is 

an abstraction constructed by the mind but rather, to be consistent with 

Bolzano's outlook, it is an objective entity apprehended by the mind. Possibly- 

he thought of such objects as constituting an intelligible realm similar to the 

propositions and ideas "an-sich" (in themselves) described later In the 

Wissenschaftslehre (Bolzano [41). Lines, surfaces and geometrical solids 

would be of the same sort, but the last is distinguished as being adequately 

presented "in intuition". Bolzano concludes: 
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u 
Accordingly every pure intuition of lines and surfaces which Is 

attempted (e. g. by the motion of a point) must be impossible. The 

definitions in this paper of the straight line, §26, and the plane, §43, 

are made on the assumption that both are pure object;: of thought 

(Gedankendinge). (A69; BG, 47) 

Because of this purely conceptual nature of spatial objects Bolzano seems to 

regard their possibility as a sufficient criterion for their existence, or at 

least for their use in geometry. It is not always clear whether possibility 

meant more for Bolzano than consistency of '; efinition, he certainly did not 

require actual construction. He says that one of the purposes of thcoretical 

geometry is to show the possibility of this or that spatial thing (A40; BG, I27). 

To quote from that paragraph: "the theoretician must be allowed to assume 

certain spatial objects without' showing the method of their actual construe- 

tion, provided he has proved their possibility". 

Such possibility is also to be proved of relations before they can be 

applied to spatial things. In BG, 11§3(A68) he suggests that the possibility of 

equal things could be demonstrated from the axiom BG, I§19(A32) since it 

states (in full generality) that we have no a priori Idea of any determinate 

spatial thing and so mbre than one equal spatial thing of any kind must be 

possible. But at the introduction to the axiom and at I§24, EG, (A34) "deter- 

minate" had the meaning "determinate size" so that we could conclude pre- 

cisely that there is more than one spatial thing possible of different (unequal) 
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sizes and so unequal to each other. But "determinate" now appears to be 

interpreted as "determinate position" for in the last sentence of BG, 1I§3(AG3) 

we read: "If therefore any spatial thing A is possible at a point a, then also 

an equal spatial thing B (=A) must be; possible at the different point V. 

One further point arises on this matter of proving the possibility of 

certain objects. Vojthch suggests that Bolzano "forgot" to require the poss- 

ibility of similar structures or to derive it from other postulates (Vojt9ch[1; 

p. 190 Note i6). It is more likely that he regarded his axiom in I§t9; BG, (A32) 

as specifically postulating similar spatial objects and so their possibility 

needed no demonstration. The denial of a special idea or concept does seem 

to have implied for Bolzano that the whole range of possible concepts (i. e. 

possible to be thought) would correspond to "objects".. This Is confirmed by 

the attempted use of the axiom described above where "determinate" means . 

"determinate position". 

3.3.2. Definition of Straight Line 

A relatively systematic sequence of Ideas now leads up to the definition 

of straight line In BG, II §2,6(A79). This begins with the important analysis of 

the simplect-non-trivial geometric structure, a system of two points. The 

concept of the relation between the two points a and b Is divided Into the two 

components of distance and direction as follows: 

C 
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I. That which so belongs to point b in relation to a that it is indepen- 

dent of the definite point a (which is precisely this one and not another), 

and which consequently can be present equally in relation to another 

point, e. g. a; Thi; is called the distance of point b from a. 

H. That which so belongs to point b in relation to a that it Is depend- 

ent solely on the definite point a where we have now separated off 

what already lies in the concept of diftance, i, e. what can belong to 

point b in respect of another point. This is called the direction in 

which b lies from a. (A70; BG, 48). 

As far as being a correct (or "essential") definition of the relation of 

I 

a tob or of the components of this relation, this is obviously unsatisfactory. 

Distance Is no more "Independent" than direction. The two concepts could 

have been interchanged without making any difference to this definition. 

The paragraph H§7(A71) Is intended to show the possibility of both concepts 

but it is hopelessly' confused because in the proof for each concept he requires 

the possibility of the other. Instead of "possibility" he actually shows the 

necessity of each concept by showing that neither concept, of itself, exhausts 

the content of the relation. This is hardly surprising since the first com- 

ponent of the relation (distance) Is something Independent of the particular 

point a. Even here there is confusion: "independent" (unabhängig) does not 

seem the appropriate term; what is evidently meant Is, "that which Is not 

C 
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uniquely determined by the particular point all. Inspite of these muddles the 

analysis does yield something positive which is summarised in II§8(A72), 

namely that the relation of two different points a and b can be divided into two 

primary concepts, distance and direction, such that neither of these alone 

determines one from the other. Given both the distance and direction of b 

from a they determine the point b, and given two points they determine a 

distance and direction. 

No such systematic analysis of these relations had been given before 

and it sho�s how the concept of determination can be used to define the 

simplfst geometric object - the two point system - in terms of distance and 

direction. Next, a triangle is defined as a three point system (A76; BG, II§18). 

no mention need to be made of lines (which are as yet undefined). It is re- 

garded as being only a concession to convenience, in Part I, to use the hetero- 

geneous concept of straight line in reference to triangles. 

The concept of opposite direction is then defined as follows. Rem- 

embering that Bolzano is working in space rather than the plane there is 

a whole "cone" of directions which form a given angle with a given direction 

R. But there is a certain value of this angle (namely 180°) such that this 

cone degenerates to a single direction, this is the opposite direction to R 

(A75; BG, II315). Bolzano points out that from his definition It neither follows 

that there exists such an opposite direction nor that it is unique (A75,78; BG, 

II§16, @24). Now a point m is defined to be between a and b If the directions 
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ma, mb are opposite, so finally, 

An object which contains all and only those points which are between 

the two points a and b is called a straight line between 'a and b. 

(A79; BG, II926). 

It has generally been easier in mathematics to develop a theory deduc- 

tively from intuitive concepts rather then to work in the other direction and 

attempt a logical analysis by which to define and give a foundation for our 

first concepts. To see the significance of Boizano's definition here of the 

straight line let us compare it with those de, 'initions given in the two major 

eighteenth century works with which Bolzano was certainly familiar. First, 

that of Baumgarten in his Metaphysik: 

A line (linea) is a series of points which are between separate points 

and which are uninterruptedly next to one another. 

That line in which there are as few points as possible between the 

fixed separate points Is the shortest line between those points or 

the straight line, 

(Baumgarten [l] p. 83) 

Then from K'astner's Die mathematische Angangsgründe: 

An extension which Is such that It Is surrounded on all sides and Is 

entirely contained within Its boundaries Is called a solid extension 

or a geometrical solid. The extension of a solid at Its boundaries 
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is called a surface (superficies) and the extension of a surface at 

its boundaries is called a line (linea) ...... a straight line is one 

whose points all lie evenly [nach einer Gegend] . 

(Kästner [i1 p. 178) 

In this passage Kästner specifically rejects the idea in Baumgarten's def- 

inition that a line consists of points next to one another. 

Bolzano's contribution to the problem was clearly much more precise 

and subtle than these efforts. His achievement was impressive, original 

and important for his later work. Yet from a modern point of view Johnson 

is quite right to say of BG Part II that, "we would judge Bolzano's theory of 

the straight line to be all but worthless. It was the result of investigating a 

pseudoprobleri. " (Johnson [1] p. 288). It would be useless for anyone now to 

take over Bolzano's problem cr method. Simply because the logical poss- 

ibilities in the intuitive concept of line have been thoroughly explored 

axiomatically. But it was highly Important In Bolzano's time to begin such 

an exploration, albeit In terms of definitions. It Is clear from our account 

above that it was his general views about the nature of mathematics and the 

need for purely conceptual foundations that led Bolzano to see the problem of 

the definition of the straight line as significant and to deal with it in such an 

abstract manner. His deliberate distinction between distance and direction 

leads Folta to make a rather- exaggerated claim, "Bolzano' s ideas are the 

basis on which linear vector algebra Is built up In a purely synthetic, 
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geometrical form. " (Folta[2]p. 227). Though this is certainly not histor- 

Ically accurate It Is quite true that the abstract concept of a free vector, 

developed much later In the century by Grassmann,. requires the distinctions 

that were first made In BG by Bolzano. 

3.3.3. The Assumptions of BG 

In Part I of BG there is only the one explicit axiom at BQ, If 19(A32) 

to which reference has been made several times. Most of the other assump- 

tions in Part I are said to be derived from the "theory of the straight line". 

It may well have been part of Bolzano's ambitious and rationalist hopes that 

he would be able to prove all these assumptions from-the correct definition 

of the straight line in Part If, thus leaving only one true axiom in his geom- 

etry. This does not, of course, happen and Bolzano is quite candid about the 

problems. In BG, II§24 he lists the assumptions which he is still unable to 

prove, even from his analysis of distance and direction. These are as 

follows: 

(i) that the distances ab and ba are equal (A73; BG, 1011); 

(ti) that the angles. ras and sar. are equal (A75; BG, tI 14); 

. (W) to a given direction there Is a unique opposite direction 

(A75; BG, 016); 

(Iv) In a system of three points consider the relations of the 

f, 
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direction In which every two lie from the third: if these 

directions are the same or opposite at one point then they are 

the same at two points and opposite at one point. (A78; BG, II§24). 

The assumption most frequently used in Part I is that two given points 

determine the straight line which lies between them. This follows from the 

definition of a straight line and the assumption (iii) above. The existence of - 

a mid-point is assumed at I§26(A39) and I358(A57), and this Is proved at 

II§30(A80). At I§39(A46) and I§57(A56) there are various assumptions about 

the order of points on a line and these all follow from assumption (iv) above 

which foreshadows the axioms of order put forward later by Pasch. At sev- 

eral places the unique and Indefinite extension of a straight line is required 

(e. g. I33(A24), 930(A41). It Is even quoted ipi the Preface as an example of a 

proposition in the theory of the straightlInc, but It Is not mentioned In Part 11. 

Ho; vever, assuming arbitrary distances (as mere numbers of units) are 

possible it could, rather loosely, be deduced from the fact that (I1339, A84) 

a point, distance and direction determine another point. For a detailed dis- 

cussion of possible axiomatisatLons of BG we refer again to van Rootselaar's 

Introduction in Bolzano [1] Vol. 2B2/2. 
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3.4. The Geometrical Work in DP 

3.4.1.. Summary of Main Topics 

The principle theme of DP Is the provision of what is regarded as a 

proper proof of the correctness of the usual formulae for t. length of a line, 

the area of a surface and the volume of a solid. Consequently we would 

expect it to be a mainly analytic work and it does involve the use of Taylor's 

theorem expansions for functions of one or more variables and the determ- 

[nation of functions by a general kind of similarity principle. But this is 

interspersed with various paragraphs concerning pure geometry. In part= 

icular there appear here for the firsttime "topological" definitions of line, 

surface and solid. There are also various conceptual distinctions such as 

those between length and distance, and space acid position, and also some 

applications of the general notion of similarity established in BG. Bolzano 

himself admits (A534; DP, 21) that most of this geometric work is logically 

unnecessary for the theory and results of DP: it was a convenient place to 

record some relevant results of his "reorganisation of geometry" at which 

he had now been working for many years. 

Thus it will not be Inappropriate'here to consider the purely geo- 

metric work In Isolation from the context of the rectification problems and 

Instead to regard it as Illustration and development of the ideas In BG. This 

Is further justified by the fact trat Bolzano seems to have regarded the. 

geometry in DP as of at least as much significance as the analysis. It is 
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reported in Berg [1] p. 27 that, 

It Is a curious fact that the copy of Bolzano (6) (= DP] extant in the 

University Library of Göttingen (sign. "Mathemat. III, 8973") contains 

a commentary in B )lzano's hand written on two empty pages after the 

printed text and emphasising these definitions: 

There then follows a summary In German by Boizano of the geometrical 

results that occur in DP. We shall give an English translation here of the 

German quotation in Berg [ 1) as it provides a convenient summary of the 

geometricU. l work of DP. , Bolzano's page numbers correspond to our DP 

pagination and we have added the relevant Appendix page numbers as usual. 

In this paper the following are comprehensible even for a beginner: 

a) tho definitions of line, surface and solid which appear on p. 20ff. 

(A533), p. 51ff. (A564) and p. 66(A579). 

b) the definitions of a straight line p. 29(A542), of a plane surface 

p. 53(A566), and several other definitions which appear on p. 53, 

54,67 etc. (A566,567,580). 

c) the definition of the concept of the length of a line p. 34(A547), 

of the area of a surface p. 57(A570) and volume of a solid p. 68 (A581). 

d) the definition of the concept of space p. 41(A554). 

e) of similarity p. 38 (A551).. 

f) of geometrical equality p. 37,38(A550,551). 

g) the proof of the theorem that the lengths of similar lines are in 

ý, 
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proportion to the lengths of other lines derived from them in a 

similar way, p. 41(A554), cQS49,160. 

h) the definitions of the concepts of a simple line, of a self-returning 

line, of a bounded line, of a boundary point p. 21(A534); of a simple 

surface, a self-returning surface, a bounded surface p. 52(A565); 

of a point which is enclosed by a line on a surface p. 53(A566); of a 

surface figure p. 54(A567); of a connected solid, of inner or bound-- 

ary points on a solid p. 66(A579); of a prism p. 67(A580); etc. 

i) Preface p. I- VI (A492-495). 

k) Criticism of various proofs that the straight line is the shortest, 

etc. Preface p. Xlff. (A500). 

1) the Appendix p. 76ff. (A589). 

m) the definitions of the concepts of speed and force p. 16ff. (A529). 

n) the proof of the theorem that every particle whose speed does not 

alter describes a straight line p. 26(A539). 

o) something about my theory of parallel lines p. 43,44(A556) etc. 

3.4.2. The Geometrical Definitions 

In. the Preface to BD Bolzano complains that "precise definitions are 

still lacking for the Important concepts of line, surface and soll. " and that 

there was still not even agreement on the definition of a straight line, "which 

f 



151 

could perhaps be given before the concept of a line in general" (A97; BD, VI). 

(Bol'zano had, of course, as described in 3.3.2, produced such a definition 

of the straight line: It re-appears substantially unaltered In DP§15, A542) 

Now beginning at §11(A53s) we find one of Bolzano's most Interesting con- 

ceptual achievements: the definitions of these geometrical objects In terms 

of point sets and neighbourhoods. First there is the definition of the concept 

of line in general, then its various subsidiary concepts: connected, simple, 

closed and bounded lines. 

The main definition is as follows: 

A spatial object at every point of which, beginning from a certain 

distance and for all smaller distances, there is atleast one, and at 

most only a finite set of points as neighbours, is called a line In gen- 

eral. (Fig. 1-7)(A533; DP, 20) 

A spatial object, it is explained In a footnote, is a system or collection, 

finite or Infinite, of points. Bolzano Is well aware that examples can be 

constructed (e. g. containing circular arcs) In which for certain points and 

for a certain distance there are infinitely many neighbours. So the phrase :- 

"beginning from a certain distance" does not mean one such distance can 

necessarily be specified for all points of the line, but that for each point 

of the, line a suitable "initial" distance can be found. The Idea of using 

neighbouring points, determined by distance, In order to define a geometric 

object appears here In the mathematical literature for the first time. The 
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property of possessing neighbours at arbitrarily small distancesfrom any 

given member point is described in the classical terminology as the genus 

proximum of all three geometric extensions, line, s rface and solid. The 

differenta specifics for the general line is the property that a distance can 

always be found for which there are only a finite number of neighbours at 

each smaller distance (A535; DP, 22). 

Some indications of how Bolzano arrived at this definition and why he 

regarded it as more correct than others are suggested by the, way he deals 

with two possible objections. These are: 

(i) that by this definition the line is reduced to a mere composition 

of points; 

(ii) the definition must really be a'theoram, it makes no reference to 

the original (or intuitive) meaning of the word "line" as a spatial 

thing described by the motion of a material point. 

The second of these objections is easily dealt with: no concept of motion or a 

material particle can have any part in pure geometry. It Is, instead, this 

usual empirical definition of a line (which Bolzano calls the "mechanical" 

concept of a line) which is the theorem provable from the more primitive and 

properly geometrical definition Bolzano has given. He attempts to illustrate 

this claim with a proof (A539; DP, 26) that the path of a particle in which "the 

cause of Its motion does not change" Is actually a straight line. (The phrase 

"the cause , 
of its motion" meafis for Eolzano, "the velocity throughout the 
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motion") . 
But the supposed proof succeeds. neither in supporting nor Illustra- 

ting this claim because instead of showing that the locus of such a particle 

" satisfies his geometric definition of a straight line, Bolzano shows it is a 

spatial object such that "ei ery part of it is similar to the whole". It Is 

claimed then that "geometers know" that only the straight line has this prop- 

erty. It is trivial from the straight line definition (e. g. A542; DP, 29) that it 

will have the property that every part Is similar to the whole because every 

(connected) part of a straight line will continue to satisfy the definition of a 

straight lii. s, and (A32; BG, I§20) all straight lines are similar to one another. 

But It Is the converse proposition that Is required here and not only is it not 

proved, It Is not clear that It can be proved using Bolzano's notion of similar- 

Ity. However, this is not to say that the mechanical concept of a straight line 

may not be proved to satisfy the geometrical definition of DP§11(A533) In 

some other way. Our main concern here is the appearance and origin of 

this definition. 

The first point to emerge unaffected by the above problem Is the 

familiar prohibition of the empirical concept of motion from geometry and 

the reversal of the intuitive order of dependence. Mechanics depends, as 

far as proof is concerned, on geometry, never vice versa. This negative 

principle only leads to the rejection of possible definitions and concepts 

without any indication of the existence or source of -a replacement. 

Bolzano's comment in response to the first objection, (that the 
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definition reduces a line to a mere composition of points) is much more 

suggestive of the positive considerations. leading to his definition. He does 

not deny that the line is composed of points but he is at pains to avoid this 

Idea being misinterpreted, Three such misinterpretations which he rejects 

are: (I) that the line Is the arithmetic sum of Its points (Instead "we must 

look not only at the set of points but also at the way they are put together" 

A536; DP, 23); (II) that a finite set of points might be sufficient for a line; 

(iii) that each point of a line borders directly on the next one. The Ideas of 

(i) and (ii) are related. In BG, II§27(A79) Bolzano said, with reference to 

the straight line, that "this object contains an Infinite number of points, 

therefore it must be something qualitatively different from a mere system of 

points". He seems to have believed that moving from the finite to the Infinite 

(in any collection of objects) inevitably Involves (or reveals) relationships 

between the objects which do not exist in the finite case. It is the description 

of these relationships that causes the difficulty in reducing an object to Its 

elements o': constructing It out of these elements. For the definition of a 

line, the Ideas rejected In (I), (Ii), (III) above can be summed up by saying 

that while a line is an infinite set of points It cannot simply be viewed as a 

concatenation or "string" of points. (Compare Baumgarten's definition in 

3.3.2) However, how else could we think of it? These considerations 

reveal the inadequacy of our "constructive" intuition in this case, (and 

Incidentally the prevalence of the definition of a line via the concept of 
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motion). Consequently it is reasonable to suppose that it was in this way that 

Bolzano was led to abandon the attempt to construct the geometrical continua 

out of sets of points. Instead he seeks an essential characteristic of such 

continua in terms of their constituent points. And here the fact that there is 

to be no "next" in a continuous extension can quite naturally be expressed by 

requiring for each point that there are other points at arbitrarily small dist- 

ances. The fact that the line is, as we should say, one-dimensional, is then 

guaranteed by requiring that there are only a finite number of neighbouring 

points at arbitrarily small distances. The concepts of surface and solid 

are then defined recursively as follows: 

A spatial object at each point of which, beginning from a certain 

distance and for all smaller distances, there Is at least one and 

at most only a finite set of separate lines full of points is called a. 

surface in general (A564; DP, 51). 

A spatial object at each point of which, starting from a certain dist- 

ante and for all smaller distances, there exists at least ol. e absolute- 

ly connected surface full of points, Is called a solid In general. 

0 (A579; DP, 66) 

By "an absolutely connected surface" Bolzano means a surface each . 

part of w. ".: ch that is Itself a surface has at least one line in common with the 

other parts that are surfaces, For a close comparison of these definitions 

with the work of Menger in the 1920's see Johnson [1] p. 29Eff. 
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3,4.3. The Origin of the Definitions 

In order to understand the emergence of this sequence of definitions 

there are two considerations which seem to be of fun amental importance. The 

definitions have a logical form which was unusual at this time, and they make 

use of a rather abstract concept of distance. The usual form of mathematical 

definition (of an object rather than relation) was as an abbreviation; the applic- 

ation of a symbol, word or phrase to a new combination of known objects (or 

symbols). In this sense it is the naming of the result of a construction. For 

example, there is the definition of a triangle as a construction from three 

straight lines (A27; BG. I§7) or the definition of straight line in terms of points 

(A79; BG, II§2G). The existence of the new object defined thus depends on the 

existence of the known constituent objects and the possibility of the construction. 

In the case of the line, however, no construction or relationship on a set of 

points seemed to be successful. Instead the definition proceeds by regarding 

the line as a completed entity (which is composed of points but wo cannot 

say how), and stating a property of It which acts as a defining character- 

Istic, This approach is logically distinct from the former because now 

the existence of an entity satisfying the'definition requires a new assumption 

or insight, It is a simple kind of implicit definition and could be regarded 

from a modern point of view as an axiom governing the primitive terms 

"point" and "line". Unfortanately Bolzano does not seem to realise 

the existence problem which such a definition raises. . 
At least he 

nowhere mentions the need to assume that such an object as he defines a 
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line to be does actually exist. It is not altogether clear (see remarks in.. 

2.4.4 and p. 123 ) whether or not he believed we have a kind of direct appre- 

hension of such conceptual objects as lines which might obviate the need for 

such assumptions. (The same distinctions in form, and criticisms over exist- 

ence, apply also to the definitions of surface and solid as well as to their 

subsidiary types). The use Bolzano made in the definitions of the classical ' 

terms "genus proximum", "differentia specifics" seems to have been rather 

artificial and conventional. The terminology Is certainly compatible with 

both sorts of definition mentioned here and does not seem to have motivated 

the one chosen. 

The development of Implicit definitions was highly important In the 

subsequent history of mathematics. Consider the, definition of a topology as 

a set of sets with certain properties, or even the algebraic definitions of 

group, field etc. now more conveniently expressed In terms of sets of axioms. 

The progression from implicit definition to the more flexible schema of 

primitive terms and axioms Is quite natural. The crL cial logical (and psycho- 

logical) distinction was the move from the simple, constructive definition. to ' 

the more abstract Implicit definition. 7 us the transition made by Bolzano 

from his definition of the straightline in BG to the general geometric defin- 

Mons in DP is a development of considerable historical signficance. Van 

Rootselaar says In Bolzano [1] ; Vol. 2B 2/1, p. 14) that although the definition 

of line In general is usually considered an original achievement of L3olzano, 

"I have reason to suppose the definition was then fairly common. " But he does 

not say where It is to be found. 
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3.4.4. Concept of Distance 

It Is reasonable to suppose that such implicit definitions arise from 

some insight or abstraction which produces a new concept or the refinement 

of an old concept. This Is then used in the formulation of the Wining charac- 

teristics. In the present case of Bolzano's definitions of geometric objects 

It Is the refinement of the concept of distance which Is fundamental to their 

formulation. At DP§20(A547) he distinguishes, in reference to his definition 

of length in the previous paragraph, between distance and length saying that 

the former is simpler than the latter because any system of two points has 

distance associated with it, while we need to consider a line joining the points 

before we can apply the concept of length. Of course, the Idea of a distance 

between two points Is easy and familiar but we can see how, having separated 

this concept from that of length, it would be much easier to arrive at the more 

abstract viewpoint by which one can consider the class of points (finite or in- 

finite) at a certain distance from 'a given point, I. e. what we now call a 

spherical neighbourhood. This concept of a neighbourhood defined by a 

distance, and subsequently an arbitrarily small distance, is the central 

component in all these definitions in DP. The definitions themselves rep - 

resent the first major insight into the nature of abstract continuous e:. tension. 

It. Is an inzight which has been generalised and shown itself to be enormously 

fruitful in the subjects of topology and functional analysis. It Is not claimed 

here that there is any psychological (or other) priority between the appearance 
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of the neighbourhood concept and the gaining of the insight expressed In 

the definitions. It is sufficient for our purpose only to point out the un- 

deniable positive contribution to this insight that was made by Bolzano's 

refinement and use of the concept of distance. 

/ 
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Cater 4; Analysis I 

4.1. General Introduction 

4.1.1. The Meaning of "Analysis" 

The word "analysis" is used today as a generic term to denote several 

branches of mathematics which have In common their use of Ideas and methods 

based on the concept of limit. For thQ proper exploitation of this limit con- 

cept a suitable domain for the values of the variables needs to have been 

specified and defined (e. g. real or complex numbers). Thus the simplest 

kind of modern analysis (that of a real variable) would not have been ; possible 

or even comprehensible at the outset of the 19th century; its two fundamental 

concepts had not been properly established. The limit concept was still 

highly controversial and often Ill-formulated, and the construction or defin- 

ition of the real numbers was not to begin for'at least another thirty years. 

Nevertheless the term "analysis" was widely used in European 

mathematics throughout the 17th and 18th centuries. Its mathematical . 

meaning early in the 17th century derived from two main. sources: (i) 

the original Greek usage as part of a technique* for finding proofs or sol- 

utions (usually for. geometrical problems), and ([! ) the particular success 

at that time of algebraic methods applied to geometrical problems 
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(for example, by Vieta and Descartes). In Greek mathematics the term 

"analysis" referred to the process of working backwards deductively from a 

theorem until something known or assumed to be treu e was reached, and then 

(the synthesis) trying to work forwards along the same path. (See, for example, 

the description in Pappus Ill 
,) Algebra was well, suited to this method for, if 

a problem could be expressed by means of an equation, the deduction of a sol-' 

ution or an identity from the equation could often successfully be reversed. 

Vieta was deliberately reviving the Greek term when he called his algebra 

textbook (1591) In Artem Analyticam Isagoge (Introduction to the analytic art). 

Algebra was typically an "art" at this time, it was a procedure for dis- -. " 

covery and an aid to doing geometry which was still the main substance of 

mathematics. Although Vieta's example of rei2rring to algebra as the "ana- 

lytic art" or as "analysis" was not generally followed in the 17th century these 

terms were increasingly used in mathematics (In the general sense of, a 

"method') and were associated with algebra, especially the use of equations. 

An example is in the title of the first formulation of Newton's discovery of 

the calculus (written 1671, published 1711), De Analyst per Aequationes 

Numero Terminorum Infinitas (On Analysis by means of equations with an 

Infinite number of terms). 

The family of problems which were ancestral to what became known 

simply as "calculus" consisted of geometrical problems: for example, 

finding tangents and areas associated with various curves. Many of these 
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problems had already been solved (in some cases with'the aid of the new 

co-ordinate geometry) by men such as Wallis, Barrow, Fermat and Huygens. 

But with the general methods and the direct relationship of the tangent and 

area problems discovered by Newton and Leibniz the techniques of algebra 

(not only equations but the development of expressions in infinite series', 

began to take on a new status. Algebra was no longer simply a means to an 

end (the solution of geometric problems), it was becoming established as an 

end In Itself. Accordingly the status of analysis was enhanced, associated 

as it was with the success of the algebraic msthods in resolving the tangent 

and quadrature problems. 

In the 18th century the word "analysis" was in common use in Engiish, 

German, Latin and French mathematical writirgs though its meaning varied 

considerably during the century and from one country or langua; o to another. 

The Important new factor in the use of the word was the Impact and develop-.. 

ment of calculus. From Its origins It was natural that calculus was regarded 

as an extension of algebra, or at least of "algebraic" geometry, a kind of 

"algebra of the Infinite" as It has been described (Kline [1] p. 324). In works 

written in English, following Newton's Methodus Fluxionum... (Newton [1] 

1671, published 1736), the calculus was usually just referred to as the 

"method of fluxions". In Latin and French however, the three components 

of being a powerful mathematic-il method, being algebraic, and seeming to 

require Infinitesimals, made the use of some equivalent to "infinitesimal 

I 
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analysis" most appropriate. For example, there were the works by L'HSpital, 

Analyse des infiniments petits (1691) and by Euler, Introductio in Analysln 

Infinitorum (1748). 

The several meanings of the word "analysis" In English are Illustrated 

by the entries in Thomas Walter's Mathematical Dictionary (Walter [1] 1762). 

There are five such entries. First there is the quite general sense of "res- 

olving a thing Into its component principles, in order to discover the nature of 

the thing"; then as a mathematical method in the Greek sense mentioned above; 

then "analysis of infinities" with the instruu%,. on to see "Fluxions"; then the 

"analysis of powers" meaning the extraction of roots. Finally there is the 

entry "Analytics" defined as "algebra, ' or the doctrine of analysis". Concerning 

this last identification Kline says, "In the famous eighteenth century Encyclopedie, 

d'Alembert used algebra and analysis as synonyms" (Kline [11p. 323). Apart 

from the existence of the several senses of "analysis" already mentioned such 

a straightforward Identification could only be made in a rather loose sense. 

D'Alembert actually writes as follows: 

Analyse...... est proprement la methode de vesoudre les problemes 

mathematiques, en les reduisant a des equations. 

L'Analyse, par resoudre les probt mes, employe lo secours de 

1'Algebre, ou calcul des grandeurs en general: Aussi ces deux mots, 

Analyse, A1_ fiebre sont s : )uvent regards comme synonymes. 

(D'Alembert Cl ). 
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Rather than identify them, D'Alembert distinguishes analysis and algebra 

(there are long separate articles on each). In fact the brief summary quoted 

here is a fair generalisation of the mathematical use of the term "analysis" In 

the mid-18th century. It was primarily a method, a procedure for solution; 

and ac; such always an algebraic method In contrast to geometrical, empirical 

or general Inductive methods. As a subject in itself It was associated, and 

sometimes identified, with algebra, but more especially as we have seen, 

with those parts of algebra which Involve Infinitesimals and Infinite series. 

To this extent analysis encompassed the differential and Integral calculus. 

The above summary also applies to the German language wrlt[ngs of 

the 13th century but here the usages were well organised; The words "Algebra" 

or "Buchstabenrechnung" (calculation with letters) were usually reserved for 

very elementary matters, rules of signs, n. otations, manipulation of fractions 

etc. The main part of algebra (equations, series, functions etc. ) was 

"Analysis der endlichen Grössen" (analysis of finite quantities), while the 

differential and Integral calculus was contained in the "Analysis der Unend- 

lichen" (analysts of the infinite). These two phrases were common textbook 

titles, for example volumes with each of these titles form the third part of 

Kastner's Die mathematische Anfangsgründe, In Klugel's Mathematisches 

Worterbuch (Kllgel[2] , Part I, 1803) the entry "Analysis" is separated into 

Analysis als wissenschaftliches System (analysis as a scientific , system) and 

Analysis 213 Methode (analysis as a method), reflecting the ambiguity to 
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which we have already referred. In the former section analysis in a very gen- 

eral sense Is described as the study of any kind of combination of quantities 

through calculation. In this sense it would include algebra as Its first part. 

Then analysis in a "narrower and proper" sense is defined as "the science of 

the forms of quantities". (KlUgel added that this is sometimes called the 

theory of functions). In this sense he distinguishes algebra and analysis: the 

former considers quantities as known or unknown, ' the latter considers them 

as'constant or variable. There then follows the division Into "Analysis der 

endlichen Grössen" and "Analysis des Unendlichen" as described before. At. 

alternative and quite common terminology for these finite and infinite kinds 

of analysis was "niedere Analysis" ("lower" or elementary analysis) and 

"hUhere Analysis" (higher analysis) respectively. (See for example Rogg[1j. ) 

By the end of the 18th century the algebraic and infinitesimal methods 

that had been used to solve the geometry problems of the 17th century had 

proved so enormously successful in a whole range of physical problems that, 

under the general heading "analysis", they had become the dominant part of 

mathematics. The intuitive concepts of space, time and motion, long assoc- 

sated with geometry and mechanics, were losing ground to the more formal 

manipulation of functions and equations by the methods of calculus. Tt was 

Inevitable after the advent of analytic geometry that these developments 

should lead, during the 18th century, to analytical or "rational" mechanics. 

in the Prciace to his Mecanigue analytique (1788) Lagrange wrote: 
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.... No diagrams will be found to this work. The methods which I 

expound in it demand neither constructions nor geometrical or mech- 

anical reasonings, but solely algebraic operations subject to a uniform 

and regular procedure. Those who like analysis will be pleased to see 

mechanics become a new branch of it .... (Translation as in Kline [1] 

p. 615) 

The purely algebraic, or analytic, treatment of mechanics described 

in this quotation was evidence of the major transition taking place in the devel- 

opment of mathematics. This was not only the rise of analysis and its subse- 

quent arithmetisation. It was the replacement of the empirical and intuitive 

elements in mathematics by more formal symbolic and arithmetic procedures. 

More fundamentally arithmetic (and thereby operations with symbols) was 

being freed from the need to be interpreted geometrically. The truth of 

Euclidean geometry was giving place to the truth of arithmetic. Geometry, 

however, did not decline, It developed enormously (and In its turn was finally 

freed from the need to be empirically interpreted) over the period of the 

"arithmetisation" of analysis. The latter was a huge and lap hazard pro- 

cess, occurring to no-one suddenly and being advanced and retarded over 

many generations until there was a general and stable concensus. 

Aft&: r the work of Euler and the Bernoullis it was the French math- 

ematicians of the late 18th century who contributed most to the prominence 

of analysis, By around 1800 analysis was not simply a new an i fruitful 
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branch of mathematics, it had displaced geometry as the paradigm of math- 

ematics. And this was understood, for example by Laplace, in terms of its 

superior generality and degree of abstraction. In hL Exposition du systems 

du monde (1796) Laplace writes: 

The algebraic -analysis soon makes us forget the main object [of our 

researches] by focussing our attention on abstract combinations and 

it is only at the end that we return to the original objective. But in 

abandoning oneself to the operations of analysis, one Is led by the 

generality of the method and the ine!!: imable advantage of transforming 

the reasoning by mechanical procedures to results often inaccessiblo to 

geometry. (Laplace [1] 
, translation as in Kline [13 p. 615). 

Confidence in the furture of analysis was reflected in the great number 

of new and widely read works appearing soon after the French revolution. 

These Included Lagrange's Theorie des Fonctions anal i ues (1797, German 

1798,2nd ed. 1810), and Lecons . sur le calcul des fonctlons (1806), Tratte 

eldmentaire.... (1802,2nd ed. 1806, English 1816, German 1817), Carnot's 

Reflexions sur la metaphysigue du calcul.. (1797, German and English 1800, 

2nd ed. 1813). 

The main purpose of these works, and others like them, was to 

spread and teach the methods, and achievements of the calculus. In most 

standard textbooks one could expect to find all, the elementary processes and 

rules of differentiation and int; gration for a wide range of functions, 

C, 



168 

applicätions to finding maxima, minima and singularities of curves and sur- 

faces (also their rectification and quadrature), the solutions to many ordinary 

and partial differential equations, and perhaps Lagrange's calculus of vari- 

ations. 

There were numerous ways of introducing the concepts of differential 

and of derivative. They either involved infinitesimals explicitly, the use of a 

limit without a proper arithmetic definition (though L'Huilier virtually had this 

correct), or the use of Infinite series without a clear definition of convergence. 

None of th'; se methods were regarded as wholly satisfactory though Lagrange's 

technique of assuming a Taylor series expansion for all functions enjoyed 

considerable, if short-lived, enthusiasm In the first decade or so of the 19th 

century. Tha works of Lacroix and Carnot mentioned above adopt a kind of 

amalgam of several of these methods. Inspite of being a matter for concern, 

and numerous attempts to improve the relevant definitions, there was really 

little sense of "crisis". The foundations of analysis were not as significant 

to the matrematicl ns of the early 19th century as they have become In our 

eyes. Logical structure was secondary to truth. For although various pec- 

uliaritles and paradoxes were knownto arise from using infinitesima]$ and 

Infinite series these could cast no doubt at all on the truth of the main body 

of analysis. That was guaranteed both by : t3 overall coherence and its over- 

whelming success In applications. The foundations were desirable not so 

much for the sake of truth but in order to conform the subject to the newly 
I 
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developing ideal of mathematics as being independent of any Intuitive appeal to 

such things as vanishing quantities, motion, or ideas borrowed from geometry. 

4.1.2. Bolzano's view of Analysis 

Bolzano was fairly well acquainted with the mathematical literature of 

his time. In his papers of 1816 and 1817 there are over twenty references to 

important works on analysis which had been published within the previous 

twenty years. These included works by Lagrange, Lacroix, Gauss and . Cre:: e. 

He also knew at least some of the works of Newton, Euler and D'Alembert. 

To a large extent then it was natural that he inherited the general views of the 

time on analysis that we have outlined in the previous- section. There are a 

number of specific remarks which show that this was true. In BL (Preface) 

the differential and integral calculus, are classified as higher analysts. 

(Bolzano says he regards this subject as containing "the most Important dis- 

coveries In mathematics" (A495; DP, VI)). On the same page he e, -plains the 

term "purely analytic" as being equivalent to "purely arithmetic, or algebraic" 

and says that a "purely analytic procedure" Is, 

one by which a certain function is derived from one or more other 

functions through certain changes and combinations which are express- 

ed by a rule completely Independent of the nature of the quantities 

designated. 
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The example is given of forming (1 + x)n from (1 + x). 

Thus far this seems quite a straightforward interpretation of "analytic" 

In terms of algebraic operations. On closer inspection, however, there are 

some significant differenc*: s in Bolzano's view of analysis not only from the 

modern understanding but also from tl.. e views of his contemporaries. From 

our modern viewpoint what comes first logically in developing analysis, def- 

ining a domain of values such as the real number system, came about last of 

all historically. It is in consequence of a proper (analytic) definition of the 

number cuacept (as well as the continuity of a function) that we should regard 

the main result of RB, the intermediate value theorem, as a theorem of ana- 

lysis. Bolzano regards the result, ac was usualat the time, as part of "the 

theory of equations" (A431; RB. 1). Doubtless he would have regarded this 

theory of equations as part of analysis (Analysis der endlichen Grössen), 

but more because It Is algebraic than because of the underlying limit concept. 

So inspite of the careful continuity definition (applied in BL and RB), the 

outlook and priorities are rather different from the viewpoint which emerged 

later in the century. It was regarded as more significant to find a way of 

solving an equation than to prove a property of continuous functions. 

Concerning the way In which Bolzano's understanding of analysis diff- 

ered from that of his contemporaries there are two points to be made: one 

a matter of substance, the other a matter of emphasis. The substantial 

matter Is the categorical rejectica in BL and DP of Infinitesimals or Infinitely 

I. 
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small quantities. He says that the usual definition of such quantities as 
I 

"actually smaller than every ..... conceivable quantity" is "contradictory" 

(A269; BL, V and A497; DP, VIII). With specific reference to calculus Bolzano 

assumes "it must be known to everyone" that the rules of calculus "can be 
. 

expressed in such a way that the concept of the infinitely small (which might 

perhaps often be associated with the symbols dx, dy, dz ... ) is completely 

avoided" (A495; DP, VI). By this time this was probably not even a minority 

view. It was quite popular to reject both infinitesimals and limit concepts. 

The full title of Lagrange's 1797 work was, "Theorie des fonctions analytiques 

contenant les principes du calcul differentiel, degages de toute consideration 

d'infiniment petits, d'evanouissans, de limites et de fluxions, et reduits ä 

1'analyse algebrique des quantites finies. And a substantial work by 

DuBourguet (1810 
, referred to In DP) is entitled, Traites elementaire du 

caicul differentiel et du calcul Integral, independans de toutes notions de 

quantites infinitesimals et de limites. 

Bolzaro himself was not in the tradition of these works; he preserved 

a clear and essential limit concept while rejecting the Infinitely small. How- 

ever, the latter was still used by several authors and was a matter of serious 

controversy. For example, J. Schultz in whom Bolzano had found an ally on 

several Is: ues, Is criticised (A497; DP, VIII) for his use of the Infinitely 

small. Whereas for some authors it had been a characteristic of analysis 

since the 17th century that it Involved the algebraic treatment, of the Infinitely 
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small, it is clear in Bolzano's early writings that for him such quantities had 

no proper place in any part of mathematics. 

The other distinctive feature of Bolzano's thinking on analysis is the 

extent to which he dissoc. ated the subject from geometry. For someone like 

Isaac Barrow in the 17th century the early problems of calculus were geom- 

etrical problems and they were most appropriately solved by purely geometrIc- 

al means. On the Continent during the 18th century the algebraic formulation, 

aided by Leibniz's notation and the development of the function concept, passed 

from bein ;a convenient description of a geometrical or mechanical situation 

to being an Independent body of theory capable of geometrical or mechanical 

Interpretation. A symbolism which began as a servant to geometry became, 

not its master, but independent and superior (in its generality) to geometry. 

To guarantee this Independence it was therefore essential that analysis should 

borrow nothing from geometry unless it could be reformulated completely to 

arithmetic terms. Bolzano saw this clearly, and especially in terms of the 

generality of arithmetic and analysis. The quantities of geometry were 

"spatial quantities" and accordingly theorems about them were only a special 

case of more general theorems (A435; RJ3,7). 

The attitudes of late 18th century mathematicians to the relationship 

of analysis and geometry were various and , muddled. The Intermediate value 

theorem of RB provides a 'good example. It was widely accepted and used. 

It was clearly "true", but such clarity and truth was a product of the 
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geometrical interpretation and did not extend to the general functional formul- 

ation of the theorem. Kästner and Gauss saw the need to give a properly 

analytic proof but wany others did not and seem to have been quite content 

with the appeal to geometric intutition. He is therefore far from being con- 

ventional when Bolzano emphasises repeatedly in RB Preface that the proof of 

the intermediate value theorem must not make use of concepts or methods 

borrowed from geometry. The title of RB (Purely analytic Proof.... ) rein- 

forces this understanding of "analytic", and in the first paragraph of the, 

Preface "a-purely analytic truth" is contrasted with "a geometric consider- 

ation". The implication is that it is necessary to the proper sense of "analytic" 

that it implies "non-geometric". The arguments for this in RB are the matter 

of generality already mentioned (leading to logical circularity) and also the 

"genus argument" against using concepts from one kind of theory in another 

(A434; RB, 6, see 2.4.1. ). In fact, in consequence of Bolzano's regard for 

"kinds" one might be left in doubt from reading RB alone whether he would 

actually endorse tha application of algebra to geometry (or anything else), 

I. e. whether he would allow analytical geometry as valid mathematics! 

Such doubt is completely dispelled by, "the most general way of determining 

the nature of a spatial thing Is to state certain equations between co-ordinates" 

(A495; DP, 6). Nevertheless the tension in i '. ese early works between the 

principles of genus on the' one hand, and generality on the other, is never 

resolved. The genus principle invoked on several occasions with the phrase 
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peraf3«o Ls Ks äa»o'(vos [transition to another kind] seems to imply mutual 

exclusion of theories and their respective concepts. The generality principle 

Implies a one-wnay relationship of inclusion, or of the application of the more 

general to the less general. With DP the generality principle is clearly the 

dominant one; the rectification problems are geometrical but they are being 

solved by the powerful, more general methods of analysis. However, the 

main conclusion to which we wish to draw attention here is that in both RB 

and DP various considerations led Bolzano to emphasise more than many of 

his contemporaries that analysis derived its meaning partly in contrast to 

geometry, and that being analytic implied being non-geometric. 

As we have seen in the previous two chapters Bolzano's main motivation 

in his mathematical work was the improvement of the foundational aspects of 

theories: the clarifying of concepts, and the provision of rigorous, appropri- 

ate proofs for the important theorems. It would naturally have been the 

foundational problems in analysis that most interested him and there was 

plenty of scope for his contributions. That he was well aware in 1810 of the 

continuing confusion in this area is clear from the following: 

I do not want to mention anything here about the defects in the higher 

algebra and the differential and integral calculus. It is well known 

that up till now there has not been any agreement on the concept of a 

differential. Only at the end of last year the Royal Jablonosvky 

Society of Sciences at Leipzig gave as their prize-question the 

0 
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discussion of different theories of the infinitesimal calculus and the 

decision as to which of these is preferable. (A96; BD, V). 

That he says no more at this stage about the foundations of calculus Is 

evidently because there were already more problems than he could solve to 

his satisfaction In the more elementary parts of mathematics. 

4.1.3. Bolzano's view of his works on analysis 

The programme started in BD of re-organising mathematical theories 

(including the simplest ones of arithmetic and geometry) did not progress far. 

Parts of the "zweyte Lieferung" (second issue) of BD were written but not 

published (see Bolzano [1] Vol. 2A5). There was no lack of enthusiasm on 

Bolzano's part, but to continue the work he clearly needed such enthusiasm or 
I 

interest to be shown on the part of other mathematicians. Since this was not 

forthcoming in reviews or correspondence he decided to postpone the major 

work of BD and, as he candidly acknowledges, "make myself better known to 

the learned world by publishing some papers which, by their titles, would be 

more suited to arouse'attention" (A455; RB, 27). Ile explains in the same 

passage that this also applies to BL and DP. There seems to have been some 

difficulty in finding publishers for these works and so In addition to the desLLe 

to obtain criticism and interest in his work there may also have been a simple 

commercial motive. At all --vents the topics of these analysis works were 
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chosen for publicity purposes- to gain attention. In this respect they were 

not conspicuously more successful than his earlier efforts. 

There are few new results proved in these pai; srs; their main purpose 

In each case is to give new proo's of well-known theorems mat were essential 

to analysis. Bolzano regarded them each as being the first truly rigorous 

proof. This attention to the proofs of basic theorems was the result of funda- 

mental conceptual requirements: the removal from analysis of Ideas of 

Infinity and infinitesimals, as well as the remnants of geometrical intuitions. 

These papers really represent just a few exz mples of how Bolzano would like 

to reorganise analysis. He describes DL as, "a sample of a new way of 

developing analysis" (A279; BL, XV). 

The aim of attracting some attention by means of these analysis works 

was eventually achieved, but long after Bolzano's death. The first important 

recognition of Bolzano's work wal in connection with BL in Hankel's article 

Grenze (Limit) in Ersch and GrUber's Allgemeine Encyklop . die in 1871. 

Thereafter there are regular references to Bolzano's early work on analysis 

In the literature - often, however, confined to footnotes. (For example, there 

are more than a dozen such fooxnota references to BL and RB In the Lncyk- 

lopadte der mathematischen Wissenschaften between 1898 and 1916). 

However, the modern recognition of Bolzano's work raises an Important 

historical point. From Hanket's article in 1871 to the extracts in Birkhoff 

[1 ] commentators have been Inclined to give particular credit to Bolzano 
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for matters which were not of great significance to him. We are thinking 

here of the proper artithmetic concept of limit and the concept of the con- 

vergence of infinite series. These concepts had been used in some form for a 

long time (see 4.2.2 and 4.3.2) and judging from other examples in his 

writings (e. g. A439,448; RB, 11,20; A557; DP, 44) Bolzano would not have been 

too modest to claim them as new and original if he had regarded them as such. 

He does not do so. Undoubtedly he had great confidence in these definitions; 

they satisfied his conceptual requirements, he knew they would be fruitful 

and effective in the development of analysis, but never does he claim them t: 

be his own. Nor could this be explained by his trying to avoid disapproval at 

a time when, at least in some quarters, the limit concept was simply unfash- 

Ionable - he could hardly disguise the fact that Its use was fundamental to his 

approach in all three of his works. Thus In judging Bolzano's work It is 

worth distinguishing carefully between the definition of a concept (for which, 

In the case of limit Bolzano would not claim responsibility), and the liberation 

of that concept Into effective use in a theory (which, armed with a sense of the 

modern value of the concept, we may rightly trace back to Bolzano). The 

effective use of a new concept requires the vision of an overall context or 

theory within which the new concept has clear connections with already well- 

establlsheiA concepts of the theory, and consequently clear connections 

with the existing problems of the theory. 

6 f 



178 

4.2. Infinitestmals and the Limit Concept 

4.2.1. Introduction 

In this chapter we are outlining the conceptual preliminaries to Bolzano's 

main proofs. These are the introduction of arbitrarily small quantities and 

their effective use in expressing the concept of limit, the precise statement 

of a convergence criterion for infinite series, and the definition of the con- 

tinuity of a function. 

From the modern point of view there is a clear logical priority among 

these concepts. The concept of limit should be defined first; this then forms 

an essential component In the definitions of convergence and continuity. 

Simple and obvious as this may appear today after a century of well-established 

use, it had taken about two centuries from the first emergence of these con- 

cepts until such an understanding as we now have came to be widely accepted 

and taught (roughly, from 1670 to 1870). This process of clarification was 

attended by two major influences. One was the general replacement of geo- 

metry by arithmetic and algebra as the new paradigm of mathematics; the 

other was the presence of infinitesimals and the apparent need to incorporato 

them into the wider arithmetisation programme which the success of calculus 

methods had accelerated. Bolzano's work on the foundations of analysis was 

naturally fected by the variety and confusion of the 18th century contribu- 

tions. 
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4.2.2. Infinitesimals and the Limit Concept before 1815 

Infinitesimals did not enter mathematics with, or because of, the cal- 

culus. They were considered by Greek mathematicians in discussion of the 

infinite divisibility of spac- and time (e. g. ? eno's paradoxes). They were 

also in common use by 17th century geometers (e. g. Cavalierl) in solving 

quadrature and tangent problems. Infinitesimals, or infinitely small quantit- 

ies, were fundamentally geometric in origin and use; they were typically 

thought of as measuring the magnitude of a point or the distance between two 

"adjacent" points. 

The mathematical use of infinitesimals is sometimes traced back to 

Archimedes' use of the method of exhaustion (e. g. Leibniz [51). But in at 

least some c: ses (e. g. Measurement of a Circle Prop. 1) this method does 

not, even implicitly, Involve infinitesimals. It would be more accurate to 

trace their mathematical ancestry t' the technique (sometimes called the 

"discovery method") in Archimedes' The Method, where a solid is regarded 

as consisting of infinitely many, infinitely thin, surfaces. Now although the 

Greeks could not have had an arithmetic concept of limit, they did understand 

what must be Its Immediate predecessor, the concept of arbitrarily close 

approach. It is this which Is at the heart of the method of exhaustion. Thus 

both infinitesimals and the limit concept have their origins in geometry. 

From their association in. Archimedes' work until well Into the 19th century 

they were closely, and yet uneasily, linked with one another. 
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The 19th century is often regarded as a period of the "arithmet[sation 

of analysis" (e. g. Klein [11). A pre-requisite for this, the arithmetisation of 

arithmetic, had occurred about two centuries earlier, At the turn of the 17th 

century number was still typically regarded metrically In terms of geometric 

magnitude. The rise to predominance of arithmetic and algebra was not, of 

course, a co-ordinated plan. It is a pattern suggested to us In retrospect by 

events (usually publications) which in themselves were haphazard, expedient 

and perhapz of little significance in their own time. What is relevant here is 

how the three concepts, limit, convergence and continuity fitted into this 

pattern. One of the first arithmetic interpretations of limit was given by 

Wallis in 1655. He says, in reference to a certain (convergent) series, that 

by increasing its number of terms the difference of its value from a certain I 

quantity "may be continually diminished so that it eventually becomes less 

than any arbitrarily assignable quantity" (Wallis [1] ). This is emphatically 

not an arithmetic formulation of the modern limit concept as misleadingly 

suggested in Pringsheim [1] p. 64, Kline [1I p. 963. It Is only an essential 

- preliminary step, the awareness that the notion of arbitrary close approach 

as It appears in the method of exhaustion could be usefully expressed In a 

purely arithmetic context. It was to be another major step requiring the 

concept of a variable, to come to the formulation and use of the modern 

symbolic definition of the limit concept. 

As we said above, Wallis's description of the limit property Is given 
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In the context of Infinite series. The terms "convergence" and "divergence" 

are used for the first time by J. Gregory in 1668 (see Kline [11 p. 461). The 

concepts were used only intuitively and vaguely. A function was still regarded 

(by Newton for example) as a curve and so continuity was still a geometrical 

matter. 

The advent of the calculus methods Initiated by Newton' and Leibniz In 

the late 17th century focussed much more attention on infinitesimals or infin- 

itely small quantities. The general methods they adopted required an arith- 

metic approach. The arithmetic treatment of the necessary Infinitesimals 

seemed to be regulated more by the known results than by any consistent pro- 

cedure. Inconsistencies and paradoxes were easily produced. Thereafter t 

Infinitesimals played a major and controversial role In the foundations of 

calculus. We are only concerned here with the various meanings that were 

given to Infinitesimals and their relation to the limit concept. 

Both Newton and Leibniz Initially employed infinitesimals in defining 

and calculating derivatives, but they each later sought ways of avoiding 

reliance on them. In De Quadraturs ... (Newton [2] id76, published 1704) 

Newton seeks to avoid Infinitesimals entirely: the Increment in x (denoted by 

"o") Is allowed to approach zero through ordinary finite values and the ratio 

of this Increment to a corresponding change in a function of x approaches the 

"ultimate ratio". The latter Is clearly understood In terms of an Intuitive 

notion of limit, not a substitution or calculation with zeros; 
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Ultimate ratios In which quantities vanish are not, strictly speaking, 

ratios of ultimate quantities, but limits to which the ratios of these 

quantities decreasing without limit, approach, and which, though they 

can come nearer ttan any given difference whatever, they can neither 

pass over nor attain before the quantities have diminished indefinitely. 

(Newton [3] ) 

Leibniz, although giving his main emphasis to the methods and results of 

calculus (rather than Its concepts), could not Ignore the peculiar behaviour 

required of infinitesimals. In John Bernoulli's treatise of 1691 on the differ- 

ential calculus (which was mainly is terial from Leibniz's lectures), he 

states as a postulate: "If a quantity is diminished or increased by an infinitely 

small quantity it is neither diminished nor increased" (Bernoulli, John [l] ). 

At various times Leibniz offered all sorts of interpretations of infinitesimals, 

but his explanations were basically of two kinds. There was the interpretation 

as a variable (the "potentially" Infinitely small), according to which describing 

a quantity as "infinitely small" was just a manner of speaking signifying that 

the quantity, "could be taken as small as one wishes" (Leibniz [6] p. 90). 

And there was the interpretation as a constant, as something "less than any 

qua. itity" (Leibniz, [5] p. 322) which, even if a fiction, could be used as a tool, 

"as algebraists retain Imaginary roots with great profit" (Leibniz, [7] p. 150). 

These represent the main attitudes to infinitesimals throughout the 

18th century. They were either completely replaced (e. g. by limits or by 
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the intuition of an instantaneous rate of change, so-called fluxions), or else 

they were tolerated. They were tolerated either as arbitrarily small, but 

ordinary, quantities, or as fictional "ideal" adjuncts to ordinary arithmetic. 

Generally speaking British mathematicians favoured the replacement, Contin- 

ental mathematicians favoured the toleration, of infinitesimals. But their 

use was almost universally distrusted. Berkeley's criticisms in The Analyst... 

(1734) of infinitesimals and differentials had provoked a flurry of publications 

but no real answers. The attitude of John Landen in his Residual Analysis 

(1764) was typical: he said he wanted to develop calculus "without the aid of 

any foreign principle relating to an imaginary motion or incomprehensible 

infinitesimal` (Landen [1]). He effectively used a method of limits. The works 

of Fontenelle [1] (1727) and Carnot [1] (1797) were exceptional in maintaining 

the real existence of infinitesimals. In Wolff [21 p. 597-602 the infinitely small 

was said to be actually Impossible but could be a convenient fiction useful for 

discovery. In his dissertation De vera Infiniti notione (Klästner [4] ), KUstner 

says that infinity and the infinitely small are not quantities but just express the 

possibility of unbounded increase or decrease. So to say that the last term of 

the series +I+8+,,, Is 0 and its sum is 1 merely means that the terms 

decrease Indefinitely and their sum approaches 1 Indefinitely. 

The standard phrase used to describe Infinitesimals was "less than 

every assignable quantity".. Thus D'Alembert in the Encycloped. e Method- 

gue..... under the general article Infini (Vol. 8,1765) writes: 
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Infiniment Petit (Geom. ) on appelle ainsi en G6ometrie les quantities 

qu'on regarde comme plus petites que toute grandeur assignable. Nous 

avons assez explique au mot Diff6rentiel ce que c'est que ces pretendues 

quantites, & nous vvons prouve qu'elles n'existent r6ellement ni dans 

la nature, ni dans les suppositi3ns des Geometres. 

Euler sensibly remarked that for a quantity to be less than every assignable 

quantity it must necessarily be zero. But then two zeros were said to be 

capable of either an arithmetic or a geometric ratio to one another. Thus the 

rejection cw'_ infinitesimals was only nominal, different kinds of zeros, or 

ratios between zeros, were Introduced. (In Torrelli [1] there is an attempt 

to distinguish a geometrical and a metaphysical ratio of zeros). Schultz 

rejected the non-zero infinitely small as a mere fiction but then (Schultz [4] ) 

described the differentials dx, dy as zeros which are equal In quantity but 

different in quality. 

Inspite of the early British work on the limit concept (Wallis, Newton, 

Robins), perhaps tha clearest 18th century advocates of the fundamental nature 

of the limit concept were d 'Alembert and L'Huilier. D'Alembert's formula- 

tion In the_Encyclopedie article Limite Vol. 9 1765) was as follows: t 

Limite, s. f. (Mathemat). On dit qu': 'ne grandeur est la limlte dune 

autre grandeur, quand la seconde peut approcher de la premier plus 

pros que d'une grandeur dcnn&, si petite qu'on la puisse supposer, 
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sans pourtant que la grandeur qui approche, puisse jamais surpasser 

la grandeur dont eile approche; ensorte que la diff6rence dune pareiile 

quantity a sa limite est absolument inassignable. 

... A proprement parler, la limite ne coincide jamais ou ne devient 

jamais egale a la qüantite dont eile est la limite mais celle-cl s'en 

approche toujours de plus en plus, & peut differer aussi peu qu'on 

voudra. 

There was still therefore the association of limit with the infinitely small 

through the notion of an "absolutely unassignable difference". The Insistence 

on never reaching, or being equal to, the limit was probably due to the geo- 4 

metrical example of a limit (which immediately follows in the D'Alembert 

article) from a sequence of polygons inscribed in a circle. However, D'Alem- 

bert (in the same article) was perfectly clear on the place of the limit concept: 

"Le theorte des limites est la base de la vra[e Metaphysique du calcul differ- 

ent[el. 11 

L'Huilier adopts a similar position in his paper Exposition elementaire 

des principes des calculs superieurs (L'1. uilier [111787). He has a clear 

understanding that analysis can be rigorously founded on the method of limits 

but he advocates continuing to use the language of Infinitesimals. His form- 

ulation of the limit concept Is sound though rather restricted and still only 

verbal: 
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Given a variable quantity always smaller or greater than a proposed 

constant quantity but which can differ from the latter by any proposed 

quantity however small this constant quantity, Is called the limit In 

greatness or in sm-alness of the variable quantity. (L'Huilier [1] ) 

The variable in L'Huilier's definition is therefore not allowed to oscillate 

towards a limit. 

The time was not yet ripe for these notions to be taken up and improved: 

there seems to have been no general feeling in the 18th century for the poten- 

tial of the Umit concept. L'Huilier's work was not widely read, and according 

to Boyer [1], D'Alembert's limit concept appeared to some as, "enmeshed In 

as dark a metaphysics as was that of the infinitely small. " Indeed it appears 

to have been the popular opinion to be as deeply suspicious of limits as of 

Infinitesimals. This distrust of the limit concept must have been further 

reinforced by the wide popularity and acclaim given to two works appearing 

In 1797. These were Lagrange's Theorie des fonctions analytiques... 

(Lagrange [3]) and Carnot's Reflexions sur la metaphysiquo du calcul 

infinitesimal (Carnot [11). The former explicitly excludes limits and the 

latter emphasises the superiority of infinitesimal methods over the calcula- 

tion of limits. 

However, during the 18th century trat concept of infinitesimal had been 

considerably refined. The varieties of interpretation had been subject to a 

gradual process of the survival of the fittest. Interpretations as special 

4 

C. 



187 

r 

sorts of non-zero constants, or special kinds of zeros had virtually become 

extinct. The general tendency was to interpret the phrase "infinitely small" 

as a manner of speaking which did not so much denote a special kind of quantity 

(e. g. one which is already "less than any assignable quantity"), but rather a 

quantity which could be taken as small as desired. Carnot, in the work men- 

tioned above, uses language which combines both ideas ambiguously: 

We will call every quantity which is considered as continually decreas- 

ing, (so that It may be made as small as we please, .... ) an infinitely 

small quantity.... 

.... quantities called infinitely Small are never quantities actually 

nothing nor even quantities actually less than such and such a deter- 

minate magnitude, but merely quantities .... allowed to remain 

variable.... continually decreasing until they become as small as 

we wish.... (Carnot [1] p. 15) 

There is clearly a problem here in the notion of a variable. Variable 

quantities are being regarded as special kinds of quaºitittes of which the 

change or "continual decrease" is part of their nature rather than our choice. 

But Carnot was one of the last to use the term "Infinitely small quantity" in 

such a definite, objective sense. After 1800, and even later in the 19th 

century on the Continent, the term "Infinitely small" was often used, perhaps 

Innocently, in the sense of "arbitrarily small". Thus for example, Cauchy 

In 1821 uses "infiniment pett: " In this way In connection with his definition 
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of the continuity of a function f(x): 

on attribue a la variable x. un accroissement infiniment petit a, ,,.. . 
la valeur numerique de Ia difference 

f(x + a) - f(x) 

decroit indefiniment avec celle de or . En autres termes, la fonction 

f(x) restera continue par rapport äx entre les limites donnees, st, 

entre ces limites, un accroissement Infiniment petit de la variable 

produit toujours an accroissement infiniment petit de la fonction 

e11e-meme. (Cauchy [1]). 

The limit concept as we have seen, made very little progress and 

gained no general approval during the 18th century. Its 19th century revival 

began with the work of Lacroix. In 1797 his Tratte du calcul... appeared but 

as far as the foundations were concerned It was rather confused. He presented 

Lagrange's method of Taylor series expansions In terms of limits, but there 

was also reference to the limit of a divergent series and the derivative as a 

quotient of zeros. This was all much improved in the highly successful 

abridged version of 1802 (Traits elementaire... ). Here the method of Lag- 

range was dropped and the limit concept was clearly made basic. In the 

second edition of the Tratte du calcul... (1810) there Is an Improved version 

of the limit concept, With reference to the example of a function - he 
x+a 

writes: 

La difference entre a et la fraction propose e, etant exprimee en 
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general par 

2 
ax a 

a-= x+a x+a 

devient d'autant plus petite que x est plus grand, et p'; ut Atre rendue 

moindre qu'aucune grandeur donnee, guelaue petite gue soft cettc 

grandeur; ensorte que le fraction proposee peut approcher de a aussi 

pr? s gue Von voudra: a est done la limite de la fonction 
xax 9 

relativement a l'augmentation indefinie que peut recevoir x. 

...... la fonction 
Xax , quolque p, uvant s'approcher indefiniment 

de la Limite a, ne saurait Jamals 1'atteindre et ä plus forte raison la 

surpasser; macs ce serait ä tort qu'on insererait cette circonstPnc3, 

00 -P OF comme une condition dans la definition generalo du mot limiter, .... . 

(Lacroix [1] ) 

There are two improvements here on the limit concept of D'Alembert and 

L'Huilier. The function Is allowed to reach its limit and It Is made perfectly 

clear how the "variable quantity" varies. 

The evolution of the limit concept was slow and tortuous; it was simply 

not easy to understand in arithmetical terms. R. Woodhouse (a Senior 

Wrangler and Fellow of Calus College Cambridge) wrote in 1803, "the def- '` 

Inition of a limit Is neither simple nor conci: sa" Woodhouse[ 1]. The reason 

for this difficulty lay in the fact that the formulation of the concept was funda- 

mentally connected with deeply rooted geometrical ways of thought and 
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language. The main requirements for the limit concept were to develop a 

suitable notion of a variable, to find a suitable general symbolism for sequences 

and functions and to establish the existence of numerical limits (especially 

when whese were irrational). 

The method of exhaustion had employed only geometric objects: a 

changing one (e. g. a polygon of which the number of sides was repeatedly 

doubled) approached arbitrarily closely to a fixed one (e. g. a circle). In the 

18th century the geometrical objects were replaced by the general concept of 

quantity (Grösse, grandeur). The basic form of all the limit definitions of 

this century was: if a variable quantity -can approach arbitrarily close to (or 

differ by less than any given quantity from) a fixed quantity, then the latter is 

the limit of the former. A quantity, and certainly a variable quantity, would 

not easily be interpreted abstractly. After all, numbers to not change, they 

are what they are. It is typically things like distance, velocity and direction. 

which change or vary. A variable quantity, even if denoted by a letter, was 

most naturally thought of in terms of the motkon of a particle. In the 18th 

century (as opposed to the 20th) the letters of algebra needed to denote and 

If they were to be variables their denotation must vary. Thus a limit would 

be conceived as a boundary of whatever it was that was varying. And the 

language of "approach" and "variable" served to emphasise this. It was 

therefore significant when. D'A1'imbert (and L'Huiler and Lacroix) made more 

use than there had previously been of the (arithmetic) term "difference". 
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Another Important development in the language used to describe the 

limit concept was to add to the phrases about approach and difference the Idea 

that the difference is a matter of choice. For example, "la fraction proposee 

pent approacher de a aussi pros que 1'on voudra" (Lacroix), and "... & peut 

differer aussi peu qu'on voudra" (D'Alembert). The arbitrarily close approach 

of polygons to a circle was not simply a circumstance set in motion by the re- 

peated doubling of the number of sides, it was a process over which we have 

control and choice. To exhibit and express this choice a suitable symbolism 

and notation was important but still (1800) ncwhere used or exploited. Such 

notation also required a clear understanding that every limiting process really 

Involved two variables: the quantity approaching a limit and an independent 

variable of which the former Is a function. Lacroix, at least, understood 

this when he refers explicitly (see above) to: "la 11mite.... relativement ä 

l'augmentation Indefinle que peut recevoir x. " 

Finally, seeing the need to establish the existence of a numerical 

limit was surely the most difficult step in the full arithmetisation of this con- 

cept. Certainly up till about 1815 mathematicians had always taken refuge 

in geometrical ideas and analogies. It was assumed that if one could satis- 

factorily give numerical values to the variable quantity then there was also a 

numerical value for the limit. The gradual realisation in the 19th century 

that this was not so ushered in the final phase of the arithmetisation pro- 

gramme - the construction and definition of the real numbers. 
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4.2.3. Infinitesimals and the Limit concept in Bolzano's work 

From the references which appear in BL, RB and DP It is clear that 

Bolzano was aware (, f most of the important authors and works on analysis in 

the late 18th century. He refers in some wüy to most of the authors mentioned 

in the previous section (with the main exception of Carnot). However, the 

selective summary in that section of views on Infinitesimals and limits would 

probably not have appeared coherent or significant in Bolzano's time; It was 

inevitably assembled from a modern point of view. Certainly Bolzano's work 

on analysis was not in direct response to the situation and problems described 

there. As we have seen, the works of 1816 and 1817 concern particular, 

Important theorems and Bolzano had at least half an eye on the publicity value 

of the topics chosen. They were thorough works but modest in both their size 

and alms. 

One of the difficulties of describing and assessing the development of 

a concept, or a particular contribution to a concept, is that it may be used by 

an author and even refined In a variety of ways without It ever being explicitly 

mentioned or considered in itself. This is the case with Bolzano's work with 

the limit concept. We have already referred (4.1.3. ) to the fact that the use 

of this concept was fundamental to Bolzano's approach In all his analysis works. 

But the concept is never actually referred to In either BL or RB. In DP there 

Is only brief mention, in a geometrical context, of "the method of limits". 

A natural reason for the use of a concept preceding Its mention is that it may 

I 
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0 

only be through its use in various contexts that the concept can be Isolated at 
1. 

all and be distinguished by naming. This could not be the reason In the present 

case because the concept, even If controversial, was by then well known and 

Bolzano must have been aware of the fact. There are, how ; ver, several othor 

reasons why he may have preferred not to refer explicitly to limits. Just 

because they were controversial meant that they were- unsuitable from the 

point of view of his seeking to gain general approval for his works. Then, as 

far as BL was concerned, Bolzar_o wished to be as straightforward and simple 

as possible, he says in his concluding note (. 1424; ßL, 144) that, "in the pres- 

ent work we have decided to proceed everywhere only from concepts which 

are already known and common, and to avoid all the more difficult Innova- 

tions". The context here is primarily that of imaginary and irrational quantit- 

ies but considering its unwelcome reception in some quarters the limit concept 

may also have been felt to be a "difficult innovation". Finally, and p3rhaps , 

most importantly, is the fact of the. very restricted context in which Bolzano 

uses the limit concept. There is no attempt at a general theory of conver- 

gence, continuity or differentiation, these concepts are employed only In 

their Immediate application to the proofs of the binomial theorem, the Inter- 

mediate value theorem and the formulae for rectification and quadrature. 

The way the concept of limit is tacitly used in defining convergence 

and continuity will be considerr. d in the next two sections; our purpose now 

Is to explain the mechanics of how the notion' of arbitrarily close approach 
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was expressed arithmetically in BL. Infinitesimals, in the sense of a peculiar 

kind of constant or zero, are emphatically rejected and their role in attempting 

to symbolise the notion of arbitrarily close approach is taken by what we may 

most suitably call "arbitrarily small quantities". We quote from BL: 

Instead of the so-called infinitely small quantities I have also always 

made use, with the same result, of the concept of those quantities 

which can become smaller than any given quantity, or (as I sometimes 

call them to avoid monotony but less precisely) quantities which can 

become as small as desired... The requirement of conceiving a 

quantity (I mean a variable quantity) which can always become smaller 

than It has already been taken, and generally can become smaller than 

any given quantity, really contains nothing that anyone could find 

objectionable..... On the other hand the Idea of a quantity which can- 

not only be assumed to be smaller but is really to be smaller than 

every quantity, not merely every given quantity but even every alleged, 

I. e. conceivable, quantity, is this not contradictory? Nevertheless 

this is the. usual definition of the infinitely small. (A269; BL, V) 

Bolzano is careful to explain what it is that he rejects under the name 

of "Infinitely small quantity". He understands by this term a (non-zero) con- 

stant which is smaller than every concetvabie quantity. As we saw in the 

previous section this meaning, common in the mid-18th century, still linger- 

ed Into the 19th century but Bolzano was wrong to describe It at that time 

C.. 
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as "the usual definition of the infinitely small". The interpretations as a var- 

table, or else as a manner of speaking for "relatively negligible", were by 

then more common. His objection to the infinitely small is rather less 

emphatic than his clear rejection of the Infinitely many (this was in the con- 

text of infinite series, see 4.3.3, ). In the above quotation there is the rhet- 

orical "... Is this not contradictory? "; InDP we read, "those.., who make use 

of the concept of the infinitely small can never avoid the suspicion of contradic- 

tion in the concept itself' (A497; DP, VIII), Certainly the concept is to be 

avoided (A 495, DP, VI), but only In BL, XI(A275) does Bolzano actually commit 

himself to describing it as self-contradictory. Such a view had many pre- 

decessors and, of course, was very reasonable. However, hesitation in 

regarding Infinitesimals as self-contradictory was also vindicated by the 

discovery of non-standard analysis that given the axiom of choice, or some 

equivalent, actual infinitesimals could consistently be adjoined to the real 

numbers. 

Thcugh not historically fair, Bolzano's characterisation of the infinitely 

small served well to show, by contrast, what he believes is sufficient for 

analysis, I. e. "quantities which can become smaller than any given quantity". 

These are, he says, variable quantities which can always become smaller than 

they have already been taken. There Is no danger of self-contradiction here 

for "there are often such quantities in space as well as in time" (A269; 13L, V). 

This was no new idea. Bolzano's definition applies perfectly to the difference 
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between a variable quantity and its limit as described by D'Alembert and 

Lacroix. It is Important though that Bolzano recognises this as a distinctive 

use of ordinary quantities which successfully replaces the older use of Infinite- 

simals. (By the 19th century some writers, e. g. Cauchy, ýrere using the 

word "infinitesimal" for Bolzano's concept of arbitrarily small) His refer- 

ence to arbitrarily small quantities as variable quantities (A269; BL, V) just 

reflected the use and confusion of the time. They were consistently used by 

Bolzano as what we should call arbitrarily chosen constants. Mention has 

already been made of the importance for the development of the concept of a 

variable that the value of a variable symbol should be understood as a matter 

of choice. Bolzano does this clearly, and when he says (BL, V as above p. 194) 

that it Is "less precise" to describe arbitrarily small quantities as "those 

which can become as small as desired", this does not stem from the extra 

emphasis on choice in the phrasing; it is simply more precise to actually say 

what Is desired, I. e. to state, with a symbol, a "given quantity". In fact 

this distinction highlights what we regard as Bolzano's main contribution to 

the development of the limit concept: the facility with v. hich he uses symbolism 

for arbitrarily small quantities. This was all that was required to take ad- 

vantage of the limit concept but was lacking to any really effective degree In 

earlier authors. 

The first example of this facility Is in BLJ12 (A292) where It Is shown 

that if x is a proper fraction, 
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the notable circumstance occurs that the binomial series 

1-xt x2 - .... xr can be brought as close to the value of 

(1 + x) as desired merely by sufficiently increasing the number 

of its terms. 

In order to keep this difference less than a quantity Da sufficient inequality 

is found for r in terms of D. (The . corking here is Identical to that In a mod- 

ern elementary analysis text) No doubt it had been known for a long time 

that this could be done but it was not common to actually go through the work- 

Eng and m2!. e'the final inequality explicit. The effect of doing so was two-fold. 

On the one hand it emphasised that all the quantities involved were perfectly 

ordinary finite quantities subject to all the usual algebraic operations and that 

the entire argument was open to inspection. On the other hand it drew attention 

to the arbitrarily small quantities, I. e. to the difference between a "variable 

quantity" and some fixed quantity. Following the result just mentioned (BL312) 

there is a series of paragraphs devoted to the treatment of such quantities. A 

conventiona: i notation is Introduced for quantittea Intended to be arbitrarily 

small (A295; BLg14); w and Cl are used by Bolzano In much the same was as E 

is used today in elementary analysis. Then there are several lemmas which 

effectively provide short-cuts In working with w's. The following are the 

main ones: 

BL§15,16: Forfixed r, (A+w) f (B+c ) (C+w)f..... 
(A295) 

r 
t(R+ci) =At Bt Ci... ±R+fl. 

f 



198 

BL 17,18: A. w= IZ and so (A +w) (B+w)=A. B+f2, 
(A296) 

B L§19: _ B+w $+Ci (A296) 

BL§27: i the quantities w, w in the equation A +w =B +w 
(A307) 

can become as small as desired while A and B 

remain unchanged then It must be that A=B exactly. 

The first three of these correspond n. turally to limit theorems if wo 

regard the A, B etc. occurring in them (as Bolzano did) as partial sums of 

Infinite series. Adding suffices for clarity Bolzano's lemmas correspond 

respectively to: 

(1) lim A. + urn B� = lim(A� + B-, ). 

(ii) (lim A�) (lim B�) = lim (A� D, ) 

(ii) 11m 
A. 

_ 
lim A. 

lim ß 
(assuming non-zero denominators). 

B^ n. 

The fourth result quoted is rather different, the A and B are constants and are 

to be thought' of as the result of a limiting process. What Bolzano needs from 

this lemma is equtvaient to: Iff(x) = g(x) for all x, lim f (x) = limg (x) as x 

approaches a. It can be regarded as a direct arithmetic formulation of the 

method of exhaustion. Bolzano applies it in BL§28(A307). BL§64(A394) and 

RB§7(A463). Thus In spite of the very specific context in which he Is work- 

Ing Bolzano does develop what could be described as an elementary, but gen- 

erally applicable, theory of limits. It is entirely arithmetic, it uses a 

systematic notation and all arguments can be explicitly followed through; nothing 

is left mysterious. 
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4.3. Infinite Series and Convergence 

4.3.1. Outline of Bolzano's work on Series 

It was In connection with his treatment of series In 13L and RB that 

the merit of Bolzano's contribution to analysis was first recognised. This 

recognition began with Hankel's article Grenze of 1871 (Hankel [1] ) where 

he credits Bolzano with, "the first strict development of series". Wa shall 

describe in this section the extent to which this was deserved. 

Great care Is needed In assessing Bolzano's work on this subject 

because the notion of convergence gained so much more significance In the 

later 19th century than It could have had to Bolzano. It Is easy therefore to 

attribute to him a purpose and deliberation which he may not have had himself. 

For example, with respect to convergence, when considering his very success- 

ful treatment of the concept it is important to be aware that Bolzano nowhere 

actually uses the term "convergence" In BL or RB. The occurrence in A270; 

BL, VI is really a quotation but Bolzano's comment suggests he regards the 

term "convergent series" as meaning one with decreasing terms. This would 

certainly explain why he did not find the term useful. Bolzano himself saw 

the main significance of his work on series in the complete rejection (as he 

supposed) of the concept of infinity from analysis. Firstly, we shall state 

the main result of Bolzano's work on series, then give some sketch of the 

relevant earlier work, and finally return to Bolzano's papers for a more de- 

tailed assessment. 

f 
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In RB§§E, 7(A462) there appears, for the first time in mathematical 

literature what is now usually known as the general principle of convergence. 

The partial sums of an arbitrary power series in x are denoted F1 x, F2 x, 

.... Fax,...... Bolzano says, 

we regard the quantities 

F, X, F2 x, F3x,..., Fn x, ... n+rx'"' 

as a new series (called the series of sums of the previous one). 

Then there is the main theorem: If a series of quantities 

F1 x, F2 X, F 3x , ..... 9 Fn x.... 9 Fn 
+r x' '''0 

has the property that the difference between its nth term Fn x and 

every later one n+rx, 
however far from the former this is, remains 

smaller than any given quantity if n has been taken large enough, then 

there is always a certain constant quantity, and indeed only one, 

which the terms of this series approach and to which they can come 

as near as desired If the series Is continued far enough.. 

The principle is therefore not entirely general wince it is applied only 

to power series. The variable x is assumed to remain constant throughout: 

there is no suggestion in BL or RB of uniform convergence. The particular 

value of Bolzano's formulation here Is two-fold. Firstly, there Is the realls- 

ation that the behaviour of a series Is not determined merely by the behaviour 

of the terms, but by arbitrary (though finite) blocks of terms. Secondly, 

there Is the clear claim, and the attempt to prove, that the property of 
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"bunching up" is sufficient for the series to approach a fixed quantity arbitrarily 

closely. This sufficiency proof requires a prior theory of real numbers for it 

to be complete. (We consider Bolzano's proof in detail on p. 216 .) Tha prin- 

ciple behind this criterion for convergence had been suggested (in words not 

symbols) in BL, XIV(A278) but though it is often implicit it is never clearly 

formulated in DL where the emphasis is on the essentially finite treatment 

of all series. In fact it appears that Bolzano's Introduction of the conver- 

gence principle In ßB Is more a consequence of his desire to avoid the Infinite 

than a deliberate formulation of a fundamental concept. There is a sense then 

in which his success is accidental. It Is Ironic that Bolzano's work 13 not only 

earlier than that of Cauchy (to whom the convergence principle Is usually 

attributed, the Cours d'Analyse appearing In 1821) but, as pointed out In 

Pringsheim [1] p. 79, it Is also clearer since Cauchy still uses the ambiguous 

language of infinitesimals. But Bolzano's somewhat oblique treatment of con- 

vergence Is not only to be explained in terms of his own priorities but also 

against the background of the varied 18th century attitudes to infinite series. 

IV 

4.3.2. Infinite Series and Convergence before 1815 

Orc of the chief reasons for regarding the analysis of the 18th century 

as loose and ill-founded compared with the rigour of the 19th century is the 

very free use made then (especially by Euler) of divergent ce: ies. It has 

t 
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been pointed out (e. g. Kline [11 p. 460) that the "correct" concept of converg- 

ence was touched on several times during the 18th century by different authors 

only to be subsequently Ignored. The question of why the modern concept of 

convergence was not taken up and exploited at once is tempting to pursue but 

largely misconceived. The modern concept is inseparable now from such 

things as the theory of real numbers and the importance of uniform conver- 

gence for integration; It has a significance and attraction based on reasons 

which would be anachronisms in the 18th century. The concept at that time In 

its evolution had simply not proved useful enough, nor clear enough, to gain 

central role in the treatment of infinite series. It will be valuable though to 

describe what place it did have and to consider why it developed so slowly. 

To do this we need some outline of the occurrence and use of Infinite series 

up till 1800. 

Two Important problems of Infinite series had already emerged 

clearly by the end of the 17th century. These were (i) how to find the sum of 

a given Infinite series, and (ii) how to expand a given function into an Infinite 

series (usuälly a power series). The first kind of problem typically arose In 

the 17th century from attempts to solve quadrature and rectification problems. 

The second problem was very Important for applying calculus operations to 

trigonometric functions and even simple reciprocal functions. The urgent 

practical need here produced the binomial theorem for fractional, and negative 

exponents (Newton 1676) and Taylor series (1717). The concept of convergence 
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was eventually crucial for both kinds of problem but initially it arose with the 

first problem, that of summation. Gregory of St. Vincent resolved the para- 

dox of Achilles and the tortoise by summing an appropriate infinite geometric 

progression, and the meaning of the "sum" he expressed as follows: 

the terminus of a progression I3 the end of the series to which the 

progression does not attain, even if continued to Infinity, but to which 

it can approach more closely than by any given interval. (Gregory of 

St. Vincent [1] ) 

Though somewhat muddled this contains the germ of the modern concept of 

convergence in terms of limit. The actual words "convergent" and "divergent" 

used by James Gregory seem to have been more a means of describing how a 

series reaches its sum than whether it has one. The point here is that infinity 

was regarded as a "number" that could be included In ordinary calculation. 

(For example, see Wallis Arithmetica Infinitorum 1655; he and John Bernoulli 

regarded infinitesimals as "real" numbers arising from , Thus many 

of the early discussions of convergence and divergence were In the guise of 

const derations as to whether the sum of a particular series was finite or 

Infinite. There was no question then of a series failing to have a sum just 

because It became Indefinitely large. This attitude was clearly an Important 

factor in the slow development of a convergence criterion; while there was 

no great arithmetical distinction between finite and Infinite number symbols 

there was no pressing need to distinguish series with finite and Infinite sums. 
/ 
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Indeed the more urgent problem was to Improve the rate of convergence for 

the sake of improving tables and practical applications. 

The use of infinite number symbols and a kind of convergence criterion 

both appear In a paper by Euler on harmonic series In 1734 1; uler [11.0 n p. 119 of 

Reiff [1] it is said that this criterion coincides with the modern general con- 

vergence criterion but this is certainly an exaggeration of the passage he 

quotes and the example Euler gives. A more accurate comment (Pringsheim 

ýlý p. 78 Note 150) is that what Euler actually offers here is a correct diver- 

gence criterion to the effect that a series diverges If tim Its sal > 0. The 

example given by Euler Is the series ý+a+b+a+ 
2b +'''" with Ith 

term 
a+c- 1) b (And here Euler Is'using i as a symbol for infinity! ) 

Now If the series Is continued to the term 
a+ (n I- 1) b then the sum of the 

series from the (I + 1)th term to the n. ith term Is smaller than n- 1)1 e but 
a+Ib 

greater than (n - 1)Ic Since I Is Infinitely great this sum Is less than 
a+(n. I-1)b 

n -b c and greater than n 
nb 

c therefore It Is finite and the above series 

Is divergent. Euler was inconsistent with respect to Infinite series, some- 

times advocating great caution with divergent series and sometimes comm- 

fitting the wildest excesses with such series. He was, like many others in 

the 18th century, strongly Influenced by the work of Leibniz. In the work 

De serlebus divergent[bus, 1754 Euler E2] (written partly in response to 

criticism from Nicholas Bernoulli), Euler discusses the arguments for and 

against the use of divergent series. Among reasons for their use he quotes 

J II 
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approvingly Leibniz's determination of the series 1-1+1-1+.... as equal 

to Z. Leibniz said that "a quantity for which there are equal grounds for 

ascribing two values must be taken equal to their arithmetic mean .... thus 

the nature of things here follows the same law of justice. " ,:, eibniz [5] p. 386) 

He concluded, "although this kind of argument may seem more metaphysical 

than mathematical, it is nevertheless sound. 11 Oscillating divergent series, 

like 1-1+1-1+.... , caused much discussion as to what value should be 

attached to them, but It was assumed that they should have some value. Li 

the end Leibniz's probability method was acrepted by the Bernoullis, Euler 

(who used the method for many more complicated cases) and Lagrange. It 

was virtually unopposed throughout the 18th century and until Laplace disputed 

the method in Theorie de nrohzbil[te (1812). Ii one insists on associating a 

"sum" with a diverging series of this sort It Is Indeed a perfectly reasonable 

way of doing so. Unfortunately it had the unjustified, but plausible, cffect of. 

reinforcing confidence in the validity of binomial theorem expansions for un- 

restricted values of the variable. (Grandi hwd obtaii: ed 1-1+1- 

by putting x=-1 in the expansion of 1+x (Grand! [1]), and Euler put 

x=tin 11 x 

More important from our present point of view was the attitude to 

properly divergent series. James Bernoulli had proved In 1689 that the 

harmonic series was divergent (Bernoulli, James [1] ), and he drew attention 

to the fact that the sum of a series whose "last" term vanishes can be 
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infinite. To most mathematicians in the 18th century this result not only 

seemed highly paradoxical but was almost a contradiction in terms. Conver- 

gence was generally taken to mean "having a finite sum" and a sufficient 

criterion was regarded as being that the terms decrease Er magnitude to zero 

as a limit. The divergence of the harmonic series contradicted this and the 

result 1-I+1-1+.. =2 showed the criterion was not necessary for con- 

vergence. Euler, again under criticism from Nicholas Bernoulli, tried to 

distinguish the sum from the "value" of a series. The value of a series, he 

said, was the value of the expression from w: iich the series originates (Euler 

[3J ). Thus it was acknowledged that an infinite series cannot have a "sum" in 

the same sense as a finite series, we can simply associate a number, a value, 

with the series which may behave like a sum. 

Th3re had always been voices of caution over infinite series and during 

the 18th century attitudes tended to polarise into two camps. In the majority.. 

were those who felt that anything that can be written down and operated with 

formally (includingoo) must mean something. But a minority were very con- 

scious that an Infinite series can never actually be written down or summed In 

the usual sense, and operating with such a series may be meaningless. Of 

course, both sides used the language of convergence and divergence as well 

as the to symbol. We shall mention a few of those who advocated caution. 

Varignon [1) said early In the 18th century that no series should be used 

without Investigating Its remainder. Nicholas Bernoulli pointed out in a 
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letter to Euler that a divergent series can never exactly represent the value 

of the quantity from which it arose since even If continued to Infinity there Is 

still an error. In Bernoulli, N. [1] he gives as an example that 

11 x 
isnot="1+x+x' +... +x" 

but 
1 X+1 

1-x =1+x+x +... +x + 1-x 

D'Alembert was perhaps the strongest Influence for the cause of convergence 

In the 18th century. In 1768 he wrote: 

For me all reasoning with series wht, h do not converge and which- 

cannot be assumed to do so is always very suspect even when these 

reasonings agree with truths known otherwise. (D'Alembert [2J p. 183) 

Even in this second half of the century the Infinity symbol was still used freely, 

D'Alembert wrote (in reference to a series used by Langrange) that one can- 

not ascribe convergence to the geometric series 
_ 

e+e+... 
or 

e+e+,.,. 
00 -ooI--, % 

since neither e, nor e, equals 0 (D'Alembert [E] ). But what did 

D'Alembert mean by convergence? The Encyclopedie entry Convergent 

(Vol. 4,1754) Is very brief: 

Convergent, adj. on Algebre, se dit dune serte, lorsque ses termed 

vont toujours en diminuant. Ainsi 1, ,,.,, &c est une series con- 

vergente.. 
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But by the entry for Se r16 Vol. 15,1765) this had slightly improved: 

.... lorsque la suite ou la serie va toujours en approchant de plus en 

plus de quelque quantit6 finie, & que par cong6quent les terms de cette 

serie, ou les quantites dont eile est composee, vont toujours en dimi: i- 

uant, on Pappelle une suite convergente, & si on la continue ä l'infint, 

eile devient enfin egale ä cette quantite. 

L grange's Theorie des fonctions (1797) Is sometimes hailed as 

marking the beginning of "the exact treatment of Infinite series" (Reiff [1] p. 155). 

This is on account of the careful treatment In the work of the remainder term 

for a Taylor series. However, Lagrange nowhere relates the behaviour of 

the remainder with the convergence of the series. The whole point for 

Lagrange was to be able to estimate the error in an approximation obtained 

from only a finite number of terms of a Taylor ssries. His notion of con- 

vergence Is still quite naive and no Improvement on that he expressed In 1770: 

... In order for a series to be able to be regarded as really repres- 

enting the value of a quantity sought it Is necessary for it to be con- 

vergent at its extremity, that is to say, Its last terms should be 

Infinitely small so that the error can become less than any given 

quantity. (Lagrange[2] ) 

Lagrange's proof of convergence here Is limited to showing that the terms 

of a series finally converge to zero. And In much of the work of Theorie 

des fonctions .... he tntrodti1: es, and relies on, series without any 
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consideration of whether they converge or not. Hank-el comments: "Naive 

209 

trust in the good-nature of series had its last triumph with Lagrange. 11 (Hankel 

[1] p. 209). 

One of Bolzano's important reference works was Klügel's Mathemat; - 

ischeo Wörterbuch. But there was little inspiration to be found there in the 

article Convergent. With the ambiguity between definition and criterion that 

was so common with regard to convergence we read: 

A series is convergent if the successive terms become continually 

smaller. The sum of the terms then always approaches nearer to thA 

value of the quantity which is the sum of the series continued to 

infinity. (Kiilgel [2] ) 

Even around 1800 when Infinite series were well-established and be- 

coming much more sophisticated the question of finding a general character- 

istic to distinguish convergent series had not become a widely recognised or 

urgent problem. There were two reasons. Firstly, the common use in the 

18th century of infinity as a numerical value meant that the existence or 

meaning of an Infinite series did not depend on Its convergence. Secondly, 

the pragmatic policy of Ignoring the absurdities and paradoxes that sometimes 

arose from divergent series and just using them whenever they could be useful 

was very successful in those areas where success was obvious and appreci- 

ated - the solving of practical problems. However, this neglect of the theor- 

etical aspects of infinite series led to the most widely divergent attitudes 

c 



210 

early In the 19th century. 

We shall end this survey by mentioning two very different works which 

were each published in 1813. The first is by von Prasse, Institutiones Analy- 

ticae, described by Hankel as "standing at a high point In ccLence in Germany". 

It is almost entirely concerned with the development and use of series but con- 

vergence Is only spoken of once where it is remarked about a geometric series 

that, "one says it diverges if x>1 and in other cases It converges, these terms 

are carried over to other series. " Prasse [1] 
. And that is all. In contrast 

there Is the important paper by Gauss on the hypergeometric series: 

.. x a(a+1)a(p+i)x' 1+a1. 
Y + 1.2 Y (Y+ 1) + .... 

Gauss [2ý 

He begins by considering the ratio of successive terms and dealing with tho 

cases x< 1 and x>1 by comparison with a geometric progression. The case 

x=1 occupies the major part of the paper with a detailed analysis of the pos- 

sibilities for a, ý, Y. He develops the criteria for convergence in an ad hoc 

way just for this particular case but it is exhaustive and strict and he even 

considers the cases when x is complex. It has been said that here the con- 

vergence of an Infinite series was investigated properly for the first time 

(Dunnington [1], Tropflee [1] ). The claim Is true but modest; the investiga- 

tion Is entirely concerned with this particular series. But no claims are made 

by Gauss about general criteria for use with any series. 
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4.3.3. Bolzano's work on Infinite Series and Convergence 

Bolzano does not set out anywhere in BL or RB to give a theory of 

Infinite series or convergence. What he says about these topics Is entirely 

for the sake of the theorems he is engaged in proving: the binomial theorem and 

the intermediate value theorem. His approach to the infinite cases of the bt- 

nomial series is however quite radical and icj evidently intended to apply gen- 

erally. He rejects the concept of an infinite series completely: 

every assumption of an Infinite series, as far as I see, Is the assump- 

tion of infinitely many quantities and every attempted calculation-of its 

value is therefore an attempted calculation of the infinite, a true cal- 

culus Infin[tesimalls. Therefore if one does not want to be Involved In 

such things ..... then one must refrain altogether from the acceptance 

and calculation of infinite series. (A268; BL, IV) 

Bolzano immediately goes on to speak of his replacement of infinitely small 

quantities by what we have called arbitrarily small quantities. Thus the 

reason for this ruthless approach to infinite series lies In the implicit assump- 

tions about infinity which Bolzano believes are made in the usual use of such 

series. This refers both to the infinitely large ("the assumption of a sum of 

Infinitely many quantities") and the Infinitely small ("a. true calculus Infinites- 

imal[s"), The connection between these concepts is not made very clear, it 

Is presumably thought that the infinitely remote terms of a convergent series 

will have to be infinitely small. (Compare the quotation by Lagrange on 
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convergence, p208), The consequent restriction to finite series does not mean 

the complete rejection of the general binomial theorem, although "it Is certain 

that this [binomial) equation really only holds precisely if the exponent Is a 

whole positive number" (A269; BL, V). But to deal with the eases of fractionsC. 

or negative exponents Bolzano speaks of the binomial expression being "equal 

in a certain sense" (A272; BL, VIII) to a finite portion of its corresponding bi- 

nomial series. By this he means that the difference between a binomial 

expression and Its corresponding series can be made arbitrarily small by 

taking the series far enough. For example, the binomial series 

I-x+ x" - X3 +,,, t xr cmi be put equal only in a certain sense, 

to the true value of 

2 +X}' =1 =1-X+X -x3+... l+l 

I. e. If x-1 
+' X can become as small as desired by the Increase In 

r, i. e. if x< 1 1. (A272; BL, VIII, IX). 

In fact, as mentioned in the section on limit (p. 197) Bolzano shows explicitly 

(A292; BLe12) how to find the value of r which makes this difference less than 

a given quantity D. In §13 he remarks that for practical calculation these 

Imprecise but arbitrarily close equations are just as good as an exact 

equation and therefore merit "careful attention". He now describes such an 

Imprecise binomial equation as "valid In the sense that one considers added 

to one term ti. e. side] of the equation a quantity which can be smaller than 

any given quantity. 11 This l3aus to the series of lemmas on arbitrarily small 
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quantities, cw, fl etc. which correspond with results about limits. For the 

further results on the binomial thecrem Bolzano effectively proves theorems 

of the form f(x) =p, (x) + wa(x) for all r, where f(x) is the binomial to be ex- 

panded, p,. (x) Is a finite power series up to xr and (4r(x) i4 `he corresponding 

remainder. When the w,, (x) Is arbitrarily small, there Is a useful and valid 

case of the binomial theorem. We should now express this by saying that 

when linc4r(x) = 0, we define the corresponding infinite series to mean 

1i+, (x)) ; In this context the limit would necessarily exist and equal f(x). 

Bolzano's approach avoids the need to prove the existence of any limit but it 

has the great inconvenience that the binomial series (whenever it should be 

Infinite) Is not unique, It Is any one of an (infinite) sequence of finite series. 

In spite of his repudiation of the infinite and of infinite series it is clear that 

Bolzano must assume not only the potential infinity of integers as exponents 

but also the infinity of arbitrarily small numbers as differences.. Th3 Import- 

ant feature of Bolzano's treatment which was distinctive and fruitful was that 

only finite quantities ever entered into calculations and all calculations were 

only finite. 

The insistence on finite calculations, without the explicit use of the -' 

limit concept, led to rather elaborate circumlocutions in the formulation of 

many theorems. For example in BL 30(A315), 

A series developed in powers of x is to be either completely equal, 

or at least come as near as desired if the number of Its terms is 

r 
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taken large enough, to the value of the complex function (1 + x)".... " 

The same sort of long-winded description occurs in many results throughout 

the rest of the paper (e. g. BL§§33,35,41,42,43 etc. ) and its repetition must 

have emphasised, to Bolzano at least, the significance of arbitrarily close 

approximation. There seems to have been a kind of feedback here between 

the two aspects of infinite series mentioned earlier, 1. e. direct summation of 

a series and the series development of a function. The binomial theorem is 

the development of a certain kind of function: the series was seen to be either 

exactly equal, or under suitable conditions arbitrarily close, to the function. 

Here the function comes first with the series derived from it and compared 

with it. In RB the priority is reversed and- a general series is considered 

with a property (namely that remote finite "blocks" of the series become 

arbitrarily small). which ensures that the series comes arbitrarily close to 

some fixed quantity which was not previously known or given. We shall now 

indicate how the significance of considering finite "blocks" of a series was 

likely to have been suggested by Bolzano's work on the binomial theorem. 

In the Preface of BL there is an Informal description of the idea of the 

convergence principle which Is used In RB. While considering proofs of the 

binomial theorem, "of which nothing could be criticised if they were not based 

on the Inad: nissable Idea of Infinite series 11 (A278; BL, XIV), Bolzano continues: 

Series are obtained which are indeed equal to one another from their 

first term up to arbitrarily many terms but they then !. ave just as 
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many unequal terms, so that in order to claim the equality of their 

value it is necessary to show that the sum of the unequal terms can be- 

come smaller than any given quantity if one makes the number of equal 

terms large enougiL. 

This is not explained any more in the Preface, but Boizano is almost certainly 

referring to the sort of Induction step In BL which takes the form of proving 

that If the theorem holds for exponents p and q separately then It will also hold 

for the exponent p+q; the p and q here are not just Integers but arbitrary 

numbers (see A335-346; BL§§38-41). Bolzano proves this by taking initial 

finite blocks of the expansions of (1 + x)? and (1 + x)4 (up to xr and xs res- 

pectively) and first showing that all terms of their product up to x" or xs (which- 

ever Is the smaller of r, s) are Identical with the corresponding terms of the 

binomial series for (1 + x)I'+ý . But then, as explained In BI§39(A340), there 

are always a number of other terms, in fact as many as the greater of r, s 

which are not Identical with the corresponding terms of the (1 + x)P+4 series: 

"these will be greater as one takes r and s greater ... therefore however 

many terms in the product M correspond to the binomial series, at least as 

many also deviate from it. " It is the behaviour of this finite block of terms 

from xr+' (if r <s) to x""s that determines, in the case of p or q not being 

Integers, whether the two series may be sai J to be equal or not. 

Only In the case when x Is a proper fraction does the special circum- 

stance occur that the unequal terms always become smaller and that 
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one can actually make the value of their sum as small as desired by 

the increase in r and s. (A341; BL, 61). 

Although it appears here in the context of the equality of two series, 

this behaviour of the finite block of terms in the product from x"1 to xr4. 'g 
, 

as r Increases, Is precisely what Is described In the convergence criterion 

of RB§§6,7(A462). The nth partial sum of a power series Is denoted Fn x and, 

the difference between its nth term Fjx and every later term Fn+r x 

(no matter how far from that nth term) stays smaller than any given 

quantity If n has been taken large enough. 

Given this condition, then the theorem of RBä7 states that there Is a unique 

constant quantity which the partial sums approach arbitrarily closely. The 

argument here consists of four steps: 

(1) If such a constant quantity X exists it can be determined as 

accurately as desired; 

(ii) therefore the assumption of a quantity X, "contains no imposs- 

ability"; 

(III) therefore there Is a real quantity, X; 

(iv) this quantity X is unique. 

There can be no quarrel with the first, or the fourth step, Bolzano goes 

through the working correctly to show exactly how, using the assumptions, 

an F� x can be found which differs from X by less than any given quantity d. 
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We could paraphrase the original statement of the theorem by saying that If a 

sequence of partial sums "bunches up" then it has a limit. Bolzano's first 

step shows that if the sequence has a limit (which will generally not coincide 

with any of the partial su_.. ts) then the value of this limit may be determined 

arbitrarily closely by purely internal inspection of the partial sums. But here 

the argument breaks down; it Is hard to see how steps (1I) and (i[i) follow In 

any way from what has gone before. In BG Bolzano had emphasised that the 

possibility of a concept must be proved before the concept can be used (A68,71; 

BG, 11§3,, q7). In the passage from BD (A137; BD, 30) quoted on p. 55 he speaks 

of purely symbolic concepts (such as infinity and i) which,, if their use 

were shown to be consistent, could be adjoined to the "real" concepts of elem- 

entary mathematics. These ideas may have led Bolzano to believe that the 

possibility of the limit could be sufficient ground for its existence. And (1) 

may very reasonably have made hint feel that the limit certainly should exist, 

%: 

or that no Inconsistency would arise if It were assumed to exist. However, to 

the extent that we give Bolzano credit for recognising the subtlety of the need 

to prove the existence of the limit (and this, after all, Is the main statement 

of the theorem ßB§37), we must also admit that he falls to give this proof. He 

can hardly have been satisfied himself: the abrupt conclusion after the proof 

of (i) that "there is therefore a real quantity" Is wholly disconnected and 

Inadequate. It has no precedent in his other proofs except perhaps parts of 

the tentative BG, Part if, but there he often admits his own failures. RB 
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was intended to be something of a showpiece and presumably this may have 

prevented any admission of imperfection. 

It has not been pointed out before in the literature on this part of 

Bolzano's work (4.3.4) than. RBE7 is In fact just a formal statement of the con- 

vergence criterion, not Its first discovery. We have Indicated how It origin- 

ates from the work in the early part of BL but it is also used there explicitly 

to prove the convergence of the exponential series. In BL§70(A411) it Is 

correctly proved that, 

the series 1+1+1+1+.... +1 1.2 1.2.3 1.2.3... r 

can be continued so far that its increase for every further continuation 

remains smaller than any givea quantity. 

And he concludes, 

..... It follows from this there would have to exist a certain constant 

quantity which this series steadily approaches and to which It can 

come so near that the difference is smaller than any given quantity. 

It is tantalis[ns; in retrospect to consider how near Bolzano was, after 

proving property (1) (p. 216) of what are now often called Cauchy sequences, 

to actually identifying real numbers with Cauchy sequences of rationals. In 

fact there Is some evidence that Bolzano was aware that the result of RB37 

does depend on a "correct" concept or defin! tion of number. The theorem 

of RB§7 Is used crucially to prove RB§12, the original form of the Bolzano- 

Weierstrass theorem, and in his overall summary in the Preface of RB 
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Bolzano refers to the main existence result as follows: "Whence It follows 

for everyone who has a correct concept of quantity, 
[Grosse] that the Idea of 

[such] an I.... Is the idea of a real, I. e. actual, quantity. " (A451; 1B, 23) 

Also, during the 1830's in the course of developing his own, rather complicated 

theory of real numbers Bolzano does refer to the inadequacy of his RBS7 proof 

(Bolzano [6] ). 

4.3.4. Secondary Sources onBolzano's work on Convergence 

Unfortunately Bolzano's purpose of gaining some attention and support 

with the publication of BL and RB failed miserably. There is no definite 

evidence of either of these works having been read or appreciated by any 

mathematicians for about fifty years after their appearance. 

There have been a number of articles on the question of whether Cauchy 

may have read and used Bolzano's ideas on convergence and continuity. Most 

notable in recent years have been the papers Grattan-Guinness [1], Freuden- 

thal [1] and Sinaceur [1]. We do not propose to go into the details of the 

Issue here. It will probably never be known for certain whether Cauchy, In 

writing his Cours d'Analyse, owed anything to Bolzano or not. Clearly this 

was possible but the strenuous special pleading employed by Grattan-Gu[nne; 1,3 

to try and make It appear probable does not seem fair or profitable. The 

controversy is largely Irrelevant from our present point of view, that'of' 
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simply understanding Bolzano's work on convergence, except that it has pro- 

duced some serious misjudgements, by both sides, of the work In RB. We 

refer to these later. 

Hankel's article Grenze was the first published and authoritative 

acknowledgement of Bolzano's mathematical work on Infinite series. Mviously 

seeking to make amends for the unjust neglect of his subject Hankel speaks in 

glowing terms of the work in BL: 

Bolzano's concepts of the convergence of series are altogether clear 

and correct, his operations with inf: rAte series are all strictly proved.. '. 

... Briefly, he possessed everything which puts him in this respect 

at equal eminence with Cauchy = only without the Frenchman's P rt of 

dressing-up his ideas and presenting them in the most attz1active way. 

So Bolzano stayed unknown and would soon be forgotten; Cauchy was 

the fortunate one who was hailed as the reformer of the science and 

whose elegant writings spread quickly and widely. (Hankes [1] §19) 

This is rather exaggerated. There ai-e mistakes in Bolzano's work 

and It really bears little comparison with the prolific work of Cauchy. For 

example, Bolzano mistakenly claims that (1 + x) does not converge for x-1 

and positive a (A271; BL, VII); In fact with x=1 it converges for all n>-1. 

What is striking about Hankel's article is the omission of any mention of 

RB. His eulogy of Bolzano is entirely based on the "finite" treatment of 

the general binomial theorem, which we regard here as only an intermediate 
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stage on the way to his real Insight into how to treat convergence in RBOG, 7. 

As Stolz points out (Stolz [1] ), the combination of Hankel's readiness to 

credit Bolzano and the fact that earlier in his article (Hankel [1] 04-8) 

Hankel seems to think he is himself the first to establish the sufficiency of 

the Cauchy convergence criterion must mean that RB was inaccessible to him. 

This seems very odd because he can hardly have been Ignorant of the work. 

It is predicted, though not by title, in BL itself and it appears In Rogg's % 

Handbuch &r mathematischen Literatur (1830), as well as in the first volumo 

of the famous bibliography by Poggendorf published In 1863. Also, RB not 

only appeared separately In 1817 but it was published In 1818 In the AbhF nd- 

Lungen der kön[glichen böhmischen Gesellschaft der Wissenschaften. 

The purpose of the paper Stolz [1] (1881) was, as he describes it, to 

clarify and summarise the definitions and propositions on the principles of 

analysis [Infinitesimalrechn ung] which were peculiar to Bolzano in contrast 

to Cauchy. He believes that though Cauchy "founded analysis" Bolzano had 

"discovered some years earlier the basic concepts which in many ways 

agreed with those of Cauchy but which in important points were even better" 

(original emphasis In Stolz [i]p. 255). Among others he has sections on 

upper limits, convergence of series of real terms, differentiation of infinite 

series, and the rectification of curves. He makes use of the works BD, BL, 

RB, DP and the posthumous work Paradoxien des Unendlichen. The paper 

is brief with little commentary. The section IV on convergence mainly 
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consists of quotations from RB3§5,6 and 7. Stolz is wrong to regard RBI5,6 

as an explanation of the necessity of the convergence criterion. Bolzano just 

shows there that a geometric progression with common ratio less than one, 

or a series whose terms are smaller than such a progression, will satisfy 

the criterion In RBg6. 

Kolman, in his work on Bolzano originally written In 1955 follows Stolz 

in the error of supposing that in RB§5,6 Bolzano is showing the necessity of 

his criterion (Kolman [1] p. 50). While admitting the proof of sufficiency is 

defective he says that, "it goes as far as possible without a theory of real 

numbers". This seems a rather pointless and biassed claim in the absence of 

any justification. 

For the sake of completeness we should also briefly mention the paper 

Wussing [13 which quotes both Bolzano's RA7 and Cauchy's convergence def- 

inilion for comparison. He adds almost no commentary except the remark, 

"Bolzano makes use - before Cauchy - of the Cauchy convergence principle, 

a necessary and sufficient criterion for convergence". He does not say 

Bolzano proves the necessity (contrary to Grattan-Guinness [2] 
p. 72, Note 12). 

However, this mistake is made categorically by Steele in his Introduction to 

Paradoxes of the Infinite ( Steele (1) p. 29). and also by Sebestik in the intro- 

duction to his French translation of RB (Sebestik [1] ). Steele actually sum- 

marises the proof but has obviously failed to see the point that the limit can 

be approximated to any accuracy by the F. x alone. 
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There are two sources of commentary by Grattan-Guinness on Bolzano's 

work on series. These are the book Grattan-Guinness [2] and article Grattan- 

Guinness [1]; both appeared in 1970 and we shall denote them Foundations and 

New Analysis respectively. They contain a more detailed consideration of 

Bolzano's early work than had previously been given in any English publication. 

Two useful points that are 'made are to correct the error that RBf6 is about 

the necessity of the convergence criterion, and to state that ßB was available 

In Paris, in the Bibliotheque Nationale, in 118 (Foundations p. 76,77). Un- 

fortunately, however, much of the assessment of Bolzano is Ill-judged. The 

extravagant claims made about his work are nevertheless relevant so they need 

some consideration. Grattan-Guinness's judgements seem to be affected by 

his Idea of "limit-avoidance" as an understanding of the limit concept by which 

"we may move as close as we wish to the limit, while still avoiding the limit 

Itself". And in New Analysis (p. 378) he says of limit-avoidance that, 

the limiting value Is defined by the property that the values in a seq- 

uence avoid that limit by an arbitrarily small amount when the corres- 

ponding parror. ieter ... avoids its own limiting value. 

The theory, or approach, of limit-avoidance is regarded as a profound dist- 

anguishing feature of a "complete reformulation of the whole of analysis" 

which was Inaugurated by Bolzano and Cauchy (New Analysis p. 378). Limit- 

avoidance is meant to be the key to understanding Bolzano's definition of 

continuity (see p. 2 38). In that context he writes: 

. 
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This is the quintessence of his "pure analysis", for with it he started 

a revolution in approach to the subject: the arithmetisation of analyst's_ 

by means of limit-avoidance techniques such as in his definition 3.3. 

He used the apprco;; h consistently in his paper of 1817;... (Foundations, 

p, 55). 

And again a little later: 

Bolzano not only distrusted infinitesimals but also solved the problem 

of limits by Introducing limit-avoidance. (Foundations, p. 56, original 

emphasis in both quotes) 

Thus Grattan-Guinness regards limit-avoidance as something new with 

Boizano (and Cauchy) and that it is consistently adopted by him. (This, in- 

cidentally, is one of his main arguments for Cauchy's plagiarising. ) But both 

these opinions are wrong. In the Sec. 4.2.2 we have quoted earlier examples 

of unambiguous concepts of limit-avoidance such as that of Newton and D'Alem- 

Bert, And Bolzano (if he had used the term "limit" which he did not) must 

have allowed a sequence to achieve Its limit because In RB §5 he regards 

it series as examples which show that the convergence criterion is satts- 

fled by at least some series. Clearly after a sufficient number of terms they 

actually equal the "constant quantity to which they can come as near as 

desired". 
I 

In fact the whole Idea of limit-avoidance seems to be of doubtful value 

as a distinctive concept to apply to the development of limits. In many 
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definitions, such as those of L'Huilier and Cauchy, it is not specified whether 

or not the limit is allowed to be achieved. Not being excluded It Is presumably 

therefore Included - to the added generality of the concept. Yet Grattan- 

Guinness always seems to regard limit-avoidance as an advance; does he think 

it Is exemplified in the modern concept of limit? it is all very peculiar. 

In Foundations there is an account of the important paragraph RBJ7. 

Having pointed out that Bolzano has phrased his theorem, "in a way which 

again uses limit-avoidance" (but does it? ), he writes the following sentence: 

Since the existence proof was prior to uniqueness, he assumed that hs 

could take a variable value for the sum-function (varying, that is, 

Independently of its being a function of x), which could therefore be 

selected to be within an arbitrary degree of closeness to what he 

called the "true value" of itself. (Foundations p. 73) 

This is completely wrong, as a reading of the proof (RB, 22) is enough 

to show. Bolzano starts his proof by saying that If the quantity claimed by 

the theorem was not assumed to be unique and invariable It could easily be 

chosen suitably - it could even be identified with the F� x terms. (This may 

seem silly or irrelevant but It is the way Bolzano does it. ) Then he goes on 

to say that the assumption of an Invariable quantity Is not Impossible because 

It can be _: bitrarily closely approximated etc. 

So mach for the account in Foundations. In the New Analysis there 

Is a section (2.2) on the convergence of series and the main print made 
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(p. 376) is that both Bolzano and Cauchy, "found a general condition for con- 

vergence in terms of the behaviour of s,,,., - s� as n tends to Infinity: a result 

of quite profound criginality. " We have pointed out above the importance of 

this treatment of finite b1 ks and how Bolzano may have been led to Its gen- 

eral application through experience In BL with the finite treatment of the pro- , 

duct of two binomial series. But It was not an original idea. We have quoted 

Euler's use of such finite blocks of an infinite series to obtain a divergence 

criterion (p. 201. (Grattan-Guinness refers to this paper himself in Founda- 

tions p. 75, Footnote 18. ) There are many detailed errors about Bolzano's 

work in New Analysis which we shall not mention here: most of them are 

pointed out in Freudenthal [1]. 

We shzll consider one further point from New Analysis because of its 

significance (if there were any truth in it) to our present treatment of Bolzano's 

analysis. Grattan-Guinness believes that between BL and RB there occurs 

the transition in Bolzano's thought between the "old" analysis and the "new" 

(New Analysis p. 38 , 1). ]Referring to Bolzano he writes there: 

Thus in 1816, for example, before the flood of his own new thinking, 

he published a treatise on the binomial series in the style of the old 

analysis which is really quite remarkably uninteresting. 

Now all three papers BL, RB and DP were almost certainly written within 

twelve months of each other (probably In 1814 or 1815 and then revised 

Sec. 1.3). And RB is said, In a footnote of BL (A312; BL, 32) to already be 

r 

C 



227 

written out ready for printing. There would therefore need to be very strong 

internal evidence to maintain the idea of any major transition in outlook. We 

can see no such evidence at all. On the contrary, as we have indicated, there 

seems to be a steady progression in the basic ideas about convergence and con- 

tinuit-y (particularly the latter, see P-238). 

The Paper Freudenthal [1] is a lively rejoinder to Grattan-Guinness' 

New Analysis, The purpose of the paper is to discuss whether Cauchy plaglar- 

ised Bolzano, so much of the material is not immediately relevant to us. There 

are several corrections to New Analysis but in the Sec. 3 entitled "Bolzano's 

Pamphlet of 1817" Freudenthal makes an error himself. Referring to Bolzano 

he says (p, 379): 

His terminology is unusual: a sequence of functions Is called a ver''an- 

derliche Grösse, and a single function a bestandige Grösse, The Cauchy 

convergence criterion Is formulated for a sequence, not of numbers, but 

of functions, and the property that is formulated, Is, in fact, uniform 

convergence... 

For the concept of the uniform convergence of a sequence of functions it is 

essential to quantify over the Independent variable. There is no suggestion of 

such quantification in RB§6,7 or anywhere else In RB. Nor can there by any 

doubt about It precisely because of the perfectly normal use of best'tndlge 

Grdsse (constant quantity) ' In RB§2 and RB§7. The limit of the sequence of 

function values, F1x, F2x, ... Fnx, ... , say, IN-, is a constant quantity 
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because x Is being regarded as fixed; the sequence is point-wise convergent. 

The partial sum Fnx (not the sequence) is a veränderliche Grösse (variable 

quantity), as n varies, but this term Is only used in this context In RBe1. 

Usually verHnderliche Grdsse Is used for the Independent -variable x (e. g. ßB11). 

The recent paper Kitcher [11 is by far the most substantial and inter- 

esting study of RB that has appeared in the literature. Here our interest is 

on the paper's Sec. III which is chiefly about the proof of RBJ7. Kitcher's 

main point is, ostensibly, that the proof will not make sense (will be "utterly 

incomprehensible" and "hopelessly askew") if we view it as part of an attempt 

at arithmetising analysis. Instead, we are invited to view it "against the 

background of his [Bolzano's] ideal of algebraic analysis". In fact in this 

context the distinction seems more rhetorical than substantial for it is not 

clearly related to the remarks Kitcher makes in explaining the proof.. He 

divides the argument into two parts: ' 

[1]If the assumption that there is a constant quantity to which the 

sequence tends does not ccntain "anything impossible" then there Is 

such a quantity. 

[2] Since on the basis of that assumption we can determine the quantity 

as precisely as we like, there is nothing impossible contained in the 

assumption. (Katcher [l} p. 248) 

These corresponds to the steps, (1I) Implies (iii), and (I) implies (ii), In 

terms of our analysis of the a_gument above (p; 16 ). Kitcher says we 
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should consider [11 In the light of what he calls (and attributes to Bolzano/ the 

"liberal approach to quantities". According to this, we may take expressions 

to denote (analytic) quantities provided that our assumptions are compatible 

with the laws of analysis. So consistency implies existence. Evidence that 

Bolzano did follow this liberal approach is then adduced from numerous ref- 

erences to Paradoxien des Unendlichen. Then It Is easy to justify step [1] 

because a proposition is possible if and only if It Is compatible with the con- 

ceptual truths of analysis. This argument is in accord with what we have said 

above (p. 55 ) based on remarks made in BD. Our only criticism would be the 

strong and unqualified reliance Kitcher makes on the Paradoxien, a work which 

was not written (even then only in note form) until the last year of Bolzano's 

life in 1848. There are many drastic changes in this work from his earlier 

views (e. g. he there defends the existence and use of Infinitely large and 

small quantities) and so it Is quite unfounded to use it to support Intricate 

steps in an argument made thirty years earlier. 

As for step [2], this is admitted to be simply unjustified. A good 

example Is given to prove this which we could paraphrase as follows. Suppose 

tr were an algebraic number and consider a suitable Cauchy sequence (e. g. 

derived from Inscribed polygons) which converges to IT . The number defined 

by the properties of being algebraic and the limit of this sequence could be 

arbitrarily closely approximated to but to assume it exists would be contra- 

dictory. Kitther adds the spc culation that Boizano may have argued in the 
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following way. Any incompatibility of the limit with the laws of analysis would 

be preserved by the approximation process, I. e. If the approximating quan- 

tities were compatible then so would be their limit. Thus the argument could 

be thought of as a kind of relative consistency proof. Such an idea is valuable 

because its plausibility shows that Bolzano may not just have been dissimulating 

in demonstrating the possibility of arbitrary approximation. 
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4.4. The Continuity of Functions 

4.4.1. Introduction 

The concept of function is more abstract and more recent than that 

of an infinite series and so the analytic concept of continuity had received less 

treatment before Bolzano's time than the concept of convergence. Accordingly 

there is less background material available or necessary for this topic. It 

will be con: -enient to deal with the background, Bolzano's own work and the 

secondary material all together, dividing the subject only into two sections 

dealing with the concepts of function and continuity respectively. 

4.4.2 The Concept of Function 

The idea of the value of one quantity depending on the value of one or 

more other quantities seems simple and must be extremely old. Yet the 

development of the mathematical concept of function was complicated and 

very slow. It first of all required the means to symbolise arithmetical dep- 

endenco and then after long use of the resulting relations and equations 

there appeared the Initial concept of function as any "analytic expression". 

The first explicit definition of function in this sense was actually published 

less than a hundred years before the time Bolzano was writing his early 

analysis works. It was given by John Bernoulli in 1718 (Bernoulli, John [2] 
). 
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Euler, his pupil, gives a similar definition in the Inroductio in analysin in- 

finitorum (1748) which reads as follows: 

A function of a variable quantity is an analytic expression composed in 

any way from this variable quantity and numbers or constant quantities. 

(Euler [4]) 

Euler's work in the 18th century was destined to give this new concept the 

fundamental place it was to occupy in mathematics. The time was ripe for 

Its introduction and definition. As for infinite series, the calculus had stim- 

ulated work concerning all kinds of functions and the concept had been con- 

sidered and some definitions attempted In the last decades of the 17th century. 

(Most notable here were the works Gregory J. [1](1667), Leibniz [8] (1673), 

John Bernoulli (Leibniz [11 p. 506,507)(1698)). However, most mathematicians 

of the 17th century would have thought of a function primarily as a curve and 

to appreciate Bolzano's view-point it is worth remembering that the analytic 

concept of function was really an Insight of the 18th century. 

The word "analytic" here certainly implied "non-geometric" but it also 

had a positive, though variable, meaning. The conservative view was that an 

analytic expression was composed only from the four basic arithmetical op- 

er"ations together with taking roots. The Inclusion of limiting or Infinite 

processes was controversial and the idea of a completely arbitrary function 

was not to appear until Dirichlet [1] (1837). It Is claimed in Youschkevitch [1ý 

that Euler had a completely general concept of function as early as 1755 
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I 

because in the Institutiones calculi differentialis (p. 4) there Is the following 

account: 

If some quantities so depend on other quantities that if the latter are 

changed the former undergo change, then the former quantities are 

called functions of the latter. This denomination is of the broadest 

nature and comprises every method by means of which one quantity 

could be determined by others. If, therefore, x denotes a variable 

quantity, then all quantities which depend upon x in any way or are 

dec: rmined by It are called functionsof It. 

The generality of this account all depends on what Euler means by "every 

method". He always in fact uses functions which are representable by power 

series. Lacroix in the Tralte du Calcul... (1797 and 1810) says, 

Toute quantite dont la valeur depend du'une ou de plusleurs autres 

quantites, est dite fonction de ces dernleres, soft qu'on sacke ou 

qu'on Ignore par quelles operations 11 faut passer pour remonter do 

celles-ci 1 :a premiere. (Lacroix [lJ p. 1) 

And in K1[ne's judgement (Kline [11 p. 949) Lagrange uses the word "function" 

in the second edition of his Mecantque analytique (1811-15) to cover "almost 

any kind of dependence on one or more variables". On the other hand, Gauss, 

in his 1813 paper on hypergeometric series is obviously uneasy about allowing 

Infinite processes in a function. Ile speaks of the series, "tamquam functio 

quatuor quantitatum ot, (3 , 1(, x spectari potest" ("in as much as it can be 
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viewed as a function of the four quantities a, ß, Y, x") (Gauss [2, ). 

Thus even if the most general and abstract concept of function had not 

been appreciated by 1815 the use and notation of the concept of the usual algeb- 

raic and transcendental functions was well established and Bolzano assumes 

these to be well known. Functions for Bolzano are real valued but are not 

always assumed to be single-valued (A306; BL, §26). For the most part though 

he has In mind functions which are, or can be represented as, power series. 

Contrary to the claim of Kolman there is no discussion In RB (or in BL or DP) 

of the definition of the function concept. Kolman writes that, 

... before he proceeds to the proof of the theorem[RB§15] Bolzano 

gives a logically strict definition of continuity which in turn is pre- 

ceded by the definitions of variable quantity and function... 

Bolzano defined function in this work as a dependence given by an 

arbitrary known or unknown law provided that to every value of one 

variable there corresponds a determinate value. of the other. (Kolman 

[]p. 46,47) 

There Is, of course, no reference to this definition: it does not exist In the 

early work at all. Either Kolman was deliberately composing myths or he 

Is confusing RB with the Functtonenlehre to which he goes on to refer and 

which does contain a definition like that above(Bolzano [6]). The claim about 

defining variable quantities is even worse because his comments are virtually 

copied from Stolz who concocted a distinction of his own betwein freely 
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variable and continuously variable quantities. Kolman, however, does not 

mention Stolz and he omits the reference which Stolz gave to the (one) place 

in RB where the phrase "freely variable" occurs. We quote Stolz's original 

paragraph (Stolz [1] 
p. 257) headed, "II, Variable Quantities": 

A quantity which can assume all possible values between two given 

values is called according to RB, p. 49 "freely variable", a quantity 

which without assuming all values nevertheless takes values which 

differ arbitrarily little from each of its values, is called "continuously 

variable" (c, f. RB, p. 11,49). 

It is sufficient to look at the references to RB(A439,477) to see that the 

meaning of a "freely variable" quantity and. the distinction given here between 

freely and continuously variable are entirely of Stolz's own construction. 

4.4.3. The Concept of Continuity 

We have Indicated the beginning, of the 18th century as marking the 

transition from a geometric to an analytic concept of function. The corres- 

ponding transition from the spatial concept of the continuity of a curve to the 

purely arithmetical description of the continuity of a function lagged behind 

for about cile hundred years. But it is perhaps misleading to speak of a 

"corresponding transition". While a function was thought of as a curve 

continuity was redundant: wherever there was a curve it waa continuous. 

r 
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Only with the increasing use of analytic expressions did the need arise to 

preserve and express the desirable properties of spatial curves. 

In Volume 2 of Euler's Introductio... (p. 11) hi divides both curves and 

their corresponding functions into continuous and discontim,:, us(or mixed)ones. 

But what Euler meant had nothing to do with what we now mean or what Is 

Intuitively meant by the word "continuous". A function was continuous in bis 

sense over a certain domain If it has the same analytic expression, or equation, 

over the whole domain. It is discontinuous at a point where the form of its 

equation changes. Thus for Euler continuity meant something like uniformity. 

This thoroughly confusing language continued well into the 19th century. Its 

significance was partly sustained by the controversy (mainly between Euler 

and D'Alembert) over whether the Initial form Lf a vibrating string can be 

given by a single expression or not. But as it was realised that the question 

of whether a particular curve or function can be represented by one or more 

equations Is rather arbitrary, Euler's language for the distinction was grad- 

ually dropped In favour of its more significant modei: i sense. 

The attempts of the late 18th and early 19th centuries to give a suit- 

able analytic definition of continuity need much more Investigation than will 

be given -here. The available historical literature is remarkably scarce on 

any work prior to Bolzano. The ideas about continuity in Lacroix[2] Art. 6C 

and in the 1814 paper Cauchy [2 j are relatively vague. In the Functionenlehre 

(Bolzano [6] p. 16) there is a note in which Bolzano mentions his criticisms 
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of ideas about continuity in Kästner [I], Fries [1], Eytelwein [1] 
and 

Lacroix[2]. Only the first of these had appeared when he was writing RB 

and he specifically mentions Kästner in connection with the intermediate 

value theorem. The main criticism (which is also made in RB, 12(A440) but 

not referring to anyone in particular) was that continuity of a function was 

defined as, or Identified with, the property of taking all intermediate values 

between any two values of the function. Bolzano was emphatic that though this 

was a true theorem about continuous functions it would not suffice as a definition 

of continuity. This insight was obviously closely connected with his seeing 

the need for a proof of the intermediate value theorem. Boizano's insistence 

on distinguishing clearly between a true property, and a correct definition, of 

continuity was significant. He was accustomed to giving examples, or counter- 

examples to illustrate and confirm distinctions (e. g. A467; RB, §10). From 

the absence of any such example here, and Its Intrinsic Interest, It Is reason- 

able to conclude that he did not know an example of a function to show that 

taking Intermediate values Is insufficient to ensure continuity. (All commen- 

tators who give an example mention the type of function given in Darboux [1] 

(1875) 1. e. f(x) = sin 
(2) 

ýx 0, f(0) = 0. rs this really the first such example? ) 

Bolzano was more likely to have been led to his definition, not for such tech- 

nical reasons, but on primarily conceptual grounds. The taking of Intermed- 

Late values was just a crude translation of the alien spatial Intuition; it would 

not express the essence of the more general analytic concept. 
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The definition of continuity in RB is pre-figured by a clear but relative- 

ly informal and incidental account in BL§29(A309). We discuss this important 

lemma later (5.2.3) but here we shall justquote what is said on BL, 34(A314) 

about continuity: 

In fact a function is said to be continuous If the charge which occurs 

for a certain change in the arg. ment can become smaller than any 

given quantity if the change in the argument is taken small enough. 

Bolzano proceeds to argue that, assuming there exist functions i'x and fx 

each const ting of an arbitrary number of terms, r, then the equation 
r, 

F(x+w)- rrrr fx +0 indicates that Fx is continuous because F(x +w) - Fx = 

o (fx +n) can become smaller than any given quantity if (with the same r and 

x)w is taken small enough. Now to assume the existence of such an fx is to 

r 
assume that Fx is differentiable so this result amounts to the fact that differ- 

entiability implies continuity. The argument that follows to show that also 
r "- p 

fx must be continuous Is wrong; it Is falsely assumed that F(x -i+)- Fx 

may be made arbiti arily small by decreasing I and cii. It-Is In the course of 

the main proof of BL329 that Bolzano appeals to the Intermediate value theorem 

and refers to the forthcoming proof in RB. There Is no further mention of 

continuity In BL. 

In RB the question of continuity aris,. s In the Preface in the course 

of criticism of earlier proofs of the intermediate value theorem. At RB, 11 

(A439) Bolzano states his own definition: 

f . 
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According to a correct definition, the expression, that a function fx 

varies according to the law of continuity for all values of x inside 

certain lin Ks. * means just that, if x is some such value the difference 

f(x + w) - fx can b.; made smaller then any given quantity provided w 

can be taken as small as we please. With notation I Introduced In 

§14 of Binomische Lehrsatz etc. (Prague 1816) this is, f(x +w) = fx +1'1. 

The footnote * reads: 

There are functions which vary continuously for all values of their 

root, - e, g. ax + (3 . But there are others which are continuous only 

for values of their root inside or outside certain limits. Thus 

x+ (1 - x)(2 - x) is continuous only for values of x< +1 or >+2 

but not for values between +1 and + 2. 

Bolzano's definition is clear, original and suitably formulated in 

symbols for easy arithmetical application. The limit concept is not required 

explicitly, as with the convergence criterion, due again to the use of arbitrar- 

ily small quantities. This procedure Is admirably practical. Continuity Is 

used essentially In the main theorem RB§15(A479), and In RB§17(A484) It Is 

straightforwardly proved that polynomials are continuous. In DP3§1-6(A514- 

520) a number of theorems are proved about continuous functions. The first 

main theorem, DP§2 is rather long-winded and Imprecise but it Is basically 

the statement that a continuous function of a continuous function Is again 

continuous. There is a confusing ambiguity on the statement of the theorem. 
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The phrase in the first sentence, "those values of x which approach as close 

as desired to all is taken to include a when fx is said to be continuous for this 

range. (At least, In the proof it Is assumed that fx , nproaches fa arbitrarily 

closely. ) But when X is said to be determined (as a functior., say,?, of fx) 

for this range of values of x, a must be excluded. The point of the theorem is 

to show that X Is also determined at x=a provided' and f are continuras, 

i. e. that its value is 4, ff (a) 3. The proof given is straight-forward and 

correct. Stolz, In attempting to clarify the theorem as It stands gives a para- 

phrase (Stolz [11p. 263) of both the proof and theorem which Is muddled and 

Incorrect. For example, Bolzano does not say In the theorem, "if X Is defined 

and continuous at x= a". Nor does Stolz point out what the theorem Is really 

about. Kolman (following Stolz, as ever, ' withcut acknowledgement) does say 

in a footnote (Kolman [11 p, 53) that In modern terminology the theorem means 

lim F {f(x)] =F (1[m f(x)); though he should have written q' instead of F 
x-sa 

since he puts X= «f(x)} 
, (Stolz puts cp(f(x)J = Fx). In DP§3 Bolzano extends 

the result to the case when X is a continuous function of a finite or Infinite 

number of continuous functions, fx, Fx, fx...... Thus the theorem Is true In 

the finite case but not necessarily true In the Infinite case. The proof is the 

same for either case and it is obviously wrong. It is assumed both that X may 

be an arbitrary function of fx, fix, fix, "... , etc. and that all but one of these 

functions can be held fixed so a: s to reduce the result to that of DP§2. Then 

DP§§5,6 are special cases of DP§3. 
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Bolzano's primacy and success in the defining of continuity has often 

been acknowledged (e. g. Pringsheim [2]and Kline [1]p. 951), and so (less 

often) has the superiority of his formulation over that of Cauchy (e. g. Freuden- 

thal [1] p. 380, see p. 188). Coolidge remarks on the continuity definition, "If 

Bolzano had done nothing else in mathematics, this alone would secure for 

him a place in the history of the subject. 11 (Coolidge [1]) Inexplicably, 

Kitcher does not seem to have appreciated this part of Eolzano's work, "Given 

the unclarity of the notion of "continuous function" employed by Bolzano and 

his contemporaries. " (Kitcher [1] p. 260) 

Grattan-Guinness has claimed the continuity definitions as a great 

example of the accord between Cauchy and Bolzano, especially In exemplify- 

Ing his Idea of limit-avoidance. Having quoted Bolzano's continuity definition 

from RB, 11(A439) he reformulates it In two ways: 

Definition 3.3 

f(x) is continuous at x= xo if f(x, +(x) - f(xo ) is small whena Is small. 

Let us reinterpret the definition as defining the limiting value f(x, ) 

of f(xo + a) as cc tends to zero, rather than continuity. It is continuity 

that guarantees that as a matter of fact this limit exists, and to avoid 

confusion we shall denote It by the symbol B (which is unconnected 

with the symbol f(x)) rather than'f(xo ). Then we have: 

Definition 3,4 

The function f(xo +a) has a (unique) ILmit, of value B, as a-h 0 If 
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f(xo +a) -B is small when a is small. In other words we may move as 

close as we wish to the limit B, while still avoiding the limit itself. 

The full significance of Bolzano's definition 3.3 can only be grasped 

when seen in terms of the pattern of definition 3.4. j3olzano has de- 

fined continuity there but he has done it in a limit-avoiding way in 

terms of arithmetical subtraction of expressions. (Grattan-Guinness [2] 

p. 54,55) 

But the significance of limit-avoidanco is still far from clear. 

In Birkhoff [1] there is a section entitled, "Bolzano on Continuity and 

Limits". This only refers to RB and is mainly taken up with a modernised 

version of the convergence criterion RB§7. The continuity definition of RB 

Preface is stated but then instead of giving Boizano's version of the intermed- 

late value theorem (e. g. RB§15, §18) 
a theorem is stated which appears on 

RB, 14(A442). This "hybrid" theorem belongs to nobody - it is an arithmetic' 

form of an assumption Bolzano is in the course of criticising on the grounds 

that It Is effectively equivalent to the theorem to be proved (see 5.3.1). It 

has been Inadvertently mistaken for the main theorem of the paper, but 

Bolzano would never have used the phrase occurring In It, "the function van- 

Ishes or becomes infinite". 

Undoubtedly Bolzano's great achievement in the continuity definition 

was to express what had been a spatial intuition to purely arithmetic terms. 

He seems to have been mottv'ted to seek such a definition on conceptual 
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grounds: an analytic concept of function requires a purely analytic concept 

of continuity. He had arrived at the insight contained in his definition by 

the time of writing BL and it is reasonable to conjecture that It was suggested 

by the notion of arbitrarily close approach that had been so successful with 

infinite series, In contrast to his merely implicit treatment of convergence it 

is clear that Bolzano was well aware of the central importance to analysis of 

his concept of continuity. 

I- 
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Chapter 5: Analysis II 

5.1. Introduction 

In Chapter 4 we have considered Bolzano's treatment In his early ana- 

lysis works of those concepts (namely those of limit, convergence and contin- 

ulty) which have turned out to occupy a central place in modern analysis. As 

mentioned in 4.1.3 these concepts were not always those to which Bolzano 

himself attached particular significance In the course of working out his "new 

way of developing analysis" (A279: BL, XV). This Is hardly surprising, their 

modern significance is a product of one hundred and fifty years of reinforce- 

ment through repeated refinement and generalisaticn. What matters here 

historically is to understand what was significant to Bolzano and see how it 

relates to what has become fruitful in later mathematics. A useful new con- 

cept often emerges, not Intentionally or through direct effort, but rather In 

the course of pursuing some other goal. It Is the recurrent theme of this 

thesis that Bolzano developed some Important new concepts (or at least re- 

finements of existing concepts) as a result of following his fundamental 

requirements for mathematical proofs and concepts. 

In his early analysis :, -orks the main purpose was to give rigorous 
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proofs of certain fairly elementary results. In the present chapter we shall 

briefly examine each of these works in the. light of this aim and show how the 

proofs they contain are related to Bolzano's general methodology. Attention 

to the background of each theorem Is especially necessary hore not only to 

provide the appropriate context but because Bolzano himself always begins 

with a thorough consideration of all the previous relevant work known to him. 

His concepts and ideas arose as much in criticism of earlier efforts as In 

original response to a problem. Accordingly each of the following main sec- 

tions begins with an Introduction containing background material with the 

emphasis on those authors mentioned by Bolzano. Then there follows an 

account and assessment of what each paper actually contains. 

� 
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5.2. The Binomial Theorem and BL 

5.2.1. Introduction 

The original formulation of the binomial theorem for a rational expon- 

ent was given by Newton in a famous letter of 1676 published in Newton [4]. 

The first strict proof, with a proper consideration of the conditions for con- 

vergence and allowing for a complex variable, is generally acknowledged to 

have been given in Abel [1] (1826). The proofs attempted in the eighteenth 

century were either by means of calculus or by combinatorial methods. There 

was virtually no treatment of the two major problems of the convergence of an 

infinite series and of the meaning of an irrational exponent. For the most 

part these were not "problems" at all. Such questions did not arise when the 

main concern was the actual calculation of approximate values of the series 

for practical purposes. Typical of the better proofs at this time (e. g. those 

of Euler) was the remark that for the binomial series to be "suitable for cal- 

culation" the argument x must be a proper friction. Bolzano's proof in BL 

was the first to take both the problems of convergence and of an Irrational 

exponent seriously. 
k 

Fundamental as it was to many applications of calculus the binomial 

theorem was slow to be recognised in its own right and in the first half of 

the eighteenth century there were only a few attempts at a proof. The 

German term "binomische Lehrsatz" does not even appear in the Mathem- 

atisches Lexikon compiled by Wolff in 1716, though it is present in the edition 
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of 1747 (Wolff [43). In Euler [5](1749) the binomial theorem is Introduced 

without explanation as a "theorema universale", - lt is used extensively but 

there is no attempt at a proof. 

The early calculus proofs (for example those by Col. -on [1](1736), and 

Maclaurin [1](1742))were, 
as pointed out in Pringsheim and Faber (1], both 

Inadequate and circular. They were inadequate in assuming the existe : ce of 

a power series development for (1 + x)° and only determining the coefficients. 

They were also circular because the binomial theorem was originally used In 

finding the derivatives of rational powers which were then being used to prove 

the binomial theorem. 

A proof for a positive integer exponent was given In James Bernoulli 

[2] (1713) by considering combinations; It was Liven in Castillon [1](1742) 

with the refinement of an inductive proof of the combinatorial argument. The 

same improvement is found In Kästner [5] (1745). For rational exponents aT 

relatively satisfactory proof did not appear until Euler's paper of 1775 (Euler 

nn-1x2 n(n - 1)(n - 2)x 3 C2] ). Here Euler denotes the series 1+ nx {- 2! + 3! +, ,, 

by [n] 
, so for positive integer n, [n] _ (1 + x) 

n. He then shows that 

[n]= [m + n] just by considering the first few terms of each side, there 
13 

is no Induction. Then [m] 
= [2ml, [in] _ [3m] etc. and generally for any 

az 
Integer a, [am] _ Em] 

. Consequently for Integer I, CI1= ý2 
_ (1 +x )ý 

iL 
= (1+x)' . In Pringsheim and Faber f l] so 

2J= 
(1 + x)1 and generally [i-] 

this paper of Euler's is spoken of in glowing terms as the first "fully valid" 
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proof, significant for its new fruitful method of attending to the summation of 

the binomial series rather than the development of the function (1 +xj But 

without any discussion of convergence, I. e. without any consideration of whether 

the symbol [n] above denotes a quantity at all, the proof can hardly be called 

"fully valid" or be regarded as satisfactorily dealing with the summation of 

series. It is a significant but modest paper. The work L`Hullier [2] (1795) 

gives a rather similar proof to that of Euler with the Improvement of having a 

proper Induction step for proving [m]. [n] = [m + n] . 

Between Euler's paper of 1775 and the end of the eighteenth century 

there appeared a considerable number of proofs of the binomial theorem for 

rational andnegative exponents. Rarely Is there a mention of convergence or 

of the case of an irrational exponent. The paper of Segner [ll is one of the 

best in this respect: he follows the same lines as Euler but notes that an irra- 

tional exponent can be regarded as a limiting case of rational exponents and 

that the variable will Vin general" be smaller than 1. However, the absence 

of consideration of an irrational exponent would still not have been recognised 

as a defect. Apart from the practical irrelevance of such exponents which 

has already been noted, it seems that their theoretical possibility was often 

not considered. For example, in KIUgel's Mathematisches W8rterbueh 

(KlUgel [21 (1803)) under Binomischer Lehrsatz we read, "... 2. The 

formula Is general, the exponent n. may be an Integer or fraction, positive or 

negative". 
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The notation nS, for the binomial series denoted [n] by Euler, was 

probably first introduced by. Busse (see KiUgel [2] Vol. 1, p. 325) and lt was 

widely adopted. Bolzano uses this notation in BL, Xis . There were no signif- 

scant new contributions to the binomial theorem until Bolzauo's BL. 

Bolzano must have studied most of the previous proofs of the binomial 

theorem. Ii DL Preface he gives a detailed classification and criticism of 

the various methods that had been used. But he does this without giving any 

specific references. References were generally still rather haphazard in the 

mathematical literature of this period: there would have been a large number 

of such references and after all BL was Intended to be a fairly elementary 

textbook. Bolzano lists about thirty authors known to him who had attempted 

a proof of the binomial theorem (A268; BL, IV), but he mentions no titles! 

In many cases It is quite clear which work ßolzano must have Intended and 

since the list is fairly comprehensive (especially for the later eighteenth 

century) we give, in the next section, a probable list of Bolzano's sources. 

The list is certainly not exhaustive, for example, he does not mention signt- 

ficant proofs by Maclaurin and van Swindon. In fact Bolzano may have rolled 

on one or two reference works. In KlUgel [2] the article Binomischer Lehrsatz 

lists all but four of Bolzano's list with regard to authors whose works appear- 

ed before Klogel [2] was published (i. e. all but the last seven of Bolzano's 

authors). This work was probably Bolzano's main source; the references 

there are given accurately ar.; l In detail though there is very little comment 
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by KlUgel. In order to give his criticism of previous methods of proof Bolzano 

must have studied the majority, if not all, of these references. 

The criticism In BL Preface Is In two parts. First he comments on 

misunderstandings of the meaning of the binomial theorem, then on the 

attempts to prove It. The former maialy concerns the rejection of infinite 

series and we have already dealt with this in Chapter 4. The previous proofs 

must all be defective, Bolzano says (A271; BL, VII), because none of them 

Involves the condition x<f1; the proof should therefore hold generally but 

the result c'oes not. The most basic fault was, of course, the lack of attention 

to convergence and Bolzano lists this first, albeit in his own rather elaborate 

way: the series are said to be equal when only the terms up to the rth term 

are shown to he equal, "beyond this rth term.. , the difference between the 

. 

two series can perhaps never be reduced as much as desired" (A272; BL, VU! ). 

The Euler and L'Hullier proofs of [m] 
. 

[n]= [m + n] are evidently in mind 

here. There are three other main types of proof which Bolzano analyses: 

proceeding from a general form, (1 + x)n =A+ Bxp + CxY + ... and determ- 

fining the (3, Y, .... A, B,.... (A273; BL, TX): proof by Taylor's theorem 

(A276; BL, XU); and finally an argument from Interpolation in a geometric 

series (A277; BL, XIII). The last of these is briefly dismissed, and the main 

objection to using Taylor's theorem Is that this is a much more difficult 

theorem than the binomial theorem and It can only be strictly proved by using 

the latter (see also A268; BL, 1V). Thus here again (as in the geometrical 
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work) is an allusion to a correct ordering of theorems according to complexity. 

The method cf assuming a general series for the binomial series and determ- 

fining its coefficients and exponents is considered in detail. This, in principle, 

Is the method Boizano adults in BL so his criticisms here are especially 

important as they indicate the errors which his own procedure attempts to 

avoid. 

There are three steps that are criticised. First there Is the argument 

from 

n1 

to 
P-1 

n(A +Bxß+... )=(1 +x)((ýBx + YCx +.... ) 
.. . 

(z) 

This deduction is usually made either by differentiation (which Bolzano says Is, 

"still based on the most shaky foundations" (A275; BL, XI)) or else the proced= 

ure of differentiation is imitated without explicit mention. He explains the 

latter as the use of divisors which are eventually put equal to zero. (He may 

also have had the so-called method of "residual analysis" In mind here, e. g. 

In Landen [1J. ). The second' criticism Is over the fact that having shown (1) 

Implies (2) and finding the constants to satisfy (2) they then assume, at least 

tacl,. ly, that (2) Implies (1). Thirdly, Bolzano says that the exponents Y, 

..... are often just assumed to be 1,2,3 , .... without sufficient reason. 

Several of the. general criticisms levelled against the binomial theorem 

proofs, such as the arbitrary use of infinite series and the use of divisors 
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which are put equal to zero, are also held against the usual derivation of the 

exponential and logarithmic series. The treatment of these series as an applic- 

ation of the binomial theorem, forms a substantial part of BL (BL, 102-144). 

Bolzano had two p! irposes in mind with BL apart from the aim of 

attracting some attention and response to his work. It was "a sample of a new 

way of developing analysis" (A279; BL, XV) and at the same time it was meant 

to be a new, substantial contribution to analysis in being the first really strict 

proof of the binomial theorem and associated results. Consequently It had to 

cater for two kinds of readers. As a way of developing analysis it was to be 

accessible to beginners and suitable as a textbook, but as a thoroughly strict 

proof it was to be complete and rigorous. To cope with this Bolzano indicates 

In the Preface (A280; BL, XVI) many paragraphs which can be omitted on a 

first reading. He also points out that the main proof Is not nearly so long as 

might be supposed from the total number of pages (it occupies about 20 of the 

144 pages). Apart from the style, which is far from terse, there are several 

reasons for the work's length. It is not only about the binomial theorem; it 

Includes proofs of the multinomial theorem and the exponential and logarithmic 

series. There is explanation and motivation suitable for beginners who have 

not met any of these topics before.. The concepts of convergence and differ- 

entiation which Bolzano regards either as novel, or unsatisfactorily explained 

In earlier texts, are treated on each occasion by his elaborate method of 

working explicitly with arbitrarily small quantities. 
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5.2.2. Bolzano's Sources on the Binomial Theorem 

The list of authors which Bolzano gives (A268; BL, IV) follows no obvious 

order exactly, It is partly by nationality and partly ch: "onological. We have 

followed his order and given, for each author, the work containing hismost 

relevant contribution(s) to the binomial theorem. Where appropriate the ref- 

erence to the relevant section of a large work has been given. Any work which 

is doubtful or has not been checked because of being unavailable has been pre- 

fixed by a question-mark. We have included references to the polynomial or 

multinomial theorem. 

Colson, J. The method of fluxions and Infinite series etc. 

translated from the original (I. Newton) with a per- 
. 

petual comment. 1736, p. 309 

Horsley, S. Isaacs Newtons Operaque e:: stant omnta commentar- 

UIs ülustrabat S. Horsley, 5 vols. 1779-85. 

Vol. I, p. 286, footnote. 

Simpson, T. A general method of exhibiting the value of an 

algebraic expression involving several radical 

quantities in an. Infinite series.... Phil. Trans. 

1751, p. 20. 

Robertson, A. The binomial theorem demonstrated by the principles 

of multiplication. Phil. Trans. 1795, p. 298. 

C 
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Sewell, W. Newton's binomial theorem legally demonstrated by 

algebra. Phil. Trans. 1796, p. 382. 

Landen, J. A Discourse concerning the Residual Analysis... 

London 1758. 

C1alrautA. C. , Anfangsgrunde der Algebra,... Berlin 1778 

Dritter Theil, XLVIII 

Aepinus, F. V. T. Demonstratio generalts theorematis Newtonian[ de 

binomto ad potentinm indefinttam elevando. 

Novi Comment. Petrop. 1760/1, Vol. VIII 

Castillon, J. A demonstration of the polynomium of Sir Isaac 

Newton. Phil. Trans. 1742, Vol. XLII, p. 91. 

L'Huilier, S. Principlorum Calculi Differentialas et Integralas 

Expositio Elementaras... Tübingen, 1795. 

Lagrange, J. L. Th6orle des fonctions analytiques.... 

Paris 1797,1813, Paragraph 18, 

Kästner, A. G. Demonstratio theorematis binomialls. Leipzig 1745. 

Theorema binomiale universalster demonstratum, 

G 3ttingen 1758. 

Euler, L. Demo. istratio theorematis Newtoniant de evolutions 

potestatum binomii pro casibus quibus exponentes 

non Bunt numeri integri. Novi Comm. Petrop. 

1775, Vol. XIX, p. 103. 

C. 
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Euler, L. (continued) Nova demonstratio quod evolutio potestatum binomii 

Newtoniana etiam pro exponentibus fractis valent. 

Nova Acta Petrop., 1787, Vol. V., p. 52. 

Segner, J. A. von Demonstratio univarsalis theorematis binomlalls 

Newtons. Nouv. Mein. de Berlin 1777, p. 37.9 

Scherfer=Scherffer, K. ? Institutionum analyticarum 1771-2. 

Karsten, W. J. G. ? Anfangsgrunde d.; r Mathematischen Wissenschaften 

3 vols. Rostock 1780. 

? Mathesis theoretica elematar ac sublim[or. 

Rostock, 1760, p. 567. 

Klügel, G. S. Mathematisches Wörterbuch. Vol. 1,1803 Articles: 

Binomial- Coefficienten and Binomischer Lehrsatz. 

Bemerkungen über den Polynomischen Lehrsatz 

(In the collection by Hindenburg below). 

? Analytischer Trigonometrie (Anhang) Braunschweig, 

1770. 

Busse, F. G. von Elementarischer Beweis des allgemeinen binomischen 

Lehrsatzes, contained in Kleine Beyträge zu Math- 

ematik und Philosophie, Dessau, 17859p. 17. 

Pfaff, J. F. Peculiaris differentialia investigandi ratio ex 

theoria functionum deducta. Helmstadil, 1788 §XII. 

.t 
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Pfaff, J. F. (continued) Disquisitiones analyticae, Fielmstadii 1797, 

Vol. 3, p. 301. De Theoremate polynomials. 

Rothe, H. A. Theorema binomiale ex simplicissimus analyseos 

finitorum fontibus universalster demonstratum. 

Leipzig, 1796. 

Hindenburg, K. F. editor of: Der polynomische Lehrsatz, das wichtigst�3 

Theorem der Analysis. Sammlung combinatorisch- 

analytischer. Abhandlungen, 1796-1800, Vol. I. 

Kaussler, C. F. translator of: Vollständige Anleitung zur Algebra 

von L. Euler 3ter Teil, Anhang I: Allgemeiner 

Beweis der binomischen Lehrsatzes, 1796. 

Schulz =? Schultz, J. ? Kurze Entwicklungen einiger der wichtigsten 

mathematischen Theorien, Königsberg, 1803. 

Pasquich, J. ? Anfangsgrinde der gesammelten theoretischen 

Mathematik, 2 vols., 1812. 

Rosling, C. L. ? Grundlehren von den Formen, Differenzen, Differ- 

entialen und Integrallen der Functionen, Erlangen, 1805. 

Jungius, F. W. ? Die Lehre von der Combination und Permutation 

usw. Berlin, 1806. 
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Fischer, L. J. and 

Krause, K. C. F. ? Lehrbuch der Combinationslehre und der Arithmetik.. 

Dresden, 1812. 

Crelle, A. L. ? Versuch eine rein analytischen usw. Darstellung 

der Rechnung mit verHnderlichen Grdssen usw. 

Göttingen, 1813. 

Nordmann, r3. ? Grundriss der Algebra. Leipzig, 1815. 

5.2.3. Account and Assessment of BL 

None of the results in BL was actually new but as a textbook treatment 

of the binomial theorem it was much more detailed and comprehensive than 

any of its predecessors. It contained several methods and proofs which werd 

original and which had an important bearing ön the foundations of calculus. bi 

fact it is because Bolzano's methods effectively Involve differentiating conver- 

gent power series from first principles (using arbitrarily small quantities 

Instead of a limit operation) that the work Is so long. The apparatus needed is 

elaborate to develop and cumbersome to use. 

There are three main sections corresponding to the topics mentioned 

in the title. The binomial theorem occupies §§1-51, the polynomial theorem 
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is dealt with in §952-59 and the exponential and logarithmic series are the 

subject of §§60-74. These sections can be further sub-divided as follows: 

ý< 

Binomial theorem 

89 1-10 positive integer case introduced 

combinatorially and proved by 

induction 

M 14-22 properties of arbitrarily small quan- 

tities 

23-29 various lemmas, effectively on the 

differentiation of convergent series 

30-51 proof extended to positive and negative 

rationals and irrattonals 

Polynomial theorem § 52-59 polynomial theorem in the form 

(1+äx+ä. Y2+.... + ax'" )n 

r §§ 60-69 " power series for exponential and 
Exponential and 

logarithmic series 
logarithms 

70-74 definition of e and the use of natural 

logarithms 
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In the opening section Bolzano discusses the positive integer case of 

the binomial theorem and the combinatorial argument for the coefficient of the 

general term xr in the expansion of (1 + x)n . The essence of the combinator- 

Ial argument, which by this time was fairly standard, is to show that 

r+1r+1'r: 
then since it is clear that 

riý 
= n, it Is also clear 

n n(n - 1)(n - 2) ... (n-r+`1) (by Induction) that 1= Now Bolzano rejects rl r. 

this argument, as a proof, in favour of a proof by induction, saying that the 

former, "dues not seem to us a genuinely scientific proof since It derives the 

conclusion from an alien concept" (A287; BL, 7). It is not clear whether 

Bolzano realised that the combinatorial argument Involves an "and so on-' step 

-which really needs induction. There are not two alternative methods of proof 

here. There Is a proof by Induction of a given formula and an explanation 

(logically unnecessary) of how one might discover the formula. But what is 

of interest here is that Bolzano rejects the combinatorial argument on con- 

ceptual grounds. It should therefore not even form part of a correct proof. 

Evidently he felt that an argument for counting possible choices was alien to 

the simple multiplication and addition of like terms involved in this case of 

the binomial theorem. This may seem rather far-fetched. After all, count- 

Ing the combinations Is simply a way of counting the like terms that will 

appear in the multiplication. Counting is thoroughly arithmetic and Ideas of 

choice (or combination) are just auxiliary and a matter of conve-. iience. 

ýIowever, such plausible reasoning Is neither relevant to Bolzano's claim nor 
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I 

correct. To be alien on Bolzano's view a concept need not be from another 

part of mathematics, it Is sufficient that It does not appear In the theorem 

being proved (see A15,16; BG, VIII, IX). Some concer` of choice or selection 

(I. e. the gathering together and counting of like terms) is c_, sential to the cow- 

binatorial method and Is Irreducible: It Is not explicit or essential In the state- 

ment of the theorem. We need to emphasise here that Bolzano does not reject 

or minimise the value of the combinatorial argument. He puts It first and 

spends a long time explaining It; lie also says It makes clear the correctness 

of the series for positive integers. What he rejects is that such an argument 

can be part of the unique objective proof of this case of the binomial theorem. 

It Is, of course, true that the combinatorial approach only has direct applica- 

tion to the positive integer case. The objective proof of a theorem should be 

that of the most general case (according to the principle stated in BD(A209; BD, 

102) that proofs should always proceed from the general to the particular). 

This example of Bolzano's application of his methodology highlights 

two points to which we shall return later. Bolzano g: vcs only negative criteria 

for determining an objective proof (e. g. there Is no positive reason given for 

supposing the subsequent proof by Induction in BL37 is a "genuine scientific 

proof'). Secondly, there is the tension between the uninformative, but pre- 

ferred, proof by induction (A237; BL, §7) and the explanatory value of the re- 

jected combinatorial argument. This tension Is unexpected because it 

appeared In the geometry work, at least, that the proof which exhibited and 

e 
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proof'). Secondly, there is the tension between the uninformative, but pre- 

ferred, proof by induction (A287; BL, S7) and the explanatory value of the re- 
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appeared In the geometry work, at least, that the proof which exhibited and 
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followed the objective ground of a theorem should, in some sense, be the 

most explanatory. 

Before the general case of the binomial theoram is considered there 

now follows a long section (BL, Se11-29) of preliminaries r(% specifically re- 

lated to the binomial theorem. This is the most interesting section of the 

work from a modern point of view because here Bolzano develops in an original 

way, and In some detail, three very significant Ideas. These are: the conver- 

gence of infinite series, the continuity of functions and the process of differ- 

entiation. The first two we have already dis sussed in Chapter 4. As with 

convergence, Bolzano nowhere says explicitly that he is defining the derivative 
. 

(of 
a power of x when he proves in BL§23(A300) that x+W' x" 

_"-ý + S1, 

but this would obviously have been recognised ' ;: y any informed contemporary 

reader. Here, of course w and Cl are the arbitrarily small quantities which 

Bolzano uses In place of a limit operation and which we have discussed In 

4.2.3. Although differentiation plays a vital part in his proof of the binomial 

theorem and he proves In BL§29(A309) that the derIvittve of a convergent 

power series Is again a convergent series, he nowhere mentions differentia- ' 

tion in BL except to cast aspersions on its foundations and validity. Pro- 

suniably he avoided such reference only because of the strong association at 

this time of calculus operations with the suspect concept of infinitesimals. 

(For example, see A495; DP, V_T footnote) This avoidance is ironic in that 

Bolzano seems to have had the understanding and technique at his disposal 

C f, 
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to have written a thoroughly rigorous account of differential calculus. 

However, what is done In BL Is tailored to the problem in hand and the 

derivative of x� is first proved for na positive or i,: gative rational and 

finally for n an irrational. In the course of this proof Bolz: no is careful 

only to use the binomial theorem in the positive Integer case which he had 

already prcved thus avoiding the circularity mentioned above (p. 247 ). The 

main argument here for the rational case is clear and correct making essential 

use of the lemmas on arbitrarily small quantities in . 
BLO17,19,21. For the 

irrational case Bolzano says (A303; BL, 23) *: iat, "it follows from the dedin- 

Ition of the concept of an Irrational power that the quantity a 
US 

gives a value 

as close to that of an as desired if'- Is as close to the value n as desired, " 
q 

Neither an Irrational number nor an Irrational power had yet been strictly 

defined but as with the sufficiency argument of RB§7(A465; RB, 37) Bolzano 

assumes the existence of a quantity (here the an where n Is Irrational) pro- 

vided it can be arbitrarily closely approximated to by quantities already con- 

sidered as known or existing (here the a? 
/' 

which, h: general, will themselves 

be irrational). The argument here avoids the real issue but at least Bolzano 

recognises that there is a separate problem with the concept of an irrational 

power; this was a problem which even if recognised before was hardly over 

acknowledged. 

The lemma of BL, §29(A309) Is the most significant of these prelim- 

[nary results. In order to asnreciate the statement of the lemma It Is 

".,. .i.. ' .. 
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r 
necessary to realise that for the function F Bolzano has in mind (in modern 

terminology`, the difference between the partial sum of a convergent series 

r 
and the limit function of that series. The lemma states that if the value of Fx 

becomes arbitrarily smaIi with increasing r, and a given value of x, then so 

does its derivative fx. This therefore justifies the term by term differentia- 

tion of convergent series. It is not d-3finitely stated, but nevertheless very 

likely that Bolzano only considered the result for power series. He nowhere 

mentions, for example, the relevant contemporary problem of infinite tri- 

gonometr:.: series. The proof, which Is basically correct, assumes that the 

functions concerned are continuous and ßolzano makes this the occasion for 

defining, in a rather impromptu fashion, what Is meant by a continuous 

function. This has been discussed in 4.4.3. An Important gap in the proof, 

which Is acknowledged in a footnote (A312: BL, 32), is the assumption of the 

intermediate value theorem; this was proved separately In RB. 

In the latter part of the proof In BL, §29 Bolzano shows the important 

fact that, as we should now express It, differentiation Is a mapping between 

continuous functions. The way In which it Is shown that continuity Is a nec- 

essary condition for a function to be differentiable also shows that Bolzano 

clcarly understood at this time how his verbal definition of continuity was to 

be used precisely and formally. Just as we have claimed this as the first 

appearance of the precise' continuity definition this must also be the first 

proof that differentiability of a function implies its continuity. (It is by now 

c 



264 

fairly well known that Bolzano was also the first to provide a counter-example 

showing that continuity was insufficient for differentiability, see Bolzano (6] 

§75. ) 

The section BL§ i0-51 Is the centre-piece of BL and contains the main 

substance of the work: a detailed proof of the binomial theorem and Its range 

of validity. There are some mistakes in tho course of the proof (notably a 

serious error In the range of validity) and It Is presented in a very long and 

complicated way. This is partly a result of the long-winded methods employed 

and partly It is the price to be paid for the unprecedented detail and thoiough 

ness that Bolzano wanted to achieve. Even with the explanatory paragraphs 

such as 
934 

and 937 it would have been (and still Is) quite difficult to follow 

the logical layout of Bolzano's procedure. 

The proof really falls into two parts which could well be described 

today as proofs of uniqueness and of existence. In the first part, for which 

the key paragraphs are 
9930,32,33, it is shown that if there is a power series 

in x the value of which, for given x and n, becomes arbitrarily close to 

value of (1 + x)ý , then it must be the binomial, series 1+ nx +nn21x+ 

n(n-1)... (n-r+1)xr 
... ,. +r. (As explained in 4.3.3 for ßolzano the 

"binomial series" for n is this finite series of arbitrary length. The "bi- 

nomial equation" holds If the value, for given x and n, of the binomial series 
n 

Is arbitrarily close to the value of (1 + x) .) The necessary conditions found 

In this part of the proof also serve to delimit the possible ranze of validity 

c 
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of the binomial theorem by showing some values of x for which It cannot hold. 

The second part of the proof, for which the key paragraphs are BL 38,40,41, 

shows that the binomial equation actually does hold fc- jxi <1 and for positive 

or negative and rational or irrational n. 

The logical structure of the proof was a considerable achievement. In 

most, If not all, previous attempts to prove the binomial theorem only one of 

the above two parts was considered. For example, treatments In the works 

cited in our bibliography for BL by Simpson and Hindenburg deal only with the 

first part and remain silent or vague on the -ange of validity. The works"by 

L'Huilier and Euler on the other hand start from the integer case of the theorem 

and really assume it will make sense in the rational case without any general 

derivation of its form. Also the details of both parts of the proof, supported 

by the lemmas we have described and the relatively rigorous treatment of 

convergence and differentiation, render Bolzano's work far superior to any-, 

thing that had appeared earlier. Without analysing the details of this section 

in full we shall mention here certain points by way of explanation or criticism. 

The argument of §30 can best be expressed in modern terminology in 

the Identity, (1 + x)" = n(1 + x)° -- (1 + x)" , where In place of the 

function (1 + x)n is put the supposed power series development A x« +,,,,, 

Rxe + U. 
, The resulting necessary condition on such a power series is the. 

denoted t on BL, 39(A319). By repeated differentiation of the series a more 

elaborate necessary condition, Is found In BL, §31 but this Is only used for a 
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part of 035. Then in §32 the arguments for the exponents and coefficients of 

the series are given very thoroughly and clearly. The main point in this is 

that the condition of §30 Is to hold "for all x smaller `han a certain value", so 

It must be an identity (as proved in the lemma §28). 

In contrast to most of the earlier work, the proof given In §35 Is 

blatantly incomplete and wrong. It Is claimed at the outset that, 

the binomial series can never give the value of (1 + x)n if x is > 

or even =. * 1, unless at the same time n Is either a whole positive 

number or zero (A327; BL, 47). 

In fact, of course, the series for x=1 does converge to 2 for n>-1. and 

for x=-1 It converges for n)0. The idea used throughout X35 derives 

from §32 part 3, that the term n(n - 1)... (n -r+ 1) (n - r)Axr must become 

arbitrarily small if the binomial series is to converge. Bolzano tries to show 

that this will not happen for x>1 but to do so he is content to consider just 

the ratio of successive terms and to prove that this has modulus greater than 

1. However, In general this is an alternating series and it Is necessary to 
ar. ý 

ensure that, If a,. Is the above general term, 
I 

a,. -) k where k>1. 

Not 
, surprisingly most of Boizano's ratios in this proof actually have limit 1 

and no inference is possible. In the very long calculation of the ratio at.., /a,. 

for positive n (case 2. on A330: BL, 50) there is a minus sign ignored half-way 

through the working and the case of x=-1 is not properly considered at all. 

In spite of these error s the work on the positive aspect of the b1nomial 

I 
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theorem, that is that It does hold for xc1, which occurs In the remainder 

of this section is perfectly correct. As we have indicated in 4.3.3 this 

section of Bolzano's work may have suggested to him the convergence criter- 

ion given in A462; RB, §6. In BL, §42(A348) he does rely on the remark In 

BL, §12 for the starting point of the induction for any negative integer. The 

various cases follow of n being a fraction of the form 1/m(043), any positive 

fraction (p44), negative fractions (045) and finally Irrational n (946). The 

last-mentioned case Is conspicuous by Its presence at this stage In the 

history of the binomial theorem. But as wit'i its appearance in the derivative 

definition of §23 we can really only credit Bolzano with its recognition. The 

"proof" for this case follows from the claim that "as a consequence of the 

concept of the symbol (1 + x)1 , also (1 + x)Ryr"' comes as close to the value 

(1 + x)& as desired" (A356; BL, 76). 

There seems little of lasting Interest in the remainder of BL that hat. 

not been dealt with In Chapter 4. Given the binomial theorem, the work on 

the polynomial theorem was quite standard and includes nothing more than was 

to be found, say, In the work Hindenburg (11 
. It remains an historical cur- 

losity that the series for a (§64) and e (972) as well as the corresponding 

logarithmic functions (§§66,72,73) may be calculated, as Bolzano does here, 

either directly from the binomial theorem or by similar methods to those 

which he had used for the binoraial theorem. 
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5.3 The Intermediate Value Theorem and RB 

5.3.1. Introduction 

I 

By the "intermediate value theorem" we shall mean the result that if 

a function f(x) of one real variable is continuous on the closed interval [a, b] 

and if f(a) and f(b) have opposite signs, then f(x) is zero for at least one x 

In the open Interval (a, b). This Is sometimes actually called "Bolzano's 

Theorem", as for example in James [1] and Courant and Robbins [1] 
. The 

latter source wrongly regards the theorem as occurring In Bolzano's Para- 

doxien des Unendlichen (Bolzano [5] ); It is only In RB that the theorem is 

statcd and proved by Bolzano. Together with an early form of the Bolzano- 

Weierstrass theorem these are the major results proved In RB. Their proofs 

are achieved using the convergence criterion and the definition of continuity, 

both of which we have discussed fully In Chapter 4. Here we shall be concern- 

ed with the actual proofs, their technical significance and the way they are 

related to Bolzano's general principles. The Preface to ßB Is aslong as the 

main part of the paper and explains in detail why Bolzano saw so clearly the 

need for purely analytic proofs; it Is therefore worth separate consideration. 
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5.3.2. The Preface to RB 

After having said on A432; ßß, 4 that the' Intermediate value theorem 

had not yet attracted much attention Bolzano proceeds to describe five different 

types of proof that had been given. This is a slight rhetorical exaggeration 

since some only seem to occur once and they are not all distinct. Furthermore, 

they have In some cases been embellished to facilitate criticism which allows 

Bolzano to demolish each type of proof, mainly on the grounds of incorrect 

method, thus leaving the reader in a receptive state for Bolzano's own proof 

which contains, "I flatter myself, not a mete confirmation, but the objective 

justification of the truth to be proved" (A448; RB, 20). 

Although Bolzano gives specific references to the previous work In the 

seven footnotes on A433: RB, 5 he does not Indicate how these match up with his 

five types of proof. This avoids any definite charge of mis-representation 

though it is usually quite clear which work he has In mind. The kinds of proof, 

which are described at length (A434-448; ßB, 6-20), may be summarised as 

follows: 

I. Purely geometrical proofs relying on the fact that a continuous curve 

joining two points, one above and one below the x-axis, must 

intersect the x-axis. This is said to be the most common kind of 

proof (which is probably true) but, curiously, It is not to be found 

In any of Bolzano's references. 

II 
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H. Proofs based on the "wrong " concept of continuity (namely that 

of a function taking all values between any two of its values, see 

4.4.3) together with the concepts of time 9nd motion. This must 

refer primarily to Lagrange ý4j but also, to a' esser extent, to 

Lacroix [3] and Clairaut [iý 
. 

M. Use of the principle that, "Every variable quantity can pass from 

a positive state to a negative one only through the state of being 

zero or infinite. " This definitel; " refers to the proof in Kllstner [3) 

where reference is made to the following geometrical illustration 

In Kästner I1' p. 200. Consider a line rotating about a point not 

on the x-axis. Its Intercept with the x-axis changes sign only by 

going through zero or being "Infinite". 

IV. Use of the principle that there must be a "last" value for which 

the function is negative and a "first" for which it is positive. 

Though not quite fairly described, this almost certainly refers 

to the method used in R 3sling [1] where the author does point out 

that his values a and b (where the transitions from negative values 

and Into positive values occur) must differ by an arbitrarily 

small quantity; he does not use the terms "last" or "first". 

C. 
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V. Use of the fundamental theorem of algebra in the form stated at 

the beginning of RB Preface: "Every algebraic rational Integral 

function of one variable quantity can be divided into real factors 

of first or second degree. " This result is used at the outset in 

the "proof" in KlUgel [2] Vol. 2, p. 447 but in any case only a 

kind of converse of the Intermediate value theorem would follow 

from the reasoning here. 

Bolzano is conscious of the close relationship between the proposition 

which forms the title of RB (I. e. not the intermediate value theorem but the 

special case when the function Is a polynomial function) and the fundamental 

theorem. At the beginning of the Preface to RB he says that the second and 

third proofs of the latter theorem given by Gauss (Gauss [3ý and [4] 1816) 

"hardly leave anything to be desired", but in his discussion of case V. above 

he maintains that both these proofs actually depend on the RB title theorem. 

Thus the choice of subject for RB, in Bolzano's eyes, was strategic: it 

supplied the necessary missing link in the rigorous proof of the fundamental 

theorem as well as being essential to complete his own proof of the binomial 

theorem (A312; BL, 32). Moreover, from his account of the previous work it 

Is easy to qee why Bolzano should recognise the need for such a purely ana- 

lytical proof. Almost every criticism that he makes of the previous proofs 

is directly related to one of his methodological principles. We list them 
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here in the order corresponding to the above types of proof I. - V. 

I. The geometrical proofs are clearly contrary to the principle of "con- 

ceptual correctness" (2.4.1), they are a "crossing to another kind" and it is 

logically circular to prove a result true of all quantities from one true of 

only bpatial quantities (A434: RB, 6). 

H. The concepts of continuity (4.4.3) and of motion (2.4.1 and 3.1.2) have 

already been discussed. It is striking that in hardly any of the references 

Bolzano giv:: s Is the essential condition of the, continuity of the function even 

mentioned. Bolzano's demand that "all characteristics of the subject must be 

used in any correct proof" (A213; BD, 106, see 2.4.3) ensured that this was not 

neglectcd in his own proof. 

III. Such a complex truth as the principle used here could not possibly be 

an axiom (2.4.5); it is actually equivalent to the theorem being proved. 

IV. The criticism here is a matter of plain mathematical fact. 

V. The fundamental theorem is a more complex truth than the RB title 

theorem and this determines their objective order of derivation, the former 

from the latter and not vice versa (A211; BD, 104 and 2.4.3). 

Bolzano was not the only mathematician at his time to see the need, . 

or at least the desirability, of purely analytic proofs for analytic results. 

For example, Gauss says in reference to his earlier proof Gauss [11 
, 

"that first proof depended, at least partially, on geometrical considerations 

while the one which I am embarking on here will rest on purely analytic 
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principles. " (Gauss [2] §1) And as the survey of proof-types II. -V. shows, 

there were several authors who avoided geometrical methods for their proofs 

of the intermediate value theorem. However, we have seen that for Boizano 

the need for analytical pr:, afs was not just something he felt as a matter of 

taste or convenience. For a long time he had considered the whole question of 

what a mathematical proof should be and he was able to articulate many reasc-ns 

for this need which were part of a wider, coherent view of all theoretical know- 

I 
ledge. Thls made his criticisms of past work Into a powerful programme. In 

the preser+ case it was not just that geometric proofs were inadequate, they 

were wholly Irrelevant; analysis Itself had to develop the means to answer its 

own problems. In the nature of things (as Bolzano saw them) this had to be 

possible. 

After giving an account of the main proofs of RB we shall be able to 

make some assessment of the claims for their strictness and consider the 

secondary sources on RB. 

5.3.3. The Main Proofs of RB 

The two principal theorems of RB are the predecessor of the Bolzano- 

Weserstrass theorem In ßB§12 (A469) and tr, i Intermediate value theorem In 

RB§15 (A479). For convenience these will be referred to as Theorem 1 and 

Theorem 2 respectively. Theorem 1 makes essential use of the convergence 
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criterion (4.3.3) and Theorem 2 depends on Theorem 1 and the definition of 

continuity which first appeared In BL but which is repeated in RB Preface 

(4.4.3). Their proofs in RB are quite long and to help clarify their structure, 

and their affinity with moü.; rn methods, we shall paraphrase the statement 

and proof of each theorem in modern language and style. The structure and 

all steps of the proofs remain exactly as in the original and the only change In 

notation is the Introduction for Theorem 1 of a sequence of sets to avoid the 

recurring phrase "all x which are < ....... 
". In Theorem 2 we have given 

only the finit case where «and A are positive. 

Theorem 1 If a property M holds for all numbers less than a certain number 

u, but not for all numbers in general, then there is always a greatest number 

Ufor which all numbers less than U have the property M. 

4 

Proof: By assumption there is some number D such that M does not hold for 

all numbers less than U'+ D. Let S,,, = {x: x<u+ D/2" I for m=0,1,2... 

and consider which m, if any, Is the smallest with the property that M holds 

for all members of S,,, . If there is no such n then u itself is the number 

required. For given any larger number u+d, we have u+ D/2 n< u+d for 

sufficiently large m, and if M applies to all numbers less than u+d then M 
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applies to all members of S,, for such m. This contradicts the assumption 

that there is no such m. 

Suppose now that m is the smallest integer for which M holds for all 

members o: S, � . So M does not hold for all members of S., �_, . We now 

repeat the above set construction using u+D. /2m in place of u, and D/2T" 

(I. e. the difference between the upper bounds of Sm and Sm_, ) In place of D. 

Let Nn = [x: x<u+ D/2m + D/2m; nI for n=0,1,2,. .. and consider 

which n, If any, is the smallest with the property that M holds for all members 

of Sm, 
n . Ti there Is no such n then 'u + D/2m Is the number required. Othe - 

wise let n be the smallest Integer such that M holds for all members of Sm, n 

but not for all members of Sm, n _I . The difference between the upper bounds 

and we repeat the process on this Interval. Continuing In this time is D/2+n 

this way there are two possibilities: 

M m+n (a) We come to a number of the form R=u+ D/2 + D/2 +, ...... 
m+n+..: ºr 

+ D/2 such that M applies to all numbers less than R but does not apply to 

all numbers less than R+ D/F+n+... +r+s for all s=01 , 2,. " ". In this case P Is 

the number required. 

(b) There is no such number and the process continues indefinitely. Now 

m"n m"n+O. the partial sums of the series u+ D/2 + D/2 + D/2 +, .,... . 

do not exceed the partial sums of the geometric progression u+ D/2 + D/2 
2 

+ D/23 + ..... with common ratio 2. By the convergence criterion both 

series are convergent. If u+ D/2 + D/2 +p 
+ D/2 +n+o 

+ .... , con- 

verges to U, then U has the properties required. ' For If M ctd not hold for 

:i 
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w 

any smaller number say U-S, then 

m m+ n+... " r 
U-5>u+ D/2 + ... + D/2 - to for arbitrarily 

small to and so, 

U- (u + D/2m +... + D/2 
m"n+ "r 1>9 

-w. 

Now the left-hand side can be made as small as desired by increasing r but 

since 6 is fixed and w Is arbitrarily small we have a contradiction. 

Finally suppose that M also held for all numbers less than any number 

larger than U say U+c. By assumption M does not hold for all numbers 

r+n m+n+... +r less than u+ D/2M + D/2 +... + D/2 for any r. But for sufficient- 

ly large r the series is arbitrarily close to U and since the difference between 

m+n+... +r m+n+... +r- l 
D/2 and D/2 tends to zero as r Increases, the sum 

m m+n m+n+...; r-i 
u+ D/2 + D/2 + ..... + D/2 Is arbitrarily close to U, 

so u+ D/2m +,,,. + D/2m+n+"'; 
r-1 

<U+E which is a contradiction. 

Theorem 2 If fx and cp x are continuous functions of x for all x between oc 

and ß and If fa < qa and f f3 > cp(3 then there Is a value of x between cc and (3 

for which fx=c'x, 

Proof: Suppose a and (3 are pos[tive and A [s the greater, so A= cc + 

where I Is some positive number. 
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(i) Since fa < cQ« we must have f( a +w) < c; ( cc + w) for sufficiently 

small W. Because, being continuous for w<I, we can make f( cc + w) - 

fa (= f2 say) and (p (a + w) - cQ a (= . 
Cl' say) arbitrarily small and so 

cp(oc+W) f(a+w; =CQ« - fa + (f - . 
fl 

A+ n, - 
n 

where by assumption A Is positive and so for small enough to we can make 

f%' - fi so small that the right-hand side is positive, Le. f( a+ w) < 

c? ((x +. w)" 

Now regard the relationship f(a + W) < (V( a+ w) as a property M 

of co .M holds for all w less than a certain value and M does not hold for 

all w (e. g. (i - I). So by Theorem 1 there Is a value U which is the greatest 

number such that all c j< U have the property M. 

(it) U must be between 0 and i since if it was equal to I then f( a+ w) < 

a+w) provided w<I, But just as f%< cpoc implies by continuity f( a+ w'. ) 

(P (a +w) I: w is small enough, so f(a + i) > T(a + I) Implies f(a +I- w) > 

q)( of +I- w) . If w is small enough. Clearly U cannot be greater than I since 

then I<U but f(a + i) > (P( a+ I). It Is certainly positive so U lies between 

0 and i, and a+U lies between a and (. 

(iii) We cannot have f( (x + U) < cp(a + i? ) since this implies, as before, 

f(« +U+ w) < T( a+ U'+ w) for small enough w, contradicting, the pro- 

perty of U as the greatest number such that all numbers smaller than U have 
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it 

property M. But neither can f(oc + U) > 4(a + U) because then again wo 

have f (a +U- w) > (a +U-c i), contra xy to the property of U that 

numbers smaller than U have property M. So f(a + U) _ (a + U) and 

the theorem Is proved. 

5.3.4. Assessment of RB 

On the assumption that Bolzano is working implicitly with what we now 

call real numbers we shall first prove that the theorem of RB§12 (or Theorem 

1 of the previous section) implies the Bolzano-Welerstrass theorem. We 

take the latter In the form: a bounded sequence of real numbers contains a 

convergent subsequence. Let the property M In Theorem 1 be, "not a member 

of a sequence of real numbers All, the theorem then says: Given a non-empty 

set of real numbers A with a lower bound, there exists a greatest lower 

boundfor A. Now let A be a non-empty bounded sequence of real numbers. 

Being bounded below it has a greatest lower bound say, h, but since A Is also 

bounded above the set B= f y: y x, Vx cA } Is non-empty and bounded 

below so B has a greatest lower bound (say k) which, it Is easy to see, must 

also be a least upper bound for A. If {a. ] is an increasing subsequence In 

A then for all E>0, 'there is an N with a� >k-E for all n>N. 

But ah, e k for all n so Ik- aj <E for all n>N and so (a�] con- 

verges to k. Similarly if ja, 3 Is a decreasing subsequence in A it con-,, 

verges to h. But any sequence has a montonic subsequence (Scott 
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and Tims [I] 
p. 116) so the Bolzano-Weierstrass theorem is proved. 

In the above formulation in terms of bounds it may be shown that 

Theorem 1 implies the statement that an increasing --equence bounded above 

must be convergent, This is proved in Scott and Tims [1] n 129, where. the 

latter result is taken as a "Fundamental Axiom" in place of a definition of 

real numbers. Naturally the convergence principle follows from this axiom 

and so Theorem 1 also implies the convergence criterion "proved" in ßBä7 

(A463). 

In the later Functionenlehre (Bolzano `6]) Bolzano actually uses the 

Bolzano-Weierstrass theorem and In Rootselaar [1] we read, "For this 

theorem [Bolzano-Weierstrass] Bolzano refers to his own work, in which up. 

to now it has not been found. " Since it follows . 3o easily from RB§12 this 

would certainly appear to be what Bolzano had In mind in this reference. 

Theorem 1 is a result of central importance to the later development. 

of real numbers and function theory in the nineteenth century. Its appearance 

and proof In 1817 Is therefore of greater significance than simply being for 

the sake of Theorem 2. Bolzano was aware of its importance throughout 

mathematics (A476; RB, 48), though it would be Interesting to know what 

applications he saw for it in "chronometry"! We do not know of any earlier 

statement of the theorem. 

Given the convergence criterion of RB §7 then the proof is perfectly 

sound and although long-winded In Its expression It was no more so than was 

r 



280 

normal at this time. The particular merits of the proof appear in its part 5 

(which begins on A474; RB, 46) and they are: 

(i) the careful application of the convergence criterion (by comparison 

with a geometric series) to the series produced by the successly. halving 

process; 

(ii) the detailed checking that the "sum" U) of the series has the required 

property by the correct and perfectly modern use of arbitrarily small quantities. 

It Is an interesting question whether the method of proof which Bolzano 

adopts for Theorem 1 is original. Previous commentators have been rather 

unoriginal and unhelpful here. In a vague reference which does not specify ßB but 

which probably refers to RB312, Schwarz mentions "a method of proof devised 

(ersonnen] by Bolzano and developed further by Weserstrass" (Schwarz [1] 1872). 

This opinion that Boizano was the originator of the method is quoted with approval 

4n Stolz[lJp. 255,258. G. Cantor denies this, but only says that the proof Is 'In essence 

very old" (G. Cantor [1]) and gives no specific references of work before RB. Cantor's 

remarks are repeated In Jourdain[l] and Coolidge[1J(where they are attributed to' 

Jourdain). Even the tncyklopädie article in Vol. I, A5,1 only refers to Cantor's article,. 

The question is not clear cut and there Is truth on both sides,. although we 

feel that there is more to be said for Bolzano's originality here than against. 

It. On Cantor's side the judgement In Kolman [11 p. 49 Is the best that can 

be said, "The procedure by which Bolzano proves his theorem was already 

contained in an embryonic form In Euclid, " There is a successive bisecting 
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process in Euclid's Elements X, 1 and examples of exhaustion methods in 

Book XII, but the "convergence" involved in Greek work relies on geometric 

Intuition. We have no hesitation, on th-3 other hand, n claiming that both of 

the points (i) and (ii) above were. original with Bolzano. Zu the extent that 

the convergence criterion itself was original then (I) must have been so, and 

(ii) would not normally at this time have been dealt with arithmetically and 

precisely although a purely verbal description could hardly be sufficient In 

this case. 

As for Theorem 2, there can be no d ubt about the originality and 

rigour of Bolzano's work in this'proof. It depends crucially on his definition 

of continuity which was so effective just because It was purely arithmetic. 

Bolzano had mastered the technique of applying the definition to present pre- 

cise arguments about functions in a manner which would hardly seem out of 

place In a modern textbook. As with Theorem 1, an important merit of 

Theorem 2 Is the generality of its formulation. We have referred to the fact 

that in previous proofs of the intermediate value theo: em the continuity of 

the function Is hardly ever mentioned. This was because tho theorem was 

usually Introduced and proved for the sake of finding approximate roots to 

polynomial equations. So the only case considered was that of a polynomial ' 

function and this was "obviously" continuous 'Bolzano proves the fact in 

RB317(A484)). It was because Bolzano had concentrated on the general 

case of a function (for whicr he points out on A443: RB, 15 Theorem 2 may 
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be false) that he was led to make a proper definition of continuity essential to 

the proof. 

The main defect of Theorem 2 is the first paragraph of the proof 

(A479; RB, 51) in which fx and c'x are said to be compared wi".. h one another 

"simply in their absolute values". This is consistent with Bolzano's earlier 

use of the inequality sign but makes obvious nonsense of the theorem. Fortun- 

ately it does not affect the working of the proof but we do have to interpret 

the inequality sign in the normal modern sense. Bolzano cannot conveniently 

use the symbol consistently. 

A further weakness, possibly related to the matter of symbolism, 

Is that Botzano shows no indication of being aware that the first "between" In 

his statement of Theorem 2 (A479; RB, 51)'shou; d includo the end-points while 

In the second instance It should not (the sign < Is nowhere used In Bolzano's 

early work). 
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5.4. The Rectification Problem and DP 

5.4.1. Introduction 

The problems with which Bolzano is dealing in DP, those of the rectif- 

ication of curves, the complanation of surfaces and the cubature of solids, 

form a family of problems which began, for the Greeks, as a part of pure 

geometry and which has only received satisfactory treatment within a major 

new branch of twentieth century analysis, mE. asure theory. In the course of 

this long +ransition the efforts to solve these problems have played a fruitful 

part L-i the progress of analysis. This was particularly true during the seven- 

teenth century. 

Bolzano's consideration of previous work on the problems ranges from 

Archimedes hypotheses to the very latest work on the subject by Crelle for the 

criticism of which an Appendix was added to the main work (A589; DP, 76). To' 

put his comments into some context we shall give a very brief outline of the 

history of these problems up to Bolzano's time. 

For the GreP!. s two magnitudes were comparable and had a ratio pro- 

vided they were of the same kind. This was the case whenever a multiple of 

one exceeded the other (the so-called "axiom of Archimedes"). From this it 

was deduced that the repeated subtraction of at least half of any given mag- 

nitude would result. In a magnitude smaller than any preassigned magnitude 

of the same kind (Euclid's Elements X, 1). This was the principle used in 

the method of exhaustion for the indirect proofs of various simple quadratures 
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such as the area of a circle or of a segment of a parabola. The area was 

approximated by a sequence of polygons and then it was shown, by contradic- 

tion, that the sequence could eventually be neither =ore nor less than the 

particular value of the area. Several cubature problems ( ach as volumes o! 

revolution of conics) were also solved by this method but the Greeks did not 

succeed, as far as we know, with the rectification of any curves beyond tho 

circle nor with the complanation of any surfaces beyond that of the sphere. 

The first real advances in these problems came in the seventeenth 

century by means of important modificationP to the method of exhaustion. " The 

polygons were replaced by rectangular strips and there was a vital shift In the 

final step of the reasoning. In place of the reductio ad absurdum of the older 

method the appropriate infinite series was now considered and a crude limit- 

ing process used. The development of analyt[c geometry by Descartes and 

Fermat was, of course, crucial to formulating general methods of sciution. . 

It Is ironic that at just about the time that Roberval had shown the length of 

the arch of a cycloid to be four times the diameter cf the generating circle 

Descartes had written, "the ratios between straight and curved lines are not 

known, and I believe cannot be discovered by human minds. 11 (Descartes [1] 

(1637) p. 91). The general rectification of the cycloid soon followed and then 

the rectification of an algebraic curve, the semi-cubical parabola, was giver 

independently by Neile, van Heurat and Fermat in the late 1650's. Fermat's 

method compared an arc with the circumscribing tangents drawn at Its 
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end-points, while Netle used the fact that a small arc Is virtually the hypotenuse 

of what is now called the "differential triangle". In modern notation this is to 

say, ds = dx3 + dyt or ds/dx =1+ (dy%dx)i . After the advent of the 

general calculus methods of the 1660's the latter formula became well known 

and also quadratures were effected by the reverse of differentiation. Huygens 

had shown that the rectification of the parabcla reduced to the quadrature of the 

hyperbola, but the rectification of the ellipse and hyperbola posed new problems 

for analysis which were not solved until the next century. Huygens had also been 

the first to find the surface area of a segment of a paraboloid of revolution. 

The special complanation and cubature problems of surfaces and volumes of 

revolution could immediately be solved as simple integrals. The more general 

surface integral and multiple integral formulae only appeared in the second half 

of the eighteenth century. 

In the course of the Preface to DP Bolzano makes several specific 

references to the works of nearly twenty previous authors concerned with the 

rectification problems. This is less Impressive than It appears. More than 

half of the references are to attempts to prove the hypotheses of Archimedes 

on curves and surfaces. (This does not refer to the "axiom of Archimedes", 

see A493; DP, IV and Note [1], A595. ) Those references that really are on 

the rectification problem cover a very narrow spectrum of the work and do 

not include any of the authors we have mentioned above. However, Bolzano 

was surely right to stress the reliance made by most, If not all, methods of 
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rectification on the Archimedean assumptions. (This is a point that has been 

neglected by modern commentators on this subject) 

As an example of the kind of approach Bolzanc, was familiar with we 

shall outline Lagrange's proof o° the rectification formula. This is mentioned 

first among those in which at least the calculus part of the work is deemed sat- 

Isfactory, (A499; DP, X). Lagrange begins (Lagrange [3] p. 218): 

For the solution of this problem we start from the principle of 

Archimedes, adopted by all geometers ancient and modern, according 

to which for two curved lines, or onus made up of straight parts, 

which are concave on the same side and have the same end-points, 

the one which encloses the other is the longer. From this It follows 

that an arc of a curve, which is all concave on the same side, is 

greater than its chord and at the same time less than the sum of the 

two tangents drawn at the ends of the arc and contained between these 

end-points and their point of intersection. 

Lagrange continues with a lengthy verbal description of the following diagram 

(which Lagrange does not give). 
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For convenience we shall paraphrase the rest of the argument using this 

diagram. From the Archimedean principle, 

PQ < arc PQ < PT + TQ. 

Clearly, TPV< QPV< T3V and so, 

SQ < PQ < arc PQ 

and arc PQ < PT + TQ < PT +Tß 

therefore SQ < arc PQ < PR 

Let the curve have equation y= fx and let the increase in x from P to Q be 

I; f'x will be "the tangent of the angle under the tangent" at P. So RB = if IX 

and PR =i/1+ (f' x)t , similarly SQ "= i1+ [f'(x + i)]s Put 

cox =T1 + f'x then, from the above, the arc length PQ lies between I>x 

and I e? (x + i) for arbitrarily small I. If the length of the arc Is given by the 

function ex, 

Iqx < 1(x+I)- ýx <I qý(x+i) 

and as it tends to zero this gives ý'x x =ill + (f' x)2 dx. 

(Lagrange himself, of course, defined the derivative «. 'x as a coefficient in a 

Taylor series, not as a limit, so the last step of his argument is slightlymore 

complicated. ) 

An important criticism in DP Preface (which Lagrange's proof avoids) 

is liable to be misunderstood. 7n commenting on the continued misuse of in- 

finitesimals Bolzano says: 

Why does the length of an infinitely small are only coincide with the 
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length of that straight line which goes through the ordinates which 

bound it if it has the direction of the chord or tangent, but not if it 

goes through the ordinates at some other kind of angle? (A497; DP, VIII) 

The criticism is repeated in diff. rent ways on the two following pages. Vojtech 

says that Bolzano's objection here "is, of course, wrong" (Bolzano [3] 
p. 200 

Note 45). Eut a consideration of the context shows that Bolzano is not ctis- 

puting the correctness of the result concerned nor that it can be proved. He 

is disputing that it can possibly be correctly proved by using infinitesimals in 

the way, for example, that Schultz does. Tire arguments from infinitesimals 

or from the simultaneous vanishing of quantities are, as he quite correctly 

claims, completely arbitrary and vacuous. 

After further criticism of the Archimedean hypothesis already men- 

tioned, on the grounds that it cannot easily be modified to deal with the general 

case of space curves of double curvature, he returns to the above idea and ' 

suggests that a better hypothesis from which to prove the rectification formula 

might have been: 

The relation of the length of an arc curved according to the law of 

continuity (whether simple or double) to its chord comes as close as 

desired to equality if the arc is taken as small as desired. (A50a; DP, XIV), 

This Is interesting because it Is the most common assumption made in mode. n 

proofs of the formula (e. g. Hardy [11). It is, however, rejected by Bolzano 

as being in no way an axiorr_ cad requiring for its proof a result at least as 

strong as the rectification formula itself. 
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5.4.2. Account and Assessment of DP 

The work DP is of rather a different character from the four other 

works we have consi iered. The content and the style are both more muddled, 

even the title of the work suggests this. Perhaps In his effort to gain attention 

Bolzano tried to include work to interest as many mathematicians as possible. 

A long Initial section on the determination of functions Is followed by gcomet-" 

rical definitions and comment interspersed b : tween the main rectification 

proofs with no clear connection between the two. Because the material is 

so diverse some of the work has already been dealt with in earlier chapters 

as indicated in the following summary of the contents of DP. 

1- 10 Various properties of continuous functions (See 4.4.3) 

(A514-533) Determination of functions from given sequences of 

functiornus! ng a process analogous to geometrical 

similarity. 

11-31 Definitions of line, straight line and determinable 

(A533-557) spatial object (See 3.4.2) 

Definition and distinction of length and distance 

(See 3.4.4) 

Application of siMLlarity to lengthsof general lines. 

ýý 32-34 Solution of the rectification problem. 

(A557-564) 
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N 35-49 Definition, determination and properties of 

(A564-572) surfaces and the area of surfaces. (See 3.4.2) 

99 50-51 Solution of Complanation problem 

(A572-578) 

§9 52-60 Definition, determination and properties of 

(AS79-582) solids and the volume of solids. (See 3.4.2) 

61-62 Solution of Cubature problem 

(A582-587) 

C3 Analogy between main proofs 

(A587-589) 

Bolzano's solution to the rectification problem is radical, original 

and exasperating. It contains some valuable and subtle Insights into the con- 

cepts of line, length and function, but these are inextricably mixed up Iri the 

proofs with very dubious assumptions. and rather. vague concepts of similarity 

and "determination". The reasons for the radical approach are, as In all 

Bolzano's previous innovations basically to do with concepts. We have 

mentioned In the last section that Bolzano regarded the fact that the length 

of an arc approaches the length of. Its chord as the latter tends to zero, as a 

C 



291 

theorem to be proved from the rectification formula rather than vice versa. 

One reason for this emerges from the remarkable comments he makes on the 

use of inscribed and circumscribed polygons for the quadrature of a plane 

surface. He. says (A506; DP, XVII) that this method is not "scientific" because 

the truths to be proved are not derived, by the method of limits, in 

the way they should be in a truly scientific proof - from the concepts 

of the thesis Itself - but only through certain associated concepts that 

have been brought In here quite fortuitously (per allena et remota). 

Anybody should realise that those infinitely many regular polygons 

circumscribed around a circle and inscribed within it are completely 

alien objects if one wishes to find not their area but that of the circle 

Itself. 

Thus the method of limits was kept strictly within arithmetic, there was to 

be no "crossing to another kind" even by means of a limiting process. But 

what constitutes a "kind"? Bolzano nowhere attempts to discuss this, but 

his Interpretation here seems impossibly strict. No doubt he regarded the 

length of a curve as an intrinsic property of the curve which does not require 

(and should not be given) a definition in terms of the length of straight lines. 

But this is no reason to prevent us using a limiting process from rectilinear 

figures in order to find the value of this length. In DP§19(A547) the len h 

of a line in general is defined as a quantity derived from the nature of the 

line (with respect to a given unit of distance) and subject only to the natural 

e 
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additive property (see 3.4.4). 

For his alternative approach to rectification Bolzano makes use of a 

general concept of similarity In the form of the following theorem: 

Lengths of lines which are similar to one another are In proportion to 

the lengths of other lines determined from them in a similar way. 

(A554; DP, 030). 

As shown h: º the proof of this theorem it does simply mean that in similar 

figures the ratios of corresponding lengths are equal. The basic idea of 

Bolzano's method Is simple but his presentation, in DP, §32, and for the'two- 

dimensional case given at the end of the Preface (A507), is rather confusing. 

We shall concentrate here on clarifying the. latter version since it acts as a 

good model for all the principal proofs in DP and suffices to reveal the weak- 

nesses of Bolzano's approach. 

Let y= fx by the equat[on of a plane curve and let Fx be the are 

length up to a given value x. The first part of the proof shows that dF/dx 

depends only on df/dx (or that df/dx determines dF/dx). Then assuming the 

relationship between these derivatives is independent of the particular curve, 

Bolzano uses the case of a straight line to deduce the rectification formula, 

The main steps in the arguments are as follows: 

(i) As x Increases by Ax the arc length increases by F(x. + Ax) - Fx 

and this quantity is determined by all the ordinates of the curve over 

the interval L x, I. e. by the values of f(x +mA x) as m takes all 

values from 0 to 1. 

e 
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(11) The value of F(x +p x) - Fx is therefore also determined by the 

values of f(x +mA x) - fx for mc [0,11 
. 

(iii) If, for two or more curves, the values of 
f(x +mp x) - fx 

mAx 

for mE [0,1] are the same (for each m) then thecurves are 

similar. Therefore the ratio F(x + 
AQ 

X) - DC will also be the 

same for these curves. 

(iv) So the values 
f (x mAX x) - for m f- [0,1] determine the 

value 
F(x +A x) - Fx 

Ax 0 

(v) This is true for arbitrarily small A x, so, 

df/dx determines dF/dx . 

(vi) For the straight line y=a+ßx FX =x1+ (3 

so dF/dx =1+ ýi1 = 
ý+ 

(df/dx)2 so generally 

Fx =f 
[l 

+ (df/dx)2 dx as required. 

For part (vi) above Boizano actually introduces another function y=qx with 

length function 'x before putting (px =a+ (3 x. He then says, 

there is without doubt some corresponding law by which for all lines 

the functions Fc and 4x can be derived from the functions fx and ?s 

(A610; 
LPG 

=). 

And in the more general case of a space curve y= fx, z= ?x in DPR32 we 

C 
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have the same claim, 

without doubt there is some general la"v by which for all lines the 

functions Fx and Ix are derivable from the , iature of fx, ?c and 

'x , cox, (A560; DP, 47) 

This general law is likened to a kind of "higher rule of three" (A528; DP, 15); 

there is tha vague suggestion that this could be viewed as a kind of extension of 

the similarity principle from elementary mathematics. But it is important tc, 

be clear here exactly what Is proved by similarity and what is not. The only 

step In the proof outlined above where similarity Is used is part (III), and it 

forms a legitimate and correct step. The existence of a "general law" by 

which the length function is related to the curve function is simply an assurnp- 

tion. It is not claimed to have been proved, by similarity or in any other way. 

Bergmann Is therefore wrong to say of Bolzano's similarity theorem DPI30 

that, 

It plays the same role in his proof as the usual method for solving the 

rectification problem of dividing the line into infinitely many small 

parts which are regarded as straight. (Bergmann [1] p. 188). 

This is not so, Bolzano does not use similarity to make the transition between 

straight and curved lines. Instead it is precisely for this purpose that he 

uses the assumption of a genes al rule applying to both and straight and curved 

lines. The lack of prootfor this assumption is a major defect in Bolzano's 

method. Worse still, the assumption is not even plausible in the light of his 

fI 



295 

earlier objection to the standard limiting procedure on polygons. If the 

latter are indeed "alien" and of a different kind to curved lines then we should 

surely expect a different rule for expressing the lenth of a straight line from 

the rule for a curved line. 

The work DP is the first occasion when Bolzano freely uses calculus 

notation tb3ugh he feels the need to stress that this does not mean the implicit 

use of infinitesimals (A495; DP, VI). Du Bourguet's notation for partial deriv- 

atives is followed (A524: DP, 11) and Taylor series expansions are assumed 

for all functions without any justification. Possibly the latter assumption 

(which is unnecessary for the main proofs) was a concession to followers of 

Lagrange who wished to define the derivatives of a function by means of the 

Taylor series coefficients. Finally, we note the curious fact that the phrase, 

"every conceivable proper fraction including 0 and 1", is used repeatedly 

throughout DP in the sense of "every real value from 0 to 1" (e. g. A508; DP; 

XIX). 
There Is no doubt that th.: main strength of DP lies In the purely geo- 

metrical work it contains, so this brief assessment of the analysis work on 

rectification needs to be considered in conjunction with the relevant -sections 

of Chapter 3 for a fair impression c. f the paper as a whole. 

t ýý 
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Chapter 6: Conclusion 

6,1. The Mathematical Achievements 

Bo1k-ano's achievements in the five works considered here were tho 

most significant parts of a much larger whole; namely the extensive notes and 

drafts on mathematical topics which Bolzano constantly worked on durir.; his 

time at Prague University. (See especially Bolzano Cl, Vol. 2B, 2/1,2/2 and 

2A5). His considerable contributions to geometry and analysis form, in each 

of these areas, a closely related system of concepts and theorems. It was 

not only Bolzano's method of working that promoted this unity (in his notes 

he constantly reverts to earlier problems and solutions, correcting and re- 

vising them), but it was also a natural consequence of his belief in the exist- 

ence of a few fundamental simple concepts governing a particular subject 

(2.4.4). We shall summarise those achievements that can clearly be dis- 

tinguished in Bolzano's early works and which were, in the sense explained. 

below, original to Bolzano, 
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(i) The complete reorganisation of the elementary geometry of points, 

lines and triangles, avoiding the use of the concepts of motion and the plane, 

and giving a central role to-the concept of sir21arity (3.2). 

(Ii) The analysis of the concept of the straight line resulting In Important 

distinctions concerning distance, direction and order, together with their funda- 

mental properties which need either to be proved from definitions or to be 

embodied in an axiom system. (3.3) 

(iii) Topological definitions of line, surface and solid together with various 

special cases of these, (3.4.2). 

(iv) The modern definition of the continuity of a function of one real vari- 

able and its use for various properties and theorems about continuous functions 

Including: the derivative of a continuous function Is continuous, a continuous 

function of a continuous function is continuous. (4.4.3). 

(v) The use (though not explicit definition) of the modern definition of the 

derivative of a function of one real variable. (5,2.3). 

(vi) The correct statement, and attempted proof, of the convergence 

criterion for an Infinite series, (4,3.3). 

c 
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(vii) An attempted proof of a general statement of the binomial theorem 

which in many respects was far superior to ea"lier efforts. (5.2.3). 

(viii) The statement and proof (from the convergence criterion) of an-orig- 

anal form of the Bolzano-Weierstrass Theorem, 

(ix) The proof (from result (viii)) of the intermediate value theorem. 

(5.3.3). 

The claim that these results were original to Boizano needs further 

explanation. The development of most major mathematical concepts involves 

a long evolutionary process which no individual can lay claim to have 

"achieved" personally, it is most likely, for example, that in the first 

decade of the nineteenth century Lagrange and Gauss had at least as clear ' 

an idea as Bolzano had of what should be meant by the continuity of a function 

and the convergence of an Infinite series. But the development of Ideas Is 

a fitful, haphazard process and one thing that has often led to rapid advances 

In mathematics has been the formulation and use of an appropriate symbolism, 

In the present case, by referring to the originality of Bolzano we simply 

mean that it Is In these five works of his that there appears for the first 

time In the mathematical literature essentially the same arithmetic form- 

ulation used for the concepts of convergence, continuity and derivative that 

c 
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turned out later in the century to be acclaimed as securing the foundations 

of analysis. The same formulation of these concepts has not been improved 

in any fundamental way in our own day. 

Although it appears that the time was ripe for the sort of breakthrough 

made by Bolzano's work, we have seen that it actually had a minimal Influ- 

ence on other mathematicians. By the time. It was recognised in the literature 

(by Hankel, Stolz etc. ) the same work had been done far more thoroughly by 

many other mathematicians, This does not detract from Bolzano`s achieve- 

ment and it remains of interest to consider why he, and no others at this tim 3, 

was so successful. 

lk 
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6.2 The Significance of Bolzano's General Views 

The views Bolzano expresses in the five early works on the general 

nature of mathematics are hardly sufficient to be called a "philosophy of 

mathematics". There is little or no discussion of the nature of mathematical 

knowledge or truth. But there is an Important ideal of mathematical proof 

involving the principle of "conceptual correctness" (2.4.1). This principle 

acts as an effective method of criticising and Improving proofs. Sufficient 

evidence has already been adduced in the previous chapters to show that it 

was this method of criticism, and therefore these general views on the nature 

of mathematics, which led, more or less directly depending on the case, to 

the achievements listed in the previous section, Wo mean by this that these 

views promoted the choice of suitable problems by showing where new proofs 

were needed and sometimes they indicated the lines of an appropriate solution. 

But they never, of course, constitute the solution, that was entirely a matter 

of mathematics. We shall attempt to clarify the matter a little further. 

In order to substantiate the claim that general views on the nature of 

mathematics led to certain mathematical achievements we may proceed 

(in the case of Bolzano at least) In the following two stages. Firstly, it 

should be made clear that the mathematical results were closely related to 

the consIr ration and refinement of certain concepts, Secondly, it needs to 

be shown how the general views led to the consideration of these particular 

concepts and why they were modified or replaced in the particular way they 

I. 
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were. The first requirement Is much the simpler and has already been carried 

out in the main chapters, but we shall summarise the situation here using the 

numbering of the results as in 6.1. 

The work of (i) was explicitly the result of excludii: b the concepts of 

motion and the plane from elementary geometry. This also meant the ex- 

elusion of superposition arguments for congruence proofs. (ii) was precisely 

the result of analysing the concept of straight line and (iii) was related (as 

argued in 3.4. 
-) to the distinction of the concepts of length and distance. The 

Important new formulations In (iv), (v) and ý ri) arose, as described in Chapter 

4, from the exclusion of all spatial intuitions as well as those of time and 

motion. This involved a refinement of the concepts of function, infinite 

series and continuity. A purely quantitative account was necessary in analysis 

and a pre-requisite for this was the conceptual distinction between somothing 

which was meant to be smaller than any arbitrary quantity and yet be non-zero 

(an infinitesimal), and an arbitrarily small quantity. The theorems of (vii), 

(viii) and (ix) all depend essentially on the new tont&pta defined in (iv), (v) 

and (vi). 

A good deal of mathematics, in the past and present, seems to have 

been achieved without any apparent preoccupation with concepts. Why was 

It so Important In the present case? To suggest an answer to this, and to 

prepare the way for the second task referred to above, some general re- 

marks will be useful about this rather self-conscious, quasi-mathematical 

r 
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activity of analysing mathematical concepts. 

Before the rise of the axiomatic methol in the nineteenth century 

mathematicians were inclined to regard their theorems as true in an absolute 

sense. The definition of complex concepts represented a taue analysis of 

the concept Into simple components, When axioms were stated they too were 

true expressions of relations between simple concepts. Usually such axioms 

were unmentioned and the relations of simple concepts were just assumed, 

with a varying degree of awareness that such assumptions were being made. 

The great majority of mathematical work be ore 1850 proceeded, very 

successfully, on such an intuitive use of concepts. This testifies to the extra- 

ordinary fruitfulness, and reliability over a wide range, of the concepts that 

had been acquired of number, function, curve, area and so on, Including even 

the concept of infinitesimal. Such concepts were not static: they were con- 

stantly being affected by new theorems and distinctions, by practical problems 

and by the way they were passed on to new generations. Occasionally, how- 

ever, mathematics Itself produces problems of such difficulty and profundity 

that they provoke a sustained and deliberate consideration of the concepts 

concerned. In some sense the limits of the intuitive use of a concept have 

been reached and a new approach hae to be made. The classic examples of 

this are the problems of irrationals and parallels, and the paradoxes arising 

from infinitesimals In the eighteenth century and from set theory at the turn 

of this century. The resolution of these problems produced new concepts, or 

c 
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a new understanding of the place of earlier concepts, and these opened the 

way for large new areas of mathematics. The Important point here is that 

these changes in concepts were made in direct respc'se to a breakdown in 

the mathematics, They were mathematical remedies for mathematical prob- 

lems. 

Bolzano's attention to mathematical concepts was unusual in that It did 

not arise in the way we have just described. The issue is complicated because 

his work was the occasion of the rigorous rejection of Infinitesimals and It 

therefore has the appearance of conforming to this pattern. But we have 

Boizano's own word on many occasions that it was not so much particular 

mathematical problems that inspired his work as his Inclination to philosophy 

in general and his views about proofs and conctpts in particular. This is 

further confirmed by the fact that his views on proofs led to the reject[on of 

methods which were not generally regarded as posing any mathematical 

difficulty. For example, he rejected the combinatorial argument for tho 

positive integer case of the binomial theorem (p. 260, N, and the use of sequ- 

ences of polygons for the quadrature of the circle (p. 291).. There is also his 

postponement of the concept of the plane in elementary geometry.. (3.1.3). 

Bolzano's general views formed a methodology which made strict 

demands on the concepts which could occur in proofs and the order in which 

they should occur (2,4), These demands had the overall effect of purging 

mathematics of all empirical elements and thus rendering its concepts more 

( 
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exact and susceptible to purely logical treatment. Accordingly Bolzano's work 

was chiefly centred on the replacement of all spatial and temporal intuitions 

in analysis and re-organisation of geometry. This completes our argument 

for the claim made at the !., eginning of this section, 

The main conclusion of this thesis is therefore that it was largely in 

response to his general views about the nature of proof that Bolzano brought 

about some. Important developments In mathematical concepts. Furthermore. 

because these changes answered to some contemporary mathematical needs, 

particularlj in analysis, they led directly to Important and fruitful new math- 

ematics. 
x 

The arguments in favour of Bolzano's general views and his require- 

ments for profs are unfortunately only vaguely Indicated In the early works. 

There Is an implicit appeal to preserving "natural kinds" (through his re- 

peated use of the Greek prohibition against "crossing to another kind") and 

also to a hierarchy of concepts in which theorems Involving "higher" concepts 

(t, e. more general concepts) may not be proved by making use of concepts 

from "lower" levels. But there is a tension between these two principles 

themselves in Bolzano's work. Both principles prohibit the use of geometry 

for analysis proofs, but why does the "natural kind" argument not prohibit 

analytical geometry? Many other question: arise about Bolzano's position. 

Is it possible to make sense of his idea of a unique, preferred proof for a 

theorem? (Are there, in any case, criteria for different proofs? ) How does 
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this relate to Kitcher's suggestion of a theory of mathematical explanation? 

(see p. 260 and Kitcher [1] pp. 267-269). How do Bolzano's views relate to 

the modern conception of axioms and formal theories? These are questions 

which might be useful areas for further investigation. 

Finally, it is worth noting that it has only been possible to complete 

the present study with any degree of conviction because of two fortunate 

characteristics in Boizano himself. There was no lack at the beginning of 

the nineteenth century of philosophers ready to make remarks about math- 

ematics anJ vice versa. What was unusual in Bolzano was that he had both 

the philosophical insight to see so strongly the need for important fundamental 

changes In mathematics and the mathematical expertise to carry out his own 

programme oi conceptual refinement and produce valuable results. There 

can also be no doubt that many of the great mathematicians of that time were 

strongly motivated by conceptual, and even philosophical, considerations. 

Again, what was special in Bolzano's case was his willingness and ability to 

articulate these considerations so clearly and fally throughout his works. 

Thus In spite of the neglect of his work In the nineteenth century, and his 

consequent lack of influence, the positive relationship which we have describ- 

ed here between Bolzano's general views and his mathematical results render 

his work of substantial and enduring histork. al importance. It sheds another 

ray of light on the mystery of how change takes place In the realm of math- 

ematics. 
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