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Abstract

Dynamic Bayesian Smooth Transition Autoregressive (DBSTAR) models are
proposed for nonlinear autoregressive time series processes as alternative to both
the classical Smooth Transition Autoregressive (STAR) models of Chan and Tong
(1986) and the Bayesian Simulation STAR (BSTAR) models of Lopes and Salazar
(2005). Unlike those, DBSTAR models are sequential polynomial dynamic analyti-
cal models suitable for inherently non-stationary time series with non-linear charac-
teristics such as asymmetric cycles. As they are analytical, they also avoid potential
computational problems associated with BSTAR models and allow fast sequential
estimation of parameters.

Two types of DBSTAR models are defined here based on the method adopted to
approximate the transition function of their autoregressive components, namely the
Taylor and the B-splines DBSTAR models. A harmonic version of those models,
that accounted for the cyclical component explicitly in a flexible yet parsimonious
way, were applied to the well-known series of annual Canadian lynx trappings and
showed improved fitting when compared to both the classical STAR and the BSTAR
models. Another application to a long series of hourly electricity loading in southern
Brazil, covering the period of the South-African Football World Cup in June 2010, il-
lustrates the short-term forecasting accuracy of fast computing harmonic DBSTAR
models that account for various characteristics such as periodic behaviour (both
within-the-day and within-the-week) and average temperature.

Keywords: Bayesian dynamic STAR models, polynomial forecasting models,
nonlinear autoregressive models, Bayesian autoregressive forecasting models, short-
term electricity load forecasting, B-splines approximation.
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1 Introduction

The proposed DBSTAR models consist of Gaussian Bayesian state-space formulations
based on polynomial dynamic linear models (DLMs) of West and Harrison (1997). They
extend smooth transition autoregressive (STAR) models of Chan and Tong (1986) to allow
parameters such as autoregressive, smoothing and observational variance to change in
time. Parametric assessment is analytical with sequential prior-to-posterior distributional
updating carried out by Kalman filtering for fast computation.

STAR models were developed from the threshold autoregressive (TAR) models pro-
posed by Tong (1978) to address the failures of single linear models to represent certain
properties of nonlinear stationary autoregressive time series processes such as asymmetric
cycles, amplitude dependent frequencies and sudden changes (see Tong, 2011 for a review
of developments of TAR type models over the last 30 years).

Basically, a STAR (and a TAR) model can be seen as a convex linear combination of
two (or more) distinct linear autoregressive (AR) models of the same order. Each of the
models is given a weight wi ∈ [0, 1] (i = 1, 2) in the combination that will average out
the models. As the combination is convex,

∑
iwi = 1, when a weight wi is either 0 or

1, one of the combining AR models will be selected to operate. For that reason, a TAR
or a STAR model is called a regime-switching model. Usually, the combining weights are
specified through a conveniently chosen function which type defines the type of model.
For instance, if a logistic function is adopted, the model is called a logistic STAR model.

For a stationary time series Yt (t = 1, 2, . . . , T ), a Gaussian STAR model of order p,
STAR(p), p ∈ ℜ+, with two regimes, can be represented by the combination

Yt = π(·)ztϕ′
1
+ [1− π(·)]ztϕ′

2
+ ϵt ; ϵt ∼ N(0, σ2) (1)

where for i = 1, 2, ϕ
i
= (ϕi0, ϕi1, . . . , ϕip) are (p + 1)-dimensional vectors with element

ϕij (j = 0, 1, . . . , p) representing an AR coefficient associated with each component j of
the regime i; zt = (1, yt−1, . . . , yt−p) is a (p + 1)-dimensional vector with element yt−j

representing a realisation of the process Yt−j at time t − j. The weight π(·), called
transition function, is a function (of its arguments only) in the range [0, 1]. Note that in
this paper, an underlined character is used to represent a vector, a matrix is represented
by a boldface capital character and a prime is used to denote transposition.

The STAR models of Chan and Tong (1986) use conveniently chosen smooth transition
functions, such as the logistic function

π(st; γ, c) = [1 + exp{−γ(st − c)}]−1, (2)

adopted here. It has smoothness and location parameters γ ∈ ℜ+ and c ∈ ℜ, respectively,
and transition variable st ∈ ℜ. Usually, in practice, the transition variable is either a
a lagged past value yt−d, where d is a delay parameter, or a chosen exogenous variable.
The parameter γ dictates the degree of smoothness of π(st; γ, c) and c is a threshold
value between the two regimes. For the same value of γ, the distance between the value
of st and c determines the degree of pertinence between the two regimes. For values of
γ leaning towards zero the logistic function tends to 1/2 and the logistic STAR model is
reduced to the average between the combining AR models. As γ increases away from zero,
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the logistic function tends to a step function and the transition from one regime to the
other becomes more abrupt. Note that during a transition period, the combining model is
non-linear in form and usually non-linear least square approaches, that approximate the
non-linear transition function, are adopted for parametric estimation. We refer to those
STAR models as classical STAR models throughout.

Bayesian approaches for TAR models, and their variants, were initially proposed by
Geweke and Terui (1993) and Chen and Lee (1995), and further developed by Chen (1998),
Campbell (2004), Lubrano (2000) and Lopes and Salazar (2005). All those approaches are
based on Markov Chain Monte Carlo (MCMC) simulation methods, such as the sampling
importance resampling of Gelfand and Smith (1990), for Bayesian inference due to the
loss of analytical tractability of posterior distributions as shown in Bauwens et al. (1999).

Except for Lopes and Salazar (2005), that treat the order p of the combining AR
models as unknown and proceed to estimate it’s value from data, all the other proposed
methods assume p to be fixed a priori. In fact, Lopes and Salazar (2005) adopted a Gibbs
sampler approach for inferences about ϕ

1
, ϕ

2
, γ, c, d and σ2 of the logistic STAR when p

is considered known, and a reversible jump MCMC algorithm (Green, 1995) for posterior
assessments when p is unknown. Thereafter, the models of Lopes and Salazar (2005) will
be referred to as Bayesian Simulation STAR (BSTAR) models.

A common characteristic of all those approaches is that they are, without exception,
static non-sequential methods for non-linear but stationary AR processes. It is also worth
noting that computational Bayesian inference approaches, such as the BSTAR models,
are non-parsimonious computer intensive numerical simulation models that rely on the
availability of extensive data sets and on the possible convergence of chains to obtain
approximate posterior distributions of underlying parameters. They are, consequently,
not generally appropriate for applications that require fast sequential prior-to-posterior
parametric estimation and forecasting.

The DBSTAR models address some of those limitations. Similarly to the classical
STAR models, the AR order p and the delay parameter d are fixed a priori in a DBSTAR
model. When those parameters are unknown, and initial data is available, a model se-
lection approach can be adopted to determine their optimal values. Also, like BSTAR
models, prior distributions must be specified for the state parameters of a DBSTARmodel.
Those parameters are functions of the AR coefficients and the smoothness parameter as
well as the observational variance associated with STAR type models. However, unlike
both the classical STAR and the BSTAR models, the observational variance in a DBSTAR
model is not constant but allowed to vary in time, albeit slowly and steadily, to account
for possible extra variation in the series. The slow changes in the observational variance
of a DBSTAR model are determined sequentially from data in an approach based on the
Kalman filter.

Another difference from both classical STAR and BSTAR models, is that a DBSTAR
model can be parsimoniously formulated to explicitly account for components observed in
the underlying time series, that is, level, trend, seasonality and cycle. A DBSTAR model
is based on particular formulations of the polynomial dynamic linear model (DLM) of
West and Harrison (1997) that allows hierarchical component modelling by superposition
of models appropriate for specific components.
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The main results of a comparative analysis against the classical and the Bayesian STAR
models in the Canadian lynx application are shortly described here, while the application
to the electricity load in southern Brazil is shown in more detail. More detailed analysis
of both applications can be found in Santos (2014) and Faria and Santos (2018).

In both the Canadian lynx trapping and the Brazilian electricity loading applications,
harmonic DBSTAR models fitted well the data. The Canadian Lynx data application,
apart from showing the improved fitting performances for a harmonic DBSTAR model
when compared with both the classical and the BSTAR models, also illustrated how the
changing cyclic pattern, amongst others, can be dynamically estimated from the data. In
the electricity load application, the formulated harmonic DBSTAR models showed con-
siderably improved fitting over a SARIMA model obtained by SPSS’s expert forecasting
modeler. The B-splines slightly outperformed the Taylor harmonic DBSTAR model for
both fitting and short-term 24-hours-ahead forecasting. The Taylor model performed
slightly better for the longer 72-hours-ahead forecasting horizons.

This article is structured as follows. In Section 2, harmonic DBSTAR (HDBSTAR)
models are formally defined for the Taylor and the B-splines approximations. Section
3 briefly describes the main results of a comparative fitting analysis between DBSTAR
models and both the classical STAR and the BSTAR models when applied to the Cana-
dian lynx series. In Section 4, a more in depth look at the forecasting performances of
HDBSTAR models is presented in the Brazilian electricity load series application. The
article concludes with some discussion of this work in Section 5.

2 The harmonic DBSTAR model

A DBSTAR model in its simplest form can be seen as polynomial approximation of the
classical STAR model as defined by (1), where a dynamic smooth transition function,
π(st; γt, ct), similar to the logistic in (2) but with both the smoothing parameter γ and
the threshold parameter c of π(st; γ, c) allowed to change in time, is represented by a
polynomial approximation. This paper considers two distinct approximations, the Taylor
series expansion and the B-spline function, that characterise the Taylor and the B-spline
DBSTAR models, respectively. Despite based on the logistic transition function, the
development below can without loss be adopted for any other transition function that can
be approximated by a polynomial function.

So, for a dynamic logistic transition function π(st; γt, ct) with real values in the interval
[0, 1], where st is a transition variable, γt ∈ ℜ+ is a smoothing parameter and ct ∈ ℜ is a
threshold value, a DBSTAR(r, p) model of orders r and p is defined by the set of quadruple
{F t,Gt,Σt,Wt} as follows. Note that underlined characters are used to represent vectors,
boldface to represent matrices and prime to denote transposition throughout.

The observational and the system equations of a DBSTAR (r, p) are respectively given
by

(Yt | θt) ∼ N (F ′
tθt,Σt) (3)(

θt | θt−1

)
∼ Tnt−1

(
Gtθt−1,Wt

)
(4)
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where F ′
t = [zt, B1(st)zt, . . . , Br−1(st)zt, Br(st)zt] is a known (r + 1)(p + 1)-dimensional

vector of polynomial regression variables Bi(st)zt (i = 0, 1, . . . , r) with Bi(st) known
functions of st which form depends on the approximation used for π(st; γt, ct) and zt =
(1, yt−1, . . . , yt−p); θt is the state vector containing unknown parameters associated with

the components of F t, i.e, θ
′

t = (θ0, θ1, . . . , θr)t with elements θit = (θi0, θi1, ..., θip)t where
the elements of θ0t are θ0jt = ϕ1jt + β0tϕ2jt (j = 0, ..., p) and θit = βitϕ2t

(i = 1, ..., r) such
that θijt = βitϕ2jt; and βit (i = 0, 1, ..., r) are polynomial functions of γt and ct only such
that

π(st; γt, ct) ≃
r∑

i=0

βit(γt, ct)Bi(st) . (5)

Note that in this form, the parameters γt and ct of π(st; γt, ct) are separated from the
observable st such that they can be included together with the dynamic AR coefficients
ϕ
it
= (ϕi0, ϕi1, . . . , ϕip)t where ϕijt is the coefficient j (j = 0, 1, . . . , p) of the AR regime

i (i = 1, 2), into the unknown state vector θt in (3) above, while st can be included
together with past values of yt into the known vector F t. For simplicity, the number of
regimes is restricted to two AR(p) models here, albeit the methodology can be relatively
straightforwardly extended to multiple regimes and differing AR orders.

The observational variance Σt in (3) is considered unknown and defined as Σt = ktV ,
where kt = k(µt) is an appropriately chosen variance law (a scaling function of the mean
µt = F ′

tat of Yt, where at is the mean of the prior distribution of θt). V is the unknown
variance scale parameter that is allowed to change stochastically. While a suitable chosen
variance law can model systematic changes in the observational variability in time, we
assume that Σt may change stochastically but only slowly and steadily in time (with the
use of a variance discounting technique) to avoid potential unpredictable behaviour that
can lead to loss of analytical tractability (Broemeling, 1985).

2.1 The Taylor DBSTAR model

A Taylor DBSTAR model is defined as the DBSTAR model for which Bi(st) in (5) is a
polynomial function of order i of the form

Bi(st) = sit (6)

and βit(γt, ct) is obtained by expressing the Taylor series expansion of π(st; γt, ct) in the
vicinities of st = ct. So, a Taylor DBSTAR(r, p) model is characterised by the observa-
tional equation (3) above where the Taylor series expansion of the transition function is
truncated at order r. Thus, at each time t a Taylor DBSTAR(r, p) model corresponds to a
STAR model of order p which transition function is approximated by its Taylor expansion
truncated at order r. Notice that the Taylor series expansion approximates π(st; γt, ct)
better in the vicinities of st = ct, so that, at each time t, the approximation changes for
changes in ct.
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2.2 The B-spline DBSTAR model

A B-spline DBSTAR model on its turn is defined as the DBSTAR model for which the
function in (5) is such that Bi(st) is a B-spline basis function (a piecewise polynomial
function) and βit(γt, ct) are the associated coefficients. The B-spline of basis functions
Bi(st) of degree q, given a number n of knots in an interval is defined as in Wold (1974).

Computationally, the B-splines are obtained recursively by the Cox-de Boor algorithm
(de Boor, 1978). As pointed out by Eilers and Marx (1996), they are rather attractive as
base functions for univariate regression in which a linear combination of cubic B-splines
gives a curve smooth enough to provide a good fit in many applications. This is the case
here for the logistic transition function (2) (or for any of the usual alternative transition
functions such the second-order logistic and the exponential). In our case, an appropriate
order r = q + n − 2 in (5) is usually determined by the number n of knots chosen. In
the splines regression context, the choice of n can be a complex task and statistics with
penalties for overfitting are used in determining the optimal number. In our context, n
(and q) is determined via model selection approach.

Some parameters in a Taylor or B-splines DBSTAR model are not treated as unknown
parameters to be estimated but fixed a priori. The main reason for that is to preserve
analytical tractability in the Bayesian parametric updating that allows fast sequential
computations. For the Canadian lynx trappings and electricity loading applications, op-
timal values of those parameters were obtained via model selection approach.

2.3 The HDBSTAR model

Now, in order to allow the modelling of any observed cyclic behaviour in terms of cyclical
components explicitly, we introduce the Harmonic DBSTAR (HDBSTAR) model. Simi-
larly to seasonality, the explicit modelling of long term cyclic behaviour allows accounting
for changes in that behaviour in a forecasting model. Fourier form representations of the
periodic behaviour that allows for modelling changes in amplitude and phase for fixed
number of harmonics preserving, thus, the analytical tractability of parametric posterior
distributions and forecasting functions are adopted here.

HDBSTARmodels extend the set of quadruple {F t,Gt,Σt,Wt}, with F t = (F 1t, F 2t),Gt =
(G1t,G2t) and Wt = (W1t,W2t), where F 1t,G1t and W1t are associated to the nonlinear
autoregressive components as in (3) and (4), and F 2t,G2t and W2t are associated to the
cyclical component. A HDBSTAR(r, p, h) model for cycles is defined as a DBSTAR(r, p)
with an explicit component for cycle with h harmonics as follows(

Yt | θt, ψt

)
∼ N

(
F

′

1tθt + F
′

2tψt
,Σt

)
(7)

(
θt | θt−1

)
∼ Tnt−1

(
G1tθt−1,W1t

)
(8)(

ψ
t
| ψ

t−1

)
∼ Tnt−1

(
G2tψt−1

,W2t

)
(9)
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where ψ′
t
= [ψ

1t
, ..., ψ

ht
], ψ

jt
= (aj, bj)t with ajt and bjt being the unknown Fourier

coefficients of each harmonic Sj(t) = ajtcos(ωjt) + bjtsin(ωjt) (j = 1, ..., h). The 2h-
dimensional vector F 2t is a canonical partitioned vector associated to the harmonics in
ψ

t
, with 1 in an harmonic position and 0 otherwise. For example, F 2t = [1, 0] for h = 1

harmonic, F 2t = [1, 0, 1, 0] for h = 2 harmonics, and so forth. The frequency of each
harmonic is ωj = 2jπ/τc, where τc is the period of the cycle. The evolution matrix G2t of
the cyclical component is a block diagonal matrixG2t = diag(H1t, ...,Hht) whereHjt is the
harmonic matrix with trigonometric elements such that |Hjt| = sin2(wjt)+cos

2(wjt) = 1.
The (2h× 2h)-matrix W2,t contains the covariances of the cyclical components.

The first harmonic, the fundamental harmonic, is expected to dominate the cyclical
pattern, having a strong sinusoidal signal. The higher frequency harmonics oscillate faster
than the fundamental one and more appropriate for modelling higher frequency repetitive
behaviour. Obviously that the larger the h the more accurate the modelling of periodic
variations in the data. However, adopting the parsimony principle we look for the smallest
h that can still provide a good representation of the cyclical component of the underlying
process. For cases where a large enough initial dataset is available (as are the cases in
this paper) to enable the investigation of the cyclic behaviour, an optimal value of h can
be determined, for example, by a stepwise model selection approach.

Two types of DBSTAR models are defined here, the Taylor DBSTAR models based
on approximating the adopted transition function by a Taylor series expansion, an the
B-splines DBSTAR models which use B-spline functions for that purpose. B-splines are
constructed from piecewise polynomial functions joined at knots created by dividing the
underlying interval into parts. Those functions satisfy weak differentiability conditions
that guarantee the continuity and smoothness of the resulting function. The reader can
refer to de Boor (1978) and Eilers and Marx (1996) amongst others for more details on
B-splines.

3 Main results of the Canadian lynx application

The Canadian lynx dataset is a yearly series with 114 observations of the number of lynx
trapped in the Mackenzie River, district of North-west Canada, from 1821 to 1934. They
were collected to improve knowledge about the population dynamics of the ecological
system in that area. They have been used in various studies (see e.g. Terasvirta, 1994;
Lopes and Salazar, 2005) to analyse and compare the fitting of proposed models. The
most famous features of that series are (a) the lack of trend, (b) the presence of irregular
changes in the amplitude in time, and (c) the presence of persistent non-regular cyclic
oscillations with periods of 10 or 11 years. Those features have been familiar to biologists
for a long time and are well known in historical records of trappings of lynx in Canada as
described by Elton and Nicholson (1942).

Similarly to other studies of this series, including Chan and Tong (1986) and Lopes
and Salazar (2005), the original series was log10-transformed here to remove the marked
right-skewness of the data as well as to allow the comparative analysis with the classical
STAR and the BSTAR models. The transformed series presented no evident trend but
a clear periodic repetitive behaviour with significant estimated autocorrelations at lags
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1, 2 and 11 in the partial auto-correlation function (PACF). However, it may not be
appropriate to use the PACF for model order identification in this case as a graphical
analysis of the scatterplots of yt−u against yt−v (for u, v = 1, 2, ..., v > u.) showed lack
of linearity for most lags of the series. Consistently with Elton and Nicholson (1942), a
periodogram of the series displayed a spike around the 0.1 frequency indicating cyclical
behaviour with a 10-year wavelength.

Following a numerical grid search for optimal values (based on the log-smoothing
likelihoods of the models calculated conditionally on values of d, p, r and h) the following
three models were selected: a Taylor DBSTAR(3, 12), a cubic B-splines DBSTAR(6, 12)
with five knots and a cubic B-splines HDBSTAR(6, 2, 2) also with five knots. Similarly
to Terasvirta (1994) and Lopes and Salazar (2005), the optimum delay parameter of the
adopted dynamic logistic transition function was found to be d = 3 for all models, that
is st = yt−3. However, unlike both Lopes and Salazar (2005) and Terasvirta (1994) that
found p = 11, the optimum AR order for the non-harmonic Taylor and B-splines DBSTAR
models were found to be p = 12. The optimal harmonic model though was found to be
considerably more parsimonious. In fact, the optimal values for the number of harmonics
and AR order were h = 2 and p = 2 respectively for the B-splines HDBSTAR model.
A Taylor expansion of order r = 3 was adopted for the Taylor DBSTAR(3, 12) model as
higher orders only provided marginal improvements.

Table 1 displays the MAE and the RMSE of the fitted logistic classical STAR(11)
from Terasvirta (1994) and the logistic BSTAR(11) from Lopes and Salazar (2005) as
well as those of the selected Taylor DBSTAR(3, 12), the B-splines DBSTAR(6, 12) and
the B-splines HDBSTAR(6, 2, 2) models. It is clear that the B-splines HDBSTAR(6, 2,
2) model with a MAE of 0.006 and a RMSE of 0.013 produced the best fit of all models.
Its MAE is 20% lower than the second best fit of the Taylor DBSTAR(3, 12) although its
RMSE is only marginally lower. The B-splines DBSTAR(3, 12), with the largest MAE
and RMSE of all DBSTAR models, still outperformed the classical STAR(11) and the
BSTAR(11) models, by quite a margin (its MAE and RMSE were 9.8 and 5.7 times lower
than the BSTAR(11) of Lopes and Salazar (2005), respectively). A static version of the
Taylor DBSTAR(3,12) model (with discount factors set to unity) had an MAE and an
RMSE of 0.109 and 0.141, respectively, produced a fitting that was only marginally better
than the BSTAR(11)

Model MAE RMSE

Lopes and Salazar (2005) - BSTAR(11) 0.118 0.153

Terasvirta (1994) - STAR(11) 0.142 0.179

Taylor DBSTAR(3, 12) 0.012 0.015

B-splines DBSTAR(6, 12) 0.014 0.027

B-splines HDBSTAR(6, 2, 2) 0.006 0.013

Table 1: Mean Absolute Errors (MAE) and Root Mean Squared Errors (RMSE) of com-
pared models
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As seen above, the sequential dynamic modelling of the Canadian lynx data by the
DBSTAR models have allowed much improved fitting to the data compared with the static
STAR and BSTAR models. This sequential modelling also allows a better understand-
ing of the lynx population dynamics via analysis of the obtained dynamic parameters
estimated from the data that helps to verify how various components varied in time.
For example, the estimated cyclic component (obtained from the posterior means of the
harmonic components of the HDBSTAR model by Kalman fitering) has shown increased
variability in amplitudes from 1824 to 1846, followed by lower oscillations until approxi-
mately 1896 after when oscillations increased again almost mirroring the initial period.

It is worth mentioning that a residual analysis of the DBSTAR models above showed
residuals to be uncorrelated as well as no significant departures from normality. Please
refer to Santos (2014) and Faria and Santos (2018) for more details of the application
above.

4 Electricity load forecasting in southern Brazil

The hourly series of electricity load, measured in MegaWatts (MW), and temperature,
in degree Celsius (◦C), are from the Southeast and Central-West regions of Brazil and
span from the first hour on 1 June 2003 to the last hour on 30 June 2010 (that is, 62,088
hourly observations covering the 7-year period). The hourly load data are aggregated for
the region while the hourly temperature data are averaged across all the states in those
regions. Calendar variables indicating weekdays, national holidays and bridge-holidays
(i.e. days between midweek bank holidays that are near a weekend) were used in the
models to account for their effects on the load. To measure the short-term forecasting
performances of the selected DBSTAR models, the initial 61,368 observations (covering
the period from 1 June 2003 to 31 May 2010) and the last 720 observations (corresponding
to one month of hourly data from 1 June 2010 to 30 June 2010) were used as in-sample
and out-of-sample data respectively.

A preliminary analysis of the data has shown, amongst others, a non-linear S-shaped
relationship between load and temperature. In this relationship, differently from the U-
shape normally observed for northern hemisphere countries, the load tends to increase
with increases in temperature although on a non-linear fashion resembling an S-shape. In
fact, the rate of increase in weekly average load is lower at lower levels of weekly average
temperature (16-20◦C) as compared with higher levels (26-30◦C) when higher rates of
increase occur, suggesting that at least two regimes of distinct consumption behaviour
is present in the load series that can justify at least in part the use of STAR type of
models. Other marked characteristics observed from the data analysis are the long-term
positive trend with slowly increasing variability in time, and both within-day and within-
week changing periodic behaviour and variability. The within-day variation of load has
a general shape that is similar for all weekdays with lower loads in the early hours with
minimum levels between 4-8am followed by sharp increases until the middle of the day
when they stabilise at an intermediate level until early afternoon. This is followed by
peaks in the evening between 7-9pm. Sundays and bridge-holidays show a little shift of
consumption to the right in the hour scale as well as lower levels at almost all times.
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Similarly, Saturdays and holidays tend to group together with a smaller shift to the right
but with larger loads in the early hours. Except for Monday (with slightly lower loads at all
times except in the early hours when they are lowest), the patterns for other weekdays are
practically undistinguishable from each other. They show the largest levels of load overall
with troughs typically at 4-5am, lower peaks at 11am-12pm and 3-4pm and the largest
peaks from 7-9pm. The within-week variations are such that daily peaks change their
patterns (or shape) along the year according to the season. In particular, evening peaks
observed in the winter is not present in the during summer when observed smoother peaks
are thought to be influenced by the availability of natural lights early in the evenings,
helped by the change in the Brazilian summer time (when clocks are moved forward by
one hour from October to February). There is also a strong within-year seasonal effect on
load that is very much in line with the strong seasonal behavior of the temperature. It is
also worth pointing out that due to the changing variability, both within-the-day (that is
larger at peak than at off-peak hours) and within-the-week (that is larger at working days
than at weekends and holidays), the underlying load series presented intrinsic second-
order non-stationarity that no differences and/or transformation in the class of Box-Cox
transformations could be found to turn the series stationary. No serious departures from
normality were observed.

The Taylor and the B-splines HDBSTAR models that were formulated in this applica-
tion to account for the above described characteristics of the electricity load series include
a trend and a seasonal component, two cyclical components (one for the within-day and
one for the within-week periodic variations), one calendar component and one non-linear
AR component with temperature used as the transition variable (associated with a lo-
gistic STAR) to account for the non-linear effects of temperature on load. Note that the
cyclical components aim to account for the non-linear cyclic behaviour not accounted for
by the seasonal component.

A Taylor HDBSTAR(3, 1, 2) model and a cubic B-splines HDBSTAR(3, 1, 2) model
with n = 1 knot (located at the median temperature of 23◦C) that included the compo-
nents mentioned above, with delay d = 1 for the temperature series as transition variable,
were selected as the optimal models. They presented the largest in-sample conditional log-
predictive likelihoods in a grid search of models of varying orders. Initial non-informative
prior distributions were attributed to the hyper-parameters of the models. Discount fac-
tors of δV = 0.90 and δW = 0.99 were also found as optimal values. Two harmonics
for each cyclical component were found to represent the non-linear short-term periodic
patterns adequately.

The B-splines HDBSTAR(3, 1, 2) model fitted the data slightly better during the
in-sample period than the Taylor HDBSTAR(3, 1, 2) model with a larger log-posterior
likelihood (of -559751 against -550437), lower MAPE (0.00527 against 0.00547) and RMSE
(208.19 against 227.68).

Both the Taylor HDBSTAR(3, 1, 2) and the cubic B-splines HSDBSTAR(3, 1, 2)
models were also used to produce rolling forecasts sequentially from 1 to 72-hours-ahead
horizons during the out-of-sample period. For that, forecasts of temperatures from a
multiplicative Winters model (selected by SPSS’s expert model amongst a number of
exponential smoothing and ARIMA models) were used. Those DBSTAR models were
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implemented in R and used prior-to-posterior updating and forecasting routines based
on the Kalman filter (and on the DLM and SPLINES packages). Their running times,
for fitting and forecasting on a desktop PC with i7 processor at 3.30GHz with 32GB of
memory and SSD disk drive, varied from 8.93 (for a forecasting horizon h = 24 hours-
ahead) to 14.50 minutes (for h = 72) for the Taylor HDBSTAR model and from 10.23
(h = 24) to 17.65 minutes (h = 72) for the B-splines HDBSTAR model.

Table 2 shows the MAPE (%) and the RMSE for the Taylor and the B-splines models
for each forecasting horizon of 1, 12, 24, 48 and 72 hours-ahead. The values in bold
represent the lowest values between the two models for each horizon. Note that the B-
splines model outperformed the Taylor model for 1 and 12-hours-ahead horizons but for
the 24, 48 and 72-hours-ahead horizons the Taylor outperformed the cubic B-splines model
on both MAPE and RMSE criteria. Overall, with only a few exceptions, the differences in
forecasting performances were relatively small with both models displaying fairly similar
performances.

For illustration, the MAPE and RMSE for a SARIMA(2,1,10)(2,1,1) fitted by SPSS
as the best classical forecasting model using the temperature series and the calendar
indicators as explanatory variables were 107.80 % and 455.993 respectively. As expected,
those results compare unfavourably with the much smaller MAPE and RMSE of 59.06 %
and 221.29, respectively, for the B-splines HSDBSTAR(3,1,2) and 61.20 % and 231.77 for
the Taylor HSDBSTAR(3,1,2), indicating improved fitting of nearly 50% by the DBSTAR
models.

Horizon Model
In-sample Out-of-sample

MAPE (%) RMSE MAPE (%) RMSE

1
Taylor 61.20 231.77 54.65 227.68

B-splines 59.06 221.29 52.74 208.19

12
Taylor 210.28 915.90 173.62 804.68

B-splines 111.90 401.20 119.06 448.55

24
Taylor 204.27 890.51 184.98 850.83

B-splines 204.22 893.91 199.29 877.58

48
Taylor 203.29 889.03 186.95 876.09

B-splines 204.18 894.67 201.75 897.90

72
Taylor 197.07 880.96 193.12 897.88

B-splines 198.72 887.22 209.41 925.56

Table 2: Mean Absolute Percentage Errors (MAPE) and Root Mean Squared Errors
(RMSE) of the Taylor and the B-splines HDBSTAR(3, 1, 2) models for each of the 1, 12,
24, 48 and 72 hours-ahead forecasting horizons

For the 24-hours-ahead forecasting horizon, that is usually of particular interest to
practitioners, plots of observed loads versus forecasts during the out-of-sample period,
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displayed most points close to a diagonal line indicating the generally good forecasting
accuracy for both the Taylor and B-splines HDBSTAR(3,1,2) models. However, the B-
splines model showed a slightly higher degree of scatter than the Taylor model as expected
from their MAPE and RMSE out-of-sample performance measures for the 24-hours hori-
zon in Table 2.

Figure 1 (a)–(d) shows the observed loads (solid square points), their 24-hours-ahead
rolling forecasts (solid line) and 95% predictive intervals (dashed lines) during the out-
of-sample period by the Taylor HDBSTAR(3, 1, 2) model. At each hour during the
out-of-sample period, the forecast at that hour was made 24-hours earlier using the 24-
hour-ahead temperature forecast as the transition variable. Those temperature forecasts
were obtained by a Winters’ exponential smoothing models with parameters α = 0.973
for level and δ = 0.07 for seasonal (the trend parameter γ = 0.001 was non-significant
with a p-value of 0.387).

Note that, in general, the forecasts are quite close to the observed loads with 95%
prediction intervals that are particularly larger at peak times (18-21 hours) than at late
night and early morning times in most days. The forecasts were well within the bounds
of the prediction intervals at almost all times. The selected out-of-sample period of June
2010 had a number of special days such as the Corpus Christie holidays on Thursday and
Friday, 3rd and 4th June, in Figure 1(a), and the South African football world cup when
on Tuesday, 15th June, in Figure 1(b), Brazil played North Korea at 15:30 hours as well
as at 09:00 on Sunday, 20th June, and at 11:00 on Friday, 25th June, both in Figure 1(c)
when Brazil played Ivory Coast and Portugal respectively, followed by Chile at 15:30 on
Monday, 28th June, in Figure 1(d). It can noticed that on those events the electricity load
decreased comparatively with similar times at similar days. This can be explained by
the fact that large amounts of people in urban areas tend to group together with family
members on religious holidays and with friends in bars and restaurants or with crowds of
people in public places such as squares with large screens to watch the national football
team. Notice that the effect of the football match events lasted mainly on the hours of
those events with the load levels increasing back to higher levels soon after.

In practice, an expert user could anticipate effects of events like those above in similar
occasions and make appropriate interventions in the model (by changing prior hyper-
parameters accordingly).

5 Concluding remarks

The dynamic Bayesian smooth transition autoregressive (DBSTAR) models introduced
here are Gaussian analytical approximations of STAR models based on polynomial dy-
namic linear models (DLMs) of West and Harrison (1997). They are appropriate for
non-linear and intrinsically non-stationary auto-regressive time series processes such as
those exhibiting asymmetric cycles and offer an alternative to both the classical STAR
models of Chan and Tong (1986) and the computational Bayesian STAR (BSTAR) mod-
els of Lopes and Salazar (2005). Two types of DBSTAR models, the Taylor and B-splines
DBSTAR models, were defined according to the adopted approximation approach adopted
for functional logistic transition functions associated with STAR models. Their unknown
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(c) 20-26 June 2010
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(d) 27-30 June 2010

Figure 1: Out-of-sample observed values (dots), the 24-hours-ahead forecasts (solid line)
and the corresponding 95% prediction intervals (dashed lines) of the hourly load by the
Taylor HDBSTAR(2, 1, 2) model from the first to the last hour in the periods (a) 1-5
June 2010; (b) 13-19 June 2010; (c) 20-26 June 2010; and (d) 27-30 June 2010.
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parameters are sequentially updated in time analytically via Kalman filtering approach as
described in Faria and Santos (2018). Similar to classical STAR models some parameters
such as the AR order and transfer function location values are assumed fixed a priori.
However, unlike both the classical STAR and the BSTAR the unknown parameters (AR
coefficients, observational variance and transition smoothing variable) are all dynamic.
In applications where initial data are available optimisation approaches can be used to
determine suitable values for the fixed parameters. The DBSTAR model formulation
is thus useful in applications demanding sequential parametric change in time (includ-
ing observational variance) and fast computing. However, a complicating factor in the
DBSTAR model formulation is that the solution of a set of polynomial equations is re-
quired at each time step if the first two moments of the unknown parameters associated
with a STAR model are to be determined. This is because, at each time step, a DBSTAR
model produces posterior distributions for the parameters of the polynomial DLM that re-
sults from approximating the STAR transition function by Taylor expansion or B-splines.
Those parameters are polynomial functions of the original STAR parameters. Thus, a
DBSTAR model naturally estimate parameters that have polynomial auto-regression in-
terpretability of their own but will demand extra computational processing for parametric
interpretability associated with parameters of a STAR model.

Similarly to DLMs, DBSTAR models can be formulated to account for components
of the underlying process. Trend, seasonality and cycle components are easily accounted
for in a parsimonious way. Heteroskedasticity can also be accounted for by either incor-
porating a variance law in the model or with the use of variance discounting techniques
when slow but steady changes in the unknown observational variance are allowed. The
parameters associated with with the slow changes are estimated sequentially from data.
To model observed cyclical behaviour in the data that are not accounted for by seasonal
components, harmonic DBSTAR (HDBSTAR) models have been defined that explicitly
include components for cycles. Fourier form representations of cycles with combinations of
sine/cosine waves provide an economic parametric characterisation and facilitate their in-
terpretation. In general, lower auto-regressive orders are required by a HDBSTAR model
comparatively to a DBSTAR (and a STAR) model. The parsimony of a HDBSTAR model
is balanced by larger amplitudes in the autoregressive coefficients. This is an advantage
of the HDBSTAR models over the DBSTAR, classical STAR and BSTAR, for modelling
time series in the presence of repetitive periodic behaviour.

Taylor and the B-splines formulations of HDBSTAR models were applied to a large
hourly series of electricity load in a region in Brazil. In this application, the formu-
lated HDBSTAR models showed considerably improved fitting over a SARIMA model
obtained by SPSS’s expert forecasting modeler. The B-splines slightly outperformed the
Taylor HDBSTAR model for both fitting and short-term forecasting. The Taylor model
performed slightly better for longer forecasting horizons.

References

Bauwens, L., Lubrano, M., and Richard, J. (1999). Bayesian Inference in Dynamic
Econometric Models. Oxford University Press.

14



Broemeling, L. D. (1985). Bayesian analysis of linear models. Decker, New York.

Campbell, E. P. (2004). Bayesian selection of threshold autoregressive models. Journal
of Time Series Analysis, 25:467–482.

Chan, K. and Tong, H. (1986). On estimating thresholds in autoregressive models. Journal
of Time Series Analysis, 7:179–190.

Chen, C. and Lee, J. (1995). Bayesian inference of threshold autoregressive models.
Journal of Time Series Analysis, 16:483–492.

Chen, C. W. (1998). A bayesian analysis of generalized threshold autoregressive models.
Statistics & Probability Letters, 40:15–22.

de Boor, C. (1978). A Practical Guide to Splines. Springer, Berlin.

Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with b-splines and penalties
(with discussions). Statistical Science, 11:89–121.

Elton, C. and Nicholson, M. (1942). The ten-year cycle in numbers of the lynx in canada.
Journal of Animal Ecology, 11:215–244.

Faria, A. and Santos, A. (2018). Dynamic bayesian smooth transition auto-regressive
models for non-linear non-stationary time series. The Open University, Statistics Tech-
nical Report, 18/04:1–28.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating
marginal densities. Journal of the American Statistical Association, 85:398–409.

Geweke, J. and Terui, N. (1993). Bayesian threshold autoregressive models for nonlinear
time series. Journal of Time Series Analysis, 14:441–454.

Green, P. J. (1995). Reversible jump markov chain monte carlo computation and bayesian
model determination. Biometrika, 82:711–732.

Lopes, H. F. and Salazar, E. (2005). Bayesian model uncertainty in smooth transition
autorregressions. Journal of Time Series Analysis, 27:99–117.

Lubrano, M. (2000). Bayesian analysis of nonlinear time-series models with a thresh-
old. Nonlinear Econometric Modelling in Time Series: Proceedings of the Eleventh
International Symposium in Economic Theory.

Santos, A. (2014). Dynamic Bayesian Smooth Transition Autoregressive models for non-
stationary nonlinear time series. The Open University, PhD Thesis.

Terasvirta, T. (1994). Specification, estimation, and evaluation of smooth transition
autoregressive models. Journal of the American Statistical Association, 89:208–218.

Tong, H. (1978). On a threshold model. In Patern Recognition and Signal Processing.

15



Tong, H. (2011). Threshold models in time series analysis - 30 years on (with discussions).
Statistics and Its Interface, 4:107–136.

West, M. and Harrison, J. (1997). Bayesian Forecasting and Dynamic Models. Springer.

Wold, S. (1974). Spline functions in data analysis. Technometrics, 16:1–11.

16


