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Abstract: Urban forests can provide the necessary ecosystem services for their residents and play
an important part in improving the urban environment. Forest landscape connectivity is a vital
indicator reflecting the quality of the ecological environment and ecological functions. Detecting
changes in landscape connectivity is, therefore, an important step for providing sound scientific
evidence for the better urban planning. Using remote sensing images of a study area in Zhuhai City in
1999, 2005, 2009 and 2013, the dynamic forest landscape connectivity of Zhuhai city can be evaluated
based on a graph-theoretic approach. The aims of our study were to discover and interpret the
effect of rapid urbanization on forest landscape connectivity. The construction of ecological corridors
helps us specifically compare the landscape connectivity of three parts of urban forests. On the
basis of functional landscape metrics, the correlation of these metrics and patch area was discussed
in order to comprehensively identify the key patches. The analysis showed that the total areas of
forestlands reduced from 1999 to 2009 and then increased from 2009 to 2013, and the same trend
was found in overall forest landscape connectivity. To improve the overall landscape connectivity,
construct urban ecological network and appropriately protect biodiversity in the future, the existing
important patches with large areas or key positions should be well protected. This study revealed
that urbanization reduced the area of key patches and consequently reduced the forest landscape
connectivity, which increased while the patch areas increased due to the environmental protection
policy. Functional connectivity indicators could provide more comprehensive information in the
development of environmental protection strategies.

Keywords: landscape connectivity; urban forests; urbanization; graph theory; Zhuhai

1. Introduction

The areas occupied by global cities quadrupled from 1970 to 2000 [1] and it is estimated that
approximately 65% of the world’s population will live in cities by 2025 [2]. China is the world’s largest
developing country and the percentage of the urban population was 22.9% in 1985 and 47.5% in 2010,
an increase which resulted from rapid urbanization after the great reform and opening-up policy
which began in 1978 [3]. Most countries in the world have experienced urbanization with the rapid
development of economy and society [4–7]. From the perspective of landscape ecology, urbanization
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is the process in which landscape processes are affected and changed. The corresponding results of
this process can be reflected by landscape patterns [8], for example, the original natural landscape
including forestland, grassland, lakes, rivers and soil can be changed to nature reserves, city forest
parks, scenic tourist areas or manmade landscapes which are mainly composed of cement, asphalt,
chemical materials, and metal. In this case, the ecosystem services provided by urban forest land
would be influenced to a large extent However, natural ecosystems play a vital role in maintaining
ecological balance and providing ecosystem services [9–11]. Researchers and landscape planners are,
therefore, dedicated to finding the key patches to maintain ecological services [12,13] and exploring
how to plan for urban green space from an ecological perspective [14,15].

Urban forests have been regarded as important elements for improving the green infrastructure
network in the urban landscape [16]. They not only make the large contribution of providing multiple
benefits such as social, architectural, climatic and economic benefits, but also enhance the quality of
urban life [17]. Urban forest lands therefore play a vital role in effective urban planning to support
various ecosystem services and achieve sustainable urban development. The assessments of the
urban forest connectivity can quantitatively reflect the quality of green infrastructure network. Urban
forest landscape connectivity exerts very important influences on urban ecosystem services and
functions (e.g., seed migration and proliferation, animal migration, and gene flow) and interferes with
water infiltration and soil erosion. Connectivity is directly related to the integrity, sustainability and
stability of urban ecosystems [18]. Maintaining landscape connectivity is a crucial part of sustainable
planning and the management of urban forest landscapes [19]. Thus, the topic of studying urban
forest connectivity has driven many planners and researchers to apply landscape connectivity in urban
planning to effectively support ecological services [20–22].

A key task in these endeavors was that of improving landscape connectivity, which is defined
as the degree to which the landscape facilitates or impedes movement among resource patches [23].
Landscape connectivity provides highly useful information about the characteristics of a landscape,
such as description of the relationships between landscape structure and the organisms within it [24].
In addition to conserving biodiversity, maintaining good connectivity can maintain the stability and
integrity of ecosystems [4]. Graph theory has a long tradition in ecological conservation [25–27] and its
application in landscape connectivity allows for a comprehensive consideration of environmental
variables including biotic factors (such as area) and abiotic factors (such as topography) in landscape
ecological planning and research [28]. A graph-theoretic approach can effectively assess functional
landscape connectivity, and can also be used to investigate the contribution of important patches
to improving forest landscape connectivity [25,29]. Forest patches can be represented by a series of
nodes which connect with each other and the ecological flows among these patches can be modeled
as ecological corridors. Networks and corridor models make the great contribution of improving
landscape connectivity in vital forest patches which can promote species movement among these
patches. The Conefor Sensinode 2.6 (CS26) (http://www.conefor.org) uses a set of indices to calculate
the ecological connectivity and then investigate the importance of critical patches [30,31].

The aims of this study are: (1) to detect the dynamics of forestlands based on land use maps and
evaluate the changes in forest landscape connectivity from 1999 to 2013 in Zhuhai City; (2) to investigate
the effects of rapid urbanization on forest landscape connectivity on the basis of landscape connectivity
metrics; and (3) to rank the importance value of the total forest patches in order to develop better
urban biodiversity conservation planning for the local study area and discuss the contributions of
functional connectivity metrics in identifying important forest patches.

2. Materials and Methods

2.1. Study Area

Zhuhai City (113.510◦ E to 113.593◦ E, 22.209◦ N to 22.398◦ N) is located in the south of Guangdong
Province, China, on the west bank of the Pearl River estuary (Figure 1). Zhuhai is a typical, fast expanding
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city with complex economic, social and geographical conditions. This city has experienced significant
production growth and unprecedented land-use changes in the last three decades. With a population of
1.59 million in 2013, Zhuhai contains three main districts, Xiangzhou, Doumen and Jinwan. The total area
of Zhuhai is 7836 km2, of which 1711 km2 is covered by land, and the remaining area is covered by ocean.
Hills, plains and waters account for 58.6%, 25.5% and 15.9% of the total land area, respectively. The climate
in Zhuhai is subtropical-monsoon-maritime and the forest type is mainly monsoon-evergreen-broadleaved
forest. In order to protect the forest lands during urbanization, the government constructed many forest
parks, scenic area and country parks in Zhuhai City in the past few decades, for example, the Jianfeng
mountain forest park was opened in 1995 and the Banzhang mountain park was opened in 1997. Six forest
parks have been developed in Zhuhai City from 1995–2005, and at present, almost all of the forest lands
in Zhuhai City are covered by forest parks. They contributed to the preservation and protection of
landscape resources, and additionally, facilitated the investigation and the study of the natural resources
and environment effectively. In addition, these forest parks play an important role in the sustainable
development of the tourism industry and also provide the great living conditions for the local people.
The forest parks provide the necessary places for local educational institutions to hold educational
activities and promote knowledge about environmental protection. The annual average temperature
is 22.4 ◦C with monthly average temperatures of between 15 ◦C and 28 ◦C, and the annual rainfall is
approximately 1770 mm. Zhuhai is a modernized city, serving as a regional hub for transportation,
high-tech industry, and international trading for the south of the Pearl River Delta [32].

During the rapid urbanization, Zhuhai has experienced the dramatic changes in population
composition and economy structure, improving the Biocultural Diversity could also make the good
contribution to our urban environments. Biocultural Diversity is defined as the diversity of life in all
its manifestations: biological, cultural, and linguistic—which are interrelated (and possibly coevolved)
within a complex socio-ecological adaptive system. The diversity of life is made up not only of the
diversity of plants and animal species, habitats and ecosystems found on the planet but also of the
diversity of human cultures and languages. Certain geographic areas have been positively correlated
with high levels of biocultural diversity, including those of low latitudes, higher rainfalls, higher
temperatures, coastlines [33]. So improving the biocultural diversity in Zhuhai is also a necessary
measure to protect the urban forest effectively.

Sustainability 2018, 10, x FOR PEER REVIEW  3 of 17 

typical, fast expanding city with complex economic, social and geographical conditions. This city has 
experienced significant production growth and unprecedented land-use changes in the last three 
decades. With a population of 1.59 million in 2013, Zhuhai contains three main districts, Xiangzhou, 
Doumen and Jinwan. The total area of Zhuhai is 7836 km2, of which 1711 km2 is covered by land, and 
the remaining area is covered by ocean. Hills, plains and waters account for 58.6%, 25.5% and 15.9% 
of the total land area, respectively. The climate in Zhuhai is subtropical-monsoon-maritime and the 
forest type is mainly monsoon-evergreen-broadleaved forest. In order to protect the forest lands 
during urbanization, the government constructed many forest parks, scenic area and country parks 
in Zhuhai City in the past few decades, for example, the Jianfeng mountain forest park was opened 
in 1995 and the Banzhang mountain park was opened in 1997. Six forest parks have been developed 
in Zhuhai City from 1995–2005, and at present, almost all of the forest lands in Zhuhai City are 
covered by forest parks. They contributed to the preservation and protection of landscape resources, 
and additionally, facilitated the investigation and the study of the natural resources and 
environment effectively. In addition, these forest parks play an important role in the sustainable 
development of the tourism industry and also provide the great living conditions for the local 
people. The forest parks provide the necessary places for local educational institutions to hold 
educational activities and promote knowledge about environmental protection. The annual average 
temperature is 22.4 °C with monthly average temperatures of between 15 °C and 28 °C, and the 
annual rainfall is approximately 1770 mm. Zhuhai is a modernized city, serving as a regional hub for 
transportation, high-tech industry, and international trading for the south of the Pearl River Delta 
[32]. 

During the rapid urbanization, Zhuhai has experienced the dramatic changes in population 
composition and economy structure, improving the Biocultural Diversity could also make the good 
contribution to our urban environments. Biocultural Diversity is defined as the diversity of life in 
all its manifestations: biological, cultural, and linguistic—which are interrelated (and possibly 
coevolved) within a complex socio-ecological adaptive system. The diversity of life is made up not 
only of the diversity of plants and animal species, habitats and ecosystems found on the planet but 
also of the diversity of human cultures and languages. Certain geographic areas have been 
positively correlated with high levels of biocultural diversity, including those of low latitudes, 
higher rainfalls, higher temperatures, coastlines [33]. So improving the biocultural diversity in 
Zhuhai is also a necessary measure to protect the urban forest effectively. 

 
Figure 1. The distribution of forest land in Zhuhai City. 

Figure 1. The distribution of forest land in Zhuhai City.

Zhuhai City, adjacent to the Hong Kong and Macao special administrative regions, became one of
the fastest-growing cities in China, especially in 1999–2009. In 2008, the National Development and
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Reform Commission of China had designed Zhuhai City as the center of the western bank of the Pearl
River estuary, as part of a national urban development strategy for the next decade (2008–2020) [32].
Zhuhai city has experienced two stages of urbanization. Economic development was on top of the
priority list at the beginning of urbanization, but constructing a garden city was recently set as the
primary goal for long-term economic development [32]. As a result, urban forests also experienced
two stages of change: the area of forest-land first decreased and then increased during the urbanization
process. Therefore, the forest-land pattern in Zhuhai city was chosen to investigate the dynamics of
the urban forest landscape connectivity within over the past 15 years.

2.2. Data sources and Processing

Remote sensing images from four years—1999, 2005, 2009 and 2013—were selected as the
data source. All of the images used were taken in November, so as to generate comparable
results; other information about these images is shown in Table 1. All remote sensing images
were pre-processed: including radiation calibration, geometric correction, and image clipping.
These processes can minimize errors during the classification of images [34]. Land use types were
classified into seven types including forestland, grassland, farmland, developed land, wasteland,
water body, and unutilized land, using supervised classification. Classification accuracy was assessed
using kappa values. All the kappa values obtained from the assessment were higher than 8.5,
suggesting that the classification results were reliable. The raster maps of land use were subsequently
vectorized and imported to ArcMap to generate the spatial and attribute database of urban vegetation
landscape types.

Table 1. The list of remote sensing data in Zhuhai.

Number Image Date Satellite Spatial Resolution Path and Row

1 15 November 1999 LandsatETM+ 30 m 122-45/44
2 23 November 2005 Landsat TM 30 m 122-45/44
3 2 November 2009 Landsat TM 30 m 122-45/44
4 7 November 2013 Landsat TM 30 m 122-45/44

Taking the individual forestland in the study area as habitat patches and the entire study area
as the environmental background and based on the Conefor Inputs package (http://www.conefor.
org/gisextensions.html), node-line planar graph information was obtained by using the land use
data in Zhuhai city [31]. Using the Conefor 2.6 software, all landscape connectivity indicators were
investigated to detect changes in the landscape connectivity. The evaluation of the selected threshold
distance was obtained by statistical methods.

2.3. Index of Landscape Connectivity

In this study, we examined the changes in forest landscape connectivity during the past 15 years
in Zhuhai. Leveraging on a series of connectivity index, the study identified the important patches that
potentially play an important role in future environment planning. Connectivity loss represents one of
the major threats to the preservation of biotic diversity in natural ecosystems. Therefore, the forest
landscape connectivity is set as a tool in the prioritization and protection of urban forest patches in
landscape conservation planning.

The metrics used to quantify the landscape connectivity have attracted much research
attention [26,35,36]. Probability of Connectivity (PC), which is based on a probabilistic connection
model, and Integral Index of Connectivity (IIC), which is based on a binary connection model,
were calculated based on a graph-theoretic approach [37]. The former is suitable for studying the
actual movement of organisms of specific species while the latter is suitable for studying the topology
of the network [22,38]. In this study, we used two indices to evaluate the overall forest landscape

http://www.conefor.org/gisextensions.html
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connectivity in Zhuhai and the IIC index to examine the structure of forestland and the general
functional connectivity pattern.

2.3.1. Integral Index of Connectivity (IIC)

Changes in landscape connectivity depend not only on the area of the patches but also on the
spatial distance between patches. In this study, the IIC was used to quantitatively estimate the change
in landscape connectivity in the study area. IIC values range from 0 to 1 and increase with improved
connectivity. The index is given by

IIC =

n
∑

i=1

n
∑

j=1

ai·aj
1+nlij

A2
L

(1)

where n is the total number of nodes in the landscape, ai and aj are the area of nodes i and j, nlij is the
smallest number of links used to connect patches i and j, and AL is the total landscape area [26].

2.3.2. Probability of Connectivity (PC)

The PC index can be regarded as a network-based habitat availability index that is sensitive to
habitat loss [39]. The PC ranges from 0 to 1 and increases with improved connectivity. It is given by:

PC =

n
∑

i=1

n
∑

j=1
pij · ai · aj

A2
L

(2)

where n is the total number of habitat nodes in the landscape, ai and aj are the area of nodes i and j,
AL is the total landscape area, and pij is the maximal probability of the potential paths between patches
i and j [37].

2.3.3. Patch Importance

The importance of an existing node for maintaining landscape connectivity (dI) is calculated
according to a certain index (I) in Conefor Sensinode 2.6 [30,31] as a percentage expressed as:

dIIC = 100 · (IIC − IICremove)

IIC
(3)

where IIC is the overall index value when all of the initially existing nodes are present in the landscape
and IICremove is the overall index value after the removal of that single node from the landscape [40].
The importance of forest patches was classified into five levels according to the dIIC values, which are
dIIC ≥ 70%; 70% > dIIC ≥ 50%; 50% > dIIC ≥ 30%; 30% > dIIC ≥ 10%; and dIIC < 10%. These classes
were represented by very high importance; high importance; medium importance; medium low
importance and low importance, respectively [41].

The dIIC can be partitioned into three fractions (dIICintra, dIICflux and dIICconnector),
which can be used to assess the contributions of different habitat patches to landscape connectivity in
three aspects [42]:

dIIC = dIICintra + dIICflux + dIICconnector (4)

where dIICintra is the contribution of patch when it comes to the intrapatch connectivity, or the
available habitat area provided by the patch itself; dIICflux corresponds to the area-weighted dispersal
flux through the connections of a patch to or from all of the other patches in the landscape when this
patch is either the starting or ending patch of that connection or flux; dIICconnector is the contribution
of patch to the connectivity between other habitat patches, as a connecting element or stepping stone
between them [37,38]. In the present study, three functional connectivity indicators were selected to
sufficiently investigate the landscape pattern in Zhuhai City. Additionally, binary indices including
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the number of components (NC) and the number of patches in the largest component (NPLC) were
used to calculate the suitable threshold distance. A component is a set of nodes in which a path exists
between every pair of nodes in the landscape [31].

2.4. The Threshold Distance and Patch Size Classification

The threshold distance is a vital factor in evaluating the landscape connectivity and the threshold
distance could be interpreted as the minimum distance between patches of various ecological processes,
such as the process of biological migration and species diffusion. Therefore, it is necessary to select
suitable threshold distances in order to sufficiently detect the dynamics of forest landscape connectivity
and investigate the functional connectivity of different habitat patches. To do so, firstly, we examined
the changes in the number of components (NC) in the study period, and found that they decreased to
1 at the threshold distance of 5000 m in (Figure 2b), which indicated that all of the habitat patches in
Zhuhai city were considered to be directly connected with each other. Thus, the suitable threshold
distances, which were used to quantify the landscape connectivity and assess the contribution of
important patches to landscape connectivity, were identified to be less than 5000 m. Secondly,
we calculated the dIIC values of all forest patches at different threshold distance (50, 100, 200, 400, 600,
800, 1000, 1200, 1400, 1800, 2200, 2600, 3000, 3400, 3800, 4200, 4600 and 5000 m) and then compared the
results of dIIC values at different threshold distances to select the suitable threshold distances.

Patch area also exerts a large influence on landscape connectivity and patch importance because
since IIC value was calculated on the basis of patch areas. Thus, it was necessary to divide the selected
patches into different classes based on the patch areas to clearly explain the changes of landscape
pattern before studying the landscape connectivity. In this study, we categorized all of the forest
patches into four classes, namely small patches (smaller than 100 ha), medium patches (100–500 ha),
large patches (500–1000 ha), and great patches (larger than 1000 ha) [41].
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2.5. Constructing the Ecological Corridor Based on the Important Nodes

First, the important patches in Zhuhai were selected as ecological source points based on
the calculated dIIC values. Second, combined with observations and professional investigation,
the resistance value can be calculated and assessed. Landscape resistance describes the influence of the
landscape on the ecological flow rate and the creation of the landscape resistance surface using ArcGIS
according to the landscape resistance values. Third, the distance of the corridors with minimum cost
was calculated according to the methods of extracting ecological source points and the minimum
cumulative resistance [43].

2.6. Statistical Analysis of Functional Connectivity Metrics

In order to compare the contribution of functional indices in identifying important patches,
the Pearson correlation coefficients were used to evaluate the correlation between metrics (including
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dIIC, dIICintra, dIICflux and dIICconnector) and patch areas, and the results of the correlation analysis
were computed using SPSS 12.0 [44,45].

3. Results

3.1. Spatiotemporal Distribution of Forest Patches

The urban forestland areas for the four studied years were calculated by using the GIS software.
The observed changes in forestland area in the study area between 1999 and 2013 are displayed in
Figure 2a. The area of forestland accounted for 24.24% of the total study area in 1999, and decreased to
24.12% and 22.17% in 2005 and 2009, respectively. Between 2009 and 2013, the forestland area increased
to 25.56% of the total study area.

The spatial distribution of forestland is displayed in Figure 3. The observed changes of forestland
area showed that the forestland in Zhuhai City experienced a fragmentation and loss of forest areas
during 1999–2009, for instance, it could be observed in Figure 3 that the great patches in the northeast
part of Zhuhai City had experienced a fragmentation during this period. At the same time, the area
of forest-land decreased according to the results in Figure 2a. However, the increase of forestland
area from 2009 to 2013 was shown to improve the landscape connectivity. The distribution patterns
of forestland during the study period help us to investigate the dynamics of landscape connectivity
more effectively.
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Considering the potential development of Zhuhai, the National Development and Reform
Commission of China has assigned Zhuhai as the center of the western bank of the Pearl River
estuary in a national urban development strategy for the next decade (2008–2020). In order to achieve
this goal, Zhuhai had made a series of polices to protect the urban eco-environment.

Some specific policies had been implemented in these plans include:

1. The forest coverage rate in the natural reserve and forest parks in Fenghuang Mountain and
Huangyang Mountain increased to at least 85% and the areas of the natural reserve enlarged.
The same measures were implemented in other mountains in Zhuhai City.

2. The eco-environment in Qiao island which is located in the northeast part of Zhuhai City had
been recovered and improved. Other plans had been made such as forbidding destroy the plants
in mountains, rescuing the destroyed forest land and restoration projects, similar measures had
been adapted and implemented in another island such as Gaolan island.

3. The quarries in natural reserve were closed and the destroyed eco-environment in these
places was restored through planting the suitable tree species and implementing the ecological
restoration work.

There were also many other specific strategies in these plans about the protection and restoration
of the forest land. So, the areas of forest lands had recovered during this period, which in this case the
results in our data analysis showed that the areas in forest lands increased in 2013.

The changes in the number of patches per patch area level (small patch, medium patch, large patch
and great patch) and their corresponding patch areas are illustrated in Figure 4. The smallest total
patch number was 289 in 1999 and the proportion of small patch area was 84.43% which indicated
that small patches disappeared during the urbanization from 1999 to 2009. Additionally, all the small
patch numbers in the four studied years were higher than other patch types, however the area of the
small patches only occupied 7–9% of the total patch area during the study period. The numbers of
medium patch accounted for 10.38% in 2009 which was that biggest proportion in the studied period.
The proportions of medium patch area to total patch area was 19.06% in 2009 which was also the
biggest proportion in the study period. The numbers of large patch only accounted for about 1.5–2.5%
of total patch numbers in the study period and the corresponding proportions of large patch area to
total patch area were about 11.41% to 12.72%. As for the great patches, it is noteworthy that even
though their numbers only accounted for 2–3% in the study period, the proportions of great patch
area to total patch area were 64.58%, 69.85%, 62.14% and 69.60% in the study period, respectively,
which were the largest proportions of all patch types.

The characteristic of the forestland in Zhuhai City showed that it was distributed as numerous
small patches which covered small areas and a small number of great patches which covered the
largest areas in the study area in the study period.

3.2. Analysis of the Threshold Distance

The changes in the values of the Number of Components (NC) and Number of Patches in the
Largest Component (NPLC) are shown in Figure 5. Specifically, when the threshold distances were
changed from 50 to 4600 m, NC decreased to 1 in three years of 1999, 2005 and 2013, and NC decreased
to 2 in 2009. The NPLC were at their maximum when the distances increased to 4600 m in the study
period. However, increasing the threshold distances than 4600 m, almost no changes were observed
in the four studied years. This indicated that the forest patches in Zhuhai were connected with each
other and that landscape types belong to the same type. This means that the landscape types were
relatively homogeneous and that the landscapes were consistently connected.
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The importance of all forest patches according to the dIIC values with various areas at different
threshold distances are displayed in Figure 6. This clearly indicates that large patches had higher patch
importance than medium patches and small patches at the same threshold distance. With an increase
in the threshold distance, the small and medium patches became more important. Large patches
were highly important in landscape connectivity because they have higher IIC values than smaller
patches. The landscape connectivity values are deeply dependent on the dispersive abilities of species,
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so the threshold distances range from a few tens of meters to thousands of meters. Compared with
a single threshold distance, the results would be more reliable and meaningful when calculate the
IIC value at four distances. It was therefore necessary to set a series of distances. In order to obtain
comparable results and overcome the limitations when only selecting one threshold distance, according
to Figure 6, we selected four dispersal threshold distances (1000 m, 2200 m, 3400 m and 4600 m) to
calculate the IIC value and node importance.

Figure 6. The importance values of different patches with various areas (ha) were represented by dIIC
values under gradient threshold distances from 600 m to 5000 m.

3.3. Dynamics of Forest Landscape Connectivity from 1999 to 2013

The values of IIC and PC were used to quantitatively assess the overall connectivity in the study
area. The change of values of IIC values from 1999–2013 is shown in Figure 7. The IIC values increased
significantly with the increase of threshold distance during the whole study period. Furthermore,
the IIC values changed significantly at the specific threshold distance. Table 2 shows several values
of IIC at the selected threshold distances of 1000 m, 2200 m 3400 m and 4600 m This shows that the
values of IIC changed over time and that the smallest values were observed in 2009 at every threshold
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distance, which were 0.00466, 0.00665, 0.00712 and 0.01058, respectively, and that the biggest values of
IIC in 2013 were 0.00695, 0.00879, 0.01007 and 0.01647.
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Table 2. Overall indices of Integral Index of Connectivity (IIC) and Probability of Connectivity (PC) for
Zhuhai City from 1999 to 2013 under four threshold distances.

Year Distance (m) IIC PC Distance (m) IIC PC

1999

1000

0.00601 0.00851

3400

0.00987 0.01518
2005 0.00618 0.00877 0.00909 0.01448
2009 0.00466 0.00704 0.00712 0.01167
2013 0.00695 0.01022 0.01007 0.01749

1999

2200

0.00743 0.01182

4600

0.01379 0.01848
2005 0.00842 0.01176 0.01377 0.01711
2009 0.00665 0.00942 0.01058 0.01389
2013 0.00879 0.01382 0.01647 0.02104

The change in the PC values is shown in Figure 7. In the study period, PC values increased rapidly
within the threshold distance of 1000 m and then linearly increased with the increase of threshold
distance. Ranking the PC values of four years at specific distance including 1000 m, 2200 m 3400 m
and 4600 m, we observed that the smallest PC value was in 2009 and the biggest PC value was in 2013
(Table 2). Figure 2a shows the change of the total forest areas in the four years of 1999, 2005, 2009 and
2013, from which it can be seen that the forest landscape connectivity is largely influenced by the patch
areas, which means that the larger the overall patches areas were, the higher the overall landscape
connectivity. Additionally, from the results mentioned above we also see that the higher the threshold
distance, the better connected were the forest patches.

3.4. Dynamics of Patch Importance Based on the dIIC Value

The importance of forest patches was classified into five levels according to the dIIC values,
very high importance (dIIC ≥ 70%); high importance (70% > dIIC ≥ 50%); medium importance
(50% > dIIC ≥ 30%); medium low importance (30% > dIIC ≥ 10%) and low importance
(dIIC < 10%).The importance of forest patches was represented by the values of dIIC, and the results
showed that the distribution of the patch importance varied greatly with the increase of threshold
distance in the four years of 1999, 2005, 2009 and 2013 (Figure 8). In Figure 8, we can observe the
significant characteristics that most of the small patches and medium patches were low importance
patches, while the importance of patches was steady for large and great patches. For example, the dIIC
values of patches with large or great patch areas were more than 10%. All of the very high important
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patches (dIICvalues more than 70%) were great patches at the four threshold distances during the
whole study period.Sustainability 2018, 10, x FOR PEER REVIEW  12 of 17 
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Figure 8. Changes in patch importance level for landscape connectivity of various habitat patches
under gradient threshold distances in 1999, 2005, 2009 and 2013. Importance values based on the dIIC
metric were divided into five categories.

In 1999, the number of patches (dIIC > 10%) increased from 8 at 1000 m to 15 at 4600 m.
It is noteworthy that a medium patch with areas of 111.71 ha became from the low importance
patches (dIIC < 10%) to medium low important patches (30% > dIIC ≥ 10%) at 2200 m while the other
patches belonging to this importance level were large and great patches.
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In 2005, the number of patches (dIIC ≥ 10%) ranged from 8 at 1000 m to13 at 4600 m. Additionally,
there were two small patches became from the low importance patches (dIIC < 10%) to the medium
low importance patches (30% > dIIC ≥ 10%) at 2200 m, and one small patch only with patch areas of
55.58 ha became from the low importance patches to high importance patch (dIIC ≥ 50%) at 4600 m.

In 2009, the number of patches (dIIC ≥ 10%) slightly increased from 11 at 1000 m to 13 at
4600 m. There were also two medium patches with areas of 274.41 and 310.68 ha became from the low
importance patches to the medium low importance patches at the threshold distance of 1000 m and
2200 m, respectively.

In 2013, the number of patches (dIIC ≥ 10%) ranged from 6 at 1000 m to 17 at 4600 m, which was
the highest number in the study period. There were also great changes in three patches with medium
areas (164.27 ha, 299.34 ha and 460.53 ha), the first two of which became the medium low importance
patches under the threshold distance of 2200 m and another one became the medium low importance
patches (30% > dIIC ≥ 10%) under the threshold distance of 4600 m.

In 1999, 2005, 2009 and 2013, an increasing number of patches were found to be more important
with the increase of threshold distance. This indicates that more important patches would be
identified if the threshold distance expanded. Additionally, the medium patches and small patches
also played important roles in maintaining landscape connectivity and improving the protection of
natural resources.

3.5. Construction of Ecological Network Based on Forest Distribution

Establishing ecological networks can strengthen the landscape connectivity and protect
biodiversity effectively. In constructing an ecological network, it was first necessary to select the
important patches as the ecological source points. In this study, we set important patches as the source
points based on the results of dIIC values, and all of the selected patches were classified into three
parts including the eastern part, southern part and western part of the study area according to their
locations. We then established the corridors between them and the source point. The minimum cost
distance of corridors was calculated, and the results are shown in the Figure 9a.
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Ecological corridors were categorized into two levels representing the different functions as
shown in (Figure 9b). The first level corridors connecting the three parts of important patches and
second level corridors were located between the parts within the important patches. The ecological
corridors of the eastern part of the study area showed that there were no ecological corridors between
forest patches in the northeastern and southeastern part the study area, which indicated that the degree
of landscape connectivity in this area was very low.
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Therefore, it was very important to construct forest patches in the middle of two ecological
source points which are not connected with each other. Compared with the ecological corridors
in the east of Zhuhai City, the ecological corridors in the western part connect the forest patches
effectively, which could make a large contribution to the improvement of landscape connectivity and
protection of ecological biodiversity. Future construction activity should avoid the ecological corridors.
The ecological corridors in the southern part of Zhuhai City were important because they played
an essential role in connecting forest patches in the eastern and western parts, so the forests in the
southern part should be protected, and especially fragmented forest land. Preventing new built up
construction will be beneficial to recovering the broken ecological corridors.

The changes in areas of farmland, forestland and construction land are shown in the same period
(Figure 10). The figure clearly indicates a dramatic decrease of cultivated areas and an increase of
urbanized area during the study period in Zhuhai City. These trends are accompanied by a decrease of
forest land in 1999–2009 and then an increase in 2013. These trends were the results of the environmental
protection measures mentioned above.
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3.6. Other Factors Which Could Also Affect the Patch Importance

In this study, three functional connectivity indices (dIICintra, dIICflux and dIICconnector) were
selected to sufficiently investigate the landscape connectivity in Zhuhai City. The correlations between
functional connectivity indices and patch area at two levels are shown in Tables 3 and 4.

Table 3. Pearson correlation coefficients between patch importance indices and total patch area.

Year Patch Importance Indices 1000 m Sig 2200 m Sig 3400 m Sig 4600 m Sig

1999

dIIC 0.947 ** 0 0.957 ** 0 0.957 ** 0 0.979 ** 0
dIICintra 0.892 ** 0 0.892 ** 0 0.892 ** 0 0.892 ** 0
dIICflux 0.590 ** 0 0.823 ** 0 0.958 ** 0 0.978 ** 0

dIICconnector 0.367 ** 0 0.220 ** 0 0.127 ** 0.006 0.188 ** 0

2005

dIIC 0.906 ** 0.001 0.943 ** 0 0.962 ** 0 0.906 ** 0
dIICintra 0.920 ** 0 0.920 ** 0 0.920 ** 0 0.920 ** 0
dIICflux 0.738 * 0.04 0.937 ** 0 0.944 ** 0 0.990 ** 0

dIICconnector 0.499 ** 0.00 0.355 ** 0 0.522 ** 0 0.069 0.196

2009

dIIC 0.913 ** 0 0.949 ** 0 0.964 ** 0 0.944 ** 0
dIICintra 0.905 ** 0 0.905 ** 0 0.905 ** 0 0.905 ** 0
dIICflux 0.728 ** 0 0.914 ** 0 0.935 ** 0 0.962 ** 0

dIICconnector 0.316 ** 0 0.551 ** 0 0.584 ** 0 0.369 ** 0

2013

dIIC 0.904 ** 0 0.940 ** 0 0.966 ** 0 0.950 ** 0
dIICintra 0.920 ** 0 0.920 ** 0 0.920 ** 0 0.920 ** 0
dIICflux 0.699 ** 0 0.867 ** 0 0.951 ** 0 0.987 ** 0

dIICconnector 0.538 ** 0 0.459 ** 0 0.584 ** 0 0.323 ** 0

** Pearson correlation is significant at the 0.01 level. * Pearson correlation is significant at the 0.05 level.
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Table 4. Pearson correlation coefficients between patch importance indices and the top 10 patch area.

Year Patch Importance Indices 1000 m Sig 2200 m Sig 3400 m Sig 4600 m Sig

1999

dIIC 0.933 ** 0 0.959 ** 0 0.948 ** 0 0.956 ** 0
dIICintra 0.977 ** 0 0.977 ** 0 0.977 ** 0 0.977 ** 0
dIICflux 0.061 0.868 0.579 0.079 0.982 ** 0 0.957 ** 0

dIICconnector 0.915 ** 0 −0.477 0.164 −0.302 0.396 −0.407 0.243

2005

dIIC 0.868 ** 0.001 0.928 ** 0 0.968 ** 0 0.991 ** 0
dIICintra 0.976 ** 0.000 0.976 ** 0 0.976 ** 0 0.976 ** 0
dIICflux 0.654 ** 0.004 0.913 ** 0 0.937 ** 0 0.969 ** 0

dIICconnector 0.786 ** 0.007 −0.244 0.497 0.05 0.891 −0.368 0.296

2009

dIIC 0.821 ** 0.004 0.901 ** 0 0.958 ** 0 0.884 ** 0
dIICintra 0.973 ** 0 0.973 ** 0 0.973 ** 0 0.973 ** 0
dIICflux 0.546 0.103 0.771 ** 0.009 0.922 ** 0 0.964 ** 0

dIICconnector −0.490 0.15 0.35 0.321 0.372 0.29 0.213 0.554

2013

dIIC 0.858 ** 0.002 0.915 ** 0 0.969 ** 0 0.849 ** 0.002
dIICintra 0.978 ** 0 0.978 ** 0 0.978 ** 0 0.978 ** 0
dIICflux 0.570 0.086 0.717 0.02 0.952 ** 0 0.958 ** 0

dIICconnector 0.928 ** 0 −0.041 0.911 0.461 0.180 −0.011 0.976

** Pearson correlation is significant at the 0.01 level.

Table 3 shows the results of correlation coefficients between the four indices (dIIC, dIICintra,
dIICflux and dIICconnector) and the areas of all patches. The dIIC was positively correlated with the
patch area at the significance level of 0.01. It could be observed that the correlation coefficients between
dIICintra and patch area stable when the threshold distance increases. The correlation coefficients
between dIICintra and patch area were 0.892, 0.920, 0.905 and 0.920 in 1999, 2005, 2009 and 2013,
respectively, which indicated that the change of threshold distance did not influence the correlation
between the dIICintra and patch area. The coefficients between dIICflux and patch area were higher
than those between dIICconnector and patch size under four threshold distances (1000 m, 2200 m,
3400 m and 4600 m) in all periods. The coefficients between dIICflux and patch area increased with the
increasing distance, which indicates that the threshold distance exerted influence on the correlations of
dIICflux and patch area. The lowest correlations occurred between the dIICconnector and patch areas
due to the connector fraction influenced by patch position instead of other factors. Therefore, a patch
with high dIICconnector values of indicated that it was regarded as a stepping stone between habitat
patches in study areas, and makes contributions to the landscape connectivity.

All dI values (dIIC, dIICintra, dIICflux and dIICconnector) of forest patches were ranked and the
10 most important patches for each kind of dI values were selected. We subsequently evaluated the
correlation coefficients between four indices (dIIC, dIICintra, dIICflux and dIICconnector) and the
patch areas of the 10 most important patches.
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